

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4200-8292-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Handbook of chemoinformatics algorithms / editors, Jean-Loup Faulon, Andreas Bender.
p. cm. -- (Chapman & Hall/CRC mathematical and computational biology series)

Includes bibliographical references and index.
ISBN 978-1-4200-8292-0 (hardcover : alk. paper)
1. Cheminformatics--Handbooks, manuals, etc. 2. Algorithms. 3. Graph theory. I.

Faulon, Jean-Loup. II. Bender, Andreas, 1976- III. Title. IV. Series.

QD39.3.E46H357 2010
542’.85--dc22 2010005452

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface . vii
Acknowledgments . ix
Contributors . xi

Chapter 1 Representing Two-Dimensional (2D) Chemical Structures
with Molecular Graphs. 1
Ovidiu Ivanciuc

Chapter 2 Algorithms to Store and Retrieve Two-Dimensional (2D)
Chemical Structures . 37
Milind Misra and Jean-Loup Faulon

Chapter 3 Three-Dimensional (3D) Molecular Representations. 65
Egon L. Willighagen

Chapter 4 Molecular Descriptors. 89
Nikolas Fechner, Georg Hinselmann, and Jörg Kurt Wegner

Chapter 5 Ligand- and Structure-Based Virtual Screening .145
Robert D. Clark and Diana C. Roe

Chapter 6 Predictive Quantitative Structure–Activity Relationships
Modeling: Data Preparation and the General Modeling
Workflow .173
Alexander Tropsha and Alexander Golbraikh

Chapter 7 Predictive Quantitative Structure–Activity Relationships
Modeling: Development and Validation of QSAR Models.211
Alexander Tropsha and Alexander Golbraikh

Chapter 8 Structure Enumeration and Sampling .233
Markus Meringer

Chapter 9 Computer-Aided Molecular Design: Inverse Design269
Donald P. Visco, Jr.

Chapter 10 Computer-Aided Molecular Design: De Novo Design295
Diana C. Roe

v

vi Contents

Chapter 11 Reaction Network Generation .317
Jean-Loup Faulon and Pablo Carbonell

Chapter 12 Open Source Chemoinformatics Software and Database
Technologies .343
Rajarshi Guha

Chapter 13 Sequence Alignment Algorithms: Applications to Glycans
and Trees and Tree-Like Structures .363
Tatsuya Akutsu

Chapter 14 Machine Learning–Based Bioinformatics Algorithms:
Application to Chemicals .383
Shawn Martin

Chapter 15 Using Systems Biology Techniques to Determine Metabolic
Fluxes and Metabolite Pool Sizes .399
Fangping Mu, Amy L. Bauer, James R. Faeder,
and William S. Hlavacek

Index . 423

Preface

The field of handling chemical information electronically—known as Chemoinfor-
matics or Cheminformatics—has received a boost in recent decades, in line with the
advent of tremendous computer power. Originating in the 1960s in both academic and
industrial settings (and termed by its current name only from around 1998), chemoin-
formatics applications are today commonplace in every pharmaceutical company.
Also, various academic laboratories in Europe, the United States, and Asia confer
both undergraduate and graduate degrees in the field.

But still, there is a long way to go.While resembling its sibling, bioinformatics, both
by name and also (partially) algorithmically, the chemoinformatics field developed
in a very different manner right from the onset. While large amounts of biological
information—sequence information, structural information, and more recently also
phenotypic information such as metabolomics data—found their way straight into the
public domain, large-scale chemical information was until very recently the domain
of private companies. Hence, public tools to handle chemical structures were scarce
for a very long time, while essential bioinformatics tools such as those for aligning
sequences or viewing protein structures were available at no cost to anyone interested
in the area. More recently—luckily—this situation changed significantly, with major
life science data providers such as the NCBI, the EBI, and many others also making
large-scale chemical data publicly available.

However, there is another aspect, apart from the actual data, that is crucial for
a scientific field to flourish—and that is the proper documentation of techniques
and methods, and, in the case of informatics sciences, the proper documentation
of algorithms. In the bioinformatics field, and in line with a tremendous amount
of open access data and tools available, algorithms were documented extensively
in reference books. In the chemoinformatics field, however, a book of this type is
missing until now. This is what the editors, with the help of expert contributors in the
field, are attempting to remedy—to provide an overview of some of the most common
chemoinformatics algorithms in a single place.

The book is divided into 15 chapters. Chapter 1 presents a historical perspective of
the applications of algorithms and graph theory to chemical problems. Algorithms to
store and retrieve two-dimensional chemical structures are presented in Chapter 2, and
three-dimensional representations of chemicals are discussed in Chapter 3. Molecular
descriptors, which are widely used in virtual screening and structure–activity/property
predictions, are presented in Chapter 4. Chapter 5 presents virtual screening methods
from a ligand perspective and from a structure perspective including docking meth-
ods. Chapters 6 and 7 are dedicated to quantitative structure–activity relationships
(QSAR). QSAR modeling workflow and methods to prepare the data are presented
in Chapter 6, while the development and validation of QSAR models are discussed
in Chapter 7. Chapter 8 introduces algorithms to enumerate and sample chemical
structures, with applications in combinatorial libraries design. Chapters 9 and 10 are

vii

viii Preface

dedicated to computer-aided molecular design: from a ligand perspective in Chap-
ter 9, where inverse-QSAR methods are reviewed, and from a structure perspective
in Chapter 10, where de novo design algorithms are presented. Chapter 11 covers
reaction network generation, with applications in synthesis design and biological net-
work inference. Closing the strictly chemoinformatics chapters, Chapter 12 provides a
review of Open Source software and database technologies dedicated to the field. The
remaining chapters (13–15) present techniques developed in the context of bioin-
formatics and computational biology and their potential applications to chemical
problems. Chapter 13 discusses possible applications of sequence alignment algo-
rithms to tree-like structures such as glycans. Chapter 14 presents classical machine
learning algorithms that can be used for both bioinformatics and chemoinformatics
problems. Chapter 15 introduces a systems biology approach to study the kinetics of
metabolic networks.

While our book covers many aspects of chemoinformatics, our attempt is
ambitious—and it is probably impossible to provide a complete overview of “all”
chemoinformatics algorithms in one place. Hence, in this work we present a selection
of algorithms from the areas the editors deemed most relevant in practice and hope
that this work will be helpful as a reference work for people working in the field.

MATLAB® and Simulink® are registered trademarks of The Math Works, Inc. For
product information, please contact:

The Math Works, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098, USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Jean-Loup Faulon, Paris, France
Andreas Bender, Leiden, the Netherlands

Acknowledgments

The editors would like to first thank Robert B. Stern from the Taylor & Francis Group
for giving them an opportunity to compile, for the first time, an overview of chemo-
informatics algorithms. They also thank the authors for assembling expert materials
covering many algorithmic aspects of chemoinformatics. Jean-Loup Faulon would
like to acknowledge the interest and encouragement provided by Genopole’s Epige-
nomics program and the University of Evry, France, to edit and coauthor chapters in
this book.

The authors of Chapter 2 would like to thank Ovidiu Ivanciuc for providing rele-
vant literature references. They also acknowledge the permission to reprint Algo-
rithm 2.1 [Dittmar et al. J. Chem. Inf. Comput. Sci., 17(3): 186–192, 1977. Copyright
(1977) American Chemical Society]. Milind Misra acknowledges funding provided
by Sandia National Laboratories, a multiprogram laboratory operated by Sandia Cor-
poration, a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Markus Meringer would like to thank Emma Schymanski for carefully proofread-
ing Chapter 8.

Shawn Martin would like to acknowledge funding (to write Chapter 14) pro-
vided by Sandia National Laboratories, a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States Department
of Energy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

Finally, Fangping Mu, Amy L. Bauer, James R. Faeder, and William S. Hlavacek
acknowledge funding support (to write Chapter 15) provided in part by the NIH,
under grants GM080216 and CA132629, and by the DOE, under contract DE-AC52-
06NA25396. They also thank P.J. Unkefer, C.J. Unkefer, and R.F. Williams for
helpful discussions.

ix

Contributors

Tatsuya Akutsu
Institute for Chemical Research
Kyoto University
Uji, Japan

Amy L. Bauer
Theoretical Biology and Biophysics

Group
Theoretical Division, Los Alamos

National Laboratory
Los Alamos, New Mexico

Pablo Carbonell
Institute of Systems and

Synthetic Biology
University of Evry
Evry, France

Robert D. Clark
Biochemical Infometrics and

School of Informatics
Indiana University
Bloomington, Indiana

James R. Faeder
Department of Computational Biology
University of Pittsburgh

School of Medicine
Pittsburgh, Pennsylvania

Jean-Loup Faulon
Department of Biology
University of Evry
Evry, France

Nikolas Fechner
Department of Computer Architecture
University of Tübingen
Tübingen, Germany

Alexander Golbraikh
Division of Medicinal Chemistry and

Natural Products
University of North Carolina
Chapel Hill, North Carolina

Rajarshi Guha
NIH Chemical Genomics Center
Rockville, Maryland

Georg Hinselmann
Department of Computer Architecture
University of Tübingen
Tübingen, Germany

William S. Hlavacek
Theoretical Biology and Biophysics

Group
Theoretical Division, Los Alamos

National Laboratory
Los Alamos, New Mexico

Ovidiu Ivanciuc
Department of Biochemistry and

Molecular Biology
University of Texas Medical Branch
Galveston, Texas

Shawn Martin
Sandia National Laboratories
Albuquerque, New Mexico

Markus Meringer
German Aerospace Center (DLR)
Oberpfaffenhofen, Germany

Milind Misra
Sandia National Laboratories
Albuquerque, New Mexico

xi

xii Contributors

Fangping Mu
Theoretical Biology and Biophysics

Group
Theoretical Division, Los Alamos

National Laboratory
Los Alamos, New Mexico

Diana C. Roe
Department of Biosystems Research
Sandia National Laboratories
Livermore, California

Alexander Tropsha
Division of Medicinal Chemistry and

Natural Products
University of North Carolina
Chapel Hill, North Carolina

Donald P. Visco, Jr.
Department of Chemical Engineering
Tennessee Technological

University
Cookeville, Tennessee

Jörg Kurt Wegner
Integrative Chem-/Bio-Informatics
Tibotec (Johnson & Johnson)
Mechelen, Belgium

Egon L. Willighagen
Department of Pharmaceutical

Biosciences
Uppsala University
Uppsala, Sweden

1 Representing
Two-Dimensional (2D)
Chemical Structures
with Molecular Graphs

Ovidiu Ivanciuc

CONTENTS

1.1 Introduction. .2
1.2 Elements of Graph Theory .2

1.2.1 Graphs .3
1.2.2 Adjacency, Walks, Paths, and Distances .5
1.2.3 Special Graphs .7
1.2.4 Graph Matrices .8

1.2.4.1 Adjacency Matrix .8
1.2.4.2 Laplacian Matrix .9
1.2.4.3 Distance Matrix . 10

1.3 Chemical and Molecular Graphs . 11
1.3.1 Molecular Graphs . 11
1.3.2 Molecular Pseudograph. 13
1.3.3 Molecular Graph of Atomic Orbitals. 13
1.3.4 Markush Structures . 14
1.3.5 Reduced Graph Model . 15
1.3.6 Molecule Superposition Graphs . 17
1.3.7 Reaction Graphs . 18
1.3.8 Other Chemical Graphs . 19

1.4 Weighted Graphs and Molecular Matrices . 20
1.4.1 Weighted Molecular Graphs. 20
1.4.2 Adjacency Matrix . 21
1.4.3 Distance Matrix . 22
1.4.4 Atomic Number Weighting Scheme Z . 22
1.4.5 Relative Electronegativity Weighting Scheme X . 23
1.4.6 Atomic Radius Weighting Scheme R . 24
1.4.7 Burden Matrix. 24
1.4.8 Reciprocal Distance Matrix . 25
1.4.9 Other Molecular Matrices . 27

1.5 Concluding Remarks . 27
References . 27

1

2 Handbook of Chemoinformatics Algorithms

1.1 INTRODUCTION

Graphs are used as an efficient abstraction and approximation for diverse chemical
systems, such as chemical compounds, ensembles of molecules, molecular fragments,
polymers, chemical reactions, reaction mechanisms, and isomerization pathways.
Obviously, the complexity of chemical systems is significantly reduced whenever
they are modeled as graphs. For example, when a chemical compound is represented
as a molecular graph, the geometry information is neglected, and only the atom con-
nectivity information is retained. In order to be valuable, the graph representation of
a chemical system must retain all important features of the investigated system and
has to offer qualitative or quantitative conclusions in agreement with those provided
by more sophisticated methods. All chemical systems that are successfully modeled
as graphs have a common characteristic, namely they are composed of elements that
interact between them, and these interactions are instrumental in explaining a property
of interest of that chemical system. The elements in a system are represented as graph
vertices, and the interactions between these elements are represented as graph edges.
In a chemical graph, vertices may represent various elements of a chemical system,
such as atomic or molecular orbitals, electrons, atoms, groups of atoms, molecules,
and isomers. The interaction between these elements, which are represented as graph
edges, may be chemical bonds, nonbonded interactions, reaction steps, formal con-
nections between groups of atoms, or formal transformations of functional groups.
The chapter continues with an overview of elements of graph theory that are impor-
tant in chemoinformatics and in depicting two-dimensional (2D) chemical structures.
Section 1.3 presents the most important types of chemical and molecular graphs,
and Section 1.4 reviews the representation of molecules containing heteroatoms and
multiple bonds with weighted graphs and molecular matrices.

1.2 ELEMENTS OF GRAPH THEORY

This section presents the basic definitions, notations, and examples of graph theory
relevant to chemoinformatics. Graph theory applications in physics, electronics,
chemistry, biology, medicinal chemistry, economics, or information sciences are
mainly the effect of the seminal book Graph Theory of Harary [1]. Several other books
represent essential readings for an in-depth overview of the theoretical basis of graph
theory: Graphs and Hypergraphs by Berge [2]; Graphs and Digraphs by Behzad,
Chartrand, and Lesniak-Foster [3]; Distance in Graphs by Buckley and Harary [4];
Graph Theory Applications by Foulds [5]; Introduction to Graph Theory by West [6];
Graph Theory by Diestel [7]; and Topics in Algebraic Graph Theory by Beineke and
Wilson [8]. The spectral theory of graphs investigates the properties of the spectra
(eigenvalues) of graph matrices, and has applications in complex networks, spectral
embedding of multivariate data, graph drawing, calculation of topological indices,
topological quantum chemistry, and aromaticity. The major textbook in the spectral
theory of graphs is Spectra of Graphs. Theory and Applications by Cvetković, Doob,
and Sachs [9].An influential book on graph spectra applications in the quantum chem-
istry of conjugated systems and aromaticity is Topological Approach to the Chemistry
of Conjugated Molecules by Graovac, Gutman, and Trinajstić [10]. Advanced topics

Representing Two-Dimensional Chemical Structures with Molecular Graphs 3

of topological aromaticity are treated in Kekulé Structures in Benzenoid Hydrocarbons
by Cyvin and Gutman [11]; Introduction to the Theory of Benzenoid Hydrocarbons
by Gutman and Cyvin [12]; Advances in the Theory of Benzenoid Hydrocarbons by
Gutman and Cyvin [13]; Theory of Coronoid Hydrocarbons by Cyvin, Brunvoll, and
Cyvin [14]; and Molecular Orbital Calculations Using Chemical Graph Theory by
Dias [15]. The graph theoretical foundation for the enumeration of chemical isomers
is presented in several books: Graphical Enumeration by Harary and Palmer [16];
Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds by Pólya
and Read [17]; and Symmetry and Combinatorial Enumeration in Chemistry by Fujita
[18].A comprehensive history of graph theory can be found in the book Graph Theory
1736–1936 by Biggs, Lloyd, and Wilson [19].

The first edited book on chemical graphs is Chemical Applications of Graph Theory
by Balaban [20]. Several comprehensive textbooks on chemical graphs are available,
such as Chemical Graph Theory by Trinajstić [21], Mathematical Concepts in Organic
Chemistry by Gutman and Polansky [22], and Handbook of Chemoinformatics by
Gasteiger [23]. Applications of topological indices in quantitative structure–activity
relationships (QSAR) are presented in Molecular Connectivity in Chemistry and Drug
Research by Kier and Hall [24], Molecular Connectivity in Structure–Activity Analysis
by Kier and Hall [25], Molecular Structure Description. The Electrotopological State
by Kier and Hall [26], Information Theoretic Indices for Characterization of Chemical
Structure by Bonchev [27], and Topological Indices and Related Descriptors in QSAR
and QSPR by Devillers and Balaban [28]. A comprehensive text on reaction graphs is
Chemical Reaction Networks. A Graph-Theoretical Approach by Temkin, Zeigarnik,
and Bonchev [29], and a graph-theoretical approach to organic reactions is detailed in
Synthon Model of Organic Chemistry and Synthesis Design by Koča et al. [30]. Graph
algorithms for drug design are presented in Logical and Combinatorial Algorithms
for Drug Design by Golender and Rozenblit [31]. Graph theory concepts relevant to
chemoinformatics are introduced in this section, together with examples of graphs
and graph matrices.

1.2.1 GRAPHS

A graph G(V , E) is an ordered pair consisting of a vertex set V(G) and an edge set
E(G). Each element {i, j} ∈ E (where i, j ∈ V) is said to be an edge joining vertices
i and j. Because each edge is defined by an unordered pair of vertices from V , the
edge from vertex i to vertex j is identical with the edge from vertex j to vertex I ,
{i, j} = { j, i}. The number of vertices N defines the order of the graph and is equal to
the number of elements in V(G), N = |V(G)|, and the number of edges M is equal to
the number of elements in E(G), M = |E(G)|. Several examples of graphs relevant
to chemistry are shown in Graphs 1.1 through 1.5.

Vertices and edges in a graph may be labeled. A vertex with the label i is indicated
here as vi.An edge may be denoted by indicating the two vertices that define that edge.
For example, the edge connecting vertices vi and vj may be denoted by eij, ei,j , {i, j},
or vivj. Usually, graph vertices are labeled from 1 to N , V(G) = {v1, v2, . . . , vN }, and
graph edges are labeled from 1 to M, E(G) = {e1, e2, . . . , eM}. There is no special rule
in labeling graphs, and a graph with N vertices may be labeled in N! different ways.

4 Handbook of Chemoinformatics Algorithms

1.1 1.2 1.3

1.4 1.5

A graph invariant is a number, sequence of numbers, or matrix computed from the
graph topology (information contained in the V and E sets) that is not dependent on the
graph labeling (the graph invariant has the same value for all N! different labelings of
the graph). Two obvious graph invariants are the number of vertices N and the number
of edges M. Other invariants of molecular graphs are topological indices, which are
used as structural descriptors in quantitative structure–property relationships (QSPR),
QSAR, and virtual screening of chemical libraries (cf. Chapters 4 and 5).

Graphs that have no more than one edge joining any pair of vertices are also called
simple graphs. A multigraph is a graph in which two vertices may be connected by
more than one edge. A multiedge of multiplicity m is a set of m edges that connects
the same pair of distinct vertices. A loop eii ∈ E is an edge joining a vertex vi with
itself. A loopgraph is a graph containing one or more vertices with loops.

Simple graphs cannot capture the complexity of real life systems, such as electrical
circuits, transportation networks, production planning, kinetic networks, metabolic
networks, or chemical structures. In such cases it is convenient to attach weights to
vertices or loops, weights that may represent current intensity, voltage, distance, time,
material flux, reaction rate, bond type, or atom type. A graph G(V , E, w) is a weighted
graph if there exists a function w : E→ R (where R is the set of real numbers), which
assigns a real number, called weight, to each edge of E. Graph 1.6 has all edge weights
equal to 2, whereas in Graph 1.7 the edge weights alternate between 1 and 2. In the
loopgraph 1.8 all edges have the weight 1 and the loop has the weight 2. Alkanes
and cycloalkanes are represented as molecular graphs with all edges having a weight
equal to 1, whereas chemical compounds containing heteroatoms or multiple bonds
are represented as vertex- or edge-weighted molecular graphs. Section 1.4 reviews in
detail the representation of chemical compounds with weighted graphs.

2 2 2

2

2

1.6
12

1

2

2

1

1.7

2

11

1 1

1.8

Representing Two-Dimensional Chemical Structures with Molecular Graphs 5

In many graph models, such as those of kinetic, metabolic, or electrical networks,
it is useful to give each edge a direction or orientation. The graphs used to model
such oriented systems are termed directed graphs or digraphs. A graph D(V , A) is an
ordered pair consisting of two sets V(D) and A(D), where the vertex set V is finite
and nonempty and the arc set A is a set of ordered pairs of distinct elements from V .
Graphs 1.9 through 1.12 are several examples of digraphs.A comprehensive overview
of reaction graphs is presented by Balaban [32], and graph models for networks of
chemical reactions are reviewed by Temkin et al. [29].

1.9 1.10 1.11 1.12

1.2.2 ADJACENCY, WALKS, PATHS, AND DISTANCES

Two vertices vi and vj of a graph G are adjacent (or neighbors) if there is an edge eij
joining them. The two adjacent vertices vi and vj are said to be incident to the edge
eij. The neighborhood of a vertex vi is represented by the set of all vertices adjacent
to vi. Two distinct edges of G are adjacent if they have a vertex in common.

The degree of a vertex vi, denoted by degi, is equal to the number of vertices
adjacent to vertex vi. The set of degree values for all vertices in a graph gives
the vector Deg(G) whose ith element represents the degree of the vertex vi. In a
weighted graph G(V , E, w), the valency of a vertex vi, val(w, G)i, is defined as
the sum of the weights of all edges eij incident with vertex vi [33,34]. The set of
valencies for all vertices in a graph forms the vector Val(w, G) whose ith element
represents the valency of the vertex vi. From the definition of degree and valency
it is obvious that in simple, nonweighted graphs, the degree of a vertex vi, degi,
is identical to the valency of that vertex, vali. Consider the simple labeled graph
1.13. A simple count of the neighbors for each vertex in 1.13 gives the degree vec-
tor Deg(1.13) = {2, 2, 3, 2, 2, 3, 2}. The second example considers a weighted graph
with the labeling given in Graph 1.14 and with the edge weights indicated in 1.15.
The degree vector of 1.14 is Deg(1.14) = {2, 3, 2, 3, 2, 2, 3, 2, 3, 2}, and the valency
vector is Val(1.14) = {1.5, 4, 3, 4, 1.5, 1.5, 4, 3, 4, 1.5}. Both degree and valency are
graph invariants, because their numerical values are independent of the graph
labeling.

765

4
3 2

1

1.13

109
8

76

5 4
3

2 1

1.14

0.5 0.52

2

2

1

1

1

1

1

1

1
1.15

6 Handbook of Chemoinformatics Algorithms

A walk W in a graph G is a sequence of vertices and edges W(G) = {va, eab, vb,
ebc, vc, ecd , vd , ede, ve, . . . , vi, eij , vj, . . . , vm, emn, vn} beginning and ending with ver-
tices, in which two consecutive vertices vi and vj are adjacent, and each edge eij is
incident with the two vertices vi and vj preceding and following it, respectively. A
walk may also be defined as a sequence of vertices W(G) = {va, vb, . . . , vn} in which
two consecutive vertices vi and vi+1 are adjacent. Similarly, a walk may be defined
as a sequence of edges W(G) = {eab, ebc, . . . , emn} in which two consecutive edges
eij and ejk are adjacent. In a walk any edge of the graph may appear more than once.
The length of a walk is equal to the total number of edges that define the walk. A walk
in which the initial and the terminal vertices coincide is called a closed walk. A walk
in which the initial and the terminal vertices are different is called an open walk. A
trail is a walk in which no edge is repeated. A certain vertex may appear more than
once in a trail, if the trail intersects itself. A path P is a walk in which all vertices (and
thus necessarily all edges) are distinct. The length of a path in a graph is equal to the
number of edges along the path.

A graph cycle or circuit is a closed walk in which all vertices are distinct,
with the exception of the initial and terminal vertices that coincide. In Graph 1.16
there are three cycles: C1(1.16) = {v1, v2, v5, v1}, with length three; C2(1.16) =
{v1, v2, v3, v4, v5, v1}, with length five; and C3(1.16) = {v2, v3, v4, v5, v2}, with length
four. In Graph 1.17 there are three cycles of length five: C1(1.17) = {v1, v2, v5, v6,
v3, v1}, C2(1.17) = {v2, v4, v7, v8, v5, v2}, and C3(1.17) = {v7, v9, v11, v10, v8, v7}.

1
2

3 4

5

1.16

10

9

5
11

8

7

6

4

3

2 1

1.17

12

3

4

6

5

1.18

The cyclomatic number μ represents the number of cycles in the graph, μ = M −
N + 1. For Graph 1.16 we have μ(1.16) = 6− 5+ 1 = 2, for Graph 1.17 we have
μ(1.17) = 13− 11+ 1 = 3, and for Graph 1.18 we have μ(1.18) = 6− 6+ 1 = 1.

In a simple (nonweighted) connected graph, the graph distance dij between a pair
of vertices vi and vj is equal to the length of the shortest path connecting the two
vertices (i.e., the number of edges of the shortest path). The distance between two
adjacent vertices is 1. The graph distance satisfies the properties of a metric:

a. The distance from a vertex vi to itself is zero:

dii = 0, for all vi ∈ V(G). (1.1)

b. The distance between two distinct vertices vi and vj is larger than 0:

dij > 0, for all vi, vj ∈ V(G). (1.2)

Representing Two-Dimensional Chemical Structures with Molecular Graphs 7

c. The distance between two distinct vertices vi and vj is equal to the distance
on the inverse path, from vj and vi:

dij = dji, for all vi, vj ∈ V(G). (1.3)

d. The graph distance satisfies the triangle inequality:

dik + dkj ≥ dij, for all vi, vj, vk ∈ V(G). (1.4)

The eccentricity ecc(vi) of a vertex vi is the maximum distance from the vertex vi
to any other vertex vj in graph G, that is, max [35] for all vj ∈ V(G). The diameter
diam(G) of a graph G is the maximum eccentricity. If the graph G has cycles, then
the girth of G is the length of a shortest cycle, and the circumference is the length of
a longest cycle.

A graph G may be transformed into a series of subgraphs of G by deleting one or
more of its vertices, or by deleting one or more of its edges. If V(G′) is a subset of V(G),
V(G′) ⊆ V(G), and E(G

′
) is a subset of E(G), E(G′) ⊆ E(G), then the subgraph

G′ = (V(G′), E(G′)) is a subgraph of the graph G = (V(G), E(G)). A subgraph
G− vi is obtained by deleting from G the vertex vi and all its incident edges. A
subgraph G− eij is obtained by deleting from G the edge eij. Graph 1.19 has four
subgraphs of the type G− vi, 1.20 through 1.23, which are obtained by deleting, in
turn, one vertex and all its incident edges from Graph 1.19.

43

2 1
1.19

2

3 4

1.20
1

3 4

1.21
12

4

1.22
12

3

1.23

1.2.3 SPECIAL GRAPHS

A tree, or an acyclic graph, is a connected graph that has no cycles (the cyclomatic
numberμ = 0).Alternative definitions for a tree are the following: a tree is a connected
graph with N vertices and N−1 edges; a tree is a graph with no cycles, N vertices, and
N−1 edges. A graph that contains as components only trees is a forest. A k-tree is a
tree with the maximum degree k. Alkanes are usually represented as 4-trees. A rooted
tree is a tree in which one vertex (the root vertex) is distinct from the other ones.

A graph with the property that every vertex has the same degree is called a reg-
ular graph. A graph G is called a k-regular graph or a regular graph of degree k
if every vertex from G has the degree k. A ring RN with N vertices is a 2-regular
graph with N vertices, that is, a graph with all vertices of degree 2. The cycloalkanes
cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, and cyclooc-
tane are examples of 2-regular graphs. The 3-regular graphs, or cubic graphs, 1.24
through 1.27, represent as molecular graphs the polycyclic hydrocarbons triprismane,
tetraprismane (cubane), pentaprismane, and hexaprismane, respectively. Fullerenes
are also represented as cubic graphs.

8 Handbook of Chemoinformatics Algorithms

1.24 1.25 1.26 1.27

1.2.4 GRAPH MATRICES

A graph is completely determined by indicating its adjacency relationships or its inci-
dence relationships. However, the algebraic properties of graphs are easier studied
by representing a graph as a matrix, such as adjacency matrix, incidence matrix,
cycle matrix, path matrix, Laplacian matrix, distance matrix, and detour matrix.
Graph matrices of chemical systems are used to investigate the spectral properties
of molecular graphs [9], to apply the Hückel molecular orbitals method to conjugated
molecules [10], to compute various topological indices for QSAR models [36,37],
and to study the topology of biological networks [38]. In presenting graph matrices
we consider only labeled, connected, simple graphs.

1.2.4.1 Adjacency Matrix

The adjacency matrix A(G) of a vertex labeled graph G with N vertices is a square
N × N symmetric matrix in which [A]ij = 1 if vertex vi is adjacent to vertex vj and
[A]ij = 0 otherwise. The adjacency matrix is symmetric, with all elements on the
main diagonal equal to zero. The sum of entries over row i or column i in A(G) is the
degree of vertex vi, degi. As an example we consider Graph 1.28 labeled from 1 to 8
and its adjacency matrix A(1.28).

8
7

65

4
3

2
1

1.28

1 2 3 4 5 6 7 8

A(1.28) =

1 0 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0
3 0 1 0 1 0 0 1 0
4 0 0 1 0 1 0 1 1
5 0 0 0 1 0 1 0 0
6 0 0 0 0 1 0 1 0
7 0 0 1 1 0 1 0 0
8 0 0 0 1 0 0 0 0

Representing Two-Dimensional Chemical Structures with Molecular Graphs 9

From the definition of the adjacency matrix, it follows that if [A]ij = 1 then there
is a walk of length one between vertices vi and vj . Higher powers of the adjacency
matrix can be used to count the number of closed or open walks of a certain length
between two vertices. The element [Ak]ij of the kth power of the adjacency matrix
A is the number of walks of length k between vertices vi and vj [1]. If i = j then
the element [Ak]ii is the number of closed walks of length k that start and end at
the same vertex vi. Similarly, when i �= j, the element [Ak]ij is the number of open
walks of length k starting from vertex vi and ending at vertex vj. Because the kth
power of the adjacency matrix is symmetric, it follows that the number of walks of
length k from vi to vj is equal to the number of walks of length k from vj to vi, that
is, [Ak]ij = [Ak]ji. Ak matrices can also be used to determine the distances between
vertices in simple graphs. If in a sequence of Ak matrices all elements [Ak−1]ij = 0
and [Ak]ij �= 0, it follows that the distance between vertices vi and vj is k (the two
vertices are separated by k edges).A general procedure for computing graph distances,
which can be applied to general graphs, is presented in the section on the distance
matrix.

Randić suggested the use of the closed walk counts of different lengths origi-
nating from a vertex to describe the environment of that vertex [39]. He defined
the closed walk atomic code of the vertex vi, CWACi, as the sequence {[A1]ii,
[A2]ii, . . . , [Ak]ii, . . . , [AN]ii}. The count of closed walks is also related to the graph
spectrum and spectral moments. The complete set of graph eigenvalues x1, x2, . . . , xN
of the adjacency matrix A(G) forms the spectrum of a graph G, Sp(A,G) = {xi,
i = 1, 2, . . . , N}. The kth spectral moment of A(G), SM(A, G)k , is defined as the
sum of the kth power of Sp(A, G). Finally, the sum of the diagonal elements of Ak

(the trace of the kth power of the adjacency matrix which is equal to the count of
closed walks of length k) equals SM(A, G)k . Spectral moments represent a powerful
theoretical tool in correlating structural features with various properties of chemical
systems. Burdett used spectral moments to estimate the electronic properties of solids
[40,41]. Spectral moments of conjugated compounds are correlated with the presence
of certain subgraphs [42–44], thus making possible the calculation of the resonance
energy per electron (REPE) from subgraph contributions [42].A similar approach was
proposed by Schmalz, Živković, and Klein for the decomposition of the π-electron
energy of conjugated acyclic hydrocarbons in terms of various substructures [45].

1.2.4.2 Laplacian Matrix

Consider a simple graph G with N vertices and M edges, and its adjacency matrix
A(G). We define the diagonal matrix DEG(G) with the diagonal elements [DEG]ii =
degi (the degree of vertex vi) and with the nondiagonal elements [DEG]ij = 0, i �= j.
The Laplacian matrix of the simple graph G, L(G), is the difference between DEG
and A [46–48]:

L(G) = DEG(G)−A(G). (1.5)

The most significant chemoinformatics applications of the Laplacian matrix are in
computing topological indices [48,49], defining the resistance distance matrix [50],
and interpolating QSAR models based on molecular networks [51–54].

10 Handbook of Chemoinformatics Algorithms

1.2.4.3 Distance Matrix

The distance matrix D(G) of a simple graph G with N vertices is a square N × N
symmetric matrix in which [D]ij = dij , where dij is the distance between vertices vi

and vj, that is, the length of the shortest path that connects vertices vi and vj [1,4].
The distance matrix is symmetric, with all elements on the main diagonal equal to
zero. Applications of the distance matrix to chemical graphs may be found in several
reviews [37,55]. As an example we consider Graph 1.29 labeled from 1 to 9 and its
distance matrix D(1.29).

9

1

2

3

4 5 6

7

8

1.29

1 2 3 4 5 6 7 8 9

D(1.29) =

1 0 1 2 3 3 4 4 3 2
2 1 0 1 2 2 3 3 2 1
3 2 1 0 1 2 3 4 3 2
4 3 2 1 0 1 2 3 3 2
5 3 2 2 1 0 1 2 2 1
6 4 3 3 2 1 0 1 2 2
7 4 3 4 3 2 1 0 1 2
8 3 2 3 3 2 2 1 0 1
9 2 1 2 2 1 2 2 1 0

In a simple graph, the distances between one vertex and all other vertices may
be computed with the algorithm proposed by Dijkstra [35], which may also be
applied to graphs with non-negative edge weights. Unlike the Dijkstra algorithm,
the Floyd–Warshall algorithm [56,57] may be applied to graphs that have some edges
with negative weights, as long as all cycle weights are non-negative.

ALGORITHM 1.1 FLOYD–WARSHALL

01. Consider the labeled, weighted graph G with N
vertices, M edges, the vertex set V(G), the edge
set E(G), and with a weight wij for each edge eij ∈ E(G).

02. Define the cost matrix 1Co = 1Co(G) of the
labeled graph G as the square N× N symmetric matrix
in which [1Co]ii = 0, [1Co]ij = wij if
eij ∈ E(G), and [1Co]ij = ∞ otherwise.

03. For each k ∈ {1,2, . . . ,N} do

Representing Two-Dimensional Chemical Structures with Molecular Graphs 11

04. For each i ∈ {1,2, . . . ,N} do
05. For each j ∈ {1,2, . . . ,N} do
06. Update the cost matrix kCo:

[Co]ij = min{[k−1Co]ij, [k−1Co]ik + [k−1Co]kj}
07. End do
08. D = NCo

Step 06 in the Floyd–Warshall algorithm is based on the triangle inequality men-
tioned in Equation 1.4. If a graph contains cycles with negative weights, then the cost
matrix Co has some negative numbers on the main diagonal. If Coii < 0, then the ver-
tex vi belongs to at least one cycle with negative weight. The distance matrix is used
to compute many important topological indices, such as Wiener index W [58], Bala-
ban index J [59,60], Kier–Hall electrotopological indices [26,61], information theory
indices [62], and molecular path code indices [63]. The distance matrix is the source
of several molecular matrices [37,64], namely the reciprocal distance matrix [65],
the distance-valency matrix [33], the distance complement matrix [66], the reverse
Wiener matrix [67], the distance-path matrix [68,69], and the Szeged matrix [70,71].
These distance-related molecular matrices are used to compute topological indices
and related graph descriptors for QSPR and QSAR.

1.3 CHEMICAL AND MOLECULAR GRAPHS

Chemical compounds are usually represented as molecular graphs, that is, nondi-
rected, connected graphs in which vertices correspond to atoms and edges represent
covalent bonds between atoms. The molecular graph model of the chemical structure
emphasizes the chemical bonding pattern of atoms, whereas the molecular geometry
is neglected. Among other applications, molecular graphs are used in chemoinformat-
ics systems, chemical databases, design of combinatorial libraries, reaction databases,
computer-assisted structure elucidation, molecular design of novel chemicals, and
computer-assisted organic synthesis. Molecular graphs are the basis for computing
the structural descriptors used in QSPR and QSAR models to predict physical, chem-
ical, biological, or toxicological properties. The molecular graph representation of
chemical structure reflects mainly the connectivity of the atoms and is less suitable
for modeling those properties that are determined mostly by molecular geometry,
conformation, or stereochemistry.

1.3.1 MOLECULAR GRAPHS

A chemical structure may be represented by a large number of different molecular
graphs, depending on the translation rules for depicting atoms and chemical bonds.
The translation rules, that is, “atom→ vertex” and “bond→ edge,” should preserve
the features of the molecular structure that are relevant for the scope of the modeling,
for example, database search, reaction representation, molecular design, or property
prediction. Cayley introduced the concept of molecular graphs in 1874, as “plero-
grams” and “kenograms,” in which graph edges correspond to covalent bonds [72]. In

12 Handbook of Chemoinformatics Algorithms

a plerogram all atoms (including hydrogen atoms) are represented as vertices, whereas
in a kenogram only non-hydrogen atoms are represented, because the hydrogen atoms
can be reconstructed from the skeleton of a molecule. In modern terminology a plero-
gram is a hydrogen-included molecular graph, and a kenogram is a hydrogen-excluded
molecular graph (called also hydrogen-depleted or hydrogen-suppressed molecular
graph).

Using different rules for converting a chemical structure into a molecular graph,
methylcyclopropane can be represented by Graphs 1.30, 1.31, and 1.32. Graph 1.30 is
a hydrogen-included molecular graph with labeled vertices, Graph 1.31 is a hydrogen-
included molecular graph in which hydrogen and carbon atoms are not differentiated,
and Graph 1.32 is a hydrogen-excluded molecular graph.

C

C C

C

H

H

H

H

H

H

H H

1.30 1.31 1.32

The usual graph representation of an organic chemical compound is as a nondi-
rected, connected multigraph in which vertices correspond to non-hydrogen atoms
and edges represent covalent bonds between non-hydrogen atoms. For hydrocarbons,
the vertices in the molecular graph represent carbon atoms. Using this convention,
alkanes are represented as 4-trees, that is, acyclic graphs with the maximum degree 4.
Several studies compared structural descriptors (topological indices) computed from
hydrogen-included and hydrogen-excluded molecular graphs of alkanes, and found
that the topological indices are correlated [73,74]. These results support the prepon-
derant use of hydrogen-excluded molecular graphs. To accommodate the presence of
heteroatoms, a molecular graph has vertex labels corresponding to the atomic sym-
bol of the heteroatoms, as shown for 2-methyl-1-bromobutane 1.33 (molecular graph
1.34) and for ethyl tert-butyl ether 1.35 (molecular graph 1.36).

CH Br

CH3

CH3 CH2 CH2

1.33

Br

1.34

CH3

CH3

CH3CH3 CH2 CO

1.35

O
1.36

Representing Two-Dimensional Chemical Structures with Molecular Graphs 13

Multiple bonds are represented as multiedges, as shown for 1,4-dibromo-2-butene
1.37 (molecular graph 1.38). Conjugated systems may be represented with the usual
pattern of alternating double and single bonds, or with two lines, one continuous and
the second broken, as shown for the aromatic system of benzyl chloride 1.39 (molecu-
lar graph 1.40). The differences between these two representations of conjugated sys-
tems are significant when computing topological indices that have special parameters
for aromatic bonds, and in chemical database registration, search, and retrieval.

CH2 CH CH CH2

Br Br

1.37
Br

Br

1.38

CH2Cl

1.39

Cl

1.40

1.3.2 MOLECULAR PSEUDOGRAPH

There are a multitude of molecular graph models, each one developed with a specific
set of rules, and fit for particular applications, such as structure elucidation, chemical
synthesis design, or structure–property relationships. Koča et al. defined a mathe-
matical model of organic synthesis design based on the graph theory formalism [30].
In this model, a chemical compound is represented by a molecular pseudograph (or
general graph, containing multiedges and loops) G(V , E, L, ϕ, υ), where V is a vertex
set, E is an edge set, L is a loop set, and ϕ is a mapping of the vertex set into the
vocabulary υ of vertex labels. A single bond is represented by an edge, a double bond
is represented by a multiedge of double multiplicity, and a triple bond is represented
by a multiedge of triple multiplicity. A pair of free, unshared valence electrons of an
atom is represented as a loop. Nitrogen is represented by a vertex with a loop, oxygen
is represented by a vertex with two loops, whereas a halogen atom is represented by a
vertex with three loops, as shown for 2-bromopropanoic acid 1.41 (molecular graph
1.42) and for morpholine 1.43 (molecular graph 1.44).

1.3.3 MOLECULAR GRAPH OF ATOMIC ORBITALS

Toropov introduced the molecular graph of atomic orbitals (GAO) as a source of
structural descriptors for QSPR and QSAR [75–77]. GAO is based on the hydrogen-
included molecular graphs, in which each atom is substituted by the corresponding set

CH3 CH

Br

COOH

1.41 1.42
NH

O

1.43 1.44

14 Handbook of Chemoinformatics Algorithms

of atomic orbitals: H, 1s1; C, 1s2, 2s2, 2p2; N, 1s2, 2s2, 2p3; O, 1s2, 2s2, 2p4; F, 1s2,
2s2, 2p5; S, 1s2, 2s2, 2p6, 3s2, 3p4; Cl, 1s2, 2s2, 2p6, 3s2, 3p5; Br, 1s2, 2s2, 2p6, 3s2,
3p6, 3d10, 4s2, 4p5. Using this convention, C is represented in GAO by three vertices,
Cl is represented by five vertices, and Br is represented by eight vertices. A covalent
bond between atoms i and j is represented in GAO by ni × nj edges between the ni
atomic orbitals of atom i and the nj atomic orbitals of atom j. As example we show the
GAO of fluorobenzene (Figure 1.1).Another example of atomic orbitals graphs are the
molecular graphs proposed by Pogliani, based on the hydrogen-excluded pseudograph
augmented with information regarding the inner-core electrons [78–82].

1.3.4 MARKUSH STRUCTURES

A major branch of chemoinformatics is represented by the development of efficient
algorithms for the computer storage and retrieval of generic chemical structures.
Using special topological representations, generic chemical structures encode into a
single chemical graph an entire family of structurally related compounds. Among the
different generic chemical structure representations, Markush structures have a special
place because of their use in representing generic structures in patents. In a 1925

1s2
4

2s2
5

1s2
19

2s2
20

2p5
21

1s2
16

2s2
17

2p2
18

1s2
13

1s1
26

1s1

2s2
14

2p2
15

1s2
10

1s1
24

2s2
11

2p2
12

1s2
1

2s2
2

2p2
3

2p2
6

2p2
9

2s2
8

1s2
7

1s1
2322

1s1

–

25

FIGURE 1.1 GAO of fluorobenzene.

Representing Two-Dimensional Chemical Structures with Molecular Graphs 15

court case Eugene Markush put forward such structures, which were later accepted
in patent claims by the US Patent Office. Several approaches for the implementation
of Markush structures are in use [83]. Among them, the Chemical Abstracts Service
[84,85] and the Questel.Orbit [86] systems are more prominent. Markush structures
1.45 through 1.47 represent several examples of generic chemical structures.

(CH2)n OH

R1

1.45
S

N

O

R1

1.46

R1

N

1.47

The Sheffield University group led by Lynch [87,88] developed graph representa-
tions for generic chemical structures, together with the GENSAL language [89] that
is used to encode patent information into a computer-readable form [90]. The sys-
tem developed by Lynch is a comprehensive collection of algorithms and procedures
for the utilization of generic chemical structures: connection table representation
[91], generation of fragment descriptors [92–94], computer interpreter for GENSAL
[95,96], substructure search algorithm [97], reduced chemical graphs [98,99], algo-
rithm to find the extended set of smallest rings [100], chemical ring identification
[101], chemical graph search [102,103], and atom-level structure matching [104].

1.3.5 REDUCED GRAPH MODEL

A more abstract representation of chemical structures is achieved with reduced graphs,
in which each vertex represents a group of connected atoms, and an edge links two
such vertices if in the original molecule there is a bond between an atom within one
group and an atom in the second group [98,99]. A vertex in a reduced graph may
represent a ring system, aromatic rings, aliphatic rings, or functional groups. There
are several systems to transform a molecule into a reduced graph, by highlighting and
grouping together different substructures in a chemical compound. We demonstrate
here four types of reduced graphs that start from the same molecular graph and end
up with different simplified representations.

Type 1. Vertices in the reduced graph correspond to ring systems (R) and connected
acyclic components (Ac). The ring system R from compound 1.48 (shown inside a
circle) corresponds to the central vertex in the reduced graph 1.49.

O

O

O

O

1.48

R

Ac

Ac

Ac

1.49

16 Handbook of Chemoinformatics Algorithms

Type 2. Vertices in the reduced graph correspond to connected carbon components
(C) and connected heteroatom components (H). Each heteroatom component in 1.50
is depicted inside an ellipse, and the corresponding reduced graph is shown in 1.51.

O

O

O

O

1.50

C

H

H

H

C

C

C H

1.51

Type 3. Vertices in the reduced graph correspond to aromatic rings (Ar), aliphatic
rings (R), and functional groups (F). Each functional group from molecular graph
1.52 is depicted inside a circle, with the final reduced graph depicted in 1.53.

O

O

O

O

1.52

Ar

F

R

F

F

1.53

Type 4. Vertices in the reduced graph correspond to aromatic rings (Ar), functional
groups (F), and linking groups (L). Each functional group from molecular graph
1.54 is depicted inside a circle, and the linker group is shown inside an ellipse. The
corresponding reduced graph 1.55 has the same topology as reduced graph 1.53, but
with a different fragment type for the vertex between vertices labeled Ar and F.

When using a reduced graph to screen chemical libraries, different molecules
may generate the same reduced graph, thus clustering together chemicals that have
the same topological distribution of various types of subgraphs. The value of this
approach is given by the fact that chemicals with similar bioactivities are translated
into identical or highly similar reduced graphs. Several experiments show that reduced

Representing Two-Dimensional Chemical Structures with Molecular Graphs 17

O

O

O

O

1.54

Ar

F

L

F

F

1.55

graphs may identify bioactive compounds that are missed with a fingerprint similarity
search [105–108]. As expected, across a large spectrum of bioactivities, there is no
definite advantage of using only reduced graphs, but these studies demonstrate the
complementary nature of reduced graph similarity compared to fingerprint similarity.

1.3.6 MOLECULE SUPERPOSITION GRAPHS

The molecular alignment of chemicals in a QSAR dataset is a characteristic of three-
dimensional (3D) QSAR models. Similarly, the topological information encoded
into the molecular graph may be used to obtain a 2D alignment of all molecules
in a QSAR dataset. Such a molecule superposition graph, which is obtained from
structurally related compounds by superposing the molecules according to a set of
rules, may be considered as a supermolecule with the property that any molecule in
the QSAR dataset is its subgraph. An early 2D alignment model is represented by
the DARC (description, acquisition, retrieval, correlation) system, which applies the
supermolecule approach by considering that molecules are composed of a common
skeleton and a variable collection of substituents [109–114]. The contribution of the
variable part of the structure to the overall property value of a molecule is determined
by regression analysis to predict various physical, chemical, and biological properties.

An example of a DARC supermolecule is demonstrated for the prediction of 13C
nuclear magnetic resonance (NMR) chemical shift in acyclic alkenes [113]. In Figure
1.2, the topo-stereochemical description of the environment of the α-sp2 resonating
carbon atom considers all sp3-hybridized carbon neighbors of types A, B, C, and
D situated at 1, 2, 3, and 4 bonds away from the resonating atom. The use of an
environment with a larger sphere of atoms does not add much information because
the influence on the chemical shift of atoms situated at a distance greater than four
bonds can be neglected. In a DARC supermolecule some sites collect a group of atoms
that have similar influence on the modeled property, such as site ΣC that collects all
carbon atoms situated three bonds away from C*, and site ΣD that collects all carbon
atoms situated four bonds away from C.

Simon developed the minimal topological difference (MTD) QSAR model by
superposing all molecules from the training set into a supermolecule [115]. Special
vertices and edges are then created to embed the substituents by maximizing the super-
position of their non-hydrogen atoms, and each molecule is embedded in a unique
way into the MTD supermolecule. The MTD map has three types of vertices, namely
with a positive contribution (increasing the bioactivity), with a negative contribution
(decreasing the bioactivity), and neutral (no influence on the bioactivity). The type

18 Handbook of Chemoinformatics Algorithms

Ctrans

Ccis *

Bgem

C

CD

D

D A3
A2

A1

D

D

D

B A

C

DD D

B33 B32 B31 B23
B22

B21

B13
B12

B11 C D

FIGURE 1.2 DARC-type map for the topo-stereochemical environment of α-sp2 carbon
atoms. The 13C NMR chemical shift is predicted for the carbon atom labeled with *.

of each site in the MTD map is determined in an iterative process by embedding
the training molecules on the MTD supermolecule and by minimizing the regres-
sion error between the experimental and calculated bioactivity. Minailiuc and Diudea
extended the MTD supermolecule method by assigning vertex structural descriptors
to vertices from the MTD supermolecule that are occupied for a particular molecule
[116]. This QSAR model, called topological indices-minimal topological difference
(TI-MTD), is very versatile in modeling QSAR properties and can be extended to
other atomic properties, such as atomic charge or electronegativity. Recent studies
show that the MTD method may be improved by using partial least squares (PLS)
instead of multiple regression [117,118].

A similar supermolecule is generated in the molecular field topology analysis
(MFTA) model introduced by Palyulin et al. [119]. The atomic descriptors associated
with each vertex of the MFTA map are atomic charge, electronegativity, van der
Waals radius, and atomic contribution to lipophilicity. The contribution of each site
is determined with PLS.

1.3.7 REACTION GRAPHS

The utilization of reaction databases relies heavily on efficient software for storage
and retrieval of reactions and reaction substructure search. Although very useful in
suggesting individual reaction steps, reaction databases offer little help in devising
strategies for complex reactions. A major accomplishment of chemoinformatics is the
development of computer-assisted synthesis design systems and reaction prediction
systems (cf. Chapter 11).

The storage and retrieval of reactions in databases, the extraction of reactivity
knowledge, computer-assisted synthesis design, and reaction prediction systems are

Representing Two-Dimensional Chemical Structures with Molecular Graphs 19

usually based on chemoinformatics tools that represent chemical reactions as a special
type of graph [120–122]. As an example we present here the imaginary transition
structure (ITS) model proposed by Fujita [120,123,124]. The ITS is a special type of
reaction graph that is obtained by superposing reagents and products, and in which
the bond rearrangement is indicated with special symbols. The reaction graph of an
ITS has three types of bonds: par-bonds, which are bonds that are not modified in
the reaction; out-bonds, representing bonds that are present only in reagents; and
in-bonds, which are bonds appearing only in products. The diagram of an ITS graph
contains distinctive symbols for each bond type: par-bonds are shown as solid lines;
out-bonds are depicted as solid lines with a double bar; and in-bonds are depicted
as solid lines with a circle. The ITS model is demonstrated here for nucleophilic
substitution, with reactants 1.56, ITS 1.57, and products 1.58.

C

HO

CH3 CH3

CH3

H

Cl

1.56

C CH3CH3

CH3

HO

H

Cl

1.57

C

HO

CH3 CH3

CH3

H

Cl

1.58

As can be seen from the above reaction, in which tert-butyl alcohol reacts with
hydrogen chloride to generate tert-butyl chloride, reaction mechanism details are
not encoded into ITS. The role of ITS is to describe only bond rearrangements that
transform reactants into products. The ITSs are not intended to represent reaction
mechanisms, but the definition of the ITS may be easily extended to encode them.

The ITS reaction graphs represent a comprehensive framework for the classifi-
cation and enumeration of organic reactions. The storage and retrieval of chemical
reactions are reduced to graph manipulations, and the identification of a reaction type
is equivalent to a subgraph search of an ITS database. A unique numerical represen-
tation (canonical code) of an ITS can be easily obtained [125,126] with a procedure
derived from the Morgan algorithm of canonical coding [127]. The canonical rep-
resentation of ITS graphs is an effective way of searching and comparing chemical
reactions and of identifying reaction types.

1.3.8 OTHER CHEMICAL GRAPHS

Many molecular graph models cannot handle systems with delocalized electrons, such
as diborane or organometallic complexes, and several special graph models were pro-
posed to encode these systems. Stein extended the bond and electron (BE) matrices
introduced by Dugundji and Ugi [128–130] with new bond types for delocalized
electrons [131]. Konstantinova and Skorobogatov proposed molecular hypergraphs
to depict delocalized systems [132]. Dietz developed a molecular representation for
computer-assisted synthesis design systems and for chemical database systems [133].

20 Handbook of Chemoinformatics Algorithms

This molecular representation encodes the constitution, configuration, and confor-
mation of a chemical compound. The constitution is represented as a multigraph
describing the unshared valence electrons and the bonding relationships in a molecule,
including valence electron sharing and electrostatic interactions. The chemical model
suggested by Bauerschmidt and Gasteiger defines a hierarchical organization of
molecular systems, starting from the electron system and ending with aggregates and
ensembles [134]. Multicenter bonds are described as a list of atoms, type (σ or π),
and number of electrons. This molecular representation is implemented in the reaction
prediction program elaboration of reactions for organic synthesis (EROS) [135].

Chemical graphs may also be used to model systems in which the interaction
between vertices represents hydrogen bonds, especially water, which consists of a
large number of locally stable structures with various arrangements of the constituent
water molecules. Each water cluster (H2O)n is represented by a graph in which ver-
tices are water molecules and bonds represent hydrogen bonds between two water
molecules.Although weaker than covalent bonds, hydrogen bonds can form long-lived
structures of water clusters for which the thermodynamic properties are determined
by the hydrogen bonding patterns. The number of possible configurations of a cluster
(H2O)n increases very rapidly with n, which makes the identification of all possible
local minima on the potential surface of a water cluster difficult [136–139].

1.4 WEIGHTED GRAPHS AND MOLECULAR MATRICES

Simple graphs lack the flexibility to represent complex chemical compounds, which
limits their application to alkanes and cycloalkanes, and many widely used topological
indices were initially defined for such simple molecular graphs (cf. Chapter 4). The
main chemical application of topological indices is that of structural descriptors in
QSPR, QSAR, and virtual screening, which requires the computation of these indices
for molecular graphs containing heteroatoms and multiple bonds. Such molecular
graphs use special sets of parameters to represent heteroatoms as vertex weights,
and multiple bonds as edge weights. Early applications of such vertex- and edge-
weighted (VEW) molecular graphs were initially developed for the Hückel molecular
orbitals theory [140] and were subsequently extended to general chemical compounds
[141]. In this section we present selected algorithms for the computation of weighted
molecular graphs that are general in scope and can be applied to a large range of
structural descriptors. The application of these weighting schemes is demonstrated
for a group of molecular matrices that are frequently used in computing topological
indices. Other weighting schemes were proposed for more narrow applications, and
are valid only for specific topological indices such as Randić–Kier–Hall connectiv-
ity indices [24,25], electrotopological indices [26,142], Burden indices [143], and
Balaban index J [60].

1.4.1 WEIGHTED MOLECULAR GRAPHS

A VEW molecular graph G(V , E, Sy, Bo, Vw, Ew, w) is defined by a vertex set V(G),
an edge set E(G), a set of chemical symbols for vertices Sy(G), a set of topological
bond orders for edges Bo (G), a vertex weight set Vw(w, G), and an edge weight set

Representing Two-Dimensional Chemical Structures with Molecular Graphs 21

Ew(w, G), where the elements of the vertex and edge sets are computed with the
weighting scheme w. Usually, the weight of a carbon atom is 0, whereas the weight
of a carbon–carbon single bond is 1. In the weighting schemes reviewed here, the
topological bond order Boij of an edge eij takes the value 1 for single bonds, 2 for
double bonds, 3 for triple bonds, and 1.5 for aromatic bonds. As an example of a
VEW graph, consider 3,4-dibromo-1-butene 1.59 and its corresponding molecular
graph 1.60.

CH2 CH CH CH2

Br Br
1.59

4
3

2
1 5

6

Br

Br

1.60

Graph distances represent the basis for the computation of almost all topological
indices, and their computation in VEW graphs is shown here. The length of a path pij

between vertices vi and vj, l(pij, w, G), for a weighting scheme w in a VEW graph G
is equal to the sum of the edge parameters Ew(w)ij for all edges along the path. The
length of the path p1(1.60)= {v1, v2, v3, v6} is l(p1) = Ew1,2 + Ew2,3 + Ew3,6. The
topological length of a path pij, t(pij, G), in a VEW graph G is equal to the number
of edges along the path, which coincides with the path length in the corresponding
unweighted graph. In a VEW graph, the distance d(w)ij between a pair of vertices
vi and vj is equal to the length of the shortest path connecting the two vertices,
d(w)ij = min(l(pij , w)).

1.4.2 ADJACENCY MATRIX

The adjacency matrix A(w, G) of a VEW molecular graph G with N vertices is
a square N × N real symmetric matrix with the element [A(w, G)]ij defined as
[34,144]

[A(w, G)]ij =

⎧
⎪⎪⎨

⎪⎪⎩

Vw(w)i if i = j,

Ew(w)ij if eij ∈ E(G),

0 if eij /∈ E(G),

(1.6)

where Vw(w)i is the weight of vertex vi, Ew(w)ij is the weight of edge eij, and w is the
weighting scheme used to compute the parameters Vw and Ew. The valency of vertex
vi, val(w,G)i, is defined as the sum of the weights Ew(w)ij of all edges eij incident
with vertex vi [49]:

val(w)i =
∑

eij∈E(G)

Ew(w)ij . (1.7)

22 Handbook of Chemoinformatics Algorithms

1.4.3 DISTANCE MATRIX

The distance matrix D(w, G) of a VEW molecular graph G with N vertices is a
symmetric square N × N matrix with the element [D(w, G)]ij defined as [144,145]

[D(w, G)]ij =
{

d(w)ij if i �= j,

Vw(w)i if i = j,
(1.8)

where d(w)ij is the distance between vertices vi and vj, Vw(w)i is the weight of vertex
vi, and w is the weighting scheme used to compute the parameters Vw and Ew. The
distance sum of vertex vi, DS (w, G)i, is defined as the sum of the topological distances
between vertex vi and every vertex in the VEW molecular graph G:

DS(w, G)i =
N∑

j=1

[D(w, G)]ij =
N∑

j=1

[D(w, G)]ji, (1.9)

where w is the weighting scheme. The distance sum is used to compute the Balaban
index J [59] and information on distance indices [62].

1.4.4 ATOMIC NUMBER WEIGHTING SCHEME Z

Based on the definitions of adjacency and distance matrices introduced above, we
demonstrate here the calculation of molecular matrices for weighted graphs. Barysz
et al. proposed a general approach for computing parameters for VEW graphs by
weighting the contributions of atoms and bonds with parameters based on the atomic
number Z and the topological bond order [141]. In the atomic number weighting
scheme Z , the parameter Vw(Z)i of a vertex vi (representing atom i from a molecule)
is defined as

Vw(Z)i = 1− ZC

Zi
= 1− 6

Zi
, (1.10)

where Zi is the atomic number Z of atom i and ZC = 6 is the atomic number Z of
carbon. The parameter Ew(Z)ij for edge eij (representing the bond between atoms i
and j) is defined as

Ew(Z)ij = ZCZC

(BoijZiZj)
= 6× 6

(BoijZiZj)
, (1.11)

where Boij is the topological bond order of the edge between vertices vi and vj. The
application of the Z parameters is shown for the adjacency matrix of 2H-pyran 1.61
and for the distance matrix of 4-aminopyridine 1.61 (molecular graph 1.63).

Representing Two-Dimensional Chemical Structures with Molecular Graphs 23

4

3

2

1

5

6
O

1.61

N

NH2

1.62

4
3

2

1

5

N

N

6

7

1.63

1 2 3 4 5 6

A(Z , 1.61) =

1 0.250 0.750 0 0 0 0.750
2 0.750 0 1 0 0 0
3 0 1 0 0.500 0 0
4 0 0 0.500 0 1 0
5 0 0 0 1 0 0.500
6 0.750 0 0 0 0.500 0

1 2 3 4 5 6 7

D(Z , 1.63) =

1 0.143 0.571 1.238 1.905 1.238 0.571 2.762
2 0.571 0 0.667 1.333 1.810 1.143 2.190
3 1.238 0.667 0 0.667 1.333 1.810 1.524
4 1.905 1.333 0.667 0 0.667 1.333 0.857
5 1.238 1.810 1.333 0.667 0 0.667 1.524
6 0.571 1.143 1.810 1.333 0.667 0 2.190
7 2.762 2.190 1.524 0.857 1.524 2.190 0.143

1.4.5 RELATIVE ELECTRONEGATIVITY WEIGHTING SCHEME X

The extension of the Balaban index J to VEW molecular graphs is based on relative
electronegativity and covalent radius [60]. First, the Sanderson electronegativities of
main group atoms are fitted in a linear regression using as parameters the atomic
number Z and the number of the group Ng in the periodic system:

Si = 1.1032− 0.0204 Zi + 0.4121 Ngi. (1.12)

Taking as reference the calculated electronegativity for carbon SC = 2.629, the
relative electronegativities X are defined as

Xi = 0.4196− 0.0078 Zi + 0.1567 Ngi. (1.13)

This weight system, developed initially for J , was extended as the relative elec-
tronegativity weighting scheme X , in which the vertex parameter Vw(X)i is defined
as [36,146]

Vw(X)i = 1− 1

Xi
. (1.14)

24 Handbook of Chemoinformatics Algorithms

The edge parameter Ew(X)ij that characterizes the relative electronegativity of a
bond is computed with the equation

Ew(X)ij = 1

(BoijXiXj)
. (1.15)

From its definition, the weighting scheme X reflects the periodicity of electroneg-
ativity and can generate molecular descriptors that express both the effect of topology
and that of electronegativity. A related set of parameters, the relative covalent radius
weighting scheme Y , was defined based on the covalent radius [36,146].

1.4.6 ATOMIC RADIUS WEIGHTING SCHEME R

The atomic radius computed from the atomic polarizability is the basis of the atomic
radius weighting scheme R, in which the vertex parameter Vw(R)i is defined as
[144,147]

Vw(R)i = 1− rC

ri
= 1− 1.21

ri
(1.16)

and the parameter Ew(R)ij of the edge eij representing the bond between atoms i and
j is equal to

Ew(R)ij = rCrC

(Boijrirj)
= 1.21× 1.21

(Boijrirj)
, (1.17)

where rC = 1.21 Å is the carbon radius and ri is the atomic radius of atom i. Similar
sets of parameters for VEW graphs were obtained with other atomic parameters,
namely the atomic mass weighting scheme A, the atomic polarizability weighting
scheme P, and the atomic electronegativity weighting scheme E [144,147].

1.4.7 BURDEN MATRIX

The Burden molecular matrix is a modified adjacency matrix obtained from the
hydrogen-excluded molecular graph of an organic compound [143]. This matrix is the
source of the Burden, CAS, and University of Texas (BCUT) descriptors, which are
computed from the graph spectra of the Burden matrix B and are extensively used in
combinatorial chemistry, virtual screening, diversity measure, and QSAR [148–150].
An extension of the Burden matrix was obtained by inserting on the main diagonal
of B a vertex structural descriptor VSD, representing a vector of experimental or
computed atomic properties [151]. The rules defining the Burden matrix B(VSD, G)

of a graph G with N vertices are as follows:

a. The diagonal elements of B, [B]ii, are computed with the formula

[B(VSD, G)]ii = VSDi, (1.18)

where VSDi is a vertex structural descriptor of vertex vi, that reflects the
local structure of the corresponding atom i.

Representing Two-Dimensional Chemical Structures with Molecular Graphs 25

b. The nondiagonal element [B]ij, representing an edge eij connecting vertices
vi and vj , has the value 0.1 for a single bond, 0.2 for a double bond, 0.3 for
a triple bond, and 0.15 for an aromatic delocalized bond.

c. The value of a nondiagonal element [B]ij representing an edge eij connecting
vertices vi and vj is augmented by 0.01 if either vertex vi or vertex vj have
degree 1.

d. All other nondiagonal elements [B]ij are set equal to 0.001; these elements
are set to 0 in the adjacency matrix A and correspond to pairs of nonbonded
vertices in a molecular graph.

Examples of the vertex structural descriptor VSD for the diagonal of the Burden
matrix are parameters from the weighting schemes A, E, P, R, X, Y , Z , various atomic
properties (Pauling electronegativity, covalent radius, atomic polarizability), or vari-
ous molecular graph indices, such as degree, valency, valence delta atom connectivity
δ, intrinsic state I , electrotopological state S, distance sum DS, or vertex sum VS. An
example of the Burden matrix is shown for 4-chloropyridine 1.64 (molecular graph
1.65) with the Pauling electronegativity EP on the main diagonal.

N

Cl
1.64

4
3

2

1

5

N

Cl

6

7
1.65

1 2 3 4 5 6 7

B(EP, 1.65) =

1 3.040 0.150 0.001 0.001 0.001 0.150 0.001
2 0.150 2.550 0.150 0.001 0.001 0.001 0.001
3 0.001 0.150 2.550 0.150 0.001 0.001 0.001
4 0.001 0.001 0.150 2.550 0.150 0.001 0.110
5 0.001 0.001 0.001 0.150 2.550 0.150 0.001
6 0.150 0.001 0.001 0.001 0.150 2.550 0.001
7 0.001 0.001 0.001 0.110 0.001 0.001 3.160

1.4.8 RECIPROCAL DISTANCE MATRIX

Starting with the Wiener index W , graph distances represented a prevalent source of
topological indices.A possible drawback of using graph distances directly is that pairs
of atoms that are separated by large distances, and thus have low interaction between
them, have large contributions to the numerical value of the index. Because physical
interaction between two objects decreases with increasing distance, the reciprocal
distance 1/dij was introduced. Using the reciprocal distance, it is possible to define
graph descriptors in which the contribution of two vertices decreases with increase

26 Handbook of Chemoinformatics Algorithms

of the distance between them [152]. The reciprocal distance matrix of a simple graph
G with N vertices RD(G) is a square N × N symmetric matrix whose entries [RD]ij
are equal to the reciprocal of the distance between vertices vi and vj, that is, 1/dij =
1/[D]ij, for nondiagonal elements, and is equal to zero for the diagonal elements
[65,153,154]:

[RD(G)]ij =

⎧
⎪⎨

⎪⎩

1

[D(G)]ij if i �= j,

0 if i = j.

(1.19)

The reciprocal distance matrix of octahydropentalene 1.66 is shown as an example.

8

7

6 5 4

3

21

1.66

1 2 3 4 5 6 7 8

RD(1.66) =

1 0 1 0.500 0.500 1 0.500 0.500 1
2 1 0 1 0.500 0.500 0.333 0.333 0.500
3 0.500 1 0 1 0.500 0.333 0.250 0.333
4 0.500 0.500 1 0 1 0.500 0.333 0.333
5 1 0.500 0.500 1 0 1 0.500 0.500
6 0.500 0.333 0.333 0.500 1 0 1 0.500
7 0.500 0.333 0.250 0.333 0.500 1 0 1
8 1 0.500 0.333 0.333 0.500 0.500 1 0

Formula 1.19 can be easily extended to weighted molecular graphs. The reciprocal
distance matrix RD(w, G) of a VEW molecular graph G with N vertices is a square
N × N symmetric matrix with real elements [144,145]:

[RD(w, G)]ij =

⎧
⎪⎨

⎪⎩

1

[D(w, G)]ij if i �= j,

Vw(w)i if i = j,

(1.20)

where [D(w)]ij is the graph distance between vertices vi and vj, [D(w)]ii is the diagonal
element corresponding to vertex vi, and w is the weighting scheme used to compute the
parameters Vw and Ew. The reciprocal distance matrix of 2-hydroxypropanoic acid
(lactic acid) 1.67 (molecular graph 1.68) computed with the atomic electronegativity
weighting scheme E is presented as an example.

Representing Two-Dimensional Chemical Structures with Molecular Graphs 27

CH3 CH

OH

COOH

1.67

5

6

3
21 O 4

O

O
1.68 Source: From Encyclopedia of Chemoinformatics.
 With permission.

1 2 3 4 5 6

RD(E, 1.68) =

1 0 1 0.500 0.425 0.587 0.370
2 1 0 1 0.740 1.420 0.587
3 0.500 1 0 2.839 0.587 1.420
4 0.425 0.740 2.839 0.296 0.486 0.946
5 0.587 1.420 0.587 0.486 0.296 0.415
6 0.370 0.587 1.420 0.946 0.415 0.296

1.4.9 OTHER MOLECULAR MATRICES

We have presented here a selection of molecular matrices that are used as a source of
topological indices and other graph descriptors. Other types of molecular matrices are
investigated with the goal of exploring novel procedures for translating graph topology
into a matrix [64]. The search for new structural descriptors based on molecular graphs
is the catalyst that prompted the development of many molecular matrices, such as
the edge Wiener matrix We [155], the path Wiener matrix Wp [155], the distance-
valency matrix Dval [34], the quasi-Euclidean matrix ρqε [156,157], the distance
complement matrix DC [66], the complementary distance matrix CD [145,158], the
reverse Wiener matrix RW [67], the distance-path matrix Dp [68], the Szeged matrix
Sz [70], the Cluj matrix Cj [70], and the resistance distance matrix Ω [50], which is
based on a novel distance function on graphs introduced by Klein and Randić and
inspired by the properties of electrical networks.

1.5 CONCLUDING REMARKS

This chapter reviewed the applications of graph theory in chemistry. Many objects
manipulated in chemistry, such as atomic orbitals, chemical compounds, and reaction
diagrams, can be represented as graphs. Graph operations, such as generating reduced
graphs, and the calculation of various matrices derived from the connectivity of the
graph can thus be applied to chemicals with applications including virtual screening,
topological indices calculations, and activity/property predictions such as spectra
predictions. Many algorithms have been and are being developed to solve graph
problems, and some of these can be applied to chemistry problems. The goal of the
next chapter is to present graph algorithms applied to chemicals.

REFERENCES

1. Harary, F., Graph Theory. Adison-Wesley: Reading, MA, 1994.
2. Berge, C., Graphs and Hypergraphs. Elsevier: New York, 1973.

28 Handbook of Chemoinformatics Algorithms

3. Behzad, M., Chartrand, G., and Lesniak-Foster, L., Graphs and Digraphs. Wadsworth
International Group: Belmont, CA, 1979.

4. Buckley, F. and Harary, F., Distance in Graphs. Adison-Wesley: Reading, MA, 1990.
5. Foulds, L. R., Graph Theory Applications. Springer: New York, 1992.
6. West, D. B., Introduction to Graph Theory, 2nd edition. Prentice-Hall: Englewood Cliffs,

NJ, 2000.
7. Diestel, R., Graph Theory, 3rd edition. Springer: Heidelberg, Germany, 2005.
8. Beineke, L. W. and Wilson, R. J., Topics in Algebraic Graph Theory. Cambridge

University Press: Cambridge, UK, 2005.
9. Cvetković, D. M., Doob, M., and Sachs, H., Spectra of Graphs. Theory and Applications,

3rd edition. Johann Ambrosius Barth Verlag: Heidelberg, Germany, 1995.
10. Graovac, A., Gutman, I., and Trinajstić, N., Topological Approach to the Chemistry of

Conjugated Molecules. Springer: Berlin, 1977.
11. Cyvin, S. J. and Gutman, I., Kekulé Structures in Benzenoid Hydrocarbons, Vol. 46.

Springer: Berlin, 1988.
12. Gutman, I. and Cyvin, S. J., Introduction to the Theory of Benzenoid Hydrocarbons.

Springer: Berlin, 1989.
13. Gutman, I. and Cyvin, S. J., Advances in the Theory of Benzenoid Hydrocarbons, Vol.

153. Springer: Berlin, 1990.
14. Cyvin, S. J., Brunvoll, J., and Cyvin, B. N., Theory of Coronoid Hydrocarbons, Vol. 54.

Springer: Berlin, 1991.
15. Dias, J. R., Molecular Orbital Calculations Using Chemical Graph Theory. Springer:

Berlin, 1993.
16. Harary, F. and Palmer, E. M., Graphical Enumeration. Academic Press: NewYork, 1973.
17. Pólya, G. and Read, R. C., Combinatorial Enumeration of Groups, Graphs, and Chemical

Compounds. Springer: New York, 1987.
18. Fujita, S., Symmetry and Combinatorial Enumeration in Chemistry. Springer: Berlin,

1991.
19. Biggs, N. L., Lloyd, E. K., and Wilson, R. J., Graph Theory 1736–1936. Clarendon Press:

Oxford, 1976.
20. Balaban, A. T., Chemical Applications of Graph Theory. Academic Press: London, 1976.
21. Trinajstić, N., Chemical Graph Theory. CRC Press: Boca Raton, FL, 1992.
22. Gutman, I. and Polansky, O. E., Mathematical Concepts in Organic Chemistry. Springer:

Berlin, 1986.
23. Gasteiger, J., Handbook of Chemoinformatics. Wiley-VCH: Weinheim, 2003.
24. Kier, L. B. and Hall, L. H., Molecular Connectivity in Chemistry and Drug Research.

Academic Press: New York, 1976.
25. Kier, L. B. and Hall, L. H., Molecular Connectivity in Structure–Activity Analysis.

Research Studies Press: Letchworth, UK, 1986.
26. Kier, L. B. and Hall, L. H., Molecular Structure Description. The Electrotopological

State. Academic Press: San Diego, CA, 1999.
27. Bonchev, D., Information Theoretic Indices for Characterization of Chemical Structure.

Research Studies Press: Chichester, UK, 1983.
28. Devillers, J. and Balaban, A. T., Topological Indices and Related Descriptors in QSAR

and QSPR. Gordon and Breach Science Publishers: Amsterdam, the Netherlands, 1999.
29. Temkin, O. N., Zeigarnik,A.V., and Bonchev, D., Chemical Reaction Networks. A Graph-

Theoretical Approach. CRC Press: Boca Raton, FL, 1996.
30. Koča, J., Kratochvíl, M., Kvasnička, V., Matyska, L., and Pospíchal, J., Synthon Model

of Organic Chemistry and Synthesis Design, Vol. 51. Springer: Berlin, Germany, 1989.

Representing Two-Dimensional Chemical Structures with Molecular Graphs 29

31. Golender, V. E. and Rozenblit, A. B., Logical and Combinatorial Algorithms for Drug
Design, p. 289. Research Studies Press: Letchworth, UK, 1983.

32. Balaban, A. T., Reaction graphs. In: D. Bonchev and O. Mekenyan (Eds), Graph Theo-
retical Approaches to Chemical Reactivity, pp. 137–180. Kluwer Academic Publishers:
Amsterdam, the Netherlands, 1994.

33. Ivanciuc, O., Design of topological indices. Part 11. Distance-valency matrices and
derived molecular graph descriptors. Revue Roumaine de Chimie 1999, 44(5), 519–528.

34. Ivanciuc, O., Design of topological indices. Part 14. Distance-valency matrices and struc-
tural descriptors for vertex- and edge-weighted molecular graphs. Revue Roumaine de
Chimie 2000, 45(6), 587–596.

35. Dijkstra, E., A note on two problems in connection with graphs. Numerische Mathematik
1959, 1, 269–271.

36. Ivanciuc, O., Ivanciuc, T., and Balaban, A. T., Vertex- and edge-weighted molecular
graphs and derived structural descriptors. In: J. Devillers and A. T. Balaban (Eds), Topo-
logical Indices and Related Descriptors in QSAR and QSPR, pp. 169–220. Gordon and
Breach Science Publishers: Amsterdam, the Netherlands, 1999.

37. Ivanciuc, O. and Ivanciuc, T., Matrices and structural descriptors computed from molec-
ular graph distances. In: J. Devillers and A.T. Balaban (Eds), Topological Indices and
Related Descriptors in QSAR and QSPR, pp. 221–277. Gordon and Breach Science
Publishers: Amsterdam, the Netherlands, 1999.

38. Higham, D. J., Kalna, G., and Kibble, M., Spectral clustering and its use in bioinformatics.
Journal of Computational and Applied Mathematics 2007, 204(1), 25–37.

39. Randić, M., Random walks and their diagnostic value for characterization of atomic
environment. Journal of Computational Chemistry 1980, 1(4), 386–399.

40. Burdett, J. K., Lee, S., and McLarnan, T. J., The coloring problem. Journal of the
American Chemical Society 1985, 107(11), 3083–3089.

41. Burdett, J. K., Topological control of the structures of molecules and solids. Accounts of
Chemical Research 1988, 21(5), 189–194.

42. Jiang,Y. and Zhang, H., Aromaticities and reactivities based on energy partitioning. Pure
and Applied Chemistry 1990, 62(3), 451–456.

43. Wu, Y., Zhao, H. G., Liu, X., Li, J., Yang, K., and He, H. B., Evaluation of molecular
moments by three methods. International Journal of Quantum Chemistry 2000, 78(4),
237–244.

44. Marković, S., Marković, Z., and McCrindle, R. I., Spectral moments of phenylenes.
Journal of Chemical Information and Computer Sciences 2001, 41(1), 112–119.

45. Schmalz, T. G., Živković, T., and Klein, D. J., Cluster expansion of the Hückel
molecular energy of acyclics: Applications to pi resonance theory. In: R. C. Lacher
(Ed.), MATH/CHEM/COMP 1987. Proceedings of an International Course and Con-
ference on the Interfaces Between Mathematics, Chemistry and Computer Science,
Dubrovnik, Yugoslavia, 22–26 June 1987, Vol. 54, pp. 173–190. Elsevier: Amsterdam,
the Netherlands, 1988.

46. Mohar, B., Laplacian matrices of graphs. In: A. Graovac (Ed.), MATH/CHEM/COMP
1988. Proceedings of an International Course and Conference on the Interfaces Between
Mathematics, Chemistry and Computer Sciences, Dubrovnik, Yugoslavia, 20–25 June
1988, Vol. 63, pp. 1–8. Elsevier: Amsterdam, the Netherlands, 1989.

47. Ivanciuc, O., Chemical graph polynomials. Part 3. The Laplacian polynomial of
molecular graphs. Revue Roumaine de Chimie 1993, 38(12), 1499–1508.

48. Trinajstić, N., Babić, D., Nikolić, S., Plavšić, D.,Amić, D., and Mihalić, Z., The Laplacian
matrix in chemistry. Journal of Chemical Information and Computer Sciences 1994,
34(2), 368–376.

30 Handbook of Chemoinformatics Algorithms

49. Ivanciuc, O., Design of topological indices. Part 26. Structural descriptors computed from
the Laplacian matrix of weighted molecular graphs: Modeling the aqueous solubility of
aliphatic alcohols. Revue Roumaine de Chimie 2001, 46(12), 1331–1347.

50. Klein, D. J. and Randić, M., Resistance distance. Journal of Mathematical Chemistry
1993, 12(1–4), 81–95.

51. Ivanciuc, T., Ivanciuc, O., and Klein, D. J., Posetic quantitative superstructure/activity
relationships (QSSARs) for chlorobenzenes. Journal of Chemical Information and
Modeling 2005, 45(4), 870–879.

52. Ivanciuc, T., Ivanciuc, O., and Klein, D. J., Modeling the bioconcentration factors and
bioaccumulation factors of polychlorinated biphenyls with posetic quantitative super-
structure/activity relationships (QSSAR). Molecular Diversity 2006, 10(2), 133–145.

53. Ivanciuc, T., Ivanciuc, O., and Klein, D. J., Prediction of environmental properties for
chlorophenols with posetic quantitative super-structure/property relationships (QSSPR).
International Journal of Molecular Sciences 2006, 7(9), 358–374.

54. Klein, D. J., Ivanciuc, T., Ryzhov, A., and Ivanciuc, O., Combinatorics of reaction-
network posets. Combinatorial Chemistry & High Throughput Screening 2008, 11(9),
723–733.

55. Mihalić, Z., Veljan, D., Amić, D., Nikolić, S., Plavšić, D., and Trinajstić, N., The distance
matrix in chemistry. Journal of Mathematical Chemistry 1992, 11(1–3), 223–258.

56. Floyd, R. W., Algorithm 97: Shortest path. Communications of the ACM 1962, 5(6), 345.
57. Warshall, S., A theorem on boolean matrices. Journal of the ACM 1962, 9, 11–12.
58. Wiener, H., Structural determination of paraffin boiling points. Journal of the American

Chemical Society 1947, 69, 17–20.
59. Balaban, A. T., Highly discriminating distance-based topological index. Chemical

Physics Letters 1982, 89(5), 399–404.
60. Balaban, A. T. and Ivanciuc, O., FORTRAN 77 computer program for calculat-

ing the topological index J for molecules containing heteroatoms. In: A. Graovac
(Ed.), MATH/CHEM/COMP 1988. Proceedings of an International Course and Con-
ference on the Interfaces Between Mathematics, Chemistry and Computer Sciences,
Dubrovnik, Yugoslavia, 20–25 June 1988, Vol. 63, pp. 193–211. Elsevier: Amsterdam,
the Netherlands, 1989.

61. Hall, L. H., Mohney, B., and Kier, L. B., The electrotopological state: Structure infor-
mation at the atomic level for molecular graphs. Journal of Chemical Information and
Computer Sciences 1991, 31(1), 76–82.

62. Balaban, A. T. and Balaban, T.-S., New vertex invariants and topological indices of
chemical graphs based on information on distances. Journal of Mathematical Chemistry
1991, 8(4), 383–397.

63. Balaban,A. T., Beteringhe,A., Constantinescu, T., Filip, P.A., and Ivanciuc, O., Four new
topological indices based on the molecular path code. Journal of Chemical Information
and Modeling 2007, 47(3), 716–731.

64. Ivanciuc, O., Graph theory in chemistry. In: J. Gasteiger (Ed.), Handbook of Chemoin-
formatics, Vol. 1, pp. 103–138. Wiley-VCH: Weinheim, Germany, 2003.

65. Ivanciuc, O., Balaban, T.-S., and Balaban, A. T., Design of topological indices. Part
4. Reciprocal distance matrix, related local vertex invariants and topological indices.
Journal of Mathematical Chemistry 1993, 12(1–4), 309–318.

66. Randić, M., Linear combinations of path numbers as molecular descriptors. New Journal
of Chemistry 1997, 21(9), 945–951.

67. Balaban,A. T., Mills, D., Ivanciuc, O., and Basak, S. C., Reverse Wiener indices. Croatica
Chemica Acta 2000, 73(4), 923–941.

Representing Two-Dimensional Chemical Structures with Molecular Graphs 31

68. Diudea, M.V., Wiener and hyper-Wiener numbers in a single matrix. Journal of Chemical
Information and Computer Sciences 1996, 36(4), 833–836.

69. Diudea, M.V., Ivanciuc, O., Nikolić, S., andTrinajstić, N., Matrices of reciprocal distance,
polynomials and derived numbers. MATCH Communications in Mathematical and in
Computer Chemistry 1997, 35, 41–64.

70. Diudea, M. V., Indices of reciprocal properties or Harary indices. Journal of Chemical
Information and Computer Sciences 1997, 37(2), 292–299.

71. Ivanciuc, O., Design of topological indices. Part 27. Szeged matrix for vertex- and edge-
weighted molecular graphs as a source of structural descriptors for QSAR models. Revue
Roumaine de Chimie 2002, 47(5), 479–492.

72. Cayley, A., On the mathematical theory of isomers. Philosophical Magazine 1874, 67,
444–446.

73. Gutman, I., Vidović, D., and Popović, L., Graph representation of organic molecules.
Cayley’s plerograms vs. his kenograms. Journal of the Chemical Society, Faraday
Transactions 1998, 94(7), 857–860.

74. Gutman, I. and Vidović, D., Relations between Wiener-type topological indices of
plerograms and kenograms. Journal of the Serbian Chemical Society 1998, 63(9),
695–702.

75. Toropov, A. A. and Toropova, A. P., QSPR modeling of the formation constants for
complexes using atomic orbital graphs. Russian Journal of Coordination Chemistry 2000,
26(6), 398–405.

76. Toropov, A. A. and Toropova, A. P., Prediction of heteroaromatic amine mutagenicity by
means of correlation weighting of atomic orbital graphs of local invariants. Journal of
Molecular Structure (Theochem) 2001, 538, 287–293.

77. Toropov, A. A. and Toropova, A. P., QSAR modeling of mutagenicity based on graphs of
atomic orbitals. Internet Electronic Journal of Molecular Design 2002, 1(3), 108–114.

78. Pogliani, L., From molecular connectivity indices to semiempirical connectivity terms:
Recent trends in graph theoretical descriptors. Chemical Reviews 2000, 100(10), 3827–
3858.

79. Pogliani, L., Algorithmically compressed data and the topological conjecture for the
inner-core electrons. Journal of Chemical Information and Computer Sciences 2002,
42(5), 1028–1042.

80. Pogliani, L., Complete graph conjecture for inner-core electrons: Homogeneous index
case. Journal of Computational Chemistry 2003, 24(9), 1097–1109.

81. Pogliani, L., Encoding the core electrons with graph concepts. Journal of Chemical
Information and Computer Sciences 2004, 44(1), 42–49.

82. Pogliani, L., The evolution of the valence delta in molecular connectivity theory. Internet
Electronic Journal of Molecular Design 2006, 5(7), 364–375.

83. Barnard, J. M., A comparison of different approaches to Markush structure handling.
Journal of Chemical Information and Computer Sciences 1991, 31(1), 64–68.

84. Fisanick, W., The chemical abstracts service generic chemical (Markush) structure stor-
age and retrieval capability. 1. Basic concepts. Journal of Chemical Information and
Computer Sciences 1990, 30(2), 145–154.

85. Ebe, T., Sanderson, K. A., and Wilson, P. S., The chemical abstracts service generic
chemical (Markush) structure storage and retrieval capability. 2. The MARPAT file.
Journal of Chemical Information and Computer Sciences 1991, 31(1), 31–36.

86. Benichou, P., Klimczak, C., and Borne, P., Handling genericity in chemical structures
using the Markush Darc software. Journal of Chemical Information and Computer
Sciences 1997, 37(1), 43–53.

32 Handbook of Chemoinformatics Algorithms

87. Lynch, M. F., Barnard, J. M., and Welford, S. M., Computer storage and retrieval of
generic chemical structures in patents. 1. Introduction and general strategy. Journal of
Chemical Information and Computer Sciences 1981, 21(3), 148–150.

88. Holliday, J. D., Downs, G. M., Gillet, V. J., Lynch, M. F., and Dethlefsen, W., Evaluation
of the screening stages of the Sheffield research project on computer storage and retrieval
of generic chemical structures in patents. Journal of Chemical Information and Computer
Sciences 1994, 34(1), 39–46.

89. Barnard, J. M., Lynch, M. F., and Welford, S. M., Computer storage and retrieval of
generic chemical structures in patents. 2. GENSAL, a formal language for the description
of generic chemical structures. Journal of Chemical Information and Computer Sciences
1981, 21(3), 151–161.

90. Welford, S. M., Lynch, M. F., and Barnard, J. M., Computer storage and retrieval of
generic chemical structures in patents. 3. Chemical grammars and their role in the manip-
ulation of chemical structures. Journal of Chemical Information and Computer Sciences
1981, 21(3), 161–168.

91. Barnard, J. M., Lynch, M. F., and Welford, S. M., Computer storage and retrieval of
generic structures in chemical patents. 4. An extended connection table representation
for generic structures. Journal of Chemical Information and Computer Sciences 1982,
22(3), 160–164.

92. Welford, S. M., Lynch, M. F., and Barnard, J. M., Computer storage and retrieval of
generic chemical structures in patents. 5. Algorithmic generation of fragment descriptors
for generic structure screening. Journal of Chemical Information and Computer Sciences
1984, 24(2), 57–66.

93. Holliday, J. D., Downs, G. M., Gillet, V. J., and Lynch, M. F., Computer storage and
retrieval of generic chemical structures in patents. 14. Fragment generation from generic
structures. Journal of Chemical Information and Computer Sciences 1992, 32(5), 453–
462.

94. Holliday, J. D., Downs, G. M., Gillet, V. J., and Lynch, M. F., Computer storage and
retrieval of generic chemical structures in patents. 15. Generation of topological frag-
ment descriptors from nontopological representations of generic structure components.
Journal of Chemical Information and Computer Sciences 1993, 33(3), 369–377.

95. Barnard, J. M., Lynch, M. F., and Welford, S. M., Computer storage and retrieval of
generic chemical structures in patents. 6. An interpreter program for the generic structure
description language GENSAL. Journal of Chemical Information and Computer
Sciences 1984, 24(2), 66–71.

96. Dethlefsen, W., Lynch, M. F., Gillet, V. J., Downs, G. M., and Holliday, J. D., Computer
storage and retrieval of generic chemical structures in patents. 11. Theoretical aspects
of the use of structure languages in a retrieval system. Journal of Chemical Information
and Computer Sciences 1991, 31(2), 233–253.

97. Gillet, V. J., Welford, S. M., Lynch, M. F., Willett, P., Barnard, J. M., Downs, G. M.,
Manson, G., and Thompson, J., Computer storage and retrieval of generic chemical
structures in patents. 7. Parallel simulation of a relaxation algorithm for chemical sub-
structure search. Journal of Chemical Information and Computer Sciences 1986, 26(3),
118–126.

98. Gillet, V. J., Downs, G. M., Ling, A., Lynch, M. F., Venkataram, P., Wood, J. V., and
Dethlefsen, W., Computer storage and retrieval of generic chemical structures in patents.
8. Reduced chemical graphs and their applications in generic chemical structure retrieval.
Journal of Chemical Information and Computer Sciences 1987, 27(3), 126–137.

99. Gillet, V. J., Downs, G. M., Holliday, J. D., Lynch, M. F., and Dethlefsen, W., Com-
puter storage and retrieval of generic chemical structures in patents. 13. Reduced

Representing Two-Dimensional Chemical Structures with Molecular Graphs 33

graph generation. Journal of Chemical Information and Computer Sciences 1991, 31(2),
260–270.

100. Downs, G. M., Gillet, V. J., Holliday, J. D., and Lynch, M. F., Computer storage and
retrieval of generic chemical structures in patents. 9. An algorithm to find the extended
set of smallest rings in structurally explicit generics. Journal of Chemical Information
and Computer Sciences 1989, 29(3), 207–214.

101. Downs, G. M., Gillet, V. J., Holliday, J. D., and Lynch, M. F., Computer storage and
retrieval of generic chemical structures in patents. 10. Assignment and logical bubble-up
of ring screens for structurally explicit generics. Journal of Chemical Information and
Computer Sciences 1989, 29(3), 215–224.

102. Dethlefsen, W., Lynch, M. F., Gillet, V. J., Downs, G. M., Holliday, J. D., and Barnard,
J. M., Computer storage and retrieval of generic chemical structures in patents. 12.
Principles of search operations involving parameter lists: Matching-relations, user-
defined match levels, and transition from the reduced graph search to the refined
search. Journal of Chemical Information and Computer Sciences 1991, 31(2),
253–260.

103. Holliday, J. D. and Lynch, M. F., Computer storage and retrieval of generic chemical
structures in patents. 16. The refined search: An algorithm for matching components of
generic chemical structures at the atom-bond level. Journal of Chemical Information and
Computer Sciences 1995, 35(1), 1–7.

104. Holliday, J. D. and Lynch, M. F., Computer storage and retrieval of generic chemical struc-
tures in patents. 17. Evaluation of the refined search. Journal of Chemical Information
and Computer Sciences 1995, 35(4), 659–662.

105. Gillet, V. J., Willett, P., and Bradshaw, J., Similarity searching using reduced graphs.
Journal of Chemical Information and Computer Sciences 2003, 43(2), 338–345.

106. Barker, E. J., Gardiner, E. J., Gillet, V. J., Kitts, P., and Morris, J., Further development of
reduced graphs for identifying bioactive compounds. Journal of Chemical Information
and Computer Sciences 2003, 43(2), 346–356.

107. Barker, E. J., Buttar, D., Cosgrove, D. A., Gardiner, E. J., Kitts, P., Willett, P., and Gillet,
V. J., Scaffold hopping using clique detection applied to reduced graphs. Journal of
Chemical Information and Modeling 2006, 46(2), 503–511.

108. Birchall, K., Gillet, V. J., Harper, G., and Pickett, S. D., Training similarity measures for
specific activities: Application to reduced graphs. Journal of Chemical Information and
Modeling 2006, 46(2), 577–586.

109. Dubois, J. E., Laurent, D., and Viellard, H., Système DARC. Principes de recherches des
corrélations et équation générale de topoinformation. Comptes Rendus de l’Académie
des Sciences Paris 1967, 264C, 1019–1022.

110. Dubois, J. E. and Viellard, H., Système DARC. Théorie de génération: Description I.
Bulletin de la Société Chimique de France 1968, 900–904.

111. Dubois, J. E. and Viellard, H., Système DARC. Théorie de génération: Description II.
Bulletin de la Société Chimique de France 1968, 905–912.

112. Dubois, J. E. and Viellard, H., Système DARC. Théorie de génération: Description III.
Bulletin de la Société Chimique de France 1968, 913–919.

113. Ivanciuc, O., Rabine, J.-P., Cabrol-Bass, D., Panaye, A., and Doucet, J. P., 13C NMR
chemical shift prediction of the sp3 carbon atoms in the a position relative to the double
bond in acyclic alkenes. Journal of Chemical Information and Computer Sciences 1997,
37(3), 587–598.

114. Dubois, J. E., Doucet, J. P., Panaye,A., and Fan, B. T., DARC site topological correlations:
Ordered structural descriptors and property evaluation. In: J. Devillers and A. T. Balaban

34 Handbook of Chemoinformatics Algorithms

(Eds), Topological Indices and Related Descriptors in QSAR and QSPR, pp. 613–673.
Gordon and Breach Science Publishers: Amsterdam, the Netherlands, 1999.

115. Simon, Z. and Szabadai, Z., Minimal steric difference parameter and the importance
of steric fit for structure–biological activity correlations. Studia Biophysica 1973, 39,
123–132.

116. Minailiuc, O. M. and Diudea, M. V., TI-MTD model. Applications in molecular design.
In: M. V. Diudea (Ed.), QSPR/QSAR Studies by Molecular Descriptors, pp. 363–388.
Nova Science Publishers: Huntington, NY, 2001.

117. Kurunczi, L., Seclaman, E., Oprea, T. I., Crisan, L., and Simon, Z., MTD-PLS: A PLS
variant of the minimal topologic difference method. III. Mapping interactions between
estradiol derivatives and the alpha estrogenic receptor. Journal of Chemical Information
and Modeling 2005, 45(5), 1275–1281.

118. Kurunczi, L., Olah, M., Oprea, T. I., Bologa, C., and Simon, Z., MTD-PLS: A PLS-based
variant of the MTD method. 2. Mapping ligand–receptor interactions. Enzymatic acetic
acid esters hydrolysis. Journal of Chemical Information and Computer Sciences 2002,
42(4), 841–846.

119. Palyulin, V. A., Radchenko, E. V., and Zefirov, N. S., Molecular field topology analysis
method in QSAR studies of organic compounds. Journal of Chemical Information and
Computer Sciences 2000, 40(3), 659–667.

120. Fujita, S., “Structure-reaction type” paradigm in the conventional methods of describing
organic-reactions and the concept of imaginary transition structures overcoming this
paradigm. Journal of Chemical Information and Computer Sciences 1987, 27(3), 120–
126.

121. Chen, L., Reaction classification and knowledge acquisition. In: J. Gasteiger (Ed.),
Handbook of Chemoinformatics, Vol. 1, pp. 348–388. Wiley-VCH: Weinheim, 2003.

122. Todd, M. H., Computer-aided organic synthesis. Chemical Society Reviews 2005, 34(3),
247–266.

123. Fujita, S., Description of organic reactions based on imaginary transition structures. 1.
Introduction of new concepts. Journal of Chemical Information and Computer Sciences
1986, 26(4), 205–212.

124. Fujita, S., Formulation of isomeric reaction types and systematic enumeration of six-
electron pericyclic reactions. Journal of Chemical Information and Computer Sciences
1989, 29(1), 22–30.

125. Fujita, S., Canonical numbering and coding of imaginary transition structures. A novel
approach to the linear coding of individual organic reactions. Journal of Chemical
Information and Computer Sciences 1988, 28(3), 128–137.

126. Fujita, S., Canonical numbering and coding of reaction center graphs and reduced reaction
center graphs abstracted from imaginary transition structures. A novel approach to the
linear coding of reaction types. Journal of Chemical Information and Computer Sciences
1988, 28(3), 137–142.

127. Morgan, H. L., The generation of a unique machine description for chemical structures—
a technique developed at chemical abstracts service. Journal of Chemical Documentation
1965, 5, 107–113.

128. Dugundji, J. and Ugi, I., An algebraic model of constitutional chemistry as a basis for
chemical computer programs. Topics in Current Chemistry 1973, 39, 19–64.

129. Ugi, I. and Gillespie, P., Representation of chemical systems and interconversion by BE
matrices and their transformation properties. Angewandte Chemie International Edition
in English 1973, 10, 914–915.

Representing Two-Dimensional Chemical Structures with Molecular Graphs 35

130. Ugi, I., Stein, N., Knauer, M., Gruber, B., Bley, K., and Weidinger, R., New elements
in the representation of the logical structure of chemistry by qualitative mathemati-
cal models and corresponding data structures. Topics in Current Chemistry 1993, 166,
199–233.

131. Stein, N., New perspectives in computer-assisted formal synthesis design—treatment of
delocalized electrons. Journal of Chemical Information and Computer Sciences 1995,
35(2), 305–309.

132. Konstantinova, E.V. and Skorobogatov,V.A., Molecular hypergraphs: The new represen-
tation of nonclassical molecular structures with polycentric delocalized bonds. Journal
of Chemical Information and Computer Sciences 1995, 35(3), 472–478.

133. Dietz, A., Yet another representation of molecular structure. Journal of Chemical
Information and Computer Sciences 1995, 35(5), 787–802.

134. Bauerschmidt, S. and Gasteiger, J., Overcoming the limitations of a connection table
description: A universal representation of chemical species. Journal of Chemical
Information and Computer Sciences 1997, 37(4), 705–714.

135. Gasteiger, J., Marsili, M., Hutchings, M. G., Saller, H., Löw, P., Röse, P., and Rafeiner,
K., Models for the representation of knowledge about chemical reactions. Journal of
Chemical Information and Computer Sciences 1990, 30(4), 467–476.

136. Miyake, T. andAida, M., Enumeration of topology-distinct structures of hydrogen bonded
water clusters. Chemical Physics Letters 2002, 363(1–2), 106–110.

137. Miyake, T. and Aida, M., Hydrogen bonding patterns in water clusters: Trimer, tetramer
and pentamer. Internet Electronic Journal of Molecular Design 2003, 2(1), 24–32.

138. Miyake, T. and Aida, M., H-bond patterns and structure distributions of water octamer
(H2O)8 at finite temperatures. Chemical Physics Letters 2006, 427(1–3), 215–220.

139. Shi, Q., Kais, S., and Francisco, J. S., Graph theory for fused cubic clusters of water
dodecamer. Journal of Physical Chemistry A 2005, 109(51), 12036–12045.

140. Mallion, R. B., Schwenk, A. J., and Trinajstić, N., A graphical study of heteroconjugated
molecules. Croatica Chemica Acta 1974, 46(3), 171–182.

141. Barysz, M., Jashari, G., Lall, R. S., Srivastava, V. K., and Trinajstić, N., On the distance
matrix of molecules containing heteroatoms. In: R. B. King (Ed.), Chemical Applications
of Topology and Graph Theory, pp. 222–227. Elsevier: Amsterdam, the Netherlands,
1983.

142. Ivanciuc, O., Electrotopological state indices. In: R. Mannhold (Ed.). Molecular Drug
Properties. Measurement and Prediction, pp. 85–109, Wiley-VCH: Weinheim, Germany,
2008.

143. Burden, F. R., Molecular identification number for substructure searches. Journal of
Chemical Information and Computer Sciences 1989, 29(3), 225–227.

144. Ivanciuc, O., Design of topological indices. Part 12. Parameters for vertex- and edge-
weighted molecular graphs. Revue Roumaine de Chimie 2000, 45(3), 289–301.

145. Ivanciuc, O., QSAR comparative study of Wiener descriptors for weighted molecular
graphs. Journal of Chemical Information and Computer Sciences 2000, 40(6), 1412–
1422.

146. Ivanciuc, O., Ivanciuc, T., and Balaban, A. T., Design of topological indices. Part
10. Parameters based on electronegativity and covalent radius for the computation of
molecular graph descriptors for heteroatom-containing molecules. Journal of Chemical
Information and Computer Sciences 1998, 38(3), 395–401.

147. Ivanciuc, O. and Klein, D. J., Computing Wiener-type indices for virtual combinatorial
libraries generated from heteroatom-containing building blocks. Journal of Chemical
Information and Computer Sciences 2002, 42(1), 8–22.

36 Handbook of Chemoinformatics Algorithms

148. Pearlman, R. S. and Smith, K. M., Metric validation and the receptor relevant sub-
space concept. Journal of Chemical Information and Computer Sciences 1999, 39(1),
28–35.

149. Stanton, D. T., Evaluation and use of BCUT descriptors in QSAR and QSPR studies.
Journal of Chemical Information and Computer Sciences 1999, 39(1), 11–20.

150. Pirard, B. and Pickett, S. D., Classification of kinase inhibitors using BCUT descriptors.
Journal of Chemical Information and Computer Sciences 2000, 40(6), 1431–1440.

151. Ivanciuc, O., Design of topological indices. Part 25. Burden molecular matrices and
derived structural descriptors for glycine antagonists QSAR models. Revue Roumaine
de Chimie 2001, 46(9), 1047–1066.

152. Ivanciuc, O., Design on topological indices. Part 1. Definition of a vertex topological
index in the case of 4-trees. Revue Roumaine de Chimie 1989, 34(6), 1361–1368.

153. Balaban, T. S., Filip, P. A., and Ivanciuc, O., Computer generation of acyclic graphs
based on local vertex invariants and topological indices. Derived canonical labelling and
coding of trees and alkanes. Journal of Mathematical Chemistry 1992, 11(1–3), 79–105.

154. Plavšić, D., Nikolić, S., Trinajstić, N., and Mihalić, Z., On the Harary index for the
characterization of chemical graphs. Journal of Mathematical Chemistry 1993, 12(1–4),
235–250.

155. Randić, M., Novel molecular descriptor for structure-property studies. Chemical Physics
Letters 1993, 211(4–5), 478–483.

156. Zhu, H.-Y. and Klein, D. J., Graph-geometric invariants for molecular structures. Journal
of Chemical Information and Computer Sciences 1996, 36(6), 1067–1075.

157. Ivanciuc, O., Ivanciuc, T., and Klein, D. J., Intrinsic graph distances compared to
Euclidean distances for correspondent graph embedding. MATCH Communications in
Mathematical and in Computer Chemistry 2001, 44, 251–278.

158. Ivanciuc, O., Ivanciuc, T., and Balaban, A. T., The complementary distance matrix, a new
molecular graph metric. ACH—Models in Chemistry 2000, 137(1), 57–82.

2 Algorithms to Store
and Retrieve
Two-Dimensional (2D)
Chemical Structures

Milind Misra and Jean-Loup Faulon

CONTENTS

2.1 Common Representations: Linear Notations and Connection Tables 38
2.1.1 WLN, SMILES, SMARTS, and SMIRKS . 38
2.1.2 InChi and InChiKey . 41
2.1.3 Molecular File Format . 42

2.2 From Connection Table to 2D Structure . 47
2.3 Storing and Retrieving Chemical Structures through Canonical Labeling . . . 50

2.3.1 Terminology. 50
2.3.2 Morgan’s Algorithm . 51
2.3.3 The Canonical SMILES Algorithm . 54
2.3.4 Canonical Signature Algorithm . 56

2.4 Concluding Remarks . 61
Acknowledgments . 61
References . 62

Since molecules are three-dimensional (3D) and lack any intrinsic ordering in their
chemical formulas, it becomes necessary to supply a set of linear rules to any
computer system designed for storing and retrieving chemical structures. Ideally,
such a notation would not only retain important knowledge about a molecule’s
3D structure but also contain a mechanism to distinguish between molecules. As
we saw in the previous chapter, graphs are dimensionless or zero-dimensional
(0D) objects but can also be considered as one-dimensional (1D), two-dimensional
(2D), 3D, or higher-dimensional objects in various methods of structural represen-
tation. Thus, 0D or constitutional descriptors such as molecular weight and atom
counts are defined using local molecular information. 1D notations for structures
and reactions include linear representations such as SMILES (Simplified Molecu-
lar Input Line Entry Specification) [1,2], WLN (Wiswesser Line Notation) [3,4],
SLN (SYBYL Line Notation) [5,6], and InChI (the IUPAC International Chemical
Identifier, http://www.iupac.org/inchi). Molecular graphs can be represented in two
dimensions as chemical diagrams such that a vertex corresponds to (x, y) coordinates

37

38 Handbook of Chemoinformatics Algorithms

and type of an atom and an edge corresponds to bond type. They can also be extended
to three dimensions such that a vertex contains information about (x, y, z) atomic
coordinates instead. 3D structures can then be generated by further incorporating
knowledge of bond lengths, bond angles, and dihedral angles. In this chapter we illus-
trate some methods and algorithms for the storage, retrieval, and manipulation of 2D
representations of chemical structures, while 3D representation is treated in Chapter 3.

2.1 COMMON REPRESENTATIONS: LINEAR NOTATIONS
AND CONNECTION TABLES

The information contained in molecular graphs can be transmitted to and from a
computer in several ways for the purpose of manipulating chemical compounds and
reactions. It is essential for a particular chemoinformatics application to recognize
molecules of interest by recognizing relevant geometric and topological information
passed to it. This can be accomplished by representing a molecule using line notation
(1D) or as a connection table (2D and 3D). Linear notation is a compact and efficient
system that employs alphanumeric characters and conventions for common molecular
features such as bond types, ring systems, aromaticity, and chirality. The connection
table is a set of lines specifying individual atoms and bonds and can be created as a
computer- and human-readable text file.

The significance of standard formats to represent molecules in chemoinformatics
systems lies in their numerous and diverse applications such as storage, retrieval, and
search in chemical databases; generation of IUPAC names [7]; ring determination
[8,9]; generation of compounds [10] and combinatorial libraries [11]; computer-
aided design of novel chemicals [12] and organic reactions [13]; and calculation of
molecular descriptors [14] for quantitative structure–activity/property relationships
(QSAR/QSPR) and virtual screening. In this section we present some important line
notations and molecular file formats.

2.1.1 WLN, SMILES, SMARTS, AND SMIRKS

The primary goal of linear notations is to enable easy interpretation by computer
programs. They offer several advantages over connection tables such as improved
parsability, efficient storage in relational databases, and compression of storage space
required per molecule. Chemical line notations can be parsed using string processing
algorithms resulting in efficient chemoinformatics applications. These characteristics
of linear notations have been exploited for generating large combinatorial libraries
using a fast SMILES approach [11]; for designing novel compounds using hydrogen-
included SMILES to define operators for an evolutionary algorithm [12]; for virtual
screening of chemical libraries using a molecular similarity function based on com-
pressed SMILES strings [15]; for discriminating active and inactive compounds by
searching for specific patterns in a SMILES strings database [16]; and for defining
patterns useful in QSAR and QSPR models [17].

Linear notation has been explored since almost the beginning of structural chem-
istry in the 1860s. In his interesting review of line-formula notations [18], William
Wiswesser illustrates the efforts of many well-known nineteenth-century chemists
like Loschmidt, Erlenmeyer, Kekulé, and Wichelhaus in popularizing the now familiar

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 39

chemical formulas like CH3COOH for acetic acid and C2H5COCH3 for ethyl methyl
ether. Modern development of chemical notations coincided with the advent of com-
puters in the 1940s as many realized the need to carry out automated chemical structure
information processing.Wiswesser traces the evolution of linear notations from Dyson
in 1947, through Taylor, G-K-D ciphers, Gruber, Silk, Cockburn, Benson, Smith, Bon-
nett, Gelberg, Hayward, and Lederberg in 1964, among many others. His own system,
the WLN [3,4], which he developed starting in the 1940s, remained popular until the
introduction of SMILES strings in the 1980s.

The WLN was designed to be used with the information processing systems of the
time and with punched cards. To satisfy the requirement of 80 characters per card, the
notation was restricted to using uppercase letters, the digits 0–9, and a few characters
like “&.” In addition, it was designed to be as readily recognizable to chemists as to
digital processors. Letters were reserved to indicate functional groups and molecular
features like phenyl rings while alphanumeric combinations presented fragment-based
descriptions of molecules. Table 2.1 lists some examples of compounds encoded using
the WLN. Thus, for acetone, the WLN representation is 1V1, where V is the character
used for the central carbonyl group and the digit 1 indicates the presence of saturated
single-carbon atom chains on either side. Similarly, for 3-chloro-4-hydroxybenzoic
acid, the WLN string is QVR DQ CG. Here Q represents the hydroxyl group, V the
carbonyl group, and R the benzene ring. The space character signifies that the fol-
lowing character denotes a specific position on the ring; DQ represents the 4-position
hydroxyl group and CG represents the 3-position chloride (the character G denotes
the chlorine atom). Note that the WLN does not include an explicit bond specification.

The WLN was the first line notation to succinctly and accurately represent complex
molecules. It permitted a degree of standardization leading to the compilation of
chemical compounds into databases such as CAOCI (CommerciallyAvailable Organic
Chemicals Index) [19].

TABLE 2.1
WLN Representations of Chemical Diagrams

Chemical Diagram Chemical Formula WLN Representation

C2H6 2H

C3H8 3H

O
CH3COCH3 1V1

O
C2H5OCH3 2O1

Cl

OH

HO

O
C7H5ClO3 QVR DQ CG

40 Handbook of Chemoinformatics Algorithms

As computers became more powerful and capable of handling much larger charac-
ter sets, newer line notations that can encode chemical concepts, describe reactions,
and be stored in relational databases have become prevalent. More than simply short-
hand for molecular formulas, these linear systems are linguistic structures that can
achieve multiple complex chemoinformatics objectives. SMILES, SMARTS (SMiles
ARbitrary Target Specification), and SMIRKS are related chemical languages that
have been used in applications such as virtual screening, molecular graph mining, evo-
lutionary design of novel compounds, substructure searching, and reaction transforms.

SMILES is a language with simple vocabulary that includes atom and bond sym-
bols and a few rules of grammar. SMILES strings can be used as words in other
languages used for storage and retrieval of chemical information such as HTML,
XML, or SQL.A SMILES string for a molecule represents atoms using their elemental
symbols, with aliphatic atoms written in uppercase letters and aromatic atoms in
lowercase letters. Except in special cases, hydrogen atoms are not included. Square
brackets are used to depict elements, such as [Na] for elemental sodium. However,
square brackets may be omitted for elements from the organic subset (B, C, N, O, P,
S, F, Cl, Br, and I), provided the number of hydrogen atoms can be surmised from
the normal valence. Thus, water is represented as O, ammonia as N, and methane
as C. Bonds are represented with – (single), = (double), # (triple), and : (aromatic),
although single and aromatic bonds are usually left out. Simple examples are CC
for ethane, C=C for ethene, C=O for formaldehyde, O=C=C for carbon dioxide,
COC for dimethyl ether, C#N for hydrogen cyanide, CCCO for propanol, and [H][H]
for molecular hydrogen. Some atomic properties may also be specified using square
brackets, for example, charge ([OH−] for hydroxyl ion) and atomic mass for isotopic
specification ([13CH4] for C-13 methane).

A SMILES string is constructed by visiting every atom in a molecule once.
A branch is included within parentheses and branches can be nested indefinitely.
For example, isobutane is CC(C)C and isobutyric acid is CC(C)C(=O)O. Ring
structures are treated by breaking one bond per cycle and labeling the two atoms
in the broken bond with a unique integer (cf. Figure 2.1). Thus, C1CCCCC1 is
cyclohexane, c1ccccc1 is benzene, n1ccccc1 is pyridine, C1=CCC1 is cyclobutene,
and C12C3C4C1C5C4C3C25 is cubane in which two atoms have more than one ring

(a)

(b)

(c) (d) (e)

C1 C1

C C C C C

CC

C

C

C12 C12 C1 C12

C3 C4

C4C3

C25 C5

C1

C3C23C2

C1

FIGURE 2.1 SMILES strings are constructed by traversing each atom in a molecule once.
Rings are depicted by first breaking a bond and then including an integer after the two atoms
present in the broken bond. The numbering may change with each addition of a ring. The con-
struction of a SMILES string for cubane is shown. (a) Structure of cubane with the position of
the starting atom marked with a dot; (b) C1CCC1; (c) C12CCC1CC2; (d) C12CCC1C3CCC23;
and (e) C12C3C4C1C5C4C3C25.

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 41

closure. Disconnected compounds may be written as individual structures separated
by a “.”, such as [NH+4] · [Cl−] for ammonium chloride. Several other rules exist for
representing other molecular features such as cis–trans isomerism and chirality. Thus
E-difluoroethene is F/C=C/F while Z-difluoroethene is F/C=C\F, and L-alanine is
N[C@@H](C)C(=O)O while D-alanine is N[C@H](C)C(=O)O.

SMARTS is a language for describing molecular patterns and is used for substruc-
ture searching in chemical databases. Substructure specification is achieved using
rules that are extensions of SMILES. In particular, the atom and bond labels are
extended to also include logical operators and other special symbols, which allow
SMARTS atoms and bonds to be more inclusive. For example, [c,N] represents a
SMARTS atom that can be either an aromatic carbon or an aliphatic nitrogen, and
“∼” denotes a SMARTS bond that will match any bond in a query. Other examples
of SMARTS patterns are c:c for aromatic carbons joined by an aromatic bond; c–c
for aromatic carbons joined by a single bond (as in biphenyl); [O;H1] for hydroxyl
oxygen; [F,Cl,Br,I] for any of these halogens; [N;R] for an aliphatic nitrogen in a ring;
and *@;!:* for two ring atoms that are not connected by an aromatic bond. In the
last example, “*” denotes any atom, “@” denotes a ring bond, “;” denotes the logi-
cal “and” operator with low precedence, and “!” denotes the logical “not” operator.
An example of a more complex SMARTS query pattern is that for finding rotatable
bonds: [!$(*#*)&!D1]-&!@[!$(*#*)&!D1].

SMIRKS is a hybrid of SMILES and SMARTS and uses the syntax
[<SMILES_PART> ; <SMARTS_PART> : <MAP>] to describe chemical reaction
transformations of the form “reactants >> products.” A few rules ensure interpreta-
tion of SMIRKS as a reaction graph, making it a useful linear notation for mapping a
general transformation from a set of reactants to a set of products. For example, the
SMIRKS representation of amide formation is [C:1](=[O:2])Cl
[C:1](=[O:2])N. A
SMIRKS transformation may be used to represent reaction mechanisms, resonance,
and general molecular graph modifications.

2.1.2 INCHI AND INCHIKEY

Like SMILES, the IUPAC International Chemical Identifier (InChI) is a 1D
linear notation. It has been developed at IUPAC and NIST starting in 2000
(http://www.iupac.org/inchi). Most chemoinformatics databases provide InChI num-
bers of their chemical substances along with SMILES strings. Compounds can
be searched by their InChIs or IUPAC International Chemical Identifier Keys
(InChIKeys) (hashed InChIs) via Google, for instance a Google search with the
InChIKey BQJCRHHNABKAKU-XKUOQXLYBY returns links to several web
pages giving the structure of morphine. Standard versions of InChI and InChIkey were
recently developed (http://www.iupac.org/inchi cf. January 2009 release) with the aim
of interoperability/compatibility between large databases/web searching and informa-
tion exchange. We report here the general structures of these standard identifiers.

The standard InChI [which is illustrated in Figure 2.2 for (S)-glutamic acid] repre-
sents the structure of a covalently bonded compound in four distinct “layers” starting
with the string “InChI=1S.” The first layer is composed of the molecular formula
and the connections between atoms. The connectivity is spliced into three lists, a list

42 Handbook of Chemoinformatics Algorithms

6

1 2
C

C 4

9 8

5

3

Stereo sp3:
(0 = inverted)

10 7
HH

OO

O O

H2

H2

NH3
+

Charge

InChI=1S/C5H9NO4/c6-3(5(9)10)1-2-4(7)8/h3H,1-2,6H2,(H,7,8)(H,9,10)/p+1/t3-m0/s1/i4+1

Molecular formula

Mobile-hydrogen connectivity

Stereo: sp3

Connectivity of non-hydrogen

Fixed-hydrogen connectivity

Stereo type:
(1= absolute)

Isotopically
labeled atoms

FIGURE 2.2 Standard InChI for (S)-glutamic acid. The numbers attached to the atoms in
the figure are those used when printing the atom connectivity with InChI. The numbers are
obtained after running a canonical labeling algorithm (see Section 2.3 for further details).

of connections between non-hydrogen atoms, a list of connections to fixed hydrogen
atoms, and a list of connections to mobile hydrogen atoms. The second layer repre-
sents the net charge of the substance. The third layer is related to stereochemistry,
and is composed of two sublayers. The first accounts for a double bond, sp2, and
the second for sp3 tetrahedral stereochemistry and allenes. Other stereo descriptions
are given next for relative stereochemistry, followed by a designation of whether the
absolute stereochemistry is required. In the fourth and last layer, different isotopically
labeled atoms are distinguished from each other.

The standard InChIKey is a fixed-length (27 characters) condensed digital repre-
sentation of the InChI. The InChIKey consists of 14 characters resulting from a hash
of the connectivity information of the standard InChI, followed by a hyphen, followed
by eight characters resulting from a hash of the remaining layers of the InChI, fol-
lowed by a flag character, a character indicating the version of InChI used, a hyphen,
and a last character related to protonation. The InChIKey is particularly useful for
web searches for chemical compounds. The standard InChIKey of (S)-glutamic acid
is WHUUTDBJXJRKMK-MYXYCAHRSA-O.

2.1.3 MOLECULAR FILE FORMAT

A connection table is a widely used representation of the molecular graph. A simple
connection table contains a list of atoms and includes the connectivity information for
bonding atoms and may also list bond orders. For instance, the drug acetaminophen
(Scheme 2.1), can be represented as follows in a hydrogen-suppressed connection
table:

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 43

N
H

4
7

8

9
OH
106

5

3
1

11

O
2

SCHEME 2.1

11 11

−1.7317 −0.5000 0.0000 C
−1.7317 0.4983 0.0000 O
−0.8650 −1.0000 0.0000 N

0.0017 −0.5000 0.0000 C
0.0017 0.4983 0.0000 C
0.8650 0.9983 0.0000 C
0.8650 −1.0000 0.0000 C
1.7317 −0.5000 0.0000 C
1.7317 0.4983 0.0000 C
2.5967 0.9983 0.0000 O
2.5967 −1.0000 0.0000 C
1 2 2
1 3 1
3 4 1
4 5 1
5 6 2
4 7 2
7 8 1
8 9 2
6 9 1
9 10 1
1 11 1

The first line indicates the number of atoms, n, and the number of bonds, m. The
next n lines comprise the atoms block and list atomic coordinates and atom types in
the molecule. These are followed by the bonds block containing m lines. The first two
numbers on a bond specification line indicate atom numbers and the third denotes
bond order. While this example is for a 2D chemical diagram, connection tables can
easily be extended to represent 3D structures, in which case the z-coordinates are
likely to have nonzero values.

Molecular file formats that are based on connection tables can represent a chem-
ical structure in a straightforward way and can make use of various algorithms
that are available for reading and writing these formats. Examples of such file
formats include the MOL and SDF (structure-data format) formats (from Symyx,
http://www.symyx.com) and the MOL2 format (fromTripos, http://www.optive.com).
Most molecular modeling packages and databases employ file formats tailored to their
specific needs. In such cases, the connection table is usually enhanced by appending
additional information such as charge, isotopes, and stereochemistry.

44 Handbook of Chemoinformatics Algorithms

Several hydrogen-suppressed molecular file formats are shown here for
acetaminophen, with the atom numbering as shown in Scheme 2.1. The molecular
files were converted using the OpenBabel program (http://openbabel.org) from
a simple connection table created in ChemDraw (CambridgeSoft, http://www.
cambridgesoft.com/).

The molecular design limited (MDL; now Symyx) chemical table file or CTfile
is an example of a detailed connection table in which a set of atoms may represent
molecules, substructures, groups, polymers, or unconnected atoms [20]. The CTfile
is the basis for both the MOL format and the SDF file that enriches the MOL format
with specific data fields for other information. In an SDF file, the molecules are
separated by the “$$$$” delimiter. The MOL connection table for acetaminophen is
as follows:

11 11 0 0 0 0 0 0 0 0999 V2000
−1.7317 −0.5000 0.0000 C 0 0 0 0 0
−1.7317 0.4983 0.0000 O 0 0 0 0 0
−0.8650 −1.0000 0.0000 N 0 0 0 0 0

0.0017 −0.5000 0.0000 C 0 0 0 0 0
0.0017 0.4983 0.0000 C 0 0 0 0 0
0.8650 0.9983 0.0000 C 0 0 0 0 0
0.8650 −1.0000 0.0000 C 0 0 0 0 0
1.7317 −0.5000 0.0000 C 0 0 0 0 0
1.7317 0.4983 0.0000 C 0 0 0 0 0
2.5967 0.9983 0.0000 O 0 0 0 0 0
−2.5967 −1.0000 0.0000 C 0 0 0 0 0

1 2 2 0 0 0
1 3 1 0 0 0
1 11 1 0 0 0
3 4 1 0 0 0
4 5 1 0 0 0
4 7 2 0 0 0
5 6 2 0 0 0
6 9 1 0 0 0
7 8 1 0 0 0
8 9 2 0 0 0
9 10 1 0 0 0

M END

The MOL2 file format from Tripos is used extensively by the SYBYL molecular
modeling software. It is divided into several sections using Record Type Indicators
(RTIs), each of which has its own data record whose format depends on the section
in which it lies. The MOL2 file for acetaminophen is shown here. The data record for
the RTI “@<TRIPOS>MOLECULE” contains six lines: the first line has the name
of the molecule; the second line contains the number of atoms, bonds, substructures,
features, and sets that may be associated with this molecule; the third line is the
molecule type; the fourth and fifth lines indicate the type of charge and the energy
associated with the molecule; and the last line contains any optional remark about
the molecule. The RTI “@<TRIPOS>ATOM” contains data records for each atom
in the molecule. As shown, the atom block in a MOL2 file can contain information

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 45

about atom type, including hybridization state (column 6), substructure ID and name
(columns 7 and 8, respectively), and atomic charge (column 9). The data record
for the RTI “@<TRIPOS>BOND” comprises the bond block for the MOL2 file.
Each line contains the bond ID (column 1), the origin atom in the bond (column 2),
the target atom in the bond (column 3), and the bond type (column 4; 1= single,
2= double, am= amide, ar= aromatic, etc.). A MOL2 file may have many other
RTIs depending on the application that the molecule is used for. For example, the RTI
“@<TRIPOS>FF_PBC” can be used to specify periodic boundary conditions and
“@<TRIPOS>CENTROID” can be used to specify a dummy atom as the centroid
of a molecule or substructure.

@<TRIPOS>MOLECULE
acetaminophen
11 11 0 0 0
SMALL
GASTEIGER
Energy=0

@<TRIPOS>ATOM
1 C −1.7317 −0.5000 0.0000 C.2 1 LIG1 0.2461
2 O −1.7317 0.4983 0.0000 O.2 1 LIG1 −0.2730
3 N −0.8650 −1.0000 0.0000 N.am 1 LIG1 −0.1792
4 C 0.0017 −0.5000 0.0000 C.ar 1 LIG1 0.0736
5 C 0.0017 0.4983 0.0000 C.ar 1 LIG1 0.0199
6 C 0.8650 0.9983 0.0000 C.ar 1 LIG1 0.0434
7 C 0.8650 −1.0000 0.0000 C.ar 1 LIG1 0.0199
8 C 1.7317 −0.5000 0.0000 C.ar 1 LIG1 0.0434
9 C 1.7317 0.4983 0.0000 C.ar 1 LIG1 0.1958
10 O 2.5967 0.9983 0.0000 O.3 1 LIG1 −0.2866
11 C −2.5967 −1.0000 0.0000 C.3 1 LIG1 0.0968

@<TRIPOS>BOND
1 1 2 2
2 1 3 am
3 3 4 1
4 4 5 ar
5 5 6 ar
6 4 7 ar
7 7 8 ar
8 8 9 ar
9 6 9 ar
10 9 10 1
11 1 11 1

The XML-based molecular file format CML (Chemical Markup Language,
http://cml.sourceforge.net) has been proposed by Murray-Rust and Rzepa [21,22].
CML can be used in many applications requiring representation of molecules,
reactions, experimental structures, computational structures, or spectra [23]. CML
permits inclusion of chemical information in XML documents that can subsequently
be used for chemical data retrieval. The CML connection table of acetaminophen

46 Handbook of Chemoinformatics Algorithms

(Scheme 2.1) is provided below.

<?xml version="1.0"?>
<molecule xmlns="http://www.xml-cml.org/schema"

id="acetaminophen">
<atomArray>
<atom id="a1" elementType="C" x2="-1.731700" y2="-0.500000"/>
<atom id="a2" elementType="O" x2="-1.731700" y2="0.498300"/>
<atom id="a3" elementType="N" x2="-0.865000" y2="-1.000000"/>
<atom id="a4" elementType="C" x2="0.001700" y2="-0.500000"/>
<atom id="a5" elementType="C" x2="0.001700" y2="0.498300"/>
<atom id="a6" elementType="C" x2="0.865000" y2="0.998300"/>
<atom id="a7" elementType="C" x2="0.865000" y2="-1.000000"/>
<atom id="a8" elementType="C" x2="1.731700" y2="-0.500000"/>
<atom id="a9" elementType="C" x2="1.731700" y2="0.498300"/>
<atom id="a10" elementType="O" x2="2.596700" y2="0.998300"/>
<atom id="a11" elementType="C" x2="-2.596700" y2="-1.000000"/>
</atomArray>
<bondArray>
<bond atomRefs2="a1 a2" order="2"/>
<bond atomRefs2="a1 a3" order="1"/>
<bond atomRefs2="a3 a4" order="1"/>
<bond atomRefs2="a4 a5" order="1"/>
<bond atomRefs2="a5 a6" order="2"/>
<bond atomRefs2="a4 a7" order="2"/>
<bond atomRefs2="a7 a8" order="1"/>
<bond atomRefs2="a8 a9" order="2"/>
<bond atomRefs2="a6 a9" order="1"/>
<bond atomRefs2="a9 a10" order="1"/>
<bond atomRefs2="a1 a11" order="1"/>
</bondArray>
</molecule>

In molecular file formats such as the HIN format (HyperCube, http://www.hyper
.com), the bond information may be included within the atoms block itself. In the HIN
format file, an atom record includes the atomic charge (column 7), the coordination
number c (the number of covalently bonded atoms; column 11), and c pairs denoting
the label of the adjacent atom and the corresponding bond type encoded with s, d,
t, or a, for single, double, triple, or aromatic bonds, respectively. The HIN file of
acetaminophen is shown as an example.

mol 1 acetaminophen
atom 1 - C ** -0.24606 -1.73170 -0.50000 0.00000 3 2 d 3 s 11 s
atom 2 - O ** - -0.27297 -1.73170 0.49830 0.00000 1 1 d
atom 3 - N ** - -0.17920 -0.86500 -1.00000 0.00000 2 1 s 4 s
atom 4 - C ** -0.07357 0.00170 -0.50000 0.00000 3 3 s 5 a 7 a
atom 5 - C ** - 0.01988 0.00170 0.49830 0.00000 2 4 a 6 a
atom 6 - C ** - 0.04336 0.86500 0.99830 0.00000 2 5 a 9 a
atom 7 - C ** - 0.01988 0.86500 -1.00000 0.00000 2 4 a 8 a
atom 8 - C ** - 0.04336 1.73170 -0.50000 0.00000 2 7 a 9 a
atom 9 - C ** - 0.19583 1.73170 0.49830 0.00000 3 8 a 6 a 10 s

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 47

atom 10 - O ** - -0.28657 2.59670 0.99830 0.00000 1 9 s
atom 11 - C ** - 0.09680 -2.59670 -1.00000 0.00000 1 1 s
endmol 1

The linear notation of acetaminophen is much more compact. Its SMILES string
is C(=O)[Nc1ccc(cc1)O]C and its InChI string is InChI=1S/C8H9NO2/c1-6(10)9-
7-2-4-8(11)5-3-7/h2-5,11H,1H3,(H,9,10).

