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Preface

The field of handling chemical information electronically—known as Chemoinfor-
matics or Cheminformatics—has received a boost in recent decades, in line with the
advent of tremendous computer power. Originating in the 1960s in both academic and
industrial settings (and termed by its current name only from around 1998), chemoin-
formatics applications are today commonplace in every pharmaceutical company.
Also, various academic laboratories in Europe, the United States, and Asia confer
both undergraduate and graduate degrees in the field.

Butstill, there is along way to go. While resembling its sibling, bioinformatics, both
by name and also (partially) algorithmically, the chemoinformatics field developed
in a very different manner right from the onset. While large amounts of biological
information—sequence information, structural information, and more recently also
phenotypic information such as metabolomics data—found their way straight into the
public domain, large-scale chemical information was until very recently the domain
of private companies. Hence, public tools to handle chemical structures were scarce
for a very long time, while essential bioinformatics tools such as those for aligning
sequences or viewing protein structures were available at no cost to anyone interested
in the area. More recently—Iluckily—this situation changed significantly, with major
life science data providers such as the NCBI, the EBI, and many others also making
large-scale chemical data publicly available.

However, there is another aspect, apart from the actual data, that is crucial for
a scientific field to flourish—and that is the proper documentation of techniques
and methods, and, in the case of informatics sciences, the proper documentation
of algorithms. In the bioinformatics field, and in line with a tremendous amount
of open access data and tools available, algorithms were documented extensively
in reference books. In the chemoinformatics field, however, a book of this type is
missing until now. This is what the editors, with the help of expert contributors in the
field, are attempting to remedy—to provide an overview of some of the most common
chemoinformatics algorithms in a single place.

The book is divided into 15 chapters. Chapter 1 presents a historical perspective of
the applications of algorithms and graph theory to chemical problems. Algorithms to
store and retrieve two-dimensional chemical structures are presented in Chapter 2, and
three-dimensional representations of chemicals are discussed in Chapter 3. Molecular
descriptors, which are widely used in virtual screening and structure—activity/property
predictions, are presented in Chapter 4. Chapter 5 presents virtual screening methods
from a ligand perspective and from a structure perspective including docking meth-
ods. Chapters 6 and 7 are dedicated to quantitative structure—activity relationships
(QSAR). QSAR modeling workflow and methods to prepare the data are presented
in Chapter 6, while the development and validation of QSAR models are discussed
in Chapter 7. Chapter 8 introduces algorithms to enumerate and sample chemical
structures, with applications in combinatorial libraries design. Chapters 9 and 10 are

vii



viii Preface

dedicated to computer-aided molecular design: from a ligand perspective in Chap-
ter 9, where inverse-QSAR methods are reviewed, and from a structure perspective
in Chapter 10, where de novo design algorithms are presented. Chapter 11 covers
reaction network generation, with applications in synthesis design and biological net-
work inference. Closing the strictly chemoinformatics chapters, Chapter 12 provides a
review of Open Source software and database technologies dedicated to the field. The
remaining chapters (13-15) present techniques developed in the context of bioin-
formatics and computational biology and their potential applications to chemical
problems. Chapter 13 discusses possible applications of sequence alignment algo-
rithms to tree-like structures such as glycans. Chapter 14 presents classical machine
learning algorithms that can be used for both bioinformatics and chemoinformatics
problems. Chapter 15 introduces a systems biology approach to study the kinetics of
metabolic networks.

While our book covers many aspects of chemoinformatics, our attempt is
ambitious—and it is probably impossible to provide a complete overview of “all”
chemoinformatics algorithms in one place. Hence, in this work we present a selection
of algorithms from the areas the editors deemed most relevant in practice and hope
that this work will be helpful as a reference work for people working in the field.

MATLAB® and Simulink® are registered trademarks of The Math Works, Inc. For
product information, please contact:

The Math Works, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098, USA

Tel: 508 647 7000

Fax: 508-647-7001

E-mail: info@mathworks.com

Web: www.mathworks.com

Jean-Loup Faulon, Paris, France
Andreas Bender, Leiden, the Netherlands
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2 Handbook of Chemoinformatics Algorithms

1.1 INTRODUCTION

Graphs are used as an efficient abstraction and approximation for diverse chemical
systems, such as chemical compounds, ensembles of molecules, molecular fragments,
polymers, chemical reactions, reaction mechanisms, and isomerization pathways.
Obviously, the complexity of chemical systems is significantly reduced whenever
they are modeled as graphs. For example, when a chemical compound is represented
as a molecular graph, the geometry information is neglected, and only the atom con-
nectivity information is retained. In order to be valuable, the graph representation of
a chemical system must retain all important features of the investigated system and
has to offer qualitative or quantitative conclusions in agreement with those provided
by more sophisticated methods. All chemical systems that are successfully modeled
as graphs have a common characteristic, namely they are composed of elements that
interact between them, and these interactions are instrumental in explaining a property
of interest of that chemical system. The elements in a system are represented as graph
vertices, and the interactions between these elements are represented as graph edges.
In a chemical graph, vertices may represent various elements of a chemical system,
such as atomic or molecular orbitals, electrons, atoms, groups of atoms, molecules,
and isomers. The interaction between these elements, which are represented as graph
edges, may be chemical bonds, nonbonded interactions, reaction steps, formal con-
nections between groups of atoms, or formal transformations of functional groups.
The chapter continues with an overview of elements of graph theory that are impor-
tant in chemoinformatics and in depicting two-dimensional (2D) chemical structures.
Section 1.3 presents the most important types of chemical and molecular graphs,
and Section 1.4 reviews the representation of molecules containing heteroatoms and
multiple bonds with weighted graphs and molecular matrices.

1.2 ELEMENTS OF GRAPH THEORY

This section presents the basic definitions, notations, and examples of graph theory
relevant to chemoinformatics. Graph theory applications in physics, electronics,
chemistry, biology, medicinal chemistry, economics, or information sciences are
mainly the effect of the seminal book Graph Theory of Harary [1]. Several other books
represent essential readings for an in-depth overview of the theoretical basis of graph
theory: Graphs and Hypergraphs by Berge [2]; Graphs and Digraphs by Behzad,
Chartrand, and Lesniak-Foster [3]; Distance in Graphs by Buckley and Harary [4];
Graph Theory Applications by Foulds [5]; Introduction to Graph Theory by West [6];
Graph Theory by Diestel [7]; and Topics in Algebraic Graph Theory by Beineke and
Wilson [8]. The spectral theory of graphs investigates the properties of the spectra
(eigenvalues) of graph matrices, and has applications in complex networks, spectral
embedding of multivariate data, graph drawing, calculation of topological indices,
topological quantum chemistry, and aromaticity. The major textbook in the spectral
theory of graphs is Spectra of Graphs. Theory and Applications by Cvetkovié, Doob,
and Sachs [9]. An influential book on graph spectra applications in the quantum chem-
istry of conjugated systems and aromaticity is Topological Approach to the Chemistry
of Conjugated Molecules by Graovac, Gutman, and Trinajsti¢ [10]. Advanced topics
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of topological aromaticity are treated in Kekulé Structures in Benzenoid Hydrocarbons
by Cyvin and Gutman [11]; Introduction to the Theory of Benzenoid Hydrocarbons
by Gutman and Cyvin [12]; Advances in the Theory of Benzenoid Hydrocarbons by
Gutman and Cyvin [13]; Theory of Coronoid Hydrocarbons by Cyvin, Brunvoll, and
Cyvin [14]; and Molecular Orbital Calculations Using Chemical Graph Theory by
Dias [15]. The graph theoretical foundation for the enumeration of chemical isomers
is presented in several books: Graphical Enumeration by Harary and Palmer [16];
Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds by Pélya
and Read [17]; and Symmetry and Combinatorial Enumeration in Chemistry by Fujita
[18]. A comprehensive history of graph theory can be found in the book Graph Theory
1736-1936 by Biggs, Lloyd, and Wilson [19].

The first edited book on chemical graphs is Chemical Applications of Graph Theory
by Balaban [20]. Several comprehensive textbooks on chemical graphs are available,
such as Chemical Graph Theory by Trinajsti¢ [21], Mathematical Concepts in Organic
Chemistry by Gutman and Polansky [22], and Handbook of Chemoinformatics by
Gasteiger [23]. Applications of topological indices in quantitative structure—activity
relationships (QSAR) are presented in Molecular Connectivity in Chemistry and Drug
Research by Kier and Hall [24], Molecular Connectivity in Structure—Activity Analysis
by Kier and Hall [25], Molecular Structure Description. The Electrotopological State
by Kier and Hall [26], Information Theoretic Indices for Characterization of Chemical
Structure by Bonchev [27], and Topological Indices and Related Descriptors in QSAR
and QSPR by Devillers and Balaban [28]. A comprehensive text on reaction graphs is
Chemical Reaction Networks. A Graph-Theoretical Approach by Temkin, Zeigarnik,
and Bonchev [29], and a graph-theoretical approach to organic reactions is detailed in
Synthon Model of Organic Chemistry and Synthesis Design by Koca et al. [30]. Graph
algorithms for drug design are presented in Logical and Combinatorial Algorithms
for Drug Design by Golender and Rozenblit [31]. Graph theory concepts relevant to
chemoinformatics are introduced in this section, together with examples of graphs
and graph matrices.

1.2.1 GRAPHS

A graph G(V,E) is an ordered pair consisting of a vertex set V(G) and an edge set
E(G). Each element {i, j} € E (where i, j € V) is said to be an edge joining vertices
i and j. Because each edge is defined by an unordered pair of vertices from V, the
edge from vertex i to vertex j is identical with the edge from vertex j to vertex I,
{i,j} = {J,i}. The number of vertices N defines the order of the graph and is equal to
the number of elements in V(G), N = |V (G)|, and the number of edges M is equal to
the number of elements in E(G), M = |E(G)|. Several examples of graphs relevant
to chemistry are shown in Graphs 1.1 through 1.5.

Vertices and edges in a graph may be labeled. A vertex with the label i is indicated
here as v;. An edge may be denoted by indicating the two vertices that define that edge.
For example, the edge connecting vertices v; and v; may be denoted by e, e;j, {i,J},
or v;v;. Usually, graph vertices are labeled from 1 to N, V(G) = {vy,v2,..., vy}, and
graph edges are labeled from 1 to M, E(G) = {ey, ez, ..., ep}. There is no special rule
in labeling graphs, and a graph with N vertices may be labeled in N! different ways.
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A graph invariant is a number, sequence of numbers, or matrix computed from the
graph topology (information contained in the V and E sets) that is not dependent on the
graph labeling (the graph invariant has the same value for all N! different labelings of
the graph). Two obvious graph invariants are the number of vertices N and the number
of edges M. Other invariants of molecular graphs are topological indices, which are
used as structural descriptors in quantitative structure—property relationships (QSPR),
QSAR, and virtual screening of chemical libraries (cf. Chapters 4 and 5).

Graphs that have no more than one edge joining any pair of vertices are also called
simple graphs. A multigraph is a graph in which two vertices may be connected by
more than one edge. A multiedge of multiplicity m is a set of m edges that connects
the same pair of distinct vertices. A loop e;; € E is an edge joining a vertex v; with
itself. A loopgraph is a graph containing one or more vertices with loops.

Simple graphs cannot capture the complexity of real life systems, such as electrical
circuits, transportation networks, production planning, kinetic networks, metabolic
networks, or chemical structures. In such cases it is convenient to attach weights to
vertices or loops, weights that may represent current intensity, voltage, distance, time,
material flux, reaction rate, bond type, or atom type. A graph G(V, E, w) is a weighted
graph if there exists a function w : E — R (where R is the set of real numbers), which
assigns areal number, called weight, to each edge of E. Graph 1.6 has all edge weights
equal to 2, whereas in Graph 1.7 the edge weights alternate between 1 and 2. In the
loopgraph 1.8 all edges have the weight 1 and the loop has the weight 2. Alkanes
and cycloalkanes are represented as molecular graphs with all edges having a weight
equal to 1, whereas chemical compounds containing heteroatoms or multiple bonds
are represented as vertex- or edge-weighted molecular graphs. Section 1.4 reviews in
detail the representation of chemical compounds with weighted graphs.
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In many graph models, such as those of kinetic, metabolic, or electrical networks,
it is useful to give each edge a direction or orientation. The graphs used to model
such oriented systems are termed directed graphs or digraphs. A graph D(V, A) is an
ordered pair consisting of two sets V(D) and A(D), where the vertex set V is finite
and nonempty and the arc set A is a set of ordered pairs of distinct elements from V.
Graphs 1.9 through 1.12 are several examples of digraphs. A comprehensive overview
of reaction graphs is presented by Balaban [32], and graph models for networks of
chemical reactions are reviewed by Temkin et al. [29].

A

Y

1.2.2 ADJACENCY, WALKS, PATHS, AND DISTANCES

Two vertices v; and v; of a graph G are adjacent (or neighbors) if there is an edge ¢;;
joining them. The two adjacent vertices v; and v; are said to be incident to the edge
e;;. The neighborhood of a vertex v; is represented by the set of all vertices adjacent
to v;. Two distinct edges of G are adjacent if they have a vertex in common.

The degree of a vertex v;, denoted by deg;, is equal to the number of vertices
adjacent to vertex v;. The set of degree values for all vertices in a graph gives
the vector Deg(G) whose ith element represents the degree of the vertex v;. In a
weighted graph G(V, E, w), the valency of a vertex v;, val(w, G);, is defined as
the sum of the weights of all edges e; incident with vertex v; [33,34]. The set of
valencies for all vertices in a graph forms the vector Val(w, G) whose ith element
represents the valency of the vertex v;. From the definition of degree and valency
it is obvious that in simple, nonweighted graphs, the degree of a vertex v;, deg;,
is identical to the valency of that vertex, val;. Consider the simple labeled graph
1.13. A simple count of the neighbors for each vertex in 1.13 gives the degree vec-
tor Deg(1.13) = {2,2,3,2,2,3,2}. The second example considers a weighted graph
with the labeling given in Graph 1.14 and with the edge weights indicated in 1.15.
The degree vector of 1.14 is Deg(1.14) = {2,3,2,3,2,2,3,2, 3,2}, and the valency
vector is Val(1.14) = {1.5,4,3,4,1.5,1.5,4,3,4, 1.5}. Both degree and valency are
graph invariants, because their numerical values are independent of the graph
labeling.

8
5 A 6 7 9 10 1 2 Ty
1
4 2 1 1
2 3 2 1
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A walk W in a graph G is a sequence of vertices and edges W(G) = {vg, €up, Vb,
by Vs €cds Vds €des Ves - -+ » Vis €ijs Vjy -+, Umsy €, Uy} beginning and ending with ver-
tices, in which two consecutive vertices v; and v; are adjacent, and each edge e;; is
incident with the two vertices v; and v; preceding and following it, respectively. A
walk may also be defined as a sequence of vertices W(G) = {vg, vp, . . ., Uy} in which
two consecutive vertices v; and v; 4 are adjacent. Similarly, a walk may be defined
as a sequence of edges W(G) = {eup, €pc, - - - » €mn} in Which two consecutive edges
ejj and ej are adjacent. In a walk any edge of the graph may appear more than once.
The length of a walk is equal to the total number of edges that define the walk. A walk
in which the initial and the terminal vertices coincide is called a closed walk. A walk
in which the initial and the terminal vertices are different is called an open walk. A
trail is a walk in which no edge is repeated. A certain vertex may appear more than
once in a trail, if the trail intersects itself. A path P is a walk in which all vertices (and
thus necessarily all edges) are distinct. The length of a path in a graph is equal to the
number of edges along the path.

A graph cycle or circuit is a closed walk in which all vertices are distinct,
with the exception of the initial and terminal vertices that coincide. In Graph 1.16
there are three cycles: C(1.16) = {v, vz, vs5, v}, with length three; C»(1.16) =
{v1, v2, v3, V4, Vs, V1 }, with length five; and C3(1.16) = {vy, v3, v4, V5, V2 }, with length
four. In Graph 1.17 there are three cycles of length five: C(1.17) = {vy, v2, vs, v,
v3, v1}, Co(1.17) = {v2, vy, v7, V3, Vs, V2}, and C3(1.17) = {v7, v, V11, V10, V8, V7}.

The cyclomatic number . represents the number of cycles in the graph, p = M —
N + 1. For Graph 1.16 we have i (1.16) = 6 — 5 + 1 = 2, for Graph 1.17 we have
n(@.17) =13 — 11 4+ 1 = 3, and for Graph 1.18 we have p(1.18) =6 -6+ 1 = 1.

In a simple (nonweighted) connected graph, the graph distance d;; between a pair
of vertices v; and v; is equal to the length of the shortest path connecting the two
vertices (i.e., the number of edges of the shortest path). The distance between two
adjacent vertices is 1. The graph distance satisfies the properties of a metric:

a. The distance from a vertex v; to itself is zero:
di; =0, forallv; € V(G). (1.1)
b. The distance between two distinct vertices v; and v; is larger than O:

dij >0, forall v;,vj € V(G). (1.2)
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c. The distance between two distinct vertices v; and vj is equal to the distance
on the inverse path, from v; and v;:

dij =dj;, forallv;,v; € V(G). (1.3)
d. The graph distance satisfies the triangle inequality:
dix +dij = d;j, for all v;, vj, v € V(G). (1.4)

The eccentricity ecc(v;) of a vertex v; is the maximum distance from the vertex v;
to any other vertex v; in graph G, that is, max [35] for all v; € V(G). The diameter
diam(G) of a graph G is the maximum eccentricity. If the graph G has cycles, then
the girth of G is the length of a shortest cycle, and the circumference is the length of
a longest cycle.

A graph G may be transformed into a series of subgraphs of G by deleting one or
more of its vertices, or by deleting one or more of its edges. If V(G’) is a subset of V(G),
V(G') € V(G), and E(G) is a subset of E(G), E(G') C E(G), then the subgraph
G = (V(G), E(G)) is a subgraph of the graph G = (V(G), E(G)). A subgraph
G — v; is obtained by deleting from G the vertex v; and all its incident edges. A
subgraph G — e;; is obtained by deleting from G the edge e;;. Graph 1.19 has four
subgraphs of the type G — v;, 1.20 through 1.23, which are obtained by deleting, in
turn, one vertex and all its incident edges from Graph 1.19.

3E|4 3,74 3 4 4 3
2 1 2 21 2/|1 2|l1

1.19 1.20 1.21 1.22 1.23

1.2.3 SpeciaL GRAPHS

A tree, or an acyclic graph, is a connected graph that has no cycles (the cyclomatic
number . = 0). Alternative definitions for a tree are the following: a tree is a connected
graph with N vertices and N —1 edges; a tree is a graph with no cycles, N vertices, and
N—1 edges. A graph that contains as components only trees is a forest. A k-tree is a
tree with the maximum degree k. Alkanes are usually represented as 4-trees. A rooted
tree is a tree in which one vertex (the root vertex) is distinct from the other ones.

A graph with the property that every vertex has the same degree is called a reg-
ular graph. A graph G is called a k-regular graph or a regular graph of degree k
if every vertex from G has the degree k. A ring Ry with N vertices is a 2-regular
graph with N vertices, that is, a graph with all vertices of degree 2. The cycloalkanes
cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, and cyclooc-
tane are examples of 2-regular graphs. The 3-regular graphs, or cubic graphs, 1.24
through 1.27, represent as molecular graphs the polycyclic hydrocarbons triprismane,
tetraprismane (cubane), pentaprismane, and hexaprismane, respectively. Fullerenes
are also represented as cubic graphs.
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A\

1.24 1.25 1.26 1.27

1.2.4 GRAPH MATRICES

A graph is completely determined by indicating its adjacency relationships or its inci-
dence relationships. However, the algebraic properties of graphs are easier studied
by representing a graph as a matrix, such as adjacency matrix, incidence matrix,
cycle matrix, path matrix, Laplacian matrix, distance matrix, and detour matrix.
Graph matrices of chemical systems are used to investigate the spectral properties
of molecular graphs [9], to apply the Hiickel molecular orbitals method to conjugated
molecules [10], to compute various topological indices for QSAR models [36,37],
and to study the topology of biological networks [38]. In presenting graph matrices
we consider only labeled, connected, simple graphs.

1.2.4.1 Adjacency Matrix

The adjacency matrix A(G) of a vertex labeled graph G with N vertices is a square
N x N symmetric matrix in which [A]; = 1 if vertex v; is adjacent to vertex v; and
[A];; = O otherwise. The adjacency matrix is symmetric, with all elements on the
main diagonal equal to zero. The sum of entries over row i or column i in A(G) is the
degree of vertex v;, deg;. As an example we consider Graph 1.28 labeled from 1 to 8
and its adjacency matrix A(1.28).

2
8 4 >
7
5 6
1.28

1 2 3 4 5 6 7 8
1Jj0 1.0 0 0 0 O O
211 0 1 0 0 O O O
3]0 1.0 1 0 O 1 O
410 0 1 0 1 O 1 1
AQ1-28) = 510 0 0 1 01 0 O
610 0 0 0 1 0 1 O
710 0 1.1 0 1 0 O
810 0 0 1 0 O O O
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From the definition of the adjacency matrix, it follows that if [A];; = 1 then there
is a walk of length one between vertices v; and v;. Higher powers of the adjacency
matrix can be used to count the number of closed or open walks of a certain length
between two vertices. The element [Ak],-j of the kth power of the adjacency matrix
A is the number of walks of length k between vertices v; and v; [1]. If i = j then
the element [AX]; is the number of closed walks of length k that start and end at
the same vertex v;. Similarly, when i # j, the element [Ak]ij is the number of open
walks of length k starting from vertex v; and ending at vertex v;. Because the kth
power of the adjacency matrix is symmetric, it follows that the number of walks of
length k from v; to v; is equal to the number of walks of length k from vj to v;, that
is, [AX] i = [AK] - A¥ matrices can also be used to determine the distances between
vertices in simple graphs. If in a sequence of A¥ matrices all elements [AF~1] i=0
and [Ak],-j # 0, it follows that the distance between vertices v; and v; is k (the two
vertices are separated by k edges). A general procedure for computing graph distances,
which can be applied to general graphs, is presented in the section on the distance
matrix.

Randi¢ suggested the use of the closed walk counts of different lengths origi-
nating from a vertex to describe the environment of that vertex [39]. He defined
the closed walk atomic code of the vertex v;, CWAC;, as the sequence {[Al],-i,
[A2]ii, e, [Ak]i,-, LAY Jii}. The count of closed walks is also related to the graph
spectrum and spectral moments. The complete set of graph eigenvalues x1, x, . . ., xn
of the adjacency matrix A(G) forms the spectrum of a graph G, Sp(A,G) = {x;,
i=1,2,...,N}. The kth spectral moment of A(G), SM(A, G);, is defined as the
sum of the kth power of Sp(A, G). Finally, the sum of the diagonal elements of A*
(the trace of the kth power of the adjacency matrix which is equal to the count of
closed walks of length k) equals SM(A, G)k. Spectral moments represent a powerful
theoretical tool in correlating structural features with various properties of chemical
systems. Burdett used spectral moments to estimate the electronic properties of solids
[40,41]. Spectral moments of conjugated compounds are correlated with the presence
of certain subgraphs [42—44], thus making possible the calculation of the resonance
energy per electron (REPE) from subgraph contributions [42]. A similar approach was
proposed by Schmalz, Zivkovié, and Klein for the decomposition of the m-electron
energy of conjugated acyclic hydrocarbons in terms of various substructures [45].

1.2.4.2 Laplacian Matrix

Consider a simple graph G with N vertices and M edges, and its adjacency matrix
A(G). We define the diagonal matrix DEG(G) with the diagonal elements [DEG];; =
deg; (the degree of vertex v;) and with the nondiagonal elements [DEG];; = 0, i # j.
The Laplacian matrix of the simple graph G, L(G), is the difference between DEG
and A [46-48]:

L(G) = DEG(G) —A(G). (1.5)
The most significant chemoinformatics applications of the Laplacian matrix are in

computing topological indices [48,49], defining the resistance distance matrix [50],
and interpolating QSAR models based on molecular networks [51-54].
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1.2.4.3 Distance Matrix

The distance matrix D(G) of a simple graph G with N vertices is a square N x N
symmetric matrix in which [D]; = dj;, where dj; is the distance between vertices v;
and vj, that is, the length of the shortest path that connects vertices v; and v; [1,4].
The distance matrix is symmetric, with all elements on the main diagonal equal to
zero. Applications of the distance matrix to chemical graphs may be found in several
reviews [37,55]. As an example we consider Graph 1.29 labeled from 1 to 9 and its
distance matrix D(1.29).

D(1.29) =

N WPk WQNODRLO—=ND W
DWW~ O =N WA
— NN = O = NN W W
NN = O =D WWwhk
N — O = NWh WA
—_— O = NN W WD W
O = NN =N =N\

2
1
0
1
2
2
3
3
2
1

Nl BEN Be SR N S
N WA PBAWWND—O —

In a simple graph, the distances between one vertex and all other vertices may
be computed with the algorithm proposed by Dijkstra [35], which may also be
applied to graphs with non-negative edge weights. Unlike the Dijkstra algorithm,
the Floyd—Warshall algorithm [56,57] may be applied to graphs that have some edges
with negative weights, as long as all cycle weights are non-negative.

ALGORITHM 1.1 FLOYD-WARSHALL

01. Consider the |abel ed, weighted graph Gwith N
vertices, Medges, the vertex set V(G, the edge
set E(G, and with a weight w; for each edge ej; € E(G.
02. Define the cost matrix 1Co=1Co(G of the
| abel ed graph G as the square Nx N symetric matri X
in which [1Coli; =0,[*Colij =wj if
eij € EG, and [100]11‘ =00 ot herw se.
03. For each ke{l,2,...,N} do
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04. For each i €{1,2,...,N} do
05. For each j €{1,2,...,N} do
06. Update the cost matrix KCo:
[Colij = min{[K~1Colij,[*"1Colk + [*~1Coly; }
07. End do
08. D=Nco

Step 06 in the Floyd—Warshall algorithm is based on the triangle inequality men-
tioned in Equation 1.4. If a graph contains cycles with negative weights, then the cost
matrix Co has some negative numbers on the main diagonal. If Co;; < 0, then the ver-
tex v; belongs to at least one cycle with negative weight. The distance matrix is used
to compute many important topological indices, such as Wiener index W [58], Bala-
ban index J [59,60], Kier—Hall electrotopological indices [26,61], information theory
indices [62], and molecular path code indices [63]. The distance matrix is the source
of several molecular matrices [37,64], namely the reciprocal distance matrix [65],
the distance-valency matrix [33], the distance complement matrix [66], the reverse
Wiener matrix [67], the distance-path matrix [68,69], and the Szeged matrix [70,71].
These distance-related molecular matrices are used to compute topological indices
and related graph descriptors for QSPR and QSAR.

1.3 CHEMICAL AND MOLECULAR GRAPHS

Chemical compounds are usually represented as molecular graphs, that is, nondi-
rected, connected graphs in which vertices correspond to atoms and edges represent
covalent bonds between atoms. The molecular graph model of the chemical structure
emphasizes the chemical bonding pattern of atoms, whereas the molecular geometry
is neglected. Among other applications, molecular graphs are used in chemoinformat-
ics systems, chemical databases, design of combinatorial libraries, reaction databases,
computer-assisted structure elucidation, molecular design of novel chemicals, and
computer-assisted organic synthesis. Molecular graphs are the basis for computing
the structural descriptors used in QSPR and QSAR models to predict physical, chem-
ical, biological, or toxicological properties. The molecular graph representation of
chemical structure reflects mainly the connectivity of the atoms and is less suitable
for modeling those properties that are determined mostly by molecular geometry,
conformation, or stereochemistry.

1.3.1 MoLecULAR GRAPHS

A chemical structure may be represented by a large number of different molecular
graphs, depending on the translation rules for depicting atoms and chemical bonds.
The translation rules, that is, “atom — vertex” and “bond — edge,” should preserve
the features of the molecular structure that are relevant for the scope of the modeling,
for example, database search, reaction representation, molecular design, or property
prediction. Cayley introduced the concept of molecular graphs in 1874, as “plero-
grams” and “kenograms,” in which graph edges correspond to covalent bonds [72]. In
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aplerogram all atoms (including hydrogen atoms) are represented as vertices, whereas
in a kenogram only non-hydrogen atoms are represented, because the hydrogen atoms
can be reconstructed from the skeleton of a molecule. In modern terminology a plero-
gram is a hydrogen-included molecular graph, and a kenogram is a hydrogen-excluded
molecular graph (called also hydrogen-depleted or hydrogen-suppressed molecular
graph).

Using different rules for converting a chemical structure into a molecular graph,
methylcyclopropane can be represented by Graphs 1.30, 1.31, and 1.32. Graph 1.30 is
ahydrogen-included molecular graph with labeled vertices, Graph 1.31 is a hydrogen-
included molecular graph in which hydrogen and carbon atoms are not differentiated,
and Graph 1.32 is a hydrogen-excluded molecular graph.

H

H— c—H
H|
C
H\C/_\C/H
Ho Y
1.30 1.31 1.32

The usual graph representation of an organic chemical compound is as a nondi-
rected, connected multigraph in which vertices correspond to non-hydrogen atoms
and edges represent covalent bonds between non-hydrogen atoms. For hydrocarbons,
the vertices in the molecular graph represent carbon atoms. Using this convention,
alkanes are represented as 4-trees, that is, acyclic graphs with the maximum degree 4.
Several studies compared structural descriptors (topological indices) computed from
hydrogen-included and hydrogen-excluded molecular graphs of alkanes, and found
that the topological indices are correlated [73,74]. These results support the prepon-
derant use of hydrogen-excluded molecular graphs. To accommodate the presence of
heteroatoms, a molecular graph has vertex labels corresponding to the atomic sym-
bol of the heteroatoms, as shown for 2-methyl-1-bromobutane 1.33 (molecular graph
1.34) and for ethyl fert-butyl ether 1.35 (molecular graph 1.36).

CHs

|
C||-|3 \)\/ CH3_CH2_O_ f_CHS
CHy— CHy— CH — CHy— Br Br CH,

1.33 1.34 1.35

A<

1.36
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Multiple bonds are represented as multiedges, as shown for 1,4-dibromo-2-butene
1.37 (molecular graph 1.38). Conjugated systems may be represented with the usual
pattern of alternating double and single bonds, or with two lines, one continuous and
the second broken, as shown for the aromatic system of benzyl chloride 1.39 (molecu-
lar graph 1.40). The differences between these two representations of conjugated sys-
tems are significant when computing topological indices that have special parameters
for aromatic bonds, and in chemical database registration, search, and retrieval.

a
CH,Cl

CHa— = 1 —Cry O
Br Br Br/\/\/ Br

1.37 1.38 1.39 1.40

1.3.2 MOLECULAR PSEUDOGRAPH

There are a multitude of molecular graph models, each one developed with a specific
set of rules, and fit for particular applications, such as structure elucidation, chemical
synthesis design, or structure—property relationships. Koca et al. defined a mathe-
matical model of organic synthesis design based on the graph theory formalism [30].
In this model, a chemical compound is represented by a molecular pseudograph (or
general graph, containing multiedges and loops) G(V, E, L, ¢, v), where V is a vertex
set, E is an edge set, L is a loop set, and ¢ is a mapping of the vertex set into the
vocabulary v of vertex labels. A single bond is represented by an edge, a double bond
is represented by a multiedge of double multiplicity, and a triple bond is represented
by a multiedge of triple multiplicity. A pair of free, unshared valence electrons of an
atom is represented as a loop. Nitrogen is represented by a vertex with a loop, oxygen
is represented by a vertex with two loops, whereas a halogen atom is represented by a
vertex with three loops, as shown for 2-bromopropanoic acid 1.41 (molecular graph
1.42) and for morpholine 1.43 (molecular graph 1.44).

1.3.3 MotLecutArR GRAPH OF ATOMIC ORBITALS

Toropov introduced the molecular graph of atomic orbitals (GAO) as a source of
structural descriptors for QSPR and QSAR [75-77]. GAO is based on the hydrogen-
included molecular graphs, in which each atom is substituted by the corresponding set

0
CH;— ClH—COOH E j
NH

Br
1.41 1.42 1.43 1.44
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of atomic orbitals: H, 1s!; C, 1s2, 252, 2p%; N, 1s2, 252, 2p>; O, 1s2, 252, 2p*; F, 1s2,
252, 2p5; S, 152, 252, 2p6, 3s2, 3p4; Cl, 152, 252, 2p6, 3s2, 3p5; Br, 152, 252, 2p6, 3s2,
3p6, 3d10, 452, 4p5. Using this convention, C is represented in GAO by three vertices,
Cl is represented by five vertices, and Br is represented by eight vertices. A covalent
bond between atoms i and j is represented in GAO by n; x n; edges between the n;
atomic orbitals of atom i and the n; atomic orbitals of atom j. As example we show the
GAO of fluorobenzene (Figure 1.1). Another example of atomic orbitals graphs are the
molecular graphs proposed by Pogliani, based on the hydrogen-excluded pseudograph
augmented with information regarding the inner-core electrons [78—-82].

1.3.4 MARKUSH STRUCTURES

A major branch of chemoinformatics is represented by the development of efficient
algorithms for the computer storage and retrieval of generic chemical structures.
Using special topological representations, generic chemical structures encode into a
single chemical graph an entire family of structurally related compounds. Among the
different generic chemical structure representations, Markush structures have a special
place because of their use in representing generic structures in patents. In a 1925

)

FIGURE 1.1 GAO of fluorobenzene.
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court case Eugene Markush put forward such structures, which were later accepted
in patent claims by the US Patent Office. Several approaches for the implementation
of Markush structures are in use [83]. Among them, the Chemical Abstracts Service
[84,85] and the Questel.Orbit [86] systems are more prominent. Markush structures
1.45 through 1.47 represent several examples of generic chemical structures.

R, o)
N
| P
(CH,),, — OH i\ }ﬂ —R Ry
¢ NN
1.45 1.46 1.47

The Sheffield University group led by Lynch [87,88] developed graph representa-
tions for generic chemical structures, together with the GENSAL language [89] that
is used to encode patent information into a computer-readable form [90]. The sys-
tem developed by Lynch is a comprehensive collection of algorithms and procedures
for the utilization of generic chemical structures: connection table representation
[91], generation of fragment descriptors [92—-94], computer interpreter for GENSAL
[95,96], substructure search algorithm [97], reduced chemical graphs [98,99], algo-
rithm to find the extended set of smallest rings [100], chemical ring identification
[101], chemical graph search [102,103], and atom-level structure matching [104].

1.3.5 Repucep GrRAPH MODEL

A more abstract representation of chemical structures is achieved with reduced graphs,
in which each vertex represents a group of connected atoms, and an edge links two
such vertices if in the original molecule there is a bond between an atom within one
group and an atom in the second group [98,99]. A vertex in a reduced graph may
represent a ring system, aromatic rings, aliphatic rings, or functional groups. There
are several systems to transform a molecule into a reduced graph, by highlighting and
grouping together different substructures in a chemical compound. We demonstrate
here four types of reduced graphs that start from the same molecular graph and end
up with different simplified representations.

Type 1. Vertices in the reduced graph correspond to ring systems (R) and connected
acyclic components (Ac). The ring system R from compound 1.48 (shown inside a
circle) corresponds to the central vertex in the reduced graph 1.49.

/O >:O
0 ()
\O (%)
1.48

1.49
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Type 2. Vertices in the reduced graph correspond to connected carbon components
(C) and connected heteroatom components (H). Each heteroatom component in 1.50
is depicted inside an ellipse, and the corresponding reduced graph is shown in 1.51.

Hgesa

1.51

Type 3. Vertices in the reduced graph correspond to aromatic rings (Ar), aliphatic
rings (R), and functional groups (F). Each functional group from molecular graph
1.52 is depicted inside a circle, with the final reduced graph depicted in 1.53.

1.52 1.53

Type 4. Vertices in the reduced graph correspond to aromatic rings (Ar), functional
groups (F), and linking groups (L). Each functional group from molecular graph
1.54 is depicted inside a circle, and the linker group is shown inside an ellipse. The
corresponding reduced graph 1.55 has the same topology as reduced graph 1.53, but
with a different fragment type for the vertex between vertices labeled Ar and F.

When using a reduced graph to screen chemical libraries, different molecules
may generate the same reduced graph, thus clustering together chemicals that have
the same topological distribution of various types of subgraphs. The value of this
approach is given by the fact that chemicals with similar bioactivities are translated
into identical or highly similar reduced graphs. Several experiments show that reduced
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graphs may identify bioactive compounds that are missed with a fingerprint similarity
search [105-108]. As expected, across a large spectrum of bioactivities, there is no
definite advantage of using only reduced graphs, but these studies demonstrate the
complementary nature of reduced graph similarity compared to fingerprint similarity.

1.3.6  MoOLECULE SUPERPOSITION GRAPHS

The molecular alignment of chemicals in a QSAR dataset is a characteristic of three-
dimensional (3D) QSAR models. Similarly, the topological information encoded
into the molecular graph may be used to obtain a 2D alignment of all molecules
in a QSAR dataset. Such a molecule superposition graph, which is obtained from
structurally related compounds by superposing the molecules according to a set of
rules, may be considered as a supermolecule with the property that any molecule in
the QSAR dataset is its subgraph. An early 2D alignment model is represented by
the DARC (description, acquisition, retrieval, correlation) system, which applies the
supermolecule approach by considering that molecules are composed of a common
skeleton and a variable collection of substituents [109—114]. The contribution of the
variable part of the structure to the overall property value of a molecule is determined
by regression analysis to predict various physical, chemical, and biological properties.

An example of a DARC supermolecule is demonstrated for the prediction of '3C
nuclear magnetic resonance (NMR) chemical shift in acyclic alkenes [113]. In Figure
1.2, the topo-stereochemical description of the environment of the a-sp® resonating
carbon atom considers all sp>-hybridized carbon neighbors of types A, B, C, and
D situated at 1, 2, 3, and 4 bonds away from the resonating atom. The use of an
environment with a larger sphere of atoms does not add much information because
the influence on the chemical shift of atoms situated at a distance greater than four
bonds can be neglected. In a DARC supermolecule some sites collect a group of atoms
that have similar influence on the modeled property, such as site ZC that collects all
carbon atoms situated three bonds away from C*, and site XD that collects all carbon
atoms situated four bonds away from C.

Simon developed the minimal topological difference (MTD) QSAR model by
superposing all molecules from the training set into a supermolecule [115]. Special
vertices and edges are then created to embed the substituents by maximizing the super-
position of their non-hydrogen atoms, and each molecule is embedded in a unique
way into the MTD supermolecule. The MTD map has three types of vertices, namely
with a positive contribution (increasing the bioactivity), with a negative contribution
(decreasing the bioactivity), and neutral (no influence on the bioactivity). The type
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FIGURE 1.2 DARC-type map for the topo-stereochemical environment of oc-sp2 carbon
atoms. The 13C NMR chemical shift is predicted for the carbon atom labeled with *.

of each site in the MTD map is determined in an iterative process by embedding
the training molecules on the MTD supermolecule and by minimizing the regres-
sion error between the experimental and calculated bioactivity. Minailiuc and Diudea
extended the MTD supermolecule method by assigning vertex structural descriptors
to vertices from the MTD supermolecule that are occupied for a particular molecule
[116]. This QSAR model, called topological indices-minimal topological difference
(TI-MTD), is very versatile in modeling QSAR properties and can be extended to
other atomic properties, such as atomic charge or electronegativity. Recent studies
show that the MTD method may be improved by using partial least squares (PLS)
instead of multiple regression [117,118].

A similar supermolecule is generated in the molecular field topology analysis
(MFTA) model introduced by Palyulin et al. [119]. The atomic descriptors associated
with each vertex of the MFTA map are atomic charge, electronegativity, van der
Waals radius, and atomic contribution to lipophilicity. The contribution of each site
is determined with PLS.

1.3.7 ReacTioN GRAPHS

The utilization of reaction databases relies heavily on efficient software for storage
and retrieval of reactions and reaction substructure search. Although very useful in
suggesting individual reaction steps, reaction databases offer little help in devising
strategies for complex reactions. A major accomplishment of chemoinformatics is the
development of computer-assisted synthesis design systems and reaction prediction
systems (cf. Chapter 11).

The storage and retrieval of reactions in databases, the extraction of reactivity
knowledge, computer-assisted synthesis design, and reaction prediction systems are
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usually based on chemoinformatics tools that represent chemical reactions as a special
type of graph [120-122]. As an example we present here the imaginary transition
structure (ITS) model proposed by Fujita [120,123,124]. The ITS is a special type of
reaction graph that is obtained by superposing reagents and products, and in which
the bond rearrangement is indicated with special symbols. The reaction graph of an
ITS has three types of bonds: par-bonds, which are bonds that are not modified in
the reaction; out-bonds, representing bonds that are present only in reagents; and
in-bonds, which are bonds appearing only in products. The diagram of an ITS graph
contains distinctive symbols for each bond type: par-bonds are shown as solid lines;
out-bonds are depicted as solid lines with a double bar; and in-bonds are depicted
as solid lines with a circle. The ITS model is demonstrated here for nucleophilic
substitution, with reactants 1.56, ITS 1.57, and products 1.58.

CH, CH,4 CH3
CH; C——CH, CH, % C—— CH; CH; C CH;
HO /CI HO\O\ )XCI HO\ a
H H
1.56 1.57 1.58

As can be seen from the above reaction, in which fert-butyl alcohol reacts with
hydrogen chloride to generate tert-butyl chloride, reaction mechanism details are
not encoded into ITS. The role of ITS is to describe only bond rearrangements that
transform reactants into products. The ITSs are not intended to represent reaction
mechanisms, but the definition of the I'TS may be easily extended to encode them.

The ITS reaction graphs represent a comprehensive framework for the classifi-
cation and enumeration of organic reactions. The storage and retrieval of chemical
reactions are reduced to graph manipulations, and the identification of a reaction type
is equivalent to a subgraph search of an ITS database. A unique numerical represen-
tation (canonical code) of an ITS can be easily obtained [125,126] with a procedure
derived from the Morgan algorithm of canonical coding [127]. The canonical rep-
resentation of ITS graphs is an effective way of searching and comparing chemical
reactions and of identifying reaction types.

1.3.8 OTHER CHEMICAL GRAPHS

Many molecular graph models cannot handle systems with delocalized electrons, such
as diborane or organometallic complexes, and several special graph models were pro-
posed to encode these systems. Stein extended the bond and electron (BE) matrices
introduced by Dugundji and Ugi [128-130] with new bond types for delocalized
electrons [131]. Konstantinova and Skorobogatov proposed molecular hypergraphs
to depict delocalized systems [132]. Dietz developed a molecular representation for
computer-assisted synthesis design systems and for chemical database systems [133].
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This molecular representation encodes the constitution, configuration, and confor-
mation of a chemical compound. The constitution is represented as a multigraph
describing the unshared valence electrons and the bonding relationships in a molecule,
including valence electron sharing and electrostatic interactions. The chemical model
suggested by Bauerschmidt and Gasteiger defines a hierarchical organization of
molecular systems, starting from the electron system and ending with aggregates and
ensembles [134]. Multicenter bonds are described as a list of atoms, type (o or 7),
and number of electrons. This molecular representation is implemented in the reaction
prediction program elaboration of reactions for organic synthesis (EROS) [135].

Chemical graphs may also be used to model systems in which the interaction
between vertices represents hydrogen bonds, especially water, which consists of a
large number of locally stable structures with various arrangements of the constituent
water molecules. Each water cluster (H,0),, is represented by a graph in which ver-
tices are water molecules and bonds represent hydrogen bonds between two water
molecules. Although weaker than covalent bonds, hydrogen bonds can form long-lived
structures of water clusters for which the thermodynamic properties are determined
by the hydrogen bonding patterns. The number of possible configurations of a cluster
(H20),, increases very rapidly with n, which makes the identification of all possible
local minima on the potential surface of a water cluster difficult [136—139].

1.4 WEIGHTED GRAPHS AND MOLECULAR MATRICES

Simple graphs lack the flexibility to represent complex chemical compounds, which
limits their application to alkanes and cycloalkanes, and many widely used topological
indices were initially defined for such simple molecular graphs (cf. Chapter 4). The
main chemical application of topological indices is that of structural descriptors in
QSPR, QSAR, and virtual screening, which requires the computation of these indices
for molecular graphs containing heteroatoms and multiple bonds. Such molecular
graphs use special sets of parameters to represent heteroatoms as vertex weights,
and multiple bonds as edge weights. Early applications of such vertex- and edge-
weighted (VEW) molecular graphs were initially developed for the Hiickel molecular
orbitals theory [140] and were subsequently extended to general chemical compounds
[141]. In this section we present selected algorithms for the computation of weighted
molecular graphs that are general in scope and can be applied to a large range of
structural descriptors. The application of these weighting schemes is demonstrated
for a group of molecular matrices that are frequently used in computing topological
indices. Other weighting schemes were proposed for more narrow applications, and
are valid only for specific topological indices such as Randi¢—Kier—Hall connectiv-
ity indices [24,25], electrotopological indices [26,142], Burden indices [143], and
Balaban index J [60].

1.4.1 WEIGHTED MOLECULAR GRAPHS

A VEW molecular graph G(V, E, Sy, Bo, Vw, Ew, w) is defined by a vertex set V(G),
an edge set E(G), a set of chemical symbols for vertices Sy(G), a set of topological
bond orders for edges Bo (G), a vertex weight set Vw(w, G), and an edge weight set
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Ew(w, G), where the elements of the vertex and edge sets are computed with the
weighting scheme w. Usually, the weight of a carbon atom is 0, whereas the weight
of a carbon—carbon single bond is 1. In the weighting schemes reviewed here, the
topological bond order Boj;; of an edge e;; takes the value 1 for single bonds, 2 for
double bonds, 3 for triple bonds, and 1.5 for aromatic bonds. As an example of a
VEW graph, consider 3,4-dibromo-1-butene 1.59 and its corresponding molecular
graph 1.60.

