CHAPMAN & HALL/CRC COMPUTER and INFORMATION SCIENCE SERIES

Handbook of
Biomspired Algorithms
and Applications

CHAPMAN & HALL/CRC
COMPUTER and INFORMATION SCIENCE SERIES

Series Editor: Sartaj Sahni

PUBLISHED TITLES

HANDBOOK OF SCHEDULING: ALGORITHMS, MODELS, AND PERFORMANCE ANALYSIS
Joseph Y.-T. Leung

THE PRACTICAL HANDBOOK OF INTERNET COMPUTING
Munindar P. Singh

HANDBOOK OF DATA STRUCTURES AND APPLICATIONS
Dinesh P. Mehta and Sartaj Sahni

DISTRIBUTED SENSOR NETWORKS
S. Sitharama lyengar and Richard R. Brooks

SPECULATIVE EXECUTION IN HIGH PERFORMANCE COMPUTER ARCHITECTURES
David Kaeli and Pen-Chung Yew

SCALABLE AND SECURE INTERNET SERVICES AND ARCHITECTURE
Cheng-Zhong Xu

HANDBOOK OF BIOINSPIRED ALGORITHMS AND APPLICATIONS
Stephan Olariu and Albert Y. Zomaya

© 2006 by Taylor & Francis Group, LLC

CHAPMAN & HALL/CRC COMPUTER and INFORMATION SCIENCE SERIES

Handbook of
Biomspired Algorithms
and Applications

Edited by
Stephan Olariu

Old Dominion University
Norfolk, Virginia, U.S.A.

Albert Y. Zomaya

University of Sydney
NSW, Australia

aChapman & Hall/CRC

Taylor &Francis Group

Boca Raton London New York

© 2006 by Taylor & Francis Group, LLC

Published in 2006 by

Chapman & Hall/CRC

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-10: 1-58488-475-4 (Hardcover)
International Standard Book Number-13: 978-1-58488-475-0 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or
other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress

T & F b f Visit the Taylor & Francis Web site at
ln Or ma http://www.taylorandfrancis.com
Taylor & Francis Group and the CRC Press Web site at

is the Academic Division of T&F Informa plc. http://www.crcpress.com

© 2006 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com

Preface

The Handbook of Bioinspired Algorithms and Applications seeks to provide an opportunity for researchers
to explore the connection between biologically inspired (or bioinspired) techniques and the development
of solutions to problems that arise in a variety of problem domains. The power of bioinspired paradigms
lies in their capability in dealing with complex problems with little or no knowledge about the search space,
and thus is particularly well suited to deal with a wide range of computationally intractable optimizations
and decision-making applications.

Vast literature exists on bioinspired approaches for solving an impressive array of problems and there
is a great need to develop repositories of “how to apply” bioinspired paradigms to difficult problems. The
material of the handbook is by no means exhaustive and it focuses on paradigms that are “bioinspired,”
and therefore, chapters on fuzzy logic or simulated annealing were not included in the organization. There
was a decision to limit the number of chapters so that the handbook remains manageable within a single
volume.

The handbook endeavors to strike a balance between theoretical and practical coverage of a range of
bioinspired paradigms and applications. The handbook is organized into two main sections: Models and
Paradigms and Application Domains, and the titles of the various chapters are self-explanatory and a
good indication to what is covered. The theoretical chapters are intended to provide the fundamentals of
each of the paradigms in such a way that allows the readers to utilize these techniques in their own fields.
The application chapters show detailed examples and case studies of how to actually develop a solution
to a problem based on a bioinspired technique. The handbook should serve as a repository of significant
reference material, as the list of references that each chapter provides will become a useful source of further
study.