2.2 FROM CONNECTION TABLE TO 2D STRUCTURE

Since chemoinformatics systems and databases store chemical structures as linear
notations, connection tables, or other digital formats, a scientist who wishes to view
the structures as a familiar chemical diagram must be provided with a means to
translate the digital data into a viewable image. In the case of connection tables, the
atomic coordinates, atom types, and bonding information are sufficient to convert
into a chemical diagram using appropriate software. Translation of linear notations
requires the conversion software to extract critical information—such as bond lengths,
angles, and topology—that is implicit in the notation.

Dittmar et al. designed one of the first systems for drawing a chemical diagram [24]
for the Chemical Abstracts Service (CAS) registry system. For this they leveraged
the vast experience at CAS of abstracting and extracting chemical information from
chemical literature. The method is provided as Algorithm 2.1 and is dependent on a
knowledge base of ring systems. The molecular graph is first decomposed into acyclic
fragments and ring systems. The ring systems are ranked and processed, during which
the acyclic components are systematically reattached to the rings so that an order 1
substituent is directly attached to the ring while an order n substituent is linked to an
order n−1 substituent.

ALGORITHM 2.1 CAS 2D CHEMICAL DIAGRAM DRAWING∗
01. Analyze Structure
02. Rank Rings
03. Do Until All Rings Processed
04. Select Unprocessed Ring
05. Orient Ring
06. Draw Ring
07. Rank Order 1 Substituents
08. Do Until All Order 1 Substituents Processed
09. Select Unprocessed Order 1 Substituent
10. Orient Link/Chain
11. Draw Link/Chain
12. Rank Order 2 Substituents
13. Do Until All Order n Substituents (n>1) Processed
14. Select Unprocessed Order n Substituent
15. Orient Link/Chain

∗ Reprinted from Dittmar, P. G., Mockus, J., and Couvreur, K. M., Journal of Chemical Information and
Computer Sciences 1977, 17(3), 186–192. With permission. Copyright 1977 from American Chemical
Society.

48 Handbook of Chemoinformatics Algorithms

16. Draw Link/Chain
17. Rank Order n + 1 Substituents
18. End Do
19. Do Until All Order n Substituents Positioned
20. Select Unpositioned Order n Substituent
21. Position Order n Substituent
22. End Do
23. Position Order 1 Substituent
24. End Do
25. Position Ring
26. End Do
27. End

Other 2D chemical structure drawing algorithms that are independent of a ring
system database have been developed. Some use ring perception algorithms [25] such
as the drawing algorithm of Shelley [26], which also employs the Morgan extended
connectivity index (cf. Section 2.3 and [27]). Morgan indices are calculated for atoms
and ring systems and are used for minimizing atom crowding during assignment of
2D coordinates, for ring system orientation, and for identifying invariant coordinates
for ring systems.

The depiction of 2D structures has been reviewed by Helson [28]. Other algo-
rithms have been developed such as those by Weininger for SMILES strings [29],
by Fricker et al. [30], by Stierand et al. [31], and by Clark et al. [32] for the Molec-
ular Operating Environment (MOE) software suite (Chemical Computing Group,
http://www.chemcomp.com). Fricker et al. also rely on the sequential assembly of
chains and rings and proposed an algorithm for drawing structure under directional
constraints on bonds [30]. Stierand et al. proposed a method for generating diagrams
for protein–ligand complexes that highlights the interaction between amino acids and
ligand atoms on a 2D map [31].

The algorithm of Clark et al. [32] partitions a molecular graph into segments,
generates local structural options for each segment, assembles local options by random
sampling, and selects the minimally congested assembly as the basis for the final
output. The algorithm identifies ring systems, atom chains, lone atoms, atom pairs,
and stereochemistry for a hydrogen-suppressed molecular graph. The structural units
generated are assigned geometric constraints in internal coordinates such that a set
of distances and angles between atoms in the structural units is obtained. Rings are
identified using an algorithm that finds the smallest set of smallest rings [8,9]. Atom
chains are generated using a small set (C, N, O, and S) of neutral, acyclic atoms
connected by single bonds. Lone atoms are constrained with standard values for
bond lengths and angles. Atom pairs are constrained to preserve local geometry and
stereochemistry.A core ring system is identified by removing rings that share only one
edge with any other ring and coordinates are assigned to the core ring system based on
a database of ring templates. The candidate structures obtained during the assembly
of structural units in the sampling step are screened using a congestion function, with
the solution structure having the lowest congestion. In the postprocessing step the
solution structure is adjusted for aesthetic depiction. Thus, atoms in close contact
are permitted to deviate slightly; atoms or bonds may be rotated to relieve overlap;

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 49

connected fragments may also be brought to a horizontal position by rotation; and
hydrogen atoms are expressed for cases where explicit hydrogen atom depiction is
mandated. The MOE 2D chemical drawing algorithm was extensively evaluated and
demonstrated high performance using both statistical metrics and human evaluation.
Other software systems available include those from OpenEye (Ogham) andAdvanced
Chemistry Development (ChemSketch).

An important aspect of the use of chemical databases by chemoinformatics systems
is their inspection, refinement, and standardization prior to use. This ensures, for
example, that a chemical compound with multiple representations (such as Kekulé
structures or tautomers) is correctly identified and processed by an application. Special
tools such as sdwash (Chemical Computing Group, http://www.chemcomp.com) and
Standardizer (ChemAxon, http://www.chemaxon.com) are available to assist with
such problems. These tools may work by removing salt and solvent molecules, adding
or removing hydrogens, identifying aromaticity, or enumerating protonation states and
tautomers. Conjugated systems can be recognized using aromaticity perception [33]
or identification of alternating bonds [34].

Perception of tautomers has also received considerable attention in chemoinfor-
matics. Tautomers are isomers of organic compounds that result from migration of
a hydrogen atom or a proton accompanied by a switch between adjacent single and
double bonds. Tautomerism is an important property because different tautomers of
a compound may give different results in virtual screening and for properties based
on atom-type parameters. Several approaches have been suggested for the treatment
of tautomers in chemical databases and applications [35–38].

Another area of chemoinformatics that has seen active development for a number
of years is searching for Markush structures in patent databases [39]. A Markush
structure is a generalized notation of a set of related chemical compounds and may
be used in patent applications to define a substance that has not yet been synthesized.
Searching for Markush structures in chemical databases enables a researcher to rule
out priority in patent applications. Chemical drawing programs can represent these
structures by, for example, drawing a bond to the center of a phenyl ring indicating
substitution at any position in the ring (Figure 2.3).

R

O

OCH3

NH

FIGURE 2.3 Markush structure for methylphenidate ester with a generalized R group
substitution at any position in the phenyl ring.

50 Handbook of Chemoinformatics Algorithms

2.3 STORING AND RETRIEVING CHEMICAL STRUCTURES
THROUGH CANONICAL LABELING

When storing a chemical structure in a database, one is faced with the problem of deter-
mining whether the structure is already present in the database. Therefore, one needs
to determine whether structures are identical. In graph theory two identical graphs
are said to be isomorphic, and an isomorphism is a one-to-one mapping between the
atoms of the graph preserving the connectivity of the graphs. When two atoms of
the same graph are mapped by an isomorphism, the two atoms are said to be auto-
morph and one uses the term automorphism instead of isomorphism. Atoms that are
automorph are symmetrical (or equivalent), and in a given molecular graph, atoms
can be partitioned into their automorphism group or equivalent classes. One prac-
tical procedure to detect isomorphism or automorphism between molecular graphs
is to canonically (i.e., uniquely) label the atoms of the graphs. Two graphs are then
isomorphic if they have the same labels.

Automorphism partitioning and canonical labeling are of significant interest in
chemistry. Both problems have practical applications in (1) molecular topological
symmetry perception for chemical information and quantum mechanics calculations,
(2) computer-assisted structure elucidation, (3) NMR spectra simulation, and (4)
database storage and retrieval, including determination of maximum common sub-
structure. Since 1965 [27] many canonical labeling methods have been proposed in the
context of chemical computation, and this section presents three of them after provid-
ing more precise definition and relationships between isomorphism, automorphism,
and canonical labeling.

2.3.1 TERMINOLOGY

Two given graphs are isomorphic when there is a one-to-one mapping (a permutation)
from the vertices of one graph to the vertices of the second graph, such that the edge
connections are respected. An isomorphic mapping of the vertices onto themselves is
called an automorphism. The set of all automorphisms of a given graph is the automor-
phism group of the graph. The automorphism group contains information regarding
the topological symmetry of the graph. In particular, the orbits of an automorphism
group identify symmetrical (or equivalent) vertices. The canonical labeling problem
consists of finding a unique labeling of the vertices of a given graph, such that all
isomorphic graphs have the same canonical labels. Examples of canonical represen-
tations are graphs that maximize (or minimize) their adjacency matrices. Two graphs
with the same canonical representation are isomorphic. This observation is used when
querying chemoinformatics databases as the structures stored in chemoinformatics
databases are canonized prior storage. The obvious advantage is that isomorphism
is reduced to comparing the canonical labels of the input structure with those of the
database.

Although most articles related to graph isomorphism have been published in the
computer science literature, the computation of the orbits of automorphism groups
using partitioning techniques has received most attention in chemistry and the two
problems have been shown to be computationally equivalent [40]. The canonical

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 51

labeling problem has been studied in both chemistry and computer science. It would
appear that the canonical labeling problem is closely related to the isomorphism
testing problem; the latter can be performed at least as fast as the former, and for many
published algorithms, isomorphism tests either include a procedure for canonization
or else have an analogue for that problem [41].

Since canonical labeling can be used to detect isomorphism, the remainder of this
section focuses on canonization procedures. As already mentioned, several canoni-
cal labeling methods have been proposed in the context of chemical computation,
and three of them are presented next. The general characteristic of these meth-
ods is the use of graph invariants to perform an initial vertex partitioning. Graph
invariants can be computed efficiently and have led to the development of fast
algorithms. For most published algorithms, the initial vertex partitioning is fol-
lowed by an exhaustive generation of all labelings. The computational complexity
of the exhaustive generation can be reduced using the fact that two vertices with
different invariants belong to different equivalent classes; hence, exhaustive label-
ing generation is performed only for vertices with the same invariant. Nonetheless,
because all vertices may have the same invariant, the upper bound of the time com-
plexity for the exhaustive labeling generation scales exponentially with the number
of vertices.

Whereas vertices with different invariants belong to different equivalent classes,
the reverse is not necessarily true. As a matter of fact, isospectral points are vertices
with the same invariant that belong to different classes [42]. Although the invariant
approach may not be totally successful in the sense that the proposed methods work
in all cases, it has been shown to behave well on average [43,44]. Indeed, for a given
random graph there is a high probability that its vertices can be correctly partitioned
using graph invariants [45].

To simplify the presentation, the three canonization algorithms given next are
illustrated for hydrocarbons and do not take stereochemistry into account. For each
algorithm, the reader is referred to relevant literature on how the algorithms can be
modified to incorporate heteroelements and stereochemistry.

2.3.2 MORGAN’S ALGORITHM

This historically important algorithm was first published in 1965 by H.L. Morgan [27]
and was part of the development of a computer-based chemical information system
at the CAS. The original algorithm did not take into account stereochemistry, and an
extension was proposed in 1974 by Wipke et al. [46]. We present below a scheme
based on Morgan’s algorithm; while our scheme may not be the exact published
algorithm, it captures the essential ideas.

As with many canonization methods, Morgan’s algorithm proceeds in two steps.
In the first step, graph invariants (cf. the definition in Chapter 1) are calculated for
each atom. In the second step, all possible atom labels are computed and printed
according to the invariants. Invariants are calculated in a recursive manner. At each
recursive iteration, the invariant of any given atom is the sum of the invariants of
its neighbors computed in the previous step. The process starts by assigning to all
atoms an initial invariant equal to 1 or equal to the number of neighbors of that atom

52 Handbook of Chemoinformatics Algorithms

(as in the original algorithm published by Morgan). One notes that when assigning
an initial invariant equal to 1, the invariant obtained at the next iteration equals the
number of neighbors. The recursive procedure stops when the largest number of
distinct invariants is obtained, that is, at an iteration for which the number of invariants
remains the same or decreases after that iteration. Labeling of the atoms is performed
using the invariants found at the stopping iteration. One starts by choosing the atom
with the largest invariant; this atom is labeled 1. One notes that all the other atoms
are unlabeled at this point. At the second step, the neighbors of the atom labeled 1
are sorted in decreasing order of invariants; the neighbors are then labeled 2, 3, and
so on, in the order that they appear in the sorted list. There may be several ways of
sorting the neighbors; as some atoms may have the same invariants, the algorithm
computes all the possible sorted lists. At the next step, one searches for atoms with
the smallest label having unlabeled neighbors and the procedure described in the
second step is repeated, this time for the smallest labeled atom. The procedure halts
when all atoms have been labeled. The canonical graph is the one producing the
lexicographically smallest list of bonds when printing the graph. In the algorithm
given below, the notation ‖ is used to depict the number of distinct elements of
a list, and the routine print-graph() prints the edges of a graph for a given list of
atom labels.

ALGORITHM 2.2 MORGAN’S ALGORITHM

canonical-Morgan(G)
input: - G: a molecular graph
output: - printout of graph G with computed labels
01. Let inv be the set of invariant initialized to

{1,1, . . . ,1}
02. Let lab be the set of labels initialized to

{0,0, . . . ,0}
03. inv = compute-invariant(G,inv)
04. Let L be the set of atoms in G with the largest

invariant
05. For all atom x in L do
06. lab(x) = 1
07. compute-label(G,inv,lab,1)
08. lab(x) = 0
09. done

compute-invariant(G,inv)
input: - G: a molecular graph

- inv: the initial invariants for all atoms
output: - INVARIANT: the updated invariants for all

atoms
01. For all atom x of G do
02. INVARIANT(x) =

∑
[x,y] in G inv[y]

03. done
04. if |INVARIANT|>|inv|

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 53

05. then return(compute-invariant(G,INVARIANT))
06. else return(inv)
07. fi

compute-label(G,inv,label,n)
input: - G: a molecular graph

- inv: the invariants for all atoms
- label: the labels for all atoms
- n: the current label

output: - printout of graph G with computed labels

01. Let x be the atom of G with the smallest label
having a non empty list Lx of unlabeled
neighbors

02. if (x cannot be found) then
03. print-graph(G,label)
04. return
05. fi
06. For all lists Sx corresponding to the list Lx where

neighbors of x are sorted by decreasing invariants do
07. For all atoms y in Sx do n = n+ 1, label(y)= n done
08. compute-invariant(G,inv,label,n)
09. For all atoms y in Sx do n = n− 1, label(y) = 0 done
10. done

The invariant step of Morgan’s algorithm is illustrated in Figure 2.4 for 1,8-
dimethyl-decahydronaphthalene; the labeling step is illustrated in Figure 2.5 for the

1 1

1

1

1

1
1

1

(1) Number invariant = 1 (3) Number invariant = 6

(2) Number invariant = 3 (4) Number invariant = 5

1

1

1 1

1 1

3

2

2

2
3

2

2

2

3
3

6 6

17

10

10

11
19

11

10

10

17
19

3 3

6

5

4

5
7

5

4

5

6
9

FIGURE 2.4 Invariant calculation with Morgan’s algorithm. The final list of invariants is
computed the first time the largest numbers of distinct invariant is obtained, the list of graph
(3) in the present case.

54 Handbook of Chemoinformatics Algorithms

1 1

2

43

1

25 6

43 1
7

25 6

43

8

1
7 9

25 6

43

8 10

1
7

11
9

25 6

43

8 10

1
7

11 12
9

25 6

43

8 10

1
7
12

11
9

26 5

43

8 10

1
7

11
9

26 5

43

8 10

1
7 9

26 5

43

8 10

1
7

26 5

43

8

1

26 5

43

FIGURE 2.5 Atom labeling with Morgan’s algorithm. The labels are computed according to
the invariants of graph (3) of Figure 2.4. The figure illustrates the fact that there are two ways
of sorting the list of neighbors of atom labeled 2 (graph C1 and graph C2). Graph G1 produces
the list of edges [1, 2] [1, 3] [1, 4] [2, 5] [2, 6] [3, 7] [3, 8] [4, 9] [4, 10] [5, 11] [6, 12] [7, 11]
[9, 12] and graph G2 produces the list [1, 2] [1, 3] [1, 4] [2, 5] [2, 6] [3, 7] [3, 8] [4, 9] [4, 10]
[5, 11] [6, 12] [7, 12] [9, 11]. G1 is canonical.

same compound. Graph G1 is the canonical graph, that is, the graph producing the
smallest lexicographic list of edges.

The main criticism of Morgan’s algorithm is the ambiguity of the summation
when computing atom invariants. Indeed, let us suppose that two three-connected
atoms have neighbors with respective invariants (1, 1, 3) and (1, 2, 2). After iterating
Morgan’s algorithm, these two atoms will have the same invariant 5, and the two
atoms will be considered to be equivalent whereas they should not. To palliate this
problem, Weininger et al. [47] proposed a solution making use of prime numbers. In
this implementation the initial labels are substituted by primes, that is, to invariant
1 is associated number 2, to invariant 2 number 3, to invariant 3 number 5, and so
on. Next, instead of summing the invariants of the neighbors, the product of the
associated primes is computed. According to the prime factorization theorem, the
solution of Weininger et al. is unambiguous. This solution was implemented when
canonizing SMILES, as described in the algorithm given next.

2.3.3 THE CANONICAL SMILES ALGORITHM

The algorithm presented below is based on the 1989 work published by Weininger
et al. [47]. As in the previous case, the outlined algorithm is not the exact replica
of the one that was published but provides the general idea on how SMILES strings
are canonically ordered. Like Morgan’s algorithm, canonical ordering is performed
in two steps. Invariants are first computed and labels are assigned according to the
invariants. For each atom, the invariant is initialized taking into account (1) the num-
ber of connections, (2) the number of non-hydrogen bonds, (3) the atomic number,
(4) the sign of the charge, (5) the absolute value of the charge, and (6) the number
of attached hydrogen atoms. Next, invariants are computed using a method simi-
lar to the routine compute-invariant given in Algorithm 2.2. However, as mentioned
earlier, instead of summing the invariants of the neighbors, Weininger et al. used
the products of the primes corresponding to the invariants of the neighbors. At the

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 55

next step, atoms are labeled according to their invariants, the smallest label being
assigned to the atom with the smallest invariant. The atom with the same invariant
has the same label. To uniquely label each atom, Weininger et al. used a proce-
dure named “double-and-tie-break.” This procedure consists of doubling all labels
(label 1 becomes 2, label 2 becomes 4, and so on), then an atom is chosen in the
set of atoms having the smallest labels, and the label of that atom is reduced by
one. The labels thus obtained form a new set of initial invariants and the whole
procedure (invariant computation followed by label assignment) is repeated. The pro-
cess stops when each atom has a unique label, that is, when the number of labels
equals the number of atoms. In the algorithm given next, we assume that an initial
set of invariants has been computed, as described above, when calling the routine
canonical-SMILES for the first time. The routine compute-invariant is not detailed,
but is similar to the one given with Algorithm 2.2 replacing summation by prime
factorization.

ALGORITHM 2.3 THE CANONICAL SMILES ALGORITHM

canonical-SMILES(G,inv)
input: - G: a molecular graph

- inv: a set of initial invariants
output: - printout of a canonical SMILES string of

graph G
01. inv = compute-invariant(G,inv)
02. Let lab be the set of atom labels assigned in

increasing invariants order
03. if |lab|=|G| then print-SMILES(G,lab) fi
04. lab = new set of labels doubling each label value
05. Let L be the set of atoms with the smallest

label such that |L| ≥ 2
06. For all atom x in L do
07. lab(x) = lab(x)-1 , canonical-SMILES(G,lab),

lab(x) = lab(x)+1
08. done

In their 1989 paper, Weininger et al. [47] do not recursively apply the canonical-
SMILES routine to all atoms in the list of tied atoms with the smallest label (list
L in Algorithm 2.3 lines 05–08) but to an arbitrary atom selected from that list.
Weininger et al. algorithm complexity thus reduces to N2log2(N) for a molecular
graph of N atoms. While this implementation is efficient, it may not necessarily be
correct. Algorithm 2.3 does not scale in polynomial time, as the list L may com-
prise all N atoms the first time it is computed, N − 1 atoms the second time, N − 2
the third time, and so one, leading to an N! complexity. However, Algorithm 2.3
produces all potential canonical SMILES, the final canonical string being the lexi-
cographically smallest one. Printing SMILES (routine print-SMILES) is performed
starting with the atom with the smallest label. This atom becomes the root of a tree
for a depth-first search. As mentioned in Section 2.1.1, with SMILES notations,
branches are indicated with parentheses: “(‘to open the branch and’)” to close the

56 Handbook of Chemoinformatics Algorithms

branch. When printing canonical SMILES, the algorithm directs branching toward
the lowest label; assuming the atom labels for acetone C−C(=O)–C are 1–4- (=3)-
2, one starts with the methyl group labeled 1 and then moves to the central carbon
labeled 4. The branch is composed of the smallest atom label attached to the central
carbon, that is, the second methyl group labeled 2; the final atom is thus the oxygen
labeled 3. The printed canonical SMILES string for acetone is thus CC(C)=O and not
CC(=O)C.

The latest developments in the search for a unique representation of chemical
structures are the InChI and InChIKey algorithms [48]. These algorithms are based
on the McKay general graph canonization algorithm [49]. Because the InChI algo-
rithm has never been formally published, it is difficult to present this complex
method just based on the technical manual. Instead we present another algorithm,
whose performances have been shown to be comparable to those of the McKay
technique [50].

2.3.4 CANONICAL SIGNATURE ALGORITHM

The method outlined below was first published in 2004 [50]. As with previous algo-
rithms, the method first assigns invariants to atoms and next labels the atoms from
the invariants. In the present case, invariants are computed based on atom signatures.
The formal definition of an atom signature is given in Chapter 4, but for the purpose
of this section we define the signature of an atom x in a molecular graph G as being
a tree T(x) spanning all the edges of the graph (cf. Figure 2.6a and b).

When computing an atom signature, the term tree is used in a somewhat loose
manner as several vertices in the tree may correspond to the same atom. The root
of the tree is atom x itself. The first layer of the tree is composed of the neighbors
of x; the second layer is composed of the neighbors of the vertices of the first layer
except atom x. The construction proceeds one layer at a time until no more layers
can be added, that is, until all the bonds of G have been considered. Assuming the

1

9 2 10

11 7 3 4 8 12

5 5 6 6

(a) (b)

(c)

1
7

5 6

8

2
3

Atom no. 1
C,0 C,1 C,1 C,1 C,2 C,2 C,1 C,1 C,1 C,1 C,1 C,1

222222332221

2 3 4 5 6 7 8 9 10 11 12
Atom type
and number
of parents
Invariant

4

109

11 12

FIGURE 2.6 Atomic signature. (a) 1,8-Dimethyl-decahydronaphthalene, where carbon atoms
have been arbitrarily numbered. (b) Signature tree of atom 1. (c) Atom initial invariants.

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 57

tree has been constructed up to layer l, layer l + 1 is constructed considering each
vertex y of layer l. Let z be a neighbor of y in G. Vertex z and edge [y,z] are added to
layer l + 1 if the edges [y,z] or [z,y] are not already present in the previous layers of
the tree. To each vertex added to the tree, one associates an atom type and the initial
label or number of the corresponding atom. Note that a given atom number z may
appear several times in the tree (such as atom number 5 in Figure 2.6) since it can
be the neighbor of several atoms present in the previous layer. Having defined atom
signatures, we next explain how these signatures can be used to compute invariant
and ultimately canonized molecular graphs.

The approach taken to canonize atomic signatures is based on the classical Hopcroft
and Tarjan’s rooted tree canonization algorithm [51]. Let x be an atom of a molecular
graph G, and T(x), the corresponding signature tree. To each atom a one associates
an atom type and an invariant, inv(a). Invariants are integers no greater than N , the
total number of atoms. To each vertex v in T(x) one associates a corresponding atom,
atom(v), in graph G and an invariant, inv(v). Additionally, for each vertex of any layer
l, one can access its parents in layer l − 1 and its children in layer l + 1.

Prior to running the algorithm, all the invariants are initialized. The initial invariant
of any atom a is computed from the atom type of a and the number of parents a has
in T(x). More precisely, a string of characters is compiled from the atom type and the
number of parents, and the string is converted into an integer following lexicographic
ordering. The integer is not greater than N since there are no more than N different
strings. Examples of initial invariants are given in Figure 2.6c.

After initialization, the first step of the algorithm is to compute the invariants
of the vertices in T(x) from the atom invariants. The vertex invariants are com-
puted twice, first reading the tree layer by layer from the leaves to the root, and
then from the root to the leaves. Unlike the classical Hopcroft–Tarjan algorithm, the
tree must also be read from the root to the leaves because, in signature trees, some
vertices may have more than one parent; thus the invariants for these vertices may
be different depending on the invariants of their parents. We first examine the case
where the tree is read from the leaves to the root. Starting at the last layer, to each
vertex we associate the invariant of the corresponding atom. Duplicated invariants
are removed and all nonidentical invariants are sorted in decreasing order. The ver-
tex invariant becomes the order of the vertex in the sorted list. Going to the layer
above, to each vertex one assigns a vector composed of the invariant of the corre-
sponding atom and the invariants of the children of the vertex. Duplicated vectors
are removed, the remaining vectors are sorted in decreasing order, and the vertex
invariant becomes the order of the vertex in the sorted list. Note that these vertex
invariants range from 1 to N since there are no more than Nvertices in a layer.
The above procedure is repeated until the root is reached. The algorithm is then
run from the root to the leaves but this time for any vertex; the vector invariant is
composed of the invariant of the corresponding atom and the invariants of the parents
of the vertex. The Algorithm 2.4 is given below and is illustrated in Figure 2.7 for
1,8-dimethyl-decahydronaphthalene.

Once invariants have been computed for all vertices, each atom invariant is com-
piled from the invariant of all the vertices corresponding to the atom. Precisely, for

58 Handbook of Chemoinformatics Algorithms

Atom no. 1 2 3 4 5 6 7 8 9 10 11
0
0
1
0
2

0
0
2
0
3

0
0
2
0
3

0
0
0
1
1

0
0
0
1
1

0
0
3
0
4

0
0
3
0
4

0
2
0
0
6

1
0
0
0

0
Layer
no.

Invariant

1
2
3

7

0
1
0
0
5

0
1
0
0
5

12
0
0
1
0
2

1 1 1 1

9 2 10

11 7 3 4 8 12

2 2 2

2 2 2 2 2 2

3

1 2 1

1 2 2 2 2 1

1 1 1 1

1 2 1

1 2 3 3 2 1

1 1 1 15 5 6 6 3 3 3 3 1 1 1 1 1 1 1 1

(a) (b) (c) (d)

(e)

FIGURE 2.7 Vertex and atom invariants. (a) Signature tree of atom 1 in Figure 2.6a. (b) The
same signature tree with initial invariants from Figure 2.6c. (c) Vertex invariants after running
the Hopcroft–Tarjan algorithm from the leaves to the root. (d) Vertex invariants after running
the Hopcroft–Tarjan algorithm from the root to the leaves. (e) Corresponding atom vectors and
atom invariants. The root is located at layer 0.

each atom, an invariant vector is first initialized to zero; then for each vertex corre-
sponding to the atom, the invariant of the vertex is assigned to the l-coordinate of the
vector, where l is the layer the vertex occurs. Once invariant vectors are computed
for all atoms, duplicated vectors are removed, the vectors are sorted in decreasing
order, and the atom invariant becomes the order of the atom’s vector in the sorted
list (cf. Figure 2.7e). The above process is repeated until the number of atom invari-
ants remains constant. Note that at each iteration, the number of invariants increases.
Indeed, atom invariants are computed from vertex invariants, which in turn are com-
puted from the atom invariants from the previous iteration. Because the number of
invariants is at most the number of atoms, the process cannot repeat itself more than
N times. The invariant computation algorithm is given next.

ALGORITHM 2.4 SIGNATURE INVARIANT COMPUTATION
invariant-vertex(T(x),relative)
Input: T(x) the signature-tree of atom x

relative is a parent or child relationship
Output: Updated vertices invariants

01. List-Vinv = ø
02. For all layers l of T(x)
03. For all vertices v of layer l
04. Vinv(v)=inv(atom(v)),{inv(w) s.t. w is a relative of v}
05. List-Vinv= List-Vinv + Vinv(v)

06. done
07. sort List-Vinv in decreasing order
08. For all vertices v of layer l
09. inv(v)=order of Vinv(v) in List-Vinv

10. done
11. done

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 59

invariant-atom(T(x),G)
Input: T(x) the signature-tree of atom x

G a molecular graph
Output: Updated atoms invariants

01. Repeat
02. invariant-vertex(T(x),child)
03. invariant-vertex(T(x),parent)
04. For all vertices v of T(x)
05. let l be the layer of v
06. Vinv(atom(v))(l)= inv(v)
07. done
08. List-Vinv = ø
09. For all atoms a of G do
10. List-Vinv= List-Vinv + Vinv(a)
11. done
12. sort List-Vinv in decreasing order
13. For all atom a of G
14. inv(a)= order of Vinv(a) in List-Vinv
15. done
16. until the number of invariant values remain constant

The canonization algorithm (Algorithm 2.5) given below and illustrated in
Figure 2.8 first computes the invariants for all atoms running the above invariant
computation algorithms (step 1). Then in step 2, the atoms are partitioned into orbits
such that all the atoms in a given orbit have the same invariant. In the next step (step
3) one searches for an orbit containing atoms with at least two parents in T(x). Note
that these atoms have different invariants than atoms with only one parent, since the
initial atom invariants embrace the number of parents. When several such orbits exist,
those with the maximum number of atoms are selected, and if several orbits have the
same number of atoms, one takes the one with the minimum invariant. In the case
of Figure 2.7, orbit {5,6} has two atoms, each atom having more than one parent;
this orbit is thus selected. If no orbit can be found, or the selected orbit contains only
one atom, then the process ends and the signature is printed (steps 4–9). When an

1 7 1 12

9 2 10

11 7 3 4 8 12

5 6 5

2 3 4 4 3 2

2 3 1

1 3 3 2 2 1

2 2 1 1

10 11 9
5 6 8 7 4 3

2 2 1 15 5 6 6 1 1 1 1

(a) (b) (c) (d)

FIGURE 2.8 Signature-canonization algorithm. (a) Signature tree of atom 1 in Figure 2.6a,
where atom 5 is labeled. (b) The same signature tree with the invariants computed in Figure
2.7e. (c) Vertex invariants after running the invariant-vertex algorithm where atom 5 is labeled.
(d) Vertex invariants after running the invariant-atom algorithm where atom 5 is labeled. Note
that every orbit contains only one atom and the canonization algorithm thus stops after labeling
atom 5.

60 Handbook of Chemoinformatics Algorithms

orbit is found containing more than one atom, an atom is arbitrarily selected from that
orbit and a label is added to its invariant (steps 10–14). The canonization algorithm
is run again in a recursive manner and other atoms may be labeled if other orbits with
multiple atoms and multiple parents are found. In Figure 2.8, atom 5 is labeled 1. The
algorithm stops after the next iteration since each atom becomes singularized in its
own orbit. Initially, all atoms are unlabeled (label 0). The first labeled atom is labeled
1 and labels are incremented by 1 each time the algorithm calls itself (step 12). Note
that each time an atom is labeled, at the next iteration the atom will be alone in its
orbit. Since there are no more than N atoms to be labeled, the algorithm cannot call
itself more than N times.

ALGORITHM 2.5 SIGNATURE CANONIZATION

canonize-signature(T(x),G,l,Smax)
Input: T(x) the signature-tree of atom x

G a molecular graph
l a label

Output: Smax a canonical string (initialized to
empty string)

01. invariant-atom(T(x),G)
02. partition the atoms of G into orbits according to

their invariants
03. let O be the orbit with the maximum number of atoms

and the minimum invariant value such that all the
atoms of O have at least two parents.

04. if |O| ≤ 1 then
05. label all unlabeled atoms having two parents

according to their invariant
06. S = print-signature-string(T(x))
07. if (S > Smax) Smax = S fi
08. return Smax
09. fi
10. for all atom a in O do
11. label(a) = l
12. S= canonize-signature(T(x),G,l+1,Smax)
13. if (S>Smax) Smax = S fi
14. label(a)=0
15. done
16. return Smax

Like SMILES strings, signature strings are printed reading the signature tree in
a depth-first order. Prior to printing signature strings, the children of all vertices are
sorted according to their invariants taken in decreasing order. In order to avoid printing
several times duplicated subtrees, any subtree is printed only the first time it is read.
This operation requires maintaining a list of printed edges. The algorithm is detailed
in Faulon et al. [50] and depicted in Figure 2.9.

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 61

55 6 6 C,1

1 1 C

9 2 10

11 7 3 4 8 12

92 10

1178 4 8 12

CC C

CCC C C C
[C] ([C]([C]([C,1])[C]([C,2]))

[C]([C]([C,1])[C])
[C]([C]([C,2])[C]))

5 5 6 6

(a) (b) (c) (d)

C,1C,2 C,2

FIGURE 2.9 Printing the signature string. (a) Signature tree of atom 1 in Figure 2.6a, where
atom 5 has been labeled. (b) The same signature tree with branches reordered according to
atom invariants computed in 2.8d. (c) Signature tree with atom types and labels. Atom 5 is
labeled 1; other atoms represented more than one time in the signature tree (atom 6) are labeled
in the order they appear reading the tree in a depth-first order (atom 6 is thus labeled 2). (d)
The corresponding signature string is printed reading the tree in a depth-first order.

As discussed in Faulon et al. [50], the calculation of invariants based on signature
turns out to be powerful, at least for molecular graphs. Indeed for most chemicals
there is no need to introduce labels. So far the worst-case scenario for the signature-
based algorithm has been found with projective planes for which four labels needed
to be introduced; even in that case the algorithm was run no more than O(N4) times.
While the algorithm handles heteroelements and multiple bonds well, it does not yet
take stereochemistry into account.

2.4 CONCLUDING REMARKS

We have presented in this chapter the classical formats used to represent 2D chemical
structures in chemoinformatics databases. We have also addressed issues that arise
when storing chemical structures, such as representations of alternative bonds and
perception of tautomers. Because chemicals are usually represented in the classical
form of 2D diagrams, we have outlined algorithms that generate these diagrams from
linear notations and connection tables. One main issue that has been the source of many
algorithms published in the literature is the uniqueness of the representation. Indeed,
to store and retrieve chemicals from chemoinformatics databases, one needs a unique
(and standard) representation. This issue is generally dealt with in canonical labeling
algorithms, which are reviewed in Section 2.3. One outstanding problem that has not
been covered in the chapter but is still an active field of research is the development of
efficient algorithms to search for substructures; this problem is related to the subgraph
isomorphism, which is generally harder to solve than canonical labeling.

ACKNOWLEDGMENTS

The authors would like to thank Ovidiu Ivanciuc for providing us with relevant liter-
ature references. The authors also acknowledge the reprinted with permission from
Dittmar et al. Journal of Chemical Information and Computer Sciences 1977, 17(3),
186–192. American Chemical Society, Copyright (1977).

62 Handbook of Chemoinformatics Algorithms

REFERENCES

1. Weininger, D., SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. Journal of Chemical Information and Computer Sciences
1988, 28(1), 31–36.

2. Weininger, D., SMILES—a language for molecules and reactions. In: J. Gasteiger (Ed.),
Handbook of Chemoinformatics, Vol. 1, pp. 80–102. Wiley-VCH: Weinheim, Germany,
2003.

3. Wiswesser, W. J., How the WLN began in 1949 and how it might be in 1999. Journal of
Chemical Information and Computer Sciences 1982, 22(2), 88–93.

4. Wiswesser, W. J., Historic development of chemical notations. Journal of Chemical
Information and Computer Sciences 1985, 25(3), 258–263.

5. Ash, S. Cline, M. A., Homer, R. W., Hurst, T., and Smith, G. B., SYBYL line notation
(SLN): A versatile language for chemical structure representation. Journal of Chemical
Information and Computer Sciences 1997, 37(1), 71–79.

6. Homer, R. W., Swanson, J., Jilek, R. J., Hurst, T., and Clark, R. D., SYBYL line notation
(SLN): A single notation to represent chemical structures, queries, reactions, and virtual
libraries. Journal of Chemical Information and Modeling 2008, 48(12), 2294–2307.

7. Wisniewski, J. L., Chemical nomenclature and structure representation: Algorithmic gen-
eration and conversion. In: J. Gasteiger (Ed.), Handbook of Chemoinformatics, Vol. 1,
pp. 51–79. Wiley-VCH: Weinheim, Germany, 2003.

8. Downs, G. M., Gillet, V. J., Holliday, J. D., and Lynch, M. F., Review of ring perception
algorithms for chemical graphs. Journal of Chemical Information and Computer Sciences
1989, 29(3), 172–187.

9. Downs, G. M., Ring perception. In: J. Gasteiger (Ed.), Handbook of Chemoinformatics,
Vol. 1, pp. 161–177. Wiley-VCH: Weinheim, Germany, 2003.

10. Bangov, I. P., Topological structure generators. In: J. Gasteiger (Ed.), Handbook of
Chemoinformatics, Vol. 1, pp. 178–194. Wiley-VCH: Weinheim, Germany, 2003.

11. Weininger, D., Combinatorics of organic molecular structures. In: J. Gasteiger (Ed.),
Handbook of Chemoinformatics, Vol. 1, pp. 195–205. Wiley-VCH: Weinheim, Germany,
2003.

12. Lameijer, E.-W., Kok, J. N., Bäck, T., and IJzerman,A. P., The molecule evoluator.An inter-
active evolutionary algorithm for the design of drug-like molecules. Journal of Chemical
Information and Modeling 2006, 46(2), 545–552.

13. Chen, L., Reaction classification and knowledge acquisition. In: J. Gasteiger (Ed.),
Handbook of Chemoinformatics, Vol. 1, pp. 348–388. Wiley-VCH: Weinheim, Germany,
2003.

14. Ivanciuc, O., Topological indices. In: J. Gasteiger (Ed.), Handbook of Chemoinformatics,
Vol. 3, pp. 981–1003. Wiley-VCH: Weinheim, Germany, 2003.

15. Melville, J. L., Riley, J. F., and Hirst, J. D., Similarity by compression. Journal of Chemical
Information and Modeling 2007, 47(1), 25–33.

16. Karwath, A. and De Raedt, L., SMIREP: Predicting chemical activity from SMILES.
Journal of Chemical Information and Modeling 2006, 46(6), 2432–2444.

17. Vidal, D., Thormann, M., and Pons, M., LINGO, an efficient holographic text based method
to calculate biophysical properties and intermolecular similarities. Journal of Chemical
Information and Modeling 2005, 45(2), 386–393.

18. Wiswesser, W. J., 107 years of line-formula notations (1861–1968). Journal of Chemical
Documentation 1968, 8, 146–150.

19. Walker, S. B., Development of CAOCI and its use in ICI plant protection division. Journal
of Chemical Information and Computer Sciences 1983, 23, 3–5.

Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 63

20. Dalby, A., Nourse, J. G., Hounshell, W. D., Gushurst, A. K. I., Grier, D. L., Leland,
B. A., and Laufer, J., Description of several chemical-structure file formats used
by computer-programs developed at molecular design limited. Journal of Chemical
Information and Computer Sciences 1992, 32(3), 244–255.

21. Murray-Rust, P. and Rzepa, H. S., Chemical markup, XML, and the worldwide web. 1.
Basic principles. Journal of Chemical Information and Computer Sciences 1999, 39(6),
928–942.

22. Murray-Rust, P. and Rzepa, H. S., Chemical markup, XML, and the world wide web.
4. CML schema. Journal of Chemical Information and Computer Sciences 2003, 43(3),
757–772.

23. Murray-Rust, P. and Rzepa, H. S., XML and its applications in chemistry. In: J. Gasteiger
(Ed.), Handbook of Chemoinformatics, Vol. 1, pp. 466–490. Wiley-VCH: Weinheim,
Germany, 2003.

24. Dittmar, P. G., Mockus, J., and Couvreur, K. M., An algorithmic computer graphics pro-
gram for generating chemical-structure diagrams. Journal of Chemical Information and
Computer Sciences 1977, 17(3), 186–192.

25. Wipke, W. T. and Dyott, T. M., Use of ring assemblies in a ring perception algorithm.
Journal of Chemical Information and Computer Sciences 1975, 15(3), 140–147.

26. Shelley, C. A., Heuristic approach for displaying chemical structures. Journal of Chemical
Information and Computer Sciences 1983, 23(2), 61–65.

27. Morgan, H. L., The generation of a unique machine description for chemical structures—a
technique developed at chemical abstracts service. Journal of Chemical Documentation
1965, 5, 107–113.

28. Helson, H. E., Structure diagram generation. Reviews in Computational Chemistry 1999,
13, 313–398.

29. Weininger, D., SMILES. 3. DEPICT. Graphical depiction of chemical structures. Journal
of Chemical Information and Computer Sciences 1990, 30(3), 237–243.

30. Fricker, P. C., Gastreich, M., and Rarey, M., Automated drawing of structural molecular
formulas under constraints. Journal of Chemical Information and Computer Sciences
2004, 44(3), 1065–1078.

31. Stierand, K., Maaß, P. C., and Rarey, M., Molecular complexes at a glance: Auto-
mated generation of two-dimensional complex diagrams. Bioinformatics 2006, 22(14),
1710–1716.

32. Clark, A. M., Labute, P., and Santavy, M., 2D structure depiction. Journal of Chemical
Information and Modeling 2006, 46(3), 1107–1123.

33. Roos-Kozel, B. L. and Jorgensen, W. L., Computer-assisted mechanistic evaluation of
organic reactions. 2. Perception of rings, aromaticity, and tautomers. Journal of Chemical
Information and Computer Sciences 1981, 21(2), 101–111.

34. Mockus, J. and Stobaugh, R. E., The chemical abstracts service chemical registry system.
7. Tautomerism and alternating bonds. Journal of Chemical Information and Computer
Sciences 1980, 20(1), 18–22.

35. Haraǹczyk, M. and Gutowski, M., Quantum mechanical energy-based screening of com-
binatorially generated library of tautomers. TauTGen: A tautomer generator program.
Journal of Chemical Information and Modeling 2007, 47(2), 686–694.

36. Todorov, N. P., Monthoux, P. H., and Alberts, I. L., The influence of variations of ligand
protonation and tautomerism on protein-ligand recognition and binding energy landscape.
Journal of Chemical Information and Modeling 2006, 46(3), 1134–1142.

37. Milletti, F., Storchi, L., Sforna, G., Cross, S., and Cruciani, G., Tautomer enumeration and
stability prediction for virtual screening on large chemical databases. Journal of Chemical
Information and Modeling 2009, 49(1), 68–75.

64 Handbook of Chemoinformatics Algorithms

38. Oellien, F., Cramer, J., Beyer, C., Ihlenfeldt, W.-D., and Selzer, P. M., The impact of tau-
tomer forms on pharmacophore-based virtual screening. Journal of Chemical Information
and Modeling 2006, 46(6), 2342–2354.

39. Simmons, E. S., Markush structure searching over the years. World Patent Information
2003, 25, 195–202.

40. Read, R. C. and Corneil, D. G., The graph isomorphism disease. Journal of Graph Theory
1977, 1, 339–363.

41. Miller, G., Graph isomorphism, general remarks. Journal of Computer and System
Sciences 1979, 18, 128–142.

42. Carhart, R. E., Erroneous claims concerning the perception of topological symmetry.
Journal of Chemical Information and Computer Sciences 1978, 18, 108–110.

43. Rucker, G. and Rucker, C., Computer perception of constitutional (topological) symmetry:
TOPSYM, a fast algorithm for partitioning atoms and pairwaise relations among atoms
into equivalent classes. Journal of Chemical Information and Computer Sciences 1990,
30, 187–191.

44. Rucker, G. and Rucker, C., On using the adjacency matrix power method for perception
of symmetry and for isomorphism testing of highly intricate graphs. Journal of Chemical
Information and Computer Sciences 1991, 31, 123–126.

45. Babai, L., Erdos, P., and Selkow, S. M., Random graph isomorphism. SIAM Journal of
Computing 1980, 9, 628–635.

46. Wipke, W. T. and Dyott, T. M., Steorchemically unique naming algorithm. The Journal of
the American Chemical Society 1974, 96, 4825–4834.

47. Weininger, D., Weininger, A., and Weininger, J. L., SMILES. 2. Algorithm for generation
of unique SMILES notation. Journal of Chemical Information and Computer Sciences
1989, 29(2), 97–101.

48. Stein, S. E., Heller, S. R., and Tchekhovskoi, D. V., The IUPAC Chemical Identifier—
Technical Manual. NIST: Gaithersburg, MD, 2006.

49. McKay, B. D., Practical graph isomorphism. Congressus Numerantium 1981, 30, 45–87.
50. Faulon, J. L., Collins, M. J., and Carr, R. D., The signature molecular descriptor. 4. Can-

onizing molecules using extended valence sequences. Journal of Chemical Information
and Computer Sciences 2004, 44(2), 427–436.

51. Hopcroft, J. E. and Tarjan, R. E., Isomorphism of planar graphs. In: R. E Miller and
J. W. Thatcher (Eds), Complexity of Computer Computations, pp. 131–150. Plenum Press:
New York, 1972.

3 Three-Dimensional (3D)
Molecular
Representations

Egon L. Willighagen

CONTENTS

3.1 Introduction. 65
3.2 Coordinate Systems . 67

3.2.1 Cartesian Coordinates . 67
3.2.2 Internal Coordinates . 68
3.2.3 Fractional Coordinates . 69
3.2.4 Two-Dimensional Chemical Diagrams . 70

3.3 Interconverting Coordinate Systems . 71
3.3.1 Internal Coordinates into Cartesian Coordinates . 71
3.3.2 Fractional Coordinates into Cartesian Coordinates 72

3.4 Comparing Geometries . 73
3.5 Fixed-Length Representations . 74

3.5.1 Molecular Descriptors . 75
3.5.1.1 The Length-over-Breadth Descriptor . 75
3.5.1.2 Charged Partial Surface Area (CPSA) Descriptors 75

3.5.2 Comparative Molecular Field Analysis . 76
3.5.3 Radial Distribution Functions . 77

3.6 Application: Clustering of Crystal Packings . 79
3.7 Open-Source Implementations . 85
References . 85

3.1 INTRODUCTION

Three-dimensional (3D) molecular representation is at the heart of modern chemistry.
The past decades have taught us that pure graph-oriented representations are typically
not enough to understand the interactions of molecules with their environments. The
3D molecular geometry has a strong effect on molecular binding, as clearly seen in
ligand–protein interactions and packing in crystal structures.

Understanding molecular properties requires us to understand the geometrical fea-
tures of the molecule. For example, the molecular geometries of a molecule and its
surroundings determine the proximity of functional groups and, therefore, why certain

65

66 Handbook of Chemoinformatics Algorithms

Molecular
geometry

Atomic
coordinates

Visualization

Computation

Fixed-length
representationData analysis

FIGURE 3.1 The raw coordinates of a molecular geometry are suited for visualization
and computational studies, such as geometry optimization and energy calculations. However,
because they do not provide a uniform-length representation, they do not lend itself for data
analysis and pattern recognition.

molecules show strong binding affinity, due to, for example, salt and hydrogen bridges
and hydrophobic interactions. Only a brief reminder is needed here that the geometry
is not static and that binding affinity often involves induced fit. Visual exploration of
geometries is well established in various fields of chemoinformatics, and free tools
are abundant. Jmol [1] and PyMol [2] are the best-known open-source applications
in this area.

Dealing with 3D geometries in computation, however, is more complex
(Figure 3.1). A program does not have the visual interpretation of depth or orien-
tation. In order to have an analysis tool to understand these patterns, the patterns
need to be expressed numerically. Depth can be represented as a Euclidean distance,
which, depending on the application, might be a relative distance or distance ratio.
Orientation is even more complex and it involves a coordination reference to which
the orientation can be measured, something that can be easily done visually. This
brings us to the topic of this chapter: how to represent 3D molecular geometries such
that they are useful for analysis and computation.

The molecular structure is, ultimately, governed by the quantum mechanics of the
electrons that are organized in atomic and molecular orbitals. This quantum molec-
ular structure defines all molecular properties, including the geometry and chemical
reactivity. However, quantum mechanics is for many supramolecular systems too
computation intensive, and simpler representations are needed to deal with the fast
molecular space we nowadays work with. This simpler 3D representation typically
involves an atom-and-bond representation and combines a chemical graph with the
geometry information. Instead of the many electrons involved in the molecule, it
focuses only on the nuclei and their coordinates. Electronic effects on the geometry
are implicitly captured by the coordinates, but can be complemented with atom-type
information, which typically includes hybridization information. This is the basic
model behind the force field approaches.

Three-Dimensional (3D) Molecular Representations 67

Other applications, however, need a different representation. The above-sketched
representation still increases in size with the number of atoms and bonds. However,
numerical analyses in quantitative structure–activity relationship (QSAR) studies,
which correlate geometrical features with binding affinity, often require a fixed-length
representation that is independent of the number of atoms and bonds.

This chapter discusses the representation of molecular geometry in various coor-
dinate systems, how to interchange those representations, and how fixed-length,
numerical representations may be derived from them.

3.2 COORDINATE SYSTEMS

Three atomic coordinate systems are commonly used: Cartesian coordinates, internal
coordinates, and notional coordinates. The last is specific for crystallography data
and describes both the molecular geometry as well as the crystal lattice. Internal
coordinates rely on and use the chemical graph and therefore aim at single, connected
molecules. Cartesian coordinates are the most versatile and are typically used for
disconnected 3D structure.

3.2.1 CARTESIAN COORDINATES

Cartesian coordinates describe the atomic coordinates relative to the origin. The X, Y ,
and Z axes are orthogonal and Euclidean distances can be used to measure distances
between atoms. Orientation and placement with respect to the origin is arbitrary.

The Cartesian coordinates for ethanol shown in Figure 3.2 are as follows:

O 1.94459 1.33711 0.00000
C 1.52300 0.00000 0.00000
C 0.00000 0.00000 0.00000
H 1.93156 −0.49598 0.90876
H 1.93156 −0.49598 −0.90876
H −0.35196 1.05588 0.00000
H −0.35196 −0.52794 −0.91442
H −40.35196 −0.52794 0.91442
H 1.18187 1.88994 0.00000

Distances, angles, and torsions are easily calculated from Cartesian coordinates, as
well as many other derived properties, such as molecular volume, total polar surface
area, and so on (see Section 3.5.1). For example, the molecular center-of-mass may
be placed on the origin, so that molecules are located in the same location. Algorithm
3.1 describes the algorithm to calculate a molecule’s center-of-mass. Centering the
molecule around the origin is then done by subtracting the coordinates of the center-
of-mass from the atomic coordinates.

ALGORITHM 3.1 ALGORITHM TO CALCULATE THE MOLECULAR
CENTER-OF-MASS

sum.x = 0
sum.y = 0
sum.z = 0

68 Handbook of Chemoinformatics Algorithms

6

3

7

9

1

2
8

5 4

+Y

+Z

FIGURE 3.2 3D model of ethanol labeled by position in the input file.

total.weight=0
iterate over all atoms {
sum.x = sum.x + atom.x * atom.weight
sum.y = sum.y + atom.y * atom.weight
sum.z = sum.z + atom.z * atom.weight
total.weight = total.weight + atom.weight

}
com.x = sum.x / total.weight
com.y = sum.y / total.weight
com.z = sum.z / total.weight

However, although Cartesian coordinates are universal, they are not always the
best choice with respect to computation times or algorithm simplicity. For geometry
optimization calculations, internal coordinates are more suitable, requiring less com-
putation to reach the same results. Tomczak reports an approximately fourfold speed
using internal coordinates over Cartesian coordinates [3].

3.2.2 INTERNAL COORDINATES

Internal coordinates describe the atomic coordinates in an internal frame, that is,
without an external reference. They describe the molecular geometry in terms of
distances between atoms and angles and torsions between bonds. This closely overlaps
with force field approaches where the molecular energy is expressed in terms of bond
length, angles, and torsions, defining a well-structured search space for geometrical
optimization. Many molecular dynamics and quantum mechanics algorithms take
advantage of this representation.

The internal coordinates for ethanol shown in Figure 3.2 are given below. The
atomic numbering is the same as for the list of Cartesian coordinates and is shown in
Figure 3.2 too.

These coordinates are interpreted as follows. The first distance given (1.4020 Å) is
between atom 2 (carbon) and atom 1 (oxygen), while the second distance (1.5230Å) is

Three-Dimensional (3D) Molecular Representations 69

3

2

4

239°

FIGURE 3.3 The torsion angle for atoms 4, 2, 1, and 3 in ethanol (see Figure 3.2) is defined
as the angle between a vector through atoms 4 and 2 and the vector through atoms 1 and 3, as
measured in a plane perpendicular to the vector through atoms 2 and 1. (Note that atom 1 is
depicted behind atom 2.) The lines between atoms are not bonds; in fact, atom 3 is bonded to
atom 2 and not to atom 1. However, the vector between atom 4 and atom 2 does coincide with
an actual bond.

the bond length of the carbon–carbon bond. The first angle given (107.50◦) is between
the bonds between the third and second atoms and the second and first atoms. The first
torsion angle (239.34◦) is the angle between the two lines, one between atom 4 and
atom 2 and the other between atom 1 and atom 3, as measured in a plane perpendicular
to the bond between atom 1 and atom 2 (Figure 3.3). (Note that atom 1 is located behind
atom 2 in this figure.) These lines do not necessarily have to coincide with bonds.

3.2.3 FRACTIONAL COORDINATES

Fractional coordinates describe the positions of the atoms as fractions of the axes
of the crystal’s unit cell, which is described by its crystallographic axes A, B, and
C. There are two common ways to describe these three axes themselves: as a vector
in Cartesian space with nine values, or with six values listing the axes’ lengths and
the angles between the axes, sometimes referred to as the notional axes. Figure 3.4
shows the unit cell of the cubic unit cell of sodium chloride. The unit cell axes can
be described as in notional axes 5.6, 5.6, 5.6 Å and 90◦, 90◦, 90◦, describing the axis
lengths and the angles between them, respectively.

Alternatively, the axes can be described as vectors in Euclidean space. This leaves
a choice of how to rotate the unit cell in Euclidean space. If we fix the A axis on the
x axis and the B axis in the XY plane, then rotation in the Euclidean space is fixed.
Using this convention, the unit cell axis vectors for the sodium chloride example are
A = 5.6, 0, 0, B = 0, 5.6, 0, and C = 0, 0, 5.6. If angles deviate with 90◦, then only
the A axis will be parallel to an Euclidean axis.

The coordinates of atoms in the unit cell are expressed as fractions of the axes A,
B, and C. The fractional coordinates of the four sodium atoms in the shown unit cell
are 0, 0, 0, 0.5, 0.5, 0, 0, 0.5, 0.5, and 0.5, 0, 0.5. The chloride ions are located at
0.5, 0, 0, 0.0, 0.5, 0, 0, 0.0, 0.5, and 0.5, 0.5, 0.5.

70 Handbook of Chemoinformatics Algorithms

FM–3M
a = 5.640Å
b = 5.640Å
c = 5.640Å
a = 90.0°
b = 90.0°
Y = 90.0°

FIGURE 3.4 Unit cell of sodium chloride with the three unit cell axes starting from the origin
in the lower left corner of the cube. The notional coordinates of this unit cell are defined by the
A, B, and C axis lengths (all 5.6 Å) and the three angles α, β, and γ (all 90) between B and C,
A and C, and A and B, respectively.

3.2.4 TWO-DIMENSIONAL CHEMICAL DIAGRAMS

The fourth coordinate system is very common in chemistry: two-dimensional (2D)
chemical diagrams. These diagrams are aimed at graphical visualization of the con-
nection table and typically focus on depiction of atom and bond properties, such as
isotope and charge details for atoms, and bond properties like bond order, delocal-
ization, and stereochemistry. This 2D coordinate space is outside the scope of this
chapter. It is mentioned here, however, because 2D diagrams are often the input in
algorithms that create 3D molecular structures.

These algorithms create 3D Cartesian coordinates from the information presented
in 2D molecular representations. Primarily, this information includes the connection
table, and atom- and bond-type information. However, to properly reflect stereo-
chemistry features presented in the 2D diagrams, the algorithm has to resolve such
information often from wedge bond representations, and 2D coordinates for cis/trans
isomorphism. Additionally, coordination generation for ring systems can use a tem-
plate library that may or may not contain information on the layout of the attachment
points to assemble the geometries of ring and nonring systems. The general concept
is given in Algorithm 3.2.

ALGORITHM 3.2 ALGORITHM TO CREATE 3D GEOMETRIES
FROM 2D DIAGRAMS

extract connection table
derive atom parities from wedge bond and 2D coordinates

information
derive cis/trans isomorphism from 2D coordinates
isolate ring systems, and look up 3D coordinates from a

template library

Three-Dimensional (3D) Molecular Representations 71

apply common geometries for non-ring substructures
taking into account stereochemistry

3.3 INTERCONVERTING COORDINATE SYSTEMS

Interconversion between the three coordinate systems is important, because algo-
rithms can perform differently depending on the chosen system, as was discussed
earlier. Algorithms to interconvert coordinate systems are abundant, but may differ
in detail between implementations. This section discusses two algorithms: conver-
sion of internal coordinates into Cartesian coordinates and conversion of fractional
coordinates into Cartesian coordinates.

3.3.1 INTERNAL COORDINATES INTO CARTESIAN COORDINATES

Converting internal coordinates into Cartesian coordinates is fairly straightforward:
each next atom is placed into Euclidean space to conform the internal coordinates
converted so far. The algorithm has two degrees of freedom: (1) in which Cartesian
coordinate the first atom is placed and (2) in which plane the first two bonds are
located. The algorithm description given in Algorithm 3.3 puts the first atom at the
origin of the coordinate system, the first bond along the x axis, and the second bond
in the xy plane.

ALGORITHM 3.3 ALGORITHM TO CONVERT INTERNAL
COORDINATES INTO CARTESIAN COORDINATES. ATOM
NUMBERING FOLLOWS THOSE FROM TABLE 3.1

let the first line define:
the first atom

then:
put the first atom at {0,0,0}

let the second line define:
a new first atom, and a second atom
a distance to a second atom

then:
d = distance (first atom, second atom)
put the second atom on the X axis at {d,0,0}

let the third line define:
new first and second atoms, and a third atom
a distance to a second atom,
an angle between the first, second and third atom on
this line

then:
d = distance (first atom, second atom)
α = angle (first atom, second atom, third atom)
put the third atom in the XY plane, such that:

the distance to the second atom is d, and

72 Handbook of Chemoinformatics Algorithms

TABLE 3.1
Internal Coordinates for Ethanol Shown in Figure 3.2

Number Element Distance Angle Torsion

1 O
2 C 1 1.4020
3 C 2 1.5230 1 107.50
4 H 2 1.1130 1 108.34 3 239.34
5 H 2 1.1130 1 108.34 3 120.66
6 H 3 1.1130 2 108.43 1 0.00
7 H 3 1.1130 2 108.43 1 120.00
8 H 3 1.1130 2 108.43 1 240.00
9 H 1 0.9420 2 108.44 3 0.00

the angle between first, second and third
atom is α

let the fourth and all later lines define:
new first, second, and third atoms, and a fourth
atom,
a distance between the first and second atom,
the angle between the first, second and third
atom, and
the torsion between the first, second, third, and
fourth atom

then:
d = distance (first atom, second atom)
α = angle (first atom, second atom, third atom)
t = torsion (first atom, second atom, third atom,

fourth atom)
put the first in euclidean space, such that:
the distance to the second atom is d,
the angle between first, second and third
atom is α

the torsion is defined by t

3.3.2 FRACTIONAL COORDINATES INTO CARTESIAN COORDINATES

Converting fractional coordinates into Cartesian coordinates can in the simplest way
be performed as a matrix operation:

⎛

⎜
⎝

x′

y′

z′

⎞

⎟
⎠ =

⎛

⎜
⎝

a b · cos γ c · cos β

0 b · sin γ c(cos α− cos β · cos γ)/ sin γ

0 0 V/(a · b · sin γ)

⎞

⎟
⎠

⎛

⎜
⎝

x

y

z

⎞

⎟
⎠ , (3.1)

Three-Dimensional (3D) Molecular Representations 73

FIGURE 3.5 Acetylcholinesterase (PDB code: 1ACJ) with tacrine (InChI=1S/
C13H14N2/c14-13-9-5-1-3-7-11(9)15-12-8-4-2-6-10(12)13/h1,3,5,7H,2,4,6,8H2,(H2,14,
15)) the active site. Visualized with Jmol.

with a, b, and c being the length of the crystallographic axes A, B, and C, and α, β,
and γ the angles between B and C, A and C, and A and B, respectively, and V the
volume of the unit cell, defined as

V = abc
√

1− cos2 α− cos2 β− cos2 γ+ 2 cos α cos β cos γ. (3.2)

3.4 COMPARING GEOMETRIES

There are many applications where comparing the 3D structure of molecules is inter-
esting; molecular docking is likely the most common one. In such studies the molecule
is oriented in the active site of an enzyme or receptor (Figure 3.5). CoMFA studies
binding affinities and assumes that molecules are overlayed and oriented in a similar
chemical direction, reflecting similar binding modes with protein (see Section 3.5.2).

Comparing two or more molecular 3D geometries is generally not directly possible:
the geometries do not share a common reference origin, and they may not be oriented
in the same direction. The center-of-masses of the molecules may be far apart, and
the structures can be differently aligned. The first can be addressed by putting the
center-of-mass of each molecule in the origin of the coordinate system.

It does not, however, orient the molecule in any particular way. While the center-
of-mass is in the origin, the molecular conformer can still be oriented in any direction.
To address this molecule, one may apply principal component analysis (PCA) and
orient the molecule such that the first three latent variables are oriented along the X,
Y , and Z axes as described in Algorithm 3.4.

ALGORITHM 3.4 ALGORITHM TO ALIGN CHEMICAL
STRUCTURES BASED ON ANISOMORPHISM

for each molecule :
calculate the three PCs from the 3D coordinates
for each atom:

the new x coordinate is the score on PC1

74 Handbook of Chemoinformatics Algorithms

the new y coordinate is the score on PC2
the new z coordinate is the score on PC3

overlay the molecules in the new coordinate space

The above-sketched algorithm does not take into account structural similarity
between molecules, but only looks at the anisomorphism of the structures. That is,
the variance in atomic coordinates is used to create new coordinates. Practically,
this means that each molecule is reoriented such that the direction in which the
molecule is longest, and thus has the highest variance, is aligned with the first principal
component (PC1).

Instead, it is often desirable to orient the molecules based on the maximal common
substructure (MCSS). For example, alignment of a series of steroids is expected to
overlay the sterane skeletons. The alignment must not be disturbed by large side
chains that change the overall anisomorphism of the geometry: the variance of the
3D coordinates would change and the alignment too. Using the MCSS, the alignment
of the two molecules becomes more, in agreement with what one would expect.
Most chemoinformatics toolkits have the means to either find the maximum common
substructure or to identify a user-defined substructure using a query language like
molecular query language (MQL) [4] or SMARTS.

After having identified the MCSS of the molecular geometries, the full structures
can be rotated in the coordinates space to minimize the root mean square deviation
(RMSD) of the coordinates of the shared substructure (Algorithm 3.5).

ALGORITHM 3.5 ALGORITHM TO ALIGN 3D MOLECULAR
STRUCTURES BASED ON THE COMMON SUBSTRUCTURE

find the maximal common substructure (MCSS)
find a rotation that minimizes the RMSD of the atomic

coordinates of the MCSS

3.5 FIXED-LENGTH REPRESENTATIONS

One disadvantage of representation in any of the three discussed coordinates sys-
tems is that the size depends on the number of atoms. Many chemometrical modeling
methods, however, require a numerical and fixed-length vector representation of the
molecular structure [5,6]. The above representations do not fulfill this requirement,
and hence derived descriptors have been and still are being developed to bridge the
gap between those representations and the mathematical modeling methods. These
descriptors allow statistical modeling and analysis with, for example, classical meth-
ods like PCA, partial least squares (PLS) and neural networks (NNs) and classification
methods like linear discriminant analysis (LDA). Only very few methods, such as
classification and regression trees (CART), do not require a numerical representa-
tion. Distance-based clustering, for example, can work directly with an MCSS-based
distance matrix in which two molecules that have a large substructure in common
have a smaller distance and are considered more alike.

The Handbook of Molecular Descriptors published in 2000 [7] gives a broad
overview of known molecular descriptors. Depending on the information content,

Three-Dimensional (3D) Molecular Representations 75

descriptors are usually classified as 0D, 1D, 2D, and 3D descriptors. The last category,
3D, takes into account the 3D geometry of the molecule. Recently, a fifth category has
been proposed: 4D descriptors for which several different but related definitions have
been given. Todeschini defines the 4th dimension to describe the interaction field of
the molecule [7], while others reserve this dimension to describe its conformations [8].
The latter takes into account the flexibility of molecules, where coordinate systems
only treat the molecules as rigid bodies.

3.5.1 MOLECULAR DESCRIPTORS

To illustrate how molecular descriptors convert the variable-length 3D molecular
geometries into a fixed-length representation, two descriptor algorithms are described
in this section. It is important to realize that the representation not only needs to be of
fixed length, but also needs to be orientation independent. That is, the descriptor value
must not change when the molecular geometry is rotated in coordinate space. Con-
sequently, these descriptors are suitable for comparing molecular geometries without
the need for alignment. This requirement is also the reason why these molecular
descriptors typically do not describe angular features of the molecule, other than
collapsed onto a single value.

3.5.1.1 The Length-over-Breadth Descriptor

The length-over-breadth descriptor describes the anisomorphism of the molecule,
but uses their ratio to collapse the length and breadth features into a single number
(Algorithm 3.6).

ALGORITHM 3.6 ALGORITHM FOR THE LENGTH-OVER-
BREADTH DESCRIPTOR

calculate the geometrical dimensions of the molecule
determine the length and breadth
calculate the ratio length over breadth

Calculation of the molecular length and breadth is quite similar to the use of
PCA alignment (see Section 3.4), which rotates the molecule such that the longest
molecular axis is aligned with the PC1. The length is then defined as the difference
between the maximum and minimum coordinates on this axis (PC1); the breadth
would be the difference on the second axis (PC2). This calculation can include the
van der Waals radii of the atoms to reflect the size of the molecule as a function
of its molecular surface. However, to simplify calculation, not all possible rotations
are taken into account. For example, implementations may only rotate the molecular
structure around a single coordinate system axis.

3.5.1.2 Charged Partial Surface Area (CPSA) Descriptors

The molecular surface area and the molecular volume are other methods to reduce the
3D geometry to a fixed-length representation. Neither of the two describe the inter-
nal geometry of the molecules, but are aimed at describing the molecular features

76 Handbook of Chemoinformatics Algorithms

governing intermolecular interactions. Both surface area descriptors and the molec-
ular formula require the calculation of the molecular surface area (Algorithm 3.7).
Depending on the actual surface of interest, different atomic contributions to the total
surface can be used. For example, the van der Waals surface will use a smaller sphere
around each atom than the solvent accessible surface.

ALGORITHM 3.7 ALGORITHM TO DETERMINE THE 3D
MOLECULAR SURFACE

For each atom:
use tessellation to define a sphere of points around
the 3D coordinate of the atom

remove all sphere points which are buried inside the
spheres of neighboring atoms

the molecular surface is defined by the remaining points

The CPSA descriptor uses the atomic contributions to this surface, combined with
the partial atomic charges, as the starting point to come to 25 descriptor values [9]. A
full description of all values is outside the scope of this chapter and is well described
in the original paper, but it is illustrative to describe the first six: partial positive
surface area (PPSA), total charge weighted PPSA, atomic charge weighted PPSA,
and their negative charge equivalents, namely partial negative surface area (PNSA),
total charge weighted PNSA, and atomic charge weighted PNSA.

These six descriptors provide a numerical vector representation of the geometrical
features of the molecule, but at the same time introduce electronic features that affect
intermolecular interactions. The PPSA and PNSA use the aforementioned algorithm
to determine the atomic contributions to the molecular surface area. While the PPSA
only takes into account atomic contributions of atoms with a positive partial charge(∑

(SA+i)
)
, the PNSA only takes into account contributions from the negatively

charged atoms
(∑

(SA−i)
)
. This introduces a nice area where implementations of the

general algorithm will differ in results, depending on which algorithm has been used
to calculate the partial charges. For example, the original paper used an empirical
method, whereas the CDK implementation of this descriptor uses Gasteiger charges.
The other four descriptors are also derived from the atomic contributions, but are
weighted sum of positive (Q+T) or negative (Q−T) partial charges. An overview of the
six descriptor values of the CPSA descriptor is given in Table 3.2.

3.5.2 COMPARATIVE MOLECULAR FIELD ANALYSIS

That an insight into the 3D interaction of a ligand with protein cavities is important
in the modeling of biochemical endpoints, such as binding affinity, became apparent
and computationally feasible in the last decade. Comparative molecular field analysis
(CoMFA) is the primary example of this concept [10]. The CoMFA method studies
molecule–environment interaction by putting the molecules in an equidistant grid
of points in 3D space. At each point, the interaction energy is calculated using a
hypothetical probe, for example, using the Lennard–Jones potential function and the
Coulomb potential energy function. It is important to note that because the molecules

Three-Dimensional (3D) Molecular Representations 77

TABLE 3.2
First Six of the 25 CPSA Descriptors, with the Formulas
to Calculate them

Descriptor Label Formula

Partial positive surface area PPSA
∑

(SA+i)
Partial negative surface area PNSA

∑
(SA−i)

Total charge weighted PPSA PPSA-2 PPSA/Q+T
Total charge weighted PNSA PNSA-2 PNSA/Q−T
Atomic charge weighted PPSA PPSA-3

∑
(SA+i cot Q+i)

Atomic charge weighted PNSA PNSA-3
∑

(SA−i cot Q−i)

Note: SA+i and SA−i are the atomic contributions to the surface area for
the atoms with positive and negative partial charge, respectively. Q+T
and Q−T are the sum of positive partial charges Q+i and the sum of
negative partial charges Q−i , respectively.

are aligned, the interaction similarities of the ligands can be compared by calculating
the difference in the interaction energies of the matching grid points for all molecules.
Afterwards, PLS is used to correlate the matrix expansion of the grid with the activity,
such as ligand–target binding affinities [11,12].

CoMFA requires, however, geometrical alignment of the molecules, as discussed
earlier, and only considers one conformation for each molecule, which is only a
simplification of reality. Therefore, the focus has moved on to descriptors that are
independent of the orientation of the molecules in its reference frame, and possibly
even include information of multiple conformations. This was already acknowl-
edged in 1997 by Hopfinger, who made a scheme which incorporated some ideas
from CoMFA but which was alignment independent and took into account multiple
conformations [13].

3.5.3 RADIAL DISTRIBUTION FUNCTIONS

Another common approach to remove alignment effects is to use the radial distribution
function (RDF). This kind of function, as the name says, describes the distribution of
certain features as a function of the distance to the central point. RDFs are particularly
interesting when distance-related interactions need to be captured. The basic RDF
describes the occurrence of a chemical feature at a certain distance, for example,
the presence of an atom. For example, Aires-de-Sousa et al. have used five RDFs to
describe the environment of protons to predict proton NMR shifts [14] and for the
simulation of infrared spectra [15,16].

Figure 3.6 shows a basic spike-like RDF and the effect of smoothing with Gaussian
function. This smoothing is particularly useful when a (dis)similarity between two
RDFs is calculated: small displacements of the atom positions captured in the RDF
will lead to large changes in the similarity between the two functions. However,
when a Gaussian smoothing is used, changes in the similarity are less abrupt. Other

78 Handbook of Chemoinformatics Algorithms

0.0

0 1 2 3 4

0.5

1.0

1.5

2.0

r in Å

RD
F(

r)

FIGURE 3.6 Three RDFs for the oxygen atom in ethanol shown in Figure 3.2. The highest-
intensity, spiked RDF has no Gaussian smoothing applied; each atom contributes equally to the
function. The two other RDFs are Gaussian-smoothed functions with different Gauss widths,
but equal summed intensities.

approaches can be used too, and one such is used in the application described in the
next section.

The algorithm for calculating an RDF for an atom in a molecule is fairly simple
and is described in Algorithm 3.8. While the RDF itself is an analogous function,
particularly when Gaussian smoothing is used, the function is typically digitized, for
example, using binning. Given a central atom, the RDF of atoms around that atom
is calculated by iterating over all atoms in the molecule, and determine where it
contributes to the RDF. The amount it contributes is defined by a weighing scheme.
In its simplest form, the contribution is 1 for each atom present (in black in Figure
3.6). If a Gaussian smoothing is used, then the neighboring bins are increased too,
effectively convoluting the spike with a Gaussian function of selectable width (in light
gray and dark gray in Figure 3.6).

ALGORITHM 3.8 ALGORITHM FOR CALCULATING AN RDF FOR AN
ATOM IN A MOLECULE THAT DESCRIBES THE DISTRIBUTION OF
ATOMS AROUND THAT ATOM. THE RDF CONTRIBUTION IN ITS
SIMPLEST FORM IS 1, INDICATING THE PRESENCE OF AN ATOM (IN
BLACK IN FIGURE 3.6)

determine the central atom:
for each other atom in the molecule:

determine the distance to the central atom
determine the corresponding RDF bin
calculate the RDF contribution
add this contribution to the bin

An interesting feature of RDFs is that they can be tuned to particular applications.
The aforementioned application in NMR shift prediction uses five such customized
RDFs. The contribution an atom gives to the RDF can be weighted in various ways.

Three-Dimensional (3D) Molecular Representations 79

−0.02

0.00

0.02
RD

F(
r)

0 1 2 3 4
r in Å

FIGURE 3.7 The coulombic interaction weighted (solid line) and non-weighted RDF (dashed
line) for the oxygen atom in ethanol shown in Figure 3.2, showing the effect of the weighing
scheme.

Commonly, the contribution is weighted by the distance to the central atom: the farther
away from the center, the smaller the contribution. This compensates for the fact that
at larger distances, each bin describes an increasing amount of spherical space.

Additionally, the contribution can be weighted by the properties of the atom that
affect the contribution. For example, the coulombic interaction can be used, which rep-
resents the electronic interaction between the point charges of the atoms (Figure 3.7)
and which originates from the desire to describe electronic features of the molecule.
The application described in the next section of this chapter applies this approach too,
where it uses RDFs to describe complete organic crystal structures.

Importantly, it should be clear that the algorithm allows for any weighting function,
offering interesting flexibility in describing molecular geometries.

3.6 APPLICATION: CLUSTERING OF CRYSTAL PACKINGS

Comparing crystal structures is important in both classification and clustering prob-
lems. Classification is important for the understanding of the relation between physical
properties and the underlying structure of materials. The specific packing of molecules
in a crystal directly influences the physical properties of compounds. As an exam-
ple, in crystal engineering, crystal packings are classified according to intermolecular
interactions [17–21]. A second application of the similarity measure is in the cluster-
ing stage of ab initio crystal structure prediction [22,23]. In this process, hundreds
or thousands of different hypothetical crystal packings for the same molecule, called
polymorphs, are generated. They need to be clustered to arrive at representative subsets
for which analysis and geometry optimization are feasible.

Two things are needed for clustering and classification of crystal structures: a
properly defined descriptor and a similarity function applied to this descriptor. A
few requirements for both the descriptor of crystal structures and the similarity
function are described in the literature [24–26]: the most obvious requirement for
a descriptor–similarity combination is that more dissimilar crystal structures result in
larger dissimilarity values.Although this seems trivial, several well-known descriptors

80 Handbook of Chemoinformatics Algorithms

do not generally satisfy this requirement [24–27]. Many descriptors require a choice
of origin, or some other setting. Among such descriptors is the combination of unit
cell parameters and fractional coordinates discussed earlier in this chapter. Caused
by this choice of origin, a descriptor based on reduced unit cell parameters can vary
significantly with only minor lattice distortions [28,29]. Although it is in some cases
possible to adapt the similarity function to deal with such instabilities, this issue can
better be addressed by using RDFs [30]. Using this descriptor a dissimilarity mea-
sure that expresses the differences between two crystal structures can be defined. The
resulting dissimilarity value can then be used to cluster or classify the crystal structures
by grouping together structures that have a low dissimilarity between them.

Crystal structures can be uniquely represented by an RDF describing the distribu-
tion of neighboring atoms around a central atom. Each neighboring atom gives rise
to a peak in the function. RDFs are independent of cell choice and can be physically
interpreted. In the application presented here, the RDF is adapted to include more spe-
cific information about the atoms. To do so, the RDF is weighted by the electrostatic
interactions. To indicate the inclusion of electrostatic information in the descriptor,
we will refer to this as the electronic RDF, or ReDF. The reason for including elec-
trostatics is the assumption that these play a major role in crystal packing [18,31,32].
By including partial atomic charges, the ReDF focuses on atom groups with large
partial charges, in particular functional groups, and differentiates between attractive
interactions between oppositely charged atoms and repulsive interactions.

An atomic ReDF describes the distribution of coulombic interactions of one atom
with surrounding atoms; the ReDF for the crystal structure is obtained by summing
all atomic ReDFs of all N atoms in the asymmetric unit:

ReDF(r) =
N∑

i=1

M∑

j=1

qiqj

N · ri, j
δ(r − ri, j), (3.3)

where M is the number of neighboring atoms within a radius r, qi and qj are partial
atomic charges of the atoms i and j, and δ places the electrostatic interaction at the
right distance by its definition δ(x) = 1 if x = 0 and δ(x) = 0 if x �= 0. Alternatively,
the δ(x) can reflect Gaussian smoothing. The function is scaled for the number of
atoms in the asymmetric unit, N .

Figure 3.8 shows the ReDF for an artificial crystal with two atoms in the unit
cell, a positively and a negatively charged one (a = 7.97, b = 10.26, c = 18.77, and
α = β = γ = 90◦). The first negative peak is the interaction between the two atoms
at exactly the bonding distance. The other negative peaks are also peaks between two
oppositely charged atoms. The overall decrease in intensities is caused by the 1/r term
in the ReDF equation. The first positive peak is related to the translation along the a
axis, that is, ± �a, and the second peak to the translation along the b axis. The third
peak is the translation in the direction a± b. For this orthogonal structure, there are
twice as many contributions to this peak as for the first two positive peaks, resulting
in the higher intensity.

The ReDFs of four experimental cephalosporin crystal structures are shown in
Figures 3.9 and 3.10. They show a few distinct high-intensity peaks and many smaller

Three-Dimensional (3D) Molecular Representations 81

10

5

0

15

20

−0.25−0.15−0.050.05

FIGURE 3.8 Example ReDF of an artificial crystal structure with a positively and a negatively
charged atom (a = 8.0, b = 10.3, c = 18.8, and α = β = γ = 90◦). Positive peaks are caused
by the interaction of atoms with both positive and both negative charges. Consequently, they
cause positive peaks at the distances matching the translational symmetry of the crystal. This
explains, for example, the positive peaks at 8.0, 10.3, and 18.8 Å.

82 Handbook of Chemoinformatics Algorithms

(a)

10

5

0

15

25

20

−0.06−0.020.020.06

(b)

10

5

0

15

25

20

−0.06−0.020.020.06

FIGURE 3.9 Example ReDFs of three cephalosporin compounds: (a) A9, (b) A10 from the
same class A.

peaks. The locations of these peaks are specific for the crystal packing: Figure 3.9a
and b shows the ReDFs of two cephalosporin structures from the same class, while
Figure 3.9c shows the ReDF for a different packing. Figure 3.10a shows the func-
tion for a simulated estrone crystal structure; a similar pattern can be observed.
Figure 3.10b shows the effect of cutting away peaks with intensities lower than some

Three-Dimensional (3D) Molecular Representations 83

(c)

10

5

0

15

25

20

−0.06−0.020.020.06

FIGURE 3.9 (Continued) (c) N19 from a different class N.

threshold. It was found that the cutoff value must be around 20% of the highest peak.
Cutting away the smaller peaks emphasizes the major features of the ReDF and leads
to better discrimination.

Because of the nature of the ReDF, one can expect positive contributions at those
distances that match the translational symmetry in the crystal. This causes the positive

84 Handbook of Chemoinformatics Algorithms

(a)

10

5

15

25

20

−1.0−0.50.5 0.01.0

(b)

10

5

15

25

20

−1.0−0.50.5 0.01.0

FIGURE 3.10 Example ReDF of one of the simulated estrone structures shown in (a), and
the effect of cutting away of peaks below 20% of the intensity of the highest peak in (b).

peaks at 8.0, 10.3, and 18.8 Å. However, since such contributions can be canceled out
by other, negative contributions, they do not always show up in the ReDF. Moreover,
peaks not related to translational symmetry are particularly interesting, because they
provide information additional to symmetry in the crystal.

Three-Dimensional (3D) Molecular Representations 85

TABLE 3.3
Open-Source Implementations of Algorithms Discussed in the Chapter

Algorithm Number Algorithm Libraries Details

3.1 Calculate the center-of-mass CDK
3.2 Create 3D geometries from 2D

diagrams
CDK

3.3 Convert internal to Cartesian
coordinates

CDK OpenBabel

3.4 Align chemical structures based
on anisomorphism

R

3.5 Align 3D molecular structures CDK MCSS search
based on the common
substructure

R For algorithm 3.4

3.6 Calculate the length-over-
breadth ratio

CDK

3.7 Calculate the 3D molecular
surface

CDK NumericSurface.class

3.8 Calculate an atomic RDF CDK RDFCalculator.class

Using this description, dissimilarities between crystal structures are represented
by the difference between the two corresponding ReDFs. For this, a weighted cross
correlation (WCC) is used [19], which is applied to the high-intensity peaks of the
ReDF. Using this approach, both experimental and simulated crystal structures have
been clustered and classified successfully [30].

3.7 OPEN-SOURCE IMPLEMENTATIONS

This chapter has presented a variety of basic algorithms involved in the representation
of 3D molecular geometries. Because support for these geometries is so fundamental
to chemoinformatics, it will not be difficult to find implementations in open-source
software for the algorithms described in this chapter. Visualization of 3D geometries
can be done in Jmol (http://www.jmol.org/, [1]) and PyMOL (http://www.pymol.org/).
Converting different coordinate systems is also supported by various open-source
toolkits, including the CDK (http://cdk.sourceforge.net/, [33,34]) and OpenBabel
(http://openbabel.org/). Table 3.3 gives a more detailed overview.

REFERENCES

1. Willighagen, E. L. and Howard, M., Fast and scriptable molecular graphics in web browsers
without Java3D. Nat. Precedings. 2007, http://precedings.nature.com/documents/50/
version/1. Doi: 10.1038/npre.2007.50.1.

2. DeLano, W., The PyMOL Molecular Graphics System. DeLano Scientific LLC: Palo Alto,
CA, http://www.pymol.org, 2008.

3. Tomczak, J., Data types. In: J. Gasteiger (Ed.), Handbook of Chemoinformatics, Vol. 1.
Wiley-VCH: Weinheim, 2003, pp. 392–409.

86 Handbook of Chemoinformatics Algorithms

4. Proschak, E., Wegner, J. K., Schuller, A., Schneider, G., and Fechner, U., Molecular query
language (MQL)—a context-free grammar for substructure matching. J. Chem. Inf. Model.
2007, 47, 295–301.

5. Baumann, K., Uniform-length molecular descriptors for quantitative structure prop-
erty relationships (QSPR) and quantitative structure–activity relationships (QSAR):
Classification studies and similarity searching. Trends Anal. Chem. 1999, 18, 36–46.

6. Willighagen, E., Wehrens, R., and Buydens, L., Molecular chemometrics. Crit. Rev. Anal.
Chem. 2006, 36, 189–198.

7. Todeschini, R. and Consonni, V., Handbook of Molecular Descriptors; Volume 11 of
Methods and Principles in Medicinal Chemistry. Wiley-VCH: New York, 2000.

8. Duca, J. and Hopfinger, A., Estimation of molecular similarity based on 4D-QSAR
analysis: Formalism and validation. J. Chem. Inf. Model. 2001, 41, 1367–1387.

9. Stanton, D. T. and Jurs, P. C. Development and use of charged partial surface area structural
descriptors in computer-assisted quantitative structure–property relationship studies. Anal.
Chem. 1990, 62, 2323–2329.

10. Cramer III, R., Patterson, D., and Bunce, J., Comparitative molecular field analysis
(CoMFA). 1. Effect of shape on binding of steroids to carries proteins. J. Am. Chem.
Soc. 1988, 110, 5959–5967.

11. Kim, K., List of CoMFA references, 1997. Perspect. Drug Discov. Des. 1998, 12–14,
334–338.

12. Kim, K., Greco, G., and Novellino, E., A critical review of recent CoMFA applications.
Perspect. Drug Discov. Des. 1998, 12–14, 257–315.

13. Hopfinger, A., Wang, S., Tokarski, J., Jin, B., Albuquerque, M., Madhav, P., and
Duraiswami, C., Construction of 3D-QSAR models using the 4D-QSAR analysis for-
malism. J. Am. Chem. Soc. 1997, 119, 10509–10524.

14. Aires-De-Sousa, J., Hemmer, M., and Gasteiger, J., Prediction of 1H NMR chemical shifts
using neural networks. Anal. Chem. 2002, 74, 80–90.

15. Gasteiger, J., Sadowski, J., Schuur, J., Selzer, P., Steinhauer, L., and Steinhauer, V.,
Chemical information in 3D space. J. Chem. Inf. Comput. Sci. 1996, 36, 1030–1037.

16. Hemmer, M. C., Steinhauer, V., and Gasteiger, J., Deriving the 3D structure of organic
molecules from their infrared spectra. Vibrat. Spectros. 1999, 19, 151–164.

17. Perlstein, J., Steppe, K., Vaday, S., and Ndip, E. M. N., Molecular self-assemblies. 5.
Analysis of the vector properties of hydrogen bonding in crystal engineering. J. Am. Chem.
Soc. 1996, 118, 8433–8443.

18. Moulton, B. and Zaworotko, M. J., From molecules to crystal engineering: Supramolecular
isomerism and polymorphism in network solids. Chem. Rev. 2001, 101, 1629–1658.

19. De Gelder, R., Wehrens, R., and Hageman, J. A., generalized expression for the similarity
spectra: Application to powder diffraction pattern classification. J. Comput. Chem. 2001,
22, 273–289.

20. Hollingsworth, M. D., Crystal engineering: From structure to function. Science 2002, 295,
2410–2413.

21. Ilyushin, G., Blatov, N., and Zakutin, Y., Crystal chemistry of orthosilicates and their
analogs: The classification by topological types of suprapolyhedral structural units. Acta
Cryst. 2002, B58, 948–964.

22. Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D., Gavezzotti, A.,
Hofmann, D. W. M., Leusen, F. J. J., et al., A test of crystal structure prediction of small
organic molecules. Acta Cryst. 2000, B56, 697–714.

23. Motherwell, W. D. S., et al., Crystal structure prediction of small organic molecules: A
second blind test. Acta Cryst. 2002, B58, 647–661.

Three-Dimensional (3D) Molecular Representations 87

24. Dzyabchenko, A. V., Method of crystal-structure similarity searching. Acta Cryst. 1994,
B50, 414–425.

25. Andrews, L. C. and Bernstein, H. J., Bravais lattice invariants. Acta Cryst. 1995, A51,
413–416.

26. Kalman, A. and Fabian, L., Volumetric measure of isostructurality. Acta Cryst. 1999, B55,
1099–1108.

27. Van Eijck, B. P. and Kroon, J., Fast clustering of equivalent structures in crystal structure
prediction. J. Comput. Chem. 1997, 18, 1036–1042.

28. Andrews, L. C., Bernstein, H. J., and Pelletier, G. A., A perturbation stable cell comparison
technique. Acta Cryst. 1980, A36, 248–252.

29. Andrews, L. C. and Bernstein, H. J., Lattices and reduced cells as points in 6-space and
selection of Bravais lattice type by projections. Acta Cryst. 1988, A51, 1009.

30. Willighagen, E., Wehrens, R., Verwer, P., de Gelder, R., and Buydens, L., Method for the
computational comparison of crystal structures. Acta Cryst. 2005, B61, 29–36.

31. Pauling, L. and Delbruck, M., The nature of the intermolecular forces operative in
biological processes. Science 1940, 92, 77–79.

32. Desiraju, G. R., Supramolecular synthons in crystal engineering—a new organic synthesis.
Angew. Chem. Int. Ed. 1995, 34, 2311–2327.

33. Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., and Willighagen, E.,
The Chemistry Development Kit (CDK): An open-source Java library for chemo- and
bioinformatics. J. Chem. Inf. Comput. Sci. 2003, 42, 493–500.

34. Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., and Willighagen, E., Recent
developments of the Chemistry Development Kit (CDK)—An open-source Java library
for chemo- and bioinformatics. Current Pharmaceutical Design 2006, 12, 2111–2120.

4 Molecular Descriptors

Nikolas Fechner, Georg Hinselmann,
and Jörg Kurt Wegner

CONTENTS

4.1 Molecular Descriptors: An Introduction . 90
4.2 Graph Definitions . 91
4.3 Global Features and Atom Environments . 93

4.3.1 Topological Indices . 93
4.3.2 Principles of Complexity Descriptors . 94
4.3.3 Atom Environments . 95

4.3.3.1 HOSE Codes (Hierarchically Ordered Spherical
Description of the Environment) . 95

4.3.3.2 Radial Distribution Function . 96
4.3.3.3 Local Atom Environment Kernel . 96

4.3.4 Eigenvalue Decomposition . 97
4.3.4.1 Characteristic Polynomial . 97
4.3.4.2 Burden Matrix and BCUT Descriptors . 98
4.3.4.3 WHIM Descriptors . 98

4.4 Molecular Substructures . 99
4.4.1 Substructure Types and Generation .100

4.4.1.1 Atom Types and Reduced Graphs .100
4.4.1.2 Atom Pairs .101
4.4.1.3 Sequences of Atom Types: Paths and Walks102
4.4.1.4 Trees. .104
4.4.1.5 Fragments .105

4.4.2 Fingerprints .105
4.4.2.1 Hashed Fingerprints .106
4.4.2.2 Comparison of Hashed Fingerprints and Baldi’s

Correction .107
4.4.2.3 Stigmata .108
4.4.2.4 Fingal. .109

4.4.3 Hashing .109
4.4.3.1 Cyclic Redundancy Check .109
4.4.3.2 InChI Key .110

4.5 Pharmacophores, Fields, and Higher-Order Features (3D, 4D, and Shape) .110
4.5.1 Molecular Shape .110

4.5.1.1 Molecular Shape Analysis. .110
4.5.1.2 ROCS—Rapid Overlay of Chemical Structures111

89

90 Handbook of Chemoinformatics Algorithms

4.5.1.3 Shapelets .112
4.5.2 MIF-Based Features .114

4.5.2.1 GRID .114
4.5.2.2 Alignment-Based Methods .116
4.5.2.3 CoMFA—Comparative Molecular Field Analysis116
4.5.2.4 CoMSIA—Comparative Molecular Similarity Indices

Analysis .117
4.5.2.5 Structural Alignment .118
4.5.2.6 SEAL—Steric and Electrostatic Alignment119
4.5.2.7 Alignment-Free Methods .120
4.5.2.8 GRIND—GRid-INdependent Descriptors120
4.5.2.9 VolSurf .120

4.5.3 Pharmacophores. .121
4.5.3.1 Ensemble Methods .122
4.5.3.2 Receptor Surface Models .126

4.5.4 Higher Dimensional Features .127
4.6 Implicit and Pairwise Graph Encoding: MCS Mining and Graph Kernels . .128

4.6.1 MCS Mining .128
4.6.1.1 Maximum Common Subgraph .128
4.6.1.2 Exact Maximum Common Substructure129
4.6.1.3 Inexact Maximum Common Substructure.130

4.6.2 Kernel Functions .131
4.6.2.1 Kernel Closure Properties .131

4.6.3 Basic Kernel Functions .132
4.6.3.1 Numerical Kernel Functions .132
4.6.3.2 Nominal Kernel Functions .133

4.6.4 2D Kernels on Nominal Features .133
4.6.4.1 Marginalized Graph Kernel .135

4.6.5 2D Kernels Nominal and Numerical Features .135
4.6.5.1 Optimal Assignment Kernels .135

4.6.6 3D Kernels on Nominal and Numeric Features .137
4.6.6.1 A General Framework for Pharmacophore Kernels137
4.6.6.2 Fast Approximation of the Pharmacophore Kernel

by Spectrum Kernels .138
References .139

4.1 MOLECULAR DESCRIPTORS: AN INTRODUCTION

The derivation of information and knowledge from real-world data makes it necessary
to define properties that differentiate certain objects from others. Therefore, an explicit
definition of a formal description of such objects is needed in a way that the natural
distinction is preserved. It is obvious that the way an object is described depends on the
context of interest. In the case of molecular structures, the chosen description of the
same compound would certainly differ if a specific pharmaceutical target affinity or
its experimental synthesis should be described. For this reason, literally thousands of
molecular descriptors have been proposed covering all properties of interest. Thus, it
is not the goal of this chapter to present an exhaustive list of descriptors but to provide a

Molecular Descriptors 91

detailed account on the most important types, principles, and algorithms. An encyclo-
pedia that covers most of the important molecular descriptors can be found in Ref. [1].

A molecular descriptor is an abstract, in most cases numerical, property of a molec-
ular structure, derived by some algorithm describing a specific aspect of a compound.
There are many ways to define descriptor classes. The most important object is to
differentiate between the structural representations used as input. The simplest types
are one-dimensional descriptors (0D and 1D) that only depend on the molecular for-
mula, such as molecular mass or the numbers of specific elements. The net charge of
a molecule is often regarded as a 1D descriptor. Most descriptors consider the molec-
ular topology (i.e., the structural formula). These are considered as two-dimensional
(2D) descriptors like most of the graph theory-based descriptors. Descriptors that also
regard the spatial structure are defined as three-dimensional (3D). This class consists,
for instance, of molecular interaction field (MIF)-based approaches, but also methods
that make use of Euclidean distances. Further descriptor classes that have been intro-
duced consider, for example, different conformations or molecular dynamics. Their
dimensionality cannot be expressed in a similar intuitive way; sometimes we can find
acronyms like four-dimensional (4D) or five-dimensional (5D) for such methods.

4.2 GRAPH DEFINITIONS

Most of the descriptors we will present in this chapter are at least 2D and therefore
make use of the molecular topology. In such approaches, a molecule is often regarded
as a graph annotated with complex properties, often using an unrestricted label alpha-
bet. This flexible definition allows us to apply all kinds of structured data algorithms
based on graphs [2], which also covers feature-reduced molecular graphs.

Definition 4.1: Given a node label alphabet Lv and an edge label alphabet LE , we
define a directed attributed graph g by the four-tuple g = (V , E, μ, ν), where

• V defines a finite set of nodes
• E ⊆ VxV denotes a set of edges
• μ : V → LV denotes a node labeling function
• ν : E → LE denotes an edge labeling function

The set V of nodes can be regarded as a set of node attributes of size |V |.
The set E of edges defines the structure and (edge) density of the graph. A con-

nection from node v ∈ V to node u ∈ V is formed by e = (u, v), if e ∈ E. A labeling
function allows integrating information on the nodes or edges by using Lv and LE .
In theory, there is no restriction to the label alphabet. Nevertheless, for practical rea-
sons the label alphabet is restricted to a vector space of a limited dimension L = Rk ,
or a discrete set of symbols, L = {s1, . . . , sk}. Other definitions of labels might also
contain information such as strings, trees, or graphs, as an alphabet reduction may
impose constraints on the application domain, allowing a more flexible encoding.

Although there are various labeling functions for molecular graphs possible, there
are still ongoing discussions for a standard definition (http://blueobelisk.sourceforge
.net, http://opensmiles.org/). Due to differences in chemoinformatics perception

92 Handbook of Chemoinformatics Algorithms

algorithms [3] and expert systems, it is not possible to guarantee that two software
solutions implement the same labeling function. This becomes important when algo-
rithms are compared; drawn conclusions might rather challenge the labeling function
instead of the algorithm of interest. If we regard 3D atom coordinates as an atomic
node label triple LV ,3D(x, y, z) this becomes clear, because LV ,3D(x, y, z) labels might
differ dramatically between algorithms [4–8]. If algorithms make use of different label
functions, it is not sure whether the algorithms or the label function are compared.

Although the representation of a chemical compound as a directed graph is some-
times useful, for example, if asymmetric bond dissociation energies are used as edge
labels, it can be regarded as a special case. In most cases, a molecular graph is treated
as an undirected graph, where the directed edges e = (u, v) and e = (v, u) are iden-
tical, (u, v) = (v, u). This can be written as e = {u, v}, by replacing the ordered list
(. . . , . . .) with the unordered set {. . . , . . .}. Another special case is a nonattributed
graph with empty node and edge labeling functions LV = LE = {}, which simplifies
the graph definition to g = (V , E).

An important task on graphs is to detect a defined graph contained in another graph
(i.e., a subgraph).

Definition 4.2: Let g′ = (V ′, E′, μ′, ν′) and g = (V , E, μ, ν) be graphs. Graph g′
is a subgraph of g or g is a supergraph of g′, written as g′ ⊆ g, if

• V ′ ⊆ V
• E′ = E ∩ (V ′ ⊆ V ′)
• μ′(u) = μ(u), ∀u ∈ V ′
• ν′(u, v) = ν(u, v), ∀(u, v) ∈ E′

Subgraph matchings and searches are usually applied after using a molecular label-
ing function. This is crucial, because some labelings depend on the size of a graph.
The famous Hückel rule requires a graph size of at least (2 · |V | + 4) to assign aro-
maticity labels. In such cases, a label function cannot be applied to subgraphs alone
and aromatic labels might not be assigned correctly.

The consideration of molecular structures as graph objects with certain proper-
ties requires defining the similarity of two structures, which is the base of many
chemoinformatics applications by means of graphs. The evaluation of the similarity
between two graphs is called graph matching [9]. Graph matching methods can be
further divided into exact and inexact or error-tolerant matching algorithms.An exact
matching algorithm of two graphs g1 and g2 decides if both graphs are identical. This
is also known as graph isomorphism.

A bijective mapping f : V → V ′ denotes a graph isomorphism of a graph g1 =
(V , E) and a graph g2 = (V ′, E′) if

1. αi(v) = α′i[f (v)] with v ∈ V , where αi is a labeling function
2. For each edge e = (v1, v2) ∈ E there exists an edge e′ = [f (v1), f (v2)] ∈

E′ and for each edge e′ = (v′1, v′2) ∈ E′ there exists an edge e = [f−1(v′1),
f−1(v′2)] ∈ E

The graph isomorphism problem is hard to solve and possibly NP-complete (i.e.,
the problem has an exponential complexity with the input) in the case of general

Molecular Descriptors 93

graphs. Nonetheless, there are special cases for which polynomial time algorithms
are known. An example applicable for molecular graphs is the graph isomorphism
approach for graphs with bounded valence by Luks [10]. A variation of this prob-
lem is subgraph isomorphism, which decides if a graph is completely contained in
another one.

4.3 GLOBAL FEATURES AND ATOM ENVIRONMENTS

Global features describe a molecular graph by a real-valued single number. A full
enumeration of all global features is beyond the scope of this section and there
are well-known textbooks dealing with this topic, a case in point is Ref. [1].
Instead, we introduce some basic principles and implementations of some topological,
complexity, eigenvalue-based descriptors, and local atom environments.

4.3.1 TOPOLOGICAL INDICES

Topological indices are global features that derive information from the adjacency
matrix of a molecular graph. A problem of such descriptors is the so-called degener-
acy problem, which occurs if two molecules are assigned the same descriptor value.
This is often the case with stereoisomers on which topology-based algorithms have
difficulties in general.

Topological descriptors can be divided in bond-based descriptors and distance-
based descriptors. Whereas the first give information on how the atoms in a molecular
graph are connected, the latter are based on the topological distance.

The Wiener Index is a convenient measure for the compactness of a molecule and
has a low degeneracy [11]. The basic implementation of this topology-based descriptor
uses the information contained in the shortest-distance matrix M, see Algorithm 4.1.

ALGORITHM 4.1 WIENER INDEX COMPUTATION

method double calculate (Molecule mol) {
wienerPathNumber = 0.0;
// get n×n distance matrix from molecular graph
using Floyd-Warshall or Dijkstra
DistanceMatrix M = getDistanceMatrix (mol) ;
for (i = 0; i < M.length; i++) do

for (j = 0; j < M.length; j++) do
if (i == j) continue ;

wienerPathNumber += M[i] [j] ;
fi

od
od

return wienerPathNumbers/2 ;
}

94 Handbook of Chemoinformatics Algorithms

Usually, the shortest distances are computed by the Floyd–Warshall algorithm or
Johnson’s algorithm that is more efficient on sparse graphs:

W(G) = 1

2

⎛

⎝
N∑

i=0

N∑

j=0,i �=j

(Mij)

⎞

⎠ .

4.3.2 PRINCIPLES OF COMPLEXITY DESCRIPTORS

There are numerous descriptors based on the complexity of molecular graphs.
Some popular descriptors are based on this concept. Comprehensive overviews of
complexity descriptors were published by Bonchev [12,13].

The Minoli Index [14] is defined as

MI =
(|V | × |E|
|V | + |E|

)∑

l

Pl,

where Pl is the number of paths of length l.
Information-theoretic indices are derived from the Shannon formula of a system

with n elements:

I = −
k∑

i=1

(ni

n

)
log2

(ni

n

)
,

where k is the number of different sets of elements and ni is the number of elements
in the ith set. An application is the Bonchev–Trinajstic Index, in which the branching
information on the molecule is incorporated into a descriptor.

BT = n log2 n−
∑

l

nl log2 nl,

where n is the total number of distances, nl is the number of distances of length l, and
n equals the sum over all nl .

A spanning tree is a connected, acyclic subgraph of a graph G that includes all
vertices of G. The number of spanning trees is a topological complexity descriptor. It
is computed using the Laplacian matrix, which is defined as

L(G) = V(G)− A(G),

t(G) = ∣
∣Lij

∣
∣ ,

where V is the diagonal matrix of G with the vertex degrees and A denoting its
adjacency matrix. Lij is the Laplacian matrix with row i and column j deleted, and
t(G) returns the number of spanning trees.

The Bonchev Index derives information on the total number of connected sub-
graphs. The First Bonchev Index is often referred to as the Topological Complexity
Index (TC),

TC =
∑

s

∑

i

di(s),

where di(s) is the degree of subgraph s regarding vertex i.

Molecular Descriptors 95

Randić complexity indices are defined using augmented vertex degrees. They are
computed by the augmented degree matrix Dij , where dj is the degree of vertex j and
lij is the distance between vertices i and j:

D′ij =
dj

2lij
.

The augmented degree is the row sum of the ith row of D′ij .
Zagreb indices are topology-based indices, summing up vertex degrees over

vertices and edges. They are defined as follows:

M1 =
∑

vertices

(di)
2,

M2 =
∑

edges

(didj),

where di is the degree of vertex i. M1 is the count of all walks of length 2.
Graph complexity can be defined in various ways [12,13], but still there is no

standard definition. In Ref. [12] various criteria are compiled from different sources,
which describe the requirements for a “good” molecular complexity descriptor. For
example, a complexity index should

• Increase with the numbers of vertices and edges
• Reflect the degree of connectedness
• Be independent from the nature of the system
• Differentiate nonisomorphic systems
• Increase with the size of the graph, branching, cyclicity, and number of

multiple edges

Still, this is an ongoing discussion, with even conflicting positions. In Ref. [12], it is
concluded that common requirements on complexity indices are as follows: principles
of homology, reflection of branching, cyclicity, multiple edges, and heteroatoms.

4.3.3 ATOM ENVIRONMENTS

All atom environments have a common principle, namely that they describe atoms by
using the information of the direct neighborhood. The advantage of this procedure is
that no functional groups or fragments have to be predefined.

4.3.3.1 HOSE Codes (Hierarchically Ordered Spherical Description of
the Environment)

Starting from the “root” (the atom to be described), the symbols of neighboring bonds
and atoms are retrieved by a depth-first search and assigned to the so-called spheres.
Sphere i includes all direct and non-neighboring atoms with topological distance i.
For substructures and rings, priority tables exist such that for each sphere a unique

96 Handbook of Chemoinformatics Algorithms

string representation can be assigned. This ensures an efficient comparison and storage
because this representation can be mapped to numerical value. The HOSE code was
introduced by Bremser [15].

4.3.3.2 Radial Distribution Function

The radial distribution function (RDF) [16,17] is a correlation-based function. It is
defined as follows:

g(r) = 1

2

|A|∑

n,m,n �=m(n)

αi(n)αi(m)e−γd2
.

The Moreau–Broto autocorrelation is a special case of the RDF:

AC(d) = g(r)lim→∞ =
|A|∑

n,m,n �=m

αi(n)αi(m)δnm,

with

δnm =
{

1 if dist(an, am) = d

0 else
.

Parameters αi(n) and αi(m) describe the properties of atoms n and m, γ describes
the degree of delocalization for the atomic properties and |A| equals the number of
atoms in a molecule. The distance d = r − rnm is computed from the sphere radii
r ∈ {rmin, . . . , rmin + krres ≤ rmax}with rmin and rmax denoting their limits. rres is the
chosen step size. With increasing γ, the atomic properties become more localized, and
the properties of an atom have no influence on the neighbors of this atom. Therefore,
the RDF describes the distribution of an atomic property in the molecule.

For γ→∞, the exponential term turns into the Delta function δnm. Thus, the
autocorrelation is a special case of the general RDF.

4.3.3.3 Local Atom Environment Kernel

The local atom environment kernel is a local atom similarity. It is used by the optimal
assignment kernel (OAK) [18,19]:

klocal(v, v′) = katom(v, v′)+ k0(v, v′)+
L∑

l=1

γ(l)kl(v, v′).

The similarity is composed of a local atom similarity k0(v, v′) and spherical neigh-
borhood kl(v, v′) of size l. The maximum spherical (topological) distance is denoted
by L, and γ(l) is a decay factor.

Note that the optimal neighborhoods π(i) are used, such that only meaningful
descriptors are regarded. For two atoms v, v′, the sum over all kernel similarities

Molecular Descriptors 97

match(i) regarding the direct neighbors ni and nπ(i) is maximized. The direct neigh-
borhood of an atom in organic molecules is restricted to five; therefore, the optimal
assignment of all possible neighborhoods π is computed:

k0(v, v′) = 1

αval(v′)
max

π

αval(v)∑

i=1

match0(i),

match0(i) = katom[ni(v), nπ(i)(v
′)] · kbond[{v, ni(v)}, {v′, nπ(i)(v

′)}].

Larger atom environments up to length L can be efficiently computed by the
following recursive algorithm, which uses previously computed direct neighborhoods:

match0(i) = katom[ni(v), nπ(i)(v
′)] · kbond[{v, ni(v)}, {v′, nπ(i)(v

′)}],

kl(v, v′) = 1

αval(v)αval(v′)

αval(v)∑

i

αval(v)∑

j

kl−1[ni(v), nj(v
′)].

The local atom environment is designed to distinguish between nominal and
numerical atomic and bond properties. Therefore, the local kernels are composed
of numerical (Lnum) and nominal kernel (Lnom) functions, which can be weighted
by parameters γnum, γnom. sTanimoto denotes the Tanimoto similarity of two sets of
nominal features:

katom(v, v′, γV ,nom, γV ,num) = knom(Anom, A′nom, γV ,nom) · knum(Anum, A′num, γV ,num),

kbond(e, e′, γE,nom, γE,num) = knom(Bnom, B′nom, γE,nom) · knum(Bnum, B′num, γE,num),

knom(Lnom, L′nom, γnom) = exp

(

−[1− sTanimoto(Lnom, L′nom)]2
2γ2

nom

)

,

knum(Lnum, L′num, γnum) = exp

⎛

⎝−
|Lnum |∑

i

(Lnum,i, L′num,i)
2

2γ2
num

⎞

⎠ .

A similar approach was published by Bender et al. [20,21], describing an atom
environment by a radial fingerprint, which is discussed elsewhere in this chapter.

4.3.4 EIGENVALUE DECOMPOSITION

4.3.4.1 Characteristic Polynomial

The characteristic polynomial is one of the most important relationships between a
graph and the eigenvalues of either the adjacency matrix of a graph or the distance
matrix.

98 Handbook of Chemoinformatics Algorithms

Definition 4.3: The eigenvalues x1, x2, . . . , x|V | of a graph with V nodes are also
called the characteristic polynomial P(G, x):

(x − x1)(x − x2), . . . , (x − x|V |) = P(G, x),

P(xi) = 0.

If the rings Z of a graph that contain the edge eij are considered, we can rewrite
the equation as the Heilbronner theorem [22].

Definition 4.4: (Heilbronner Theorem) Let vi and vj be two nodes of a molecular
graph, and eij be the connecting edge. Then the characteristic polynomial can be
computed as graph decomposition:

P(G) = P(G− eij)− P(G− vi − vj)− 2
∑

∀Z|eij∈Z

P(G− Z). (4.1)

The last term is a sum over all rings, and different ring systems might lead to the
same numerical value. In other words, several graphs can give similar eigenvalues,
but a single eigenvalue can map to multiple graphs.

The characteristic polynomial can be extended by atomic properties, which gives
different eigenvalues depending on the labeling function used.

4.3.4.2 Burden Matrix and BCUT Descriptors

Closely related molecular descriptors are derived from a modification of the adjacency
matrix. The elements in the diagonal are modified by the characteristic properties of
a molecule. The descriptors are then computed as the set of eigenvalues.

The Burden Matrix is a symmetric matrix based on the hydrogen-depleted molec-
ular graph with the atomic numbers in the diagonal and (π/10) in the off-diagonal
between two atoms i, j, where π is the conventional bond order [1]. The ordered
sequence of the n smallest eigenvalues of the Burden Matrix is one of the first
descriptors.

Burden CAS—University of Texas eigenvalues (BCUT) descriptors are an exten-
sion of this approach. In general, the values in the diagonal of the Burden Matrix are
replaced by special properties, for example, atomic charge, polarizability, and H-bond
capabilities.

Descriptors based on the distance matrix can also be defined, for example, the
largest eigenvalue of the distance matrix or the unique negative eigenvalue. Com-
binations of those descriptors were also proposed, for example, the sum of leading
eigenvalues of the distance matrix and the adjacency matrix; for a detailed overview,
see Ref. [1].

4.3.4.3 WHIM Descriptors

Weighted Holistic Invariant Molecular (WHIM) descriptors [1] are 3D descriptors
that capture information regarding size, shape, symmetry, and atom distribution. A

Molecular Descriptors 99

principal component analysis (PCA) is performed on the centered coordinates of a
molecule using a weighted covariance matrix. The weighted covariance matrix is
obtained by applying a weighting scheme of the general form:

sjk =
∑|A|

i=1 wi(qij − q̄j)(qik − q̄k)
∑|A|

i=1 wi

,

where sjk is the weighted covariance between the jth and kth atomic coordinates.
|A| is the total number of atoms, wi is the ith weight, qij and qik are the ith and
kth coordinates, and q̄k is the corresponding average value. Again, the weighting
schemes can be exchanged, for example, regarding electronegativity, van der Waals
volume, and polarizability. The descriptors are computed as statistical indices of the
atoms projected onto principal components obtained from the modified covariance
matrix.

4.4 MOLECULAR SUBSTRUCTURES

Molecular substructures can be regarded as connected graphs that are completely
contained in the molecular graph. Many physicochemical properties can be related to
the frequency of certain substructures in a molecule as it is the idea in the Free–Wilson
[23] approach to chemometric modeling. Formally, a molecular substructure can be
denoted as a subgraph GSG of a molecular graph GM with

1. VS ⊆ V , with V being the set of all vertices in GM and VS being the set of the
vertices in GSG

2. ES = E ∩ (VS × VS), with E being the set of all edges in GM and VS being
the set of the edges in GSG

3. AS = {αS,1, . . . , α|S, AS |} denotes the labeling functions for atomic properties
restricted to the vertices (atoms) VS

αS,i(v) =
{

αi(v) if v ∈ VS∀αi ∈ A,

undefined otherwise.

4. Analogously, BS = {βS,1, . . . , β|S,BS |} denotes the labeling functions for bond
properties restricted to the edges (bonds) VS .

βS(e) =
{

β(e) if e ∈ ES∀βi ∈ B,

undefined otherwise.

Substructures are handled differently compared to numerical descriptors in which
an algorithm maps the molecule to one or several numerical values. Basically, there
are two points of view regarding substructures as descriptors. One popular approach
frequently used in molecular fingerprint methods is to consider the substructure as
the descriptor and its presence or frequency in a specific molecule as its value. This
makes it necessary to define a set of substructures also known as structural keys.

100 Handbook of Chemoinformatics Algorithms

An alternative method is to define an algorithm that generates a set of substructures
for a molecule. This can be regarded as the generation of a set of descriptors for a
specific molecule by an algorithm.This avoids an explicit definition of the substructure
set and thus allows us to reveal important but yet unrecognized structural features. In
this case, it is necessary to introduce a metric that allows a quantitative comparison
of the resulting descriptor sets with variable cardinality for different molecules.

4.4.1 SUBSTRUCTURE TYPES AND GENERATION

4.4.1.1 Atom Types and Reduced Graphs

The fundamental building blocks of molecular graphs are atoms (the smallest sub-
structures that fulfill the upper definition).An atom is usually considered as an instance
of a specific chemical element type defining its physical properties (e.g., expected
mass, electronegativity, and number of electrons and protons). The chemical proper-
ties are expressed only vaguely by the element alone, because most properties related
to atomic interactions depend on the hybridization and the neighborhood of an atom.
Therefore, it is common to use a finer distinction of atoms of the same element leading
to the concept of an atom type.

In this chapter, we will consider an atom type as a structural pattern that denotes
which configurations of an atom (including specific properties like charge, hybridiza-
tion, isotope, etc.) and its intramolecular neighborhood can be considered as equal.
This concept is of special importance in the application of empirical force fields in
which the potential terms are evaluated using deviations of precalculated ab initio
or experimental parameters for specific atom types (e.g., the optimal bond length
between two sp3 carbons) that are considered favorable.

The definition of a dictionary of atom types is a crucial step in many applications
of chemoinformatics and is a major contribution of chemical expert knowledge in a
computational framework.

There are many atom-type dictionaries of different accuracies available. Some
popular definitions are SYBYL atom types [24], which differentiate mainly regarding
hybridizations and element types, the Meng/Lewis definition [25], or the MacroModel
atom types [26], which extend the definition to specific atoms in substructures like
ring systems or amino acids using SMARTS patterns [27].

Besides the incorporation of expert knowledge into a chemoinformatics frame-
work, atom types can be powerful features if they are regarded as binary descriptors.
This is the base of many structural features that have to deal with the problem whether
two atoms can be considered equal. For example, this plays an important role in the
computation of the cardinality of the junction of atom-type sets needed by many
similarity measures for molecular fingerprints or in the definition of pharmacophoric
points.

An extension of the atom-type concept is the definition of substructure types (e.g.,
using SMARTS expressions) by regarding whole substructures like rings or functional
groups as atom types, whose properties reflect the properties of the substructure. This
representation is useful in molecular similarity calculations like Feature Trees [28]
to ensure that these substructures are only compared in bulk. Another advantage of

Molecular Descriptors 101

collapsing rings to pseudoatoms is that the molecular graph is transformed into a tree
(i.e., a cycle-free graph), which enables the use of faster and simpler graph algorithms.

4.4.1.2 Atom Pairs

Basic atom types alone do not provide much information about their molecular
arrangement, topology or even geometry of the molecule that is not directly con-
tained in the atom type or the collapsed substructure. The easiest way to include the
topology of a molecule is to use pairs of atom types together with their intramolec-
ular topological or geometrical distance. The first use of an atom pair encoding [29]
known to the authors used an atom type, which denotes the element, the number of
attached heavy atoms and the number of π electrons. The interatomic distance was
measured as the count of bonds on the shortest path (i.e., the topological distances).

A possible extension to this approach is to use more specific atom types and
geometrical distances. It is also possible to define a descriptor that denotes a specific
atom-type pair and uses its mean distance to all other atoms in a molecule.

The extraction of all atom pairs that are contained in a molecule can be done by
applying Dijkstra’s (Algorithm 4.2) shortest path algorithm [30] for each atom in the
molecule.

ALGORITHM 4.2 PSEUDOCODE FOR THE DIJKSTRA SHORTEST
PATH ALGORITHM (ADAPTED FROM WIKIPEDIA) [30]

method getShortestPaths(Graph G, Node s) {
for all vertices v in G do // Initializations

dist[v] := infinity // Unknown distance function
from s to v

previous[v] := undefined // Previous node in
optimal path from s

od
dist[s] := 0 // Distance from source to source
Q := the set of all nodes in Graph
while Q is not empty do // The main loop

u := node in Q with smallest dist[]
remove u from Q
for all neighbors v of u do // where v has not
yet been removed from Q.

alt := dist[u] + dist_between(u, v)
if alt < dist[v] do // Relax (u,v)

dist[v] := alt
previous[v] := u

fi
od

od
return previous, dist

}

102 Handbook of Chemoinformatics Algorithms

This algorithm is in many applications preferable to the more complex all-pairs-
shortest-paths methods (e.g., the Floyd–Warshall algorithm [31]) because all edge
weights are non-negative in a molecular graph and the graph is usually weakly
connected due to the constrained number of adjacent edges for each node.

4.4.1.3 Sequences of Atom Types: Paths and Walks

Sequences of graph vertices are divided into two classes: a walk is according to Borg-
wardt [32] a nonalternating sequence (v1, e1, v2, e2, . . . , el−1, vl) of vertices and edges
such that ei = bond(vi, vi+1). In a molecular graph this corresponds to a sequence
of connected atom types. A path is a walk in which each vertex is at most contained
once. In many cases, paths are used instead of walks to represent chemical structures.
For an algorithm for the extraction of all labeled paths up to a length d in a molecule,
see Algorithm 4.3.

ALGORITHM 4.3 PSEUDOCODE FOR THE EXTRACTION OF ALL
LABELED PATHS UP TO A LENGTH D IN A MOLECULE

method list getPaths (molecular graph M , search
depth d)

{
list pathsd ;
list pathslocal ;
for each atom a ∈ M do

// get all paths of length d via a DFS
root = getDFSTree (M, a, d) ;
// get all paths in the depth-first tree
starting at the root up to length d
pathslocal = enumerateAllPathsInTree
(root, d)
for each path ∈ pathslocal do

// check if sequence equals the reverse
sequence
if (!(path ∈ pathd) &&!
(path.reverse() ∈ pathd))

pathd. add(path);
fi

od
od
return pathsd ;

}

Some common molecular fingerprints like the Daylight fingerprint [27] are defined
by means of paths up to a specific length that are contained in a molecule. Paths are
usually extracted by a depth-first traversal of the molecular graph. Pseudocodes for
the depth-first traversal are given in Algorithm 4.4 and for a breadth-first traversal in
Algorithm 4.5.

Molecular Descriptors 103

ALGORITHM 4.4 PSEUDOCODE FOR THE EXTRACTION OF
DEPTH-FIRST TRAVERSAL TREE UP TO A DEPTH D IN A MOLECULE
BEGINNING AT ATOM A (ADAPTED FROM [31])

global time = 0
method atom getDFSTree(molecular graph
M, root atom a)
{
root = a
for all atoms in M do
atom.setState(‘‘unvisited’’)
atom.setDepth(∞ ∞)
atom.setPredecessor(null)

od
recursiveVisit(atom root)
//root atom augmented with its neighbors
// (tree is implicitly stored as a adjacency list)
return root

}

method void recursiveVisit(atom u)
{
time++
u.setState(‘‘visited’’)
u.setDepth(time)
for all neighbors of u in M do

if neighbor has not been visited
neighbor.setPredecessor(u)
recursiveVisit(neighbor)

fi
od
u.setState(‘‘finished’’)
u.setDepth(time)
time++

}

ALGORITHM 4.5 PSEUDOCODE FOR THE EXTRACTION
OF BREADTH-FIRST TRAVERSAL TREE UP TO A DEPTH D
IN A MOLECULE BEGINNING AT ATOM A (ADAPTED FROM [31])

method atom getBFSTree(molecular graph M, root
atom a)
{

root= a
for all atoms in M except a do

atom.setState(‘‘unvisited’’)
atom.setDepth(∞)
atom.setPredecessor(null)

od

104 Handbook of Chemoinformatics Algorithms

root.setState(‘‘visited’’)
root.setDepth(0)
root.setPredecessor(null)
queue.add(root) //first-in-first-out queue
while queu has elements do

u = queue.getNext()
for all neighbors of u in M do
if neighbor has not been visited

neighbor.setState(‘‘visited’’)
fi
neighbor.setDepth(u.getDepth()+1)

neighbor.setPredecessor(u)
queue.add(neighbor)

od
u.setState(‘‘finished’’)

od
// root atom augmented with its neighbors
// (tree is implicitly stored as an adjacency list)
return root
}

4.4.1.4 Trees

A common extension for atom types is to incorporate the atom neighborhood to get a
better representation of the topological embedding of an atom. Hence, a property can
be assigned to a complete neighborhood. This is to a certain degree included in many
of the atom-type definitions (e.g., amide nitrogen) but it requires a predefinition of
the neighborhood. A concept to avoid this drawback and to extend the neighborhood
to some arbitrary depth is to augment the atom type of each atom A by the paths up
to a certain length starting at A. This constructs a star-like graph for each atom which
is cycle-free due to the path definition and thus can be regarded as a tree with A as
the root. The tree substructure enables the use of highly efficient algorithms defined
for trees.

Tree-shaped substructures are also the base for the signature molecular descriptor
[33–36]. This descriptor is defined using an encoding of atoms and bonds as sig-
natures. An atom signature dσ(x) of an atom x in a molecule G is defined as the
depth-first tree starting at x as the root node up to depth d. The depth-first traver-
sal used is slightly different from that given in Algorithm 4.4 because it allows that
atoms to occur several times due to rings in the molecule. The tree is represented
in a string representation with opening brackets if a new subtree is started and with
closing brackets if it is finished. The signature dσ(G) of the molecule G can then be
obtained as the linear combination of the atom signatures.

In this case, an atom signature can be regarded as a molecular descriptor with the
number of occurrences of atoms with a specific signature in the molecule as descriptor
values.

Molecular Descriptors 105

A similar descriptor generation approach has been proposed by Bender et al.
[20,21]. The method starts with the construction of a neighborhood tree. The atomic
properties of the root atom are extended by the counts of the different atom types
(SYBYL atom types in the original work) in the neighborhood tree up to a specific
search depth. This leads to a descriptor vector for each atom containing the frequency
of the atom types in its neighborhood. Although it is not an explicit substructure, this
atomic neighborhood feature vector can also be regarded as a tree-like substructural
pattern and be used for the definition of molecular fingerprints [20].

4.4.1.5 Fragments

Molecular fragments are the most complex and versatile substructure types. There is
no general definition for this type, but usually fragments are considered as subgraphs,
which are the result of the deletion of an edge (or whole subgraphs). The biggest
difference from other substructure types is that fragments in general are lacking a
strictly defined structure like linear sequence (path, walk), tree, or predefined pattern.
The information content of such fragments is in most cases much higher than of the
less complex substructure types. This comes at the cost of the higher computational
requirements of general graph algorithms to compare the resulting substructure sets
(Isomorphism, Matching, etc.).

The generation of a set of molecular fragments applies a decomposition algorithm,
which decides which bonds are deleted. Common approaches delete all single bonds,
all bonds between a ring and a nonring atom. The RECAP algorithm [37] deletes only
bonds that can probably be re-formed by chemical reactions. The idea behind RECAP
is to employ a recipe of how a structural complex molecule could be synthesized out
of more usual building blocks by reforming the deleted bonds. In general, the problem
of enumerating all possible fragments is known to be NP-complete.

4.4.2 FINGERPRINTS

Molecular fingerprints [38,39] are a common method to combine the presence or
absence of different substructures in a molecule into one molecular descriptor. They
are usually represented as a vector of bits with a fixed length that denotes the presence
of a specific structural pattern. There are many different fingerprint implementations
that can be classified in hashed and nonhashed fingerprints. The nonhashed finger-
prints also known as structural keys are mainly based on a predefined dictionary of
substructures, such that there is a unique mapping between a bit vector position and
a specific substructure. A popular structural key is the MACCS keys [40].

Definition 4.5: Let G be a set of graphs and P = {p1, . . . , pn} a set of n structural
patterns, such that there exists a function

f : G× P �→ {0, 1}, f (g ∈ G, p ∈ P) =
{

1 g contains p ∈ P

0 otherwise
.

106 Handbook of Chemoinformatics Algorithms

Then the ordered set { f (g, p1), . . . , f (g, pn)} is called a structural key of g regarding
to the set P.

This fingerprint type can also be considered as a pattern-parametrized view of the
bit vector, because for each molecule we have to iterate over a set of patterns and to
check for every pattern whether it occurs in the molecule.

Such fingerprints have the inherent disadvantage that it is impossible to cover the
diversity of the chemical space by a fixed number of patterns. This is avoided with
hashed fingerprints. They are based on the idea of defining a method that generates a
substructure set for a molecule and converts that into a bit vector of fixed length. This
approach will produce different fingerprints for different molecules in most cases.

The patterns that are used depend solely on the generation method (e.g., paths or
trees of a certain size, and RECAP fragments) and the molecule that has to be encoded.
Therefore, this type can be regarded as pattern-generation-parametrized and has the
big advantage that the substructure generation is usually faster than the subgraph
isomorphism check of the pattern look-up.

The final mapping of each substructure to a bit position is in most cases done by
using the hash code of a pattern as the seed for a pseudorandom number generator and
a mapping of this random number to a bit position. This conversion has the drawback
that after the hashing the bijective mapping of bit position and pattern is lost because
different substructures can be mapped to the same bit positions. This information
loss is acceptable regarding similarity searches in databases, but makes a potential
interpretation (or feature selection) for knowledge discovery tasks more demanding.

4.4.2.1 Hashed Fingerprints

A popular hashed fingerprint implementation is the Daylight Chemical Information
Fingerprint [41], which is calculated by enumerating the set of labeled paths shorter
than a specified number of bonds in a molecule.