6 Br
C(Hy—CH—CH—CH, \)\/Br
! ! 173 5
Br Br 2 4
1.59 1.60

Graph distances represent the basis for the computation of almost all topological
indices, and their computation in VEW graphs is shown here. The length of a path p;;
between vertices v; and v}, [(p;j, w, G), for a weighting scheme w in a VEW graph G
is equal to the sum of the edge parameters Ew(w);; for all edges along the path. The
length of the path p;(1.60) = {v1, v2, v3, e} is [(p1) = Ew12 + Ewa3 + Ewsg. The
topological length of a path py;, t(p;;, G), in a VEW graph G is equal to the number
of edges along the path, which coincides with the path length in the corresponding
unweighted graph. In a VEW graph, the distance d(w);; between a pair of vertices
v; and v; is equal to the length of the shortest path connecting the two vertices,
d(w),‘j = min(l(p,;/, W))

1.4.2 ADJACENCY MATRIX

The adjacency matrix A(w, G) of a VEW molecular graph G with N vertices is
a square N x N real symmetric matrix with the element [A(w, G)]; defined as
[34,144]

Vw(w); if i =],
[AW,G)];j = {Ew(w);; if e € E(G), (1.6)
0 ifej ¢ E(G).

where Vw(w); is the weight of vertex v;, Ew(w);; is the weight of edge e;;, and w is the
weighting scheme used to compute the parameters Vw and Ew. The valency of vertex
v;, val(w,G);, is defined as the sum of the weights Ew(w);; of all edges e;; incident
with vertex v; [49]:

valw); = Y Ew(w)y. 1.7)

¢ €E(G)
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1.4.3 DiSTANCE MATRIX

The distance matrix D(w, G) of a VEW molecular graph G with N vertices is a
symmetric square N x N matrix with the element [D(w, G)];; defined as [144,145]

dw)y i #J,
Dw,G)]; = 1.8
DOn Gl =4, i (1.8)

where d(w);; is the distance between vertices v; and v;, Vw(w); is the weight of vertex
v;, and w is the weighting scheme used to compute the parameters Vw and Ew. The
distance sum of vertex v;, DS (w, G);, is defined as the sum of the topological distances
between vertex v; and every vertex in the VEW molecular graph G:

DS(w,G)i = Y [D(w,G)]; =
j=1 j

N N
[Dw, G)ljis (1.9)
=1
where w is the weighting scheme. The distance sum is used to compute the Balaban
index J [59] and information on distance indices [62].

1.4.4 Atomic NUMBER WEIGHTING SCHEME Z

Based on the definitions of adjacency and distance matrices introduced above, we
demonstrate here the calculation of molecular matrices for weighted graphs. Barysz
et al. proposed a general approach for computing parameters for VEW graphs by
weighting the contributions of atoms and bonds with parameters based on the atomic
number Z and the topological bond order [141]. In the atomic number weighting
scheme Z, the parameter Vw(Z); of a vertex v; (representing atom i from a molecule)
is defined as
Zc

Vw(Z)=1-22=1-

6
—, 1.10
Z Z (1.10)

where Z; is the atomic number Z of atom i and Z¢c = 6 is the atomic number Z of
carbon. The parameter Ew(Z);; for edge e;; (representing the bond between atoms i
and j) is defined as

Zc/c _ 6x6
(BoijZiZj)  (BojZiZj)’

Ew(Z);j = (1.11)

where Bo;; is the topological bond order of the edge between vertices v; and v;. The
application of the Z parameters is shown for the adjacency matrix of 2H-pyran 1.61
and for the distance matrix of 4-aminopyridine 1.61 (molecular graph 1.63).
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0]
6| 2
P
4 NH,
1.61 1.62
1 2
110250 0.750
21 0.750 0
3 0 1
A(Z,1.61) = 4 0 0
5 0 0
6 | 0.750 0
1 2 3 4 5 6 7
110143 0571 1.238 1905 1238 0571 2.762
2] 0.571 0 0.667 1333 1.810 1.143 2.190
3 [ 1.238  0.667 0 0.667 1333 1810 1.524
D(Z,1.63) = 4 | 1905 1333 0.667 0 0.667 1.333 0.857
5 1.238 1.810 1.333 0.667 0 0.667 1.524
6 | 0571 1.143 1.810 1.333 0.667 0 2.190
712762 2190 1.524 0.857 1.524 2.190 0.143

1.4.5 RELATIVE ELECTRONEGATIVITY WEIGHTING SCHEME X

The extension of the Balaban index J to VEW molecular graphs is based on relative

electronegativity and covalent radius [60]. First, the Sanderson electronegativities of

main group atoms are fitted in a linear regression using as parameters the atomic

number Z and the number of the group Ng in the periodic system:

S; =1.1032 — 0.0204 Z; + 0.4121 Ng;. (1.12)

Taking as reference the calculated electronegativity for carbon Sc = 2.629, the
relative electronegativities X are defined as

X; =0.4196 — 0.0078 Z; + 0.1567 Ng;. (1.13)

This weight system, developed initially for J, was extended as the relative elec-

tronegativity weighting scheme X, in which the vertex parameter Vw(X); is defined
as [36,146]

1
—. (1.14)

VwX);, =1-—
w(X); X
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The edge parameter Ew(X);; that characterizes the relative electronegativity of a
bond is computed with the equation

1

EwX)jj = ——.
"0 = Bopxix;)

(1.15)

From its definition, the weighting scheme X reflects the periodicity of electroneg-
ativity and can generate molecular descriptors that express both the effect of topology
and that of electronegativity. A related set of parameters, the relative covalent radius
weighting scheme Y, was defined based on the covalent radius [36,146].

1.4.6 Atomic Rabius WEIGHTING SCHEME R

The atomic radius computed from the atomic polarizability is the basis of the atomic
radius weighting scheme R, in which the vertex parameter Vw(R); is defined as
[144,147]
1.21
Vw@R); =1—C =122 (1.16)
ri ri

and the parameter Ew(R);; of the edge e;; representing the bond between atoms i and
j is equal to
rcre 121 x1.21

(Bojrir)) — (Boyrirj)

Ew(R); = (1.17)

where ro = 1.21 A is the carbon radius and r; is the atomic radius of atom i. Similar
sets of parameters for VEW graphs were obtained with other atomic parameters,
namely the atomic mass weighting scheme A, the atomic polarizability weighting
scheme P, and the atomic electronegativity weighting scheme E [144,147].

1.4.7 BuURDEN MATRIX

The Burden molecular matrix is a modified adjacency matrix obtained from the
hydrogen-excluded molecular graph of an organic compound [143]. This matrix is the
source of the Burden, CAS, and University of Texas (BCUT) descriptors, which are
computed from the graph spectra of the Burden matrix B and are extensively used in
combinatorial chemistry, virtual screening, diversity measure, and QSAR [148-150].
An extension of the Burden matrix was obtained by inserting on the main diagonal
of B a vertex structural descriptor VSD, representing a vector of experimental or
computed atomic properties [151]. The rules defining the Burden matrix B(VSD, G)
of a graph G with N vertices are as follows:

a. The diagonal elements of B, [B];;, are computed with the formula
[B(VSD, G)]; = VSD;, (1.18)

where VSD; is a vertex structural descriptor of vertex v;, that reflects the
local structure of the corresponding atom i.
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b. The nondiagonal element [B];;, representing an edge e;; connecting vertices
v; and v}, has the value 0.1 for a single bond, 0.2 for a double bond, 0.3 for
a triple bond, and 0.15 for an aromatic delocalized bond.

c. The value of anondiagonal element [B];; representing an edge e;; connecting
vertices v; and v; is augmented by 0.01 if either vertex v; or vertex v have
degree 1.

d. All other nondiagonal elements [B];; are set equal to 0.001; these elements
are set to 0 in the adjacency matrix A and correspond to pairs of nonbonded
vertices in a molecular graph.

Examples of the vertex structural descriptor VSD for the diagonal of the Burden
matrix are parameters from the weighting schemes A, E, P, R, X, Y, Z, various atomic
properties (Pauling electronegativity, covalent radius, atomic polarizability), or vari-
ous molecular graph indices, such as degree, valency, valence delta atom connectivity
3, intrinsic state 7, electrotopological state S, distance sum DS, or vertex sum VS. An
example of the Burden matrix is shown for 4-chloropyridine 1.64 (molecular graph
1.65) with the Pauling electronegativity EP on the main diagonal.

1 2 3 4 5 6 7
3.040 0.150 0.001 0.001 0.001 0.150 0.001
0.150 2.550 0.150 0.001 0.001 0.001 0.001
0.001 0.150 2.550 0.150 0.001 0.001 0.001
0.001 0.001 0.150 2.550 0.150 0.001 0.110
0.001 0.001 0.001 0.150 2.550 0.150 0.001
0.150 0.001 0.001 0.001 0.150 2.550 0.001
0.001 0.001 0.001 0.110 0.001 0.001 3.160

B(EP,1.65) =

~N NN BN =

1.4.8 REeciProCAL DISTANCE MATRIX

Starting with the Wiener index W, graph distances represented a prevalent source of
topological indices. A possible drawback of using graph distances directly is that pairs
of atoms that are separated by large distances, and thus have low interaction between
them, have large contributions to the numerical value of the index. Because physical
interaction between two objects decreases with increasing distance, the reciprocal
distance 1/d;; was introduced. Using the reciprocal distance, it is possible to define
graph descriptors in which the contribution of two vertices decreases with increase
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of the distance between them [152]. The reciprocal distance matrix of a simple graph
G with N vertices RD(G) is a square N x N symmetric matrix whose entries [RD];;
are equal to the reciprocal of the distance between vertices v; and vj, that is, 1/d;; =
1/[D];;, for nondiagonal elements, and is equal to zero for the diagonal elements
[65,153,154]:

5k
[RD(G)]; = { [PO)]; nrd (1.19)
0 ifi=j.

The reciprocal distance matrix of octahydropentalene 1.66 is shown as an example.

8 4 2
‘e
6 5 4
1.66
1 2 3 4 5 6 7 8
1 0 1 0.500 0.500 1 0.500 0.500 1
2 1 0 1 0.500 0.500 0.333 0.333 0.500
31 0.500 1 0 1 0.500 0.333 0.250 0.333
41 0.500 0.500 1 0 1 0.500 0.333 0.333
RD(1.66) = 5 1 0.500 0.500 1 0 1 0.500 0.500
61 0.500 0.333 0.333 0.500 1 0 1 0.500
71 0.500 0.333 0.250 0.333 0.500 1 0 1
8 1 0.500 0.333 0.333 0.500 0.500 1 0

Formula 1.19 can be easily extended to weighted molecular graphs. The reciprocal
distance matrix RD(w, G) of a VEW molecular graph G with N vertices is a square
N x N symmetric matrix with real elements [144,145]:

—— ifi#),
[RD(w,G)]; = { [P Gl (1.20)
Vw(w); ifi =j,

where [D(w)];; is the graph distance between vertices v; and v, [D(w)];; is the diagonal
element corresponding to vertex v;, and w is the weighting scheme used to compute the
parameters Vw and Ew. The reciprocal distance matrix of 2-hydroxypropanoic acid
(lactic acid) 1.67 (molecular graph 1.68) computed with the atomic electronegativity
weighting scheme E is presented as an example.
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50
1)2\% 04
CH3; — CH—COOH
| 06
OH 1.68 Source: From Encyclopedia of Chemoinformatics.
1.67 With permission.
1 2 3 4 5 6
0 1 0.500 0.425 0.587 0.370
1 0 1 0.740 1.420 0.587
0.500 1 0 2.839 0.587 1.420

RD(E, 1.68) = 0425 0.740 2.839 0.296 0.486 0.946

0.587 1.420 0.587 0.486 0.296 0.415
0.370 0.587 1.420 0.946 0.415 0.296

AN R W~

1.4.9 OTHER MOLECULAR MATRICES

We have presented here a selection of molecular matrices that are used as a source of
topological indices and other graph descriptors. Other types of molecular matrices are
investigated with the goal of exploring novel procedures for translating graph topology
into a matrix [64]. The search for new structural descriptors based on molecular graphs
is the catalyst that prompted the development of many molecular matrices, such as
the edge Wiener matrix We [155], the path Wiener matrix Wy, [155], the distance-
valency matrix Dval [34], the quasi-Euclidean matrix pqe [156,157], the distance
complement matrix DC [66], the complementary distance matrix CD [145,158], the
reverse Wiener matrix RW [67], the distance-path matrix Dp [68], the Szeged matrix
Sz [70], the Cluj matrix Cj [70], and the resistance distance matrix 2 [50], which is
based on a novel distance function on graphs introduced by Klein and Randi¢ and
inspired by the properties of electrical networks.

1.5 CONCLUDING REMARKS

This chapter reviewed the applications of graph theory in chemistry. Many objects
manipulated in chemistry, such as atomic orbitals, chemical compounds, and reaction
diagrams, can be represented as graphs. Graph operations, such as generating reduced
graphs, and the calculation of various matrices derived from the connectivity of the
graph can thus be applied to chemicals with applications including virtual screening,
topological indices calculations, and activity/property predictions such as spectra
predictions. Many algorithms have been and are being developed to solve graph
problems, and some of these can be applied to chemistry problems. The goal of the
next chapter is to present graph algorithms applied to chemicals.
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Since molecules are three-dimensional (3D) and lack any intrinsic ordering in their
chemical formulas, it becomes necessary to supply a set of linear rules to any
computer system designed for storing and retrieving chemical structures. Ideally,
such a notation would not only retain important knowledge about a molecule’s
3D structure but also contain a mechanism to distinguish between molecules. As
we saw in the previous chapter, graphs are dimensionless or zero-dimensional
(OD) objects but can also be considered as one-dimensional (1D), two-dimensional
(2D), 3D, or higher-dimensional objects in various methods of structural represen-
tation. Thus, OD or constitutional descriptors such as molecular weight and atom
counts are defined using local molecular information. 1D notations for structures
and reactions include linear representations such as SMILES (Simplified Molecu-
lar Input Line Entry Specification) [1,2], WLN (Wiswesser Line Notation) [3,4],
SLN (SYBYL Line Notation) [5,6], and InChlI (the TUPAC International Chemical
Identifier, http://www.iupac.org/inchi). Molecular graphs can be represented in two
dimensions as chemical diagrams such that a vertex corresponds to (x, y) coordinates
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and type of an atom and an edge corresponds to bond type. They can also be extended
to three dimensions such that a vertex contains information about (x, y, z) atomic
coordinates instead. 3D structures can then be generated by further incorporating
knowledge of bond lengths, bond angles, and dihedral angles. In this chapter we illus-
trate some methods and algorithms for the storage, retrieval, and manipulation of 2D
representations of chemical structures, while 3D representation is treated in Chapter 3.

2.1 COMMON REPRESENTATIONS: LINEAR NOTATIONS
AND CONNECTION TABLES

The information contained in molecular graphs can be transmitted to and from a
computer in several ways for the purpose of manipulating chemical compounds and
reactions. It is essential for a particular chemoinformatics application to recognize
molecules of interest by recognizing relevant geometric and topological information
passed to it. This can be accomplished by representing a molecule using line notation
(1D) or as a connection table (2D and 3D). Linear notation is a compact and efficient
system that employs alphanumeric characters and conventions for common molecular
features such as bond types, ring systems, aromaticity, and chirality. The connection
table is a set of lines specifying individual atoms and bonds and can be created as a
computer- and human-readable text file.

The significance of standard formats to represent molecules in chemoinformatics
systems lies in their numerous and diverse applications such as storage, retrieval, and
search in chemical databases; generation of [IUPAC names [7]; ring determination
[8,9]; generation of compounds [10] and combinatorial libraries [11]; computer-
aided design of novel chemicals [12] and organic reactions [13]; and calculation of
molecular descriptors [14] for quantitative structure—activity/property relationships
(QSAR/QSPR) and virtual screening. In this section we present some important line
notations and molecular file formats.

2.1.1 WLN, SMILES, SMARTS, ano SMIRKS

The primary goal of linear notations is to enable easy interpretation by computer
programs. They offer several advantages over connection tables such as improved
parsability, efficient storage in relational databases, and compression of storage space
required per molecule. Chemical line notations can be parsed using string processing
algorithms resulting in efficient chemoinformatics applications. These characteristics
of linear notations have been exploited for generating large combinatorial libraries
using a fast SMILES approach [11]; for designing novel compounds using hydrogen-
included SMILES to define operators for an evolutionary algorithm [12]; for virtual
screening of chemical libraries using a molecular similarity function based on com-
pressed SMILES strings [15]; for discriminating active and inactive compounds by
searching for specific patterns in a SMILES strings database [16]; and for defining
patterns useful in QSAR and QSPR models [17].

Linear notation has been explored since almost the beginning of structural chem-
istry in the 1860s. In his interesting review of line-formula notations [18], William
Wiswesser illustrates the efforts of many well-known nineteenth-century chemists
like Loschmidt, Erlenmeyer, Kekulé, and Wichelhaus in popularizing the now familiar
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chemical formulas like CH3 COOH for acetic acid and Co,HsCOCH3 for ethyl methyl
ether. Modern development of chemical notations coincided with the advent of com-
puters in the 1940s as many realized the need to carry out automated chemical structure
information processing. Wiswesser traces the evolution of linear notations from Dyson
in 1947, through Taylor, G-K-D ciphers, Gruber, Silk, Cockburn, Benson, Smith, Bon-
nett, Gelberg, Hayward, and Lederberg in 1964, among many others. His own system,
the WLN [3,4], which he developed starting in the 1940s, remained popular until the
introduction of SMILES strings in the 1980s.

The WLN was designed to be used with the information processing systems of the
time and with punched cards. To satisfy the requirement of 80 characters per card, the
notation was restricted to using uppercase letters, the digits 0-9, and a few characters
like “&.” In addition, it was designed to be as readily recognizable to chemists as to
digital processors. Letters were reserved to indicate functional groups and molecular
features like phenyl rings while alphanumeric combinations presented fragment-based
descriptions of molecules. Table 2.1 lists some examples of compounds encoded using
the WLN. Thus, for acetone, the WLN representation is 1V1, where V is the character
used for the central carbonyl group and the digit 1 indicates the presence of saturated
single-carbon atom chains on either side. Similarly, for 3-chloro-4-hydroxybenzoic
acid, the WLN string is QVR DQ CG. Here Q represents the hydroxyl group, V the
carbonyl group, and R the benzene ring. The space character signifies that the fol-
lowing character denotes a specific position on the ring; DQ represents the 4-position
hydroxyl group and CG represents the 3-position chloride (the character G denotes
the chlorine atom). Note that the WLN does not include an explicit bond specification.

The WLN was the first line notation to succinctly and accurately represent complex
molecules. It permitted a degree of standardization leading to the compilation of
chemical compounds into databases such as CAOCI (Commercially Available Organic
Chemicals Index) [19].

TABLE 2.1
WLN Representations of Chemical Diagrams
Chemical Diagram Chemical Formula WLN Representation
_ C,Hg 2H
PN C3Hg 3H
0]
)J\ CH;COCH; V1
C,H50CH 201
N 2Hs 3
cl
HO
OH C7H5CIO;3 QVR DQ CG

0
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As computers became more powerful and capable of handling much larger charac-
ter sets, newer line notations that can encode chemical concepts, describe reactions,
and be stored in relational databases have become prevalent. More than simply short-
hand for molecular formulas, these linear systems are linguistic structures that can
achieve multiple complex chemoinformatics objectives. SMILES, SMARTS (SMiles
ARbitrary Target Specification), and SMIRKS are related chemical languages that
have been used in applications such as virtual screening, molecular graph mining, evo-
lutionary design of novel compounds, substructure searching, and reaction transforms.

SMILES is a language with simple vocabulary that includes atom and bond sym-
bols and a few rules of grammar. SMILES strings can be used as words in other
languages used for storage and retrieval of chemical information such as HTML,
XML, or SQL. A SMILES string for a molecule represents atoms using their elemental
symbols, with aliphatic atoms written in uppercase letters and aromatic atoms in
lowercase letters. Except in special cases, hydrogen atoms are not included. Square
brackets are used to depict elements, such as [Na] for elemental sodium. However,
square brackets may be omitted for elements from the organic subset (B, C, N, O, P,
S, F, Cl, Br, and 1), provided the number of hydrogen atoms can be surmised from
the normal valence. Thus, water is represented as O, ammonia as N, and methane
as C. Bonds are represented with — (single), = (double), # (triple), and : (aromatic),
although single and aromatic bonds are usually left out. Simple examples are CC
for ethane, C=C for ethene, C=0 for formaldehyde, O=C=C for carbon dioxide,
COC for dimethyl ether, C#N for hydrogen cyanide, CCCO for propanol, and [H][H]
for molecular hydrogen. Some atomic properties may also be specified using square
brackets, for example, charge ((OH™] for hydroxyl ion) and atomic mass for isotopic
specification ([13CH4] for C-13 methane).

A SMILES string is constructed by visiting every atom in a molecule once.
A branch is included within parentheses and branches can be nested indefinitely.
For example, isobutane is CC(C)C and isobutyric acid is CC(C)C(=0)0. Ring
structures are treated by breaking one bond per cycle and labeling the two atoms
in the broken bond with a unique integer (cf. Figure 2.1). Thus, CICCCCCI is
cyclohexane, clcceecl is benzene, nlccceel is pyridine, C1=CCCl is cyclobutene,
and C12C3C4C1C5C4C3C25 is cubane in which two atoms have more than one ring

(@ (© (@ (e)

BE TR G hira
Cuiel =_c - c3-—c"‘ 4

FIGURE 2.1 SMILES strings are constructed by traversing each atom in a molecule once.
Rings are depicted by first breaking a bond and then including an integer after the two atoms
present in the broken bond. The numbering may change with each addition of a ring. The con-
struction of a SMILES string for cubane is shown. (a) Structure of cubane with the position of
the starting atom marked with a dot; (b) C1CCC1; (c) C12CCC1CC2; (d) C12CCC1C3CCC23;
and (e) C12C3C4C1C5C4C3C25.
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closure. Disconnected compounds may be written as individual structures separated
by a “.”, such as [NHI] - [CI™] for ammonium chloride. Several other rules exist for
representing other molecular features such as cis—trans isomerism and chirality. Thus
E-difluoroethene is F/C=C/F while Z-difluoroethene is F/C=C\F, and L-alanine is
N[C@ @H](C)C(=0)O0 while p-alanine is N[C@H](C)C(=0)O0.

SMARTS is a language for describing molecular patterns and is used for substruc-
ture searching in chemical databases. Substructure specification is achieved using
rules that are extensions of SMILES. In particular, the atom and bond labels are
extended to also include logical operators and other special symbols, which allow
SMARTS atoms and bonds to be more inclusive. For example, [c,N] represents a
SMARTS atom that can be either an aromatic carbon or an aliphatic nitrogen, and
“~” denotes a SMARTS bond that will match any bond in a query. Other examples
of SMARTS patterns are c:c for aromatic carbons joined by an aromatic bond; c—
for aromatic carbons joined by a single bond (as in biphenyl); [O;H1] for hydroxyl
oxygen; [F,C1,Br,I] for any of these halogens; [N;R] for an aliphatic nitrogen in a ring;
and *@;!:* for two ring atoms that are not connected by an aromatic bond. In the
last example, “*” denotes any atom, “@” denotes a ring bond, ““;” denotes the logi-
cal “and” operator with low precedence, and “!” denotes the logical “not” operator.
An example of a more complex SMARTS query pattern is that for finding rotatable
bonds: [!$(*#*)&!D1]-&! @[1$(*#*)&!D1].

SMIRKS is a hybrid of SMILES and SMARTS and uses the syntax
[<SMILES_PART> ; <SMARTS_PART> : <MAP>]to describe chemical reaction
transformations of the form “reactants >> products.” A few rules ensure interpreta-
tion of SMIRKS as a reaction graph, making it a useful linear notation for mapping a
general transformation from a set of reactants to a set of products. For example, the
SMIRKS representation of amide formation is [C:1](=[0:2])CI>>[C:1](=[O:2])N. A
SMIRKS transformation may be used to represent reaction mechanisms, resonance,
and general molecular graph modifications.

2.1.2 INCHiIAND INCHIKEY

Like SMILES, the IUPAC International Chemical Identifier (InChl) is a 1D
linear notation. It has been developed at IUPAC and NIST starting in 2000
(http://www.iupac.org/inchi). Most chemoinformatics databases provide InChl num-
bers of their chemical substances along with SMILES strings. Compounds can
be searched by their InChls or IUPAC International Chemical Identifier Keys
(InChIKeys) (hashed InChls) via Google, for instance a Google search with the
InChlKey BQJCRHHNABKAKU-XKUOQXLYBY returns links to several web
pages giving the structure of morphine. Standard versions of InChl and InChlkey were
recently developed (http://www.iupac.org/inchi cf. January 2009 release) with the aim
of interoperability/compatibility between large databases/web searching and informa-
tion exchange. We report here the general structures of these standard identifiers.
The standard InChl [which is illustrated in Figure 2.2 for (§)-glutamic acid] repre-
sents the structure of a covalently bonded compound in four distinct “layers” starting
with the string “InChI=1S.” The first layer is composed of the molecular formula
and the connections between atoms. The connectivity is spliced into three lists, a list
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Stereo sp3:
(0 =inverted)

Charge

l

InChI=1S/C5HINO4/c6-3(5(9)10)1-2-4(7)8/h3H,1-2,6H2,(H,7,8)(H,9,10)/p+1/t3-m0/s1/i4+1

Molecular formula / / Stereo: sp? T

Mobile-hydrogen connectivity

Stereo type:

Connectivity of non-hydrogen
(1=absolute)

Fixed-hydrogen connectivity Isotopically

labeled atoms

FIGURE 2.2 Standard InChl for (S)-glutamic acid. The numbers attached to the atoms in
the figure are those used when printing the atom connectivity with InChl. The numbers are
obtained after running a canonical labeling algorithm (see Section 2.3 for further details).

of connections between non-hydrogen atoms, a list of connections to fixed hydrogen
atoms, and a list of connections to mobile hydrogen atoms. The second layer repre-
sents the net charge of the substance. The third layer is related to stereochemistry,
and is composed of two sublayers. The first accounts for a double bond, sp?, and
the second for sp* tetrahedral stereochemistry and allenes. Other stereo descriptions
are given next for relative stereochemistry, followed by a designation of whether the
absolute stereochemistry is required. In the fourth and last layer, different isotopically
labeled atoms are distinguished from each other.

The standard InChIKey is a fixed-length (27 characters) condensed digital repre-
sentation of the InChl. The InChIKey consists of 14 characters resulting from a hash
of the connectivity information of the standard InChl, followed by a hyphen, followed
by eight characters resulting from a hash of the remaining layers of the InChl, fol-
lowed by a flag character, a character indicating the version of InChI used, a hyphen,
and a last character related to protonation. The InChIKey is particularly useful for
web searches for chemical compounds. The standard InChIKey of (S)-glutamic acid
is WHUUTDBJXJRKMK-MYXYCAHRSA-O.

2.1.3 MotLecuLAR FiLE FORMAT

A connection table is a widely used representation of the molecular graph. A simple
connection table contains a list of atoms and includes the connectivity information for
bonding atoms and may also list bond orders. For instance, the drug acetaminophen
(Scheme 2.1), can be represented as follows in a hydrogen-suppressed connection
table:
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SCHEME 2.1

1111
—1.7317 —0.5000 0.0000 C
—-1.7317 0.4983 0.0000 O
—0.8650 —1.0000 0.0000 N
0.0017 —0.5000 0.0000 C
0.0017 0.4983 0.0000 C
0.8650 0.9983 0.0000 C
0.8650 —1.0000 0.0000 C
1.7317 —0.5000 0.0000 C
1.7317 0.4983 0.0000 C
2.5967 0.9983 0.0000 O
2.5967 —1.0000 0.0000 C
1 2 2
1 3 1
3 4 1
4 5 1
5 6 2
4 7 2
7 8 1
8 9 2
6 9 1
9 10 1
1 11 1

The first line indicates the number of atoms, »n, and the number of bonds, m. The
next n lines comprise the atoms block and list atomic coordinates and atom types in
the molecule. These are followed by the bonds block containing m lines. The first two
numbers on a bond specification line indicate atom numbers and the third denotes
bond order. While this example is for a 2D chemical diagram, connection tables can
easily be extended to represent 3D structures, in which case the z-coordinates are
likely to have nonzero values.

Molecular file formats that are based on connection tables can represent a chem-
ical structure in a straightforward way and can make use of various algorithms
that are available for reading and writing these formats. Examples of such file
formats include the MOL and SDF (structure-data format) formats (from Symyx,
http://www.symyx.com) and the MOL2 format (from Tripos, http://www.optive.com).
Most molecular modeling packages and databases employ file formats tailored to their
specific needs. In such cases, the connection table is usually enhanced by appending
additional information such as charge, isotopes, and stereochemistry.
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Several hydrogen-suppressed molecular file formats are shown here for
acetaminophen, with the atom numbering as shown in Scheme 2.1. The molecular
files were converted using the OpenBabel program (http://openbabel.org) from
a simple connection table created in ChemDraw (CambridgeSoft, http://www.
cambridgesoft.com/).

The molecular design limited (MDL; now Symyx) chemical table file or CTfile
is an example of a detailed connection table in which a set of atoms may represent
molecules, substructures, groups, polymers, or unconnected atoms [20]. The CTfile
is the basis for both the MOL format and the SDF file that enriches the MOL format
with specific data fields for other information. In an SDF file, the molecules are
separated by the “$$$$” delimiter. The MOL connection table for acetaminophen is
as follows:

1111 0 0 0 0 0 0 0 0999 V2000
—1.7317  —0.5000 0.0000 C 0 0 0 0 0
—1.7317 0.4983 0.0000 O 0 0 0 0 0
—0.8650  —1.0000 0.0000 N 0 0 0 0 0
0.0017  —0.5000 0.0000 C 0 0 0 0 0
0.0017 0.4983 0.0000 C 0 0 0 0 0
0.8650 0.9983 0.0000 C 0 0 0 0 0
0.8650 —1.0000 0.0000 C 0 0 0 0 0
1.7317  —0.5000 0.0000 C 0 0 0 0 0
1.7317 0.4983 0.0000 C 0 0 0 0 0
2.5967 0.9983 0.0000 O 0 0 0 0 0
—2.5967 —1.0000 0.0000 C 0 0 0 0 0
1 2 2 0 0 0
1 3 1 0 0 0
1 11 1 0 0 0
3 4 1 0 0 0
4 5 1 0 0 0
4 7 2 0 0 0
5 6 2 0 0 0
6 9 1 0 0 0
7 8 1 0 0 0
8 9 2 0 0 0
9 10 1 0 0 0
M END

The MOL2 file format from Tripos is used extensively by the SYBYL molecular
modeling software. It is divided into several sections using Record Type Indicators
(RTIs), each of which has its own data record whose format depends on the section
in which it lies. The MOL2 file for acetaminophen is shown here. The data record for
the RTI “@ <TRIPOS>MOLECULE” contains six lines: the first line has the name
of the molecule; the second line contains the number of atoms, bonds, substructures,
features, and sets that may be associated with this molecule; the third line is the
molecule type; the fourth and fifth lines indicate the type of charge and the energy
associated with the molecule; and the last line contains any optional remark about
the molecule. The RTI “@ <TRIPOS>ATOM” contains data records for each atom
in the molecule. As shown, the atom block in a MOL?2 file can contain information
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about atom type, including hybridization state (column 6), substructure ID and name
(columns 7 and 8, respectively), and atomic charge (column 9). The data record
for the RTI “@<TRIPOS>BOND” comprises the bond block for the MOL2 file.
Each line contains the bond ID (column 1), the origin atom in the bond (column 2),
the target atom in the bond (column 3), and the bond type (column 4; 1 = single,
2 =double, am = amide, ar = aromatic, etc.). A MOL2 file may have many other
RTIs depending on the application that the molecule is used for. For example, the RTI
“@<TRIPOS>FF_PBC” can be used to specify periodic boundary conditions and
“@<TRIPOS>CENTROID” can be used to specify a dummy atom as the centroid
of a molecule or substructure.

@<TRIPOS>MOLECULE

acetaminophen

1111000

SMALL

GASTEIGER

Energy=0

@<TRIPOS>ATOM

1C —-1.7317 —0.5000  0.0000 C.2 1 LIG1 0.2461
20 —1.7317 0.4983 0.0000 0.2 1 LIG1 —0.2730
3N —0.8650 —1.0000  0.0000 N.am 1 LIGI —0.1792
4C 0.0017 —0.5000  0.0000 C.ar 1 LIG1 0.0736
5C 0.0017 0.4983 0.0000 C.ar 1 LIG1 0.0199
6C 0.8650 0.9983 0.0000 C.ar 1 LIGI 0.0434
7C 0.8650 —1.0000  0.0000 C.ar 1 LIG1 0.0199
8C 1.7317 —0.5000  0.0000 C.ar 1 LIG1 0.0434
9C 1.7317 0.4983 0.0000 C.ar 1 LIGI 0.1958
100 2.5967 0.9983 0.0000 0.3 1 LIG1 —0.2866
11C —2.5967 —1.0000  0.0000C.3 1 LIG1 0.0968
@<TRIPOS>BOND

1 1 2 2

2 1 3 am

3 3 4 1

4 4 5 ar

5 5 6 ar

6 4 7 ar

7 7 8 ar

8 8 9 ar

9 6 9 ar

10 9 10 1

11 1 11 1

The XML-based molecular file format CML (Chemical Markup Language,
http://cml.sourceforge.net) has been proposed by Murray-Rust and Rzepa [21,22].
CML can be used in many applications requiring representation of molecules,
reactions, experimental structures, computational structures, or spectra [23]. CML
permits inclusion of chemical information in XML documents that can subsequently
be used for chemical data retrieval. The CML connection table of acetaminophen
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(Scheme 2.1) is provided below.

<?xm version="1.0"7?>
<nol ecul e xm ns="http://ww. xm -cm . or g/ schem"

i d="acet am nophen" >
<at omArr ay>
<atom i d="al" el enent Type="C"' x2="-1.731700" y2="-0.500000"/>
<atom i d="a2" el enent Type="0' x2="-1.731700" y2="0.498300"/>
<atom i d="a3" el enent Type="N' x2="-0.865000" y2="-1.000000"/>
<atom i d="a4" el enent Type="C"' x2="0.001700" y2="-0.500000"/>
<atom i d="a5" el enent Type="C"' x2="0.001700" y2="0.498300"/>
<atom i d="a6" el enent Type="C"' x2="0.865000" y2="0.998300"/>
<atom i d="a7" el enent Type="C"' x2="0.865000" y2="-1.000000"/>
<atom i d="a8" el enent Type="C"' x2="1.731700" y2="-0.500000"/>
<atom i d="a9" el enent Type="C"' x2="1.731700" y2="0.498300"/>
<atom i d="al0" el enent Type="QO' x2="2.596700" y2="0.998300"/>
<atom i d="all" el enent Type="C' x2="-2.596700" y2="-1.000000"/>
</ at omArr ay>
<bondArr ay>
<bond at onRefs2="al a2" order="2"/>
<bond at onRefs2="al a3" order="1"/>
<bond at onRefs2="a3 a4" order="1"/>
<bond at onRefs2="a4 a5" order="1"/>
<bond at onRefs2="a5 a6" order="2"/>
<bond at onRefs2="a4 a7" order="2"/>
<bond at onRefs2="a7 a8" order="1"/>
<bond at onRefs2="a8 a9" order="2"/>
<bond at onRefs2="a6 a9" order="1"/>
<bond at onmRefs2="a9 al0" order="1"/>
<bond at onRefs2="al all" order="1"/>
</ bondArray>
</ nol ecul e>

In molecular file formats such as the HIN format (HyperCube, http://www.hyper
.com), the bond information may be included within the atoms block itself. In the HIN
format file, an atom record includes the atomic charge (column 7), the coordination
number c¢ (the number of covalently bonded atoms; column 11), and ¢ pairs denoting
the label of the adjacent atom and the corresponding bond type encoded with s, d,
t, or a, for single, double, triple, or aromatic bonds, respectively. The HIN file of
acetaminophen is shown as an example.

nmol 1 acetani nophen

atom1l - C** -0.24606 -1.73170 -0.50000 0.00000 3 2 d 3 s 11 s
atom2 - O** - -0.27297 -1.73170 0.49830 0.00000 1 1 d

atom3 - N ** - -0.17920 -0. 86500 -1.00000 0.00000 2 1 s 4 s
atom4 - C** -0.07357 0.00170 -0.50000 0.00000 3 3 s5a7a
atom5 - C** - 0.01988 0.00170 0.49830 0.00000 2 4 a 6 a
atom6 - C** - 0.04336 0.86500 0.99830 0.00000 2 5 a 9 a
atom7 - C** - 0.01988 0.86500 -1.00000 0.00000 2 4
atom8 - C ** - 0.04336 1.73170 -0.50000 0.00000 2 7
atom9 - C** - 0.19583 1.73170 0.49830 0.00000 3 8 a 6 a 10 s

a 8 a
a9 a
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atom 10 - O ** - -0.28657 2.59670 0.99830 0.00000 1 9 s
atom11 - C ** - 0.09680 -2.59670 -1. 00000 0.00000 1 1 s
endnol 1

The linear notation of acetaminophen is much more compact. Its SMILES string
is C(=0)[Nclcce(ccl)O]C and its InChl string is InChI=1S/C8HINO2/c1-6(10)9-
7-2-4-8(11)5-3-7/h2-5,11H,1H3,(H,9,10).

2.2 FROM CONNECTION TABLETO 2D STRUCTURE

Since chemoinformatics systems and databases store chemical structures as linear
notations, connection tables, or other digital formats, a scientist who wishes to view
the structures as a familiar chemical diagram must be provided with a means to
translate the digital data into a viewable image. In the case of connection tables, the
atomic coordinates, atom types, and bonding information are sufficient to convert
into a chemical diagram using appropriate software. Translation of linear notations
requires the conversion software to extract critical information—such as bond lengths,
angles, and topology—that is implicit in the notation.

Dittmar et al. designed one of the first systems for drawing a chemical diagram [24]
for the Chemical Abstracts Service (CAS) registry system. For this they leveraged
the vast experience at CAS of abstracting and extracting chemical information from
chemical literature. The method is provided as Algorithm 2.1 and is dependent on a
knowledge base of ring systems. The molecular graph is first decomposed into acyclic
fragments and ring systems. The ring systems are ranked and processed, during which
the acyclic components are systematically reattached to the rings so that an order 1
substituent is directly attached to the ring while an order n substituent is linked to an
order n—1 substituent.

ALGORITHM 2.1 CAS 2D CHEMICAL DIAGRAM DRAWING*

01. Analyze Structure
02. Rank Rings
03. Do Until Al Rings Processed

04. Sel ect Unprocessed Ring

05. Oient R ng

06. Draw Ri ng

07. Rank Order 1 Substituents

08. Do Until Al Oder 1 Substituents Processed
09. Sel ect Unprocessed Order 1 Substituent
10. Orient Link/Chain

11. Draw Li nk/ Chai n

12. Rank Order 2 Substituents

13. Do Until Al Order n Substituents (n>1) Processed
14. Sel ect Unprocessed Order n Substituent
15. Oient Link/Chain

* Reprinted from Dittmar, P. G., Mockus, J., and Couvreur, K. M., Journal of Chemical Information and
Computer Sciences 1977, 17(3), 186—192. With permission. Copyright 1977 from American Chemical
Society.
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16. Dr aw Li nk/ Chai n

17. Rank Order n + 1 Substituents

18. End Do

19. Do Until Al Oder n Substituents Positioned
20. Sel ect Unpositioned Order n Substituent
21. Position Order n Substituent

22. End Do

23. Position Order 1 Substituent

24, End Do

25. Position Ring

26. End Do

27. End

Other 2D chemical structure drawing algorithms that are independent of a ring
system database have been developed. Some use ring perception algorithms [25] such
as the drawing algorithm of Shelley [26], which also employs the Morgan extended
connectivity index (cf. Section 2.3 and [27]). Morgan indices are calculated for atoms
and ring systems and are used for minimizing atom crowding during assignment of
2D coordinates, for ring system orientation, and for identifying invariant coordinates
for ring systems.

The depiction of 2D structures has been reviewed by Helson [28]. Other algo-
rithms have been developed such as those by Weininger for SMILES strings [29],
by Fricker et al. [30], by Stierand et al. [31], and by Clark et al. [32] for the Molec-
ular Operating Environment (MOE) software suite (Chemical Computing Group,
http://www.chemcomp.com). Fricker et al. also rely on the sequential assembly of
chains and rings and proposed an algorithm for drawing structure under directional
constraints on bonds [30]. Stierand et al. proposed a method for generating diagrams
for protein—ligand complexes that highlights the interaction between amino acids and
ligand atoms on a 2D map [31].

The algorithm of Clark et al. [32] partitions a molecular graph into segments,
generates local structural options for each segment, assembles local options by random
sampling, and selects the minimally congested assembly as the basis for the final
output. The algorithm identifies ring systems, atom chains, lone atoms, atom pairs,
and stereochemistry for a hydrogen-suppressed molecular graph. The structural units
generated are assigned geometric constraints in internal coordinates such that a set
of distances and angles between atoms in the structural units is obtained. Rings are
identified using an algorithm that finds the smallest set of smallest rings [8,9]. Atom
chains are generated using a small set (C, N, O, and S) of neutral, acyclic atoms
connected by single bonds. Lone atoms are constrained with standard values for
bond lengths and angles. Atom pairs are constrained to preserve local geometry and
stereochemistry. A core ring system is identified by removing rings that share only one
edge with any other ring and coordinates are assigned to the core ring system based on
a database of ring templates. The candidate structures obtained during the assembly
of structural units in the sampling step are screened using a congestion function, with
the solution structure having the lowest congestion. In the postprocessing step the
solution structure is adjusted for aesthetic depiction. Thus, atoms in close contact
are permitted to deviate slightly; atoms or bonds may be rotated to relieve overlap;
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connected fragments may also be brought to a horizontal position by rotation; and
hydrogen atoms are expressed for cases where explicit hydrogen atom depiction is
mandated. The MOE 2D chemical drawing algorithm was extensively evaluated and
demonstrated high performance using both statistical metrics and human evaluation.
Other software systems available include those from OpenEye (Ogham) and Advanced
Chemistry Development (ChemSketch).

An important aspect of the use of chemical databases by chemoinformatics systems
is their inspection, refinement, and standardization prior to use. This ensures, for
example, that a chemical compound with multiple representations (such as Kekulé
structures or tautomers) is correctly identified and processed by an application. Special
tools such as sdwash (Chemical Computing Group, http://www.chemcomp.com) and
Standardizer (ChemAxon, http://www.chemaxon.com) are available to assist with
such problems. These tools may work by removing salt and solvent molecules, adding
or removing hydrogens, identifying aromaticity, or enumerating protonation states and
tautomers. Conjugated systems can be recognized using aromaticity perception [33]
or identification of alternating bonds [34].

Perception of tautomers has also received considerable attention in chemoinfor-
matics. Tautomers are isomers of organic compounds that result from migration of
a hydrogen atom or a proton accompanied by a switch between adjacent single and
double bonds. Tautomerism is an important property because different tautomers of
a compound may give different results in virtual screening and for properties based
on atom-type parameters. Several approaches have been suggested for the treatment
of tautomers in chemical databases and applications [35-38].

Another area of chemoinformatics that has seen active development for a number
of years is searching for Markush structures in patent databases [39]. A Markush
structure is a generalized notation of a set of related chemical compounds and may
be used in patent applications to define a substance that has not yet been synthesized.
Searching for Markush structures in chemical databases enables a researcher to rule
out priority in patent applications. Chemical drawing programs can represent these
structures by, for example, drawing a bond to the center of a phenyl ring indicating
substitution at any position in the ring (Figure 2.3).

OCH3

NH (6}

FIGURE 2.3 Markush structure for methylphenidate ester with a generalized R group
substitution at any position in the phenyl ring.



50 Handbook of Chemoinformatics Algorithms

2.3 STORING AND RETRIEVING CHEMICAL STRUCTURES
THROUGH CANONICAL LABELING

When storing a chemical structure in a database, one is faced with the problem of deter-
mining whether the structure is already present in the database. Therefore, one needs
to determine whether structures are identical. In graph theory two identical graphs
are said to be isomorphic, and an isomorphism is a one-to-one mapping between the
atoms of the graph preserving the connectivity of the graphs. When two atoms of
the same graph are mapped by an isomorphism, the two atoms are said to be auto-
morph and one uses the term automorphism instead of isomorphism. Atoms that are
automorph are symmetrical (or equivalent), and in a given molecular graph, atoms
can be partitioned into their automorphism group or equivalent classes. One prac-
tical procedure to detect isomorphism or automorphism between molecular graphs
is to canonically (i.e., uniquely) label the atoms of the graphs. Two graphs are then
isomorphic if they have the same labels.

Automorphism partitioning and canonical labeling are of significant interest in
chemistry. Both problems have practical applications in (1) molecular topological
symmetry perception for chemical information and quantum mechanics calculations,
(2) computer-assisted structure elucidation, (3) NMR spectra simulation, and (4)
database storage and retrieval, including determination of maximum common sub-
structure. Since 1965 [27] many canonical labeling methods have been proposed in the
context of chemical computation, and this section presents three of them after provid-
ing more precise definition and relationships between isomorphism, automorphism,
and canonical labeling.