Stephan Olariu
Albert Y. Zomaya

© 2006 by Taylor & Francis Group, LLC

Acknowledgments

First and foremost we would like to thank and acknowledge the contributors of this book for their support
and patience, and the reviewers for their useful comments and suggestions that helped in improving
the earlier outline of the handbook and presentation of the material. Professor Zomaya would like to
acknowledge the support from CISCO Systems and members of the Advanced Networks Research Group
at Sydney University. We also extend our deepest thanks to Jessica Vakili and Bob Stern from CRC Press
for their collaboration, guidance, and, most importantly, patience in finalizing this handbook. Finally,
we thank Mr. Mohan Kumar for leading the production process of this handbook in a very professional
manner.

Stephan Olariu
AlbertY. Zomaya

© 2006 by Taylor & Francis Group, LLC

Editors

Stephan Olariu received his M.Sc. and Ph.D. degrees in computer science from McGill University,
Montreal, in 1983 and 1986, respectively. In 1986 he joined the Old Dominion University where he is a
professor of computer science. Dr. Olariu has published extensively in various journals, book chapters,
and conference proceedings. His research interests include image processing and machine vision, parallel
architectures, design and analysis of parallel algorithms, computational graph theory, computational geo-
metry, and mobile computing. Dr. Olariu serves on the Editorial Board of IEEE Transactions on Parallel
and Distributed Systems, Journal of Parallel and Distributed Computing, VLSI Design, Parallel Algorithms
and Applications, International Journal of Computer Mathematics, and International Journal of Foundations
of Computer Science.

Albert Y. Zomaya is currently the CISCO Systems chair professor of internetworking in the School of
Information Technologies, The University of Sydney. Prior to that he was a full professor in the Electrical
and Electronic Engineering Department at the University of Western Australia, where he also led the
Parallel Computing Research Laboratory from 1990 to 2002. He served as associate, deputy, and acting
head in the same department, and held visiting positions at Waterloo University and the University of
Missouri—Rolla. He is the author/co-author of 6 books and 200 publications in technical journals and
conferences, and the editor of 6 books and 7 conference volumes. He is currently an associate editor
for 14 journals, the founding editor of the Wiley Book Series on Parallel and Distributed Computing, and
the editor-in-chief of the Parallel and Distributed Computing Handbook (McGraw-Hill 1996). Professor
Zomaya was the chair of the IEEE Technical Committee on Parallel Processing (1999-2003) and currently
serves on its executive committee. He has been actively involved in the organization of national and
international conferences. He received the 1997 Edgeworth David Medal from the Royal Society of New
South Wales for outstanding contributions to Australian science. In September 2000 he was awarded the
IEEE Computer Society’s Meritorious Service Award. Professor Zomaya is a chartered engineer (CEng), a
fellow of the IEEE, a fellow of the Institution of Electrical Engineers (U.K.), and member of the ACM. He also
serves on the boards of two startup companies. His research interests are in the areas of high performance
computing, parallel algorithms, networking, mobile computing, and bioinformatics.