Each pattern (path) is hashed, which produces a set of bits. The final fingerprint is
then obtained by the union (logical OR) of the bit sets according to each pattern of the
molecule. This representation is, for example, used by UNITY [42] or JChem [43] in
their hashed fingerprint implementations. The pseudocode for a generic algorithm that
generates a path-based hashed fingerprint of dimension d is given in Algorithm 4.6

ALGORITHM 4.6 PSEUDOCODE FOR A GENERIC HASHED PATH
FINGERPRINT ALGORITHM (ADAPTED FROM BROWN ET AL. [44])

method getHashedPathFingerprint(Molecule G, Size
d, Pathlength l)
{

fingerprint = initializeBitvector(d)
paths = getPaths(G,l)
for all atoms in G do

for all paths starting at atom do
seed = hash(path) //generate an integer hash
value
randomIntSet=randomInt(seed) //generate a set

Molecular Descriptors 107

of random integers
for all rInts in randomIntSet do

index = rInt % d //map the random int to a
bit position
fingerprint[index]=TRUE

od
od

od
return fingerprint

}

4.4.2.2 Comparison of Hashed Fingerprints and Baldi’s Correction

One application of hashed fingerprints (and molecular fingerprints in general) is to
identify those molecules that are similar to a query structure. This is done by applying
bit set-based similarity measures like the well-known Tanimoto/Jaccard coefficient.
Ideally, this similarity is computed using the full nonhashed fingerprints providing
a measure of the real structural similarity if the encoding is chosen appropriate.
However, because of practical considerations the much shorter hashed fingerprints are
used in most cases. This implies that there is a strong correlation between the hashed
fingerprint similarity S(A, B) and the nonhashed fingerprint similarity S∗(A, B) of two
compound fingerprints A and B. This assumption is not necessarily valid; because of
the compression rate, the choice of the fixed length of the hashed fingerprint has a
significant influence on the number of set bits (the cardinality). Therefore, Swamidass
and Baldi [45] propose to use estimates of the nonhashed fingerprints A∗ and B∗ for
the similarity calculation.

The expected cardinality A of a hashed fingerprint of length N given the cardinality
A∗ of the nonhashed fingerprint with length N∗ with identical and independently
distributed bits generated by a binomial distribution can be formulated as

E(A|A∗) ≈ N

[

1−
(

1− A∗
N∗

)N∗/N
]

.

This expression is based on the assumption that the hash function ensures the
statistical independence of the bits and that the compression of the full fingerprint A∗
to the fixed size version A is performed using a modulo N operation. In this scenario,
the probability that a bit is set is given by (A∗/N∗) repeated (N∗/N) times due to the
compression. The inverse relationship

E(A∗|A) ≈ N∗

[

1−
(

1− A

N

)N/N∗
]

is more important because only the cardinality and length of the hashed fingerprint is
available in most cases. This expression is a further approximation not obtained by the
application of Bayes’ theorem but it works well in practice according to Swamidass
and Baldi [45]. It is useful to derive the expression of E(A∗|A) independent of N∗ by

108 Handbook of Chemoinformatics Algorithms

only considering N∗ as large because the length N∗ of the full fingerprint is often not
exactly known:

E(A|A∗) ≈ lim
N∗→∞

N

[

1−
(

1− A∗
N∗

)N∗/N
]

= N(1− e−A∗/N)

and thus

E(A∗|A) ≈ −N log

(

1− A

N

)

.

This estimation can then be applied to derive values for the nonhashed intersec-
tion cardinality A∗ ∩ B∗ and the nonhashed union cardinality A∗ ∪ B∗ of two hashed
fingerprints A and B and a considerably large N∗:

A∗ ∪ B∗ ≈ min

[

−N

(

1− A ∪ B

N

)

,−N log

(

1− A

N

)(

1− B

n

)]

,

A∗ ∩ B∗ ≈ max[0, A∗ + B∗ − A∗ ∪ B∗],

≈ max

⎡

⎢
⎢
⎢
⎣

0,−N log

(

1− A

N

)

︸ ︷︷ ︸
E(A∗|A)

−N log

(

1− B

N

)

︸ ︷︷ ︸
E(B∗|B)

−N

(

1− A ∪ B

N

)

︸ ︷︷ ︸
A∗ ∪ B∗

⎤

⎥
⎥
⎥
⎦

.

These two cardinalities combined with the bit string cardinalities are sufficient to
compute many similarity measures (e.g., Tanimoto) for hashed fingerprints in terms
of the corresponding nonhashed ones.

4.4.2.3 Stigmata

The Stigmata algorithm by Shemetulskis et al. [46] uses hashed fingerprints (daylight
in the original work) to generate a kind of consensus fingerprint called modal finger-
print which expresses commonalities in a set of molecules active against a specific
target. A modal fingerprint has the same length as the molecular fingerprints (e.g.,
2048 bits in the original publication by Shemetulskis et al.) of the compounds with
a bit set to TRUE if it is set in more than a certain percentage of compound finger-
prints. A modal fingerprint can then be used to extract information about frequent
pattern types as well as new molecular descriptors. Each atom of each molecule can
be labeled by a so-called ALAB value, which denotes the percentage of paths the atom
is part of that also are contained in the modal fingerprint.

A similar descriptor on the molecular level is MODP that is defined as the per-
centage of the paths of a molecule that are also part of the modal fingerprint. The
Tanimoto similarity between a molecule fingerprint and the modal fingerprint can be
used as a molecular descriptor as well. In the publication of Shemetulskis [46], this
descriptor is called MSIM.

Molecular Descriptors 109

4.4.2.4 Fingal

The Fingerprinting Algorithm (FingAl) published by Brown et al. [44] is an extension
of the path-based hashed fingerprints in which geometrical information is incorporated
into the paths. This is achieved by an adaption of the atom types that are used in the
paths. Each atom type on the path is augmented with its geometrical distance to
the previous atoms of the path. The distances are binned into a set of 10 distance
classes because it is unlikely that the distances are exactly identical for two paths for
a molecular comparison regarding the amount of identical substructures (paths). In
the original publication, the boundaries of the bins are {2.35, 2.71, 3.69, 4.47, 5.25,
6.39, 7.59, 9.32, 12.44}. This leads to a better discrimination of the molecules but
introduces a bias caused by the conformation. In the original work the –3D structure
is computed by CORINA [47].

4.4.3 HASHING

Hashing denotes the mapping of the element of a space χ, which is not necessar-
ily numeric, to an integer (often restricted to a specific interval). The mapping is
conducted using a deterministic hash function h : χ �→ Z . An ideal hash function is
injective, which means that the hashes of two inputs are equal only if the inputs are
equal. Although this is a preferable property, most hash functions are not injective
because the input space is larger than the integer set it is mapped to.

Many hashing algorithms work on bit representations of data objects. Each object
is considered as a stream of bits that are subsequently hashed (mostly blockwise) into
other bit sets.

4.4.3.1 Cyclic Redundancy Check

The cyclic redundancy check (CRC) published by Peterson and Brown [48] is a
function that maps a sequence of bit inputs to an integer (its binary represen-
tation) in a specific interval. The key idea is to define a generator polynomial
p(x) =∑k

i=0 cixi with coefficients c ∈ {0, 1} and degree k which can be expressed
as a bit sequence b of k + 1 bits, such that bi = ci. Analogously, the input bit
sequence is subdivided into overlapping blocks of length k + 1 and extended with
zeros if necessary. The hash value results from a blockwise modulo 2 polynomial
division of the input sequence by the generator polynomial. Frequently used genera-
tor polynomials are CRC − 32 = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 +
x8 + x7 + x5 + x4 + x2 + x1 + x0 or CRC − 16 = x16 + x12 + x5 + x0. An outline
of the algorithm is given in Algorithm 4.7.

ALGORITHM 4.7 PSEUDOCODE FOR THE CRC HASH FUNCTION
(ADAPTED FROM WIKIPEDIA)

method getCRCvalue(InputBitSet B, GeneratorBitSet G)
{

ShiftingRegister R := {00000....} //
Initialization
while B is not finished do

110 Handbook of Chemoinformatics Algorithms

b = nextBit(B)
R.shiftLeft() //append zero right
if b != leftmostBit(R) do

R = R ⊗ G
od

od
return R.asInteger()

}

4.4.3.2 InChI Key

The InChI Key [49] is a condensed string representation of the InChI encoding of
a molecule. The InChI is divided into several blocks that are hashed using a SHA-
256 hash function [50]. The resulting hash values are represented as a string and
concatenated, which results in the final InChI key.

AAAAAAAAAAAAAA− BBBBBBBBCD

The first block A is the encoding of the molecular topology (“skeleton”) into a string
of 14 uppercase letters. This is achieved by the hashing of the basic InChI layer using
a truncated SHA-256 hash function. The second block B represents the remaining
layers (i.e., proton positions, stereochemistry, isotopomers, and reconnected layer).
Additionally, two single characters are provided. The flag C encodes the InChI version
number, the presence of a fixed H-layer, stereochemical and isotopic information. The
last position D is a check character defined by a checksum of the first three blocks
and verifies the integrity of the key.

4.5 PHARMACOPHORES, FIELDS, AND HIGHER-ORDER
FEATURES (3D, 4D, AND SHAPE)

4.5.1 MOLECULAR SHAPE

One of the basic approaches to take the geometrical structure of a molecule into
account for in silico comparison and QSAR modeling is to regard the shape of the
structure. The shape of two molecules can be compared in several ways, for instance,
by the calculation of the overlap volume of two structures and by the comparison of
surface descriptors. If not stated otherwise, the following algorithms require that the
structures are superimposed in a common coordinate system in a sensible way.

4.5.1.1 Molecular Shape Analysis

The molecular shape analysis (MSA) published by Hopfinger [51] performs a com-
parison of the overlap volume and provides the base for many other works in shape
comparison as well as in structural alignment. In an MSA, the molecules are consid-
ered as sets of spheres with different radii (the van der Waals radii of the molecules).
The overlap volume of two spheres Vi and Vj with radii ri and rj separated by a

Molecular Descriptors 111

distance sij is defined as

(Vi ∩ Vj) = π

3
(2r3

i + 2r3
j + s3

ij)

− π

[

r2
i

r2
i − r2

j + sij

2sij
+

(

sij −
r2

i − r2
j + sij

2sij

)(

r2
j + sij

r2
i − r2

j + sij

2sij

)]

.

Assuming that the spheres are overlapping (i.e., sij < ri + rj) and the smaller sphere
is not completely included in the larger one. Thus, the total overlap volume of the
molecules A and B can be estimated by VAB =∑

Vi∈A
∑

Vj∈B(Vi ∩ Vj). This formula
does not regard the overlap of more than two atoms and is therefore an overestimation
of the real volume. The concept assumes that the molecules are optimally aligned such
that one of the structures is translated and rotated maximizing the overlap volume. The
maximization of the overlap volume presents also a convenient optimization target
function for structural alignment algorithms.

The overlap volume is different from molecular descriptors that have been intro-
duced in this chapter. The most important difference is that it is not a property that
only depends on a single molecule. It is only defined in relation to another molecule
and thus can be regarded as a measure of the geometrical similarity of molecular struc-
tures rather than as a numerical descriptor. It can be used as a descriptor for QSAR
modeling by placing all molecules in the same reference frame defined by a fixed
reference structure to which the overlap volume is calculated. This overcomes the
problem of the relativity of the overlap and provides a common coordinate frame for
each molecule. Consequently, it highly depends on the choice of the reference struc-
ture, which introduces a bias into the model. Another specific characteristic is that the
volume descriptor has an inherent cubic behavior (i.e., cubic influence of the spatial
distances on the volume descriptor) introducing a cubic bias into the QSAR formula.
To overcome this bias, Hopfinger [51] propose additional features SAB = V2/3

AB and

LAB = V1/3
AB that are calculated based on the overlap volume and which can be used

as quadratic and linear terms in the QSAR equation.

4.5.1.2 ROCS—Rapid Overlay of Chemical Structures

ROCS [52] originally was not developed as a molecular descriptor, but a measure for
structural similarity to be used in virtual screening. Nevertheless, the same technique
of using a common reference molecule as in the MSA can be applied to the ROCS
similarity as well. The ROCS approach is similar to MSA in using the overlap volume
as a quantitative measure for similarity and can be regarded as an extension of the
latter idea.

Instead of using a geometrical definition of the overlap volume of two spheres,
ROCS defines the overlap volume as a threefold integral over the products of the
characteristic volumes expressed by a function χ : R3 × R3 �→ R. This function is
chosen such that it is zero if a point r ∈ R3 lies outside the molecule and is positive if
it lies inside. If χ(r) is set to 1 if r is inside the molecule, it would yield a hard-sphered
volume. For instance, this definition has been used in the work of Masek et al. [53].

112 Handbook of Chemoinformatics Algorithms

In the ROCS approach the characteristic volume is approximated by a 3D Gaussian
shape defined as

χ(r) = 1−
N∏

i=1

(1− pie
−γr2

).

in which the actual van der Waals radii R of the atoms can be incorporated using the
relation γ = π(3p/4πR3)2/3. An advantage is that the intersection of the molecules
can be expressed as the product of their characteristic volume functions. Thus, it
simplifies the calculation of the overlap volume to an integration (i.e., summing
up) over a –3D grid. Hence, the overlap volume of two molecules A and B can be
formulated as

OAB =
∫ ∫ ∫

χA(r)χB(r)dr.

This quantity can be regarded as an intersection of two sets of features and thus
can be incorporated into other similarity measures like the Tanimoto coefficient. In
the case of a discrete characteristic volume function, it can be regarded as a special
type of fingerprint in which each bit corresponds to a point in the grid set to 1 if it
is inside the molecule and 0 if not. This allows it to define the overlap volume as the
intersection of the bit vectors or alternatively as the dot product.

4.5.1.3 Shapelets

MSA [51] and ROCS [52] approaches describe the molecular shape by means of the
molecular volume distribution.An alternative representation is chosen by the Shapelet
[54] concept that encodes the molecular shape using surface patterns. The first step
is the calculation of a steric isosurface using a Gaussian modeling of the molecular
structure as in the ROCS approach. A molecule is encoded by a 3D function

M(x) =
N∑

i=1

e−2(x−ej)
2/r2

i ,

which can be regarded as a superposition of Gaussians, one for each atom i with radius
r ∈ R at the position c ∈ R3. As in ROCS, this function assigns every point x in a
spatial grid a value that is positive whenever the points lie inside the molecule. Thus,
M(x) corresponds to the characteristic volume function χ used in ROCS although it
uses a different mathematical expression. The isosurface of the structure can then be
constructed using the marching cubes algorithm [55]. This method generates a set of
surface points which is simplified using the welding vertices method [56].

The surface patterns, the shapelets, are extracted by a local approximation of
the curvature of the surface using hyperbolic paraboloids. The molecular surface is
structured into surface patches that are defined by their center surface points pr and
their radii rs (default rs = 2.5 Å). A patch is then regarded as the set of surface points
Pi within the radius rs around the center point Pr . The local shape of the surface
is then described using the curvature along two perpendicular vectors eu, ev ∈ R3

Molecular Descriptors 113

in the tangential plane. These two curvatures together with the normal vector in Pr
correspond to a paraboloid that can be regarded as a local surface pattern.

The shape of the surface can be parametrized using the Hessian matrix H as
p(u, v, H) = (uh11 + vh21)u+ (uh12 + vh22)v with u, v ∈ R being the coordinates
in the eu, ev coordinate system. The coefficients hij of the Hessian are obtained by
minimizing the root mean square error E(H) =∑

i[ni − p(ui, vi, H)]2 due to the
coordinates n, u, v of a point in the 3D space. The eigenvalues of the resulting Hessian
correspond to the two local surface curvatures k1 and k2.

These can be used to define the shape index SI(pr) = arctan(k1 + k2/k1 − k2) for
each surface patch center Pr . This procedure is repeated for each surface point that
is not part of a patch, which already has been approximated by another shapelet. An
outline of the algorithm is given in Algorithm 4.8.

ALGORITHM 4.8 PSEUDOCODE FOR THE SHAPELET EXTRACTION

method getShapeletsForMolecule(Molecule T)
{

surface = getSurfaceForMolecule(T)
for all points in surface do

S = getShapeletAt(point)
e = getRMSEof(S)

od
set = sortedSurfacePointsAccordingToRMSE()
point = getBest(set)
shapelets = null
while set has points do

shapelets.add(ShapeletOf(point))
set.remove(point)
//every surface point is at most part of one
shapelet
set.removeAllPointsInPatchOf(point)
point = getBest(set)

od
return shapelets

}
method getShapeletAt(pr)
{

en = normalVectorFor(pr)
p = getPointInSurfacePatchOf(pr)

eu = en × (p− pr)

‖en × (p− pr)‖
ev = en × eu
points = getLocal2DGridFor(eu,ev)
H = minimizeRMSEonGrid(points)

k1 = getFirstEigenvalue(H)
k2 = getSecondEigenvalue(H)

114 Handbook of Chemoinformatics Algorithms

SI = getShapeIndex(k1,k2,)
return new Shapelet(Pr,k1,k2,SI, , ,)

}

In some respects, shapelets can be regarded as a special type of substructure that
does not describe a certain local graph topology but a local surface curvature. There-
fore, it suffers from similar drawbacks if used in QSAR modeling or virtual screening.
Each shapelet has a complex numerical parametrization and thus two shapelets are
unlikely to be parametrized identically. Thus, the intersection of substructure sets
of two molecules that forms the common basis of many similarity measures cannot
be computed in a straightforward manner. In the original work [54], this problem is
solved by defining an algorithm that uses a measure for the similarity of two shapelets
in combination with a clique detection approach also used in the detection of phar-
macophoric patterns. This results in a least-squares alignment of the rigid structures
based on an optimal superposition of the shapelets of the two molecules using the
Kabsch algorithm [57]. A similarity score for two molecules A and B can be defined
by the molecular volume function M(x) and by summing up the values for the atom
centers of molecule A at the atom centers of molecule B.

4.5.2 MIF-BASED FEATURES

Field-based features describe a ligand by modeling possible receptor interaction sites
around the ligand. This is addressed by placing the molecule in a rectangular grid that
defines the spatial points where the interaction potential is calculated. The approach
is related to the concept of molecular force fields but takes only nonbonded terms
into account. It is therefore independent of the molecular topology (apart from its
influence on the atomic charges).

The key idea is to define a probe particle with certain interaction-related properties
like charge, size, or hydrophobic potential. For this probe, each interaction potential
is calculated at discrete spatial points around the molecule.

In the calculation of the MIF, the probe is placed at each grid point. Next, the
interaction potential of the target molecule and the probe is calculated. The actual
composition of the potential depends on the definition of the field. Often, the potential
is restricted to electrostatic, steric, and hydrogen-bonded contributions. However,
entropic terms can also be incorporated [58].

4.5.2.1 GRID

A fundamental work in this field was the definition of the GRID force field [59].
In GRID, the probes are not only single atom-like particles but also atom types that
include information about the atomic neighborhood (e.g., carbonyl oxygen) or small
groups of atoms. The interaction potential is composed of a steric part using the
Lennard-Jones potential

Elj(d) := A

d12
− B

d6
, A, B ∈ R,

Molecular Descriptors 115

an electrostatic contribution that is based on the Coulomb potential Eel and the term
Ehb that describes the hydrogen-bonded interaction. To address the heterogeneous
medium, which consists of the solute and the target molecule between the probe and
the target atom, the method of images is used [60,61]:

Eel(d, p, q) = pq

Const. · ξ

⎛

⎜
⎝d−1 + (ξ− ε)

(ξ+ ε)

√
d2 + 4spsq

⎞

⎟
⎠ .

The dielectric constants of the solute ε and the molecule ξ are considered as constant
and separated by a planar boundary. The depth of the target atoms and the probe in
the target molecule are addressed by sp and sq. Both are expressed by the number
of target atoms in a 4 Å neighborhood. The other parameters and contributions are
obtained from the standard Coulomb equation expressing the point charges p and q
and their Euclidean distance d. The hydrogen bond contribution is calculated by a
modified 6,4-Lennard-Jones potential

Ehb(d, θ) =
(

C

d6
− D

d4

)

cosm θ

to incorporate the angle θ at which the target donor atom prefers the H-bond acceptor.
If the probe is a donor, the angle is set to zero because the probe is expected to
be rotated optimally. The cosine term is often raised to the power of three but other
values are also possible for m.Algorithm 4.9 outlines the calculation of the interaction
potential of a single grid point and, thus, one MIF-based descriptor.

ALGORITHM 4.9 PSEUDOCODE FOR A SINGLE GRID INTERACTION
POINT

method getEmpiricalEnergy(Molecule T, Probe P)
{

Esteric = 0
for all atoms in T do

if distance(atom, P) < s then //
s := steric_ distance_threshold e.g. 8˜Å
Esteric + E lj (distance(atom,P))

fi
od
Esteric = 0
for all atoms in T do

Eelectro + = Eel
(distance(atom,P),charge(P),charge(atom))

od
Eh−bond = 0
for all atoms in T do

theta = getAngle(P,atom)

116 Handbook of Chemoinformatics Algorithms

if theta < 90
continue

fi
if P is a H-bond donor then

theta = 0
fi
Eh−bond + = Ehb (distance(atom,P),theta)

od
return Esteric + Eelectro + Eh−bond

}

The GRID method was developed to examine the surroundings of a receptor-
binding pocket and not for small molecules (like most ligands). Therefore, some
properties are drawbacks regarding the use of the potentials as molecular descriptors.
In a QSAR analysis, the use of the Lennard-Jones potential for steric interactions
leads to problems at grid points that are close to target atoms. The reason is the steep
increase of the potential if the distance approaches zero [62]. Thus, small differences in
the position of the atoms of two molecules can lead to large differences in descriptor
values. The respective descriptors have large variances and therefore are regarded
as especially meaningful by many QSAR techniques, leading to probably highly
overfitted models.

4.5.2.2 Alignment-Based Methods

MIFs [59] yield a large number of molecular features that describe molecular prop-
erties that are important for the recognition by a receptor protein. Therefore, they
provide a promising starting point for structure–activity models. The consideration of
the 3D interaction grid points has some major drawback, though. The most important
one is that many machine learning techniques used in QSAR modeling depend on
the relation of the values that one descriptor has on different molecules. This makes
it necessary to define which grid points of two different molecules are compared to
each other. A convenient approach to solve this problem is to align two molecules
(i.e., their interaction fields) geometrically. This step is nearly as important as the
definition of the interaction field.

4.5.2.3 CoMFA—Comparative Molecular Field Analysis

The CoMFA method [63] is one of the first approaches that used grid-based potentials
as molecular descriptors to generate a QSAR model. The field definition is similar
to the GRID force field [59] but does not contain a hydrogen-bond contribution. As
a default probe serves a sp3 carbon with a point charge of +1. The steric potential
is calculated using a 6–12 Lennard-Jones potential similar to GRID with a “steric
repulsion” cutoff of 30 kcal/mol. The electrostatic contribution is calculated using
the Coulomb potential with a dielectric constant set to the reciprocal distance. The
charges of the target atoms are calculated using Gasteiger–Marsili partial charges [64].

To be able to use the resulting descriptors in combination with machine learning
methods, the grid points have to be mapped into some reference space. This is done

Molecular Descriptors 117

by a 3D structural alignment on an expert selected reference molecule. The method
Field Fit [65] has been used in the original work of Cramer et al., but other alignment
approaches are also possible.

After the corresponding descriptors have been identified by the structural align-
ment, the QSAR model is inferred using partial least squares. This approach has the
advantage that the dimensionality of the problem is reduced but a direct interpreta-
tion of the model is not possible. The QSAR equation is transformed back into the
original feature space to overcome this drawback. This gives the possibility of a 3D
visualization of the grid points that are considered as meaningful.

The relatively simple interaction potential definition used in CoMFA leads to
several problems. The Lennard-Jones and the Coulomb potential use the distance
between a probe and a target atom in the denominator of the equation. Therefore, a
cutoff value is necessary to avoid large or even infinite values at grid points close
to target atoms with singularities at the atom positions. The differential behavior of
the two potentials inhibits a simultaneous treatment of the cutoff distance, leading to
different parametrizations, which worsens the comparability of the interaction fields.
Furthermore, it inhibits the calculation of potentials at grid points that lie inside the
molecule.

4.5.2.4 CoMSIA—Comparative Molecular Similarity Indices Analysis

The CoMSIA approach [62] avoids some of the drawbacks in the CoMFA method
by working without an explicit potential and using the similarity of the interaction
potentials instead. The idea is to calculate a similarity Aq

F,k , analogous to SEAL
[66], to the probe instead of an interaction potential. The similarity regarding a
physicochemical property k and a probe at the grid point q is calculated as

Aq
F,k = −

n∑

i=1

wprobe,kwike−αr2
i,q ,

where wik denotes the value of the physicochemical property k of atom i and wprobe,k
the value of the property at the probe. The attenuation factor α and the distance ri,q
are identical to SEAL [66]. Three physicochemical properties have been regarded in
the original approach. The electrostatic contribution is realized by using Gasteiger–
Marsili partial charges [64] for the target atoms and a +1 charge of the probe. The
steric term uses the cubic power of the van der Waals radius of the atoms and 1Å for the
probe. The entropic contribution is represented by the hydrophobicity parametrization
published by Viswanadhan et al. [67] (+1 for the probe).

The resulting grid points of the similarity indices can be used as molecu-
lar descriptors for the inference of a QSAR model. Partial least squares are—as
in CoMFA—the method of choice because of the large number of descriptors.
The exchange of the term that incorporates the distance between the probe and
target atoms to a bell-curve prevents the numerical problems that occur in the
Lennard-Jones and Coulomb potentials in CoMFA. Furthermore, it simplifies the
implementation.

118 Handbook of Chemoinformatics Algorithms

This advantage comes at the cost of an interpretable interaction field that can
be used for a guided drug design because of a lack of an explicit physicochemical
interpretation of the grid points.

As in CoMFA, this algorithm does need a structural alignment to compare the
descriptor values of the grid points of different molecules. In the original publication,
the alignment was computed by applying the SEAL method.

4.5.2.5 Structural Alignment

4.5.2.5.1 Kabsch Algorithm

The Kabsch algorithm [57] is a popular algorithm for a rigid superposition of two
points set (i.e., molecular structures) by minimizing the root mean squared distance
of pairwise assigned atoms. Recently, Coutsias et al. reformulated the algorithm in
terms of quaternion algebra to overcome some pitfalls of the original version without
giving different results [68]. Nonetheless, it is still necessary to define a pairwise
assignment of the atoms of two molecules onto each other.

The target function to be minimized is given by the rotation matrix

E = N−1
N∑

k=1

wk |Qxk + t − yk|2 with Q ∈ R3 × R3,

where t ∈ R3 represents the translation vector and x and y the ordered sets, such that
xk and yk are assigned onto each other. The optional weight factor wk allows setting
individual penalties for distances of certain atomic pairs. The reference molecule is
denoted by y. The rotation matrix Q is expressed in terms of quaternions:

Q =

⎛

⎜
⎜
⎝

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎞

⎟
⎟
⎠ , (4.2)

which allows formulating the rotation as a single quaternion q = (q1, q2, q3, q4). The
explicit calculation of the optimal translation t is avoided by shifting the barycenters
of both structures into the origin of the coordinate system. For the calculation of
the rotation matrix, a 3× 3 matrix Rij =∑n

k=1 xikyjk , i, j = 1, 2, 3, is defined. The
quaternion representing the optimal rotation can then be found as the eigenvector of
the matrix

F =

⎛

⎜
⎜
⎜
⎝

R11 + R22 + R33 R23 − R32 R31 − R13 R12 − R21

R23 − R32 R11 − R22 − R33 R12 + R21 R13 + R31

R31 − R13 R12 − R21 −R11 + R22 − R33 R23 + R32

R12 − R21 R13 + R31 R23 + R32 −R11 − R22 + R33

⎞

⎟
⎟
⎟
⎠

that correspond to the largest eigenvalue.A summarizing pseudocode for the algorithm
is given in Algorithm 4.10.

Molecular Descriptors 119

ALGORITHM 4.10 PSEUDOCODE FOR THE KABSCH ALGORITHM

method getKabschRotation(Molecule mol, Molecule ref)
{

//apply weighting and shift barycenters
for all atoms in mol do

coord(atom) *= w_k
shift atom

od
for all atoms in ref do

coord(atom) *= w_k
shift atom

od
F = calculate_F_Matrix(mol,ref)
lambda_max = getLargestEigenvalue(F)
q = getEigenvectorForEigenvalue(lambda_max)
return RotationMatrixForQuaternion(q)

}

4.5.2.6 SEAL—Steric and Electrostatic Alignment

The SEAL algorithm [66] performs a 3D structural alignment by rotating and trans-
lating a rigid structure such that the weighted distances of their atoms to a reference
molecule is minimized. The target function AF is a double sum over all atoms of both
molecules:

AF = −
m∑

i=1

n∑

j=1

wije
−αr2

ij .

The weight coefficients wij = wEqiqj + wSvivj allow regarding the physicochem-
ical similarity of two atoms. Charges qi and qj with the same sign lead to a larger
weight and, therefore, to a larger penalty of the distance as do large van der Waals
radii vi and vj. The attenuation parameter α and the physicochemical (electrostatic
and steric) weights wE and WS should be optimized by the user, depending on the
data.

The optimal alignment (i.e., that one that minimizes AF) is calculated by expressing
the distance (radius) variable rij in terms of a rotation and translation of the structure
to be aligned. This can be achieved—similar to the Kabsch formulation—in terms
of quaternion algebra using a rotation matrix Q and a translation vector t leading to
r2

ij = (xi − Qxj − t)2.
The alignment procedure starts with a Kabsch superposition of predefined atomic

pairs. It results in a barycentered starting point for the rational function optimization
(RFO) [69], an optimization method that is guaranteed to find the global minimum
of AF and converges quadratically. SEAL is only designed to perform rigid structure
alignment. Therefore, the authors propose to incorporate it into a framework that also
performs a conformational sampling and a diversity subset selection.

Other drawbacks that have been reported are the strong sensitivity to changes in
the parametrization and the lack of terms that regard entropic contributions [70].

120 Handbook of Chemoinformatics Algorithms

4.5.2.7 Alignment-Free Methods

The 3D descriptor algorithms presented so far share the need for a structural alignment
of the molecules. This is a time-consuming step likely to introduce a bias depending
on the alignment procedure used. To overcome these drawbacks several methods has
been proposed that avoid the use of a shared external coordinate system.

4.5.2.8 GRIND—GRid-INdependent Descriptors

The GRIND algorithm [71] extends the idea of an autocorrelation of structures to
the surrounding MIF. The potentials at the grid points can be calculated by any force
field suitable for the definition of a ligand–receptor interaction potential. Unlike the
CoMFA approach, these potentials are not directly used as molecular descriptors but
further processed in an autocorrelation algorithm. Relevant interaction regions are
identified regarding significant negative energy potentials of neighboring grid points.
This filtering step is performed by defining an optimization problem. The resulting
ensemble of regions with strong interaction potentials is then regarded as the virtual
receptor site (VRS) that represents the starting point of the autocorrelation.

To overcome the need of a structural alignment the spatial positions of the points
of the VRS are not represented using explicit coordinates but their distances to
other points of the VRS either of the same (autocorrelation) or of a different (cross-
correlation) potential type. This idea is similar to an atom pair or a pharmacophore
approach that also relates property positions using distances to other positions.
Although spatial points in the molecular neighborhood are different to atoms or
groups, which are part of a specific molecule, molecular descriptors are obtained
by this concept. These are correlogramms that relate products of potentials with the
spatial distances between them.

4.5.2.9 VolSurf

In contrast to the approaches that have been discussed, VolSurf [72,73] does not
attempt to describe relationships between the structure of a small molecule and its
activity towards some protein target but its relationship to a complex property. It has
been successfully applied in modeling physicochemical properties like the ΔG of
hydration and in predicting pharmacokinetic behavior like skin permeability. VolSurf
is also different in some way to the other interaction field methods because the descrip-
tors that are calculated are not attributes of grid points but combinations of grid point
features and their spatial distribution. For the calculation of the interaction potential
the force field definition of GRID [59] is used. However, the resulting potentials are
not regarded as grid point descriptors. Instead, the volumes and the surface areas
of interaction contours (i.e., spatial clusters of grid points with interaction potential
above a certain threshold) are calculated. The properties of the interaction regions are
further combined to give a set of molecular features that are divided into several parts
depending on which types of potentials are used:

Molecular Descriptors 121

4.5.2.9.1 Size and Shape Descriptors

Size and shape descriptors are properties of a molecule that depend solely on its
topology and geometry only taking steric features into account. In the original work,
this set consists of four descriptors for the solvent excluded molecular volume, which
is calculated using the grid points that do have a steric interaction potential above
0.2 kcal/mol, and the solvent accessible surface, also based on the same steric poten-
tial. Additionally, the ratio between volume and surface and the ratio between the
surface of the molecule and the surface of a sphere of the same volume is considered.

4.5.2.9.2 Hydrophilic Region Descriptors

The threshold for grid points to be regarded as parts of a hydrophilic region is an
interaction potential for a water probe between −1.0 and −6.0 kcal/mol. Ratios are
also taken into account, as it is the case for steric regions, giving a capacity factor
of the molecule defined as the relative size of the hydrophilic regions compared to
the complete molecular surface (the ratio between the hydrophilic and the complete
surface).

4.5.2.9.3 Hydrophobic Region Descriptors

Hydrophobic descriptors are defined analogous to the hydrophilic using a specific
range of interaction potentials towards the hydrophobic (in GRID: DRY) probe.

4.5.2.9.4 INTEGY Moments

The interaction energy (INTEGY) moments are a measure for describing the distribu-
tion of the interaction regions around the molecule.An INTEGY moment is expressed
as a vector that points from the barycenter of the molecule to the center of the regions
of a specific interaction type (e.g., hydrophilic or hydrophobic interactions).

4.5.2.9.5 Mixed Descriptors

Several descriptors which are not of the former types are also included. The best
interacting (of the different potential types towards a water probe) grid points and their
spatial distance from each other are taken into account as well as combinations of the
hydrophilic and hydrophobic regions.The latter consist of the ratio between their sizes,
the vector that points from the hydrophobic center towards the hydrophilic center (the
amphiphilic moment), and a further ratio-based feature that relates the volume of the
hydrophobic regions to the product of the hydrophilic surface area and the lipophilic
surface area. In addition to these combinations of previously calculated features, two
descriptors are defined to cover the hydrogen bonding and the polarizability of the
molecule. The method used for the calculation of the polarizability considers the
topology of a molecule but is independent of the MIF [74].

4.5.3 PHARMACOPHORES

The assumption that there is a direct connection between the structure of a compound
and its biological properties is a fundamental paradigm of medicinal chemistry. It

122 Handbook of Chemoinformatics Algorithms

is also a basic necessity of any structure–activity relationship model, independent
of whether it is quantitative or qualitative. The development of increasingly elabo-
rated molecular descriptors can therefore also be regarded as a trial to encode the
underlying structural causes which cannot be elucidated in an explicit manner. This
is one drawback of all models that are based on descriptor encodings of molecules.
Even if a biological property can be quantitatively described in a precise and general
way, this does not necessarily give a recipe for structural modification that would
enhance a molecule. One of the advantages of the MIF approaches is that the pos-
sibility of a graphical representation can serve as guidance on which interactions at
which structural parts are important for the biological functionality. This is especially
important regarding the modeling of the binding affinity of a small molecule to a
protein.

The underlying concept that the ability of a molecule to bind to a protein (i.e.,
to fit into the binding pocket and establish interactions strong enough to induce or
inhibit an effect) depends on a certain geometrical arrangement of interaction (phar-
macophoric) points. Several methods that extract such geometrical patterns describe
them as pharmacophores. The IUPAC defines a pharmacophore as “the ensemble of
steric and electronic features that is necessary to ensure the optimal supramolecular
interactions with a specific biological target structure and to trigger (or to block) its
biological response” [75].

The methods that are used for the recognition of pharmacophoric patterns can be
divided into ligand- and receptor-based approaches. The basic idea of ligand-based
pharmacophore extraction is to detect spatial patterns of pharmacophoric points that
are conserved in many active structures (ensemble methods), whereas a receptor-
based approach defines a spatial arrangement of areas in the binding pocket at which
specific interactions (e.g., H-bonds) can be established. The latter is sometimes also
referred to as inverse pharmacophore or interaction hot spots.

The first step in most ligand-based pharmacophore recognition algorithms is the
definition of a set of structural features that are regarded as pharmacophoric points.
Usually, this is done using a categorization of the ligands atoms (or substructures)
into atom types like hydrogen-bond donor or aliphatic. The definition of the atom
types is an important step and has a major influence on the quality of the pharma-
cophores that are found using the ligand-based methods. If the typing is chosen too
fine, the algorithm will likely not be able to find shared patterns, whereas a too general
definition would decrease the information content and induce many false positives.
Most pharmacophore extraction procedures assume that the typing of the ligands has
already been accomplished and are designed for the recognition of shared spatial
arrangements of the pharmacophoric points.

4.5.3.1 Ensemble Methods

Ensemble methods are designed to detect a spatial arrangement of pharmacophoric
points that is preserved in a set of active ligands. There are several ways to
approach this task, for instance: the distance geometry methods [76,77], the clique
detection/DISCO method [78], and the configuration-based approaches [79].

Molecular Descriptors 123

4.5.3.1.1 Distance Geometric Methods

The idea behind a distance geometric approach to pharmacophore recognition is
to derive spatial bounds for the relative positions of some pharmacophoric points.
Dammkoehler et al. [77] used this concept to find conserved spatial arrangements of
predefined pharmacophoric points in a set of structures. The constrained search of
conformational hyperspace starts with a specified set of k pharmacophoric points.
A parametrization of the geometric arrangement of these points can be expressed by
the (1/2)k(k − 1) pairwise distances and is referred to as a regular model, which can
be restricted by defining specific distances as fixed. Therefore, each geometry of a
pharmacophore corresponds to a point in the (1/2)k(k − 1) dimensional hyperspace
H defined by the model. The algorithm then subsequently constrains the subspace
of H which contains geometric arrangements of the pharmacophoric points that can
occur in the molecules due to their conformational flexibility. This is achieved by
iterating over the actives beginning at the most rigid structure and determining which
geometries can be produced by variations of the torsional angles subject to steric
constraints. Each spatial arrangement that cannot be produced by a new molecule
is removed from the subspace of H. This subspace is further constrained until it
only contains geometric configurations that can be adopted by every structure. These
allowed pharmacophoric point arrangements are considered as pharmacophores of
the examined set of actives.

4.5.3.1.2 DISCO—DIStance COmparison

The DISCO algorithm by Martin et al. [78] solves the pharmacophore detection
problem by the generation of the association graph H for every pair of ligand
conformations.

H is defined such that a preserved geometrical arrangement of pharmacophore
points corresponds to a clique in H. A clique of H is every subgraph of H that is
fully connected. The problem of the identification of cliques in a graph is known to
be NP-complete. In spite of that, it is computationally feasible due to the sparseness
of H in this case.

The algorithm begins with a set of active compounds with assigned pharma-
cophoric points and a sample of diverse conformations. The molecule with the smallest
number of conformations is used as the reference structure R. In the next step, the asso-
ciation graph H(R, Mj) is constructed for each conformation Mj of each other molecule
M. H(R, Mj) is defined as the vertex set V := {(a, b)|a ∈ atoms(R), b ∈ atoms(Mj)}
and the edge set E := {[(a, b), (c, d)]||dist(a, c)− dist(b, d)| < θ}. This corresponds
to a graph that has one vertex for each pair of atoms with identical atom types (i.e.,
pharmacophoric points) with one in R and one in Mj. Vertices are connected by edges
if the intramolecular distances of the atoms in R and the atoms in Mi are equal up to
a certain tolerance threshold θ.

Each clique in the association graph corresponds to a set of similar atoms (identical
pharmacophoric points) in the two molecules that adopt a similar spatial arrangement
and can thus be regarded as a pharmacophore of two molecules (Figure 4.1). The
largest clique and therefore the most expressive pharmacophore can be identified
using the Bron–Kerbosch algorithm [80] outlined in Algorithm 4.11.

124 Handbook of Chemoinformatics Algorithms

A1
A1, A1

A3, A1

B1, B1

B1, B2

C1, C1

C1, C2

A3, A1

B1, B2

C1, C1

C1, C2

A2, A1

A1, A1

B1, B1

A2, A1

A2
A3

B1

C1

Input graphs
(structures)

Association
graph Clique

detection
(max. clique: bold)

Preserved spatial
arrangement
(pharmacophore)

4

A1

B2 C2

4

1

3

4

4

3

1

2

A1

3
B1

C2B2C1

4

3 1

FIGURE 4.1 Schematic example of the DISCO pharmacophore detection algorithm [78].

ALGORITHM 4.11 PSEUDOCODE FOR THE BRON–KERBOSCH
ALGORITHM [80] FOLLOWING SAMUDRALA/MOULT [81]
method clique(, M D, C D, N D)
{

if a node in N D is connected to all nodes in
C D then

// branch and bound step
no more cliques can be found;

else
// backtracking steps
for all nodes in C D do

move candidate from C D to M D+1;
create C D+1 by removing all nodes from C D,
which are not connected with the candidate
node;
create N D+1 by removing all nodes from N D,
which are not connected with the candidate
node;

if C D+1 = Ø and N D+1 = Ø then
store M D+1 as maximum clique;

else
clique(M D+1,C D+1,N D+1),;

fi
move nodes from M D to N D;

od
fi

}

Molecular Descriptors 125

DISCO can be extended to regard the chirality of a molecule. This can be important
if pharmacophores consisting of more than three points are identified. To achieve this,
a clique is only accepted if the torsional angles in the corresponding pharmacophoric
points in both molecules are similar, according to another tolerance threshold.

4.5.3.1.3 Common Configurations

A major drawback of the clique-based pharmacophore approaches is that they either
have to be repeated for each pair of actives (and their conformations) or a set of
reference compounds has to be selected. The first is computationally too demanding
(quadratic complexity) in most cases and the latter introduces a bias to the reference
selection.

Therefore, Barnum et al. [79] proposed a new approach that simultaneously con-
siders each (precalculated) conformation of each active structure as a reference while
preserving a linear runtime complexity in the number of molecules.

The algorithm starts with the identification of configurations of the pharma-
cophoric points that are shared among the molecules. A configuration is similar to the
distance geometry. A specific spatial arrangement is defined by the distances between
the considered pharmacophoric points. Two configurations are considered as equal if
the difference in their geometries is below a threshold. Additional to this relaxation
it is allowed that the configurations do not share all pharmacophoric patterns. The
configurations are therefore not regarded as incompatible if they are different in one
aspect and share the remaining features. This concept can be described more formally
by the definition of a partition P as a set of specific pharmacophoric patterns and a
subpartition of P as each subset of P that contains all but one pattern of P.

The algorithm proceeds by iterating through the existing partitions in ascending
cardinality. It checks, for each partition, which reference molecules have configu-
rations (and conformations) that are associated with the partition and additionally
have subconfigurations related to the subpartitions. After this step, a list of reference
(sub)configurations of the reference compounds is obtained that is associated with a
specific (sub)partition. Then, all configurations of both reference and nonreference
compounds are examined if they can be considered as common. This is the case if
they have a compatible geometric arrangement of the partition elements to one of
the previously identified reference configurations. The compatibility depends on the
spatial arrangement as well on the similarity of the pharmacophoric points. The proce-
dure is repeated for the next partition until there are no more common configurations
possible.

The result of the described algorithm is a list of configurations of pharmacophoric
patterns that are considered as common. Each of these common configurations fulfills
the demands of a pharmacophore. An additional ranking can be used to the select
the most descriptive representations. For this purpose Barnum et al. [79] propose a
scoring scheme related to the Kullback–Leibler distance of probability distributions.
The score of a configuration C of K pharmacophoric features is defined as

s(C) = #actives
K+1∑

x=0

q(x) log2
q(x)

p(x)
,

126 Handbook of Chemoinformatics Algorithms

with x being the class of a match between a molecule M and the configuration C. A
match has class K + 1 if all the configurations features are matched by M and class
0 if no feature and no subconfiguration are matched. The classes 1 . . . K correspond
to matches between M and one of the K subconfigurations of C (every K − 1 sized
subset of C). The two quantities q(x) and p(x) denote the fraction of the structures
that have a class x match to C (q(x) regards only active structures and p(x) regards
all compounds).

4.5.3.2 Receptor Surface Models

The definition of the surface of the binding pocket of a protein using only ligand
structures is usually not considered as a pharmacophore approach but can be regarded
as an intermediate between a field-based and a pharmacophore approach. The basic
idea presented by Hahn [82,83] is to generate a kind of consensus shape out of a set
of structures that are active against a specific target. Assuming that the knowledge of
a bioactive conformation is given, a structural alignment of the ligands can be used
to calculate the spatial areas that are not occupied by any ligand. The boundary of
this space can then be considered as the hypothetical surface of the receptor binding
pocket. The algorithm starts with a set of aligned conformations of ligands that are
embedded in a spatial grid similar like to CoMFA [63]. A steric potential is calculated
for each grid point. Hahn proposes two different potential functions: the van der Waals
function and the Wyvill function. Each function calculates a steric potential regarding
one atom a for each grid point x:

PvdW (x) = dist(a, x)− radius(a)

PWy(x) = −4

9

(
dist(a, x)

R

)6

+ 17

9

(
dist(a, x)

R

)4

− 22

9

(
dist(a, x)

R

)2

+ 1,

where dist(a,x) < R.

The van der Waals potential defines a grid that is zero exactly on the van der
Waals surface of the atom, negative inside and positive outside. The Wywill function
is bounded by a parameter R that defines the distance at which the potential vanishes.
This function is evaluated at each grid point for each atom. The resulting potential for
the grid point is the minimum potential of all atoms. The atom nearest to that specific
grid point is further used to define the physicochemical properties of the grid point.

The receptor surface is modeled by averaging the potentials over the ligand ensem-
ble and calculating the isosurface similar to in the Shapelet method [54] using the
marching cubes algorithm. If this is set to zero, the resulting isosurface resembles a
kind of joint van der Waals surface of the ligand ensemble. This hypothetical receptor
surface can then be annotated with physicochemical properties by interpolating the
property values of the eight grid points that surround each grid cell that corresponds
to a surface point.

The physicochemical properties that can be incorporated in the receptor surface
model are related to those in the MIF algorithms but express values of receptor atoms.
Therefore, it is calculated which property values of the receptor surface would be

Molecular Descriptors 127

preferable at each specific surface point. The properties considered are: the partial
charge formulated as the inverse of the mean partial charge of the neighboring lig-
and atoms, the complementary electrostatic coulomb-like potential to the ligand grid
property, a hydrogen bond property that denotes if in average a donor (−1) or acceptor
(+1) would be preferable, and a binary flag for the hydrophobicity of that surface
part.

The resulting annotated isosurface of the hypothetical binding pocket can be used
in several ways. It can be viewed as a kind of inverse pharmacophore denoting which
ligand groups would be preferable at certain spatial points. Furthermore, it can be
used for the calculation of the potential energy of unknown molecules towards the
hypothetical surface. In all cases, the model should be first relaxed by the user by
cutting out those parts of the surface which cover assumably the opening of the pocket
and therefore do not restrict spatial positions of ligands. The potential energy can then
be separated into different potential types (e.g., steric and electrostatic) which can be
used as molecular descriptors to infer a QSAR model for this protein target. Other
proposed descriptors are the interaction energy for the receptor surface model, the
conformational energy of the “bound” conformation, the conformational energy of
the “relaxed” conformation (minimized outside the binding pocket model), and the
difference between the bound and the relaxed conformational energy.

4.5.4 HIGHER DIMENSIONAL FEATURES

The incorporation of geometrical information in the field- and shape-based molecu-
lar representations introduces a strong bias to the structural conformation on which
the calculation is performed. Several approaches to avoid this problem have been
proposed. The general idea is to regard several geometrical conformations during
the feature generation. For instance, this concept has been outlined in the 4D QSAR
paradigm published Santos-Filho and Hopfinger in 2002 [84]. The first step is anal-
ogous to a field-based 3D QSAR and consists of the definition of coordinate system
(grid) where initial conformers of structures are placed. In contrast to the field
approach, no interaction potentials are calculated. The atoms of the molecules are
categorized into several pharmacophoric classes (negative polar, positive polar, non-
polar, hydrogen-bond donor, hydrogen-bond acceptor, aromatic) and a wildcard type
(any) resulting in a set of interaction pharmacophoric elements (IPEs). The fourth
dimension is introduced by a conformational sampling using a molecular dynamics
simulation. This leads to a set of conformers for each molecule. The comparison of the
positions of the IPEs requires a structural alignment of the different conformations.

The aligned structures are further processed to return a set of 4D features which are
based on the occupancies of the cells of the reference grid the conformers are placed
in. These occupancies represent the features which can be regarded as 4D molecular
descriptors. For each IPE type, three occupancy types of the grid cells were proposed
in the original work of Santos-Filho and Hopfinger [84]:

Absolute-occupancy A0: The absolute occupancy is a measure for the number of all
IPEs of all conformers of a molecule that are placed inside a specific grid cell.

128 Handbook of Chemoinformatics Algorithms

Joint-occupancy J0: The joint-occupancy counts the number of IPEs in a specific
cell that occur in this cell as well for the actual compound and for the reference
molecule. Therefore, it is a kind of similarity measure to a reference molecule
that regards the conformational space of both compounds.

Self-occupancy S0: The self-occupancy is calculated as the difference between the
absolute-occupancy and the joint-occupancy.

The resulting 4D features can be used as descriptors in QSAR modeling. Similar
to CoMFA [63], the large number of feature favors machine learning methods that are
capable of dealing with large feature spaces as it is the case for partial least squares.

All approaches that have been presented so far describe the ligand compound
in increasing complexity reaching its limit in the consideration of conformational
ensembles in the 4D QSAR paradigm. The 5D QSAR idea [85,86] goes beyond
that by incorporating information about the receptor structure and even its flexibility
regarding induced fit effects. This receptor-dependent QSAR (RD-QSAR) concept
does not necessarily need real information about the ligands target. The construction
of receptor envelopes as it is proposed in the work on 5D QSAR of Vedani and Dobler
[85,86] uses only the set of conformational ensembles of the ligands to infer a model of
the hypothetical receptor binding side. This is done using the concept of a hypothetical
receptor surface model originally published by Hahn [82,83]. The receptor surface
model is extended in this approach to incorporate induced fit effects.A ligand-specific
induced fit surface, called the “inner envelope,” is calculated for each molecule by
mapping the receptor surface that has been computed using all ligands onto the van
der Waals surface of the single molecule. The magnitude of the deformation measured
as the RMSD of corresponding surface points can be used to calculate a hypothetical
“induced fit” energy of this molecule. This energy is combined with other force field
energy terms into an equation that describes the binding energy of this molecule to
the hypothetical receptor.

Therefore, the inferred surface can be regarded as QSAR equation. The equation
is trained by a genetic algorithm that varies the surface properties, which have been
randomly assigned, in order to optimize the fit of the models energy equation to the
target values. Thus, the 5D QSAR approach is different from most of the previously
represented ideas because of its different understanding of descriptors. The surface
properties are varied in order to learn the model. Therefore, they can be regarded as
coefficients rather than features. If considered as descriptors, the interaction potentials
towards the ligand atoms are regarded as the values of the surface points. Thus, the
approach is to some extent the learning of a receptor binding pocket.

4.6 IMPLICIT AND PAIRWISE GRAPH ENCODING: MCS MINING
AND GRAPH KERNELS

4.6.1 MCS MINING

4.6.1.1 Maximum Common Subgraph

A maximum common subgraph (MCS) is the result of a search for maximum isomor-
phic pairs (S, S′), such that S is subgraph of G and S′ a subgraph of G′. From a formal

Molecular Descriptors 129

point of view, a graph isomorphism is a bijection between the vertices G and G′, such
that the structure of the assignments is conserved by the assignment function.

4.6.1.2 Exact Maximum Common Substructure

Sheridan and Miller [87] suggest a method for detecting meaningful common sub-
structures in active compounds based on clique-detection in pairs of molecules. The
Highest Scoring Common Substructures (HSCS) are subgraphs that have a signif-
icantly higher score then common substructures by chance for randomly selected
compounds.

Sheridan and Miller [87] define common substructures as corresponding atoms
with the same atom type, where the atom type was set to cation, anion, neutral HBD,
neutral HBA, polar atom (acceptors or donors), hydrophobe, and other. The second
requirement for a common substructure is that the respective pairs of atoms must have
the same topological distance. This is determined by the shortest path between two
atoms. The score for each substructure is defined by

Score = Size− p(Nfrag − 1),

where the size equals the number of atoms, p is a “discontinuity penalty” (between
1.0 and 2.0), Nfrag is the number of discontinuous fragments.

Meanscore HSCS(nA, nB) = Mmean ·min(na, nb)+ Bmean,

Stdv HSCS(nA, nB) = Mstdv ·min(nA, nB)+ Bstdv,

Z − Score = [Score−Mean(nA, nB)]
Stdv(nA, nA)

,

where nA, nB are the number of atoms in molecules A and B, respectively.
Mmean and Bmean are constants depending on p, the database, and the atom types.
MeanscoreHSCS(nA, nB) describes a linear function of the expected score. The Z-
Score for an HSCS between two molecules is a score for the unlikeliness of an
occurrence for an HSCS. HSCSs are regarded as significant with a specific score
(Sheridan and Miller use a threshold of ≤ 4.0).

Pharmacophores are detected via a modified clique-detection algorithm (see Algo-
rithm 4.12). C denotes a clique that is defined as set of paired atoms from A, B.
CA(i) = j is the ith atom in a clique in A, and the corresponding atom number is
j. VA(i) = 1 records if atom i in A is available for matching. V(∗) = 0 resets the
complete mask.

ALGORITHM 4.12 HSCS CLIQUE DETECTION, PSEUDOCODE
ADAPTED FROM SHERIDAN AND MILLER [87]

// enumerate each possible pairing of atoms in
both structures for i, j do
// first match of a possible clique
if (A.getAtom(i)= B.getAtom(j))

130 Handbook of Chemoinformatics Algorithms

Initialize
VA(∗) = 1, VB (∗) = 1, VA (i) = 0, VB(i) = 0

npair = 1; CA(i) = i; CA(j) = j;
for all pairs do

boolean kmcheck=false;
for all pairs of k ∈ A and m ∈ B do
if (M(k,m) = 1)

if (VA(k) = 1 and VB(m) = 1)
for k, l do
if (disttopo (k,CA (∗)) == disttopo (m,CB(∗)))
S=sum of distances
if (S < Smin)
S min = S
k′ = k
m′ = m
kmcheck=true

fi
fi
od
fi
fi
od
// if no cliques of smaller size exist exit here
if(!kmcheck)
exit;
else
n pair++;

VA(k′) = 0, VB (m′) = 0,
CA (npair) = k′;
CB (npair) = m′;

fi
if npair ≥ min(nA,nB)
exit;
fi

od
od

4.6.1.3 Inexact Maximum Common Substructure

Birchall et al. [88] suggest an approach based on edit operations, such that the simi-
larity is determined by the cost of insertions, deletions, and mutation to transform a
graph into another. The approach published by Birchall et al. [88] works on the set
of paths p, p′ extracted from a reduced molecular graph using the optimal cost of
transforming p into p′. The set of paths is computed as the set of all linear shortest
paths of all vertices of degree one. These are referred to as maximum paths. For all
maximum paths in two molecules A, B the minimum weighted distance is determined

Molecular Descriptors 131

by a minimum backtracking using a cost matrix. The final edit score is the maximum
cost path considering two graphs. The penalties for the cost matrix were optimized
using a genetic algorithm.

4.6.2 KERNEL FUNCTIONS

A kernel is a real-valued, symmetric and positive semidefinite function k : χ× χ→
R, defined on the space χ. Many sophisticated kernels are built up of a set of basic
kernel functions subject to the closure properties of kernel functions.

Numerical kernels can deal with arbitrary vectors of numerical data of the same
dimension; nominal kernels compare nominal features, such as symbols or discrete
values.

Graph kernels are able to consider various features of a molecular graph like paths,
cycles, and pharmacophores [19,89–96]. Kernels have the advantage that they are not
restricted to a fixed-sized vectorial representation like a binary fingerprint, a vector
of molecular attributes, or structural keys of a defined size.

In the following section, we introduce the kernel closure properties and basic kernel
functions on numerical and nominal attributes. Then, we will introduce kernel func-
tions defined on molecular graphs beginning with simple topological kernel functions
up to 3D kernel functions.

4.6.2.1 Kernel Closure Properties

A suitable kernel can be designed systematically to reflect a sensible similarity. Kernel
machines, like SVMs or Gaussian Processes, use the kernel property to solve a convex
learning problem (optimization problem) optimally. The kernel properties are closed
under a number of operations (adapted from [97]):

c · k(xi, xj)

f (xi) · k(xi, xj) . f (xj)

q[k(xi, xj)]
exp[k1(xi, xj)]
k1(xi, xj)+ k2(xi, xj)

k1(xi, xj) · k2(xi, xj)

k3[φ(xi), φ(xj)]
xT

i Axj

ka(xa, xa)+ kb(xb, xb)

ka(xa, xa) · kb(xb, xb)

where c is a scalar, ϕ(x) defines a mapping x→ RM , k3 is a valid kernel in RM . A is
positive semidefinite matrix, xa and xb are variables with x = (xa, xb), and ka and kb

132 Handbook of Chemoinformatics Algorithms

are kernel functions in their respective spaces. f is any function and q is a polynomial
function with non-negative weights.

4.6.3 BASIC KERNEL FUNCTIONS

With the help of the closure properties it is possible to build powerful kernels from
a set of basic kernel functions. It is not only useful to describe the similarity of
global descriptors, but also for local numerical descriptors like atomic attributes.
The following basic numeric kernel functions can be directly applied to numerical
descriptors.

4.6.3.1 Numerical Kernel Functions

The Gaussian radial basis function (RBF) kernel is defined as

kRBF(xi, xj) = exp

(

−‖xi − xj‖2
2σ2

)

.

The RBF kernel is used for the pairwise comparison of two samples xi, xj ∈ R.
The σ parameter adjusts the diameter and height of the resulting Gaussian peaks at
the support vectors (the noise of the data), if a support vector machines is applied.

The polynomial kernel is defined as

kpoly(xi, xj) = (〈xi, xj〉 + θ)d .

The linear kernel is a special case of the polynomial kernel:

klinear(xi, xj) = 〈xi, xj〉.

The hyperbolic tangent kernel, which is not always positive semidefinite and
therefore should be regarded as a pseudokernel, is defined as

ktanh(xi, xj) = tanh(〈xi, xj〉 + θ).

The Laplacian kernel is defined as

kLaplacian(xi, xj) = exp(−σ‖xi − xj‖).

The Brownian Bridge kernel is defined as

kBrownian(xi, xj) = max(0, c− k‖xi − xj‖),

where d ∈ N and {c, k, σ} ∈ R and xi, xj ∈ Rn.
The RBF-related kernels (here: RBF, Laplacian) normalize the similarity in x ∈

[0, 1] ∈ R. This is a useful property for support vector machines, where the complexity
of the training algorithm depends on the kernel values. Smaller kernel values decrease
the training computation time.

Molecular Descriptors 133

4.6.3.2 Nominal Kernel Functions

Some kernel functions are defined on arbitrary sets of nominal features.
The Delta Function (or Dirac kernel) is defined as

kDelta(xi, xj) =
{

1 if xi = xj

0 else
.

The p-spectrum kernel is defined on strings of length p. Basically, it can be used
to compare feature sets of an infinite length:

kspectrum(a, b) =
∑

s∈S

ϕ
p
s (a)ϕ

p
s (b),

where ϕ
p
s (x) counts the number of equal strings S = Sp

a ∪ Sp
b with Sp

x denoting the set
(spectrum) of strings of length p of instance x. With a closer look at this formula, it
is easy to recognize that this is equivalent with the definition of the dot product for
vectors of variables sizes.

In the original publication [98,99] it is applied to strings obtained from proteins.
Mahé et al. use Spectrum kernels for a fast approximation of two-point and three-point
pharmacophore kernels, which closely relates this kernel to fingerprints approaches.

4.6.4 2D KERNELS ON NOMINAL FEATURES

The Tanimoto and the MinMax kernel can compare arbitrary feature sets Fi =
{fi1, fi2, . . . , fim} and Fj = {fj1, fj2, . . . , fjn}. Ralaivola et al. [92] introduced both ker-
nels for the prediction of chemical properties using fingerprinting schemes. A further
study was published by Azencott et al. [89].

Note that fingerprints are a general concept and not a fixed scheme. The following
flavors exist: List representation without fixed length (This avoids the possibility of
a collision), Structural keys (a defined look-up table of patterns), and different pat-
tern generation algorithms (e.g., fragmentation and DFS). An advantage of a kernel
function is that in can handle fingerprints of an undefined size and can weight the pat-
terns with, for example, the molecular weight of the substructure or a branching factor.

The MinMax kernel KMM is capable of including information about the individual
counts of each feature. It is defined as

kMM(Fi, Fj) =
∑

p min[φp(Fi, Fj)]
∑

p max[φp(Fi, Fj)] ,

where a feature of the joint feature space p ∈ P is counted by ϕp.

kTM(Fi, Fj) = |Fi ∩ Fj|
|Fi ∪ Fj| .

The Tanimoto kernel KTM is the cardinality of the intersection divided by the cardi-
nality of the union of Fi, Fj. A useful property is that new features lead to an increased

134 Handbook of Chemoinformatics Algorithms

F (Mi)

F (Mi, Mj)

T (Mi, Mj) = Fi ∩ Fj
Fi ∪ Fj

F (Mi)

(f1)

(f3)

(f2) O––N

(f1)

(f3)

Cl

Cl

f2 1
3f1 + f2 + f3

==

O+

(f2) O––N
O+

(f2) O––N
O+

FIGURE 4.2 The Tanimoto kernel and MinMax kernel compare molecular graphs in a joint
space of their features. A simple example is shown using the Tanimoto kernel.

dissimilarity and that features that are not contained in the two compared structures are
simply omitted. Intuitively, this representation corresponds to a molecular fingerprint
of unlimited size.

The Tanimoto coefficient and the MinMax kernel are valid kernels [92,100]. The
Tanimoto kernel is a special case of the MinMax kernel, if the count of all features
equals one. The Tanimoto kernel is used in chemoinformatics to compare sets of
molecular features like fragments, paths, and bit sets.

An efficient way to compare molecules with the Tanimoto and MinMax kernel is
to represent the structures as trees [92]. The MinMax and Tanimoto kernel are self-
normalizing real-valued kernel functions, which yield values between zero and one.
A recursive computation of the Tanimoto kernel on nominal features using a prefix
search tree (trie) is illustrated in Algorithm 4.13 with a visual representation of the
kernel function shown in Figure 4.2. The patterns are inserted as tuples of nominal
features (e.g., the sequence of atom types and bond labels of a path). The last element
is labeled as leave and may have the count of the corresponding feature as additional
property.

ALGORITHM 4.13 RECURSIVE TANIMOTO KERNEL COMPUTATION
ON TWO TRIES

dirac← 0
double computeSimilarityTanimoto(Trie triea,

Trie trieb) {

Molecular Descriptors 135

computeSimDirac(triea · root, trieb · root)
leavesa ← triea · leaves
leavesb ← trieb · leaves

tanimoto← dirac

leavesa + leavesb − dirac
return tanimoto;

}
void computeSimDirac(TreeNode
nodea, TreeNode nodeb) {
if (nodea · isLeave AND nodeb · isLeave) then
dirac← dirac+ 1
fi
childrena ← nodea · children ←
childrenb ← nodeb · children
for i← 0 to childrena · size do
for j← 0 to childrenb · size do
if
childrena [i] · label = childrenb [j] · label
then

computeSimDirac(
childrena [i], childrenb [j],)
fi
od
od
}

4.6.4.1 Marginalized Graph Kernel

Another important class of kernels is the class of expectation kernels. This approach
may be useful, if the feature space is too large to be computed directly. The marginal-
ized graph kernel is based on random walks and is defined as the expectation of a
kernel of all pairs of walks from two graphs, see Kashima et al. [91].

4.6.5 2D KERNELS NOMINAL AND NUMERICAL FEATURES

4.6.5.1 Optimal Assignment Kernels

The idea of the OAK is to compute an optimal weighted assignment on two sets of
objects and to use the resulting similarity as a kernel function. The underlying problem
is to solve max w(M) = max

∑
e∈M w(e), where w(M) is the sum of the weights of

the matching edges e(i, j), between two objects i, j of two disjoint sets. Each feature
of the smaller set has to be assigned to exactly one feature of the other set. The OAK
was introduced by Fröhlich et al. [18,19,101] and successfully applied to attributed
molecular graphs.

The OAK regards atoms as vertices attributed with chemical properties and
neighborhood information. After the atomic labels have been assigned, a pairwise

136 Handbook of Chemoinformatics Algorithms

FIGURE 4.3 Assignment of two arbitrary structures x, x′ by the OAK. Each assignment edge
has a similarity score and contributes to the final kernel value kOA(x, x′).

similarity matrix of the attributes of each atom of two molecular graphs is com-
puted. If the number of atoms of both structures is not equal, dummy nodes are
added to the smaller molecular graph. Finally, the Hungarian Method is used to find
an optimal weighted assignment of the atoms on the resulting quadratic similarity
matrix.

The kernel function of the optimal weighted assignment is defined as follows:

kOA(x, x′) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
π∈Π(x′)

|x|∑

i=1

κ(xi, x′n(i)) if |x′| > |x|

max
π∈Π(x)

|x′|∑

j=1

κ(xπ(j), x′j) otherwise

In the context of molecular graphs x := (x1, x2, . . . , x|x|) and x′ := (x′1, x′2, . . . , x′|x′|)
are the sets of atoms or atom environments that compose the corresponding molecular
graph. Π(x) denotes all possible permutations of x and Π(x′) of x′ respectively. The
atomwise similarity is determined by κ which can be any suitable kernel function on
atomic attributes. Note that the OAK uses a local atom environment, described in 4.2.
kOA(x, x′) computes the maximum score of all possible permutations which are visu-
alized in Figure 4.3 for two sample structures.A related kernel, the Iterative Similarity
OAK (ISOAK), has been published by Rupp et al. [93]. Fechner et al. [102] published
an extension of the local kernels which is able to encode the flexibility of a molecule
by local flexibility patterns. This further improved the modeling performance of the
OAK on molecules with both rigid and flexible substructures.

OAKs are pseudokernels [103]. Therefore, each kernel matrix has to be fixed by
subtracting the smallest negative eigenvalue from the diagonal of the kernel matrix.
Java implementations of the OAK and ISOAK are available for downloading free of
charge. Both assignment kernels have a good prediction performance [90,93].

Molecular Descriptors 137

4.6.6 3D KERNELS ON NOMINAL AND NUMERIC FEATURES

4.6.6.1 A General Framework for Pharmacophore Kernels

From an abstract point-of-view, a pharmacophore is 3D relationship between phar-
macophoric interaction features in a molecule responsible for an interaction with a
pharmaceutical target. Pharmacophore kernels between two molecules a, b are kernel
functions of the form

k(a, b) =
m∑

i=0

n∑

j=0

κ(pi, pj).

The total similarity is determined by summing up all pairwise similarities between
all pharmacophores in two molecules. The information of a pharmacophore lies in
the distances and the pharmacophoric features. Mahe et al. [104] propose a general
kernel function κ of the form

κ(pi, pj) = kI(pi, pj)× kS(pi, pj),

where the intrinsic kernel kI provides a similarity measure two pharmacophoric fea-
tures and the spatial kernel kS is a measure for the distance. For other kernels then
the simple Dirac kernel, a trace matrix is used to compute efficiently the distance
between three-point pharmacophores, see Algorithm 4.14 for the matrix computation.
The kernel value can then be traced by Algorithm 4.15.

ALGORITHM 4.14 TRACE MATRIX COMPUTATION

TraceMatrix(FeatureAtomFingerprint[]fs1, FeatureAtom
Fingerprint[] fs2) {
int n1=fs1.length; int n2=fs2.length; int n=n1*n2;
int i=0; int j=0;
M=new double[n][n];
BitSet nonezeroRows=new BitSet(n);
BitSet nonezeroCols=new BitSet(n);
for (int i1=0; i1<n1; i1++) {
for (int i2=0; i2<n2; i2++) {
for (int j1=0; j1<n1; j1++) {
if (i1 == j1)
continue;
for (int j2=0; j2<n2; j2++) {
if (i2 == j2)
continue;
i=i1+i2*n1;
j=j1+j2*n1;
M[i][j]=fs1[i1].similarity(fs2[i2]);
if (M[i][j]>0) {
double e1=fs1[i1].distance(fs1[j1]);
double e2=fs2[i2].distance(fs2[j2]);

138 Handbook of Chemoinformatics Algorithms

M[i][j] *= K_Dist(e1, e2);
nonezeroRows.set(i); nonezeroCols.set(j);
}
}
}
}
}
reduceTraceMatrix(); // delete columns and rows
containing zeros only (set
in nonezeroCols)

}

ALGORITHM 4.15 TRACE MATRIX SEARCH

public double trace(){
int n=M.length;
double r=0;
for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
if (M[i][j] == 0.0)
continue;
for (int k=0; k<n; k++) {
r += M[i][j]*M[j][k]*M[k][i]; //=kappa(p,p’)
}
return r;
}

4.6.6.2 Fast Approximation of the Pharmacophore Kernel
by Spectrum Kernels

For a fast computation Mahé at al. proposed a p-spectrum kernel [98,99] like approach
using a search tree of all three-point pharmacophores of a structure. To enable a rapid
calculation, the distances of the pharmacophoric points are labeled by a distance grid
and the pharmacophoric points by their general atom type. Both, the distance and the
atom type can now be compared by the Dirac kernel. Consequently, a recursive kernel
calculation is possible, as outlined in Algorithm 4.13. In the original work of Mahé
et al., a simple Spectrum kernel was used.

The product of the counts of a specific pharmacophoric pattern equals k(a, b).
The final kernel value is obtained via normalizing the kernel k(a, b) with the self-
similarities of a and b:

k(a, b)← k(a, b)√
k(a, a) · √k(b, b)

.

The self-normalization is frequently used with kernel functions.

Molecular Descriptors 139

REFERENCES

1. Todeschini, R. and Consonni, V., Handbook of Molecular Descriptors. Wiley-VCH,
Weinheim, Germany, 2000.

2. Cook, D. J. and Holder, L. B. (eds), Mining Graph Data. Wiley, Hoboken, NJ, 2007.
3. Bush, B. L. and Sheridan, R. P., PATTY: A programmable atom typer and language for

automatic classification of atoms in molecular databases. J. Chem. Inf. Comput. Sci.,
1993, 33, 756–762.

4. Leite, T. B., Gomes, D., Miteva, M. A., Chomilier, J., Villoutreix, B. O., and Tuffery, P.,
Frog: A. FRee online druG 3D conformation generator. Nucleic Acids Res., 2007, 35,
568–572.

5. Izrailev, S., Zhu, F., and Agrafiotis, D. K., A distance geometry heuristic for expanding
the range of geometries sampled during conformational search. J. Comput. Chem., 2006,
27, 1962–1969.

6. Gasteiger, J., Sadowski, J., Schuur, J., Selzer, P., Steinhauer, L., and Steinhauer, V.,
Chemical information in 3D space. J. Chem. Inf. Comput. Sci., 1996, 36, 1030–1037.

7. Schwab, C., Konformative Flexibilitaet von Liganden im Wirkstoffdesign. PhD thesis,
Erlangen, Germany, 2001.

8. Good, A. C. and Cheney, D. L., Analysis and optimization of structure-based virtual
screening protocols (1): Exploration of ligand conformational sampling techniques.
J. Mol. Graphics Model, 2003, 22, 23–30.

9. Bunke, H. and Neuhaus, M., Graph matching—exact and error-tolerant methods and the
automatic learning of edit costs. In: Mining Graph Data, pp. 17–34, Wiley, Hoboken,
NJ, 2007.

10. Luks, E. M., Isomorphism of graphs of bounded valence can be tested in polynomial
time. J. Comput. Syst. Sci., 1982, 25, 42–65.

11. Faulon, J.-L. Stochastic generator of chemical structure, 2. Using simulated annealing
to search the space of constitutional isomers. J. Chem. Inf. Comput. Sci., 1996, 36,
731–740.

12. Bonchev, D. and Rouvray, D., Complexity in Chemistry: Introduction and Fundamentals.
Taylor & Francis, London and New York, 2003.

13. Bonchev, D., Overall connectivities/topological complexities: A new powerful tool for
QSPR/QSAR. J. Chem. Inf. Comput. Sci., 2000, 40, 934–941.

14. Minoli, D. Combinatorial graph complexity. Atti. Accad. Naz. Lincei, VIII. Ser., Rend.,
Cl. Sci. Fis. Mat. Nat., 1975, 59, 651–661.

15. Bremser, W. HOSE—a novel substructure code. Anal. Chim. Acta, 1978, 103, 355–365.
16. Hemmer, M. C., Steinhauer, V., and Gasteiger, J., Deriving the 3D structure of organic

molecules from their infrared spectra. Vib. Spectrosc., 1999, 19, 151–164.
17. Hemmer, M. C. and Gasteiger, J., Prediction of three-dimensional molecular structures

using information from infrared spectra. Anal. Chim. Acta, 2000, 420, 145–154.
18. Fröhlich, H., Wegner, J. K., Sieker, F., and Zell, A., Kernel functions for attributed molec-

ular graphs—a new similarity based approach to ADME prediction in classification and
regression. QSAR Comb. Sci., 2006, 25, 317–326.

19. Fröhlich, H., Wegner, J. K., and Zell, A., Assignment kernels for chemical com-
pounds. International Joint Conference on Neural Networks 2005 (IJCNN’05), 2005,
pp. 913–918.

20. Bender, A., Mussa, H. Y., Glen, R. C., and Reiling, S., Similarity searching of chem-
ical databases using atom environment descriptors (MOLPRINT 2D): Evaluation of
performance. J. Chem. Inf. Comput. Sci., 2004, 44, 1708–1718.

140 Handbook of Chemoinformatics Algorithms

21. Bender, A., Mussa, H. Y., Glen, R. C., and Reiling, S., Molecular similarity search-
ing using atom environments, information-based feature selection, and a nave bayesian
classifier. J. Chem. Inf. Comput. Sci., 2004, 44, 170–178.

22. Gutman, I., Chemical Graph Theory. Introduction and Fundamentals. Abacus Press—
Gordon and Breach, New York, 1991.

23. Free, S. M. and Wilson, J. W., A mathematical contribution to structure–activity studies.
J. Med. Chem., 1964, 7, 395–399.

24. Clark, M., Cramer, R., and van Opdenbosch, N., Validation of the general purpose tripos
5.2 force field. J. Comput. Chem., 1989, 10, 982–1012.

25. Meng, E. C. and Lewis, R. A., Determination of molecular topology and atomic
hybridization states from heavy atom coordinates. J. Comput. Chem., 1991, 12, 891–898.

26. Schroedinger, Macromodel 9.5 Reference Manual, 2007.
27. Daylight Chemical Information Systems, Inc., 2008, Daylight Theory Manual.
28. Rarey, M. and Dixon, J. S. Feature trees: A new molecular similarity measure based on

tree matching. J. Comput. Aided Mol. Des., 1998, 12, 471–490.
29. Carhart, R. E., Smith, D. H., andVenkataraghavan, R.,Atom pairs as features in structure–

activity studies: Definition and applications. J. Chem. Inf. Comput. Sci., 1985, 25, 64–73.
30. Dijkstra, E. W., A note on two problems in connexion with graphs. Num. Math., 1959,

1, 269–271.
31. Cormen, T. H., Leiserson, C. E., Rivest, R., and Stein, C., Introduction to Algorithms.

MIT Press, McGraw-Hill Book Company, Cambridge, MA, 2001.
32. Borgwardt, K. M., Graph kernels. PhD thesis, 2007, Ludwig-Maximilians-Universitaet

Muenchen.
33. Faulon, J.-L., Visco, D. P., and Pophale, R. S., The signature molecular descriptor. 1.

Using extended valence sequences in QSAR and QSPR studies. J. Chem. Inf. Comput.
Sci., 2003, 43, 707–720.

34. Faulon, J.-L., Churchwell, C. J., and Visco, D. P. The signature molecular descriptor. 2.
enumerating molecules from their extended valence sequences. J. Chem. Inf. Comput.
Sci., 2003, 43, 721–734.

35. Churchwell, C. J., Rintoul, M. D., Martin, S., Visco, D. P., Kotu, A., Larson, R. S.,
Sillerud, L. O., Brown, D. C., and Faulon, J.-L. The signature molecular descriptor.
3. inverse-quantitative structure–activity relationship of ICAM-1 inhibitory peptides. J.
Mol. Graphics Model, 2004, 22, 263–273.

36. Faulon, J.-L., Collins, M. J., and Carr, R. D. The signature molecular descriptor. 4.
Canonizing molecules using extended valence sequences. J. Chem. Inf. Comput. Sci.,
2004, 44, 427–436.

37. Lewell, X. Q., Judd, D. B., Watson, S. P., and Hann, M. M., RECAP—retrosynthetic
combinatorial analysis procedure: A powerful new technique for identifying privileged
molecular fragments with useful applications in combinatorial chemistry. J. Chem. Inf.
Comput. Sci., 1998, 38, 511–522.

38. Flower, D. R., On the properties of bit string-based measures of chemical similarity.
J. Chem. Inf. Comput. Sci., 1998, 38, 379–386.

39. Dean, P. M., and Lewis, R. A., (eds), Molecular Diversity in Drug Design. Kluwer
Academic Publishing, Dordrecht, Boston, London, 1999.

40. Durant, J. L., Leland, B. A., Henry, D. R., and Nourse, J. G., Reoptimization of MDL
keys for use in drug discovery. J. Chem. Inf. Comput. Sci., 2002, 42, 1273–1280.

41. James, C.A. andWeininger, D., Daylight Theory Manual. Daylight Chemical Information
Systems, Inc., 1995.

42. Tripos, UNITY Reference Manual. Tripos Inc., St. Louis, MO, 1995.
43. JChem 3.2, 2006, ChemAxon.

Molecular Descriptors 141

44. Brown, N., McKay, B., and Gasteiger, J., Fingal: A novel approach to geometric finger-
printing and a comparative study of its application to 3D-QSAR modelling. QSAR Comb.
Sci., 2005, 24, 480–484.

45. Swamidass, S. J. and Baldi, P., Mathematical correction for fingerprint similarity
measures to improve chemical retrieval. J. Chem. Inf. Model., 2007, 47, 952–964.

46. Shemetulskis, N. E.,Weininger, D., Blankley, C. J.,Yang, J. J., and Humblet, C., Stigmata:
An algorithm to determine structural commonalities in diverse datasets. J. Chem. Inf.
Comput. Sci., 1996, 36, 862–871.

47. Gasteiger, J., Rudolph, C., and Sadowski, J., Automatic generation of 3D-atomic
coordinates for organic molecules. Tetrahedron Comput. Methodol., 1990, 3, 537–547.

48. Peterson, W. W. and Brown, D. T., Cyclic codes for error detection. Proc. IRE, 1961, 49,
228–235.

49. Introducing InChI Key. Chem. Intern., 2007, 29.
50. Secure hash standard (shs). FIPS 180-182, 2002, US Government.
51. Hopfinger, A. J., A QSAR investigation of dihydrofolate reductase inhibition by

baker triazines based upon molecular shape analysis. J. Am. Chem. Soc., 1980, 102,
7196–7206.

52. Rush, T. S., Grant, J. A., Mosyak, L., and Nicholls, A. A shape- based 3-D scaffold
hopping method and its application to a bacterial protein–protein interaction. J. Med.
Chem., 2005, 48, 1489–1495.

53. Masek, B. B., Merchant, A., and Matthew, J. B., Molecular shape comparison of
angiotensin ii receptor antagonists. J. Med. Chem., 1993, 36, 1230–1238.

54. Proschak, E., Rupp, M., Derksen, S., and Schneider, G., Shapelets: Possibilities and
limitations of shape-based virtual screening. J. Comput. Chem., 2007, 29, 108–114.

55. Lorensen, W. E. and Cline, H. E., Marching cubes: A high resolution 3D surface
construction algorithm. Comput. Graph, 1987, 21, 163–169.

56. Dunn, F. and Parberry, I., 3D Math primer for Graphics and Game Development.
Wordware Publishing, Inc., 2002.

57. Kabsch, W.,A solution for the best rotation to relate two sets of vectors. Acta Crystallogr.,
1976, 32, 922.

58. Kellogg, G. E. andAbraham, D. J., Key, lock, and locksmith: Complementary hydropathic
map predictions of drug structure from a known receptor–receptor structure from known
drugs. J. Mol. Graph. Model, 1992, 10, 212–217.

59. Goodford, P. J., A computational procedure for determining energetically favorable
binding sites on biologically important macromolecules. J. Med. Chem., 1985, 28,
849–857.

60. Warwicker, J. and Watson, H. C., Calculation of the electric potential in the active site
cleft due to alpha-helix dipoles. J. Mol. Biol., 1982, 157, 671–679.

61. Rogers, N. K. and Sternberg, M. J. Electrostatic interactions in globular proteins. Dif-
ferent dielectric models applied to the packing of alpha helices. J. Mol. Biol., 1984, 174,
527–542.

62. Klebe, G., Abraham, U., and Mietzner, T., Molecular similarity indices in a comparative
analysis (CoMSIA) of drug molecules to correlate and predict their biological activity.
J. Med. Chem., 1994, 37, 4130–4146.

63. Cramer, R. D., Patterson, D. E., and Bunce, J. D., Comparative molecular field analysis
(CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc.,
1988, 110, 5959–5967.

64. Gasteiger, J. and Marsili, M., A new model for calculating atomic charges in molecules.
Tetrahedron Lett., 1978, 34, 3181–3184.

142 Handbook of Chemoinformatics Algorithms

65. Clark, M., Cramer, R., Jones, D., Patterson, D., and Simeroth, P., Comparative molecular
field analysis (CoMFA). 2. Toward its use with 3D structural databases. Tetrahedron
Comput. Methodol., 1990, 3, 47–59.

66. Kearsley, S. K. and Smith, G. M., An alternative method for the alignment of molecular
structures: Maximizing electrostatic and steric overlap. Tetrahedron Comput. Methodol.,
1990, 3, 615–633.

67. Viswanadhan, V. N., Ghose, A. K., Revankar, G. R., and Robins, R. K., Atomic
physicochemical parameters for three dimensional structure directed quantitative
structure–activity relationships. 4. Additional parameters for hydrophobic and disper-
sive interactions and their application for an automated superposition of certain naturally
occurring nucleoside antibiotics. J. Chem. Inf. Comput. Sci., 1989, 29, 163–172.

68. Coutsias, E. A., Seok, C., and Dill, K. A., Using quaternions to calculate RMSD. J.
Comput. Chem., 2004, 25, 1849–1857.

69. Kearsley, S. K., An algorithm for the simultaneous superposition of a structural series.
J. Comput. Chem., 1990, 11, 1187–1192.

70. Klebe, G., Mietzner, T., and Weber, F., Different approaches toward an automatic
structural alignment of drug molecules: Applications to sterol mimics, thrombin and
thermolysin inhibitors. J. Comput. Aided Mol. Des., 1994, 8, 751–778.

71. Pastor, M., Cruciani, G., McLay, I., Pickett, S., and Clementi, S., Grid-independent
descriptors (GRIND): A novel class of alignment independent three-dimensional
molecular descriptors. J. Med. Chem., 2000, 43, 3233–3243.

72. Crivori, P., Cruciani, G., Carrupt, P.-A., and Testa, B., Predicting blood–brain bar-
rier permeation from three-dimensional molecular structure. J. Med. Chem., 2000, 43,
2204–2216.

73. Cruciani, G., Pastor, M., and Guba, W., VolSurf: A new tool for the pharmacokinetic
optimization of lead compounds. Eur. J. Pharm. Sci., 2000, 11(Suppl 2), S29–S39.

74. Miller, K. J., Additivity methods in molecular polarizability. J. Am. Chem. Soc., 1990,
112, 8533–8542.

75. Wermuth, C. G., Ganellin, C. R., Lindberg, P., and Mitscher, L. A., Glossary of terms
used in medicinal chemistry. Pure Appl. Chem., 1998, 70, 1129–1143.

76. Sheridan, R. P., Nilakantan, R., Dixon, J. S., and Venkataraghavan, R., The ensemble
approach to distance geometry: Application to the nicotinic pharmacophore. J. Med.
Chem., 1986, 29, 899–906.

77. Dammkoehler, R. A., Karasek, S. F., Shands, E. F., and Marshall, G. R., Con-
strained search of conformational hyperspace. J. Comput. Aided Mol. Des., 1989, 3,
3–21.

78. Martin, Y. C., Bures, M. G., Danaher, E. A., DeLazzer, J., Lico, I., and Pavlik, P. A., A
fast new approach to pharmacophore mapping and its application to dopaminergic and
benzodiazepine agonists. J. Comput. Aided Mol. Des., 1993, 7, 83–102.

79. Barnum, D., Greene, J., Smellie,A., and Sprague, P., Identification of common functional
configurations among molecules. J. Chem. Inf. Comput. Sci., 1996, 36, 563–571.

80. Bron, C. and Kerbosch, J., Finding all cliques of an undirected graph (algorithm 457).
Comm. ACM, 1973, 16, 575–576.

81. Samudrala, R. and Moult, J., A graph-theoretic algorithm for comparative modeling of
protein structure. J. Mol. Biol., 1998, 279, 287–302.

82. Hahn, M. and Rogers, D., Receptor surface models. 2. Application to quantitative
structure–activity relationships studies. J. Med. Chem., 1995, 38, 2091–2102.

83. Hahn, M., Receptor surface models. 1. Definition and construction. J. Med. Chem., 1995,
38, 2080–2090.

Molecular Descriptors 143

84. Santos-Filho, O. A. and Hopfinger, A. J., The 4D-QSAR Paradigm: Application to a
novel set of non-peptidic HIV protease inhibitors. Quant. Struct.–Act. Relat., 2002, 21,
369–381.

85. Vedani,A. and Dobler, M., 5D-QSAR: The key for simulating induced fit? J. Med. Chem.,
2002, 45, 2139–2149.

86. Vedani, A. and Dobler, M., Multidimensional QSAR: Moving from three- to five-
dimensional concepts. Quant. Struct.-Act. Relat., 2002, 21, 382–390.

87. Sheridan, R. P. and Miller, M. D., A Method for visualizing recurrent topological
substructures in sets of active molecules. J. Chem. Inf. Comput. Sci., 1998, 38, 915–924.

88. Birchall, K., Gillet, V. J., Harper, G., and Pickett, S. D., Training similarity measures
for specific activities: Application to reduced graphs. J. Chem. Inf. Model., 2006, 46,
577–586.

89. Azencott, C.-A., Ksikes, A., Swamidass, S., Chen, J., Ralaivola, L., and Baldi, P., One- to
four-dimensional kernels for virtual screening and the prediction of physical, chemical,
and biological properties. J. Chem. Inf. Model., 2007, 47, 965–974.

90. Fröhlich, H., Kernel methods in chemo- and bioinformatics. PhD thesis, University of
Tuebingen, 2006.

91. Kashima, H., Tsuda, K., and Inokuchi, A., Marginalized kernels between labeled graphs.
Proceedings of the Twentieth International Conference on Machine Learning (ICML-
2003), Washington DC, 2003.

92. Ralaivola, L., Swamidass, S. J., Saigo, H., and Baldi, P., Graph kernels for chemical
informatics. Neur. Netw., 2005, 18, 1093–1110.

93. Rupp, M., Proschak, E., and Schneider, G., Kernel approach to molecular similarity based
on iterative graph similarity. J. Chem. Inf. Model., 2007, 47, 2280–2286.

94. Swamidass, S. J., Chen, J., Bruand, J., Phung, P., Ralaivola, L., and Baldi, P., Kernels
for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity.
Bioinformatics, 2005, 21, 359–368.

95. Borgwardt, K. M., Ong, C. S., Schoenauer, S., Vishwanathan, S. V. N., Smola, A. J., and
Kriegel, H.-P., Protein function prediction via graph kernels. Bioinformatics, 2005, 21,
47–56.

96. Gaertner, T., A survey of kernels for structured data. ACM SIGKDD Explor. Newslett.,
2003, 5, 49–58.

97. Bishop, C. M., Pattern Recognition and Machine Learning. Springer, New York, 2006.
98. Leslie, C., Eskin, E., and Noble, W. S., The spectrum kernel: A string kernel for protein

classification. Pacific Symposium on Biocomputing, 2002.
99. Leslie, C. S., Eskin, E., Cohen, A., Weston, J., and Noble, W. S., Mismatch string kernels

for discriminative protein classification. Bioinformatics, 2004, 20, 467–476.
100. Gower, J. C., A general coefficient of similarity and some of its properties. Biometrics,

1971, 27, 857–871.
101. Fröhlich, H., Wegner, J. K., and Zell,A., Optimal assignment kernels for attributed molec-

ular graphs. The 22nd International Conference on Machine Learning (ICML 2005), pp.
225–232, Omnipress, Madison, WI, 2005.

102. Fechner, N., Jahn, A., Hinselmann, G., and Zell, A., Atomic local neighborhood exibility
incorporation into a structured similarity measure for QSAR. J. Chem. Inf. Model, 2009,
49, 549–560.

103. Vert, J.-P., The optimal assignment kernel is not positive definite. Tech. Rep., 2008.
104. Mahe, P., Ralaivola, L., Stoven, V., and Vert, J.-P., The pharmacophore kernel for virtual

screening with support vector machines. J. Chem. Inf. Model, 2006, 46, 2003–2014.

5 Ligand- and
Structure-Based Virtual
Screening

Robert D. Clark and Diana C. Roe

CONTENTS

5.1 Similarity Searching for Virtual Screening. .146
5.1.1 Distance Measures .146

5.1.1.1 Euclidean Distance .146
5.1.1.2 Manhattan Distance .147
5.1.1.3 Scaled Distances .147

5.1.2 Population Dissimilarity .148
5.1.3 Similarity Coefficients .149

5.1.3.1 Similarity between Real-Valued Vectors149
5.1.3.2 Similarity between Bit Sets .150
5.1.3.3 Similarity of Populations .151

5.1.4 Applications .152
5.1.4.1 Distance Applications .152
5.1.4.2 Similarity Applications .153

5.1.5 Behavior of Similarity and Distance Coefficients .153
5.1.6 Combining Similarities .154

5.2 Structure-Based Virtual Screening .155
5.2.1 Introduction .155
5.2.2 Docking Algorithms .158

5.2.2.1 Orientational Search: The Clique Detection Algorithm . . .158
5.2.2.2 Conformational Search: Incremental Buildup.161
5.2.2.3 Combined Orientational and Conformational Search:

Lamarckian Genetic Algorithm .162
References .166

A prominent tool in the computational drug discovery toolbox are the various meth-
ods and algorithms developed for virtual screening, that is, the selection of molecules
likely to show a desired bioactivity from a large database. While the preceding
Chapter 4 focused on methods to describe molecules (molecular descriptors), the
present chapter will firstly deal with methods of how molecules of the desired type

145

146 Handbook of Chemoinformatics Algorithms

can actually be selected from the database. Hence, Section 5.1 will describe similarity
searching methods, among which similarity and distance coefficients are prominent
examples.

Subsequently, and this is also often the order followed in drug discovery projects
in industry, we will continue with computational approaches to compound selection
when the receptor (or generally target) structure is known, such as from a crystal struc-
ture. Hence, in Section 5.2 we will discuss some of the most prominent approaches
for algorithms employed in ligand–protein docking.

5.1 SIMILARITY SEARCHING FOR VIRTUAL SCREENING

Robert D. Clark

One way to run a virtual screen is to take molecular structures of ligands that are known
to bind to the target protein of interest and look for other compounds that are similar to
them in structure. In the simplest case, this is simply a matter of looking for particular
explicit substructures (Chapters 1, 2, and 4). That approach is limited to identifying
close structural analogs, however, and only rarely produces leads novel enough to
establish new patent estates. When finding such leads is the goal, researchers rely on
more generalized molecular descriptors (Chapter 4) to identify novel chemistries that
are “close” to the known actives in some sense. Not surprisingly, the appropriate way
to assess “close” depends on the descriptors used and on the data set of interest.

5.1.1 DISTANCE MEASURES

Maximizing the similarity between two objects is equivalent to minimizing the dif-
ferences between them, which—for real-valued descriptors—can be accomplished
by minimizing their distance according to a given metric. Three different distance
metrics—Euclidean, Manhattan, and Mahalanobis—account for most chemoinfor-
matic distance applications, and each reflects a somewhat different notion of the
nature of “space.”

5.1.1.1 Euclidean Distance

“Space” is an abstract mathematical construct as well as a name for something that
each of us creates as a way to put our direct visual and tactile perceptions of the
location and orientation of objects in the world around us into a personal context.
Our experience of how separation in space “works” is generally most consistent with
the Euclidean distance dL2,∗ which is defined for three-dimensional (3D) Cartesian
space by

d2
L2 =

∑

q∈{x,y,z}
(q1 − q2)

2,

∗ The subscripts reflect the fact that Euclidean and Manhattan distances are particular instances of
Minkowski distances, dq

Lq =
∑K

j=1 |x1j − x2j |q , with q = 1 and q = 2, respectively.

Ligand- and Structure-Based Virtual Screening 147

where qi is the value of the corresponding spatial coordinate for the ith object.
This measure of distance works extremely well for most of the geometries and pro-
cesses that we encounter in our day-to-day life, and generalizing it to spaces having
more dimensions than the three that we are accustomed to is straightforward. More
generally, in a space of K dimensions:

d2
L2 =

K∑

j=1

(x1j − x2j)
2, (5.1)

where xij is the jth coordinate (variable or descriptor value) of the ith object.

5.1.1.2 Manhattan Distance

Euclidean distance is not always the most appropriate measure of the distance between
objects, however, such as commonly experienced when getting from one place to
another within a city or town. For streets laid out on a more or less rectilinear grid,
the Manhattan distance dL1 between locations is more useful since it describes the
distance that needs to be traveled to go from one point to another in this situation.
This, too, generalizes to K-dimensional spaces:

dL1 =
K∑

j=1

|x1j − x2j|, (5.2a)

where the vertical bars denote absolute value. dL1 is appropriate when differences in
one variable cannot be meaningfully offset by differences in another, which is typically
the case for categorical variables or others for which ratios are not meaningful.

The Manhattan distance is often used to compare binary vectors such as those
encoding substructural fingerprints, where it indicates the number of bit mismatches,
that is, the number of bits set in one fingerprint but not in the other. Such vectors of
binary variables can also be thought of as bit sets, where a 1 at a particular position
indicates that the structure in question belongs to the set of structures that contain the
corresponding substructure. Then

dL1 = |x1 − x2| + |x2 − x1|. (5.2b)

Here, the vertical bars indicate cardinality, not absolute value, and the “subtractions”
represent set differences.

5.1.1.3 Scaled Distances

There is a problem with applying such measures to higher-dimensional spaces in
which the individual dimensions differ in relevance (e.g., cost) or scale. For the Man-
hattan distance, this comes up when “north–south” blocks are shorter than “east–west”
blocks—as is true in Manhattan itself. In that particular case, rescaling from “blocks”
to “meters” solves the problem, but consider the case where hills are involved or there

148 Handbook of Chemoinformatics Algorithms

are stairs at the end of one path but not the other; then “calories” may be a more
relevant unit of “distance.”

In cases where the underlying descriptors are not naturally commensurate, each
can be rescaled [1] based on the range of values encountered or by the respective
root mean squares (RMS) [2]. Most often, however, the individual variances (σ2

j) are
used: directly, if they are known, but more often as estimated by the sample root mean
square deviations (RMSDs) from the sample mean for descriptor j:

sj =
√

1

n− 1

∑
(xij − x̄j)

2.

The Mahalanobis distance, dM, is a more general—and more powerful—way to
address this problem. It is defined by

d2
M = (x1 − x2)

T Σ−1(x1 − x2), (5.3)

where xi = [xi1, xi2, . . . , xik], the superscript “T” indicates transposition, Σ is a sym-
metrical matrix of pairwise scaling factors, and the superscript “−1” indicates matrix
inversion. In the 3D case, for example, this becomes

d2
M3 =

⎡

⎣
δ1
δ2
δ3

⎤

⎦×
⎡

⎣
σ2

1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3

⎤

⎦

−1

× [
δ1 δ2 δ3

]
,

where δj = x1j − x2j. When the coordinates are mutually orthogonal, the off-diagonal
scaling factors σjk are all equal to zero. In that case, the xij elements can simply
be rescaled (normalized) by the corresponding diagonal scaling factors σ2

j , and the
Mahanalobis distance is the same as the Euclidean distance for the normalized vectors:
dM = dL2.

5.1.2 POPULATION DISSIMILARITY

To this point, we have considered distances as measures of physical separation
between pairs of objects. In many applications involving high-dimensional spaces, it
is more appropriate to think of distances as measures of how different two samples
that have been drawn independently from a population are from each other, that is, of
dissimilarity.

This is, in fact, the main place where the Mahalanobis distance is used. In
such cases, Σ in Equation 5.1 represents the covariance matrix, which speci-
fies the average degree of pairwise correlation between descriptors, for example,
the ratio of block lengths along avenues to those along streets. The (co)variances
σjk = 0.5〈(x1j − x2j)× (x1k − x2k)〉, with the angle brackets indicating expectation
across “all possible” pairs x1 and x2 that might possibly be drawn from the population.
In the case where the descriptor variables (coordinates) are independent (rectilinear),
the covariances are 0 and the variances σ2

j indicate how far the population values for
xj extend away from the average for that descriptor.

Ligand- and Structure-Based Virtual Screening 149

One difference between this usage of the Mahalanobis distance and what we usually
think of as distance is that it is much more localized. In principle, the deviation between
xij and the population mean 〈xij〉 is still unbounded, but in fact will usually lie within
a few standard deviations of the mean—roughly 95% within 2σj of the respective
mean for a normally distributed population.

The second major difference is that the Mahalanobis distance is context dependent;
if you change the population under consideration—for example, move to a different
city, start commuting by autogyro or shift to a structurally very different application
domain—the meaning of the distances obtained by applying Equation 5.4 may change.

5.1.3 SIMILARITY COEFFICIENTS

When one thinks of distances, larger differences seem naturally more significant
than small ones. In many applications, however, proximity is more relevant than
distance. This is particularly true when the variables being used to describe the space
of interest are only weakly commensurate, as when time is considered as a “fourth
dimension”: two people meet when they find themselves in more or less the same
place at the same time, but if they are there at very different times it does not much
matter how different those times are.A measure of similarity—for which higher values
connote greater proximity—is more useful than a measure of dissimilarity in such
cases. The conceptual difference is a subtle one, but it has substantial mathematical
and practical implications. Distance measures are generally unbounded, for example,
whereas similarity measures are bounded above by 1 (identical) and are bounded
below either by −1 (antithetical in every respect) or by 0 (having nothing at all in
common).

5.1.3.1 Similarity between Real-Valued Vectors

The pairwise similarity metrics most often encountered in chemoinformatics appli-
cations all start from the dot product between two vectors (x1 and x2) of descriptor
values, one for each of the structures being compared. The most basic is the cosine
coefficient, for which the dot product is scaled by the geometric mean of the individual
vector magnitudes:

Scos =
∑

(x1jx2j)
√∑

x2
1j ×

∑
x2

2j

. (5.4a)

The cosine coefficient takes on values between −1 and 1, or between 0 and 1 if all
allowed descriptor values are non-negative. Its name derives from the fact that its
value is equal to the cosine of angle formed by the pair of rays running from the
origin out to the points defined by the two vectors.

Alternatively, the dot product can be scaled by the arithmetic mean to yield the
Dice similarity:

SDice =
∑

(x1jx2j)

(1/2)
(∑

x2
1j +

∑
x2

2j

) . (5.5a)

150 Handbook of Chemoinformatics Algorithms

The most popular similarity measure used in chemoinformatics, however, is the
Tanimoto coefficient. It is a close cousin of the Dice coefficient but differs in that
the rescaling includes a correction for the size of the dot product rather than simply
taking the average. The main effect of the change is to expand the resolution between
similarities at the high end of the range.

STan =
∑

x1jx2j
∑

x2
1j +

∑
x2

2j −
∑

x1jx2j
. (5.6a)

Note that the “Tan” subscript does not indicate any connection to the tangent function
familiar from trigonometry.

5.1.3.2 Similarity between Bit Sets

As noted above in connection with the Manhattan distance, the elements of x1 and x2
are binary in many chemoinformatics applications, that is, they only take on values
of 0 or 1. Such vectors can be thought of as bit sets, with xij = 1 indicating that xi
is a member of set j and xij = 0 indicating that xi is not a member of set j. In fact,
this is the chemoinformatics area in which similarity searching sees its greatest use.
For substructural fingerprints, the K sets are defined as being structures that contain
fragment fj as a substructure. In that situation the cosine coefficient can be recast as

Scos = |x1 ∩ x2|
√|x1|2 × |x2|2

. (5.4b)

Cardinalities are always non-negative, so Scos is bounded below by zero when applied
to bit sets.

Similarly, the binary equivalent of the Dice coefficient is given by

SDice = 2× |x1 ∩ x2|
|x1| + |x2| . (5.5b)

Finally, the binary equivalent of the Tanimoto coefficient, which is more precisely
referred to as the Jaccard index [3], is given by

SJ = |x1 ∩ x2|
|x1| + |x2| − |x1 ∩ x2| =

|x1 ∩ x2|
|x1 ∪ x2| . (5.6b)

Tversky [4] noted that the Dice and Jaccard (binary Tanimoto) similarities could
be cast as special cases of a more generalized similarity measure.

STvesrky =
|x1 ∩ x2|

|x1 ∩ x2| + α× |x1 − x2| + β× |x2 − x1| . (5.7)

Note that the subtraction x1−x2 in Equation 5.8a represents a set difference, that is,
the set of bits that are set to 1 in x1 but not in x2; it does not represent the difference in

Ligand- and Structure-Based Virtual Screening 151

cardinalities between the two sets. Setting α = β = 1 yields the Jaccard similarity,∗
whereas setting α = β = 0.5 yields the Dice coefficient. In the chemoinformatics
arena, Tversky’s generalization has mostly been used to assess asymmetric or modal
similarity, where α = 1 and β = 0 (or vice versa). This is useful for doing a partial
match variation of substructure or partial shape similarity searching [5–7].

5.1.3.3 Similarity of Populations

The cosine coefficient is actually most commonly encountered as the Pearson corre-
lation coefficient r, a special case in which the elements xij of the vectors x1 and x2
are themselves observed deviations from the means (〈x1j〉 and 〈x2j〉, respectively) for
two different variables. The definition in Equation 5.5a then becomes

r =
∑

xjyj
√∑

x2
j

√∑
y2

j

, (5.8)

where x = x1 and y = x2. The indexing formalism is different, but the underlying
measure has the same properties. For models, it can be shown that the absolute value
of r is the same as the correlation between y and

�y, the vector of y values predicted by
ordinary least squares (OLS) regression on the vector of x values. This generalizes to
predictions for multiple linear regression, where y is a set of predicted response values
based on a matrix X that encompasses several descriptors. The multiple correlation
coefficient R is given by

R =
∑

yj
�
yj

√∑
y2

j

√
∑ �

y
2
j

,

where deviation
�
yj is the predicted value of deviation yj based on the vector

[x1j, x2j, . . . , xkj].
Population sampling’s effects can be important for similarity searches involving

fully flexible pharmacophore multiplets [5,8]. These bitmaps (compressed bit sets)
represent a union of bitmaps derived from a random sample of accessible conforma-
tions. Even when that sample is large, there is considerable variation in the union
bitmaps obtained for a flexible molecule, so the similarities calculated using the
determinate similarity coefficients discussed above may be deceptively low. Worse,
the expected similarity of a structure to itself is less than 1, often substantially so.
Moreover, the expected value for that similarity is dependent on the number of confor-
mations being considered. These problems can be addressed by using the stochastic
cosine to compare bitmaps:

sSCos = 〈|x1 ∩ x2|〉
√
〈|x1 ∩ x′1|2〉 × 〈|x2 ∩ x′2|2〉

, (5.9)

∗ Note that (x1 – x2)+ (x1 ∩ x2) = x1.

152 Handbook of Chemoinformatics Algorithms

where the angle brackets (〈 〉) denote expectation and the primed vectors are based
on distinct, independently drawn conformational samples. In practice, the population
expectations are estimated by creating two bitmaps for each structure. The cardinality
of the self-intersections is obtained for each pair, and the cross-intersections are
averaged across the four possible combinations.

The stochastic similarity between two very similar structures calculated according
to Equation 5.8b may be greater than 1, as can the similarity between a structure and
itself. The excesses are usually small in practice, however, and the expectation for
the stochastic similarity is bounded above by 1, which is also the similarity expected
when comparing a molecule to itself.

Stochastic analogs of other non-deterministic similarity coefficients can be defined
similarly.

5.1.4 APPLICATIONS

An exhaustive review of published similarity searching applications is beyond the
scope of this work. The specific papers cited below are intended to serve as illus-
trative examples of how the various distance and similarity measures can be used
productively.

5.1.4.1 Distance Applications

Distances between vectors of real-valued descriptors, particularly those based
on properties calculated from molecular structure—size, polarity, polarizability,
lipophilicity, and so on—are typically expressed in terms of Euclidean distance [9].
Historically such analyses have more typically involved cluster analysis than similar-
ity searching [10], but virtual screening based on BCUT descriptors [11] constitutes
a significant exception to this generalization.

Pre- and postfiltering operations can be thought of as similarity search applications
of Manhattan distances, where a candidate structure is allowed to “pass” so long as
the bit set representing the presence (1) or absence (0) of certain critical properties (or
substructures) is “close enough” to a set of reference properties. Usually candidates
are discarded if the Manhattan distance is greater than or equal to 1, that is, if any
discordances are found. Higher distances are sometimes allowed, however, as in
Lipinski’s Rule of Five [12]. There one violation is permitted, corresponding to a
critical value dL1 ≥ 2.

Matches in flexible 3D searching are usually evaluated as simple filters, that is,
a set of features must be identified in the target that satisfy all of the relationships
specified in the query. Partial match constraints, however, can be cast as similarity
searching against a set of query vectors, one for each partial match constraint. The
elements in the query and target bit sets in this case represent the satisfaction (1) or
failure to satisfy (0) the particular constraints (involving spatial positions, interfeature
distance or angles, exclusion volumes, etc.) that make up the corresponding partial
match constraint. The minimum and maximum “match” counts specified for each
constraint, then, define the allowed Manhattan distances between the query and target
vectors.

Ligand- and Structure-Based Virtual Screening 153

A more straightforward application of the Manhattan distance was presented for
Eigen Vector Analysis (EVA) descriptors, which are calculated from normal mode
analyses of query and target structures [13].

5.1.4.2 Similarity Applications

Substructural and pharmacophoric fingerprint similarity searching is usually based
on the Jaccard index, although the more general term “Tanimoto similarity” is often
used in this connection [9,14,15]. The cosine coefficient has also been used, however,
especially in connection with pharmacophore multiplet bitmaps [7]. The Tanimoto
coefficient itself—that is, the real-valued version—has been used to assess shape
similarity [16–18]. Others have applied the cosine coefficient (as such or in the guise
of the squared Pearson’s correlation coefficient R2) to shape and molecular fields [13].

Similarities between atom-pair descriptors and topological torsions have been
assessed in terms of their Dice similarity [19,20], as have count vectors based on
pharmacophore triplets [21]. EVA descriptor similarities have been evaluated in terms
of cosine and Dice similarities as well as in terms of their Manhattan distances [13].

Carbó et al. [22] and Hodgkin and Richards [23] evaluated similarities between
molecular fields using continuous versions of the cosine and Dice coefficients,
respectively, wherein the summations are replaced by integrals

R2
Carbo =

(∫ ρ1ρ2 dv)2

∫ ρ2
1 dv × ∫ ρ2

2 dv
,

RHodgkin = 2× ∫ ρ1ρ2 dv

∫ ρ2
1 dv + ∫ ρ2

2 dv
.

A more efficient and accurate way to carry out the required numerical integrations
was subsequently described by Good et al. [24].

Occasionally the Jaccard index has been recast to use count vectors rather than
bit sets. Rather than use the dot product formulation of the Tanimoto, Grant et al.
[25] substituted the minimum count for each element for cardinality of the bit set
intersection when evaluating the similarity of Lingo character substrings:

SLingo =
∑

min(x1j , x2j)
∑

x1j +∑
x2j −∑

min(x1j, x2j)
.

5.1.5 BEHAVIOR OF SIMILARITY AND DISTANCE COEFFICIENTS

Many distances and similarity measures not discussed here have been formulated
over the years [26], but those described above are the ones that dominate virtual
screening work. Willett et al. [27] have carried out numerous studies involving a
wide range of similarity measures and conclude that although other measures may
perform somewhat better on some targets, the Tanimoto coefficient generally works
best overall, at least for drug-like molecules. Their work has centered on substructural
fingerprints of various types; careful surveys have yet to be carried out for other
descriptor classes.

154 Handbook of Chemoinformatics Algorithms

Measures such as the Euclidean distance may be more appropriate for molecules
that are large or complex enough to set a majority of bits in a hashed fingerprint [28,29].
This effect is best understood by noting that bits not set in either fingerprint reduce the
Euclidean distance without affecting either the Tanimoto or cosine coefficient. If the
probability of any one bit being set is p, then the probability that a bit will not be set
in one fingerprint is q = 1− p and the probability that it will not be set at random in
either fingerprint is q2. If the fingerprints being considered are relatively sparse, p is
small and q2 is close to 1. Hence, finding a bit set in one or both fingerprints is rare and
informative, whereas finding that it is set in neither is common and uninformative.
Such saturation effects are probably better addressed by modifying the descriptor,
however, so as to keep p below 0.1 than by trying to adjust the similarity measure used.

Such considerations underscore the fact that the exact value calculated for any
given similarity measure means different things in different contexts, as does the
value of any distance measure. This context includes the descriptors used as well as
the scope of chemistries to which it is being applied. A Jaccard similarity thresh-
old of “0.85” is useful when using substructural fingerprints of drug-like molecules
likely to exhibit similar biological activity [30]. This cannot be taken to imply that
“0.85” would be a useful cutoff for similarity searching of peptide pharmacophore
multiplets using the cosine coefficient. In most cases, only the order of similarities—
that is, the similarity rank—is really meaningful, and fresh benchmarks need to
be determined for any new application. Fortunately, many such problematic differ-
ences in scale fall away when a simple rank transformation is applied to the raw
similarities [31].

5.1.6 COMBINING SIMILARITIES

Although the Tanimoto coefficient works reasonably well in most applications, com-
bining it with complementary measures often improves performance. Consensus
scoring is now widely used to improve scoring in structure-based (docking) screens,
and the analogous approach—termed data fusion [13,32,33]—has shown consider-
able potential for improving ligand-based similarity searching. Because the different
similarity measures are not directly commensurate, however, it is usually the ranks
that are combined, typically using the minimum rank or sum of ranks for each target.
The median rank has shown promise in consensus scoring [34] and is probably worth
exploring as an alternative fusion technique when three or more similarity measures
are involved.

Related work has also been carried out on the best way to combine “hit lists”—that
is, to optimize the definition of similarity between a single target and multiple query
structures [35,36]. Logically one might expect that a “hit” that is particularly similar
to two or more queries is more likely to be active itself, so taking the average of the
similarities or of the ranks would improve performance. For substructural fingerprints,
however, this was found not to be the case [33].

Nonetheless, a rather extreme extension of the data fusion model to multiple
“actives” does sometimes work. “Turbo search,” which involves retrieving compounds
similar to compounds that are similar to queries (i.e., near neighbors of actives that are
not themselves known to be active) improves performance, at least in some cases [37].

Ligand- and Structure-Based Virtual Screening 155

5.2 STRUCTURE-BASED VIRTUAL SCREENING

Diana C. Roe

5.2.1 INTRODUCTION

The first step in drug discovery is to identify lead compounds with novel chemical
structures that bind to a target receptor. Originally this occurred primarily through
chance discovery, requiring large efforts to find and screen natural products. Virtual
screening approaches provide a rational alternative for lead identification, by perform-
ing large screens of compounds in silico, existing ones or those easily synthesizable
in a combinatorial library, and reducing the number of compounds that need to be
screened experimentally. Structure-based virtual screening, made possible by rapid
advances in protein crystallography and computational power in the last two decades,
has proven to be a useful tool speeding the discovery process and has become an
industry standard [38]. Structure-based screening tries to rank a database of small
molecules by their predicted binding affinities to a target receptor. The starting point
is the 3D (usually crystal) structure of a protein and a database of small molecule
ligands with modeled 3D structures. Each ligand is “docked” into the binding site
of the target receptor and a score representing binding affinity is calculated. This
calculation is commonly referred to as docking.

The docking problem can be broken down into three components: (1) orienta-
tional search, or the search for the 3D orientation of a molecule with respect to
another; (2) conformational search, or the search through rotatable torsions; and (3)
scoring, or evaluating “pose” or orientation/conformation combination by some mea-
sure of predicted binding. The original docking program was UCSF DOCK [39],
which addressed only the orientational search and scoring for ligand/receptor sys-
tems. In the original implementation, spheres were used to represent the ligand
and the “negative image” of the receptor, by generating spheres along the inside
of the surface of the ligand, and the outside of the surface of the receptor. For small
molecules, ligand atoms were used instead of spheres. This provided an identical
description of the ligand and receptor site used to optimize the geometric fit between
the two. The orientational problem was thus reduced to the problem of matching lig-
and spheres to receptor spheres. Matching was performed using a graph theoretical
algorithm that looked at ligand sphere–sphere distances and matched them to receptor
sphere–sphere distances (Figure 5.1).A set of interconnected distances between ligand
spheres matching (within a tolerance) the same size set of interconnected distances
within the receptor spheres is a clique. A clique of size four is sufficient to define a
unique orientation for a ligand. The ligand was then transformed to superimpose its
spheres onto the receptor’s spheres for final placement.

The next development in docking programs was to include ligand flexibility (i.e.,
a conformational search) into the process. The first approach to address flexibility
broke a ligand into two pieces, docked each of them separately, and identified for
fragments that could be rejoined [40].AutoDock [41] developed a completely different
strategy that combined the conformational and orientational searches together into
one step by employing a simulated annealing approach. Later versions of AutoDock
included an evolutionary algorithm [42], popular also with several other programs

156 Handbook of Chemoinformatics Algorithms

O–

O–

(a)

(b)

O–

O–

FIGURE 5.1 Clique detection algorithm. (a) Set of ligand atoms and receptor spheres; (b)
clique of size 4 found matching.

[43–47]. Monte Carlo approaches have also been successfully applied [46–50]. Other
programs perform a conformational search in sequence with an orientational search,
by docking an “anchor” or base fragment and incrementally building up flexible ligand
conformers [51,52]. This approach works well at reproducing docked structures in
cases where the base fragment has a strong interaction with the target receptor, and
where each flexible unit has a piecewise interaction with the protein. In other cases,
such as when there is an interaction gap along a flexible unit, the incremental buildup
will not place the flexible unit in the gap position but rather in a position to maximize
its interaction with the receptor. Finally, some algorithms completely separate the
orientational and conformational search by precalculating low-energy conformations
of the small molecules and docking a rigid database of conformers [53–55]. This
has the trade-off of ensuring a better conformational search of low-energy ligand
conformations versus the efficiencies of on-the-fly conformational search within the
receptor site, which may balance higher intramolecular energies to optimize receptor
interactions.

Recently, receptor flexibility has also been added to docking programs. As with
ligand flexibility, conformations can be precalculated or generated on-the-fly during
docking. The first approach precalculates a series of protein conformations, such as
snapshots from a molecular dynamics simulation, or from a normal mode analysis,
and subsequently docks the ligand to an ensemble of proteins [56–59]. The advantage

Ligand- and Structure-Based Virtual Screening 157

of this ensemble approach is the ability to search a wider conformational space that
includes backbone and sidechain variation. The on-the-fly approaches may include
protein sidechain rotamers [45,60], sidechains and user-defined loops [49,61], or
induced fit using protein structure prediction [62]. The latter approach, while accurate,
is not currently fast enough for virtual screening.

After calculating a ligand pose, the last step in docking is to evaluate it with some
sort of scoring function. The original scoring function from UCSF DOCK was a
shape-based contact score. Later, force-field-based functions were introduced. These
functions took the Lennard–Jones and electrostatic parameters from force fields such
as AMBER [63] or CHARMM [64,65]. To save computational time by turning an
O(N2) calculation to O(N), a grid was precalculated for the sum of the receptor
potential at each point in space. To generate this grid, a geometric mean approxi-
mation (Aij = √Aii

√
Ajj) was made to the van der Waals portion of the force field

[66]. Eventually, solvation and entropy terms were added to many force-field-based
scoring functions, typically using DELPHI [67] or ZAP [68] for solvation [69,70]. As
many factors known to be important in the free energy of ligand binding are missing
in force-field scores, many programs chose instead to derive an empirical scoring
using several intuitive parameters such as hydrophobicity, solvation, metal-binding,
or the number of number rotatable bonds, along with van der Waals and electrostatic
energy terms. Empirical functions were derived from a least-squares fit of the param-
eters to ligand–protein systems with known crystal structures and known binding
energies [42,45,52,71–73]. Again these scoring functions are usually calculated on
a grid for computational speed. The advantage of starting with a force-field-based
method is that it is applicable to a wide range of ligands. The empirical scoring
schemes work well when the ligands and receptors resemble the training set. Another
approach was to use a knowledge-based function, derived from a statistical analysis
of ligand atom/protein atom contact frequencies and distances in a database of crystal
structures [74–76]. As each of these scoring approaches were shown to work well
in different cases, many programs started to create “consensus” functions combining
several different scoring schemes, which were shown to be more predictive than any
single scoring scheme [77]. After primary scoring, several approaches “rescore” top
hits. For example, the PostDOCK filter [78] was derived from a supervised machine
learning study on protein/ligand structures in the Protein Data Bank [79], and it was
shown to improve enrichment by as much as 19-fold. Short molecular dynamics runs
using implicit waters, implemented as MM-PBSA (for Poisson–Boltzmann solva-
tion) or MM-GBSA (Generalized Born), were also shown to improve enrichment
rates [80,81].

Many other factors to improve the quality of structure-based affinity predictions
have been addressed including waters, metals, and protonation states of the receptor
protein (see Refs. [82,83] for a detailed review). Additional screens have been devel-
oped to identify lead compounds that not only show strong binding affinity to the target
receptor, but also have good pharmacological properties. Lipinski’s Rule of Five [84],
which uses a set of property heuristics such as molecular weight, hydrogen bonds, and
so on that match the range in the majority of known orally absorbed drugs, has become
a standard for prescreening ligands prior to docking for “drug-like” properties. Filters
have been developed to remove compounds known to be promiscuous binders (i.e.,

158 Handbook of Chemoinformatics Algorithms

false positives) [85,86], or that interact with hERG channel [87]. Structure-based
screening has been combined successfully with 3D pharmacophore searching and
3D similarity searches, to add complementary information to the searching process.
Structure-based virtual screening remains a useful tool in the arsenal for lead-drug
development.

5.2.2 DOCKING ALGORITHMS

5.2.2.1 Orientational Search: The Clique Detection Algorithm

Many docking algorithms separate between the orientational search and the confor-
mational search. The clique detection algorithm for orientational search that finds
interconnected sets between ligand sphere–sphere distances with receptor sphere–
sphere distances (Figure 5.1) is still one of the most commonly used docking
algorithms. Later versions of the algorithm use ligand atoms themselves rather than
ligand spheres for docking small molecules. Although to find the largest clique in a
graph is considered an NP complete problem, the search for all cliques of a limited
size is tractable. The original algorithm used a bipartite graph, where ligand nodes
and receptor nodes were assigned to separate graphs. However, in DOCK 4.0 [51,88]
the algorithm was changed to a single “docking” graph where each node represented a
ligand/receptor–sphere pairing. This docking graph and the exhaustive search method
were first discussed by Bron and Kerbosch [89].

The algorithm begins (see Figure 5.2 and Algorithm 5.1) with a set of T total
nodes, each representing a ligand/atom pair, where T equals the number of ligand
atoms times the number receptor spheres. It then precalculates all “edges” between
the nodes. An edge exists between two nodes if the distance between ligand atoms in
the two nodes is within a residual (distanceTol) of the distance between the receptor
spheres in the two nodes. All edges are stored in an EdgeMatrix of size T × T . If no
edge exists, null is put in that spot.

Two arrays then store the growing clique search, each of size N , the length of
the current clique. The first is Clique [N], containing all nodes of the current grow-
ing clique. The second is NodeSearchGraph [N][T], containing the set of all new
nodes consistent with the current clique of length M, meaning that edges exist from
clique nodes 1, . . . , N to these nodes. (Up to T nodes can be stored at each N Index,
representing all nodes being allowed.)

The search begins by adding a new branch node j Node from the NodeSearchGraph
[N] list of allowable nodes, onto the current clique at Clique [N + 1]. The NodeSearch
Graph [N + 1] is then calculated as the intersection of all remaining nodes kNode
from NodeSearchGraph [N] and all nodes with an edge to j Node, by testing all k
Nodes for an edge to j Node in the precalculated EdgeMatrix. If an edge exists, k Node
is added to NodeSearchGraph [N + 1]. When a clique is complete, either because no
more nodes can be found or it reaches NODESMAX size, pop_node() removes the
N th node in the clique and the next node is tried in that position. If none is found,
pop_node() removes the N−1 node. Backtracking can continue back to position 0,
until all nodes have exhaustively been searched. In practice MAXCLIQUES is used
to limit the total number of cliques found.

Ligand- and Structure-Based Virtual Screening 159

N3

(a)

(b)
C0 =

N1

N1

N2

N2 N3 N4 N5

N3

N1 N2

N5

N5 N6 N7

N1 N6 N5

N6 N7

N6 N7

N5N1

N7

N2 N6

N5N1 N2 N6 N7

N6 N7 N8G0 =

C1 =

G1 =

C2 =

G2 =

C3 =

G3 =

C4 =

G4 =

C5 =

G5 =

N1

N4

N2
N5

N6

N7

N8

FIGURE 5.2 Clique detection algorithm. (a) Set of nodes (receptor/ligand pairs) and edges
connecting nodes. (b) Exhaustive search for cliques. Initial growing clique (C0) is NULL
and node search graph (G0) is the set of all nodes. The next node Nx from Gn is added to
Cn+1. Gn+1 is recalculated as all nodes in Gn with an edge to Nx. The procedure is repeated
until ≥ MAXNODES or no further expansion is possible. Additional cliques are searched by
backtracking and testing next node Ny in Gn.

ALGORITHM 5.1 PSEUDOCODE FOR EXHAUSTIVE SEARCH FOR
CLIQUES OF GIVEN SIZE RANGE (NONRECURSIVE)

C=Clique
N=number of nodes in current clique C ==
size(clique)
NODESMIN,NODESMAX: minimum/maximum allowed
nodes in a clique
S=NodeSearchGraph[NODESMAX][T]: list of
allowed nodes
PreCompute EdgeMatrix[T x T} for all Nodes, such that
EdgeMatrix[iNode][jNode]=edge if jedge exists within
distanceTol,
or 0 if it does not exist;

getNextClique(clique){
#remove last node to start new clique
IF (size(clique)>0)THEN

pop_node(clique)
END IF

160 Handbook of Chemoinformatics Algorithms

Boolean validClique=false;
WHILE (not ValidClique) THEN
#Expand clique until no further expansion
possible
#(i.e.clique size is >= NODESMAX or no more
expansion nodes
Expand (clique)
IF (expand(clique) == TRUE) THEN
CONTINUE;
END IF
IF (size (clique) >= NODESMIN)
validClique=TRUE;

ELSE
#remove last node and try again
pop_node(clique)
END ELSE

END WHILE
RETURN clique.

}

Expand (clique){
N=size(clique)
#termination 1: test if clique already fully
expanded
IF (N>NODESMAX) THEN
return FALSE;
ENDIF
#termination 2: test if have explored all possible
nodes at #position N+1
IF ((jNode=next node in NodeSearchGraph[N] array)
==0) THEN
return FALSE;
END IF
#jNode=new node to add to clique at position N+1
#kNode=remaining node consistent with current
clique
#jEdge=edge between jNode and kNode
Add jNode to clique
#Calculate set of edges consistent with jNode and
rest of clique.
FOREACH kNode (loop through NodeSearchGraph[N]) DO
jEdge=EdgeMatrix[jNode][kNode];
IF (jEdge != 0) THEN
Add kNode to NodeSearchGraphIndex[N+1] array
END IF

Ligand- and Structure-Based Virtual Screening 161

END DO
RETURN TRUE

}

This algorithm was first implemented in UCSF DOCK4 [51], and is
included in the latest version of UCSF DOCK6 [70,90]. UCSF DOCK at
http://dock.compbio.ucsf.edu/DOCK_6/index.htm is freely available to academics,
but a license fee is charged for commercial users. A similar algorithm is implemented
in FLOG [55], using a minimal-residual heuristic to limit the search, where only
the node with the minimal residual is expanded at each branch point, rather than
all remaining exceed the number of nodes. FLOG is an in-house software package
at Merck, in current use. The primary advantage of this clique detection approach
is a more efficient sampling of relevant orientational space compared to random
rotation/translation. In fact, despite the overhead of identifying cliques and then trans-
forming the ligand coordinates, it has been shown to have a speed-up between 10-
and 100-fold compared to uniform random translation [91]. The memory cost for the
docking-graph algorithm is not large and limited to the precomputed EdgeMatrix,
which grows as the square of (ligand atoms × receptor spheres). The search time for
this algorithm grows as a function of the number of distance-constrained solutions
rather than all possible unconstrained solutions, because the search does not explore
invalid branches.

5.2.2.2 Conformational Search: Incremental Buildup

Programs that use a rigid orientational search algorithm can then either start with a
database of precomputed conformations of ligands, using a program such as Omega
[92], or perform orientational search on a rigid unit of a small molecule, and fol-
low it with a buildup procedure. Algorithm 5.2 outlined below is a common buildup
procedure, used in UCSF DOCK [51]. A similar procedure is used in FlexX [52],
commercially available at http://www.biosolveit.de/flexx/. As the scoring and opti-
mization steps are the primary time-consuming steps in the algorithm, the time demand
for this algorithm can be approximated by the number of function evaluations, which
becomes [51]

Time = C0 × N0 + C1 Nc × Nb × Nt,

where C0 and C1 are constants, N0 is the number of anchor orientations searched, Nc

is the average number of pruned configurations saved each round, Nb is the number
of rotatable bonds, and Nt is the average number of torsions per bond.

ALGORITHM 5.2 PSEUDOCODE FOR CONFORMATIONAL SEARCH
USING INCREMENTAL BUILDUP

Identify flexible units in ligand
Start with largest rigid unit
Order flexible groups in layers starting from rigid unit
Orient rigid unit using orientational search

162 Handbook of Chemoinformatics Algorithms

Loop over flexible layers
Add next layer
Search torsions for each flexible group in layer
Prune by score

End loop
Minimize and score final structure

5.2.2.3 Combined Orientational and Conformational Search:
Lamarckian Genetic Algorithm

Simulated annealing, Monte Carlo, and evolutionary algorithms have all been applied
to docking programs to combine orientational and conformational search steps.
Although initially these stochastic approaches were prohibitively slow and were used
primarily to study a known ligand/receptor interaction in detail, owing to increases
in computer power it is now possible to use these approaches for virtual screening
as well. One algorithm in common use is the Lamarckian Genetic Algorithm (LGA)
[42,93,94].