2.3.1 TERMINOLOGY

Two given graphs are isomorphic when there is a one-to-one mapping (a permutation)
from the vertices of one graph to the vertices of the second graph, such that the edge
connections are respected. An isomorphic mapping of the vertices onto themselves is
called an automorphism. The set of all automorphisms of a given graph is the automor-
phism group of the graph. The automorphism group contains information regarding
the topological symmetry of the graph. In particular, the orbits of an automorphism
group identify symmetrical (or equivalent) vertices. The canonical labeling problem
consists of finding a unique labeling of the vertices of a given graph, such that all
isomorphic graphs have the same canonical labels. Examples of canonical represen-
tations are graphs that maximize (or minimize) their adjacency matrices. Two graphs
with the same canonical representation are isomorphic. This observation is used when
querying chemoinformatics databases as the structures stored in chemoinformatics
databases are canonized prior storage. The obvious advantage is that isomorphism
is reduced to comparing the canonical labels of the input structure with those of the
database.

Although most articles related to graph isomorphism have been published in the
computer science literature, the computation of the orbits of automorphism groups
using partitioning techniques has received most attention in chemistry and the two
problems have been shown to be computationally equivalent [40]. The canonical
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labeling problem has been studied in both chemistry and computer science. It would
appear that the canonical labeling problem is closely related to the isomorphism
testing problem; the latter can be performed at least as fast as the former, and for many
published algorithms, isomorphism tests either include a procedure for canonization
or else have an analogue for that problem [41].

Since canonical labeling can be used to detect isomorphism, the remainder of this
section focuses on canonization procedures. As already mentioned, several canoni-
cal labeling methods have been proposed in the context of chemical computation,
and three of them are presented next. The general characteristic of these meth-
ods is the use of graph invariants to perform an initial vertex partitioning. Graph
invariants can be computed efficiently and have led to the development of fast
algorithms. For most published algorithms, the initial vertex partitioning is fol-
lowed by an exhaustive generation of all labelings. The computational complexity
of the exhaustive generation can be reduced using the fact that two vertices with
different invariants belong to different equivalent classes; hence, exhaustive label-
ing generation is performed only for vertices with the same invariant. Nonetheless,
because all vertices may have the same invariant, the upper bound of the time com-
plexity for the exhaustive labeling generation scales exponentially with the number
of vertices.

Whereas vertices with different invariants belong to different equivalent classes,
the reverse is not necessarily true. As a matter of fact, isospectral points are vertices
with the same invariant that belong to different classes [42]. Although the invariant
approach may not be totally successful in the sense that the proposed methods work
in all cases, it has been shown to behave well on average [43,44]. Indeed, for a given
random graph there is a high probability that its vertices can be correctly partitioned
using graph invariants [45].

To simplify the presentation, the three canonization algorithms given next are
illustrated for hydrocarbons and do not take stereochemistry into account. For each
algorithm, the reader is referred to relevant literature on how the algorithms can be
modified to incorporate heteroelements and stereochemistry.

2.3.2 MORGAN’S ALGORITHM

This historically important algorithm was first published in 1965 by H.L. Morgan [27]
and was part of the development of a computer-based chemical information system
at the CAS. The original algorithm did not take into account stereochemistry, and an
extension was proposed in 1974 by Wipke et al. [46]. We present below a scheme
based on Morgan’s algorithm; while our scheme may not be the exact published
algorithm, it captures the essential ideas.

As with many canonization methods, Morgan’s algorithm proceeds in two steps.
In the first step, graph invariants (cf. the definition in Chapter 1) are calculated for
each atom. In the second step, all possible atom labels are computed and printed
according to the invariants. Invariants are calculated in a recursive manner. At each
recursive iteration, the invariant of any given atom is the sum of the invariants of
its neighbors computed in the previous step. The process starts by assigning to all
atoms an initial invariant equal to 1 or equal to the number of neighbors of that atom
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(as in the original algorithm published by Morgan). One notes that when assigning
an initial invariant equal to 1, the invariant obtained at the next iteration equals the
number of neighbors. The recursive procedure stops when the largest number of
distinct invariants is obtained, that is, at an iteration for which the number of invariants
remains the same or decreases after that iteration. Labeling of the atoms is performed
using the invariants found at the stopping iteration. One starts by choosing the atom
with the largest invariant; this atom is labeled 1. One notes that all the other atoms
are unlabeled at this point. At the second step, the neighbors of the atom labeled 1
are sorted in decreasing order of invariants; the neighbors are then labeled 2, 3, and
so on, in the order that they appear in the sorted list. There may be several ways of
sorting the neighbors; as some atoms may have the same invariants, the algorithm
computes all the possible sorted lists. At the next step, one searches for atoms with
the smallest label having unlabeled neighbors and the procedure described in the
second step is repeated, this time for the smallest labeled atom. The procedure halts
when all atoms have been labeled. The canonical graph is the one producing the
lexicographically smallest list of bonds when printing the graph. In the algorithm
given below, the notation || is used to depict the number of distinct elements of
a list, and the routine print-graph() prints the edges of a graph for a given list of
atom labels.

ALGORITHM 2.2 MORGAN’S ALGORITHM
canoni cal - Morgan(Q

i nput : - G: a nolecular graph

output: - printout of graph G with conputed | abels

01. Let inv be the set of invariant initialized to
{1,1,...,1}

02. Let lab be the set of labels initialized to
{0,0,...,0}

03. inv = conpute-invariant(Ginv)

04. Let L be the set of atons in Gwth the |argest
i nvari ant

05. For all atomx in L do

06. lab(x) =1

07. conput e- 1l abel (G inv, | ab, 1)

08. lab(x) =0

09. done

conpute-invariant (G inv)

i nput : - G a nol ecular graph
- inv: the initial invariants for all atons
output: - INVARI ANT: the updated invariants for all
at ons
01. For all atom x of G do
02. I NVARI ANT(x) = Z[X’y] in g inviy]
03. done

04. i f || NVARI ANT| > i nv|
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05. then return(conpute-invariant (G | NVARI ANT) )
06. el se return(inv)
07. fi

conput e- | abel (G, i nv, | abel , n)

i nput : - G a nol ecul ar graph

inv: the invariants for all atons

| abel : the labels for all atons

n: the current |abe

printout of graph G w th conputed | abels

out put :

01. Let x be the atomof G with the small est |abe
having a non enpty list Ly of unlabel ed

53

nei ghbor s
02. if (x cannot be found) then
03. print-graph(G, | abel)
04. return
05. fi
06. For all lists Sy corresponding to the list Ly where
nei ghbors of x are sorted by decreasing invariants do
07. For all atons y in Sy do n=n+1, [ abel (y)= n done
08. conpute-invariant (G inv,|abel,n)
09. For all atoms y in Sx do n=n-1, | abel (y) = 0 done
10. done

The invariant step of Morgan’s algorithm is illustrated in Figure 2.4 for 1,8-
dimethyl-decahydronaphthalene; the labeling step is illustrated in Figure 2.5 for the

6 6
17 19 17
10 10
10 10
19
11 11
(2) Number invariant = 3 (4) Number invariant =5

FIGURE 2.4 Invariant calculation with Morgan’s algorithm. The final list of invariants is
computed the first time the largest numbers of distinct invariant is obtained, the list of graph

(3) in the present case.
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FIGURE 2.5 Atom labeling with Morgan’s algorithm. The labels are computed according to
the invariants of graph (3) of Figure 2.4. The figure illustrates the fact that there are two ways
of sorting the list of neighbors of atom labeled 2 (graph C1 and graph C2). Graph G1 produces
the list of edges [1, 2] [1, 3] [1, 4] [2, 5] [2, 6] [3, 7] [3, 8] [4, 9] [4, 10] [5, 11] [6, 12] [7, 11]

[9, 12] and graph G2 produces the list [1, 2] [1, 3] [1, 4] [2, 5] [2, 6] [3, 7] [3, 8] [4, 9] [4, 10]
[5, 11]1[6, 12] [7, 12] [9, 11]. G1 is canonical.

same compound. Graph G1 is the canonical graph, that is, the graph producing the
smallest lexicographic list of edges.

The main criticism of Morgan’s algorithm is the ambiguity of the summation
when computing atom invariants. Indeed, let us suppose that two three-connected
atoms have neighbors with respective invariants (1, 1, 3) and (1, 2, 2). After iterating
Morgan’s algorithm, these two atoms will have the same invariant 5, and the two
atoms will be considered to be equivalent whereas they should not. To palliate this
problem, Weininger et al. [47] proposed a solution making use of prime numbers. In
this implementation the initial labels are substituted by primes, that is, to invariant
1 is associated number 2, to invariant 2 number 3, to invariant 3 number 5, and so
on. Next, instead of summing the invariants of the neighbors, the product of the
associated primes is computed. According to the prime factorization theorem, the
solution of Weininger et al. is unambiguous. This solution was implemented when
canonizing SMILES, as described in the algorithm given next.

2.3.3 THEe CANONICAL SMILES ALGORITHM

The algorithm presented below is based on the 1989 work published by Weininger
et al. [47]. As in the previous case, the outlined algorithm is not the exact replica
of the one that was published but provides the general idea on how SMILES strings
are canonically ordered. Like Morgan’s algorithm, canonical ordering is performed
in two steps. Invariants are first computed and labels are assigned according to the
invariants. For each atom, the invariant is initialized taking into account (1) the num-
ber of connections, (2) the number of non-hydrogen bonds, (3) the atomic number,
(4) the sign of the charge, (5) the absolute value of the charge, and (6) the number
of attached hydrogen atoms. Next, invariants are computed using a method simi-
lar to the routine compute-invariant given in Algorithm 2.2. However, as mentioned
earlier, instead of summing the invariants of the neighbors, Weininger et al. used
the products of the primes corresponding to the invariants of the neighbors. At the
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next step, atoms are labeled according to their invariants, the smallest label being
assigned to the atom with the smallest invariant. The atom with the same invariant
has the same label. To uniquely label each atom, Weininger et al. used a proce-
dure named ‘“double-and-tie-break.” This procedure consists of doubling all labels
(label 1 becomes 2, label 2 becomes 4, and so on), then an atom is chosen in the
set of atoms having the smallest labels, and the label of that atom is reduced by
one. The labels thus obtained form a new set of initial invariants and the whole
procedure (invariant computation followed by label assignment) is repeated. The pro-
cess stops when each atom has a unique label, that is, when the number of labels
equals the number of atoms. In the algorithm given next, we assume that an initial
set of invariants has been computed, as described above, when calling the routine
canonical-SMILES for the first time. The routine compute-invariant is not detailed,
but is similar to the one given with Algorithm 2.2 replacing summation by prime
factorization.

ALGORITHM 2.3 THE CANONICAL SMILES ALGORITHM
canoni cal - SM LES( G i nv)

input: - G a nolecular graph
- inv: a set of initial invariants
output: - printout of a canonical SMLES string of
graph G
01. inv = compute-invariant(Ginv)

02. Let lab be the set of atomlabels assigned in
i ncreasing invariants order
03. if |[lab|=|§ then print-SMLES(G |ab) fi
04. Il ab = new set of |abels doubling each | abel val ue
05. Let L be the set of atons with the snall est
| abel such that [L|>2
06. For all atomx in L do

07. lab(x) = lab(x)-1 , canonical-SMLES(G I ab),
lab(x) = lab(x)+1
08. done

In their 1989 paper, Weininger et al. [47] do not recursively apply the canonical-
SMILES routine to all atoms in the list of tied atoms with the smallest label (list
L in Algorithm 2.3 lines 05-08) but to an arbitrary atom selected from that list.
Weininger et al. algorithm complexity thus reduces to N2logy(N) for a molecular
graph of N atoms. While this implementation is efficient, it may not necessarily be
correct. Algorithm 2.3 does not scale in polynomial time, as the list L may com-
prise all N atoms the first time it is computed, N — 1 atoms the second time, N — 2
the third time, and so one, leading to an N! complexity. However, Algorithm 2.3
produces all potential canonical SMILES, the final canonical string being the lexi-
cographically smallest one. Printing SMILES (routine print-SMILES) is performed
starting with the atom with the smallest label. This atom becomes the root of a tree
for a depth-first search. As mentioned in Section 2.1.1, with SMILES notations,
branches are indicated with parentheses: “(‘to open the branch and’)” to close the
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branch. When printing canonical SMILES, the algorithm directs branching toward
the lowest label; assuming the atom labels for acetone C—C(=0)-C are 1-4- (=3)-
2, one starts with the methyl group labeled 1 and then moves to the central carbon
labeled 4. The branch is composed of the smallest atom label attached to the central
carbon, that is, the second methyl group labeled 2; the final atom is thus the oxygen
labeled 3. The printed canonical SMILES string for acetone is thus CC(C)=O0 and not
CC(=0)C.

The latest developments in the search for a unique representation of chemical
structures are the InChl and InChIKey algorithms [48]. These algorithms are based
on the McKay general graph canonization algorithm [49]. Because the InChl algo-
rithm has never been formally published, it is difficult to present this complex
method just based on the technical manual. Instead we present another algorithm,
whose performances have been shown to be comparable to those of the McKay
technique [50].

2.3.4 CANONICAL SIGNATURE ALGORITHM

The method outlined below was first published in 2004 [50]. As with previous algo-
rithms, the method first assigns invariants to atoms and next labels the atoms from
the invariants. In the present case, invariants are computed based on atom signatures.
The formal definition of an atom signature is given in Chapter 4, but for the purpose
of this section we define the signature of an atom x in a molecular graph G as being
a tree T'(x) spanning all the edges of the graph (cf. Figure 2.6a and b).

When computing an atom signature, the term tree is used in a somewhat loose
manner as several vertices in the tree may correspond to the same atom. The root
of the tree is atom x itself. The first layer of the tree is composed of the neighbors
of x; the second layer is composed of the neighbors of the vertices of the first layer
except atom x. The construction proceeds one layer at a time until no more layers
can be added, that is, until all the bonds of G have been considered. Assuming the

(a) (b)

1
/| \
9 1 10 9 2 10
7 8 /N /N /\
1 7 3 4 8 12
5 6 I
2 5 5 6 6
3 4
(c)
Atom no. 1 2 3 4 5 6 7 8 9 10 11 12

Atom type Co|Cl|Cl1|Cl1|C2|C2|C1|Cl1|C1|(C1|C1|C1
and number

of parents
Invariant 1 2 2 2 3 3 2 2 2 2 2 2

FIGURE 2.6 Atomic signature. (a) 1,8-Dimethyl-decahydronaphthalene, where carbon atoms
have been arbitrarily numbered. (b) Signature tree of atom 1. (c) Atom initial invariants.
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tree has been constructed up to layer /, layer [ 4 1 is constructed considering each
vertex y of layer /. Let z be a neighbor of y in G. Vertex z and edge [y,z] are added to
layer [ + 1 if the edges [y,z] or [z,y] are not already present in the previous layers of
the tree. To each vertex added to the tree, one associates an atom type and the initial
label or number of the corresponding atom. Note that a given atom number z may
appear several times in the tree (such as atom number 5 in Figure 2.6) since it can
be the neighbor of several atoms present in the previous layer. Having defined atom
signatures, we next explain how these signatures can be used to compute invariant
and ultimately canonized molecular graphs.

The approach taken to canonize atomic signatures is based on the classical Hopcroft
and Tarjan’s rooted tree canonization algorithm [51]. Let x be an atom of a molecular
graph G, and T (x), the corresponding signature tree. To each atom a one associates
an atom type and an invariant, inv(a). Invariants are integers no greater than N, the
total number of atoms. To each vertex v in 7' (x) one associates a corresponding atom,
atom(v), in graph G and an invariant, inv(v). Additionally, for each vertex of any layer
1, one can access its parents in layer [ — 1 and its children in layer / + 1.

Prior to running the algorithm, all the invariants are initialized. The initial invariant
of any atom « is computed from the atom type of a and the number of parents a has
in T (x). More precisely, a string of characters is compiled from the atom type and the
number of parents, and the string is converted into an integer following lexicographic
ordering. The integer is not greater than N since there are no more than N different
strings. Examples of initial invariants are given in Figure 2.6c.

After initialization, the first step of the algorithm is to compute the invariants
of the vertices in T(x) from the atom invariants. The vertex invariants are com-
puted twice, first reading the tree layer by layer from the leaves to the root, and
then from the root to the leaves. Unlike the classical Hopcroft-Tarjan algorithm, the
tree must also be read from the root to the leaves because, in signature trees, some
vertices may have more than one parent; thus the invariants for these vertices may
be different depending on the invariants of their parents. We first examine the case
where the tree is read from the leaves to the root. Starting at the last layer, to each
vertex we associate the invariant of the corresponding atom. Duplicated invariants
are removed and all nonidentical invariants are sorted in decreasing order. The ver-
tex invariant becomes the order of the vertex in the sorted list. Going to the layer
above, to each vertex one assigns a vector composed of the invariant of the corre-
sponding atom and the invariants of the children of the vertex. Duplicated vectors
are removed, the remaining vectors are sorted in decreasing order, and the vertex
invariant becomes the order of the vertex in the sorted list. Note that these vertex
invariants range from 1 to N since there are no more than Nvertices in a layer.
The above procedure is repeated until the root is reached. The algorithm is then
run from the root to the leaves but this time for any vertex; the vector invariant is
composed of the invariant of the corresponding atom and the invariants of the parents
of the vertex. The Algorithm 2.4 is given below and is illustrated in Figure 2.7 for
1,8-dimethyl-decahydronaphthalene.

Once invariants have been computed for all vertices, each atom invariant is com-
piled from the invariant of all the vertices corresponding to the atom. Precisely, for
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FIGURE 2.7 Vertex and atom invariants. (a) Signature tree of atom 1 in Figure 2.6a. (b) The
same signature tree with initial invariants from Figure 2.6c. (c) Vertex invariants after running
the Hopcroft-Tarjan algorithm from the leaves to the root. (d) Vertex invariants after running
the Hopcroft—Tarjan algorithm from the root to the leaves. (¢) Corresponding atom vectors and
atom invariants. The root is located at layer 0.

each atom, an invariant vector is first initialized to zero; then for each vertex corre-
sponding to the atom, the invariant of the vertex is assigned to the /-coordinate of the
vector, where [ is the layer the vertex occurs. Once invariant vectors are computed
for all atoms, duplicated vectors are removed, the vectors are sorted in decreasing
order, and the atom invariant becomes the order of the atom’s vector in the sorted
list (cf. Figure 2.7e). The above process is repeated until the number of atom invari-
ants remains constant. Note that at each iteration, the number of invariants increases.
Indeed, atom invariants are computed from vertex invariants, which in turn are com-
puted from the atom invariants from the previous iteration. Because the number of
invariants is at most the number of atoms, the process cannot repeat itself more than
N times. The invariant computation algorithm is given next.

ALGORITHM 2.4 SIGNATURE INVARIANT COMPUTATION
i nvariant-vertex(T(x), rel ative)

Input: T(x) the signature-tree of atom x
relative is a parent or child relationship
Qut put: Updated vertices invariants
01. List-Vipy = ¢
02. For all layers I of T(x)
03. For all vertices v of |ayer
04. Viw(v) =i nv(atom(v)),{inv(w) s.t. wis a relative of v}
05. Li st - Viw= Li st - Vipy + Vinv(V)
06. done
07. sort List-Vip in decreasing order
08. For all vertices v of |ayer
09. inv(v)=order of Vin(v) in List-Viy
10. done
11. done



Algorithms to Store and Retrieve Two-Dimensional (2D) Chemical Structures 59

invariant-aton{(T(x), G

Input: T(x) the signature-tree of atom x
G a nol ecul ar graph

Qut put: Updated atons invariants

01. Repeat

02. i nvariant-vertex(T(x), child)

03. i nvariant-vertex(T(x), parent)

04. For all vertices v of T(x)

05. let I be the layer of v

06. Viv(atom(v)) (1) = inv(v)

07. done

08. List-Viny = ¢

09. For all atoms a of G do

10. List-Vipy= List-Vipy +Vinv(a)

11. done

12. sort List-Viny in decreasing order
13. For all atoma of G

14. inv(a)= order of Vin(a) in List-Vipy
15. done

16. until the nunber of invariant values renmmi n constant

The canonization algorithm (Algorithm 2.5) given below and illustrated in
Figure 2.8 first computes the invariants for all atoms running the above invariant
computation algorithms (step 1). Then in step 2, the atoms are partitioned into orbits
such that all the atoms in a given orbit have the same invariant. In the next step (step
3) one searches for an orbit containing atoms with at least two parents in 7'(x). Note
that these atoms have different invariants than atoms with only one parent, since the
initial atom invariants embrace the number of parents. When several such orbits exist,
those with the maximum number of atoms are selected, and if several orbits have the
same number of atoms, one takes the one with the minimum invariant. In the case
of Figure 2.7, orbit {5,6} has two atoms, each atom having more than one parent;
this orbit is thus selected. If no orbit can be found, or the selected orbit contains only
one atom, then the process ends and the signature is printed (steps 4-9). When an
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FIGURE 2.8 Signature-canonization algorithm. (a) Signature tree of atom 1 in Figure 2.6a,
where atom 5 is labeled. (b) The same signature tree with the invariants computed in Figure
2.7e. (c) Vertex invariants after running the invariant-vertex algorithm where atom 5 is labeled.
(d) Vertex invariants after running the invariant-atom algorithm where atom 5 is labeled. Note
that every orbit contains only one atom and the canonization algorithm thus stops after labeling
atom 5.
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orbit is found containing more than one atom, an atom is arbitrarily selected from that
orbit and a label is added to its invariant (steps 10-14). The canonization algorithm
is run again in a recursive manner and other atoms may be labeled if other orbits with
multiple atoms and multiple parents are found. In Figure 2.8, atom 5 is labeled 1. The
algorithm stops after the next iteration since each atom becomes singularized in its
own orbit. Initially, all atoms are unlabeled (label 0). The first labeled atom is labeled
1 and labels are incremented by 1 each time the algorithm calls itself (step 12). Note
that each time an atom is labeled, at the next iteration the atom will be alone in its
orbit. Since there are no more than N atoms to be labeled, the algorithm cannot call
itself more than N times.

ALGORITHM 2.5 SIGNATURE CANONIZATION

canoni ze-signature(T(x), G |, Syax)
Input: T(x) the signature-tree of atom x
G a nol ecul ar graph
| a | abe
Qut put: Spax a canonical string (initialized to

enpty string)

01. invariant-atom(T(x),Q

02. partition the atons of Ginto orbits according to
their invariants

03. let Obe the orbit with the nmaxi mum nunber of atons
and the mnimuminvariant value such that all the
atons of O have at |east two parents.

04. if |O<1 then

05. | abel all unl abel ed atons having two parents
according to their invariant

06. S = print-signature-string(T(x))

07. if (S > Shax) Swax = S f

08. return Spax

09. fi

10. for all atoma in O do

11. | abel (a) = |

12. S= canoni ze-signature(T(x), G | +1, Sna)

13. if (S>Spax) Snax =S fi

14. | abel (a) =0

15. done

16. return Spax

Like SMILES strings, signature strings are printed reading the signature tree in
a depth-first order. Prior to printing signature strings, the children of all vertices are
sorted according to their invariants taken in decreasing order. In order to avoid printing
several times duplicated subtrees, any subtree is printed only the first time it is read.
This operation requires maintaining a list of printed edges. The algorithm is detailed
in Faulon et al. [50] and depicted in Figure 2.9.
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FIGURE 2.9 Printing the signature string. (a) Signature tree of atom 1 in Figure 2.6a, where
atom 5 has been labeled. (b) The same signature tree with branches reordered according to
atom invariants computed in 2.8d. (c) Signature tree with atom types and labels. Atom 5 is
labeled 1; other atoms represented more than one time in the signature tree (atom 6) are labeled
in the order they appear reading the tree in a depth-first order (atom 6 is thus labeled 2). (d)
The corresponding signature string is printed reading the tree in a depth-first order.

As discussed in Faulon et al. [50], the calculation of invariants based on signature
turns out to be powerful, at least for molecular graphs. Indeed for most chemicals
there is no need to introduce labels. So far the worst-case scenario for the signature-
based algorithm has been found with projective planes for which four labels needed
to be introduced; even in that case the algorithm was run no more than O(N*) times.
While the algorithm handles heteroelements and multiple bonds well, it does not yet
take stereochemistry into account.

2.4 CONCLUDING REMARKS

We have presented in this chapter the classical formats used to represent 2D chemical
structures in chemoinformatics databases. We have also addressed issues that arise
when storing chemical structures, such as representations of alternative bonds and
perception of tautomers. Because chemicals are usually represented in the classical
form of 2D diagrams, we have outlined algorithms that generate these diagrams from
linear notations and connection tables. One main issue that has been the source of many
algorithms published in the literature is the uniqueness of the representation. Indeed,
to store and retrieve chemicals from chemoinformatics databases, one needs a unique
(and standard) representation. This issue is generally dealt with in canonical labeling
algorithms, which are reviewed in Section 2.3. One outstanding problem that has not
been covered in the chapter but is still an active field of research is the development of
efficient algorithms to search for substructures; this problem is related to the subgraph
isomorphism, which is generally harder to solve than canonical labeling.
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3.1 INTRODUCTION

Three-dimensional (3D) molecular representation is at the heart of modern chemistry.
The past decades have taught us that pure graph-oriented representations are typically
not enough to understand the interactions of molecules with their environments. The
3D molecular geometry has a strong effect on molecular binding, as clearly seen in
ligand—protein interactions and packing in crystal structures.

Understanding molecular properties requires us to understand the geometrical fea-
tures of the molecule. For example, the molecular geometries of a molecule and its
surroundings determine the proximity of functional groups and, therefore, why certain

65
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FIGURE 3.1 The raw coordinates of a molecular geometry are suited for visualization
and computational studies, such as geometry optimization and energy calculations. However,
because they do not provide a uniform-length representation, they do not lend itself for data
analysis and pattern recognition.

molecules show strong binding affinity, due to, for example, salt and hydrogen bridges
and hydrophobic interactions. Only a brief reminder is needed here that the geometry
is not static and that binding affinity often involves induced fit. Visual exploration of
geometries is well established in various fields of chemoinformatics, and free tools
are abundant. Jmol [1] and PyMol [2] are the best-known open-source applications
in this area.

Dealing with 3D geometries in computation, however, is more complex
(Figure 3.1). A program does not have the visual interpretation of depth or orien-
tation. In order to have an analysis tool to understand these patterns, the patterns
need to be expressed numerically. Depth can be represented as a Euclidean distance,
which, depending on the application, might be a relative distance or distance ratio.
Orientation is even more complex and it involves a coordination reference to which
the orientation can be measured, something that can be easily done visually. This
brings us to the topic of this chapter: how to represent 3D molecular geometries such
that they are useful for analysis and computation.

The molecular structure is, ultimately, governed by the quantum mechanics of the
electrons that are organized in atomic and molecular orbitals. This quantum molec-
ular structure defines all molecular properties, including the geometry and chemical
reactivity. However, quantum mechanics is for many supramolecular systems too
computation intensive, and simpler representations are needed to deal with the fast
molecular space we nowadays work with. This simpler 3D representation typically
involves an atom-and-bond representation and combines a chemical graph with the
geometry information. Instead of the many electrons involved in the molecule, it
focuses only on the nuclei and their coordinates. Electronic effects on the geometry
are implicitly captured by the coordinates, but can be complemented with atom-type
information, which typically includes hybridization information. This is the basic
model behind the force field approaches.
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Other applications, however, need a different representation. The above-sketched
representation still increases in size with the number of atoms and bonds. However,
numerical analyses in quantitative structure—activity relationship (QSAR) studies,
which correlate geometrical features with binding affinity, often require a fixed-length
representation that is independent of the number of atoms and bonds.

This chapter discusses the representation of molecular geometry in various coor-
dinate systems, how to interchange those representations, and how fixed-length,
numerical representations may be derived from them.

3.2 COORDINATE SYSTEMS

Three atomic coordinate systems are commonly used: Cartesian coordinates, internal
coordinates, and notional coordinates. The last is specific for crystallography data
and describes both the molecular geometry as well as the crystal lattice. Internal
coordinates rely on and use the chemical graph and therefore aim at single, connected
molecules. Cartesian coordinates are the most versatile and are typically used for
disconnected 3D structure.

3.2.1 CARTESIAN COORDINATES

Cartesian coordinates describe the atomic coordinates relative to the origin. The X, Y,

and Z axes are orthogonal and Euclidean distances can be used to measure distances

between atoms. Orientation and placement with respect to the origin is arbitrary.
The Cartesian coordinates for ethanol shown in Figure 3.2 are as follows:

O 1.94459 1.33711 0.00000
C  1.52300 0.00000 0.00000
C  0.00000 0.00000 0.00000
H 193156 —0.49598 0.90876
H 193156 —0.49598 —0.90876
H —-0.35196 1.05588 0.00000
H —0.35196 —0.52794 —0.91442
H —40.35196 —0.52794 0.91442
H 1.18187 1.88994 0.00000

Distances, angles, and torsions are easily calculated from Cartesian coordinates, as
well as many other derived properties, such as molecular volume, total polar surface
area, and so on (see Section 3.5.1). For example, the molecular center-of-mass may
be placed on the origin, so that molecules are located in the same location. Algorithm
3.1 describes the algorithm to calculate a molecule’s center-of-mass. Centering the
molecule around the origin is then done by subtracting the coordinates of the center-
of-mass from the atomic coordinates.

ALGORITHM 3.1 ALGORITHM TO CALCULATE THE MOLECULAR
CENTER-OF-MASS

sumx = 0
sumy = 0
sumz = 0
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FIGURE 3.2 3D model of ethanol labeled by position in the input file.

total . wei ght =0

iterate over all atons {
sumx = sumx + atomx * atom wei ght
sumy = sumy + atomy * atom wei ght
sumz = sumz + atomz * atom wei ght
total.weight = total.weight + atom wei ght

}

comx = sumx / total.weight

comy sumy / total.weight

comz = sumz / total.weight

However, although Cartesian coordinates are universal, they are not always the
best choice with respect to computation times or algorithm simplicity. For geometry
optimization calculations, internal coordinates are more suitable, requiring less com-
putation to reach the same results. Tomczak reports an approximately fourfold speed
using internal coordinates over Cartesian coordinates [3].

3.2.2 INTERNAL COORDINATES

Internal coordinates describe the atomic coordinates in an internal frame, that is,
without an external reference. They describe the molecular geometry in terms of
distances between atoms and angles and torsions between bonds. This closely overlaps
with force field approaches where the molecular energy is expressed in terms of bond
length, angles, and torsions, defining a well-structured search space for geometrical
optimization. Many molecular dynamics and quantum mechanics algorithms take
advantage of this representation.

The internal coordinates for ethanol shown in Figure 3.2 are given below. The
atomic numbering is the same as for the list of Cartesian coordinates and is shown in
Figure 3.2 too.

These coordinates are interpreted as follows. The first distance given (1.4020 A) is
between atom 2 (carbon) and atom 1 (oxygen), while the second distance (1.5230 A)is
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239° Q

FIGURE 3.3 The torsion angle for atoms 4, 2, 1, and 3 in ethanol (see Figure 3.2) is defined
as the angle between a vector through atoms 4 and 2 and the vector through atoms 1 and 3, as
measured in a plane perpendicular to the vector through atoms 2 and 1. (Note that atom 1 is
depicted behind atom 2.) The lines between atoms are not bonds; in fact, atom 3 is bonded to
atom 2 and not to atom 1. However, the vector between atom 4 and atom 2 does coincide with
an actual bond.

the bond length of the carbon—carbon bond. The first angle given (107.50°) is between
the bonds between the third and second atoms and the second and first atoms. The first
torsion angle (239.34°) is the angle between the two lines, one between atom 4 and
atom 2 and the other between atom 1 and atom 3, as measured in a plane perpendicular
to the bond between atom 1 and atom 2 (Figure 3.3). (Note that atom 1 is located behind
atom 2 in this figure.) These lines do not necessarily have to coincide with bonds.

3.2.3 FracTiIONAL COORDINATES

Fractional coordinates describe the positions of the atoms as fractions of the axes
of the crystal’s unit cell, which is described by its crystallographic axes A, B, and
C. There are two common ways to describe these three axes themselves: as a vector
in Cartesian space with nine values, or with six values listing the axes’ lengths and
the angles between the axes, sometimes referred to as the notional axes. Figure 3.4
shows the unit cell of the cubic unit cell of sodium chloride. The unit cell axes can
be described as in notional axes 5.6, 5.6, 5.6 A and 90°, 90°, 90°, describing the axis
lengths and the angles between them, respectively.

Alternatively, the axes can be described as vectors in Euclidean space. This leaves
a choice of how to rotate the unit cell in Euclidean space. If we fix the A axis on the
x axis and the B axis in the XY plane, then rotation in the Euclidean space is fixed.
Using this convention, the unit cell axis vectors for the sodium chloride example are
A=56,0,0,B=0,5.6,0,and C = 0, 0, 5.6. If angles deviate with 90°, then only
the A axis will be parallel to an Euclidean axis.

The coordinates of atoms in the unit cell are expressed as fractions of the axes A,
B, and C. The fractional coordinates of the four sodium atoms in the shown unit cell
are 0, 0, 0, 0.5, 0.5, 0, 0, 0.5, 0.5, and 0.5, 0, 0.5. The chloride ions are located at
0.5,0,0,0.0,0.5,0,0, 0.0, 0.5, and 0.5, 0.5, 0.5.
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FM-3M
a="5.640A
b =5.640A
c=5.640A
0o =90.0°
B=90.0°
Y =90.0°

FIGURE 3.4 Unit cell of sodium chloride with the three unit cell axes starting from the origin
in the lower left corner of the cube. The notional coordinates of this unit cell are defined by the
A, B, and C axis lengths (all 5.6 A) and the three angles a, §, and y (all 90) between B and C,
A and C, and A and B, respectively.

3.2.4 Two-DIMENSIONAL CHEMICAL DIAGRAMS

The fourth coordinate system is very common in chemistry: two-dimensional (2D)
chemical diagrams. These diagrams are aimed at graphical visualization of the con-
nection table and typically focus on depiction of atom and bond properties, such as
isotope and charge details for atoms, and bond properties like bond order, delocal-
ization, and stereochemistry. This 2D coordinate space is outside the scope of this
chapter. It is mentioned here, however, because 2D diagrams are often the input in
algorithms that create 3D molecular structures.

These algorithms create 3D Cartesian coordinates from the information presented
in 2D molecular representations. Primarily, this information includes the connection
table, and atom- and bond-type information. However, to properly reflect stereo-
chemistry features presented in the 2D diagrams, the algorithm has to resolve such
information often from wedge bond representations, and 2D coordinates for cis/trans
isomorphism. Additionally, coordination generation for ring systems can use a tem-
plate library that may or may not contain information on the layout of the attachment
points to assemble the geometries of ring and nonring systems. The general concept
is given in Algorithm 3.2.

ALGORITHM 3.2 ALGORITHM TO CREATE 3D GEOMETRIES
FROM 2D DIAGRAMS

extract connection table

derive atomparities fromwedge bond and 2D coordi nat es
i nf ormati on

derive cis/trans isonorphismfrom 2D coordi nat es

isolate ring systems, and | ook up 3D coordi nates froma
template library
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apply common geonetries for non-ring substructures
taking into account stereochem stry

3.3 INTERCONVERTING COORDINATE SYSTEMS

Interconversion between the three coordinate systems is important, because algo-
rithms can perform differently depending on the chosen system, as was discussed
earlier. Algorithms to interconvert coordinate systems are abundant, but may differ
in detail between implementations. This section discusses two algorithms: conver-
sion of internal coordinates into Cartesian coordinates and conversion of fractional
coordinates into Cartesian coordinates.

3.3.1 INTERNAL COORDINATES INTO CARTESIAN COORDINATES

Converting internal coordinates into Cartesian coordinates is fairly straightforward:
each next atom is placed into Euclidean space to conform the internal coordinates
converted so far. The algorithm has two degrees of freedom: (1) in which Cartesian
coordinate the first atom is placed and (2) in which plane the first two bonds are
located. The algorithm description given in Algorithm 3.3 puts the first atom at the
origin of the coordinate system, the first bond along the x axis, and the second bond
in the xy plane.

ALGORITHM 3.3 ALGORITHM TO CONVERT INTERNAL
COORDINATES INTO CARTESIAN COORDINATES. ATOM
NUMBERING FOLLOWS THOSE FROM TABLE 3.1

let the first line define:
the first atom
t hen:
put the first atomat {0,0, 0}
let the second |ine define:
a new first atom and a second atom
a distance to a second atom
t hen:
d = distance (first atom second atom
put the second atomon the X axis at {d, 0, 0}
let the third line define:
new first and second atons, and a third atom
a distance to a second atom
an angle between the first, second and third atom on

this line
t hen:
d = distance (first atom second atom

a = angle (first atom second atom third aton)
put the third atomin the XY plane, such that:
the distance to the second atomis d, and
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TABLE 3.1
Internal Coordinates for Ethanol Shown in Figure 3.2
Number Element Distance Angle Torsion
1 O
2 C 1 1.4020
3 C 2 1.5230 1 107.50
4 H 2 1.1130 1 108.34 3 239.34
5 H 2 1.1130 1 108.34 3 120.66
6 H 3 1.1130 2 108.43 1 0.00
7 H 3 1.1130 2 108.43 1 120.00
8 H 3 1.1130 2 108.43 1 240.00
9 H 1 0.9420 2 108.44 3 0.00

the angl e between first, second and third
atomis a

let the fourth and all later |ines define:

new first, second, and third atons, and a fourth
atom

a di stance between the first and second atom

the angl e between the first, second and third
atom and

the torsion between the first, second, third, and
fourth atom

t hen:

d
o
t

di stance (first atom second atomnm

angle (first atom second atom third atom
torsion (first atom second atom third atom
fourth atom

put the first in euclidean space, such that:

the distance to the second atomis d,

the angl e between first, second and third
atomis «a

the torsion is defined by t

3.3.2 FrAcCTIONAL COORDINATES INTO CARTESIAN COORDINATES

Converting fractional coordinates into Cartesian coordinates can in the simplest way
be performed as a matrix operation:

/

X a b-cosy c-cosp X
y]=1]0 b-siny c(cosa—cosp-cosy)/siny||y], (3.1
d 0 0 V/(a-b-siny) Z
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FIGURE 3.5 Acetylcholinesterase (PDB code: 1ACJ) with tacrine (InChi=1S/
CI3HI4N2/c14-13-9-5-1-3-7-11(9)15-12-8-4-2-6-10(12)13/h1,3,5,7H,2,4,6,8H2,(H?2, 14,
15)) the active site. Visualized with Jmol.

with a, b, and ¢ being the length of the crystallographic axes A, B, and C, and a, B,
and vy the angles between B and C, A and C, and A and B, respectively, and V the
volume of the unit cell, defined as

V= abc\/l — cosZ o — cosZ P — cos2y + 2 cos acos B cos y. (3.2)

3.4 COMPARING GEOMETRIES

There are many applications where comparing the 3D structure of molecules is inter-
esting; molecular docking is likely the most common one. In such studies the molecule
is oriented in the active site of an enzyme or receptor (Figure 3.5). CoMFA studies
binding affinities and assumes that molecules are overlayed and oriented in a similar
chemical direction, reflecting similar binding modes with protein (see Section 3.5.2).

Comparing two or more molecular 3D geometries is generally not directly possible:
the geometries do not share a common reference origin, and they may not be oriented
in the same direction. The center-of-masses of the molecules may be far apart, and
the structures can be differently aligned. The first can be addressed by putting the
center-of-mass of each molecule in the origin of the coordinate system.

It does not, however, orient the molecule in any particular way. While the center-
of-mass is in the origin, the molecular conformer can still be oriented in any direction.
To address this molecule, one may apply principal component analysis (PCA) and
orient the molecule such that the first three latent variables are oriented along the X,
Y, and Z axes as described in Algorithm 3.4.

ALGORITHM 34 ALGORITHM TO ALIGN CHEMICAL
STRUCTURES BASED ON ANISOMORPHISM

for each nol ecul e :
calculate the three PCs fromthe 3D coordi nates
for each atom
the new x coordinate is the score on PCl
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the newy coordinate is the score on PC2
the new z coordinate is the score on PC3
overlay the nolecules in the new coordi nate space

The above-sketched algorithm does not take into account structural similarity
between molecules, but only looks at the anisomorphism of the structures. That is,
the variance in atomic coordinates is used to create new coordinates. Practically,
this means that each molecule is reoriented such that the direction in which the
molecule is longest, and thus has the highest variance, is aligned with the first principal
component (PC1).

Instead, it is often desirable to orient the molecules based on the maximal common
substructure (MCSS). For example, alignment of a series of steroids is expected to
overlay the sterane skeletons. The alignment must not be disturbed by large side
chains that change the overall anisomorphism of the geometry: the variance of the
3D coordinates would change and the alignment too. Using the MCSS, the alignment
of the two molecules becomes more, in agreement with what one would expect.
Most chemoinformatics toolkits have the means to either find the maximum common
substructure or to identify a user-defined substructure using a query language like
molecular query language (MQL) [4] or SMARTS.

After having identified the MCSS of the molecular geometries, the full structures
can be rotated in the coordinates space to minimize the root mean square deviation
(RMSD) of the coordinates of the shared substructure (Algorithm 3.5).

ALGORITHM 3.5 ALGORITHM TO ALIGN 3D MOLECULAR
STRUCTURES BASED ON THE COMMON SUBSTRUCTURE

find the maxi mal comon substructure (MCSS)
find a rotation that mnimzes the RVSD of the atonic
coordi nates of the MCSS

3.5 FIXED-LENGTH REPRESENTATIONS

One disadvantage of representation in any of the three discussed coordinates sys-
tems is that the size depends on the number of atoms. Many chemometrical modeling
methods, however, require a numerical and fixed-length vector representation of the
molecular structure [5,6]. The above representations do not fulfill this requirement,
and hence derived descriptors have been and still are being developed to bridge the
gap between those representations and the mathematical modeling methods. These
descriptors allow statistical modeling and analysis with, for example, classical meth-
ods like PCA, partial least squares (PLS) and neural networks (NNs) and classification
methods like linear discriminant analysis (LDA). Only very few methods, such as
classification and regression trees (CART), do not require a numerical representa-
tion. Distance-based clustering, for example, can work directly with an MCSS-based
distance matrix in which two molecules that have a large substructure in common
have a smaller distance and are considered more alike.

The Handbook of Molecular Descriptors published in 2000 [7] gives a broad
overview of known molecular descriptors. Depending on the information content,
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descriptors are usually classified as 0D, 1D, 2D, and 3D descriptors. The last category,
3D, takes into account the 3D geometry of the molecule. Recently, a fifth category has
been proposed: 4D descriptors for which several different but related definitions have
been given. Todeschini defines the 4th dimension to describe the interaction field of
the molecule [7], while others reserve this dimension to describe its conformations [8].
The latter takes into account the flexibility of molecules, where coordinate systems
only treat the molecules as rigid bodies.

3.5.1 MoLECULAR DESCRIPTORS

To illustrate how molecular descriptors convert the variable-length 3D molecular
geometries into a fixed-length representation, two descriptor algorithms are described
in this section. It is important to realize that the representation not only needs to be of
fixed length, but also needs to be orientation independent. That is, the descriptor value
must not change when the molecular geometry is rotated in coordinate space. Con-
sequently, these descriptors are suitable for comparing molecular geometries without
the need for alignment. This requirement is also the reason why these molecular
descriptors typically do not describe angular features of the molecule, other than
collapsed onto a single value.

3.5.1.1 The Length-over-Breadth Descriptor

The length-over-breadth descriptor describes the anisomorphism of the molecule,
but uses their ratio to collapse the length and breadth features into a single number
(Algorithm 3.6).

ALGORITHM 3.6 ALGORITHM FOR THE LENGTH-OVER-
BREADTH DESCRIPTOR

cal cul ate the geonetrical dinmensions of the nolecule
deternine the |l ength and breadth
calculate the ratio length over breadth

Calculation of the molecular length and breadth is quite similar to the use of
PCA alignment (see Section 3.4), which rotates the molecule such that the longest
molecular axis is aligned with the PC1. The length is then defined as the difference
between the maximum and minimum coordinates on this axis (PC1); the breadth
would be the difference on the second axis (PC2). This calculation can include the
van der Waals radii of the atoms to reflect the size of the molecule as a function
of its molecular surface. However, to simplify calculation, not all possible rotations
are taken into account. For example, implementations may only rotate the molecular
structure around a single coordinate system axis.

3.5.1.2 Charged Partial Surface Area (CPSA) Descriptors

The molecular surface area and the molecular volume are other methods to reduce the
3D geometry to a fixed-length representation. Neither of the two describe the inter-
nal geometry of the molecules, but are aimed at describing the molecular features
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governing intermolecular interactions. Both surface area descriptors and the molec-
ular formula require the calculation of the molecular surface area (Algorithm 3.7).
Depending on the actual surface of interest, different atomic contributions to the total
surface can be used. For example, the van der Waals surface will use a smaller sphere
around each atom than the solvent accessible surface.

ALGORITHM 3.7 ALGORITHM TO DETERMINE THE 3D
MOLECULAR SURFACE

For each atom
use tessellation to define a sphere of points around
the 3D coordinate of the atom
renove all sphere points which are buried inside the
spheres of nei ghboring atons
the nol ecul ar surface is defined by the remaining points

The CPSA descriptor uses the atomic contributions to this surface, combined with
the partial atomic charges, as the starting point to come to 25 descriptor values [9]. A
full description of all values is outside the scope of this chapter and is well described
in the original paper, but it is illustrative to describe the first six: partial positive
surface area (PPSA), total charge weighted PPSA, atomic charge weighted PPSA,
and their negative charge equivalents, namely partial negative surface area (PNSA),
total charge weighted PNSA, and atomic charge weighted PNSA.

These six descriptors provide a numerical vector representation of the geometrical
features of the molecule, but at the same time introduce electronic features that affect
intermolecular interactions. The PPSA and PNSA use the aforementioned algorithm
to determine the atomic contributions to the molecular surface area. While the PPSA
only takes into account atomic contributions of atoms with a positive partial charge
( Z(SA;F)), the PNSA only takes into account contributions from the negatively
charged atoms ( D (SA] )). This introduces a nice area where implementations of the
general algorithm will differ in results, depending on which algorithm has been used
to calculate the partial charges. For example, the original paper used an empirical
method, whereas the CDK implementation of this descriptor uses Gasteiger charges.
The other four descriptors are also derived from the atomic contributions, but are
weighted sum of positive (QJTF) or negative (O ) partial charges. An overview of the
six descriptor values of the CPSA descriptor is given in Table 3.2.