© 2006 by Taylor & Francis Group, LLC

Contributors

Enrique Alba

Department of Languages and
Computer Science

University of Malaga

Campus de Teatinos

Malaga, Spain

Abdullah Almojel
Ministry of Higher Education
Riyadh, Saudi Arabia

Sanghamitra Bandyopadhyay
Machine Intelligence Unit

Indian Statistical Institute
Kolkata, India

Nilanjan Banerjee

Center for Research in Wireless
Mobility and Networking

Department of Computer
Science & Engineering

The University of Texas at
Arlington

Arlington, Texas

Mohamed Belal
Helwan University
Cairo, Egypt

Utpal Biswas

Department of Computer Science
and Engineering

University of Kalyani

Kalyani, India

Azzedine Boukerche
SITE

University of Ottawa
Ottawa, Canada

Anthony Brabazon
Faculty of Commerce
University College Dublin
Dublin, Ireland

© 2006 by Taylor & Francis Group, LLC

Jiirgen Branke
Institute AIFB
University of Karlsruhe
Karlsruhe, Germany

Forbes Burkowski
School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada

S. Cahon

Laboratoire d’Informatique
Fondamentale de Lille

Lille, France

J. Francisco Chicano

Department of Languages and
Computer Science

University of Mélaga

Malaga, Spain

Ernesto Costa

Evolutionary and Complex
Systems Group

Centro de Informética e Sistemas
da Universidade de Coimbra

Pinhal de Marrocos

Coimbra, Portugal

Carlos Cotta

Department of Languages and
Computer Science

University of Malaga

Campus de Teatinos

Malaga, Spain

Kris Crnomarkovic

Advanced Networks Research
Group

School of Information
Technologies

The University of Sydney

Sydney, Australia

Sajal K. Das

Center for Research in Wireless
Mobility and Networking

Department of Computer
Science & Engineering

The University of Texas at
Arlington

Arlington, Texas

Tiago Ferra de Sousa

Escola Superior de Tecnologia

Instituto Politecnico de Castelo
Branco

Castelo Branco, Portugal

Francisco Fernandez de Vega
Grupo de Evolucién Artificial
Centro Universitario de Mérida
Universidad de Extremadura
Mérida, Spain

C. Dhaenens

Laboratoire d’ Informatique
Fondamentale de Lille

Lille, France

Bernabe Dorronsoro
Central Computing Services
University of Mdlaga
Campus de Teatinos
Malaga, Spain

Hoda El-Sayed
Bowie State University
Bowie, Maryland

Mohamed Eltoweissy
Virginia Tech
Falls Church, Virginia

Muddassar Farooq
Informatik ITI
University of Dortmund
Dortmund, Germany

xii

Marcos Ferniandez
Instituto de Robética
Universidad de Valencia
Poligono de la Coma
Paterna (Valencia), Spain

Gianluigi Folino

Institute of High Performance
Computing and Networks

Rende (CS), Italy

Agostino Forestiero
Institute of High Performance

Computing and Networks
Rende (CS), Italy

Jafaar Gaber
UTMB

France

Mario Giacobini

Information Systems Department
University of Lausanne
Lausanne, Switzerland

Michael Guntsch
Institute AIFB
University of Karlsruhe
Karlsruhe, Germany

Salim Hariri

High Performance Distributed
Computing Laboratory

The University of Arizona

Tuscon, Arizona

Piotr Jedrzejowicz

Department of Information
Systems

Faculty of Business
Administration

Gdynid Maritime University

Gdynia, Poland

Kennie H. Jones
NASA Langley Research Center
Hampton, Virginia

L. Jourdan

Laboratoire d’Informatique
Fondamentale de Lille

Lille, France

© 2006 by Taylor & Francis Group, LLC

Kathia Regina Lemos Juca

Federal University of Santa
Catarina

Florianopolis, Brazil

M. Khabzaoui
Laboratoire d’Informatique
Fondamentale de Lille

Lille, France

Bithika Khargaria

High Performance Distributed
Computing Laboratory

The University of Arizona

Tuscon, Arizona

Peter Korosec

Computer Systems Department
Jozef Stefan Institute

Ljubljana, Slovenia

Barbara Korousi¢-Seljak
Computer Systems Department
Jozef Stefan Institute

Ljubljana, Slovenia

Zhen Li

The Applied Software Systems
Laboratory

Rutgers, The State University of
New Jersey

Camden, New Jersey

Kenneth N. Lodding
NASA Langley Research Center
Hampton, Virginia

MiLu

Department of Electrical
Engineering

Texas A&M University

College Station, Texas

Francisco Luna
Department of Languages and
Computer Science
ETS Ingenieria
Informética
University of Malaga
Milaga, Spain