The LGA combines the global search properties of a genetic algorithm (GA) with
a local search. The LGA is structured in the same way as the normal GA algorithm: a
chromosome is created representing the orientation/conformation of the ligand with
respect to the target receptor. The chromosome is shown in Figure 5.3 and consists
of a number of variables for ligand translation/rotation that is the same for all ligands
and a number of variables for ligand flexibility that is specific to each ligand. The sum
of the chromosome represents the genotype of a ligand. The phenotype of a ligand
is its 3D coordinates after applying all the transformations in the genotype. Ligand
fitness can be calculated from its phenotype using any of the standard docking scoring
functions.

The standard GA starts with a random population of size N , and runs through
a set number of generations. Each generation runs through the following steps: (1)
mapping genotype to phenotype for each member of the population; (2) fitness of
each member; (3) selection of members for use in breeding the next population; (4)
breeding: consisting of mutation and crossover; and (5) elitist selection (optional).
The new addition for the LGA (described in Algorithm 5.3) is to add a local search
function, performed at the end of each generation, on a set percentage of the (new)
population. The local search algorithm can be any local optimization technique, such
as Pattern search [95,96], or Solis–Wets [97]. The local search may be performed on
the phenotype and transformed back onto the genotype, or performed directly on the
genotype. As long as the local search results are passed onto the final genotypes it is

C1 C2 C3 Q1 Q2 T1 T2Q2 Q2
. . .

T3 TN

FIGURE 5.3 Chromosome for docking genetic algorithm. The first three genes (C1–C3)

represent coordinates for ligand translation. The next four genes (Q1–Q4) are the quaternian
for ligand rotation. The last N genes (T1–TN) is the ligand torsional values, the number of
which vary per ligand. Receptor torsions can also be added to this portion.

Ligand- and Structure-Based Virtual Screening 163

considered Lamarckian [42]. In a standard GA, the crossover function provides large
search moves, while mutations generate small, refining genotypic changes. In LGA,
the local search provides the refining moves, while mutations are employed for more
exploratory moves and for its role in replacing alleles that have been lost during the
selection process. The global GA continues until one of several termination steps is
reached, either the number of the current generation exceeds the maximum number
of generations, the number of total fitness evaluations exceeds the maximum allowed
evaluations, the fitness of the worst individual is the same as average fitness in the
population (i.e., population convergence), and so on.

ALGORITHM 5.3 PSEUDOCODE FOR LGA

LGA {
Generate G=population size N of random genotypes
generation=1;

Mapping genotype G to phenotype P of population
Fitness
valuation Fp (scoring) on P

#Loop over generations
WHILE (not TERMINATION) do
Process generation {
selection of G’ from G for reproduction using
weighted function based on
Fp of each individual

Gc=child population=crossover & mutation of G’
Pc=Mapping genotype to phenotype of Gc
Fpc=Fitness evaluation on Pc
elitist selection (optional)
Gc=local_search on (Gc’=percentage of Gc;

calculate Fpc’)
G2 (next generation)=compose(G, Gc)
Generation ++

}

END WHILE

}

local_search(G) {
(optional) mapping genotype G to phenotype P
local optimization (e.g., Pattern-search or Solis-Wets)
on P to calculated
optimized P2 Fp2

164 Handbook of Chemoinformatics Algorithms

(optional) mapping of optimized P2 to G2 return G2,
Fp2

}

termination conditions:
generation>maximum generations
number of fitness evaluations>maximum number
evaluations

worst fitness is average fitness in population

The Lamarckian GA has been implemented in AutoDock [42] and is avail-
able with a GNU General Public License at http://autodock.scripps.edu/. GOLD
[45] uses a GA without the local search and is commercially available at
http://www.ccdc.cam.ac.uk/products/life_sciences/gold/. DARWIN [98], an in-house
software package at theWistar Institute, employs a similar GA, where every phenotype
is minimized using CHARMM as part of the fitness evaluation procedure.

As the GA is a nondeterministic search strategy, the time required to reach a solu-
tion is dependent on user parameters to stop the calculation. In general, if a set
number of scoring evaluations (the slowest step in the algorithm) is taken as a stop-
ping condition, then the search speed will go roughly as the square of the size of the
ligand, since the intramolecular energy calculation for the ligand scales as O(N2),
while the intermolecular grid score scales as O(N). The LGA was shown to reliably
provide faster and more accurate solutions than simulated annealing or GA alone
[42] within the context of the AutoDock program and scoring function. In comparing
GAs to incremental construction, in practice the GAs take more time to run than
the incremental-construction algorithms for the range of ligands commonly used in
virtual screening, but as the number of flexible ligand bonds increases the compu-
tational time for incremental construction goes up linearly, while the GA solution
times stay constant. In terms of pose accuracy in real examples, no comprehensive
comparison has been performed between GAs and incremental construction alone,
and studies that compare various programs are confounded by other differences in
the protocols, in particular the scoring functions, making the outcomes difficult to
compare. In practice both approaches reproduce known crystal structures well.

In summary, docking has become a ubiquitous tool in virtual screening. A number
of algorithms have successfully been applied to discover novel small molecule ligands
(Table 5.1). However, there are still many active areas for development in docking
algorithms. In particular, all docking algorithms have the general limitation that they
are highly sensitive to small changes in the 3D structure of the receptor and ligand. This
is mitigated in algorithms that incorporate a measure of ligand flexibility, and further
reduced with receptor flexibility, but further improvement is needed. In addition,
scoring functions, while useful for enriching databases, are not accurate enough to
predict individual binding affinities reliably. Even so, the current algorithms generate
enough enrichment of screening databases to be an important tool in the drug discovery
process.

Ligan
d

-an
d

Stru
ctu

re-B
ased

V
irtu

alScreen
in

g
165

TABLE 5.1
Commonly Used Docking Programs and Their Algorithms

Orientation Conformation Scoring Examples of Novel
Program Algorithm Algorithm Function Leads Identified

DOCK [39,51,70] Sphere matching Incremental construction, flexible
DB/multiple receptors

Force field, MM-PBSA,
MM-GBSA

20a-hydroxysteroid
dehydrogenase [99]

AutoDock [42,60] LGA Flexible ligand and receptor
sidechains

Semi-empirical force field Cdc25 phosphatase [100]

FlexX [52] Descriptor match Incremental construction/
multiple receptors

Empirical Histamine H4 receptor [101]

FRED [54] Shape matching (Gaussian) Precompute ligand
conformations (OMEGA)

Consensus Cdc25 phosphatase [102]

GLIDE [46,47,62] Descriptor match/
Monte Carlo

Induced fit w/protein
structure prediction

Semiempirical force field Liver X receptor modulators
[103]

GOLD [45] GA Ligand and receptor sidechains Empirical SARS-3CL(pro) [104]
ICM [48,105] Monte Carlo Flexible sidechains and

loops/multiple receptors
Consensus Serotonin N-acetyltransferase

[106]
QXP [49] Monte Carlo/ systematic

search
Flexible sidechains and loops Empirical and force field β-Catenin [107]

SLIDE [108] Descriptor matching Induced-fit ligand and receptor Empirical Brugia malayi asparaginyl-tRNA
synthetase [109]

166 Handbook of Chemoinformatics Algorithms

REFERENCES

1. Bath, P. A., Morris, C. A., and Willett, P., Effect of standardization on fragment-based
measures of structural similarity. J. Chemometr. 1993, 7, 543–550.

2. Lin, T.-H., Yu, Y.-S., and Chen, H.-J., Classification of some active compounds and
their inactive analogues using two three-dimensional molecular descriptors derived from
computation of three-dimensional convex hulls for structures theoretically generated for
them. J. Chem. Inf. Comput. Sci. 2000, 40, 1210–1211.

3. Jaccard, P., Étude comparative de la distribution florale dans une portion des Alpes et
des Jura. Bull. Soc. Vaud. Sci. Nat. 1901, 37, 547–579.

4. Tversky, A., Features of similarity. Psych. Rev. 1977, 84, 327–352.
5. Shemetulskis, N. E.,Weininger, D., Blankley, C. J.,Yang, J. J., and Humblet, C., Stigmata:

An algorithm to determine structural commonalities in diverse datasets. J. Chem. Inf.
Comput. Sci. 1996, 36, 862–871.

6. Clark, R. D., Fox, P. C., andAbrahamian, E., Using pharmacophore multiplet fingerprints
for virtual HTS. In: J.Alvarez and B. Shoichet (Eds),Virtual Screening in Drug Discovery,
pp. 207–225. CRC Press, Taylor & Francis: Boca Raton, FL, 2005.

7. Nicholls, A., MacCuish, N. E., and MacCuish, J. D., Variable selection and model val-
idation of 2D and 2D molecular descriptors. J. Comput. Aided Mol. Des. 2004, 18,
451–474.

8. Abrahamian, E., Fox, P. C., Nærum, L., Christensen, I. T., Thøgersen, H., and Clark,
R. D., Efficient generation, storage and manipulation of fully flexible pharmacophore
multiplets and their use in 3-D similarity searching. J. Chem. Inf. Comput. Sci. 2003, 43,
458–468.

9. Cheng, C., Maggiora, G., Lajiness, M., and Johnson, M., Four association coeffi-
cients for relating molecular similarity measures. J. Chem. Inf. Comput. Sci. 1996, 36,
909–915.

10. Shemetulskis, N. E., Dunbar, J. B., Jr., Dunbar, B. W., Moreland, D.W., and Humblet,
C., Enhancing the diversity of a corporate database using chemical database clustering
and analysis. J. Comput. Aided Mol. Des. 1995, 9, 407–416.

11. Pearlman, R. S. and Smith, K. M., Metric validation and the receptor-relevant subspace
concept. J. Chem. Inf. Comput. Sci. 1999, 39, 28–35.

12. Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J., Experimental and
computational approaches to estimate solubility and permeability in drug discovery and
development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26.

13. Ginn, C. M., Turner, D. B., and Willett, P., Similarity searching in files of three-
dimensional chemical structures: Evaluation of the EVA descriptor and combination
of rankings using data fusion. J. Chem. Inf. Comput. Sci. 1997, 37, 23–37.

14. Willett, P. and Winterman, V., A Comparison of some measures of inter-molecular
structural similarity. Quant. Struct. Act. Relat. 1986, 5, 18–25.

15. Nettles, J. H., Jemkins, J. L., Bender, A., Deng, Z., Davies, J. W., and Glick, M., Bridging
chemical and biological space: “Target Fishing” using 2D and 3D molecular descriptors.
J. Med. Chem. 2006, 49, 6802–6810.

16. Hahn, M., Three-dimensional shape-based searching of conformationally flexible
molecules. J. Chem. Inf. Comput. Sci. 1997, 37, 80–86.

17. Putta, S., Eksterowicz, J., Lemmen, C., and Stanton, R., A novel subshape molecular
descriptor. J. Chem. Inf. Comput. Sci. 2003, 43, 1623–1635.

18. Haigh, J. A., Pickup, B. T., Grant, J. A., and Nicholls, A., Small molecule shape-
fingerprints. J. Chem. Inf. Model 2005, 45, 673–684.

Ligand- and Structure-Based Virtual Screening 167

19. Hull, R. D., Fluder, E. M., Singh, S. B., Nachbar, R. B., Kearsley, S. K., and Sheridan,
R. B., Chemical similarity searches using latent variable semantic structural indexing
(LaSSI) and comparison to TOPOSIM. J. Med. Chem. 2001, 44, 1185–1191.

20. McGaughey, G. B., Sheridan, R. P., Bayly, C. I., Culberson, J. C., Kreatsoulas, C., Linds-
ley, S., Maiorov, V., Truchon, J.-F., and Cornell, W. D., Comparison of topological, shape,
and docking methods in virtual screening. J. Chem. Inf. Model 2007, 47, 1504–1519.

21. Ewing, T., Baber, J. C., and Feher, M., Novel 2D fingerprints for ligand-based virtual
screening. J. Chem. Inf. Model 2006, 46, 2423–2431.

22. Carbó, R., Leyda, L., and Arnau, M., How similar is a molecule to another? An electron
density measure of similarity between two molecular structures. Int. J. Quantum Chem.
1980, 17, 1185–1189.

23. Hodgkin, E. E. and Richards, W. G., Molecular similarity based on electrostatic potential
and electric field. Int. J. Quantum Chem. 1987, 14, 105–110.

24. Good, A. C., Hodgkin, E. E., and Richards, W. G., Utilization of Gaussian functions
for the rapid evaluation of molecular similarity. J. Chem. Inf. Comput. Sci. 1992, 32,
188–191.

25. Grant, J. A., Haigh, J. A., Pickup, B. T., Nicholls, A., and Sayle, R. A., Lingos, finite state
machines, and fast similarity searching. J. Chem. Inf. Model. 2006, 46, 1912–1918.

26. Gower, J. C., Measures of similarity, dissimilarity and distance. In: S. Kotz and N. L.
Johnson (Eds), Encyclopedia of Statistical Sciences, Vol. 5, pp. 397–405. Wiley, New
York, 1985.

27. Willett, P., Barnard, J. M., and Downs, G. M., Chemical similarity searching. J. Chem.
Inf. Comput. Sci. 1998, 38, 983–996.

28. Flower, D. R., On the properties of bit string-based measures of chemical similarity.
J. Chem. Inf. Comput. Sci. 1998, 38, 379–386.

29. Dixon, S. L. and Koehler, R. T., The hidden component of size in two-dimensional
fragment descriptors: Side effects on sampling in bioactive libraries. J. Med. Chem.
1999, 42, 2887–2900.

30. Patterson, D. E., Cramer, R. D., Ferguson, A. M., Clark, R. D., and Weinberger, L.
E., Neighborhood behavior: A useful concept for validation of molecular diversity
descriptors. J. Med. Chem. 1996, 39, 3049–3059.

31. Clark, R. D., Brusati, M., Jilek, R., Heritage, T., and Cramer, R. D., Validat-
ing novel QSAR descriptors for use in diversity analysis. In: K. Gundertofte and
F. S. Jørgensen (Eds), Molecular Modeling and Prediction of Bioactivity, pp. 95–100.
Kluwer Academic/Plenum Publishers, New York, 2000.

32. Salim, N., Holliday, J., and Willett, P., Combination of fingerprint similarity coefficients
using data fusion. J. Chem. Inf. Comput. Sci. 2003, 43, 435–442.

33. Willett, P., Enhancing the effectiveness of ligand-based virtual screening using data
fusion. QSAR Comb. Sci. 2006, 25, 1143–1152.

34. Klon, A. E., Glick, M., and Davies, J. W., Combination of Naïve Bayesian classifier with
consensus scoring improves enrichment of high-throughput docking results. J. Med.
Chem. 2004, 47, 4356–4359.

35. Hert, J., Willett, P., and Wilton, D. J., comparison of fingerprint-based methods for virtual
screening using multiple bioactive reference structures. J. Chem. Inf. Comput. Sci. 2004,
44, 1177–1185.

36. Hert, J., Willett, P., Wilton, D. J., Acklin, P., Azzaoui, K., Jacoby, E., and
Schuffenhauer, A., Comparison of topological descriptors for similarity-based virtual
screening using multiple bioactive reference structures. Org. Biomol. Chem. 2004, 2,
3256–3266.

168 Handbook of Chemoinformatics Algorithms

37. Hert, J., Willett, P., Wilton, J. D. J.,Acklin, P.,Azzaoui, K., Jacoby, E., and Schuffenhauer,
A., New methods for ligand-based virtual screening: Use of data fusion and machine
learning to enhance the effectiveness of similarity searching. J. Chem. Inf. Model. 2006,
46, 462–470.

38. Reddy, A. S., et al., Virtual screening in drug discovery—a computational perspective.
Curr. Protein Pept. Sci. 2007, 8, 329–351.

39. Kuntz, I. D., et al., A geometric approach to macromolecule–ligand interactions. J. Mol.
Biol. 1982, 161, 269–288.

40. DesJarlais, R. L., et al., Docking flexible ligands to macromolecular receptors by
molecular shape. J. Med. Chem. 1986, 29, 2149–2153.

41. Goodsell, D. S. and Olson,A. J.,Automated docking of substrates to proteins by simulated
annealing. Proteins 1990, 8, 195–202.

42. Morris, G. M., et al., Automated docking using a Lamarckian genetic algorithm and an
empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662.

43. Judson, R. S., Jaeger, E. P., and Treasurywala, A. M., A genetic algorithm based method
for docking flexible molecules. J. Mol. Struct.—THEOCHEM, 1994, 308, 191–206.

44. Oshiro, C. M., Kuntz, I. D., and Dixon, J. S., Flexible ligand docking using a genetic
algorithm. J. Comput. Aided Mol. Des. 1995, 9, 113–130.

45. Jones, G., et al., Development and validation of a genetic algorithm for flexible docking.
J. Mol. Biol. 1997, 267, 727–748.

46. Friesner, R. A., et al., Glide: A new approach for rapid, accurate docking and scoring. 1.
Method and assessment of docking accuracy. J. Med. Chem. 2004, 47,1739–1749.

47. Halgren, T.A., et al., Glide: A new approach for rapid, accurate docking and scoring. 2.
Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759.

48. Ruben, A., Maxim, T., and Dmitry, K., ICM: A new method for protein modeling
and design: Applications to docking and structure prediction from the distorted native
conformation. J. Comput. Chem. 1994, 15, 488–506.

49. McMartin, C. and Bohacek, R. S., QXP: Powerful, rapid computer algorithms for
structure-based drug design. J. Comput. Aided Mol. Des. 1997, 11, 333–344.

50. Liu, M. and Wang, S., MCDOCK: A Monte Carlo simulation approach to the molecular
docking problem. J. Comput. Aided Mol. Des. 1999, 13, 435–451.

51. Ewing, T. J., et al., DOCK 4.0: Search strategies for automated molecular docking of
flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411–428.

52. Rarey, M., et al., A fast flexible docking method using an incremental construction
algorithm. J. Mol. Biol. 1996, 261, 470–489.

53. Lorber, D. M. and Shoichet, B. K. Flexible ligand docking using conformational
ensembles. Protein Sci. 1998, 7, 938–950.

54. McGann, M. R., et al., Gaussian docking functions. Biopolymers 2003, 68, 76–90.
55. Miller, M. D., et al., FLOG: A system to select ‘quasi-flexible’ ligands complementary

to a receptor of known three-dimensional structure. J. Comput. Aided Mol. Des. 1994, 8,
153–174.

56. Polgar, T. and Keseru, G. M., Ensemble docking into flexible active sites. Critical
evaluation of FlexE against JNK-3 and beta-secretase. J. Chem. Inf. Model 2006, 46,
1795–1805.

57. Claussen, H., et al., FlexE: Efficient molecular docking considering protein structure
variations. J. Mol. Biol. 2001, 308, 377–395.

58. Wei, B. Q., et al., Testing a flexible-receptor docking algorithm in a model binding site.
J. Mol. Biol. 2004, 337, 1161–1182.

59. Cavasotto, C. N., Kovacs, J. A., and Abagyan, R. A., Representing receptor flexibility in
ligand docking through relevant normal modes. J. Am. Chem. Soc. 2005, 127, 9632–9640.

Ligand- and Structure-Based Virtual Screening 169

60. AutoDock4.0 [computer software], Scripps Research Institute: La Jolla, CA.
http://autodock.scripps.edu/

61. Totrov, M. and Abagyan, R.A. Flexible protein-ligand docking by global energy
optimization in internal coordinates. Proteins 1997, Suppl. 1, 215–220.

62. Sherman, W., et al., Novel procedure for modeling ligand/receptor induced fit effects.
J. Med. Chem. 2006, 49, 534–553.

63. Case, D. A., et al., AMBER 10. University of California, San Francisco, 2008.
64. Brooks, B. R., et al., CHARMM: A program for macromolecular energy, minimization,

and dynamics calculations. J. Comput. Chem. 1983, 4, 187–217.
65. Mackerel, A. D., Brooks, C. L., Nilsson, L., Roux, B., Won, Y., and Karplus, M.

CHARMM: The energy function and its parameterization with an overview of the
program. In: Schleyer (Ed.), The Encyclopedia of Computational Chemistry, Vol. 1,
pp. 271–277. Wiley, Chichester, 1998.

66. Meng E. C., Shoichet, B. K., and Kuntz I. D., Automated docking with grid-based energy
evaluation. J. Comput. Chem. 1992, 13, 505–524.

67. Nicholls, A. and Honig, B., A rapid finite difference algorithm, utilizing successive
over-relaxation to solve the Poisson–Boltzmann equation. J. Comput. Chem. 1991, 12,
435–445.

68. Grant, J. A., Pickup, B. T., and Nicholls, A., A smooth permittivity function for Poisson–
Boltzmann solvation methods. J. Comput. Chem. 2001, 22, 608–640.

69. Shoichet, B. K., Leach, A. R., and Kuntz, I. D., Ligand solvation in molecular docking.
Proteins 1999, 34, 4–16.

70. Lang, P. T., et al., DOCK 6.2. University of California, San Francisco, 2006.
71. Bohm, H. J., The development of a simple empirical scoring function to estimate the

binding constant for a protein–ligand complex of known three-dimensional structure.
J. Comput. Aided Mol. Des., 1994, 8, 243–256.

72. Eldridge, M. D., et al., Empirical scoring functions: I. The development of a fast empir-
ical scoring function to estimate the binding affinity of ligands in receptor complexes.
J. Comput. Aided Mol. Des., 1997, 11, 425–445.

73. Huey, R., et al., A semiempirical free energy force field with charge-based desolvation.
J. Comput. Chem. 2007, 28, 1145–1152.

74. DeWitte, R. S. and Shakhnovich, E. I., SMoG: De novo design method based on simple,
fast, and accurate free energy estimates. 1. Methodology and supporting evidence. J. Am.
Chem. Soc. 1996, 118, 11733–11744.

75. Gohlke, H., Hendlich, M., and Klebe, G., Knowledge-based scoring function to predict
protein–ligand interactions. J. Mol. Biol. 2000, 295, 337–356.

76. Muegge, I. and Martin, Y. C., A general and fast scoring function for protein–ligand
interactions: A simplified potential approach. J. Med. Chem. 1999, 42, 791–804.

77. Charifson, P. S., et al., Consensus scoring: A method for obtaining improved hit rates
from docking databases of three-dimensional structures into proteins. J. Med. Chem.
1999, 42, 5100–5109.

78. Springer, C., et al., PostDOCK:A structural, empirical approach to scoring protein–ligand
complexes. J. Med. Chem. 2005, 48, 6821–6831.

79. Berman, H. M., et al., The protein data bank. Acta Crystallogr. D Biol. Crystallogr. 2002,
58, 899–907.

80. Graves, A. P., et al., Rescoring docking hit lists for model cavity sites: Predictions and
experimental testing. J. Mol. Biol. 2008, 377, 914–934.

81. Kuhn, B., et al., Validation and use of the MM-PBSA approach for drug discovery. J.
Med. Chem. 2005, 48, 4040–4048.

170 Handbook of Chemoinformatics Algorithms

82. Kroemer, R. T., Structure-based drug design: Docking and scoring. Curr. Protein Pept.
Sci. 2007, 8, 312–328.

83. Kontoyianni, M., et al., Theoretical and practical considerations in virtual screening: A
beaten field? Curr. Med. Chem. 2008, 15, 107–116.

84. Lipinski, C. A., et al., Experimental and computational approaches to estimate solubility
and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001,
46, 3–26.

85. McGovern, S. L., et al., A common mechanism underlying promiscuous inhibitors from
virtual and high-throughput screening. J. Med. Chem. 2002, 45, 1712–1722.

86. Roche, O., et al., Development of a virtual screening method for identification of
“frequent hitters” in compound libraries. J. Med. Chem. 2002, 45, 137–142.

87. Aronov, A. M., Predictive in silico modeling for hERG channel blockers. Drug Discov.
Today 2005, 10, 149–155.

88. Ewing, T. J. A. and Kuntz, I. D., Critical evaluation of search algorithms for
automated molecular docking and database screening. J. Comput. Chem. 1997, 18,
1175–1189.

89. Bron, C. and Kerbosch, J., Finding all cliques of an undirected graph. Commun. ACM
1973, 16, 575–577.

90. Moustakas, D. T., et al., Development and validation of a modular, extensible docking
program: DOCK 5. J. Comput. Aided Mol. Des. 2006, 20, 601–619.

91. Ewing, T. J. A. and Kuntz, I. D., Critical evaluation of search algorithms for automated
molecular docking and database screening. J. Comput. Chem. 1997, 18, 1175–1189.

92. Hart, W. E., Adaptive Global Optimization with Local Search. University of California,
San Diego, 1994.

93. Hart, W. E., Kammeyer, T. E., Belew, R. K., The role of development in genetic algo-
rithms. In: W. D. and V. M. (Eds), Foundations of Genetic Algorithms III. Morgan
Kauffman, San Francisco, CA, 1994.

94. Dennis, J. E. and Torczon, V., Derivative-free pattern search methods for multidis-
ciplinary design problems. In: Proceedings 5th AiAA/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, 1994. Panama city, FL.

95. Torczon,V. and Trosset, M. W., From evolutionary operation to parallel direct search: Pat-
tern search algorithms for numerical optimization. In: Computing Science and Statistics.
Proceedings 29th Symposium on the Interface, 1997. Houston, TX.

96. Solis, F. J. and Wets, J.-B., Minimization by random search techniques. Math. Oper. Res.
1981, 6, 19–30.

97. Taylor, J. S. and Burnett, R. M., DARWIN: A program for docking flexible molecules.
Proteins 2000, 41, 173–191.

98. Dhagat, U., et al., A salicylic acid-based analogue discovered from virtual screening
as a potent inhibitor of human 20-hydroxysteroid dehydrogenase. Med. Chem. 2007, 3,
546–550.

99. Park, H., et al., Discovery of novel Cdc25 phosphatase inhibitors with micromolar activity
based on the structure-based virtual screening. J. Med. Chem. 2008, 51, 5533–5541.

100. Kiss, R., et al., Discovery of novel human histamine H4 receptor ligands by large-scale
structure-based virtual screening. J. Med. Chem. 2008, 51, 3145–3153.

101. Montes, M., et al., Receptor-based virtual ligand screening for the identification of novel
CDC25 phosphatase inhibitors. J. Chem. Inf. Model 2008, 48, 157–165.

102. Cheng, J.-F., et al., Combination of virtual screening and high throughput gene profiling
for identification of novel liver X receptor modulators. J. Med. Chem. 2008, 51, 2057–
2061.

Ligand- and Structure-Based Virtual Screening 171

103. Mukherjee, P., et al., Structure-based virtual screening against SARS-3CLpro to identify
novel non-peptidic hits. Bioorg. Med. Chem. 2008, 16, 4138–4149.

104. Cavasotto, C. N. and Abagyan, R. A., Protein flexibility in ligand docking and virtual
screening to protein kinases. J. Mol. Biol. 2004, 337, 209–225.

105. Szewczuk, L. M., et al., De novo discovery of serotonin N-acetyltransferase inhibitors.
J. Med. Chem. 2007, 50, 5330–5338.

106. Trosset, J.Y., Dalvit, C., Knapp, S., Fasolini, M., Veronesi, M., Mantegani, S., Gianellini,
L. M., Catana, C., Sundström, M., Stouten, P. F., and Moll, J. K., Inhibition of protein–
protein interactions: The discovery of druglike beta-catenin inhibitors by combining
virtual and biophysical screening. Proteins 2006, 64, 60–67.

107. Schnecke, V. and Kuhn, L. A., Virtual screening with solvation and ligand-induced
complementarity. Perspect. Drug Discov. Des. 2000, 20, 171–190.

108. Sukuru, S., et al., Discovering new classes of Brugia malayi asparaginyl-tRNA synthetase
inhibitors and relating specificity to conformational change. J. Comput. Aided Mol. Des.
2006, 20, 159–178.

109. OMEGA 2.0 [computer software], OpenEye Scientific Software: Sante Fe, NM.
http://www.eyesopen.com

6 Predictive Quantitative
Structure–Activity
Relationships Modeling
Data Preparation and the
General Modeling Workflow

Alexander Tropsha and Alexander Golbraikh

CONTENTS

6.1 Introduction: Predictive QSAR Modeling .174
6.2 Requirements to a Dataset .176
6.3 Dataset Curation. .177
6.4 Calculation of Descriptors .180
6.5 Preprocessing of Descriptors .184
6.6 Stochastic Cluster Analysis .191
6.7 Detection and Removal of Outliers Prior to QSAR Studies193
6.8 Classification and Category QSAR: Data Preparation for Imbalanced

Datasets .197
6.9 Model Validation: Modeling, Training, Test, and External

Evaluation Sets .199
6.10 Division of a Modeling Set Into Training

and Test Sets. External Evaluation Sets .200
6.11 Conclusions. .204
References .205

In this and the next chapter, we shall consider modern approaches for developing
statistically robust and externally predictive quantitative structure–activity relation-
ships (QSAR) models. We shall discuss the general QSAR model development and
validation workflow that should be followed irrespective of specifics of any particu-
lar QSAR modeling routine. We will refrain on purpose from discussing any specific
model optimization algorithms because such details could be found in many original
publications. This chapter focuses on the initial steps in QSAR modeling, that is,
input data preparation and curation, as well as introduces the general workflow for
developing validated and predictive models. Conversely, the next chapter addresses

173

174 Handbook of Chemoinformatics Algorithms

general data modeling and model validation procedures that constitute the important
elements of the workflow.

This chapter starts with the discussion of the general workflow for developing pre-
dictive QSAR models. Then, we concentrate on the requirements to QSAR datasets
and procedures that should be employed for the initial data treatment and prepa-
ration for model development. We consider briefly major types of descriptors (i.e.,
quantitative characteristics of chemical structures) and discuss algorithms for prepro-
cessing descriptor files prior to QSAR studies. We emphasize that rigorous validation
of QSAR models is impossible without using both test and additional external model
evaluation sets and discuss several approaches for the division of a dataset into
training, test, and external evaluation sets. We address critical aspects of preliminary
data analysis such as the detection of possible structural and activity outliers and
dealing with the imbalanced datasets.

To complete the discussion of major modern QSAR modeling principles, the next
chapter covers some special topics of QSAR analysis such as different target func-
tions and measures of prediction accuracy, approaches to model validation, model
applicability domains, consensus prediction and the use of QSAR models in virtual
screening. We emphasize that the true utility of QSAR models is in their ability to
make accurate predictions for external datasets. In this regard, we ascertain that the
integration of all components of the QSAR modeling workflow discussed in this and
the subsequent chapter is absolutely necessary for building rigorously validated and
externally predictive QSAR models.

6.1 INTRODUCTION: PREDICTIVE QSAR MODELING

The rapid development of information and communication technologies during the
last few decades has dramatically changed our capabilities of collecting, analyzing,
storing, and disseminating all types of data. This process has had a profound influ-
ence on the scientific research in many disciplines, including the development of new
generations of effective and selective medicines. Large databases containing mil-
lions of chemical compounds tested in various biological assays such as PubChem1

are increasingly available as online collections (recently reviewed by Oprea and
Tropsha2). In order to find new drug leads, there is a need for efficient and robust
procedures that can be used to screen chemical databases and virtual libraries against
molecules with known activities or properties. To this end, QSAR modeling provides
an effective means for both exploring and exploiting the relationship between chemi-
cal structure and its biological action toward the development of novel drug candidates.

The QSAR approach can be generally described as an application of data analysis
methods and statistics to developing models that could accurately predict biological
activities or properties of compounds based on their structures. Our experience in
QSAR model development and validation has led us to establish a complex strat-
egy that is summarized in Figure 6.1. It describes the predictive QSAR modeling
workflow focused on delivering validated models and ultimately computational hits
confirmed for the experimental validation. We start by randomly selecting a fraction
of compounds (typically, 10–20%) as an external evaluation set. The sphere exclu-
sion protocol implemented in our laboratory3,4 is then used to rationally divide the

Predictive Quantitative Structure–Activity Relationships Modeling 175

Original dataset

Database screening
using applicability domain

Experimental
validation

Modeling sets External evaluation sets

Multiple
training sets

Multiple
test sets

Combi-QSAR
modeling Y-Randomization

Only accept models
that satisfy special
statistical criteria

Activity
prediction

Validated predictive
models with high internal

& external accuracy

External validation using
consensus prediction and

applicability domain

FIGURE 6.1 Predictive QSAR modeling workflow.

remaining subset of compounds (the modeling set) into multiple training and test sets
that are used for model development and validation, respectively. We employ multi-
ple QSAR techniques based on the combinatorial exploration of all possible pairs of
descriptor sets and various supervised data analysis techniques (combi-QSAR) and
select models characterized by high accuracy in predicting both training and test sets
data. Validated models are finally tested using the external evaluation set. The critical
step of the external validation is the use of applicability domains (AD). If external
validation demonstrates the significant predictive power of the models, we employ
them for virtual screening of available chemical databases (e.g., ZINC5) to identify
putative active compounds and work with collaborators who could validate such hits
experimentally. The entire approach is described in detail in several recent papers and
reviews (see, e.g., Refs. 6–9).

The development of truly validated and predictive QSAR models affords their
growing application in chemical data mining and combinatorial library design.10,11

For example, three-dimensional (3D) stereoelectronic pharmacophore based on
QSAR modeling was used recently to search the National Cancer Institute Repository
of Small Molecules to find new leads for inhibiting human immunodeficiency virus
(HIV) type 1 reverse transcriptase at the non-nucleoside binding site.12

It is increasingly critical to provide experimental validation as the ultimate assertion
of the model-based prediction. In our recent studies we were fortunate to recruit exper-
imental collaborators who have validated computational hits identified through our
modeling of several datasets including anticonvulsants,13 HIV-1 reverse transcriptase
inhibitors,14 D1 antagonists,15 antitumor compounds,16 β-lactamase inhibitors,17 and
histone deacetylase (HDAC) inhibitors.18 Thus, models resulting from the predictive

176 Handbook of Chemoinformatics Algorithms

QSAR modeling workflow (Figure 6.1) could be used to prioritize the selection of
chemicals for the experimental validation. However, since we still cannot guarantee
that every prediction resulting from our modeling effort will be validated experimen-
tally, we do not include the experimental validation step as a mandatory part of the
workflow in Figure 6.1, which is why we used the dotted line for this component.
We note that our approach shifts the emphasis on ensuring good (best) statistics for
the model that fits known experimental data toward generating a testable hypothesis
about purported bioactive compounds. Thus, the output of the modeling has exactly the
same format as the input, that is, chemical structures and (predicted) activities making
model interpretation and utilization completely seamless for medicinal chemists.

Thus, studies in our as well as several other laboratories have shown that
QSAR models could be used successfully as virtual screening tools to discover
compounds with the desired biological activity in chemical databases or virtual
libraries.6,13,15−17,19 The discovery of novel bioactive chemical entities is the pri-
mary goal of computational drug discovery, and the development of validated and
predictive QSAR models is critical to achieve this goal.

In the remaining part of this chapter, we consider the requirements to primary data
used for QSAR analysis, approaches used in the preparation of data, preprocessing
of descriptors, and detection of outliers. We emphasize that rigorous validation of
QSAR models is impossible without using test and additional external evaluation sets
and discuss several approaches for division of data into training, test, and external
evaluation sets.

6.2 REQUIREMENTS TO A DATASET

The number of compounds in the dataset for QSAR studies should not be too small,
or, for practical reasons, too large. The upper limit is defined by the computer and
time resources available for building QSAR models using the selected methodolo-
gies. For example, for the k-nearest neighbors (kNN) QSAR approach frequently
practiced in our laboratory,20,21 the maximum number of compounds in the train-
ing set (i.e., compounds used to build QSAR models) may not exceed about ca.
2000 due to the inefficiency of the approach when processing large datasets. When a
dataset includes more compounds, several approaches can be implemented: (i) select
a diverse subset of compounds; (ii) cluster a dataset and build models separately for
each cluster; (iii) sometimes, in the case of classification or category QSAR, when
compounds belong to a small number of activity classes or categories (e.g., active and
inactive), it is possible to exclude many compounds from model development. (The
difference between classes and categories is that that in contrast to classes, categories
can be ordered. An example of classes: ligands of different receptors. An example of
categories: compounds that are very active, active, moderately active, and inactive.)

The lower limit of the number of compounds in the dataset is also defined by
several factors. For example, in most cases, as part of model validation schemes, we
divide a dataset into three subsets: training, test, and external evaluation sets. Training
sets are used in model development, and if they are too small, chance correlation and
overfitting become major problems not allowing one to build truly predictive models.
While it is impossible to give an exact minimum number of compounds in a dataset

Predictive Quantitative Structure–Activity Relationships Modeling 177

for which building reliable QSAR models is feasible, some simple ideas described
here may help. In the case of continuous response variable (activity), the number of
compounds in the training set should be at least 20, and about 10 compounds should
be in each of the test and external evaluation sets, so the total minimum number of
compounds should be no less than 40. In the case of classification or category response
variable, the training set should contain at least about 10 compounds of each class, and
test and external evaluation sets should contain no less than five compounds for each
class. So, there should be at least 20 compounds of each class. The best situation is
when the number of compounds in the dataset is between these two extremes: about
150–300 compounds in total, and in the case of classification or category QSAR,
approximately equal number of compounds of each class or category.

There are also requirements for activity values. In the case of continuous response
variable, the total range of activities should be at least 5 times higher than the experi-
mental error. No large gaps (that exceed 10–15% of the entire range of activities) are
allowed between two consecutive values of activities ordered by value. In the case
of classification or category QSAR, there should be at least 20 compounds of each
class or category; preferably, the number of compounds in all classes or categories
should be approximately the same. However, many existing datasets are imbalanced or
biased (i.e., sizes of different classes or categories are different). In these cases, special
QSAR algorithms are used to equalize the number of compounds in different classes
or categories. There are also approaches (such as cost-sensitive learning22,23) that
account for these differences by including additional parameters in target functions
(see Section 7.2) and criteria of prediction accuracy.

The main QSAR hypothesis underlying all QSAR studies is as follows: similar
compounds should have similar biological activities or properties. If this condition for
compounds in the dataset is not satisfied, building truly predictive QSAR models is
impossible. In fact, one can define two compounds as similar if their chemical struc-
tures are similar. In computer representation, compounds are characterized by a set
of quantitative parameters called descriptors. Similarity between two compounds is a
quantitative measure that is defined based on compounds’ descriptor values. Differ-
ent definitions of compound similarity exist. These measures reflect the similarity in
molecular structure of these compounds. Obviously, quantitative values of similarity
measures between two compounds also depend on which descriptors are used. So
there is no unique similarity measure. Below, we will address several definitions of
similarity.

6.3 DATASET CURATION

Any modeling study requires a dataset of compounds where all chemical structures
are correct, there are no duplicates, and activity values are accurate. It is highly
recommended that before the modeling studies begin, the datasets be examined to
establish that the above listed quality control criteria are satisfied. A recent study
provides a great illustration as to how having even a few incorrect structures could
significantly impart the accuracy of QSAR models.24 In addition, the calculation of
molecular descriptors should be possible for every compound in a dataset. In this
regard, it should be kept in mind that most of the molecular descriptors cannot be

178 Handbook of Chemoinformatics Algorithms

calculated for compounds consisting of two or more molecules that are not covalently
connected (e.g., salts); many molecular descriptors cannot be calculated for inorganic
compounds or compounds that include heavy metal atoms due to lack of the corre-
sponding parameters; many types of descriptors cannot take chirality and some other
types of isomerism into account, and so on. Depending on the descriptors used and
the dataset, all or some of these compounds should be excluded from the dataset.

Consider, for example, a dataset that includes many molecules containing chiral
atoms, including some pairs of enantiomers and diastereomers. If atomic chiralities for
all these compounds are always available along with compounds’ activities, descrip-
tors taking chirality into account should be used, and all isomers should be retained
in the dataset. If, however, chirality information is unavailable, only one compound,
usually with the highest (or mean) activity should be retained, and chirality descrip-
tors should not be used. There are different tools available for dataset curation. For
example, Molecular Operating Environment (MOE)25 includes Database Wash tool.
It allows changing molecules’ names, adding or removing hydrogen atoms, removing
salts and heavy atoms, even if they are covalently connected to the rest of the molecule,
and changing or generating the tautomers and protomers (cf. the MOE manual for
more details). Various database curation tools are included in ChemAxon26 as well.
If commercial software tools such as MOE are unavailable (notably, ChemAxon soft-
ware is free to academic investigators), one can use standard UNIX/LINUX tools
to perform some of the dataset cleaning tasks. It is important to have some freely
available molecular format converters such as OpenBabel27 or MolConverter from
ChemAxon.26

We shall discuss the use of some of the standard data cleaning operations using
freely available tools. Suppose that a file called mydata contains a dataset in the
SMILES format. Each line of this file contains SMILES string for one compound and
ID for this compound. Some of the compounds contain metal atoms such as Na, K,
Ca, Fe, Co, Ni, Mn, and Mg, and one wants to exclude all of them from the dataset.
It can be easily done in the UNIX/LINUX operating system by giving the command:

egrep –v “\[Na|\[K|\[Ca|\[Fe|\[Co|\[Ni|\[Mn|\[Mg” mydata > mynometal-
data.

Suppose that a file mydata also contains some compounds that are not fully cova-
lently connected. In SMILES, disconnected parts of the compound are separated by
a dot. So all compounds containing dots can be removed:

grep –v “\.” mynometaldata > mynometalnosaltdata.
Alternatively, one may want to retain the largest fragment of a compound. In this

case, the following awk code can be used:

{
if(index($1,".")==0) printf("%s ",$1);
else
{

n=split($1,a,".");
p=0;
m=0;
for(i=1;i<=n;i++)
{

Predictive Quantitative Structure–Activity Relationships Modeling 179

r=length(a[i]);
if(r>p) {m=i; p=r;}

}
printf("%s ",a[m]);

}
if(NF==1) printf("No_ID\n");
if(NF==2) printf("%s\n",$2);
else
{

for(i=2;i<NF;i++) printf("%s_",$i);
printf("%s\n",$i);

}
}

Create a file removesalts.awk and copy the above code in this file. The following
command will remove smaller fragments of compounds:

awk –f removesalts.awk mynometaldata > mynometalnosaltdata.
If a user is not interested in small molecules, the user may decide to remove

compounds described by short SMILES strings with lengths up to 8. This can be
done by using a short awk script:

awk ’{if(length($1) > var1) print $0;}’ mynometalnosaltdata > mycleaneddata.
The mycleaneddata still may contain duplicates. Duplicates of SMILES strings

can be removed using the following awk script:

BEGIN {i=0;}
{ if(var==$1) i++; if(i<=1 || i>1 && var!=$1) print;}
END {if(i>1) print var,i>file;}

where var and file are external variables; var is one SMILES string, and file is a file
name containing SMILES strings included more than once in the input file. Create file
removeduplicates.awk and copy the above script into it. var variable runs through all
compounds, and each time, duplicates of this compound are removed. The following
Cshell script used with the removeduplicates.awk will do the job.

#!/bin/csh
cp data2 temp
foreach i (‘cut -d" " -f1 data2‘)
awk -v var="$i" -v file="duplicates" -f removeduplicates.

awk temp > temp2†

cp temp2 temp
cat duplicates >> duplicates.txt
end
cp temp2 mycleaneddatanodup
rm temp*

Name it removeduplicates.csh and run it using the following command:
csh removeduplicates.csh.

† It is one command which should be entered on one line of the UNIX/LINUX terminal.

180 Handbook of Chemoinformatics Algorithms

6.4 CALCULATION OF DESCRIPTORS

Descriptors are quantitative characteristics describing molecular structures that are
used in QSAR and other chemoinformatics studies. They can be experimental or cal-
culated physicochemical properties of molecules such as molecular weight, molar
refraction, energies of HOMO and LUMO, normal boiling point, octanol/water
partition coefficients, topological indices or invariants of molecular graphs (structural
formulas), molecular surface, molecular volume, etc. The first abstract molecular
topological indices introduced in molecular property prediction studies were the
Wiener index28 and the Platt index.29

Herein, we will not discuss different types of descriptors in detail but mention
briefly major descriptor classes. There is an excellent monograph titled Handbook
of Molecular Descriptors by Roberto Todeschini and Vivian Consonni30 that pro-
vides reference materials on more than 2000 different descriptors. Most of descriptors
included in this book can be calculated by the Dragon software.31 Dragon calculates
many different groups of descriptors such as constitutional descriptors (sometimes
referred to as zero-dimensional [0D] descriptors), counts of different molecular
groups, physicochemical properties of compounds, and so on. (one-dimensional [1D]
descriptors), connectivity indices, information indices, counts of paths and walks,
and so on (two-dimensional [2D] descriptors), geometrical properties, GETAWAY,
WHIM, 3DMoRSE descriptors, and so on (3D descriptors), and some other descrip-
tors. MolconnZ32 is another widely used descriptor calculation software. In total, it
calculates more than 800 descriptors including valence path, cluster, path/cluster and
chain molecular connectivity indices, kappa molecular shape indices, topological and
electrotopological state indices, differential connectivity indices, the graph’s radius
and diameter, Wiener and Platt indices, Shannon and Bonchev-Trinajstić information
indices, counts of different vertices, and counts of paths and edges between different
kinds of vertices. MOE25 descriptors include both 2D and 3D molecular descriptors.
2D descriptors include physical properties, subdivided surface areas, atom counts
and bond counts, Kier and Hall connectivity and kappa shape indices, adjacency and
distance matrix descriptors, pharmacophore feature descriptors, and partial charge
descriptors. 3D molecular descriptors include potential energy descriptors, surface
area, volume and shape descriptors, and conformation-dependent charge descrip-
tors. Chirality molecular topological descriptors (CMTD) developed in our laboratory
include chirality and ZE-isomerism molecular connectivity indices, overall Zagreb
indices, extended indices, and overall connectivity indices.33−35 They are calculated
as conventional descriptors with modified vertex degrees. Another group of descrip-
tors frequently used in our laboratory is atom-pair (AP) descriptors.36 Each descriptor
is defined as a count of pairs of atoms of the same type being away from each other on a
certain topological distance (2DAP descriptors) or a Euclidean distance within certain
intervals (3DAP descriptors).A new version of the program includes chirality descrip-
tors, which are counts of APs with one or both atoms in the pair chiral.37 Comparative
molecular field analysis (CoMFA) descriptors represent values of Lennard-Jones and
Coulomb energies of interactions between a molecule and a probe atom at certain
grid points built around a set of spatially aligned molecules.38 The molecules are
aligned according to a pharmacophore model, a spatially arranged set of features that

Predictive Quantitative Structure–Activity Relationships Modeling 181

are believed to be responsible for the biological activity or property of compounds
in question. There are several types of other 3D CoMFA-like descriptors, such as
comparative molecular similarity indices analysis (CoMSIA),39 comparative similar-
ity indices analysis (QSiAR),40 self-organizing molecular field analysis (SOMFA),41

and so on. These descriptors can be effectively used for sets of rigid compounds,
or compounds that have a large common fragment, but for flexible compounds with
different scaffolds they require extensive conformational analysis along with rigid
templates to superimpose molecules onto each other. There are different conforma-
tional analysis and pharmacophore modeling tools included in molecular modeling
packages such as MOE,25 Sybyl,42 Discovery Studio,43 LigandScout,44 and so on.

It has been demonstrated that in many cases QSAR models based on 2D descrip-
tors have comparable (or even superior) predictivity than models based on 3D
descriptors.20,21,33,45 At the same time, 3D methods are much more time and resource
consuming. Moreover, even for rigid compounds, generally it is not known whether
the alignment corresponds to real positions of molecules in the receptor binding site.46

So, when 3D QSAR studies are necessary, if possible, 3D alignment of molecules
should be preferably obtained by docking studies.VolSurf 47,48 and GRIND49 descrip-
tors are examples of alignment-free 3D descriptors. GRIND descriptors are obtained
from 3D interaction energy grid maps. Calculation of VolSurf descriptors includes the
following steps: (i) building a grid around a molecule; (ii) calculation of an interaction
field (with water, dry, amide and carbonyl probes representing solvent, hydrophobic,
and hydrogen bond acceptor and donor effects) in each grid point; (iii) eight or more
energy values are assigned and for each energy value, the number of grid points
inside the surface corresponding to this energy (volume descriptors) or belonging to
this surface (surface descriptors) is calculated. VolSurf descriptors include size and
shape descriptors, hydrophilic and hydrophobic region descriptors, interaction energy
moments, and other descriptors. Both VolSurf and GRIND descriptors are available in
Sybyl (VolSurf and Almond modules).40 Virtually, any molecular modeling software
package contains sets of its own descriptors and there are many other descriptors not
mentioned here that can be found in the specialized literature.

There are sets of descriptors that take values of zero or one depending on the
presence or absence of certain predefined molecular features (or fragments) such
as oxygen atoms, aromatic rings, rings, double bonds, triple bonds, halogens, and
so on. These sets of descriptors are called molecular fingerprints or structural keys.
Such descriptors can be represented by bit strings and many are found in popular
software packages. For instance, several different sets of such descriptors are included
in MOE,23 Sybyl,40 and others, and examples of their use can be found in the published
literature.50,51 Molecular holograms are similar to fingerprints; however, they use
counts of features rather than their presence or absence. For example, holograms
are included in the Sybyl HQSAR40 module. There are also more recent approaches
when molecular features are not predefined a priori (as fingerprints discussed above)
but are identified for each specific dataset. For example, frequent subgraph mining
approaches developed independently at the University of North Carolina52 and at the
Louis Pasteur University in Strasbourg53 can find all frequent closed subgraphs (i.e.,
subgraph descriptors) for given datasets of compounds described as chemical graphs.

182 Handbook of Chemoinformatics Algorithms

As may be obvious from the above discussion, most chemical descriptors are only
available from commercial software, which in our opinion is a strong impediment
to accelerating the development of chemoinformatics approaches and applications.
Fortunately, Dr.W. Tong from FDA recently announced the availability of the first non-
commercial descriptor generating software from his laboratory, which is an important
step in the right direction of making core chemoinformatics tools available free of
charge.54

After descriptors are calculated, a dataset can be represented in the form of a QSAR
table (Table 6.1). At this point, we shall introduce the concept of multidimensional
descriptor space. Suppose that we have just two descriptors for a compound dataset.
In this case, we can define a 2D space with orthogonal (perpendicular to each other)
coordinates, abscissa and ordinate, and represent each compound i by a point in this
2D descriptor space with coordinates (Xi1, Xi2), where Xi1 and Xi2 are descriptor
values for a compound i. In case we have three descriptors, we can introduce a 3D
descriptor space, in which each descriptor will be represented by an axis, and all
three axes are orthogonal to each other, and so on. We can represent each compound
i in this 3D descriptor space by a point (Xi1, Xi2, Xi3), where Xi1, Xi2, and Xi3 are
descriptor values for compound i. Obviously, the same consideration can be extended
to any number of descriptors and so we can introduce higher-dimensional descriptor
spaces. If the total number of descriptors is N , we can introduce an N-dimensional
descriptor space. We can endow this space with some metric by introducing distances
between representative points of compounds in this space. For example, if distance
Dij between points i and j is defined as

Dij =
√
√
√
√

N∑

n=1

(Xin − Xjn)2, (6.1)

then this descriptor space is the N-dimensional Euclidean space. In fact, the dis-
tance can be axiomatically defined in many ways. For example, we can define the
Minkowsky distance with parameter p as

DMink
ij =

[
N∑

n=1

(Xin − Xjn)
p

]1/p

. (6.2)

TABLE 6.1
QSAR Table

Compound Descriptor 1 Descriptor 2 … Descriptor N Activity

1 X11 X12 . . . X1N Y1
2 X21 X22 . . . X2N Y2
.

M XM1 XM2 . . . XMN YM

Predictive Quantitative Structure–Activity Relationships Modeling 183

If p = 2, the Minkowsky distance becomes Euclidean distance. If p = 1, the
Minkowsky distance becomes the Manhattan distance, and so on. Mahalanobis dis-
tances are frequently used instead of Euclidean distances since they account for
correlations between descriptors. They are also used in definition ofAD and in finding
outliers.55 The Mahalanobis distance between compounds i and j is defined as

Mij =
√

(Xi − Xj)TC−1(Xi − Xj), (6.3)

where Xi and Xj are vectors of representative points of compounds i and j, and C−1

is the inverse covariance matrix for descriptors.

Xi − Xj =

⎛

⎜
⎜
⎜
⎝

Xi1 − Xji

Xi2 − Xj2

...
XiN − XjN

⎞

⎟
⎟
⎟
⎠

, (6.4)

C =

⎛

⎜
⎜
⎝

E[(X1 − μ1)(X1 − μ1)] E[(X1 − μ1)(X2 − μ2)] ... E[(X1 − μ1)(XN − μN)]
E[(X2 − μ2)(X1 − μ1)] E[(X2 − μ2)(X2 − μ2)] ... E[(X2 − μ2)(XN − μN)]

...
E[(XN − μN)(X1 − μ1)] E[(XN − μN)(X2 − μ2)] ... E[(XN − μN)(XN − μN)]

⎞

⎟
⎟
⎠ ,

(6.5)

Here, E[(Xp − μp)(Xq − μq)] is the covariance between descriptors p and q,
and μp and μq are their mean values.

The Euclidean distance between two compounds can be used as a measure of
dissimilarity between them, that is, the larger the distance, the more dissimilar the
compounds are, and the smaller the distance, the more similar the compounds are. If
the distance is zero, compounds have identical descriptors, and from this descriptor
set point of view, they are identical. However, these compounds can still be noniden-
tical; for example, if two compounds are enantiomers and the descriptors do not take
chirality into account, then they will have identical descriptors. Another widely used
similarity measure is the Tanimoto coefficient. Usually, it is defined for fingerprint
bit strings. The Tanimoto coefficient is defined as follows:

T = c

a+ b− c
, (6.6)

where a, b, and c are the number of descriptors, for which the corresponding bits
are the ones for the first compound, the second compound, and both compounds. In
fact, the Tanimoto coefficient can be defined for compounds i and j with any set of
descriptors as well:

Tij =
∑N

a=1 XiaXja
∑N

a=1 X2
ia +

∑N
a=1 X2

ja −
∑N

a=1 XiaXja
. (6.7)

184 Handbook of Chemoinformatics Algorithms

Here, Xia and Xja are values of descriptor a for compounds i and j, respectively.
In general, −1/3 ≤ T ≤ 1. For bit strings and range-scaled descriptors, 0 ≤ T ≤ 1,
and this can be used instead of the Euclidean distance. Many additional details about
distance and similarity measures used in chemoinformatics studies can be found
elsewhere.56

Any QSAR method can be generally defined as an application of data analysis
methods and statistics to the problem of finding empirical relationships (QSAR mod-
els) of the form Ŷ = f (X1, X2, . . . , XN), where Ŷ is the approximated (predicted)
biological activity (or other property of interest) of molecules, X1, X2, . . . , XN are
calculated (or, in some cases, experimentally measured) structural properties (molec-
ular descriptors) of compounds, and f is some empirically established mathematical
transformation that should be applied to descriptors to calculate the property values
for all molecules. A QSAR model optimization has a goal of minimizing the error
of prediction, for example, the sum of squares of differences or the sum of absolute
values of differences between predicted Ŷi and observed Yi activities for the training
set of compounds (compounds used for building a QSAR model), and so on. How-
ever, prior to model building, data need to be preprocessed and prepared properly to
enable not only building but validating models as well.

6.5 PREPROCESSING OF DESCRIPTORS

Many descriptors such as those calculated with Dragon29 or MolconnZ30 software
include a large variety of “real-value” descriptors as well as descriptors indicating
the presence or absence or counts of certain molecular fragments and groups. Real-
value descriptors can have very substantial differences in their values and ranges,
sometimes by orders of magnitude. Such sets of descriptors should be normalized.
There are also descriptors, which may have the same value for all compounds of
the modeling set or have a very low variance. These descriptors should be excluded
from consideration prior to building QSAR models because they cannot explain the
variability of the target property. However, such (nearly) constant value descriptors
are important for defining the model AD and should be retained for this purpose (see
Section 7.4). Descriptor normalization should be performed separately for modeling
and external evaluation sets. Normalization of descriptors of external compounds for
prediction, such as those included in a chemical database or virtual library, should
be performed in the same way as for the external evaluation set. On the contrary,
molecular fingerprints or holograms do not need to be normalized since they have the
same format and similar ranges. Nevertheless, as in the case of real-value descriptors
discussed above, those fingerprint or hologram descriptors that take the same value
for all compounds of the modeling set should also be excluded.

Normalization of descriptors for the modeling set: There are two widely used
methods of descriptor normalization: range scaling and standard normalization (or
autoscaling). In the case of range-scaling, descriptors are normalized according to
the following formula:

Xn
ik =

Xik −min Xk

max Xk −min Xk
, (6.8)

Predictive Quantitative Structure–Activity Relationships Modeling 185

where Xik and Xn
ik are the non-normalized and normalized values of descrip-

tor k (k = 1, . . . , N) for compound i (i = 1, . . . , M), and min Xk = min
i

Xik and

max Xk = max
i

Xik are the minimum and maximum values of the kth descriptor.

Descriptors normalized using Formula 6.8 have a minimum value of 0 and a
maximum value of 1. Standard normalization (also called autoscaling) is performed
according to the following formula:

Xn
ik =

Xik − μk

σk
, (6.9)

where

μk = 1

M

M∑

i=1

Xik (6.10)

and

σk =
√

∑M
i=1(Xik − μk)2

M − 1
(6.11)

are the estimations of the average and the standard deviation of the kth descriptor
over all compounds 1, . . . , M. After normalization, descriptors with very low variance
(e.g., lower than 0.001) or standard deviation, which is the square root of variance
(see Formula 6.11), are excluded.

Normalization of descriptors for an external compound: For an external compound,
the same Formulas 6.8 through 6.11 are used with Xext

k (the kth descriptor for the
external compound) instead of Xik in Formula 6.8 or 6.9. Other values in Formulas
6.8 and 6.9 are parameters calculated for the modeling set.

For establishing the model AD it is important to take into account all descriptors.
However, for descriptors having the same value for all compounds of the modeling set,
the procedures described above will not work. So, if some kth descriptor has the same
value for all compounds of the modeling set, but different values for the prediction set,
then Formula 6.8 or 6.9 with min Xk and max Xk values for the prediction set should
be used. The descriptor value for the modeling set should be normalized using min Xk
and max Xk for the prediction set. However, if there is only one external compound
for prediction with this descriptor value different from that of the modeling set, this
problem has no solution, and this descriptor should not be taken into account, or if
the difference is too large (depending on the nature of the descriptor), the external
compound can be considered as an outlier.

Pairwise correlation analysis: After the removal of constant descriptors (those
having the same value for all compounds of the modeling set) and descriptors with
low variance, the number of descriptors could still be too high. Of course, theoretically,
it is possible to build QSAR models using all these descriptors. However, it is not
necessarily true in practice. For example, if a QSAR procedure includes variable
selection, it will take too much time to develop a model with too high number of
descriptors, but the prediction power of models built with all descriptors will not be
much better than that for models built using a smaller number of descriptors selected in

186 Handbook of Chemoinformatics Algorithms

some special way. Sometimes, if models are built using a limited number of iterations
(steps of calculations), then there is a possibility that an optimal subset of descriptors
will not be selected from the pool of all descriptors. For the kNN QSAR procedure
employed in our laboratory, the number of descriptors should not exceed 200–400,
whereas after the removal of constant and low variance descriptors from the entire set
of Dragon descriptors, the number of remaining descriptors could be as high as about
800–1000. The initial number of some collections of fragment-based descriptors or
fingerprints can amount to thousands and even dozens of thousands. Most of these
descriptors should be excluded.

The commonly used approach to reducing the number of descriptors is pairwise
correlation analysis. As a result, one of the descriptors from a pair of highly corre-
lated descriptors found by this analysis is excluded. However, the outcome of this
procedure can be nonunique and will depend on the order of descriptors, if applied
incorrectly. Suppose that there are three descriptors Xa, Xb, and Xc and three corre-
lation coefficients |R(Xa, Xb)| > t, |R(Xb, Xc)| > t, and |R(Xa, Xc)| < t, where t is a
predefined threshold. Suppose that descriptor Xa is the first in the list, descriptor Xb
is the second, and descriptor Xc is the third. If the descriptor with the higher num-
ber is deleted, then descriptors Xa and Xc will be retained and descriptor Xb will be
deleted. However, if descriptor Xb is the first in the list, descriptor Xa is the second,
and descriptor Xc is the third and the descriptor with higher number is deleted, then
descriptors Xa and Xc will be deleted and descriptor Xb will be retained. We suggest
that the following procedure should be used:

i. Select the descriptor with the highest variance.
ii. Calculate the correlation coefficients between this descriptor and all other

descriptors. The correlation coefficient between two descriptors Xa and Xb is
calculated as follows:

R(Xa, Xb) =
∑M

i=1(Xia − μa)(Xib − μb)
√
∑M

i=1(Xia − μa)2
∑M

i=1(Xib − μb)2
, (6.12)

where μa and μb are the mean values of descriptors Xa and Xb, and all
summations are over all compounds of the modeling set.

iii. Remove all descriptors for which the absolute value of the correlation
coefficient with this descriptor is higher than the predefined threshold value.

iv. Among the remaining descriptors, if any, select one with the highest variance
v. Go to step (ii).

If there are no two descriptors with equal variance, this procedure gives a unique
result, irrespective of the order of descriptors.

Note 1: The threshold value depends on the dataset and the number of descrip-
tors one wants to retain. For kNN QSAR, we still need a relatively large number of
descriptors (see above), so with Dragon or Molconn-Z descriptors, the typical thresh-
old could be about 0.90–0.95. For multiple linear regression (MLR), a smaller number
of descriptors can be retained, so smaller threshold values can be used.

Predictive Quantitative Structure–Activity Relationships Modeling 187

Note 2: The correlation coefficient between two descriptors (Formula 6.12) is
not the only choice in descriptor selection. For example, if fingerprints are used,
a reasonable measure of similarity between two descriptors could be the Tanimoto
coefficient, which can be used instead of the correlation coefficient. The Tanimoto
coefficient is calculated as follows:

T = c

a+ b− c
, (6.13)

where a, b, and c are the number of compounds, for which descriptors Xa, Xb, and
both Xa and Xb have the value of 1. In fact, the Tanimoto coefficient can be defined
for descriptors taking continuous values as well:

T =
∑M

i=1 XiaXib
∑M

i=1 X2
ia +

∑M
i=1 X2

ib −
∑M

i=1 XiaXib
. (6.14)

For range-scaled descriptors, T ≥ 0, and it can be used instead of the absolute value
of the correlation coefficient calculated by Formula 6.12.

Note 3: Sometimes (e.g., if MLR is used), after performing pairwise correlation
analysis, the number of descriptors is still too high. In this case, other methods of
descriptor selection can be used. One of the popular methods consists of building
simple regressions of each descriptor with the response variable, and selection of
those descriptors that have a regression coefficient (slope of regression) significantly
(according to the Student’s t-test) different from zero. Alternatively, a certain number
of descriptors with the highest t-values are retained. Let

y = b1X + b0 (6.15)

be the regression of descriptor X against activity y. b1 and b0 are calculated according
to the following formulas:

b1 =
∑M

i=1(Xi − μx)(yi − μy)
∑M

i=1(Xi − μx)2
, b0 = μy − b1μx, (6.16)

where μx and μy are the mean values of descriptor X and activity y, respectively. Let
the null hypothesis be H0: b1 = 0 and the alternative hypothesis be H1: b1 �= 0. To
test the hypotheses, it is necessary to calculate the t-value:

t =
b1

√
∑M

i=1 X2
i −

(∑M
i=1 Xi

)2
/

M

√
∑M

i=1(yi − b1Xi − b0)2
/

M − 2

, (6.17)

which has the t-distribution with M−2 degrees of freedom. If t ≥ tα/2,M−2 or t ≤
−tα/2,M−2, where α is the significance level, reject H0. Usually, α = 0.05. For one-
sided tests, H′1: b1 > 0 and H′′1: b1 < 0, the following tests are used for t ≥ tα,M−2 or
t ≤ −tα,M−2, respectively.57

188 Handbook of Chemoinformatics Algorithms

Principal Component Analysis (PCA): Principal component regression is one of
the popular methods of QSAR analysis.58 Principal components (PCs) are orthogonal
linear combinations of descriptors. Above, we have introduced a multidimensional
descriptor space and introduced the Euclidean metric in it. In this space, we repre-
sented a compound by a point with coordinates equal to the values of descriptors for
this compound. In this space, like in the more familiar 2D and 3D spaces, we can also
introduce other objects. For example, we can introduce lines and vectors. We can also
imagine a distribution of points on the plane or in the 3D space. The points can be
distributed evenly in some square or cubic area of the plane or space, or the cloud of
points can be stretched more in some direction (even not coinciding with the direc-
tions of coordinate axes) than in others. The same is true for the high-dimensional
descriptor space. We can imagine a direction (or axis), in which the distribution of
points is stretched maximally. This direction defines the first PC. We can project all
points onto this direction. Suppose that we introduced a zero point on this axis. Then
the projection of point i onto this direction can be represented by a number Vi1, which
is the distance from the projection point to the zero point on this axis. Then we can
calculate the variance Var1 for these projection points as

Var1 =
∑M

i=1(Vi1 − μv1)
2

M − 1
, (6.18)

where μv1 is the mean of all Vi1. It turns out that for the first PC, the variance of
the points projected onto it has the largest value among all directions in the multi-
dimensional descriptor space. Then it is possible to define the second PC, as the
direction, orthogonal to the first PC, for which the variance of projections of points
is the largest among all directions, orthogonal to the first PC. Then it is possible to
define the third PC, as the direction, orthogonal to the first two PCs, for which the
variance of projections of points is the largest among all directions, orthogonal to the
first two PCs. This process can be continued. The maximum number of PCs cannot
exceed both the number of points minus one, M − 1, and the number of descriptors
N . So, if M − 1 ≥ N , the maximum number of PCs is N (or less); otherwise it is
M − 1 (or less).

PCs can be used instead of original descriptors in QSAR studies. In practice, the
number of PCs used in QSAR studies is smaller than these limitations, since only the
most important PCs are used, which, taken together, account for a large portion (90–
95%) of the total variance of representative points. So, in many cases, the number
of PCs is no more than 10–20, and in some cases just 2 or 3, while the number
of descriptors can be several dozens or even hundreds. The total variance can be
calculated as follows:

Var =
∑N

j=1
∑M

i=1(Xij − μj)
2

M − 1
=

N ′∑

j=1

Varj =
∑N ′

j=1
∑N ′

i=1(Vij − μvj)
2

M − 1
, (6.19)

where μj is the mean of projections of all points onto axis Xj, and N ′ is the number
of PCs. Usually, the descriptor and PC axes are centered, so that in Formula 6.19 all

Predictive Quantitative Structure–Activity Relationships Modeling 189

μj and μvj are 0: if we define

X ′ij = Xij − μj and V ′ij = Vij − μvj , (6.20)

then

Var =
∑N

j=1
∑M

i=1 X ′2ij
M − 1

=
N ′∑

j=1

Varj =
∑N ′

j=1
∑M

i=1 V ′2ij
M − 1

. (6.21)

In fact, PCs are linear combinations of descriptors, that is, they can be represented in
the form

Vj =
N∑

i=1

αijXi, (6.22)

where αij are coefficients of transformation from descriptors to PCs. Due to this
feature of PCs, in many cases PCR models are very difficult to interpret. Sometimes,
if a small number of coefficients αij have values significantly different from zero, it
is possible to interpret the model.58

Unsupervised Forward Selection (UFS) or complete correlation analysis: UFS
selects a set of linearly independent descriptors.59 The method can be used to select
descriptors that most fully describe the descriptor space. The only parameter that is
necessary to assign is the threshold correlation coefficient, which is the maximum
correlation coefficient between the next descriptor to be selected and all linear com-
binations of descriptors already selected. Usually, this threshold value is 0.99. The
maximum number of descriptors selected by UFS is the same as the maximum num-
ber of PCs: it cannot exceed either the number of points minus one, M − 1, or the
number of descriptors N . So, if M − 1 ≥ N , the maximum number of descriptors
selected by the procedure is N (or less); otherwise it is M − 1 (or less). Usually, the
number of descriptors selected is significantly less than these limits. The advantage of
UFS over PCA is that it selects individual descriptors rather than constructing linear
combinations of all descriptors. The disadvantage of UFS is that descriptors selected
are not orthogonal. The UFS algorithm is as follows:

i. Select two descriptors with the lowest absolute value of the correlation
coefficient.

ii. Using the Gram–Schmidt procedure, construct an orthonormal basis in the
descriptor space defined by these descriptors.

iii. Select the next descriptor.
iv. Add a new basis vector to the existing basis using the Gram–Schmidt

procedure.
v. Calculate the cosine of the angle between this descriptor and the hyper-

plane defined by all descriptors selected. This is the maximum correlation
coefficient between this descriptor and all linear combinations of descriptors
selected.

vi. If it was not the first descriptor to find the next descriptor to add, compare this
correlation coefficient with the previous one. If it is closer to zero than the

190 Handbook of Chemoinformatics Algorithms

previous one, retain it and discard the previous one with the corresponding
basis vector. Otherwise, discard this correlation coefficient and the new basis
vector.

vii. Repeat steps (iii) through (vi) for all remaining descriptors. If all correlation
coefficients are above the predefined threshold, stop. Otherwise retain the
final descriptor and the basis vector.

viii. If there are more descriptors, start selection of the next one: go to step (iii).
Otherwise stop.

Earlier in this chapter, we introduced the multidimensional descriptor space, in
which each compound was represented as a point with coordinates equal to its descrip-
tor values. We can also consider descriptors as vectors in the “compounds” space.
So descriptor values in this case are defined by the first of the Formulas 6.20, but
for brevity we will omit prime signs. For example, vector Xi = {X1i, X2i, . . . , XMi}.
Without losing the generality, we subtract the average value of each descriptor from
all corresponding descriptor values. For each vector in the “compounds” space, we
can define a unity vector. For example, for vector D in this space, unity vector
will be e = D/|D|. We can also define a dot product of two vectors. For exam-
ple, XiXj = X1iX1j + X2iX2j + · · · + XMiXMj . The correlation coefficient between
two descriptors will then be defined as cosine between them:

Rij = cos(αij) = XiXj

|Xi||Xj| . (6.23)

Suppose that in step (i) we selected descriptors X1 and X2. In step (ii) we define
the orthonormal basis according to the following formulas:

e1 = X1

|X1| , (6.24)

e2 = X2 − (R12|X2|)e1

|X2 − (R12|X2|)e1| =
X2 − (e1X2)e1

|X2 − (e1X2)e1| . (6.25)

In Formula 6.25 we replaced R12 by the right part of 6.23. In step (iii), we select the
next descriptor among the remaining descriptors. In step (iv), using the Gram–Schmidt
orthogonalization procedure, we add the new basis vector e3:

e3 = X3 − (e1X3)e1 − (e2X3)e2

|X3 − (e1X3)e1 − (e2X3)e2| . (6.26)

e3 is orthogonal to the plane defined by vectors e1 and e2, so the cosine of angle
between X3 and e3 is equal to the sine of angle α between X3 and the plane defined
by vectors e1 and e2. Thus,

sin α3 = e3X3

|X3| , (6.27)

Predictive Quantitative Structure–Activity Relationships Modeling 191

and the maximum correlation coefficient between vector X3 and all linear combina-
tions of vectors X1 and X2 will be (step (v))

R3 =
√

1− (e3X3)2

|X3|2 . (6.28)

So in step (iii), a descriptor is selected for which R3 in Formula 6.28 is closest to
zero. Now, go again to step (iii) and select the next descriptor. Calculate e3 and R3 for
this descriptor and compare R3 (new) with R3 (old). If |R3(new)| < |R3(old)|, retain
the new descriptor and discard the old one. Otherwise, retain the old one and discard
the new one. Go through all remaining descriptors and find that one with the lowest
|R3|. Retain this descriptor and the corresponding e3. Continue the procedure. In step
k, descriptor Xk will be selected such that

ek = Xk −∑k
i=1(eiXk)ei∣

∣
∣Xk −∑k

i=1(eiXk)ei

∣
∣
∣
, (6.29)

sin αk = ekXk

|Xk| , (6.30)

and

Rk =
√

1− (ekXk)2

|Xk|2 . (6.31)

The procedure ends when no more descriptors left or when no descriptors were
found for which the corresponding correlation coefficient is below the threshold.

6.6 STOCHASTIC CLUSTER ANALYSIS

In the next two sections we will discuss several algorithms based on the calculation
of the distance matrix. For a large dataset, calculation of the distance matrix may take
too much time. For example, the kNN QSAR method43,44 requires the calculation
of the distance matrix at each step of the algorithm, which makes it very inefficient
for large datasets. Besides, for large datasets, better models could be obtained using
local approaches (i.e., when models are built separately for different subsets of the
entire dataset) as opposed to global approaches (in which models are built for the
entire dataset of compounds).60 So, we consider here one method that can be used to
select a diverse subset of compounds without calculating the entire distance matrix.
This method, called Stochastic Data Analysis (SCA), was developed by Reynolds
and colleagues.61,62 The diverse subset of compounds can be selected in one run
through the dataset. The input to this algorithm is a threshold similarity value between
compounds. Compounds more similar to those already selected will not be added to
the list of compounds selected. The algorithm is as follows:

i. Select a compound randomly or select the first compound.
ii. Include it in the list of diverse subset of compounds.

192 Handbook of Chemoinformatics Algorithms

iii. Select the next compound randomly or in the order it is included in the dataset.
iv. Calculate similarity of this compound with compounds already selected.
v. If all similarity values are below the similarity threshold, include this com-

pound into the list of diverse subset of compounds. If at least one similarity
value is above this threshold, do not include this compound in the list.

vi. If no more compounds left, stop. Otherwise, go to step (iii).

If m compounds are selected out of the entire dataset of Mcompounds, the total
number of distances calculated will be less than s = mM/2. If m� M, then s�
M(M − 1)/2, that is, the number of distances calculated is much smaller than the
total number of distances.

Note 1: In steps (i) and (iii), compounds can be selected randomly or in the order
they are included in the dataset. Actually, compounds can be selected randomly if
before each run the dataset is randomized, and then each compound is selected in the
order it is included in the randomized dataset.

Note 2: Different similarity measures can be used in this algorithm. For example,
the Tanimoto coefficient can be used. If some distance measure like Euclidean
distance is used, the higher value means higher dissimilarity, not similarity, so in
step (iv) a compound is added to the list if all distances to compounds already in the
list are above the threshold.

Note 3: Since it is unknown a priori how diverse the compounds included in the
dataset are, the procedure should be performed with different threshold values. For
example, a user wants to select a subset of m compounds. Then the user can perform
the procedure with two significantly different threshold values and see how many
compounds are selected. If m1 and m2 are the sizes of subsets selected, and threshold
values were T1 < T2, then it would be logical to select the new value T3 as

T3 = T1 + m− m1

m2 − m1
(T2 − T1). (6.32)

The process can be repeated until a number of compounds selected will be sufficiently
close to m. Formula 6.32 may not work if m1 and m2 are close to each other. In practice,
in the beginning, calculations with the range of m1 and m2 values and a relatively large
range of similarity values can be performed. Then, based on the results, more precise
calculations can be performed for narrower ranges of parameters.

Note 4: After selection of the diverse subset, which is many times smaller than
the entire dataset, additional runs can be performed to select compounds similar to
the selected compounds. The threshold for these runs could be the same as that for the
selection of the diverse subset. If the number of compounds in the entire dataset is M,
and the number of compounds selected is m, and m� M, then the maximum num-
ber of distances calculated (the number of elements of the distance matrix between
selected and not selected compounds) will be m(M − m), which will be much smaller
than M(M − 1)/2. Still, if the procedure was run a small number of k times, the total
number of distances calculated is kmM/2+ m(M − m)� M(M − 1)/2. In this way,
the dataset can be divided into m initial clusters. If some of the M − m compounds
are close to more than one compound of the diverse subset, they can be assigned to a

Predictive Quantitative Structure–Activity Relationships Modeling 193

cluster that is defined by the closest point selected. Local QSAR models could be built
separately for each cluster containing at least a certain number of compounds. Addi-
tional procedures for cluster processing could be necessary. Currently, this approach
is under development in our laboratory. Alternatively, the initial clusters defined by
these points can be merged. Using SCA, it is also easy to find outliers: these are
compounds not included in any clusters (or singletons) that have no other compounds
close to them. Small clusters can also be found and discarded, if necessary. If the
similarity threshold for these runs is larger than for the selection of the diverse subset,
additional outliers can be found among the remaining M − m compounds.

Note 5: The method described in this section is also useful for the comparison of
large molecular databases.62

6.7 DETECTION AND REMOVAL OF OUTLIERS PRIOR TO
QSAR STUDIES

The success of QSAR modeling depends on the appropriate selection of a dataset
for QSAR studies. In a recent editorial of the Journal of Chemical Information and
Modeling, Maggiora63 noticed that one of the main deficiencies of many chemical
datasets is that they do not fully satisfy the main hypothesis underlying all QSAR
studies: similar compounds have similar biological activities or properties. Maggiora
defines the “cliffs” in the descriptor space where the properties change so rapidly that
in fact adding or deleting one small chemical group can lead to a dramatic change
in the compound’s property. In other words, small changes of descriptor values can
lead to large changes in molecular properties. Generally, in this case there could be
not just one outlier, but a subset of compounds whose properties are different from
those on the other “side” of the cliff. In other words, cliffs are areas where the main
QSAR hypothesis (similar compounds have similar properties) does not hold. So cliff
detection is a major QSAR problem. In the QSAR area, many people were aware of
these and other problems related to outlier detection, but have not yet paid sufficient
attention to addressing them in automated QSAR procedures. There are two types of
outliers we must be aware of: leverage (or structural) outliers and activity outliers.
In the case of activity outliers the problem of “cliffs” should be addressed as well.
Algorithms considered in this section are applied to modeling sets (see Section 6.1).

Leverage (structural) outliers: Similarity between compounds included in the
datasets must be considered in the context of the entire descriptor space. Singletons
included in the datasets are the first candidates to be outliers. In many QSAR studies,
these compounds are not excluded from datasets; if they are assigned to training sets
they could significantly worsen the model statistics and if they are assigned to test or
validation sets they will worsen the general model’s predictivity. This type of outliers
will be referred to as leverage outliers. Actually, detection of leverage outliers is rela-
tively simple. However, the standard procedure of detecting leverage outliers by using
the diagonal elements of a so-called hat matrix (or the Mahalanobis distance to the
data centroid) which are called “leverage” might not detect all outliers. For example,
a distribution of a dataset in the descriptor space can have areas of very low density
even near the geometrical center of the distribution (Figure 6.2). So outliers should
be detected in these areas. In these cases, standard procedures may not work. Thus,

194 Handbook of Chemoinformatics Algorithms

No, according to the definition:
3K/N = 3*2/716 = 8.4E–03
L = 1.2E–0.3
L < 3K/N

Is this compound out of the AD?

Yes, according to the distance to the
closest point of the training set

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.2 0.4 0.6 0.8 1

Compounds in 2D space

FIGURE 6.2 Leverage outliers. Black points represent compounds of the training set. Gray
point represents a query compound. In a standard procedure, an outlier is defined by the
condition 3N/M ≥ L, where N is the number of descriptors, M is the number of compounds,
and L is leverage of a compound (which is a corresponding diagonal element of the hat matrix).
According to this procedure, a compound represented by a red point is not an outlier. On the
other hand, according to the distance to the closest point of the training set, it is an outlier.

we have suggested the following procedure based on the sphere-exclusion algorithm
(Figure 6.3).17,64

Input to the procedure is the distance cutoff value:

i. Calculate the distance or similarity matrix.
ii. For all compounds in a dataset, find their nearest neighbors.

iii. If for some compound, there are no nearest neighbors within a certain distance
cutoff value, then this compound is an outlier with this cutoff value.

Since we do not know a priori the properties of the dataset in the given descriptor
space, the distance cutoff value can be defined as follows:

i. Calculate average 〈D〉 and standard deviation s of all distances between nearest
neighbors within the dataset.

ii. For a set of Z-cutoff values, defined by a user, calculate different distance
cutoff values as

Dcutoff = 〈D〉 + Zs. (6.33)

Typical Z-cutoff values are from 0 to 5 with step 0.1.
iii. Repeat the leverage outlier finding procedure for each Dcutoff .

Of course, the higher the Z-cutoff is, the lower is the number of outliers. The
more compounds are included in the training set, the larger is the model AD. On the
other hand, we expect that after excluding more outliers, models with better statistics
can be built. So we recommend building models with different Z-cutoff values (and
different counts of leverage outliers). Thus, we expect to build QSAR models with
better statistics and determine the natural Z-cutoff and Dcutoff values.65 The entire

Predictive Quantitative Structure–Activity Relationships Modeling 195

Leverage outliers Not outliers

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1

FIGURE 6.3 Leverage (structural) outliers in the 2D descriptor space. Build a sphere of
certain radius Dcutoff (see the main text) with the center at each compound. If there are no
other compounds within the sphere, this compound is a leverage outlier for this Dcutoff .

procedure can be fully automated. An alternative approach consists of the following
steps.

i. Find minimum distance Dmin and maximum distance Dmax between all
nearest neighbors.

ii. Define a set of Dcutoff distances evenly dividing the interval [Dmin, Dmax].
iii. For each Dcutoff , find outliers.
iv. If necessary, calculate Z-cutoff values corresponding to Dcutoff values: Z =

(Dcutoff − 〈D〉)/s.

In these calculations, we can use different distance and similarity measures (see
Section 6.5). The procedure for finding leverage outliers can be also applied to detect
small clusters of compounds that are far from all other compounds in the descriptor
space. If, for example, compound a has only one nearest neighbor, compound b, and
the only nearest neighbor of compound b is compound a, then compounds a and b
make a cluster. Optionally, this cluster can also be removed from a dataset, since if
one of these compounds is assigned to the training set, it will be an outlier in the
training set (unpublished observations).

196 Handbook of Chemoinformatics Algorithms

Activity outliers. Separating compounds on different sides of activity “cliffs”: The
algorithm below can be implemented in the case of the continuous response variable.
In this section, we describe an approach on how to detect local activity outliers. We
also address the Maggiorra’s “cliff” problem. After removing leverage outliers, we
use a sphere-exclusion algorithm along with the Dixon’s test as follows:

i. Take a representative point of a compound in the descriptor space and build a
probe sphere of certain radius R around it. Radius R is defined by the condition
that there should be at least three points within the sphere.

If there are no activity outliers, all compounds within the sphere must have close
activity values.

ii. Use the Dixon’s test to find activity outliers within the sphere as follows.66

Rank data in the ascending order. For compounds with the highest and low-
est activity values, calculate τ statistic according to Table 6.2. For a chosen
significance level α compare τ statistic with a critical value. If the τ statistic
is higher than the critical value, the null hypothesis is rejected, and the com-
pound with the highest or lowest activity is considered an outlier. If necessary,
the Dixon’s test can be repeated for the remaining compounds. The precision
of this test will decrease with each new repetition.

iii. Repeat the procedure for all compounds (step (i)). If there is a “cliff” in
the descriptor space, we might be able to separate the whole dataset into
sufficiently large groups of nonoutliers and outliers and build separate QSAR
models for them.

To consider a compound an outlier, we would recommend using an additional
criterion: the difference between the activity of an outlier candidate and the activity
of the compound with the activity closest to it should be not less than 10% or 20%
of the entire range of activities of the dataset. The algorithm allows finding isolated
activity outliers (i.e., when there is only one outlier within the probe sphere) as well
as groups of outliers. Our experiments show that in the latter case, a small number

TABLE 6.2
Calculation of τ Statistic for the Dixon’s Test66

Test for the Highest Value Test for the Lowest Value

Number of Compounds n Calculate τh = xn − xp

xn − xk
Calculate τl = xp − x1

xk − x1

k p k p
3 to 7 1 n−1 n 2
8 to 10 2 n−1 n−1 2
11 to 13 2 n−2 n−1 3
14 to 25–30 3 n−2 n−2 3

Predictive Quantitative Structure–Activity Relationships Modeling 197

of other compounds close to the group can also be detected as possible outliers. We
would recommend supplementing this procedure with an additional similarity search
for detecting additional candidate outliers.

For logarithms of activity data, the Grubb’s test can be used. This test is rec-
ommended by the Environmental Protection Agency.69 According to this test, all
activities are ranked in the ascending order, and the mean x̄ and standard deviation s
of the data are calculated. Then the τ statistics are calculated for compounds with the
highest and lowest activities as follows:

τlow = x̄ − x1

σ
and τhigh = xn − x̄

σ
. (6.34)

The τ statistics are compared with the corresponding critical τcrit value for the
sample size and selected alpha.70,71 If τlow > τcrit or τhigh > τcrit, the corresponding
compound is considered an outlier.

6.8 CLASSIFICATION AND CATEGORY QSAR: DATA
PREPARATION FOR IMBALANCED DATASETS

In many datasets, the counts of compounds that belong to different classes or cat-
egories are significantly different (there could be several times and even orders of
difference). Usually, active compounds constitute a smaller class and inactive com-
pounds constitute a larger class. Active compounds (typically binding to a certain
biological target) belong to a relatively small number of structural classes. On the
other hand, compounds included in the larger class (i.e., inactive compounds) can
be very diverse: some of them can belong to the same structural classes as active
compounds, while other compounds (often, the majority of them) have very different
structures highly dissimilar from those included in the smaller class. So they cover a
large area in the descriptor space relative to the active compounds, which are much
more similar to each other. In these cases, direct development of predictive QSAR
models using entire datasets is difficult, if not impossible. Indeed, training and test
sets reflect the composition of the entire dataset, in which almost all compounds are
inactive, so the modeling and validation will be biased toward correct prediction of
the larger class. Thus, reducing the number of compounds included in the larger class
is necessary. In the scenario just described, the following approach can be applied:

i. Divide a dataset into separate classes.
ii. Calculate the distance or similarity matrix between the compounds belonging

to different classes.
iii. Exclude compounds of the larger class dissimilar from those of the smaller

class.

If appropriate, in step (ii) the same distance or similarity measure that will be
used in the optimization procedure should be employed. For example, the current
implementation of kNN QSAR is based on Euclidean distances. So, in step (ii), the
Euclidean distance matrix should be used preferably. In step (iii), different distance

198 Handbook of Chemoinformatics Algorithms

cutoff values (see Section 6.7) should be used. Ideally, after excluding dissimilar
compounds of the larger class, the number of remaining compounds of this class
should be more or less equal to the number of compounds of the smaller class. QSAR
models are developed only for compounds of the smaller class, and those compounds
of the larger class which were not excluded by the procedure. In other words, the
modeling subset will not include compounds excluded by the procedure. Now, the
entire area occupied by the modeling set is divided into two parts: occupied by similar
compounds of the larger and smaller classes and occupied by compounds of the larger
class dissimilar from those of the smaller class. Prediction of a query compound is
performed by finding part of the area in the descriptor space to which the compound
belongs. If it belongs to the area occupied by similar compounds belonging to both
classes, the QSAR model is used to predict a class of this compound. If this compound
belongs to the part occupied by points of the larger class, this compound is predicted as
belonging to this class. If a compound belongs to neither of these parts, it is outside of
the AD. Sometimes, to equalize the number of compounds in both classes, a distance
cutoff value smaller than that used in defining the AD is used. In this case, some of the
compounds of the larger class excluded from the model building can still be predicted
by the model.17

Suppose that there is a slightly different situation: there are two classes of the same
or different size, and there are many compounds of each class dissimilar from those
of another class. In this case, the entire area occupied by representative points of the
modeling set can be divided into three subareas: occupied by points of the first class
only, occupied by points of the second class only, and occupied by points of both
classes. Then a model should be built for compounds included in the latter subarea.
Again, prediction of a query compound is performed by finding part of the area in the
descriptor space to which the compound belongs. If it belongs to the area occupied
by similar compounds belonging to both classes, the QSAR model is used to predict
a class of this compound. If this compound belongs to the part occupied by points
of the first class, this compound is predicted as belonging to the first class. If this
compound belongs to the part occupied by points of the second class, the compound
is predicted as belonging to the second class parts. If a compound belongs to neither
of these parts, it is outside of the AD.

A similar approach can be used if there are more than two classes. For each part
of the area occupied by representative points of more than one class, a QSAR model
should be built.

Now, suppose that in the part of the area occupied by representative points of two
classes, one of the classes is still significantly overrepresented. Then it is possible
to reduce the number of compounds of this class by choosing only a fraction of
these compounds for QSAR modeling. This approach is called undersampling and
is described elsewhere.72,73 The opposite approach called oversampling consists of
including the same compounds of the smaller class several times into the modeling
set and is also described elsewhere.74 The extended discussions of oversampling and
undersampling are beyond the scope of this chapter.

Predictive Quantitative Structure–Activity Relationships Modeling 199

6.9 MODEL VALIDATION: MODELING, TRAINING, TEST,
AND EXTERNAL EVALUATION SETS

The main goal of QSAR studies is the development of predictive QSAR models that
can be used in computer-aided drug discovery and design as reliable tools for the
prediction of activities or properties of new compounds, for example, those included
in chemical databases or combinatorial libraries. Prior to using the model for external
predictions, its predictive power should be established and validated. Thus, model
validation has become a standard (and in some laboratories such as ours, mandatory)
part of QSAR modeling. As we75 and other authors38 demonstrated, high prediction
accuracy for the training set in leave-one-out or leave-group-out cross-validation is the
necessary, but not sufficient condition for a QSAR model to be predictive. This state-
ment is of particular importance. Recently, the European Organization for Economic
Co-operation and Development (OECD) elaborated a set of principles for the devel-
opment and validation of QSAR models, which in particular requires “appropriate
measures of goodness-of-fit, robustness, and predictivity.”76 QSAR models should
be rigorously validated using external sets of compounds that were not used in the
model development. Nevertheless, there are still publications that do not include any
external validation of QSAR models (i.e., by prediction of activities of compounds
that were not used in model building); see, for example, Harju et al.77 and Sharma
et al.78 In the next chapter, we will consider different aspects of model validation such
as internal cross-validation and validation using test set compounds (i.e., compounds
that were not used in model building), Y -randomization, and AD.

QSAR modeling can be viewed as a machine-learning procedure, during which the
model is “trained” (i.e., model parameters are tuned to provide the highest predictivity
in terms of some statistical criterion used as a target function which is optimized during
the procedure). It is important to emphasize that the true predictive power of a QSAR
model can be established only through the model validation procedure, which consists
of prediction of activities of compounds that were not included in model building,
that is, compounds in the test set. In contrast to the test set, compounds used for model
building constitute the training set. In many QSAR studies, multiple models are built
and from them “best” models are selected, which are defined as those based on the
prediction statistics for the test set. Thus, the test set is actually used to select models.
This use of the test set for model selection practically negates the consideration of
such a routine as an adequate external model validation. In fact, it does not guarantee
at all that models selected in this way will make accurate predictions if used for
chemical database mining (i.e., predicting activities of compounds in a truly external
database). In our workflow, to simulate the use of QSAR models for database mining,
the so-called external evaluation set is employed. It should consist of compounds
with known activities that are not included in either training or test sets. An external
evaluation set can be selected randomly from the entire initial dataset. In general,
the size of the external evaluation set should be about 15–20% of the entire dataset.
The remaining part of the dataset is called a modeling set that can be divided into
training and test sets. Algorithms for dividing a modeling set into training and test
sets developed in our group previously4 are discussed in the next section.

200 Handbook of Chemoinformatics Algorithms

6.10 DIVISION OF A MODELING SET INTO TRAINING
AND TEST SETS. EXTERNAL EVALUATION SETS

In most QSAR publications, the authors do not describe a procedure for dividing a
dataset into training and test sets (see, e.g., Zvinavashe et al.78 and Padmanabhan
et al.80). In many studies, the test set is selected randomly from the modeling set.81,82

To some extent, a method of selecting training and test sets depends on the QSAR
method used and the size of the dataset. In many cases, multiple QSAR models are
built by using different parameters of the QSAR algorithm or a stochastic QSAR
procedure is repeated many times. In our opinion, multiple QSAR models should
always be built; even if there are no parameters to change, different pairs of training
and test sets can be generated, and for each pair a QSAR model can be developed and
validated. In the combinatorial QSAR approach,83,84 QSAR models are developed
for multiple combinations of descriptor collections and optimization algorithms, so
multiple models are generated. In this case, test sets are used to select models from
those that have acceptable statistics for the training sets (see Section 7.1).

After models with acceptable statistics for training and test sets are selected, they
should be validated using an external evaluation set, which is used to find a true
(external) prediction accuracy of selected QSAR models. We can say that an external
evaluation set plays the role of a small test database for virtual screening, and in
the case when multiple models are selected, the consensus prediction (see Section
7.4) of the external evaluation set is employed. In many practical cases, the external
evaluation sets are generated naturally in ongoing experimental projects that take
place while the models are being developed. If an independent external evaluation set
of compounds with known activities is not available, it should be selected randomly
from the entire dataset. The remaining modeling set should be divided into training
and test sets. These test sets should satisfy the following criteria: (i) The distribution
of activities in training and test sets should be similar. (ii) The training set should
be distributed within the entire area of the dataset distribution. (iii) All points of the
test set should be within the AD defined by the training set at least in the entire
descriptor space. (iv) Ideally, each point of the training set should be close to at least
one point of the test set. Requirement (i) is particularly important for the continuous
response variable. It can be satisfied by dividing a dataset into a small number of bins
and selecting one compound from each bin as well as the most active and the most
inactive compound into the training set.

In some QSAR studies, the division of a modeling set into training and test sets
is based solely on activity values.85 Sometimes, the subgroups of compounds with
certain scaffolds are entirely included in the training or the test set.86 In these cases,
conditions (ii) through (iv) are not satisfied. The D-optimal design approach87,88

is based on maximization of the determinant of the covariance matrix. It has been
shown that this algorithm selects representative points predominantly located close to
the borders of the area in the descriptor space in which they are distributed.89 So, the
training set selected with the D-optimal design algorithm does not satisfy conditions
(i) through (iv). Another frequently used algorithm is the Kennard–Stone algorithm90

in which compounds with the highest distances from all other compounds are selected.
This algorithm is similar to one of the versions of the sphere-exclusion algorithms

Predictive Quantitative Structure–Activity Relationships Modeling 201

described below; however, it does not take into account the density of representative
point distribution, and activities are also not taken into account. So, condition (i) is
not satisfied.

We have at least partially satisfied condition (i) by selecting the most active and
the most inactive compounds as well as several compounds with different activities
into the training set. To satisfy conditions (ii) through (iv), we recommend applying
the approach based on the sphere-exclusion algorithm3,4 described below. In the case
of the classification or category QSAR, it is important that at least five compounds of
each class would be included in the test set. To achieve this goal, the sphere-exclusion
algorithm is used separately for each class or category. At the end of the procedure,
training sets for all classes are merged to form one training set, and the corresponding
test sets are also merged to form one test set. The procedure is as follows (see also
Figure 6.4):

i. Calculate the distance matrix D for the modeling set. Different distance or
similarity measures can be used.

ii. Define probe sphere radii. Let Dmin and Dmax be the minimum and maximum
elements of D, respectively. P probe sphere radii are defined by the following

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R

Centers of the probe spheres: assigned to the training set.
Other points assigned to the training set.
Points assigned to the test set.
Points to be assigned to the training or the test set.

R

FIGURE 6.4 Division of a dataset into training and test sets. Suppose we have just two
descriptors. Then the descriptor space will be 2D.Axes on the figure represent these descriptors,
and points represent compounds. Probe spheres are built with the centers at some points as
described in the main text. Two such spheres are shown. Centers of spheres are included in
the training set, and other points within the spheres are included in the test and training sets as
described in the main text.

202 Handbook of Chemoinformatics Algorithms

formulas. Rmin = R1 = Dmin + (RN − R1)/P, Rmax = RN = Dmax/4, Ri =
R1 + (i − 1)∗(RN − R1)/P, where i = 2, . . . , P. Each probe sphere radius
corresponds to one division into the training and the test set. We recommend
P = 50.

iii. Select one or several compounds for the training set, as explained above.
iv. Construct probe spheres with centers at each of these compounds.
v. Select compounds from this sphere and include them alternately into the test

and training sets.
vi. Exclude all compounds from within these spheres from further consideration.
vii If no more compounds are left, stop. Otherwise, let m be the number of

probe spheres constructed and n be the number of remaining compounds.
Let dij (i = 1, . . . , m; j = 1, . . . , n) be the distances between the remaining
compounds and the probe sphere centers. Select a compound corresponding
to the lowest dij value, include it into the training set, and perform steps (iv)
through (vii) for it.

Note 1: There are several slightly different versions of this algorithm.3,4 Probe
sphere radii can be defined not by the minimum and maximum elements of the
distance matrix, but by using different values of a parameter called dissimilarity
level. Let V be the volume of the hyperparallelepiped in the descriptor space occu-
pied by the representative points of compounds of the modeling set. If descriptors
are range-scaled, V = 1. If descriptors are varied within different intervals, V can
become very large or very small. If there are M compounds and N descriptors in the
dataset, the average volume of the space for one point is V ′ = V/M, and if to consider
this volume as a hypercube, its edge will be l = (1/M)1/N . Probe sphere radii are
defined as Rc = cl, where c is the dissimilarity level. For each c, one probe sphere
radius and one split into training and test sets is obtained. We recommend using this
method only when there is a relatively small number of descriptors or if descriptors
are range-scaled. In our sphere-exclusion software, default values for c are 0.2, 0.3,
0.4, . . . , 5.2.

Note 2: Previously, we noted that the training and the test set should include at
least a certain minimum number of compounds. However, some training or test sets
do not satisfy these conditions. This problem can be solved in two different ways.
(i) Splits in which the training or test set contains very few compounds are removed.
So, the final number of splits could be less than P from step (ii), or less than the total
number of different c values (see Note 1). (ii) The probe sphere radii from step (ii)
are recalculated with the larger Rmin value, or a different set of c values is given with
the larger cmin value.

Note 3: In step (v), there are different schemes of how to select compounds into
test and training sets from the probe sphere. For example, it is possible to select
two compounds into the test set, then one compound into the training set, and so
on. It is also possible to have compounds within the sphere arranged by the distance
to the center or randomized. In the latter case, different splits will be obtained by
different runs of the procedure. This option is important if too few suitable splits
(with acceptable sizes of training and test sets) were generated using the initial set
of parameters (see also Note 2). Selecting points other than the center from probe

Predictive Quantitative Structure–Activity Relationships Modeling 203

spheres into the training set is important; in this way the training set accounts for the
density of the distribution of points in the descriptor space.

Note 4: In step (vii), there are different ways of selecting the next compound. It can
be selected randomly. It can be selected as the compound that has the largest distance
from one of the spheres already created or the compound that has the smallest (or
largest) average distance to the spheres already created or the compound that has
the smallest largest distance among all distances to the spheres already created and
so on.

The sphere-exclusion algorithm guarantees that at least in the entire descriptor
space, the representative points of the test set are close to representative points of the
training set (test set compounds are within the AD defined by the training set); the
training set represents the entire modeling set (i.e., there is no subset in the modeling
set which is not represented by a similar compound in the training set); given the size
of the test set, as many of the representative points of the training set as possible are
close to representative points of the test set. In other words, all the requirements (ii)
through (iv) above are also satisfied. Besides, this algorithm takes into account the
density of distribution of points in the descriptor space.

Using the SCA algorithm to divide a modeling set into training and test sets: The
SCA algorithm described above can be modified so that it could be used for the selec-
tion of training and test sets. If appropriate, the similarity or distance measure used in
the SCA algorithm should coincide with that used in the QSAR studies. For example,
kNN QSAR employs Euclidean distances between compounds, so Euclidean dis-
tances should be used in the SCA. In the case of the continuous response variable,
in step (i) of the SCA algorithm several compounds instead of just one should be
included into the training set, that is, the most active, the most inactive as well as one
compound from each bin of the activity range. Other compounds of the diverse subset
are selected as in the SCA algorithm described above. All compounds of this subset
are included into the training set. Then a procedure similar to that described in Note
4 following the description of the SCA algorithm (cf. Section 6.6) is implemented.
For each compound of the selected subset, compounds similar to it among M − m
remaining compounds are selected and distributed between the test and training sets
in a way similar to that described in step (v) and Note 3 following the description
of the sphere-exclusion algorithm in this section (see above). As soon as these com-
pounds are included in the training or the test sets, they are excluded from further
consideration, so if a compound is close to several compounds of the diverse subset, it
is accounted for only once, as it should be. In the case of the classification or category
QSAR, a dataset is divided into classes, and the SCA algorithm is applied to each
class. Then training sets for all classes are merged, and test sets are also merged.

More on external evaluation sets: Ideally, to exclude chance correlation, QSAR
study should be performed several times with different external evaluation sets. For
example, external validation could be made as an external leave-group-out cross-
validation procedure where each external evaluation set would include 10–20% of the
entire dataset. If, for example, there are 100 compounds in a dataset, after the random
division of the dataset into five equal parts, there would be five external evaluation sets
containing 20 compounds each. The first 20 compounds could be randomly selected
from the entire dataset, the second 20 compounds could be randomly selected from

204 Handbook of Chemoinformatics Algorithms

the remaining 80 compounds, and so on. In each case, the modeling sets would consist
of 80 compounds. Each modeling set is divided into multiple training and test sets
as described above, and QSAR models are built using training sets and validated
using test sets. Activities of compounds of the external evaluation sets are predicted
by consensus prediction using selected models from QSAR studies performed for
the corresponding modeling set. Finally, statistics of prediction for each external
evaluation set as well as for the entire set are calculated. High prediction accuracy
for each external evaluation set would corroborate the robustness of selected QSAR
models and their usefulness for chemical database mining in the process of drug
discovery.

6.11 CONCLUSIONS

This chapter addressed the most important aspects of data analysis prior to initiating
a QSAR modeling procedure. We have considered the general QSAR workflow as
it is implemented and practiced in our laboratory and presented a brief overview of
the main steps of QSAR modeling including data preparation, model generation, and
model validation, as well as establishing the AD of QSAR models. In Section 6.2, we
have discussed the requirements to datasets for QSAR analysis concerning their size
and activity range. We have established that in the case of the continuous response
variable, the size (i.e., the number of compounds) of a QSAR dataset should be no
less than 40, and in the case of the classification or category response variable, the
dataset should include at least 20 compounds in each class or category. We have also
pointed out that in the case of the continuous response variable, the range of activities
should be at least 5 times larger than the experimental error and that there should be
no large gaps in activity values.

In Section 6.3, we have focused on the curation of datasets. We have pointed out
that many available or user-compiled datasets used for QSAR analysis could contain
errors that should be detected and corrected; one of the duplicates of compounds
(they occur in datasets frequently) should be removed; compounds containing heavy
atoms or consisting of more than one fully covalently connected part (such as organic
salts) should be excluded or in some cases the salt component can be removed. We
have also discussed what to do when a dataset contains isomers (e.g., enantiomers)
that may have all descriptor values equal to each other. We gave examples of Unix
scripts that can be used for data curation and mentioned some commercial and freely
available software that could help with the task of data cleaning.

In Section 6.4, we have briefly considered major types of descriptors. We have
discussed a notion of multidimensional descriptor space and considered several pos-
sible definitions of distances between points representing compounds in the descriptor
space. Then, in Section 6.5, we have considered important algorithms used in the pro-
cessing of chemical descriptors: methods for descriptor normalization (range scaling
and autoscaling); exclusion of descriptors with low variance; pairwise correlation
analysis; PCA; and UFS, and in Section 6.6, we have considered stochastic cluster
analysis, which is an important algorithm for dividing a large dataset into smaller
clusters, finding small clusters of outliers, and dividing a dataset into training and test
sets.

Predictive Quantitative Structure–Activity Relationships Modeling 205

In Section 6.7, we have addressed the problem of detecting and removing structural
(leverage) and activity outliers. We have demonstrated that a widely used approach
of detecting structural outliers using leverage values is insufficient; thus, we have
introduced a method based on distances to nearest neighbors. We have also considered
a possible way to detect activity outliers prior to QSAR studies. The algorithm is also
based on distances between compounds and employs the Dixon’s and Grubb’s tests.
Then, in Section 6.8, we have considered the problem of preprocessing the imbalanced
datasets for both classification and category QSAR modeling. We have pointed out
that training, test, and external evaluation sets should be separately generated for
each class or category and then combined. We have also noticed that in many cases,
points representing different classes within the dataset may occupy partially different
areas in the descriptor space and that areas where points of only one class are present
should be excluded when one develops a QSAR model. We have also mentioned such
approaches as oversampling and undersampling but did not consider them in detail.

Then, in Section 6.9, we have addressed a problem of model validation, briefly
considered the importance of dividing a dataset into external evaluation and modeling
sets and then dividing modeling sets into training and test sets, and discussed the role
of external evaluation sets in the assessment of QSAR model performance in virtual
screening. Finally, in Section 6.10, we have proposed several conditions that should
be satisfied by training and test sets. We have described several algorithms for the
division of a modeling set into training and test sets and showed that our algorithms
based on the sphere-exclusion approach satisfy these conditions better than some
alternative techniques.

In summary, in this chapter we have introduced critical procedures that should
be used to preprocess the experimental datasets prior to building QSAR models; the
approaches used for model development and validation are the subject of the next
chapter. We will discuss different target functions and measures of the prediction
accuracy, approaches to model validation, model AD, consensus prediction, and the
use of QSAR models in virtual screening. We stress that throughout both chapters
we emphasize that the integration of multiple individual components of the unified
QSAR modeling workflow is absolutely necessary for achieving rigorously validated
and truly predictive QSAR models.

REFERENCES

1. PubChem. http://pubchem.ncbi.nlm.nih.gov/. 2008.
2. Oprea, T. and Tropsha, A., Target, chemical and bioactivity databases—integration is key.

Drug Discov. Today 2006, 3, 357–365.
3. Golbraikh, A. and Tropsha, A., Predictive QSAR modeling based on diversity sampling of

experimental datasets for the training and test set selection. Mol. Divers. 2002, 5, 231–243.
4. Golbraikh, A., Shen, M., Xiao, Z., Xiao,Y. D., Lee, K. H., and Tropsha, A., Rational selec-

tion of training and test sets for the development of validated QSAR models. J. Comput.
Aided Mol. Des. 2003, 17, 241–253.

5. Irwin, J. J. and Shoichet, B. K., ZINC—a free database of commercially available
compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177–182.

6. Tropsha, A., Application of predictive QSAR models to database mining. In T. Oprea
(Ed.), Cheminformatics in Drug Discovery. Wiley-VCH, Weinheim, Germany, 2005.

206 Handbook of Chemoinformatics Algorithms

7. Tropsha, A., Predictive QSAR (quantitative structure activity relationships) modeling.
In: J. Mason (Ed.), Comprehensive Medicinal Chemistry II. V. 4 (Computer-Aided Drug
Design). Elsevier, Oxford, UK, pp. 149–165, 2006.

8. Tropsha,A., Gramatica, P., and Gombar,V. K., The importance of being earnest:Validation
is the absolute essential for successful application and interpretation of QSPR models.
Quant. Struct. Act. Relat. Comb. Sci. 2003, 22, 69–77.

9. Tropsha, A. and Golbraikh, A., Predictive QSAR modeling workflow, model applicability
domains, and virtual screening. Curr. Pharm. Des. 2007, 13, 3494–3504.

10. Cho, S. J., Zheng, W., and Tropsha, A., Rational combinatorial library design. 2. Rational
design of targeted combinatorial peptide libraries using chemical similarity probe and the
inverse QSAR approaches. J. Chem. Inf. Comput. Sci. 1998, 38, 259–268.

11. Tropsha, A., Cho, S. J., and Zheng, W., “New Tricks for an Old Dog”: Development and
application of novel QSAR methods for rational design of combinatorial chemical libraries
and database mining. In:A. L. Parrill and M. R. Reddy (Eds), Rational Drug Design: Novel
Methodology and Practical Applications. American Chemical Society, Washington, pp.
198–211, 1999.

12. Gussio, R., Pattabiraman, N., Kellogg, G. E., and Zaharevitz, D. W., Use of 3D
QSAR methodology for data mining the National Cancer Institute repository of small
molecules: Application to HIV-1 reverse transcriptase inhibition. Methods 1998, 14,
255–263.

13. Shen, M., Beguin, C., Golbraikh, A., Stables, J. P., Kohn, H., and Tropsha, A., Application
of predictive QSAR models to database mining: Identification and experimental validation
of novel anticonvulsant compounds. J. Med. Chem. 2004, 47, 2356–2364.

14. Medina-Franco, J. L., Golbraikh, A., Oloff, S., Castillo, R., and Tropsha, A., Quanti-
tative structure–activity relationship analysis of pyridinone HIV-1 reverse transcriptase
inhibitors using the k nearest neighbor method and QSAR-based database mining.
J. Comput. Aided Mol. Des. 2005, 19, 229–242.

15. Oloff, S., Mailman, R. B., and Tropsha, A., Application of validated QSAR models of D1
dopaminergic antagonists for database mining. J. Med. Chem. 2005, 48, 7322–7332.

16. Zhang, S., Wei, L., Bastow, K., Zheng, W., Brossi, A., Lee, K. H., and Tropsha, A., Antitu-
mor agents 252. Application of validated QSAR models to database mining: Discovery of
novel tylophorine derivatives as potential anticancer agents. J. Comput. Aided Mol. Des.
2007, 21, 97–112.

17. Hsieh, J. H., Wang, X. S., Teotico, D., Golbraikh, A., and Tropsha, A., Differentiation of
AmpC beta-lactamase binders vs. decoys using classification KNN QSAR modeling and
application of the QSAR classifier to virtual screening. J. Comput. Aided Mol. Des. 2008,
22, 593–609.

18. Tang, H., Wang, X. S., Huang, X. P., Roth, B. L., Butler, K. V., Kozikowski, A. P., Jung,
M., and Tropsha, A., Novel inhibitors of human histone deacetylase (HDAC) identified
by QSAR modeling of known inhibitors, virtual screening, and experimental validation.
J. Chem. Inf. Model. 2009, 49, 461–476.

19. Tropsha, A. and Zheng, W., Identification of the descriptor pharmacophores using vari-
able selection QSAR: Applications to database mining. Curr. Pharm. Des. 2001, 7,
599–612.

20. Hoffman, B., Cho, S. J., Zheng, W., Wyrick, S., Nichols, D. E., Mailman, R. B.,
and Tropsha, A., Quantitative structure–activity relationship modeling of dopamine
D(1) antagonists using comparative molecular field analysis, genetic algorithms-
partial least-squares, and K nearest neighbor methods. J Med. Chem. 1999, 42,
3217–3226.

Predictive Quantitative Structure–Activity Relationships Modeling 207

21. Zheng, W. and Tropsha, A., Novel variable selection quantitative structure–property rela-
tionship approach based on the K-nearest-neighbor principle. J Chem. Inf. Comput. Sci.
2000, 40, 185–194.

22. Elkan, C., The foundations of cost-sensitive learning. Proceedings of the 17th International
Joint Conference on Artificial Intelligence, pp. 973–978, 2001.

23. Chen, C., Liaw, A., and Breiman, L., Using Random Forest to Learn Imbalanced Data,
p. 666. Department of Statistics, University of California, Berkeley, 2004.

24. Young, D. and Martin, T., Are the chemical structures in your QSAR correct? Qsar &
Combinatorial Science 2008, 27, 1337–1345.

25. Chemical Computig Group. Molecular Operating Environment (MOE), http://www.
chemcomp.com/. 2008.

26. ChemAxon, ChemAxon http://www.chemaxon.com, 2008.
27. OpenEye, OpenBabel, 2008.
28. Wiener, H. J., Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947,

15, 17–20.
29. Platt, J. R., Influence of neighbor bonds on additive bond properties in paraffins. J. Chem.

Phys. 1947, 15, 419–420.
30. Todeschini, R. and Consonni, V., Handbook of Molecular Descriptors. Wiley-VCH,

Weinheim, Germany, 2000.
31. Todeschini, R. and Consonni,V., Dragon, http://www.talete.mi.it/help/dragon_help/index.

html?IntroducingDRAGON, 2007.
32. EduSoft, MolconnZ http://www.edusoft-lc.com/, 2007.
33. Golbraikh, A., Bonchev, D., and Tropsha, A., Novel chirality descriptors derived from

molecular topology. J Chem. Inf. Comput. Sci. 2001, 41, 147–158.
34. Golbraikh, A., Bonchev, D., and Tropsha, A., Novel ZE-isomerism descriptors derived

from molecular topology and their application to QSAR analysis. J. Chem. Inf. Comput.
Sci. 2002, 42, 769–787.

35. Golbraikh, A. and Tropsha, A., QSAR modeling using chirality descriptors derived from
molecular topology. J Chem. Inf. Comput. Sci. 2003, 43, 144–154.

36. Carhart, R. E., Smith, D. H., and Venkataraghavan, R., Atom pairs as molecular features
in structure–activity studies: Definition and applications. J. Chem. Inf. Comput. Sci. 1985,
25, 64–73.

37. Kovatcheva, A., Golbraikh, A., Oloff, S., Feng, J., Zheng, W., and Tropsha, A., QSAR
modeling of datasets with enantioselective compounds using chirality sensitive molecular
descriptors. SAR QSAR Environ. Res. 2005, 16, 93–102.

38. Marshall, G. R. and Cramer, R. D., III Three-dimensional structure–activity relationships.
Trends Pharmacol. Sci. 1988, 9, 285–289.

39. Klebe, G., Comparative molecular similarity indices: CoMSI. In H. Kubinyi, G. Folkers,
andY. Martin (Eds), 3D QSAR in Drug Design, Vol. 3. Kluwer Academic Publisher, Great
Britain, 1998.

40. Kubinyi, H., Hamprecht, F.A., and Mietzner, T., Three-dimensional quantitative similarity-
activity relationships (3D QSiAR) from SEAL similarity matrices. J Med. Chem. 1998,
41, 2553–2564.

41. Robinson, D. D., Winn, P. J., Lyne, P. D., and Richards, W. G., Self-organizing molecular
field analysis: A tool for structure–activity studies. J Med. Chem. 1999, 42, 573–583.

42. Tripos, Sybyl http://www.tripos.com, 2008.
43. Accelrys, Catalyst http://www.accelrys.com, 2008.
44. Inte:Ligand, LigandScout http://www.inteligand.com/ligandscout/, 2008.
45. Bures, M. G. and Martin, Y. C., Computational methods in molecular diversity and

combinatorial chemistry. Curr. Opin. Chem. Biol. 1998, 2, 376–380.

208 Handbook of Chemoinformatics Algorithms

46. Cherkasov, A., An updated steroid benchmark set and its application in the discovery
of novel nanomolar ligands of sex hormone-binding globulin. J. Med. Chem. 2008, 51,
2047–2056.

47. Crivori, P., Cruciani, G., Carrupt, P. A., and Testa, B., Predicting blood–brain barrier
permeation from three-dimensional molecular structure. J. Med. Chem. 2000, 43, 2204–
2216.

48. Cruciani, G., Pastor, M., and Guba, W., VolSurf: A new tool for the pharmacokinetic
optimization of lead compounds 1. Eur. J Pharm. Sci. 2000, 11(Suppl 2), S29–S39.

49. Pastor, M., Cruciani, G., McLay, I., Pickett, S., and Clementi, S., GRid-INdependent
Descriptors (GRIND): A novel class of alignment-independent three-dimensional molec-
ular descriptors. J Med. Chem. 2000, 43, 3233–3243.

50. McGregor, M. J. and Pallai, P. V., Clustering of large databases of compounds: Using the
MDL “Keys” as structural descriptors. J. Chem. Inf. Comput. Sci. 1997, 37, 443–448.

51. Waller, C. L., A comparative QSAR study using CoMFA, HQSAR, and FRED/SKEYS
paradigms for estrogen receptor binding affinities of structurally diverse compounds.
J. Chem. Inf. Comput. Sci. 2004, 44, 758–765.

52. Huan, J., Bandyopadhyay, D., Prins, J., Snoeyink, J., Tropsha, A., and Wang, W., Distance-
based identification of structure motifs in proteins using constrained frequent subgraph
mining. Comput. Syst. Bioinform. Conf. 2006, 47, 227–238.

53. Horvath, D., Bonachera, F., Solov’ev, V., Gaudin, C., and Varnek, A., Stochastic versus
stepwise strategies for quantitative structure–activity relationship generation—how much
effort may the mining for successful QSAR models take? J. Chem. Inf. Model. 2007, 47,
927–939.

54. Hong, H., Xie, Q., Ge, W., Qian, F., Fang, H., Shi, L., Su, Z., Perkins, R., and
Tong, W., Mold(2), molecular descriptors from 2D structures for chemoinformatics and
toxicoinformatics. J. Chem. Inf. Model. 2008, 48, 1337–1344.

55. Schroeter, T. S., Schwaighofer, A., Mika, S., Ter, L. A., Suelzle, D., Ganzer, U., Heinrich,
N., and Muller, K. R., Estimating the domain of applicability for machine learning QSAR
models: A study on aqueous solubility of drug discovery molecules. J. Comput. Aided
Mol. Des. 2007, 21, 485–498.

56. Willett, P., Barnard, J. M., and Owns, G. M., Chemical similarity searching. J. Chem. Inf.
Comput. Sci. 1998, 38, 983–996.

57. Sachs, L., Applied Statistics: A Handbook of Techniques. Springer, New York, 1984.
58. Adams, M. J., Chemometrics in Analytical Spectroscopy. The Royal Society of Chemistry,

Cambridge, 2004.
59. Whitley, D. C., Ford, M. G., and Livingstone, D. J., Unsupervised forward selection: A

method for eliminating redundant variables. J. Chem. Inf. Comput. Sci. 2000, 40, 1160–
1168.

60. Zhang, S., Golbraikh, A., Oloff, S., Kohn, H., and Tropsha, A., A novel automated lazy
learning QSAR (ALL-QSAR) approach: Method development, applications, and virtual
screening of chemical databases using validated ALL-QSAR models. J. Chem. Inf. Model.
2006, 46, 1984–1995.

61. Reynolds, C. H., Tropsha, A., Pfahler, L. B., Druker, R., Chakravorty, S., Ethiraj, G., and
Zheng, W., Diversity and coverage of structural sublibraries selected using the SAGE and
SCA algorithms. J. Chem. Inf. Comput. Sci. 2001, 41, 1470–1477.

62. Reynolds, C. H., Druker, R., and Pfahler, L. B., Lead discovery using stochastic cluster
analysis (SCA): A new method for clustering. J. Chem. Inf. Comput. Sci. 1998, 38, 305–
312.

63. Maggiora, G. M., On outliers and activity cliffs—why QSAR often disappoints. J. Chem.
Inf. Model. 2006, 46, 1535.

Predictive Quantitative Structure–Activity Relationships Modeling 209

64. Zhang, L., Zhu, H., Oprea, T. I., Golbraikh, A., and Tropsha, A., QSAR modeling of the
blood–brain barrier permeability for diverse organic compounds. Pharm. Res. 2008, 25,
1902–1914.

65. Zhu, H.,Ye, L., Richard,A., Golbraikh,A., Wright, F.A., Rusyn, I., and TropshaA.A novel
two-step hierarchical quantitative structure-activity relationship modeling work flow for
predicting acute toxicity of chemicals in rodents. Environ. Health Perspect. 2009, 117,
1257–1264.

66. Dixon, W. T. Processing data for outliers. Biometrics, 1953, 9, 74–89.
67. Fallon, A. and Spada, C., Detection and accommodation of outliers in normally distributed

data sets, http://ewr.cee.vt.edu/environmental/teach/smprimer/outlier/outlier.html, 1997.
68. Environmental Protection Agency. Statistical training course for ground-water monitoring

data analysis, EPA/530-R-93-003, Office of Solid Waste, Washington, DC, 1992.
69. Taylor, J. K. Quality assurance of chemical measurements, Lewis Publishers, Chelsea,

MI, 1987.
70. Kanji, G. K., 100 Statistical Tests. Sage, 1993.
71. Yen, S.-J. and Lee, Y.-S., Under-sampling approaches for improving prediction of the

minority class in an imbalanced dataset. Lecture Notes in Control and Information Sciences
2006, 344, 731–740.

72. Kubat, M. and Matwin, S., Addressing the curse of imbalanced training sets: One sided
selection. Proceedings of the 14th International Conference on Machine Learning, San
Francisco, CA, Morgan Kaufmann, 1997.

73. Japkowicz, N., Learning from imbalanced datasets: A comparison of various strategies.
AAAIWorkshop, Learning From Imbalanced Datasets, Papers From TheAAAIWorkshop,
AAAI Press, Menlo Park, CA, 2000.

74. Golbraikh, A. and Tropsha, A., Beware of Q2! J. Mol. Graph. Model. 2002, 20, 269–276.
75. Organisation for Economic and Co-operation Development (OECD), Quantitative

Structure–Activity Relationships [(Q)SARs] Project, http://www.oecd.org/document/23/
0,3343, en_2649_34365_33957015_1_1_1_1,00.html, 2008.

76. Harju, M., Hamers, T., Kamstra, J. H., Sonneveld, E., Boon, J. P., Tysklind, M., and Ander-
sson, P. L., Quantitative structure–activity relationship modeling on in vitro endocrine
effects and metabolic stability involving 26 selected brominated flame retardants. Environ.
Toxicol. Chem. 2007, 26, 816–826.

77. Sharma, D., Narasimhan, B., Kumar, P., and Jalbout, A., Synthesis and QSAR evaluation
of 2-(substituted phenyl)-1H-benzimidazoles and [2-(substituted phenyl)-benzimidazol-
1-Yl]-pyridin-3-Yl-methanones. Eur. J. Med. Chem. 2009, 44, 1119–1127.

78. Zvinavashe, E., van den, B. H., Soffers, A. E., Vervoort, J., Freidig, A., Murk, A. J., and
Rietjens, I. M., QSAR models for predicting in vivo aquatic toxicity of chlorinated alkanes
to fish. Chem. Res. Toxicol. 2008, 21, 739–745.

79. Padmanabhan, J., Parthasarathi, R., Subramanian, V., and Chattaraj, P. K., Group philic-
ity and electrophilicity as possible descriptors for modeling ecotoxicity applied to
chlorophenols. Chem. Res. Toxicol. 2006, 19, 356–364.

80. Song, M. and Clark, M., Development and evaluation of an in silico model for HERG
binding. J. Chem. Inf. Model. 2006, 46, 392–400.

81. Iyer, M., Zheng, T., Hopfinger, A. J., and Tseng, Y. J., QSAR analyses of skin penetration
enhancers. J. Chem. Inf. Model. 2007, 47, 1130–1149.

82. Kovatcheva,A., Golbraikh,A., Oloff, S., Xiao,Y. D., Zheng,W.,Wolschann, P., Buchbauer,
G., and Tropsha, A., Combinatorial QSAR of ambergris fragrance compounds. J. Chem.
Inf. Comput. Sci. 2004, 44, 582–595.

83. de Cerqueira, L. P., Golbraikh, A., Oloff, S., Xiao, Y., and Tropsha, A., Combinatorial
QSAR modeling of P-glycoprotein substrates. J. Chem. Inf. Model. 2006, 46, 1245–1254.

210 Handbook of Chemoinformatics Algorithms

84. Pandey, G. and Saxena, A. K., 3D QSAR studies on protein tyrosine phosphatase
1B inhibitors: Comparison of the quality and predictivity among 3D QSAR models
obtained from different conformer-based alignments. J. Chem. Inf. Model. 2006, 46,
2579–2590.

85. Roberts, D. W., Aptula, A. O., and Patlewicz, G., Mechanistic applicability domains
for non-animal based prediction of toxicological endpoints. QSAR analysis of the
Schiff base applicability domain for skin sensitization. Chem. Res. Toxicol. 2006, 19,
1228–1233.

86. Ferré, J. and Rius, F. X., Selection of the best calibration sample subset for multivariate
regression. Anal. Chem. 1996, 68, 1565–1571.

87. Ferré, J. and Rius, F. X., Constructing D-optimal designs from a list of candidate samples.
Trends Anal. Chem. 1997, 16, 70–73.

88. Maesschalck, R. De., Estienne, F., Verdú-Andrés, J., Candolfi, A., Centner, V., Despagne,
F., Jouan-Rimbaud, D., Walczak, B., Massart, D. L., Jong, S., de Noord, O. E. D.,
Puel, C., and Vandeginste, B. M. G., PCR tutorial. 10. Selection and representativity of the
calibration sample subset, http://www.vub.ac.be/fabi/multi/pcr/chaps/chap10.html#fin,
2008.

89. Kennard, R. W. and Stone, L. A., Computer-aided design of experiments. Technometrics
1969, 11, 137–148.

7 Predictive Quantitative
Structure–Activity
Relationships Modeling
Development and Validation
of QSAR Models

Alexander Tropsha and Alexander Golbraikh

CONTENTS

7.1 Introduction: Combinatorial QSAR Modeling. .212
7.2 Target Functions Used in Optimization Procedures and

Validation Criteria of QSAR Models .214
7.3 Validation of QSAR Models: Y-Randomization .220
7.4 Validation of QSAR Models: Training and Test Set Resampling. Stability

of QSAR Models .220
7.5 Applicability Domains of QSAR Models .222
7.6 Consensus Prediction .225
7.7 Concluding Remarks .227
References .229

In this chapter, we continue to discuss the general framework of quantitative
structure–activity relationships (QSAR) modeling. In the previous chapter, we have
addressed the issue of data preparation for QSAR studies. The main topic of this chap-
ter is the general principles of QSAR model development and validation irrespective
of specifics of any particular QSAR modeling routine. We introduce the concept of
combinatorial QSAR modeling, which consists of building QSAR models for all
combinations of descriptor types and optimization procedures. We classify QSAR
approaches based on the response variable, which can be continuous (i.e., take mul-
tiple values spread over a certain interval), represent a category or rank of activity or
property (e.g., very active, active, moderately active, and inactive), or a class of com-
pounds (e.g., ligands of different receptors). For each type of the response variable, we
introduce target functions that should be optimized by a QSAR procedure and criteria
of model accuracy. Particular attention is paid to imbalanced datasets, in which the

211

212 Handbook of Chemoinformatics Algorithms

counts of compounds belonging to different categories or classes are significantly dif-
ferent. We consider different validation procedures including cross-validation (which
is included in model training), prediction for test sets (i.e., compounds that were not
used in model training), andY-randomization test (i.e., building and evaluating models
with randomized activities of the response variable). We introduce a concept of model
stability that can be established by resampling of training and test sets. We discuss the
advantages and disadvantages of different definitions of applicability domains (AD)
of QSAR models. Finally, consensus prediction of external evaluation sets by all pre-
dictive models is considered as a test of the applicability of QSAR models to chemical
database mining and virtual screening. We emphasize that the integration of all the
steps of QSAR modeling considered in both the previous chapter and this chapter in a
unified workflow is critical for the development of validated and externally predictive
QSAR models.

7.1 INTRODUCTION: COMBINATORIAL QSAR MODELING

Different descriptor collections can be combined with different optimization methods.
For example, models built with kNN QSAR and Dragon descriptors, or Chirality
descriptors, or MolconnZ descriptors, and so on are developed. For example, for
seven descriptor collections and four methods, the total number of different QSAR
studies would be 28 [1].

In the majority of QSAR studies, models are typically generated with a single mod-
eling technique. To achieve QSAR models of the highest quality, that is, with high
internal and, most importantly, external accuracies, we shall rely on the combinatorial
QSAR approach (combi-QSAR), which explores all possible combinations of vari-
ous collections of descriptors and optimization methods along with external model
validation (Figure 7.1). The chief hypothesis of the combi-QSAR approach that we
introduced and employed in recent studies [2–4] is that if an implicit structure–activity
relationship exists for a given dataset, it can be formally manifested via a variety of
QSAR models obtained with different descriptors and optimization protocols. Our
experience indicates that there is no universal QSAR method that is guaranteed to
give the best results for any dataset. Thus we believe that multiple alternative QSAR
models should be developed (as opposed to a single model using some favorite QSAR
method) for each dataset to identify the most successful technique in the context of the
given dataset. Since QSAR modeling is relatively fast, these alternative models could
be explored simultaneously when making predictions for external datasets. The con-
sensus predictions of biological activity for novel test set compounds on the basis of
several QSAR models, especially when they converge, are more reliable and provide
better justification for the experimental exploration of hits.