3.5.2 COMPARATIVE MOLECULAR FIELD ANALYSIS

That an insight into the 3D interaction of a ligand with protein cavities is important
in the modeling of biochemical endpoints, such as binding affinity, became apparent
and computationally feasible in the last decade. Comparative molecular field analysis
(CoMFA) is the primary example of this concept [10]. The CoMFA method studies
molecule—environment interaction by putting the molecules in an equidistant grid
of points in 3D space. At each point, the interaction energy is calculated using a
hypothetical probe, for example, using the Lennard—Jones potential function and the
Coulomb potential energy function. It is important to note that because the molecules
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TABLE 3.2
First Six of the 25 CPSA Descriptors, with the Formulas
to Calculate them

Descriptor Label Formula
Partial positive surface area PPSA Z(SA?’)

Partial negative surface area PNSA Z(SA,'_)

Total charge weighted PPSA PPSA-2 PPSA/Q;

Total charge weighted PNSA PNSA-2 PNSA/Q,
Atomic charge weighted PPSA PPSA-3 S (SAT cot 0F)
Atomic charge weighted PNSA PNSA-3 D (SA; cotQ:7)

Note: SA?’ and SA; are the atomic contributions to the surface area for
the atoms with positive and negative partial charge, respectively. Q}'
and Q are the sum of positive partial charges Qi+ and the sum of
negative partial charges Q; , respectively.

are aligned, the interaction similarities of the ligands can be compared by calculating
the difference in the interaction energies of the matching grid points for all molecules.
Afterwards, PLS is used to correlate the matrix expansion of the grid with the activity,
such as ligand—target binding affinities [11,12].

CoMFA requires, however, geometrical alignment of the molecules, as discussed
earlier, and only considers one conformation for each molecule, which is only a
simplification of reality. Therefore, the focus has moved on to descriptors that are
independent of the orientation of the molecules in its reference frame, and possibly
even include information of multiple conformations. This was already acknowl-
edged in 1997 by Hopfinger, who made a scheme which incorporated some ideas
from CoMFA but which was alignment independent and took into account multiple
conformations [13].

3.5.3 RabiaL DistriBUTION FUNCTIONS

Another common approach to remove alignment effects is to use the radial distribution
function (RDF). This kind of function, as the name says, describes the distribution of
certain features as a function of the distance to the central point. RDFs are particularly
interesting when distance-related interactions need to be captured. The basic RDF
describes the occurrence of a chemical feature at a certain distance, for example,
the presence of an atom. For example, Aires-de-Sousa et al. have used five RDFs to
describe the environment of protons to predict proton NMR shifts [14] and for the
simulation of infrared spectra [15,16].

Figure 3.6 shows a basic spike-like RDF and the effect of smoothing with Gaussian
function. This smoothing is particularly useful when a (dis)similarity between two
RDFs is calculated: small displacements of the atom positions captured in the RDF
will lead to large changes in the similarity between the two functions. However,
when a Gaussian smoothing is used, changes in the similarity are less abrupt. Other
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FIGURE 3.6 Three RDFs for the oxygen atom in ethanol shown in Figure 3.2. The highest-
intensity, spiked RDF has no Gaussian smoothing applied; each atom contributes equally to the
function. The two other RDFs are Gaussian-smoothed functions with different Gauss widths,
but equal summed intensities.

approaches can be used too, and one such is used in the application described in the
next section.

The algorithm for calculating an RDF for an atom in a molecule is fairly simple
and is described in Algorithm 3.8. While the RDF itself is an analogous function,
particularly when Gaussian smoothing is used, the function is typically digitized, for
example, using binning. Given a central atom, the RDF of atoms around that atom
is calculated by iterating over all atoms in the molecule, and determine where it
contributes to the RDF. The amount it contributes is defined by a weighing scheme.
In its simplest form, the contribution is 1 for each atom present (in black in Figure
3.6). If a Gaussian smoothing is used, then the neighboring bins are increased too,
effectively convoluting the spike with a Gaussian function of selectable width (in light
gray and dark gray in Figure 3.6).

ALGORITHM 3.8 ALGORITHM FOR CALCULATING AN RDF FOR AN
ATOM IN A MOLECULE THAT DESCRIBES THE DISTRIBUTION OF
ATOMS AROUND THAT ATOM. THE RDF CONTRIBUTION IN ITS
SIMPLEST FORM IS 1, INDICATING THE PRESENCE OF AN ATOM (IN
BLACK IN FIGURE 3.6)

determine the central atom

for each other atomin the nol ecul e:
deternmine the distance to the central atom
determ ne the correspondi ng RDF bin
cal cul ate the RDF contribution
add this contribution to the bin

An interesting feature of RDFs is that they can be tuned to particular applications.
The aforementioned application in NMR shift prediction uses five such customized
RDFs. The contribution an atom gives to the RDF can be weighted in various ways.
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FIGURE 3.7 The coulombic interaction weighted (solid line) and non-weighted RDF (dashed
line) for the oxygen atom in ethanol shown in Figure 3.2, showing the effect of the weighing
scheme.

Commonly, the contribution is weighted by the distance to the central atom: the farther
away from the center, the smaller the contribution. This compensates for the fact that
at larger distances, each bin describes an increasing amount of spherical space.

Additionally, the contribution can be weighted by the properties of the atom that
affect the contribution. For example, the coulombic interaction can be used, which rep-
resents the electronic interaction between the point charges of the atoms (Figure 3.7)
and which originates from the desire to describe electronic features of the molecule.
The application described in the next section of this chapter applies this approach too,
where it uses RDFs to describe complete organic crystal structures.

Importantly, it should be clear that the algorithm allows for any weighting function,
offering interesting flexibility in describing molecular geometries.

3.6 APPLICATION: CLUSTERING OF CRYSTAL PACKINGS

Comparing crystal structures is important in both classification and clustering prob-
lems. Classification is important for the understanding of the relation between physical
properties and the underlying structure of materials. The specific packing of molecules
in a crystal directly influences the physical properties of compounds. As an exam-
ple, in crystal engineering, crystal packings are classified according to intermolecular
interactions [17-21]. A second application of the similarity measure is in the cluster-
ing stage of ab initio crystal structure prediction [22,23]. In this process, hundreds
or thousands of different hypothetical crystal packings for the same molecule, called
polymorphs, are generated. They need to be clustered to arrive at representative subsets
for which analysis and geometry optimization are feasible.

Two things are needed for clustering and classification of crystal structures: a
properly defined descriptor and a similarity function applied to this descriptor. A
few requirements for both the descriptor of crystal structures and the similarity
function are described in the literature [24-26]: the most obvious requirement for
a descriptor—similarity combination is that more dissimilar crystal structures result in
larger dissimilarity values. Although this seems trivial, several well-known descriptors
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do not generally satisfy this requirement [24-27]. Many descriptors require a choice
of origin, or some other setting. Among such descriptors is the combination of unit
cell parameters and fractional coordinates discussed earlier in this chapter. Caused
by this choice of origin, a descriptor based on reduced unit cell parameters can vary
significantly with only minor lattice distortions [28,29]. Although it is in some cases
possible to adapt the similarity function to deal with such instabilities, this issue can
better be addressed by using RDFs [30]. Using this descriptor a dissimilarity mea-
sure that expresses the differences between two crystal structures can be defined. The
resulting dissimilarity value can then be used to cluster or classify the crystal structures
by grouping together structures that have a low dissimilarity between them.

Crystal structures can be uniquely represented by an RDF describing the distribu-
tion of neighboring atoms around a central atom. Each neighboring atom gives rise
to a peak in the function. RDFs are independent of cell choice and can be physically
interpreted. In the application presented here, the RDF is adapted to include more spe-
cific information about the atoms. To do so, the RDF is weighted by the electrostatic
interactions. To indicate the inclusion of electrostatic information in the descriptor,
we will refer to this as the electronic RDF, or R,DF. The reason for including elec-
trostatics is the assumption that these play a major role in crystal packing [18,31,32].
By including partial atomic charges, the R,DF focuses on atom groups with large
partial charges, in particular functional groups, and differentiates between attractive
interactions between oppositely charged atoms and repulsive interactions.

An atomic R,DF describes the distribution of coulombic interactions of one atom
with surrounding atoms; the R, DF for the crystal structure is obtained by summing
all atomic R,DFs of all N atoms in the asymmetric unit:

N M
qiqj
R.DF(r)=>">" #S(r — i) (3.3)
i=1 j=1 " 'bJ

where M is the number of neighboring atoms within a radius r, g; and g; are partial
atomic charges of the atoms i and j, and 3 places the electrostatic interaction at the
right distance by its definition 8(x) = 1 if x = 0 and 8(x) = 0 if x # 0. Alternatively,
the 3(x) can reflect Gaussian smoothing. The function is scaled for the number of
atoms in the asymmetric unit, V.

Figure 3.8 shows the R,DF for an artificial crystal with two atoms in the unit
cell, a positively and a negatively charged one (a = 7.97, b = 10.26, ¢ = 18.77, and
a =B =y = 90°). The first negative peak is the interaction between the two atoms
at exactly the bonding distance. The other negative peaks are also peaks between two
oppositely charged atoms. The overall decrease in intensities is caused by the 1/r term
in the R,DF equation. The first positive peak is related to the translation along the a
axis, that is, & &, and the second peak to the translation along the b axis. The third
peak is the translation in the direction a % b. For this orthogonal structure, there are
twice as many contributions to this peak as for the first two positive peaks, resulting
in the higher intensity.

The R.DFs of four experimental cephalosporin crystal structures are shown in
Figures 3.9 and 3.10. They show a few distinct high-intensity peaks and many smaller
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FIGURE 3.8 Example R.DF of an artificial crystal structure with a positively and a negatively
charged atom (¢ = 8.0, b = 10.3, ¢ = 18.8, and o = f = y = 90°). Positive peaks are caused
by the interaction of atoms with both positive and both negative charges. Consequently, they
cause positive peaks at the distances matching the translational symmetry of the crystal. This
explains, for example, the positive peaks at 8.0, 10.3, and 18.8 A.
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FIGURE 3.9 Example R.DFs of three cephalosporin compounds: (a) A9, (b) A10 from the
same class A.

peaks. The locations of these peaks are specific for the crystal packing: Figure 3.9a
and b shows the R,DFs of two cephalosporin structures from the same class, while
Figure 3.9c shows the R,DF for a different packing. Figure 3.10a shows the func-
tion for a simulated estrone crystal structure; a similar pattern can be observed.
Figure 3.10b shows the effect of cutting away peaks with intensities lower than some
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FIGURE 3.9 (Continued) (c¢) N19 from a different class N.

threshold. It was found that the cutoff value must be around 20% of the highest peak.
Cutting away the smaller peaks emphasizes the major features of the R,DF and leads
to better discrimination.

Because of the nature of the R,DF, one can expect positive contributions at those
distances that match the translational symmetry in the crystal. This causes the positive
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FIGURE 3.10 Example R.DF of one of the simulated estrone structures shown in (a), and
the effect of cutting away of peaks below 20% of the intensity of the highest peak in (b).

peaks at 8.0, 10.3, and 18.8 A. However, since such contributions can be canceled out
by other, negative contributions, they do not always show up in the R,DF. Moreover,
peaks not related to translational symmetry are particularly interesting, because they
provide information additional to symmetry in the crystal.
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TABLE 3.3
Open-Source Implementations of Algorithms Discussed in the Chapter
Algorithm Number Algorithm Libraries Details
3.1 Calculate the center-of-mass CDK
32 Create 3D geometries from 2D CDK
diagrams
33 Convert internal to Cartesian CDK OpenBabel
coordinates
34 Align chemical structures based R
on anisomorphism
35 Align 3D molecular structures CDK MCSS search
based on the common R For algorithm 3.4
substructure
3.6 Calculate the length-over- CDK
breadth ratio
3.7 Calculate the 3D molecular CDK NumericSurface.class
surface
3.8 Calculate an atomic RDF CDK RDFCalculator.class

Using this description, dissimilarities between crystal structures are represented
by the difference between the two corresponding R,DFs. For this, a weighted cross
correlation (WCC) is used [19], which is applied to the high-intensity peaks of the
R.DF. Using this approach, both experimental and simulated crystal structures have
been clustered and classified successfully [30].

3.7 OPEN-SOURCE IMPLEMENTATIONS

This chapter has presented a variety of basic algorithms involved in the representation
of 3D molecular geometries. Because support for these geometries is so fundamental
to chemoinformatics, it will not be difficult to find implementations in open-source
software for the algorithms described in this chapter. Visualization of 3D geometries
can be done in Jmol (http://www.jmol.org/, [1]) and PyMOL (http://www.pymol.org/).
Converting different coordinate systems is also supported by various open-source
toolkits, including the CDK (http://cdk.sourceforge.net/, [33,34]) and OpenBabel
(http://openbabel.org/). Table 3.3 gives a more detailed overview.
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4.1 MOLECULAR DESCRIPTORS: AN INTRODUCTION

The derivation of information and knowledge from real-world data makes it necessary
to define properties that differentiate certain objects from others. Therefore, an explicit
definition of a formal description of such objects is needed in a way that the natural
distinction is preserved. It is obvious that the way an object is described depends on the
context of interest. In the case of molecular structures, the chosen description of the
same compound would certainly differ if a specific pharmaceutical target affinity or
its experimental synthesis should be described. For this reason, literally thousands of
molecular descriptors have been proposed covering all properties of interest. Thus, it
is not the goal of this chapter to present an exhaustive list of descriptors but to provide a
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detailed account on the most important types, principles, and algorithms. An encyclo-
pedia that covers most of the important molecular descriptors can be found in Ref. [1].
A molecular descriptor is an abstract, in most cases numerical, property of a molec-
ular structure, derived by some algorithm describing a specific aspect of a compound.
There are many ways to define descriptor classes. The most important object is to
differentiate between the structural representations used as input. The simplest types
are one-dimensional descriptors (OD and 1D) that only depend on the molecular for-
mula, such as molecular mass or the numbers of specific elements. The net charge of
a molecule is often regarded as a 1D descriptor. Most descriptors consider the molec-
ular topology (i.e., the structural formula). These are considered as two-dimensional
(2D) descriptors like most of the graph theory-based descriptors. Descriptors that also
regard the spatial structure are defined as three-dimensional (3D). This class consists,
for instance, of molecular interaction field (MIF)-based approaches, but also methods
that make use of Euclidean distances. Further descriptor classes that have been intro-
duced consider, for example, different conformations or molecular dynamics. Their
dimensionality cannot be expressed in a similar intuitive way; sometimes we can find
acronyms like four-dimensional (4D) or five-dimensional (5D) for such methods.

4.2 GRAPH DEFINITIONS

Most of the descriptors we will present in this chapter are at least 2D and therefore
make use of the molecular topology. In such approaches, a molecule is often regarded
as a graph annotated with complex properties, often using an unrestricted label alpha-
bet. This flexible definition allows us to apply all kinds of structured data algorithms
based on graphs [2], which also covers feature-reduced molecular graphs.

Definition4.1: Given a node label alphabet L, and an edge label alphabet Lg, we
define a directed attributed graph g by the four-tuple g = (V, E, u,v), where

¢V defines a finite set of nodes

e E C VxV denotes a set of edges

* 1 :V — Ly denotes a node labeling function
* v:E — Lg denotes an edge labeling function

The set V of nodes can be regarded as a set of node attributes of size |V|.

The set E of edges defines the structure and (edge) density of the graph. A con-
nection from node v € V tonode u € V is formed by e = (u, v), if e € E. A labeling
function allows integrating information on the nodes or edges by using L, and Lg.
In theory, there is no restriction to the label alphabet. Nevertheless, for practical rea-
sons the label alphabet is restricted to a vector space of a limited dimension L = R¥,
or a discrete set of symbols, L = {s1, ..., sx}. Other definitions of labels might also
contain information such as strings, trees, or graphs, as an alphabet reduction may
impose constraints on the application domain, allowing a more flexible encoding.

Although there are various labeling functions for molecular graphs possible, there
are still ongoing discussions for a standard definition (http://blueobelisk.sourceforge
.net, http://opensmiles.org/). Due to differences in chemoinformatics perception
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algorithms [3] and expert systems, it is not possible to guarantee that two software
solutions implement the same labeling function. This becomes important when algo-
rithms are compared; drawn conclusions might rather challenge the labeling function
instead of the algorithm of interest. If we regard 3D atom coordinates as an atomic
node label triple Ly 3p(x, y, z) this becomes clear, because Ly 3p(x,y, z) labels might
differ dramatically between algorithms [4-8]. If algorithms make use of different label
functions, it is not sure whether the algorithms or the label function are compared.

Although the representation of a chemical compound as a directed graph is some-
times useful, for example, if asymmetric bond dissociation energies are used as edge
labels, it can be regarded as a special case. In most cases, a molecular graph is treated
as an undirected graph, where the directed edges ¢ = (u, v) and e = (v, u) are iden-
tical, (4, v) = (v, u). This can be written as e = {u, v}, by replacing the ordered list
(..., ...) with the unordered set {...,...}. Another special case is a nonattributed
graph with empty node and edge labeling functions Ly = Lg = {}, which simplifies
the graph definition to g = (V, E).

An important task on graphs is to detect a defined graph contained in another graph
(i.e., a subgraph).

Definition4.2: Letg = (V/,E’,i/,V) and g = (V,E, u, v) be graphs. Graph g’
is a subgraph of g or g is a supergraph of g/, written as g’ C g, if

« V' CV

e EE=ENV CV)

o W =pnw, YueV

e V(u,v) =vu,v), Yu,v)ekE

Subgraph matchings and searches are usually applied after using a molecular label-
ing function. This is crucial, because some labelings depend on the size of a graph.
The famous Hiickel rule requires a graph size of at least (2 - |V| + 4) to assign aro-
maticity labels. In such cases, a label function cannot be applied to subgraphs alone
and aromatic labels might not be assigned correctly.

The consideration of molecular structures as graph objects with certain proper-
ties requires defining the similarity of two structures, which is the base of many
chemoinformatics applications by means of graphs. The evaluation of the similarity
between two graphs is called graph matching [9]. Graph matching methods can be
further divided into exact and inexact or error-tolerant matching algorithms. An exact
matching algorithm of two graphs g; and g, decides if both graphs are identical. This
is also known as graph isomorphism.

A bijective mapping f : V — V' denotes a graph isomorphism of a graph g; =
(V,E) and a graph g, = (V', E') if

1. o;(v) = a;[f(v)] with v € V, where «; is a labeling function

2. For each edge e = (v1, 1) € E there exists an edge ¢’ = [f(v1),f (v2)] €
E’ and for each edge ¢’ = (v}, v}) € E’ there exists an edge e = [f_l(v/l),
[T €E

The graph isomorphism problem is hard to solve and possibly NP-complete (i.e.,
the problem has an exponential complexity with the input) in the case of general
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graphs. Nonetheless, there are special cases for which polynomial time algorithms
are known. An example applicable for molecular graphs is the graph isomorphism
approach for graphs with bounded valence by Luks [10]. A variation of this prob-
lem is subgraph isomorphism, which decides if a graph is completely contained in
another one.

4.3 GLOBAL FEATURES AND ATOM ENVIRONMENTS

Global features describe a molecular graph by a real-valued single number. A full
enumeration of all global features is beyond the scope of this section and there
are well-known textbooks dealing with this topic, a case in point is Ref. [1].
Instead, we introduce some basic principles and implementations of some topological,
complexity, eigenvalue-based descriptors, and local atom environments.

4.3.1 ToroLocGIcAL INDICES

Topological indices are global features that derive information from the adjacency
matrix of a molecular graph. A problem of such descriptors is the so-called degener-
acy problem, which occurs if two molecules are assigned the same descriptor value.
This is often the case with stereoisomers on which topology-based algorithms have
difficulties in general.

Topological descriptors can be divided in bond-based descriptors and distance-
based descriptors. Whereas the first give information on how the atoms in a molecular
graph are connected, the latter are based on the topological distance.

The Wiener Index is a convenient measure for the compactness of a molecule and
has alow degeneracy [11]. The basic implementation of this topology-based descriptor
uses the information contained in the shortest-distance matrix M, see Algorithm 4.1.

ALGORITHM 4.1 WIENER INDEX COMPUTATION

nmet hod doubl e cal cul ate (Mol ecul e nol) {
wi ener Pat hNunmber = 0. 0;
/1 get nxn distance matrix from nol ecul ar graph
usi ng Fl oyd-Warshall or Dijkstra
Di stanceMatrix M = getDi stanceMatrix (nol) ;
for (i =0; i <Mlength; i++) do
for (j =0; j <Mlength; j++) do
if (i ==j) continue ;
wi ener Pat hNunber += Mi] [j] ;
fi
od
od
return w ener Pat hNunbers/2 ;

} ;
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Usually, the shortest distances are computed by the Floyd—Warshall algorithm or
Johnson’s algorithm that is more efficient on sparse graphs:

1 N N

i=0 j=0,i#j

4.3.2 PrincipLEs OF COMPLEXITY DESCRIPTORS

There are numerous descriptors based on the complexity of molecular graphs.
Some popular descriptors are based on this concept. Comprehensive overviews of
complexity descriptors were published by Bonchev [12,13].

The Minoli Index [14] is defined as

IVI><|E|>
M= (—"— P,
(o) 2

where P; is the number of paths of length /.
Information-theoretic indices are derived from the Shannon formula of a system

with n elements:
k
nj n;
= E (e ()
Z " g2 n

i=
where k is the number of different sets of elements and 7; is the number of elements

in the ith set. An application is the Bonchev—Trinajstic Index, in which the branching
information on the molecule is incorporated into a descriptor.

BT =nlog, n — an log, ny,
!

where n is the total number of distances, n; is the number of distances of length /, and
n equals the sum over all n;.

A spanning tree is a connected, acyclic subgraph of a graph G that includes all
vertices of G. The number of spanning trees is a topological complexity descriptor. It
is computed using the Laplacian matrix, which is defined as

L(G) = V(G) — A(G),

s

t(G) = |L;

where V is the diagonal matrix of G with the vertex degrees and A denoting its
adjacency matrix. L;; is the Laplacian matrix with row i and column j deleted, and
t(G) returns the number of spanning trees.

The Bonchev Index derives information on the total number of connected sub-
graphs. The First Bonchev Index is often referred to as the Topological Complexity

Index (TC),
TC=) > dis),

where d;(s) is the degree of subgraph s regarding vertex i.
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Randi¢ complexity indices are defined using augmented vertex degrees. They are
computed by the augmented degree matrix D;;, where d; is the degree of vertex j and
lj; is the distance between vertices i and j:

D.. = i
i oLy
The augmented degree is the row sum of the ith row of D;j

Zagreb indices are topology-based indices, summing up vertex degrees over
vertices and edges. They are defined as follows:

Mi= ) (),

vertices

My =) (didy),

edges

where d; is the degree of vertex i. M is the count of all walks of length 2.

Graph complexity can be defined in various ways [12,13], but still there is no
standard definition. In Ref. [12] various criteria are compiled from different sources,
which describe the requirements for a “good” molecular complexity descriptor. For
example, a complexity index should

* Increase with the numbers of vertices and edges

* Reflect the degree of connectedness

* Be independent from the nature of the system

» Differentiate nonisomorphic systems

* Increase with the size of the graph, branching, cyclicity, and number of
multiple edges

Still, this is an ongoing discussion, with even conflicting positions. In Ref. [12], itis
concluded that common requirements on complexity indices are as follows: principles
of homology, reflection of branching, cyclicity, multiple edges, and heteroatoms.

4.3.3 Atom ENVIRONMENTS

All atom environments have a common principle, namely that they describe atoms by
using the information of the direct neighborhood. The advantage of this procedure is
that no functional groups or fragments have to be predefined.

4.3.3.1 HOSE Codes (Hierarchically Ordered Spherical Description of
the Environment)

Starting from the “root” (the atom to be described), the symbols of neighboring bonds
and atoms are retrieved by a depth-first search and assigned to the so-called spheres.
Sphere i includes all direct and non-neighboring atoms with topological distance i.
For substructures and rings, priority tables exist such that for each sphere a unique
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string representation can be assigned. This ensures an efficient comparison and storage
because this representation can be mapped to numerical value. The HOSE code was
introduced by Bremser [15].

4.3.3.2 Radial Distribution Function

The radial distribution function (RDF) [16,17] is a correlation-based function. It is
defined as follows:

|A]

g(,):% Y wmome .

n,m,n#m(n)
The Moreau—Broto autocorrelation is a special case of the RDF:

IA]
ACd) = g(Mlimooo =, &i(M)ai(m)dpm,

n,m,n#£m

with
1 ifdist(a,, am) =d

8nm =
0 else

Parameters a;(n) and o; (i) describe the properties of atoms n and m, y describes
the degree of delocalization for the atomic properties and |A| equals the number of
atoms in a molecule. The distance d = r — ry,, is computed from the sphere radii
¥ € {Fmin» - - - » "min + k7res < Fmax} With ryin and rpax denoting their limits. ryes is the
chosen step size. With increasing vy, the atomic properties become more localized, and
the properties of an atom have no influence on the neighbors of this atom. Therefore,
the RDF describes the distribution of an atomic property in the molecule.

For y — oo, the exponential term turns into the Delta function 3§,,,. Thus, the
autocorrelation is a special case of the general RDF.

4.3.3.3 Local Atom Environment Kernel

The local atom environment kernel is a local atom similarity. It is used by the optimal
assignment kernel (OAK) [18,19]:

L
Klocal (v, V') = katom(v, V) + ko(v,v) + D y(Dki (v, 1),
=1

The similarity is composed of a local atom similarity ko (v, v") and spherical neigh-
borhood k;(v, v’) of size I. The maximum spherical (topological) distance is denoted
by L, and y(l) is a decay factor.

Note that the optimal neighborhoods 7 (i) are used, such that only meaningful
descriptors are regarded. For two atoms v, v/, the sum over all kernel similarities
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match(i) regarding the direct neighbors n; and ny ;) is maximized. The direct neigh-
borhood of an atom in organic molecules is restricted to five; therefore, the optimal
assignment of all possible neighborhoods m is computed:

Qval (v)

max Z matchg (i),
i=1

ko(v,v)) =
otw.v) aval (V) T

matchg (i) = katom[7:(v), 7z iy (V)] - kpond[{v, 7i(v)}, {v', nx iy (V)}1.

Larger atom environments up to length L can be efficiently computed by the
following recursive algorithm, which uses previously computed direct neighborhoods:

matchg (i) = katom[7:(v), 7z iy (V)] + kpond[{v, 7i(v)}, {v', nr iy (W)},

1 Qval (V) oval (v)
ki(v,v) = ————— ki—1[ni(v), nj(V")].
Qval (V) ava (V') Xl: Xj: /

The local atom environment is designed to distinguish between nominal and
numerical atomic and bond properties. Therefore, the local kernels are composed
of numerical (Lpym) and nominal kernel (Lnom) functions, which can be weighted
by parameters yYnum, Ynom- STanimoto denotes the Tanimoto similarity of two sets of
nominal features:

katom (v, U/, YV ,noms VV,num) = knom (Anom,A%om, VV,nom) : knum(Anum»A;mm, VV,num)’
kbond (e, e, YE.,nom» YE,num) = knom(Bnom,B;]om, YE,nom) - knum (Bnum,B;mm, YE,num)s

_ [ = sTanimoto(Lnom, Lﬁom)]2
2Y%om ’

knom (Lnom, Lﬁom, Ynom) = €Xp (

[Lnum| (Lnumi L ')2
knum (Lnums Lpgms Youm) = exp | — Z $
2¥ium

i

A similar approach was published by Bender et al. [20,21], describing an atom
environment by a radial fingerprint, which is discussed elsewhere in this chapter.

4.3.4 EIGENVALUE DECOMPOSITION
4.3.4.1 Characteristic Polynomial

The characteristic polynomial is one of the most important relationships between a
graph and the eigenvalues of either the adjacency matrix of a graph or the distance
matrix.
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Definition 4.3: The eigenvalues x1,x2, ..., xy| of a graph with V nodes are also
called the characteristic polynomial P(G, x):

(x —x)x—=x2),...,x —xv)) = P(G,x),
P(x,') =0.

If the rings Z of a graph that contain the edge e;; are considered, we can rewrite
the equation as the Heilbronner theorem [22].

Definition4.4: (Heilbronner Theorem) Let v; and v; be two nodes of a molecular
graph, and e;; be the connecting edge. Then the characteristic polynomial can be
computed as graph decomposition:

P(G)=P(G—ej) —P(G—v;—vj)—2 Z P(G—-2). 4.1
VZlejeZ

The last term is a sum over all rings, and different ring systems might lead to the
same numerical value. In other words, several graphs can give similar eigenvalues,
but a single eigenvalue can map to multiple graphs.

The characteristic polynomial can be extended by atomic properties, which gives
different eigenvalues depending on the labeling function used.

4.3.4.2 Burden Matrix and BCUT Descriptors

Closely related molecular descriptors are derived from a modification of the adjacency
matrix. The elements in the diagonal are modified by the characteristic properties of
a molecule. The descriptors are then computed as the set of eigenvalues.

The Burden Matrix is a symmetric matrix based on the hydrogen-depleted molec-
ular graph with the atomic numbers in the diagonal and (t/10) in the off-diagonal
between two atoms i, j, where 7 is the conventional bond order [1]. The ordered
sequence of the n smallest eigenvalues of the Burden Matrix is one of the first
descriptors.

Burden CAS—University of Texas eigenvalues (BCUT) descriptors are an exten-
sion of this approach. In general, the values in the diagonal of the Burden Matrix are
replaced by special properties, for example, atomic charge, polarizability, and H-bond
capabilities.

Descriptors based on the distance matrix can also be defined, for example, the
largest eigenvalue of the distance matrix or the unique negative eigenvalue. Com-
binations of those descriptors were also proposed, for example, the sum of leading
eigenvalues of the distance matrix and the adjacency matrix; for a detailed overview,
see Ref. [1].

4.3.4.3 WHIM Descriptors

Weighted Holistic Invariant Molecular (WHIM) descriptors [1] are 3D descriptors
that capture information regarding size, shape, symmetry, and atom distribution. A
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principal component analysis (PCA) is performed on the centered coordinates of a
molecule using a weighted covariance matrix. The weighted covariance matrix is
obtained by applying a weighting scheme of the general form:

A - _

_ Zl:ll wi(qij — q))(qik — qr)

= . ,
Z!l Wi

where s is the weighted covariance between the jth and kth atomic coordinates.
|A| is the total number of atoms, w; is the ith weight, g;; and g are the ith and
kth coordinates, and gy is the corresponding average value. Again, the weighting
schemes can be exchanged, for example, regarding electronegativity, van der Waals
volume, and polarizability. The descriptors are computed as statistical indices of the
atoms projected onto principal components obtained from the modified covariance
matrix.

Sjk

4.4 MOLECULAR SUBSTRUCTURES

Molecular substructures can be regarded as connected graphs that are completely
contained in the molecular graph. Many physicochemical properties can be related to
the frequency of certain substructures in a molecule as it is the idea in the Free—Wilson
[23] approach to chemometric modeling. Formally, a molecular substructure can be
denoted as a subgraph Gsg of a molecular graph Gy with

1. Vg € V, with V being the set of all vertices in Gy and Vs being the set of the
vertices in Gsg

2. Es = EN (Vs x Vs), with E being the set of all edges in Gy and Vs being
the set of the edges in Gsg

3. As = {as,1,...,0s, 4} denotes the labeling functions for atomic properties
restricted to the vertices (atoms) Vg

a;(v) if v e VgVo; € A,
ag,i(v) =

undefined otherwise.

4. Analogously, Bs = {Bs,1,...,B|s,8s/} denotes the labeling functions for bond
properties restricted to the edges (bonds) V.

B(e) ife € ESVBZ' € B,

Bs(e) = :
undefined otherwise.

Substructures are handled differently compared to numerical descriptors in which
an algorithm maps the molecule to one or several numerical values. Basically, there
are two points of view regarding substructures as descriptors. One popular approach
frequently used in molecular fingerprint methods is to consider the substructure as
the descriptor and its presence or frequency in a specific molecule as its value. This
makes it necessary to define a set of substructures also known as structural keys.
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An alternative method is to define an algorithm that generates a set of substructures
for a molecule. This can be regarded as the generation of a set of descriptors for a
specific molecule by an algorithm. This avoids an explicit definition of the substructure
set and thus allows us to reveal important but yet unrecognized structural features. In
this case, it is necessary to introduce a metric that allows a quantitative comparison
of the resulting descriptor sets with variable cardinality for different molecules.

4.4.1 SuBsTRUCTURE TYPES AND GENERATION
4.4.1.1 Atom Types and Reduced Graphs

The fundamental building blocks of molecular graphs are atoms (the smallest sub-
structures that fulfill the upper definition). An atom is usually considered as an instance
of a specific chemical element type defining its physical properties (e.g., expected
mass, electronegativity, and number of electrons and protons). The chemical proper-
ties are expressed only vaguely by the element alone, because most properties related
to atomic interactions depend on the hybridization and the neighborhood of an atom.
Therefore, it is common to use a finer distinction of atoms of the same element leading
to the concept of an atom type.

In this chapter, we will consider an atom type as a structural pattern that denotes
which configurations of an atom (including specific properties like charge, hybridiza-
tion, isotope, etc.) and its intramolecular neighborhood can be considered as equal.
This concept is of special importance in the application of empirical force fields in
which the potential terms are evaluated using deviations of precalculated ab initio
or experimental parameters for specific atom types (e.g., the optimal bond length
between two sp> carbons) that are considered favorable.

The definition of a dictionary of atom types is a crucial step in many applications
of chemoinformatics and is a major contribution of chemical expert knowledge in a
computational framework.

There are many atom-type dictionaries of different accuracies available. Some
popular definitions are SYBYL atom types [24], which differentiate mainly regarding
hybridizations and element types, the Meng/Lewis definition [25], or the MacroModel
atom types [26], which extend the definition to specific atoms in substructures like
ring systems or amino acids using SMARTS patterns [27].

Besides the incorporation of expert knowledge into a chemoinformatics frame-
work, atom types can be powerful features if they are regarded as binary descriptors.
This is the base of many structural features that have to deal with the problem whether
two atoms can be considered equal. For example, this plays an important role in the
computation of the cardinality of the junction of atom-type sets needed by many
similarity measures for molecular fingerprints or in the definition of pharmacophoric
points.

An extension of the atom-type concept is the definition of substructure types (e.g.,
using SMARTS expressions) by regarding whole substructures like rings or functional
groups as atom types, whose properties reflect the properties of the substructure. This
representation is useful in molecular similarity calculations like Feature Trees [28]
to ensure that these substructures are only compared in bulk. Another advantage of
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collapsing rings to pseudoatoms is that the molecular graph is transformed into a tree
(i.e., acycle-free graph), which enables the use of faster and simpler graph algorithms.

4.4.1.2 Atom Pairs

Basic atom types alone do not provide much information about their molecular
arrangement, topology or even geometry of the molecule that is not directly con-
tained in the atom type or the collapsed substructure. The easiest way to include the
topology of a molecule is to use pairs of atom types together with their intramolec-
ular topological or geometrical distance. The first use of an atom pair encoding [29]
known to the authors used an atom type, which denotes the element, the number of
attached heavy atoms and the number of 7 electrons. The interatomic distance was
measured as the count of bonds on the shortest path (i.e., the topological distances).

A possible extension to this approach is to use more specific atom types and
geometrical distances. It is also possible to define a descriptor that denotes a specific
atom-type pair and uses its mean distance to all other atoms in a molecule.

The extraction of all atom pairs that are contained in a molecule can be done by
applying Dijkstra’s (Algorithm 4.2) shortest path algorithm [30] for each atom in the
molecule.

ALGORITHM 4.2 PSEUDOCODE FOR THE DIJKSTRA SHORTEST
PATH ALGORITHM (ADAPTED FROM WIKIPEDIA) [30]

met hod get Short est Pat hs(Graph G Node s) {
for all vertices vin Gdo // Initializations

dist[v] :=infinity // Unknown di stance function
froms to v
previous[v] := undefined // Previous node in
optimal path froms
od
dist[s] := 0 // Distance fromsource to source

Q:=the set of all nodes in G aph

while Qis not enpty do // The main | oop
u:=node in Qwith smallest dist[]
renove u fromQ
for all neighbors v of u do // where v has not
yet been renoved from Q

alt := dist[u] + dist_between(u, V)
if alt < dist[v] do // Relax (u,V)
dist[v] := alt
previous[v] :=u
fi
od
od

return previous, dist
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This algorithm is in many applications preferable to the more complex all-pairs-
shortest-paths methods (e.g., the Floyd—Warshall algorithm [31]) because all edge
weights are non-negative in a molecular graph and the graph is usually weakly
connected due to the constrained number of adjacent edges for each node.

4.4.1.3 Sequences of Atom Types: Paths and Walks

Sequences of graph vertices are divided into two classes: a walk is according to Borg-
wardt [32] a nonalternating sequence (v1, €1, V2, €2, . . ., €;—1, vy) of vertices and edges
such that e; = bond(v;, vi+1). In a molecular graph this corresponds to a sequence
of connected atom types. A path is a walk in which each vertex is at most contained
once. In many cases, paths are used instead of walks to represent chemical structures.
For an algorithm for the extraction of all labeled paths up to a length d in a molecule,
see Algorithm 4.3.

ALGORITHM 4.3 PSEUDOCODE FOR THE EXTRACTION OF ALL
LABELED PATHS UP TO A LENGTH D IN A MOLECULE

met hod |ist getPaths (nol ecular graph M, search
depth d)

list pathsy ;
list paths)gcal ;
for each atoma € M do
/1 get all paths of length d via a DFS
root = getDFSTree (M, a, d) ;
/1 get all paths in the depth-first tree
starting at the root up to length d
pat hs|gcar = enuner at eAl | Pat hsl nTr ee
(root, d)
for each path € paths|gca do
/1 check if sequence equals the reverse
sequence
if (!(path € pathy) &&!
(path.reverse( ) € pathg))
pat hy. add( path);
fi
od
od
return pathsq ;

Some common molecular fingerprints like the Daylight fingerprint [27] are defined
by means of paths up to a specific length that are contained in a molecule. Paths are
usually extracted by a depth-first traversal of the molecular graph. Pseudocodes for
the depth-first traversal are given in Algorithm 4.4 and for a breadth-first traversal in
Algorithm 4.5.
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ALGORITHM 44 PSEUDOCODE FOR THE EXTRACTION OF
DEPTH-FIRST TRAVERSAL TREE UP TO A DEPTH D IN A MOLECULE
BEGINNING AT ATOM A (ADAPTED FROM [31])

global tinme=0
net hod at om get DFSTree( nol ecul ar gr aph
M, root atom a)
{
root =a
for all atoms in M do
atomset State(' ‘unvisited )
atom set Dept h( oo o0)
at om set Predecessor (nul |)
od
recursiveVisit(atomroot)
/lroot atom augnented with its nei ghbors
/[l (tree is inplicitly stored as a adjacency list)
return root
}

met hod voi d recursiveVisit(atom u)
{ .
time++
u.setState('‘visited ')
u. set Dept h(ti ne)
for all neighbors of uin M do
i f nei ghbor has not been visited
nei ghbor . set Predecessor (u)
recursiveVisit(nei ghbor)
fi
od
u.setState(‘‘finished )
u. set Dept h(tine)
time++

}

ALGORITHM 4.5 PSEUDOCODE FOR THE EXTRACTION
OF BREADTH-FIRST TRAVERSAL TREE UP TO A DEPTH D
IN A MOLECULE BEGINNING AT ATOM A (ADAPTED FROM [31])

met hod at om get BFSTr ee( nol ecul ar graph M, root
atom a)
{
root= a
for all atons in M except a do
atom set State(*‘unvisited ")
at om set Dept h( o)
at om set Predecessor (nul |)
od
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root.setState(‘‘visited ')
r oot . set Dept h( 0)
root. set Predecessor(null)
gueue. add(root) //first-in-first-out queue
whi | e queu has el enents do
u = queue. get Next ()
for all neighbors of uin M do
i f nei ghbor has not been visited
nei ghbor.setState(‘‘visited ")
fi
nei ghbor . set Dept h(u. get Dept h() +1)
nei ghbor . set Predecessor (u)
queue. add( nei ghbor)
od
u.setState(’‘finished ")
od
/1 root atom augrmented with its nei ghbors
/1 (tree is inplicitly stored as an adjacency |ist)
return root

}

4.4.1.4 Trees

A common extension for atom types is to incorporate the atom neighborhood to get a
better representation of the topological embedding of an atom. Hence, a property can
be assigned to a complete neighborhood. This is to a certain degree included in many
of the atom-type definitions (e.g., amide nitrogen) but it requires a predefinition of
the neighborhood. A concept to avoid this drawback and to extend the neighborhood
to some arbitrary depth is to augment the atom type of each atom A by the paths up
to a certain length starting at A. This constructs a star-like graph for each atom which
is cycle-free due to the path definition and thus can be regarded as a tree with A as
the root. The tree substructure enables the use of highly efficient algorithms defined
for trees.

Tree-shaped substructures are also the base for the signature molecular descriptor
[33-36]. This descriptor is defined using an encoding of atoms and bonds as sig-
natures. An atom signature “o(x) of an atom x in a molecule G is defined as the
depth-first tree starting at x as the root node up to depth d. The depth-first traver-
sal used is slightly different from that given in Algorithm 4.4 because it allows that
atoms to occur several times due to rings in the molecule. The tree is represented
in a string representation with opening brackets if a new subtree is started and with
closing brackets if it is finished. The signature ?c(G) of the molecule G can then be
obtained as the linear combination of the atom signatures.

In this case, an atom signature can be regarded as a molecular descriptor with the
number of occurrences of atoms with a specific signature in the molecule as descriptor
values.
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A similar descriptor generation approach has been proposed by Bender et al.
[20,21]. The method starts with the construction of a neighborhood tree. The atomic
properties of the root atom are extended by the counts of the different atom types
(SYBYL atom types in the original work) in the neighborhood tree up to a specific
search depth. This leads to a descriptor vector for each atom containing the frequency
of the atom types in its neighborhood. Although it is not an explicit substructure, this
atomic neighborhood feature vector can also be regarded as a tree-like substructural
pattern and be used for the definition of molecular fingerprints [20].

4.4.1.5 Fragments

Molecular fragments are the most complex and versatile substructure types. There is
no general definition for this type, but usually fragments are considered as subgraphs,
which are the result of the deletion of an edge (or whole subgraphs). The biggest
difference from other substructure types is that fragments in general are lacking a
strictly defined structure like linear sequence (path, walk), tree, or predefined pattern.
The information content of such fragments is in most cases much higher than of the
less complex substructure types. This comes at the cost of the higher computational
requirements of general graph algorithms to compare the resulting substructure sets
(Isomorphism, Matching, etc.).

The generation of a set of molecular fragments applies a decomposition algorithm,
which decides which bonds are deleted. Common approaches delete all single bonds,
all bonds between a ring and a nonring atom. The RECAP algorithm [37] deletes only
bonds that can probably be re-formed by chemical reactions. The idea behind RECAP
is to employ a recipe of how a structural complex molecule could be synthesized out
of more usual building blocks by reforming the deleted bonds. In general, the problem
of enumerating all possible fragments is known to be NP-complete.

4.4.2 FINGERPRINTS

Molecular fingerprints [38,39] are a common method to combine the presence or
absence of different substructures in a molecule into one molecular descriptor. They
are usually represented as a vector of bits with a fixed length that denotes the presence
of a specific structural pattern. There are many different fingerprint implementations
that can be classified in hashed and nonhashed fingerprints. The nonhashed finger-
prints also known as structural keys are mainly based on a predefined dictionary of
substructures, such that there is a unique mapping between a bit vector position and
a specific substructure. A popular structural key is the MACCS keys [40].

Definition4.5: Let G be a set of graphs and P = {py,. .., p,} a set of n structural
patterns, such that there exists a function

1 gcontainsp € P
f:GxPr—{0,1},f(geG,peP) = .
0 otherwise
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Then the ordered set { f (g, p1), - - ., (g, pn)} is called a structural key of g regarding
to the set P.

This fingerprint type can also be considered as a pattern-parametrized view of the
bit vector, because for each molecule we have to iterate over a set of patterns and to
check for every pattern whether it occurs in the molecule.

Such fingerprints have the inherent disadvantage that it is impossible to cover the
diversity of the chemical space by a fixed number of patterns. This is avoided with
hashed fingerprints. They are based on the idea of defining a method that generates a
substructure set for a molecule and converts that into a bit vector of fixed length. This
approach will produce different fingerprints for different molecules in most cases.

The patterns that are used depend solely on the generation method (e.g., paths or
trees of a certain size, and RECAP fragments) and the molecule that has to be encoded.
Therefore, this type can be regarded as pattern-generation-parametrized and has the
big advantage that the substructure generation is usually faster than the subgraph
isomorphism check of the pattern look-up.

The final mapping of each substructure to a bit position is in most cases done by
using the hash code of a pattern as the seed for a pseudorandom number generator and
a mapping of this random number to a bit position. This conversion has the drawback
that after the hashing the bijective mapping of bit position and pattern is lost because
different substructures can be mapped to the same bit positions. This information
loss is acceptable regarding similarity searches in databases, but makes a potential
interpretation (or feature selection) for knowledge discovery tasks more demanding.

4.4.2.1 Hashed Fingerprints

A popular hashed fingerprint implementation is the Daylight Chemical Information
Fingerprint [41], which is calculated by enumerating the set of labeled paths shorter
than a specified number of bonds in a molecule.