Contributors

Gabriel Luque

Department of Languages and
Computer Science

ETS Ingenieria
Informdtica

University of Mdlaga

Malaga, Spain

Ujjwal Maulik

Department of Computer Science
and Engineering

Jadavpur University

Kolkata, India

N. Melab

Laboratoire d’Informatique
Fondamentale de Lille

Lille, France

M. Mezmaz

Laboratoire d’ Informatique
Fondamentale de Lille

Lille, France

Michelle Moore

Department of Computing and
Mathematical Sciences

Texas A&M University-Corpus
Christi

Corpus Christi, Texas

Pedro Morillo
Instituto de Robética
Universidad de Valencia
Poligono de la Coma
Paterna (Valencia), Spain

Anirban Mukhopadhyay

Department of Computer Science
and Engineering

University of Kalyani

Kalyani, India

Mrinal Kanti Naskar

Department of Electronics and
Telecommunication
Engineering

Jadavpur University

Kolkata, India

Contributors

Antonio J. Nebro
Department of Languages and
Computer Science
ETS Ingenieria
Informética
University of Malaga
Malaga, Spain

Ana Neves

Escola Superior de Tecnologia

Instituto Politécnico de Castelo
Branco

Castelo Branco, Portugal

and

Evolutionary and Complex
Systems Group

Centro de Informética e Sistemas
da Universidade de Coimbra

Pinhal de Marrocos, Portugal

Alioune Ngom

Computer Science Department
University of Windsor
Windsor, Ontario, Canada

Mirela Sechi Moretti Annoni
Notare

Barddal University

Florianopolis, Brazil

Stephan Olariu
Old Dominion University
Norfolk, Virginia

Michael O’Neill

Department of Computer
Science & Information Systems

University of Limerick

Limerick, Ireland

Juan Manuel Orduna
Departamento de Informdtica
Universidad de Valencia
Burjassot (Valencia), Spain