Our current approach to combi-QSAR modeling is summarized on the work-
flow diagram (Figure 7.1). To achieve QSAR models of the highest internal and,
most importantly, external accuracy, the combi-QSAR approach explores all possi-
ble binary combinations of various descriptor types and optimization methods along
with external model validation. Each combination of descriptor sets and optimization
techniques is likely to capture certain unique aspects of the structure–activity rela-
tionship. Since our ultimate goal is to use the resulting models as reliable activity

Predictive Quantitative Structure–Activity Relationships Modeling 213

SAR dataset

Compound
representation

QSAR modeling

kN
N

SV
M

D
ec

isi
on

 tr
ee

Bi
na

ry
 Q

SA
R et
c.

Selection of best
models

Model validation:
Y-randomization

External validation

Models for combinations of
descriptor collections with

optimization methods

Dragon descriptors

Chirality descriptors

Molconnz
descriptors

CoMFA descriptors
Volsurf descriptors

CoMMA descriptors

MOE descriptors

etc.

FIGURE 7.1 Combinatorial QSAR modeling workflow.

(property) predictors, application of different combinations of modeling techniques
and descriptor sets will increase our chances for success. We typically employ dif-
ferent types of descriptors and modeling techniques, which are described in detail in
our recent publications on the implementation of the combi-QSAR strategy [1,3,4].

What if there are outliers in the model? Outliers in the model should be consid-
ered as a serious problem. In general, there should be an important reason to delete
these outliers. For example, a compound could have some biological property that
makes it completely different from other compounds. Even the elimination of leverage
and activity outliers prior to QSAR modeling may not remove all outliers. Indeed, the

214 Handbook of Chemoinformatics Algorithms

order of distances in the entire descriptor space and in the descriptor subspace deter-
mined by the model built with a variable selection QSAR approach (model space)
can be different, and compounds that are far from each other in the entire descriptor
space could become close in the model space. The opposite is also true: compounds
that are close to each other in the entire descriptor space could become relatively
distant in the model space. So there could be outliers in the model space as well.
Moreover, if multiple models are built, some of them may have outliers and some
not, some may have one set of outliers and some may have another set, and so on.
Ideally, outlier detection procedures should be run again for each model. However,
in this case, only compounds that are outliers in all models (probably those that act
via unique biological mechanisms) can be removed from the entire modeling set. We
should also distinguish outliers in the training and test sets. If there are outliers in the
training set, they should be removed from this training set and the model should be
rebuilt. If there are outliers in the test set, they should be removed from these test sets,
and new statistics characterizing the prediction of this test set should be obtained. All
such outliers are activity outliers because leverage outliers are automatically removed
from the test sets since they are outside of the model AD (see Section 7.5). In fact,
if multiple divisions into training and test sets were made, the same possible outlier
can be included in some training sets and in some test sets. If such a compound is
removed from all training sets, it should also be removed from the test sets. In fact, it
is very important to check whether there are no model outliers.

7.2 TARGET FUNCTIONS USED IN OPTIMIZATION PROCEDURES
AND VALIDATION CRITERIA OF QSAR MODELS

Based on the nature of the response variable, QSAR approaches can be grouped into
classification, category, or continuous QSAR. Classes are different from categories
in a sense that the former cannot be ordered in any scientifically meaningful way,
while the latter can be rank ordered. For example, classes of compounds interacting
with different receptors cannot be rank ordered. On the other hand, categories can be
defined as very active, active, moderately active, and inactive so a rank order can be
introduced. If there are just two classes (or categories), the same statistical criteria
are used to validate the models. Otherwise, different criteria should be used. Thus, in
general, for each group of models, different validation criteria are used. Of course,
prior to predicting the properties of compounds that form the test set, the AD for the
corresponding training set should be defined (see Section 7.5).

Target functions and validation criteria for continuous QSAR: We suggested that
the following validation criteria should be used for continuous QSAR models [5]: (i)
leave-one-out (LOO) cross-validation q2 (which is also used as the target function, that
is, it is optimized by the QSAR modeling procedure); (ii) square of the correlation
coefficient R (R2) between the predicted and observed activities; (iii) coefficients
of determination for regression lines through the origin (predicted versus observed
activities R2

0 and observed versus predicted activities R
′2
0); (iv) slopes k and k′ of

regression lines (predicted versus observed activities and observed versus predicted
activities) through the origin. These criteria are calculated according to the following

Predictive Quantitative Structure–Activity Relationships Modeling 215

formulas:

q2 = 1−
∑N

i=1(yi − ỹi)
2

∑N
i=1(yi − ȳ)2

, (7.1)

R =
∑

(yi − ȳ)(ỹi − ¯̃y)
√
∑

(yi − ȳ)2
∑

(ỹi − ¯̃y)2
, (7.2)

R
′2
0 = 1−

∑
(ỹi − ỹr0

i)2

∑
(ỹi − ¯̃y)2

(predicted versus observed), (7.3a)

R2
0 = 1−

∑
(yi − yr0

i)2
∑

(yi − ȳ)2
(observed versus predicted), (7.3b)

k =
∑

yiỹi
∑

y2
i

(predicted versus observed), (7.4a)

k′ =
∑

yiỹi
∑

ỹ2
i

(observed versus predicted), (7.4b)

where yi and ỹi are the observed and predicted activities, R2
0 and R

′2
0 are the coefficients

of determination for regressions through the origin for predicted versus observed and
observed versus predicted activities, respectively, k and k′ are the corresponding
slopes, and ỹr0 = ky and yr0 = k′ỹ are the regressions through the origin for predicted
versus observed and observed versus predicted activities. In our studies, we consider
models acceptable, if they have (i) q2 > 0.5; (ii) R2 > 0.6; (iii)

(
R2 − R2

0

)
/R2 < 0.1

and 0.85 ≤ k ≤ 1.15 or
(
R2 − R′20

)
/R2 < 0.1 and 0.85 ≤ k′ ≤ 1.15; and (iv) |R2

0 −
R′20 | < 0.3. Sometimes, stricter criteria are used.

In some papers, other criteria are used. For example, sometimes standard error of
prediction (SEP) is used instead of (or together with) R2. SEP itself makes no sense
until we compare it with the standard deviation for activities of the test set, which
brings us back to the correlation coefficients. If used, mean absolute error (MAE)
should be compared with the mean absolute deviation from the mean. Sometimes,
especially in the Hansch QSAR, F-ratio is calculated. F-ratio is the variance explained
by the model divided by the unexplained variance. It is believed that the higher the
F-ratio, the better the model. We believe that when the F-ratio is used, it must always
be accompanied by the corresponding p-value.

Frequently, especially for linear models such as developed with multiple linear
regression (MLR) or partial least squares (PLS), the adjusted R2 is used:

R2
adj = 1− (

1− R2) n− 1

n− c− 1
, (7.5)

where n is the number of compounds in the dataset and c is the number of variables
(descriptors) included in the regression equation. It should be noted that R2

adj ≤ R2.

The higher the number of explanatory variables c, the lower the R2
adj value. R2

adj is

216 Handbook of Chemoinformatics Algorithms

particularly important for linear QSAR models developed with variable selection. R2
adj

is not a good criterion for variable selection kNN QSAR models, since contrary to
regression methods, in the kNN algorithm descriptors are just selected or not selected,
that is, their weights are either zero or one. As a result, a much larger set of descriptors
is selected by the kNN procedure than, for example, by stepwise regression.

Target functions and validation criteria for classification QSAR models: We con-
sider a classification QSAR model predictive, if the prediction accuracy characterized
by the correct classification rate (CCR) for each class is sufficiently large:

CCRclass = Ncorr
class

N total
class

, (7.6)

and the p-value for this CCRclass value is not higher than a predefined threshold (in the
case of two classes, the CCRclass threshold should not be lower than 0.65–0.70, and for
any number of classes, the p-value should not be higher than 0.05 for each class). For
example, in Ref. [6], binary classification QSAR model has been built for a training
set of 105 chemicals activating the estrogen gene. The test set included 12 compounds,
eight of them active and four inactive. The prediction accuracy for the inactive class
was 75% (three compounds out of four were predicted correctly). The p-value of pre-
dicting at least three out of four compounds correctly was 0.31 [there is a probability
of (0.5)4 of predicting all four compounds correctly and 4× (0.5)4 for predicting
exactly three compounds correctly; by adding both values, we get p-value = 0.31].
In fact, even if all four compounds were predicted correctly, the p-value would be
6.25× 10−2, which is higher than the threshold value of 0.05. If a class contains only
four compounds, prediction accuracy cannot be statistically significant, that is, the
null hypothesis H0 that the model predicts not better than random cannot be rejected
with the significance level of 0.95. Thus, at least five compounds of each class should
be included in the test set. In this case, if all five compounds are predicted correctly,
the p-value would be 3.13× 10−2, which is statistically significant. However, if one
compound out of five would be predicted incorrectly, the p-value would be 0.19,
which makes the prediction statistically insignificant. In Ref. [7], we built a binary
QSAR model for a dataset of AmpC β-lactamase binders versus nonbinders. The test
set included 10 compounds, five for each class. All 10 compounds were predicted cor-
rectly. It was sufficient to consider the developed model as acceptable and statistically
significant.

CCRclass values corresponding to a given p-value depend on the number of classes
and the number of compounds in the class. For example, we have found recently that
in the case of two classes the following assertions are true. If a class includes less
than 23 compounds (of course, it should be higher than five compounds; see above),
the maximum CCRclass corresponding to the p-value of 0.05 is always higher than
0.70. At the same time, if it includes 28 or more compounds, the CCRclass of 0.70
always means that the p-value is lower than 0.05. Thus, we have established that in
the case of two classes, if the number of compounds in the class is lower than 23,
then the p-value should be used to accept the model, but if the number of compounds
in the class is at least 28, then the threshold 0.70 for CCRclass values should be used.
Formally, for each number of compounds between 24 and 27, one of the two criteria

Predictive Quantitative Structure–Activity Relationships Modeling 217

should be used based on the maximum error. It is due to the discrete nature of the
error distribution. In practice, for these counts of compounds, the minimum CCRclass
is very close to 0.70, so any criterion can be used. Similar rules can be established for
any number of classes and categories and any p-value.

In some papers (see, e.g., Ref. [8]) as well as some QSAR software, the authors
use the target function and the measure of classification accuracy defined as

CCR = N(corr)

N(total)
, (7.7)

where N(correct) and N(total) are the number of compounds in the dataset classified
correctly and the total number of compounds in the dataset, respectively. This accuracy
measure is correct for balanced datasets only, that is, for datasets including equal
numbers of compounds of each class. Otherwise, this measure of accuracy is incorrect
and can lead to a wrong conclusion about the predictive power of a model. Suppose
that we have a dataset with 80 compounds of class 1 and 20 compounds of class 2,
and we have “developed” a model that assigns all compounds to class 1. Then the
classification accuracy according to the above criterion would be 80%, and if it were
the only criterion of accuracy used, a wrong conclusion would be made that the model
is highly predictive.

For the classification QSAR with K classes, we shall use the following criterion:

CCR = 1

K

K∑

i=1

CCRi = 1

K

K∑

i=1

Ncorr
k

N total
k

, (7.8)

along with the CCR for each class (see Formula 7.6). Criterion 7.8 is correct for both
balanced and imbalanced (biased) datasets (i.e., when the number of compounds of
each class is different). For imbalanced datasets, formula N(corr)/N(total), where
N(corr) and N(total) are the number of compounds predicted correctly and the total
number of compounds in the dataset, is incorrect. Another alternative to Formula 7.7
could include weights for each class.

CCR =
∑K

i=1 wiNcorr
i

∑K
i=1 wiN total

i

,
K∑

i=1

wi = 1, (7.9)

with smaller weights for larger classes. For two classes and weights inversely
proportional to the sizes of classes, this formula is identical to Formula 7.8.

We should also be aware that the p-value for prediction for each class does not
exceed the predefined threshold (usually 0.05; see above). This is particularly impor-
tant for small test sets. The same CCR definitions are used as target functions in model
optimization by the cross-validation procedure. However, for model optimization,
some penalty terms can be subtracted from the target function. These additional terms
penalize the target function, if CCRs for different classes are different (Formula 7.10)

CCR = 1

K

⎡

⎣
K∑

i=1

CCRi −
K−1∑

i=1

K∑

j=i+1

αij
∣
∣CCRi − CCRj

∣
∣

⎤

⎦ . (7.10)

218 Handbook of Chemoinformatics Algorithms

Thus, we want to make prediction accuracies for different classes close to each
other. Other penalizing schemes are possible; for example, penalty terms are added
only if the differences in the CCR values exceed some threshold. If the classes of
the dataset under study have significantly different sizes (a dataset is imbalanced or
biased), additional modification of Formula 7.9 could be necessary. Usually, in this
case, CCR values for larger classes are higher than for smaller ones, so weights wi

for classes are introduced (Formula 7.11).

CCR =
K∑

i=1

wiCCRi − 1

K

K−1∑

i=1

K∑

j=i+1

αij
∣
∣CCRi − CCRj

∣
∣,

K∑

i=1

wi = 1. (7.11)

Higher weights are given for smaller classes. The sum of the weights is equal
to one.

Target functions and validation criteria for category QSAR models: Category
QSAR with more than two classes should use target functions and validation criteria
other than those used in classification QSAR. These target functions and validation
criteria should consider errors as differences between predicted and observed cate-
gories, or increasing functions of these differences. The total error of prediction over
all compounds is the sum of all errors of predictions for individual compounds. Let
nij be the number of compounds of category i assigned by a model to category j (i,
j = 1, . . . , K). Then the total error is calculated as follows (Formula 7.12):

E =
K∑

i=1

K∑

j=1

nijf (|i − j|), (7.12)

where f (|i − j|) is the increasing function of errors and f (0) = 0. In the case of biased
datasets, it would be important to normalize the errors for compounds of category i
on the number of compounds in this category:

E =
K∑

i=1

1

Ni

K∑

j=1

nij f (|i − j|), (7.13)

where Ni is the number of compounds of category i. Finally, it is possible to use
different weights in the calculation of the error: larger weights should be given for
errors for categories including a smaller number of compounds to make the total error
E more sensitive to errors for smaller categories (Formula 7.14).

E = K
K∑

i=1

wi

Ni

K∑

j=1

nij f (|i − j|),
K∑

i=1

wi = 1. (7.14)

The prediction accuracy can be calculated as

A = 1− E

Emax
. (7.15a)

Predictive Quantitative Structure–Activity Relationships Modeling 219

According to this definition, 0 ≤ A ≤ 1. If weights are not used, the maximum
possible error Emax can be calculated as follows (if errors are not normalized):

Emax =
[K/2]∑

i=1

Nif (|K − i|)+
K∑

i=[K/2+1]
Nif (|i − 1|), (7.16a)

or as follows (if errors are normalized):

Emax =
[K/2]∑

i=1

f (|K − i|)+
K∑

i=[K/2+1]
f (|i − 1|). (7.16b)

If weights are used, the maximum possible error Emax can be calculated as
follows (if errors are not normalized):

Emax = K
K∑

i=1

max
j

[
wiNi f (|i − j|)] j = 1, 2, . . . , K , (7.16c)

or as follows (if errors are normalized):

Emax = K
K∑

i=1

max
j

[
wif (|i − j|)] , j = 1, 2, , . . . K . (7.16d)

An alternative definition of the accuracy is as follows:

A′ = 1− E

Eexp
, (7.15b)

where Eexp is the expected error. If weights are not used, the expected error Eexp can
be calculated as follows (if errors are not normalized):

Eexp = 1

K

K∑

i=1

Ni

K∑

j=1

f (|i − j|), (7.17a)

or as follows (if errors are normalized):

Eexp = 1

K

K∑

i=1

K∑

j=1

f (|i − j|). (7.17b)

If weights are used, the maximum possible error Emax can be calculated as follows
(if errors are not normalized):

Eexp =
K∑

i=1

wiNi

K∑

j=1

f (|i − j|), (7.17c)

220 Handbook of Chemoinformatics Algorithms

or as follows (if errors are normalized):

Eexp =
K∑

i=1

wi

K∑

j=1

f (|i − j|). (7.17d)

Prediction statistics for category QSAR models should also be combined with the
corresponding p-values.

Threshold moving: Finally, when predicting a compound by a biased dataset,
threshold moving can be used. For example, if a compound’s predicted class or cat-
egory is 1.6, by rounding it is assigned to class 2. However, if a model is built for
a biased dataset with class or category 1 being much smaller than class or category
2, it can be assigned to class or category 1; if the threshold between categories is
moved from 1.5 to, say, 1.7, then all compounds with predicted class or category
lower than 1.7 are assigned to class or category 1, otherwise they are assigned to class
or category 2.

7.3 VALIDATION OF QSAR MODELS: Y-RANDOMIZATION

To establish model robustness, the Y-randomization (randomization of the response
variable) test should be used. This test consists of repeating all the calculations with
scrambled activities of the training set. Ideally, calculations should be repeated at
least five or 10 times. The goal of this procedure is to establish whether models
built with real activities of the training set have good statistics not due to overfitting
or chance correlation. If all models built with randomized activities of the training
set have statistically significantly lower predictive power for the training or the test
set, then the models built with real activities of the training set are reliable. Using
different parameters of a model development procedure, multiple QSAR models are
built that have acceptable statistics. Suppose that the number of these models is m. The
Y-randomization test can also give n models with acceptable statistics. For acceptance
of models developed with real activities of the training set, the condition n� m should
be satisfied. In Refs. [2,3], we have introduced the measure of robustness R = 1−
n/m. If R > 0.9, the models are considered robust and their high predictive accuracy
cannot be explained by chance correlation or overfitting. The Y-randomization test
is particularly important for small datasets. Unfortunately, in many publications on
QSAR studies, the Y-randomization test is not performed but all QSAR practitioners
must be strongly encouraged to use this simple procedure.

7.4 VALIDATION OF QSAR MODELS: TRAINING AND TEST SET
RESAMPLING. STABILITY OF QSAR MODELS

If a model has a high predictive accuracy for one division into the training and test
sets, it must be tested using other divisions. It is particularly important for small
datasets, when division into three sets (training, test, and independent validation)
is impossible, since the smaller is the number of objects for building models, the
worse are the chances of building a truly predictive model. We are proposing here a

Predictive Quantitative Structure–Activity Relationships Modeling 221

new method, namely training and test set resampling, a nonparametric technique that
could be used to estimate statistics and confidence intervals for a population of objects
when only a representative subset of the population is available (a dataset used to build
models). “Resampling” means multiple random divisions of a dataset into training
and test sets of the same size as were used for building models. The training sets are
used for the calculation of internal prediction accuracy, such as cross-validation q2

for continuous problems, or CCR and/or A for classification or category QSAR (see
Formulas 7.8 through 7.18). The corresponding test sets are used for the calculation
of the correlation coefficient between predicted and observed response variables,
and coefficients of determination and slopes of regression lines of predicted versus
observed and observed versus predicted response variables through the origin for
continuous problems. In case of classification or category response variable, test sets
are used for estimation of the total classification accuracy as well as classification
accuracy for each class or category. Prior to prediction of compounds from the test
set, the AD for the corresponding training set should be defined (see Section 7.5).
Prediction should be made only for those compounds of the test sets that are within
the ADs of the training sets. We argue that predictive models should have similar
statistics to those obtained with the initial training and test sets. Large differences
between model statistics will evidence that the model is unstable. Average statistics
values obtained using the training and test set resampling approach are expected to
be better estimates of the population statistics than those obtained with the initial
training and test sets. It will be also possible to estimate confidence intervals of the
model statistics, which are important characteristics of the model stability.

A similar method of validation, which is used in QSAR and other data analysis
areas, is bootstrapping [9–11]. Like the resampling of training and test sets, boot-
strapping is a nonparametric approach to obtain estimates of statistics and confidence
intervals for a population of objects when only a representative subset of the popu-
lation is available. Bootstrapping consists of choosing N objects with returns from a
dataset of N objects. Due to returns of the selected objects to the initial dataset, some
objects will be included in the bootstrapped datasets several times, while others will
not be included at all. It has been shown that if the procedure is repeated many times
(about 1000 times or more), average bootstrapped statistics are good estimates of
population statistics. Bootstrapping can be used separately for training and test sets.
Selecting the same compounds several times into the training sets is unacceptable for
some QSAR methodologies like kNN. On the other hand, training and test set resam-
pling is free from this disadvantage, because in different realizations it will include
the same objects in the training or in the test set. Thus, after many realizations, both
training and test sets will be represented by all objects included in the dataset. To
obtain population statistics estimates, we shall use the same approaches as used for
bootstrapping. They are described elsewhere [10–12].

The authors of a recent publication [13] assert that cross-validation and boot-
strapping are not reliable in estimating the true predictive power of a classifier, if a
dataset includes less than about 1000 objects, and suggest the Bayesian confidence
intervals should be used instead. Cross-validation and bootstrapping are particularly
unreliable for small datasets (including less than about 100 compounds). But 95%
Bayesian confidence intervals for these datasets are very wide [13]. The authors show

222 Handbook of Chemoinformatics Algorithms

that the Repeated Independent Design and Test [14] introduced earlier does not solve
the problem of cross-validation and bootstrapping. The procedure consists of split-
ting a dataset into two parts (which are called design bag and test bag) and repeated
selection of objects from these bags into training and test sets with replacement.

7.5 APPLICABILITY DOMAINS OF QSAR MODELS

Formally, a QSAR model can predict the target property for any compound for which
chemical descriptors can be calculated. However, if a compound is highly dissimilar
from all compounds of the modeling set, reliable prediction of its activity is unlikely
to be realized. A concept of AD was developed and used to avoid such an unjustified
extrapolation in activity prediction. Classification of existing definitions of AD was
given in recent publications by Jaworska and colleagues [15,16]. Here, we will follow
this classification [paragraphs (i) through (v)].

i. Descriptor-range based: AD is defined as a hyperparallelepiped in the
descriptor space in which representative points are distributed [6,17,18].
Dimensionality of the hyperparallelepiped is equal to the number of descrip-
tors, and the size of each dimension is defined by the minimum and maximum
values of the corresponding descriptor or it stretches beyond these limits to
some extent up to predefined thresholds. The drawbacks of this definition
are as follows. Generally, the representative points are distributed not in the
entire hyperparallelepiped, but only in a small part of it. For example, in
many cases, principal component analysis (PCA) shows that a small number
of PCs explains 90–95% of the variance of descriptor values; this means that
the representative points are predominantly distributed along a hyperplane
of much lower dimensionality than that of the entire descriptor space. It is
as if, in the three-dimensional hypercube, the points would be concentrated
around one of its diagonals, while most of the space in the cube would be
empty. Another possibility is that there are structural outliers in the dataset,
which were not removed prior to QSAR studies. Even one such outlier can
enormously increase the size of the hypercube, and the area around the outlier
will contain no other points. Consequently, for many compounds within the
hypercube, prediction will be unreliable.

ii. Geometric methods: convex hull AD: AD is defined as a convex hull of
points in the multidimensional descriptor space [19]. The drawbacks of the
convex hull AD are the same as those for the descriptor-range-based AD:
the representative points might be distributed not in the entire convex hull,
but only in a small part of it. Outliers not removed prior to QSAR mod-
eling may significantly increase the volume of the convex hull. Besides,
in many cases, especially for small datasets, the number of descriptors
exceeds the number of compounds. In this case, the convex hull is not
unique.

iii. Leverage based: Leverage for a compound is defined as the corresponding
diagonal element of the hat matrix [20]. A compound is defined as outside
of the AD if its leverage L is higher than 3 K /N , where K is the number

Predictive Quantitative Structure–Activity Relationships Modeling 223

of descriptors and N is the number of compounds. The drawbacks of the
leverage-based AD are as follows. (a) for each external compound, it is neces-
sary to recalculate leverage; (b) if there are cavities in the representative point
distribution area, a compound under prediction in this area will be considered
to be within the AD (see Figure 6.2).

iv. Probability density distribution based: It is believed that more reliable pre-
dictions are in the areas of higher density of representative points than in
sparse density. Drawbacks: (a) there is a problem of estimating the local den-
sity distribution function of points. For example, if a query point is close
to the border of the area occupied by representative points, the probability
density function can be underestimated; (b) in fact, prediction will be more
precise, if nearest neighbors of the query compound have similar activities.
It is not necessarily true in high density distribution areas. Moreover, in these
areas, activity outliers and even activity cliffs are more likely to be encoun-
tered; hence, if they are not taken care of prior to or during QSAR studies,
they might pose serious problems. Bayesian classifiers belong to this type of
algorithms. Let the density distribution functions at point x for each class i
be p(x | i), and the a priori probability for class i be P(i). Then the point x
is assigned to the class for which p(x|i) P(i) is the highest (the approach is
adapted from a lecture on Pattern Recognition [21] and generalized). Another
approach, the R-NN curve approach, was developed by Guha et al. [22]. The
number of neighbors of each compound in the descriptor space is considered
as a function of distance to this compound. Low values of this function for
short distances to this compound mean that the distribution density of com-
pounds in the neighborhood of this compound is low; hence, this compound
can be considered as an outlier.

v. Ensemble based: This method was applied to water solubility data [23]. It
consists of the following steps. (a) For a query compound, find nearest neigh-
bors with known activities in the database. If the similarity to all compounds
in the database is below a predefined threshold, a compound is considered to
be outside of the AD. Atom-centered fragments were used as descriptors and
a modified Dice coefficient was used as a similarity measure. (b) Predict these
compounds by multiple models. In the paper, seven models for assessing the
compounds’ solubility built by other authors were considered. (c) Select a
model that predicted these compounds most accurately. (d) Predict the query
compound by this model. Drawbacks and criticism: A large amount of data
should be available. The authors used a database of more than 1800 com-
pounds with known water solubility. For most of the targets, so much data
are not available. If models were built by the same authors, a question would
arise why the database compounds were not used in model building, which
would increase the predictive accuracy of their models.

vi. Distance-based AD: In our studies, theAD is defined as the Euclidean distance
threshold Dcutoff between a compound under prediction and its closest nearest
neighbor of the training set. It is calculated as follows:

Dcutoff = 〈D〉 + Zs. (7.18)

224 Handbook of Chemoinformatics Algorithms

Here, 〈D〉 is the average Euclidean distance between each compound and
its k nearest neighbors in the training set (where k is the parameter optimized in
the course of QSAR modeling, and the distances are calculated using descrip-
tors selected by the optimized model only), s is the standard deviation of these
Euclidean distances, and Z is an arbitrary parameter to control the significance
level [2,3,7,24]. We set the default value of this parameter Z at 0.5, which
formally places the allowed distance threshold at the mean plus one-half of
the standard deviation. We also define theAD in the entire descriptor space. In
this case, the same Formula 7.18 is used, k = 1, Z = 0.5, and Euclidean dis-
tances are calculated using all descriptors. Thus, if the distance of the external
compound from its nearest neighbor in the training set within either the entire
descriptor space or the selected descriptor space exceeds these thresholds, the
prediction is not made. We have also investigated changes of predictive power
by changing the values of Z-cutoff. We have found that in general, predictive
power decreases while Z-cutoff value increases (unpublished observations).
Instead of Euclidean distances, other distances and similarity measures can
be used.

vii. Consensus prediction value of the activity of a query compound by an ensem-
ble of QSAR models is calculated as the average over all prediction values. For
classification and category QSAR, the average prediction value is rounded to
the closest integer (which is a class or category number); in the case of imbal-
anced datasets, rounding can be performed using the moving threshold (see
Section 7.2). Predicted average classes or categories (before rounding) that
are closer to the nearest integers are considered more reliable. For example,
before rounding, one compound has the prediction value of 1.2, but the other
has 1.4; hence, both compounds are predicted to belong to class 1. Prediction
for the first compound is considered more reliable. Using these prediction
values, AD can be defined by a threshold of the absolute difference between
the predicted and the rounded predicted activity (unpublished observations).

Another recent publication considering problems of AD definitions and
prediction accuracy [25] highlights the following methods [(viii) through
(xi)].

viii. Target property should influence the AD, for instance, Ref. [26] recommends
using different weights wn (n = 1, . . . , N) for descriptors in the calculation
of distances between compounds, that is, the distance between compounds i
and j is calculated as

Dij =
√
√
√
√

N∑

n=1

wn(Xin − Xjn)2. (7.19)

The weights in Formula 7.19 could be proportional to the coefficients with
which the corresponding descriptors are included in the QSAR model. AD
is based on the distances defined by Formula 7.19 rather than the Euclidean
distances. Descriptors should be autoscaled.

Predictive Quantitative Structure–Activity Relationships Modeling 225

ix. The distance of a query compound i to the model Di,model is defined as
the smallest Mahalanobis distance between this compound and all com-
pounds of the training set [27]. It has been shown that for an ensemble of
the Bayesian regularized neural networks, these distances correlate with the
errors of predictions for query compounds.

x. It has been shown that for an ensemble of neural network models, the smaller
standard deviation of predicted activities of query compounds corresponds to
smaller errors of prediction [28].

xi. Distance to a model and standard deviation were combined in one measure
called combined distance, which is the product of the standard deviation and
the distance to the model [29]. Different definitions of distances to a model
are considered in Ref. [30].

7.6 CONSENSUS PREDICTION

The consensus prediction approach is based on the central limit theorem [31], which
can be formulated as follows. If X1, X2, . . . , Xn is a sequence of random variables
from the same distribution with mean μ and variance σ2, then for sufficiently large
n, the average 〈X〉 has approximately normal distribution with mean μ and variance
σ2/n. Thus, ideally, if we use top predictive models with identical predictive power,
consensus prediction of a compound’s activity is expected to give better (or at least
more stable) prediction (or at least more stable) accuracy than each of the individual
models. Now let us include more and more predictive models in our consensus pre-
diction. As soon as all these models have comparable predictive power, the accuracy
of prediction in terms of the variance will continue to increase. But when we start to
include models with lower predictive power, the error of consensus prediction starts
to increase and the prediction accuracy and precision typically go down. The consen-
sus prediction of biological activity for an external compound on the basis of several
QSAR models is more reliable and provides better justification for the experimental
exploration of hits.

External evaluation set compounds are predicted by models that have passed all
validation criteria described in Sections 7.3 and 7.4. Each model has its own AD, and
each compound is predicted by all models for which it is within the corresponding
AD. Actually, each external compound should be within the AD of the training set
within the entire descriptor space as well; see Section 7.5 (vi). A useful parameter for
consensus prediction is the minimum number (or percentage) of models for which a
compound is within the AD; it is defined by the user. If the compound is found within
theAD of a relatively small number of models, it is considered to be outside of theAD.
Prediction value is the average of predictions by all these models. If the compound
is predicted by more than one model, the standard deviation of all predictions by
these models is also calculated. For classification and category QSAR, the average
prediction value is rounded to the closest integer (which is a class or category number);
in the case of imbalanced datasets, rounding can be done using the moving threshold
(see Section 7.2).

Predicted average classes or categories (before rounding), which are closer to the
nearest integers, are considered more reliable [24]. Using these prediction values, the

226 Handbook of Chemoinformatics Algorithms

AD can be defined by a threshold of the absolute difference between the predicted
and the rounded predicted activity. For classification and category QSAR, the same
prediction accuracy criteria are used as for the training and test sets (see Formulas
7.8 through 7.17). The situation is more complex for the continuous QSAR. In this
case, if the range of activities of the external evaluation set is comparable to that
for the modeling set, criteria 7.1 through 7.4 are used. If calculations with multiple
external evaluation sets are carried out, and all external evaluation sets are obtained in
the manner of external leave-group-out cross-validation, criteria 7.1 through 7.4 can
be used as well. Sometimes, however, the external evaluation set may have a much
smaller range of activities than the modeling set; hence, it may not be possible to
obtain a sufficiently large R2 value (and other acceptable statistical characteristics)
for it. In this case, we recommend using the MAE or the SEP in the following way
(Figure 7.2).

i. Build a plot of MAE or SEP against R2 for the prediction of the test sets by
models used in consensus prediction.

ii. On the plot, build straight lines for the threshold R2 value (see Figure 7.2) and
the corresponding MAE or SEP value for the external evaluation set. These
lines are parallel to coordinate axes.

iii. If there are many models (e.g., more than 10% of the total number of models
used in consensus prediction) in the upper right quadrant defined by the lines
built on step (ii), then the prediction of the external evaluation set is acceptable;
otherwise it is unacceptable. Actually, the greater the number of models in
this area, the better the prediction of the external evaluation set.

y = –0.34x + 0.47
R2 = 0.59

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

RM
SD

RMSD = f (R2) 2866 models

R2

FIGURE 7.2 Prediction power for the external evaluation set.

Predictive Quantitative Structure–Activity Relationships Modeling 227

We have used consensus prediction in many studies [2,3,24,32–35] and have shown
that, in most cases, it gives better prediction and coverage than most of the individ-
ual predictive models. Thus, we recommend using consensus prediction for virtual
screening of chemical databases and combinatorial libraries for finding new lead
compounds for drug discovery.

About 2866 models were built for a dataset of anticonvulsants. The dataset con-
sisted of 91 compounds; 15 compounds were randomly selected as the external
evaluation set, and a modeling set of 76 compounds was divided into training and test
sets using the sphere-exclusion algorithm. Consensus prediction of the external eval-
uation set by acceptable models (for all these models, LOO cross-validation q2 ≥ 0.5
and R2 ≥ 0.6 for the test set; other statistics [see Formulas 7.2 through 7.4] were also
acceptable) gave SEP = 0.286. Is this prediction acceptable? Each dot on the plot cor-
responds to prediction of a test set by one model built using the corresponding training
set. Points corresponding to acceptable models are on the right side of the vertical thick
line. The horizontal red line corresponds to SEP = 0.286 for the external evaluation
set. There are only seven points in the top right quadrant, while there are 110 models
with R2 ≥ 0.6. Hence, consensus prediction of the external evaluation set is poor.

7.7 CONCLUDING REMARKS

In both Chapters 6 and 7, we have discussed the need for developing reliable QSAR
models that could be employed for accurate activity (or property) prediction of
external molecules. We have considered some of the most important components
of the QSAR modeling workflow. Particular attention was paid to the issue of model
validation. It is important to recognize that all the steps of the workflow described
in these two chapters should be carried out; skipping any of these steps may lead to
models with poor prediction for external compounds, that is, those that were not used
in model building or selection, which will essentially undermine the entire exercise.
For example, the presence of structural and/or activity outliers in the modeling set may
lead not only to poor models, but (what is even worse) to models with overestimated
q2 and R2 (Figure 7.3). Thus, we cannot agree with the following statement [36]:
“Outliers are compounds which are predicted incorrectly—with large residual.” Too
small training sets may also result in the impossibility to build predictive models, or
(what is even worse) in models with delusively good statistics. Too small test sets can
lead to statistically insignificant results, because the null hypothesis that the model
predicts no better than random selection cannot be rejected with a reasonable sig-
nificance level. Incorrect target functions for biased datasets can give overestimated
(or sometimes underestimated) prediction accuracy. Without rigorous validation of
QSAR models including making predictions for compounds in the external evalua-
tion set, there is no empirical evidence that the models are externally predictive at all
and that they can be used in virtual screening. Without establishing the model AD,
activities of compounds with no similarity to those for which the model was built will
be predicted, which makes no sense at all.

The entire process of combi-QSAR modeling can be almost entirely automated.
In this scenario, ideally, a user can be given an opportunity to select descriptor col-
lections and model development procedures. Then descriptor matrices (Table 6.1) are

228 Handbook of Chemoinformatics Algorithms

0

1

2

3

4

5

6

7

8

0 2 4 6 8
Observed activities

Pr
ed

ic
te

d
ac

tiv
iti

es

y = 0.91x + 0.62
R2 = 0.80

FIGURE 7.3 A typical example when one outlier increases the prediction accuracy. Without
the outlier, R2 = 0.13.

obtained (see Section 6.4) and each descriptor matrix is processed by some algorithms
(depending on the user’s decision and types of descriptors and optimization proce-
dures selected) described in Section 6.5 and possibly other procedures not mentioned
here. If necessary, a diverse subset of compounds is selected from the entire modeling
set (see Section 6.6). Possible structural and activity outliers are removed from the
modeling set (see Section 6.7). Additional procedures may be required for classifica-
tion and category QSAR modeling, especially, if a dataset is imbalanced or large (see
Section 6.8). Each dataset should be divided into modeling and external evaluation
sets (see Sections 6.9 and 6.10). For each descriptor set, splitting a modeling set into
multiple training and test sets is carried out using a sphere-exclusion algorithm (see
Section 6.10). Then the models are developed (see Section 7.1) for all combinations
of pairs (descriptor collection, method); appropriate target function and criteria of
predictivity are applied (see Section 7.2) based on the nature of the response variable
(continuous, classification, or category). The models with acceptable statistics for
both training and test sets (for the test set prediction, the respective ADs are used—
see Section 7.5), if any, should be rigorously validated by procedures described in
Section 6.9 and Sections 7.3 and 7.4, and some other procedures and their ADs should
be established (see Section 7.5). Finally, the results of QSAR modeling will be ready
to be used for chemical database or virtual library mining.

With more than 40 years of history behind it, QSAR modeling is a well-established
research field that (as perhaps with any scientific area) had its ups and downs. There
were several recent publications that criticized the current state of the field. Thus, a
recent editorial published by the leading chemoinformatics Journal of Chemical Infor-
mation and Modeling (JCIM; also reproduced by the Journal of Medicinal Chemistry)
introduced severe limitations on the level and quality of QSAR papers to be considered
acceptable [37]. Another recent editorial opinion by G. Maggiora [38] outlined lim-
itations and some reasons for failures of QSAR modeling that relate to the so-called
activity cliffs. In another recent important paper, T. Stouch addressed the question as

Predictive Quantitative Structure–Activity Relationships Modeling 229

to why in silico ADME/Tox models fail [39]. These examples naturally lead to an
important and perhaps critical question as to whether there is any room for further
advancement of the field via innovative methodologies and important applications.

Our previous and ongoing research in the area of QSAR suggests that the answer
is a resounding “yes.” We believe strongly that many examples of low impact QSAR
research are due to frequent exploration of datasets of limited size with little attention
paid to model external validation. This limitation leads to models having questionable
“mechanistic” explanatory power but perhaps little if any forecasting ability outside
of the training sets used for model development. We believe that the latter ability
along with the capabilities of QSAR models to explore chemically diverse datasets
with complex biological properties should become the chief focus of QSAR studies.
This focus requires the re-evaluation of the success criteria for the modeling as well
as the development of novel chemical data mining algorithms and model validation
approaches. In fact, we think that the most interesting era in QSAR modeling is just
beginning with the rapid growth of the experimental SAR data space [40].

In the last 15 years, innovative technologies that enable rapid synthesis and high-
throughput screening of large libraries of compounds have been adopted in almost
all major pharmaceutical and biotech companies. As a result, there has been a huge
increase in the number of compounds available on a routine basis to quickly screen for
novel drug candidates against new targets or pathways. In contrast, such technologies
have rarely become available to the academic research community, thus limiting its
ability to conduct large-scale chemical genetics or chemical genomics research. The
NIH Molecular Libraries Roadmap Initiative has changed this situation by forming
the national Molecular Library Screening Centers Network (MLSCN) [41] with the
results of screening assays made publicly available via PubChem [42]. These efforts
have already led to the unprecedented growth of available databases of biologically
tested compounds (cf. our recent review where we list about 20 available databases
of compounds with known bioactivity [40]). This growth creates new challenges for
QSAR modeling such as developing novel approaches for the analysis and visual-
ization of large databases of screening data, novel biologically relevant chemical
diversity or similarity measures, and novel tools for virtual screening of compound
libraries to ensure high expected hit rates. Due to the significant increase in recent
years of the number of publicly available datasets of biologically active compounds
and the critical need to improve the hit rate of experimental compound screening,
there is a strong need in developing widely accessible and reliable computational
QSAR modeling techniques and specific end-point predictors.

REFERENCES

1. Kovatcheva,A., Golbraikh,A., Oloff, S., Xiao,Y. D., Zheng,W.,Wolschann, P., Buchbauer,
G., and Tropsha, A., Combinatorial QSAR of ambergris fragrance compounds. J. Chem.
Inf. Comput. Sci. 2004, 44, 582–595.

2. Kovatcheva, A., Golbraikh, A., Oloff, S., Feng, J., Zheng, W., and Tropsha, A., QSAR
modeling of datasets with enantioselective compounds using chirality sensitive molecular
descriptors. SAR QSAR Environ. Res. 2005, 16, 93–102.

230 Handbook of Chemoinformatics Algorithms

3. de Cerqueira, L. P., Golbraikh, A., Oloff, S., Xiao, Y., and Tropsha, A., combinatorial
QSAR modeling of P-glycoprotein substrates. J. Chem. Inf. Model. 2006, 46, 1245–1254.

4. Wang, X. S., Tang, H., Golbraikh, A., and Tropsha, A., Combinatorial QSAR modeling of
specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and
5HT1F. J. Chem. Inf. Model. 2008, 48, 997–1013.

5. Golbraikh, A. and Tropsha, A., Beware of Q2! J. Mol. Graph. Model. 2002, 20, 269–276.
6. Saliner, A. G., Netzeva, T. I., and Worth, A.P., Prediction of estrogenicity: Validation of a

classification model. SAR QSAR. Environ. Res. 2006, 17, 195–223.
7. Hsieh, J. H., Wang, X. S., Teotico, D., Golbraikh, A., and Tropsha, A., Differentiation of

AmpC beta-lactamase binders vs. decoys using classification kNN QSAR modeling and
application of the QSAR classifier to virtual screening. J. Comput. Aided Mol. Des. 2008,
22, 593–609.

8. Li, Y., Pan, D., Liu, J., Kern, P. S., Gerberick, G. F., Hopfinger, A. J., and Tseng, Y. J.,
Categorical QSAR models for skin sensitization based upon local lymph node assay clas-
sification measures part 2: 4D-Fingerprint three-state and two-2-state logistic regression
models. Toxicol. Sci. 2007, 99, 532–544.

9. Efron, B., Bootstrap methods: Another look at the jackknife. The Annals of Statistics 1979,
7, 1–26.

10. Mooney, C. Z. and Duval, R. D., Bootstrapping. A Non-Parametric Approach to Statistical
Inference. Sage, Newbury Park, CA, 1993.

11. DiCiccio, T. J. and Efron, B., Bootstrap confidence intervals. Statist. Sci. 1996, 11, 189–
228.

12. Efron, B., Better bootstrap confidence intervals. J. Amer. Statist. Assoc. 1987, 82, 171–220.
13. Isaksson, A., Wallman, M., Göransson, H., and Gustafsson, M. G., Cross-validation and

bootstrapping are unreliable in small sample classification. Pattern Recogn. Lett. 2008,
29, 1960–1965.

14. Wickenberg-Bolin, U., Goransson, H., Fryknas, M., Gustafsson, M. G., and Isaksson, A.,
Improved variance estimation of classification performance via reduction of bias caused
by small sample size. BMC Bioinform. 2006, 7, 127.

15. Jaworska, J., Nikolova-Jeliazkova, N., and Aldenberg, T., QSAR applicabilty domain
estimation by projection of the training set descriptor space: A review. Altern. Lab Anim.
2005, 33, 445–459.

16. Jaworska, J. and Nikolova-Jeliazkova, N., Review of methods to assess a QSAR applicabil-
ity domain, http://ambit.acad.bg/nina/publications/2004/AppDomain_qsar04.ppt, 2008.

17. Nikolova-Jeliazkova, N. and Jaworska, J., An approach to determining applicability
domains for QSAR group contribution models: An analysis of SRC KOWWIN. Altern.
Lab Anim. 2005, 33, 461–470.

18. Netzeva, T. I., Gallegos, S. A., and Worth, A. P., Comparison of the applicability domain
of a quantitative structure–activity relationship for estrogenicity with a large chemical
inventory. Environ. Toxicol. Chem. 2006, 25, 1223–1230.

19. Fechner, N., Hinselmann, G., Schmiedl, C., and Zell, A., Estimating the applicability
domain of Kernel-based QSPR models using classical descriptor vectors. pdf. Chem.
Central J. 2008, 2(Suppl. 1), 2.

20. Afantitis, A., Melagraki, G., Sarimveis, H., Koutentis, P. A., Markopoulos, J., and Igglessi-
Markopoulou, O., A Novel QSAR model for predicting induction of apoptosis by 4-Aryl-
4H-chromenes. Bioorg. Med. Chem. 2006, 14, 6686–6694.

21. Govindraju, V., Pattern Recognition Review (1)—Definitions, Bayesian Classifiers,
http:/ /www.cedar.buffalo.edu/∼govind/CSE666/fall2007/Pattern_recognition_lecture_
slides_1.pdf, 2008.

Predictive Quantitative Structure–Activity Relationships Modeling 231

22. Guha, R., Dutta, D., Jurs, P. C., and Chen, T., R–NN curves:An intuitive approach to outlier
detection using a distance based method. J. Chem. Inf. Model. 2006, 46, 1713–1722.

23. Kuhne, R., Ebert, R. U., and Schuurmann, G., Model selection based on structural
similarity-method description and application to water solubility prediction. J. Chem.
Inf. Model. 2006, 46, 636–641.

24. Zhang, L., Zhu, H., Oprea, T. I., Golbraikh, A., and Tropsha, A., QSAR modeling of the
blood–brain barrier permeability for diverse organic compounds. Pharm. Res. 2008, 25,
1902–1914.

25. Tetko, I. V., Bruneau, P., Mewes, H. W., Rohrer, D. C., and Poda, G. I., Can we estimate
the accuracy of ADME-tox predictions? Drug Discov. Today 2006, 11, 700–707.

26. Netzeva, T. I., Worth, A., Aldenberg, T., Benigni, R., Cronin, M. T., Gramatica, P.,
Jaworska, J. S., et al., Current status of methods for defining the applicability domain
of (Quantitative) structure–activity relationships. The Report and Recommendations of
ECVAM Workshop 52. Altern. Lab Anim. 2005, 33, 155–173.

27. Manallack, D. T., Tehan, B. G., Gancia, E., Hudson, B. D., Ford, M. G., Livingstone, D. J.,
Whitley, D. C., and Pitt, W. R., A consensus neural network-based technique for dis-
criminating soluble and poorly soluble compounds. J. Chem. Inf. Comput. Sci. 2003, 43,
674–679.

28. Bruneau, P. and McElroy, N. R., LogD7.4 Modeling using Bayesian regularized neural
networks. Assessment and correction of the errors of prediction. J. Chem. Inf. Model.
2006, 46, 1379–1387.

29. Bruneau, P., Search for predictive generic model of aqueous solubility using Bayesian
neural nets. J. Chem. Inf. Comput. Sci. 2001, 41, 1605–1616.

30. Tetko, I.V., Sushko, I., Pandey,A. K., Zhu, H., Tropsha,A., Papa, E., Oberg, T., Todeschini,
R., Fourches, D., and Varnek, A., Critical assessment of QSAR models of environmental
toxicity against tetrahymena pyriformis: Focusing on applicability domain and overfitting
by variable selection 1. J. Chem. Inf. Model. 2008, 48, 1733–1746.

31. Sachs, L., Applied Statistics: A Handbook of Techniques. Springer, New York, 1984.
32. Shen, M., Beguin, C., Golbraikh, A., Stables, J. P., Kohn, H., and Tropsha, A., Application

of predictive QSAR models to database mining: Identification and experimental validation
of novel anticonvulsant compounds. J. Med. Chem. 2004, 47, 2356–2364.

33. Votano, J. R., Parham, M., Hall, L. H., Kier, L. B., Oloff, S., Tropsha, A., Xie, Q., and
Tong, W., Three new consensus QSAR models for the prediction of Ames genotoxicity.
Mutagenesis 2004, 19, 365–377.

34. Zhang, S., Wei, L., Bastow, K., Zheng, W., Brossi, A., Lee, K. H., and Tropsha, A., Antitu-
mor agents 252. Application of validated QSAR models to database mining: Discovery of
novel tylophorine derivatives as potential anticancer agents. J. Comput. Aided Mol. Des.
2007, 21, 97–112.

35. Zhu, H., Tropsha, A., Fourches, D., Varnek, A., Papa, E., Gramatica, P., Oberg, T., Dao, P.,
Cherkasov, A., and Tetko, I. V., Combinatorial QSAR modeling of chemical toxicants
tested against tetrahymena pyriformis. J. Chem. Inf. Model. 2008, 48, 766–784.

36. Vasanthanathan, P., Lakshmi, M., Arockia, B. M., Gupta, A. K., and Kaskhedikar, S. G.,
QSAR study of 3-phenyl-5-acyloxymethyl-2H,5H-furan-2-ones as antifungal agents: The
dominant role of electronic parameter. Chem. Pharm. Bull. (Tokyo) 2006, 54, 583–587.

37. Jorgensen, W. L. and Tirado-Rives, J., QSAR/QSPR and proprietary data. J. Chem. Inf.
Model. 2006, 46, 937.

38. Maggiora, G. M., On outliers and activity cliffs—why QSAR often disappoints. J. Chem.
Inf. Model. 2006, 46, 1535.

232 Handbook of Chemoinformatics Algorithms

39. Stouch, T. R., Kenyon, J. R., Johnson, S. R., Chen, X. Q., Doweyko, A., and Li, Y., In
silico ADME/Tox: Why models fail. J. Comput. Aided Mol. Des. 2003, 17, 83–92.

40. Oprea, T. and Tropsha, A., Target, chemical and bioactivity databases—integration is key.
Drug Discov. Today 2006, 3, 357–365.

41. Austin, C. P., Brady, L. S., Insel, T. R., and Collins, F. S., NIH molecular libraries initiative.
Science 2004, 306, 1138–1139.

42. PubChem, http://pubchem.ncbi.nlm.nih.gov/, 2009.

8 Structure Enumeration
and Sampling

Markus Meringer

CONTENTS

8.1 Isomer Counting. .234
8.1.1 Counting Permutational Isomers .235
8.1.2 Counting Isomers of Acyclic Structures and Other Compound

Classes .239
8.2 Isomer Enumeration: Deterministic Structure Generation241

8.2.1 Early Cyclic and Acyclic Structure Generators. .241
8.2.1.1 Acyclic Structure Generators .241
8.2.1.2 Cyclic Structure Generator .242

8.2.2 Orderly Generation .246
8.2.2.1 Enumerating Labeled Graphs .246
8.2.2.2 Enumerating Unlabeled Graphs. .247
8.2.2.3 Introducing Constraints .248
8.2.2.4 Variations and Refinements .249
8.2.2.5 From Simple Graphs to Molecular Graphs250

8.2.3 Beyond Orderly Generation .252
8.3 Isomer Sampling: Stochastic Structure Generation. .253

8.3.1 Uniformly Distributed Random Sampling .253
8.3.2 Monte Carlo and Simulated Annealing .254
8.3.3 Genetic Algorithms .257

8.4 Beyond Isomer Enumeration .259
8.4.1 Virtual Chemical Space .259
8.4.2 Combinatorial Libraries .261

8.4.2.1 Counting Combinatorial Libraries .261
8.4.2.2 Generating Combinatorial Libraries .263

Acknowledgment .264
References .264

Chemical structure enumeration and sampling have been studied by mathematicians,
computer scientists, and chemists for quite a long time. Given a molecular formula
plus, optionally, a list of structural constraints, the typical questions are: (1) How

233

234 Handbook of Chemoinformatics Algorithms

many isomers exist? (2) Which are they? And, especially if (2) cannot be answered
completely: (3) How to get a sample?

In this chapter, we describe algorithms for solving these problems. The techniques
are based on the representation of chemical compounds as molecular graphs (see
Chapter 2), that is, they are mainly applied to constitutional isomers. The major
problem is that in silico molecular graphs have to be represented as labeled structures,
while in chemical compounds, the atoms are not labeled. The mathematical concept
for approaching this problem is to consider orbits of labeled molecular graphs under
the operation of the symmetric group. We have to solve the so-called isomorphism
problem.

According to our introductory questions, we distinguish several disciplines: count-
ing, enumerating, and sampling isomers. While counting only delivers the number of
isomers, the remaining disciplines refer to constructive methods. Enumeration typi-
cally encompasses exhaustive and non-redundant methods, while sampling typically
lacks these characteristics. However, sampling methods are sometimes better suited
to solve real-world problems.

There is a wide range of applications where counting, enumeration, and sampling
techniques are helpful or even essential. Some of these applications are closely linked
to other chapters of this book. Counting techniques deliver pure chemical information;
they can help to estimate or even determine sizes of chemical databases or compound
libraries obtained from combinatorial chemistry.

Constructive methods are essential to structure elucidation systems (see Chap-
ter 9). They are used to generate structures that fulfill structural restrictions obtained
from spectroscopy in a pregeneration step, while in a postgeneration step, virtual
spectra of the generated structures can be computed and compared with the measured
data in order to determine which of them achieves the best fit.

Other applications use structure enumeration algorithms in order to produce
candidate structures for virtual screening (see Chapter 5). Structure–activity and
structure–property relationships, as introduced in Chapter 6, can be used in com-
bination with structure enumeration or sampling as rudimentary approaches toward
inverse QSAR (see Chapter 10) and de novo design algorithms often have their roots
in conventional structure generation.

The nonquantitative aspects of reaction network generation (see Chapter 11) are
also based on methods similar to those used for isomer enumeration.

8.1 ISOMER COUNTING

Counting means that only the number of structures is calculated and the structures
themselves are not produced by the algorithm. The most powerful counting technique
available to chemists is Pólya’s theorem [1], see also Refs. [2,3]. There are, of course,
various predecessors, for example a paper by Lunn and Senior [4], who were the first
to note that group theory plays a role, and a paper by Redfield [5] that contained even
better results. However, Pólya’s paper gave rise to the development of a whole theory
that is nowadays called Pólya’s Theory of Counting. Typical applications are counting
of permutational isomers and acyclic compounds.

Structure Enumeration and Sampling 235

8.1.1 COUNTING PERMUTATIONAL ISOMERS

Pólya’s approach to the enumeration of molecules with a given molecular formula is to
subdivide the molecule in question into a skeleton and a set of univalent substituents. It
leads to the following challenge: Evaluate the set of essentially different distributions
of the substituents over the sites of the skeleton with respect to the given symmetry
group of the skeleton.

In mathematical terms, the symmetry group G acts on the set of mappings mn from
the n sites of the skeleton onto the m available substituents. The set of orbits under this
group operation, mn//G, is in a one-to-one relation with the different constitutions.

If the skeleton shows no symmetries, that is, if G is of order 1, then it is clear that
there are mn different substitutions. Note that mn has two different meanings, one for
denoting the set of mappings and another for its cardinality. If the order of G is larger
than 1, the situation is more interesting.

The resulting isomers are called permutational or substitutional isomers. For
example the 22 permutational isomers of dioxin (tetrachlorodibenzo-p-dioxin) are
the essentially different distributions of four hydrogen and four chlorine atoms over
the eight sites of the skeleton depicted on the left:

O

O

8 1

2

3

45

6

7 6

5

1

2

3

4

Counting these isomers is described in detail in Kerber’s comprehensive book [6]
on finite group actions. In this section we will discuss the example of permutational
isomers of dichlorobenzene, which are based on the benzene skeleton sketched on
the right.

First we will try to describe Pólya’s approach in general. The symmetry group G
of the skeleton with respect to the n binding sites is required as input. The procedure
works with the topological symmetry group as well as with the geometrical symmetry
group. Of course, the results might differ. For ways to compute a molecule’s symmetry
group, see Chapter 2. A suitable data structure for representing groups is described
by Sims [7].

The reader should be familiar with the cycle notation of permutations, which is
briefly described in Example 8.1.1. At this point, it is useful to know that every
permutation has a unique decomposition into disjoint cycles. For more details of
permutations and cycles, the reader is referred to Ref. [6].

The cycle index of a permutation g ∈ G is a monomial in variables zk . It is defined as

Z(g) =
n∏

k=1

zk
ck(g), (8.1)

236 Handbook of Chemoinformatics Algorithms

where ck(g) is the number of cycles of g having length k. The cycle index Z(G) of G
is the averaged sum of cycle indices of group elements:

Z(G) = 1

|G|
∑

g∈G

n∏

k=1

zk
ck(g). (8.2)

In order to obtain a counting series from the cycle index, a so-called generating
function has to be inserted. Having m > 1 different chemical elements to choose from,
a suitable generating function is y1 + · · · + ym. Inserting the generation function into
the cycle index means that every occurrence of zk in Z(G) is replaced by y1

k + · · · +
ym

k . If m = 2 the easier generation function 1+ x can be used instead, and during
insertion, zk is replaced by 1+ xk .

The coefficient of the monomial
∏m

i=1 y ji
i of the counting series equals the number

of isomers with ji substituents of type i. In the case where we have just two different
elements to substitute, say H and Cl, the coefficient of xj equals the number of isomers
with j hydrogen atoms. To summarize, we can formulate the following.

ALGORITHM 8.1.1 COUNTING PERMUTATIONAL ISOMERS BY
PÓLYA’S THEOREM

1. Calculate the cycle index of the skeleton with respect to the binding sites
2. Insert the generation function into the cycle index
3. Evaluate the coefficients of the counting series

This formal description of how to solve the counting problem in general needs to be
illustrated by an example. Counting C6H4Cl2 constitutions with a benzene skeleton
will be explained step by step.

Example 8.1.1: Counting Isomers of Dichlorobenzene

Below we see the benzene skeleton together with its symmetry axes (1), . . . , (6).

1

2

34

5

6

(1)

(2)

(3)

(4)

(6) (5)

Besides six axis reflections, the benzene skeleton allows some more symmetry
operations, namely five proper rotations.Table 8.1 lists all the symmetry operations
and the according permutations of benzene’s symmetry group D6h. E denotes the
identity, C+/−

i represents a rotation by 360/i degrees, where the sign describes

the direction of the rotation, and σ
(j)
v represents a reflection at axis (j).

Structure Enumeration and Sampling 237

TABLE 8.1
Permutations of the Automorphism Group D6h
of Benzene

List Cycle Cycle
Operation Representation Representation Index

E [1 2 3 4 5 6] (1)(2)(3)(4)(5)(6) z1
6

C+6 [2 3 4 5 6 1] (1 2 3 4 5 6) z6
1

C−6 [6 1 2 3 4 5] (6 5 4 3 2 1) z6
1

C+3 [3 4 5 6 1 2] (1 3 5)(2 4 6) z3
2

C−3 [5 6 1 2 3 4] (5 3 1)(6 4 2) z3
2

C2 [4 5 6 1 2 3] (1 4)(2 5)(3 6) z2
3

σ
(1)
v [1 6 5 4 3 2] (1)(4)(2 6)(3 5) z1

2z2
2

σ
(2)
v [5 4 3 2 1 6] (3)(6)(1 5)(2 4) z1

2z2
2

σ
(3)
v [3 2 1 6 5 4] (2)(5)(1 3)(4 6) z1

2z2
2

σ
(4)
v [6 5 4 3 2 1] (1 6)(2 5)(3 4) z2

3

σ
(5)
v [4 3 2 1 6 5] (1 4)(2 3)(5 6) z2

3

σ
(6)
v [2 1 6 5 4 3] (1 2)(3 6)(4 5) z2

3

Permutations are given in two notations. The list representation might appear
more straightforward to the reader, because for a permutation π the ith component
in the list simply defines the image of i, that is the list representation of π is
[π(1), . . . , π(n)].

The cycle notation is a little more difficult to understand, but gives direct access
to the cycle index, which is needed to compute counting series. The cycle repre-
sentation consists of 1 to n cycles, which are enclosed by round brackets. Each
cycle itself consists of 1 to n elements. Cycles of only one element (i) show that i
is fixed under the permutation, that is, π(i) = i. Sometimes such cycles are even
suppressed in cycle notations. Cycles (i1, . . . , il) with more than one element indi-
cate that i1 is mapped onto i2, i2 is mapped onto i3, and so on. The length l of
the cycle is determined by the minimum number of applications of π that map i
again onto i, that is, l = min{h : πh(i) = i}. In particular, this means that the last
element of the cycle, il , is mapped onto i1, and generally the cycle of i1 can be
written as [i1, π(i1), π2(i1), . . . , πl−1(i1)].

Finally, the cycle indices of the elements of the automorphism group can be
derived directly from the cycle notations using Equation 8.1. This results in the
cycle index

Z (D6h) = 1
12 (z1

6 + 4z2
3 + 2z3

2 + 2z6
1 + 3z1

2z2
2)

for benzene’s automorphism group D6h. Inserting the generating function 1+ x
leads to the counting series

C (D6h) = 1
12 ((1+ x)6 + 4(1+ x2)3 + 2(1+ x3)2

+ 2(1+ x6)+ 3(1+ x)2(1+ x2)2)

= 1+ x + 3x2 + 3x3 + 3x4 + x5 + x6.

238 Handbook of Chemoinformatics Algorithms

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

ClCl

Cl

Cl

Cl

ClCl

Cl

Cl

Cl

Cl

FIGURE 8.1 Thirteen different substitutions of a benzene skeleton with H and C.

The coefficient of xi in the counting series indicates the number of isomers with
i hydrogen and n − i chlorine atoms. Thus we obtain the number of isomers of
benzene (one isomer according to coefficient 1 of x0), chlorobenzene (one isomer
according to coefficient 1 of x1), dichlorobenzene (three isomers according to
coefficient 3 of x2), and so on. This sums up to 13 different substitutions of the
benzene skeleton with H and Cl. These 13 compounds are shown in Figure 8.1.

But note that a counting series itself gives no hint of the structures of the counted
isomers, that is, as soon as there is more than one isomer found, Pólya’s theorem
does not show how to attach the substituents to the skeleton in order to obtain all
isomers. For this purpose we need constructive methods based on the principles
of double cosets developed by Ruch, Klein and others [8–10].

Example 8.1.2: Cycle Indices and Counting Series

In the following we list cycle indices of several benzenoid hydrocarbons, together
with their counting series obtained by substituting 1+ x .

• Naphthalene: Z (D2h) = 1
4 (z1

8 + 3z2
4), C (x) = 1+ 2x + 10x2 + 14x3 +

22x4 + 14x5 + 10x6 + 2x7 + x8.
• Anthracene: Z (D2h) = 1

12 (z1
10 + z1

2z2
4 + 2z2

5), C (x) = 1+ 3x + 15x2

+ 32x3 + 60x4 + 66x5 + 60x6 + 32x7 + 15x8 + 3x9 + x10.
• Phenanthrene: Z (C2v) = 1

2 (z1
10 + z2

5), C (x) = 1+ 5x + 25x2 + 60x3 +
110x4 + 126x5 + 110x6 + 60x7 + 25x8 + 5x9 + x10.

• Tetracene: Z (D2h) = 1
4 (z1

12 + 2z2
6), C (x) = 1+ 3x + 21x2 + 55x3 +

135x4 + 198x5 + 236x6 + 198x7 + 125x8 + 55x9 + 21x10 + 3x11 + x12.
• Triphenylene: Z (D3h) = 1

6 (z1
2 + 2z2

6 + 2z3
4), C (x) = 1+ 2x + 14x2 +

38x3+ 90x4+ 132x5+ 166x6+ 132x7+ 90x8+ 38x9+ 14x10+ 2x11+ x12.

Structure Enumeration and Sampling 239

We obtain the same cycle index for naphthalene as for the introductory sample of
dioxin. We see that the monomial x4 has the coefficient 22, that is, there are 22
isomers of dioxin.

It follows from Formulas 8.1 and 8.2 that the total number of different substitutions
with respect to G can be computed as

|mn//G| = 1

|G|
∑

g∈G

mc(g), (8.3)

where c(g) denotes the number of cycles of g. We will use this later in Section 8.4.2 for
counting constituents of combinatorial libraries, which is closely related to counting
permutational isomers.

Van Almsick et al. [11] developed a software tool that calculates the num-
ber of permutational isomers using Pólya’s approach. Computer algebra systems,
such as commercial implementations Mathematica and Maple, or the open source
system SYMMETRICA [12] are also able to conduct computations following
Pólya’s theory, but without any special adaptions to chemistry. The computation
of numbers of permutational isomers using SYMMETRICA is available online
at symmetrica.uni-bayreuth.de/perm_iso.html (accessibility checked on December
2009).

8.1.2 COUNTING ISOMERS OF ACYCLIC STRUCTURES AND OTHER

COMPOUND CLASSES

Besides permutational isomers, counting series for several other compound classes
have been discovered in the past. However, in contrast to permutational isomers,
these cannot be produced using a well-defined algorithm. They were rather individual
ideas that led to these counting series. Counting series are known especially for the
most prominent acyclic compound classes. Most of them were derived by applying
Pólya’s theorem in a recursive manner; that is, counting series themselves were used
as generating functions.

Alkyl groups have the form−CnH2n+1. They can be interpreted as rooted trees on
n nodes, where the root is the carbon atom with the free valence. Let An(x) denote
the counting series for alkyl groups having n atoms. There is a recursive formula

An(x) = 1+ 1

6
x[An−1

3(x)+ 3An−1(x)An−1(x
2)+ 2An−1(x

3)] (8.4)

starting with A0(x) = 1. For n→∞, the counting series for alkyl groups is often
written as

A(x) =
∞∑

n=0

Anxn

240 Handbook of Chemoinformatics Algorithms

with certain coefficients calculated from the recursive Equation 8.4. The first terms
are

A(x) = 1+ x + x2 + 2x3 + 4x4 + 8x5 + 17x6 + 39x7 + 89x8

+ 211x9 + 507x10 + . . .

Based on this recursive approach, several counting series for other acyclic
compound classes have been formulated by Read [13]:

• Primary alcohols: R–CH2–OH with an alkyl group R: xA(x)
• Secondary alcohols: R1–CH(R2)–OH with two alkyl groups R1 and R2:

1
2 x[A2(x)− 2A(x)+ A(x2)]

• Tertiary alcohols: R1–C(R2)(R3)–OH with alkyl groups R1, R2 and R3:
1
6 x[A3(x)− 3A2(x)+ 3A(x)A(x2)− 3A(x2)+ 2A(x3)]

• Aldehydes and ketones: R1–C(=O)–R2 with alkyl groups or hydrogen atoms
R1 and R2: 1

2 x[A2(x)+ A(x2)]
• Alkynes: R1–C≡C–R2 with alkyl groups or hydrogen atoms R1 and R2:

1
2 x2[A2(x)+ A(x2)]

• Esters: R1–C(=O)–O–R2 with alkyl groups R1 and R2 where R1 can also
be a hydrogen atom: xA(x)[A(x)− 1]

Perhaps the most important counting series for acyclic compounds is the one for
alkanes, that is, compounds with formula CnH2n+2. It has been determined as

a(x) = 1

24
x[A4(x)+ 6A2(x)A(x2)+ 3A2(x2)+ 8A(x)A(x3)+ 6A(x4)]

− 1

2
[(A(x))2 − A(x2)+ 1],

and the first terms are

a(x) = 1+ x + x2 + x3 + 2x4 + 3x5 + 5x6 + 9x7 + 18x8 + 35x9 + 75x10 + . . .

Other compound classes for which several counting series are known are ben-
zenoids and polyhex hydrocarbons. The review of Faulon et al. [14] offers an extensive
overview of these counting series and on how they were deduced.

Although there is a counting series known for simple graphs on n nodes, no gen-
eral counting series for molecular graphs a with given molecular formula has been
found yet. An approach for counting cubic graphs is presented [15]. The relationship
between cubic and molecular graphs might not be very obvious at first sight, but
will become clearer in Section 8.2.1. Recently, another small step towards a more
universal counting series was found for hydroxyl ethers [16], that is, isomers with
molecular formula CiH2i+2Oj.

Structure Enumeration and Sampling 241

Up to now, the only way to calculate the number of isomers belonging to an arbi-
trary molecular formula is to use structure generators. Structure generators not only
calculate the number of isomers, but also deliver the structures themselves as output.
On the other hand, counting series always a good choice to prove the correctness of
new structure generator results. In the next section, we will get to know the algorithmic
concepts underlying past and present structure generators.

8.2 ISOMER ENUMERATION: DETERMINISTIC STRUCTURE
GENERATION

The construction of all constitutional isomers having the same molecular formula has
a long history, which will and cannot be reported in detail here. Just as the represen-
tation of chemical compounds as graphs was one of the roots of graph theory, their
generation was one of the challenges for the development of construction algorithms
for computers.

A prominent starting point is the well-known DENDRAL system [17], the devel-
opment of which began already in the middle and late sixties of the last century.
DENDRAL (short for DENDRIC ALgorithm) was developed for the automated
structure elucidation of organic compounds by mass spectrometry (MS). For that
purpose DENDRAL was endowed with an isomer generator that was able to pro-
cess structural constraints obtained from MS (especially the molecular formula) and
from other spectroscopic methods, in particular nuclear magnetic resonance (NMR)
spectroscopy.

DENDRAL is described in many computer science books as the first expert system.
Moreover, it can be considered as one of the roots of chemoinformatics. Interestingly,
even the NASA was among the founders of this pioneering project, with the ambitious
intention to supply future Mars missions with such software, to enable analysis and
interpretation of MS samples onboard a space probe and to broadcast only identi-
fied structural formulas back to the earth instead of huge gas chromatography/mass
spectrometry (GC/MS) data sets.

8.2.1 EARLY CYCLIC AND ACYCLIC STRUCTURE GENERATORS

At first, only acyclic structures could be constructed until there was a breakthrough in
the early 1970s when a decomposition of the given molecular formula into those of
cyclic substructures was found. Cyclic substructures had to be combined by bridges
to get molecules with the prescribed molecular formula. All possible decomposi-
tions of this kind could be determined by appropriate mathematical theorems prior to
constructing these cyclic substructures.

8.2.1.1 Acyclic Structure Generators

Henze and Blair [18] used the fact that a unique centroid can be found in any chemical
tree for the enumeration of alkanes as early as the 1930s. The unique centroid is the
starting point for a canonical labeling of the tree, following simple rules of precedence
of the constituent radicals according to their composition and topological structure.
An unambiguous notational system was established by Lederberg [19].

242 Handbook of Chemoinformatics Algorithms

However, the existence of a unique (bi)centroid in a tree on n nodes had already
been formulated a century earlier in Jordan’s theorem [20]:

• For odd n = 2k + 1, there exists a unique node, called centroid, such that
all incident subtrees have at most k nodes

• For even n = 2k there exists either
– a unique node such that all incident subtrees have less than k nodes,

or
– a unique edge, called bicentroid or centroid edge, such that the

incident subtrees have exactly k nodes

This theorem shows a recursive way to generate trees. A tree on n = 2k + 1 nodes
is composed from one node (the centroid, having degree d) and d rooted trees with
less than k nodes in such a way that the sum of nodes is n− 1. In terms of acyclic
chemical graphs (without multiple bonds) one will have to loop over all different atoms
as centroid, partition the remaining atoms into subsets according to the centroid’s
valency, and then iterate this procedure on the subsets (with the small difference that
now rooted trees have to be built). The iteration ends when no more partitioning is
possible. The case of odd numbers of nodes can be processed similarly, with the
variation that two atoms have to be chosen for a bicentroid. Reference [21] offers a
pseudo code for such an algorithm applied to alkanes.

An implementation with respect to general chemical trees was part of the
DENDRAL system. Results of this acyclic generator have been published in Ref. [22].

8.2.1.2 Cyclic Structure Generator

Approaching the challenge of cyclic structures, Lederberg introduced a series of sim-
plification steps that finally (apart from certain exceptions) showed a mapping from
cyclic structures on certain classes of cubic graphs [23].

These initial ideas developed into a structure generator described by Masinter
et al. [24,25], which was the first generator that covered both acyclic and cyclic
structures. The fundamental ideas of this structure generator will be described below.
First, some terminology is required.

Chapter 2 introduced molecular graphs as representations of chemical compounds.
In Figure 8.2 we see such a representation 1 of a substituted piperazine. The chem-
ical graph 2 ignores hydrogen. The symbol U is used in the composition to denote
the number of unsaturations. The number of unsaturations u is computed from the
molecular formula as follows:

u = 1

2

(

2+
k∑

i=1

(i − 2)ai

)

, (8.5)

where ai denotes the number of atoms of valence i and k is the maximum valence of
the composition.

An atom of a chemical graph is called cyclic if it lies on a cycle (or ring); otherwise it
is called acyclic. This way, a chemical graph can be separated into cyclic and acyclic

Structure Enumeration and Sampling 243

CH

CH

CH2

CH2

H2C

CH CH2
N
H

CH
N
H

CH3

H3C

C

C

C

C

C

C C
N

C
N C

C

C

C

C

C

C

C C
N

C
N

C

C

C

C

C

C

C

C C
N

C
N

CC

C

C

C

C

C

C C
N

C
N

N

N

C

C

C

C C
C

C
C

C C+ ,C C+ , C C+ ,

1

2

3

4

5

6

87

9 10

11 12

1413

Vertex graph

Superatoms
ring-superatom:

composition C10N2U

acyclic superatom:

composition C2

Chemical graph:
composition

C10N2U2

Conventional
representation:
composition

C10H20N2

Cyclic graph

Ciliated skeleton

C

N

C

N

C

C C
C

C
C

FIGURE 8.2 Examples of abstraction and refinement steps used in the generation of cyclic
structures.

parts. Connected components of the chemical graph induced by the cyclic atoms
are called superatoms. Graph-theoretically, a superatom is a connected isthmus-free
multigraph (short cif-graph), that is, with no edge whose deletion would disconnect
the graph. The number of free valences of the superatom is determined by the number
of connections to atoms outside the superatom. The chemical graph 2 is composed of
the superatom 3, having 16 free valencies, and two acyclic carbon atoms.

The ciliated skeleton 4 is obtained from 3 by stripping the element symbols. A
further step of abstraction is the deletion of free valences, resulting in the cyclic

244 Handbook of Chemoinformatics Algorithms

skeleton 5. Finally, if chains of bivalent nodes are reduced to edges we obtain the
vertex graph 6.

Going into the reverse direction, starting from 6, two alternative cyclic graphs that
can be obtained are 7 and 8. 9 and 10 are alternative cilitated skeletons that can be
built from 5.

In this particular example, the valencies of nodes in 9 and 10 allow only unique
superatoms 11 and 12, respectively. If, for instance, 4-valent sulfur or 3-valent phos-
phorus would also be part of the composition, more than one superatom per ciliated
skeleton would be possible.

The scheme of abstraction and specification steps between molecular graphs and
vertex graphs above described indicates already a strategy for a generation algorithm,
roughly following the Divide and Conquer principle. The algorithm consists of a
sequence of partitioning steps starting from the set of atoms defined by a molecular
formula that leads to the selection of vertex graphs from a catalog. A sequence of
consecutive labeling steps finally reconstructs all molecular graphs that arise from a
vertex graph. A more detailed description of the algorithm as outlined in Ref. [25]
reads as follows:

ALGORITHM 8.2.1 DENDRAL ISOMER GENERATION

1. Determine all distinct allowable partitions of a given degree sequence V into
atoms and superatom sets with assigned free valences. These partitions are
based on the unsaturation of V .

2. For each superatom set, determine all the distinct allowable allocations of the
free valences to the atoms of the set.

3. For each such free valence allocation, determine recursively the allowable sets
of atoms remaining after the deletion of the bivalent atoms and the pruning
of any resulting loops. This recursion is done until

a. the remaining bivalent atoms in any cif-graph based on the set must all
be on edges, or

b. one of two special cases is encountered.

4. For each such set of atoms, if condition (a) terminates the recursion, look up
in the catalog all the cif-graphs based on the nonbivalent atoms in the set,
and for each such graph, label the edges with the bivalent atoms. If condition
(b) terminates the recursion, directly write down the allowable graphs.

5. For each such graph, recursively label the atoms with loops and the loops and
edges with bivalent atoms.

6. For each graph so obtained, label the atoms with the free valences.
7. For each set of atoms and superatoms obtained as above, use the tree generator

to construct all the nonisomorphic connected multigraphs based on these
atoms and superatoms.

This algorithm uses several subroutines that cannot be described in detail here.
The superatom partitioner (step 1), the free valence partitioner (2), the loop-bivalent
partitioner (3) with the definition of the special cases (b), the look-up routine from
the catalog (4), the loop-bivalent labeler (5) and the free-valence labeler are subject

Structure Enumeration and Sampling 245

TABLE 8.2
Allowed Partitions of C6U3 into Superatom Pots and the
Remaining Pot

Superatom Pot

Partition Superatom Pots 1 2 3 Remaining Pot

1 1 C6U3
2 1 C5U3 C
3 1 C4U3 C2
4 1 C3U3 C3
5 2 C4U2 C2U
6 2 C3U2 C2U C
7 2 C2U2 C2U C2
8 2 C4U C2U2
9 2 C3U C2U2 C
10 2 C3U2 C3U
11 3 C2U C2U C2U

to Ref. [25] and the references cited therein. Especially for the labeling steps, see
Refs. [26–28].

Example 8.2.1: Superatom Partitioner

Step (1) of Algorithm 8.2.1.2 will be illustrated here. Table 8.2 shows the results
of the superatom partitioner for C6H8. Firstly, hydrogens are replaced by unsatu-
rations U. According to Equation 8.5, C6H8 has u = 3 unsaturations. A total of 11
allowed partitions of up to three superatoms are obtained.

According to the terminology introduced in Figure 8.2, the results of step (5) are
cyclic graphs, at step (6) cilitated skeletons are obtained, and step (7) delivers chemical
graphs. Step (7) is also described in Ref. [24]. However, some words on the treatment
of superatoms are appropriate.

In the final step, superatoms require some special treatment in the tree generator. If
a superatomA has k free valences, then in forming molecular structures that includeA,
A behaves differently from an atom of valence k. The difference in forming structures
including A and those including an atom of valence k is the following: the k free
valences on an atom of valence k are, as edge endpoints in a graph, indistinguishable,
that is, the free valences on the atom admit as symmetry group the group Sk , the full
permutation group on k objects. However, the k free valences on the superatom A are
usually distinguishable from a symmetry viewpoint, so the free valences on A will,
in general, admit only a subgroup of Sk .

The structure generator outlined here has become popular under the name
CONGEN (short for CONstrained GENerator) and was used within the DENDRAL

246 Handbook of Chemoinformatics Algorithms

project until it was finally replaced by the advanced generator GENOA [29] (short
for GENeration with Overlapping Atoms).

From today’s point of view it is remarkable that a project like DENDRAL could
be successfully realized. Computers were slow at that time and extremely limited in
memory. Programming languages were still on a low level and software engineering
was hardly recognized as a new technological discipline. However, mathematically
it was state-of-the-art. But the various partitioning and labeling steps implicate a
problem: it is difficult to process structural constraints efficiently. Efficiency means
that constraints can already be tested during structure generation, help us to reduce
intermediate results and speed up the enumeration process.Among others, this feature
will be the subject of the next subsection.

8.2.2 ORDERLY GENERATION

There was a development by Read [30] and Faradzev [31,32] who both presented
the technique of orderly generation independently in 1978. In this technique an arti-
ficial ordering is imposed on the set of graphs that are to be generated, such that
the smallest representative of a given isomorphism type always contains a subgraph
that is the smallest representative of its isomorphism type. Thus, only the smallest
representatives have to be extended and the results have to be tested for being the
smallest again.

This approach allowed avoidance of pairwise isomorphism testing and keeping
long lists of graphs in memory for comparison. An advantage compared with the
DENDRAL generators is that orderly generation does not require any catalog of
elemental graphs.

8.2.2.1 Enumerating Labeled Graphs

The principles underlying orderly generation are best explained using simple graphs.
Let γ and γ′ be simple graphs on n nodes. Nodes are labeled with numbers from 1 to
n. There is an order on edges of such graphs defined as follows: for edges e = (x, y),
e′ = (x′, y′) with x < y, x′ < y′, e is less than e′, if and only if x < x′, or x = x′ and
y < y′. This can be expressed more precisely in mathematical terms:

e < e′ :⇐⇒ x < x′ ∨ (x = x′ ∧ y < y′).

This induces a lexicographical order on the set of graphs on n nodes. Let e1, . . . , et be
the edges of γ and e′1, . . . , e′t′ those of γ′ sorted in the above order, that is, e1 < · · · < et
and e′1 < · · · < e′t′ . Then γ is less than γ′, if and only if there exists an index i with
ei < e′i and ej = e′j for all j < i, or t < t′ and ej = e′j for all j ≤ t. Again, this can be
expressed more conveniently using mathematical notation:

γ < γ′ :⇐⇒ (∃i < min{t, t′} : ei < e′i ∧ ∀j < i : ej = e′j)

∨ (t < t′ ∧ ∀j ≤ t : ej = e′j).

Structure Enumeration and Sampling 247

As a first application, this order shows a way to construct labeled structures. We
can define an algorithm that constructs labeled simple graphs according to this order.

ALGORITHM 8.2.2 LABELED ENUMERATION (γ)

1. Output γ

2. For each edge e > max{e′ ∈ γ} do in ascending order of e

Call Labeled Enumeration (γ ∪ {e})

Example 8.2.2: Labeled Graphs on Three Nodes

Let us have a brief look at the minimalistic example of n = 3 nodes. Figure 8.3
shows the way edges are inserted during recursive calls of Labeled Enumeration.
During the first call with the empty graph {} edges (1, 2), (1, 3), and (2, 3) are used
for augmentation. In the second call with graph {(1, 2)} as the argument, edges
(1, 3) and (2, 3) are considered, and so on. Thus graphs are written to the output
in the following order:

{}, {(1, 2)}, {(1, 2), (1, 3)}, {(1, 2), (1, 3), (2, 3)}, {(1, 2), (2, 3)},
{(1, 3)}, {(1, 3), (2, 3)}, {(2, 3)}.

It is easy to check that this is the lexicographical order as introduced above.

8.2.2.2 Enumerating Unlabeled Graphs

Beyond the construction sequence the ordering on the set of graphs provides a canon-
ical form. Selecting the minimal orbit representative shows a way to avoid producing
isomorphic duplicates. A graph γ is defined as canonical if it is minimal in its orbit.
In mathematical terms:

∀π ∈ Sn : γ ≤ γπ.

Algorithm 8.2.2 can be upgraded to generate minimal orbit representatives only by
modifying step (1):

(1,3)(1,2)

(2,3)(2,3)(1,3)

(2,3)

(2,3)

FIGURE 8.3 Generating tree for labeled graphs on three nodes.

248 Handbook of Chemoinformatics Algorithms

ALGORITHM 8.2.3 UNLABELED ENUMERATION (γ)

1. If γ is minimal in its orbit, then

Output γ

2. For each edge e > max{e′ ∈ γ} do in ascending order of e

Call Unlabeled Enumeration (γ ∪ {e})

However, this algorithm has to check all of the 2n(n−1)/2 labeled graphs on
n nodes for canonicity. The main finding of Read [30] and Faradzev [31,32]
was that every minimal orbit representative with q edges has a minimal subgraph
with q − 1 edges. Thus, nonminimal intermediates do not have to be consid-
ered for further augmentation. Using this knowledge, Algorithm 8.2.3 can be
improved to the following.

ALGORITHM 8.2.4 ORDERLY ENUMERATION (γ)

1. If γ is not minimal in its orbit, then

Return

2. Output γ

3. For each edge e > max{e′ ∈ γ} do in ascending order of e

Call Orderly Enumeration (γ ∪ {e})

Example 8.2.3: Unlabeled Graphs on Three Nodes

Continuing Example 8.2.2, we notice that there are four unlabeled graphs on three
nodes. They have zero to three edges. The minimal orbit representatives are

{}, {(1, 2)}, {(1, 2), (1, 3)}, {(1, 2), (1, 3), (2, 3)}.

Comparing Algorithms 8.2.3 and 8.2.4, one canonicity test could be saved using
the latter: graph {(1, 3)}would be recognized as nonminimal, and its augmentation
{(1, 3), (2, 3)} would not have to be considered. Of course, for increasing n the
improvement in Algorithm 8.2.4 leads to much bigger gains in speed.

8.2.2.3 Introducing Constraints

Typically, one is not interested in enumerating all graphs, but just certain subsets,
often denoted as classes of graphs. Such a class of graphs is characterized by one or
more constraints, or restrictions. In mathematical terms a constraint is a mapping R
from the set of graphs on n nodes onto the set of boolean values {true, false}, which
is symmetry invariant:

∀π ∈ Sn : R(γ) = R(γπ).

Structure Enumeration and Sampling 249

A graph γ fulfills R, if R(γ) = true. Otherwise γ violates the constraint. A constraint
R is called consistent if the violation of a graph γ to R implies that every augmentation
γ′ of γ violates R:

R(γ) = false ∧ γ ⊂ γ′ =⇒ R(γ′) = false.

Examples of consistent constraints are an upper number of edges, a minimal cycle
size or graph-theoretical planarity. On the other hand, the presence or absence of a
certain subgraph or a maximum ring size are examples for inconsistent constraints
(the precise definition of these terms would require a section on its own).

Consistent constraints can be incorporated into generating algorithms in a way
that structure enumeration is accelerated. Such restrictions can be checked after each
insertion of a new edge and can help to prune the generating tree. Inconsistent con-
straints are more problematic. Testing these constraints is only useful when a graph
is completed. Completeness itself is also described by constraints. As to generating
constitutional isomers, completeness is typically defined by a given degree sequence.

ALGORITHM 8.2.5 ORDERLY ENUMERATION WITH
CONSTRAINTS (γ)

1. If γ is not minimal in its orbit then

Return

2. If γ violates any consistent constraint then

Return

3. If γ fulfills all inconsistent constraints then

Output γ

4. For each edge e > max{e′ ∈ γ} do in ascending order of e

Call Orderly Enumeration With Constraints (γ ∪ {e})

8.2.2.4 Variations and Refinements

There are several variations and refinements possible that might, depending on the
type of constraints, lead to a considerable speedup.

• Testing completeness is typically cheaper than other constraints like pres-
ence and absence of substructures. Thus these more expensive inconsistent
constraints should be tested after completeness has been confirmed.

• Testing inconsistent constraints is often cheaper than testing canonicity. Thus
it can be useful to process step (2) before step (1).

In general the sequence of tests is affected by two strategies:

• Process cheap tests first, that is, tests that consume least computation time
• Process selective tests first, that is, tests that eliminate most intermediates

250 Handbook of Chemoinformatics Algorithms

Those tests that fulfill both criteria should surely be processed first, and those that
fulfill none of them should be executed last. However, for expensive tests that are
very selective and for cheap tests with low selectivity, one has to find a trade-off.

Going back to Algorithm 8.2.5, step (2) is often replaced by a cheaper criterion that
only tests a necessary condition for canonicity, the so-called semicanonicity. Without
going into details, this criterion only checks for transpositions τ if γ ≤ γτ. For a more
detailed description, see Ref. [33] or [34]. The full canonicity test will be delayed
until the graph is completed.

If some candidate solution then turns out not to be canonical, a so-called learning
criterion provides a necessary condition for the canonicity of the lexicographic suc-
cessors. The earliest extension step is determined where nonminimality could have
been detected in the generation procedure. Applying this criterion will further prune
the generating tree. Details this criterion can also be found in Refs. [33] and [34].

8.2.2.5 From Simple Graphs to Molecular Graphs

Now that we have learnt the principles of orderly generation, it is about time to adapt
them to molecular graphs. In contrast to simple graphs, edges of molecular graphs
have a bond multiplicity (or bond order). It is convenient to use the lexicographical
order on the adjacency matrix (or equivalently on the connectivity stack) as a con-
struction sequence. Objects with maximal connectivity stack are defined as canonical
orbit representatives. This definition of canonicity is backward compatible in the fol-
lowing sense: a minimal simple graph as defined in Section 8.2.2.2 has the maximum
connectivity stack in its orbit and vice versa.

Nodes of molecular graphs are colored by element symbols. Hydrogen atoms are
typically treated implicitly, that is, they are not represented by nodes, but instead
each non-hydrogen atom has a hydrogen count as an attribute. Further attributes of
atoms are the sum of remaining valencies, that is, those not bonded to hydrogen,
charges, and unpaired electrons. These attributes impose invariants on the set of
atoms. Additionally, the bond order distribution of bonds incident with an atom can
be used as invariant.

The combination of these attributes defines the atom state. Before starting to fill
the adjacency matrix A, the atom states are assigned to rows (and columns) of A. If the
number of atoms of each state cannot be deduced directly from the input, all possible
distributions of atom states are generated and filling the adjacency matrix is repeated
for each atom state distribution.

The assignment of atom states to rows and columns of the adjacency matrix intro-
duces a block structure as depicted in Figure 8.4. Each block belongs to one of the t
different atom types; λr equals the number of atoms of a state r.

As a first gain of this block structure no longer all n! permutations of the full
symmetric group Sn have to be checked during the canonicity test. Only the

∏t
i=1 λi!

permutations that respect the block structure have to be considered. This reduces the
computational costs for canonicity testing immensely.

Algorithm 8.2.6 is taken from Ref. [33] and shows how the structure genera-
tor underlying MOLGEN (short for MOLecular structure GENerator), version 3.5
[35,36] fills the adjacency matrix. Filling matrix blocks (steps 3 and 4) is iterated

Structure Enumeration and Sampling 251

Aλ
(1)

Aλ
(2)

Aλ
(r)

Aλ
(t)

λ1 λ2 λr λt

••
•

••
•

{ { { {

A =

FIGURE 8.4 Adjacency matrix with block structure as used in Algorithm 8.2.6.

with testing canonicity for matrix blocks (step 5). For canonicity testing of block
r, only permutations from the formerly calculated automorphism group Autr−1 of
blocks 1, . . . , r − 1 have to be taken into account.

ALGORITHM 8.2.6 MOLGEN ORDERLY ENUMERATION

1. Start: set r := 0 and goto (3).
2. Stop criterion: if r = 0 stop; else goto (4).
3. Maximum filling: fill block A(r) (depending on A(1), . . . , A(n−1)) in a lexico-

graphically maximal manner so that A(r) fulfills the desired matrix properties
(regarding atom states and consistent constraints).
If no such filling exists, then set r := r − 1 and goto (2); else goto (5).

4. Next smaller filling: fill block A(r) (depending on A(1), . . . , A(n−1)) in a lex-
icographically next smaller manner so that A(r) fulfills the desired matrix
properties (regarding atom states and consistent constraints).

If no such filling exists then set r := r − 1 and goto (2); else goto (5).
5. Test canonicity: if ∀π ∈ Aut(r−1)(A) : A(r) ≥ A(r)π, then

if r = t (canonical matrix complete) then

a. if constraints are fulfilled, then output A.
b. goto (4)

else determine Aut(r)(A), set r := r + 1 and goto (3).
else goto (4).

This algorithm uses two subroutines, the filling of a matrix block and the canonicity
test of a matrix block. Filling a matrix block is called in two different situations: In step
(3), block A(r) is initially filled in a maximal manner. When step (4) is called, block
A(r) had already been filled before, and now the next smaller filling is produced.
Due to their huge technical overhead, these subroutines will not be described in
detail here. The reader is referred to the original publication [33]. However, this book
comprises the principles of these subroutines. Canonical labeling has been introduced
in Chapter 2. Filling a matrix block is done in a lexicographically descending order,

252 Handbook of Chemoinformatics Algorithms

which is similar to constructing labeled graphs as introduced at the beginning of this
subsection.

8.2.3 BEYOND ORDERLY GENERATION

Of course, other principles can be combined with orderly generation. For instance
the above-mentioned MOLGEN 3.5 allows definition of macroatoms. These are sub-
structures that are treated during orderly generation as a special atom type and are
expanded whenever a canonical matrix is complete. Double coset representatives
are used to avoid isomorphic duplicates. This principle is already known from the
construction of permutational isomers and from the treatment of superatoms during
tree generation in the DENDRAL generator. In mathematics, this method of join-
ing partial structures without producing isomorphic duplicates is known as gluing
lemma [37,38].

References [37,38] also describe the principle of homomorphisms. A homo-
morphism is a simplification of a structure, which maps isomorphic objects onto
isomorphic simplified ones. The simplification from molecular graphs to multigraphs
by removing element symbols, or from multigraphs to simple graphs by forgetting
bond multiplicities, are examples of homomorphisms. Indeed, the DENDRAL strat-
egy already relied on these simplification steps, only the general principle had not
been worked out. In Ref. [39], this approach of simplifying by homomorphisms has
been pushed to an extreme by constructing graphs with a prescribed degree sequence
from regular graphs as the most simple graphs. It turned out that for huge numbers of
nodes n, such a generator is much faster than orderly generation only. However, for
small n, which still allow generation of full lists of graphs, the generator accelerated
by homomorphisms was not able to keep up with ordinary orderly generation.

Another variation of orderly generation is also worth mentioning: McKay’s enu-
meration by canonical construction path [40] restricts extensions to those structures
where the new edges are taken from a certain orbit of the automorphism group.

Speed plays an important role in structure enumeration, but only a few theoretical
results about the computational complexity are known. Goldberg’s work [41] proves
that the results in orderly enumeration can be computed with polynomial delay and a
paper of Luks [42] shows that isomorphism testing of molecular graphs can be done
in polynomial time.

A new approach named constrained generation [43] pays attention to the fact
that isomer generators in structure elucidation typically aim at small numbers of
solutions. For this reason, the ability to generate labeled structures that fulfill long lists
of constraints becomes more important than efficient isomorphism avoidance. This
generator has no fixed sequence of filling the adjacency matrix. Instead, a heuristic
method has to decide which alternative makes best use of the actual constraints. It
only has to be guaranteed that each isomorphism type is constructed at least once. Its
canonical representation is then stored in a hash table. If it is new, it will be written to
the output, otherwise it is a duplicate.Although giving up all the expertise from orderly
generation, gluing lemma and homomorphism principle looks like a step backwards,
this approach, implemented in MOLGEN 4.0 [44], currently appears to be the best
suited solution for application in structure elucidation. It is being used in chemical

Structure Enumeration and Sampling 253

and pharmaceutical companies (where results typically are not disclosed to the public
domain), as well as in public research institutions (see, e.g. Ref. [45]).

Of course not all generation algorithms and implementations can be discussed in
detail here. At least the most popular ones such as CHEMICS [46], ASSEMBLE
[47,48], as well as Refs. [49–51] are worth being cited. Number 27 of the journal
MATCH is completely devoted to this topic. Faulon’s review [14] also contains a large
section about this topic. Free online access to MOLGEN 3.5 and the new MOLGEN
5.0 are available at unimolis.uni-bayreuth.de/molgen and molgen.de, respectively
(accessibility checked in December 2009).

8.3 ISOMER SAMPLING: STOCHASTIC STRUCTURE GENERATION

Due to the combinatorial explosion of numbers of constitutions with increasing num-
bers of atoms, it is often impossible to generate all molecular graphs belonging to
a given molecular formula. Alternative methods are required, especially if no struc-
tural constraints are available, for instance if statistical statements on structural or
physico-chemical properties of isomers of a certain molecular formula have to be
made. Sampling techniques help to tackle such problems. A frequent requirement is
a uniform probability distribution for all isomorphism types.

8.3.1 UNIFORMLY DISTRIBUTED RANDOM SAMPLING

To explain the basic principle of uniformly distributed random sampling, we will
again start with simple graphs. Labeled simple graphs on n nodes can be sampled
with uniform distribution by simply choosing each pair of nodes with probability 0.5
as an edge.

However, the different isomorphism types have different numbers of labeled struc-
tures; thus other methods are required for uniformly distributed random sampling for
unlabeled structures. Dixon and Wilf [52] solved the problem as follows.

Firstly, they choose a permutation at random from Sn and next a graph is constructed
at random that is fixed by this permutation. The details of this procedure are described
below.

ALGORITHM 8.3.1 SAMPLING UNLABELED GRAPHS UNIFORMLY
AT RANDOM

1. Select a permutation π ∈ Sn at random
2. Compute π∗ ∈ S(n

2)
corresponding to π

3. For each cycle of π∗ select a boolean value at random
4. Output the graph composed by edges of cycles with value true

The operation of Sn on the nodes of graphs induces an operation of S(n
2)

on the
edges of graphs. π∗ ∈ S(n

2)
in step (2) is defined as

π∗ ((i, j)) := (π(i), π(j)) .

254 Handbook of Chemoinformatics Algorithms

This is the key to generate a random graph fixed by π. A graph constructed this way
is drawn randomly with uniform distribution from all unlabeled graphs on n nodes.

Example 8.3.1: Unlabeled Simple Graphs on Six Nodes

Having selected π = [3 4 5 6 1 2] = (1 3 5)(2 4 6) at random, the corresponding
permutation in S(n

2)
is

π∗ = ((1, 2) (3, 4) (5, 6))((1, 3) (3, 5) (1, 5))

((1, 4) (3, 6) (2, 5))((1, 6) (2, 3) (4, 5))((2, 4) (4, 6) (2, 6)).

Random values true for the cycles

((1, 2) (3, 4) (5, 6)) and ((1, 6) (2, 3) (4, 5))

would lead to the graph with edgeset

{(1, 2), (1, 6), (2, 3), (3, 4), (4, 5), (5, 6)},

the cycle graph on six nodes.

The Dixon–Wilf technique was later expanded by Wormald [53] to sample reg-
ular graphs. An extension to molecular graphs with given molecular formula was
developed by Goldberg and Jerum [54]. Their algorithm is a two-step procedure.
First, a core structure that does not contain vertices of degree one or two is sam-
pled using a Dixon–Wilf–Wormald’s type algorithm. Then, the core is extended
by adding trees and chains of trees (vertices of degree one or two). This strategy
is similar to the processing in DENDRAL, where once cyclic substructures were
generated, and connections representing the acyclic parts are added afterwards (see
Section 8.2.1).

8.3.2 MONTE CARLO AND SIMULATED ANNEALING

Uniformly distributed random sampling is appropriate to calculate average properties
of compounds from specific compound classes, but is rather time-consuming when
used to search for the best compounds matching target properties or experimental data.
In such an instance, optimization methods such as Monte Carlo (MC) and simulated
annealing (SA) or genetic algorithms (GA) are more suitable.

Here, structures are optimized with respect to a certain target property. Any map-
ping from the constitutional space onto real numbers can be used as target property. Of
course this mapping must be invariant with respect to atom numbering. Topological
indices, group contribution calculations or potential energy are prominent examples
used by Faulon [55].

Algorithm 8.3.2 is extracted from Ref. [55] and outlines the principle of MC/SA.
In each annealing step a molecular graph, represented by its adjacency matrix A, is
given a small displacement in order to obtain a new structure, represented by A′.

Structure Enumeration and Sampling 255

If the new structure is better with respect to the target property, it is accepted for
the next annealing step. Otherwise it could still be accepted depending on a random
decision guided by a so-called annealing schedule. The coefficient kT calculated in
g is typically dependent on an initial coefficient, the current step number and the
total number of scheduled annealing steps. Indeed the annealing schedule is the only
difference between SA and MC algorithms. This procedure is repeated until a given
number of annealing steps was carried out.

ALGORITHM 8.3.2 SIMULATED ANNEALING

1. Generate an initial A using a deterministic technique
2. For each SA step

a. Choose four distinct atoms x1, y1, x2, y2 randomly
b. Set A′ := Displacement (x1, y1, x2, y2)

c. If A′ does not meet the chemical constraints goto (a)
d. Compute the cost function e(A′)
e. Δe := e(A′)− e(A)

f. RN := random number between 0 and 1
g. Compute the coefficient kT according to the annealing schedule
h. If Δe < 0 or RN < exp(−Δe/kT) then A := A′ and Output A

Subroutine Displacement (x1, y1, x2, y2)

1. Initialize A′ := A,
a11 := A(x1, y1), a12 := A(x1, y2),
a21 := A(x2, y1), a22 := A(x2, y2).

2. Choose b11 �= a11 at random so that
b11 ≥ max(0, a11 − a22, a11 + a12 − 3, a11 + a21 − 3) and
b11 ≤ min(3, a11 + a12, a11 + a21, a11 − a22 + 3).

3. Set A′(x1, y1) := b11,
A′(x1, y2) := a11 + a12 − b11,
A′(x2, y1) := a11 + a21 − b11,
A′(x2, y2) := a22 − a11 + b11.

4. Return A′.

The crucial step in this procedure is the random displacement, which can be
regarded as a transformation of a molecular graph in such a way that another isomer
is obtained. Random displacements are implemented by modifying bond orders [56].
This includes creation of bonds in case a bond order is changed from zero to a positive
value and deletion of bonds if the bond order is set to zero during the modification.
Because isomers must have the same total number of bonds, when a bond order
is increased, another bond order must be decreased. Hence, such a transformation
implies the selection of at least two bonds or four atoms.

The bond order switch is described in subroutine Displacement ofAlgorithm 8.3.2.
Numbers of randomly selected atoms are parameter values for this subroutine. The
inequations in step (2) reflect the fact that bond orders range from zero to three. The

256 Handbook of Chemoinformatics Algorithms

new bond orders assigned in step (3) maintain the atom’s valencies. In Ref. [55] it
has been shown by computer experiments that all possible constitutional isomers of
a given molecular formula can be reached using this bond order switch.

Example 8.3.2: Bond Order Switch

Figure 8.5 shows several examples of such random displacements. The new bond
orders assigned to (x1, y1) are sketched by arrows labeled with the change in the
adjacency matrix. In the upper two bond switches, a bond between x1 and y1 is
deleted and created in reverse direction. In the third and fourth bond switches the
bond order changes from two to one and vice versa. The lower bond switch shows
a change from triple to double bond between x1 and y1.

x2

y2

x1

y1

x2

y1

x1

y2

A(x1, y1) := 0

A(x1, y1) := 1

y2

x2 x1

y1 x1 y2

y1

x2

x1

y1

x2

y2

x1

y1y2

x2

y1 y2

x1 x2

x2 y1

x1 y2

y1

x2

x1

y2

x2

y1 y2

x1

A(x1, y1) := 0

A(x1, y1) := 1

A(x1, y1) := 1

A(x1, y1) := 1

A(x1, y1) := 2

A(x1, y1) := 2

A(x1, y1) := 2

A(x1, y1) := 3

FIGURE 8.5 Examples of random displacements as used in Monte Carlo and simulated
annealing algorithms.

Structure Enumeration and Sampling 257

8.3.3 GENETIC ALGORITHMS

Another type of stochastic structure generators is based on the technique of GA. GAs
try to simulate principles from biological evolution, such as inheritance, mutation,
crossover (or recombination), and selection. Except for recombination, these princi-
ples have already been used in MC/SA algorithms. However, terminology is taken
from biology’s evolutionary theory.

A fitness function serves for the selection of structures that fit a problem-specific
target property well. The connectivity stack can be used as genetic code. The two types
of structure manipulations, mutation and recombination, can be seen as operations
on the genetic code. Mutations can be defined like random displacements known
from MC/SA. Crossover involves two parent structures and at positions where their
genetic codes differ a random decision determines which parent’s information should
be passed to the child structure.

Algorithm 8.3.3 shows the construction of a new generation of structures as
described in Meiler’s work [57,58]. This study was devoted to structure elucidation
of small organic compounds by means of 13C NMR spectra. The root-mean-square
deviation between the experimental chemical shifts and the predicted chemical shifts
obtained by an artificial neural network served as fitness function.

ALGORITHM 8.3.3 GENETIC ALGORITHM (CONSTRUCTION
OF A NEW GENERATION)

1. Set i := 0
2. While the number of populations i < n

a. Set j := 0
b. While the number of molecules j < m

i. Select first parent structure at random according to a probability
based on the fitness function

ii. If random decision for recombination is true then
Select second parent and perform recombination else goto (iv)

iii. If random decision for mutation is false then
goto (v).

iv. Perform mutation
v. If molecule is new then increase j by 1

c. Calculate fitting values of the molecules of the child population
d. Replace the l worst molecules of the child population by the l best

parents
e. Increase i by 1

Each generation consists of a predefined number of populations n, where each
population comprises m molecules. In step (i) the first parent for recombination is
chosen at random. The probability distribution for this random selection is based
on the values of the fitness function in the parent population. This guarantees that
better structures have higher probability to hand down their genetic information to
child structures. In the next step it is decided randomly if recombination or mutation

258 Handbook of Chemoinformatics Algorithms

should take place. In the case of recombination a second parent is chosen, and the
recombination is carried out. Otherwise the parent structure is directly passed to
mutation in step (iv).After recombination, the child structure can also still be subject to
mutation, again based on a random decision. After these structure manipulation steps,
fitting values of the child population are calculated. Step (d) finally prevents losing
good solutions already obtained in the parent population, via the user-parameter l.

While mutation was already known from the previous subsection, recombination is
a special feature of the GA. From the chemoinformatics point of view it is interesting
how this is applied to constitutional isomers. For pairs of atoms (xi, yi) that have
the same bond order in both parent structures A and B, the child structure C also
obtains this bond order for (xi, yi). If the bond orders differ in the parent structures,
the corresponding bond order in the child structure is selected randomly from one of
the parent structures.

Example 8.3.3: Recombination

Figure 8.6 depicts two parent structures A (left) and B (right) and a resulting child
structure C (bottom). The parts contributed by the parent structures are high-
lighted in gray. However, the process of recombination can be better understood
when looking at the genetic codes of the involved structures. Remember, the
genetic codes are the upper left triangles of the adjacency matrices written in
one row. The different rows of the adjacency matrices are separated by blanks in

1

2

N
7

3

6

4

5

O
8

O
9

5

4

3

6

2

1

O
9

N
7 O

8

5

4

3

6

2

1

N
7

O
8

O
9

FIGURE 8.6 Example of a recombination as used in genetic algorithms.

Structure Enumeration and Sampling 259

the following representation:

A : 10000200 1000001 101000 10000 0000 000 10 0
↓↓↓ ↓ ↓ ↓

C : 10000021 1000100 101000 10000 0000 000 00 0
↑ ↑ ↑ ↑

B : 10000021 0000100 111100 00000 0000 000 00 0

We see that the genetic codes of the parent structures differ in 10 positions. Arrows
mark the positions in the parent structures that have to be changed in order to
obtain the child structure.

But in contrast to the bond order switch introduced in Section 8.3.2, it could
happen that the child structure is not necessarily chemically valid. Structures have to
be checked after recombination and further bond orders might have to be changed.
Another approach for recombination, which avoids this deficiency, is proposed in
Ref. [59].

The introduced MC/SA algorithm and the GA do not intend to avoid isomorphic
duplicates. However, since these algorithms typically aim at producing small numbers
of constitutions that fit the target property well, they could easily be upgraded to avoid
duplicates by using a canonical labeling algorithm and a hash map.

8.4 BEYOND ISOMER ENUMERATION

Beyond generation of isomers, the methods described in the first two sections of this
chapter can be applied to generate extensive parts of the chemical space or to count
and construct combinatorial libraries. In the following we outline the adaptations in
algorithms required for these purposes.

8.4.1 VIRTUAL CHEMICAL SPACE

There are several reasons to generate large parts of the chemical space by means
of computers. In Refs. [60,61] the authors generate and examine a virtual chemical
space of small molecules (up to 11 non-hydrogen atoms, elements C, H, N, O, F)
with respect to ring systems, stereochemistry, compound classes, physico-chemical
properties, as well as drug- and lead-likeness.

The algorithm starts with the construction of simple graphs, subsequently intro-
duces multiple bonds and element symbols, and ends with the generation of
stereoisomers. More precisely the algorithm’s pseudo code looks as follows:

ALGORITHM 8.4.1 VIRTUAL CHEMICAL UNIVERSE UP TO 11 ATOMS

1. Generate all simple connected graphs on up to 11 vertices with vertex valency
up to 4 (corresponding to saturated hydrocarbons).

2. Selection of graphs with moderate ring strain using topological criteria and
molecular mechanics that eliminate

a. graphs containing one or more nodes in two small (three- or four-
membered) rings,

260 Handbook of Chemoinformatics Algorithms

b. graphs containing a ring system with a tetravalent bridgehead in a small
ring,

c. all graph-theoretically non-planar graphs,
d. graphs containing highly distorted centers not identified by topology,

but with an adapted MM2 force field.

3. Introduction of multiple bonds and elements C, H, N, O, F:

a. Determine the symmetry of the simple graphs.
b. Introduce double and triple bonds combinatorially with respect to sym-

metry in order to avoid duplicates. Bridgehead double bonds, triple
bonds in rings smaller than nine and allenes are excluded as considered
potentially problematic for synthesis.

c. Determine symmetry of the multigraphs.
d. Introduce element symbols combinatorially with respect to symmetry

and under consideration of valency rules.

4. Filtering for chemical stability, tautomeric and aromatic duplicates:

a. Structures with unstable functional groups are identified by substructure
search and removed.

b. Tautomeric and aromatic duplicates are removed.

5. Stereoisomer generation.

Step (1) was executed using GENG which is part of the freely available NAUTY
system [40,62]. This resulted in 843,335 simple, connected graphs. The three topo-
logical selection steps (2a) through (2c) reduced the number of graphs from 843,335
to 16,009, the molecular-mechanics-based procedure eliminated another 283 graphs,
leaving a final set of 15,726 graphs. The introduction of multiple bonds in Steps (3a)
and (3b) resulted in 276,220 multigraphs, and the introduction of element symbols in
steps (3c) and (3d) led to 1,720,329,902 molecular graphs. For the symmetry percep-
tion in steps (3a) and (3c) an algorithm described in Ref. [63] was used, which is based
on the methods of Ref. [64], but introduces additional atomic invariants. Note that
we see two typical applications of the homomorphism principle here. After removing
unstable structures in step (4a), 27,681,431 structures remained. Keeping only the
most probable tautomer in step (4b) resulted in 26,434,571 structures. Stereoisomers
in step (5) were constructed by an implementation of Ref. [65] and led to 110,979,507
configurations.

Another approach to generate molecular structures as SMILES has been proposed
in Ref. [66]. The software GENSMI is based on the commercial toolkit of Daylight
Chemical Information Systems, Inc. The aim of this project was to provide structures
for the search of new drug candidates that involve virtual screening by evaluating
protein–ligand interactions.

A study to point out the discrepancy between compounds registered in structural
databases and the number of mathematically possible compounds has been published
in Ref. [67]. Mathematically possible compounds consisting of C, H, N, O and having
a mass ≤ 150 Da were generated exhaustively and were compared with the Beilstein
registry and the NIST ’98 mass spectral library. As expected, it turned out that the

Structure Enumeration and Sampling 261

spectral library contains only a small fraction of the compounds in the Beilstein
registry, which itself represents only an even smaller fraction of the mathematically
possible compounds (ratio 1:11:404976). This result emphasizes the need for structure
generation software in the fields of structure elucidation and drug discovery.

The algorithm used for the generation of the chemical space in Ref. [67] is mainly
based on the structure generator MOLGEN 3.5 [35,36], which was fed with all
possible molecular formulas:

ALGORITHM 8.4.2 MOLECULES IN SILICO UP TO 150 Da

For each mass m between 1 and 150 do
for each graphical molecular formula f with mass m do

generate all molecular graphs with this molecular formula
f using MOLGEN.

The program run resulted in 1405 valid molecular formulas. In this context a molec-
ular formula is denoted as valid, if it belongs to at least one connected molecular graph
of an organic compounds (i.e., at least one C), and where the involved elements appear
with standard valencies (4, 1, 3, 2 for C, H, N, O, respectively). Structure generation
finally resulted in 3,699,858,517 nonisomorphic molecular graphs. Detailed tables
that list molecular formulas by mass and constitutions by molecular formula, as well as
the numbers of structures in the above mentioned databases, are included in Ref. [68].

8.4.2 COMBINATORIAL LIBRARIES

During the past decades, combinatorial chemistry has become an appropriate method
to synthesize huge libraries of new compounds for biochemical screening. Especially
with the development of high-throughput screening technology and better bioassays,
this method has gained much attraction in the drug development workflow. In order to
reduce costs it is useful to plan such experiments using computer programs. Depending
on the stage in the drug discovery process, combinatorial chemistry experiments may
follow different strategies. In early stages, say during lead discovery, one may want
to produce libraries with a high structural diversity. In later stages, for instance during
lead optimization, pharmaceutical and medicinal chemists are rather interested in
focused libraries.

For any of these purposes it is useful to generate the library compounds at first
in silico and apply appropriate tools in order to calculate parameters representing
diversity, or virtual screening methods in order to optimize the experiment into a
direction where most promising hits can be expected.

8.4.2.1 Counting Combinatorial Libraries

Analogously to permutational isomers we will at first show how to calculate sizes of
combinatorial libraries. Most combinatorial chemistry experiments can be reduced
to the situation where building blocks from a pool of substituents are connected
to a central molecule, a so-called core structure with n active sites. Even reactions
with multiple reaction steps, as for instance Ugi’s seven-component reaction, can be
processed this way.

262 Handbook of Chemoinformatics Algorithms

If the core structure shows no symmetry with respect to the active sites, the size of
the library is simply the product

∏n
i=1 ai, where ai denotes the numbers of possible

substituents for active site i. However, if the central molecule shows symmetries, the
situation is more complicated. But it can be solved with the methods from Section
8.1.1, as illustrated in Example 8.4.1.

Example 8.4.1: Amidation of Benzene Trisacetylcychloride

As an example, we consider the exhaustive amidation of benzene trisacetylcy-
chloride as a central molecule:

Cl

O

ClO

Cl

O

Different amino acids are attached to this central molecule as shown below. An
acyl chloride group reacts with an amino group in α position to the carboxyl group:

Cl

O

Z

OH

O

H2N

R

+ OH

O

N
H

O

Z

R

+ HCl

Altogether there are m3 possible attachments of m amino acid molecules to the
central molecule. But with respect to the central molecule’s automorphism group,
the essentially different attachments are obtained as orbits of the operation of the
automorphism group applied to the set of m3 mappings.

We face a similar situation as in Section 8.1.1. The topological automorphism
group of the central molecule D3h has six permutations, the identity (1)(2)(3), three
reflections (1 2)(3), (1 3)(2), (1)(2 3), and two rotations (1 2 3), (1 3 2). According
to Equation 8.3, the number of orbits is

|m3//D3h| = 1
6 (m3 + 3m2 + 2m).

For m = 20 amino acids this makes a library size of 1540 compounds, while
ignoring symmetry would lead to 203 = 8000 possible attachments. As experi-
enced earlier in Section 8.1.1, we can also apply Pólya’s theorem. We obtain the
cycle index

Z (D3h) = 1
6 (z1

3 + 3z1z2 + 2z3),

Structure Enumeration and Sampling 263

and for instance if we want to examine the situation of three different amino acids
as possible substituents, we replace zk by

∑3
i=1 yk

i and obtain

C (D3h) = 1
6

⎛

⎜
⎝

⎛

⎝
3∑

i=1

yi

⎞

⎠

3

+
⎛

⎝
3∑

i=1

yi

⎞

⎠

⎛

⎝
3∑

i=1

yi
2

⎞

⎠+
3∑

i=1

yi
3

⎞

⎟
⎠

= y1
3 + y2

3 + y3
3 + y1

2y2 + y1
2y3

+ y1y2
2 + y2

2y3 + y1y3
2 + y2y3

2 + y1y2y3.

The coefficient of the monomial y1
j1y2

j2y3
j3 gives the number of library molecules

where amino acid i has been attached ji times. In this example every monomial
occurs with coefficient 1. Using this knowledge, it is quite easy to construct all
the library members by hand:

1

1

1 2 2

2

3

3

3 2

1

1

1

13

2

1

2 3 2

2

3

1

3 3

2

3

1

23

8.4.2.2 Generating Combinatorial Libraries

In general it is not possible to construct library members directly from counting
series. In order to solve this problem we need to apply the relationship between
permutational isomers and double cosets introduced in Refs. [8,10]. It says that the
library members created from j1 building blocks M1, . . . , jm building blocks Mm are
in one-to-one correspondence to the set of double cosets

G \ Sn/Sj1 ⊕ · · · ⊕ Sjm ,

where G denotes the automorphism group of the central molecule and Sn, Sj1 , . . . , Sjm
the full symmetric groups of order n, j1, . . . , jm, respectively. One method to generate
double cosets is using subgroup ladders [69]. An implementation MOLGEN-COMB
[70], which is specialized to applications in combinatorial chemistry, uses orderly
generation for the construction of double cosets.

A completely different approach to generate combinatorial libraries and reaction
networks in general is to execute all possible reactions using a backtracking strategy
and to filter duplicate products using a canonical labeling algorithm. [71] and [72]
are just two references that describe such an approach. Chapter 11 will discuss the
generation of reaction networks in more detail.

264 Handbook of Chemoinformatics Algorithms

Many of the well-known molecular modeling packages contain modules to
generate combinatorial libraries, for instance CombiLibMaker (package: SYBYL,
company: Tripos), LibraryMaker (BenchWare, Tripos), Analog Builder (Cerius2,
Accelrys),Afferent (company: MDL), or Structure Designer (ACD). For more detailed
information on the features of these tools, the reader is referred to the product
information published by the various companies.

ACKNOWLEDGMENT

The author thanks Emma Schymanski and Christoph Rücker for carefully proofread-
ing the manuscript.

REFERENCES

1. G. Pólya. Kombinatorische anzahlbestimmungen für gruppen, graphen und chemische
verbindungen. Acta Math., 68: 145–253, 1937.

2. G. Pólya and R. C. Read. Combinatorial Enumeration of Groups, Graphs and Chemical
Compounds. Springer, New York, 1987.

3. A. T. Balaban. Enumeration of isomers. In D. Bonchev and D. H. Rouvray, (eds). Chemical
Graph Theory. Introduction and Fundamentals, Abacus Press, Gordon and Breach, New
York, 1991, pp. 177–234.

4. A. C. Lunn and J. K. Senior. Isomerism and configuration. J. Phys. Chem., 33: 1027–1079,
1929.

5. J. H. Redfield. The theory of group-reduced distributions. Am. J. Math., 49: 433–455,
1927.

6. A. Kerber. Algebraic Combinatorics via Finite Group Actions. B.I. Wissenschaftsverlag,
Manheim, Germany, 2nd ed., 1999.

7. C. C. Sims. Computation with permutation groups. In S. R. Petrick, (ed.), Proceedings of
the Second Symposium on Symbolic and Algebraic Manipulation, New York, pp. 23–28,
1971.

8. E. Ruch, W. Hässelbarth, and B. Richter. Doppelnebenklassen als klassenbegriff und
nomenklaturprinzip für Isomere und ihre abzählung. Theor. Chim. Acta, 19: 288–300,
1970.

9. W. Hässelbarth, E. Ruch, D. J. Klein, and T. H. Seligman. Bilateral classes. J. Math. Phys.,
21: 951–953, 1980.

10. E. Ruch and D. J. Klein. Double cosets in chemistry and physics. Theor. Chim. Acta, 63:
447–472, 1983.

11. M. van Almsick, H. Dolhaine, and H. Hönig. Efficient algorithms to enumerate isomers
and diamutamers with more than one type of substituent. J. Chem. Inf. Comput. Sci., 40:
956–966, 2000.

12. A. Kerber, A. Kohnert, and A. Lascoux. SYMMETRICA, an object oriented computer-
algebra system for the symmetric group. J. Symb. Comput., 14: 195–203, 1992.

13. R. C. Read. The enumeration of locally restricted graphs II. J. Lond. Math. Soc., 35: 344,
1960.

14. J.-L. Faulon, D. Visco Jr., and D. Roe. Enumerating molecules. In K. Lipkowitz (Ed.),
Reviews in Computational Chemistry, Vol. 21, Wiley–VCH, New York, pp. 209–286,
2005.

Structure Enumeration and Sampling 265

15. R. W. Robinson and W. C. Wormald. Numbers of cubic graphs. J. Graph Theory, 7:
436–467, 1983.

16. J. Wang, R. Li, and S. Wang. Enumeration of isomers of acyclic saturated hydroxyl ethers.
J. Math. Chem., 33: 171–179, 2003.

17. R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and J. Lederberg. Applications of Arti-
ficial Intelligence for Organic Chemistry: The DENDRAL Project. McGraw-Hill Book,
New York, 1980.

18. H. R. Henze and C. M. Blair. The number of structurally isomeric alcohols of the methanol
series. J. Am. Chem. Soc., 53: 3077–3085, 1931.

19. J. Lederberg. DENDRAL-64, a system for computer construction, enumeration and nota-
tion of organic molecules as tree structures and cyclic graphs. Interim Report. NASA
CR-57029, National Aeronautics and Space Administration, 1964.

20. C. Jordan. Sur les assemblages des lignes. Reine Angew. Math., 70: 185–190, 1869.
21. R. Aringhieri, P. Hansen, and F. Malucelli. Chemical trees enumeration algorithms.

Technical Report. TR-99-09, Università di Pisa, 1999.
22. J. Lederberg, G. L. Sutherland, B. G. Buchanan, E. A. Feigenbaum, A. V. Robertson, A. M.

Duffield, and C. Djerassi. Applications of artificial intelligence for chemical inference. I.
Number of possible organic compounds. Acyclic structures containing carbon, hydrogen,
oxygen, and nitrogen. J. Am. Chem. Soc., 91: 2973–2976, 1969.

23. J. Lederberg. Topological mapping of organic molecules. Proc. Natl. Acad. Sci. USA, 53:
134–139, 1965.

24. L. M. Masinter, N. S. Sridharan, J. Lederberg, and D. H. Smith. Applications of artifi-
cial intelligence for chemical inference. XII. Exhaustive generation of cyclic and acyclic
isomers. J. Am. Chem. Soc., 96: 7702–7714, 1974.

25. H. Brown and L. Masinter. An algorithm for the construction of the graphs of organic
molecules. Technical Report, STAN-CS-73-361, Computer Science Department, Stanford
University, 1973.

26. H. Brown, L. Masinter, and L. Hjelmeland. Constructive graph labeling using double
cosets. Technical Report, STAN-CS-72-318, Computer Science Department, Stanford
University, 1972.

27. H. Brown, L. Hjelmeland, and L. Masinter. Constructive graph labeling using double
cosets. Discr. Math., 7: 1–30, 1974.

28. L. M. Masinter, N. S. Sridharan, R. E. Carhart, and D. H. Smith. Applications of artificial
intelligence for chemical inference. XIII. Labeling of objects having symmetry. J. Am.
Chem. Soc., 96: 7714–7723, 1974.

29. R. E. Carhart, D. H. Smith, N. A. B. Gray, J. G. Nourse, and C. Djerassi. GENOA: A com-
puter program for structure elucidation utilizing overlapping and alternative substructures.
J. Org. Chem., 46: 1708–1718, 1981.

30. R. C. Read. Everyone a winner, Volume 2 of Annals of Discrete Mathematics, North-
Holland Publishing Company, Amsterdam, The Netherlands, pp. 107–120, 1978.

31. I. A. Faradzhev. Generation of Nonisomorphic Graphs with a Given Degree Sequence,
Algorithmic Studies in Combinatorics. NAUKA, Moscow, Russia, pp. 11–19, 1978. In
Russian.

32. I. A. Faradzhev. Constructive enumeration of combinatorial objects. Problèmes Combina-
toires et Théorie des Graphes, 260: 131–135, 1978. (Colloq. Internat. CNRS, University of
Orsay, Orsay 1976). For details see http://www.amazon.com/Problemes-combinatoires-
theorie-graphes-internationaux/dp/2222020700

33. R. Grund. Construction of molecular graphs with given hybridizations and non-
overlapping fragments. Bayreuther Math. Schr., 49: 1–113, 1995. In German.

266 Handbook of Chemoinformatics Algorithms

34. M. Meringer. Fast generation of regular graphs and construction of cages. J. Graph Theory,
30: 137–146, 1999.

35. C. Benecke, R. Grund, R. Hohberger, A. Kerber, R. Laue, and T. Wieland. MOLGEN+, a
Generator of connectivity isomers and stereoisomers for molecular structure elucidation.
Anal. Chim. Acta, 314: 141–147, 1995.

36. C. Benecke, T. Grüner, A. Kerber, R. Laue, and T. Wieland. Molecular structure feneration
with MOLGEN, new features and future developments. Fresenius J. Anal. Chem., 358:
23–32, 1997.

37. R. Laue. Construction of combinatorial objects—A tutorial. Bayreuther Mathematische
Schriften, 43: 53–96, 1993.

38. R. Kerber and A. Laue. Group actions, double cosets, and homomorphisms: Unifying
concepts for the constructive theory of discrete structures. Acta Appl. Math., 52: 63–90,
1998.

39. T. Grüner, R. Laue, and M. Meringer. Algorithms for group actions: homomorphism
principle and orderly generation applied to graphs, volume 28 of DIMACS series in
discrete mathematics and theoretical computer science, American Mathematical Society,
Providence, RI, 113–122, 1996.

40. B. D. McKay. Isomorph-free exhaustive generation. J. Algorithms, 26: 306–324, 1998.
41. L. A. Goldberg. Efficient algorithms for listing unlabeled graphs. J. Algorithms, 13:

128–143, 1992.
42. E. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.

J. Comput. Syst. Sci., 25: 42–65, 1982.
43. R. Laue, T. Grüner, M. Meringer, and A. Kerber. Constrained generation of molecular

graphs, volume 69 of DIMACS series in discrete mathematics and theoretical computer
science: Graphs and discovery, Am. Math. Soc., 319–332, 2005.

44. T. Grüner, A. Kerber, R. Laue, and M. Meringer. MOLGEN 4.0. MATCH Commun. Math.
Comput. Chem., 37: 205–208, 1998.

45. E. L. Schymanski, C. Meinert, M. Meringer, and W. Brack. The use of MS classifiers and
structure generation to assist in the identification of unknowns in effect-directed analysis.
Anal. Chim. Acta, 615: 136–147, 2008.

46. K. Funatsu, N. Miyabayaski, and S. Sasaki. Further development of structure generation
in the automated structure elucidation system CHEMICS. J. Chem. Inf. Comput. Sci., 28:
18–28, 1988.

47. V. Kvasnicka and J. Pospichal. Canonical indexing and the constructive enumeration of
molecular graphs. J. Chem. Inf. Comput. Sci., 30: 99–105, 1990.

48. M. Badertscher, A. Korytko, K.-P. Schulz, M. Madison, M. E. Munk, P. Portman, M. Jung-
hans, P. Fontana, and E. Pretsch. Assemble 2.0: A structure generator. Chemom. Intel. Lab.
Syst., 51: 73–79, 2000.

49. M. E. Elyashberg, E. R. Martirosian, Y. Z. Karasev, H. Thiele, and H. Somberg. X-PERT:
A user friendly expert system for molecular structure elucidation by spectral methods.
Anal. Chim. Acta, 337: 265–286, 1997.

50. M. S. Molchanova and N. S. Zefirov. Irredundant generation of isomeric molecular
structures with some known fragments. J. Chem. Inf. Comput. Sci., 38: 8–22, 1998.

51. S. G. Molodtsov. The generation of molecular graphs with obligatory, forbidden and
desirable fragments. MATCH Commun. Math. Comput. Chem., 37: 157–162, 1998.

52. J. D. Dixon and H. S. Wilf. The random selection of unlabeled graphs. J. Algorithms, 4:
205–213, 1983.

53. N. C. Wormald. Generating random unlabeled graphs. SIAM J. Comput., 16: 717–727,
1987.

Structure Enumeration and Sampling 267

54. L. A. Goldberg and M. Jerrum. Randomly sampling molecules. SIAM J. Comput., 29:
834–853, 1999.

55. J.-L. Faulon. Stochastic generator of chemical structure. 2. Using simulated annealing to
search the space of constitutional isomers. J. Chem. Inf. Comput. Sci., 36: 731–740, 1996.

56. J.-L. Faulon. Isomorphism, automorphism partitioning, and canonical labeling can be
solved in polynomial-time for molecular graphs. J. Chem. Inf. Comput. Sci., 38: 432–444,
1998.