Each pattern (path) is hashed, which produces a set of bits. The final fingerprint is
then obtained by the union (logical OR) of the bit sets according to each pattern of the
molecule. This representation is, for example, used by UNITY [42] or JChem [43] in
their hashed fingerprint implementations. The pseudocode for a generic algorithm that
generates a path-based hashed fingerprint of dimension d is given in Algorithm 4.6

ALGORITHM 4.6 PSEUDOCODE FOR A GENERIC HASHED PATH
FINGERPRINT ALGORITHM (ADAPTED FROM BROWN ET AL. [44])

nmet hod get HashedPat hFi nger pri nt (Mol ecule G, Size
d, Pathlength I)
{
fingerprint = initializeBitvector(d)
pat hs = getPat hs(G,|)
for all atoms in G do
for all paths starting at atom do
seed = hash(path) //generate an integer hash
val ue
randomnl nt Set =r andoml nt (seed) //generate a set
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of random i ntegers
for all rints in random ntSet do
index =rilnt %d //nmap the randomint to a
bit position
fingerprint[index] =TRUE
od
od
od
return fingerprint

}

4.4.2.2 Comparison of Hashed Fingerprints and Baldi’s Correction

One application of hashed fingerprints (and molecular fingerprints in general) is to
identify those molecules that are similar to a query structure. This is done by applying
bit set-based similarity measures like the well-known Tanimoto/Jaccard coefficient.
Ideally, this similarity is computed using the full nonhashed fingerprints providing
a measure of the real structural similarity if the encoding is chosen appropriate.
However, because of practical considerations the much shorter hashed fingerprints are
used in most cases. This implies that there is a strong correlation between the hashed
fingerprint similarity S(A, B) and the nonhashed fingerprint similarity S« (A, B) of two
compound fingerprints A and B. This assumption is not necessarily valid; because of
the compression rate, the choice of the fixed length of the hashed fingerprint has a
significant influence on the number of set bits (the cardinality). Therefore, Swamidass
and Baldi [45] propose to use estimates of the nonhashed fingerprints A, and B, for
the similarity calculation.

The expected cardinality A of a hashed fingerprint of length N given the cardinality
A, of the nonhashed fingerprint with length N, with identical and independently
distributed bits generated by a binomial distribution can be formulated as

A N\Ne/N
E(AlA,) %N|:1 — (1 ——*) }
Ny

This expression is based on the assumption that the hash function ensures the
statistical independence of the bits and that the compression of the full fingerprint A,
to the fixed size version A is performed using a modulo N operation. In this scenario,
the probability that a bit is set is given by (A./N,) repeated (N, /N) times due to the
compression. The inverse relationship

A\N/Ns
E(A+|A) ~ N, [1 - (1 - —> }
N

is more important because only the cardinality and length of the hashed fingerprint is
available in most cases. This expression is a further approximation not obtained by the
application of Bayes’ theorem but it works well in practice according to Swamidass
and Baldi [45]. It is useful to derive the expression of E(A«|A) independent of N, by
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only considering N, as large because the length N, of the full fingerprint is often not
exactly known:

«—> 00 %

Ny/N
EAlA) ~ lim N |:1 — (1 — A_*> ! :| =N _efA*/N)
) = N —

and thus

A
E(A4|A) ~ —N log (1 - ﬁ) .

This estimation can then be applied to derive values for the nonhashed intersec-
tion cardinality A, N B, and the nonhashed union cardinality A, U B, of two hashed
fingerprints A and B and a considerably large N,:

. AUB A B
A*UB*%mm[—N<1——),—Nlog(l——) (1——):|,
N N n

A, N By ~ max[0,A; + By — A, U B,],

A B AUB
~max [0,—Nlog|l——)—Nlog|l——=)—-N|1— ——
N N N

E(A4]A) E(B«|B) Ay UB;y

These two cardinalities combined with the bit string cardinalities are sufficient to
compute many similarity measures (e.g., Tanimoto) for hashed fingerprints in terms
of the corresponding nonhashed ones.

4.4.2.3 Stigmata

The Stigmata algorithm by Shemetulskis et al. [46] uses hashed fingerprints (daylight
in the original work) to generate a kind of consensus fingerprint called modal finger-
print which expresses commonalities in a set of molecules active against a specific
target. A modal fingerprint has the same length as the molecular fingerprints (e.g.,
2048 bits in the original publication by Shemetulskis et al.) of the compounds with
a bit set to TRUE if it is set in more than a certain percentage of compound finger-
prints. A modal fingerprint can then be used to extract information about frequent
pattern types as well as new molecular descriptors. Each atom of each molecule can
be labeled by a so-called ALAB value, which denotes the percentage of paths the atom
is part of that also are contained in the modal fingerprint.

A similar descriptor on the molecular level is MODP that is defined as the per-
centage of the paths of a molecule that are also part of the modal fingerprint. The
Tanimoto similarity between a molecule fingerprint and the modal fingerprint can be
used as a molecular descriptor as well. In the publication of Shemetulskis [46], this
descriptor is called MSIM.
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4.4.2.4 Fingal

The Fingerprinting Algorithm (FingAl) published by Brown et al. [44] is an extension
of the path-based hashed fingerprints in which geometrical information is incorporated
into the paths. This is achieved by an adaption of the atom types that are used in the
paths. Each atom type on the path is augmented with its geometrical distance to
the previous atoms of the path. The distances are binned into a set of 10 distance
classes because it is unlikely that the distances are exactly identical for two paths for
a molecular comparison regarding the amount of identical substructures (paths). In
the original publication, the boundaries of the bins are {2.35, 2.71, 3.69, 4.47, 5.25,
6.39, 7.59, 9.32, 12.44}. This leads to a better discrimination of the molecules but
introduces a bias caused by the conformation. In the original work the —3D structure
is computed by CORINA [47].

4.4.3 HAsHING

Hashing denotes the mapping of the element of a space x, which is not necessar-
ily numeric, to an integer (often restricted to a specific interval). The mapping is
conducted using a deterministic hash function h : ¥ +— Z. An ideal hash function is
injective, which means that the hashes of two inputs are equal only if the inputs are
equal. Although this is a preferable property, most hash functions are not injective
because the input space is larger than the integer set it is mapped to.

Many hashing algorithms work on bit representations of data objects. Each object
is considered as a stream of bits that are subsequently hashed (mostly blockwise) into
other bit sets.

4.4.3.1 Cyclic Redundancy Check

The cyclic redundancy check (CRC) published by Peterson and Brown [48] is a
function that maps a sequence of bit inputs to an integer (its binary represen-
tation) in a specific interval. The key idea is to define a generator polynomial
px) = Zf:o c;x' with coefficients ¢ € {0, 1} and degree k which can be expressed
as a bit sequence b of k + 1 bits, such that b; = ¢;. Analogously, the input bit
sequence is subdivided into overlapping blocks of length k 4+ 1 and extended with
zeros if necessary. The hash value results from a blockwise modulo 2 polynomial
division of the input sequence by the generator polynomial. Frequently used genera-
tor polynomials are CRC — 32 = x3%2 4+ x20 4+ x23 4 x22 4 x10 4 x12 4 x11 4 10 4
W4T+ x4+ 22 +x! 40 or CRC — 16 = x10 4 x12 4+ %7 4+ x%. An outline
of the algorithm is given in Algorithm 4.7.

ALGORITHM 4.7 PSEUDOCODE FOR THE CRC HASH FUNCTION
(ADAPTED FROM WIKIPEDIA)

met hod get CRCval ue(InputBitSet B, GeneratorBitSet G)

{
ShiftingRegister R := {00000....} //
Initialization
while B is not finished do
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b = nextBit(B)
R shiftLeft() //append zero right
if b!=leftnostBit(R) do
R=R® G
od
od
return R aslnteger()

4.4.3.2 InChl Key

The InChl Key [49] is a condensed string representation of the InChl encoding of
a molecule. The InChl is divided into several blocks that are hashed using a SHA-
256 hash function [50]. The resulting hash values are represented as a string and
concatenated, which results in the final InChlI key.

AAAAAAAAAAAAAA — BBBBBBBBCD

The first block A is the encoding of the molecular topology (“skeleton”) into a string
of 14 uppercase letters. This is achieved by the hashing of the basic InChl layer using
a truncated SHA-256 hash function. The second block B represents the remaining
layers (i.e., proton positions, stereochemistry, isotopomers, and reconnected layer).
Additionally, two single characters are provided. The flag C encodes the InChl version
number, the presence of a fixed H-layer, stereochemical and isotopic information. The
last position D is a check character defined by a checksum of the first three blocks
and verifies the integrity of the key.

4.5 PHARMACOPHORES, FIELDS, AND HIGHER-ORDER
FEATURES (3D, 4D, AND SHAPE)

4.5.1 MOLECULAR SHAPE

One of the basic approaches to take the geometrical structure of a molecule into
account for in silico comparison and QSAR modeling is to regard the shape of the
structure. The shape of two molecules can be compared in several ways, for instance,
by the calculation of the overlap volume of two structures and by the comparison of
surface descriptors. If not stated otherwise, the following algorithms require that the
structures are superimposed in a common coordinate system in a sensible way.

4.5.1.1 Molecular Shape Analysis

The molecular shape analysis (MSA) published by Hopfinger [51] performs a com-
parison of the overlap volume and provides the base for many other works in shape
comparison as well as in structural alignment. In an MSA, the molecules are consid-
ered as sets of spheres with different radii (the van der Waals radii of the molecules).
The overlap volume of two spheres V; and V; with radii r; and r; separated by a
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distance s;; is defined as

T
VinV) = 2@ +2r7 +5p)

r»z—r-z—i—si/ r»z—r-z—f—si/ r-z—r-z—i—si/

21 J - .. J J : 2 L J :

|t S I\ Tsi——— |-
2Sij 251']' 2Sij

Assuming that the spheres are overlapping (i.e., s;j < r; + r;) and the smaller sphere
is not completely included in the larger one. Thus, the total overlap volume of the
molecules A and B can be estimated by Vag = 3y, 4 2_v,ep(Vi N V}). This formula
does not regard the overlap of more than two atoms and is therefore an overestimation
of the real volume. The concept assumes that the molecules are optimally aligned such
that one of the structures is translated and rotated maximizing the overlap volume. The
maximization of the overlap volume presents also a convenient optimization target
function for structural alignment algorithms.

The overlap volume is different from molecular descriptors that have been intro-
duced in this chapter. The most important difference is that it is not a property that
only depends on a single molecule. It is only defined in relation to another molecule
and thus can be regarded as a measure of the geometrical similarity of molecular struc-
tures rather than as a numerical descriptor. It can be used as a descriptor for QSAR
modeling by placing all molecules in the same reference frame defined by a fixed
reference structure to which the overlap volume is calculated. This overcomes the
problem of the relativity of the overlap and provides a common coordinate frame for
each molecule. Consequently, it highly depends on the choice of the reference struc-
ture, which introduces a bias into the model. Another specific characteristic is that the
volume descriptor has an inherent cubic behavior (i.e., cubic influence of the spatial
distances on the volume descriptor) introducing a cubic bias into the QSAR formula.
To overcome this bias, Hopfinger [51] propose additional features Syp = Vj? and

Lap = Vju/; that are calculated based on the overlap volume and which can be used
as quadratic and linear terms in the QSAR equation.

4.5.1.2 ROCS—Rapid Overlay of Chemical Structures

ROCS [52] originally was not developed as a molecular descriptor, but a measure for
structural similarity to be used in virtual screening. Nevertheless, the same technique
of using a common reference molecule as in the MSA can be applied to the ROCS
similarity as well. The ROCS approach is similar to MSA in using the overlap volume
as a quantitative measure for similarity and can be regarded as an extension of the
latter idea.

Instead of using a geometrical definition of the overlap volume of two spheres,
ROCS defines the overlap volume as a threefold integral over the products of the
characteristic volumes expressed by a function y : R? x R® > R. This function is
chosen such that it is zero if a point r € R lies outside the molecule and is positive if
itlies inside. If % (r) is set to 1 if r is inside the molecule, it would yield a hard-sphered
volume. For instance, this definition has been used in the work of Masek et al. [53].
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In the ROCS approach the characteristic volume is approximated by a 3D Gaussian
shape defined as

N

X0 = 1=t —pe).

i=1

in which the actual van der Waals radii R of the atoms can be incorporated using the
relation y = 1 (3p/4mR>)%/3. An advantage is that the intersection of the molecules
can be expressed as the product of their characteristic volume functions. Thus, it
simplifies the calculation of the overlap volume to an integration (i.e., summing
up) over a —3D grid. Hence, the overlap volume of two molecules A and B can be
formulated as

Oap = JJJXA(I’)XB(V)dr-

This quantity can be regarded as an intersection of two sets of features and thus
can be incorporated into other similarity measures like the Tanimoto coefficient. In
the case of a discrete characteristic volume function, it can be regarded as a special
type of fingerprint in which each bit corresponds to a point in the grid set to 1 if it
is inside the molecule and O if not. This allows it to define the overlap volume as the
intersection of the bit vectors or alternatively as the dot product.

4.5.1.3 Shapelets

MSA [51] and ROCS [52] approaches describe the molecular shape by means of the
molecular volume distribution. An alternative representation is chosen by the Shapelet
[54] concept that encodes the molecular shape using surface patterns. The first step
is the calculation of a steric isosurface using a Gaussian modeling of the molecular
structure as in the ROCS approach. A molecule is encoded by a 3D function

N
M(X) = Z e 20x-&)*/r}
i=1

which can be regarded as a superposition of Gaussians, one for each atom i with radius
r € R at the position ¢ € R3. As in ROCS, this function assigns every point X in a
spatial grid a value that is positive whenever the points lie inside the molecule. Thus,
M (X) corresponds to the characteristic volume function x used in ROCS although it
uses a different mathematical expression. The isosurface of the structure can then be
constructed using the marching cubes algorithm [55]. This method generates a set of
surface points which is simplified using the welding vertices method [56].

The surface patterns, the shapelets, are extracted by a local approximation of
the curvature of the surface using hyperbolic paraboloids. The molecular surface is
structured into surface patches that are defined by their center surface points py and
their radii rs (default r; = 2.5 A). A patch is then regarded as the set of surface points
P; within the radius rs around the center point Py. The local shape of the surface
is then described using the curvature along two perpendicular vectors &,8, € R>
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in the tangential plane. These two curvatures together with the normal vector in Py
correspond to a paraboloid that can be regarded as a local surface pattern.

The shape of the surface can be parametrized using the Hessian matrix H as
p(u,v,H) = (uhy1 + vh)u + (uh12 + vhy)v with u, v € R being the coordinates
in the €y, &, coordinate system. The coefficients h;; of the Hessian are obtained by
minimizing the root mean square error E(H) = > .[n; — p(u;, v;, H)]? due to the
coordinates n, u, v of a point in the 3D space. The eigenvalues of the resulting Hessian
correspond to the two local surface curvatures k; and k.

These can be used to define the shape index SI(p;) = arctan(k; + k> /k; — kp) for
each surface patch center P;. This procedure is repeated for each surface point that
is not part of a patch, which already has been approximated by another shapelet. An
outline of the algorithm is given in Algorithm 4.8.

ALGORITHM 4.8 PSEUDOCODE FOR THE SHAPELET EXTRACTION
nmet hod get Shapel et sFor Mol ecul e( Mol ecul e T)

{
surface = get SurfaceFor Mol ecul e(T)
for all points in surface do
S = get Shapel et At (poi nt)
e = get RVBEoOf ( S)
od
set = sortedSurfacePoi nt sAccor di ngToRVMSE()
poi nt = get Best (set)
shapel ets = nul |
whil e set has points do
shapel et s. add( Shapel et Of (poi nt))
set . renmove( point)
/levery surface point is at nost part of one
shapel et
set. renoveAl | Poi nt sl nPat chOf (poi nt)
poi nt = getBest (set)
od
return shapelets
}
met hod get Shapel et At (py)
{

en = nor mal Vect or For ( pr)

p = get Poi ntl nSurfacePat chOf (py)

_enx(P—pr)

llen x (P —Pr)l

ey =€n X ey

poi nts = getLocal 2DG i dFor ( ey, ey)

H = minimzeRVBEONG i d( poi nts)
ki get Fi r st Ei genval ue(H)
ko get SecondEi genval ue( H)

u
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SI = get Shapel ndex (k1 ka2,)
return new Shapel et (P, k1, k2, SI, , ,)

In some respects, shapelets can be regarded as a special type of substructure that
does not describe a certain local graph topology but a local surface curvature. There-
fore, it suffers from similar drawbacks if used in QSAR modeling or virtual screening.
Each shapelet has a complex numerical parametrization and thus two shapelets are
unlikely to be parametrized identically. Thus, the intersection of substructure sets
of two molecules that forms the common basis of many similarity measures cannot
be computed in a straightforward manner. In the original work [54], this problem is
solved by defining an algorithm that uses a measure for the similarity of two shapelets
in combination with a clique detection approach also used in the detection of phar-
macophoric patterns. This results in a least-squares alignment of the rigid structures
based on an optimal superposition of the shapelets of the two molecules using the
Kabsch algorithm [57]. A similarity score for two molecules A and B can be defined
by the molecular volume function M (X) and by summing up the values for the atom
centers of molecule A at the atom centers of molecule B.

4.5.2 MIF-BASED FEATURES

Field-based features describe a ligand by modeling possible receptor interaction sites
around the ligand. This is addressed by placing the molecule in a rectangular grid that
defines the spatial points where the interaction potential is calculated. The approach
is related to the concept of molecular force fields but takes only nonbonded terms
into account. It is therefore independent of the molecular topology (apart from its
influence on the atomic charges).

The key idea is to define a probe particle with certain interaction-related properties
like charge, size, or hydrophobic potential. For this probe, each interaction potential
is calculated at discrete spatial points around the molecule.

In the calculation of the MIF, the probe is placed at each grid point. Next, the
interaction potential of the target molecule and the probe is calculated. The actual
composition of the potential depends on the definition of the field. Often, the potential
is restricted to electrostatic, steric, and hydrogen-bonded contributions. However,
entropic terms can also be incorporated [58].

4.5.2.1 GRID

A fundamental work in this field was the definition of the GRID force field [59].
In GRID, the probes are not only single atom-like particles but also atom types that
include information about the atomic neighborhood (e.g., carbonyl oxygen) or small
groups of atoms. The interaction potential is composed of a steric part using the
Lennard-Jones potential

A B
E|](d) = dj — ﬁ’ A,B € R,
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an electrostatic contribution that is based on the Coulomb potential Eg and the term
Enp that describes the hydrogen-bonded interaction. To address the heterogeneous
medium, which consists of the solute and the target molecule between the probe and
the target atom, the method of images is used [60,61]:

Pq s )
COnSt. ' éé (E. + 8)‘ / d2 + 4Squ

The dielectric constants of the solute € and the molecule & are considered as constant
and separated by a planar boundary. The depth of the target atoms and the probe in
the target molecule are addressed by sp and sq. Both are expressed by the number
of target atoms in a 4 A neighborhood. The other parameters and contributions are
obtained from the standard Coulomb equation expressing the point charges p and g
and their Euclidean distance d. The hydrogen bond contribution is calculated by a
modified 6,4-Lennard-Jones potential

Eg(d,p,q) =

En(d.6) = (d—i - %) cos™ 6
to incorporate the angle 6 at which the target donor atom prefers the H-bond acceptor.
If the probe is a donor, the angle is set to zero because the probe is expected to
be rotated optimally. The cosine term is often raised to the power of three but other
values are also possible for m. Algorithm 4.9 outlines the calculation of the interaction
potential of a single grid point and, thus, one MIF-based descriptor.

ALGORITHM 4.9 PSEUDOCODE FOR A SINGLE GRID INTERACTION
POINT

nmet hod get Enpiri cal Energy(Ml ecule T, Probe P)
{
Esteric =0
for all atons in T do
if distance(atom P) < s then //
s := steric_ distance threshold e.g. 8 A
Esteric + Eij (distance(atom P))

fi
od
Esteric =0
for all atons in T do
Belectro +=Egq
(di stance(atom P), charge(P), charge(atom)
od
En—bonda =0

for all atonms in T do
theta = get Angl e(P, at om
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if theta < 90

conti nue

fi

if Pis a Hbond donor then
theta = 0

fi

En-bond + = Enp (distance(atom P), theta)
od

return Esteric +Eelectro + En—bond

The GRID method was developed to examine the surroundings of a receptor-
binding pocket and not for small molecules (like most ligands). Therefore, some
properties are drawbacks regarding the use of the potentials as molecular descriptors.
In a QSAR analysis, the use of the Lennard-Jones potential for steric interactions
leads to problems at grid points that are close to target atoms. The reason is the steep
increase of the potential if the distance approaches zero [62]. Thus, small differences in
the position of the atoms of two molecules can lead to large differences in descriptor
values. The respective descriptors have large variances and therefore are regarded
as especially meaningful by many QSAR techniques, leading to probably highly
overfitted models.

4.5.2.2 Alignment-Based Methods

MIFs [59] yield a large number of molecular features that describe molecular prop-
erties that are important for the recognition by a receptor protein. Therefore, they
provide a promising starting point for structure—activity models. The consideration of
the 3D interaction grid points has some major drawback, though. The most important
one is that many machine learning techniques used in QSAR modeling depend on
the relation of the values that one descriptor has on different molecules. This makes
it necessary to define which grid points of two different molecules are compared to
each other. A convenient approach to solve this problem is to align two molecules
(i.e., their interaction fields) geometrically. This step is nearly as important as the
definition of the interaction field.

4.5.2.3 CoMFA—Comparative Molecular Field Analysis

The CoMFA method [63] is one of the first approaches that used grid-based potentials
as molecular descriptors to generate a QSAR model. The field definition is similar
to the GRID force field [59] but does not contain a hydrogen-bond contribution. As
a default probe serves a sp> carbon with a point charge of +1. The steric potential
is calculated using a 6—12 Lennard-Jones potential similar to GRID with a “steric
repulsion” cutoff of 30 kcal/mol. The electrostatic contribution is calculated using
the Coulomb potential with a dielectric constant set to the reciprocal distance. The
charges of the target atoms are calculated using Gasteiger—Marsili partial charges [64].

To be able to use the resulting descriptors in combination with machine learning
methods, the grid points have to be mapped into some reference space. This is done
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by a 3D structural alignment on an expert selected reference molecule. The method
Field Fit [65] has been used in the original work of Cramer et al., but other alignment
approaches are also possible.

After the corresponding descriptors have been identified by the structural align-
ment, the QSAR model is inferred using partial least squares. This approach has the
advantage that the dimensionality of the problem is reduced but a direct interpreta-
tion of the model is not possible. The QSAR equation is transformed back into the
original feature space to overcome this drawback. This gives the possibility of a 3D
visualization of the grid points that are considered as meaningful.

The relatively simple interaction potential definition used in CoMFA leads to
several problems. The Lennard-Jones and the Coulomb potential use the distance
between a probe and a target atom in the denominator of the equation. Therefore, a
cutoff value is necessary to avoid large or even infinite values at grid points close
to target atoms with singularities at the atom positions. The differential behavior of
the two potentials inhibits a simultaneous treatment of the cutoff distance, leading to
different parametrizations, which worsens the comparability of the interaction fields.
Furthermore, it inhibits the calculation of potentials at grid points that lie inside the
molecule.

4.5.2.4 CoMSIA—Comparative Molecular Similarity Indices Analysis

The CoMSIA approach [62] avoids some of the drawbacks in the CoMFA method
by working without an explicit potential and using the similarity of the interaction
potentials instead. The idea is to calculate a similarity A%yk, analogous to SEAL
[66], to the probe instead of an interaction potential. The similarity regarding a
physicochemical property k and a probe at the grid point g is calculated as

n
2
q —ar;
Ap,k = - E WprobekWik€ "4,
i=1

where wj; denotes the value of the physicochemical property k of atom i and wprobe
the value of the property at the probe. The attenuation factor a and the distance r; 4
are identical to SEAL [66]. Three physicochemical properties have been regarded in
the original approach. The electrostatic contribution is realized by using Gasteiger—
Marsili partial charges [64] for the target atoms and a +1 charge of the probe. The
steric term uses the cubic power of the van der Waals radius of the atoms and 1 A for the
probe. The entropic contribution is represented by the hydrophobicity parametrization
published by Viswanadhan et al. [67] (41 for the probe).

The resulting grid points of the similarity indices can be used as molecu-
lar descriptors for the inference of a QSAR model. Partial least squares are—as
in CoMFA—the method of choice because of the large number of descriptors.
The exchange of the term that incorporates the distance between the probe and
target atoms to a bell-curve prevents the numerical problems that occur in the
Lennard-Jones and Coulomb potentials in CoMFA. Furthermore, it simplifies the
implementation.
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This advantage comes at the cost of an interpretable interaction field that can
be used for a guided drug design because of a lack of an explicit physicochemical
interpretation of the grid points.

As in CoMFA, this algorithm does need a structural alignment to compare the
descriptor values of the grid points of different molecules. In the original publication,
the alignment was computed by applying the SEAL method.

4.5.2.5 Structural Alignment

4.5.2.5.1 Kabsch Algorithm

The Kabsch algorithm [57] is a popular algorithm for a rigid superposition of two
points set (i.e., molecular structures) by minimizing the root mean squared distance
of pairwise assigned atoms. Recently, Coutsias et al. reformulated the algorithm in
terms of quaternion algebra to overcome some pitfalls of the original version without
giving different results [68]. Nonetheless, it is still necessary to define a pairwise
assignment of the atoms of two molecules onto each other.

The target function to be minimized is given by the rotation matrix

N
E:N*Z)w@m+t—wﬁ with O € R® x R?,
k=1

where t € R> represents the translation vector and X and y the ordered sets, such that
X and Yy are assigned onto each other. The optional weight factor wy allows setting
individual penalties for distances of certain atomic pairs. The reference molecule is
denoted by Y. The rotation matrix Q is expressed in terms of quaternions:

B+a -3 -4 2q192 — 90g3) 2(q193 + 9092)

o=\ 2@n+a9) F-a+B-4  2pa—qaq) |, @2

2(q193 — 40q2) 2q2q3 +q09) @ — 41— a5+ a3

which allows formulating the rotation as a single quaternion g = (g1, g2, g3, q4). The
explicit calculation of the optimal translation t is avoided by shifting the barycenters
of both structures into the origin of the coordinate system. For the calculation of
the rotation matrix, a 3 x 3 matrix R;; = ZZ:] XikYjk» I, j = 1,2,3, is defined. The
quaternion representing the optimal rotation can then be found as the eigenvector of
the matrix

Ri1 + Ry + R33 Ry3 —R3p R31 —Ry3 Ri2 — Ry

Ry3 — Rz Ri; — Ry —R33 Ri2 + Ry Ri3 + R3)

F= R3; —Ry3 Ri2 — Ry —R11 +Ra — R33 Ry3 + R3p
Rip — Ry R13 +R3; Ry3 +R3p —R11 — Ry +Ra3

that correspond to the largest eigenvalue. A summarizing pseudocode for the algorithm
is given in Algorithm 4.10.
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ALGORITHM 4.10 PSEUDOCODE FOR THE KABSCH ALGORITHM
nmet hod get KabschRot ati on( Ml ecul e mol, Ml ecul e ref)

{
/lapply weighting and shift barycenters
for all atoms in nmol do
coord(atom *= w k
shift atom
od
for all atonms in ref do
coord(aton) *= w Kk
shift atom
od
F = calculate_F _Matrix(nol,ref)
| anbda_max = get Largest Ei genval ue(F)
g = get Ei genvect or For Ei genval ue( | anbda_nax)
return RotationMatri xFor Quaterni on(q)

}
4.5.2.6 SEAL—Steric and Electrostatic Alignment

The SEAL algorithm [66] performs a 3D structural alignment by rotating and trans-
lating a rigid structure such that the weighted distances of their atoms to a reference
molecule is minimized. The target function Ag is a double sum over all atoms of both

molecules:
m

n
—ar?

i=1 j=1

The weight coefficients w;; = wegiq; + wsv;v; allow regarding the physicochem-
ical similarity of two atoms. Charges g; and g; with the same sign lead to a larger
weight and, therefore, to a larger penalty of the distance as do large van der Waals
radii v; and v;. The attenuation parameter o and the physicochemical (electrostatic
and steric) weights wg and Wg should be optimized by the user, depending on the
data.

The optimal alignment (i.e., that one that minimizes Ag) is calculated by expressing
the distance (radius) variable r;; in terms of a rotation and translation of the structure
to be aligned. This can be achieved—similar to the Kabsch formulation—in terms
of quaternion algebra using a rotation matrix Q and a translation vector t leading to
ri= (% — 0% — b2

The alignment procedure starts with a Kabsch superposition of predefined atomic
pairs. It results in a barycentered starting point for the rational function optimization
(RFO) [69], an optimization method that is guaranteed to find the global minimum
of Ap and converges quadratically. SEAL is only designed to perform rigid structure
alignment. Therefore, the authors propose to incorporate it into a framework that also
performs a conformational sampling and a diversity subset selection.

Other drawbacks that have been reported are the strong sensitivity to changes in
the parametrization and the lack of terms that regard entropic contributions [70].
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4.5.2.7 Alignment-Free Methods

The 3D descriptor algorithms presented so far share the need for a structural alignment
of the molecules. This is a time-consuming step likely to introduce a bias depending
on the alignment procedure used. To overcome these drawbacks several methods has
been proposed that avoid the use of a shared external coordinate system.

4.5.2.8 GRIND—GRid-INdependent Descriptors

The GRIND algorithm [71] extends the idea of an autocorrelation of structures to
the surrounding MIF. The potentials at the grid points can be calculated by any force
field suitable for the definition of a ligand—receptor interaction potential. Unlike the
CoMFA approach, these potentials are not directly used as molecular descriptors but
further processed in an autocorrelation algorithm. Relevant interaction regions are
identified regarding significant negative energy potentials of neighboring grid points.
This filtering step is performed by defining an optimization problem. The resulting
ensemble of regions with strong interaction potentials is then regarded as the virfual
receptor site (VRS) that represents the starting point of the autocorrelation.

To overcome the need of a structural alignment the spatial positions of the points
of the VRS are not represented using explicit coordinates but their distances to
other points of the VRS either of the same (autocorrelation) or of a different (cross-
correlation) potential type. This idea is similar to an atom pair or a pharmacophore
approach that also relates property positions using distances to other positions.
Although spatial points in the molecular neighborhood are different to atoms or
groups, which are part of a specific molecule, molecular descriptors are obtained
by this concept. These are correlogramms that relate products of potentials with the
spatial distances between them.

4.5.2.9 VolSurf

In contrast to the approaches that have been discussed, VolSurf [72,73] does not
attempt to describe relationships between the structure of a small molecule and its
activity towards some protein target but its relationship to a complex property. It has
been successfully applied in modeling physicochemical properties like the AG of
hydration and in predicting pharmacokinetic behavior like skin permeability. VolSurf
is also different in some way to the other interaction field methods because the descrip-
tors that are calculated are not attributes of grid points but combinations of grid point
features and their spatial distribution. For the calculation of the interaction potential
the force field definition of GRID [59] is used. However, the resulting potentials are
not regarded as grid point descriptors. Instead, the volumes and the surface areas
of interaction contours (i.e., spatial clusters of grid points with interaction potential
above a certain threshold) are calculated. The properties of the interaction regions are
further combined to give a set of molecular features that are divided into several parts
depending on which types of potentials are used:
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4.5.29.1 Size and Shape Descriptors

Size and shape descriptors are properties of a molecule that depend solely on its
topology and geometry only taking steric features into account. In the original work,
this set consists of four descriptors for the solvent excluded molecular volume, which
is calculated using the grid points that do have a steric interaction potential above
0.2 kcal/mol, and the solvent accessible surface, also based on the same steric poten-
tial. Additionally, the ratio between volume and surface and the ratio between the
surface of the molecule and the surface of a sphere of the same volume is considered.

4.5.2.9.2 Hydrophilic Region Descriptors

The threshold for grid points to be regarded as parts of a hydrophilic region is an
interaction potential for a water probe between —1.0 and —6.0 kcal/mol. Ratios are
also taken into account, as it is the case for steric regions, giving a capacity factor
of the molecule defined as the relative size of the hydrophilic regions compared to
the complete molecular surface (the ratio between the hydrophilic and the complete
surface).

4.5.2.9.3 Hydrophobic Region Descriptors

Hydrophobic descriptors are defined analogous to the hydrophilic using a specific
range of interaction potentials towards the hydrophobic (in GRID: DRY) probe.

4.5.2.9.4 INTEGY Moments

The interaction energy (INTEGY) moments are a measure for describing the distribu-
tion of the interaction regions around the molecule. An INTEGY moment is expressed
as a vector that points from the barycenter of the molecule to the center of the regions
of a specific interaction type (e.g., hydrophilic or hydrophobic interactions).

4.5.2.9.5 Mixed Descriptors

Several descriptors which are not of the former types are also included. The best
interacting (of the different potential types towards a water probe) grid points and their
spatial distance from each other are taken into account as well as combinations of the
hydrophilic and hydrophobic regions. The latter consist of the ratio between their sizes,
the vector that points from the hydrophobic center towards the hydrophilic center (the
amphiphilic moment), and a further ratio-based feature that relates the volume of the
hydrophobic regions to the product of the hydrophilic surface area and the lipophilic
surface area. In addition to these combinations of previously calculated features, two
descriptors are defined to cover the hydrogen bonding and the polarizability of the
molecule. The method used for the calculation of the polarizability considers the
topology of a molecule but is independent of the MIF [74].

4.5.3 PHARMACOPHORES

The assumption that there is a direct connection between the structure of a compound
and its biological properties is a fundamental paradigm of medicinal chemistry. It
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is also a basic necessity of any structure—activity relationship model, independent
of whether it is quantitative or qualitative. The development of increasingly elabo-
rated molecular descriptors can therefore also be regarded as a trial to encode the
underlying structural causes which cannot be elucidated in an explicit manner. This
is one drawback of all models that are based on descriptor encodings of molecules.
Even if a biological property can be quantitatively described in a precise and general
way, this does not necessarily give a recipe for structural modification that would
enhance a molecule. One of the advantages of the MIF approaches is that the pos-
sibility of a graphical representation can serve as guidance on which interactions at
which structural parts are important for the biological functionality. This is especially
important regarding the modeling of the binding affinity of a small molecule to a
protein.

The underlying concept that the ability of a molecule to bind to a protein (i.e.,
to fit into the binding pocket and establish interactions strong enough to induce or
inhibit an effect) depends on a certain geometrical arrangement of interaction (phar-
macophoric) points. Several methods that extract such geometrical patterns describe
them as pharmacophores. The IUPAC defines a pharmacophore as “the ensemble of
steric and electronic features that is necessary to ensure the optimal supramolecular
interactions with a specific biological target structure and to trigger (or to block) its
biological response” [75].

The methods that are used for the recognition of pharmacophoric patterns can be
divided into ligand- and receptor-based approaches. The basic idea of ligand-based
pharmacophore extraction is to detect spatial patterns of pharmacophoric points that
are conserved in many active structures (ensemble methods), whereas a receptor-
based approach defines a spatial arrangement of areas in the binding pocket at which
specific interactions (e.g., H-bonds) can be established. The latter is sometimes also
referred to as inverse pharmacophore or interaction hot spots.

The first step in most ligand-based pharmacophore recognition algorithms is the
definition of a set of structural features that are regarded as pharmacophoric points.
Usually, this is done using a categorization of the ligands atoms (or substructures)
into atom types like hydrogen-bond donor or aliphatic. The definition of the atom
types is an important step and has a major influence on the quality of the pharma-
cophores that are found using the ligand-based methods. If the typing is chosen too
fine, the algorithm will likely not be able to find shared patterns, whereas a too general
definition would decrease the information content and induce many false positives.
Most pharmacophore extraction procedures assume that the typing of the ligands has
already been accomplished and are designed for the recognition of shared spatial
arrangements of the pharmacophoric points.

4.5.3.1 Ensemble Methods

Ensemble methods are designed to detect a spatial arrangement of pharmacophoric
points that is preserved in a set of active ligands. There are several ways to
approach this task, for instance: the distance geometry methods [76,77], the clique
detection/DISCO method [78], and the configuration-based approaches [79].
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4.5.3.1.1 Distance Geometric Methods

The idea behind a distance geometric approach to pharmacophore recognition is
to derive spatial bounds for the relative positions of some pharmacophoric points.
Dammbkoehler et al. [77] used this concept to find conserved spatial arrangements of
predefined pharmacophoric points in a set of structures. The constrained search of
conformational hyperspace starts with a specified set of k pharmacophoric points.
A parametrization of the geometric arrangement of these points can be expressed by
the (1/2)k(k — 1) pairwise distances and is referred to as a regular model, which can
be restricted by defining specific distances as fixed. Therefore, each geometry of a
pharmacophore corresponds to a point in the (1/2)k(k — 1) dimensional hyperspace
H defined by the model. The algorithm then subsequently constrains the subspace
of H which contains geometric arrangements of the pharmacophoric points that can
occur in the molecules due to their conformational flexibility. This is achieved by
iterating over the actives beginning at the most rigid structure and determining which
geometries can be produced by variations of the torsional angles subject to steric
constraints. Each spatial arrangement that cannot be produced by a new molecule
is removed from the subspace of H. This subspace is further constrained until it
only contains geometric configurations that can be adopted by every structure. These
allowed pharmacophoric point arrangements are considered as pharmacophores of
the examined set of actives.

4.53.1.2 DISCO—DIStance COmparison

The DISCO algorithm by Martin et al. [78] solves the pharmacophore detection
problem by the generation of the association graph H for every pair of ligand
conformations.

H is defined such that a preserved geometrical arrangement of pharmacophore
points corresponds to a clique in H. A clique of H is every subgraph of H that is
fully connected. The problem of the identification of cliques in a graph is known to
be NP-complete. In spite of that, it is computationally feasible due to the sparseness
of H in this case.

The algorithm begins with a set of active compounds with assigned pharma-
cophoric points and a sample of diverse conformations. The molecule with the smallest
number of conformations is used as the reference structure R. In the next step, the asso-
ciation graph H (R, M) is constructed for each conformation M; of each other molecule
M. H(R,M;) is defined as the vertex set V := {(a, b)|a € atoms(R), b € atoms(M;)}
and the edge set E := {[(a, b), (c,d)]||dist(a, c) — dist(b,d)| < 6}. This corresponds
to a graph that has one vertex for each pair of atoms with identical atom types (i.e.,
pharmacophoric points) with one in R and one in M. Vertices are connected by edges
if the intramolecular distances of the atoms in R and the atoms in M; are equal up to
a certain tolerance threshold 6.

Each clique in the association graph corresponds to a set of similar atoms (identical
pharmacophoric points) in the two molecules that adopt a similar spatial arrangement
and can thus be regarded as a pharmacophore of two molecules (Figure 4.1). The
largest clique and therefore the most expressive pharmacophore can be identified
using the Bron—Kerbosch algorithm [80] outlined in Algorithm 4.11.
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FIGURE 4.1 Schematic example of the DISCO pharmacophore detection algorithm [78].

ALGORITHM 4.11 PSEUDOCODE FOR THE BRON-KERBOSCH
ALGORITHM [80] FOLLOWING SAMUDRALA/MOULT [81]

met hod clique(, Mp, Cp, Np)
{
if a node in Npis connected to all nodes in
Cp then
/1 branch and bound step
no nore cliques can be found;
el se
/'l backtracking steps
for all nodes in Cp do
nove candi date from Cp to Mpy1;
create Cpyy1 by renoving all nodes from Cp
whi ch are not connected with the candi date
node;
create Npy1 by renoving all nodes from Np,
whi ch are not connected with the candi date
node;
if Coy1 =@ and Npy1 =@ then
store Mpy1 as naxi mum cli que;
el se
. clique(Mpt1, Cpt, Npta) s s
i
nmove nodes from Mp to Np
od
fi
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DISCO can be extended to regard the chirality of a molecule. This can be important
if pharmacophores consisting of more than three points are identified. To achieve this,
a clique is only accepted if the torsional angles in the corresponding pharmacophoric
points in both molecules are similar, according to another tolerance threshold.

4.5.3.1.3 Common Configurations

A major drawback of the clique-based pharmacophore approaches is that they either
have to be repeated for each pair of actives (and their conformations) or a set of
reference compounds has to be selected. The first is computationally too demanding
(quadratic complexity) in most cases and the latter introduces a bias to the reference
selection.

Therefore, Barnum et al. [79] proposed a new approach that simultaneously con-
siders each (precalculated) conformation of each active structure as a reference while
preserving a linear runtime complexity in the number of molecules.

The algorithm starts with the identification of configurations of the pharma-
cophoric points that are shared among the molecules. A configuration is similar to the
distance geometry. A specific spatial arrangement is defined by the distances between
the considered pharmacophoric points. Two configurations are considered as equal if
the difference in their geometries is below a threshold. Additional to this relaxation
it is allowed that the configurations do not share all pharmacophoric patterns. The
configurations are therefore not regarded as incompatible if they are different in one
aspect and share the remaining features. This concept can be described more formally
by the definition of a partition P as a set of specific pharmacophoric patterns and a
subpartition of P as each subset of P that contains all but one pattern of P.

The algorithm proceeds by iterating through the existing partitions in ascending
cardinality. It checks, for each partition, which reference molecules have configu-
rations (and conformations) that are associated with the partition and additionally
have subconfigurations related to the subpartitions. After this step, a list of reference
(sub)configurations of the reference compounds is obtained that is associated with a
specific (sub)partition. Then, all configurations of both reference and nonreference
compounds are examined if they can be considered as common. This is the case if
they have a compatible geometric arrangement of the partition elements to one of
the previously identified reference configurations. The compatibility depends on the
spatial arrangement as well on the similarity of the pharmacophoric points. The proce-
dure is repeated for the next partition until there are no more common configurations
possible.

The result of the described algorithm is a list of configurations of pharmacophoric
patterns that are considered as common. Each of these common configurations fulfills
the demands of a pharmacophore. An additional ranking can be used to the select
the most descriptive representations. For this purpose Barnum et al. [79] propose a
scoring scheme related to the Kullback—Leibler distance of probability distributions.
The score of a configuration C of K pharmacophoric features is defined as

K+1 )
s(C) = #actives xgo q(x) log, I%,
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with x being the class of a match between a molecule M and the configuration C. A
match has class K + 1 if all the configurations features are matched by M and class
0 if no feature and no subconfiguration are matched. The classes 1 ... K correspond
to matches between M and one of the K subconfigurations of C (every K — 1 sized
subset of C). The two quantities ¢g(x) and p(x) denote the fraction of the structures
that have a class x match to C (g(x) regards only active structures and p(x) regards
all compounds).

4.5.3.2 Receptor Surface Models

The definition of the surface of the binding pocket of a protein using only ligand
structures is usually not considered as a pharmacophore approach but can be regarded
as an intermediate between a field-based and a pharmacophore approach. The basic
idea presented by Hahn [82,83] is to generate a kind of consensus shape out of a set
of structures that are active against a specific target. Assuming that the knowledge of
a bioactive conformation is given, a structural alignment of the ligands can be used
to calculate the spatial areas that are not occupied by any ligand. The boundary of
this space can then be considered as the hypothetical surface of the receptor binding
pocket. The algorithm starts with a set of aligned conformations of ligands that are
embedded in a spatial grid similar like to CoOMFA [63]. A steric potential is calculated
for each grid point. Hahn proposes two different potential functions: the van der Waals
function and the Wyvill function. Each function calculates a steric potential regarding
one atom a for each grid point X:

Pygw (X) = dist(a, X) — radius(a)

P — — ((dist@X) 6+ 17 (dist(a,x)\* 22 (dist(a,X) 2+1
W T 9 TR o\ R 9\ R ’

where dist(a,x) < R.

The van der Waals potential defines a grid that is zero exactly on the van der
Waals surface of the atom, negative inside and positive outside. The Wywill function
is bounded by a parameter R that defines the distance at which the potential vanishes.
This function is evaluated at each grid point for each atom. The resulting potential for
the grid point is the minimum potential of all atoms. The atom nearest to that specific
grid point is further used to define the physicochemical properties of the grid point.

The receptor surface is modeled by averaging the potentials over the ligand ensem-
ble and calculating the isosurface similar to in the Shapelet method [54] using the
marching cubes algorithm. If this is set to zero, the resulting isosurface resembles a
kind of joint van der Waals surface of the ligand ensemble. This hypothetical receptor
surface can then be annotated with physicochemical properties by interpolating the
property values of the eight grid points that surround each grid cell that corresponds
to a surface point.

The physicochemical properties that can be incorporated in the receptor surface
model are related to those in the MIF algorithms but express values of receptor atoms.
Therefore, it is calculated which property values of the receptor surface would be
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preferable at each specific surface point. The properties considered are: the partial
charge formulated as the inverse of the mean partial charge of the neighboring lig-
and atoms, the complementary electrostatic coulomb-like potential to the ligand grid
property, a hydrogen bond property that denotes if in average a donor (—1) or acceptor
(+1) would be preferable, and a binary flag for the hydrophobicity of that surface
part.

The resulting annotated isosurface of the hypothetical binding pocket can be used
in several ways. It can be viewed as a kind of inverse pharmacophore denoting which
ligand groups would be preferable at certain spatial points. Furthermore, it can be
used for the calculation of the potential energy of unknown molecules towards the
hypothetical surface. In all cases, the model should be first relaxed by the user by
cutting out those parts of the surface which cover assumably the opening of the pocket
and therefore do not restrict spatial positions of ligands. The potential energy can then
be separated into different potential types (e.g., steric and electrostatic) which can be
used as molecular descriptors to infer a QSAR model for this protein target. Other
proposed descriptors are the interaction energy for the receptor surface model, the
conformational energy of the “bound” conformation, the conformational energy of
the “relaxed” conformation (minimized outside the binding pocket model), and the
difference between the bound and the relaxed conformational energy.

4.5.4 HIGHER DIMENSIONAL FEATURES

The incorporation of geometrical information in the field- and shape-based molecu-
lar representations introduces a strong bias to the structural conformation on which
the calculation is performed. Several approaches to avoid this problem have been
proposed. The general idea is to regard several geometrical conformations during
the feature generation. For instance, this concept has been outlined in the 4D QSAR
paradigm published Santos-Filho and Hopfinger in 2002 [84]. The first step is anal-
ogous to a field-based 3D QSAR and consists of the definition of coordinate system
(grid) where initial conformers of structures are placed. In contrast to the field
approach, no interaction potentials are calculated. The atoms of the molecules are
categorized into several pharmacophoric classes (negative polar, positive polar, non-
polar, hydrogen-bond donor, hydrogen-bond acceptor, aromatic) and a wildcard type
(any) resulting in a set of interaction pharmacophoric elements (IPEs). The fourth
dimension is introduced by a conformational sampling using a molecular dynamics
simulation. This leads to a set of conformers for each molecule. The comparison of the
positions of the IPEs requires a structural alignment of the different conformations.

The aligned structures are further processed to return a set of 4D features which are
based on the occupancies of the cells of the reference grid the conformers are placed
in. These occupancies represent the features which can be regarded as 4D molecular
descriptors. For each IPE type, three occupancy types of the grid cells were proposed
in the original work of Santos-Filho and Hopfinger [84]:

Absolute-occupancy Ag: The absolute occupancy is a measure for the number of all
IPEs of all conformers of a molecule that are placed inside a specific grid cell.
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Joint-occupancy Jy: The joint-occupancy counts the number of IPEs in a specific
cell that occur in this cell as well for the actual compound and for the reference
molecule. Therefore, it is a kind of similarity measure to a reference molecule
that regards the conformational space of both compounds.

Self-occupancy Sy: The self-occupancy is calculated as the difference between the
absolute-occupancy and the joint-occupancy.

The resulting 4D features can be used as descriptors in QSAR modeling. Similar
to CoMFA [63], the large number of feature favors machine learning methods that are
capable of dealing with large feature spaces as it is the case for partial least squares.

All approaches that have been presented so far describe the ligand compound
in increasing complexity reaching its limit in the consideration of conformational
ensembles in the 4D QSAR paradigm. The 5D QSAR idea [85,86] goes beyond
that by incorporating information about the receptor structure and even its flexibility
regarding induced fit effects. This receptor-dependent QSAR (RD-QSAR) concept
does not necessarily need real information about the ligands target. The construction
of receptor envelopes as it is proposed in the work on SD QSAR of Vedani and Dobler
[85,86] uses only the set of conformational ensembles of the ligands to infer a model of
the hypothetical receptor binding side. This is done using the concept of a hypothetical
receptor surface model originally published by Hahn [82,83]. The receptor surface
model is extended in this approach to incorporate induced fit effects. A ligand-specific
induced fit surface, called the “inner envelope,” is calculated for each molecule by
mapping the receptor surface that has been computed using all ligands onto the van
der Waals surface of the single molecule. The magnitude of the deformation measured
as the RMSD of corresponding surface points can be used to calculate a hypothetical
“induced fit” energy of this molecule. This energy is combined with other force field
energy terms into an equation that describes the binding energy of this molecule to
the hypothetical receptor.

Therefore, the inferred surface can be regarded as QSAR equation. The equation
is trained by a genetic algorithm that varies the surface properties, which have been
randomly assigned, in order to optimize the fit of the models energy equation to the
target values. Thus, the 5D QSAR approach is different from most of the previously
represented ideas because of its different understanding of descriptors. The surface
properties are varied in order to learn the model. Therefore, they can be regarded as
coefficients rather than features. If considered as descriptors, the interaction potentials
towards the ligand atoms are regarded as the values of the surface points. Thus, the
approach is to some extent the learning of a receptor binding pocket.

4.6 IMPLICIT AND PAIRWISE GRAPH ENCODING: MCS MINING
AND GRAPH KERNELS

4.6.1 MCS MINING
4.6.1.1 Maximum Common Subgraph

A maximum common subgraph (MCS) is the result of a search for maximum isomor-
phic pairs (S, S), such that S is subgraph of G and S’ a subgraph of G’. From a formal
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point of view, a graph isomorphism is a bijection between the vertices G and G', such
that the structure of the assignments is conserved by the assignment function.

4.6.1.2 Exact Maximum Common Substructure

Sheridan and Miller [87] suggest a method for detecting meaningful common sub-
structures in active compounds based on clique-detection in pairs of molecules. The
Highest Scoring Common Substructures (HSCS) are subgraphs that have a signif-
icantly higher score then common substructures by chance for randomly selected
compounds.

Sheridan and Miller [87] define common substructures as corresponding atoms
with the same atom type, where the atom type was set to cation, anion, neutral HBD,
neutral HBA, polar atom (acceptors or donors), hydrophobe, and other. The second
requirement for a common substructure is that the respective pairs of atoms must have
the same topological distance. This is determined by the shortest path between two
atoms. The score for each substructure is defined by

Score = Size — p(Nfrag — 1),

where the size equals the number of atoms, p is a “discontinuity penalty” (between
1.0 and 2.0), Nirgg is the number of discontinuous fragments.
Meanscore HSCS(n4, ng) = Mmean - min(ng,, np) + Bmean,
Stdv HSCS(n4, ng) = Mgqgy - min(ng, ng) + Bgdv,

[Score — Mean(ny, np)]
Stdv(na,na)

Z — Score =

where na, ng are the number of atoms in molecules A and B, respectively.
Mmean and Bmean are constants depending on p, the database, and the atom types.
MeanscoreHSCS(na, ng) describes a linear function of the expected score. The Z-
Score for an HSCS between two molecules is a score for the unlikeliness of an
occurrence for an HSCS. HSCSs are regarded as significant with a specific score
(Sheridan and Miller use a threshold of < 4.0).

Pharmacophores are detected via a modified clique-detection algorithm (see Algo-
rithm 4.12). C denotes a clique that is defined as set of paired atoms from A, B.
Ca(i) = is the ith atom in a clique in A, and the corresponding atom number is
j. V4(@i) = 1 records if atom i in A is available for matching. V(x) = O resets the
complete mask.

ALGORITHM 4.12 HSCS CLIQUE DETECTION, PSEUDOCODE
ADAPTED FROM SHERIDAN AND MILLER [87]

/1 enunerate each possible pairing of atonms in
both structures for i, j do

/1 first match of a possible clique

if (A getAtom(i)=B.getAton(j))
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Initialize
Va(x) =1, Ve (%) =1, Va (i) =0, Vg(i)=0
npair = 1; Cali)=1i; CaG) =1,

for all pairs do
bool ean kntheck=f al se;
for all pairs of ke A and meB do

if (Mk,m=1)
if (Vak)=1 and Vg(m =1)
for k, | do

if (distiopo (kK,Ca (%)) ==diStigopo (MCa(%)))
S=sum of di st ances

if (S<Syn)
Shin=S
k' =k
mM=m
kncheck=t rue
fi
fi
od
fi
fi
od
/1 if no cliques of smaller size exist exit here
i f(!kntheck)
exit;
el se
n pair++;
Vakk') =0, Vg (m) =0,
Ca (npair) =k
Cs (npair)=ni;
fi
if npair > min(np,np)
exit;
fi
od
od

4.6.1.3 Inexact Maximum Common Substructure

Birchall et al. [88] suggest an approach based on edit operations, such that the simi-
larity is determined by the cost of insertions, deletions, and mutation to transform a
graph into another. The approach published by Birchall et al. [88] works on the set
of paths p, p’ extracted from a reduced molecular graph using the optimal cost of
transforming p into p’. The set of paths is computed as the set of all linear shortest
paths of all vertices of degree one. These are referred to as maximum paths. For all
maximum paths in two molecules A, B the minimum weighted distance is determined
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by a minimum backtracking using a cost matrix. The final edit score is the maximum
cost path considering two graphs. The penalties for the cost matrix were optimized
using a genetic algorithm.

4.6.2 KEerNEL FUNCTIONS

A kernel is a real-valued, symmetric and positive semidefinite function k : x x x —
R, defined on the space x. Many sophisticated kernels are built up of a set of basic
kernel functions subject to the closure properties of kernel functions.

Numerical kernels can deal with arbitrary vectors of numerical data of the same
dimension; nominal kernels compare nominal features, such as symbols or discrete
values.

Graph kernels are able to consider various features of a molecular graph like paths,
cycles, and pharmacophores [19,89-96]. Kernels have the advantage that they are not
restricted to a fixed-sized vectorial representation like a binary fingerprint, a vector
of molecular attributes, or structural keys of a defined size.

In the following section, we introduce the kernel closure properties and basic kernel
functions on numerical and nominal attributes. Then, we will introduce kernel func-
tions defined on molecular graphs beginning with simple topological kernel functions
up to 3D kernel functions.

4.6.2.1 Kernel Closure Properties

A suitable kernel can be designed systematically to reflect a sensible similarity. Kernel
machines, like SVMs or Gaussian Processes, use the kernel property to solve a convex
learning problem (optimization problem) optimally. The kernel properties are closed
under a number of operations (adapted from [97]):

c - k(xi, x;)

o) - k(g xp) . f(x))
qlk(xi, xj)]

explki (xi, x;)]

k1 (xi, x;) + ko (xi, x;)
k1 (xi, x;) - ko (xi, X;)
k3l (xi), d(xj)]
xiTij

ka(xasXa) + ki (xp, Xp)
ka(xa:Xa) - kp (xp, Xp)

where ¢ is a scalar, (x) defines a mapping x — RM, k3 is a valid kernel in RM . A is
positive semidefinite matrix, x, and x; are variables with x = (x,, xp), and k, and &,
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are kernel functions in their respective spaces. f is any function and g is a polynomial
function with non-negative weights.

4.6.3 Basic KernNEL FUNCTIONS

With the help of the closure properties it is possible to build powerful kernels from
a set of basic kernel functions. It is not only useful to describe the similarity of
global descriptors, but also for local numerical descriptors like atomic attributes.
The following basic numeric kernel functions can be directly applied to numerical
descriptors.

4.6.3.1 Numerical Kernel Functions

The Gaussian radial basis function (RBF) kernel is defined as

llx; — xj1
krer(xi,x) =exp | ———=— ] -

202

The RBF kernel is used for the pairwise comparison of two samples X;,Xj € R.
The o parameter adjusts the diameter and height of the resulting Gaussian peaks at
the support vectors (the noise of the data), if a support vector machines is applied.

The polynomial kernel is defined as

kpoly (xi,257) = ((xi,5) + ).
The linear kernel is a special case of the polynomial kernel:
Kiinear (xi, Xj) = {xi, X;).

The hyperbolic tangent kernel, which is not always positive semidefinite and
therefore should be regarded as a pseudokernel, is defined as

ktanh (x;, x7) = tanh({x;, x;) + 0).
The Laplacian kernel is defined as
ki aplacian (i, x;) = exp(—ollx; — x;||).
The Brownian Bridge kernel is defined as
kBrO\Nnian(xhxj) = max(0, c — kllx; — xj”),

where d € N and {c, k,c} € R and x;,x; € R".

The RBF-related kernels (here: RBF, Laplacian) normalize the similarity in x €
[0, 1] € R. This is a useful property for support vector machines, where the complexity

of the training algorithm depends on the kernel values. Smaller kernel values decrease
the training computation time.
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4.6.3.2 Nominal Kernel Functions

Some kernel functions are defined on arbitrary sets of nominal features.
The Delta Function (or Dirac kernel) is defined as

1 ifx;=x
k Xi, Xj) = 7,
Delta(x; j) 0 clse

The p-spectrum kernel is defined on strings of length p. Basically, it can be used
to compare feature sets of an infinite length:

kspectrum(a, b) = Z <P'g (a)(pf(b),

seS

where ¢f (x) counts the number of equal strings S = S, U S} with S denoting the set
(spectrum) of strings of length p of instance x. With a closer look at this formula, it
is easy to recognize that this is equivalent with the definition of the dot product for
vectors of variables sizes.

In the original publication [98,99] it is applied to strings obtained from proteins.
Mahé et al. use Spectrum kernels for a fast approximation of two-point and three-point
pharmacophore kernels, which closely relates this kernel to fingerprints approaches.

4.6.4 2D KerNELS ON NOMINAL FEATURES

The Tanimoto and the MinMax kernel can compare arbitrary feature sets F; =
{fir.fiz, - - fim} and Fj = {fj1.fj2, . . .. fjn}. Ralaivola et al. [92] introduced both ker-
nels for the prediction of chemical properties using fingerprinting schemes. A further
study was published by Azencott et al. [89].

Note that fingerprints are a general concept and not a fixed scheme. The following
flavors exist: List representation without fixed length (This avoids the possibility of
a collision), Structural keys (a defined look-up table of patterns), and different pat-
tern generation algorithms (e.g., fragmentation and DFS). An advantage of a kernel
function is that in can handle fingerprints of an undefined size and can weight the pat-
terns with, for example, the molecular weight of the substructure or a branching factor.

The MinMax kernel Ky is capable of including information about the individual
counts of each feature. It is defined as

3", min[¢, (F;, Fy)]

kmm (Fi, Fj) = >, max[o, (Fi, Fj)]’

where a feature of the joint feature space p € P is counted by ¢p.

|[Fi N Fj|

km(Fi, Fy) = ————.
TM(! j) |FiUFj|

The Tanimoto kernel K1y is the cardinality of the intersection divided by the cardi-
nality of the union of F;, F;. A useful property is that new features lead to an increased
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FIGURE 4.2 The Tanimoto kernel and MinMax kernel compare molecular graphs in a joint
space of their features. A simple example is shown using the Tanimoto kernel.

dissimilarity and that features that are not contained in the two compared structures are
simply omitted. Intuitively, this representation corresponds to a molecular fingerprint
of unlimited size.

The Tanimoto coefficient and the MinMax kernel are valid kernels [92,100]. The
Tanimoto kernel is a special case of the MinMax kernel, if the count of all features
equals one. The Tanimoto kernel is used in chemoinformatics to compare sets of
molecular features like fragments, paths, and bit sets.

An efficient way to compare molecules with the Tanimoto and MinMax kernel is
to represent the structures as trees [92]. The MinMax and Tanimoto kernel are self-
normalizing real-valued kernel functions, which yield values between zero and one.
A recursive computation of the Tanimoto kernel on nominal features using a prefix
search tree (trie) is illustrated in Algorithm 4.13 with a visual representation of the
kernel function shown in Figure 4.2. The patterns are inserted as tuples of nominal
features (e.g., the sequence of atom types and bond labels of a path). The last element
is labeled as leave and may have the count of the corresponding feature as additional

property.

ALGORITHM 4.13 RECURSIVE TANIMOTO KERNEL COMPUTATION
ON TWO TRIES

dirac <~ 0
doubl e conputeSimlarityTani noto(Trie trieg,
Trie triep) {
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conputeSinmDirac(trieg - root, triep - root)

| eavesy <« trieg - |eaves
| eavesp, <« triep - |eaves
dirac

tani not o <

| eavesy +1eavespy —dirac
return taninoto;

}

void conputeSi nDirac(TreeNode
node,, TreeNode nodep) {
if (nodey - islLeave AND nodep - isleave) then
dirac < dirac+1
fi
childreng <« nodes - children <«
children, <« nodep, - children
for i « 0 to childreng - size do
for j < 0 to childreny - size do
if
childreng [i] - label =childreny [j]- | abel
t hen
conput eSi nDi rac(
childreng [i], childreny [j1,)

fi

od

od

}

4.6.4.1 Marginalized Graph Kernel

Another important class of kernels is the class of expectation kernels. This approach
may be useful, if the feature space is too large to be computed directly. The marginal-
ized graph kernel is based on random walks and is defined as the expectation of a
kernel of all pairs of walks from two graphs, see Kashima et al. [91].

4.6.5 2D KerNELS NOMINAL AND NUMERICAL FEATURES
4.6.5.1 Optimal Assignment Kernels

The idea of the OAK is to compute an optimal weighted assignment on two sets of
objects and to use the resulting similarity as a kernel function. The underlying problem
is to solve max w(M) = max ) _,.,, w(e), where w(M) is the sum of the weights of
the matching edges e(i, j), between two objects i, j of two disjoint sets. Each feature
of the smaller set has to be assigned to exactly one feature of the other set. The OAK
was introduced by Frohlich et al. [18,19,101] and successfully applied to attributed
molecular graphs.

The OAK regards atoms as vertices attributed with chemical properties and
neighborhood information. After the atomic labels have been assigned, a pairwise
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FIGURE 4.3 Assignment of two arbitrary structures X, X’ by the OAK. Each assignment edge
has a similarity score and contributes to the final kernel value koa (X, X').

similarity matrix of the attributes of each atom of two molecular graphs is com-
puted. If the number of atoms of both structures is not equal, dummy nodes are
added to the smaller molecular graph. Finally, the Hungarian Method is used to find
an optimal weighted assignment of the atoms on the resulting quadratic similarity
matrix.

The kernel function of the optimal weighted assignment is defined as follows:

x|

/ : !
max K(xj, X, if |X'| > |X
X (Xis X 5)) IX'] > |X]|
=
koa (X, X) :=
Ix'|
max K(Xn(), %))  otherwise
nell(x) 4
Jj=1
In the context of molecular graphs X := (x1,x2,...,xx) andX" := (x],x5,... ,x"x,l)

are the sets of atoms or atom environments that compose the corresponding molecular
graph. I1(x) denotes all possible permutations of X and TT(x") of X" respectively. The
atomwise similarity is determined by k which can be any suitable kernel function on
atomic attributes. Note that the OAK uses a local atom environment, described in 4.2.
koa (X, X") computes the maximum score of all possible permutations which are visu-
alized in Figure 4.3 for two sample structures. A related kernel, the Iterative Similarity
OAK (ISOAK), has been published by Rupp et al. [93]. Fechner et al. [102] published
an extension of the local kernels which is able to encode the flexibility of a molecule
by local flexibility patterns. This further improved the modeling performance of the
OAK on molecules with both rigid and flexible substructures.

OAKSs are pseudokernels [103]. Therefore, each kernel matrix has to be fixed by
subtracting the smallest negative eigenvalue from the diagonal of the kernel matrix.
Java implementations of the OAK and ISOAK are available for downloading free of
charge. Both assignment kernels have a good prediction performance [90,93].
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4.6.6 3D KerNELS ON NOMINALAND NUMERIC FEATURES
4.6.6.1 A General Framework for Pharmacophore Kernels

From an abstract point-of-view, a pharmacophore is 3D relationship between phar-
macophoric interaction features in a molecule responsible for an interaction with a
pharmaceutical target. Pharmacophore kernels between two molecules a, b are kernel
functions of the form

k(a,b) = > > " «(pip))-

i=0 j=0

The total similarity is determined by summing up all pairwise similarities between
all pharmacophores in two molecules. The information of a pharmacophore lies in
the distances and the pharmacophoric features. Mahe et al. [104] propose a general
kernel function k of the form

k(pi,pj) = ki(pi,pj) X ks(pi,pj),

where the intrinsic kernel k| provides a similarity measure two pharmacophoric fea-
tures and the spatial kernel kg is a measure for the distance. For other kernels then
the simple Dirac kernel, a trace matrix is used to compute efficiently the distance
between three-point pharmacophores, see Algorithm 4.14 for the matrix computation.
The kernel value can then be traced by Algorithm 4.15.

ALGORITHM 4.14 TRACE MATRIX COMPUTATION

TraceMat ri x( Feat ureAt onFi ngerprint[]fsl, FeatureAtom
Fingerprint[] fs2) {

int nl=fsl.length; int n2=fs2.length; int n=nl*n2;
int i=0; int j=0;

Menew doubl e[ n] [ n];

Bi t Set nonezer oRows=new Bit Set (n);

Bi t Set nonezeroCol s=new Bit Set(n);
for (int i1=0; il<nl; i1l++) {

for (int i2=0; i2<n2; i2++) {

for (int j1=0; jl<nl; j1++) {

if (i1 ==j1)

conti nue;

for (int j2=0; j2<n2; j2++) {

if (i2 ==1j2)

conti nue;

i =i 1+i 2*n1;

j =] 1+j 2*n1;
Mill[j]=fsl[il].simlarity(fs2[i2]);
it (Mil[j]>0) {

doubl e el=fs1[i1].distance(fsl[j1]);
doubl e e2=fs2[i2].distance(fs2[j2]);
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Millj]l *= K Dist(el, e2);
nonezer oRows. set (i ); nonezeroCols.set(j);

—_ e e e

educeTraceMatrix(); // delete colums and rows
contai ning zeros only (set
i n nonezer oCol s)

}

ALGORITHM 4.15 TRACE MATRIX SEARCH

public double trace(){

int n=M 1 engt h;

doubl e r=0

for (int i=0; i<n; i++) {

for (int j=0; j<n; j++) {

if (Mi][j] ==0.0)

conti nue;

for (int k=0; k<n; k++) {

; += Mil[JI*MJ][KI*MK][i]; //=kappa(p,p")

return r;

}

4.6.6.2 Fast Approximation of the Pharmacophore Kernel
by Spectrum Kernels

For a fast computation Mahé at al. proposed a p-spectrum kernel [98,99] like approach
using a search tree of all three-point pharmacophores of a structure. To enable a rapid
calculation, the distances of the pharmacophoric points are labeled by a distance grid
and the pharmacophoric points by their general atom type. Both, the distance and the
atom type can now be compared by the Dirac kernel. Consequently, a recursive kernel
calculation is possible, as outlined in Algorithm 4.13. In the original work of Mahé
et al., a simple Spectrum kernel was used.

The product of the counts of a specific pharmacophoric pattern equals k(a, b).
The final kernel value is obtained via normalizing the kernel k(a, b) with the self-
similarities of a and b:

k(a,b)
Jk(a,a) - Jkb,b)

The self-normalization is frequently used with kernel functions.

k(a,b) <
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A prominent tool in the computational drug discovery toolbox are the various meth-
ods and algorithms developed for virtual screening, that is, the selection of molecules
likely to show a desired bioactivity from a large database. While the preceding
Chapter 4 focused on methods to describe molecules (molecular descriptors), the
present chapter will firstly deal with methods of how molecules of the desired type
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can actually be selected from the database. Hence, Section 5.1 will describe similarity
searching methods, among which similarity and distance coefficients are prominent
examples.

Subsequently, and this is also often the order followed in drug discovery projects
in industry, we will continue with computational approaches to compound selection
when the receptor (or generally target) structure is known, such as from a crystal struc-
ture. Hence, in Section 5.2 we will discuss some of the most prominent approaches
for algorithms employed in ligand—protein docking.

5.1 SIMILARITY SEARCHING FOR VIRTUAL SCREENING
Robert D. Clark

One way to run a virtual screen is to take molecular structures of ligands that are known
to bind to the target protein of interest and look for other compounds that are similar to
them in structure. In the simplest case, this is simply a matter of looking for particular
explicit substructures (Chapters 1, 2, and 4). That approach is limited to identifying
close structural analogs, however, and only rarely produces leads novel enough to
establish new patent estates. When finding such leads is the goal, researchers rely on
more generalized molecular descriptors (Chapter 4) to identify novel chemistries that
are “close” to the known actives in some sense. Not surprisingly, the appropriate way
to assess “close” depends on the descriptors used and on the data set of interest.

5.1.1 DISTANCE MEASURES

Maximizing the similarity between two objects is equivalent to minimizing the dif-
ferences between them, which—for real-valued descriptors—can be accomplished
by minimizing their distance according to a given metric. Three different distance
metrics—Euclidean, Manhattan, and Mahalanobis—account for most chemoinfor-
matic distance applications, and each reflects a somewhat different notion of the
nature of “space.”

5.1.1.1 Euclidean Distance

“Space” is an abstract mathematical construct as well as a name for something that
each of us creates as a way to put our direct visual and tactile perceptions of the
location and orientation of objects in the world around us into a personal context.
Our experience of how separation in space “works” is generally most consistent with
the Euclidean distance d| 2,* which is defined for three-dimensional (3D) Cartesian
space by

diy= " (@ —q)*

qel{xy.z}

* The subscripts reflect the fact that Euclidean and Manhattan distances are particular instances of
. . g K . .
Minkowski distances, dZ ¢ = Zj:l Ix;; — xzj\‘f , with ¢ = 1 and g = 2, respectively.
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where ¢; is the value of the corresponding spatial coordinate for the ith object.
This measure of distance works extremely well for most of the geometries and pro-
cesses that we encounter in our day-to-day life, and generalizing it to spaces having
more dimensions than the three that we are accustomed to is straightforward. More
generally, in a space of K dimensions:

K
dt, = Z (x1j — x2)2, (5.1

j=1
where x;; is the jth coordinate (variable or descriptor value) of the ith object.

5.1.1.2 Manbhattan Distance

Euclidean distance is not always the most appropriate measure of the distance between
objects, however, such as commonly experienced when getting from one place to
another within a city or town. For streets laid out on a more or less rectilinear grid,
the Manhattan distance d| 1 between locations is more useful since it describes the
distance that needs to be traveled to go from one point to another in this situation.
This, too, generalizes to K-dimensional spaces:

K
dir =Y |xi; — xl, (5.2a)
j=1

where the vertical bars denote absolute value. d| 1 is appropriate when differences in
one variable cannot be meaningfully offset by differences in another, which is typically
the case for categorical variables or others for which ratios are not meaningful.

The Manhattan distance is often used to compare binary vectors such as those
encoding substructural fingerprints, where it indicates the number of bit mismatches,
that is, the number of bits set in one fingerprint but not in the other. Such vectors of
binary variables can also be thought of as bit sets, where a 1 at a particular position
indicates that the structure in question belongs to the set of structures that contain the
corresponding substructure. Then

dL1 = [X1 — X2| + X2 — Xq]. (5.2b)

Here, the vertical bars indicate cardinality, not absolute value, and the “subtractions”
represent set differences.

5.1.1.3 Scaled Distances

There is a problem with applying such measures to higher-dimensional spaces in
which the individual dimensions differ in relevance (e.g., cost) or scale. For the Man-
hattan distance, this comes up when “north—south” blocks are shorter than “east—west”
blocks—as is true in Manhattan itself. In that particular case, rescaling from “blocks”
to “meters” solves the problem, but consider the case where hills are involved or there
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are stairs at the end of one path but not the other; then “calories” may be a more
relevant unit of “distance.”

In cases where the underlying descriptors are not naturally commensurate, each
can be rescaled [1] based on the range of values encountered or by the respective
root mean squares (RMS) [2]. Most often, however, the individual variances (csjz) are
used: directly, if they are known, but more often as estimated by the sample root mean
square deviations (RMSDs) from the sample mean for descriptor j:

1 =32
Sj:\/n—lz(xij_xj) .

The Mahalanobis distance, dy, is a more general—and more powerful—way to
address this problem. It is defined by

dy = (x1 —x)" 7 (x; — %), (5.3)

where X; = [xj1, X2, . . ., Xik], the superscript “T” indicates transposition, X is a sym-
metrical matrix of pairwise scaling factors, and the superscript “—1” indicates matrix
inversion. In the 3D case, for example, this becomes

-1

) 31 ol o o3
dM3 =% |x 012 0’% 023 X [81 3 63] s
8 013 023 03

where 8; = x1; — x2;. When the coordinates are mutually orthogonal, the off-diagonal
scaling factors oj; are all equal to zero. In that case, the x;; elements can simply
be rescaled (normalized) by the corresponding diagonal scaling factors cjz, and the
Mahanalobis distance is the same as the Euclidean distance for the normalized vectors:
dw = dpo.

5.1.2 PoprULATION DISSIMILARITY

To this point, we have considered distances as measures of physical separation
between pairs of objects. In many applications involving high-dimensional spaces, it
is more appropriate to think of distances as measures of how different two samples
that have been drawn independently from a population are from each other, that is, of
dissimilarity.

This is, in fact, the main place where the Mahalanobis distance is used. In
such cases, ¥ in Equation 5.1 represents the covariance matrix, which speci-
fies the average degree of pairwise correlation between descriptors, for example,
the ratio of block lengths along avenues to those along streets. The (co)variances
ojk = 0.5((x1; — x27) X (x1x — X21)), with the angle brackets indicating expectation
across “all possible” pairs X1 and X, that might possibly be drawn from the population.
In the case where the descriptor variables (coordinates) are independent (rectilinear),
the covariances are 0 and the variances o2 indicate how far the population values for
x; extend away from the average for that descriptor.



Ligand- and Structure-Based Virtual Screening 149

One difference between this usage of the Mahalanobis distance and what we usually
think of as distance is that it is much more localized. In principle, the deviation between
x;; and the population mean (x;;) is still unbounded, but in fact will usually lie within
a few standard deviations of the mean—roughly 95% within 20; of the respective
mean for a normally distributed population.

The second major difference is that the Mahalanobis distance is context dependent;
if you change the population under consideration—for example, move to a different
city, start commuting by autogyro or shift to a structurally very different application
domain—the meaning of the distances obtained by applying Equation 5.4 may change.

5.1.3 SimiLARITY COEFFICIENTS

When one thinks of distances, larger differences seem naturally more significant
than small ones. In many applications, however, proximity is more relevant than
distance. This is particularly true when the variables being used to describe the space
of interest are only weakly commensurate, as when time is considered as a “fourth
dimension”: two people meet when they find themselves in more or less the same
place at the same time, but if they are there at very different times it does not much
matter how different those times are. A measure of similarity—for which higher values
connote greater proximity—is more useful than a measure of dissimilarity in such
cases. The conceptual difference is a subtle one, but it has substantial mathematical
and practical implications. Distance measures are generally unbounded, for example,
whereas similarity measures are bounded above by 1 (identical) and are bounded
below either by —1 (antithetical in every respect) or by 0 (having nothing at all in
common).

5.1.3.1 Similarity between Real-Valued Vectors

The pairwise similarity metrics most often encountered in chemoinformatics appli-
cations all start from the dot product between two vectors (x; and x») of descriptor
values, one for each of the structures being compared. The most basic is the cosine
coefficient, for which the dot product is scaled by the geometric mean of the individual
vector magnitudes:

Scos = M (5.4a)

VXM@XZM%

The cosine coefficient takes on values between —1 and 1, or between 0 and 1 if all
allowed descriptor values are non-negative. Its name derives from the fact that its
value is equal to the cosine of angle formed by the pair of rays running from the
origin out to the points defined by the two vectors.

Alternatively, the dot product can be scaled by the arithmetic mean to yield the
Dice similarity:

> (x1jx2))

. (5.52)
12 (L + 23

SDice =
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The most popular similarity measure used in chemoinformatics, however, is the
Tanimoto coefficient. It is a close cousin of the Dice coefficient but differs in that
the rescaling includes a correction for the size of the dot product rather than simply
taking the average. The main effect of the change is to expand the resolution between
similarities at the high end of the range.

_ 2 X1j%j
Zx%j + ngj — leszj

Stan (5.6a)

Note that the “Tan” subscript does not indicate any connection to the tangent function
familiar from trigonometry.

5.1.3.2 Similarity between Bit Sets

As noted above in connection with the Manhattan distance, the elements of x; and x,
are binary in many chemoinformatics applications, that is, they only take on values
of 0 or 1. Such vectors can be thought of as bit sets, with x;; = 1 indicating that Xx;
is a member of set j and x;; = 0 indicating that x; is not a member of set j. In fact,
this is the chemoinformatics area in which similarity searching sees its greatest use.
For substructural fingerprints, the K sets are defined as being structures that contain
fragment f; as a substructure. In that situation the cosine coefficient can be recast as

X1 N X
Scos = —— (5.4b)

VIXi? x [x2]?

Cardinalities are always non-negative, so S¢es is bounded below by zero when applied
to bit sets.
Similarly, the binary equivalent of the Dice coefficient is given by

[X1 N Xz

_ (5.5b)
[X1] + [X2]

Spice =2 X

Finally, the binary equivalent of the Tanimoto coefficient, which is more precisely
referred to as the Jaccard index [3], is given by

X1 N X _IxinNxl

— - . (5.6b)
X1+ X2 = [X1 N X2 X1 UX2]

Sy

Tversky [4] noted that the Dice and Jaccard (binary Tanimoto) similarities could
be cast as special cases of a more generalized similarity measure.

[X1 N X3
X1 N X2| + o X [Xp — X2| + B x [X2 — Xi]

STvesrky = 5.7

Note that the subtraction x| —X» in Equation 5.8a represents a set difference, that is,
the set of bits that are set to 1 in X but not in X»; it does not represent the difference in
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cardinalities between the two sets. Setting o = § = 1 yields the Jaccard similarity,*
whereas setting o = B = 0.5 yields the Dice coefficient. In the chemoinformatics
arena, Tversky’s generalization has mostly been used to assess asymmetric or modal
similarity, where o = 1 and p = O (or vice versa). This is useful for doing a partial
match variation of substructure or partial shape similarity searching [5-7].

5.1.3.3 Similarity of Populations

The cosine coefficient is actually most commonly encountered as the Pearson corre-
lation coefficient r, a special case in which the elements x;; of the vectors x| and x,
are themselves observed deviations from the means ({x1;) and {x2;), respectively) for
two different variables. The definition in Equation 5.5a then becomes

S B2 B (5.8)

where X = X1 and y = X». The indexing formalism is different, but the underlying
measure has the same properties. For models, it can be shown that the absolute value
of r is the same as the correlation between y and Y, the vector of y values predicted by
ordinary least squares (OLS) regression on the vector of x values. This generalizes to
predictions for multiple linear regression, where y is a set of predicted response values
based on a matrix X that encompasses several descriptors. The multiple correlation
coefficient R is given by

Zy./§j

where deviation §j is the predicted value of deviation y; based on the vector
[x1j, %27, - - 5 x5

Population sampling’s effects can be important for similarity searches involving
fully flexible pharmacophore multiplets [5,8]. These bitmaps (compressed bit sets)
represent a union of bitmaps derived from a random sample of accessible conforma-
tions. Even when that sample is large, there is considerable variation in the union
bitmaps obtained for a flexible molecule, so the similarities calculated using the
determinate similarity coefficients discussed above may be deceptively low. Worse,
the expected similarity of a structure to itself is less than 1, often substantially so.
Moreover, the expected value for that similarity is dependent on the number of confor-
mations being considered. These problems can be addressed by using the stochastic
cosine to compare bitmaps:

R =

(IX1 N x2|)

XX 12) x (%2 1)

(5.9)

§SCos =

* Note that (x| —Xp) + (X] NXp) = X1.
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where the angle brackets (( )) denote expectation and the primed vectors are based
on distinct, independently drawn conformational samples. In practice, the population
expectations are estimated by creating two bitmaps for each structure. The cardinality
of the self-intersections is obtained for each pair, and the cross-intersections are
averaged across the four possible combinations.

The stochastic similarity between two very similar structures calculated according
to Equation 5.8b may be greater than 1, as can the similarity between a structure and
itself. The excesses are usually small in practice, however, and the expectation for
the stochastic similarity is bounded above by 1, which is also the similarity expected
when comparing a molecule to itself.

Stochastic analogs of other non-deterministic similarity coefficients can be defined
similarly.

5.1.4 APPLICATIONS

An exhaustive review of published similarity searching applications is beyond the
scope of this work. The specific papers cited below are intended to serve as illus-
trative examples of how the various distance and similarity measures can be used
productively.

5.1.4.1 Distance Applications

Distances between vectors of real-valued descriptors, particularly those based
on properties calculated from molecular structure—size, polarity, polarizability,
lipophilicity, and so on—are typically expressed in terms of Euclidean distance [9].
Historically such analyses have more typically involved cluster analysis than similar-
ity searching [10], but virtual screening based on BCUT descriptors [11] constitutes
a significant exception to this generalization.

Pre- and postfiltering operations can be thought of as similarity search applications
of Manhattan distances, where a candidate structure is allowed to “pass” so long as
the bit set representing the presence (1) or absence (0) of certain critical properties (or
substructures) is “close enough” to a set of reference properties. Usually candidates
are discarded if the Manhattan distance is greater than or equal to 1, that is, if any
discordances are found. Higher distances are sometimes allowed, however, as in
Lipinski’s Rule of Five [12]. There one violation is permitted, corresponding to a
critical value d| 1 > 2.

Matches in flexible 3D searching are usually evaluated as simple filters, that is,
a set of features must be identified in the target that satisfy all of the relationships
specified in the query. Partial match constraints, however, can be cast as similarity
searching against a set of query vectors, one for each partial match constraint. The
elements in the query and target bit sets in this case represent the satisfaction (1) or
failure to satisfy (0) the particular constraints (involving spatial positions, interfeature
distance or angles, exclusion volumes, etc.) that make up the corresponding partial
match constraint. The minimum and maximum “match” counts specified for each
constraint, then, define the allowed Manhattan distances between the query and target
vectors.
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A more straightforward application of the Manhattan distance was presented for
Eigen Vector Analysis (EVA) descriptors, which are calculated from normal mode
analyses of query and target structures [13].

5.1.4.2 Similarity Applications

Substructural and pharmacophoric fingerprint similarity searching is usually based
on the Jaccard index, although the more general term “Tanimoto similarity” is often
used in this connection [9,14,15]. The cosine coefficient has also been used, however,
especially in connection with pharmacophore multiplet bitmaps [7]. The Tanimoto
coefficient itself—that is, the real-valued version—has been used to assess shape
similarity [16—18]. Others have applied the cosine coefficient (as such or in the guise
of the squared Pearson’s correlation coefficient R?) to shape and molecular fields [13].

Similarities between atom-pair descriptors and topological torsions have been
assessed in terms of their Dice similarity [19,20], as have count vectors based on
pharmacophore triplets [21]. EVA descriptor similarities have been evaluated in terms
of cosine and Dice similarities as well as in terms of their Manhattan distances [13].

Carb6 et al. [22] and Hodgkin and Richards [23] evaluated similarities between
molecular fields using continuous versions of the cosine and Dice coefficients,
respectively, wherein the summations are replaced by integrals

> ([pipadv)?
Carbo fp%dv X fp%dv’
RHodgkin = M-
Joydv+ fp3dv

A more efficient and accurate way to carry out the required numerical integrations
was subsequently described by Good et al. [24].

Occasionally the Jaccard index has been recast to use count vectors rather than
bit sets. Rather than use the dot product formulation of the Tanimoto, Grant et al.
[25] substituted the minimum count for each element for cardinality of the bit set
intersection when evaluating the similarity of Lingo character substrings:

Y_min(xyj, x2)

>oxij 4 Y xp — Y min(xij,x2))

SLingo =

5.1.5 BEHAVIOR OF SIMILARITY AND DISTANCE COEFFICIENTS

Many distances and similarity measures not discussed here have been formulated
over the years [26], but those described above are the ones that dominate virtual
screening work. Willett et al. [27] have carried out numerous studies involving a
wide range of similarity measures and conclude that although other measures may
perform somewhat better on some targets, the Tanimoto coefficient generally works
best overall, at least for drug-like molecules. Their work has centered on substructural
fingerprints of various types; careful surveys have yet to be carried out for other
descriptor classes.



154 Handbook of Chemoinformatics Algorithms

Measures such as the Euclidean distance may be more appropriate for molecules
that are large or complex enough to set a majority of bits in a hashed fingerprint [28,29].
This effect is best understood by noting that bits not set in either fingerprint reduce the
Euclidean distance without affecting either the Tanimoto or cosine coefficient. If the
probability of any one bit being set is p, then the probability that a bit will not be set
in one fingerprint is ¢ = 1 — p and the probability that it will not be set at random in
either fingerprint is ¢°. If the fingerprints being considered are relatively sparse, p is
small and ¢? is close to 1. Hence, finding a bit set in one or both fingerprints is rare and
informative, whereas finding that it is set in neither is common and uninformative.
Such saturation effects are probably better addressed by modifying the descriptor,
however, so as to keep p below 0.1 than by trying to adjust the similarity measure used.

Such considerations underscore the fact that the exact value calculated for any
given similarity measure means different things in different contexts, as does the
value of any distance measure. This context includes the descriptors used as well as
the scope of chemistries to which it is being applied. A Jaccard similarity thresh-
old of “0.85” is useful when using substructural fingerprints of drug-like molecules
likely to exhibit similar biological activity [30]. This cannot be taken to imply that
“0.85” would be a useful cutoff for similarity searching of peptide pharmacophore
multiplets using the cosine coefficient. In most cases, only the order of similarities—
that is, the similarity rank—is really meaningful, and fresh benchmarks need to
be determined for any new application. Fortunately, many such problematic differ-
ences in scale fall away when a simple rank transformation is applied to the raw
similarities [31].

5.1.6 COMBINING SIMILARITIES

Although the Tanimoto coefficient works reasonably well in most applications, com-
bining it with complementary measures often improves performance. Consensus
scoring is now widely used to improve scoring in structure-based (docking) screens,
and the analogous approach—termed data fusion [13,32,33]—has shown consider-
able potential for improving ligand-based similarity searching. Because the different
similarity measures are not directly commensurate, however, it is usually the ranks
that are combined, typically using the minimum rank or sum of ranks for each target.
The median rank has shown promise in consensus scoring [34] and is probably worth
exploring as an alternative fusion technique when three or more similarity measures
are involved.

Related work has also been carried out on the best way to combine “hit lists”—that
is, to optimize the definition of similarity between a single target and multiple query
structures [35,36]. Logically one might expect that a “hit” that is particularly similar
to two or more queries is more likely to be active itself, so taking the average of the
similarities or of the ranks would improve performance. For substructural fingerprints,
however, this was found not to be the case [33].

Nonetheless, a rather extreme extension of the data fusion model to multiple
“actives” does sometimes work. “Turbo search,” which involves retrieving compounds
similar to compounds that are similar to queries (i.e., near neighbors of actives that are
not themselves known to be active) improves performance, at least in some cases [37].
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5.2 STRUCTURE-BASED VIRTUAL SCREENING
Diana C. Roe
5.2.1 INTRODUCTION

The first step in drug discovery is to identify lead compounds with novel chemical
structures that bind to a target receptor. Originally this occurred primarily through
chance discovery, requiring large efforts to find and screen natural products. Virtual
screening approaches provide a rational alternative for lead identification, by perform-
ing large screens of compounds in silico, existing ones or those easily synthesizable
in a combinatorial library, and reducing the number of compounds that need to be
screened experimentally. Structure-based virtual screening, made possible by rapid
advances in protein crystallography and computational power in the last two decades,
has proven to be a useful tool speeding the discovery process and has become an
industry standard [38]. Structure-based screening tries to rank a database of small
molecules by their predicted binding affinities to a target receptor. The starting point
is the 3D (usually crystal) structure of a protein and a database of small molecule
ligands with modeled 3D structures. Each ligand is “docked” into the binding site
of the target receptor and a score representing binding affinity is calculated. This
calculation is commonly referred to as docking.

The docking problem can be broken down into three components: (1) orienta-
tional search, or the search for the 3D orientation of a molecule with respect to
another; (2) conformational search, or the search through rotatable torsions; and (3)
scoring, or evaluating “pose” or orientation/conformation combination by some mea-
sure of predicted binding. The original docking program was UCSF DOCK [39],
which addressed only the orientational search and scoring for ligand/receptor sys-
tems. In the original implementation, spheres were used to represent the ligand
and the “negative image” of the receptor, by generating spheres along the inside
of the surface of the ligand, and the outside of the surface of the receptor. For small
molecules, ligand atoms were used instead of spheres. This provided an identical
description of the ligand and receptor site used to optimize the geometric fit between
the two. The orientational problem was thus reduced to the problem of matching lig-
and spheres to receptor spheres. Matching was performed using a graph theoretical
algorithm that looked at ligand sphere—sphere distances and matched them to receptor
sphere—sphere distances (Figure 5.1). A set of interconnected distances between ligand
spheres matching (within a tolerance) the same size set of interconnected distances
within the receptor spheres is a clique. A clique of size four is sufficient to define a
unique orientation for a ligand. The ligand was then transformed to superimpose its
spheres onto the receptor’s spheres for final placement.

The next development in docking programs was to include ligand flexibility (i.e.,
a conformational search) into the process. The first approach to address flexibility
broke a ligand into two pieces, docked each of them separately, and identified for
fragments that could be rejoined [40]. AutoDock [41] developed a completely different
strategy that combined the conformational and orientational searches together into
one step by employing a simulated annealing approach. Later versions of AutoDock
included an evolutionary algorithm [42], popular also with several other programs
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FIGURE 5.1 Clique detection algorithm. (a) Set of ligand atoms and receptor spheres; (b)
clique of size 4 found matching.

[43—-47]. Monte Carlo approaches have also been successfully applied [46—50]. Other
programs perform a conformational search in sequence with an orientational search,
by docking an “anchor” or base fragment and incrementally building up flexible ligand
conformers [51,52]. This approach works well at reproducing docked structures in
cases where the base fragment has a strong interaction with the target receptor, and
where each flexible unit has a piecewise interaction with the protein. In other cases,
such as when there is an interaction gap along a flexible unit, the incremental buildup
will not place the flexible unit in the gap position but rather in a position to maximize
its interaction with the receptor. Finally, some algorithms completely separate the
orientational and conformational search by precalculating low-energy conformations
of the small molecules and docking a rigid database of conformers [53-55]. This
has the trade-off of ensuring a better conformational search of low-energy ligand
conformations versus the efficiencies of on-the-fly conformational search within the
receptor site, which may balance higher intramolecular energies to optimize receptor
interactions.

Recently, receptor flexibility has also been added to docking programs. As with
ligand flexibility, conformations can be precalculated or generated on-the-fly during
docking. The first approach precalculates a series of protein conformations, such as
snapshots from a molecular dynamics simulation, or from a normal mode analysis,
and subsequently docks the ligand to an ensemble of proteins [56—59]. The advantage
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of this ensemble approach is the ability to search a wider conformational space that
includes backbone and sidechain variation. The on-the-fly approaches may include
protein sidechain rotamers [45,60], sidechains and user-defined loops [49,61], or
induced fit using protein structure prediction [62]. The latter approach, while accurate,
is not currently fast enough for virtual screening.