57. J. Meiler and M. Will. Automated structure elucidation of organic molecules from 13C
NMR spectra using genetic algorithms and neural networks. J. Chem. Inf. Comput. Sci.,
41(6): 1535–1546, 2001.

58. M. Will and J. Meiler. Genius: A genetic algorithm for automated structure elucidation
from 13C NMR spectra. J. Am. Chem. Soc., 124: 1868–1870, 2002.

59. A. Globus, J. Lawton, and T. Wipke. Automatic molecular design using evolutionary
techniques. Nanotechnology, 10: 290–299, 1999.

60. T. Fink, H. Bruggesser, and J.-L. Reymond. Virtual exploration of the small-molecule
chemical universe below 160 Daltons. Angew. Chem. Internat. Ed., 44(10): 1504–1508,
2005.

61. T. Fink and J. L. Reymond. Virtual exploration of the chemical universe up to 11 atoms
of C, N, O, F: Assembly of 26.4 million structures (110.9 million stereoisomers) and
analysis for new ring systems, stereochemistry, physicochemical properties, compound
classes, and drug discovery. J. Chem. Inf. Model., 47: 342–353, 2007.

62. B. D. McKay. Nauty User’s Guide (version 1.5). Technical Report, TR-CS-90-02,
Department of Computer Science, Australian National University, 1990.

63. S. Bohanec and M. Perdih. Symmetry of chemical structures: A novel method of graph
automorphism group determination. J. Chem. Inf. Comput. Sci., 33: 719–726, 1993.

64. D. Weininger, A. Weininger, and J. L. Weininger. SMILES. 2. Algorithm for generation
of unique SMILES notation. J. Chem. Inf. Comput. Sci., 29: 97– 101, 1989.

65. J. G. Nourse, R. E. Carhart, D. H. Smith, and C. Djerassi. Exhaustive generation of
stereoisomers for structure elucidation. J. Am. Chem. Soc., 101: 1216–1223, 1979.

66. T. I. Oprea and J. M. Blaney. Cheminformatics approaches to fragment-based lead dis-
covery, volume 34 of methods and principles in medicinal chemistry: Fragment-based
approaches in drug discovery, chapter 5, pp. 91–111. Wiley-VCH, Weinheim, Germany,
2006.

67. A. Kerber, R. Laue, M. Meringer, and C. Rücker. Molecules in Silico: Potential versus
known organic compounds. MATCH Commun. Math. Comput. Chem., 54: 301–312, 2005.

68. M. Meringer. Mathematical Models for Combinatorial Chemistry and Molecular Structure
Elucidation. Logos–Verlag, Berlin, 2004. In German.

69. B. Schmalz. Verwendung von untergruppenleitern zur bestimmung von doppelneben-
klassen. Bayreuther Mathematische Schriften, 31: 109–143, 1993.

70. R. Gugisch, A. Kerber, R. Laue, M. Meringer, and J. Weidinger. MOLGEN–COMB, a
software package for combinatorial chemistry. MATCH Commun. Math. Comput. Chem.,
41: 189–203, 2000.

71. G. Benkö, C. Flamm, and F. Stadler. A graph–based toy model of chemistry. J. Chem. Inf.
Comput. Sci., 43: 1085–1093, 2003.

72. A. Kerber, R. Laue, M. Meringer, and C. Rücker. Molecules in Silico: A graph description
of chemical reactions. J. Chem. Inf. Model., 47: 805–817, 2007.

9 Computer-Aided
Molecular Design
Inverse Design

Donald P. Visco, Jr.

CONTENTS

9.1 Introduction. .270
9.2 CAMD and Quantitative Structure–Activity Relationship

(QSAR)/Inverse-QSAR (iQSAR) .271
9.2.1 QSAR. .271
9.2.2 The Origins of CAMD .. .272
9.2.3 Inverse QSAR .272

9.3 General Features of CAMD .. .273
9.4 Generate and Test Approach of Gani and Coworkers .273

9.4.1 Hybrid-CAMD .. .274
9.4.1.1 Predesign Phase. .274
9.4.1.2 Design Phase. .274
9.4.1.3 Postdesign Phase .278

9.4.2 Case Study: Chemical Process Industry Application278
9.4.3 Case Study: Bio-Related Application .278

9.5 CAMD as Optimization .279
9.5.1 Mixed-Integer Linear Programming Algorithm for CAMD280

9.5.1.1 Molecular Representation .280
9.5.1.2 Constraint Equations .280
9.5.1.3 Case Study .282
9.5.1.4 Case Study: Bio-Related Application. .282

9.5.2 CAMD Using Signature .283
9.5.2.1 What Is Signature? .283
9.5.2.2 Inverse Design Algorithm Using Signature285
9.5.2.3 Case Study: Chemical Process Industry Application288
9.5.2.4 Case Study: Bio-Related Application. .288

9.6 Concluding Remarks .289
References .290

269

270 Handbook of Chemoinformatics Algorithms

9.1 INTRODUCTION

“Molecular design” is a term that has many connotations in a variety of fields. Cer-
tainly one can perform experimental work on various compounds and, through an
analysis of their properties, propose a new substance with a desired property value.
This would be an example of molecular design. However, in this chapter we will
focus on the in silico approach to molecular design, which goes by the catch-all term
“computer-aided molecular design,” or CAMD.

At its most basic level, CAMD is the application of computer-implemented algo-
rithms that are utilized to design a molecule for a particular application. Normally,
when one considers the term “molecular design,” a common thought is in the area
of therapeutics. Many researchers in industry and academia alike are involved in the
design of drugs and, accordingly, extensive effort has been afforded to developing
techniques specific to these types of systems [1–4]. However, while not as visible
or attractive as marketing the latest pharmaceutical, CAMD is a popular and useful
technique in many other areas, such as for polymers [5,6] or in solvent design [7].

In general, CAMD has a practically infinite solution space wherein to search
for candidates. As we shall see in this chapter, when the desired molecules are for
biological systems, the solution space is estimated to be at least 1060 [8], which is
a relatively tiny fraction of the space as a whole. Large search spaces are both a
blessing and a curse. With a vast amount of compounds to evaluate, there is more of a
possibility to find a higher-quality and/or novel candidate. This could, in turn, lead to
a discovery with the potential for great economic impact for a particular company. On
the other hand, with such a big “hay stack,” enormous time and effort could be spent
in a search that leads nowhere and is unproductive. Accordingly, efforts are made
a priori to limit the search space using techniques such as full-fledged templating [9]
or requiring the presence of certain features in a candidate molecule [10].

The two most visible industries using CAMD are the chemical process industry
and the pharmaceutical industry. While both industries are solving CAMD problems,
they differ in substantial ways. For example, the chemical process industry regularly
uses CAMD in the area of solvent design [7]. Solvents are designed to have certain
properties for applications in a particular area and outputs of CAMD algorithms are
scored based on predicted properties (most often from group-contribution methods).
In the pharmaceutical industry, CAMD is often used in a de novo approach [11,12].
In its most popular implementation, ligands are built within an active receptor site
through a CAMD algorithm, although in reality the term de novo has been used loosely
to encompass virtually any sort of computational drug design [11]. Hence, while both
industries use algorithms that share the common features of computational molecular
design and scoring of candidates, the scoring functions used and (ultimately) the
algorithms employed to make (or revise) the selected candidates are different. For
more details on specific de novo design approaches, many good reviews exist [11,12].

This chapter presents general molecular design methods where compounds are
designed using structure–activity or structure–property relationships. Chapter 10
focuses on drug design and, in particular, de novo drug design. With de novo design,
compounds are constructed ab initio to complement a given target receptor. In con-
trast to the next chapter, the techniques presented here are not limited to drugs

Computer-Aided Molecular Design 271

and do not require the knowledge of potential targets. Precisely, we focus on three
inverse design techniques that have been used to design compounds for both prod-
uct design/engineering applications and for a biological-related application during
the last decade. We have chosen these three since they present a broad overview
of some of the important issues associated with design of molecules and have been
used to design compounds for both engineering applications and bio-related appli-
cations. The first algorithm presented, a group-based generate and test approach, is
that derived from the work of Gani and coworkers during the early 1980s [13,14], but
modified since that time and is still an important CAMD approach to this day [15].
The second algorithm is representative of the approach to treat molecular design as an
optimization problem solved using a mixed-integer nonlinear approach, popularized
by the work of Maranas [6,16]. Here, topological indices are incorporated in con-
junction with adjacency matrices and we present a recent implementation based on
the work of Camarda and Sunderesan [17]. The third algorithm comes from the work
of Faulon and Visco using fragments of molecules (called Signatures) in conjunction
with a powerful structure generator to solve the molecular design problem [18,19].
For each of the three approaches, a case study is presented showing two molecular
design results from the implementation of each algorithm: one for an engineering
application and one for a bio-related application.

9.2 CAMD AND QUANTITATIVE STRUCTURE–ACTIVITY
RELATIONSHIP (QSAR)/INVERSE-QSAR (iQSAR)

Evaluating the fitness of molecular candidates derived from CAMD algorithms is
regularly performed by using models that are trained on experimental data. QSARs
for a particular property of interest are normally how candidates are scored. In this
section, we provide an overview of QSARs and CAMD as well as a way to utilize a
QSAR in a reverse fashion as an inverse design technique.

9.2.1 QSAR

A QSAR is a quantitative structure–activity (or property) relationship, which pur-
ports to describe something about a molecule (its activity against a certain protein, its
boiling point, etc.) based on the molecule’s structure. It was introduced in the 1960s
with the work of Hansch [20] and is still an active area of research [21] with a rich
history [22], although its utility as a predictive tool has been called into question [23].
While molecular properties themselves or whole-molecule descriptors can be used
as independent variables in a QSAR, a popular approach is to use independent vari-
ables based on subparts of the molecule. For example, group-contribution techniques
decompose a molecule into smaller groups where each group provides some contri-
bution to a predicted molecular property. Such approaches are well highlighted in
The Properties of Gases and Liquids [24]. Other techniques examine a 2D graphical
representation of a molecule where atoms are nodes and bonds are edges. Here, an
operator on some portion of the molecular graph plays the role of independent variable
and many of these descriptors exist in the literature today [25]. Note that “QSAR”
is a bit of a catch-all term and we use it in this chapter to denote any property of

272 Handbook of Chemoinformatics Algorithms

interest and not just biological activity. Further information on QSARs is given in
Chapters 6 and 7.

9.2.2 THE ORIGINS OF CAMD

Computer-aided molecular design has its origins in the early 1980s with the work
of Gani and Brignole [13,14]. Here, functional groups derived to estimate activity
coefficients of nonelectrolytes in an approach called UNIFAC [26] were used in a
generate and test approach for use in solvent selection. This technique, in general,
suffered greatly from combinatorial explosion since many nonfeasible structures are
generated through the algorithm. Additionally, accounting for steric effects is often
not successful using group-contribution techniques [27].

9.2.3 INVERSE QSAR

An alternative approach to using prescribed functional groups in a CAMD algorithm
is the so-called iQSAR techniques [28]. Here, rather than using a QSAR to score
potential molecules created from combining groups, one fixes a desired value (or range
of values) and attempts to solve for the set of independent variables (descriptors) that
satisfy the QSAR. Once this is done, a molecule (or molecules) is generated (normally
from a structure generator) based on those values of the independent variables (if ever
possible).

The first complete attempt at iQSAR was reported by Zefirov and coworkers in
1990 in relation to connectivity indices [29]. In this algorithm, a value of the order-1
connectivity index is used as input and is rewritten in terms of the distribution of edge
types. Valence-type distributions are determined from this edge type and structures
are generated from a structural isomer generation code. Reported degeneracy issues
exist that are associated with many structures possessing the same connectivity index.
Additionally, since the edge and valence-type distributions do not follow a one-to-one
correspondence, structures that are generated from the valence-type distributions are
not guaranteed to possess the required value of the connectivity index.

A few years later, Zefirov and coworkers again looked at iQSAR, but this time in
relation to another topological index, here the kappa (κ) indices [30]. The algorithm
is based on setting a desired number of vertices in a 2D graph of a molecule and
partitioning that number into the number of nodes of degrees 1, 2, 3, and 4. From the
conditions set on graph existence associated with a particular partition and by fixing
a desired value (or range of values) from a QSAR based on the κ indices, bond path
equations are determined and act as constraints on the partitions. The partitions that
pass are then generated into structures using a structure generator. While the approach
is straightforward, its limitations are the use of κ indices with the QSAR.Additionally,
there are known degeneracy issues associated with κ indices.

Other iQSAR approaches for different independent variables have been devel-
oped as well, such as Kier and Hall’s use of molecular connectivity indices [31,32]
and Zefirov’s use of the Hosoya Index [33] as well as other information topological
indices [34].

Computer-Aided Molecular Design 273

9.3 GENERAL FEATURES OF CAMD

In CAMD, molecules are made from fragments or groups. However, there is no
standard as to what are considered groups. Accordingly, the same algorithms, which
utilize different starting fragments, can end up with different optimally predicted
solutions.

Computer-aided molecular design can be broadly described in three general steps,
which are presented below.

Step 1: Selection of groups or fragments CAMD requires a pool of groups or
fragments in order to build molecules. The selection of these groups is not standard
and is normally a function of the problem to be solved. In fact, even what is considered
a fragment is problem dependent since fragments can be as small as a single atom or
contain many atoms [35].

Step 2: Making molecules (by combining groups/modifying candidates) If one
is working with groups, they must be merged together to form molecules. However,
there are two issues here. First, how the groups are selected is an algorithmic issue.
While one can use a technique that exhaustively selects groups (a so-called generate
and test paradigm), a variety of constraints can be implemented at this stage such
as requiring certain groups to be present (but not exceeding a certain number) [36].
Second, rules must be developed on how the various groups can merge together
based on valence arguments (among other user-defined constraints) [17,36,37]. Those
molecules that have been deemed structurally feasible are ready to be evaluated for
fitness. Note also that candidate molecules can be modified in this step as well (if
part of a feedback loop) through stochastic techniques such as genetic algorithms
[38,39].

Step 3: Evaluating candidate fitness Depending on the problem to be solved,
a single scoring function may be used or many scoring functions may be layered
together, to either filter out or rank solutions. While the scoring is normally based
on group contribution (through QSARs), other factors such as molecular stability
[40] or synthetic feasibility [41] can be used as well. It is also here where, if using a
stochastic algorithm, candidates can be modified (via step 2) in an attempt to improve
the rating of potential candidates. The best candidates are ranked and the top ones
move onto further analysis, through either experimental verification or additional
testing.

9.4 GENERATE AND TEST APPROACH
OF GANI AND COWORKERS

One of the most popular CAMD algorithms was implemented by Gani and coworkers
based on the use of the UNIFAC groups.We describe that algorithm here. In 1991, Gani
and coworkers refined their previous approaches [13,14] to present a methodology
for CAMD based on the previously identified UNIFAC groups [36]. Working with
the UNIFAC groups provided direct access to various parameters for these groups
that are needed during property estimation.

Gani created six classes of compounds based on the number of attachments avail-
able in a particular group. Class 0 is just molecules themselves (such as methanol),

274 Handbook of Chemoinformatics Algorithms

while Class 5 is specific for aromatic groups. In between those classes, the label refers
to the number of attachments available for a particular group (re: CH3 is in class 1,
etc.). Within each class, five categories exist that house information on type of attach-
ment, basically encoding chemical feasibility and stability. The lower the category
number, the less restrictions placed on a particular group, in general.

While there have been modifications to this approach since its inception such
as the use of second-order groups [35], we focus on the broader methodology that
implements these ideas, the Hybrid-CAMD algorithm [40,42,43].

9.4.1 HYBRID-CAMD

The Computer Aided Process-Product Engineering Center (CAPEC) of the Techni-
cal University of Denmark offers their Integrated Computer-Aided System (ICAS),
inside of which is housed a computer-aided molecular design code called Pro-
CAMD (v 3.6). The educational version of ICAS boasts at least 50 academic users
worldwide and the CAPEC counts 32 companies from a varying range of indus-
tries as industrial consortium members. ProCAMD is based on the Hybrid-CAMD
[40,42,43] approach, which combines the generate and test paradigm of previous
techniques with inclusion of higher-order information (such as molecular connectiv-
ity through topological indices). Owing to its popularity, the algorithm is described
below.

The Hybrid-CAMD approach to molecular design comprises three steps: (1) pre-
design phase, (2) design phase, and (3) postdesign phase. We will describe each step
individually below.

9.4.1.1 Predesign Phase

The predesign phase is important since it speaks of the practicality of solving a par-
ticular CAMD problem. If equations or data are not available to estimate a particular
property, it is identified at this step.

ALGORITHM 9.1 HYBRID-CAMD: PREDESIGN PHASE ALGORITHM

1. Problem specification, including specific information on properties of interest,
range of application, and so on

2. List equations/methods (e.g., QSARs) available to predict required properties
3. Based on step 2, select proper groups to be used to build molecules

9.4.1.2 Design Phase

The design phase is a set of four generate-and-test steps (called levels), which have
an increasing sophistication of structural information used at each step. In effect, this
is basically a set of four filters, which have an increasingly fine (and computationally
expensive) threshold. A lot of solutions can be evaluated quickly in lower levels, yet
the higher levels provide more stringent tests of fitness, although they take a longer
time to evaluate. Such a multistep approach is purported to mitigate the combinatorial

Computer-Aided Molecular Design 275

explosion that was associated with earlier versions of this type of generate and test
technique [40].

9.4.1.2.1 Level 1

Level 1 is a generate-and-test algorithm that finds sets (called vectors) of feasible
groups that also pass any design constraints based on these groups. The groups are
the UNIFAC first-order groups and are characterized by five classes (based on valency)
and five categories (based on chemical feasibility/stability). Sets of feasible groups
passing this level are then feasible from a valency/feasibility/stability standpoint as
well as from a property standpoint. This algorithm, which is presented below, follows
from that given by the authors.

ALGORITHM 9.2 HYBRID-CAMD: DESIGN PHASE ALGORITHM
(LEVEL 1)

1. For a given set of building blocks (re: groups), set min/max number of groups
in a compound (Kmin and Kmax) and type of compound (acyclic, cyclic or
aromatic)

2. For K = Kmin, Kmax

a. Solve feasibility constraints associated with classes for a given value
of K

i. Solve constraints associated with categories based on chemical
feasibility and stability.

ii. Generate all possible combinations of groups within a particular
solution

iii. Screen each combination against property constraint(s) based on
knowledge of number and type of group only

3. K = K + 1
4. If K > Kmax, Stop, else go to step 2

Note that step 2a is simply a sum of the number of partitions of length 4 that
can be obtained from a given value of K since the classes reflect the amount
of available attachments for that class (re: class 1 has one free attachment, such
as –CH3, etc.). Also, if a cyclic compound is chosen, an additional constraint
is added to the partition, which is based on the maximum number of rings in a
molecule.

9.4.1.2.2 Level 2

Level 2 is the step that takes the vectors that pass through Level 1 and generates 2D
structures in a recursive algorithm that also removes duplicate structures. In essence,
the algorithm is finding the feasible spanning trees from the base graph, which pro-
vides all of the potential connections between groups. Caution is taken to split up
nonsymmetric groups that have more than one free connection. A key aspect of the
algorithm is an accounting of which groups have free connections available and which

276 Handbook of Chemoinformatics Algorithms

do not as the algorithm proceeds. Note that an additional step is required if cyclic
compounds are to be generated.

ALGORITHM 9.3 HYBRID-CAMD: DESIGN PHASE ALGORITHM
(LEVEL 2)

1. Set list of generated compounds to 0
2. Choose a solution vector, V
3. Choose a starting group from V
4. For all free connections in V

a. Select a free connection

i. For all unused groups in V

1. If connection is allowed between free connection and
unused group, make a copy of V with the new connection
and add to list of generated compounds

5. If all groups have been used, STOP
6. Remove duplicate solutions
7. If all groups have not been used, yet no free connections exist, remove solution.
8. Goto step 1, if remaining vectors exist

Once the structures have been generated, the potential exists to use additional
property estimation techniques to remove those structures that do not fall within
constraint limits. In the Hybrid-CAMD approach, the notion of second-order groups
[35] is used, which are, in essence, combinations of smaller first-order groups. Here,
a pattern matching technique for these second-order groups is used on the adjacency
matrix to determine the absence or presence of these second-order groups. This infor-
mation, along with QSARs available based on second-order groups, can be used to
predict the physical properties of the candidate molecule. Note that the adjacency
matrix at this level is group based and provides a 2D table of connectivity between
groups in the structure.

9.4.1.2.3 Level 3

The third level aims to transform connectivity information between groups to that
between atoms and to utilize constraints that are based on atomistic connectivity (such
as topological indices). In this level, the groups of the group-based adjacency matrix
are expanded atomistically to create an atom-based adjacency matrix. However, there
can be a degeneracy associated with isomers of some groups when transforming to
an atomic description. Thus, some group-based adjacency matrices will provide more
than one atom-based adjacency matrices.

ALGORITHM 9.4 HYBRID-CAMD: DESIGN PHASE ALGORITHM
(LEVEL 3)

1. For each group-based adjacency matrix

a. Expand the group into constituent atoms in the matrix and fill in “1” to
establish connectivity within the group

Computer-Aided Molecular Design 277

b. Where degeneracy exists, create new matrices that account for this
connectivity

2. Find where original groups connect and identify with a “1” in the new atom-
based adjacency matrix.

3. Stop

Determining atomistic-level connectivity opens up the possibility to use many
QSARs that have already been developed based on topological indices. Connectivity
indices [44,45] and shape indices [46–48], for example, have been used as molecular
descriptors in previous QSARs for a variety of physical properties. Accordingly, this
information can be used as a further screen of potential candidate solutions, especially
where different isomers possess widely different properties.

9.4.1.2.4 Level 4

The final level of the design phase algorithm converts the 2D representation of the
molecule to a 3D representation, with an accounting for potential structural isomers.
Once the 3D representation comes into being, additional techniques to evaluate the
fitness of the structure may be employed.

ALGORITHM 9.5 HYBRID-CAMD: DESIGN PHASE ALGORITHM
(LEVEL 4)

1. Choose an atom-based adjacency matrix
2. Select a single-bonded atom, J, and assign its position as the origin
3. Select the atom it is bonded to, K, and a direction
4. Find number and types of bonds K participates in
5. Determine position of K based on bond length and position of J
6. Find other atoms bonded to K and set distance and direction
7. Repeat until all atoms are used
8. For each atom

a. If chiral centers possible, duplicate structure and make appropriate
position swaps for R/S isomers

9. For each double bond

a. Analyze if possible for Z/E isomers. If so, duplicate structure and make
appropriate positional swaps for Z/E isomers

Note that not included in the algorithm above is an additional step to create cyclic
structures. If this occurs, an analysis of the possibility for cis/trans isomerism is
performed as well. Additionally, there is no step in the algorithm for the proper
inclusion of both torsional angles and uniformity of bond lengths in a ring.

Once the 3D structure(s) are obtained from the 2D atom-based adjacency matrix,
various structure-based analytical techniques can be used involving molecular force
fields. This can potentially address issues of torsional angles or the uniformity of bond
lengths in a ring. Potential stability issues in a structure that had not been a factor

278 Handbook of Chemoinformatics Algorithms

up to this point might be identified here and that structure discarded from the list of
potential CAMD candidate solutions.

9.4.1.3 Postdesign Phase

When candidate solutions make it through the design phase, additional analysis is
required to determine if they are suitable compounds to solve the problem at hand.
Issues such as price, availability, ease of synthesis, and potential environmental impact
are just a few of the factors that might preclude a compound for further consideration.
Additionally, some design constraints may not have been accessible through modeling
and, thus, experimentation is required to determine these properties (or confirm some
of the previously predicted properties inside the CAMD algorithm).

9.4.2 CASE STUDY: CHEMICAL PROCESS INDUSTRY APPLICATION

As previously mentioned, the Hybrid-CAMD algorithm is implemented in the soft-
ware package ProCAMD, which is a tool within ICAS. Several case studies have been
presented and suggested [15]; we describe one here [7,49].

3-Octanol is oxidized to 3-octanone in the solvent dichloromethane. However,
while this solvent has many favorable properties, it is not a green solvent (it has a
nonzero ozone-depletion potential) and, thus, a replacement is warranted.

The desired list of properties for a replacement solvent includes

• Melting point <250 K
• Boiling point <380 K
• Hildebrand solubility parameter between 17 and 19 MPa1/2

• Liquid density at 298 K between 0.95 and 1.05 g/cm3

• log P < 2
• log LC50 < 3
• ODP and GWP should be low
• Solvent–solute solubility should be high
• Solvent–water should be immiscible

Implementing the Hybrid-CAMD algorithm, it was found that 4936 compounds
(which include isomers) were generated with 215 of those satisfying all of the property
constraints. The authors report that some of these compounds include 2-pentanone,
sec-butyl acetate, 2-oxepanone, γ-valerolactone, and 2-ethoxy ethylacetate, with the
first compound being the most environment friendly (Figure 9.1).

9.4.3 CASE STUDY: BIO-RELATED APPLICATION

Gani reports on a case study to design active herbicides with the α-choloroacetamideo-
chloroacetanilide backbone [15]. Based on a QSAR where log P was an independent
variable, potential candidates were screened based on activity (by first estimating
log P) and the most active compound was found. The backbone structure had three
substituent points and the solution with the highest activity is presented in Figure 9.2.

Computer-Aided Molecular Design 279

OH

O

Octan-3-ol Octan-3-one

O

Pentan-2-one

+ H2

FIGURE 9.1 Using the Hyper CAMD algorithm, pentan-2-one is among the best solvents
predicted to replace dichloromethane for the oxidation of octan-3-ol. (From Gani, R., C.
Jimenez-Gonzalez, and D.J.C. Constable, Comput. Chem. Eng., 2005, 29: 1661–1676. With
permission. Copyright 2005 Elsevier.)

Cl N

NHO

O

R1

R2

R3

α-Chloroacetamideo-chloroacetanilide
backbone

Cl N

NHO

O

Optimal structure

FIGURE 9.2 The template compound and the predicted optimally active structure.

9.5 CAMD AS OPTIMIZATION

Since the goal of CAMD is to build a molecule (or set of molecules) that has a certain
property (or range of properties), this can be considered an optimization problem since
one can attempt to minimize the difference between the desired and the predicted
property. Couched in this fashion, techniques from optimization theory have been
brought to bear for use within CAMD. Such approaches were initiated in the 1990s
[50,51] and the first optimization attempt to use a connectivity index was reported by
1998 by Raman and Maranas [16].

In general, the CAMD as an optimization approach is to formulate the objective
function using the desired properties while incorporating constraints on the structures
that can be created. This falls under the wide category of mixed-integer nonlinear
programs (MINLP), which are then solved using any of a variety of optimization
codes designed for MINLP problems. As an illustration of such an approach, we
describe the algorithm behind solving an MILP problem using connectivity indices,
although other approaches exist [52,53].

280 Handbook of Chemoinformatics Algorithms

9.5.1 MIXED-INTEGER LINEAR PROGRAMMING ALGORITHM FOR CAMD

Camarda and Sunderesan recently solved an optimization problem related to design-
ing valued-added soybean oil products [17]. They used an MILP approach in
conjunction with order 0, 1, and 2 (simple and valence) connectivity indices [54]. The
key step in their approach was the use of binary variables that allowed them to rewrite
the connectivity indices in terms of these variables. In their formulation, molecules
were represented by a partitioned adjacency matrix that describes the connectivity
of prespecified groups within a molecule (they had chosen 16 groups). The binary
variables, in turn, were related to entries in the partitioned adjacency matrix. This,
in conjunction with a Glover transformation, created objective function expressions
that were linear and, accordingly, easier to solve.

9.5.1.1 Molecular Representation

To represent a molecule, the data structure required is one that identifies whether
a particular group is present within a molecule, what other group(s) it is bonded
to and the multiplicity of that particular bond. What is used is two sets of binary
variables (re: 0 for absence; 1 for presence): W (which determines the presence or
absence of a group) and A (which determines connectivity and bond multiplicity).
Required a priori is a listing of groups to be used and their maximum occurrence
number in a molecule. For example [55], we can examine the binary variables W and
A for the molecule propane. Here, three basic groups are listed with their allowed
multiplicity given parenthetically: CH3 (3), CH2 (3), and CH (2). Accordingly, an
adjacency matrix can be written, but in this approach it is partitioned to cluster
the same groups together, resulting in a structure called a partitioned adjacency
matrix (A). We show the partitioned adjacency matrix for propane using the three
basic groups with allowed multiplicity for bond multiplicity 1 in Figure 9.3. Note
that similar matrices will exist for bond multiplicity 2 and 3, yet those will have
zero values for all elements in this instance since propane has no double or triple
bonds.

Since propane has two CH3 groups, the first one is labeled “1,” while the sec-
ond one is labeled “2.” Such a labeling refers to the row/column in the partitioned
adjacency matrix. Likewise, the single CH2 group in propane is labeled “6.” Note
that the other group available, CH, is not present in propane and has zeros for all
entries.

Now that the bonding has been accounted for using the partitioned adjacency
matrix, the presence and absence of a group is provided in an existence vector, W . In
this example, W would be the vector: W = {1, 1, 0, 0, 0, 1, 0, 0} where the labeling
mentioned previously is retained here. Once the binary variables A and W are written,
expressions for the molecular connectivity indices (both simple and valence) can be
given in terms of these variables.

9.5.1.2 Constraint Equations

With regard to constraints, molecular feasibility expressions based on the valence of
basic groups were written in terms of the binary variables. Additional expressions

Computer-Aided Molecular Design 281

limit the number of basic groups in a molecule as well as the number and types of
rings in a molecule. In order to guarantee that molecules are fully connected, network
flow constraints [56] are written in terms of the binary variables using sink and source
nodes.

ALGORITHM 9.6 MILP ALGORITHM FOR CAMD

1. Select basic groups
2. Create linear QSARs using connectivity indices for properties of interest
3. Set target values for properties of interest
4. Write objective function in terms of minimizing absolute value of difference

between QSAR prediction and target value for all properties
5. Write all constraint equations in terms of binary variables
6. Solve MILP design problem and arrive at optimal solution

The authors also allowed the use of an integer-cut equation as well in the solution
to the problem (not listed above in the algorithm) in order to make previously arrived
at solutions infeasible within the algorithm. This provided “ranked” solutions rather
than just a single optimal solution.

Note that the solutions to this problem are in terms of binary variables which, in
turn, are related to the entries of the partitioned adjacency matrix. The authors restrict
their solution space through the use of templating, which, in essence, preassigns parts
of the partitioned adjacency matrix such that a portion (or most) of the structure
is already set prior to solving the problem. This is done because of the complexity
of the problem and the computational resources required, even after linearization.

7 8

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8

1 2 3 4 5 6

0 0 0 0 0 1 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

CH3

CH2

CH

FIGURE 9.3 The partitioned adjacency matrix for propane with bond multiplicity of 1.
(Reprinted from Siddhaye, S. et al., Comput. Chem. Eng., 2004, 28: 425–434. With permission.
Copyright 2004 Elsevier.)

282 Handbook of Chemoinformatics Algorithms

CH3—(CH2)7—CH——CH—(CH2)7—N

Template

CH3—(CH2)7—CH——CH—(CH2)7—N

CH2—CH2—O—CH2—

CH2—CH2—O—CH2—

CH2—CH2—O—CH2—CH2—OH

CH2—CH2—O—CH2—CH2—OH

Optimal solution

FIGURE 9.4 Starting with a template, an optimal structure was found by the MILP algorithm
which is predicted to possess the required properties. (Reprinted from Camarda, K. and P.
Sunderesan, Ind. Eng. Chem. Res., 2005, 44: 4361–4367. With permission. Copyright 2005
American Chemical Society.)

9.5.1.3 Case Study

Chemical process industry application: Camarda and Sunderesan provide a few
examples of the implementation of this algorithm as applied to soybean oil prod-
ucts. Here, we describe the design of a fuel additive. The desired properties are as
follows:

• Hydrophilic–lipophilic balance, HLB = 8
• Lubricity between 2.0 and 3.75 N/kg
• Critical micelle concentration value between 10−1 and 10−5 mol/L

The base groups used were C, CH, C=, =CH, CH2, NH, OH, NO2, CH3, =O,
O, and N, with normal valency for each implied. QSARs were created using both
simple and valence connectivity indices, up to order 2. The problem was solved
using CPLEX 6.5 (a mixed-integer optimizer available from ILOG, Inc.) accessed
through the General Algebraic Modeling System on a SUN Ultra 10. Using a template
(Figure 9.4), the optimal solution was found in approximately 1.5 h.

The optimal structure had a predicted HLB of 7.9, a CMC of 10−3 mol/L, and a
lubricity of 3.6 N/kg.

9.5.1.4 Case Study: Bio-Related Application

Camarda and coworkers used the MILP formulation for pharmaceutical product
design [55]. In one example, starting with a penicillin backbone, their goal was to find
the optimum compound that possessed a log P value closest to 0.35 and a melting
point closest to 127◦C. The base groups used were C, CH,=CH, CH2, NH, OH, CH3,
=O, O, and F, with normal valency for each implied. QSARs were created using both
simple and valence connectivity indices, up to order 1. The problem was solved using
CPLEX 6.5 (a mixed-integer optimizer available from ILOG, Inc.) accessed through
the General Algebraic Modeling System on a SUN Ultra 10. The best solution was
found in 277 s of CPU time, which is provided in Figure 9.5 along with the template.

Computer-Aided Molecular Design 283

Template

N

S

O

OH

O

HN

O

N

S

O

OH

O

HN

O

OH

Optimal solution

FIGURE 9.5 Starting with a template common to all penicillins, an optimal structure was
found by the MILP algorithm which is predicted to possess the required properties. (Reprinted
from Siddhaye, S. et al., Comput. Chem. Eng., 2004, 28: 425–434. With permission. Copyright
2004 Elsevier.)

The optimal structure had a predicted log P value of 0.347 and a melting point of
128◦C.

9.5.2 CAMD USING SIGNATURE

In the mid-1990s, Faulon introduced the Signature molecular descriptor to elucidate
structure [57,58], and in the early part of this decade, Faulon and Visco combined
Signature with a structure generation code for use in inverse design [19,59,60]. Theirs
is an approach that sits somewhere between the CAMD methodology of Gani and
that of inverse QSAR. They use a fragmental descriptor, called Signature, and have
developed structural constraint and valence equations associated with the presence of
these fragments in a molecule. This sets up a series of Diophantine equations that are
solved, and then the solutions are filtered through scoring QSARs to arrive at optimal
candidates. 2D structures are then generated from these solutions using an in-house
code that implements an enumeration algorithm [19,57].

9.5.2.1 What Is Signature?

In the previous two algorithms discussed in this chapter (and, in fact, most CAMD
algorithms), predetermined groups are the building blocks to make molecules. These
groups can either be self-selected or come from a standard list to facilitate group-
contribution techniques, such as the UNIFAC groups [26]. Signature, on the other
hand, is a more formalized and systematic approach to generate groups [59].

In order to facilitate a description of CAMD using Signature, we briefly describe
the Signature molecular descriptor, although a formal definition is given in Chapter
3. An atomic Signature is a rooted tree of a 2D description of a molecule that spans
the local environment around the root. The height of the atomic Signature indicates
the path-length from the root atom. Height-0 is just the atom (or root), height-1 is the
atom and its neighbors away by one path-length, etc. No backtracking is allowed in
the creation of atomic Signatures [59]. In this formalism, a molecule of n atoms has
n atomic Signatures. The molecular Signature of a molecule is then the sum of its

284 Handbook of Chemoinformatics Algorithms

H H

HH

Root atom

Height 0 CC

C H

H

H

O

H Height 1 C (=C H H)

Height 2 C (=C (O H) H H)

Height 3 C (=C (O (H) H) H H)

(a)

(b)

C(=C H H) + C (=C O H) + O (C H) + 3 H (C) + H (O)

O

FIGURE 9.6 (a) The atomic Signatures at four heights for one of the carbon atoms in ethenol.
(b) The molecular Signature for ethenol at height-1.

atomic Signatures, with coefficients on each atomic Signature signifying the number
of occurrences of that atomic Signature in a molecule.

For example, let us consider the 2D graph of ethenol. The dashed arrow identifies
one of the carbon atoms for which we will write the atomic signatures of various
heights. Since there are seven atoms in ethenol, there are seven atomic Signatures
at each height. After writing all of the seven atomic Signatures for ethenol at, say,
height-1, their sum would be the molecular Signature at height-1. Note that all seven
of the height-1 atomic Signatures for ethenol are not unique; their degeneracies are
noted by the coefficients in the molecular Signature. This is shown in Figure 9.6.
The types of bonding between atoms in the Signatures are denoted in the atomic
Signature itself (as seen in Figure 9.6) and can account for bonding in aromatic rings
as well.Also note that various valence states are accounted for through different vertex
labeling, such as with nitrogen or phosphorus.

Computer-Aided Molecular Design 285

9.5.2.2 Inverse Design Algorithm Using Signature

Inverse design using Signature can be divided into a four-step process: (1) making
the atomic Signature database, (2) solving the atomic Signature constraint equations,
(3) solution evaluation, and (4) structure generation and analysis [18,61]. We discuss
each step in the next section and provide the appropriate algorithm for that step.

9.5.2.2.1 Making the Atomic Signature Database

Unlike the selection of tabulated fragments discussed in the previous two methods,
the Signature approach requires the identification of a particular dataset to work from.
The normal procedure is to use a dataset for which you have generated a QSAR for a
property (or properties) of interest. Once a dataset is selected, a specific atomic Sig-
nature height is chosen for the problem. If a small height is used (say height-0), the
building blocks are just the elements that appear in the dataset. If a large height is cho-
sen (say height-4), the building blocks are height-4 atomic Signatures, of which there
would be many for a given system. A dataset of 100 compounds might produce hun-
dreds of height-4 atomic Signatures. Thus, the selection of an atomic Signature height
controls the number and type of fragments used to make the molecules. Traditionally,
height-1 or height-2 has been used in inverse design problems using Signature, which
provides a convenient trade-off between a too general atomic Signature (low height)
and a too specific atomic Signature (high height) [5].

To convert 2D structures into its Signature representation requires the use of a
freely available translator code [62]. Structures are input in a common form (such as
an MDL mol file) and the molecular Signature of a compound is generated. This
information is parsed to develop a list of unique atomic Signatures at a desired
height.

ALGORITHM 9.7 INVERSE DESIGN WITH SIGNATURE:
GENERATING ATOMIC SIGNATURE DATABASE

1. Select particular dataset of interest
2. Select desired atomic Signature height
3. Run Signature translator code on 2-D structure files
4. Generate list of unique atomic Signatures at pre- selected height

The list of atomic signatures obtained at this step forms the set of fragments from
which new and/or novel structures will be generated.

9.5.2.2.2 Solving the Atomic Signature Constraint Equations

In order to make solutions from the atomic Signatures, they must be connected together
in a way that satisfies valency and connectivity constraints. The necessary condition to
create a connected graph using Signature is called the graphicality equation and there
is but one equation per dataset. This expression is based simply on known valences
for the various atoms (and their types) in the dataset and is given by the following

286 Handbook of Chemoinformatics Algorithms

modulus expression

Mod

(
z∑

i=2

(i − 2)ni − n1 + 2, 0

)

= 0,

where z is the maximum number of vertices of atoms in the dataset while ni is the
degree of the root of signature i [18].

The other system constraints on the atomic Signatures are related to the bonding
that occurs in a Signature. For example, consider propane, whose atomic Signatures
at height-1 (and the degeneracy of occurrence) is shown in Table 9.1.

Here, there are two types of bonds: a carbon bonded to another carbon and a carbon
bonded to a hydrogen. Let us examine the carbon–hydrogen bonding first. The first
height-1 atomic signature (x1) contributes two C−H bonds while the second height-1
atomic signature (x2) contributes three C−H bonds. The third atomic signature (x3)
contributes one H−C bond. Since the number of C−H bonds has to equal the number
of H−C bonds, the constraint equation would be: 2x1+ 3x2− x3 = 0

When working with bonds between the same atom type, such as carbon–carbon,
a similar approach is used. Here, x1 contributes 2 carbon–carbon bonds, while x2
contributes 1 carbon–carbon bond. However, an equality constraint (as in the C−H
bond example) would be unnecessarily strong here, since the atom types are the same.
Accordingly, the sum of the contributions from each atomic signature with a C−C
bond would need to be an even number. Thus, the constraint equation for the C−C
bond would be: Mod(2x1+ x2, 2) = 0. Note, finally, that the graphicality equation
here becomes Mod(2x1+ 2x2− x3+ 2, 2) = 0. The reader can use the occurrence
numbers in Table 9.1 to verify the equations [63].

Practically, instead of three equations (as in the example above) to be solved,
many (dozens) of equations are the norm for reasonable-sized datasets with a variety
of atom types. The constraint equations form a set of Diophantine equations since
they involve integer coefficients and require integer solutions. While generic solvers
exist for these types of systems [64], the most recent use within the larger CAMD
approach with Signature uses an efficient brute force approach that iterates over the
range of values of the variables in the dataset [65]. It is efficient since it starts with
the least complex variables (fewest iterations) and significantly saves computational
time by omitting the portion of the solution space that does not satisfy any single
equation.

TABLE 9.1
Height-1 Atomic Signatures for Propane

Signature Variable Occurrence

[C]([C][C][H][H]) x1 1
[C]([C][H][H][H]) x2 2
[H]([C]) x3 8

Computer-Aided Molecular Design 287

ALGORITHM 9.8 INVERSE DESIGN WITH SIGNATURE: SOLVING
THE CONSTRAINT EQUATIONS

1. Generate all constraint equations to form set of Diophantine equations
2. Determine min and max values of occurrence numbers of each atomic

signature in the dataset
3. Run efficient brute force algorithm to solve Diophantine equations

The solution to even moderate-sized problems can cause both storage and time
concerns. It is not uncommon to generate millions or even billions of solutions [61,63].
One can place scoring functions or other filtering expressions inside the brute force
algorithm to mitigate issues of storage, as needed.

9.5.2.2.3 Solution Evaluation

Once the solutions have been generated, they need to be evaluated for fitness. At
this point (or earlier) a QSAR would be generated based on data available and using
the occurrences of the atomic signatures as independent variables. Multiple QSARs
can be generated and they would be used (in succession) to identify those candidates
that satisfy target values (or ranges). The equations need not be linear. Constraints
on the number of allowed rings in the system can be applied at this point as well.
Additionally, other input can be used here to score the solutions, such as the Lipinski’s
Rule of 5 if working on pharmaceuticals [66].

ALGORITHM 9.9 INVERSE DESIGN WITH SIGNATURE: SOLUTION
EVALUATION

1. Develop QSARs for properties of interest using atomic signatures as
independent variables

2. Screen candidate solutions through QSARs and save those solutions which
possess desired predicted property values

3. Set min/max desired cycles in candidate solutions and screen solutions passing
through step 2 with cycle filter

4. Screen candidate solutions passing through step 3 with additional filters
relevant to problem

9.5.2.2.4 Structure Generation and Analysis

Once the solutions (re: a molecular Signature) have passed through the various scor-
ing routines, they are ready to be turned into 2D structures. There is a degeneracy
associated with going from a molecular Signature to a 2D structure. At small heights,
the degeneracy is quite large, but monotonically decreases with Signature height until
there is a unique 2D structure associated with a particular molecular signature. This
occurs quite rapidly and most molecular Signatures are basically nondegenerate at
height-3 [19,67].

Structure generation is performed using an algorithm developed by Faulon and
coworkers [19], based on an earlier isomer enumeration algorithm developed by
Faulon [58,68]. The algorithm is iterative and involves starting with a molecular
Signature of all atoms and no bonds and then attempts to add bonds in all possible

288 Handbook of Chemoinformatics Algorithms

ways to match the target molecular Signature. More details on implementation and
examples are provided elsewhere [19].

Once the structures are generated, postprocessing of these candidates can occur to
remove those structures that are not reasonable (such as multiple bridges or aromatic
rings not following Huckel’s rule). Additional filtering can occur based on energy
minimization via the use of force fields, if desired.

ALGORITHM 9.10 INVERSE DESIGN WITH SIGNATURE: STRUCTURE
GENERATION AND ANALYSIS

1. Submit molecular signatures to structure generation code
2. Evaluate structures based on stability/energetic constraints

a. Use of Huckel’s Rule
b. Use of intramolecular force field

At this stage, the algorithm is complete and the resulting structures that have passed
through postprocessing steps form a focused database of candidate solutions for the
problem at hand. Here, these structures may be bought (if available) or synthesized and
then evaluated by other means (such as experimentation) in order to gain additional
confidence in the solutions.

9.5.2.3 Case Study: Chemical Process Industry Application

Faulon and coworkers have implemented the above algorithm to design novel poly-
mers with desired properties [5]. They used 33 polymers and focused on glass
transition temperature, heat capacity, and density. Height-1 atomic signatures were
used on the repeat unit of the polymer. This resulted in 63 unique height-1 atomic
signatures and, accordingly, 28 constraint equations. Instead of using the brute force
approach to solve the constraint equations, they employed an implementation of the
Fortenbacher algorithm [64] to arrive at basis vectors for their solutions. From there
they calculated linear combinations of the basis vectors and arrived at over 800 million
molecular Signatures (with the constraint that no repeat unit could have more than
50 atoms). These solutions were then filtered on a second constraint that no solution
could have an occurrence number for a particular atomic Signature above that in the
original dataset. Additionally, a normalized Euclidean distance metric was used so
that solutions only in the nearest neighborhood of the original dataset were used. Of
the more than 800 million solutions exposed to these constraints, only 1327 were
acceptable.

When the 1327 molecular signatures were exposed to the three property constraints
(313 K for glass transition temperature, 439 J/mol-K for heat capacity, 1.04 g/mol
for density; all plus or minus an absolute mean error), 80 solutions were left. From
this list, 178 structures were generated. A small number of the structures with some
of the predicted target properties are shown in Figure 9.7.

9.5.2.4 Case Study: Bio-Related Application

Recently, Visco and coworkers used the inverse design algorithm with Signature to
design novel glucocorticoid receptor ligands with pulmonary selectivity [65]. They

Computer-Aided Molecular Design 289

O O

O

N

O

O

N

O

Tg = 294.1 K
Cp = 426.3 J/mol-K
ρ = 1.04 g/cm3

Tg = 299.9 K
Cp = 437.8 J/mol-K
ρ = 1.06 g/cm3

FIGURE 9.7 Two of the 137 polymer repeat units that were identified as having predicted
targeted properties by the inverse design algorithm using the Signature molecular descriptor.

O
HO

O

O

Cl

O

O

FIGURE 9.8 A compound predicted to be an effective glucocorticoid receptor ligand using
the inverse design technique with the Signature molecular descriptor.

explored properties such as high receptor binding affinity, high systemic clearance,
high plasma protein binding, and low oral bioavailability using atomic height-2 Signa-
tures designed from previously published data to identify 84 high priority compounds
predicted to be at least or more effective than currently available corticosteroids. One
such compound developed, which is nonsteroidal in nature, is provided in Figure 9.8.

The optimal structure had a predicted oral bioavailability of 1%, a plasma protein
binding of 99.1%, a systemic clearance of 475 L/h, and a relative receptor binding
affinity of 1179.45.

9.6 CONCLUDING REMARKS

In this chapter, we examined three CAMD algorithms that are being implemented
to solve molecular design problems of both an engineering-related and a biological

290 Handbook of Chemoinformatics Algorithms

nature. Each of the techniques has its own strengths and weaknesses. For the Hybrid-
CAMD approach, while it does combine information with increasing complexity
to mitigate some of the combinatorial explosion, one is still limited (at least in the
lowest levels) to the groups selected at the start of the algorithm. Additionally, to
design larger molecules, templates are seemingly necessary in order to focus the
solution space to an area where higher-quality solutions are expected. For the CAMD
as optimization approach, high-quality optimization codes can be brought to bear on a
problem formation, thus providing an access to these techniques. However, templating
is required to make progress on problems that limit the solution space. Finally, for
the CAMD approach with Signature, one is not limited by an initial set of fragments
and templating is not required, which can open up nonintuitive areas of the chemical
space. However, storage issues and computational time issues can quickly become
bottlenecks when the initial dataset molecules become large.

For all three of these techniques, a combination of increased computational and
storage resources combined with algorithm refinement will make them viable CAMD
techniques for the near future.

REFERENCES

1. Brown, N. and R.A. Lewis, Exploiting QSAR methods in lead optimization. Curr. Opin.
Drug Discov. Devel., 2006, 9(4): 419–424.

2. Clark, D.E., What has computer-aided molecular design ever done for drug discovery?
Expert Opin. Drug Discov., 2006, 1(2): 103–110.

3. de Julian-Ortiz, J.V., Virtual Darwinian drug design: QSAR inverse problem, virtual com-
binatorial chemistry and computational screening. Comb. Chem. High Throughput Screen.,
2001, 4(3): 295–310.

4. Taft, C.A., V.B. Da Silva, and C. Da Silva, Current topics in computer-aided drug design.
J. Pharma Sci., 2008, 97(3): 1089–1098.

5. Brown, W.M., et al., Designing novel polymers with targeted properties using the signature
molecular descriptor. J. Chem. Inf. Model., 2006, 46: 826–835.

6. Camarda, K.V. and C.D. Maranas, Optimization in polymer design using connectivity.
Ind. Eng. Chem. Res., 1999, 38: 1884–1892.

7. Gani, R., et al., A modern approach to solvent selection. Chem. Eng., 2006, March:
30–43.

8. Dobson, C.M., Chemical space and biology. Nature, 2004, 432: 824–828.
9. Garg, S. and L.E.K. Achenie, Mathematical programming assisted drug design for

nonclassical antifolates. Biotechnol. Prog., 2001, 17: 412–418.
10. Lin, B., et al., Computer-aided molecular design using tabu search. Comput. Chem. Eng.,

2005, 29: 337–347.
11. Schneider, G. and U. Fechner, Computer-based de novo design of drug-like molecules.

Nat. Rev. Drug Discov., 2005, 4: 649–663.
12. Todorov, N.P., I.L. Alberts, and P.M. Dean, De novo design. In: Comprehensive Medicinal

Chemistry II, J.B. Taylor and D.J. Triggle (eds). Elsevier Ltd.: Oxford, pp. 283–305, 2007.
13. Brignole, E.A., S. Bottini, and R. Gani, A strategy for design and selection of solvents for

separation processes. Fluid Phase Equi., 1986, 29: 125–132.
14. Gani, R. and E.A. Brignole, Molecular design of solvents for liquid extraction based on

UNIFAC. Fluid Phase Equi., 1983, 13: 331–340.

Computer-Aided Molecular Design 291

15. Gani, R., Case studies in chemical product design—use of CAMD techniques. In: Chemi-
cal Product Design: Towards a Perspective Through Case Studies, 23, K.M. Ng, R. Gani,
and K. Dam-Johansen (eds). Elsevier: Amsterdam, the Netherlands, pp. 435–458, 2007.

16. Raman, V.S. and C.D. Maranas, Optimization in product design with properties correlated
with topological indices. Comput. Chem. Eng., 1998, 22: 747–763.

17. Camarda, K. and P. Sunderesan, An optimization approach to the design of value-added
soybean oil products. Ind. Eng. Chem. Res., 2005, 44: 4361–4367.

18. Churchwell, C., et al., The signature molecular descriptor. 3. Inverse quantitative structure
relationship of ICAM-1 inhibitory peptides. J. Mol. Graph. Model., 2003, 22: 263–273.

19. Faulon, J.-L., C.J. Churchwell, and D.P. Visco Jr., The signature molecular descriptor. 2.
enumerating molecules from their extended valence sequences. J. Chem. Info. Comput.
Sci., 2003, 43: 721–734.

20. Hansch, C., et al., Correlation of biological activity of phenoxyacetic acids with Hammett
substituent constants and partition coefficients. Nature, 1962, 194: 178–180.

21. Gong, Z., et al., Quantitative structure–activity relationship study on fish toxicity of
substituted benzenes. QSAR Comb. Sci., 2008, 27: 967–976.

22. Selassie, C.D., History of quantitative structure–activity relationships. In: Burger’s Medic-
inal Chemistry and Drug Discovery, D.J. Abraham (ed.). Wiley, Hoboken, NJ, pp. 1–47,
2003.

23. Doweyko, A.M., QSAR: Dead or alive? J. Comput.-Aided Mol. Des., 2008, 22(2): 81–89.
24. Poling, B., J.M. Prausnitz, and J.P. O’Connell, Properties of Gases and Liquids (5th

edition). McGraw-Hill Book Company, United States, 2001.
25. Devillers, J. andA.T. Balaban, (eds). Topological Indices and Related Descriptors in QSAR

and QSPR. Academic Press, Singapore, p. 811, 2000.
26. Fredenslund, A., J. Gmehling, and P. Rasmussen, Vapor–Liquid Equilibrium Using

UNIFAC. A Group-Contribution Method. Elsevier: Amsterdam, the Netherlands, 1977.
27. Wang, S. and G.W.A. Milne, Graph theory and group contributions in the estimation of

boiling points. J. Chem. Info. Comput. Sci., 1994, 34: 1242–1250.
28. Faulon, J.-L., J. Visco, D.P., and D. Roe, Enumerating molecules. In: Reviews in Com-

putational Chemistry, K.B. Lipkowitz, R. Larter, and T.R. Cundari (eds). Wiley-VCH:
Hoboken, NJ, pp. 209–286, 2005.

29. Gordeeva, E.V., M.S. Molchanova, and N.S. Zefirov, General methodology and computer
program for the exhaustive restoring of chemical structures by molecular connectivity
indexes. Solution of the inverse problem in QSAR/QSPR. Tetrahedron Comput. Methodol.,
1990, 3: 389–415.

30. Skvortsova, M.I., et al., Inverse problem in QSAR/QSPR studies for the case of topolog-
ical indices characterizing molecular shape (Kier indices). J. Chem. Info. Comput. Sci.,
1993, 33: 630–634.

31. Kier, L.B., L.H. Hall, and J.W. Frazer, Design of molecules from quantitative structure–
activity relationship models. I. Information transfer between path and vertex degree counts.
J. Chem. Info. Comput. Sci., 1993, 33: 143–147.

32. Kier, L.B., L.H. Hall, and J.W. Frazer, Design of molecules from quantitative structure–
activity relationship models. II. Derivation and proof of information transfer relating
equations. J. Chem. Info. Comput. Sci., 1993, 33: 148–152.

33. Skvortsova, M.I., et al., Molecular design of chemical compounds with prescribed prop-
erties from QSAR models containing the Hosoya index. Internet electron. J. Mol. Des.,
2003, 2: 70–85.

34. Skvortsova, M.I., et al., Inverse problem in the structure–property relationship analysis
for the case of information toplogical indices. Doklady Chem., 1997, 357: 252–254.

292 Handbook of Chemoinformatics Algorithms

35. Constantinou, L. and R. Gani, New group contribution method for estimating properties
of pure compounds. AIChE J., 1994, 40(10): 1697–1710.

36. Gani, R., B. Nielsen, andA. Fredenslund,A group contribution approach to computer-aided
molecular design. AIChE J., 1991, 37(9): 1318–1332.

37. Chen, B., et al.,Application of CAMD in separating hydrocarbons by extractive distillation.
AIChE J., 2005, 51(12): 3114–3121.

38. Patkar, P.R. and V. Venkatasubramanian, Genetic algorithms based CAMD. In: Com-
puter Aided Molecular Design: Theory and Practice, L.E.K. Achenie, R. Gani, and V.
Venkatasubramanian (eds). Elsevier: Amsterdam, the Netherlands, pp. 95–128, 2003.

39. Venkatasubramanian, V., K. Chan, and J.M. Caruthers, Computer-aided molecular design
using genetic algorithms. Comput. Chem. Eng., 1994, 18(9): 833–844.

40. Harper, P.M., M. Hostrup, and R. Gani, A hybrid CAMD method. In: Computer Aided
Molecular Design, L.E.K. Achenie, R. Gani, and V. Venkatasubramanian (eds). Elsevier:
Amsterdam, pp. 129–165, 2003.

41. Gillett, V.J., et al., SPROUT, HIPPO, and CAESA: Tools for de novo structure gener-
ation and estimation of synthetic accessibility. Perspect. Drug Discov. Des., 1995, 3:
pp. 34–50.

42. Harper, P.M. and R. Gani, A multi-step and multi-level approach for computer aided
molecular design. Comput. Chem. Eng., 2000, 24: 677–683.

43. Harper, P.M., et al., Computer-aided molecular design with combined molecular modeling
and group contribution. Fluid Phase Equi., 1999, 158–160: 337–347.

44. Hall, L.H. and L.B. Kier, Molecular connectivity chi indices for database analysis and
structure–property modeling. In: Topological Indices and Related Descriptors in QSAR
and QSPR, J. Devillers and A.T. Balaban (eds). Gordon and Breach Science Publishers:
Canada, pp. 307–360, 1999.

45. Kier, L.B., et al., Molecular connectivity I: Relation to non-specific local anesthesia. J.
Pharm. Sci., 1975, 64: 1971–1974.

46. Kier, L.B., Indexes of molecular shape from chemical graphs. Acta Pharm. Jugosl., 1986,
36: 171.

47. Kier, L.B., A shape index from molecular graphs. Quant. Struct. Act. Relat., 1985, 4: 109.
48. Kier, L.B. and L.H. Hall, Molecular Structure Description. Academic Press: San Diego,

CA, 1999.
49. Gani, R., C. Jimenez-Gonzalez, and D.J.C. Constable, Method for selection of solvents

for promotion of organic reactions. Comput. Chem. Eng., 2005, 29: 1661–1676.
50. Churi, N. and L.E.K. Achenie, Novel mathematical programming model for computer

aided molecular design. Ind. Eng. Chem. Res., 1996, 35: 3788–3794.
51. Odele, O. and S. Macchietto, Computer aided molecular design: A novel method for

optimal solvent selection. Fluid Phase Equi., 1993, 82: 47–54.
52. Ostrovsky, G.M., L.E.K. Achenie, and M. Sinha, A reduced dimension branch-and-bound

algorithm for molecular design. Comput. Chem. Eng., 2003, 27: 551–567.
53. Sahinidis, N.V., M. Tawarmalani, and M. Yu, Design of alternative refrigerants via global

optimization. AIChE J., 2003, 49(7): 1761–1775.
54. Hall, L.H. and L.B. Kier, The molecular and connectivity chi indexes and kappa shape

indexes in structure–property modeling. In: Reviews in Computational Chemistry, K.B.
Lipkowitz and D.B. Boyd (eds). VCH Publishers: New York, pp. 367–422, 1991.

55. Siddhaye, S., et al., Pharmaceutical product design using combinatorial optimization.
Comput. Chem. Eng., 2004, 28: 425–434.

56. Ahuja, R.K., T.L. Magnanti, and J.B. Orlin, Network flows. In: Handbooks in Operations
Research and Management Science. G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J.
Todd, (eds). Elsevier: Amsterdam, the Netherlands, pp. 211–360, 1989.

Computer-Aided Molecular Design 293

57. Faulon, J.-L., On using graph-equivalent classes for the structure elucidation of large
molecules. J. Chem. Info. Comput. Sci., 1992, 32: 338–348.

58. Faulon, J.-L., Stochastic generator of chemical structure. 1. Application to the structure
elucidation of large molecules. J. Chem. Info. Comput. Sci., 1994, 34: 1204–1218.

59. Faulon, J.-L., D.P. Visco Jr., and R.S. Pophale, The signature molecular descriptor. 1.
Extended valence sequences and topological indices. J. Chem. Info. Comput. Sci., 2003,
43: 707–720.

60. Visco, J.D.P., et al., Developing a methodology for an inverse quantitative structure–
activity relationship using the signature molecular descriptor. J. Mol. Graph. Model.,
2002, 20: 429–438.

61. Weis, D., et al., The signature molecular descriptor. 5. The design of hydrofluoroether
foam blowing agents using inverse-QSAR. Ind. Eng. Chem. Res., 2005, 44: 8883–8891.

62. Faulon, J.L., http://www.cs.sandia.gov/∼jfaulon/QSAR/downloads.html
63. Weis, D., Inverse QSAR for compound development using the signature descriptor:

Application to hydrofluoroethers and γ-secretase inhibitors, in Department of Chemical
Engineering. Tennessee Technological University: Cookeville, TN, 2005.

64. Contejean, E. and H. Devie, An efficient incremental algorithm for solving systems of
linear diophantine equations. J. Chem. Inf. Comput. Sci., 1994, 113: 143–172.

65. Jackson, J.D., D.C. Weis, and D.P. Visco, Potential glucocorticoid receptor ligands with
pulmonary selectivity using I-QSAR with the signature molecular descriptor. Chem. Biol.
Drug Des., 2008, 72: 540–550.

66. Lipinski, C.A., et al., Experimental and computational approaches to estimate solubility
and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997,
23: 3–25.

67. Faulon, J.-L., W.M. Brown, and S. Martin, Reverse engineering chemical structures from
molecular descriptors: How many solutions? J. Comput-Aided Mol. Des., 2005, 19(9–10):
637–650.

68. Faulon, J.-L., On using graph-equivalent classes for the structure elucidation of large
molecules. J. Chem. Info. Comput. Sci., 1992, 32: 338–348.

10 Computer-Aided
Molecular Design
De Novo Design

Diana C. Roe

CONTENTS

10.1 Introduction. .295
10.2 Historical Approaches to De Novo Design .297

10.2.1 Identify Interaction Sites .298
10.2.2 Molecule Building Blocks .298
10.2.3 Structure Generation and Search Strategies .299
10.2.4 Structure Evaluation .300
10.2.5 Synthetic Accessibility and ADMET .301

10.3 Common Algorithms in De Novo Structure Generation .302
10.3.1 Grow .302

10.3.1.1 Programs in Current Use that Implement Grow304
10.3.1.2 Advantages, Limitations, and Computational

Complexity? .306
10.3.2 Fragment-Link .306

10.3.2.1 Programs in Current Use that Implement
Fragment-Link .307

10.3.2.2 Advantages, Limitations, and Computational
Complexity? .307

10.3.3 Sampling Strategies with EAs .308
10.3.3.1 Programs in Current Use that Implement Sampling

Strategies .309
10.3.3.2 Advantages, Limitations, and Computational

Complexity? .309
10.4 Summary .310
References .310

10.1 INTRODUCTION

A vital goal in drug discovery is identifying novel compounds that can serve as a
starting point in drug discovery. It is estimated that there are 1060−10100 [1,2] potential
chemical compounds that each have a molecular weight of less than 500 Da. By

295

296 Handbook of Chemoinformatics Algorithms

comparison, PubChem, the largest database of known chemicals, has a little more than
19 million compounds to date [3], covering only a very small percentage of potential
chemical space. Even combinatorial libraries, which can range in size up to billions
of compounds, do not begin to fully sample the range of all possible compounds.
As the full compound space is too vast to search comprehensively, strategies have
to be employed to search this space efficiently for the discovery of novel lead drug
compounds.

De novo design handles this challenge by building compounds from scratch to
complement the target receptor. The guiding principle in this approach is that small
molecules that are complementary to the target receptor, both in shape and chemical
properties, will have the most specific binding. Resulting compounds also need to
be “drug-like” and readily synthetically accessible. In theory, any molecule of chem-
ical space could be constructed using de novo approaches. To reduce the search of
chemical space to a manageable problem, strong physical constraints must be taken
into account at each step during the generation of the lead drug molecule, limiting
the chemical space explored to those regions specifically complementary to the target
receptor. The advantage of this approach over a virtual screening strategy to identify
these compounds is that the search is directed to the relevant regions in chemical
space with a far greater range and diversity of potential lead compounds that can be
evaluated. Also, since compounds are built within the shape constraints of the tar-
get receptor, the structures are generated with optimal conformational geometries for
binding. In most virtual screening algorithms these conformations must be sampled
and can be missed. The main drawback is that the resulting compounds need to be
experimentally synthesized and tested, rather than taken from an in-house inventory
or ordered commercially. As our ability to predict binding affinities improves, the
trade-off between greater speed of screening and greater diversity of results may
drive an increase in use of de novo design strategies.

De novo design is inherently combinatoric, as many choices are available at each
step in molecule generation, leading to a non-polynomial (NP)-hard problem that
cannot be provably solved to the global optimum. Any solution to the problem is
going to represent a local optimum. And so the success of this approach depends
on well-chosen constraints for the problem and an efficient search strategy. The pri-
mary constraints are the geometric and chemical constraints derived from the target
receptor or target ligand(s), and internal constraints for the geometry and chem-
istry of the lead compound being constructed. The shape and chemical constraints
include both positive and negative requirements. For example, receptor site points or
“hot spots” of interaction must be matched with complementary functional groups in
all candidate structures, whereas boundary constraints that define disallowed struc-
tural regions must be avoided. These primary constraints are directly handled in
the structure generation phase in de novo design. The secondary constraints include
synthetic accessibility of the final compounds and their predicted adsorption, distri-
bution, metabolism, elimination, and toxicity (ADMET) properties. These constraints
are handled both by heuristics employed during structure generation and also as filters
on the final set of compounds. While the set of constraints are similar to all de novo
design algorithms, strategies for generating structures and for searching chemical
space to fit these constraints vary considerably among the programs.

Computer-Aided Molecular Design 297

One major distinction in de novo design programs is whether they are receptor
based or ligand based. In receptor-based programs the three-dimensional (3D) struc-
ture of the target receptor is known and provides the primary constraints. Ligand-based
programs either generate a 3D structural pharmacophore model to generate geomet-
ric and chemical constraints that are similar to the receptor-based constraints or they
use similarity to a known active ligand or QSAR model as the primary constraint.
The features in de novo design algorithms can be divided into the following compo-
nents, and choices at each of these components can distinguish one program from
another:

i. Site points: Site points represent “hot spots” of interaction with the target
receptor. They define the primary geometric and chemical constraints for
the structure generation. Some ligand-based de novo design programs use
similarity to a molecule template instead of site points.

ii. Molecule building blocks: These are the units for constructing the structure.
They can be atoms, fragments, or templates (generic fragments).

iii. Structure generation: The strategy chosen here is one of the ways used to
classify de novo design programs. Strategies include (a) “grow,” which starts
from a seed point and grows a structure; (b) “fragment-link,” where fragments
are placed in site points and linked together; and (c) sampling approaches,
where molecules are randomly grown. Implicit in each strategy is rules and
geometric constraints to generate chemically reasonable structures.

iv. Search strategy: The strategy used to search through the combinatoric set
of possible (sub)structures, combined with the structure generation strategy,
forms the core of the de novo design algorithm. Common search strategies
include breadth-first search, depth-first search, evolutionary algorithms (EAs),
and Monte Carlo.

v. Structure evaluation: Evaluates structures based on primary constraints—
geometry and chemistry for binding, or similarity to a known active ligand. By
evaluating substructures at every step during structure generation, the choices
can be pruned during structure generation.

vi. ADMET and synthetic accessibility: These are the secondary constraints that
can be taken into consideration as a scoring function during structure genera-
tion, as a postfilter after construction. In addition, some programs use heuristics
during structure generation to incorporate these constraints.

While there are many variations on the algorithms at each of these component steps,
as described below, this review will focus on the structure generation algorithms.

10.2 HISTORICAL APPROACHES TO DE NOVO DESIGN

The first de novo design programs were receptor based. The field began with programs
being developed to describe the binding properties of a target receptor. Initial programs
[4–8] devised strategies to identify sites that represented “hot spots” of interaction
within a receptor, placed small molecule fragments or skeletons to interact at these

298 Handbook of Chemoinformatics Algorithms

sites, and linked them together with generic spacer molecules. Initial ligand-based pro-
grams were variations of the receptor-based programs using pharmacophore-derived
constraints [9,10]. Later, ligand-based de novo programs were developed for cases
without site points, and primarily used evolutionary methods to optimize molecules
to a QSAR model of activity [11] or by similarity to a known active molecule [12].

Many choices and variations have been tried for each of the different components
in de novo design as described below.

10.2.1 IDENTIFY INTERACTION SITES

In studying known inhibitors, it is found that there are certain ligand–receptor inter-
actions, deemed “hot spots” that are important for binding and inhibition. These
interaction site points can be generated from analyzing the 3D coordinates of a target
receptor, or from a 3D pharmacophore model based on a superposition of bioactive lig-
ands. These provide positive primary constraints that are positive (must be matched)
during structure generation. The coordinates of the receptor, and excluded volume
regions from a pharmacophore model, provide primary constraints that are negative
(regions to be avoided) during structure generation. For cases where the 3D structure
of the receptor is known, the interaction sites can be taken from a known pharma-
cophore for that protein, or predicted. The first program to predict “hot spots” was
the Goodford GRID [13] program, which created a grid inside a target receptor and
calculated the energy of probe atoms placed at each point in the grid to create contours
of interaction for different probe types. The contour peaks would represent interac-
tion sites. While several early de novo programs used GRID [7,14,15] to identify site
points, the first approach to identify site points that was used in a de novo design pro-
gram was HSITE [4], a rule-based method to search for hydrogen bonding sites based
on ideal hydrogen bond geometries derived from crystal data. Other early programs
expanded the rule-based method by adding lipophilic regions [16]. HIPPO [17] was
the first to add covalent bonds, metal-binding sites, and complex hydrogen-bonding
patterns. MCSS [18] took a unique approach and used a modified molecular dynamics
code to identify hot spots by simulating probe molecules that simultaneously inter-
acted with the protein but not with each other. The lowest energy probes are retained
as starting fragments for de novo design. Once the interaction sites are identified,
most initial programs used a rule-based scheme to place small molecule fragments
that interacted with the site points. Other programs use docking codes on fragments
to provide initial placements for initial placement of fragments [7,19].

10.2.2 MOLECULE BUILDING BLOCKS

The first de novo design programs used molecule templates [5,6] as the building
blocks, along with programs still in current use [9,20]. Templates are joined to create
a 3D molecular graph, termed a “skeleton,” whose vertices are labeled solely by
hybridization state and edges by bond type. This approach divides structure generation
into two steps: primary structure generation of generating a skeleton that fits all
geometric constraints, and secondary structure generation [21] of substituting atoms
into the graph to fit the chemical constraints such as hydrophobicity and electrostatic

Computer-Aided Molecular Design 299

properties. This approach collapses the search space by looking at structures with
the same geometry simultaneously. In contrast, the atom-based approach starts with
real atoms and builds up molecules. It has the theoretical advantage that it allows
more diversity in the results, with the corresponding challenge of finding efficient
strategies to search through the larger chemical space. Atom-based building blocks
have been used successfully in early programs [8,22] but are harder to constrain
to reasonable, synthetically accessible, and “drug-like” structures and require larger
combinatorial sampling. Atom-based building blocks have become less common in
recent algorithms.

Another development was in the choice of fragments and building rules to incor-
porate synthetic accessibility and “drug-like” heuristics into the structure generation.
The first step in this approach was the RECAP [23] procedure, which broke down
existing drugs from the Derwent World Drug Index (WDI), according to common
retrosynthetic pathways (i.e., to produce a library of reactants). TOPAS [12,24] was
the first program to use a library generated in such a way and incorporate the same
reaction chemistry into the structure generation, creating 25,000 unique fragments
from 11 retrosynthetic pathways.

10.2.3 STRUCTURE GENERATION AND SEARCH STRATEGIES

Historically de novo design programs have been categorized by their search strategy.
The three main categories are (a) fragment-link, (b) grow, and (c) sampling. This
section will briefly describe these algorithms as they are further elaborated in the
next subsection. The first de novo programs used the fragment-link approach, where
appropriate fragments were placed at key interaction sites and linked together. There
were many strategies on how to link the fragments. One was to join fragments with
predefined linkers such as spacer skeletons [6] or fragments from a database [16,25].
Another was to generate a lattice and perform either depth-first search or breadth-first
search along the lattice from one fragment to the other to generate linker fragments.
Regular diamond lattices [8], irregular lattices from docked fragments [7], or random
lattices [19] were tried for this strategy. Other programs employed an iterative buildup
procedure, similar to the grow strategy, until all site points were connected. FlexNovo
[26] uses a k-greedy search for its buildup procedure. LigBuilder [27] used an EA to
guide the buildup procedure.

The grow strategy starts with a seed point or fragment and builds up a molecule.
Two of the seminal programs employing the grow strategy were the GROW [28]
program and LEGEND [22]. GROW generated peptides from amino acid fragments
in multiple conformations using a tree search pruned by predicted binding affinity at
each step to guide the growth. LEGEND took the opposite tack and used an atom-
based growth strategy with random selection at every decision point (i.e., selection of
growth point, selection of next atom, and selection of join type) to guide the search
process. Many other approaches have been tried to efficiently search combinatorial
space during the buildup procedure including random selection combined with depth-
first search [15,29], Metropolis Monte Carlo [30], and various tree-search strategies
[9,20,31].

300 Handbook of Chemoinformatics Algorithms

The last category for structure generation can be termed “sampling approaches,”
which use sampling and optimization processes to control molecule generation, rather
than using site points to direct them in a specific direction such as to grow outward or
to link fragments. Several strategies of this type have been tried including molecular
dynamics [32], Monte Carlo [33], simulated annealing [21,34], particle-swarm [35],
and EAs [11,24,36–39], which is the most common algorithm in recent ligand-based
programs. Ligand-based programs that lack site points, such as those with a template
molecule or QSAR as the primary constraint, all use a sampling-based method to
generate structures.

Each of these strategies requires a connection scheme to join building blocks. With
atoms, the rules are usually defined by the individual atom valences. Some atom-based
programs have linear chains in growing molecules or links between fragments, and
look for rings either on the fly [29] during structure generation, by opening, clos-
ing, expanding, and contracting rings during sampling [40], or as a postprocessing
step after structure generation to search for rings [41]. With fragment-based methods,
building blocks can be joined together using a single bond, rings can be fused or
spirojoined. Recently, reaction-based connection rules have been used [24,38] as a
heuristic to incorporate synthetic accessibility into the structure generation stage. Pro-
grams that use molecular templates as building graphs have an additional search step
after generation of a molecular skeleton to replace vertices with atom-type identities
to match chemical constraints such as hydrophobicity and electrostatics [9,21].

10.2.4 STRUCTURE EVALUATION

Receptor-based de novo programs use an estimation of binding energy for primary
structure evaluation. However, predicting binding affinity accurately continues to be
one of the biggest hurdles with de novo design programs. Early programs focused
mainly on steric constraints and hydrogen bonding [5,7,8]. LEGEND [22] was the first
to use a molecular mechanics force field for scoring. Force-field scores have many
shortcomings due to the approximations in the force field in applying it to ligands, and
most notably in neglecting desolvation and entropy terms, and can be computationally
demanding. LUDI [42,43] developed the first empirical scoring function by defining
a set of ligand–receptor interaction types such as hydrogen bonding electrostatic and
lipophilic interactions, as well as penalty terms such as the number of rotatable bonds.
It derived weightings for these terms from a least squares regression on a series of lig-
ands with known binding constants and crystal structures. The challenges here were
the small size of the available data set at that time, which limits accuracy to proteins
and ligands similar to those used in the regression set. Knowledge-based scoring, first
implemented in SMoG [44,45], uses atom-based ligand–receptor interaction terms
with weights derived from a large statistical study of ligand–receptor complexes and
the frequencies of various ligand–receptor pairs in these complexes. The advantage
of this approach is that there are a larger number of ligand–receptor complexes than
those with known binding energies, and so more diversity went into the set, resulting
in a less biased scoring function. A common problem with all receptor-based scoring
schemes is that they only take into account a static protein. Skelgen is the first program
to handle receptor flexibility [46,47], which was shown to improve the diversity of

Computer-Aided Molecular Design 301

results in conformational and chemical space, and activity of designed ligands. Many
programs that used a receptor-based scoring function also had features to score ligands
based on the 3D pharmacophore model [9,10,48,49] either by deriving receptor-based
constraints from the model directly or by scoring by similarity to the model.

Ligand-based de novo design programs that do not use a pharmacophore model
have fundamentally different scoring functions than above. One approach is to derive
a scoring function from a QSAR model [11,40,50]. This has the disadvantage that
the scoring parameters have to be re-input for every receptor target. Another common
approach is to use the similarity to an active template [24,37,51,52] as the scoring
function. This is easier to code up, but reduces the diversity of the resulting molecules.

10.2.5 SYNTHETIC ACCESSIBILITY AND ADMET

Synthetic accessibility continues to be the second major hurdle with de novo drug
design programs. It is evaluated along with prediction of ADMET properties as part
of the secondary scoring. Initial de novo design programs performed this evaluation
on the final set of structures. CAESA [17] was the first program developed to predict
synthetic accessibility and was based on retrospective analysis. SEEDS compares
core substructures both to reaction databases for synthesis pathways and compound
databases to identify derivatives [53]. More recent approaches are based on similarity
to available reactants and heuristics for molecular complexity [54]. A recent survey
showed that these two latter approaches have superior success in predicting synthetic
accessibility [55].

Some programs include synthetic accessibility and ADMET as heuristics during
structure generation. One way to do this is to include a user interaction step where
an organic chemist evaluates structures during the buildup process, for example,
evaluating the initial fragments prior to linking [7,19,56], or as a scoring function
during an EA [7,19,56]. Another approach was to generate building blocks from
fragmenting known drug molecules. This has the heuristic that the building blocks are
“drug-like” [24,26,37,38]. In addition, if the fragmentation is based on retrosynthetic
analysis and regenerated using reaction-based joining rules, then this can also serve
as a heuristic for synthetic accessibility, such as in TOPAS [12] and FLUX [37].
Similarly, SYNOPSIS [38] chose available molecules (i.e., reactants) as fragments
and used a buildup based on synthetic reactions. Another type of heuristic is to use
a substructure lookup during structure generation to filter out substructures that are
not drug-like or are synthetically intractable.

Finally, some programs include ADMET predictions in a scoring function. For
algorithms that build up a structure, this score is usually performed after the set
of structures has been generated. For algorithms that sample the chemical space
of full-size structures, such as the EAs, it can be included in the scoring function
during structure generation. This score can range from simple filters using Lipinski’s
Rule of Five [57] for drug-like compounds, to more complicated of physicochemical
properties, or predictions of hERG activity [58].

Several other drug-design methodologies have their roots in de novo design.
For example, fragment-based design approaches are similar to the fragment-link

302 Handbook of Chemoinformatics Algorithms

de novo strategies, except that these take the extra step of validating the frag-
ment positions experimentally prior to linking. The first combinatorial library
design programs started from variations in de novo programs—PRO_SELECT [31]
evolved from PRO_LIGAND [10] and CombiBUILD [59] from BUILDER [19]
(Section 8.4).

10.3 COMMON ALGORITHMS IN DE NOVO
STRUCTURE GENERATION

De novo design algorithms are usually classified according to their structure gen-
eration strategy. The three main strategies are (1) grow, (2) fragment-link, and
(3) sampling (Figure 10.1).

10.3.1 GROW

The grow strategy grows a molecule to complement the target receptor (or phar-
macophore model) in a sequential buildup procedure. It starts by identifying site
interaction points in the target receptor. A site point is chosen as a seed point to start
the structure generation. An initial building block is placed in the site to complement
its chemical functionality (i.e., electrostatic properties, H-bonding, and lipophilicity).
Growth points are identified on the initial building block. From here, the molecule
“grows” through a cycle of adding a building block to the growth points at the end
of the partial structure according to connection rules, followed by scoring to eval-
uate whether to retain the new building block. Growth continues until termination
conditions are reached, such as if the molecule extends to all site points or exceeds
maximum size. How building blocks are added depends on the search strategy.

a. In the Metropolis Monte Carlo strategy, the acceptance of new building blocks
to the growing molecule is biased based on predicted binding affinity accord-
ing to Boltzmann statistics. A growth point and a building block are randomly
selected. The new building block is scored by a measure of predicted binding
affinity. The Boltzmann factor BF=exp(–affinity_score/RT) is calculated and
a random number is generated. If BF is greater than the random number, the
building block is retained and growth points are updated to the newest building
block; otherwise it is removed and a new growth point and a building block
are randomly selected. Note that the BF for building blocks with scores≤ 0 is
always≥ 1 (i.e., always retained). This continues until termination conditions
exist. The procedure is rerun from the starting seed until the desired number
of structures has been generated.

ALGORITHM 10.1: PSEUDOCODE FOR GROW STRATEGY
WITH A METROPOLIS MONTE CARLO SEARCH

Input: receptor or pharmacophore, building block library
assign sitepoints

Computer-Aided Molecular Design 303

H
N

H
O–

O

O–
OH

N

H
O–

O

O–

O
OH

N

H

H
O–

O

N

O–
OH

N

H
O–

O

O–

OH
N

H
O–

O

N

O–

O
OH

N

H

H
O–

O

O–

O
OH

N

H

H
O–

O
O–

O
OH

N

H

H
O–

O

O–

O
OH

N

H

H
O–

O

(a) Grow strategy (b) Fragment-link
(c) Evolutionary

algorithm

Hydrogen donar
site

Hydrogen acceptor site

Hydrophobic site

Select seed fragment

Place fragments that
 interact with sites

Link fragments with
bridging groups

Grow sequentially

Parent compound
(one of many)

Mutate randomly

FIGURE 10.1 Comparison of three different categories of structure generation algorithms.
All start with identifying site points in the target receptor. (a) Grow strategy—an initial fragment
is placed at one site point and grown sequentially. (b) Fragments are placed in all site points
and linked together. (c) Complete initial structure is mutated in random locations.

WHILE (large number of structures to grow)DO
##generate a structure
place seed building block (b) in starting
sitepoint
assign growth points to building block
WHILE (NOT (End=(all sitepoints fit? or >max#

atoms?))) DO

304 Handbook of Chemoinformatics Algorithms

randomly select a growth point (g) partial
structure

randomly select a building block (b) and
add to growth point using connection rules.

Prune by primary and secondary constraints
IF (pruned)THEN CONTINUE
calculate binding affinity score S for (b,g)
select or discard according to metropolis
search criteria

IF (selected) THEN update growth points to
g2 on (g,b)

END DO
save structure(s) to list

END DO
evaluate final structures for predicted binding affinity
evaluate final structures for synthetic accessibility

and ADMET
prioritize final structures
Metropolis criteria

calculate Boltzman Factor BF=exp(-affinity_score/RT)
generate random number from 0 to 1
retain building block= TRUE IF BF > random

b. In the various tree-search strategies, the inner WHILE loop above is replaced
with a tree-search algorithm. Building blocks are tried at each growth point,
scored, and added as nodes on a search graph. The nodes may be pruned
using primary constraints (e.g., boundary violations) and secondary con-
straints (e.g., matching to a list of synthetically intractable substructures)
and may be prioritized by a scheme such as score or distance to an interaction
“hot spot.” In depth-first search, the top-scoring node in the graph is selected
for expansion (i.e., to examine for growing), whereas in breadth-first search,
all nodes at each level are selected for expansion before going to the next
level. In this way, depth-first search completes a solution (i.e., generates a
structure) before examining the next partial solution, whereas breadth-first
search expands all the partial solutions simultaneously until all solutions are
found. Depth-first search may find a single solution faster, but may not be
the best overall solution, whereas breath-first exhaustively searches for solu-
tions. Functions can be added to estimate the costs of continuing along a
partial solution to prioritize nodes in “best-first” searches such as A*.

10.3.1.1 Programs in Current Use that Implement Grow

The grow algorithm is implemented in several de novo design programs in cur-
rent use and that have had success in identifying lead compounds in prospec-
tive studies (see Table 10.1.a). AlleGrow, the successor of GrowMol [60], uses

C
o

m
p

u
ter-A

id
ed

M
o

lecu
lar

D
esign

305

TABLE 10.1
De Novo Design Programs with Recent Results

Name Ligand or Receptor Sites Building Blocks Search Typea Scoring Typea Prospective Studies

a. Grow Strategy
AlleGrow (GrowMol [30]) Receptor Atoms/fragments MC Empirical Aspartic protease [60]

xWNT8 & hWNT8 [70]
Legend [71] Receptor Atom Random FF CDK4 inhibitors [53]

Aldose reductase [72]
Sprout [9,20,54] Receptor Skeleton/fragments A* search algorithm or

exhaustive [54]
Empirical Dihydroorotate dehydrogenase

[73,74]
Nk(2) antagonists [73,74]

b. Fragment-Link
Ludi [16,43] Receptor Fragments Empirical CYP51(w/ MCSS) [75]

Leucine aminopeptidase [76,77]
MCSS [61] Receptor Fragments MD FF CYP51(w/LUDI) [75]

PPARγ (w/LeapFrog) [62]
c. Sampling
LEA3D [11,67] Receptor/ligand Fragments EA Empirical Thymidine monophosphate

kinase [67]
TOPAS [12,24] Ligand Fragments EA Similarity Cannabinoid-1 receptor [78,79]

Kv1.5 [12]
SkelGen [80] Receptor/ligand Fragments Simulated annealing Empirical Cannabinoid-1 receptor [78,79]

Kv1.5 [12]
Flux1/Flux2 [37,81] Ligand Frag/recap EA Similarity TAR RNA [82]
LeapFrog [48] Both Fragments EA Empirical PPARγ (w/MCSS) [62]

Link-function only
SYNOPSIS [38] Receptor Frag EA Target-specific HIV protease [38]

a BFS: breadth-first search, EA: evolutionary algorithm, FF: force field, MC: Monte Carlo.
Note: See review articles [68,69] for a more comprehensive list of de novo design programs using (a) Grow strategy, (b) fragment-link, and (c) sampling.

306 Handbook of Chemoinformatics Algorithms

the Metropolis Monte Carlo selection criteria. It is available commercially at
http://bostondenovo.com/Allegrow.htm. Legend [22] uses random selection at ever
choice point. SPROUT [9] takes the other approach and uses a tree-search algo-
rithm, which can be run in a modified “best-search” algorithm or to completion.
It directs growth by prioritizing growth points based on closeness to unsatisfied
site points and pruning templates that prevent reaching site points by being too
close but not satisfying site point. SPROUT is commercially available at Sim-
BioSys, Inc. (http://www.simbiosys.ca/sprout/index.html). FlexNovo [26] uses FlexX
to dock initial fragments and a buildup procedure based on a k-greedy algorithm. It
is commercially available at BioSolveIt (http://www.biosolveit.de/FlexNovo/).

10.3.1.2 Advantages, Limitations, and Computational Complexity?

The tree searches are deterministic algorithms. Run to completion, they will find
all solutions. The time complexity for most tree searches is O(bd), where b is the
branching factor and d is the depth, although proper heuristics in best-first search can
greatly reduce this. The branching factor in this case is a product of the number of
attachment points times the number of building blocks, whereas depth is the number
of building blocks in a final structure. A quick back-of-the-hand comparison of atom-
based versus fragment-based approaches would have b for atom-based methods as
∼12 atoms/functional groups times 2 attachment points on average (3 for sp3 atoms,
2 for sp2, 1 for sp) and d (∼50) leading to bd = 2450 ≈ 1070, or roughly all of
chemical space. For fragment-based approach with a small fragment library b is
30 fragments times 4 average attachment points each (larger since rings included)
and depth approximately 8 is bd = 1208 ≈ 1016. We can see why smaller fragment
libraries are usually chosen for tree-search methods, whereas Monte Carlo is chosen
for both atom-based and fragment-based methods. This also shows the advantage of
using generic templates in tree-search approaches such as SPROUT, which reduces
the complexity by greatly reducing size of the template library. Note that the diversity
covered in this approach is far greater than 1016 because atom types are placed into
the generic fragments, but it does not approach the full diversity from an atom-based
approach.

Overall, the grow algorithms have been successful in finding new drug candidates.
However, they tend to behave poorly in situations where the receptor site consists of
two or more subpockets separated by a large gap, whereas the fragment-link (next
section) performs better in these situations.

10.3.2 FRAGMENT-LINK

The fragment-link strategy also starts out by identifying site points in a target receptor
or pharmacophore model. In this case, complementary fragments are placed in all of
these “hot spots” to maximize interaction. Results at this point can be pruned by visual
inspection. Linking groups are then generated or chosen from a link library and fitted
to the fragments. Linking groups that do not match the primary constraints (shape &
chemistry) or make substructures that violate secondary constraints can be discarded.
The final structures are evaluated by predicted binding affinity and secondary scoring

Computer-Aided Molecular Design 307

characteristics such as synthetic accessibility and ADMET, and prioritized (cf. Figure
10.1b and Table 10.1.b).

ALGORITHM 10.2: PSEUDOCODE FOR FRAGMENT-LINK STRATEGY

Input: receptor or pharmacophore, library of initial
building blocks, library of bridging building
blocks

assign sitepoints
place building block(s) in sitepoint(s) according
to rules
prune by criteria (visual inspection and/or score)
WHILE (NOT all fragments joined) DO

identify 2 closest fragments
identify link points between fragments (closest
atoms)
place bridging group(s) to join at these
points by matching distances and angles to
bridge library.

END DO
evaluate final structures for binding affinity
evaluate final structures for synthetic accessibility
and ADMET
prioritize final structures

10.3.2.1 Programs in Current Use that Implement Fragment-Link

Several programs have successfully applied the fragment-link algorithm to identify
lead compounds (see Table 10.1.b). Best-known is the Ludi [14,16] program, available
commercially at Accelrys (http://accelrys.com/). The MCSS [61] program has been
combined with several others for the bridging step including HOOK [25], Leapfrog
[62], LUDI, and by visual inspection. Ligbuilder is a hybrid algorithm that includes
grow and fragment-link, both using an EA to generate structures. Ligbuilder is freely
available at (http://www.chem.ac.ru/Chemistry/Soft/LIGBUILD.en.html).

10.3.2.2 Advantages, Limitations, and Computational Complexity?

This approach has the advantage in that it maximizes interactions in the key interaction
sites in the target protein. It has the computational advantage that the search for bridge
points is an O(n) lookup through a fragment database. The challenge is identifying
linking groups of the proper chemistry and geometry that do not greatly alter the
orientation of the fragments binding to these sites, and which do not have artificially
strained bonds, angles, and torsions. In terms of amount of chemical space sampled,
it covers roughly the same chemical space as other fragment-based methods using
the grow strategy.

308 Handbook of Chemoinformatics Algorithms

10.3.3 SAMPLING STRATEGIES WITH EAs

Sampling strategies differ from grow and fragment-link in that they sample structures
without directing generation in a particular direction (outward or explicitly linking
interaction sites). EAs are the most common chosen for this purpose. There are many
types of EAs: genetic algorithms (GAs) that encode the molecular structure in a
“chromosome” of fixed length that is operated on and transformed into the molecular
structure for fitness evaluations; genetic programming, where the chromosomes are
trees to allow them to have variable length; and evolutionary strategies that operate
directly on the phenotype, which is the molecular structure. A basic evolutionary
strategy (μ, λ) is shown below [63], where λ is the size of the child population and
μ is the size of the parent population in each generation.

The algorithm starts with a population of λ chemical structures (the initial child
population) generated from putting a random selection of building blocks together
according to the building rules for the building blocks. Each structure in this population
is evaluated for “fitness.” The fitness is the scoring function that can combine primary
and secondary constraints. In receptor-based de novo methods, the primary score may
be the interaction score such as from a docking calculation [64], minus any boundary
violations. For ligand-based employing of a single template ligand, the primary score
may be a similarity score. Secondary scoring considerations, such as requirements
for Lipinski’s [57] rules, or other ADMET considerations, can be added to the fitness
function here, along with other molecule properties such as surface area or radius of
gyration. The most fit μ structures are selected to be parents for the next generation.
Mutation and crossover operators can be performed on the parents. Mutation in this
case is to take a parent structure and remove a building block and replace it according
to the joining rules. Crossover is to remove building blocks from each parent and
swap them again according to joining rules. Some algorithms have only mutation
[24] or only crossover [52]. A total of λ child structures are generated. This cycle is
repeated until it reaches a maximum generation of children or a termination condition
is reached, such as convergence. One feature found with this algorithm was that since
building blocks could vary greatly in size, the parent p could grow and shrink as well,
while still retaining the same number of building blocks.

ALGORITHM 10.3: PSEUDOCODE FOR BASIC EVOUTIONARY
STRATEGY (μ, λ)

μ is the size of parent population
λ is the size of the child population
Generate λ random structures Sc
DO

Evaluate fitness Fc of each structure Sc in
population

Choose μ most fit (Fc) structures as parents Sp
Mutate and Crossover of parents Sp to generate

population λ children Sc
UNTIL (> maximum generations or termination condition)

Computer-Aided Molecular Design 309

10.3.3.1 Programs in Current Use that Implement Sampling Strategies

EAs are common especially in ligand-based design programs, although several
receptor-based programs also employ this approach. See Table 10.1.c for some exam-
ples of lead compounds identified using the EA. One successful implementation of
this algorithm is in the TOPAS [24] ligand-based de novo program, which uses pair-
wise similarity to a molecular template as the fitness function. It sets λ = 100 and
μ = 1 (i.e., 1 parent) with no crossover operation, so all variations are through muta-
tion. It uses 25,000 fragments from the WDI using 11 retrosynthetic pathways. The
variance in each new child structure can be controlled by how similar a new building
block is to the original building block being mutated, and is controlled by a parameter
(“step-size”) that is a Gaussian distribution of random numbers, resulting in a child
population that is bell-shaped distribution of variations with the parent at the center.
It was found that 100 generations were sufficient to explore chemical space in this
program. TOPAS is at Hoffmann-La Roche and is not generally available.

Flux [37] was developed based on TOPAS. It finds optimal results with a 50:50
ratio between crossover and mutation, and typically sets maximum generations to 75
(50 generations were found to converge in most cases). The other main difference
from TOPAS is a modified similarity descriptor that is weighted. It is being used at
the Goethe University in Germany but is currently not generally available.

LEA3D uses fragments as building blocks generating from fragmenting “drug-
like” database of over 8,000 fragments into single rings, fused rings, and acyclic parts.
It allows both 1 and 2 point crossover and mutation. It is not generally available, but an
in-house version is in use at the Centre De Biochimie Structurale, Montepelier, France.

De novo programs incorporating EAs that are commercially available include
AutoLudi and LeapFrog [48] and the Molecule Evoluator [56,65]. AutoLudi is an
extension of LUDI that uses an EA to modify an existing lead compound by adding on
small fragments. LeapFrog commercially available at Tripos (http://www.tripos.com)
evolves a population of molecules in an atom-based method. The Molecular Evolu-
ator [56] uses an unusual fitness function—the user working interactively with the
program. It is available at Cidrux Pharmaceuticals [66].

10.3.3.2 Advantages, Limitations, and Computational Complexity?

A general challenge for EAs is the molecule representation. SMILES strings such as
in LEA [11] have the problem that invalid molecules result during crossover and muta-
tion, and also more steps are required to build up a molecule. TreeSmiles, a variation
of SMILES with all hydrogens explicitly shown, helps avoid unreasonable structures
[56]. The LEA3D successor of LEA uses fragments instead of atoms as the build-
ing block, with numbers representing fragments for genetic operations [67]. Other
approaches operate directly on the 3D structures leading to additional translational
and rotational operators [36].

The theoretical chemical space available for a fragment-based approach is (nb)ns,
where nb is the number of building blocks in the fragment library, and ns is the
average number of building blocks is the final structure. For TOPAS that has 25,000
building blocks and approximately four building blocks in a final structure, the total
is (25,000)4 ≈ 1018. For an atom-based method, this would approach all of chemical

310 Handbook of Chemoinformatics Algorithms

space (≈1060). However, the number of structures actually evaluated in an EA run
is much smaller as it is given by the function λ ng, where λ represents the popula-
tion of each generation and ng the number of generations. For example, TOPAS has
population size 100× 100 generations ≈ 104. Similarly, LEA3D has a a population
size of 40× 100 generations, that is, 4000. In practice, this seems to be sufficient to
generate enough reasonable solutions to find interesting leads.

Compared to the grow and fragment-link, EA algorithms have the advantage that,
since they do not target interaction site points, the output structures are not strained
(i.e., have low intramolecular energies). The corresponding disadvantage is that they
may not bind to known important interaction sites.

10.4 SUMMARY

In examining all grow, fragment-link, and sampling-based algorithms, one aspect in
common is the use of a random operator of some sort during the structure generation
process. This is important for two reasons: first because the scoring functions are not
perfect; the best-scoring atom or fragment may not represent the best binder. Second,
and more importantly, because the path to construct a de novo structure is not a linear
function of the scoring function (i.e., higher scoring final structures are not a linear
result of the highest scoring precursors; a structure often needs to go through a lower
energy construction pathway to get to the final structure).

Ligand-based programs that use similarity to a molecular template or QSAR for
scoring require a sampling approach, and the EA is the most commonly chosen
one for these programs for its simplicity to program up and its effectiveness in these
cases. With receptor-based approaches, the grow and fragment-link algorithms, which
include pharmacophore data in the form of site points, are historically favored. Pure
sampling approaches are most commonly seen as lead-optimization once a core has
been designed using a grow or fragment-link approach.

The major hurdles for de novo design to overcome to be an effective tool in drug
discovery are the same today as when the field began: how to accurately predict
receptor-based affinity and predict synthetic accessibility. Without these, it could be a
costly effort to synthesize complex molecules, which may not even bind to the target
receptor. Newer heuristics for synthetic accessibility, using reaction-based fragment
libraries, and heuristics based on molecular complexity have improved the quality of
structures resulting from de novo design. Several de novo design strategies have now
been shown to be successful in prospective studies.

REFERENCES

1. Bohacek, R. S., McMartin, C., and Guida, W. C., The art and practice of structure-based
drug design: A molecular modeling perspective. Med. Res. Rev. 1996, 16(1), 3–50.

2. Anonymous, The numbers game. Nat. Rev. Drug Discov. 2002, 1(12), 929.
3. Bolton, E. E., Wang, Y., Thiessen, P. A., and Bryant, S. H., PubChem: Integrated platform

of small molecules and biological activities, Annual Reports in Computational Chemistry,
2008, p. 4.

Computer-Aided Molecular Design 311

4. Danziger, D. J. and Dean, P. M., Automated site-directed drug design: A general algorithm
for knowledge acquisition about hydrogen-bonding regions at protein surfaces. Proc. R.
Soc. Lond. B Biol. Sci. 1989, 236(1283), 101–113.

5. Lewis, R. A. and Dean, P. M., Automated site-directed drug design: The formation of
molecular templates in primary structure generation. Proc. R. Soc. Lond. B. Biol. Sci.
1989, 236(1283), 141–162.

6. Lewis, R. A. and Dean, P. M., Automated site-directed drug design: The concept of
spacer skeletons for primary structure generation. Proc. R. Soc. Lond. B Biol. Sci. 1989,
236(1283), 125–140.

7. Lewis, R. A., Roe, D. C., Huang, C., Ferrin, T. E., Langridge, R., and Kuntz, I. D., Auto-
mated site-directed drug design using molecular lattices. J. Mol. Graph. 1992, 10(2),
66–78, 106.

8. Lewis, R. A., Automated site-directed drug design: Approaches to the formation of 3D
molecular graphs. J. Comput. Aided Mol. Des. 1990, 4(2), 205–210.

9. Gillet, V. J., Newell, W., Mata, P., Myatt, G., Sike, S., Zsoldos, Z., and Johnson, A. P.,
SPROUT: Recent developments in the de novo design of molecules. J. Chem. Inf. Comput.
Sci. 1994, 34(1), 207–217.

10. Clark, D. E., Frenkel, D., Levy, S. A., Li, J., Murray, C. W., Robson, B., Waszkowycz, B.,
and Westhead, D. R., PRO-LIGAND: An approach to de novo molecular design. 1. Appli-
cation to the design of organic molecules. J. Comput. Aided Mol. Des. 1995, 9(1), 13–32.

11. Douguet, D., Thoreau, E., and Grassy, G., A genetic algorithm for the automated genera-
tion of small organic molecules: Drug design using an evolutionary algorithm. J. Comput.
Aided Mol. Des. 2000, 14(5), 449–466.

12. Schneider, G., Clement-Chomienne, O., Hilfiger, L., Schneider, P., Kirsch, S., Bohm, H.
J., and Neidhart, W., Virtual screening for bioactive molecules by evolutionary de novo
design. Angew Chem. Int. Ed. Engl. 2000, 39(22), 4130–4133.

13. Goodford, P. J., A computational procedure for determining energetically favorable bind-
ing sites on biologically important macromolecules. J. Med. Chem. 1985, 28(7), 849–857.

14. Bohm, H. J., The computer program LUDI: A new method for the de novo design of
enzyme inhibitors. J. Comput. Aided Mol. Des. 1992, 6(1), 61–78.

15. Rotstein, S. H. and Murcko, M. A., GroupBuild: A fragment-based method for de novo
drug design. J. Med. Chem. 1993, 36(12), 1700–1710.

16. Bohm, H. J., LUDI: Rule-based automatic design of new substituents for enzyme inhibitor
leads. J. Comput. Aided Mol. Des. 1992, 6(6), 593–606.

17. Gillet, V., Myatt, G., Zsoldos, Z., and Johnson, A., SPROUT, HIPPO and CAESA: Tools
for de novo structure generation and estimation of synthetic accessibility. Perspect. Drug
Discov. Des. 1995, 3(1), 34–50.

18. Miranker, A. and Karplus, M., Functionality maps of binding sites: A multiple copy
simultaneous search method. Proteins 1991, 11(1), 29–34.

19. Roe, D. C. and Kuntz, I. D., BUILDER v.2: Improving the chemistry of a de novo design
strategy. J. Comput. Aided Mol. Des. 1995, 9(3), 269–282.

20. Gillet, V., Johnson, A. P., Mata, P., Sike, S., and Williams, P., SPROUT: A program for
structure generation. J. Comput. Aided Mol. Des. 1993, 7(2), 127–153.

21. Todorov, N. P. and Dean, P. M., A branch-and-bound method for optimal atom-type
assignment in de novo ligand design. J. Comput. Aided Mol. Des. 1998, 12(4), 335–410.

22. Nishibata, Y. and Itai, A., Automatic creation of drug candidate structures based on
receptor structure. Starting point for artificial lead generation. Tetrahedron 1991, 47(43),
8985–8990.

23. Lewell, X. Q., Judd, D. B., Watson, S. P., and Hann, M. M., RECAP—retrosynthetic
combinatorial analysis procedure: A powerful new technique for identifying privileged

312 Handbook of Chemoinformatics Algorithms

molecular fragments with useful applications in combinatorial chemistry. J. Chem. Inf.
Comput. Sci. 1998, 38(3), 511–522.

24. Schneider, G., Lee, M. L., Stahl, M., and Schneider, P., De novo design of molecular
architectures by evolutionary assembly of drug-derived building blocks. J. Comput. Aided
Mol. Des. 2000, 14(5), 487–494.

25. Eisen, M. B., Wiley, D. C., Karplus, M., and Hubbard, R. E., HOOK: A program for
finding novel molecular architectures that satisfy the chemical and steric requirements of
a macromolecule binding site. Proteins 1994, 19(3), 199–221.

26. Degen, J. and Rarey, M., FlexNovo: Structure-based searching in large fragment spaces.
Chem. Med. Chem. 2006, 1(8), 854–868.

27. Wang, R., Gao, Y., and Lai, L., LigBuilder: A multi-purpose program for structure-based
drug design. J. Mol. Model. 2000, 6(7), 498–516.

28. Moon, J. B. and Howe, W. J., Computer design of bioactive molecules: A method for
receptor-based de novo ligand design. Proteins 1991, 11(4), 314–328.

29. Rotstein, S. H. and Murcko, M.A., GenStar:A method for de novo drug design. J. Comput.
Aided Mol. Des. 1993, 7(1), 23–43.

30. Bohacek, R. S. and McMartin, C., Multiple highly diverse structures complementary
to enzyme binding sites: Results of extensive application of a de novo design method
incorporating combinatorial growth. J. Am. Chem. Soc. 1994, 116(13), 5560–5571.

31. Murray, C. W., Clark, D. E., Auton, T. R., Firth, M. A., Li, J., Sykes, R. A., Waszkowycz,
B., Westhead, D. R., and Young, S. C., PRO_SELECT: Combining structure-based drug
design and combinatorial chemistry for rapid lead discovery. 1. Technology. J. Comput.
Aided Mol. Des. 1997, 11(2), 193–207.

32. David, A. and Pearlman, M. A. M., CONCEPTS: New dynamic algorithm for de novo
drug suggestion. J. Comput. Chem. 1993, 14(10), 1184–1193.

33. Gehlhaar, D. K., Moerder, K. E., Zichi, D., Sherman, C. J., Ogden, R. C., and Freer, S. T.,
De novo design of enzyme inhibitors by Monte Carlo ligand generation. J. Med. Chem.
1995, 38(3), 466–472.

34. Todorov, N. P. and Dean, P. M., Evaluation of a method for controlling molecular scaffold
diversity in de novo ligand design. J. Comput. Aided Mol. Des. 1997, 11(2), 175–192.

35. Hartenfeller, M., Proschak, E., Schuller, A., and Schneider, G., Concept of combinatorial
de novo design of drug-like molecules by particle swarm optimization. Chem. Biol. Drug
Des. 2008, 72(1), 16–26.

36. Glen, R. C. and Payne, A. W., A genetic algorithm for the automated generation of
molecules within constraints. J. Comput. Aided Mol. Des. 1995, 9(2), 181–202.

37. Fechner, U. and Schneider, G., Flux (2): Comparison of molecular mutation and crossover
operators for ligand-based de novo design. J. Chem. Inf. Model. 2007, 47(2), 656–667.

38. Vinkers, H. M., de Jonge, M. R., Daeyaert, F. F., Heeres, J., Koymans, L. M., van Lenthe, J.
H., Lewi, P. J., Timmerman, H., Van Aken, K., and Janssen, P. A., SYNOPSIS: Synthesize
and optimize system in silico. J. Med. Chem. 2003, 46(13), 2765–2773.

39. Pierce, A. C., Rao, G., Bemis, G. W., BREED: Generating novel inhibitors through
hybridization of known ligands. Application to CDK2, p38, and HIV protease. J. Med.
Chem. 2004, 47(11), 2768–2775.

40. Nachbar, R. B., Molecular evolution: Automated manipulation of hierarchical chemical
topology and its application to average molecular structures. Genet. Prog. Evolv. Mach.
2000, 1(1–2), 57–94.

41. Andrew, R. and Leach, R. A. L., A ring-bracing approach to computer-assisted ligand
design. J. Comput. Chem. 1994, 15(2), 233–240.

Computer-Aided Molecular Design 313

42. Bohm, H. J., Prediction of binding constants of protein ligands: A fast method for the
prioritization of hits obtained from de novo design or 3D database search programs.
J. Comput. Aided Mol. Des. 1998, 12(4), 309–323.

43. Bohm, H. J., The development of a simple empirical scoring function to estimate the
binding constant for a protein–ligand complex of known three-dimensional structure.
J. Comput. Aided Mol. Des. 1994, 8(3), 243–256.

44. Ishchenko, A. V. and Shakhnovich, E. I., SMall molecule growth 2001 (SMoG2001):
An improved knowledge-based scoring function for protein–ligand interactions. J. Med.
Chem. 2002, 45(13), 2770–2780.

45. DeWitte, R. S. and Shakhnovich, E. I., SMoG: De novo design method based on simple,
fast, and accurate free energy estimates. 1. Methodology and supporting evidence. J. Am.
Chem. Soc. 1996, 118(47), 11733–11744.

46. Todorov, N. P., Buenemann, C. L., and Alberts, I. L., De novo ligand design to an ensemble
of protein structures. Proteins 2006, 64(1), 43–510.

47. Alberts, I. L., Todorov, N. P., and Dean, P. M., Receptor flexibility in de novo ligand design
and docking. J. Med. Chem. 2005, 48(21), 6585–6596.

48. Leapfrog, SYBYL 7.1, TRIPOS: St. Louis, MO.
49. Waszkowycz, B., Clark, D. E., Frenkel, D., Li, J., Murray, C. W., Robson, B., and West-

head, D. R., PRO_LIGAND: An approach to de novo molecular design. 2. Design of
novel molecules from molecular field analysis (MFA) models and pharmacophores. J.
Med. Chem. 1994, 37(23), 3994–4002.

50. Pellegrini, E. and Field, M. J., Development and testing of a de novo drug-design algorithm.
J. Comput. Aided Mol. Des. 2003, 17(10), 621–641.

51. Brown, N., McKay, B., Gilardoni, F., and Gasteiger, J., A graph-based genetic algorithm
and its application to the multiobjective evolution of median molecules. J. Chem. Inf.
Comput. Sci. 2004, 44(3), 1079–1087.

52. Globus, A., Lawton, J., and Wipke, T., Automatic molecular design using evolutionary
techniques. Nanotechnology 1999, 10(3), 290–299.

53. Honma, T., Hayashi, K., Aoyama, T., Hashimoto, N., Machida, T., Fukasawa, K.,
Iwama, T., et al., Structure-based generation of a new class of potent Cdk4 inhibitors:
New de novo design strategy and library design. J. Med. Chem. 2001, 44(26),
4615–4627.

54. Boda, K. and Johnson, A. P., Molecular complexity analysis of de novo designed ligands.
J. Med. Chem. 2006, 49(20), 5869–5879.

55. Gasteiger, J., De novo design and synthetic accessibility. J. Comput. Aided Mol. Des. 2007,
21(6), 307–310.

56. Lameijer, E. W., Kok, J. N., Back, T., and Ijzerman, A. P., The molecule evoluator. An
interactive evolutionary algorithm for the design of drug-like molecules. J. Chem. Inf.
Model. 2006, 46(2), 545–552.

57. Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J., Experimental and
computational approaches to estimate solubility and permeability in drug discovery and
development settings. Adv. Drug Deliv. Rev. 2001, 46(1–3), 3–26.

58. Aronov, A. M., Predictive in silico modeling for hERG channel blockers. Drug Discov.
Today 2005, 10(2), 149–155.

59. Kick, E. K., Roe, D. C., Skillman, A. G., Liu, G., Ewing, T. J., Sun, Y., Kuntz, I. D., and
Ellman, J. A., Structure-based design and combinatorial chemistry yield low nanomolar
inhibitors of cathepsin D. Chem. Biol. 1997, 4(4), 297–307.

60. Ripka, A. S., Satyshur, K. A., Bohacek, R. S., and Rich, D. H., Aspartic protease inhibitors
designed from computer-generated templates bind as predicted. Org. Lett. 2001, 3(15),
2309–2312.

314 Handbook of Chemoinformatics Algorithms

61. Caflisch, A., Miranker, A., and Karplus, M., Multiple copy simultaneous search and con-
struction of ligands in binding sites: Application to inhibitors of HIV-1 aspartic proteinase.
J. Med. Chem. 1993, 36(15), 2142–2167.

62. Dong, X., Zhang, Z., Wen, R., Shen, J., Shen, X., and Jiang, H., Structure-based de novo
design, synthesis, and biological evaluation of the indole-based PPARgamma ligands (I).
Bioorg. Med. Chem. Lett. 2006, 16(22), 5913–5916.

63. Schwefel, H. P., Deep insight from simple models of evolution. Biosystems 2002, 64(1–3),
189–198.

64. Pegg, S. C., Haresco, J. J., and Kuntz, I. D., A genetic algorithm for structure-based de
novo design. J. Comput. Aided Mol. Des. 2001, 15(10), 911–933.

65. Lameijer, E. W., Tromp, R.A., Spanjersberg, R. F., Brussee, J., and Ijzerman,A. P., Design-
ing active template molecules by combining computational de novo design and human
chemist’s expertise. J. Med. Chem. 2007, 50(8), 1925–1932.

66. Molecular Evoluator [computer software] CIDRUX Pharminformatics: Haarlem, The
Netherlands. www.cidrux.com

67. Douguet, D., Munier-Lehmann, H., Labesse, G., and Pochet, S., LEA3D: A computer-
aided ligand design for structure-based drug design. J. Med. Chem. 2005, 48(7),
2457–2468.

68. Schneider, G. and Fechner, U., Computer-based de novo design of drug-like molecules.
Nat. Rev. Drug Discov. 2005, 4(8), 649–663.

69. Mauser, H. and Guba, W., Recent developments in de novo design and scaffold hopping.
Curr. Opin. Drug Discov. Devel. 2008, 11(3), 365–374.

70. Voronkov, A. E., Baskin, I. I., Palyulin, V. A., and Zefirov, N. S., Molecular modeling of
modified peptides, potent inhibitors of the xWNT8 and hWNT8 proteins. J. Mol. Graph.
Model. 2008, 26(7), 1179–1187.

71. Nishibata, Y. and Itai, A., Confirmation of usefulness of a structure construction program
based on three-dimensional receptor structure for rational lead generation. J. Med. Chem.
1993, 36(20), 2921–2928.

72. Iwata, Y., Naito, S., Itai, A., and Miyamoto, S., Protein structure-based de novo
design and synthesis of aldose reductase inhibitors. Drug Des. Discov. 2001, 17(4),
349–510.

73. Heikkila, T., Thirumalairajan, S., Davies, M., Parsons, M. R., McConkey, A. G.,
Fishwick, C. W., and Johnson, A. P., The first de novo designed inhibitors of Plasmod-
ium falciparum dihydroorotate dehydrogenase. Bioorg. Med. Chem. Lett. 2006, 16(1),
88–92.

74. Ali, M. A., Bhogal, N., Findlay, J. B., and Fishwick, C. W., The first de novo-designed
antagonists of the human NK(2) receptor. J. Med. Chem. 2005, 48(18), 5655–5658.

75. Ji, H., Zhang, W., Zhang, M., Kudo, M., Aoyama, Y., Yoshida, Y., Sheng, C., et
al., Structure-based de novo design, synthesis, and biological evaluation of non-azole
inhibitors specific for lanosterol 14alpha-demethylase of fungi. J. Med. Chem. 2003, 46(4),
474–485.

76. Grembecka, J., Sokalski, W. A., and Kafarski, P., Computer-aided design and activity pre-
diction of leucine aminopeptidase inhibitors. J. Comput. Aided. Mol. Des. 2000, 14(6),
531–544.

77. Grembecka, J., Mucha,A., Cierpicki, T., and Kafarski, P., The most potent organophospho-
rus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity.
J. Med. Chem. 2003, 46(13), 2641–2655.

78. Alig, L., Alsenz, J., Andjelkovic, M., Bendels, S., Benardeau, A., Bleicher, K., Bourson,
A., et al., Benzodioxoles: Novel cannabinoid-1 receptor inverse agonists for the treatment
of obesity. J. Med. Chem. 2008, 51(7), 2115–2127.

Computer-Aided Molecular Design 315

79. Rogers-Evans, M., Alanine, A. I., Bleicher, K. H., Kube, D., and Schneider, G., Identifi-
cation of novel cannabinoid receptor ligands via evolutionary de novo design and rapid
parallel synthesis. QSAR Comb. Sci. 2004, 23(6), 426–430.

80. Stahl, M., Todorov, N. P., James, T., Mauser, H., Boehm, H. J., and Dean, P. M., A valida-
tion study on the practical use of automated de novo design. J. Comput. Aided Mol. Des.
2002, 16(7), 459–478.

81. Fechner, U. and Schneider, G., Flux (1): A virtual synthesis scheme for fragment-based
de novo design. J. Chem. Inf. Model. 2006, 46(2), 699–707.

82. Schuller, A., Suhartono, M., Fechner, U., Tanrikulu, Y., Breitung, S., Scheffer, U., Gobel,
M. W., and Schneider, G., The concept of template-based de novo design from drug-
derived molecular fragments and its application to TAR RNA. J. Comput. Aided Mol. Des.
2008, 22(2), 59–68.

11 Reaction Network
Generation

Jean-Loup Faulon and Pablo Carbonell

CONTENTS

11.1 Introduction .317
11.2 The Challenges of Generating Networks .318
11.3 Representation of Chemical Reactions .319

11.3.1 Representation Based on Reaction Centers .320
11.3.2 Bond–Electron Matrices .321
11.3.3 Representation Based on Fingerprints .322

11.4 Network Kinetics .324
11.4.1 Estimating Reaction Rates .324
11.4.2 Simulating Network Kinetics .326

11.5 Reaction Network Generation Algorithm. .328
11.6 Reaction Network Sampling Algorithm .333

11.6.1 Concentration-Sampling Network-Generator Algorithm.333
11.6.2 MC-Sampling-Network-Generator Algorithm. .336
11.6.3 SMS Algorithm. .337

11.7 Concluding Remarks .339
References .339

11.1 INTRODUCTION

Designing new drugs or chemicals, understanding the kinetics of combustion
and petroleum refining, studying the dynamics of metabolic networks, and using
metabolism to synthesize compounds in microorganisms are applications that require
us to generate reaction networks.As the networks may be quite large, there is a need to
automate the procedure. The purpose of this chapter is to present algorithms that have
been developed to handle that task. Section 11.2 introduces the problem and the chal-
lenges associated with network generation. Section 11.3 gives various methods used
to represent chemical reactions and reaction networks. Section 11.4 introduces tech-
niques to simulate the dynamics of reaction networks and, in particular, approaches to
estimate rate constants of the reactions. Section 11.5 presents deterministic techniques
to generate networks. It is not always possible to deterministically produce reac-
tion networks due to the combinatorial explosion of the number of species involved;
stochastic network generation methods are presented in Section 11.6.

317

318 Handbook of Chemoinformatics Algorithms

11.2 THE CHALLENGES OF GENERATING NETWORKS

Provided an ensemble of possible chemical reactions, the network generation pro-
cess essentially consists of finding all species that can be synthesized from an initial
set of reactants. The process is recursive as reactions can be applied to generated
species as well. The process ends depending on the goal of the study, for instance,
a specific compound has been produced, or all compounds with predefined physi-
cal, chemical, or biological properties have been generated. The same process can
be used to search for all species producing a given target when reversing the reac-
tions. This reverse process is used in retrosynthesis analysis where reversed reactions
are named transforms, and species generated are named synthons [1]. The network
generation algorithms given in this chapter apply to both synthesis and retrosynthe-
sis as it is just a matter of defining the direction of the reactions. As reviewed by
Ugi et al. [2], three main approaches have been developed for network generation:
empirical approaches, whose strategies are based on data from reaction libraries,
semiformal approaches based on heuristic algorithms, where reactions are derived
from a few mechanistic elementary reactions, and formal techniques, based on graph
theory. This chapter focuses on the last approach. The formal approach has spurred
most of the network generation algorithms, which historically started with the work
of Corey et al. [3] and the retrosynthesis code Lhasa (http://www.lhasalimited.org).
Ugi et al. argue that formal techniques are general enough to be applicable to
any type of reacting system in organic or inorganic chemistry; furthermore, formal
techniques are the only methods capable of generating new reaction mechanisms
and therefore elucidating unresolved chemical processes such as those found with
synthesis planning.

While formal techniques are robust, their computational scaling limits their appli-
cability to real reacting systems. Indeed, as has been shown by several authors [4–9],
for many processes related to retrosynthesis, combustion, and petroleum refining, the
number of reactions and intermediate species that are created generally scales expo-
nentially with the number of atoms of the reactants. With metabolic and signaling
networks, the number of possible species also grows prohibitively [10,11] when one
considers all the possible states a species can fall into (phosphorylation at several
sites, and complex formation with other proteins and ligands). As a matter of fact
it has been shown that even simple models of the epidermal growth factor (EGF)
receptor signaling network can generate more than 1023 different species [12].

With all these systems, not only the time taken to generate networks may scale
exponentially, but simulating the dynamics of large networks may also become com-
putationally prohibitive. The most common approach to study the dynamics of a
reaction network is to calculate species concentration over time by integrating a sys-
tem of ordinary differential equations (ODEs). The computational cost of integrating
ODEs depends nonlinearly on N , the number of chemical species. For stiff ODEs
(cf. definition in Section 11.4), that cost scales N3, and thus simulating a system for
which N is larger than 104−105 becomes impractical.

An alternative to palliate the exponential scaling problem of formal techniques
is the reduction of the reaction mechanism. The question raised when the reduc-
ing mechanism is used is how to choose a reaction subset that describes correctly

Reaction Network Generation 319

the dynamics of the entire system. Reduction strategies in the area of combustion
modeling have been reviewed by Frenklach [6]; these are quite general and applicable
to other fields. According to Frenklach, there are five types of reduction strategies:
(1) global reduction, (2) response modeling, (3) chemical lumping, (4) statistical
lumping, and (5) detailed reduction. Global modeling techniques transform a com-
plete reaction scheme into a small number of global reaction steps. Global techniques
comprise ad hoc methods such as empirical fitting, reduction by approximations,
and lumping. All global techniques are specific to a particular problem and cannot
be generalized. Response modeling techniques consist of mapping model responses
and model variables through functional relationships. Generally, model responses are
species concentrations, and model variables are the initial boundary conditions of the
reacting mixture and the model parameters, such as rate coefficients, and transport
properties. Usually, model responses are expressed as simple algebraic functions (such
as polynomials) in terms of model variables. As with global techniques, response
modeling solutions are problem specific since they require data to build algebraic
functions. Chemical lumping was first developed for polymerization-type reactions.
Chemical lumping models are used when a polymer grows by reaction between the
polymer and monomer species. The lumping strategy is guided by similarity in chem-
ical structure or chemical reactivity of the reacting species. The main assumption of
chemical lumping is that the reactions describing the polymer growth are essen-
tially the same and the associated thermochemical and rate parameters exhibit only
a weak dependence on the polymer size. Finally, the detailed reduction technique
consists of identifying and removing noncontributing reactions. An effective reduc-
tion strategy is to compare the individual reaction rates with the rate of a chosen
reference reaction. The reference reaction is, for instance, the rate-limiting step or the
fastest reaction. The detailed reaction reduction approach is a general technique and is
a priori applicable to any reacting system.

The goal of this chapter is to present reaction network generation techniques
that are computationally tractable and general enough to be applicable to many
processes, such as synthesis planning, combustion, petroleum refining, and sig-
naling and metabolic network inferences. Thus, network generation algorithms
are presented focusing on the formal generation approach since it is the only
approach that is general enough and is applicable to different processes. As men-
tioned above, formal techniques scale exponentially with the problem size and
therefore reduction methods need to be applied. The only reduction technique appli-
cable to general systems is the detailed reduction method. Because the networks
generated can be exponentially large, network generation and reduction cannot
be performed in sequence but simultaneously. Section 11.6 presents algorithms
where the detailed reduction technique is applied “on the fly” while generating
networks.

11.3 REPRESENTATION OF CHEMICAL REACTIONS

There are several reasons why one wants to codify chemical reactions. Reactions
need to be stored and retrieved from databases and these databases often require us

320 Handbook of Chemoinformatics Algorithms

to link information from different sources. There is also a need for automatic proce-
dures for analyzing, performing correlations, and classifying reactions in databases,
a prominent example being the classification of enzymatic reactions [13]. Finally,
reactions need to be coded for the construction of knowledge bases for reaction pre-
dictions with the purpose of network generation or synthesis design. The reaction
codifications systems presented next are focusing on this latter application.

11.3.1 REPRESENTATION BASED ON REACTION CENTERS

The traditional method to represent a chemical reaction is based on reaction cen-
ters. A reaction center is constituted of the atoms and bonds directly involved in the
bond and electron rearrangement process. The reaction centers are thus composed
of the bonds broken and formed when the reaction takes place as well as the atoms
attached to these bonds. It is easy to detect these reaction centers from the reaction
graphs presented in Chapter 1, and an automated procedure to perform this task has
been worked out for some time. Among the published solutions are the ClassCode
Infochem system (http://infochem.de/en/products/software/classify.html), HORACE
[14], and the reaction classification numbers used in the KEGG database [13]. In
the solution adopted with KEGG, reaction centers are searched between all possible
pairs (reactant× product) involved in a reaction. An example of detection of reaction
center is depicted in Figure 11.1.

To find the reaction center between the elements of a given pair, one first searches
the maximum common substructure between the elements. Next, each element (reac-
tant and product) is decomposed into a common part and a nonoverlapping part
(dashed boxes in Figure 11.1). The reaction center is the atom (circled in Figure 11.1)
belonging to the common part and adjacent to the nonoverlapping part. The process
is repeated between all possible pairs and as illustrated in Figure 11.2, a given reac-
tion is characterized by several reaction centers, common parts, and nonoverlapping
parts. All reaction centers (R), nonoverlapping (D) parts, and common parts (M) of
the KEGG database have been numbered uniquely; thus each reactant× product pair
is characterized by three numbers R, D and M, also named the RC numbers. For
instance, for the glutamate× N-acetyl-glutamate, R = 173, D = 349 and M = 14;
the RC number for the pair is thus 173.349.14. As illustrated in Figure 11.3, when
several reactant× product are found for a reaction, the code for the reaction is the
compilation of the RC numbers of all pairs.

173.349.14

Glutamate
N-acetyl-
glutamate

O O

N

O

O

O
O

O

N
O

FIGURE 11.1 Reaction center between glutamate and N-acetyl-glutamine. The reaction cen-
ters are circles, the nonoverlapping part is in a dashed box, and the remaining parts of the
structures are the common parts. The reaction center (circled) is the atom in the common part
adjacent to the nonoverlapping part.

Reaction Network Generation 321

61.718.8

298.349.8

Glutamate + acetyl-CoA N-acetyl-glutamate + CoA

N-acetyl-
glutamate

Acetyl-CoA

Acetyl-CoA

O
O O

OO

N
CoA S

CoA CoAS
CoA S

173.349.14

Glutamate
N-acetyl-
glutamate

O O

N

O

O

O
O

O

N

O

FIGURE 11.2 Reaction classification for amino acid N-acetyltransferase (EC 2.3.1.1)
between all pair reactants (glutamate, acetyl-Co Enzyme A) × products (N-acetyl-glutamate,
Co Enzyme A). The figure depicts reaction centers, nonoverlapping parts, and common parts.
All parts are depicted using the notation of Figure 11.1.

11.3.2 BOND–ELECTRON MATRICES

Bond–electron matrices were first introduced by Ugi and coworkers [15,16]. In
this representation, compounds and reactions are coded by bond–electron (be-) and
reaction (r-) matrices (cf. Figure 11.4). In a given be-matrix representing a com-
pound, the ith row (and column) is assigned to the ith atom of the compound. The
entry bij, (i �= j) of a be-matrix is the bond order of the covalent bond between atoms
i and j. The diagonal entry bii is the number of free valence electrons for atom i. It is
worth noting that the adjacency and connectivity matrices (cf. Chapter 1) differ from
the be-matrices in their diagonal entries. The redistribution of valence electrons by

173.349.14

298.349.8

Glutamate + acetyl-CoA

1. Glutamate

2. Acetyl-CoA

N-acetyl-glutamate + CoA

3. N-acetyl-glutamate

4. CoA

61.718.8

FIGURE 11.3 Codification classification for amino acid N-acetyltransferase (EC 2.3.1.1).
The code reflects all mapping between reactant and products. The mappings are detailed in
Figure 11.2, and the resulting code is 1_3(173.349.14)+ 2_3(61.718.8)+ 2_4(298.349.8).

322 Handbook of Chemoinformatics Algorithms

2

3 4
4

5

–

–

6 5 6
+

O O

H H

N H

2

1
C NC

H

13

B matrix

C1

C1 0 2 1 1 0 0
2 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 3
0 0 0 0 3 0

O2

O2

H3

H3

H4

H4

C5

C5

N6

N6

R matrix

C1

C1 0 –1 0 0 1 0
–1 1 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 –1 0
0 0 0 0 0 0

O2

O2

H3

H3

H4

H4

C5

C5

N6

N6

E matrix

C1

C1 0 1 1 1 1 0
1 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 3 0

O2

O2

H3

H3

H4

H4

C5

C5

N6

N6

FIGURE 11.4 Example of bond–electron (be-) matrices and reaction (r−) matrices. Negative
numbers in the reaction matrix represent broken bonds while positive numbers represent bonds
that are created as the reaction proceeds. The sum of a row (column) of be-matrices equals the
valence of the corresponding atoms. The sum of a row (column) of r-matrices equals zero.

which the starting materials of chemical reactions are converted into their products is
represented by r-matrices.