After calculating a ligand pose, the last step in docking is to evaluate it with some
sort of scoring function. The original scoring function from UCSF DOCK was a
shape-based contact score. Later, force-field-based functions were introduced. These
functions took the Lennard—Jones and electrostatic parameters from force fields such
as AMBER [63] or CHARMM [64,65]. To save computational time by turning an
O(N?) calculation to O(N), a grid was precalculated for the sum of the receptor
potential at each point in space. To generate this grid, a geometric mean approxi-
mation (A;; = \/A,-i\/Ajj) was made to the van der Waals portion of the force field
[66]. Eventually, solvation and entropy terms were added to many force-field-based
scoring functions, typically using DELPHI [67] or ZAP [68] for solvation [69,70]. As
many factors known to be important in the free energy of ligand binding are missing
in force-field scores, many programs chose instead to derive an empirical scoring
using several intuitive parameters such as hydrophobicity, solvation, metal-binding,
or the number of number rotatable bonds, along with van der Waals and electrostatic
energy terms. Empirical functions were derived from a least-squares fit of the param-
eters to ligand—protein systems with known crystal structures and known binding
energies [42,45,52,71-73]. Again these scoring functions are usually calculated on
a grid for computational speed. The advantage of starting with a force-field-based
method is that it is applicable to a wide range of ligands. The empirical scoring
schemes work well when the ligands and receptors resemble the training set. Another
approach was to use a knowledge-based function, derived from a statistical analysis
of ligand atom/protein atom contact frequencies and distances in a database of crystal
structures [74-76]. As each of these scoring approaches were shown to work well
in different cases, many programs started to create “consensus” functions combining
several different scoring schemes, which were shown to be more predictive than any
single scoring scheme [77]. After primary scoring, several approaches “rescore” top
hits. For example, the PostDOCK filter [78] was derived from a supervised machine
learning study on protein/ligand structures in the Protein Data Bank [79], and it was
shown to improve enrichment by as much as 19-fold. Short molecular dynamics runs
using implicit waters, implemented as MM-PBSA (for Poisson—Boltzmann solva-
tion) or MM-GBSA (Generalized Born), were also shown to improve enrichment
rates [80,81].

Many other factors to improve the quality of structure-based affinity predictions
have been addressed including waters, metals, and protonation states of the receptor
protein (see Refs. [82,83] for a detailed review). Additional screens have been devel-
oped to identify lead compounds that not only show strong binding affinity to the target
receptor, but also have good pharmacological properties. Lipinski’s Rule of Five [84],
which uses a set of property heuristics such as molecular weight, hydrogen bonds, and
so on that match the range in the majority of known orally absorbed drugs, has become
a standard for prescreening ligands prior to docking for “drug-like” properties. Filters
have been developed to remove compounds known to be promiscuous binders (i.e.,



158 Handbook of Chemoinformatics Algorithms

false positives) [85,86], or that interact with hERG channel [87]. Structure-based
screening has been combined successfully with 3D pharmacophore searching and
3D similarity searches, to add complementary information to the searching process.
Structure-based virtual screening remains a useful tool in the arsenal for lead-drug
development.

5.2.2 DOCKING ALGORITHMS
5.2.2.1 Orientational Search: The Clique Detection Algorithm

Many docking algorithms separate between the orientational search and the confor-
mational search. The clique detection algorithm for orientational search that finds
interconnected sets between ligand sphere—sphere distances with receptor sphere—
sphere distances (Figure 5.1) is still one of the most commonly used docking
algorithms. Later versions of the algorithm use ligand atoms themselves rather than
ligand spheres for docking small molecules. Although to find the largest clique in a
graph is considered an NP complete problem, the search for all cliques of a limited
size is tractable. The original algorithm used a bipartite graph, where ligand nodes
and receptor nodes were assigned to separate graphs. However, in DOCK 4.0 [51,88]
the algorithm was changed to a single “docking” graph where each node represented a
ligand/receptor—sphere pairing. This docking graph and the exhaustive search method
were first discussed by Bron and Kerbosch [89].

The algorithm begins (see Figure 5.2 and Algorithm 5.1) with a set of T total
nodes, each representing a ligand/atom pair, where 7' equals the number of ligand
atoms times the number receptor spheres. It then precalculates all “edges” between
the nodes. An edge exists between two nodes if the distance between ligand atoms in
the two nodes is within a residual (distanceTol) of the distance between the receptor
spheres in the two nodes. All edges are stored in an EdgeMatrix of size T x T. If no
edge exists, null is put in that spot.

Two arrays then store the growing clique search, each of size N, the length of
the current clique. The first is Clique [N], containing all nodes of the current grow-
ing clique. The second is NodeSearchGraph [N][T], containing the set of all new
nodes consistent with the current clique of length M, meaning that edges exist from
clique nodes 1, ..., N to these nodes. (Up to T nodes can be stored at each N Index,
representing all nodes being allowed.)

The search begins by adding a new branch node j Node from the NodeSearchGraph
[N]list of allowable nodes, onto the current clique at Clique [N + 1]. The NodeSearch
Graph [N + 1] is then calculated as the intersection of all remaining nodes kNode
from NodeSearchGraph [N] and all nodes with an edge to j Node, by testing all £
Nodes for an edge to j Node in the precalculated EdgeMatrix. If an edge exists, kK Node
is added to NodeSearchGraph [N + 1]. When a clique is complete, either because no
more nodes can be found or it reaches NODESMAX size, pop_node() removes the
Nth node in the clique and the next node is tried in that position. If none is found,
pop_node() removes the N—1 node. Backtracking can continue back to position 0,
until all nodes have exhaustively been searched. In practice MAXCLIQUES is used
to limit the total number of cliques found.
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FIGURE 5.2 Clique detection algorithm. (a) Set of nodes (receptor/ligand pairs) and edges
connecting nodes. (b) Exhaustive search for cliques. Initial growing clique (Cp) is NULL
and node search graph (Gy) is the set of all nodes. The next node Ny from G, is added to
Cp+1. Gy is recalculated as all nodes in G, with an edge to N, The procedure is repeated
until > MAXNODES or no further expansion is possible. Additional cliques are searched by
backtracking and testing next node Ny in Gy,.

ALGORITHM 5.1 PSEUDOCODE FOR EXHAUSTIVE SEARCH FOR

CLIQUES OF GIVEN SIZE RANGE (NONRECURSIVE)

C=C i que

N=nunber of nodes in current clique ==

si ze(clique)

NODESM N, NODESMAX:  mi ni muni maxi mum al | owed

nodes in a clique

S=NodeSear chG aph] NODESMAX] [ T] : i st of

al | owed nodes

PreConpute EdgeMatrix[T x T} for all Nodes, such that

EdgeMat ri x[ i Node] [ j Node] =edge i f jedge exists within

di st anceTol
or Oif it does not exist;

get Next d i que(clique){
#renove | ast node to start new clique
I F (size(clique)>0)THEN
pop_node(cli que)
END I F
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Bool ean val i dd i que=fal se;
VWH LE (not Validdique) THEN
#Expand clique until no further expansion
possi bl e
#(i.e.clique size is >= NODESMAX or no nore
expansi on nodes
Expand (clique)
| F (expand(clique) == TRUE) THEN
CONTI NUE
END | F
| F (size (clique) >= NODESM N)
val i dd i que=TRUE
ELSE
#renove | ast node and try again
pop_node(cl i que)
END ELSE
END WHI LE
RETURN cl i que.

Expand (clique){
N=si ze(cl i que)
#termnation 1: test if clique already fully
expanded
| F ( N>NODESMAX) THEN
return FALSE;
ENDI F
#termnation 2: test if have explored all possible
nodes at #position N+1
| F ((j Node=next node in NodeSearchG aph[N array )
==0) THEN
return FALSE
END | F
#] Node=new node to add to clique at position N+1
#kNode=r enmai ni ng node consistent with current
clique
#j Edge=edge between j Node and kNode
Add j Node to clique
#Cal cul ate set of edges consistent with j Node and
rest of clique.
FOREACH kNode (|1 oop through NodeSearchG aph[N]) DO
j Edge=EdgeMat ri x[ j Node] [ kNode] ;
|F (j Edge !'= 0) THEN
Add kNode to NodeSear chGraphl ndex[ N+1] array
END | F
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END DO
RETURN TRUE

This algorithm was first implemented in UCSF DOCK4 [51], and is
included in the latest version of UCSF DOCKG6 [70,90]. UCSF DOCK at
http://dock.compbio.ucsf.edu/DOCK_6/index.htm is freely available to academics,
but a license fee is charged for commercial users. A similar algorithm is implemented
in FLOG [55], using a minimal-residual heuristic to limit the search, where only
the node with the minimal residual is expanded at each branch point, rather than
all remaining exceed the number of nodes. FLOG is an in-house software package
at Merck, in current use. The primary advantage of this clique detection approach
is a more efficient sampling of relevant orientational space compared to random
rotation/translation. In fact, despite the overhead of identifying cliques and then trans-
forming the ligand coordinates, it has been shown to have a speed-up between 10-
and 100-fold compared to uniform random translation [91]. The memory cost for the
docking-graph algorithm is not large and limited to the precomputed EdgeMatrix,
which grows as the square of (ligand atoms x receptor spheres). The search time for
this algorithm grows as a function of the number of distance-constrained solutions
rather than all possible unconstrained solutions, because the search does not explore
invalid branches.

5.2.2.2 Conformational Search: Incremental Buildup

Programs that use a rigid orientational search algorithm can then either start with a
database of precomputed conformations of ligands, using a program such as Omega
[92], or perform orientational search on a rigid unit of a small molecule, and fol-
low it with a buildup procedure. Algorithm 5.2 outlined below is a common buildup
procedure, used in UCSF DOCK [51]. A similar procedure is used in FlexX [52],
commercially available at http://www.biosolveit.de/flexx/. As the scoring and opti-
mization steps are the primary time-consuming steps in the algorithm, the time demand
for this algorithm can be approximated by the number of function evaluations, which
becomes [51]

Time = Cy x No + C; N X Np X Mg,

where Cy and C; are constants, Ny is the number of anchor orientations searched, N,
is the average number of pruned configurations saved each round, Nj is the number
of rotatable bonds, and NV; is the average number of torsions per bond.

ALGORITHM 5.2 PSEUDOCODE FOR CONFORMATIONAL SEARCH
USING INCREMENTAL BUILDUP

Identify flexible units in Iigand

Start with largest rigid unit

O der flexible groups in layers starting fromrigid unit
Oient rigid unit using orientational search
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Loop over flexible |ayers
Add next |ayer
Search torsions for each flexible group in |ayer
Prune by score

End | oop

M ni m ze and score final structure

5.2.2.3 Combined Orientational and Conformational Search:
Lamarckian Genetic Algorithm

Simulated annealing, Monte Carlo, and evolutionary algorithms have all been applied
to docking programs to combine orientational and conformational search steps.
Although initially these stochastic approaches were prohibitively slow and were used
primarily to study a known ligand/receptor interaction in detail, owing to increases
in computer power it is now possible to use these approaches for virtual screening
as well. One algorithm in common use is the Lamarckian Genetic Algorithm (LGA)
[42,93,94].

The LGA combines the global search properties of a genetic algorithm (GA) with
alocal search. The LGA is structured in the same way as the normal GA algorithm: a
chromosome is created representing the orientation/conformation of the ligand with
respect to the target receptor. The chromosome is shown in Figure 5.3 and consists
of a number of variables for ligand translation/rotation that is the same for all ligands
and a number of variables for ligand flexibility that is specific to each ligand. The sum
of the chromosome represents the genotype of a ligand. The phenotype of a ligand
is its 3D coordinates after applying all the transformations in the genotype. Ligand
fitness can be calculated from its phenotype using any of the standard docking scoring
functions.

The standard GA starts with a random population of size N, and runs through
a set number of generations. Each generation runs through the following steps: (1)
mapping genotype to phenotype for each member of the population; (2) fitness of
each member; (3) selection of members for use in breeding the next population; (4)
breeding: consisting of mutation and crossover; and (5) elitist selection (optional).
The new addition for the LGA (described in Algorithm 5.3) is to add a local search
function, performed at the end of each generation, on a set percentage of the (new)
population. The local search algorithm can be any local optimization technique, such
as Pattern search [95,96], or Solis—Wets [97]. The local search may be performed on
the phenotype and transformed back onto the genotype, or performed directly on the
genotype. As long as the local search results are passed onto the final genotypes it is

G G G Q Q Q Q T, T, T, Ty

FIGURE 5.3 Chromosome for docking genetic algorithm. The first three genes (C1—-C3)
represent coordinates for ligand translation. The next four genes (Q—Qg4) are the quaternian
for ligand rotation. The last N genes (T|—Ty) is the ligand torsional values, the number of
which vary per ligand. Receptor torsions can also be added to this portion.
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considered Lamarckian [42]. In a standard GA, the crossover function provides large
search moves, while mutations generate small, refining genotypic changes. In LGA,
the local search provides the refining moves, while mutations are employed for more
exploratory moves and for its role in replacing alleles that have been lost during the
selection process. The global GA continues until one of several termination steps is
reached, either the number of the current generation exceeds the maximum number
of generations, the number of total fitness evaluations exceeds the maximum allowed
evaluations, the fitness of the worst individual is the same as average fitness in the
population (i.e., population convergence), and so on.

ALGORITHM 5.3 PSEUDOCODE FOR LGA

LGA {
CGenerate G=popul ation size N of random genotypes
gener ati on=1;

Mappi ng genotype G to phenotype P of popul ation
Fi t ness
valuation Fp (scoring) on P

#Loop over generations
VWHI LE (not TERM NATI ON) do
Process generation {
selection of G from G for reproduction using
wei ghted function based on
Fp of each individual
G.=chi | d popul ati on=crossover & nutation of G
P.=Mappi ng genotype to phenotype of G
Foc=Fi t ness eval uation on Pc
elitist selection (optional)
G:=l ocal _search on (&' =percentage of G;
calculate Fyc')
& (next generation)=conpose(G &)
Generation ++

}

END WHI LE

}

| ocal _search(GQ {
(optional) mappi ng genotype G to phenotype P
| ocal optimization (e.g., Pattern-search or Solis-Wts)
on P to calcul ated
optinized P2 Fp
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(optional) mapping of optimzed P2 to & return @&,
Fp2

}

term nation conditions:
gener ati on>maxi mum gener ati ons
nunber of fitness eval uati ons>maxi num nunber
eval uati ons
worst fitness is average fitness in population

The Lamarckian GA has been implemented in AutoDock [42] and is avail-
able with a GNU General Public License at http://autodock.scripps.edu/. GOLD
[45] uses a GA without the local search and is commercially available at
http://www.ccdc.cam.ac.uk/products/life_sciences/gold/. DARWIN [98], an in-house
software package at the Wistar Institute, employs a similar GA, where every phenotype
is minimized using CHARMM as part of the fitness evaluation procedure.

As the GA is a nondeterministic search strategy, the time required to reach a solu-
tion is dependent on user parameters to stop the calculation. In general, if a set
number of scoring evaluations (the slowest step in the algorithm) is taken as a stop-
ping condition, then the search speed will go roughly as the square of the size of the
ligand, since the intramolecular energy calculation for the ligand scales as O(N?),
while the intermolecular grid score scales as O(V). The LGA was shown to reliably
provide faster and more accurate solutions than simulated annealing or GA alone
[42] within the context of the AutoDock program and scoring function. In comparing
GAs to incremental construction, in practice the GAs take more time to run than
the incremental-construction algorithms for the range of ligands commonly used in
virtual screening, but as the number of flexible ligand bonds increases the compu-
tational time for incremental construction goes up linearly, while the GA solution
times stay constant. In terms of pose accuracy in real examples, no comprehensive
comparison has been performed between GAs and incremental construction alone,
and studies that compare various programs are confounded by other differences in
the protocols, in particular the scoring functions, making the outcomes difficult to
compare. In practice both approaches reproduce known crystal structures well.

In summary, docking has become a ubiquitous tool in virtual screening. A number
of algorithms have successfully been applied to discover novel small molecule ligands
(Table 5.1). However, there are still many active areas for development in docking
algorithms. In particular, all docking algorithms have the general limitation that they
are highly sensitive to small changes in the 3D structure of the receptor and ligand. This
is mitigated in algorithms that incorporate a measure of ligand flexibility, and further
reduced with receptor flexibility, but further improvement is needed. In addition,
scoring functions, while useful for enriching databases, are not accurate enough to
predict individual binding affinities reliably. Even so, the current algorithms generate
enough enrichment of screening databases to be an important tool in the drug discovery
process.



TABLE 5.1

Commonly Used Docking Programs and Their Algorithms

Program

DOCK [39,51,70]
AutoDock [42,60]
FlexX [52]
FRED [54]
GLIDE [46,47,62]

GOLD [45]
ICM [48,105]

QXP [49]

SLIDE [108]

Orientation
Algorithm

Sphere matching
LGA
Descriptor match
Shape matching (Gaussian)
Descriptor match/
Monte Carlo
GA
Monte Carlo
Monte Carlo/ systematic

search
Descriptor matching

Conformation
Algorithm

Incremental construction, flexible

DB/multiple receptors
Flexible ligand and receptor
sidechains
Incremental construction/
multiple receptors
Precompute ligand
conformations (OMEGA)
Induced fit w/protein
structure prediction
Ligand and receptor sidechains
Flexible sidechains and
loops/multiple receptors
Flexible sidechains and loops

Induced-fit ligand and receptor

Scoring
Function

Force field, MM-PBSA,
MM-GBSA

Semi-empirical force field

Empirical

Consensus

Semiempirical force field

Empirical
Consensus

Empirical and force field

Empirical

Examples of Novel
Leads Identified

20a-hydroxysteroid
dehydrogenase [99]
Cdc25 phosphatase [100]

Histamine H4 receptor [101]
Cdc25 phosphatase [102]

Liver X receptor modulators
[103]

SARS-3CL(pro) [104]

Serotonin N-acetyltransferase
[106]

B-Catenin [107]

Brugia malayi asparaginyl-tRNA
synthetase [109]

Surusauog [eniiA paseg-a24njonaig pue -puedi
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In this and the next chapter, we shall consider modern approaches for developing
statistically robust and externally predictive quantitative structure—activity relation-
ships (QSAR) models. We shall discuss the general QSAR model development and
validation workflow that should be followed irrespective of specifics of any particu-
lar QSAR modeling routine. We will refrain on purpose from discussing any specific
model optimization algorithms because such details could be found in many original
publications. This chapter focuses on the initial steps in QSAR modeling, that is,
input data preparation and curation, as well as introduces the general workflow for
developing validated and predictive models. Conversely, the next chapter addresses
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general data modeling and model validation procedures that constitute the important
elements of the workflow.

This chapter starts with the discussion of the general workflow for developing pre-
dictive QSAR models. Then, we concentrate on the requirements to QSAR datasets
and procedures that should be employed for the initial data treatment and prepa-
ration for model development. We consider briefly major types of descriptors (i.e.,
quantitative characteristics of chemical structures) and discuss algorithms for prepro-
cessing descriptor files prior to QSAR studies. We emphasize that rigorous validation
of QSAR models is impossible without using both test and additional external model
evaluation sets and discuss several approaches for the division of a dataset into
training, test, and external evaluation sets. We address critical aspects of preliminary
data analysis such as the detection of possible structural and activity outliers and
dealing with the imbalanced datasets.

To complete the discussion of major modern QSAR modeling principles, the next
chapter covers some special topics of QSAR analysis such as different target func-
tions and measures of prediction accuracy, approaches to model validation, model
applicability domains, consensus prediction and the use of QSAR models in virtual
screening. We emphasize that the true utility of QSAR models is in their ability to
make accurate predictions for external datasets. In this regard, we ascertain that the
integration of all components of the QSAR modeling workflow discussed in this and
the subsequent chapter is absolutely necessary for building rigorously validated and
externally predictive QSAR models.

6.1 INTRODUCTION: PREDICTIVE QSAR MODELING

The rapid development of information and communication technologies during the
last few decades has dramatically changed our capabilities of collecting, analyzing,
storing, and disseminating all types of data. This process has had a profound influ-
ence on the scientific research in many disciplines, including the development of new
generations of effective and selective medicines. Large databases containing mil-
lions of chemical compounds tested in various biological assays such as PubChem!
are increasingly available as online collections (recently reviewed by Oprea and
Tropsha?). In order to find new drug leads, there is a need for efficient and robust
procedures that can be used to screen chemical databases and virtual libraries against
molecules with known activities or properties. To this end, QSAR modeling provides
an effective means for both exploring and exploiting the relationship between chemi-
cal structure and its biological action toward the development of novel drug candidates.

The QSAR approach can be generally described as an application of data analysis
methods and statistics to developing models that could accurately predict biological
activities or properties of compounds based on their structures. Our experience in
QSAR model development and validation has led us to establish a complex strat-
egy that is summarized in Figure 6.1. It describes the predictive QSAR modeling
workflow focused on delivering validated models and ultimately computational hits
confirmed for the experimental validation. We start by randomly selecting a fraction
of compounds (typically, 10-20%) as an external evaluation set. The sphere exclu-
sion protocol implemented in our laboratory>* is then used to rationally divide the
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FIGURE 6.1 Predictive QSAR modeling workflow.

remaining subset of compounds (the modeling set) into multiple training and test sets
that are used for model development and validation, respectively. We employ multi-
ple QSAR techniques based on the combinatorial exploration of all possible pairs of
descriptor sets and various supervised data analysis techniques (combi-QSAR) and
select models characterized by high accuracy in predicting both training and test sets
data. Validated models are finally tested using the external evaluation set. The critical
step of the external validation is the use of applicability domains (AD). If external
validation demonstrates the significant predictive power of the models, we employ
them for virtual screening of available chemical databases (e.g., ZINC?) to identify
putative active compounds and work with collaborators who could validate such hits
experimentally. The entire approach is described in detail in several recent papers and
reviews (see, e.g., Refs. 6-9).

The development of truly validated and predictive QSAR models affords their
growing application in chemical data mining and combinatorial library design.!%-!!
For example, three-dimensional (3D) stereoelectronic pharmacophore based on
QSAR modeling was used recently to search the National Cancer Institute Repository
of Small Molecules to find new leads for inhibiting human immunodeficiency virus
(HIV) type 1 reverse transcriptase at the non-nucleoside binding site.!?

Itis increasingly critical to provide experimental validation as the ultimate assertion
of the model-based prediction. In our recent studies we were fortunate to recruit exper-
imental collaborators who have validated computational hits identified through our
modeling of several datasets including anticonvulsants,'> HIV-1 reverse transcriptase
inhibitors,!* D1 antagonists,15 antitumor compounds,16 B-lactamase inhibitors,!” and
histone deacetylase (HDAC) inhibitors.'® Thus, models resulting from the predictive
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QSAR modeling workflow (Figure 6.1) could be used to prioritize the selection of
chemicals for the experimental validation. However, since we still cannot guarantee
that every prediction resulting from our modeling effort will be validated experimen-
tally, we do not include the experimental validation step as a mandatory part of the
workflow in Figure 6.1, which is why we used the dotted line for this component.
We note that our approach shifts the emphasis on ensuring good (best) statistics for
the model that fits known experimental data toward generating a testable hypothesis
about purported bioactive compounds. Thus, the output of the modeling has exactly the
same format as the input, that is, chemical structures and (predicted) activities making
model interpretation and utilization completely seamless for medicinal chemists.

Thus, studies in our as well as several other laboratories have shown that
QSAR models could be used successfully as virtual screening tools to discover
compounds with the desired biological activity in chemical databases or virtual
libraries.%!3:15=17.19 The discovery of novel bioactive chemical entities is the pri-
mary goal of computational drug discovery, and the development of validated and
predictive QSAR models is critical to achieve this goal.

In the remaining part of this chapter, we consider the requirements to primary data
used for QSAR analysis, approaches used in the preparation of data, preprocessing
of descriptors, and detection of outliers. We emphasize that rigorous validation of
QSAR models is impossible without using test and additional external evaluation sets
and discuss several approaches for division of data into training, test, and external
evaluation sets.

6.2 REQUIREMENTS TO A DATASET

The number of compounds in the dataset for QSAR studies should not be too small,
or, for practical reasons, too large. The upper limit is defined by the computer and
time resources available for building QSAR models using the selected methodolo-
gies. For example, for the k-nearest neighbors (kNN) QSAR approach frequently
practiced in our laboratory,?>?! the maximum number of compounds in the train-
ing set (i.e., compounds used to build QSAR models) may not exceed about ca.
2000 due to the inefficiency of the approach when processing large datasets. When a
dataset includes more compounds, several approaches can be implemented: (i) select
a diverse subset of compounds; (ii) cluster a dataset and build models separately for
each cluster; (iii) sometimes, in the case of classification or category QSAR, when
compounds belong to a small number of activity classes or categories (e.g., active and
inactive), it is possible to exclude many compounds from model development. (The
difference between classes and categories is that that in contrast to classes, categories
can be ordered. An example of classes: ligands of different receptors. An example of
categories: compounds that are very active, active, moderately active, and inactive.)
The lower limit of the number of compounds in the dataset is also defined by
several factors. For example, in most cases, as part of model validation schemes, we
divide a dataset into three subsets: training, test, and external evaluation sets. Training
sets are used in model development, and if they are too small, chance correlation and
overfitting become major problems not allowing one to build truly predictive models.
While it is impossible to give an exact minimum number of compounds in a dataset
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for which building reliable QSAR models is feasible, some simple ideas described
here may help. In the case of continuous response variable (activity), the number of
compounds in the training set should be at least 20, and about 10 compounds should
be in each of the test and external evaluation sets, so the total minimum number of
compounds should be no less than 40. In the case of classification or category response
variable, the training set should contain at least about 10 compounds of each class, and
test and external evaluation sets should contain no less than five compounds for each
class. So, there should be at least 20 compounds of each class. The best situation is
when the number of compounds in the dataset is between these two extremes: about
150-300 compounds in total, and in the case of classification or category QSAR,
approximately equal number of compounds of each class or category.

There are also requirements for activity values. In the case of continuous response
variable, the total range of activities should be at least 5 times higher than the experi-
mental error. No large gaps (that exceed 10-15% of the entire range of activities) are
allowed between two consecutive values of activities ordered by value. In the case
of classification or category QSAR, there should be at least 20 compounds of each
class or category; preferably, the number of compounds in all classes or categories
should be approximately the same. However, many existing datasets are imbalanced or
biased (i.e., sizes of different classes or categories are different). In these cases, special
QSAR algorithms are used to equalize the number of compounds in different classes
or categories. There are also approaches (such as cost-sensitive learning?>?3) that
account for these differences by including additional parameters in target functions
(see Section 7.2) and criteria of prediction accuracy.

The main QSAR hypothesis underlying all QSAR studies is as follows: similar
compounds should have similar biological activities or properties. If this condition for
compounds in the dataset is not satisfied, building truly predictive QSAR models is
impossible. In fact, one can define two compounds as similar if their chemical struc-
tures are similar. In computer representation, compounds are characterized by a set
of quantitative parameters called descriptors. Similarity between two compounds is a
quantitative measure that is defined based on compounds’ descriptor values. Differ-
ent definitions of compound similarity exist. These measures reflect the similarity in
molecular structure of these compounds. Obviously, quantitative values of similarity
measures between two compounds also depend on which descriptors are used. So
there is no unique similarity measure. Below, we will address several definitions of
similarity.

6.3 DATASET CURATION

Any modeling study requires a dataset of compounds where all chemical structures
are correct, there are no duplicates, and activity values are accurate. It is highly
recommended that before the modeling studies begin, the datasets be examined to
establish that the above listed quality control criteria are satisfied. A recent study
provides a great illustration as to how having even a few incorrect structures could
significantly impart the accuracy of QSAR models.>* In addition, the calculation of
molecular descriptors should be possible for every compound in a dataset. In this
regard, it should be kept in mind that most of the molecular descriptors cannot be
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calculated for compounds consisting of two or more molecules that are not covalently
connected (e.g., salts); many molecular descriptors cannot be calculated for inorganic
compounds or compounds that include heavy metal atoms due to lack of the corre-
sponding parameters; many types of descriptors cannot take chirality and some other
types of isomerism into account, and so on. Depending on the descriptors used and
the dataset, all or some of these compounds should be excluded from the dataset.

Consider, for example, a dataset that includes many molecules containing chiral
atoms, including some pairs of enantiomers and diastereomers. If atomic chiralities for
all these compounds are always available along with compounds’ activities, descrip-
tors taking chirality into account should be used, and all isomers should be retained
in the dataset. If, however, chirality information is unavailable, only one compound,
usually with the highest (or mean) activity should be retained, and chirality descrip-
tors should not be used. There are different tools available for dataset curation. For
example, Molecular Operating Environment (MOE)? includes Database Wash tool.
It allows changing molecules’ names, adding or removing hydrogen atoms, removing
salts and heavy atoms, even if they are covalently connected to the rest of the molecule,
and changing or generating the tautomers and protomers (cf. the MOE manual for
more details). Various database curation tools are included in ChemAxon2® as well.
If commercial software tools such as MOE are unavailable (notably, ChemAxon soft-
ware is free to academic investigators), one can use standard UNIX/LINUX tools
to perform some of the dataset cleaning tasks. It is important to have some freely
available molecular format converters such as OpenBabel?’ or MolConverter from
ChemAxon.2®

We shall discuss the use of some of the standard data cleaning operations using
freely available tools. Suppose that a file called mydata contains a dataset in the
SMILES format. Each line of this file contains SMILES string for one compound and
ID for this compound. Some of the compounds contain metal atoms such as Na, K,
Ca, Fe, Co, Ni, Mn, and Mg, and one wants to exclude all of them from the dataset.
It can be easily done in the UNIX/LINUX operating system by giving the command:

egrep —v “\[Na|\[K|\[Ca|\[Fe|\[Co|\[Ni|\[Mn|\[Mg” mydata > mynometal-
data.

Suppose that a file mydata also contains some compounds that are not fully cova-
lently connected. In SMILES, disconnected parts of the compound are separated by
a dot. So all compounds containing dots can be removed:

grep —v “\.” mynometaldata > mynometalnosaltdata.

Alternatively, one may want to retain the largest fragment of a compound. In this
case, the following awk code can be used:

{
i f(index($1,".")==0) printf("% ", $1);
el se
{
n=split($l,a ".");
p=0;
m=0;

for(i=1;i<=n;i++)

{
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r=length(ali]);
if(r>p) {n¥i; p=r;}

}
printf("% ",a[m);
}
i f(NF==1) printf("No_ID\n");
i f(NF==2) printf("%\n", $2);
el se
{
for(i=2;i<NF;i++) printf("%_",$i);
printf("%s\n", $i);
}

Create a file removesalts.awk and copy the above code in this file. The following
command will remove smaller fragments of compounds:

awk —f removesalts.awk mynometaldata > mynometalnosaltdata.

If a user is not interested in small molecules, the user may decide to remove
compounds described by short SMILES strings with lengths up to 8. This can be
done by using a short awk script:

awk {if(length($1) > varl) print $0;}’ mynometalnosaltdata > mycleaneddata.

The mycleaneddata still may contain duplicates. Duplicates of SMILES strings
can be removed using the following awk script:

BEG N {i =0; }
{ if(var==$1) i++; if(i<=1 || i>1 & var!=$1 ) print;}
END {if(i>1) print var,i>file;}

where var and file are external variables; var is one SMILES string, and file is a file
name containing SMILES strings included more than once in the input file. Create file
removeduplicates.awk and copy the above script into it. var variable runs through all
compounds, and each time, duplicates of this compound are removed. The following
Cshell script used with the removeduplicates.awk will do the job.

#! / bi n/ csh

cp data2 tenp

foreach i (‘cut -d" " -f1 data2')

awk -v var="$i" -v file="duplicates" -f removedupli cates.

awk tenp > tenp2®
cCp tenp2 tenp
cat duplicates >> duplicates.txt
end
cp tenp2 mycl eaneddat anodup
rmtenp*

Name it removeduplicates.csh and run it using the following command:
csh removeduplicates.csh.

T It is one command which should be entered on one line of the UNIX/LINUX terminal.
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6.4 CALCULATION OF DESCRIPTORS

Descriptors are quantitative characteristics describing molecular structures that are
used in QSAR and other chemoinformatics studies. They can be experimental or cal-
culated physicochemical properties of molecules such as molecular weight, molar
refraction, energies of HOMO and LUMO, normal boiling point, octanol/water
partition coefficients, topological indices or invariants of molecular graphs (structural
formulas), molecular surface, molecular volume, etc. The first abstract molecular
topological indices introduced in molecular property prediction studies were the
Wiener index?® and the Platt index.?

Herein, we will not discuss different types of descriptors in detail but mention
briefly major descriptor classes. There is an excellent monograph titled Handbook
of Molecular Descriptors by Roberto Todeschini and Vivian Consonni®” that pro-
vides reference materials on more than 2000 different descriptors. Most of descriptors
included in this book can be calculated by the Dragon software.>! Dragon calculates
many different groups of descriptors such as constitutional descriptors (sometimes
referred to as zero-dimensional [0D] descriptors), counts of different molecular
groups, physicochemical properties of compounds, and so on. (one-dimensional [1D]
descriptors), connectivity indices, information indices, counts of paths and walks,
and so on (two-dimensional [2D] descriptors), geometrical properties, GETAWAY,
WHIM, 3DMoRSE descriptors, and so on (3D descriptors), and some other descrip-
tors. MolconnZ>? is another widely used descriptor calculation software. In total, it
calculates more than 800 descriptors including valence path, cluster, path/cluster and
chain molecular connectivity indices, kappa molecular shape indices, topological and
electrotopological state indices, differential connectivity indices, the graph’s radius
and diameter, Wiener and Platt indices, Shannon and Bonchev-Trinajsti¢ information
indices, counts of different vertices, and counts of paths and edges between different
kinds of vertices. MOE?® descriptors include both 2D and 3D molecular descriptors.
2D descriptors include physical properties, subdivided surface areas, atom counts
and bond counts, Kier and Hall connectivity and kappa shape indices, adjacency and
distance matrix descriptors, pharmacophore feature descriptors, and partial charge
descriptors. 3D molecular descriptors include potential energy descriptors, surface
area, volume and shape descriptors, and conformation-dependent charge descrip-
tors. Chirality molecular topological descriptors (CMTD) developed in our laboratory
include chirality and ZE-isomerism molecular connectivity indices, overall Zagreb
indices, extended indices, and overall connectivity indices.>3~3% They are calculated
as conventional descriptors with modified vertex degrees. Another group of descrip-
tors frequently used in our laboratory is atom-pair (AP) descriptors.3® Each descriptor
is defined as a count of pairs of atoms of the same type being away from each other on a
certain topological distance (2D AP descriptors) or a Euclidean distance within certain
intervals (3D AP descriptors). A new version of the program includes chirality descrip-
tors, which are counts of APs with one or both atoms in the pair chiral.37 Comparative
molecular field analysis (CoMFA) descriptors represent values of Lennard-Jones and
Coulomb energies of interactions between a molecule and a probe atom at certain
grid points built around a set of spatially aligned molecules.>® The molecules are
aligned according to a pharmacophore model, a spatially arranged set of features that
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are believed to be responsible for the biological activity or property of compounds
in question. There are several types of other 3D CoMFA-like descriptors, such as
comparative molecular similarity indices analysis (CoMSIA),3 comparative similar-
ity indices analysis (QSiAR),*" self-organizing molecular field analysis (SOMFA),*!
and so on. These descriptors can be effectively used for sets of rigid compounds,
or compounds that have a large common fragment, but for flexible compounds with
different scaffolds they require extensive conformational analysis along with rigid
templates to superimpose molecules onto each other. There are different conforma-
tional analysis and pharmacophore modeling tools included in molecular modeling
packages such as MOE,? Sybyl,*?> Discovery Studio,** LigandScout,** and so on.

It has been demonstrated that in many cases QSAR models based on 2D descrip-
tors have comparable (or even superior) predictivity than models based on 3D
descriptors.20-21:33:45 At the same time, 3D methods are much more time and resource
consuming. Moreover, even for rigid compounds, generally it is not known whether
the alignment corresponds to real positions of molecules in the receptor binding site.*¢
So, when 3D QSAR studies are necessary, if possible, 3D alignment of molecules
should be preferably obtained by docking studies. VolSurf#7-#® and GRIND*° descrip-
tors are examples of alignment-free 3D descriptors. GRIND descriptors are obtained
from 3D interaction energy grid maps. Calculation of VolSurf descriptors includes the
following steps: (i) building a grid around a molecule; (ii) calculation of an interaction
field (with water, dry, amide and carbonyl probes representing solvent, hydrophobic,
and hydrogen bond acceptor and donor effects) in each grid point; (iii) eight or more
energy values are assigned and for each energy value, the number of grid points
inside the surface corresponding to this energy (volume descriptors) or belonging to
this surface (surface descriptors) is calculated. VolSurf descriptors include size and
shape descriptors, hydrophilic and hydrophobic region descriptors, interaction energy
moments, and other descriptors. Both VolSurf and GRIND descriptors are available in
Sybyl (VolSurf and Almond modules).*? Virtually, any molecular modeling software
package contains sets of its own descriptors and there are many other descriptors not
mentioned here that can be found in the specialized literature.

There are sets of descriptors that take values of zero or one depending on the
presence or absence of certain predefined molecular features (or fragments) such
as oxygen atoms, aromatic rings, rings, double bonds, triple bonds, halogens, and
so on. These sets of descriptors are called molecular fingerprints or structural keys.
Such descriptors can be represented by bit strings and many are found in popular
software packages. For instance, several different sets of such descriptors are included
inMOE,? S ybyl,40 and others, and examples of their use can be found in the published
literature.%3! Molecular holograms are similar to fingerprints; however, they use
counts of features rather than their presence or absence. For example, holograms
are included in the Sybyl HQSAR*® module. There are also more recent approaches
when molecular features are not predefined a priori (as fingerprints discussed above)
but are identified for each specific dataset. For example, frequent subgraph mining
approaches developed independently at the University of North Carolina>? and at the
Louis Pasteur University in Strasbourg™? can find all frequent closed subgraphs (i.e.,
subgraph descriptors) for given datasets of compounds described as chemical graphs.
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As may be obvious from the above discussion, most chemical descriptors are only
available from commercial software, which in our opinion is a strong impediment
to accelerating the development of chemoinformatics approaches and applications.
Fortunately, Dr. W. Tong from FDA recently announced the availability of the first non-
commercial descriptor generating software from his laboratory, which is an important
step in the right direction of making core chemoinformatics tools available free of
charge.>*

After descriptors are calculated, a dataset can be represented in the form of a QSAR
table (Table 6.1). At this point, we shall introduce the concept of multidimensional
descriptor space. Suppose that we have just two descriptors for a compound dataset.
In this case, we can define a 2D space with orthogonal (perpendicular to each other)
coordinates, abscissa and ordinate, and represent each compound i by a point in this
2D descriptor space with coordinates (X;1, Xj2), where X;; and X;» are descriptor
values for a compound i. In case we have three descriptors, we can introduce a 3D
descriptor space, in which each descriptor will be represented by an axis, and all
three axes are orthogonal to each other, and so on. We can represent each compound
i in this 3D descriptor space by a point (X;1, X2, X;3), where X;1, Xj», and X;3 are
descriptor values for compound i. Obviously, the same consideration can be extended
to any number of descriptors and so we can introduce higher-dimensional descriptor
spaces. If the total number of descriptors is N, we can introduce an N-dimensional
descriptor space. We can endow this space with some metric by introducing distances
between representative points of compounds in this space. For example, if distance
Dj; between points i and j is defined as

= Xjn)?, (6.1)

then this descriptor space is the N-dimensional Euclidean space. In fact, the dis-
tance can be axiomatically defined in many ways. For example, we can define the
Minkowsky distance with parameter p as

N 1/p
DNk = [Z (Xin — X,-n)l’} : (6.2)
n=1
TABLE 6.1
QSAR Table
Compound  Descriptor 1 Descriptor2 ...  Descriptor N  Activity
1 X11 X12 Xin Y|
2 X1 X2 Xon r

M Xmi Xm2 - XMN Yy
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If p =2, the Minkowsky distance becomes Euclidean distance. If p =1, the
Minkowsky distance becomes the Manhattan distance, and so on. Mahalanobis dis-
tances are frequently used instead of Euclidean distances since they account for
correlations between descriptors. They are also used in definition of AD and in finding
outliers.>> The Mahalanobis distance between compounds i and j is defined as

My = /(X = X))TC1(X; = X;), (63)

where Xj and Xj are vectors of representative points of compounds i and j, and c!
is the inverse covariance matrix for descriptors.

Xi1 — Xji
Xi—x; = | X% (6.4)
Xin - Xin
E[X1 —uD& —p)]  E[X —pD(2 —w2)] o E[(XG — )&y — )]
c= | iz —m) —pup]l - E[GC —p2)X2 —m2)] . E[(X2 — )Xy — )] ,
ElGty — i) X1 —un)] ELy —un) (K2 — i)l o [y — i) Xy — )]

(6.5)

Here, E[(X), — wp)(X; — )] is the covariance between descriptors p and g,
and p, and p4 are their mean values.

The Euclidean distance between two compounds can be used as a measure of
dissimilarity between them, that is, the larger the distance, the more dissimilar the
compounds are, and the smaller the distance, the more similar the compounds are. If
the distance is zero, compounds have identical descriptors, and from this descriptor
set point of view, they are identical. However, these compounds can still be noniden-
tical; for example, if two compounds are enantiomers and the descriptors do not take
chirality into account, then they will have identical descriptors. Another widely used
similarity measure is the Tanimoto coefficient. Usually, it is defined for fingerprint
bit strings. The Tanimoto coefficient is defined as follows:

C

= 6.6
at+b—c (6.6)

where a, b, and ¢ are the number of descriptors, for which the corresponding bits
are the ones for the first compound, the second compound, and both compounds. In
fact, the Tanimoto coefficient can be defined for compounds i and j with any set of
descriptors as well:

Yoo XiaXja

Ty = :
N 2 N 2 N
Za:l Xia + Za:l Xja - Zg:l Xiana

6.7)
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Here, X;, and Xj, are values of descriptor a for compounds i and j, respectively.
In general, —1/3 < T < 1. For bit strings and range-scaled descriptors, 0 < T < 1,
and this can be used instead of the Euclidean distance. Many additional details about
distance and similarity measures used in chemoinformatics studies can be found
elsewhere.”®

Any QSAR method can be generally defined as an application of data analysis
methods and statistics to the problem of finding empirical relationships (QSAR mod-
els) of the form Y = fX1,X2,...,Xn), where Y is the approximated (predicted)
biological activity (or other property of interest) of molecules, X1, X»,...,Xy are
calculated (or, in some cases, experimentally measured) structural properties (molec-
ular descriptors) of compounds, and f is some empirically established mathematical
transformation that should be applied to descriptors to calculate the property values
for all molecules. A QSAR model optimization has a goal of minimizing the error
of prediction, for example, the sum of squares of differences or the sum of absolute
values of differences between predicted f/l- and observed Y; activities for the training
set of compounds (compounds used for building a QSAR model), and so on. How-
ever, prior to model building, data need to be preprocessed and prepared properly to
enable not only building but validating models as well.

6.5 PREPROCESSING OF DESCRIPTORS

Many descriptors such as those calculated with Dragon®® or MolconnZ3° software
include a large variety of “real-value” descriptors as well as descriptors indicating
the presence or absence or counts of certain molecular fragments and groups. Real-
value descriptors can have very substantial differences in their values and ranges,
sometimes by orders of magnitude. Such sets of descriptors should be normalized.
There are also descriptors, which may have the same value for all compounds of
the modeling set or have a very low variance. These descriptors should be excluded
from consideration prior to building QSAR models because they cannot explain the
variability of the target property. However, such (nearly) constant value descriptors
are important for defining the model AD and should be retained for this purpose (see
Section 7.4). Descriptor normalization should be performed separately for modeling
and external evaluation sets. Normalization of descriptors of external compounds for
prediction, such as those included in a chemical database or virtual library, should
be performed in the same way as for the external evaluation set. On the contrary,
molecular fingerprints or holograms do not need to be normalized since they have the
same format and similar ranges. Nevertheless, as in the case of real-value descriptors
discussed above, those fingerprint or hologram descriptors that take the same value
for all compounds of the modeling set should also be excluded.

Normalization of descriptors for the modeling set: There are two widely used
methods of descriptor normalization: range scaling and standard normalization (or
autoscaling). In the case of range-scaling, descriptors are normalized according to
the following formula:

Xix — min Xj

=, 6.8
™ max Xy — min Xy 6.8)
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where X;; and Xl’}( are the non-normalized and normalized values of descrip-
tor k (k=1,...,N) for compound i (i =1,...,M), and minX; = min Xy and

l
max Xy = max X are the minimum and maximum values of the kth descriptor.
4

Descriptors normalized using Formula 6.8 have a minimum value of 0 and a
maximum value of 1. Standard normalization (also called autoscaling) is performed
according to the following formula:

Xik — Wk

X = 6.9
ik ok ( )

where

| M
e =+ ink (6.10)
and
X — 2

Y \/Zl (s~ ) 611
are the estimations of the average and the standard deviation of the kth descriptor
over all compounds 1, . . ., M. After normalization, descriptors with very low variance

(e.g., lower than 0.001) or standard deviation, which is the square root of variance
(see Formula 6.11), are excluded.

Normalization of descriptors for an external compound: For an external compound,
the same Formulas 6.8 through 6.11 are used with X,?‘t (the kth descriptor for the
external compound) instead of Xj; in Formula 6.8 or 6.9. Other values in Formulas
6.8 and 6.9 are parameters calculated for the modeling set.

For establishing the model AD it is important to take into account all descriptors.
However, for descriptors having the same value for all compounds of the modeling set,
the procedures described above will not work. So, if some kth descriptor has the same
value for all compounds of the modeling set, but different values for the prediction set,
then Formula 6.8 or 6.9 with min X; and max Xj values for the prediction set should
be used. The descriptor value for the modeling set should be normalized using min X,
and max Xj for the prediction set. However, if there is only one external compound
for prediction with this descriptor value different from that of the modeling set, this
problem has no solution, and this descriptor should not be taken into account, or if
the difference is too large (depending on the nature of the descriptor), the external
compound can be considered as an outlier.

Pairwise correlation analysis: After the removal of constant descriptors (those
having the same value for all compounds of the modeling set) and descriptors with
low variance, the number of descriptors could still be too high. Of course, theoretically,
it is possible to build QSAR models using all these descriptors. However, it is not
necessarily true in practice. For example, if a QSAR procedure includes variable
selection, it will take too much time to develop a model with too high number of
descriptors, but the prediction power of models built with all descriptors will not be
much better than that for models built using a smaller number of descriptors selected in
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some special way. Sometimes, if models are built using a limited number of iterations
(steps of calculations), then there is a possibility that an optimal subset of descriptors
will not be selected from the pool of all descriptors. For the kANN QSAR procedure
employed in our laboratory, the number of descriptors should not exceed 200—400,
whereas after the removal of constant and low variance descriptors from the entire set
of Dragon descriptors, the number of remaining descriptors could be as high as about
800-1000. The initial number of some collections of fragment-based descriptors or
fingerprints can amount to thousands and even dozens of thousands. Most of these
descriptors should be excluded.

The commonly used approach to reducing the number of descriptors is pairwise
correlation analysis. As a result, one of the descriptors from a pair of highly corre-
lated descriptors found by this analysis is excluded. However, the outcome of this
procedure can be nonunique and will depend on the order of descriptors, if applied
incorrectly. Suppose that there are three descriptors X,, X3, and X, and three corre-
lation coefficients |R(Xg4, Xp)| > t, |R(Xp, Xc)| > t, and |R(X,, Xc)| < t, where ¢ is a
predefined threshold. Suppose that descriptor X, is the first in the list, descriptor Xj,
is the second, and descriptor X, is the third. If the descriptor with the higher num-
ber is deleted, then descriptors X, and X, will be retained and descriptor X}, will be
deleted. However, if descriptor X} is the first in the list, descriptor X, is the second,
and descriptor X, is the third and the descriptor with higher number is deleted, then
descriptors X, and X, will be deleted and descriptor X will be retained. We suggest
that the following procedure should be used:

i. Select the descriptor with the highest variance.

ii. Calculate the correlation coefficients between this descriptor and all other
descriptors. The correlation coefficient between two descriptors X, and Xj, is
calculated as follows:

S Xia — o) Xip — 1)
I K = 102 X Xy — 102

R(Xa, Xp) = . (6.12)

where |, and |, are the mean values of descriptors X, and Xj, and all
summations are over all compounds of the modeling set.
iii. Remove all descriptors for which the absolute value of the correlation
coefficient with this descriptor is higher than the predefined threshold value.
iv. Among the remaining descriptors, if any, select one with the highest variance
v. Go to step (ii).

If there are no two descriptors with equal variance, this procedure gives a unique
result, irrespective of the order of descriptors.

Note I: The threshold value depends on the dataset and the number of descrip-
tors one wants to retain. For kNN QSAR, we still need a relatively large number of
descriptors (see above), so with Dragon or Molconn-Z descriptors, the typical thresh-
old could be about 0.90-0.95. For multiple linear regression (MLR), a smaller number
of descriptors can be retained, so smaller threshold values can be used.
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Note 2: The correlation coefficient between two descriptors (Formula 6.12) is
not the only choice in descriptor selection. For example, if fingerprints are used,
a reasonable measure of similarity between two descriptors could be the Tanimoto
coefficient, which can be used instead of the correlation coefficient. The Tanimoto
coefficient is calculated as follows:

C

= 6.13
a+b—c ( )

where a, b, and c are the number of compounds, for which descriptors X, X, and
both X, and X}, have the value of 1. In fact, the Tanimoto coefficient can be defined
for descriptors taking continuous values as well:

walxiaxib
Zz l +Zz l Zz 1XlaX1b

For range-scaled descriptors, 7 > 0, and it can be used instead of the absolute value
of the correlation coefficient calculated by Formula 6.12.

Note 3: Sometimes (e.g., if MLR is used), after performing pairwise correlation
analysis, the number of descriptors is still too high. In this case, other methods of
descriptor selection can be used. One of the popular methods consists of building
simple regressions of each descriptor with the response variable, and selection of
those descriptors that have a regression coefficient (slope of regression) significantly
(according to the Student’s ¢-test) different from zero. Alternatively, a certain number
of descriptors with the highest 7-values are retained. Let

(6.14)

y=b X+ by (6.15)

be the regression of descriptor X against activity y. by and by are calculated according
to the following formulas:

YLK — ) i — 1)
MG — w)?

where . and py are the mean values of descriptor X and activity y, respectively. Let
the null hypothesis be Hyp: b1 = 0 and the alternative hypothesis be H;: by # 0. To
test the hypotheses, it is necessary to calculate the 7-value:

\/zl X (2 X, /M

\/Zl i — bIX—bo)Z/M 2

by = bo = 1y — bijt, (6.16)

(6.17)

which has the ¢-distribution with M—2 degrees of freedom. If t > o 2 or t <
—ty/2,M—2, Where a is the significance level, reject Hp. Usually, o = 0.05. For one-
sided tests, H}: b; > 0 and H: by < 0, the following tests are used for ¢ > #4372 or
t < —toM—2, respectively.57
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Principal Component Analysis (PCA): Principal component regression is one of
the popular methods of QSAR analysis.”® Principal components (PCs) are orthogonal
linear combinations of descriptors. Above, we have introduced a multidimensional
descriptor space and introduced the Euclidean metric in it. In this space, we repre-
sented a compound by a point with coordinates equal to the values of descriptors for
this compound. In this space, like in the more familiar 2D and 3D spaces, we can also
introduce other objects. For example, we can introduce lines and vectors. We can also
imagine a distribution of points on the plane or in the 3D space. The points can be
distributed evenly in some square or cubic area of the plane or space, or the cloud of
points can be stretched more in some direction (even not coinciding with the direc-
tions of coordinate axes) than in others. The same is true for the high-dimensional
descriptor space. We can imagine a direction (or axis), in which the distribution of
points is stretched maximally. This direction defines the first PC. We can project all
points onto this direction. Suppose that we introduced a zero point on this axis. Then
the projection of point i onto this direction can be represented by a number V;1, which
is the distance from the projection point to the zero point on this axis. Then we can
calculate the variance Var; for these projection points as

ML (Vi = n)?
M—1

Var| = , (6.18)

where [L,; is the mean of all V;;. It turns out that for the first PC, the variance of
the points projected onto it has the largest value among all directions in the multi-
dimensional descriptor space. Then it is possible to define the second PC, as the
direction, orthogonal to the first PC, for which the variance of projections of points
is the largest among all directions, orthogonal to the first PC. Then it is possible to
define the third PC, as the direction, orthogonal to the first two PCs, for which the
variance of projections of points is the largest among all directions, orthogonal to the
first two PCs. This process can be continued. The maximum number of PCs cannot
exceed both the number of points minus one, M — 1, and the number of descriptors
N. So, if M — 1 > N, the maximum number of PCs is N (or less); otherwise it is
M — 1 (or less).

PCs can be used instead of original descriptors in QSAR studies. In practice, the
number of PCs used in QSAR studies is smaller than these limitations, since only the
most important PCs are used, which, taken together, account for a large portion (90—
95%) of the total variance of representative points. So, in many cases, the number
of PCs is no more than 10-20, and in some cases just 2 or 3, while the number
of descriptors can be several dozens or even hundreds. The total variance can be
calculated as follows:

Var

T ZVarj = . (6.19)

N M ' N N
_ 2=t 2im1 (Xij — w)? _ S _Zj:] Yim (Vi — wy)?
B B M—1
J

1

where p; is the mean of projections of all points onto axis X;, and N” is the number
of PCs. Usually, the descriptor and PC axes are centered, so that in Formula 6.19 all



Predictive Quantitative Structure—Activity Relationships Modeling 189

W and iy are O: if we define
Xz// =X; —1; and Vz;' = Vij — Wy, (6.20)
then

Var

N M 2 N’ N’ M 12
N M2 =1 2i=1 V')

M—1 ¢ M—1
Jj=1
In fact, PCs are linear combinations of descriptors, that is, they can be represented in
the form

N
Vi = Zu,-jxi, (6.22)
i=1

where o;; are coefficients of transformation from descriptors to PCs. Due to this
feature of PCs, in many cases PCR models are very difficult to interpret. Sometimes,
if a small number of coefficients a;; have values significantly different from zero, it
is possible to interpret the model.>®

Unsupervised Forward Selection (UFS) or complete correlation analysis: UFS
selects a set of linearly independent descriptors.>® The method can be used to select
descriptors that most fully describe the descriptor space. The only parameter that is
necessary to assign is the threshold correlation coefficient, which is the maximum
correlation coefficient between the next descriptor to be selected and all linear com-
binations of descriptors already selected. Usually, this threshold value is 0.99. The
maximum number of descriptors selected by UFS is the same as the maximum num-
ber of PCs: it cannot exceed either the number of points minus one, M — 1, or the
number of descriptors N. So, if M — 1 > N, the maximum number of descriptors
selected by the procedure is N (or less); otherwise it is M — 1 (or less). Usually, the
number of descriptors selected is significantly less than these limits. The advantage of
UFS over PCA is that it selects individual descriptors rather than constructing linear
combinations of all descriptors. The disadvantage of UFS is that descriptors selected
are not orthogonal. The UFS algorithm is as follows:

i. Select two descriptors with the lowest absolute value of the correlation
coefficient.

ii. Using the Gram—Schmidt procedure, construct an orthonormal basis in the
descriptor space defined by these descriptors.

iii. Select the next descriptor.

iv. Add a new basis vector to the existing basis using the Gram—Schmidt
procedure.

v. Calculate the cosine of the angle between this descriptor and the hyper-
plane defined by all descriptors selected. This is the maximum correlation
coefficient between this descriptor and all linear combinations of descriptors
selected.

vi. If it was not the first descriptor to find the next descriptor to add, compare this
correlation coefficient with the previous one. If it is closer to zero than the
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previous one, retain it and discard the previous one with the corresponding
basis vector. Otherwise, discard this correlation coefficient and the new basis
vector.

vii. Repeat steps (iii) through (vi) for all remaining descriptors. If all correlation
coefficients are above the predefined threshold, stop. Otherwise retain the
final descriptor and the basis vector.

viii. If there are more descriptors, start selection of the next one: go to step (iii).
Otherwise stop.

Earlier in this chapter, we introduced the multidimensional descriptor space, in
which each compound was represented as a point with coordinates equal to its descrip-
tor values. We can also consider descriptors as vectors in the “compounds” space.
So descriptor values in this case are defined by the first of the Formulas 6.20, but
for brevity we will omit prime signs. For example, vector X; = {X1;, Xoi, . .., Xpi}.
Without losing the generality, we subtract the average value of each descriptor from
all corresponding descriptor values. For each vector in the “compounds” space, we
can define a unity vector. For example, for vector D in this space, unity vector
will be e = D/|D|. We can also define a dot product of two vectors. For exam-
ple, XiXj = X1;X1; + X2:X2; + - - - + XpiXpg;. The correlation coefficient between
two descriptors will then be defined as cosine between them:

XiXj
IXil1X|”

Rjj = cos(ay) = (6.23)

Suppose that in step (i) we selected descriptors X; and Xj. In step (ii) we define
the orthonormal basis according to the following formulas:

X
e = o=, (6.24)
[X1]
_ X2 — (Rip]Xzher X — (e1Xz)er 6.25)

X2 — RizlXz2herl X2 — (e Xo)e|

In Formula 6.25 we replaced R1> by the right part of 6.23. In step (iii), we select the
next descriptor among the remaining descriptors. In step (iv), using the Gram—Schmidt
orthogonalization procedure, we add the new basis vector e3:

o X3 — (e1X3)e1 — (€2X3)€2 (6.26)

X3 — (eX3)er — (&2X3)&|

e3 is orthogonal to the plane defined by vectors e; and ep, so the cosine of angle
between X3 and e3 is equal to the sine of angle o between X3 and the plane defined
by vectors e; and ep. Thus,

€3X3

Ay 6.27)
[X3]

sinoz =
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and the maximum correlation coefficient between vector X3 and all linear combina-
tions of vectors X and X, will be (step (v))

(e3X3)?
Ry=./1-— X3P . (6.28)

So in step (iii), a descriptor is selected for which R3 in Formula 6.28 is closest to
zero. Now, go again to step (iii) and select the next descriptor. Calculate e3 and R3 for
this descriptor and compare R3 (new) with R3 (old). If |[R3(new)| < |R3(o0ld)|, retain
the new descriptor and discard the old one. Otherwise, retain the old one and discard
the new one. Go through all remaining descriptors and find that one with the lowest
|R3|. Retain this descriptor and the corresponding e3. Continue the procedure. In step
k, descriptor X will be selected such that

Xp — YK (@Xpe

& = p , (6.29)
Xi — Y imi1(@Xpe

) e Xg
sinoy = ——, (6.30)

“T X

and
e Xx)?

Re=[1— (& Xk) 6.31)

[Xe?

The procedure ends when no more descriptors left or when no descriptors were
found for which the corresponding correlation coefficient is below the threshold.

6.6 STOCHASTIC CLUSTER ANALYSIS

In the next two sections we will discuss several algorithms based on the calculation
of the distance matrix. For a large dataset, calculation of the distance matrix may take
too much time. For example, the kNN QSAR method*3#4 requires the calculation
of the distance matrix at each step of the algorithm, which makes it very inefficient
for large datasets. Besides, for large datasets, better models could be obtained using
local approaches (i.e., when models are built separately for different subsets of the
entire dataset) as opposed to global approaches (in which models are built for the
entire dataset of compounds).60 So, we consider here one method that can be used to
select a diverse subset of compounds without calculating the entire distance matrix.
This method, called Stochastic Data Analysis (SCA), was developed by Reynolds
and colleagues.®!®> The diverse subset of compounds can be selected in one run
through the dataset. The input to this algorithm is a threshold similarity value between
compounds. Compounds more similar to those already selected will not be added to
the list of compounds selected. The algorithm is as follows:

i. Select a compound randomly or select the first compound.
ii. Include it in the list of diverse subset of compounds.
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iii. Select the next compound randomly or in the order it is included in the dataset.

iv. Calculate similarity of this compound with compounds already selected.

v. If all similarity values are below the similarity threshold, include this com-
pound into the list of diverse subset of compounds. If at least one similarity
value is above this threshold, do not include this compound in the list.

vi. If no more compounds left, stop. Otherwise, go to step (iii).

If m compounds are selected out of the entire dataset of Mcompounds, the total
number of distances calculated will be less than s = mM /2. If m < M, then s K
M (M — 1)/2, that is, the number of distances calculated is much smaller than the
total number of distances.

Note I: In steps (i) and (iii), compounds can be selected randomly or in the order
they are included in the dataset. Actually, compounds can be selected randomly if
before each run the dataset is randomized, and then each compound is selected in the
order it is included in the randomized dataset.

Note 2: Different similarity measures can be used in this algorithm. For example,
the Tanimoto coefficient can be used. If some distance measure like Euclidean
distance is used, the higher value means higher dissimilarity, not similarity, so in
step (iv) a compound is added to the list if all distances to compounds already in the
list are above the threshold.

Note 3: Since it is unknown a priori how diverse the compounds included in the
dataset are, the procedure should be performed with different threshold values. For
example, a user wants to select a subset of m compounds. Then the user can perform
the procedure with two significantly different threshold values and see how many
compounds are selected. If m; and m, are the sizes of subsets selected, and threshold
values were T1 < T, then it would be logical to select the new value T3 as

m-—m
Ts=T +— (T, —T)). (6.32)
nmyp — mj

The process can be repeated until a number of compounds selected will be sufficiently
close to m. Formula 6.32 may not work if m| and m; are close to each other. In practice,
in the beginning, calculations with the range of m1 and m; values and a relatively large
range of similarity values can be performed. Then, based on the results, more precise
calculations can be performed for narrower ranges of parameters.

Note 4: After selection of the diverse subset, which is many times smaller than
the entire dataset, additional runs can be performed to select compounds similar to
the selected compounds. The threshold for these runs could be the same as that for the
selection of the diverse subset. If the number of compounds in the entire dataset is M,
and the number of compounds selected is m, and m < M, then the maximum num-
ber of distances calculated (the number of elements of the distance matrix between
selected and not selected compounds) will be m(M — m), which will be much smaller
than M (M — 1)/2. Still, if the procedure was run a small number of & times, the total
number of distances calculated is kmM/2 + m(M — m) < M(M — 1)/2. In this way,
the dataset can be divided into m initial clusters. If some of the M — m compounds
are close to more than one compound of the diverse subset, they can be assigned to a
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cluster that is defined by the closest point selected. Local QSAR models could be built
separately for each cluster containing at least a certain number of compounds. Addi-
tional procedures for cluster processing could be necessary. Currently, this approach
is under development in our laboratory. Alternatively, the initial clusters defined by
these points can be merged. Using SCA, it is also easy to find outliers: these are
compounds not included in any clusters (or singletons) that have no other compounds
close to them. Small clusters can also be found and discarded, if necessary. If the
similarity threshold for these runs is larger than for the selection of the diverse subset,
additional outliers can be found among the remaining M — m compounds.

Note 5: The method described in this section is also useful for the comparison of
large molecular databases.5?

6.7 DETECTION AND REMOVAL OF OUTLIERS PRIORTO
QSAR STUDIES

The success of QSAR modeling depends on the appropriate selection of a dataset
for QSAR studies. In a recent editorial of the Journal of Chemical Information and
Modeling, Maggiora® noticed that one of the main deficiencies of many chemical
datasets is that they do not fully satisfy the main hypothesis underlying all QSAR
studies: similar compounds have similar biological activities or properties. Maggiora
defines the “cliffs” in the descriptor space where the properties change so rapidly that
in fact adding or deleting one small chemical group can lead to a dramatic change
in the compound’s property. In other words, small changes of descriptor values can
lead to large changes in molecular properties. Generally, in this case there could be
not just one outlier, but a subset of compounds whose properties are different from
those on the other “side” of the cliff. In other words, cliffs are areas where the main
QSAR hypothesis (similar compounds have similar properties) does not hold. So cliff
detection is a major QSAR problem. In the QSAR area, many people were aware of
these and other problems related to outlier detection, but have not yet paid sufficient
attention to addressing them in automated QSAR procedures. There are two types of
outliers we must be aware of: leverage (or structural) outliers and activity outliers.
In the case of activity outliers the problem of “cliffs” should be addressed as well.
Algorithms considered in this section are applied to modeling sets (see Section 6.1).

Leverage (structural) outliers: Similarity between compounds included in the
datasets must be considered in the context of the entire descriptor space. Singletons
included in the datasets are the first candidates to be outliers. In many QSAR studies,
these compounds are not excluded from datasets; if they are assigned to training sets
they could significantly worsen the model statistics and if they are assigned to test or
validation sets they will worsen the general model’s predictivity. This type of outliers
will be referred to as leverage outliers. Actually, detection of leverage outliers is rela-
tively simple. However, the standard procedure of detecting leverage outliers by using
the diagonal elements of a so-called hat matrix (or the Mahalanobis distance to the
data centroid) which are called “leverage” might not detect all outliers. For example,
a distribution of a dataset in the descriptor space can have areas of very low density
even near the geometrical center of the distribution (Figure 6.2). So outliers should
be detected in these areas. In these cases, standard procedures may not work. Thus,
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Compounds in 2D space
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FIGURE 6.2 Leverage outliers. Black points represent compounds of the training set. Gray
point represents a query compound. In a standard procedure, an outlier is defined by the
condition 3N /M > L, where N is the number of descriptors, M is the number of compounds,
and L is leverage of a compound (which is a corresponding diagonal element of the hat matrix).
According to this procedure, a compound represented by a red point is not an outlier. On the
other hand, according to the distance to the closest point of the training set, it is an outlier.

we have suggested the following procedure based on the sphere-exclusion algorithm
(Figure 6.3).17:64
Input to the procedure is the distance cutoff value:

i. Calculate the distance or similarity matrix.
ii. For all compounds in a dataset, find their nearest neighbors.
iii. If for some compound, there are no nearest neighbors within a certain distance
cutoff value, then this compound is an outlier with this cutoff value.

Since we do not know a priori the properties of the dataset in the given descriptor
space, the distance cutoff value can be defined as follows:

i. Calculate average (D) and standard deviation s of all distances between nearest
neighbors within the dataset.
ii. For a set of Z-cutoff values, defined by a user, calculate different distance
cutoff values as
Deutoft = (D) + Zs. (6.33)

Typical Z-cutoff values are from O to 5 with step 0.1.
iii. Repeat the leverage outlier finding procedure for each Deytoff -

Of course, the higher the Z-cutoff is, the lower is the number of outliers. The
more compounds are included in the training set, the larger is the model AD. On the
other hand, we expect that after excluding more outliers, models with better statistics
can be built. So we recommend building models with different Z-cutoff values (and
different counts of leverage outliers). Thus, we expect to build QSAR models with
better statistics and determine the natural Z-cutoff and Deyoff values.®> The entire
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Leverage outliers Not outliers

FIGURE 6.3 Leverage (structural) outliers in the 2D descriptor space. Build a sphere of
certain radius D¢ytoff (see the main text) with the center at each compound. If there are no
other compounds within the sphere, this compound is a leverage outlier for this Deytoff -

procedure can be fully automated. An alternative approach consists of the following
steps.

i. Find minimum distance Dy, and maximum distance Dp,x between all
nearest neighbors.
ii. Define a set of Dyttt distances evenly dividing the interval [Dpin, Dmax]-
iii. For each D¢yoff, find outliers.
iv. If necessary, calculate Z-cutoff values corresponding to Deytoff values: Z =

(Deutott — (D))/s.

In these calculations, we can use different distance and similarity measures (see
Section 6.5). The procedure for finding leverage outliers can be also applied to detect
small clusters of compounds that are far from all other compounds in the descriptor
space. If, for example, compound a has only one nearest neighbor, compound b, and
the only nearest neighbor of compound b is compound a, then compounds a and b
make a cluster. Optionally, this cluster can also be removed from a dataset, since if
one of these compounds is assigned to the training set, it will be an outlier in the
training set (unpublished observations).
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Activity outliers. Separating compounds on different sides of activity “cliffs”: The
algorithm below can be implemented in the case of the continuous response variable.
In this section, we describe an approach on how to detect local activity outliers. We
also address the Maggiorra’s “cliff” problem. After removing leverage outliers, we
use a sphere-exclusion algorithm along with the Dixon’s test as follows:

i. Take a representative point of a compound in the descriptor space and build a
probe sphere of certain radius R around it. Radius R is defined by the condition
that there should be at least three points within the sphere.

If there are no activity outliers, all compounds within the sphere must have close

activity values.

ii. Use the Dixon’s test to find activity outliers within the sphere as follows.%
Rank data in the ascending order. For compounds with the highest and low-
est activity values, calculate t statistic according to Table 6.2. For a chosen
significance level oo compare T statistic with a critical value. If the t statistic
is higher than the critical value, the null hypothesis is rejected, and the com-
pound with the highest or lowest activity is considered an outlier. If necessary,
the Dixon’s test can be repeated for the remaining compounds. The precision
of this test will decrease with each new repetition.

iii. Repeat the procedure for all compounds (step (i)). If there is a “cliff” in
the descriptor space, we might be able to separate the whole dataset into
sufficiently large groups of nonoutliers and outliers and build separate QSAR
models for them.

To consider a compound an outlier, we would recommend using an additional
criterion: the difference between the activity of an outlier candidate and the activity
of the compound with the activity closest to it should be not less than 10% or 20%
of the entire range of activities of the dataset. The algorithm allows finding isolated
activity outliers (i.e., when there is only one outlier within the probe sphere) as well
as groups of outliers. Our experiments show that in the latter case, a small number

TABLE 6.2
Calculation of < Statistic for the Dixon’s Test®®

Test for the Highest Value  Test for the Lowest Value

Xp — Xp Xp - X1

Number of Compounds n Calculate tp, = Calculate t; =
Xn — Xk X — Xq
k k )/
3t07 1 —1 n 2
8to 10 2 n—1 n—1 2
11to 13 2 -2 n—1 3
14 to 25-30 3 n—2 n—2 3
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of other compounds close to the group can also be detected as possible outliers. We
would recommend supplementing this procedure with an additional similarity search
for detecting additional candidate outliers.

For logarithms of activity data, the Grubb’s test can be used. This test is rec-
ommended by the Environmental Protection Agency.® According to this test, all
activities are ranked in the ascending order, and the mean x and standard deviation s
of the data are calculated. Then the t statistics are calculated for compounds with the
highest and lowest activities as follows:

X — X1 Xp— X
and Thigh =

(6.34)

Tow =

The t statistics are compared with the corresponding critical tgjt value for the
sample size and selected atlpha.m’71 If Tjow > Tcrit OF Thigh > Terit, the corresponding
compound is considered an outlier.

6.8 CLASSIFICATION AND CATEGORY QSAR: DATA
PREPARATION FOR IMBALANCED DATASETS

In many datasets, the counts of compounds that belong to different classes or cat-
egories are significantly different (there could be several times and even orders of
difference). Usually, active compounds constitute a smaller class and inactive com-
pounds constitute a larger class. Active compounds (typically binding to a certain
biological target) belong to a relatively small number of structural classes. On the
other hand, compounds included in the larger class (i.e., inactive compounds) can
be very diverse: some of them can belong to the same structural classes as active
compounds, while other compounds (often, the majority of them) have very different
structures highly dissimilar from those included in the smaller class. So they cover a
large area in the descriptor space relative to the active compounds, which are much
more similar to each other. In these cases, direct development of predictive QSAR
models using entire datasets is difficult, if not impossible. Indeed, training and test
sets reflect the composition of the entire dataset, in which almost all compounds are
inactive, so the modeling and validation will be biased toward correct prediction of
the larger class. Thus, reducing the number of compounds included in the larger class
is necessary. In the scenario just described, the following approach can be applied:

i. Divide a dataset into separate classes.
ii. Calculate the distance or similarity matrix between the compounds belonging
to different classes.
iii. Exclude compounds of the larger class dissimilar from those of the smaller
class.

If appropriate, in step (ii) the same distance or similarity measure that will be
used in the optimization procedure should be employed. For example, the current
implementation of kNN QSAR is based on Euclidean distances. So, in step (ii), the
Euclidean distance matrix should be used preferably. In step (iii), different distance
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cutoff values (see Section 6.7) should be used. Ideally, after excluding dissimilar
compounds of the larger class, the number of remaining compounds of this class
should be more or less equal to the number of compounds of the smaller class. QSAR
models are developed only for compounds of the smaller class, and those compounds
of the larger class which were not excluded by the procedure. In other words, the
modeling subset will not include compounds excluded by the procedure. Now, the
entire area occupied by the modeling set is divided into two parts: occupied by similar
compounds of the larger and smaller classes and occupied by compounds of the larger
class dissimilar from those of the smaller class. Prediction of a query compound is
performed by finding part of the area in the descriptor space to which the compound
belongs. If it belongs to the area occupied by similar compounds belonging to both
classes, the QSAR model is used to predict a class of this compound. If this compound
belongs to the part occupied by points of the larger class, this compound is predicted as
belonging to this class. If a compound belongs to neither of these parts, it is outside of
the AD. Sometimes, to equalize the number of compounds in both classes, a distance
cutoff value smaller than that used in defining the AD is used. In this case, some of the
compounds of the larger class excluded from the model building can still be predicted
by the model.!”

Suppose that there is a slightly different situation: there are two classes of the same
or different size, and there are many compounds of each class dissimilar from those
of another class. In this case, the entire area occupied by representative points of the
modeling set can be divided into three subareas: occupied by points of the first class
only, occupied by points of the second class only, and occupied by points of both
classes. Then a model should be built for compounds included in the latter subarea.
Again, prediction of a query compound is performed by finding part of the area in the
descriptor space to which the compound belongs. If it belongs to the area occupied
by similar compounds belonging to both classes, the QSAR model is used to predict
a class of this compound. If this compound belongs to the part occupied by points
of the first class, this compound is predicted as belonging to the first class. If this
compound belongs to the part occupied by points of the second class, the compound
is predicted as belonging to the second class parts. If a compound belongs to neither
of these parts, it is outside of the AD.

A similar approach can be used if there are more than two classes. For each part
of the area occupied by representative points of more than one class, a QSAR model
should be built.

Now, suppose that in the part of the area occupied by representative points of two
classes, one of the classes is still significantly overrepresented. Then it is possible
to reduce the number of compounds of this class by choosing only a fraction of
these compounds for QSAR modeling. This approach is called undersampling and
is described elsewhere.”?>”3 The opposite approach called oversampling consists of
including the same compounds of the smaller class several times into the modeling
set and is also described elsewhere.”* The extended discussions of oversampling and
undersampling are beyond the scope of this chapter.
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6.9 MODEL VALIDATION: MODELING, TRAINING, TEST,
AND EXTERNAL EVALUATION SETS

The main goal of QSAR studies is the development of predictive QSAR models that
can be used in computer-aided drug discovery and design as reliable tools for the
prediction of activities or properties of new compounds, for example, those included
in chemical databases or combinatorial libraries. Prior to using the model for external
predictions, its predictive power should be established and validated. Thus, model
validation has become a standard (and in some laboratories such as ours, mandatory)
part of QSAR modeling. As we’> and other authors® demonstrated, high prediction
accuracy for the training set in leave-one-out or leave-group-out cross-validation is the
necessary, but not sufficient condition for a QSAR model to be predictive. This state-
ment is of particular importance. Recently, the European Organization for Economic
Co-operation and Development (OECD) elaborated a set of principles for the devel-
opment and validation of QSAR models, which in particular requires “appropriate
measures of goodness-of-fit, robustness, and predictivity.”’® QSAR models should
be rigorously validated using external sets of compounds that were not used in the
model development. Nevertheless, there are still publications that do not include any
external validation of QSAR models (i.e., by prediction of activities of compounds
that were not used in model building); see, for example, Harju et al.”” and Sharma
et al.”® In the next chapter, we will consider different aspects of model validation such
as internal cross-validation and validation using test set compounds (i.e., compounds
that were not used in model building), Y-randomization, and AD.

QSAR modeling can be viewed as a machine-learning procedure, during which the
model is “trained” (i.e., model parameters are tuned to provide the highest predictivity
in terms of some statistical criterion used as a target function which is optimized during
the procedure). It is important to emphasize that the true predictive power of a QSAR
model can be established only through the model validation procedure, which consists
of prediction of activities of compounds that were not included in model building,
that is, compounds in the zest set. In contrast to the test set, compounds used for model
building constitute the training set. In many QSAR studies, multiple models are built
and from them “best” models are selected, which are defined as those based on the
prediction statistics for the test set. Thus, the test set is actually used to select models.
This use of the test set for model selection practically negates the consideration of
such a routine as an adequate external model validation. In fact, it does not guarantee
at all that models selected in this way will make accurate predictions if used for
chemical database mining (i.e., predicting activities of compounds in a truly external
database). In our workflow, to simulate the use of QSAR models for database mining,
the so-called external evaluation set is employed. It should consist of compounds
with known activities that are not included in either training or test sets. An external
evaluation set can be selected randomly from the entire initial dataset. In general,
the size of the external evaluation set should be about 15-20% of the entire dataset.
The remaining part of the dataset is called a modeling set that can be divided into
training and test sets. Algorithms for dividing a modeling set into training and test
sets developed in our group previously* are discussed in the next section.
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6.10 DIVISION OF A MODELING SET INTO TRAINING
AND TEST SETS. EXTERNAL EVALUATION SETS

In most QSAR publications, the authors do not describe a procedure for dividing a
dataset into training and test sets (see, e.g., Zvinavashe et al.’® and Padmanabhan
et al.80). In many studies, the test set is selected randomly from the modeling set.3!-82
To some extent, a method of selecting training and test sets depends on the QSAR
method used and the size of the dataset. In many cases, multiple QSAR models are
built by using different parameters of the QSAR algorithm or a stochastic QSAR
procedure is repeated many times. In our opinion, multiple QSAR models should
always be built; even if there are no parameters to change, different pairs of training
and test sets can be generated, and for each pair a QSAR model can be developed and
validated. In the combinatorial QSAR approach,3*8% QSAR models are developed
for multiple combinations of descriptor collections and optimization algorithms, so
multiple models are generated. In this case, test sets are used to select models from
those that have acceptable statistics for the training sets (see Section 7.1).

After models with acceptable statistics for training and test sets are selected, they
should be validated using an external evaluation set, which is used to find a true
(external) prediction accuracy of selected QSAR models. We can say that an external
evaluation set plays the role of a small test database for virtual screening, and in
the case when multiple models are selected, the consensus prediction (see Section
7.4) of the external evaluation set is employed. In many practical cases, the external
evaluation sets are generated naturally in ongoing experimental projects that take
place while the models are being developed. If an independent external evaluation set
of compounds with known activities is not available, it should be selected randomly
from the entire dataset. The remaining modeling set should be divided into training
and test sets. These test sets should satisfy the following criteria: (i) The distribution
of activities in training and test sets should be similar. (ii) The training set should
be distributed within the entire area of the dataset distribution. (iii) All points of the
test set should be within the AD defined by the training set at least in the entire
descriptor space. (iv) Ideally, each point of the training set should be close to at least
one point of the test set. Requirement (i) is particularly important for the continuous
response variable. It can be satisfied by dividing a dataset into a small number of bins
and selecting one compound from each bin as well as the most active and the most
inactive compound into the training set.

In some QSAR studies, the division of a modeling set into training and test sets
is based solely on activity values.®> Sometimes, the subgroups of compounds with
certain scaffolds are entirely included in the training or the test set.0 In these cases,
conditions (ii) through (iv) are not satisfied. The D-optimal design approach®’-38
is based on maximization of the determinant of the covariance matrix. It has been
shown that this algorithm selects representative points predominantly located close to
the borders of the area in the descriptor space in which they are distributed.?? So, the
training set selected with the D-optimal design algorithm does not satisfy conditions
(i) through (iv). Another frequently used algorithm is the Kennard—Stone algorithm®°
in which compounds with the highest distances from all other compounds are selected.
This algorithm is similar to one of the versions of the sphere-exclusion algorithms



Predictive Quantitative Structure—Activity Relationships Modeling 201

described below; however, it does not take into account the density of representative
point distribution, and activities are also not taken into account. So, condition (i) is
not satisfied.

We have at least partially satisfied condition (i) by selecting the most active and
the most inactive compounds as well as several compounds with different activities
into the training set. To satisfy conditions (ii) through (iv), we recommend applying
the approach based on the sphere-exclusion algorithm®* described below. In the case
of the classification or category QSAR, it is important that at least five compounds of
each class would be included in the test set. To achieve this goal, the sphere-exclusion
algorithm is used separately for each class or category. At the end of the procedure,
training sets for all classes are merged to form one training set, and the corresponding
test sets are also merged to form one test set. The procedure is as follows (see also
Figure 6.4):

1. Calculate the distance matrix D for the modeling set. Different distance or
similarity measures can be used.

ii. Define probe sphere radii. Let Dy and Dy« be the minimum and maximum
elements of D, respectively. P probe sphere radii are defined by the following
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FIGURE 6.4 Division of a dataset into training and test sets. Suppose we have just two
descriptors. Then the descriptor space will be 2D. Axes on the figure represent these descriptors,
and points represent compounds. Probe spheres are built with the centers at some points as
described in the main text. Two such spheres are shown. Centers of spheres are included in
the training set, and other points within the spheres are included in the test and training sets as
described in the main text.



202 Handbook of Chemoinformatics Algorithms

formulas. Rmyin = R1 = Dmin + (RN — R1)/P, Rmax = RN = Dmax/4,Ri =
R+ (i —1)*(Ry — Ry)/P, where i =2,...,P. Each probe sphere radius
corresponds to one division into the training and the test set. We recommend
P =50.

iii. Select one or several compounds for the training set, as explained above.

iv. Construct probe spheres with centers at each of these compounds.

v. Select compounds from this sphere and include them alternately into the test
and training sets.

vi. Exclude all compounds from within these spheres from further consideration.

vii If no more compounds are left, stop. Otherwise, let m be the number of
probe spheres constructed and »n be the number of remaining compounds.
Letdj (i=1,...,m;j=1,...,n) be the distances between the remaining
compounds and the probe sphere centers. Select a compound corresponding
to the lowest d;; value, include it into the training set, and perform steps (iv)
through (vii) for it.

Note I: There are several slightly different versions of this algorithm.>* Probe
sphere radii can be defined not by the minimum and maximum elements of the
distance matrix, but by using different values of a parameter called dissimilarity
level. Let V be the volume of the hyperparallelepiped in the descriptor space occu-
pied by the representative points of compounds of the modeling set. If descriptors
are range-scaled, V = 1. If descriptors are varied within different intervals, V can
become very large or very small. If there are M compounds and N descriptors in the
dataset, the average volume of the space for one pointis V' = V /M, and if to consider
this volume as a hypercube, its edge will be / = (1/M)'/N. Probe sphere radii are
defined as R, = cl, where c is the dissimilarity level. For each ¢, one probe sphere
radius and one split into training and test sets is obtained. We recommend using this
method only when there is a relatively small number of descriptors or if descriptors
are range-scaled. In our sphere-exclusion software, default values for ¢ are 0.2, 0.3,
04,...,5.2.

Note 2: Previously, we noted that the training and the test set should include at
least a certain minimum number of compounds. However, some training or test sets
do not satisfy these conditions. This problem can be solved in two different ways.
(i) Splits in which the training or test set contains very few compounds are removed.
So, the final number of splits could be less than P from step (ii), or less than the total
number of different ¢ values (see Note 1). (ii) The probe sphere radii from step (ii)
are recalculated with the larger Ry, value, or a different set of ¢ values is given with
the larger cpip value.

Note 3: In step (v), there are different schemes of how to select compounds into
test and training sets from the probe sphere. For example, it is possible to select
two compounds into the test set, then one compound into the training set, and so
on. It is also possible to have compounds within the sphere arranged by the distance
to the center or randomized. In the latter case, different splits will be obtained by
different runs of the procedure. This option is important if too few suitable splits
(with acceptable sizes of training and test sets) were generated using the initial set
of parameters (see also Note 2). Selecting points other than the center from probe
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spheres into the training set is important; in this way the training set accounts for the
density of the distribution of points in the descriptor space.

Note 4: In step (vii), there are different ways of selecting the next compound. It can
be selected randomly. It can be selected as the compound that has the largest distance
from one of the spheres already created or the compound that has the smallest (or
largest) average distance to the spheres already created or the compound that has
the smallest largest distance among all distances to the spheres already created and
SO on.

The sphere-exclusion algorithm guarantees that at least in the entire descriptor
space, the representative points of the test set are close to representative points of the
training set (test set compounds are within the AD defined by the training set); the
training set represents the entire modeling set (i.e., there is no subset in the modeling
set which is not represented by a similar compound in the training set); given the size
of the test set, as many of the representative points of the training set as possible are
close to representative points of the test set. In other words, all the requirements (ii)
through (iv) above are also satisfied. Besides, this algorithm takes into account the
density of distribution of points in the descriptor space.

Using the SCA algorithm to divide a modeling set into training and test sets: The
SCA algorithm described above can be modified so that it could be used for the selec-
tion of training and test sets. If appropriate, the similarity or distance measure used in
the SCA algorithm should coincide with that used in the QSAR studies. For example,
kNN QSAR employs Euclidean distances between compounds, so Euclidean dis-
tances should be used in the SCA. In the case of the continuous response variable,
in step (i) of the SCA algorithm several compounds instead of just one should be
included into the training set, that is, the most active, the most inactive as well as one
compound from each bin of the activity range. Other compounds of the diverse subset
are selected as in the SCA algorithm described above. All compounds of this subset
are included into the training set. Then a procedure similar to that described in Note
4 following the description of the SCA algorithm (cf. Section 6.6) is implemented.
For each compound of the selected subset, compounds similar to it among M — m
remaining compounds are selected and distributed between the test and training sets
in a way similar to that described in step (v) and Note 3 following the description
of the sphere-exclusion algorithm in this section (see above). As soon as these com-
pounds are included in the training or the test sets, they are excluded from further
consideration, so if a compound is close to several compounds of the diverse subset, it
is accounted for only once, as it should be. In the case of the classification or category
QSAR, a dataset is divided into classes, and the SCA algorithm is applied to each
class. Then training sets for all classes are merged, and test sets are also merged.

More on external evaluation sets: 1deally, to exclude chance correlation, QSAR
study should be performed several times with different external evaluation sets. For
example, external validation could be made as an external leave-group-out cross-
validation procedure where each external evaluation set would include 10-20% of the
entire dataset. If, for example, there are 100 compounds in a dataset, after the random
division of the dataset into five equal parts, there would be five external evaluation sets
containing 20 compounds each. The first 20 compounds could be randomly selected
from the entire dataset, the second 20 compounds could be randomly selected from
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the remaining 80 compounds, and so on. In each case, the modeling sets would consist
of 80 compounds. Each modeling set is divided into multiple training and test sets
as described above, and QSAR models are built using training sets and validated
using test sets. Activities of compounds of the external evaluation sets are predicted
by consensus prediction using selected models from QSAR studies performed for
the corresponding modeling set. Finally, statistics of prediction for each external
evaluation set as well as for the entire set are calculated. High prediction accuracy
for each external evaluation set would corroborate the robustness of selected QSAR
models and their usefulness for chemical database mining in the process of drug
discovery.

6.11 CONCLUSIONS

This chapter addressed the most important aspects of data analysis prior to initiating
a QSAR modeling procedure. We have considered the general QSAR workflow as
it is implemented and practiced in our laboratory and presented a brief overview of
the main steps of QSAR modeling including data preparation, model generation, and
model validation, as well as establishing the AD of QSAR models. In Section 6.2, we
have discussed the requirements to datasets for QSAR analysis concerning their size
and activity range. We have established that in the case of the continuous response
variable, the size (i.e., the number of compounds) of a QSAR dataset should be no
less than 40, and in the case of the classification or category response variable, the
dataset should include at least 20 compounds in each class or category. We have also
pointed out that in the case of the continuous response variable, the range of activities
should be at least 5 times larger than the experimental error and that there should be
no large gaps in activity values.

In Section 6.3, we have focused on the curation of datasets. We have pointed out
that many available or user-compiled datasets used for QSAR analysis could contain
errors that should be detected and corrected; one of the duplicates of compounds
(they occur in datasets frequently) should be removed; compounds containing heavy
atoms or consisting of more than one fully covalently connected part (such as organic
salts) should be excluded or in some cases the salt component can be removed. We
have also discussed what to do when a dataset contains isomers (e.g., enantiomers)
that may have all descriptor values equal to each other. We gave examples of Unix
scripts that can be used for data curation and mentioned some commercial and freely
available software that could help with the task of data cleaning.

In Section 6.4, we have briefly considered major types of descriptors. We have
discussed a notion of multidimensional descriptor space and considered several pos-
sible definitions of distances between points representing compounds in the descriptor
space. Then, in Section 6.5, we have considered important algorithms used in the pro-
cessing of chemical descriptors: methods for descriptor normalization (range scaling
and autoscaling); exclusion of descriptors with low variance; pairwise correlation
analysis; PCA; and UFS, and in Section 6.6, we have considered stochastic cluster
analysis, which is an important algorithm for dividing a large dataset into smaller
clusters, finding small clusters of outliers, and dividing a dataset into training and test
sets.
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In Section 6.7, we have addressed the problem of detecting and removing structural
(leverage) and activity outliers. We have demonstrated that a widely used approach
of detecting structural outliers using leverage values is insufficient; thus, we have
introduced a method based on distances to nearest neighbors. We have also considered
a possible way to detect activity outliers prior to QSAR studies. The algorithm is also
based on distances between compounds and employs the Dixon’s and Grubb’s tests.
Then, in Section 6.8, we have considered the problem of preprocessing the imbalanced
datasets for both classification and category QSAR modeling. We have pointed out
that training, test, and external evaluation sets should be separately generated for
each class or category and then combined. We have also noticed that in many cases,
points representing different classes within the dataset may occupy partially different
areas in the descriptor space and that areas where points of only one class are present
should be excluded when one develops a QSAR model. We have also mentioned such
approaches as oversampling and undersampling but did not consider them in detail.

Then, in Section 6.9, we have addressed a problem of model validation, briefly
considered the importance of dividing a dataset into external evaluation and modeling
sets and then dividing modeling sets into training and test sets, and discussed the role
of external evaluation sets in the assessment of QSAR model performance in virtual
screening. Finally, in Section 6.10, we have proposed several conditions that should
be satisfied by training and test sets. We have described several algorithms for the
division of a modeling set into training and test sets and showed that our algorithms
based on the sphere-exclusion approach satisfy these conditions better than some
alternative techniques.

In summary, in this chapter we have introduced critical procedures that should
be used to preprocess the experimental datasets prior to building QSAR models; the
approaches used for model development and validation are the subject of the next
chapter. We will discuss different target functions and measures of the prediction
accuracy, approaches to model validation, model AD, consensus prediction, and the
use of QSAR models in virtual screening. We stress that throughout both chapters
we emphasize that the integration of multiple individual components of the unified
QSAR modeling workflow is absolutely necessary for achieving rigorously validated
and truly predictive QSAR models.
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In this chapter, we continue to discuss the general framework of quantitative
structure—activity relationships (QSAR) modeling. In the previous chapter, we have
addressed the issue of data preparation for QSAR studies. The main topic of this chap-
ter is the general principles of QSAR model development and validation irrespective
of specifics of any particular QSAR modeling routine. We introduce the concept of
combinatorial QSAR modeling, which consists of building QSAR models for all
combinations of descriptor types and optimization procedures. We clas