The fundamental equation of the Dugundji–Ugi model for any given reaction α1 +
α2 + · · · + αn → β1 + β2 + · · · + βn is B+ R = E, where B (Begin) and E (End) are
the be-matrices of reactants and products and R is the reaction matrix. The addition
of matrices proceeds entry by entry, that is, bij + rij = eij . Since there are no formal
negative bond orders or negative numbers of valence electrons, the negative entries
of R must be matched by positive entries of B of at least equal values.

11.3.3 REPRESENTATION BASED ON FINGERPRINTS

Several reaction codification systems are based on molecular fingerprints: examples
include the Daylight reaction fingerprints (http://www.daylight.com/dayhtml/doc/
theory/theory.finger.html), the reaction signature [5,17], and fingerprints based on
atom types [18]. These codification systems have in common that the fingerprint of
the reaction is the difference between the fingerprints of the products and the reac-
tants. Taking the example of signature, let us recall from Chapters 3 and 9 that the
signature of a molecule (reactant or product) is the sum of the signatures of all atoms
of that molecule. The signature of an atom x, hσG(x), in a molecule G is a subgraph
containing the neighborhood of that atom up to a certain distance, named signature
height. Examples of atom and molecular signatures are given in Figure 11.5.

Let B and E be two molecular graphs representing the reactants and products of
the reaction R : B→ E. Note that signatures can be computed on graphs that are not
necessarily connected; hence B and E can both be composed of several molecules,
including several copies of the same molecule to reflect stoichiometry.The h-signature

Reaction Network Generation 323

HO

CH2

(a) Atom signature

(b) Molecular signature

[C] ([C] = [C] [O])

[C] ([C] (= [C]) = [C] ([C])

[C] ([C] (= [C] ([C])) = [C] ([C] (= [C])) [O] ([H])

h=1σ (Tyrosine) =

[C] ([C] = [C] [O]) + 4 [C] ([C] = [C]) + [C] ([C] [C] = [C]) + [O] ([C] [H]) + [C] ([C] [H] [H])

h=1

[C]h=0

h=2

h=3

C

C

C

C

C

C

[O] ([H]))

FIGURE 11.5 Atom and molecular signatures. (a) The signature is given for the red carbon
atom. (b) The molecular signature of tyrosine is derived by summing the signatures of all atoms
(in the example, signatures are not computed for hydrogen atoms).

of reaction R is given by the equation

hσ(R) = hσ(E)− hσ(B). (11.1)

An example of reaction signature is given in Figure 11.6.

3.1.1.1

1.0 [R] ([O]) 1.0 [O] ([H] [H])
1.0 [R] ([C])

1.0 [R] ([O])
1.0 [O] ([R] [H])

1.0 [O] ([=C])
1.0 [O] ([R] [C])

1.0 [R] ([C])
1.0 [O] ([=C])
1.0 [O–] ([C])
1.0 [C] ([=O] [O–] [R])

1.0

σ(3.1.1.1)=σ(Alcohol)+σ(Carboxylate)-σ(Carboxylic ester)-σ(H2O)

[C] ([=O] [O] [R])

–1.0 [O] ([[R] [C])
–1.0 [O] ([H] [H])

1.0 [O–] ([C])
1.0 [O] ([R] [H])

–1.0 [C] ([=O] [O] [R])
1.0 [C] ([=O] [O–] [R])

Ο

R O

O

R O–R
+ +OH2 R OH

FIGURE 11.6 Signature for the carboxylesterase enzymatic reaction (EC number 3.1.1.1).

324 Handbook of Chemoinformatics Algorithms

11.4 NETWORK KINETICS

In order to study the kinetics of networks produced by a reaction network generator
to, for instance, calculate species concentrations versus time, one needs to estimate
reaction rates for each reaction and then use these rates to simulate the kinetics.
Methods that have been proposed to perform these tasks are presented next. The
presentation is limited to techniques that have been coupled with network generation;
these methods are thus constrained by the fact that generated networks may be large;
in other words, the techniques must be computational efficient.

11.4.1 ESTIMATING REACTION RATES

In chemical kinetics the rate of a reaction allows one to compute the amount of reactant
lost and product formed during an infinitesimal small time interval dt. Considering the
chemical reaction aA+ bB→ cC+ dD, where a, b, c, and d are the stochiometric
coefficients, the concentrations [A], [B], [C], and [D] of the reactants and products
are derived from the following equation:

−1

a

d[A]

dt
= −1

b

d[B]

dt
= 1

c

d[C]

dt
= 1

d

d[D]

dt
= r, (11.2)

where r is the reaction rate. The reaction rate is in turn calculated with the expression:

r = k(T)[A]n[B]m, (11.3)

where k(T) is the rate constant depending on temperature T , and n and m are
reaction orders linked to the reaction mechanism. For instance, for first-order reac-
tion of the type A→ C+ D, n = 1 and m = 0; for second-order reaction of the
type A+A→ C+ D, n = 2 and m = 0; and for second-order reaction of the type
A+ B→ C+ D, n = 1 and m = 1. After integrating Equation 11.2, one is able to
compute the concentrations of the species versus time from the initial concentrations.
Assuming that the initial concentrations and the reaction orders are known, the only
parameter that remains to be computed is the rate constant. While some rate con-
stants along with other kinetics parameters can be found in databases [for instance,
NIST thermodynamics database for chemicals (http://webbook.nist.gov), BRENDA
(http://www.brenda-enzymes.org/) for enzyme catalyzed reactions], only a limited
number of reactions are stored in these databases, and there is a need to automatically
compute rate constants, especially when generating networks. To this end, several
approaches have been developed. One approach makes use of an approximation based
on the Arrhenius equation:

k(T) = A exp

(

− Ea

RT

)

, (11.4)

where R is the gas constant, A is the so-called pre-exponential factor, and Ea is the
activation energy. In this approach, which has been utilized for thermal cracking [5,7],
the pre-exponential factor is compiled from experimental literature data for five reac-
tion classes (also named elementary transformations) independent of species-specific

Reaction Network Generation 325

Homolysis: R1 0 1
R2 1 0

R1-R2 -> R1• + R2•

B-matrix

1 –1
–1 1

R-matrix

0 1
0 1

Recombination: R1 1 0
R2 0 1

R1• + R2• -> R1-R2
–1 1

1 –1
0 1
1 0

H-abstraction: H 0 1
C 1 0

0
0

CH + R• -> RH + C• 0 –1
–1 1

1
0

0 0
0 1

1
0

R 0 0 1 1 0 –1 1 0 0

β-scission: R 0 0
Cα 0 1

1
1

R-Cβ-Cα• -> Cα = Cβ + R• 1 0
0 –1

–1
1

1 0
0 0

0
2

Cβ 1 1 0 –1 1 0 0 2 0

Addition: R 1 0
Cα 0 0

0
2

Cα = Cβ + R• -> R-Cβ-Cα• –1 0
0 1

1
–1

0 0
0 1

1
1

Cβ 0 2 0 1 –1 0 1 1 0

E-matrix

FIGURE 11.7 The five elementary transformations of hydrocarbon thermal cracking used in
Ref. [5] and their associated (be-) and (r-) matrices.

structures. The elementary transformations are bond homolysis, radical recombina-
tion, hydrogen abstraction, b-scission, and b-addition (cf. Section 11.5 and Figure 11.7
for further explanations). In the approach proposed by Susnow et al. [7], the activa-
tion energy is species specific and is computed from linear free energy relationships
(LFERs) relating the activation energy to the heat of the reaction. The heat of reactions
is either retrieved from the NIST thermodynamics database or calculated using the
semiempirical molecular orbital package (MOPAC) (http://openmopac.net/).

With the goal of producing more accurate rate constants another approach has
been developed based on a group additivity method. In that method the rate constant
is related with compound thermodynamics properties (heat of formation and entropy)
by the following equation:

k(T) = C exp

(

−ΔH

RT

)

exp

(
ΔS

R

)

, (11.5)

where C is a constant depending on temperature, molar volume, and reaction path, and
ΔH and ΔS are, respectively, the enthalpy and entropy differences between the tran-
sition states geometries and the reactants states. Entropy and enthalpy are calculated
using group additivity. The main idea of computing thermodynamics properties by
summing the properties of individual groups was initially developed by Benson and
Buss, as described in [19]. In the Benson and Buss method, the atom properties are
compiled for every possible configuration an atom can have with its first neighbors,
and the property of the molecule is simply the sum of the properties of each atom. For
instance, using the signature notation of Figure 11.5, alkanes (including methane) have
only five possible groups [C]([H][H][H][H]), [C]([C][H][H][H]), [C]([C][C][H][H]),
[C]([C][C][C][H]), and [C]([C][C][C][C]), and the property of every alkane is simply

326 Handbook of Chemoinformatics Algorithms

the scalar product between the molecular signature of the compound and the calcu-
lated property of the groups. To compute group properties, quantum calculation can
be used. As an example of application of the group additivity method relevant to the
chapter, Sumathi et al. [20,21] calculated enthalpies, entropies, and heat capacities
for hydrocarbon–hydrogen abstractions using ab initio calculations.

11.4.2 SIMULATING NETWORK KINETICS

Once rates have been estimated, the species concentrations can be calculated inte-
grating reaction equations such as Equation 11.2. There are essentially two main
mathematical approaches to integrate a system of reaction equations. In the first
approach, the concentrations of chemical species are modeled as continuous vari-
ables that change over time and reactions between species are modeled by ODEs.
The set of ODEs are often numerically integrated using solvers that can be found in
many freeware and commercial packages. In the second approach, chemical species
are treated as discrete variables that change over time in a discrete manner. In this
approach, reactions are individual events that update the system and can be combined
into a chemical master equation [22]. The chemical master equation is often compu-
tationally integrated to compute the time evolution of the systems using stochastic
simulation algorithm (SSA). Both method (ODEs and SSA) provide exact solutions
albeit there are instances where ODEs break down. An example of such a breakdown
with ODEs is when an individual reaction event causes a large difference in the likeli-
hood that other reactions will occur, and so the precise order and timing of individual
reactions can influence the overall system behavior. ODEs have also difficulties to
solve stiff equations, that is, a differential equation for which numerical methods are
numerically unstable, unless the step size is taken to be extremely small. For the above
reasons, all algorithms presented in the chapter make use of SSAs rather than ODEs.

SSAs were first proposed by Gillespie [22] and are based on Monte Carlo (MC)
sampling. The MC–Gillespie technique monitors the number of particles for each
species versus time. The initial number of particles of the reactants is computed
from their initial concentrations (given by the user) and the initial number, Mp, of
particles in the system. In the present chapter, the MC–Gillespie technique is used at
constant volume V , which is calculated from the initial number of particles and the
particle density (both user inputs). The MC–Gillespie technique is an exact method
for numerical integration of the time evolution of any spatially homogeneous mixture
of molecular species that interact through a specified set of coupled chemical reaction
channels. The technique is based on a fundamental equation giving the probability
at time t that the next reaction in V will occur in the differential time interval [t + τ,
t + τ+ dτ] and will be an rμ reaction:

P(τ, μ)dτ = P1(τ)P2(μ|τ), (11.6)

where P1 is the probability that the next reaction will occur between times t + τ and
t + τ+ dτ:

P1(τ) = a exp(−aτ)dτ, (11.7)

Reaction Network Generation 327

and P2 is the probability that the next reaction will be rμ:

P2(μ|τ) = aμ

a
(11.8)

with

a = Σμaμ. (11.9)

In the previous equations, aμ dτ is the probability, to first order in dτ, that a reaction
rμ will occur in V in the next time interval dτ. The rate constant kμ is related to aμ in
different ways depending on whether the reaction is monomolecular or bimolecular.
For monomolecular reactions

aμ = [s]kμ, (11.10)

where [s] is the number of particles of reactant species s. For bimolecular reactions
involving two species s1 and s2,

aμ = [s1][s2]kμ

V
, (11.11)

and for bimolecular reactions involving only one reactant species,

aμ = [s]([s] − 1)
kμ

2V
. (11.12)

In order to integrate Equation 11.6, Gillespie proposes the following scheme. First,
generate a random value t according to P1(t) and, second, generate a random integer
μ according to P2(μ|τ). The random value τ is computed by simply drawing a random
number r1 from a uniform distribution in the unit interval and taking

τ = 1

a
ln

1

r1
. (11.13)

In turn, the random integer μ is generated by drawing another random number r2
in the unit interval and by taking μ the smallest integer verifying

μ∑

ν=1

aν > r2a. (11.14)

In his original paper, Gillespie [22] has proven that expressions 11.13 and 11.14
are indeed correct to simulate stochastically the time evolution of homogeneous
reactions. Since this original paper, improvement in SSAs has appeared in the lit-
erature, especially regarding computational time; these have recently been reviewed
by Gillespie [23].

328 Handbook of Chemoinformatics Algorithms

11.5 REACTION NETWORK GENERATION ALGORITHM

The network generator algorithm presented next is based on the Dugundji–Ugi theory
[15] and the computer programs RAIN developed by Fontain and Reitsam [24] and
NetGen developed by Broadbelt et al. [4]. The generator is limited to monomolecular
and bimolecular reactions but could easily be extended to more complex reactions.
Following the Dugundji–Ugi methodology, reactants are represented by be-matrices.
The reactions are represented in the form of elementary transformations. As any reac-
tion, an elementary transformation is composed of two configurations containing
atoms participating in a reaction before and after the reaction has taken place. Unlike
full reactions, the configurations with elementary transformations do not take into
account the full structure of the species involved, but focuses on the reaction center
and its immediate surrounding. In other words, elementary transformations focus on
the electronic transformations that atoms undergo when reacting. One notes that the
codifications (RC numbers, be- and r-matrices, and signatures) presented in the Sec-
tion 11.3 can all be restricted to reaction centers, and thus can all be used to code
elementary transformations. Examples of elementary transformations using be- and
r-matrices are given in Figure 11.7 for thermal cracking. Fontain and Reitsan [24]
compiled the complete set of elementary transformations that carbon atoms can take
in organic reactions. This set is composed of 324 transformations; however, the set
can be greatly reduced depending on the studied process. For instance, it is known
[25] that hydrocarbon thermal cracking reactions can be generated from the five
elementary transformations listed in Figure 11.7. As another example, Susnow et al.
[7] proposed 17 transformations to model methane combustion. As a final example,
Hatzimanikatis et al. [26] have computed elementary transformation for metabolic
reactions. r-matrices were generated for all reactions stored in the metabolic KEGG
database (http://www.genome.jp/kegg/) resulting in about 250 unique elementary
transformations.

The input of the deterministic reaction network generator (Algorithm 11.1) is a
list of reactant species, a list of constraints, and a list of elementary transformations.
Constraints are user defined; examples of constraints are maximum number of species
and reactions generated, maximum species size, maximum number of reactants per
reaction, maximum number of lone electrons, and so on. The output of the algorithm
is a network composed of all possible species and reactions that can be created from
the input. The algorithm described below is illustrated for ethane thermal cracking in
Figure 11.8.

The algorithm starts by computing all the possible species (Ls1) that can be derived
by applying the elementary transformations (Let) to the initial species (Ls0) while
respecting the constraints. To prohibit duplication of species, Ls1 is composed of
species that are not already present inLs0.When applying elementary transformations,
one has to make the distinction between monomolecular and bimolecular reactions.
For each monomolecular elementary transformation, Ls1 is composed of all the pos-
sible products that can be generated by applying the elementary transformation in all
possible ways to the species of Ls0. For each bimolecular reaction, Ls1 is composed
of the products derived by applying the elementary transformations to all possible
pairs of species in Ls0. The list of reactions Lr1 is updated each time an elementary

Reaction Network Generation 329

Homolysis

Step 1

CH3–CH3

s0= {CH3–CH3}

s1 = {•CH3}
2 •CH3

Step 2

CH3–CH3

CH3–CH3 CH3–CH3+ •CH2–CH3

s2= {CH4 , •CH2–CH3}

s3 = {CH3 –CH2–CH3,
CH3–CH2–CH2–CH3,
H2C=CH2, •H}

CH4 + •CH2–CH3

CH3–CH2–CH3

CH3–CH2–CH2–CH3

H2C=CH2 + •H

+ •CH3

Step 3

•CH3

•CH2–CH3

•CH3+ CH4

+ •CH2–CH3

+ •CH2–CH3

+ CH4

•CH3 CH3–CH3
+ •CH3

+ •CH2–CH3

FIGURE 11.8 The first three steps of ethane thermal cracking using the elementary transfor-
mations listed in Figure 11.7. These matrices comprise only atoms for which the configuration
is changed. The lists of species (Ls0, Ls1, Ls2, and Ls3) are given on the right side of the
figure.

transformation applies to a species in Ls0. Each reaction is represented by n-tuples
composed of the elementary transformation (from Let), the reacting species (from
Ls0), the product species (from Ls1 or Ls0), and the rate constant of the reaction.
Once the list Ls1 has been computed, the algorithm proceeds and computes recur-
sively Ls1, Ls2, . . . , Lsi. Note that in order to compute Lsi (i > 1) one has to consider
monomolecular reactions only from the set Lsi−1 since all monomolecular reactions
from the sets Lsi−2, Lsi−3, . . . have already been computed in the previous steps. For
the same reason, the products of bimolecular reactions in Lsi are generated for every
possible pair of species so far generated having at least one element in Lsi−1. To avoid
redundancies of species in the lists Ls0, Ls1, . . . , Lsi at any step i > 1, a new species
is added to Lsi only if the species is not in Lsi−1 + Lsi−2 + · · · + Ls0.

The process halts at any step i, where the corresponding lists of species Lsi and
reaction Lri are empty. Since bimolecular reactions can potentially create prod-
ucts of infinite molecular weight, in order to keep a finite network size one has
to set a limit for the maximum species size; let n be this limit. Note that with the
exception of polymerization reactions it is reasonable to assume that all species
in a given network will be limited in size. In turn, note that if the species have
a limited size, then the network generation algorithm is guaranteed to converge.

330 Handbook of Chemoinformatics Algorithms

Indeed, the maximum number of species, N , that can be formed is bounded by
the total number of molecular structures having a number of atoms raging from
1 to the specified value of n. This latter number is equal to the sum of the num-
bers of isomers containing 1, 2, . . . , n atoms and scales exponentially with n even
for simple compounds such as hydrocarbons. Finally, note that the number of reac-
tions is also finite and is bounded by N4, which is an upper bound on the number
of ways of selecting four species (i.e., two reactants and two products) among
N species.

The network generator Algorithm 11.1 uses specific data structures to describe
species and reactions. A molecular species s is represented by a molecular graph
G(s). This graph can in turn be represented by any codification system presented in
Section 11.3, be-matrix for instance. An elementary transformation (et) is represented
by two molecular graphs, B(et) the et of the surrounding atoms before the reaction has
taken place, and E(et) the et after the reaction has taken place. These molecular graphs
can be represented by any of the codification systems presented in Section 11.3. A
reaction, r, is an n-tuple composed of an elementary transformation, a list of reactant
species Lb(r), a list of products Le(r), and a rate constant k(r). Lb(r) is composed of
either one or two species for monomolecular and bimolecular reactions, respectively.
Additionally, the algorithm maintains several lists of species and reactions: the list of
reactants (Ls0), the list of species (Lsi) and reactions (Lri) created at the current step
i, and the list of species generated at the previous step (Lsi−1). As already mentioned,
species are added to lists when not already present; since species are represented by
molecular graphs, the addition of species requires to check for graph isomorphism
between the species to be inserted and the species already in the list. Molecular
graph isomorphism algorithms can be found in Chapter 2. In Algorithm 11.1, the
function “species-constraints” verifies the user constraints and the function “rate-
constant” computes the rate constant of a given reaction using techniques described
in Section 11.4.

ALGORITHM 11.1 PSEUDOCODE FOR DETERMINISTIC
NETWORK GENERATOR

deterministic-network-generator(Ls0,Let,Ls,Lr)
input: - Lys0: list of initial species

- Let: list of elementary transformations
output: - Ls: list of all species in network

- Lr: list of all reactions in network
Lys = Ls0, Lr = Ø
Lsi−1 = Ls0 # Lsi−1 is the list of species at previous
step i-1
do

(Lsi, Lri) = generate-species-reactions (Lsi−1,Ls,Let)
remove from Lsi all species present in Ls
remove from Lri all reactions present in Lr

Ls = Ls + Lsi, Lr = Lr + Lri
Lsi−1 = Lsi

Reaction Network Generation 331

until (Lsi = Ø and Lri = Ø)
generate-species-reactions(Ls1,Ls2,Let)
input: - Ls1,Ls2: list of species

- Let: list of elementary transformations
output: - Lsi: list of species created at step i

- Lri: list of reactions created at step i
For all tranformations et in Let do

For all species s1 in Ls1 and s2 in Ls2 do
s2 = Ø for monomolecular reactions
LGe = generate-product(G(s1)+ G(s2), et)

(Lsi,Lri) = update-species-reactions (et,s1,s2,LGe)
done

done
return (Lsi,Lri)

generate-product(Gb,et)
input: - Gb: molecular graph of the reactant(s)

- et: elementary transformation
output: - LGe: list of products

LGe = Ø
B(et), E(et) = Graphs of the reactants and products
of et
For all subgraph b of Gb s.t. b is isomorphic
to B(et) do

e = Gb − b + E(et) # b is replaced in Gb by E(et)
if species-constraints(e) and e is not in LGe
then LGe = LGe + e

done
return LGe

update-species-reactions(et,s1,s2,LGe)
input: - LGe: list of graphs returned by

generate-product
- et: elementary transformation
- s1,s2: reactant species

output: - Lsi: list of species created at step i
- Lri: list of reactions created at step i

Lsi = Ø, Lri = Ø
For all graphs Ge in LGe do

compute Le the list of connected components of Ge
remove from Le all element already present

in Lsi
Lsi = Lsi + Le
k = rate-constant(et,s1,s2,Le)
Lri = Lri + (et,s1,s2,Le,k)

done
return (Lsi,Lri)

332 Handbook of Chemoinformatics Algorithms

Deterministic algorithms similar to the one described above have been applied to
processes such as pyrolysis, metabolism, and signal transduction. Broadbelt et al. [4]
developed a network generator named NetGen and applied it to hydrocarbon pyrol-
ysis (ethane and cyclohexane). Another pyrolysis network generation process can be
found in Ref. [5] for the thermal cracking of butane. With both applications, the ele-
mentary transformations and their associated be- and r-matrices are given in Figure
11.7. All studies generated networks with reactions rates. In Ref. [4], the rates were
estimated using linear free energy, and quantitative structure–reactivity relationships
as in Faulon and Sault [5]. Finally, in both cases, the numbers of species and reactions
were found to scale exponentially with the number of atoms of the initial species.

Beyond pyrolysis, it has been proposed to use techniques similar to NetGen to gen-
erate reaction networks to predict toxicity of complex reaction mixtures [27] focusing
on degradation of chemicals by cytochrome P450. The deterministic generator pro-
posed by Faulon and Sault has also been used to generate and analyze complex reaction
networks in interstellar chemistry [28].

Broadbelt et al. adapted NetGen with a new software named BNICE to explore
the diversity of complex metabolic networks [26]. With BNICE, elementary trans-
formations were computed for the KEGG database resulting in about 250 unique
elementary transformations.The transformations were then applied to the biosynthesis
pathways of aromatic amino acids, phenylalanine, tyrosine, and tryptophan. The three
amino acids are synthesized from chrorismate and the cofactors and cosubstrates—
glutamate, gutamine, serine, NAD+/NAD, and 5-phospho-α-D-ribose-1-diphsopahe
(PRPP). The native pathways from chorismate to phenylalanine and tyrosine com-
prise three reactions between less than 10 compounds, and the native pathway leading
to tryptophan is composed of five reactions between 19 compounds. The 250 elemen-
tary transformations were applied to the initial substrate, cosubstrate, and cofactors,
producing 246 compounds with the phenylalanine pathway and 289 and 58 for the
tyrosine and tryptophan pathways. These compounds fall into three categories: the
compounds that are part of the native pathways (i.e., compounds in KEGG), com-
pounds found in the CAS database (http://www.cas.org/) but not in KEGG, and novel
compounds. The main outcome of the study was the in silico discovery of novel alter-
native biosynthesis pathways to aromatic amino acid biosynthesis, which remain
to be experimentally verified through enzyme and pathway engineering. BNICE
was also applied to polyketide biosynthesis [29]. While about 10,000 polyketides
structures have been discovered experimentally, BNICE raised this number over
7 millions.

To generate reaction networks for product biocatalysis and biodegradation, a semi-
automated system (UM-PPS) with a database (UM-BBD) has been developed at the
University of Minnesota [30] (http://umbbd.msi.umn.edu/predict/). In this system,
reaction rules (i.e., elementary transformation) are applied to an initial compound
entered by the user. Because several reaction rules applied to an initial compound
may result in different products, the user has to select the next product and the next
rule to apply. The process is iterated until no more rules can be applied, the user
selecting next products and rules at each step. At the time of writing (March 2009) the
database contained 259 biotransformation rules. Rules generally transform one func-
tional group into another, for instance, a cyano group can be hydrated with one water

Reaction Network Generation 333

molecule to form an amide or hydrolyzed by two water molecules to form carboxylic
acid and ammonia. Functional groups are searched through SMARTS matching and
transformations are carried using an algorithm whose outcome is identical to the
generate-product routine of Algorithm 11.1.

Deterministic network generators have also been used to create models char-
acterizing the dynamics of signal transduction networks. In particular, BioNetGen
(http://bionetgen.org) uses an algorithm similar to Algorithm 11.1 with reaction rules
instead of elementary transformations [31].As seen in Section 11.3, elementary trans-
formations depict graph modifications of reactant species undergoing a reaction;
similarly, reaction rules code for modifications between reacting biological species
(ligand, protein, and complexes). BioNetGen and reaction rules have been used for
many biological applications and further information is given in Chapter 15.

As already mentioned, one of the main drawbacks of deterministic network gener-
ation is computational complexity due to the fact that an exponentially large number
of species may be generated. Techniques that overcome this drawback are discussed
in the next section.

11.6 REACTION NETWORK SAMPLING ALGORITHM

As discussed in Algorithm 11.1, the only reduction technique applicable to gen-
eral systems is the detailed reduction method. The caveat of the method, however,
is that the entire network must be known prior to reduction. Although the size of
the network generated by the deterministic algorithm is finite due to the limited
size of the species, as already mentioned the number of species in the network
grows exponentially with n, the number of atoms of the largest species. To over-
come the combinatorial explosion issue, network generation and reduction cannot be
processed in sequence if the goal is to derive a computationally tractable technique.
In this section, three methods are outlined where network generation and reduction
are performed simultaneously, concentration-sampling-network-generator (CSNG),
MC-sampling-network-generator (MCNG), and single-molecule simulator (SMG).
These algorithms are stochastic in nature and are efficient. The idea of the CSNG
algorithm was first published by Susnow et al. [7]. The MCNG algorithm was first
published by Faulon and Sault [5]. The SMG algorithm simulates the dynamics of
the species of an initial molecular graph comprising all reactants, without actually
generating a network. The idea of this algorithm was first published by Morton-Firth
and Bray [32], for predicting temporal fluctuations in an intracellular signaling path-
way. All the three algorithms require on-the-fly assignment of the rate constants of
the reactions generated; these computations are detailed in Section 11.4.

11.6.1 CONCENTRATION-SAMPLING NETWORK-GENERATOR ALGORITHM

With the concentration-sampling algorithm, the reduction of the network is based on
the species concentrations. The main assumption of this method is that if a species
created at any given step i has low concentration values over the reaction time, that
species will generate products with concentrations at the most equal to twice that low
value (in the particular case the species dissociates into two identical new species).

334 Handbook of Chemoinformatics Algorithms

Therefore, removing low-concentration species from the list Lsi should have a neg-
ligible effect on the final product distribution. Hence, in the present case, the total
number of network species is not limited, but the number of species generated at each
step is bounded by a predefined value Ms. Note that this assumption is valid only if
the species are consumed during the reactions and do not act as catalysts. Indeed, if
a species is a catalyst even with low concentration, this species could have a rela-
tively large impact on the final product distribution. Hence, catalytic species must be
identified prior to using this scheme.

Using the above concentration assumption, the algorithm works as follows.At each
step i, the deterministic routine generate-species-reaction is run to compute the list of
new species. At this point the network is composed of all species in Ls0 + · · · + Lsi
and associated reactions. Although the network may not be complete, since the reac-
tion rates are calculated on-the-fly, the time evolution of the species concentrations
can be computed by solving the system of differential equations associated with the
partial network. The algorithm presented next uses the SSA MC–Gillespie algorithm
[22] (MC–Gillespie, cf. Section 11.4 for further details) to solve the system. The
MC–Gillespie integration (routine MC–Gillespie-step) is called Mc times. That rou-
tine updates species concentration according to Equations 11.13 and 11.14. Precisely,
if r is the selected reaction, then the numbers of particles of all species in the list of
reactants for r (Lb(r)) are decremented by 1 and the numbers of particles of all species
in the list of products for r (Le(r)) are incremented by 1. During the MC–Gillespie
integration, the CSNG algorithm retains for each species present in the network the
maximum concentration (i.e., maximum number of particles) reached over the time
period the system is integrated. This operation requires to maintain two lists: L[s],
the list of species concentrations calculated for a given time step t, and L[smax], the
list of species maximum concentrations calculated for all Mc integration time steps.
Species are then sorted by decreasing concentration in L[smax], the first Ms elements
of the sorted list are kept in Ls, while the others are eliminated. The numbers Mc and
Ms are user input. The algorithm is given in Algorithm 11.2, and the routine generate-
species-reaction is given in Algorithm 11.1. The algorithm 11.2 takes as input the
list of reactants (Ls0), reactant concentration (L[s0]), and elementary transformations
(Let); it returns the list of species (Ls) and reactions (Lr) of the generated network.

ALGORITHM 11.2 PSEUDOCODE FOR CSNG

concentration-sampling-network-generator(Ls0,L[s0],Let,
Ls,Lr)
input: - Ls0: list of initial species (reactants)

- L[s0]: list of initial species concentrations
- Let: list of elementary transformations

output: - Ls: list of all species in network
- Lr: list of all reactions in network

Ls = Ls0,Lr = ∅
Lsi−1 = Ls0 # Lsi−1 is the list of species at previous
step i-1

do forever
(Lsi,Lri) = generate-species-reactions (Lsi−1,Ls,Let)

Reaction Network Generation 335

remove from Lsi all species present in Ls
remove from Lri all reactions present in Lr

if (Lsi = ∅ and Lri = ∅) then end
Ls = Ls + Lsi,Lr = Lr + Lri
(Ls,Lsi) = reduce-mechanism-concentration(Ls,L[s0],Lsi)
Lsi−1 = Lsi

done

reduce-mechanism-concentration(Ls,L[s0],Lsi)
input: - Ls: list of species

- L[s0]: list of initial species (reactants)
concentrations

- Lsi: list of species created at step i
output: - Ls: reduced list of species

- Lsi: reduced list of species created at step i
L[s] = L[s0]
L[smax] = list of species maximum concentration
over time
initialized to Ø
t = 0
For Mc steps do

(L[s],t) = MC-Gillespie-step(Ls,L[s],Lr,t)

L[smax] = MAX(L[smax],L[s])
done
While (|Lsi| > Ms) do

find s in Lsi having the lowest value in L[smax]
Ls = Ls − s, Lsi = Lsi − s

done
return (Ls,Lsi)

MC-Gillespie-step(Ls,L[s],Lr,t)

input: - Ls: list of species
- L[s]: list of species concentration
- Lr: list of reactions
- t: time

output: - L[s]: updated list of species concentration
- τ: time after event occurs

τ = time of next event using eq. (11.13)
r = selected reaction in Lr occurring at time

t+ τ using eq.(11.14)
t = t+ τ

#Lb(r) and Le(r) are the lists of reactants
and products for r
For all s in Lb(r) do [s] = [s] − 1 done
For all s in Le(r) do [s] = [s] + 1 done
return (t,L[s])

336 Handbook of Chemoinformatics Algorithms

The above algorithm was used by Faulon and Sault for thermal cracking of butane
[5]. The results given by the CSNG algorithm are identical to those of the deterministic
DNG algorithm when limiting the number of particles created at each step to no
more than 8 (for a full deterministic network comprising about 100 species and 1000
reactions).

A different implementation of the CSNG algorithm was developed by Susnow
et al. [7]. In this implementation, species concentrations are computed solving ODEs
rather than SSAs, and the selection of the species to keep when reducing the network is
based not on concentration but on rate of formation. In other words, inAlgorithm 11.2,
new species are kept in Ls when their rate of formation is greater than a user-defined
threshold Rmin. Susnow et al. applied their method for the pyrolysis of ethane and
butane. The network generation process was iterated until the conversion of the initial
reactants was below a user-defined threshold. By changing the Rmin value, Susnow
et al. were able to reduce the number of reacted species and differential equations by
an order of magnitude while maintaining suitable complete mechanism.

11.6.2 MC-SAMPLING-NETWORK-GENERATOR ALGORITHM

The idea of the MC-sampling algorithm is to perform at the same time both the
MC integration and the network generation. The advantage of this technique is that
there are no assumptions regarding catalyst species. As in the previous case, one
starts with an initial reactant concentration (L[s0]) given in the form of numbers
of particles. At each step, the set of new species is computed using the generate-
species-reactions routine of Algorithm 11.1, but in the present case, these species are
generated by applying the ets only for species having nonzero concentration (i.e., set
Ls∗ in Algorithm 11.3). The concentrations of the new species are set to zero and
updated using the MC–Gillespie-step integration routine given in Algorithm 11.2.
The process is iterated until the number of steps exceeds a predefined Mc value.

ALGORITHM 11.3 PSEUDOCODE FOR MCNG

MC-sampling-network-generator(Ls0, L[s0],Let, Ls,Lr)
input: - Ls0: list of initial species (reactants)

- L[s0]: list of initial species concentrations
- Let: list of elementary transformations

output: - Ls : list of all species in network
- Lr : list of all reactions in network

Ls = Lsi = Ls0,Lr = ∅,L[s] = L[s0]
t = 0
For Mc steps do
Ls∗ = species in Ls with non-zero concentration
Lsi∗ = species in Lsi with non-zero concentration
(Lsi, Lri) = generate− species− reactions
(Lsi∗ ,Ls∗ ,Let)
remove from Lsi all species present in Ls
remove from Lri all reactions present in Lr

Reaction Network Generation 337

Ls = Ls + Lsi,Lr = Lr + Lri
For all species s in Lsi do [s]=0 done
(L[s],t) = MC-Gillespie-step(Ls,L[s],Lr,t)

done

Faulon and Sault applied the above scheme to generate the reaction network of
butane pyrolysis [5]. When comparing the results with the DNG algorithm, good
agreement was found as long as the number of initial particles Mp was around
or above 2000; furthermore, the same threshold was found for all alkanes up to
octane.

MCNG has been implemented and used to model signaling and protein inter-
action networks. Faeder et al. [31] implemented MCMG within BioNetGen for
signaling cascades such as those found with Toll-like receptors. Lok and Brent
[11] developed Moleculizer (http://sourceforge.net/projects/moleculizer/), a software
implementing a procedure very much like the MCNG algorithm [33]. Moleculizer
has been used to model the receptor–G-protein complex and the MAP kinase cascade
and scaffold complex.

11.6.3 SMS ALGORITHM

This approach, which was first proposed by Monthon-Firth and Bray [32], led to the
development of a computer code named StochSim (http://www.ebi.ac.uk/∼lenov/
stochsim.html). So far it appears that this algorithm has been developed and used
exclusively to model biological network dynamics. Below, a general algorithm is
proposed, which is not necessarily optimized, but provides some ideas on how the
SMS approach could be applied to chemicals. In the StochSim method, the dynamics
of the reaction network is simulated without actually compiling species and species
concentrations. Instead, the algorithm considers each molecule as a separate entity, all
molecules have thus the same concentration (e.g., one particle), and reactions occurs
one molecule at a time. Starting with an initial simulation graph (G) comprising all
reactants, each reactant being duplicated a number of times equal to its initial concen-
tration, the main task of the algorithm is to apply elementary transformations following
an SSA procedure. Precisely, at each time step, one compiles all the reactions (Lr) that
can occur according to the list of elementary transformations (Let) and the simulation
graph G. In their original paper, Monthon-Firth and Bray [32] provide equations where
the time increment (t) is fixed; since there is no guarantee that reactions can occur in
a fixed time interval, the dynamics may encompass null events (no reactions occur
between t and t + τ). In the implementation given below, Equations 11.13 and 11.14
are used to select a time delay t and a reaction r to apply to G. Let us note than when
solving these equations, all concentrations are equal to 1, and that Equation 11.12 does
not apply as each molecule is considered to be a separate entity. In Algorithm 11.4
given below, the reaction selected by equation 11.14 is fired at any subgraph (b) of G
matching (e.g., isomorphic to) the et of the reactants (B(et)) of an elementary transfor-
mation. The subgraphs are compiled for all elementary transformations by the routine
generate-reactions.

338 Handbook of Chemoinformatics Algorithms

ALGORITHM 11.4 PSEUDOCODE FOR SMS

single-molecule-simulator(G,Let)
input: - G: simulation graph

- Let : list of elementary transformations
output: - Printout of the G vs. time

t = 0
For Mc steps do

print t,G
Lr = generate-reactions(G,Let)
τ = time of next event using eq. (11.13)
r = selected reaction in Lr occurring at time t+ τ

using eq.(11.14)
B(r) = graph of the reactants of reaction r

E(r) = graph of the products of reaction r
G = G− B(r)+ E(r)

t = t+ τ
done

generate-reactions(G,Let)
input: - G: simulation graph

- Let : list of elementary transformations
output: - Lr: list of reactions

For all et in Let do
For all subgraph b of G s.t. b is isomorphic to
B(et) do
e = G− b+ E(et)

if species-constraints(e) then
connected components (full species)

of subgraphs b and e are required to
compute reaction rates

Lb = list of connected components of b
Le = list of connected components of e

k = rate-constant(et,Lb,Le)
Lr = Lr + (et,b,e,k)

fi
done

done
return Lr

One notes that contrary to previous techniques, Algorithm 11.4 does not require us
to monitor species concentrations. Nonetheless, species and reactions between species
can be retrieved by a postprocess that reads the graphs printed by the algorithm. One
advantage of Algorithm 11.4 is that species concentration can be computed only
when needed; for instance, with a synthesis planning application, concentration may
be computed for only one species (the target product) and a single time step (the final
reaction time).

Reaction Network Generation 339

As already mentioned, the SMS algorithm has been used to study the dynam-
ics of biological networks. Morton-Firth and Bray developed the first version of the
algorithm (StochSim; http://www.ebi.ac.uk/∼lenov/stochsim.html) and used it to pre-
dict the fluctuations in numbers of molecules in a chemotactic signaling pathway of
coliform bacteria. In particular, they examined the temporal changes in the number
of molecules of CheYp, a cytoplasmic protein known to influence the direction of
rotation of the flagellar motor of the bacteria.

Colvin et al. [34] developed a similar algorithm (DYNSTOC; http://public.tgen.org/
dynstoc) and demonstrated the algorithm with an idealized rule-based model of
two systems. A system in which autophosphorylation of a receptor tyrosine kinase
can generate a multitude of receptor phosphoforms and phosphorylation-dependent
adapter-bound receptor states, and a system in which multivalent ligand–receptor
binding can generate a multitude of ligand-induced receptor aggregates.

As a last application example, Kosuri et al. [35] proposed another implemen-
tation of the SMS algorithm to model cellular transcription and translation. The
software named Tabasco (http://openwetware.org/wiki/TABASCO) directly repre-
sents the position and activity of individual molecules on DNA and can be used
to study the effect of detailed molecular processes on systemwide gene expression.
Tabasco has been demonstrated by simulating the entirety of gene expression during
bacteriophage T7 infection.

11.7 CONCLUDING REMARKS

Initially developed for synthesis planning and retrosynthesis, reaction network
generators have been used in combustion and fuel processing. For these initial appli-
cations, freeware and commercial products exist (for instance, LASHAA, http://lhasa.
harvard.edu/, from Harvard University and, WODCA, http://www.molecular-
networks.com/software/wodca/index.html, from Molecular Networks). With recent
developments in systems biology, one is witnessing novel uses of network generation
in biology, in particular for inferring and studying the dynamics of signaling, and
metabolic and transcriptional networks. With the even more recent activities in syn-
thetic biology, one may foresee new applications for network generation in particular
with enzymatically controlled retrosynthesis, where the synthesis is performed by
microorganisms.

REFERENCES

1. Corey, E. J., General methods for the construction of complex molecules. Pure Appl.
Chem. 1967, 14, 19–37.

2. Ugi, I. B., J., Bley, K., Dengler, A., Dietz A., Fontain, E., Gruber, B., Herges, R. K.
M., Reitsam, K., and Stein, N., Computer-assisted solution of chemical problems—the
historical development and the present state of the art of a new discipline of chemistry.
Angew. Chem., Int. Ed. Engl. 1993, 32, 201–227.

3. Corey, E. J., Cramer III, R. D., and Howe, J., Computer-assisted synthetic analysis
for complex molecules. Methods and procedures for machine generation of synthetic
intermediates. J. Am. Chem. Soc. 1971, 94, 440–459.

340 Handbook of Chemoinformatics Algorithms

4. Clymans, P. J. and Froment, G. F., Computer-generation of reaction paths and rates equa-
tions in the thermal cracking of normal and branched paraffins. Comput. Chem. Eng. 1984,
83, 137–142.

5. Broadbelt, L. J., Stark, S. M., and Klein, M. T., Computer generated pyrolysis modeling:
On-the-fly generation of species, reactions, and rates. Ind. Eng. Chem. Res. 1994, 33,
790–799.

6. Faulon, J. L. and Sault, A. G., Stochastic generator of chemical structure. 3. Reaction
network generation. J. Chem. Inf. Comput. Sci. 2001, 41(4), 894–908.

7. Frenklach, M., Modeling of large reaction systems. In: Complex Chemical Reaction Sys-
tems, Mathematical Modelling and Simulation, J. Warnatz and W. Jäger (eds). Springer:
Berlin, 1987; Vol. 47, pp. 2–16.

8. Susnow, R. G., Dean, A. M., Green, W. H., Peczak, P., and Broadbelt, L. J., Rate-based
construction of kinetic models for complex systems. J. Phys. Chem. A 1997, 101, 3731–
3740.

9. Ugi, I., Fontain, E., and Bauer, J., Transparent formal methods for reducing the combi-
natorial abundance of conceivable solutions to a chemical problem. Computer-assisted
elucidation of complex mechanism. Anal. Chim. Acta 1990, 235, 155–161.

10. Faeder, J. R., Blinov, M. L., Goldstein, B., and Hlavacek, W. S., Combinatorial complexity
and dynamical restriction of network flows in signal transduction. Syst. Biol. (Stevenage)
2005, 2(1), 5–15.

11. Lok, L. and Brent, R.,Automatic generation of cellular reaction networks with Moleculizer
1.0. Nat. Biotechnol. 2005, 23(1), 131–136.

12. Danos, V., Feret, J., Fontana, W., and Krivine, J., Scalable simulation of cellular signaling
networks. Lect. Notes Comput. Sci. 2007, 4807, 139–157.

13. Kotera, M., Okuno,Y., Hattori, M., Goto, S., and Kanehisa, M., Computational assignment
of the EC numbers for genomic-scale analysis of enzymatic reactions. J. Am. Chem. Soc.
2004, 126(50), 16487–16498.

14. Rose, J. R. and Gasteiger, J., HORACE: An automatic system for the hierarchical
classification of chemical reactions. J. Chem. Inf. Comput. Sci. 1994, 34, 74–90.

15. Dugundji, J. and Ugi, I., Theory of the be- and r-matrices. Top. Curr. Chem. 1973, 39,
19–29.

16. Dugundji, J., Gillespie, P., Marquarding, D., and Ugi, I., Metric space and graphs repre-
senting the logical structure of chemistry. In: Chemical Applications of Graph Theory, A.
T. Balaban (ed.). Academic Press: London, 1976.

17. Faulon, J.-L., Stochastic generator of chemical structure: 1. Application to the structure
elucidation of large molecules. J. Chem. Inf. Comput. Sci. 1994, 34, 1204–1218.

18. Ridder, L. and Wagener, M., SyGMa: Combining expert knowledge and empirical scoring
in the prediction of metabolites. Chem. Med. Chem. 2008, 3(5), 821–832.

19. Benson, S. W., Thermochemical Kinetics. Wiley-Interscience: New York, 1976.
20. Sumathi, R., Carstensen, H.-H., and Green, W. H., Jr., Reaction rate prediction via group

additivity, Part 2: H-abstraction from alkenes, alkynes, alcohols, aldehydes, and acids by
H atoms. J. Phys. Chem. A 2001, 105, 8969–8984.

21. Sumathi, R., Carstensen, H.-H., and Green, W. H., Jr., Reaction rate prediction via group
additivity, Part 1: H abstraction from alkanes by H and CH3. J. Phys. Chem. A 2001, 105,
6910–6925.

22. Gillespie, D. T.,A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. J. Comput. Phys. 1976, 22, 403–434.

23. Gillespie, D. T., Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 2007,
58, 35–55.

Reaction Network Generation 341

24. Fontain, E. and Reitsam, K., The generation of reaction network with RAIN. 1. The
reaction generator. J. Chem. Inf. Comput. Sci. 1991, 31, 96–101.

25. Nigam, A. and Klein, M. T., A mechanism-oriented lumping strategy for heavy hydro-
carbon pyrolysis: Imposition of quantitative structure–reactivity relationship for pure
components. IEC Res. 1993, 32, 1297–1303.

26. Hatzimanikatis, V., Li, C., Ionita, J. A., Henry, C. S., Jankowski, M. D., and Broadbelt,
L. J., Exploring the diversity of complex metabolic networks. Bioinformatics 2005, 21(8),
1603–1609.

27. Liao, K. H., Dobrev, I. D., Dennison, J. E., Jr., Andersen, M. E., Reisfeld, B., Reardon, K.
F., Campain, A., et al., Application of biologically based computer modeling to simple or
complex mixtures. Environ. Health Perspect. 2002, 110(Suppl 6), 957–963.

28. Lenaerts, T. and Bersini, H., A synthon approach to artificial chemistry. Artif. Life 2009,
15(1), 89–103.

29. Gonzalez-Lergier, J., Broadbelt, L. J., and Hatzimanikatis, V., Theoretical considerations
and computational analysis of the complexity in polyketide synthesis pathways. J. Am.
Chem. Soc. 2005, 127(27), 9930–9938.

30. Hou, B. K., Wackett, L. P., and Ellis, L. B., Microbial pathway prediction: A functional
group approach. J. Chem. Inf. Comput. Sci. 2003, 43(3), 1051–1057.

31. Faeder, J. R., Blinov, M. L., Goldstein, B., and Hlavacek, W. S., Rule-based modeling of
biochemical networks. Complexity 2005, 10, 22–41.

32. Morton-Firth, C. J. and Bray, D., Predicting temporal fluctuations in an intracellular
signalling pathway. J. Theor. Biol. 1998, 192(1), 117–128.

33. Blinov, M. L., Faeder, J. R., Yang, J., Goldstein, B., and Hlavacek, W. S., ‘On-the-fly’ or
‘generate-first’ modeling? Nat. Biotechnol. 2005, 23(11), 1344–1345.

34. Colvin, J., Monine, M. I., Faeder, J. R., Hlavacek, W. S., Von Hoff, D. D., and Posner,
R. G., Simulation of large-scale rule-based models. Bioinformatics 2009, 25(7), 910–917.

35. Kosuri, S., Kelly, J. R., and Endy, D., TABASCO: A single molecule, base-pair resolved
gene expression simulator. BMC Bioinform. 2007, 8, 480.

12 Open Source
Chemoinformatics
Software and Database
Technologies

Rajarshi Guha

CONTENTS

12.1 Introduction .343
12.2 Why Open Source? .344
12.3 The Chemoinformatics Software Stack .345
12.4 Toolkits .346

12.4.1 Chemistry Development Kit .347
12.4.2 OpenBabel .349
12.4.3 RDKit .350

12.5 Database Technologies .352
12.5.1 Cartridges .352
12.5.2 Indexing Chemical Information .354

12.6 Workflow Environments .358
12.7 Conclusions .358
References .359

12.1 INTRODUCTION

Algorithm development is integral to the study of chemoinformatics. It is an implicit
fact that many of the tools will incorporate fundamental chemoinformatics algorithms
(such as canonicalization and aromaticity perception). Although any software dealing
with chemoinformatics will need to implement a number of these algorithms, this
chapter will focus on two specific classes of chemoinformatics software. Firstly, we
discuss toolkit libraries which provide various (low- and high-level) chemoinformatics
methods but which are not designed as standalone applications. Secondly, we discuss
relational databases and the solutions available for incorporating chemoinformatics
within the database environment. We also briefly touch upon workflow tools as a
means of aggregating chemoinformatics functionality. Finally, we note that although
there are many vendors for each type of software considered in this chapter, we
exclusively consider Open Source offerings.

343

344 Handbook of Chemoinformatics Algorithms

12.2 WHY OPEN SOURCE?

Although the idea of free and shared software has been in existence since the 1960s,
such software has not been generally available in chemoinformatics. In contrast, the
field of bioinformatics has produced a number of core algorithms (such as BLAST)
as freely available software. Part of the reason for this is the preponderance of chemo-
informatics research in industry, but equally important is the fact that the majority
of chemical information has been proprietary, in contrast to biological data (such as
gene sequences and protein structures), which has traditionally been freely exchanged.
Recently, there has been increasing interest in Open Source chemoinformatics soft-
ware, both in academia and industry [1]. It is also interesting to note that this has
coincided, to some extent, with increasing amounts of public chemical information
(such as structures and assay results). Our focus here is not the business case for
Open Source in software (although issues such as cost and accountability are certainly
important for both business and nonbusiness users); rather, we would like to stress
the transparency of Open Source software in this context. This is especially important
when we realize that the bulk of chemoinformatics software depends on a collection
of core algorithms. The correctness and validity of such software are directly depen-
dent on that of the underlying algorithms. Open Source implementations of the core
algorithms thus allow the user to verify that the algorithm is implemented correctly,
which is usually not true for closed source implementations. Certainly, with the use
of unit tests, one can provide a suite of checks and this is applicable to both closed
source and Open Source software. However, in the case of the latter, one is still at
the mercy of the vendor who may or may not provide the results of a test suite. And
even then, it is not possible to guarantee that an algorithm has been implemented as
described. In one sense, Open Source software follows the principles of good sci-
entific conduct: The “experiment” (i.e., the implementation) is freely accessible for
everybody to examine, repeat, and verify. Furthermore, if advances are made in algo-
rithms, one need not develop an implementation from scratch. Instead, one can start
from a preexisting Open Source implementation. Another important aspect of Open
Source software is the ability to fix errors. Given that software invariably contains
bugs, it is useful not only to identify them, but also to fix them. The ability to access
the source code can allow identification and correction of bugs in a rapid manner. It
should be noted that for chemoinformatics software, this is not always the case, given
the niche nature of the field and the fact that such fixes do require a certain level of
expertise in programming as well as in chemoinformatics. However, the principle still
holds. Probably more important than any of the factors described here is the ability
to freely reuse software (within the limits of the license) and develop novel applica-
tions. No doubt a number of closed source toolkits and applications do provide free
licenses for a number of scenarios (e.g., no cost academic licenses); however, one
cannot usually redistribute the underlying software with the newly developed tool.
As a result, new applications require that other users have access to the underlying
toolkit that can be a hindrance to the spread of the higher-level application. The use
of Open Source software in such situations avoids this problem.

Although the advent of Open Source software in the chemoinformatics field is rel-
atively recent, there is a growing community that focuses specifically on Open Source

Open Source Chemoinformatics Software and Database Technologies 345

and Open Access issues relating to software as well as data. The latter is important
since many chemoinformatics algorithms depend on data (such as van der Waals radii)
and, consequently, the validity and verifiability of the data are important. One of the
more prominent groups in the area is the Blue Obelisk movement [2], which is an
amalgamation of Open Source projects. The group maintains an Open Access, Open
Source data repository at http://bodr.sourceforge.net/.A recent development under the
umbrella of the Blue Obelisk movement is the OpenSMILES project. The SMILES
language was designed in the 1980s, and although there are a number of publications
on this standard [3,4], the specification contains a number of ambiguities. Given that
the original Daylight implementation was proprietary, other vendors (both commer-
cial and noncommercial) have added extensions or provided their own interpretations.
The goal of the OpenSMILES project is to explicitly define the SMILES language in
a public manner. The end result is expected to be a formal grammar for the language
along with reference implementations. Furthermore, the specification will be com-
pletely free. Given the core nature of the SMILES language in chemoinformatics,
open discussion and resolution of ambiguities are vital. The OpenSMILES project is
an excellent example of the transparency afforded by Open Source approaches.

12.3 THE CHEMOINFORMATICS SOFTWARE STACK

The preceding section raises the notion of developing chemoinformatics applications
on top of toolkits. From this point of view, we can look at chemoinformatics software
development in terms of the chemoinformatics “stack,” as shown in Figure 12.1. The
main feature of the stack is the increase in user-oriented functionality as we move
from the bottom to the top.

At the lowest level are the toolkits and databases, which are primarily the focus
of programmers and software developers. It is at this level that most fundamental

Programming
toolkit

Database
system

Cheminformatics
cartridge

Standalone
applications Web services

Workflow tools

FIGURE 12.1 A schematic representation of an Open Source chemoinformatics software
stack.

346 Handbook of Chemoinformatics Algorithms

chemoinformatics algorithms will be implemented. Building on top of the toolkit and
database, chemoinformatics cartridges allow one to manipulate chemical information
within the database. With this functionality one is in a position to then develop focused
applications, which may be stand-alone or deployed in a variety of manners (such
as web pages or web services) for end users. Finally, at the top we have workflow
tools, which are able to aggregate high- and low-level applications and present them
in an easy-to-use manner. It should be noted that Figure 12.1 does not imply that
databases and cartridges are employed by every chemoinformatics application. Nor
does it imply a rigid hierarchy. However, it does highlight the general role of individual
chemoinformatics components. It should be noted that certain components such as
web services will employ software such as web servers, application containers, and
so on. These components can be commercial or Open Source, the latter accounting
for some of the most popular examples (such as Apache and Tomcat).

12.4 TOOLKITS

Given that the focus of the book is chemoinformatics algorithms, it is important to
realize that the field is not purely theoretical. In other words, one must be able to
employ the algorithms to process real-world data. Although one can build monolithic
chemoinformatics applications, good software engineering practice suggests that low-
level and frequently used functionality be reused. This issue is addressed by the use of
chemoinformatics toolkits that package chemoinformatics functionality into reusable
libraries. A number of toolkit libraries are available for various languages and we
focus on three Open Source libraries that are under active development, namely, the
CDK, OpenBabel, and RDKit. Table 12.1 provides a broad comparison of the three
toolkits in terms of supported features.

Before describing the features of the various toolkits, we provide a brief overview
of the projects themselves.All three have an active development community, although
RDKit is a relatively new entrant and thus has a lower level of participation compared
to the CDK and OpenBabel. Figure 12.2 compares the development activity in terms
of commits to the trunk between July 2007 and July 2008. It is important to note that
the graph of activity includes both maintenance and new development. In that sense,
a project with low activity may simply be in a stable state, with only bug fixes being
committed.

All three are hosted on Sourceforge, which provides mailing lists and version
control. All projects make extensive use of mailing lists for discussions related to
both developmental issues and usage questions. In addition to mailing lists, Wikis
are also employed to host descriptions, tutorials, and so on. Both OpenBabel and
RDKit provide a variety of online documentation in the form of help pages, API
documentation, and examples. In contrast, although there is a variety of information
available for the CDK, it is not collected in one place.

We next consider the chemoinformatics functionality provided by the three toolkits.
It should be noted that these descriptions are not exhaustive and we advise that the
reader explore the web sites of each project to get a more exhaustive and up-to-date
list of features.

Open Source Chemoinformatics Software and Database Technologies 347

TABLE 12.1
A Broad Comparison of Chemoinformatics Features Provided by the Three
Toolkits Discussed

Feature CDK OpenBabel RDKit

License LGPL GPL New BSD
Language Java C++ C++/Python
SLOCa 188,554 194,358 173,219
Fingerprints

Hashed
√√√ √√√ √√√

Substructure
√√√ √√√ √√√

File format support
√√ √√√ √

Aromaticity models
√ √ √

Stereochemistry
√ √√ √√√

Canonicalization
√√√ √√√ √√√

Descriptors
√√√ √ √√√

2D coordinate generation
√√√

x
√√√

3D coordinate generation
√ √√√ √√√

2D depictions
√√√

x
√√√

Conformer generation x
√ √

Rigid alignment
√√√ √√√ √√√

SMARTS searching
√√√ √√√ √√√

Pharmacophore searching
√√

x
√√√

a Source Lines of Code as measured by the tool sloccount (http://www.dwheeler.com/sloccount/). The
count includes all source files, in any language, for the project. In addition, only the trunk for each
project was considered.

12.4.1 CHEMISTRY DEVELOPMENT KIT

The chemistry development kit (CDK) [5,6] (http://cdk.sourceforge.net) is a chemoin-
formatics toolkit library written in Java and licensed under the LGPL. Development
on the library was initiated in 2000 and since then it has been actively developed.
Currently, the project has approximately 20 active developers who address a variety
of projects ranging from implementing new functionality, bug fixes to documenta-
tion and code quality metrics. The library sees widespread usage as evidenced by 60
citations to the original publications. Although the library is written in Java, it can
be accessed from a variety of other languages including Python (via Jython), Ruby,
and R [7]. In addition, a variety of CDK functionalities are available as components
within the KNIME workflow environment.

The CDK provides both low- and high-level functionality. Firstly, the library pro-
vides a set of low-level classes for representing molecular concepts such as atoms,
bonds, molecules, and so on. These classes provide a variety of methods to get and
set various properties of these objects. Related to core representational classes, the
library also provides various low-level operations that are commonly performed in
chemoinformatics. This includes atom typing, ring perception, aromaticity percep-
tion, and substructure searching (either by SMILES or by SMARTS). The second level

348 Handbook of Chemoinformatics Algorithms

50

0

100

150

200

250

300

Month

N
um

be
r o

f c
om

m
its

Jul Sep Nov Jan Mar May Jul

CDK
OpenBabel
RDKit

FIGURE 12.2 Number of commits per month (between July 2007 and July 2008) for the
three projects discussed here. Note that this graph only considers commits to the trunk of the
development trees.

of functionality is oriented toward specific chemoinformatics tasks. Examples include
fingerprints, descriptors, and pharmacophore searching. The CDK implements a
number of descriptors for atoms, bonds, and molecules. Table 12.2 summarizes the
currently available molecular descriptors.

The descriptors are oriented toward QSAR modeling, and Open Source tools are
available that provide user-friendly interfaces on top of this functionality (Bioclipse
and CDKDescUI). In the area of pharmacophore searching, the CDK provides sup-
port for the representation of pharmacophore queries in terms of groups (defined by
SMARTS) and geometric constraints. There is no limit on the size of the query (in
terms of the number of pharmacophore groups or constraints). However, constraints
are currently limited to distance or angle constraints, and more advanced features
such as dihedral constraints and excluded volumes remain to be implemented.

Apart from the chemoinformatics functionality, the project also addresses a number
of more general aspects of software development. For example, development of the
CDK is test-driven. That is, each class is meant to be associated with a unit test that
ensures that the class works as expected. This leads to two useful features. Firstly,
any modifications to the code base should not lead to errors in working functionality
and unit tests can check for this. Secondly, unit tests provide simple usage examples

Open Source Chemoinformatics Software and Database Technologies 349

TABLE 12.2
A Summary of the Various Molecular Descriptors Implemented in the
CDK

Class Descriptor Reference

Constitutional Atom and bond counts, molecular weight
Aromatic atom and bond counts
Hydrogen bond donor/acceptor counts
Rotatable bond count
X log P, A log P [8,9]
E-state fragment counts [10]

Topological χ (ordinary and valence) indices [11]
κ indices [11]
Wiener index [12]
Zagreb index [13]
Vertex adjacency
Petitjean indices [14]

Geometric Gravitational indices [15]
Moment of inertia

Electronic σ electronegativity
Partial charges [16]
Hybrid BCUT [17]
WHIM [18]
Topological Surface Area (TPSA) [19]
Charged Partial Surface Area (CPSA) [20]

of the classes and methods they aim to test. Although there are currently 7287 tests,
all classes and methods are not yet tested and implementation of new unit tests is
ongoing. The project also provides various types of documentation. The main source
of this is the API Javadocs, which are augmented to include references, links to
source code, and so on. In addition, the project releases a newsletter, CDK News, on
an approximately quarterly basis that contains articles on new features and examples
of products using the CDK. The CDK puts an effort into maintaining good code and
documentation quality by using static code and documentation analysis tools [21,22].
Finally, the project also provides a nightly build site, where one can download the
latest sources or JAR files and view documentation, code and documentation quality
reports, and testing results.

12.4.2 OPENBABEL

The OpenBabel project (http://openbabel.org) is a C++ chemoinformatics library
released under the GPL. It is derived from the original OELib library from Open-
Eye, although significant amounts of the code have been rewritten. The project has
been existing since 2001 and originally focused on file format conversion (cur-
rently supporting 97 different formats). Since then it has expanded into a fully
fledged chemoinformatics toolkit. As with the CDK, it provides commonly used,

350 Handbook of Chemoinformatics Algorithms

core chemoinformatics functionality such as representations of molecules, bonds, and
atoms, aromaticity perception, chirality detection, and substructure searching facili-
ties. Higher-level functionality includes Gasteiger–Marsili partial charges, molecular
superimpositions, force fields, 3D coordinate generation, and descriptors. The project
employs a Perl-based unit testing framework and currently it has approximately
100,000 unit tests. A variety of documentation is also available on the OpenBabel
wiki, ranging from API-level documentation (generated from the source code using
Doxygen) to various how-to’s and tutorials.

A useful feature of OpenBabel is the ability to develop functionality as plugins.
Such plugins exist as dynamic libraries that can be loaded by OpenBabel at runtime.
As a result, they can be developed independently of the OpenBabel project. Examples
of current plugins include fingerprints and force fields. Currently, OpenBabel sup-
ports the UFF, MMFF94, and MMFF94s force fields. In addition to force fields, 3D
coordinate generation and conformer generation (using a Monte Carlo algorithm) are
available. Descriptors are also provided by way of plugins, although, currently, only a
few descriptors (H-bond donor, acceptor counts, TPSA, Lipinski’s Rule of Five, and
molecular weight) are available.

The project also provides a number of ready-to-use command line tools. Examples
of these tools include babel (the file format converter), obconformer (a conformer
generation tool), and so on. Table 12.3 summarizes the currently available utilities.

Given that the library is implemented in C++, it is relatively easy to generate bind-
ings for the library in a number of other languages, using SWIG. Currently, bindings
are available for Perl, Python, Ruby, C#, and Java. In addition to the SWIG bindings,
the Pybel [23] project provides a more Pythonic interface to the C++ library.

12.4.3 RDKit

RDKit (http://www.rdkit.org/) is a relatively new entrant on the Open Source chemoin-
formatics scene. The toolkit was originally developed at Rational Discovery LLC and
was released under the new BSD license in May 2006. The project provides a core
C++ library along with a set of higher-level Python functions that make use of the

TABLE 12.3
A Summary of the Command Line Tools Provided by the OpenBabel Project

Tool Function

Babel File format conversion
Obchiral Prints chirality information
Obconformer Generate conformers
Obenergy Evaluate the energy of a molecule using different force fields
Obfit Superimpose two molecules based on SMARTS
Obgen Generate 3D coordinates
Obgrep SMARTS-based substructure searches
Obprobe Generate electrostatic grids using MMFF94

Open Source Chemoinformatics Software and Database Technologies 351

core routines. In addition, a number of GUI tools, command line scripts, and database
extensions are also provided.

As with the CDK and OpenBabel, RDKit provides a variety of low- and high-level
chemoinformatics functionality including support for multiple file formats, canonical-
ization, SMARTS substructure searching, 2D and 3D pharmacophores, 2D depiction,
and 3D coordination generation. The library also supports SMARTS-based molecular
transformations (such as RECAP [24]). In contrast to the CDK and OpenBabel, RDKit
provides good support for chirality by providing methods to assign CIP codes to
atoms (R/S) and bonds (E/Z). The project also provides a wide variety of molecular
descriptors, summarized in Table 12.4.

In the area of database integration, RDkit provides a set of extensions that allow cer-
tain methods to be called from within a PostgreSQL database. This aspect is discussed
in more detail in Section 12.3.1.

An interesting aspect of the RDKit project is that it provides a variety of machine
learning routines. Examples include clustering, decision trees, Naïve Bayes, and
random forests. In addition to these methods, various utility methods such as data
splitting, serialization of models, and enrichment plots are available. Although exter-
nal statistical environments are available (such as R), it can be useful to have access
to library methods that implement machine learning algorithms. It should be noted
that these algorithms are not necessarily highly optimized. The project also provides
several GUIs both for chemoinformatics and machine learning. The former is exem-
plified by a molecule browser and similarity calculator and the latter by interfaces

TABLE 12.4
A Summary of the Molecular Descriptors Provided by RDKit

Class Descriptor Reference

Constitutional Atom and group counts
Ring counts, molecular weight
log P [9]
Molar refractivity
Topliss-like fragment counts

Topological χ (ordinary and valence) indices [11]
κ indices [11]
Balabans J [25]
EState indices [10]
Atom pairs [26]
Topological torsions [27]
Kier and Hall shape indices [28]

Hybrid Topological polar surface area (TPSA) [19]
Labute ASA

VSA PEOE [29]
SMR
S log P
Estate

352 Handbook of Chemoinformatics Algorithms

for clustering and visualization of dendrograms. Note that the GUI components are
licensed under the GPL.

The project also provides a nightly build script to ensure that builds are not broken.
In addition, unit testing is performed using the Python testing framework. Documen-
tation for the source code is provided for both the C++ and Python components using
Doxygen and ePyDoc, respectively. In addition toAPI documentation, the project also
provides user-oriented help pages such as how-to’s.

12.5 DATABASE TECHNOLOGIES

Database technologies range from simple flat files with no special formatting to com-
plex relational databases (RDBMS) and object-oriented databases. RDBMSs have
been used extensively within the pharmaceutical industry for the purposes of storing
information related to compound collections, assay data, and so on. Traditionally,
these usage scenarios have employed commercial databases coupled with some form
of chemoinformatics intelligence in the form of plugins. Such plugins are also known
as “cartridges.” Examples include the Torus cartridge from Digital Chemistry and
DayCart from Daylight CIS. Note that in this section we do not describe any specific
database but rather focus on database technologies. For a review of public databases,
the reader is referred to Ref. [30].

With the increase in availability of large amounts of public chemical information
via public databases (PubChem and ChemSpider) as well as high-throughput exper-
imental resources such as the Molecular Libraries Screening Network (MLSCN), it
is possible for individual researchers both in industry and academia to build large
compound collections and associate them with other arbitrary data sources. As noted
in Section 12.1.1, Open Source solutions to this data management problem provide a
low barrier to entry. Furthermore, depending on the needs of the user, Open Source
database technologies provide a cost-effective solution.

Before discussing current options for Open Source chemical information
databases, it is useful to consider what is the type of data that such systems are
expected to handle. First and foremost is chemical structure information. Structures
can be represented in a variety of formats ranging from connection tables and plain text
formats such as SMILES and SDF to binary representations of molecules. Depend-
ing on the usage scenario of a database, one or more different representations may
be stored. Although most chemoinformatics systems can process a wide variety of
representations, some forms may lead to more efficient processing than others. Apart
from chemical structure, the other types of information will tend to be textual or
numeric in nature.

12.5.1 CARTRIDGES

A cartridge is simply a set of extensions to a database, such that certain domain
functionalities are available within the database system itself. Such cartridges usually
provide support for domain-specific data types and indexing methods. In addition,
cartridges will usually provide new SQL functions to support domain-specific queries.
In the field of chemoinformatics there are a number of offerings that allow one to

Open Source Chemoinformatics Software and Database Technologies 353

access chemoinformatics data types and methods within a database. Commercial
examples include DayCart (Daylight CIS), CHORD (gNova Scientific Software), and
JChem Cartridge (ChemAxon). Note that, of those mentioned here, only CHORD can
be used with the PostgreSQL (an Open Source DBMS), the others being designed for
Oracle.

On the Open Source side, there are three main offerings: Tigress (for PostgreSQL),
Mychem (for MySQL), and RDKit (for PostgreSQL). The first two cartridges use
OpenBabel to provide the underlying chemoinformatics functionality. Regarding
substructure searching, Mychem makes use of the underlying SMARTS matching
capabilities of OpenBabel. Although Tigress also provides a function similar to that
of Mychem, it also employs the checkmol/matchmol suite [31] to detect functional
groups and perform substructure searches using this information or else use it as
a prefilter for full SMARTS-based substructure searching. The cartridges are writ-
ten in C and must be compiled and loaded into the database before usage. Given
that Mychem and Tigress are both based on OpenBabel, it is natural to expect that
they will expose similar functionality using a common API. The ChemiSQL project
(http://sourceforge.net/projects/chemdb/) has been recently started and aims to pro-
vide a single source for chemoinformatics cartridges for a variety of Open Source
databases and toolkits. It should be noted that both Tigress and Mychem do not provide
any of their own chemoinformatics functionality being dependent on the OpenBa-
bel project, whereas RDKit, as described in Section 12.2.3, represents a complete
chemoinformatics toolkit. Table 12.5 compares the functionality of the three Open
Source cartridges.

TABLE 12.5
A Summary of the Functionality Provided by OpenSource
Chemoinformatics Cartridges

Cartridge License Representation Support Methods

Tigress GPL, LGPL Binary, SMILES, MOL, InChI Exact and substructure searches,
similarity (Tanimoto), property
calculation (molecular weight,
charge, bond count), fingerprint
calculation, salt removal, format
conversion

Mychem GPL SMILES, MOL, InChI, CML Exact and substructure searching,
similarity (Tanimoto), property
calculation (molecular weight,
charge, bond count), fingerprints,
salt removal, format conversion

RDKit New BSD SMILES Exact and substructure
searches,canonicalization, similarity
(Dice, Tanimoto, Cosine), property
calculation (molecular weight,
log P), fingerprint calculation

354 Handbook of Chemoinformatics Algorithms

Exposing the chemoinformatics functionality of the underlying toolkit within a
database is not particularly difficult and simply requires that one conform to the
prescribed databaseAPI. On the other hand, the representation used to store molecules
can significantly affect query efficiency. Thus, for example, one can store a molecule
as a SMILES string—indeed this is probably the most platform-independent way of
storing it. However, during a query, each SMILES string must be parsed and an internal
molecule object must be created. Invariably this will not be retained for future queries.
To alleviate this, one can generate binary representations of a molecule and store them
in a column of appropriate type (such as bytea in PostgreSQL). In this scenario, the
binary form may simply represent a serialized form of an internal molecule object.
Given that deserialization can be much faster than parsing, this representation can
lead to improvements in query efficiency. Both Tigress and RDkit currently support
binary molecular representations.

The use of chemoinformatics cartridges can result in cleaner and more efficient
chemical information infrastructures by virtue of moving complexity away from
frontends (or clients) into the backend database.

12.5.2 INDEXING CHEMICAL INFORMATION

As noted above, chemical information databases will hold chemical structures in addi-
tion to traditional data types (text, numeric, dates, etc.). Furthermore, the traditional
data types will usually represent some properties of the molecules. Examples might
include molecular descriptors, fingerprints, assay readouts, and so on. Given these
varied data types, efficient indexing plays an important role in allowing fast queries.
One of the key issues that face choice of indexing scheme is the intended query. Thus,
for example, if one were simply retrieving records based on a textual compound ID,
a single B-tree [32] index on the relevant column would provide a time complexity
of O(log n) for searches. On the other hand, similarity searches require an indexing
scheme that is capable of performing efficient near-neighbor searches, in possibly
highly multidimensional spaces.

We first consider how one might employ indexing to provide efficient query times
when searching for chemical structures. Ignoring the trivial case of retrieving struc-
tures based on some textual ID, we focus on how structure and substructure searches
can be improved by an indexing scheme. Searching for exact matches to a query
molecule can benefit from standard hash indexes. Depending on the nature of the
structure representation, this may require some form of canonicalization of the query
molecule (as well as for the stored molecules, possibly at registration time). Thus, for
example, one can store the molecules in a text field using a SMILES representation.
Assuming that they are appropriately canonicalized, one can then identify entries that
exactly match a query molecule by performing a string equality search. If this field is
indexed by a B-tree index, this will be very fast. Given that canonicalization methods
are specific to a given toolkit, a more generalized solution that is independent of any
specific toolkit is to employ InChIs for structure representation. Since this is a plain
text format, this provides the same advantages as SMILES. But in addition, InChIs
for two forms of the same molecule will always be the same since there is only one
implementation of the algorithm.

Open Source Chemoinformatics Software and Database Technologies 355

Although exact matches can be useful, a more common task is to perform sub-
structure searches. Substructure searching is performed using graph isomorphism
algorithms such as the Ullman algorithm [33]. Given that such algorithms require a
full comparison between the query and target structures, there is no way, a priori, to
store a reduced representation that would allow one to directly answer the question of
whether a query is a substructure of the target. Naively, one might expect that a sub-
structure search within a database will boil down to a linear scan over an entire table.
However, all is not lost. One way to speed up substructure searches is to employ a
binary fingerprint filter. Thus, the molecules in the database will have their fingerprints
precomputed and stored in a binary field. Then, given a query, its fingerprint would
be evaluated. Next, one would perform a linear scan over the database, but for each
row one would check whether the bits of the query fingerprint are also set in the target
fingerprint. Only if this is true would one then apply the subgraph isomorphism test
to the query and target. This filtering process is summarized in Algorithm 12.1. Since
comparison of binary fields is very fast, one avoids having to perform a large fraction
of the more expensive isomorphism tests (depending on the nature of the query).

ALGORITHM 12.1 THE USE OF A BINARY FINGERPRINT FILTER TO
SPEED UP SUBSTRUCTURE SEARCHES

q ← query molecule
Fq ← get fingerprint(q)
R ← { }
for row in TABLE do
t ← target molecule
Ft ← get fingerprint(t)
if Ft contains Fq then
if is subgraph(t,q) then
append t to R
end if
end if
end for

The drawback of this approach is that it can be applied only to “well-formed”
queries. That is, if the query can be represented as a SMILES string, this approach
allows us to speed up the matching process. On the other hand, if the query is a
SMARTS pattern, the above procedure fails since it is not ordinarily possible to gen-
erate a fingerprint from an arbitrary SMARTS pattern. Sayle [34] has described a
number of strategies that can be employed to make SMARTS-based substructure
searching more efficient. First one generates a fragment fingerprint, such as for c:c
which will be contained in the fingerprint for a molecule such as benzene (c1ccccc1).
The next step involves the enumeration of a SMARTS pattern. Taking the example
from Ref. [34], the pattern C = [N , P] only allows us to fingerprint the C. However,
one can expand the pattern into C = N AND C = P, in which case, each term can
be fingerprinted. Sayle describes five specific procedures to allow one to optimize
a SMARTS pattern for the purposes of substructure searching. Currently, such opti-
mizations are not available in any of the Open Source database cartridges. As a result,

356 Handbook of Chemoinformatics Algorithms

chemical database systems based on these cartridges are forced to perform linear
scans over the entire table when carrying out SMARTS substructure searches.

We next consider the problem of similarity searching within chemical databases.
Although a common task, there are many variations of it, depending on the nature of
the chemical representation being employed. We first consider the use of a real-valued
descriptor representation of a molecule. Such representations can be used to define
arbitrary chemical spaces (such as for QSAR applications) or more realistic properties
such as molecular shape [35,36]. In such a representation, a molecule is denoted by a
real-valued vector of length N . The similarity between two molecules is then defined in
terms of the reciprocal of the Euclidean or Manhattan distance between their descriptor
vectors. In these scenarios, similarity searching is equivalent to identifying the nearest
neighbors (NNs) of a query molecule in the defined chemical space. Indeed, spatial
indices can be profitably used for diversity analysis methods based on NNs [37,38]. A
number of algorithms have been described for efficient NN searches such as k-d trees
[39] and locality-sensitive hashing [40]. Most database systems employ the R-tree
[41]. Traditionally, this type of index has been used in spatial databases, designed
for Geographic Information Systems (GIS), and it exhibits good performance for the
2D data types commonly employed in that field. However, it can be used for higher-
dimensional data types, such as those representing molecular descriptor spaces. The
drawback of using this index for chemoinformatics applications is that performance
degrades with increasing dimensionality [42] of the chemical space, which is usually
high dimensional. A variety of spatial indexing schemes have been proposed that aim
to support efficient NN searches in high-dimensional spaces such as the PK-tree [43]
and M-tree [44].

In terms of support for spatial indexing in Open Source databases, both PostreSQL
and MySQL support R-trees. Support for this type of indexing in these databases is
geared toward GIS applications, although as noted this does not preclude their use in
chemoinformatics applications. A distinguishing feature of the PostgreSQL support
for spatial indexing is the availability of Generalized Inverse Search Trees (GiST)
[45]. This is a generalized data structure that allows one to develop indexing schemes
for arbitrary data types (ranging from point data to BLAST sequences and graphs).An
implementation of a GiST index requires that one simply implement four fundamental
operations:

• Consistent—Given a query q and a key p, returns false if q and p cannot be
true for a given item

• Union—Given a set of entries returns a key p that is true for all entries
• Penalty—returns the cost of inserting a new item under a subtree. Items get

inserted down the path of lowest cost in the tree
• Picksplit—Decides when and which items in a page go to a new page or stay

on the old page

As a result, the indexing scheme is independent of data type. Furthermore, the
GiST index can also be used to perform NN searches directly as well as statistical
approximations over large datasets. In fact, the implementation of R-trees in Post-
greSQL is simply a special case of a GiST index. The PostgreSQL implementation of

Open Source Chemoinformatics Software and Database Technologies 357

GiST indexes also supports extensions such as variable length keys and concurrency
control.

Although the GiST implementation of the R-tree in the index does involve an
abstraction layer, performance is still quite high. As an example, we have created
a database containing 3D structures of 17 M molecules from PubChem. The shape
of each molecule is characterized by a 12-vector for a random collection of query
compounds. The queries were performed on a machine with 2 GB RAM and a dual
core Intel Xeon 2.4 GHz. The database was assigned 1 GB of shared memory [35].
This vector field was indexed using an R-tree. We performed a series of queries where,
given the 12-vector for a query molecule, we identified molecules lying within a radius
R of the query molecule. Figure 12.3 shows the distribution of query times for two
different neighborhoods (defined in terms of radii) using a slightly outdated version
of the database containing 10M compounds.

The speed of these queries allows us to apply the R–NN method [37] to characterize
the density of chemical space of any compound in the context of the 10 M compound
collection. This involves performing NN lookups at varying radii and hence requires
efficient spatial indexing schemes.

Given that the goal of GiST is to allow efficient indexing for arbitrary data types
(assuming that the four fundamental GiST operators can be defined for the data type in
question), one might develop a GiST index for molecules. Such an index is currently
being developed by the Tigress project [46]. In this context, the molecule data type
is the binary representation of a molecule. A fundamental task for a GiST index is to
compare items (i.e., molecules). In this context, the consistent function will employ
1024 bit fingerprints and the XOR operator for equality. For the special case of leaf
nodes (i.e., individual molecules), equality is determined by comparing MD5 hashes
of the InChI representation of the molecule. The penalty function employs the Tani-
moto distance between two fingerprints to provide a cost value. Finally, the penalty

Query times for 10,000 random
CIDs (R = 0.2)

Time (s)

N
um

be
r o

f q
ue

rie
s

0.0 0.5 1.0 1.5 2.0

0 0

1000

2000

3000

4000

5000

Query times for 10,000 random
CIDs (R = 0.4)

Time (s)

N
um

be
r o

f q
ue

rie
s

0 20 40 60 80

500

1000

1500

2000

2500

3000

3500

FIGURE 12.3 A summary of the query times in a 3D structure database for two different
neighborhoods.

358 Handbook of Chemoinformatics Algorithms

function is based on Guttman quadratic split algorithm [41], using the Tanimoto
distance.

Another common scenario in chemoinformatics applications is the use of similarity
searches with binary fingerprints. In this case, similarity between two molecules
is defined by their Tanimoto index, which can be efficiently computed using bit
operations. Currently, there is no Open Source implementation of an index that will
support similarity searching on binary string (necessitating linear scans), although the
work being performed on GiST indexes for molecules described above is applicable
to this problem.

12.6 WORKFLOW ENVIRONMENTS

Workflow (or pipelining) tools have grown in popularity as a means of allowing
nonexperts to perform tasks composed of sequential units, without having to write
actual programs (although such tools can be enhanced with user-written scripts). Note
that, by definition, a workflow tool is not tied to any specific domain. By providing
domain-specific tasks (components), one can provide support for any specific domain
such as bioinformatics or chemoinformatics.

A variety of commercial and Open Source workflow tools for chemoinformatics
are available, and Warr [47] provides a broad overview. Two of the most popular Open
Source tools are Taverna [48] and KNIME (http://www.knime.org), both written in
Java and supporting chemoinformatics via third-party plugins. In the former case,
the CDK is used to provide chemoinformatics support. In the latter case, chemoin-
formatics support is provided by plugins from Tripos, Schrodinger, as well as the
CDK. Note that the plugin functionality can range from simple operations such as
fingerprint generation, format conversion, and 2D depictions to much more complex
tasks such as pharmacophore searching or docking. Given the rise in chemoinformat-
ics web services, it is useful for workflow tools to be able to handle them. Taverna
provides support for SOAP-based web services, although KNIME currently does not
support them.

In one sense, workflow tools can be considered the highest level of an Open Source
chemoinformatics stack—making using of toolkits and databases and providing an
easy-to-use interface on top of these items. Note that workflow environments do
not necessarily represent a fixed-goal application. Indeed their flexibility allows one
to mix and match various chemoinformatics tools. At the same time, workflows to
perform specific tasks can be “packaged” and thus presented as a stand-alone tool.

12.7 CONCLUSIONS

Given the practical nature of chemoinformatics, it is essential that implementations
of fundamental algorithms are easily accessible. Although one can always imple-
ment specific algorithms as stand-alone programs, it is useful to be able to build on
top of previous work. In this sense, chemoinformatics toolkits provide a convenient
platform on which to build a variety of applications. By their nature, such toolkits
will provide core data models for chemical concepts and implement a number of
core chemoinformatics algorithms such as ring perception and canonicalization. As a

Open Source Chemoinformatics Software and Database Technologies 359

result, most toolkits exhibit similar core functionalities, although differences in their
completeness (such as the handling of chirality) do occur. Toolkits may also provide
higher-level functionality that, while not representing a full standalone program, is
sufficiently common in various applications. Examples include fingerprint genera-
tion, similarity calculations, and so on. The three toolkits discussed here provide a
variety of high-level functionality, which, as in the case of RDKit, may extend beyond
traditional chemoinformatics.

The choice of toolkit is very dependent on language, features available, support,
documentation, and of course personal preference. Indeed, a recent Open Source
project called Cinfony (http://code.google.com/p/cinfony/) provides a uniform API
to the three toolkits discussed here, allowing one to mix and match functionality from
any of them. With the increased availability of publicly accessible data and cheap
computing power, the ability to carry out chemoinformatics research and develop
applications in a redistributable fashion is becoming increasingly feasible. In such a
scenario, the license associated with a toolkit can play a major role in choosing which
one to use. In this context, Open Source toolkits provide a number of advantages
as described in Section 12.1.1. Of course, Open Source toolkits are not always as
polished as their commercial counterparts.

Given that some commercial vendors do provide no-cost licenses for certain
groups, they can be an attractive alternative when developing applications. The
downside is that distribution of such applications is dependent on access to the toolkit.

In this context, it is clear that the viability of an Open Source chemoinformatics
stack (Figure 12.1) is very much dependent on the use of Open Source toolkits. Given
the free availability of high-performance database systems and web servers, a signifi-
cant part of the computational infrastructure for large chemoinformatics applications
exists in an Open Source fashion and toolkits represent the core domain-specific
functionality. With the rise of Grid and Cloud computing, the ability to freely dis-
tribute the stack across hundreds or thousands of machines can be severely limited by
commercial licenses. In such a scenario, Open Source software provides an attractive
approach to making use of emerging computing technologies in chemoinformatics
applications.

In conclusion, while Open Source chemoinformatics software may suffer from
some disadvantages compared to commercial offerings, they provide a number of
significant advantages in terms of transparency (leading to verifiability), reuse, and
cost. A number of Open Source toolkits are available and this chapter has focused on
three projects that are most active. In addition to toolkits, we have provided a brief
discussion on database and pipelining technologies as they relate to chemoinformatics
applications.

REFERENCES

1. Delano, W., The case for cpen source software in drug discovery. Drug Discov. Today
2005, 10, 213–217.

2. Guha, R., Howard, M. T., Hutchison, G. R., Murray-Rust, P., Rzepa, H., Steinbeck,
C., Wegner, J., and Willighagen, E. L., The blue obelisk–interoperability in chemical
informatics. J. Chem. Inf. Model. 2006, 46, 991–998.

360 Handbook of Chemoinformatics Algorithms

3. Weininger, D., SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36.

4. Weininger, D., Weininger, A., and Weininger, J., SMILES. 2. Algorithm for generation of
unique SMILES notation. J. Chem. Inf. Comput. Sci. 1989, 29, 97–101.

5. Steinbeck, C., Han, Y. Q., Kuhn, S., Horlacher, O., Luttmann, E., and Willighagen, E.,
The Chemistry Development Kit (CDK): An open-source java library for chemo- and
bioinformatics. J. Chem. Inf. Comput. Sci. 2003, 43, 493–500.

6. Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R., and Willighagen, E., Recent
developments of the Chemistry Development Kit (CDK)—an open-source java library for
chemo- and bioinformatics. Curr. Pharm. Des. 2006, 12, 2110–2120.

7. Guha, R., Chemical informatics functionality in R. J. Stat. Soft. 2007, 18 [online].
8. Wang, R. and Lai, L., A new atom-additive method for calculating partition coefficients.

J. Chem. Inf. Comput. Sci. 1997, 37, 615–621.
9. Ghose, A. and Crippen, G., Atomic physicochemical parameters for three-dimensional-

structure-directed quantitative structure–activity relationships. 2. Modeling dispersive and
hydrophobic interactions. J. Chem. Inf. Comput. Sci. 1987, 27, 21–35.

10. Hall, L. and Kier, L., Electrotopological state indices for atom types: A novel combination
of electronic, topological, and valence state information. J. Chem. Inf. Comput. Sci. 1995,
35, 1039–1045.

11. Hall, L., and Kier, L., The molecular connectivity χ indices and κ shape indices
in structure–property modeling.. In: Reviews of Computational Chemistry, Vol. 2, K.
Lipkowitz and D. Boyd (eds), VCH Publishers: New York, 1991.

12. Wiener, H., Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947,
69, 2636–2638.

13. Gutman, I., Ruscic, B., Trinajstic, N., and Wilcox, Jr., C., Graph theory and molecular
orbitals. XII. Acyclic polyenes. J. Chem. Phys. 1975, 62, 3399–3405.

14. Petitjean, M., Applications of the radius diameter diagram to the classification of topo-
logical and geometrical shapes of chemical compounds. J. Chem. Inf. Comput. Sci. 1992,
32, 331–337.

15. Katritzky, A., Mu, L., Lobanov, V., and Karelson, M., Correlation of boiling points with
molecular structure. 1. A training set of 298 diverse organics and a test set of 9 simple
inorganics. J. Phys. Chem. 1996, 100, 10400–10407.

16. Gasteiger, J. and Marsili, M., Iterative partial equalization of orbital electronegativity—a
rapid access to atomic charges. Tetrahedron 1980, 36, 3219–3228.

17. Pearlman, R. S. and Smith, K. M., Metric validation and the receptor-relevant subspace
concept. J. Chem. Inf. Comput. Sci. 1999, 39, 28–35.

18. Todeschini, R. and Gramatica, P., 3D modelling and prediction by WHIM descriptors. Part
5. Theory, development and chemical meaning of WHIM descriptors. Quant. Struct. Act.
Relat. 1997, 16, 113–119.

19. Ertl, P., Rohde, B., and Selzer, P., Fast calculation of molecular polar surface area as a
sum of fragment based contributions and its application to the prediction of drug transport
properties. J. Med. Chem. 2000, 43, 3714–3717.

20. Stanton, D. and Jurs, P., Development and use of charged partial surface area structural
descriptors in computer assisted quantitative structure property relationship studies. Anal.
Chem. 1990, 62, 2323–2329.

21. Copeland, T., PMD Applied, Centennial Books: Alexandria, VA, 2005.
22. Sun Microsystems, “DocCheck,” http://java.sun.com/j2se/javadoc/doccheck/, last accessed

July 2008.
23. O’Boyle, N., Morely, C., and Hutchison, G., Pybel: A python wrapper for the openBabel

chemoinformatics toolkit. Chem. Central J. 2008, 2, 5.

Open Source Chemoinformatics Software and Database Technologies 361

24. Lewell, X., Judd, D., Watson, S., and Hann, M., RECAP—retrosynthetic combinatorial
analysis procedure: A powerful new technique for identifying privileged molecular frag-
ments with useful applications in combinatorial chemistry. J. Chem. Inf. Comput. Sci.
1998, 38, 511–522.

25. Balaban, A., Highly discriminating distance based topological index. Chem. Phys. Lett.
1982, 89, 399–404.

26. Carhart, R., Smith, D., and Venkataraghavan, R., Atom pairs as molecular features in
structure–activity studies: Definition and applications. J. Chem. Inf. Comput. Sci. 1985,
25, 64–73.

27. Nilakantan, R., Bauman, N., Dixon, J., and Venkataraghavan, R., Topological torsion:
A new molecular descriptor for SAR applications. Comparison with other descriptors.
J. Chem. Inf. Model. 1987, 27, 82–85.

28. Kier, L., A shape index from molecular graphs. Quant. Struct.–Act. Relat. Pharmacol.,
Chem. Biol. 1985, 4, 109–116.

29. Labute, P., A widely applicable set of descriptors, http://www.chemcomp.com/journal/
vsadesc. htm, last accessed August 2008.

30. Williams, A., A perspective of publicly accessible/open-access chemistry databases. Drug
Discov. Today 2008, 13, 495–501.

31. Haider, N., “checkmol/matchmol,” http://merian.pch.univie.ac.at/∼nhaider/cheminf/
cmmm. html, last accessed August 2008.

32. Cormen, T., Leiserson, C., and Rivest, R., Introduction to Algorithms, MIT Press:
Cambridge, MA, 1998.

33. Ullmann, J., An algorithm for subgraph isomorphism. J. ACM 1976, 23, 31–42.
34. Sayle, R., Improved SMILES substructure Searching, http://www.daylight.com/meetings/

emug00/Sayle/substruct.html, 2000.
35. Ballester, P. and Graham Richards, W., Ultrafast shape recognition to search compound

databases for similar molecular shapes. J. Comp. Chem. 2007, 28, 1711–1723.
36. Good, A., Ewing, T., Gschwend, D., and Kuntz, I., New molecular shape descriptors—

applications in database screening. J. Comput.-Aided Mol. Des. 1995, 9, 1–12.
37. Guha, R., Dutta, D., Jurs, P., and Chen, T., R–NN curves: An intuitive approach to outlier

detection using a distance based method. J. Chem. Inf. Model. 2006, 46, 1713–1722.
38. Xu, H. and Agrafiotis, D., Nearest neighbor search in general metric spaces using a tree

data structure with a simple heuristic. J. Chem. Inf. Comput. Sci. 2003, 43, 1933–1941.
39. Bentley, J., Multidimensional binary search trees used for associative searching. Commun.

ACM 1975, 18, 509–517.
40. Gionis, A., Indyk, P., and Motwani, R., Similarity search in high dimensions via hashing.

In: VLDB ’99: Proceedings of the 25th International Conference on Very Large Data
Bases, Morgan Kaufmann Publishers Inc.: San Francisco, CA, 1999.

41. Guttman, A., R-trees: A dynamic index structure for spatial searching. In: SIGMOD
Conference, ACM Press: New York, 1984.

42. Bohm, C., Berchtold, S., and Keim, D., Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Comput. Surv.
2001, 33, 322–373.

43. Wang, W.,Yang, J., and Muntz, R., Information organization and databases: Foundations of
data organization. In: Kluwer International Series in Engineering and Computer Science
Series, Kluwer Academic Publishers: Norwell, MA, 2000; Chapter PK-tree: A Spatial
Index Structure for High Dimensional Point Data, pp. 281–293.

44. Ciaccia, P., Patella, M., and Zezula, M., M-tree: An efficient access method for similarity
search in metric spaces. In: VLDB ’97: Proceedings of the 23rd International Conference
on Very Large Data Bases, Morgan Kaufmann Publishers, Inc.: San Francisco, CA, 1997.

362 Handbook of Chemoinformatics Algorithms

45. Hellerstein, J., Naughton, J., and Pfeffer,A., Generalized search trees for database systems.
In: VLDB ’95: Proceedings of the 21st International Conference on Very Large Databases,
Morgan Kaufmann Publishers Inc.: San Francisco, CA, 1995.

46. Schmid, E.-G., personal communication, 2008.
47. Warr, W., Workflow and pipelining in chemoinformatics, http://www.qsarworld.com/

qsar-workflow1.php, last accessed July 2008.
48. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover,

K., Pocock, M., Wipat, A., and Li, P., Taverna: A tool for the composition and enactment
of bioinformatics workflows. Bioinformatics 2004, 20, 3045–3054.

13 Sequence Alignment
Algorithms
Applications to Glycans
and Trees and Tree-Like
Structures

Tatsuya Akutsu

CONTENTS

13.1 Introduction .363
13.2 Tree Edit Distance and Tree Alignment. .364
13.3 Glycan Structures .368
13.4 Basic Algorithms. .369

13.4.1 MCST Algorithm. .369
13.4.2 Global and Local Sequence Alignment .370

13.5 KCaM Algorithms .371
13.5.1 Global Glycan Alignment. .371
13.5.2 Local Glycan Alignment .373
13.5.3 Exact Matching Algorithms .374

13.6 Pseudocode .374
13.6.1 Code for Global Glycan Alignment .374
13.6.2 Modification for Local Glycan Alignment .376

13.7 Illustrative Example .376
13.8 KCaM Web Server .379
13.9 Concluding Remarks .379
References .380

13.1 INTRODUCTION

Glycans, which are also known as carbohydrate sugar chains, are important
biomolecules. In particular, they are quite vital for the development and function-
ing of multicellular organisms, and they are generally found on the exterior surface
of cells. Some glycans play an important role in cell–cell interactions. For example,
tumor cells make some abnormal glycans, which are recognized by some receptors
on natural killer cells. Some glycans also play an important role in protein folding
cooperating with chaperone proteins.

363

364 Handbook of Chemoinformatics Algorithms

Despite their importance, few computational methods had been developed for
analyzing glycans until the beginning of the twenty-first century. The importance
of glycans has been recognized in the field of bioinformatics since the beginning
of the twenty first-century and then various studies have been carried out. One of
the important studies is the construction of databases of glycans. Based on the early
work on the CarbBank database, a new publically available database called KEGG
Glycan has been constructed [1]. Along with the construction of the database, it was
recognized that there was no tool for similarity search for glycans. Thus, a search
tool named KCaM (KEGG Carbohydrate Matcher) has been developed [2] along
with alignment algorithms for glycans [3]. Following the development of the search
tool, several machine learning or computational methods have been developed, which
include development of score matrices for glycan alignment [4], probabilistic mod-
els the methods for the classification of glycans [5], support vector machine-based
methods for the classification of glycans using newly developed tree kernels [6,7],
elucidation of glycan structures using gene expression data [8], and tandem mass
spectrometry data [9].

Since the purpose of this section is not to give a comprehensive review but to give a
detailed explanation on glycan alignment algorithms, we focus on glycan alignment.
In this section, we first review tree edit distance and tree alignment because glycans
are usually represented as trees and glycan alignment algorithms are based on these
concepts. Next, we briefly review glycan structures. Then, after reviewing some basic
algorithms, we give a detailed description of the glycan alignment algorithms (KCaM
algorithms) [3] along with pseudocodes and examples. Finally, we briefly review the
KCaM search tool [2] and discuss the limitation of the algorithms and possible future
development.

13.2 TREE EDIT DISTANCE AND TREE ALIGNMENT

Trees are very common data structures in computer science and are special cases of
graphs. The problem of comparing trees arises in various areas such as bioinformat-
ics, chemoinformatics, structured text databases (e.g., XML databases) and image
analysis [10]. In particular, a lot of tree-based studies have been carried out for com-
parison of RNA secondary structures [11]. Although trees are classified into rooted
trees and unrooted trees, this section focuses on rooted trees since glycans are usually
represented as rooted trees as well as RNA secondary structures.

A tree T consists of a set of nodes V(T) and a set of directed edges E(T). Nodes are
divided into internal nodes and leaves, where there exists one special internal node
called the root. In this section, we only consider labeled trees in which each node is
assigned a symbol from some finite set Σ.

Each internal node has one or more outgoing edges and each leaf does not have an
outgoing edge. For each edge (u, v), u is called a parent of v, and v is called a child
of u. For each node u, Chd(u) denotes the set of children. Thus, Chd(u) = {} holds
if and only if u is a leaf. Then, we can see that the set of edges is given by

E(T) = {(u, v)|v ∈ Chd(u), u ∈ V(T)}.

Sequence Alignment Algorithms 365

A

B

A C D

B

E

B A

A

B

A C B E

E

B A

Deletion of ‘D’

Insertion of ‘D’

T1 T2

E

FIGURE 13.1 Deletion and insertion operations. In this example, T2 is obtained from T1 by
deleting a node labeled ‘D’. Conversely, T1 is obtained from T2 by inserting a node labeled ‘D’.

There are two types of rooted trees: ordered trees and unordered trees. A tree is
called ordered if a left-to-right order among siblings is given. Otherwise, it is called
unordered. In ordered trees, this left-to-right order must be preserved among matching
nodes.

Although various measures have been proposed for evaluating the similarity
between two trees, tree edit distance has been extensively studied and applied. Tree
edit distance for ordered trees is defined as follows (see Ref. [10] for details), where
we only consider the unit cost case (i.e., it takes cost 1 per insertion, deletion, or
substitution). Let T be a rooted ordered tree. Let label(v) denote the label of a node
v. |T | denotes the size (the number of nodes) of T . An edit operation on a tree T is
either a deletion, an insertion, or a substitution (see also Figure 13.1).

Deletion: Delete a non-root node v in T with parent u, making the children
of v become children of u. The children are inserted in the place of v as a
subsequence in the left-to-right order of the children of u.

Insertion: Complement of delete. Insert a node v as a child of u in T making v the
parent of a consecutive subsequence of the children of u.

Substitution: Change the label of a node v in T .

The tree edit distance between T1 and T2 is defined as the minimum number of
operations to transform T1 into T2.

A close relationship exists between the edit distance and the ordered edit dis-
tance mapping (or just a mapping) [10]. A ⊆ V(T1)× V(T2) is called a mapping
if the following conditions are satisfied for any pair (u1, v1), (u2, v2) ∈ A (see also
Figure. 13.2):

i. u1 = u2 iff. v1 = v2
ii. u1 is an ancestor of u2 iff. v1 is an ancestor of v2

iii. u1 is to the left of u2 iff. v1 is to the left of v2

Let id(A) be the set of pairs having identical labels in A. The mapping A max-
imizing id(A) defines the largest common sub-tree,∗ which is the tree obtained by

∗ In this section, we add a “-” between “sub” and “tree” to distinguish the word from the common notion
of a subtree.

366 Handbook of Chemoinformatics Algorithms

A

B

A C

B E B E

D
E

B A

B

B

A C

F

B A

E

T1 T2

FIGURE 13.2 An example of ordered edit distance mapping. In this example, T2 is obtained
from T1 by deleting a node labeled ‘D’, inserting a node labeled ‘F’ and substituting the label
of the root. Thus, the distance between T1 and T2 is three. The corresponding ordered edit
distance mapping is shown by broken lines.

deleting nodes not appearing in id(A) from T1 (or T2). It is well known [10] that the
tree edit distance is equal to:

|T1| + |T2| − |A| − |id(A)|,

which means that the computation of the largest common sub-tree is equivalent to the
computation of the tree edit distance. A can also be regarded as an alignment between
T1 and T2.

Here we review a dynamic programming procedure to compute the tree edit dis-
tance [10]. For a forest F1, let T1(u) and u be the rightmost tree of F1 and its root,
respectively, where a forest is a set of rooted trees and we assume that trees in F1
are ordered from left to right. Then, T1(u)− u, F1 − u, and F1 − T1(u) denote the
forests obtained by deleting u from T1(u), by deleting u from F1, and by deleting T1(u)

from F1, respectively. For a forest F2, v, T2(v), T2(v)− v, F2 − v, and F2 − T2(v)

are defined in an analogous way. Then, the tree edit distance is computed by the
following dynamic programming procedure (see also Figure 13.3):

D(ε, ε) = 0,

D(F1, ε) = D(F1 − u, ε)+ 1,

D(ε, F2) = D(ε, F2 − v)+ 1,

D(F1, F2) = min
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D(F1 − u, F2)+ 1,

D(F1, F2 − v)+ 1,

D(F1 − T1(u), F2 − T2(v))+ D(T1(u)− u, T2(v)− v)

+ δ(label(u), label(v)),

Sequence Alignment Algorithms 367

u

u

F1 F2

T2 (u)T1 (u)

T1 (u) – u T2 (u) –u

(a)

(b)

(c)

u

u

u u

FIGURE 13.3 Explanation of the dynamic programming algorithm for tree edit distance.

where ε denotes an empty forest, and δ(x, y) = 1 if x = y, otherwise δ(x, y) = 0.
The meaning of the recursion can be seen from Figure 13.3. This algorithm can be
extended for the general cost function.

The above presented algorithm works in O(n4) time, where n = max(|T1|, |T2|).
There is a long history of efficient algorithms for tree edit distance. Tai-first defined
the notion of tree edit distance and proposed an O(n6) time algorithm [12]. Zhang and
Shasha [13] improved it to O(n4) time. Klein [14] further improved it to O(n3 log n)

time. Demaine et al. [15] finally developed an O(n3) time algorithm and showed that
it is optimal under a reasonable computation model.

Tree edit distance for unordered trees is defined in the same way as above except
that we need not preserve the ordering among siblings. However, it is known that
computation of edit distance between unordered trees is NP-hard [16]. Therefore, it is
very difficult to compute the edit distance or the largest common sub-tree efficiently
for unordered trees. Horesh et al. [17] developed an A∗ algorithm to compute the
largest common sub-tree for unordered trees and they showed that it is possible to
compute an optimal solution for trees consisting of dozens of nodes.

Because of NP-hardness of edit distance for unordered trees, some other measures
are proposed. Jiang et al. [18] proposed alignment of trees. In alignment of trees, a
smallest common supertree T is computed from two input trees T1 and T2. That is,
T is a smallest tree such that both T1 and T2 become subtrees of T with allowing
substitution of labels paying some cost. It is shown in Ref. [18] that alignment for
unordered trees can be computed in polynomial time if the maximum number of
children is bounded by a constant, otherwise it is NP-hard. However, alignment of
trees is less flexible than tree edit distance.

368 Handbook of Chemoinformatics Algorithms

Going back to the 1960s, Edmonds and Matula [19] showed that the maximum
common subtree (MCST, in short) between two unordered trees can be computed in
polynomial time, where a tree T is called a maximum common subtree of T1 and T2
if T is a subtree of both T1 and T2 and T has the maximum number of nodes. Using
efficient computation of bipartite graph matching, their MCST algorithm works in
O(n2.5) time [20]. Furthermore, some extensions of the MCST algorithm to more
general graphs have been studied [21,22]. Since it is often useful to regard glycans as
unordered trees, it is reasonable to develop algorithms for the comparison of glycans
based on the MCST algorithm.

However, in order to develop biologically meaningful algorithms, score matrices
such as PAM and BLOSUM and local alignment should also be taken into account
because these two have been used quite successfully in the analysis of the DNA and
protein sequences [23]. Thus, KCaM algorithms were developed by combining the
MCST algorithm, score matrices, and local alignment.

13.3 GLYCAN STRUCTURES

Glycans are special kinds of chemical compounds. The basic component of glycans
is the monosaccharide unit, or sugar, of which a handful are most common in higher
animal oligosaccharides (see Table 13.1). Each unit is linked to one or more other
monosaccharides by various types of linkages, depending on the anomer (i.e., α or β)
and the hydroxyl group numbers to which they are attached on the monosaccharides.
Most glycans have rooted tree structures, where nodes correspond to monosaccha-
rides and edges correspond to linkages between monosaccharides (see Figure 13.4).
Although glycans might be regarded as ordered trees, it is better to regard them as
unordered trees for providing more flexible matching methods.

There are several classes of glycan based on certain basic patterns mainly in the
core structure (i.e., a substructure near to the root), which include N-glycan, O-glycan,
glycoside, and sphingolipid [1]. Parts of these structures are recognized by various

TABLE 13.1
Common Monosaccharide Names, their
Abbreviations, and their Symbols [4]

Sugar Name Abbreviations Symbols

Glucose Glc �
Galactose Gla •
Mannose Man ©
N-acetyl neuraminic/sialic acid NeuNAc �
N-acetylglucosamine GlcNAc �
N-acetylgalactosamine GalNAc �
Fucose Fuc ,
Xylose Xyl -

Sequence Alignment Algorithms 369

b6

b3

b4a2

b3b4

b6

b3

b4

b4

a3

a2

a3

a2

FIGURE 13.4 An example of glycan structure (KEGG Glycan ID: G02178). A label of each
edge denotes a pair of ID numbers of atoms connected by the corresponding chemical bond.

agents such as pathogens and proteins and, thus, are closely related to their functions.
Thus, analysis of tree patterns of glycan structures is important for understanding and
predicting functions of glycans.

13.4 BASIC ALGORITHMS

Before describing KCaM algorithms, we review the MCST algorithm [19,20] and the
global and local sequence alignment algorithms because KCaM algorithms are based
on them.

13.4.1 MCST ALGORITHM

Different from tree edit, we hereafter consider unordered trees. A subtree of tree T
is a tree whose nodes and edges are subsets of those of T . Two trees T1 and T2 are
said to be isomorphic if and only if there is a bijection M between nodes in T1 and T2
such that the following conditions are satisfied:

• ∀(v1, v2) ∈ M, label(u) = label(v)

• (u1, v1) ∈ E(T1) if and only if (u2, v2) ∈ E(T2)

Then, the MCST problem is defined as a problem of, given two unordered, labeled,
rooted trees T1 and T2, finding the tree Tc that is isomorphic to a subtree of both
T1 and T2 and whose number of nodes is the maximum among all such possible
trees.

The MCST algorithm is based on dynamic programming. For a node v in tree
T , T(v) denotes the subtree of T induced by v and its descendants. For each pair
(u, v) ∈ V(T1)× V(T2), the MCST algorithm computes the size (i.e., the number of
nodes) of the MCST between T1(u) and T2(v), which is denoted by R[u, v]. M(u, v)

denotes the set of one-to-one mappings between Chd(u) and Chd(v). Then, R[u, v]
can be computed by using the following dynamic programming procedure (see also

370 Handbook of Chemoinformatics Algorithms

u u

u1 u2 u3 u1 u2

FIGURE 13.5 Explanation of the MCST algorithm. In order to compute score R[u, v], all
possible mappings between {u1, u2, u3} and {v1, v2} are examined. In this example, M =
{(u1, v2), (u3, v1)} is selected as a mapping between Chd(u) and Chd(v) with the maximum
score, where triangles with similar patterns mean similar subtrees.

Figure 13.5):

R[u, v] =

⎧
⎪⎪⎨

⎪⎪⎩

0, if u = ε, v = ε or label(u) �= label(v),

1+ max
M∈M(u,v)

⎧
⎨

⎩

∑

(ui,vj)∈M

R[ui, vj]
⎫
⎬

⎭
, otherwise,

where ε denotes an empty tree. It is to be noted that the left-to-right ordering of siblings
is not taken into account in the above (since there is no restriction on mappings M).
Computation of maxM∈M(u,v){· · · } can be carried out in polynomial time by using the
maximum bipartite graph matching [19,20]. The resulting MCST can be retrieved by
using a traceback procedure, where the traceback is a standard technique in dynamic
programming.

13.4.2 GLOBAL AND LOCAL SEQUENCE ALIGNMENT

Sequence alignment is one of the most basic and important algorithms in bioinfor-
matics. Since sequence alignment is explained in detail in another chapter, we briefly
review the algorithms.

Let s = s1 s2 . . . sm and t = t1t2 . . . tn be sequences of DNAs or proteins. Global
sequence alignment with linear gap cost is computed by the following dynamic
programming procedure:

S[i, 0] = d · i,
S[0, j] = d · j,

S[i, j] = max

⎧
⎪⎪⎨

⎪⎪⎩

S[i, j − 1] + d,

S[i − 1, j] + d,

S[i − 1, j − 1] + w(si, tj),

where d < 0 is a penalty for a gap and w(x, y) is the score between nucleotides or
amino acids x and y. S[i, j] gives the score of an optimal global alignment between

Sequence Alignment Algorithms 371

s1s2 . . . si and t1t2 . . . tj and thus the score of an optimal global alignment between s
and t is given by S[m, n].

Local sequence alignment is defined as a problem of finding a global sequence
alignment with the maximum score between s′ and t′ where s′ and t′ are any consec-
utive subsequences of s and t, respectively. Local sequence alignment with linear gap
cost is computed by the following dynamic programming procedure:

S[i, 0] = 0,

S[0, j] = 0,

S[i, j] = max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0,

S[i, j − 1] + d,

S[i − 1, j] + d,

S[i − 1, j − 1] + w(si, tj).

In this case, S[i, j] denotes the score of an optimal local alignment ending at (si, tj) and
thus the score of an optimal local alignment between s and t is given by maxi,j S[i, j].

13.5 KCaM ALGORITHMS

KCaM algorithms are combinations of the MCST algorithm and the global/local
sequence alignment algorithms. There are basically two versions, global glycan align-
ment and local glycan alignment, where the former corresponds to global sequence
alignment and the latter corresponds to local sequence alignment. Furthermore, we
have variants of these glycan alignment algorithms in which gaps are not allowed.
The original versions are called approximate matching algorithms and the variants are
called exact matching algorithms. In this section, we begin with global glycan align-
ment, then explain local glycan alignment, and finally briefly explain exact matching
algorithms.

13.5.1 GLOBAL GLYCAN ALIGNMENT

The global glycan alignment algorithm is a simple combination of the MCST algo-
rithm and the global sequence alignment algorithm. More precisely, it is obtained
from the MCST algorithm by allowing deletion of a middle node. However, the dele-
tion operation is different from that of tree edit. In tree edit, all children of the deleted
node u become children of the parent of u. However, in glycan alignment, only one
child can be a child of the parent of u and the other children are deleted along with
their descendants (see Figure. 13.6).

Since it would be a bit complicated to define appropriate edit operations, we do
not give edit operations for glycan alignment. Instead, we directly give the dynamic

372 Handbook of Chemoinformatics Algorithms

u

u1

ub

up

up

up

ua

u2 u3

ua u2 ub

ua u2 u3 u1 ub

Glycan
alignment

Tree
edit

FIGURE 13.6 Difference of deletion operations between glycan alignment and tree edit. If u
is deleted, all the children of u become children of the parent of u (denoted by up) in tree edit,
whereas only one child of u can become a child of up in glycan alignment.

programming procedure as follows:

Q[u, 0] =
∑

ui∈T1(u)

d(ui),

Q[0, v] =
∑

vi∈T2(v)

d(vi),

Q[u, v] = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxvi∈Chd(v)

{
Q[u, vi] + d(v)+∑

vj∈Chd(v)−{vi}Q[0, vj]
}

,

maxui∈Chd(u)

{
Q[ui, v] + d(u)+∑

uj∈Chd(u)−{ui} Q[uj, 0]
}

,

w(u, v)+maxM∈M(u,v)

⎧
⎪⎪⎨

⎪⎪⎩

∑
(ui ,vj)∈M Q[ui, vj]+

∑
uk∈Chd(u)−M1

Q[uk , 0]+
∑

vk∈Chd(v)−M2
Q[0, vk]

⎫
⎪⎪⎬

⎪⎪⎭

.

In the above, d(u) denotes the cost for deleting a node u (corresponding to gap penalty
in sequence alignment), w(u, v) represents the similarity between nodes u and v, and
Mi denotes the set of nodes of Ti appearing in M. The meanings of three terms (three
terms in outer max) appearing in the right-hand side of the third recursion is as follows.
The first term corresponds to the deletion of v. The second term corresponds to the
deletion of u (see Figure 13.6). The third term corresponds to the matching between
u and v. In order to compute the third term, a maximum score matching between
the children of u and the children of v is computed as in the MCST algorithm (see
Figure. 13.5). However, in this case, the deletion costs for non-matching nodes and
their descendants (represented by Q[uk , 0] and Q[0, vk]) are taken into account.

Sequence Alignment Algorithms 373

As in the case of tree edit, we can relate the score with a kind of mapping or align-
ment. A ⊆ V(T1)× V(T2) is called a glycan alignment if the following conditions
are satisfied for any pair (u1, v1), (u2, v2) ∈ A:

i. u1 = u2 iff. v1 = v2
ii. u1 is an ancestor of u2 iff. v1 is an ancestor of v2

iii. If u1 ∈ V(T1) (respectively v1 ∈ V(T2)) does not appear in A, at most one
child of u1 (respectively v1) and its descendants can appear in A

It is to be noted that condition (iii) is not included in tree edit mapping. Instead,
the condition on sibling orderings is not included here. We define the score of an
alignment A by

∑

(u,v)∈A
w(u, v) +

∑

u∈V(T1)−A1

d(u) +
∑

v∈V(T2)−A2

d(v),

where Ai denotes the set of nodes of Ti appearing in A. Then, the score of an optimal
glycan alignment A is equal to Q[r1, r2] where r1 and r2 are the roots of T1 and T2,
respectively.

In the above, the similarities of edges are not taken into account. However, edges
have important biological meanings. Thus, the similarities of edges should be taken
into account. For that purpose, we define w(u, v) as follows:

w(u, v) = max

⎧
⎪⎪⎨

⎪⎪⎩

0,
α · δ(label(u), label(v))

− β · (1− δ(ulabel(p(u), u), ulabel(p(v), v)))

− β · (1− δ(dlabel(p(u), u), dlabel(p(v), v))),

where p(u) denotes the parent of u, label(u) denotes the name of the monosaccharide
unit or sugar, and ulabel(p(u), u) (resp. dlabel(p(u), u)) indicates the carbon number
(id) of sugar p(u) (respectively sugar u) to which the edge (p(u), u) is connected. In
the current implementation, we use α = 100.0 and β = 25.0 based on several trials.

13.5.2 LOCAL GLYCAN ALIGNMENT

As in sequence alignment, we can develop a local version of glycan alignment. The
local glycan alignment problem is defined as a problem of finding a global glycan
alignment with the maximum score between T ′1 and T ′2 where T ′1 and T ′2 are any
subtrees of T1 and T2, respectively.

The algorithm for local glycan alignment is obtained by combining the local
sequence alignment algorithm and the global glycan alignment algorithm. The

374 Handbook of Chemoinformatics Algorithms

following is its dynamic programming procedure:

Q[u, 0] = 0,

Q[0, v] = 0,

Q[u, v] = max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0,

maxvi∈Chd(v)

{
Q[u, vi] + d(v)+∑

vj∈Chd(v)−{vi} Q[0, vj]
}

,

maxui∈Chd(u)

{
Q[ui, v] + d(u)+∑

uj∈Chd(u)−{ui} Q[uj, 0]
}

,

w(u, v)+maxM∈M(u,v)

{∑
(ui ,vj)∈M Q[ui, vj]

}
.

13.5.3 EXACT MATCHING ALGORITHMS

There exists another variant of the above mentioned glycan alignment algorithms.
In this variant, gaps are not allowed. Furthermore, the degree of specificity can be
specified by selecting either to match just monosaccharide names (i.e., sugar names)
or both names and linkage information (i.e., sugar names and bond types). As in
approximate matching, there exist two versions: exact global matching and exact
local matching. Since the algorithms are almost the same as the ones for approximate
matching, we do not give algorithms or pseudocodes of the exact algorithms. See
Ref. [3] the details of the exact matching algorithms.

13.6 PSEUDOCODE

Although outlines (i.e., recursions) of the glycan alignment algorithms have been
provided above, some details are unclear. In particular, how to compute maximum
matchings is unclear. Therefore, we here provide pseudocodes of the algorithms. In
these codes, each node is given an ID number, where the numbers are given in the
postorder traversal: the ID number of a parent is larger than the ID numbers of its
children. The node with ID number i (respectively j) in T1 (respectively T2) is denoted
by ui (respectively vj). For each node with ID number i in T1, Chd(i) denotes the set
of ID numbers of the children of ui, and ChdID(ui, k) denotes the ID number of the
kth child of vi. Chd(j) and ChdID(vj , k) are defined in the same way for T2. For a
tree T and a set of vertices W , T(W) denotes a subtree induced by W .

In both cases, we give codes only for computing the score of an optimal alignment
and do not give codes for retrieving an optimal alignment itself because an optimal
alignment can be obtained by using the standard traceback technique.

13.6.1 CODE FOR GLOBAL GLYCAN ALIGNMENT

We start with the code for global glycan alignment. In this code, GlobalGlycan
Alignment(T1, T2) is the main procedure. F[i, j] stores the score (i.e., Q[ui, vj]) for
T1(ui) and T2(vj). It is to be noted that F[i, 0] (respectively F[0, j]) corresponds to the
score for deleting T1(ui) (respectively T2(v2)). Match(i, j) is a subroutine to compute
the score of a maximum matching between the children of ui and the children of vj.

Sequence Alignment Algorithms 375

Since the number of children is small (less than four in most cases), we did not employ
an efficient maximum bipartite matching algorithm. Instead, we employed a simple
exhaustive procedure MatchSub(i1, deg0, CurScore). In this procedure, we examine
all complete bipartite matchings between deg0 children of ui and deg0 children of vj,
where deg0 = max{deg(ui), deg(vj)} and the score between the i1th child of ui and
j1th child of vj is stored in M[i1, j1]. It is to be noted that if i1 > deg(ui) (respectively
j1 > deg(vj)), the i1th (respectively j1th) child is regarded as a null child and M[i1, j1]
denotes the score for deletion of T2(vj1) (respectively T1(ui1)).

MatachSub(i1, deg0, CurScore) computes the scores of all possible matchings in
a recursive manner. It starts with the null matching and extends partial matching
gradually by adding pairs of nodes (including pairs with null nodes) one-by-one.
When MatchSub(i1, deg0, CurScore) is called, an assignment for up to the (i1 − 1)th
children of ui was already computed and CurScore keeps the score for such a partial
assignment. When i exceeds deg0, a complete matching is obtained and the maximum
score is updated if the current score is greater than the previous maximum score.

Procedure GlobalGlycanAlign(T1,T2)
begin
Let 1, · · · ,n1 be the id numbers of nodes in T1
in postorder traversal;
Let 1, · · · ,n2 be the id numbers of nodes in T2
in postorder traversal;
for i=1 to n1 do

F [i,0] ← d(ui)+∑
k∈Chd(i) F [k,0];

for j = 1 to n2 do
F [0,j] ← d(vj)+∑

k∈Chd(j) F [0,k];
for i = 1 to n1 do
for j = 1 to n2 do
begin
x1← Match(i,j)+ w(ui,vj);
x2← mink∈Chd(j){F [i,k] + d(vj)+∑

h�=k,h∈Chd(j) F [0,h]};
x3← mink∈Chd(i){F [k,j] + d(ui)+∑

h�=k,h∈Chd(i) F [h,0]};
F [i,j] ← max{x1,x2,x3}

end;
return F [n1,n2]

end

Procedure Match(i,j)
begin
deg0← max{deg(ui),deg(vj)};
for i1 = 1 to deg0 do
for j1 = 1 to deg0 do

if i1 > deg0 then M [i1,j1] ← F [0,ChdId(vj,j1)]
else if j1 > deg0 then M [i1,j1] ← F [ChdId(ui,i1),0]
else M [i1,j1] ← F [ChdId(ui,i1),ChdId(vj,j1)];

for j1 = 1 to deg0 do ASSIGNED [j1] ← 0;

376 Handbook of Chemoinformatics Algorithms

MatchScore←−∞;
MatchSub(1,deg0,0.0);
return MatchScore

end

Procedure MatchSub(i1,deg0,CurScore)

begin
if i1 > deg0 then
if CurScore > MatchScore then MatchScore← CurScore;

else
for j1 = 1 to deg0 do
if ASSIGNED[j1] = 0 then
begin
ASSIGNED [j1] ← 1;
MatchSub (i1 + 1,deg0,CurScore+ M [i1][j1]);
ASSIGNED [j1] ← 0

end
end

Here we briefly analyze the time complexity of this glycan alignment algorithm.
Since the maximum number of children in glycans is bounded by a constant, we can
assume that Match(i, j) works in constant time. Since the main loop of the main pro-
cedure is iterated n1n2 times, the total time complexity of the global glycan alignment
algorithm is O(n1n2). It is easily seen that the space complexity of the algorithm is
also O(n1n2).

13.6.2 MODIFICATION FOR LOCAL GLYCAN ALIGNMENT

The code for global glycan alignment can be modified for local glycan alignment.
The required modification is simple and is a direct consequence of the change of the
recursion.

We first modify the initialization part for F[i, 0] and F[0, j] as below.

for i = 1 to n1 do F[i, 0] ← 0;

for j = 1 to n2 do F[0, j] ← 0;

Next, we replace “F[i, j] ← max{x1, x2, x3}” with “F[i, j] ← max{x1, x2, x3, 0}.”
Finally, we replace “return F[n1, n2]” with “return maxi,j F[i, j].” As in the case of
global glycan alignment, the time and space complexities of the local glycan alignment
algorithm are O(mn).

13.7 ILLUSTRATIVE EXAMPLE

Here we provide an example for illustrating the global glycan alignment algorithm.
We employ two glycan data with KEGG Glycan ID numbers G06886 and G05554
(see also Figure 13.7).

Sequence Alignment Algorithms 377

u1

u2

u3

u4

u5 u6 u7

G06886

G05554

u2

u1

u3

u4 u5

FIGURE 13.7 An example of global glycan alignment.

Recall that nodes are numbered according to the postorder traversal. For the
simplicity of presentation, we use the following score function and gap penalty:

w(u, v) =
{

1, if label(u) = label(v),

0, otherwise,

d(v) = d(u) = −1 for all nodes u ∈ V(T1) and v ∈ V(T2).

The algorithm initializes F[i, 0] and F[0, j] as follows:

F[1, 0] = −1, F[2, 0] = −1, F[3, 0] = −2, F[4, 0] = −4, F[5, 0] = −5

F[0, 1] = −1, F[0, 2] = −1, F[0, 3] = −3, F[0, 4] = −1,

F[0, 5] = −5, F[0, 6] = −6, F[0, 7] = −7

Next, it determines the values of F[1, j] as follows:

F[1, 1] = 0, F[1, 2] = 0, F[1, 3] = −2, F[1, 4] = 0, F[1, 5] = −4,

F[1, 6] = −5, F[1, 7] = −6

It is to be noted that the value of F[1, 3] is determined by F[1, 3] = w(u1, v3)+
F[0, 1] + F[0, 2]. Similarly, the algorithm determines the values of F[2, j] as follows:

F[2, 1] = 1, F[2, 2] = 1, F[2, 3] = −1, F[2, 4] = 1, F[2, 5] = −3,

F[2, 6] = −4, F[2, 7] = −5

Then, it determines the values of F[3, j] as follows:

F[3, 1] = 0, F[3, 2] = 0, F[3, 3] = 0, F[3, 4] = 0, F[3, 5] = −2,

F[3, 6] = −3, F[3, 7] = −3

378 Handbook of Chemoinformatics Algorithms

It is to be noted that the value of F[3, 3] is determined by F[3, 3] = w(u3, v3)+
F[2, 1] + F[0, 2] (or F[3, 3] = w(u3, v3)+ F[0, 1] + F[2, 2]). Then, it determines the
values of F[4, j] and F[5, j] as follows:

F[4, 1] = −2, F[4, 2] = −2, F[4, 3] = 1, F[4, 4] = −2,

F[4, 5] = 1, F[4, 6] = 0, F[4, 7] = −1

F[5, 1] = −3, F[5, 2] = −3, F[5, 3] = 0, F[5, 4] = −3,

F[5, 5] = 0, F[5, 6] = 1, F[5, 7] = 1

Finally, the score of the global glycan alignment is given as F[5, 7] = 1 and the
alignment is obtained as

A = {(u1, v4), (u2, v1), (u3, v3), (u4, v5), (u5, v7)},
where this alignment comes from the following:

F[5, 7] = w(u5, v7)+ F[4, 6],
F[4, 6] = d(v6)+ F[4, 5],
F[4, 5] = w(u4, v5)+ F[1, 4] + F[3, 3],
F[1, 4] = w(u1, v4),

F[3, 3] = w(u3, v3)+ F[2, 1] + F[0, 2],
F[2, 1] = w(u2, v1).

In the case of local glycan alignment, F[i, 0] and F[0, j] are initialized to be 0, and
the other F[i, j] are determined as follows:

F[1, 1] = 0, F[1, 2]= 0, F[1, 3]= 0, F[1, 4]= 0, F[1, 5]= 0, F[1, 6]= 0, F[1, 7]= 0,

F[2, 1] = 1, F[2, 2]= 1, F[2, 3]= 1, F[2, 4]= 1, F[2, 5]= 1, F[2, 6]= 0, F[2, 7]= 0,

F[3, 1] = 0, F[3, 2]= 0, F[3, 3]= 1, F[3, 4]= 0, F[3, 5]= 1, F[3, 6]= 1, F[3, 7]= 1,

F[4, 1] = 1, F[4, 2]= 1, F[4, 3]= 1, F[4, 4]= 1, F[4, 5]= 2, F[4, 6]= 1, F[4, 7]= 1,

F[5, 1] = 0, F[5, 2]= 0, F[5, 3]= 1, F[5, 4]= 0, F[5, 5]= 1, F[5, 6]= 2, F[5, 7]= 2.

In this case, optimal alignments can be obtained by the traceback procedure begin-
ning from any of F[4, 5], F[5, 6], F[5, 7]. Beginning from F[4, 5], one of the local
alignments will be

A = {(u1, v4), (u2, v1), (u3, v3), (u4, v5)},
which corresponds to a global alignment between T1({u1, u2, u3, u4}) and
T2({v1, v3, v4, v5}). Beginning from F[5, 7], one of the local alignments will be

A = {(u2, v3), (u3, v5), (u4, v6), (u5, v7)}

Sequence Alignment Algorithms 379

which corresponds to a global alignment between T1({u2, u3, u4, u5}) and
T2({v3, v5, v6, v7}).

13.8 KCaM WEB SERVER

The above mentioned algorithms were implemented in the KCaM web server [2].
KCaM is a kind of search tool for the KEGG Glycan database [1]. Though the codes
are not available in public, users can use the algorithms through the web server. As in
the Blast tool for sequence homology search, KCaM requires each user to specify a
query glycan structure and then searches glycan structures similar to the given query
structure in the KEGG Glycan database or the CarbBank database.

There exist three ways for inputting a query glycan structure. One way is to specify
the KEGG Glycan ID number. Each glycan data stored in the KEGG Glycan database
has its own ID number like G00001. Thus, users can use this ID number to specify
a query structure. Another way is to create a KCF (KEGG Chemical Function) file
where KCF is a special format for describing chemical structures including glycans.
The other way is to use the glycan structure editor in the KEGG Glycan database. It
is a user-friendly graphical interface for entering any glycan structure via the web.
Users can also input a KCF format file and modify it.

After specifying a query glycan structure, users can choose search algorithms,
where KCaM provide the following search algorithms.

Gapped & Global: Combination of approximate (i.e., gapped) and global glycan
alignment

Gapped & Local: Combination of approximate and local glycan alignment
Ungapped & Global: Combination of exact (i.e., ungapped) and global glycan

alignment
Ungapped & Local: Combination of exact and local glycan alignment

Furthermore, users can change optional parameters such as gap penalty and weight
of matches and can choose the target database (the KEGG Glycan database or the
CarbBank database).

Once the search algorithm has been selected, KCaM is invoked and structures in
the database are listed from the highest score to the lowest score. Of course, users can
specify the number of structures shown per page. Users can also specify whether or
not structures are shown in the list. A snapshot of a KCaM search result is shown in
Figure 13.8.

13.9 CONCLUDING REMARKS

We have explained algorithms for glycan alignment. The algorithms are simple and
fast enough for practical use. The algorithms were implemented in the KCaM web
server, on which search against more than 10,000 glycan structures can be done in
several or several tens of seconds. Furthermore, users can adjust several parameters
(e.g., gap penalty, weight of matches) used in the algorithms via the web.

380 Handbook of Chemoinformatics Algorithms

Glycan data search result

20 Hide structure

Top

No

1

2

3

G03993

Entry

G04020

G04020

G03993

G03684

Structure Name Composition

(Gal)4
(GlcNAc)6
(Man)3

(Gal)4
(GlcNAc)6
(Man)3

(Gal)5
(GlcNAc)7
(Man)3

Page: 1 Go of 72 Items : 1 – 20 of 1433 Top Previous Next Bottom

b1

b1

b1 2

b1 b14

a1

a1
6

6
3

2

Gal GlcNAcb1 4

Gal GlcNAc GlcNAc GlcNAc 4 GlcNAcGalb1 b1 b1

Gal

Man

Man

b1

b1
b1 b14

a1

a1
6

6

3

2

GlcNAc 4 GlcNAcMan

Man

b1

b1

b1

b1

a1

a1
6

6
3

2

b1 4GlcNAc 4 GlcNAcMan

Man

4
2

Man

Manb1

4 3 4

Gal GlcNAc GlcNAcGalb1 b1 b14 3 4

GlcNAc

Similarity-score : 1300

Similarity-score : 1250

4

Gal b1 GlcNAc4

Gal b1 b1GlcNAc Man4

Gal b1 GlcNAc4

2

Gal b1 Galb1b1GlcNAc4 GlcNAc4

Gal b1 GlcNAc4

Gal b1 GlcNAc4

2

Number of entries in a page

FIGURE 13.8 Snapshot of KCaM search result.

The most crucial drawback of the current glycan alignment algorithms lies in the
deletion operation. As seen in Figure 13.6, if a node is deleted, only one subtree
branching from the node can survive and the other subtrees are deleted. On the other
hand, under the standard definition of tree edit distance, if a node is deleted, all of
subtrees branching from the node can survive and become descendants of the parent
of the deleted node. If we could use this definition of the deletion operation, more
flexible matching would be possible. However, it is known that the tree edit distance
problem is NP-hard for unordered trees [16], though it is polynomial time solvable
for ordered trees. It suggests that it is almost impossible to develop polynomial time
algorithms for glycan alignment with standard deletion operations if glycan structures
are regarded as unordered trees. However, some practical algorithm was developed
for tree edit distance for unordered trees using the A∗ algorithm [17]. Based on that
algorithm, more flexible algorithms for glycan alignment might be developed.

REFERENCES

1. Hashimoto, K., Goto, S., Kawano, S., Aoki-Kinoshita, K. F., Ueda, N., Hamajima, M.,
Kawasaki, T., and Kanehisa, M., KEGG as a glycome informatics resource. Glycobiology
2006, 16, 63R–70R.

Sequence Alignment Algorithms 381

2. Aoki, K. F., Yamaguchi, A., Ueda, N., Akutsu, T., Mamitsuka, H., Goto, S., and Kanehisa,
M., KCaM (KEGG carbohydrate matcher): A software tool for analyzing the structure of
carbohydrate sugar chains. Nucleic Acids Res. 2004, 32, W267–W272.

3. Aoki, K. F., Yamaguchi, A., Okuno, Y., Akutsu, T., Ueda, N., Kanehisa, M., and
Mamitsuka, H., Efficient tree-matching methods for accurate carbohydrate database
queries. Genome Inform. 2003, 14, 134–143.

4. Aoki, K. F., Mamitsuka, H., Akutsu, T., and Kanehisa, M., A score matrix to reveal the
hidden links in glycans. Bioinformatics 2005, 21, 1457–1463.

5. Hashimoto, K., Aoki-Kinoshita, K. F., Ueda, N., Kanehisa, M., and Mamitsuka, H., A new
efficient probabilistic model for mining labeled ordered trees applied to glycobiology. ACM
Trans. Knowl. Discov. Data 2008, 2, Article No. 6.

6. Kuboyama, T., Hirata, K., and Aoki-Kinoshita, K. F., Efficient unordered tree kernel and
its application to glycan classification. Lect. Notes Comput. Sci. 2008, 5012, 184–195.

7. Yamanishi, Y., Bach, F., and Vert, J-P., Glycan classification with tree kernels. Bioinfor-
matics 2007, 23, 1211–1216.

8. Kawano, S., Hashimoto, K., Miyama, T., Goto, S., and Kanehisa, M., Prediction of
glycan structures from gene expression data based on glycosyltransferase reactions.
Bioinformatics 2005, 21, 3976–3982.

9. Shan, B., Ma, B., Zhang, K., and Lajoie, G., Complexities and algorithms for glycan
sequencing using tandem mass spectrometry. J. Bioinfor. Comput. Biol. 2008, 6, 77–91.

10. Bille, P., A survey on tree edit distance and related problem. Theoret. Comput. Sci. 2005,
337, 217–239.

11. Zhang, K., RNA structure comparison and alignment. In J. T-L. Wang, et al. (Eds.) Data
Mining in Bioinformatics; Springer: Heidelberg, 2005, pp. 59–81.

12. Tai, K-C., The tree-to-tree correction problem. J. ACM 1979, 26, 422–433.
13. Zhang, K. and Shasha, D., Simple fast algorithms for the editing distance between trees

and related problems. SIAM J. Comput. 1989, 18, 1245–1262.
14. Klein, P. N., Computing the edit-distance between unrooted ordered trees. Lect. Notes

Comput. Sci. 1998, 1461, 91–102.
15. Demaine, E., Mozes, S., Rossman, B., and Weimann, O., An optimal decomposition

algorithm for tree edit distance. Lect. Notes Comput. Sci. 2007, 4596, 146–157.
16. Zhang, K. and Jiang, T., Some MAX SNP-hard results concerning unordered labeled trees.

Inf. Proc. Lett. 1994, 49, 249–254.
17. Horesh,Y., Mehr, R. and Unger, R., Designing anA∗ algorithm for calculating edit distance

between rooted-unordered trees. J. Comput. Biol. 2006, 13, 1165–1176.
18. Jiang, T., Wang, L., and Zhang, K.,Alignment of trees—an alternative to tree edit. Theoret.

Comput. Sci. 1995, 143, 137–148.
19. Edmonds, J. and Matula, D., An algorithm for subtree identification. SIAM Rev. 1968, 10,

273–274.
20. Akutsu, T., An RNC algorithm for finding a largest common subtree of two trees. IEICE

Trans. Inf. Syst. 1992, E75-D, 95–101.
21. Akutsu, T., A Polynomial time algorithm for finding a largest common subgraph of almost

trees of bounded degree. IEICE Trans. Fundam. 1993, E76-A, 1488–1493.
22. Yamaguchi, A., Aoki, K. F., and Mamitsuka, H., Finding the maximum common subgraph

of a partial k-tree and a graph with a polynomially bounded number of spanning trees. Inf.
Proc. Lett. 2004, 92, 57–63.

23. Durbin, R., Eddy. S., Krogh, A., and Mitchison, G., Biological sequence analysis: Prob-
abilistic models of proteins and nucleic acids. Cambridge University Press: Cambridge,
UK, 1998.

14 Machine Learning–
Based Bioinformatics
Algorithms
Application to Chemicals

Shawn Martin

CONTENTS

14.1 Applications of Clustering .383
14.1.1 Applications in Bioinformatics .386
14.1.2 Applications in Chemoinformatics .387
14.1.3 Comparisons. .387

14.2 Applications of Classification and Regression .388
14.2.1 Applications in Bioinformatics .390
14.2.2 Applications in Chemoinformatics .391
14.2.3 Comparisons. .394

References .394

14.1 APPLICATIONS OF CLUSTERING

Clustering refers to an array of data analysis techniques that can be used to partition a
dataset into groups [1,2]. Clustering is generally used as a first pass through a dataset
about which little is known in an effort to organize the information for further analysis.
Once this information is organized in some way, the user will often make additional
hypotheses and/or perform additional analysis.

Clustering techniques are often divided into two categories: hierarchical and parti-
tional. In hierarchical clustering (for background see Ref. [1]), a dataset is organized
into a tree structure known as a dendrogram. The tree is typically drawn upside down
with the trunk at the top of the page and the leaves at the bottom. In this drawing, the
vertical axis is proportional to the similarity of the nodes in the tree so that clusters
can be obtained by drawing a horizontal line through the tree and taking clusters to
be subtrees below that line. An example is shown in Figure 14.1.

There are two main approaches to hierarchical clustering: agglomerative and divi-
sive. In agglomerative clustering, the dendrogram is formed from the bottom (leaves)
up by merging nodes to form clusters. In divisive clustering, the dendrogram is formed

383

384 Handbook of Chemoinformatics Algorithms

14 15 12 11 13 6 10 7 8 9 1 4 5 2 3

0.2

0.4

0.6

0.8

1

1.2

1.4

FIGURE 14.1 A dendrogram produced by hierarchical clustering, with clusters taken to
be subtrees beneath the horizontal line. This dendrogram was produced using 15 artificially
generated data points consisting of three clusters arranged linearly with approximately one unit
between them. The x-axis shows the data point indices and the y-axis shows the single-link
Euclidean distance between the clusters.

from the top (trunk) down by dividing the dataset into smaller and smaller clusters.
Agglomerative clustering is the more common approach.

Within agglomerative methods, there are several variations available for deciding
when to merge two clusters. The more common methods are single-link, average-
link, and complete-link clustering. Single-link clustering merges two clusters based
on the closest two data points within the two clusters; average-link clustering merges
two clusters based on the centroids of the two clusters; and complete-link clustering
merges clusters based on the maximum distance between two data points within
the two clusters. Agglomerative hierarchical clustering proceeds in the following
manner:

ALGORITHM 14.1 AGGLOMERATIVE HIERARCHICAL CLUSTERING

1. Compute a pair-wise distance matrix for all available samples. Distance here
can be any of a number of possibilities, including Euclidean, Mahalanobis,
and Hamming.

2. Search the distance matrix for the most similar pair of clusters, as measured
using single-link, complete-link, average-link, or other method. Merge the
most similar clusters.

3. Update the distance matrix to reflect distances between clusters.
4. Repeat steps 2 and 3 until there is only one cluster left.

Machine Learning–Based Bioinformatics Algorithms 385

Actual code for hierarchical clustering is widely available. Commercial appli-
cations include MATLAB� (http://www.mathworks.com) and SAS (http://www
.sas.com). There are also open source codes available [3].

In chemoinformatics, the most common method of hierarchical clustering is
agglomerative using Ward’s method for merging clusters [4]. Ward’s method uses
square error, also known as within-cluster-variance, to measure distance between
clusters. Square error is defined as

e2 =
s∑

r=1

‖xr − xc‖2 , (14.1)

where xc is a cluster centroid and r ranges over the points in the cluster. For the case
of cluster-to-cluster distance, r ranges over the points in a neighboring cluster. Ward’s
method has the advantage of minimizing total cluster variance (it is also known as
the minimum variance method).

Hierarchical clustering is a favorite method in bioinformatics, owing to the fact
that the dataset is not only partitioned, but visualization is also provided. Further,
multiple partitions can be obtained by using a different horizontal threshold to cut
the dendrogram. However, hierarchical clustering suffers from a computational lim-
itation. Hierarchical clustering is memory intensive O(n2) and time intensive O(n2

log n). There are, of course, numerous variations on hierarchical clustering that boast
better performance (see, e.g., Refs. [5,6]).

Partitional clustering algorithms more strictly follow the definition of clustering
previously given, in that partitional methods supply only a partition of a dataset,
with no effort at visualization or different possible partitions. The most common
partitional method is probably k-means. In chemoinformatics, however, a method
known as Jarvis–Patrick clustering [7] is generally preferred. The popularity of the
Jarvis–Patrick method in chemoinformatics has resulted from early publications by
Willett et al. [8–10] comparing different clustering techniques. The method itself
works by comparing data points with neighboring data points to form clusters. The
algorithm proceeds in two steps:

ALGORITHM 14.2 JARVIS–PATRICK CLUSTERING

1. Generate a list of top k neighbors for each data point, using (for example)
Euclidean distance or the Tanimoto coefficient [11]

2. Cluster points according to the following criterion (points that fail a, b, or c
below are not in the same cluster)

a. Data point i is in the top k neighbors of data point j
b. Data point j is in the top k neighbors of data point i
c. Data points i and j have at least kmin of their top k neighbors in common

The Jarvis–Patrick algorithm is O(n2) in time and O(n) in space, making it more
applicable to large datasets than hierarchical clustering. The Jarvis–Patrick method
is readily available from Daylight software (http://www.daylight.com).

386 Handbook of Chemoinformatics Algorithms

A

5
4
3
2
1
0

–1
–2
–3
–4
–5

Vxlnsight cluster

B
C
D
E
F

FIGURE 14.2 A prototypical heat map/dendrogram combination plot produced using
hierarchical clustering of gene expression data. This plot originally appeared in Wil-
son et al. [16] and was produced using the clustering algorithms available in MATLAB
(http://www.mathworks.com).

14.1.1 APPLICATIONS IN BIOINFORMATICS

Most of the clustering applications in bioinformatics have been driven by the availabil-
ity of postgenomic data, and in particular, the advent of microarray gene expression
data. Gene expression data are taken from a high-throughput experimental method
using microarrays [12,13]. A microarray consists of a glass slide with a printed array
of microscopic dots, each containing cDNA. When an experiment is performed, gene
expression is measured via the amount of mRNA that binds to the cDNA on each
spot. Flourophores are used to detect when mRNA binds to a given spot.

Perhaps the earliest application of clustering in bioinformatics was using gene
expression data. In the work of Eisen et al. [14], the yeast cell cycle was analyzed using
microarray data from [15] and hierarchical clustering. Genes were grouped together
according to correlation through time using average link hierarchical clustering. The
results were displayed using a heat map for gene expression combined with a dendro-
gram tree for grouping genes. Eisen’s heat maps are now a standard in bioinformatics.
An example is shown in Figure 14.2 using data taken from Wilson et al. [16].

In addition to hierarchical clustering of gene expression data, numerous other
methods have been applied and/or developed [2,17]. These methods include stan-
dard algorithms such as k-means [18] and self-organizing maps (SOMs) [19], as
well as algorithms developed specifically for microarray data. Microarray-specific
algorithms include graph theoretic algorithms such as cluster identification via

Machine Learning–Based Bioinformatics Algorithms 387

connectivity kernels (CLICK) [20] and the cluster affinity search technique (CAST)
[21]. Other algorithms specialized to microarray data relate to the simultaneous clus-
tering of genes (rows) and samples (columns) in a dataset. These algorithms include
biclustering [22] and coupled two-way clustering (CTWC) [23].

Microarray data are by far the most commonly clustered data in bioinformatics.
However, if we expand our definition of clustering just slightly we encounter two
other data types that have received a lot of attention. The first is protein data. Protein
data are often grouped according to methods such as BLAST to infer function [24].
These types of methods cluster proteins together according to similarity of sequence
(homology) and then make predictions about function and interaction.

There has also been substantial effort exerted toward grouping and organizing
scientific papers published in medicine and biology and tracked by MEDLINE and
PubMed (http://www.pubmed.gov). By analyzing these papers, practitioners hope to
make information more readily available to researchers and (potentially) combine
information across disciplines to achieve greater insight [25,26].

14.1.2 APPLICATIONS IN CHEMOINFORMATICS

Drug discovery is one of the central motivations for the use of clustering in
chemoinformatics [4]. Recently, there has also been interest in materials design
[27]. Hence, most applications are to combinatorial chemistry data, high-
throughput screening (HTS) data [28] and quantitative structure–activity relationships
(QSARs)/quantitative structure–property relationships (QSPRs) [4,29,30].

In combinatorial chemistry, libraries of chemicals are simultaneously created.
These libraries can then be subjected to HTS. In HTS, (up to) hundreds of thou-
sands of chemicals are arranged on grids so that they may be tested simultaneously
for various properties. These datasets are similar in philosophy to gene expression
arrays; hence, it is natural to apply clustering algorithms HTS data. Unlike gene
expression data, however, the goal of HTS analysis is to select a heterogeneous sub-
set of chemicals that still represent the entire library [4]. This subset is then used for
further study or calculation.

Applications in chemoinformatics tend to favor two clustering algorithms. The
favorite method is the Jarvis–Patrick algorithm. One of the first applications of
the Jarvis–Patrick algorithm to a large chemical dataset (containing ∼240,000
compounds) was performed using two-dimensional fragment descriptors [31]. Jarvis–
Patrick variants are also commonly used to cluster HTS data [32–35] and improve
QSAR analysis by selecting clusters containing representative chemicals [36].
k-means have also been used in combination with QSAR [37].

The next most commonly used method in chemoinformatics is agglomerative hier-
archical clustering using the Ward criterion for merging clusters. Like Jarvis–Patrick
clustering, Ward hierarchical clustering has also been used to provide better sampling
of a compound dataset [38,39] as well as to improve QSAR performance [40].

14.1.3 COMPARISONS

In comparing the usage of clustering in bioinformatics and chemoinformatics, we
can conclude that bioinformatics uses a much wider variety of algorithms, but that

388 Handbook of Chemoinformatics Algorithms

chemoinformatics uses a much broader set of data types. Bioinformatics applications
use a huge variety of algorithms but are generally restricted to microarray (numerical)
and sequence (string) data. Chemoinformatics applications generally use two to three
clustering algorithms (Jarvis–Patrick, Ward clustering, and k-means) but use very
large datasets and a huge number of chemical descriptors (see Chapters 2–4) as their
input.

Clustering in both bioinformatics and chemoinformatics is fairly mature. Both
fields have standard approaches that work well for their data types and applications.
Cross-fertilization, however, is certain to benefit both areas of study. Bioinformat-
ics, for example, has spurred the development of many new alternative clustering
techniques, some of which work on large datasets. After adaptation to data types
from chemoinformatics, it seems likely that many of these algorithms will be useful.
Conversely, the diversity of data types in chemoinformatics and the general interest
of drug design in bioinformatics have spurred the development of new techniques,
including graph kernels in support vector machines (SVMs) (see Section 14.2.2) and
the inference of protein–chemical interaction networks (Section 14.2.3).

14.2 APPLICATIONS OF CLASSIFICATION AND REGRESSION

In this section, we consider applications of methods in classification and regression to
problems in bioinformatics and chemoinformatics. In the previous section (Equation
14.1), we saw that the choice of clustering algorithm varied widely between the two
fields. This is due to historical reasons, as well as dataset size and type differences
between biology and chemistry. In contrast, the choice of algorithm in classifica-
tion and regression is fairly uniform between bioinformatics and chemoinformatics.
Instead, most of the difference lies in the choice of data description. In bioinformatics,
descriptors are often based on sequence (largely due to the vast amount of sequence
data available), while in chemoinformatics, descriptors are typically tied more directly
to structure.

Classification and regression are both methods for correlating elements in a dataset
with properties of those elements. In classification, elements are correlated with dis-
crete properties, as in the case of the classification of a molecule according to its
activity (e.g., active or inactive). In regression, elements are correlated with continuous
properties, as in the case of relating molecular structure to boiling point or log P.

There are many available algorithms for use in both classification and regression. In
classification, popular algorithms include k-nearest neighbors [41], neural networks
[42], SVMs [43], and numerous statistical methods [44,45]. In regression, popular
algorithms include linear and multiple regression, principal component regression,
and partial least squares [46,47]. In addition, there are several algorithms that can be
used for both classification and regression, including neural networks and SVMs.

Since techniques in classification and regression are applied fairly uniformly in
both bioinformatics and chemoinformatics, we focus our discussion on SVMs. SVMs
can be used for classification [43,48], regression [49], and even clustering [50]. We
highlight data-type differences between bioinformatics and chemoinformatics and
how these differences can be accommodated using SVMs.

Machine Learning–Based Bioinformatics Algorithms 389

FIGURE 14.3 A linear SVM. The SVM decision boundary is defined by the support vectors,
which are the examples falling on the dotted lines. The distance between the dotted lines is
known as the margin and is maximized to obtain the SVM decision boundary, shown as the
solid line separating the circles (class 1) from the x marks (class −1).

At its core, an SVM is a linear binary classifier. Suppose that we have a dataset
{xi} ⊆ Rn and that each point xi in our dataset has a corresponding class label
yi ∈ {±1}. Our goal is to separate the points in our dataset according to their class
label. Since there are two classes, this is known as binary classification. An SVM
attempts this classification by using a linear hyperplane wT x+ b, w �= 0, as shown
in Figure 14.3.

Assuming that our dataset is in fact linearly separable, there will in general be
many possible hyperplanes that can achieve the separation. An SVM uses an optimal
separating hyperplane known as the maximal margin hyperplane. The hyperplane
margin is twice the distance from the separating hyperplane to the nearest point in
one (or the other) of the two classes. In Figure 14.3, this is the distance between the
two dotted lines. The SVM hyperplane is found by solving the quadratic programming
problem [51,52]:

maxα

1

2

∑

i,j

yiyjαiαjxT
i xj −

∑

i

αi

s.t.
∑

i

yiαi = 0, 0 ≤ αi ≤ C,

(14.2)

where w =∑
i yiαixi is the normal to the SVM hyperplane. Using w we form the

SVM decision function f (x) = sign(wT x + b), where b is obtained implicitly [51,52].
We note that αi �= 0 only when xi is a support vector.

The SVM problem given in Equation 14.2 only applies to datasets {xi} ⊆ Rn. Often,
however, we want to use an SVM on a dataset that is not a subset of Rn. This occurs
in the case of biology and chemistry problems when we are likely to use amino acid
sequences or chemical structures to describe our data. Fortunately, there is a ready
solution to this problem, formalized in the use of kernel functions.

390 Handbook of Chemoinformatics Algorithms

Suppose that our data {xi} ⊆ S, where S might be the set of all finite length protein
sequences or all finite diameter chemical graphs. We can then define a kernel function
as a map k : S × S→ R such that

k(xi, xj) = Φ(xi)
T Φ(xj), (14.3)

where Φ : S→ F is a map from our original data space S into a space F with a defined
dot product such as RN .

Once we have defined a kernel function, we simply replace the dot product xT
i xj in

Equation 14.2 with the kernel k(xi, xj) to obtain the full SVM quadratic programming
problem. A similar procedure can be used for any method that is written in terms of
dot products, thus giving rise to the moniker kernel methods.

SVMs have a number of advantages over competing methods, including a unique
solution of a fairly straightforward quadratic programming problem (compared to a
nonunique solution for a neural network), ability to employ nonlinearity by choice
of kernel, and widespread availability of software [53,54]. On the other hand, SVMs
can be memory intensive O(n2) and the flexibility in choice of kernel can make
SVMs difficult for beginners. Neither of these disadvantages, however, has slowed
the widespread use of SVMs in both bioinformatics and chemoinformatics.

14.2.1 APPLICATIONS IN BIOINFORMATICS

The central applications of classification and regression methods in bioinformatics
are to protein function prediction [55] and protein interaction prediction [56]. These
two topics are not unrelated and are often approached using the same basic methods.
In particular, both protein function and protein interaction prediction have benefited
from the application of classification and regression methods.

The success of function and interaction prediction often depends more on the
formulation of the problem than on the algorithm used for the classification or regres-
sion. For proteins, this means the use of either sequence or structure and the particular
assumptions used when the data are put into the algorithm. For sequence data, pre-
dictions are often made by comparing proteins using sequence similarity (homology)
across organisms [24,57], using subsequence motifs or identifying motifs and using
them to predict either function or interaction [58,59] and by using amino acid residue-
specific features such as van der Waals volume, polarity, hydrophobicity, charge, and
so on to represent a sequence as a vector [60,61]. For structural data, predictions can
be made by comparing proteins based on geometric considerations such as amino
acid proximity and similarity of 3D ball protein models [62].

In terms of SVMs, data types used to predict function include gene expression
data [63], motif-based subsequences [58], and feature vectors based on sequence [61]
and structure [62]. Data used to predict interactions include generalized subsequences
[64], feature vectors [60], and combinations of sequence and structure [65,66].

The success of classification and regression methods has been widespread in bioin-
formatics, due largely to the availability of vast amounts of sequence data. Although
many different algorithms have been applied in the field, SVMs have been a favorite
for a variety of data types. One reason that SVMs are popular is that SVMs encourage

Machine Learning–Based Bioinformatics Algorithms 391

a very useful separation between data and method. A computer scientist interested
in developing algorithms or methods can take as a starting point a kernel of the
type described in Equation 14.3, while a biologist or chemist interested in a particular
problem needs only provide a pairwise kernel similarity in order to apply the methods
developed by the computer scientist.

To illustrate the use of an SVM kernel in bioinformatics, we briefly describe
the subsequence kernel used for predicting protein interaction used by Martin et al.
[64]. Suppose that we have two protein sequences that we would like to compare.
In mathematical terms, a protein sequence is a finite length string over an alphabet
of 20 letters corresponding to the 20 possible amino acid residues. To calculate the
similarity between two proteins we must calculate the similarity between two strings.
Hence we use a string kernel.

To define a string kernel, we first define a map Φl
s: {finite length amino acid

strings}→ ZNl , where Nl is the number of possible amino acid sequences of length
l. If we denote by zj the bases of ZNl where each basis vector zj corresponds to an
amino acid sequence of length l, then Φl

s is given by

Φl
sPi =

∑

j
σjzj, (14.4)

where Pi is a finite length amino acid string and σj is the number of times that the
amino acid string corresponding to zj occurs in the string Pi. We then define the string
kernel kl

s (Pi, Pj) between two proteins Pi and Pj by

kl
s(Pi, Pj) = Φl

s(Pi)
TΦl

s(Pj). (14.5)

As an example, suppose that we have amino acid strings LVMLVM and LVMTTM.
We want to calculate Φ3

s (LVMLVM), Φ3
s (LVMMTT), and k3

s (LVMLVM, LVMTTM).
There are four substrings of length 3 (also known as trimers) in LVMLVM, namely
LVM, VML, MLV, and LVM. There are also four substrings of length 3 in LVMTTM,
namely LVM, VMT, MTT, and TTM. Suppose that z1 corresponds to LVM, z2 corre-
sponds to VML, z3 corresponds to MLV, z4 corresponds to VMT, z5 corresponds to
MTT, and z6 corresponds to TTM. We see that Φ3

s (LVMLVM) = (2, 1, 1, 0, 0, 0)T and
Φ3

s (LVMMTT) = (1, 0, 0, 1, 1, 1)T , so that k3
s (LVMLVM, LVMMTT) = 2. A visual

demonstration arriving at Φ3
s (LVMLVM) is shown in Figure 14.4.

14.2.2 APPLICATIONS IN CHEMOINFORMATICS

The main application of classification and regression in chemoinformatics is to the
development of QSARs and QSPRs. We refer to both QSARs and QSPRs using the
term “QSAR” only. The use of QSAR is widespread in chemoinformatics, occur-
ring historically in the study of drugs [29] and theoretical organic chemistry (see
Refs. [67,68]). Pioneering work was conducted by Hansch and Fujita [69] and Free
and Wilson [70] and substantial continuing research is ongoing in the area of drug dis-
covery [29,30]. The use of SVMs in the field of QSAR has occurred more recently and
includes applications to various chemical properties [71–73], drug activity [74,75],
and mutagenicity prediction [76,77].

392 Handbook of Chemoinformatics Algorithms

1
0
0
0
0

. .
.

0
1
0
0
0

. .
.

0
0
1
0
0

. .
.

0
0
0
1
0

. .
.

+ 1 + 1 + 0 + . . .

LVM VML MLV VMT

ΦS
3 (LVMLVM) = ∑j σj zj = 2

FIGURE 14.4 Representing an amino acid string as a vector. Here we show how a finite
length amino acid string can be represented as a vector. The string VLMVLM is mapped to a
vector Φl

s (VLMVLM) by counting the number of occurrences of different (trimer) substrings
of length 3.

There are as many different algorithms for QSAR as there are applications of
the QSARs themselves. As in bioinformatics, the success of a given QSAR often
depends more on the formulation of the problem than on the algorithm used for the
classification or regression. In the case of QSAR, this boils down to the choice of the
molecular descriptor.

Molecular descriptors used in QSAR are numerous and include examples discussed
earlier in this book such as topological indices, fragmental descriptors and pharma-
cophores (Chapters 2 through 4). Any descriptor may be used in an SVM-based
QSAR, although SVMs are particularly well suited for complex high-dimensional
descriptors such as fragments of labeled graphs that may not be handled as easily
using other methods (e.g., multiple linear regression).

To illustrate the use of labeled graph fragments in SVM-based QSARs, we describe
a simplified version of the method developed by Mahe et al. [77]. The method we
describe here is based on work done to predict protein–chemical interactions [78,79].
Suppose we have two molecular structures that we would like to compare, both given
as labeled graphs, where vertices correspond to atoms and edges correspond to bonds.
Mathematically, we represent such a molecular graph using a vector counting the
number of subgraphs in our original graph. This representation is known as molecular
signature [80–82].

Formally, we define a map Φh
g: {molecular graphs}→ ZNh , where Nh is the number

of possible atomic signatures of height h. As in Section 14.2.1, we denote by zj the
bases of ZNh where each basis vector zj corresponds to a height h subgraph of a
molecular graph. If Mi denotes a molecular graph, then Φh

g is given by

Φh
g(Mi) =

∑

j

σjzj, (14.6)

where σj is the number of times that the molecular subgraph corresponding to zj

occurs in Mi. Now we define a graph kernel just like we defined the string kernel.
Namely, the graph kernel kh

g (Mi, Mj) between two molecules Mi and Mj is given by

kh
g(Mi, Mj) = Φh

g(Mi)
T Φh

g(Mj). (14.7)

Machine Learning–Based Bioinformatics Algorithms 393

z1

z7

z2

z3

z8

z4

z5

z6

z1

z2

z3

z4

z5

z6

1 C(OHCC)

2 C(OHHC)

5 H(C)

1 H(O)

4 O(N)

1 O(HC)

2 O(NC)

2 N(O O O)

1 C(OHCC)

2 C(OHHC)

5 H(C)

3 O(NC)

3 N(O O O)

6 O(N)

Nitroglycerine 1,2-Dinitroglycerine

NO

NO

O

O

OO

O

HO

O

O

N

O

O

O

O

O

N

N

O

(3,6,3,5,2,1,0,0)T (2,4,2,5,2,1,1,1)T

FIGURE 14.5 Height-1 signature representations of nitroglycerine (left) and 1,2-
dinitroglycerine (right). Proceeding from the top to the bottom we show (top row) the molecular
graph representations of the two molecules, (middle row) the number of occurrences of height-
1 atomic signatures and (bottom row) the signature vector representation of the two molecules.
The atomic signature occurrences give the number of times a given chemical fragment occurs in
the molecules. In the case of nitroglycerine, we have three oxygen atoms bonded to a nitrogen
atom and a carbon atom [shown as 3 O(NC)], six oxygen atoms double bonded to a nitrogen
atom [shown as 6 O(=N)], three nitrogen atoms bonded to an oxygen atom and double bonded
to two other oxygen atoms [shown as 3 N(O=O=O)], and so on.

To provide an example, consider the two molecules shown in Figure 14.5. Both
molecules, nitroglycerine and 1,2-dinitroglycerine, are represented as undirected
edge- and vertex-labeled molecular graphs (carbons and hydrogens are implicit). To
obtain vectors from these graphs, we first visit each node in each graph and record the
subgraph formed by that node and its neighbors. This is known as a height 1 atomic
signature. If we wanted to compute height 2 signature, we would have to visit the
neighbors of the neighbors.

The atomic signatures are recorded as strings A1(b2A2b3A3 . . .), where A1 is the
vertex type of the root node (the node we are visiting), A2 is a neighbor of A1 with bond
type b2, A3 is a neighbor of A1 with bond type b3, and so on. If b2, b3, . . . are single
bonds, then they are omitted. This representation is canonical if we alphabetize the
list (b2A2, b3A3, . . .) of bonds and atoms [81]. In Figure 14.5, we have written oxygen
bonded to nitrogen and carbon as O(NC) and oxygen double bonded to nitrogen as
O(=N).

After visiting each node of each molecular graph, we obtain a list of atomic signa-
ture string representations. This list is identified with a set z1, z2, . . . of basis vectors.

394 Handbook of Chemoinformatics Algorithms

In Figure 14.5, we have identified O(NC) with z1 and O(=N) with z2. Using these
basis vectors, we record the number of times a given atomic signature subgraph occurs
in a molecular graph to obtain our molecular signature vector representation. Since
O(NC) occurs three times in nitroglycerine and O(=N) occurs six times, the first two
entries of our signature vector for nitroglycerine are 3 and 6. The full vector is (3, 6,
3, 5, 2, 1, 0, 0, 0)T . This analysis is also performed on 1,2-dinitroglycerine to get the
signature vector (2, 4, 2, 5, 2, 1, 1, 1)T .

Once we have molecular signature vectors for the various molecular graphs
in our dataset, it is a simple matter to compute kernel similarities by taking dot
products of signature vectors. Using the signature vectors for nitroglycerine and 1,2-
dinitroglycerine, we compute a similarity of (3, 6, 3, 5, 2, 1, 0, 0)T · (2, 4, 2, 5, 2, 1,
1, 1)T = 66.

14.2.3 COMPARISONS

The use of classification and regression are fairly mature in both bioinformatics
and chemoinformatics. The two fields, however, are again benefiting from cross-
fertilization, this time in terms of problem formulation and molecular descrip-
tion. A motivating example is drug design, where we are interested in predicting
protein–chemical interaction [78,83].

One of the standard chemoinformatic approaches to drug design is the use of
virtual screening, where a library of chemicals is examined (e.g., using QSAR)
for a certain activity. In this approach, the corresponding protein is usually fixed
and all attention is focused on the drug. In bioinformatics, it is more com-
mon to consider a network of interactions, as in the case of a protein–protein
interaction network [56]. If we combine both types of approaches, we arrive
at the prospect of predicting a protein–chemical interaction network [78,83].
[Although the general area of large-scale (informatics-based) protein–chemical inter-
action prediction is relatively unexplored, both approaches mentioned here use
SVMs.]

REFERENCES

1. Jain, A., Murthy, M. N., and Flynn, P., Cluster analysis: A review. ACM Comput. Surv.
1999, 31(3), 264–323.

2. Xu, R., and Wunsch, D., Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005,
16(3), 645–678.

3. de Hoon, M. J., Imoto, S., Nolan, J., and Miyano, S., Open source clustering software.
Bioinformatics 2004, 20(9), 1453–1454.

4. Downs, G. M. and Barnard, J. M., Clustering methods and their uses in computational
chemistry. In: Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd
(eds), Wiley, Hoboken, NJ, 2002; Vol. 18.

5. Krause, A., Stoye, J., and Vingron, M., Large scale hierarchical clustering of protein
sequences. BMC Bioinform. 2005, 6, 15.

6. Loewenstein, Y., Portugaly, E., Fromer, M., and Linial, M., Efficient algorithms for
accurate hierarchical clustering of huge datasets: Tackling the entire protein space.
Bioinformatics 2008, 24(13), i41– i49.

Machine Learning–Based Bioinformatics Algorithms 395

7. Jarvis, R. A. and Patrick, E. A., Clustering using a similarity measure based on shared near
neighbors. IEEE Trans. Comput. 1973, C-22(11), 1025–1034.

8. Rubin, V. and Willett, P., A comparison of some hierarchical agglomerative clustering
algorithms for structure–property correlation. Anal. Chim. Acta 1983, 151, 161–166.

9. Willett, P., A comparison of some hierarchical agglomerative clustering algorithms for
structure–property correlation. Anal. Chim. Acta 1982, 136, 29–37.

10. Willett, P., Evaluation of relocation clustering algorithms for the automatic classification
of chemical structures. J. Chem. Inf. Comput. Sci. 1984, 24(1), 29–33.

11. Willett, P., Barnard, J. M., and Downs, G. M., Chemical similarity searching. J. Chem.
Inf. Comput. Sci. 1998, 38(6), 983–996.

12. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O., Quantitative monitoring of gene
expression patterns with a complementary DNA microarray. Science 1995, 270(5235),
467–470.

13. Shalon, D., Smith, S. J., and Brown, P. O., A DNA microarray system for analyzing
complex DNA samples using two-color fluorescent probe hybridization. Genome Res.
1996, 6(7), 639–645.

14. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D., Cluster analysis and
display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 1998, 95(25),
14863–14868.

15. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown,
P. O., Botstein, D., and Futcher, B., Comprehensive identification of cell cycle-regulated
genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell
1998, 9(12), 3273–3297.

16. Wilson, C. S., Davidson, G. S., Martin, S. B., Andries, E., Potter, J., Harvey, R., Ar, K.,
et al., Gene expression profiling of adult acute myeloid leukemia identifies novel biologic
clusters for risk classification and outcome prediction. Blood 2006, 108(2), 685–696.

17. Jiang, D., Tang, C., and Zhang, A., Cluster analysis for gene expression data: A survey.
IEEE Trans. Knowl. Data Eng. 2004, 16(11), 1370–1386.

18. Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., and Church, G. M., Systematic
determination of genetic network architecture. Nat. Genet. 1999, 22(3), 281–285.

19. Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.
S., and Golub, T. R., Interpreting patterns of gene expression with self-organizing maps:
Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA
1999, 96(6), 2907–2912.

20. Shamir, R. and Sharan, R., Click: A clustering algorithm for gene expression analysis.
In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular
Biology (ISMB), AAAI Press, San Diego, CA, 2000; Vol. 8, pp. 307–316.

21. Ben-Dor, A., Shamir, R., and Yakhini, Z., Clustering gene expression patterns. J. Comput.
Biol. 1999, 6(3–4), 281–297.

22. Cheng, Y. and Church, G. M., Biclustering of expression data. In: Proceedings of the 8th
International Conference on Intelligent Systems for Molecular Biology (ISMB), AAAI
Press, San Diego, CA, 2000; Vol. 8, pp. 93–103.

23. Getz, G., Levine, E., and Domany, E., Coupled two-way clustering analysis of gene
microarray data. Proc. Natl. Acad. Sci. USA 2000, 97(22), 12079–12084.

24. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J., Basic local alignment
search tool. J. Mol. Biol. 1990, 215(3), 403–410.

25. Cohen, A. M. and Hersh, W. R., A survey of current work in biomedical text mining. Brief
Bioinform. 2005, 6(1), 57–71.

26. Janssens, F., Glanzel, W., and DeMoor, B., Dynamic hybrid clustering of bioinformatics by
incorporating text mining and citation analysis. In: Proceedings of the 13th ACM SIGKDD

396 Handbook of Chemoinformatics Algorithms

International Conference on Knowledge Discovery and Data Mining, San Jose, CA, 2007;
pp. 360–369.

27. Rodgers, J. R. and Cebon, D., Materials informatics. Mater. Res. Soc. Bull. 2006, 31.
28. Mayr, L. M. and Fuerst, P., The future of high-throughput screening. J. Biomol. Screen

2008, 13(6), 443–448.
29. Kubinyi, H., From narcosis to hyperspace: The history of QSAR. QSAR 2002, 21(4),

348–356.
30. Selassie, C. D., History of Quantitative Structure–Activity Relationships (6th edition),

Wiley, New York, NY, 2003.
31. Willett, P., Winterman, V., and Bawden, D., Implementation of nonhierarchic cluster anal-

ysis methods in chemical information systems: Selection of compounds for biological
testing and clustering of substructure search output. J. Chem. Inf. Comput. Sci. 1986, 26,
109–118.

32. Doman, T. N., Cibulskis, J. M., Cibulskis, M. J., McCray, P. D., and Spangler, D. P.,
Algorithm5: A technique for fuzzy similarity clustering of chemical inventories. J. Chem.
Inf. Comput. Sci. 1996, 3(6), 1195–1204.

33. McGregor, M. J. and Pallai, P. V., Clustering of large databases of compounds: Using the
MDL “keys” as structural descriptors. J. Chem. Inf. Comput. Sci. 1997, 37(3), 443–448.

34. Menard, P. R., Lewis, R. A., and Mason, J. S., Rational screening set design and compound
selection: Cascaded clustering. J. Chem. Inf. Comput. Sci. 1998, 38(3), 497–505.

35. Shemetulskis, N. E., Dunbar, J. B., Jr., Dunbar, B. W., Moreland, D. W., and Humblet, C.,
Enhancing the diversity of a corporate database using chemical database clustering and
analysis. J. Comput.-Aided Mol. Des. 1995, 9(5), 407–416.

36. Nouwen, J. and Hansen, B., An investigation of clustering as a tool in quantitative
structure–activity relationships (QSARs). SAR QSAR Environ. Res. 1995, 4(1), 1–10.

37. Lawson, R. G. and Jurs, P. C., Cluster analysis of acrylates to guide sampling for toxicity
testing. J. Chem. Inf. Comput. Sci. 1990, 30(2), 137–144.

38. van Geerestein,V. J., Hamersma, H., and van Helden, S. P., Exploiting molecular diversity:
Pharmacophore searching and compound clustering. In: Computer-Assisted Lead Finding
and Optimization, D. H. van de Waterbeemd, P. B. Testa, and P. D. G. Folkers (eds),
Wiley-VCH Basel, Switzerland, 2007; pp. 157–178.

39. Wild, D. J. and Blankley, C. J., VisualiSAR: A web-based application for clustering,
structure browsing, and structure–activity relationship study. J. Mol. Graph. Model 1999,
17(2), 85–89, 120–125.

40. Engels, M. F., Thielemans, T.,Verbinnen, D., Tollenaere, J. P., andVerbeeck, R., CerBeruS:
A system supporting the sequential screening process. J. Chem. Inf. Comput. Sci. 2000,
40(2), 241–245.

41. Dasarathy, B., Nearest Neighbor Pattern Classification Techniques. IEEE Computer
Society, Los Alamitos, CA, 1991.

42. Gurney, K., An Introduction to Neural Networks. CRC Press, London, UK, 1997.
43. Shawe-Taylor, J. and Cristianini, N., Support Vector Machines and other Kernel-Based

Learning Methods. Cambridge University Press: Cambridge, 2000.
44. Fukunaga, K., Introduction to Statistical Pattern Recognition. Academic Press, San

Francisco, CA, 1990.
45. Theodoridis, S. and Koutroumbas, K., Pattern Recognition. Academic Press, San Diego,

CA, 2003.
46. Frank, I. E. and Friedman, J. H., A statistical view of some chemometrics regression tools.

Technometrics 1993, 35(2), 109–135.
47. Montgomery, D. and Peck, E., Introduction to Linear Regression Analysis. Wiley, New

York, 2001.

Machine Learning–Based Bioinformatics Algorithms 397

48. Vapnik, V., Statistical Learning Theory. Wiley: New York, 1998.
49. Smola, A. and Scholkopf, B., A Tutorial on Support Vector Regression; NeuroCOLT NC-

TR-98-030, University of London, UK, 1998.
50. Ben-Hur, A., Horn, D., Siegelmann, H. T., and Vapnik, V., Support vector clustering. J.

Mach. Learn. Res. 2001, 2, 125–137.
51. Bennett, K. and Campbell, C., Support vector machines: Hype or hallelujah? SIGKDD

Explor. 2000, 2(2), 1–14.
52. Burges, C., A tutorial on support vector machines for pattern recognition. Data Min.

Knowl. Discov. 1998, 2, 121–167.
53. Chang, C.-C. and Lin, C.-J., LibSVM: A library for support vector machines,

http://www.csie.ntu.edu.tw/∼cjlin/libsvm, 2001.
54. Joachims, T., Making large-scale SVM learning practical. In: Advances in Kernel

Methods—Support Vector Learning, B. Scholkopf, C. Burges, and A. Smola, (eds). MIT
Press, Cambridge, MA, 1999.

55. Pandey, G., Kumar,V., and Steinbach, M., Computational Approaches for Protein Function
Prediction. Wiley Book Series on Bioinformatics, Hoboken, NJ, 2008.

56. Shoemaker, B. A. and Panchenko, A. R., Deciphering protein–protein interactions. Part II.
Computational methods to predict protein and domain interaction partners. PLoS Comput.
Biol. 2007, 3(4), e43.

57. Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D., andYeates, T. O., Assign-
ing protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc.
Natl. Acad. Sci. USA 1999, 96(8), 4285–4288.

58. Ben-Hur, A. and Brutlag, D., Protein Sequence Motifs: Highly Predictive Features of
Protein Function. Springer: Berlin, 2006.

59. Sprinzak, E. and Margalit, H., Correlated sequence-signatures as markers of protein–
protein interaction. J. Mol. Biol. 2001, 311(4), 681–692.

60. Bock, J. R. and Gough, D. A., Predicting protein–protein interactions from primary
structure. Bioinformatics 2001, 17(5), 455–460.

61. Cai, C. Z., Han, L. Y., Ji, Z. L., Chen, X., and Chen, Y. Z., SVM-Prot: Web-based sup-
port vector machine software for functional classification of a protein from its primary
sequence. Nucleic Acids Res. 2003, 31(13), 3692–3697.

62. Wang, C. and Scott, S. D. New kernels for protein structural motif discovery and function
classification, In: Proceedings of the 22nd International Conference on Machine Learning
(ICML), AAAI press, Bonn, Germany, 2005; pp. 940–947.

63. Brown, M. P., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W., Furey, T. S., Ares,
M., Jr., and Haussler, D., Knowledge-based analysis of microarray gene expression data
by using support vector machines. Proc. Natl. Acad. Sci. USA 2000, 97(1), 262–267.

64. Martin, S., Roe, D., and Faulon, J. L., Predicting protein–protein interactions using
signature products. Bioinformatics 2005, 21(2), 218–226.

65. Bradford, J. R. and Westhead, D. R., Improved prediction of protein–protein binding sites
using a support vector machines approach. Bioinformatics 2005, 21(8), 1487–1494.

66. Koike, A. and Takagi, T., Prediction of protein–protein interaction sites using support
vector machines. Protein Eng. Des. Sel. 2004, 17(2), 165–173.

67. Hammett, L. P., The effect of structure upon the reactions of organic compounds. J. Am.
Chem. Soc. 1937, 59(1), 96–103.

68. Taft, R. W., Polar and steric substituent constants for aliphatic and o-benzoate groups from
rates of esterification and hydrolysis of esters. J. Am. Chem. Soc. 1952, 74, 3120–3128.

69. Hansch, C. and Fujita, T., A method for the correlation of biological activity and chemical
structure. J. Am. Chem. Soc. 194, 86, 1616–1626.

398 Handbook of Chemoinformatics Algorithms

70. Free, S. M. and Wilson, J. W., A mathematical contribution to structure–activity studies.
J. Med. Chem. 1964, 7, 395–399.

71. Liu, H. X., Xue, C. X., Zhang, R. S., Yao, X. J., Liu, M. C., Hu, Z. D., and Fan, B. T.,
Quantitative prediction of logk of peptides in high-performance liquid chromatography
based on molecular descriptors by using the heuristic method and support vector machine.
J. Chem. Inf. Comput. Sci. 2004, 44(6), 1979–1986.

72. Tugcu, N., Song, M., Breneman, C. M., Sukumar, N., Bennett, K. P., and Cramer, S. M.,
Prediction of the effect of mobile-phase salt type on protein retention and selectivity in
anion exchange systems. Anal. Chem. 2003, 75(14), 3563–3572.

73. Xue, C. X., Zhang, R. S., Liu, H. X., Liu, M. C., Hu, Z. D., and Fan, B. T., Support
vector machines-based quantitative structure–property relationship for the prediction of
heat capacity. J. Chem. Inf. Comput. Sci. 2004, 44(4), 1267–1274.

74. Burbidge, R., Trotter, M., Buxton, B., and Holden, S., Drug design by machine learning:
Support vector machines for pharmaceutical data analysis. Comput. Chem. 2001, 26(1),
5–14.

75. Warmuth, M. K., Liao, J., Ratsch, G., Mathieson, M., Putta, S., and Lemmen, C., Active
learning with support vector machines in the drug discovery process. J. Chem. Inf. Comput.
Sci. 2003, 43(2), 667–673.

76. Kashima, H., Tsuda, K., and Inokuchi, A., Marginalized kernels between labeled graphs,
In: 20th International Conference on Machine Learning (ICML), T. Fawcett and N. Mishra
(eds), AAAI Press, Washington, DC, 2003; pp. 321–328.

77. Mahe, P., Ueda, N., Akutsu, T., Perret, J. L., and Vert, J. P., Graph kernels for molecular
structure–activity relationship analysis with support vector machines. J. Chem. Inf. Model.
2005, 45(4), 939–951.

78. Faulon, J. L., Misra, M., Martin, S., Sale, K., and Sapra, R., Genome scale enzyme–
metabolite and drug–target interaction predictions using the signature molecular descrip-
tor. Bioinformatics 2008, 24(2), 225–233.

79. Martin, S., Brown, W. M., and Faulon, J. L., Using product kernels to predict protein
interactions. Adv. Biochem. Eng. Biotechnol. 2007, 110, 215–245.

80. Faulon, J. L., Churchwell, C. J., and Visco, D. P., Jr., The signature molecular descriptor.
2. Enumerating molecules from their extended valence sequences. J. Chem. Inf. Comput.
Sci. 2003, 43(3), 721–734.

81. Faulon, J. L., Collins, M. J., and Carr, R. D., The signature molecular descriptor. 4. Can-
onizing molecules using extended valence sequences. J. Chem. Inf. Comput. Sci. 2004,
44(2), 427–436.

82. Faulon, J. L., Visco, D. P., Jr., and Pophale, R. S., The signature molecular descriptor. 1.
Using extended valence sequences in QSAR and QSPR studies. J. Chem. Inf. Comput.
Sci. 2003, 43(3), 707–720.

83. Nagamine, N. and Sakakibara, Y., Statistical prediction of protein chemical interactions
based on chemical structure and mass spectrometry data. Bioinformatics 2007, 23(15),
2004–2012.

15 Using Systems Biology
Techniques to
Determine Metabolic
Fluxes and Metabolite
Pool Sizes

Fangping Mu, Amy L. Bauer, James R. Faeder,
and William S. Hlavacek

CONTENTS

15.1 Introduction .399
15.2 Isotopomer Modeling Methods .401

15.2.1 Isotopomer Mapping Matrices. .401
15.2.2 Bionetgen Language (BNGL)-Encoded Atom Fate Maps402

15.3 A Simple Example .405
15.3.1 Carbon Fate Maps and Isotopomer Balance Equations407
15.3.2 IMM-Based Approach .409
15.3.3 BNGL/BioNetGen-Based Approach .411

15.4 Detailed Example of the BNGL/BioNetGen-Based Approach for the
Calvin Cycle .414

15.5 Discussion and Conclusion .419
Acknowledgments. .420
References .420

15.1 INTRODUCTION

The metabolic network of an organism consists of spontaneous and enzyme-catalyzed
reactions that transform small molecules, or metabolites, into others to produce energy
and building blocks for essential macromolecules. Large-scale metabolic networks
have been reconstructed from genome sequence and literature data for a number of
organisms, including Escherichia coli, yeast, and humans [1–3]. These networks shed
light on the metabolic capabilities of these organisms and their differences. Now with
the ability to identify metabolic networks from sequence data and the vast accumu-
lated knowledge of metabolism, we are challenged to characterize how these networks

399

400 Handbook of Chemoinformatics Algorithms

function. A metabolic pathway defines the static sequence of feasible and observable
biochemical reaction steps involved in the conversion of inputs into this pathway into a
product. Metabolic fluxes are the rates at which material is processed through the steps
of a pathway. Flux distributions indicate patterns of network utilization. The complete
analysis of how a cell functions will include not only a description of its metabolic
network, but also an understanding of flux distribution in different environments.

Flux balance analysis, or FBA, is a computational technique used to quantitatively
determine a steady-state flux distribution in a biochemical reaction network. Con-
straints imposed by a network’s structure are used in FBA to define limits on the
steady-state metabolic fluxes in a network. Constraints on fluxes arise because the
rate at which a metabolite accumulates must equal the sum of fluxes that produce
the metabolite minus the sum of fluxes that consume the metabolite. At steady state,
these two sums are equal, which leads to linear balance constraints on fluxes. The
dynamics of a metabolic reaction network can be represented as a system of linear
equations for the material balances on the reactions between metabolites, that is,
N · v = 0, where N denotes the stoichiometric matrix and v represents the fluxes.
For a reaction network with n reactions and m metabolites, the stoichiometric matrix
will have n columns and m rows. The coefficients of the stoichiometric matrix define
the relationship between the metabolites and the reactions, that is, these coefficients
express to what extent each metabolite is produced or consumed in a reaction. The
expression N · v combines the stoichiometric matrix with a rate vector to produce a
system of equations that describes the rate of change of the metabolites. This system
of linear equations forms a set of mass-balance equations describing the dynamics of
the metabolite pools. The mass-balance equations can be further constrained using
measurements of the rates of substrate uptake, rates of metabolite secretion into the
growth medium, and rates of biomass formation to derive a map of net metabolic
fluxes. These extra constraints provide necessary restrictions on the fluxes; however,
these are still not enough to fully determine the flux distributions in a metabolic net-
work. To fully determine a steady-state flux distribution, the most common additional
assumptions are to assume that the system either maximizes biomass production or
minimizes nutrient utilization.

FBA can also be used to study the effects of gene deletions and other types of pertur-
bations on the system. Gene deletion studies can be performed by setting the reaction
fluxes corresponding to the genes, and therefore, of their corresponding enzymes, to
zero. It has also been argued that the assumption of maximization of biomass produc-
tion for a wild-type bacterium may be justifiable, although the assumption may not
be valid for genetically engineered knockouts or other bacterial strains that were not
exposed to long-term evolutionary pressures. Minimization of metabolic adjustment
(MOMA), whereby knockout metabolic fluxes undergo a minimal redistribution with
respect to the flux configuration of the wild type, has been proposed to predict fluxes
of knockout strains [4].

Metabolic flux analysis (MFA) is an experimental technique to determine the flux
distribution in a biochemical reaction network. The stoichiometric equations used in
MFA are the same as those employed in FBA, but instead of using optimization to
constrain fluxes, MFA uses experimental results. Information about metabolic fluxes
can be obtained from isotopic labeling experiments, where a cell population is fed

Using Systems Biology Techniques to Determine Metabolic Fluxes 401

with labeled nutrients, such as glucose containing 13C atoms [5,6]. These labeled
atoms are then transferred to internal metabolites through biochemical reactions.
The relative abundances of different labeling patterns in internal metabolites depend
on the atom mapping of the reactions from reactants to products and on the fluxes
of the reactions producing them. Measurements of these labeling patterns provide
additional constraints on metabolic fluxes. Estimating metabolic fluxes from these
labeling patterns is the goal of 13C MFA. MFA based on stable isotope labeling
experiments is a powerful quantitative method for metabolite flux determination.
This method requires multiple techniques (1) to determine the fate of carbon atoms
in metabolic reactions, (2) to generate isotopomer, or isotope isomer, (mass-)balance
equations, and (3) to perform complex parameter fitting for flux determination. In
this chapter, we provide a description of each of these steps and give special attention
to the role of chemoinformatics in 13C flux analysis.

15.2 ISOTOPOMER MODELING METHODS

15.2.1 ISOTOPOMER MAPPING MATRICES

Several different methods have been proposed to derive isotopomer mass-balance
equations, which balance the isotopomers in each metabolite pool. To derive the
isotopomer mass-balance equations, we need to know the fate of each atom, more
specifically each carbon in this case, as it moves from reactants to products for each
metabolic reaction. This information is captured in an atom fate map. For a metabolite
with n carbons, there are 2n possible isotopomers because each carbon can be either
labeled or unlabeled. Atom mapping matrix methods [7,8] allow these 2n isotopomer
mass-balance equations to be written compactly as a single matrix equation. For each
metabolite in a given reaction network, the isotope distribution can be represented by
an isotopomer distribution vector (IDV), which has 2n state variables. The entries of
the IDV specify the mole fraction of the metabolite for every possible 13C labeling
pattern. With the IDVs determined, an isotopomer mapping matrix (IMM) for each
reactant–product pair of a metabolic reaction can be formulated. For a given metabolic
reaction, the reactions between reactants with n carbons and products with m carbons
can be summarized in a 2m × 2n IMM. Columns of the IMM represent the distinct
labeling patterns of each reactant molecule and rows correspond to the product iso-
topomer labeling patterns. Therefore, the IMM defines all possible combinations of
product isotopomers that can arise from reactant isotopomers. For instance, given a
reaction where A→ B, the isotopomer balance equations can be derived from the
following matrix equation:

VB
dIB

dt
= r · (IMMA>B ⊗ IA), (15.1)

where VB is the metabolite pool size, r specifies the reaction flux, IA and IB are the
IDVs for substrates A and B, respectively, and the operator ⊗ is the elementwise
multiplication of two equally long column vectors. For reactions involving multiple
reactants and products, such as A + B→ C + D, the picture is more complicated.

402 Handbook of Chemoinformatics Algorithms

The equations describing the isotopomer dynamics for metabolite C in this reaction,
for example, are given by

VC
dIC

dt
= r · (IMMA>C · IA)⊗ (IMMB>C · IB). (15.2)

An example of flux determination using the IMM method is presented in detail in
a subsequent section. For more details about the IMM approach, the interested reader
should refer to Refs. [7–11].

15.2.2 BIONETGEN LANGUAGE (BNGL)-ENCODED ATOM FATE MAPS

Isotopomer mass-balance equations are essential for estimating reaction fluxes from
measurements of the relative abundances of isotopomers [5,6]. To specify these
equations, the fates of individual atoms from substrates to products must be traced
[7–9,12,13]. In tracer-based flux profiling studies, atom fate maps are usually assem-
bled ad hoc and are highly problem specific. Moreover, the data are stored in different
formats across studies. Atom fate maps are not included in the most widely used
metabolic databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [14], MetaCyc [15], BRENDA [16], or the biochemical pathways wall chart
of Roche Applied Science [17]. Recently, two large-scale collections of fate maps
have been assembled, one by Arita [18] and another by Mu et al. [19]. Arita sub-
sequently used these maps to investigate the connectivity of the Escherichia coli
metabolic network [20]. These maps account for 2764 reactions involving 2100
metabolites and rely on MDL® Mol files downloaded from the KEGG COMPOUND
database. In comparison, the collection of Mu et al. [19] includes a greater num-
ber of reactions, almost double that of Arita [18]. In the collection of Mu et al.
[19], specific chemoinformatics considerations are applied to facilitate fate map dis-
play and interpretation (1) by using InChI™, a systematic structure-based system
for naming and referencing metabolites and their carbon atoms, (2) by accounting
for prochiral carbon atoms, which are present in 17% of the metabolites considered,
and (3) by encoding the fate maps in a formal model-specification language, the
BNGL [21–24]. As a result of the latter feature, maps can be automatically inter-
preted by the BioNetGen software tool [21] to obtain mass-balance equations and
simulate stationary and dynamic labeling patterns. Compound and atom identifica-
tion is systematically considered in the design of this database [19], which is available
at http://cellsignaling.lanl.gov/FateMaps/. A comprehensive review of the procedure
for molecular canonization, such as the InChI™ method, is provided in a separate
chapter of this book, and thus we forego further discussion of it here and refer the
reader to that chapter.

BioNetGen represents atom fate maps using the executable model-specification
language BNGL. Table 15.1 shows the reaction catalyzed by sedoheptulose-7-
phosphate: D-glyceraldehyde-3-phosphate glycolaldehyde transferase in the database.
The metabolite name is represented as an InChI™ string in quotation marks.
For example, the first substrate, D-sedoheptulose 7-phosphate, is represented
as “InChI=1/C7H15O10P/c8-1-3(9)5(11)7(13)6(12)4(10)2-17-18(14,15)16/h4-8,

Using Systems Biology Techniques to Determine Metabolic Fluxes 403

TABLE 15.1
An Entry for a Reaction from the Database [19]

Field Value

1 Sedoheptulose-7-phosphate: D-glyceraldehyde-3-phosphate glycolaldehyde
transferase

2 2.2.1.1
3 “InChI=1/C7H15O10P/c8-1-3(9)5(11)7(13)6(12)4(10)2-17-18(14,15)16/h4-

8,10-13H,1-2H2,(H2,14,15,16)/t4-,5-,6,7+/m1/s1”(C1%1,C2%2,c3%3,
C4%4,c5%5, C6%6,C7%7)+
“InChI=1/C3H7O6P/c4-1-3(5)2-9-10(6,7)8/h1,3,5H,2H2,(H2,6,7,8)/t3/
m0/s1”(c1%8,C2%9,C3%10) < − >

“InChI=1/C5H11O8P/c6-3-2(1-12-14(9,10)11)13-5(8)4(3)7/h2-
8H,1H2,(H2,9,10,11)/t2-,3-,4,5?/m1/s1”(C1%2,C2%4,C3%6,C4%7,c5%5)+
“InChI=1/C5H11O8P/c6-1-3(7)5(9)4(8)2-13-14(10,11)12/h4-6,8-9H,1-
2H2,(H2,10,11,12)/t4-,5-/m1/s1”(C1%1,C2%9,c3%3,C4%10,c5%8)

5 R01641
6 http://www.genome.jp/dbget-bin/www_bget?rn:R01641

Note: Figure 15.1 illustrates a FateMapViewer visualization of the carbon fate map defined for this reaction
in Field 3. The three metabolites participating in this reaction are indicated by the InChI™ strings
included in the map.

10-13H,1-2H2,(H2,14,15,16)/t4-,5-,6-,7+/m1/s1.” The InChI™ identifier of the
metabolite includes up to six layers of information. The first layer defines the chem-
ical formula, and the second layer defines the atom connectivity of the metabolite.
For each atom in a metabolite, its InChI™ identifier provides a unique index. Since
atoms represented in an InChI™ string are indexed in Hill order (i.e., carbon atoms
first), the carbon atoms in a metabolite are referenced by integer indices 1 to n, where
n is the number of carbon atoms. For D-sedoheptulose 7-phosphate, we know it has
seven carbons from its formula, and the indices of these carbons are assigned from 1
to 7 (Figure 15.1). In BioNetGen, the carbon fate map for a reaction A + B↔ C+ D

O
1
3O O

O

O

O O

OO

O

5

6
4

P

O O

O O

2
3 3

2

1

4 51
O

O
O

O

O
O

O O

O

O
O

O
O

P
O

O

3

5
4

2

1

O
O

O

P
P

2

7

FIGURE 15.1 Illustration using FateMapViewer [25] of the carbon fate map in Table 15.1.
Lines indicate the fates of carbon atoms in reaction centers. Mapping of other carbon atoms is
suppressed for clarity.

404 Handbook of Chemoinformatics Algorithms

is represented as follows:

sA(c1%x1, . . . , cm%xm)+ sB(c1%xm+1, . . . , cn%xm+n) < − >

sC(c1%y1, . . . , cp%yp)+ sD(c1%yp+1, . . . , cq%yp+q),
(15.3)

where sA, sB, sC, and sD are quote-delimited InChI™ strings for metabolites; c ∈
{c,C} is a single character that precedes an atom index, which is uniquely specified
by the InChI™ string. A lowercase character indicates that a carbon atom is in a
reaction center. The number of carbon atoms in A, B, C, and D is given by m, n, p,
and q such that m + n = p+ q, and xi, yi ∈ [1, … , m + n] are integer indices that
indicate how the carbon atoms of reactants map to the carbon atoms of products.
Atoms that share the same index map to each other. This representation specifies
detailed information on the carbon maps of each reaction. Software tools can be
developed to parse and visualize the carbon fate maps. The database of Mu et al. [19]
includes carbon atom fate maps for 4605 reactions involving 3713 metabolites. This
database is available online. Carbon fate maps for each metabolic reaction define the
structural correspondence between reactants and products at the atomic scale. For
metabolic reactions, these mappings are consistent in each reaction, and there is no
probabilistic arbitrariness. To define the carbon fate maps, we first use a maximum
common subgraph algorithm (SIMCOMP, http://web.kuicr.kyoto-u.ac.jpa/simcomp/)
to identify the maximum common substructures of all substrate and product pairs
within each metabolic reaction. The algorithm output identifies the matching atoms
in the common substructures of the two input chemical structures. An initial carbon
fate map is defined based on these matching atoms for each reaction of interest.
The carbon fate maps are written in BNGL. Initial carbon fate maps are then refined
manually through text editing at the level of BNGL with help from FateMapViewer for
visualization. FateMapViewer is a specific software tool, which we wrote to visualize
fate maps [25]. Figure 15.1 is a graphic display of the carbon fate map shown in
Table 15.1 using FateMapViewer.

Using the carbon atom fate maps described by Mu et al. [19], BioNetGen translates
a set of fate maps into isotopomer mass-balance equations. The BNGL/BioNetGen-
based method for MFA is represented in flowchart form in Figure 15.2. BioNetGen
translates the carbon fate maps into reaction rules, mapping carbons from reactants to
products. Molecules are represented as structured objects and molecular interactions
as rules for transforming the attributes of these objects. These reaction rules serve as
generators of a list of reactions. The core component of BioNetGen, BNG2.pl, which
has a command-line interface, processes BioNetGen input files to generate two kinds
of outputs: a chemical reaction network derived by processing rules and/or the results
of simulating a model. BioNetGen is open source freely available software [25]. For
additional information about BNGL and BioNetGen, we refer the interested reader
to Refs. [19,21,24,26].

In contrast with the IMM-based approach, the BNGL/BioNetGen-based approach
has several advantages. First, we can distinguish between the labeling patterns of
symmetric pairs and we can handle reversible reactions without added complexity.
Second, even though an IMM for each reaction only needs to be generated once, when
the number of carbons in a molecule is large, for example, succinate-CoA, the matrices
become quite large and pose a computational challenge themselves.Another feature of

Using Systems Biology Techniques to Determine Metabolic Fluxes 405

Compare
calculated & measured

labeling patterns

Estimate
internal
fluxes

Identify system
inputs and outputs

Convergence?
Yes No Adjust fluxes

to minimize
objective fcn

Stop

Compute
isotope
labeling
patterns

Specify
atom fate

maps

Formulate
isotopomer

balance
equations

Measurements

FIGURE 15.2 Carbon transition diagram for a simple metabolic network with four metabo-
lites (S, M1, M2, and P), four external fluxes (vS , vM1, vM2, and vP), and four internal fluxes
(v1, v2, v3, and v4). The external fluxes can be either controlled or measured in an experiment.
These fluxes include one source and three sinks.

BioNetGen over IMM is that it automatically generates the balance equations relevant
for a given experiment directly from fate maps. The possible number of isotopes for a
metabolite with n carbons is 2n and there is a balance equation for each one of them. In
the IMM approach, all balance equations are generated and used to make predictions,
whereas the BNGL/BioNetGen-based approach generates only the relevant balance
equations. For example, if only one carbon of a metabolite is labeled, then many of
its isotopomers will not be populated. IMM would generate balance equations for
all possible isotopomers, whereas BioNetGen only generates the relevant balance
equations. This can potentially result in greater computational efficiency.

15.3 A SIMPLE EXAMPLE

The most widely used isotope tracer method detects the steady-state 13C labeling
patterns in proteinogenic amino acids. In Figure 15.3, we consider a simple example
to illustrate the concept of 13C labeling for metabolic flux determination. A microbial
culture is fed with a 13C-labeled substrate, S, whose chemical structure is known. For
this example, we assume that the system is fed with 13C labeled at carbon position
1, denoted C1. The substrate is then metabolized to intermediate metabolites M1 and
M2 and then to product P. After the system has reached a steady state, the labeling
patterns of P can be measured to obtain valuable information that provides additional
constraints on the internal fluxes.

The input and output fluxes, vS , vM1, vM2, and vP, of the metabolic pathways are
estimated using quantitative physiological parameters from the experimental setup,
including cell density, chemostat nutrient feed and efflux, and the biomass of exiting
cells. Flux analysis is then employed to determine the internal fluxes v1, v2, v3, and

406 Handbook of Chemoinformatics Algorithms

S

1C – 2C

1C – 2C

1C– 2C

1C – 2C

υS

υP

υ4υ3

υ2υ1

υM2υM1

P

M1 M2

FIGURE 15.3 Framework for 13C MFA. For a given system, physiological parameters from
the experimental setup are used to derive system input and output fluxes. The isotopomer
balance equations are derived using the BNGL or IMM approach, intermediate fluxes are
estimated, and isotope patterns are simulated. Optimization methods, such as gradient opti-
mization or simulated annealing, provide new estimates for the intracellular fluxes. Based on
the revised flux estimates, new isotope labeling patterns are generated and again compared
with measurements. This process repeats until the patterns converge.

v4. From Figure 15.3, at steady state, v3 = v1 − vM1. Thus, v1 = vM1 + v3. Applying
a similar logic, we get the following stoichiometric balance equations:

vS = v1 + v2, (15.4)

v1 = vM1 + v3, (15.5)

v2 = vM2 + v4, (15.6)

vP = v3 + v4. (15.7)

These balance equations can be represented in matrix form, that is, N · v = 0, where
v contains the fluxes and N denotes the stoichiometric matrix:

N =
S

M1
M2
P

⎛

⎜
⎜
⎜
⎜
⎝

vS v1 v2 vM1 vM2 v3 v4 vP
−1 1 1 0 0 0 0 0
0 −1 0 1 0 1 0 0
0 0 −1 0 1 0 1 0
0 0 0 0 0 −1 −1 1

⎞

⎟
⎟
⎟
⎟
⎠

. (15.8)

These balance equations alone, however, do not uniquely determine the internal
fluxes. As shown in Figure 15.3, the fates of the two carbons from S to P through
M1 or M2 are different. Balancing of isotopomers can provide extra constraints. For
the simple example shown in Figure 15.3, four different isotopomers exist for S and
we represent the fraction of isotopomers in S as S00, S01, S10, and S11, where the

Using Systems Biology Techniques to Determine Metabolic Fluxes 407

first (second) digit in the subscript corresponds to the atomic mass of the carbon
C1 (C2) in S, a 1 indicates 13C and a 0 means 12C. Based on this definition, we
have that

S00 + S01 + S10 + S11 = 1. (15.9)

For each isotopomer, we can write down a mass-balance equation. For mass bal-
ance, the difference between the input rate and the output rate is the accumulation
rate. For the M1 isotopomer with both carbons unlabeled, that is, 12C, the accu-
mulation rate can be written as VM1(dM100/dt), where VM1 is the pool size of
M1. Because the only source of this isotopomer is from S with both carbons 12C,
the input rate is v1S00. There are two possible outputs and the output rate is given
by (v3 + vm1)M100. Therefore, we can write down the balance equation for this
isotopomer as

VM1
dM100

dt
= v1S00 − (v3 + vm1)M100. (15.10)

At isotope steady state, that is, when the isotopomer fractions have stopped
changing in time, we have

v1S00 − (v3 + vm1)M100 = 0. (15.11)

Using similar reasoning, we can write down the isotopomer balance equations for
the other isotopomers. These isotopomer balance equations define extra constraints
used to solve for the internal fluxes. In this example, all constraints are linear because
we are dealing with a reaction A→ B. However, for reactions with multiple reac-
tants, for example, A + B→ C+ D, the isotopomer balance equations are nonlinear
equations of isotopomer fractions, as shown in Equation 15.2.

For this simple example, we can also use intuitive reasoning. For product P, 13C
labeled at carbon position 1 and position 2 comes from v3 and v4, respectively. If we
define p1 as the fraction of 13C at C1 in P and p2 as the fraction of 13C at C2 in P at
isotope steady state, then

v3

v4
= p1

p2
. (15.12)

With this extra constraint, we can now solve the balance equations to get the internal
fluxes.

For complex networks, we need systematic representations of carbon atom fate
maps to derive mass-balance equations and isotopomer balance equations from these
carbon fate maps. In the next sections, we review two methods: IMM-based methods
and BNGL/BioNetGen-based methods.

15.3.1 CARBON FATE MAPS AND ISOTOPOMER BALANCE EQUATIONS

Figure 15.3 illustrates how isotope labeling data can be used in an iterative proce-
dure to estimate metabolic fluxes from observed isotopomer distributions. The goal
is to identify the unknown intracellular fluxes. For this analysis, all relevant reaction

408 Handbook of Chemoinformatics Algorithms

steps and the fate of carbon atoms within each step must be known a priori. The
system’s input and output fluxes are determined by quantitative physiological param-
eters obtained from the experiment, including nutrient feed, cell growth rates and
densities in the chemostat, and the efflux. The stoichiometric constraints on all inter-
nal fluxes are formulated using the principle of mass conservation, that is, N · v = 0.
The isotopomer balance equations for the internal reactions are then derived using
either the BNGL/BioNetGen-based method or the IMM-based method. The under-
lying mathematical model for 13C MFA is a set of isotopomer balance equations
as shown below in Equations 15.19 through 15.34. Given an initial guess for the
intermediate fluxes, the balance equations, in algebraic or ordinary differential equa-
tion (ODE) form, are used to compute the steady-state or dynamic labeling patterns.
The mathematical model for the dynamic 13C labeling experiments is generally a
high-dimensional coupled system of differential algebraic equations, which in fact
constitutes an inverse problem for the unknown intracellular fluxes. Thus, predictions
for the internal fluxes are obtained by minimizing the difference between simulated
and measured isotope patterns. Essentially, this is a complex parameter fitting prob-
lem, which can be solved using a variety of techniques. For steady-state 13C labeling
experiments, the model is a set of algebraic equations, and the algorithms employed
for numerical flux estimation are primarily gradient-based local optimization [27] or
gradient-free global optimization [10, 28–30] techniques, such as simulated anneal-
ing or genetic algorithms. In addition, a hybrid technique of global-local optimization
has been applied [31]. For dynamic 13C labeling analysis, the system is described by
a set of algebraic–differential equations. Although analysis of dynamic 13C label-
ing data has been proposed by a number of groups and used to estimate fluxes in
small metabolic subnetworks [32–34], to the best of our knowledge, this type of
analysis is yet to be used to estimate fluxes in large-scale networks. A barrier to
estimating large numbers of fluxes from this type of data is the large number of
isotopomer balance equations that must be specified. This problem is solved by the
BNGL/BioNetGen-based approach we review here.

Minimizing the objective function [31], that is, the difference between the sim-
ulated and measured labeling patterns using, for example, simulated annealing,
provides new estimates for the internal fluxes. The objective function is given by

Obj =
N∑

i=1

(
Mi(t)− Ei(�V , �v, t)

δi

)2

, (15.13)

where Mi are the N individual labeling measurements and Ei their corresponding
simulated values. The quantity δi is the confidence value of the ith measurement.
For dynamic isotopomer experiments, Mi is a function of time, and Ei is a function
of time, V represents metabolite pool sizes, and v represents flux distributions. For
steady-state isotopomer experiments, Ei is a function of flux distributions (v) only.
Using these revised fluxes, new isotope labeling patterns are generated and again
compared with the observed labeling patterns. This process continues until some
measure of convergence is achieved, for example, the intracellular fluxes do not

Using Systems Biology Techniques to Determine Metabolic Fluxes 409

significantly change between iterations or some predefined number of iterations is
performed.

15.3.2 IMM-BASED APPROACH

We now apply the IMM method to the four-flux problem posed in Figure 15.3 to
determine the metabolic fluxes. For a metabolite S with two carbons, the IDV is
given by

�IS =

⎛

⎜
⎜
⎜
⎝

IS(00)

IS(01)

IS(10)

IS(11)

⎞

⎟
⎟
⎟
⎠

, (15.14)

where the binary representation (·) corresponds to the state (C1 C2), and 0 and 1
indicate 12C and 13C, respectively. 0 ≤ IS(j) ≤ 1 is the fraction of S molecules that
show a labeling pattern corresponding to the binary representation of j. We can derive
the IMM for each of the internal reactions directly from the carbon atom fate map
provided in Figure 15.3. IMMS>M1 denotes the IMM for the reaction between S and
M1. We obtain

IMMS>M1 =

⎛

⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟
⎟
⎟
⎠

, (15.15)

IMMS>M2 =

⎛

⎜
⎜
⎜
⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞

⎟
⎟
⎟
⎠

, (15.16)

IMMM1>P =

⎛

⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟
⎟
⎟
⎠

, (15.17)

IMMM2>P =

⎛

⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟
⎟
⎟
⎠

. (15.18)

Each column of the IMM indicates how the substrate isotopomer evolves to the
corresponding isotopomers in the product, which is represented by each row. For
example, in IMMS>M1, the first column indicates that the isotopomer S00 can only
be transferred to a product M100.

410 Handbook of Chemoinformatics Algorithms

Again, for a reaction A→B, the isotopomer balance equations can be derived from
Equation 15.1. The corresponding isotopomer balance equations for our four-flux
example are therefore

VS
dS00

dt
= vSS00 − (v1 + v2)S00, (15.19)

VS
dS01

dt
= vSS01 − (v1 + v2)S01, (15.20)

VS
dS10

dt
= vSS10 − (v1 + v2)S10, (15.21)

VS
dS11

dt
= vSS11 − (v1 + v2)S11, (15.22)

VM1
dM100

dt
= v1S00 − (v3 + vM1)M100, (15.23)

VM1
dM101

dt
= v1S01 − (v3 + vM1)M101, (15.24)

VM1
dM110

dt
= v1S10 − (v3 + vM1)M110, (15.25)

VM1
dM111

dt
= v1S11 − (v3 + vM1)M111 (15.26)

VM2
dM200

dt
= v2S00 − (v4 + vM2)M200, (15.27)

VM2
dM201

dt
= v2S01 − (v4 + vM2)M201, (15.28)

VM2
dM210

dt
= v2S10 − (v4 + vM2)M210, (15.29)

VM2
dM211

dt
= v2S11 − (v4 + vM2)M211, (15.30)

VP
dP00

dt
= v3M100 + v4M200 − vPP00, (15.31)

VP
dP01

dt
= v3M101 + v4M201 − vPP01, (15.32)

VP
dP10

dt
= v3M110 + v4M210 − vPP10 (15.33)

VP
dP11

dt
= v3M111 + v4M211 − vPP11, (15.34)

and are subject to the following algebraic constraints:

S00 + S01 + S10 + S11 = 1, (15.35)

M100 +M101 +M110 +M111 = 1, (15.36)

Using Systems Biology Techniques to Determine Metabolic Fluxes 411

M200 +M201 +M210 +M211 = 1, (15.37)

P00 + P01 + P10 + P11 = 1. (15.38)

These equations arise due to the definition of the isotopomer fractions, that is, mass
conservation dictates that these fractions must sum to one. The isotopomer balance
equations coupled with the algebraic constraints comprise a system of differential–
algebraic equations that needs to be solved to determine the dynamic isotopomer
labeling patterns.

15.3.3 BNGL/BIONETGEN-BASED APPROACH

As discussed previously, BioNetGen derives the isotopomer balance equations rel-
evant for a given experiment directly from fate maps and generates the dynamic
distribution of observable metabolites given the input parameters. Here we simulate
the forward problem shown in Figure 15.3 using BioNetGen and generate the iso-
tope labeling patterns given the assumed flux patterns. The BioNetGen input file
for the four-flux example is provided below. It includes several blocks: parameters,
species, reaction rules, and observables. In the first block, the metabolite pool sizes
and the flux estimates, which are the input parameters, are specified. The second
block identifies the species, which are the metabolites, and their initial concentra-
tions. For each differently labeled initial metabolite, define a precursor species with
fixed concentration (defined by prepending the “$” character) corresponding to the
fraction in that labeling state. The block entitled “reaction rules” defines the carbon
atom fate maps. Finally, the observables, or model outputs, are given in the fourth
block. In this input file, the observables are the metabolite isotopomer fractions for
P. For example, the observable pattern P(C1∼1, C2∼0) represents the isotopomer
P10. The remaining sections are commands for generating the isotopomer balance
equations and simulating the dynamic labeling patterns. Specifically, the next block
of this input file contains commands that generate the detailed isotopomer reac-
tions from the specified reaction rules and write BioNetGen and MATLAB® output
files. The next several sections simulate the dynamic labeling patterns given differ-
ent pool sizes and/or fluxes. The command setParameter() defines the pool sizes
or the fluxes. The system is perturbed by feeding the system with a labeled sub-
strate. In this case, we have labeled 10% at the first carbon position. The command
simulate_ode() runs a simulation of the dynamic trajectories of the isotope labeling
patterns.

begin parameters

Pools
V_S 1.0
V_M1 1.0
V_M2 1.0
V_P 1.0

412 Handbook of Chemoinformatics Algorithms

Fluxes
v_v1 0.5
v_v2 0.5
v_v3 0.4
v_v4 0.4
v_vm1 0.1
v_vm2 0.1
v_vp 0.8
v_vs 1.0

Labeled fraction
f_label 0.1
end parameters

begin species
$proS(C1∼ 0,C2∼ 0) 1-f_label
$proS(C1∼ 1,C2∼ 0) f_label
S(C1∼ 0,C2∼ 0) V_S
M1(C1∼ 0,C2∼ 0) V_M1
M2(C1∼ 0,C2∼ 0) V_M2
P(C1∼ 0,C2∼ 0) V_P
NULL 0
end parameters

begin reaction rules
pros(C1%1,C2%2) -> M1(C1%1,C2%2) v_v1/V_S
S(C1%1,C2%2) -> M1(C1%1,C2%2) v_v1/V_S
S(C1%1,C2%2) -> M2(C1%2,C2%1) v_v2/V_S
M1(C1%1,C2%2) -> P(C1%1,C2%2) v_v3/V_M1
M2(C1%1,C2%2) -> P(C1%1,C2%2) v_v4/V_M2
M1() -> NULL v_vm1/V_M1
M2() -> NULL v_vm2/V_M2
P() -> NULL v_vp/V_P
end reaction rules

begin observables
Molecules P00 P(C1∼ 0,C2∼ 0)/V_P
Molecules P01 P(C1∼ 0,C2∼ 1)/V_P
Molecules P10 P(C1∼ 1,C2∼ 0)/V_P
Molecules P11 P(C1∼ 1,C2∼ 1)/V_P
end observables

Using Systems Biology Techniques to Determine Metabolic Fluxes 413

generate_network({overwrite=>1});
writeSBML();
writeMfile();

saveConcentrations();
imulate_ode({t_end=>20, n_steps=>40});

resetConcentrations();
setParameter(V_yM2, 0.5);
simulate_yode({suffix=>"M2low", t_end=>20,
n_steps=>40});

resetConcentrations();
setParameter(V_yM2, 2.0);
simulate_ode({suffix=>"M2high", t_end=>20,
n{_}ysteps=>40});

resetConcentrations();
setParameter(V_M2, 1.0);
setParameter(v_v1, 0.6);
setParameter(v_v2, 0.4);
setParameter(v_v3, 0.5);
setParameter(v_v4, 0.3);
simulate_ode({suffix=>"dottedline", t_end=>20,
n_steps=>40});

The raw experimental measurements of isotopomer distributions contain the con-
tributions due to naturally occurring isotopes of its elements, such as hydrogen,
carbon, nitrogen, oxygen, and so on. Correction of the isotopomer distribution is
required to take into account differences in the relative natural abundance distribution
of each mass isotopomer (skewing) as described in Ref. [35]. A software tool for this
correction is reported in Ref. [36].

Solving the system of differential algebraic equations presented earlier gives us a
dynamic trajectory of labeling patterns. Figure 15.4 depicts the temporal dynamics
of the reaction product P01 from a simulation of the four-flux network. P01 indicates
that the second carbon is 13C labeled. At time zero, the input feed changes from S00 =
1.0, S01 = S10 = S11 = 0 to S00 = 0.9, S01 = 0, S10 = 0.1, and S11 = 0, indicating
that 10% of the feed is 13C labeled at carbon position 1. We assume the following
values for the fluxes: vS = 1.0, v1 = v2 = 0.5, v3 = v4 = 0.4, vM1 = vM2 = 0.1,
and vP = 0.8. In Figure 15.4, we study the effect of metabolite pool size on product
dynamics. The pool sizes of the metabolites S, M1, and P are set to 1, and the pool size
of M2 is varied. We see that the pool size has no effect on the steady-state distribution.
Interestingly, however, Figure 15.4 shows that the dynamic labeling patterns depend,
not only on the fluxes, but also on the metabolite pool sizes. Consequently, valuable
information about the relative metabolite pool sizes can potentially be inferred from
plots of the temporal dynamics.

414 Handbook of Chemoinformatics Algorithms

0.05

0.04

0.03

0.02

P 0
1

0.01

0
0 5 10

Time
15 20

FIGURE 15.4 Dynamic simulation of the four-flux problem. At time zero, the input feed
changes from S00 = 1.0, S01 = S10 = S11 = 0 to S00 = 0.9, S01 = 0, S10 = 0.1, and S11 = 0.
Time evolution of the reaction product with 13C at carbon position 2 (P01) for different pool
sizes is plotted. Flux patterns are assumed as follows: vS = 1.0, v1 = v2 = 0.5, v3 = v4 = 0.4,
vM1 = vM2 = 0.1, and vP = 0.8. The pool sizes of metabolites S, M1, and P are set to 1, and the
pool size of M2 is varied. M2 = 1 (solid line), M2 = 2 (dashed line), and M2 = 0.5 (dash-dot
line). For the dotted line, flux patterns are assumed as follows: vS = 1.0, v1 = 0.6, v2 = 0.4,
v3 = 0.5, v4 = 0.3, vM1 = 0.1, vM2 = 0.1, and vP = 0.8, and the pool sizes of metabolites
S, M1, M2 and P are set to 1. This plot reveals that the dynamics depend on the pool size in
addition to the flux distribution and provide valuable information on the relative pool sizes that
can be used for dynamic labeling experiments. The pool size does not affect the steady-state
distribution.

15.4 DETAILED EXAMPLE OF THE BNGL/BioNetGen-BASED
APPROACH FOR THE CALVIN CYCLE

The Calvin cycle is a series of biochemical reactions required for carbon fixa-
tion. The carbon source for this cycle is CO2. Five metabolites D-ribulose-1,5-
bisphosphate (R5P), D-erythrose 4-phosphate (E4P), 3-phospho-D-glycerate (G3P),
(2R)-2-hydroxy-3-(phosphonooxy)-propanal (T3P), and D-fructose 6-phosphate
(F6P) link this pathway with central metabolic pathways. Figure 15.5 provides a net-
work rendition of the Calvin cycle. The program we developed to visualize chemical
structures, such as that shown in Figure 15.5, uses routines available in the Chemistry
Development Kit [37]. The catalysts involved in the Calvin cycle are functionally
equivalent to those used in other pathways, including the pentose phosphate path-
way and in gluconeogenesis, and therefore, this example may be of interest to a
broad community. The Calvin cycle is of particular interest because this network
involves only a single-carbon input metabolite, and therefore steady-state labeling

Using Systems Biology Techniques to Determine Metabolic Fluxes 415

F6 P

F16P

DHAP
T3P

R5P

R5DP

E4P

G3 P

NAD

NADPH

CO2

ADP

ATP

R01512

X5P

DHAP

T3P

R01523

R00024

R01063

R01015

R01068

R00762

R01067 R01829

R01845

R01641

R01529

R01056
Ri5P

S7P

S17P

P13G

O

OO

O
P

P

O

O 3

OO

O
P

O

2

3

O

O
O

1

O

O O

O

O

2

4

1

3

O

O
P

O

O

1

1

O

O

O
O

O

O
4

4

4 4

5
3

2

2

2 2

1
13

5
7
6

5

5

3
6

7

3

O

O

O
O

O

O

O
O

O
O

O O

O

O

O O

O

O

O

O

O
O

O

OO

O

O
P

P

P

O

OO

O

O

O

O

P

P

P

O

O

O

O

O

2
3

1

O

PO

O

O

O

O

2

3

1

O
P

O
O

O

O

O

O

O

O

O
O

O

2

3

1

4

5
6O

P

P

O

O

O

O

OO

O

O

O

O

O

O

OO

OO

O

OO

O

1

2
3

54

O

OO

O

2

1

3
1

2

3

4

4

5

5

6

O

P
P

P

2

1
O

O
O

O

FIGURE 15.5 The Calvin cycle. The following abbreviations are used for metabolites in
the network: R5P for D-ribulose 1,5-bisphosphate, G3P for 3-phospho-D-glycerate, P13G for
3-phospho-D-glyceroyl phosphate, and T3P for (2R)-2-hydroxy-3-(phosphonooxy)-propanal,
DHAP for glycerone phosphate, F16P for D-fructose 1,6-bisphosphate, F6P for D-fructose
6-phosphate, E4P for D-erythrose 4-phosphate, X5P for D-xylulose 5-phosphate, S17P for
D-sedoheptulose 1,7-bisphosphate, S7P for D-sedoheptulose 7-phosphate, Ri5P for D-ribose
5-phosphate, and R5P for D-ribulose 5-phosphate. The KEGG ID is used for reaction identifi-
cation. There is an input flux feeding the pool of CO2 and five flux sinks from pools of R5P,
E4P, G3P, T3P, and F6P. For each metabolite, the carbon index shown in the figure is based
on InChI™ naming. The indices are used to define the carbon atom fate maps as shown in the
BioNetGen input file.

of CO2 is completely uninformative. Analysis of the transient labeling patterns of
metabolites is required to learn anything about the internal fluxes from a 13C-labeling
experiment.We employ the BNGL/BioNetGen-based approach to determine the intra-
cellular fluxes for the Calvin cycle. The BioNetGen input file shown below specifies
a model and simulation for labeling dynamics in the Calvin cycle (Figure 15.5) when

416 Handbook of Chemoinformatics Algorithms

a feed of unlabeled CO2 is replaced with a mixture of unlabeled and 13C-labeled
CO2. The raw carbon fate maps need to be processed before they can be used as
BioNetGen input. This preprocessing is described in Ref. [19]. The model tracks 562
isotopomers. In the simulation, the system is taken to be in a steady state. At time
t = 0, the composition of the CO2 feed is changed, such that 10% of incoming CO2
is labeled with 13C. The steady-state fluxes in the system remain unchanged (up to
isotope effects, which are expected to be small), but the 13C labeling pattern of each
intermediate metabolite changes until eventually all intermediates are fully labeled.
BioNetGen is capable of simulating the labeling dynamics. BioNetGen can also gen-
erate a specification of the same model and simulation in M-file and Systems Biology
Markup Language (SBML) formats, which can then be interpreted by other software
tools capable of simulating ODEs, such as MATLAB®. For reversible reactions, we
need to specify two fluxes: a forward flux and a backward flux. Instead of using
forward and backward fluxes, reversible reactions can also be modeled using a net
flux and an exchange flux [27]. That is,

vnet = vforward − vbackward and vexchange = min(vforward, vbackward). (15.39)

The exchange flux can be in the range [0,∞]. The characterization of forward and
backward fluxes as net and exchange fluxes provides a measure of the reversibility
of a reaction, where an exchange flux of 0 corresponds to irreversible reactions and
infinity (∞) indicates fast reaction equilibrium. Isotopomer distributions are not very
sensitive to exchange fluxes. Because it has been shown that the exchange flux can
only be determined to within an order of magnitude [9], an exchange flux can be
transformed into the so-called [0, 1]-exchange flux,

vexchange ∈ [0, 1] = vexchange

(1− vexchange)
. (15.40)

In addition, when the exchange flux is very large, numerical instabilities may arise.
In these cases, this range can be specified as, for example, [0.1, 0.9] to remove the
possibility that an exchange flux is either too small or too large. As a measure of the
efficiency of BioNetGen for a problem with some computational complexity (562
isotopomers), we have calculated the CPU time requirements for the Calvin cycle
simulation. On an Intel® Pentium® 4 CPU 3.2 GHz machine, the entire simulation
took a total of 33.8 s. It took 14.4 s to generate the isotopomer balance equations from
the BNGL-encoded input and 17.2 s to equilibrate the system, which corresponds to
the first simulate_ode command. The second simulate_ode command runs another
ODE simulation to identify the isotopomer fractions and took 2.2 s. The computational
cost of simulating a set of stiff differential equations typically scales as N3, where
N is the number of equations (number of species). In general, N and the number of
isotopomer balance equations will tend to increase exponentially with the number of
reactions in the metabolic network. However, for a recently reported kinetic Monte
Carlo method [38], the cost of simulation is independent of the number of isotopomers
and scales with the number of reactions (rules).

Using Systems Biology Techniques to Determine Metabolic Fluxes 417

begin parameters
#Pools
V_R5P 1.0
V_R5DP 1.0
V_CO2 1.0
V_G3P 1.0
V_P13G 1.0
V_T3P 1.0
V_DHAP 1.0
V_F16P 1.0
V_F6P 1.0
V_E4P 1.0
V_X5P 1.0
V_Ri5P 1.0
V_S17P 1.0
V_S7P 1.0

Fluxes
v_R00024 1.00
v_R01512 1.95
v_R01063_f 0.05
v_R01063_b 2.00
v_R01015_f 0.86
v_R01015_b 0.10
v_R01068_f 0.15
v_R01068_b 0.58
v_R00762 0.43
v_R01067_f 0.50
v_R01067_b 0.12
v_R01829_f 0.20
v_R01829_b 0.53
v_R01845 0.33
v_R01641_f 0.43
v_R01641_b 0.10
v_R01529_f 0.10
v_R01529_b 0.82
v_R01056_f 0.50
v_R01056_b 0.17
v_R01523 1.00
vs_T3P 0.05
vs_F6P 0.05
vs_R5P 0.05
vs_E4P 0.05
vs_G3P 0.05
v_vi_CO2_unlabeled 1
v_vi_CO2_labeled 0
end parameters

begin species
R5P(C1∼ 0,C2∼ 0,C3∼ 0,C4∼ 0,C5∼ 0) V_R5P
R5DP(C1∼ 0,C2∼ 0,C3∼ 0,C4∼ 0,C5∼ 0) V_R5DP
CO2(C1∼ 0) V_CO2
G3P(C1∼ 0,C2∼ 0,C3∼ 0) V_G3P
P13G(C1∼ 0,C2∼ 0,C3∼ 0) V_P13G
T3P(C1∼ 0,C2∼ 0,C3∼ 0) V_T3P
DHAP(C1∼ 0,C2∼ 0,C3∼ 0) V_DHAP
F16P(C1∼ 0,C2∼ 0,C3∼ 0,C4∼ 0,C5∼ 0,C6∼ 0) V_F16P
F6P(C1∼ 0,C2∼ 0,C3∼ 0,C4∼ 0,C5∼ 0,C6∼ 0) V_F6P
E4P(C1∼ 0,C2∼ 0,C3∼ 0,C4∼ 0) V_E4P
X5P(C1∼ 0,C2∼ 0,C3∼ 0,C4∼ 0,C5∼ 0) V_X5P

418 Handbook of Chemoinformatics Algorithms

Ri5P(C1∼ 0,C2∼ 0,C3∼ 0,C4∼ 0,C5∼ 0) V_Ri5P
S17P(C1∼ 0,C2∼ 0,C3∼ 0,C4∼ 0,C5∼ 0,C6∼ 0,C7∼ 0) V_S17P
S7P(C1∼ 0,C2∼ 0,C3∼ 0,C4∼ 0,C5∼ 0,C6∼ 0,C7∼ 0) V_S7P
I 1
NULL 0
end species

begin reaction rules
R5DP(C1%1,C2%2,C3%3,C4%4,C5%5) + CO2(C1%6) -> \
G3P(C1%2,C2%4,C3%6) + G3P(C1%1,C2%3,C3%5) v_R00024/(V_R5DP*V_CO2)
G3P(C1%1,C2%2,C3%3) -> P13G(C1%1,C2%2,C3%3) v_R01512/V_G3P
T3P(C1%1,C2%2,C3%3) < − > P13G(C1%2,C2%3,C3%1) v_R01063_f/V_T3P,

v_R01063_b/V_P13G
T3P(C1%1,C2%2,C3%3) < − > DHAP(C1%1,C2%2,C3%3) v_R01015_f/V_T3P,

v_R01015_b/V_DHAP
F16P(C1%1,C2%2,C3%3,C4%4,C5%5,C6%6) < − > \
DHAP(C1%5,C2%2,C3%6) + T3P(C1%4,C2%1,C3%3) v_R01068_f/V_F16P,

v_R01068_b/(V_DHAP*V_T3P)
F16P(C1%1,C2%2,C3%3,C4%4,C5%5,C6%6) -> \
F6P(C1%1,C2%2,C3%3,C4%4,C5%5,C6%6) v_R00762/V_F16P
F6P(C1%1,C2%2,C3%3,C4%4,C5%5,C6%6) + \
T3P(C1%7,C2%8,C3%9)< − >E4P(C1%5,C2%1,C3%4,C4%3)+\
X5P(C1%2,C2%8,C3%6,C4%9,C5%7) v_R01067_f/(V_F6P*V_T3P),

v_R01067_b/(V_E4P*V_X5P)
S17P(C1%1,C2%2,C3%3,C4%4,C5%5,C6%6,C7%7) < − > \
DHAP(C1%6,C2%2,C3%4) +
E4P(C1%7,C2%1,C3%5,C4%3) v_R01829_f/V_S17P,

v_R01829_b/(V_DHAP*V_E4P)
S17P(C1%1,C2%2,C3%3,C4%4,C5%5,C6%6,C7%7) -> \
S7P(C1%2,C2%1,C3%4,C4%3,C5%6,C6%5,C7%7) v_R01845/V_S17P
S7P(C1%1,C2%2,C3%3,C4%4,C5%5,C6%6,C7%7)+\
T3P(C1%8,C2%9,C3%10) < − > \
Ri5P(C1%2,C2%4,C3%6,C4%7,C5%5) +\
X5P(C1%1,C2%9,C3%3,C4%10,C5%8) v_R01641_f/(V_S7P*V_T3P),

v_R01641_b/(V_Ri5P*V_X5P)
R5P(C1%1,C2%2,C3%3,C4%4,C5%5) < − > \
X5P(C1%1,C2%2,C3%3,C4%4,C5%5) v_R01529_f/V_R5P,

v_R01529_b/V_X5P
Ri5P(C1%1,C2%2,C3%3,C4%4,C5%5) < − > \
R5P(C1%5,C2%1,C3%4,C4%2,C5%3) v_R01056_f/V_Ri5P,

v_R01056_b/V_R5P
R5P(C1%11,C2%12,C3%13,C4%14,C5%15) -> \
R5DP(C1%12,C2%11,C3%14,C4%13,C5%15) v_R01523/V_R5P
T3P() -> NULL vs_T3P/V_T3P
F6P() -> NULL vs_F6P/V_F6P
R5P() -> NULL vs_R5P/V_R5P
E4P() -> NULL vs_E4P/V_E4P
G3P() -> NULL vs_G3P/V_G3P
I -> I + CO2(C1∼ 0) v_vi_CO2_unlabeled
I -> I + CO2(C1∼ 1) v_vi_CO2_labeled
end reaction rules

begin observables
Molecules T3P_0 T3P(C1∼0,C2∼0,\

C3∼0)/V_T3P
Molecules T3P_1 T3P(C1∼1,C2∼0,\ T3P(C1∼0,C2∼1,\ T3P(C1∼0,C2∼0,C3∼1)/\

C3∼0)/V_T3P C3∼0)/V_T3P V_T3P
Molecules T3P_2 T3P(C1∼1,C2∼1,\ T3P(C1∼1,C2∼0,\ T3P(C1∼0,C2∼1,C3∼1)/\

C3∼0)/V_T3P C3∼1)/V_T3P V_T3P
Molecules T3P_3 T3P(C1∼1,C2∼1,\

C3∼1)/V_T3P
end observables

Using Systems Biology Techniques to Determine Metabolic Fluxes 419

generate_network({overwrite=>1});
writeSBML();
writeMfile();
simulate_ode({prefix=>"equil", t_end=>10000, n_steps=>10});
setParameter("v_vi_CO2_unlabeled", 0.9);
setParameter("v_vi_CO2_labeled", 0.1);
simulate_ode({t_end=>200, n_steps=>200});

writeNET();

With reference to the Calvin cycle and BioNetGen input file given above, we can
now recap the method of setting up a BioNetGen input file to perform a forward sim-
ulation of 13C labeling dynamics, which is the core component of any flux estimation
procedure.

1. Define the list of molecular species and reactions of interest and specify the
atom fate maps for these reactions. In our example, there are 13 internal
reactions and six exchange reactions defined in the reaction rules block of the
BioNetGen input file.

2. In the parameters block, for each reaction, specify a flux consistent with the
stoichiometric constraints. For reversible reactions, we need to specify both
the forward and backward fluxes. Metabolite pool sizes are also specified in
the parameters block. For this example, we use the default pool size of one.

3. Next, specify the observables. These should be experimentally measurable
quantities of interest. We specified T3P based on the mass differences of the
isotopomers.

4. Run the forward simulation to obtain the steady state.
5. Change the input feed to isotope-labeled fluxes and simulate the 13C labeling

dynamics.

15.5 DISCUSSION AND CONCLUSION

Systems biology is the integration of experimental and computational approaches
to achieve the overall goal of explaining and predicting complex cellular behaviors
of biological systems. Using different “omics” technologies—genomics, proteomics,
and metabolomics—a wealth of information is becoming available about many dif-
ferent cellular components and, to some extent, on the interaction between some of
these components. These approaches are providing a static view of biological systems.
However, it is of growing importance to augment these analyses with a higher-level
understanding of cellular dynamics. Fluxes are an integrated functional output of
a metabolic network, which are highly relevant for understanding how the network
operates as a system and for applications that focus on manipulating metabolic behav-
iors, as in metabolic engineering. In recent years, MFA has become an important tool
for quantifying metabolic pathways.

MFA allows the detailed quantification of all intracellular fluxes in the metabolism
of a biological system.Among the developed tools, 13C MFA, which uses 13C labeling
patterns of metabolic products that result from feeding 13C-labeled substrates, is a
powerful quantitative method for intracellular pathway flux determination within

420 Handbook of Chemoinformatics Algorithms

metabolic networks. We have provided an algorithmic overview of the procedure of
13C MFA. 13C-based MFA requires the knowledge of fate of carbons in metabolic
reactions, and the carbon atom fate information is transferred into isotopomer balance
equations, which describe the mathematical relationship between unknown fluxes and
the available measurement dataset. Using these equations, fluxes can be computed
from the measurements through nonlinear parameter fitting.

In recent years, with the development of experimental techniques and computa-
tional methods, steady-state 13C MFA has reached a state of relative maturity. The
experiments themselves have become a routine procedure, the measurement tech-
niques are well established, and sophisticated mathematical evaluation algorithms are
available. However, 13C MFA is still a time-consuming and low-throughput process.
Typically, modeling carbon isotopomer networks, such as central carbon pathways,
involves an equation system containing a few to several thousand variables to balance
reactions between isotopomers. This problem is addressed by the BNGL/BioNetGen-
based approach to 13C MFA reviewed here. The BNGL/BioNetGen-based approach
allows isotopomer balance equations to be constructed quickly from a database of
carbon fate maps and then simulated.

Metabolic steady state is a precondition for current flux analysis methods. The
routine methods for flux analysis are based on 13C steady state using isotopic label-
ing patterns of proteinogenic amino acids, which is reflective of their 12 precursors
in central metabolism. Detecting the labeling patterns of free intracellular metabolic
intermediates can dramatically shorten the labeling experiments because these inter-
mediates can reach 13C steady state much faster than proteinogenic amino acids.
The labeling patterns can also go beyond the 12 precursors. Dynamic 13C labeling
patterns of intracellular metabolic intermediates contain more information than the
13C steady-state isotopic labeling patterns. For example, intracellular metabolite pool
sizes affect the dynamic labeling patterns, whereas they have no effect on steady-state
labeling patterns.

ACKNOWLEDGMENTS

This work was supported in part by the NIH, under grants GM080216, CA132629,
and GM076570, and by the DOE, under contract DE-AC52-06NA25396. We thank
P.J. Unkefer, C.J. Unkefer, and R.F. Williams for helpful discussions.

REFERENCES

1. Feist A. M., Henry C. S., Reed J. L., Krummenacker M., Joyce A. R., Karp P.
D., Broadbelt L. J., Hatzimanikatis V., and Palsson B. O., A genome-scale metabolic
reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and
thermodynamic information, Molecular Systems Biology 2007, 3: 121.

2. Forster J., Famili I., Fu P., Palsson B. O., and Nielsen J., Genome-scale reconstruction of
the Saccharomyces cerevisiae metabolic network, Genome Research 2003, 13: 244–253.

3. Duarte N. C., Becker S.A., Jamshidi N., Thiele I., Mo M. L.,Vo T. D., Srivas R., and Palsson
B. O., Global reconstruction of the human metabolic network based on genomic and
bibliomic data, Proceedings of the National Academy of Sciences 2007, 104: 1777–1782.

Using Systems Biology Techniques to Determine Metabolic Fluxes 421

4. Segre D., Vitkup D., and Church G. M., Analysis of optimality in natural and perturbed
metabolic networks, Proceedings of the National Academy of Sciences 2002, 99: 15112–
15117.

5. Sauer U., High-throughput phenomics: Experimental methods for mapping fluxomes,
Current Opinion in Biotechnology 2004, 15: 58–63.

6. Sauer U., Metabolic networks in motion: 13C-based flux analysis, Molecular Systems
Biology 2006, 2:62.

7. Schmidt K., Carlsen M., Nielsen J., and Villadsen J., Modeling isotopomer distribu-
tions in biochemical networks using isotopomer mapping matrices, Biotechnology and
Bioengineering 1997, 55: 831–840.

8. Zupke C. and Stephanopoulos G., Modeling of isotope distribution and intracellular fluxes
in metabolic networks using atom mapping matrices, Biotechnology Progress 1994, 10:
489–498.

9. Wiechert W., 13C Metabolic flux analysis, Metabolic Engineering 2001, 3: 195–206.
10. Arauzo-Bravo M. J. and Shimizu K., An improved method for statistical analysis of

metabolic flux analysis using isotopomer mapping matrices with analytical expressions,
Journal of Biotechnology 2003, 105: 117–133.

11. Wiechert W., Mollney M., Petersen S., and de Graaf A., A universal framework for 13C
metabolic flux analysis, Metabolic Engineering 2001, 3: 265–283.

12. Szyperski T., Biosynthetically directed fractional 13C-labeling of proteinogenic amino
acids. An efficient analytical tool to investigate intermediary metabolism, European
Journal of Biochemistry 1995, 232: 433–448.

13. Szyperski T., 13C-NMR, MS and metabolic flux balancing in biotechnology research,
Quarterly Reviews of Biophysics 1998, 31: 41–106.

14. Goto S., Okuno Y., Hattori M., Nishioka T., and Kanehisa M., LIGAND: Database of
chemical compounds and reactions in biological pathways, Nucleic Acids Research 2002,
30: 402–404.

15. Krieger C. J., Zhang P., Mueller L. A., Wang A., Paley S., Arnaud M., Pick J., Rhee S. Y.,
and Karp P. D., MetaCyc: Recent enhancements to a database of metabolic pathways and
enzymes in microorganisms and plants, Nucleic Acids Research 2004, 32: D438–D442.

16. Schomburg I., Chang A., Ebeling C., Gremse M., Heldt C., Huhn G., and Schomburg D.,
BRENDA, the enzyme database: updates and major new developments, Nucleic Acids
Research 2004, 32: D431–D433.

17. Michal G., Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology.
Wiley: New York, Heidelberg, Germany, 1999.

18. Arita M., In silico atomic tracing by substrate-product relationships in Escherichia coli
intermediary metabolism, Genome Research 2003, 13: 2455–2466.

19. Mu F., Williams R. F., Unkefer C. J., Unkefer P. J., Faeder J. R., and Hlavacek W.S.,
Carbon fate maps for metabolic reactions, Bioinformatics (Oxford) 2007, 23: 3193–3199.

20. Arita M., The metabolic world of Escherichia coli is not small, Proceedings of the
National Academy of Sciences 2004, 101: 1543–1547.

21. http://bionetgen.org.
22. Faeder J. R., Blinov M. L., Goldstein B., and Hlavacek W. S., Rule-based modeling of

biochemical networks, Complexity 2005, 10: 22–41.
23. Blinov M. L., Yang J., Faeder J. R., and Hlavacek W. S., Graph theory for rule-based

modeling of biochemical networks. Transactions on Computational Systems Biology VII,
2006, 89–106.

24. Hlavacek W. S., Faeder J. R., Blinov M. L., Posner R. G., Hucka M., and Fontana W.,
Rules for modeling signal-transduction systems, Science’s STKE 2006, p. re6.

25. FateMapViewer Software http://cellsignaling.lanl.gov/FateMaps

422 Handbook of Chemoinformatics Algorithms

26. Faeder J. R., Blinov M. L., and Hlavacek W. S., Rule-based modeling of biochemical
systems with BioNetGen, Methods in Molecular Biology 2009, 500: 113–169.

27. Wiechert W. and de Graaf A. A., Bidirectional reaction steps in metabolic networks:
I. Modeling and simulation of carbon isotope labeling experiments, Biotechnology and
Bioengineering 1997, 55: 101–117.

28. Dauner M., Bailey J. E., and Sauer U., Metabolic flux analysis with a comprehen-
sive isotopomer model in Bacillus subtilis, Biotechnology and Bioengineering 2001, 76:
144–156.

29. Forbes N. S., Clark D. S., and Blanch H. W., Using isotopomer path tracing to quantify
metabolic fluxes in pathway models containing reversible reactions, Biotechnology and
Bioengineering 2001, 74: 196–211.

30. Schmidt K., Nielsen J., and Villadsen J., Quantitative analysis of metabolic fluxes in
Escherichia coli using two-dimensional NMR spectroscopy and complete isotopomer
models, Journal of Biotechnology 1999, 71: 175–190.

31. Zhao J. and Shimizu K., Metabolic flux analysis of Escherichia coli K12 grown on 13C-
labeled acetate and glucose using GC-MS and powerful flux calculation method, Journal
of Biotechnology 2003, 101: 101–117.

32. Schaub J., Mauch K., and Reuss M., Metabolic flux analysis in Escherichia coli by inte-
grating isotopic dynamic and isotopic stationary 13C labeling data, Biotechnology and
Bioengineering 2008, 99: 1170–1185.

33. Young J. D., Walther J. L., Antoniewicz M. R., Yoo H., and Stephanopoulos G., An ele-
mentary metabolite unit (EMU) based method of isotopically nonstationary flux analysis,
Biotechnology and Bioengineering 2008, 99: 686–699.

34. Yuan J., Fowler W. U., Kimball E., Lu W., and Rabinowitz J. D., Kinetic flux profiling of
nitrogen assimilation in Escherichia coli, Nature Chemical Biology 2006, 2: 529–530.

35. Wahl S. A., Dauner M., and Wiechert W., New tools for mass isotopomer data evaluation
in (13)C flux analysis: Mass isotope correction, data consistency checking, and precursor
relationships, Biotechnology and Bioengineering 2004, 85: 259–268.

36. http://vimss.lbl.gov/DvHFlux.
37. Steinbeck C., Hoppe C., Kuhn S., Floris M., Guha R., and Willighagen E. L., Recent

developments of the chemistry development kit (CDK)—an open-source java library for
chemo- and bioinformatics, Current Pharmaceutical Design 2006, 12: 2111–2120.

38. Yang J., Monine M. I., Faeder J. R., and Hlavacek, W. S., Kinetic Monte Carlo method for
rule-based modeling of biochemical networks, Physical Review E 2008, 78: 031910.

	Contents
	Preface
	Acknowledgments
	Contributors
	Chapter 1: Representing Two-Dimensional (2D) Chemical Structures with molecular graphs
	1.1 Introduction
	1.2 Elements of Graph Theory
	1.2.1 Graphs
	1.2.2 Adjacency, Walks, Paths, and Distances
	1.2.3 Special Graphs
	1.2.4 Graph Matrices
	1.2.4.1 Adjacency Matrix
	1.2.4.2 Laplacian Matrix
	1.2.4.3 Distance Matrix

	1.3 Chemical and Molecular Graphs
	1.3.1 Molecular Graphs
	1.3.2 Molecular Pseudograph
	1.3.3 Molecular Graph of Atomic Orbitals
	1.3.4 Markush Structures
	1.3.5 Reduced Graph Model
	1.3.6 Molecule Superposition Graphs
	1.3.7 Reaction Graphs
	1.3.8 Other Chemical Graphs

	1.4 Weighted Graphs and Molecular Matrices
	1.4.1 Weighted Molecular Graphs
	1.4.2 Adjacency Matrix
	1.4.3 Distance Matrix
	1.4.4 Atomic Number Weighting Scheme Z
	1.4.5 Relative Electronegativity Weighting Scheme X
	1.4.6 Atomic Radius Weighting Scheme R
	1.4.7 Burden Matrix
	1.4.8 Reciprocal Distance Matrix
	1.4.9 Other Molecular Matrices

	1.5 Concluding Remarks
	References

	Chapter 2: Algorithms to Store and Retrieve Two-Dimensional (2D)
	2.1 Common Representations: Linear Notations and Connection Tables
	2.1.1 WLN, SMILES, SMARTS, and SMIRKS
	2.1.2 InChi and InChiKey
	2.1.3 Molecular File Format

	2.2 From Connection Table to 2D Structure
	2.3 Storing and Retrieving Chemical Structures through Canonical Labeling
	2.3.1 Terminology
	2.3.2 Morgan's Algorithm
	2.3.3 The Canonical SMILES Algorithm
	2.3.4 Canonical Signature Algorithm

	2.4 Concluding Remarks
	Acknowledgments
	References

	Chapter 3: Three-Dimensional (3D) Molecular Representations
	3.1 Introduction
	3.2 Coordinate Systems
	3.2.1 Cartesian Coordinates
	3.2.2 Internal Coordinates
	3.2.3 Fractional Coordinates
	3.2.4 Two-Dimensional Chemical Diagrams

	3.3 Interconverting Coordinate Systems
	3.3.1 Internal Coordinates into Cartesian Coordinates
	3.3.2 Fractional Coordinates into Cartesian Coordinates

	3.4 Comparing Geometries
	3.5 Fixed-Length Representations
	3.5.1 Molecular Descriptors
	3.5.1.1 The Length-over-Breadth Descriptor
	3.5.1.2 Charged Partial Surface Area (CPSA) Descriptors

	3.5.2 Comparative Molecular Field Analysis
	3.5.3 Radial Distribution Functions

	3.6 Application: Clustering of Crystal Packings
	3.7 Open-Source Implementations
	References

	Chapter 4: Molecular Descriptors
	4.1 Molecular Descriptors: An Introduction
	4.2 Graph Definitions
	4.3 Global Features and Atom Environments
	4.3.1 Topological Indices
	4.3.2 Principles of Complexity Descriptors
	4.3.3 Atom Environments
	4.3.3.1 HOSE Codes (Hierarchically Ordered Spherical Description of the Environment)
	4.3.3.2 Radial Distribution Function
	4.3.3.3 Local Atom Environment Kernel

	4.3.4 Eigenvalue Decomposition
	4.3.4.1 Characteristic Polynomial
	4.3.4.2 Burden Matrix and BCUT Descriptors
	4.3.4.3 WHIM Descriptors

	4.4 Molecular Substructures
	4.4.1 Substructure Types and Generation
	4.4.1.1 Atom Types and Reduced Graphs
	4.4.1.2 Atom Pairs
	4.4.1.3 Sequences of Atom Types: Paths andWalks
	4.4.1.4 Trees
	4.4.1.5 Fragments

	4.4.2 Fingerprints
	4.4.2.1 Hashed Fingerprints
	4.4.2.2 Comparison of Hashed Fingerprints and Baldi’s Correction
	4.4.2.3 Stigmata
	4.4.2.4 Fingal

	4.4.3 Hashing
	4.4.3.1 Cyclic Redundancy Check
	4.4.3.2 InChI Key

	4.5 Pharmacophores, Fields, and Higher-Order Features (3D, 4D, and Shape)
	4.5.1 Molecular Shape
	4.5.1.1 Molecular Shape Analysis
	4.5.1.2 ROCS—Rapid Overlay of Chemical Structures
	4.5.1.3 Shapelets

	4.5.2 MIF-Based Features
	4.5.2.1 GRID
	4.5.2.2 Alignment-Based Methods
	4.5.2.3 CoMFA—Comparative Molecular Field Analysis
	4.5.2.4 CoMSIA—Comparative Molecular Similarity Indices Analysis
	4.5.2.5 Structural Alignment
	4.5.2.6 SEAL—Steric and Electrostatic Alignment
	4.5.2.7 Alignment-Free Methods
	4.5.2.8 GRIND—GRid-INdependent Descriptors
	4.5.2.9 VolSurf

	4.5.3 Pharmacophores
	4.5.3.1 Ensemble Methods
	4.5.3.2 Receptor Surface Models

	4.5.4 Higher Dimensional Features

	4.6 Implicit and Pairwise Graph Encoding: MCS Mining and Graph Kernels
	4.6.1 MCS Mining
	4.6.1.1 Maximum Common Subgraph
	4.6.1.2 Exact Maximum Common Substructure
	4.6.1.3 Inexact Maximum Common Substructure

	4.6.2 Kernel Functions
	4.6.2.1 Kernel Closure Properties

	4.6.3 Basic Kernel Functions
	4.6.3.1 Numerical Kernel Functions
	4.6.3.2 Nominal Kernel Functions

	4.6.4 2D Kernels on Nominal Features
	4.6.4.1 Marginalized Graph Kernel

	4.6.5 2D Kernels Nominal and Numerical Features
	4.6.5.1 Optimal Assignment Kernels

	4.6.6 3D Kernels on Nominal and Numeric Features
	4.6.6.1 A General Framework for Pharmacophore Kernels
	4.6.6.2 Fast Approximation of the Pharmacophore Kernel by Spectrum Kernels

	References

	Chapter 5: Ligand- and Structure-Based Virtual Screening
	5.1 Similarity Searching for Virtual Screening
	5.1.1 Distance Measures
	5.1.1.1 Euclidean Distance
	5.1.1.2 Manhattan Distance
	5.1.1.3 Scaled Distances

	5.1.2 Population Dissimilarity
	5.1.3 Similarity Coefficients
	5.1.3.1 Similarity between Real-Valued Vectors
	5.1.3.2 Similarity between Bit Sets
	5.1.3.3 Similarity of Populations

	5.1.4 Applications
	5.1.4.1 Distance Applications
	5.1.4.2 Similarity Applications

	5.1.5 Behavior of Similarity and Distance Coefficients
	5.1.6 Combining Similarities

	5.2 Structure-Based Virtual Screening
	5.2.1 Introduction
	5.2.2 Docking Algorithms
	5.2.2.1 Orientational Search: The Clique Detection Algorithm
	5.2.2.2 Conformational Search: Incremental Buildup
	5.2.2.3 Combined Orientational and Conformational Search:Lamarckian Genetic Algorithm

	References

	Chapter 6: Predictive Quantitative Structure–Activity Relationships Modeling: Data Preparation and the General Modeling Workflow
	6.1 Introduction: Predictive QSAR Modeling
	6.2 Requirements to a Dataset
	6.3 Dataset Curation
	6.4 Calculation of Descriptors
	6.5 Preprocessing of Descriptors
	6.6 Stochastic Cluster Analysis
	6.7 Detection and Removal of Outliers Prior to QSAR Studies
	6.8 Classification and Category QSAR: Data Preparation for Imbalanced Datasets
	6.9 Model Validation: Modeling, Training, Test, and ExternalEvaluation Sets
	6.10 Division of a Modeling Set Into Trainingand Test Sets. External Evaluation Sets
	6.11 Conclusions
	References

	Chapter 7: Predictive Quantitative Structure–Activity Relationships Modeling: Development and Validation of QSAR Models
	7.1 Introduction: Combinatorial QSAR Modeling
	7.2 Target Functions Used in Optimization Procedures and Validation Criteria of QSAR Models
	7.3 Validation of QSAR Models:Y-Randomization
	7.4 Validation of QSAR Models: Training and Test Set Resampling. Stability of QSAR Models
	7.5 Applicability Domains of QSAR Models
	7.6 Consensus Prediction
	7.7 Concluding Remarks
	References

	Chapter 8: Structure Enumeration and Sampling
	8.1 Isomer Counting
	8.1.1 Counting Permutational Isomers
	8.1.2 Counting Isomers of Acyclic Structures and Other Compound Classes

	8.2 Isomer Enumeration: Deterministic Structure Generation
	8.2.1 Early Cyclic and Acyclic Structure Generators
	8.2.1.1 Acyclic Structure Generators
	8.2.1.2 Cyclic Structure Generator

	8.2.2 Orderly Generation
	8.2.2.1 Enumerating Labeled Graphs
	8.2.2.2 Enumerating Unlabeled Graphs
	8.2.2.3 Introducing Constraints
	8.2.2.4 Variations and Refinements
	8.2.2.5 From Simple Graphs to Molecular Graphs

	8.2.3 Beyond Orderly Generation

	8.3 Isomer Sampling: Stochastic Structure Generation
	8.3.1 Uniformly Distributed Random Sampling
	8.3.2 Monte Carlo and Simulated Annealing
	8.3.3 Genetic Algorithms

	8.4 Beyond Isomer Enumeration
	8.4.1 Virtual Chemical Space
	8.4.2 Combinatorial Libraries
	8.4.2.1 Counting Combinatorial Libraries
	8.4.2.2 Generating Combinatorial Libraries

	Acknowledgment
	References

	Chapter 9: Computer-Aided Molecular Design: Inverse Design
	9.1 Introduction
	9.2 CAMD and Quantitative Structure–Activity Relationship(QSAR)/Inverse-QSAR (iQSAR)
	9.2.1 QSAR
	9.2.2 The Origins of CAMD
	9.2.3 Inverse QSAR

	9.3 General Features of CAMD
	9.4 Generate and Test Approach of Gani and Coworkers
	9.4.1 Hybrid-CAMD
	9.4.1.1 Predesign Phase
	9.4.1.2 Design Phase
	9.4.1.3 Postdesign Phase

	9.4.2 Case Study: Chemical Process Industry Application
	9.4.3 Case Study: Bio-Related Application

	9.5 CAMD as Optimization
	9.5.1 Mixed-Integer Linear Programming Algorithm for CAMD
	9.5.1.1 Molecular Representation
	9.5.1.2 Constraint Equations
	9.5.1.3 Case Study
	9.5.1.4 Case Study: Bio-Related Application

	9.5.2 CAMD Using Signature
	9.5.2.1 What Is Signature?
	9.5.2.2 Inverse Design Algorithm Using Signature
	9.5.2.3 Case Study: Chemical Process Industry Application
	9.5.2.4 Case Study: Bio-Related Application

	9.6 Concluding Remarks
	References

	Chapter 10: Computer-Aided Molecular Design De Novo Design
	10.1 Introduction
	10.2 Historical Approaches to De Novo Design
	10.2.1 Identify Interaction Sites
	10.2.2 Molecule Building Blocks
	10.2.3 Structure Generation and Search Strategies
	10.2.4 Structure Evaluation
	10.2.5 Synthetic Accessibility and ADMET

	10.3 Common Algorithms in De Novo Structure Generation
	10.3.1 Grow
	10.3.1.1 Programs in Current Use that Implement Grow
	10.3.1.2 Advantages, Limitations, and ComputationalComplexity?

	10.3.2 Fragment-Link
	10.3.2.1 Programs in Current Use that ImplementFragment-Link
	10.3.2.2 Advantages, Limitations, and ComputationalComplexity?

	10.3.3 Sampling Strategies with EAs
	10.3.3.1 Programs in Current Use that Implement SamplingStrategies
	10.3.3.2 Advantages, Limitations, and ComputationalComplexity?

	10.4 Summary
	References

	Chapter 11: Reaction NetworkGeneration
	11.1 Introduction
	11.2 The Challenges of Generating Networks
	11.3 Representation of Chemical Reactions
	11.3.1 Representation Based on Reaction Centers
	11.3.2 Bond–Electron Matrices
	11.3.3 Representation Based on Fingerprints

	11.4 Network Kinetics
	11.4.1 Estimating Reaction Rates
	11.4.2 Simulating Network Kinetics

	11.5 Reaction Network Generation Algorithm
	11.6 Reaction Network Sampling Algorithm
	11.6.1 Concentration-Sampling Network-Generator Algorithm
	11.6.2 MC-Sampling-Network-Generator Algorithm
	11.6.3 SMS Algorithm

	11.7 Concluding Remarks
	References

	Chapter 12: Open Source Chemoinformatics Software and Database Technologies
	12.1 Introduction
	12.2 Why Open Source?
	12.3 The Chemoinformatics Software Stack
	12.4 Toolkits
	12.4.1 Chemistry Development Kit
	12.4.2 OpenBabel
	12.4.3 RDKit

	12.5 Database Technologies
	12.5.1 Cartridges
	12.5.2 Indexing Chemical Information

	12.6 Workflow Environments
	12.7 Conclusions
	References

	Chapter 13: Sequence Alignment Algorithms: Applications to Glycans and Trees and Tree-Like Structures
	13.1 Introduction
	13.2 Tree Edit Distance and Tree Alignment
	13.3 Glycan Structures
	13.4 Basic Algorithms
	13.4.1 MCST Algorithm
	13.4.2 Global and Local Sequence Alignment

	13.5 KCaM Algorithms
	13.5.1 Global Glycan Alignment
	13.5.2 Local Glycan Alignment
	13.5.3 Exact Matching Algorithms

	13.6 Pseudocode
	13.6.1 Code for Global Glycan Alignment
	13.6.2 Modification for Local Glycan Alignment

	13.7 Illustrative Example
	13.8 KCaMWeb Server
	13.9 Concluding Remarks
	References

	Chapter 14: Machine Learning–Based Bioinformatics Algorithms Application to Chemicals
	14.1 Applications of Clustering
	14.1.1 Applications in Bioinformatics
	14.1.2 Applications in Chemoinformatics
	14.1.3 Comparisons

	14.2 Applications of Classification and Regression
	14.2.1 Applications in Bioinformatics
	14.2.2 Applications in Chemoinformatics
	14.2.3 Comparisons

	References

	Chapter 15: Using Systems Biology Techniques to Determine MetabolicFluxes and Metabolite Pool Sizes
	15.1 Introduction
	15.2 Isotopomer Modeling Methods
	15.2.1 Isotopomer Mapping Matrices
	15.2.2 Bionetgen Language (BNGL)-Encoded Atom Fate Maps

	15.3 A Simple Example
	15.3.1 Carbon Fate Maps and Isotopomer Balance Equations
	15.3.2 IMM-Based Approach
	15.3.3 BNGL/BioNetGen-Based Approach

	15.4 Detailed Example of the BNGL/BioNetGen-Based Approach for theCalvin Cycle
	15.5 Discussion and Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