Gregor Papa

Computer Systems Department
Jozef Stefan Institute

Ljubljana, Slovenia

© 2006 by Taylor & Francis Group, LLC

Manish Parashar

The Applied Software Systems
Laboratory

Rutgers, The State University of
New Jersey

Camden, New Jersey

Zhiquan Frank Qiu
Intel Corporation
Chandler, Arizona

Borut Robi¢

Faculty of Computer and
Information Science

University of Ljubljana

Ljubljana, Slovenia

Abhishek Roy

Center for Research in Wireless
Mobility and Networking

Department of Computer
Science & Engineering

The University of Texas at
Arlington

Arlington, Texas

Hartmut Schmeck
Institute AIFB
University of Karlsruhe
Karlsruhe, Germany

Franciszek Seredynski

Polish-Japanese Institute of
Information Technologies

Koszykowa

Warsaw, Poland

and

Institute of Computer Science

Polish Academy of Sciences

Ordona

Warsaw, Poland

Jurij Silc

Computer Systems Department
Jozef Stefan Institute

Ljubljana, Slovenia

xiii

Arlindo Silva

Escola Superior de Tecnologia

Instituto Politécnico de Castelo
Branco

Castelo Branco, Portugal

and

Centro de Informatica e Sistemas
da Universidade de Coimbra

Pinhal de Marrocos, Portugal

Joao Bosco Mangueira Sobral

Federal University of Santa
Catarina

Florianopolis, Brazil

and

Evolutionary and Complex
Systems Group

Centro de Informética e Sistemas
da Universidade de Coimbra

Pinhal de Marrocos, Portugal

Tiago Sousa

Escola Superior de Tecnologia

Instituto Politécnico de Castelo
Branco

Castelo Branco, Portugal

and

Evolutionary and Complex
Systems Group

Centro de Informatica e Sistemas
da Universidade de Coimbra

Pinhal de Marrocos, Portugal

Giandomenico Spezzano
Institute of High Performance

Computing and Networks
Rende (CS), Italy

Michael Stein
Institute AIFB
University of Karlsruhe
Germany

Ivan Stojmenovi¢

Department of Computer Science

School of Information Technology
and Engineering

University of Ottawa
Ottawa, Ontario, Canada

Xiv

Anna Swiecicka
Department of Computer Science

Bialystok University of
Technology

Bialystok, Poland

Javid Taheri

Advanced Networks Research
Group

School of Information
Technologies

The University of Sydney
Sydney, Australia

El-Ghazali Talbi

Université des Sciences et
Technologies de Lille

Cité Scientifique, France

Domenico Talia
University of Calabria
DEIS

Rende, Italy

© 2006 by Taylor & Francis Group, LLC

Marco Tomassini

Information Systems Department
University of Lausanne

Lausanne, Switzerland

Ashraf Wadaa
Old Dominion University
Norfolk, Virginia

Horst F. Wedde
Informatik III
University of Dortmund
Dortmund, Germany

B. Wei

Laboratoire d’Informatique
Fondamentale de Lille

Cité scientifique, France

Benjamin Weinberg
Université des Sciences et
Technologies de Lille
Cité Scientifique, France

Larry Wilson
Old Dominion University
Norfolk, Virginia

Contributors

Xin-She Yang

Department of Engineering
University of Cambridge
Cambridge, United Kingdom

Y. Young

Civil and Computational
Engineering Centre

School of Engineering
University of Wales Swansea

Swansea, United Kingdom

AlbertY. Zomaya

Advanced Networks Research
Group

School of Information
Technologies

The University of Sydney

Sydney, Australia

Jovisa Zunié

Computer Science Department
Cardiff University

Cardiff, Wales, United Kingdom

Contents

SECTION I Models and Paradigms

1 Evolutionary Algorithms Enrique Alba and Carlos Cotta 1-3
2. An Overview of Neural Networks Models Javid Taheri and

Albert Y. Zomaya . 2-21
3 Ant Colony Optimization Michael Guntsch and Jiirgen Branke 3-41
4 Swarm Intelligence Mohamed Belal, Jafaar Gaber,

Hoda El-Sayed, and Abdullah Almojel . 4-55
5 Parallel Genetic Programming: Methodology, History, and

Application to Real-Life Problems

Francisco Ferndndez de Vega 5-65
6 Parallel Cellular Algorithms and Programs Domenico Talia 6-85
7 Decentralized Cellular Evolutionary Algorithms Enrique Alba,

Bernabe Dorronsoro, Mario Giacobini, and Marco Tomassini . 7-103
8 Optimization via Gene Expression Algorithms

Forbes Burkowski . 8-121
9 Dynamic Updating DNA Computing Algorlthms

Zhiquan Frank Qiu and Mi Lu . 9-135
10 A Unified View on Metaheuristics and Their Hybridization

Jiirgen Branke, Michael Stein, and Hartmut Schmeck . 10-147
11 The Foundations of Autonomic Computing Salim Hariri,

Bithika Khargaria, Manish Parashar, and Zhen Li . . 11-157
SECTION II Application Domains
12 Setting Parameter Values for Parallel Genetic Algorithms:

Scheduling Tasks on a Cluster Michelle Moore . . 12-179

© 2006 by Taylor & Francis Group, LLC

XVi

13

14

15

16

17

18

19

20

21

22

23

24

Genetic Algorithms for Scheduling in Grid Computing
Environments: A Case Study Kris Crnomarkovic and
Albert Y. Zomaya .

Minimization of SADMs in Unidirectional SONET/WDM Rings
Using Genetic Algorithms Anirban Mukhopadhyay,

Utpal Biswas, Mrinal Kanti Naskar, Ujjwal Maulik, and
Sanghamitra Bandyopadhyay . S .o

Solving Optimization Problems in Wireless Networks Using
Genetic Algorithms Sajal K. Das, Nilanjan Banerjee, and
Abhishek Roy .

Medical Imaging and Diagnosis Using Genetic Algorithms
Ujjwal Maulik, Sangham1tra Bandyopadhyay, and
Sajal K. Das ..) . .

Scheduling and Rescheduling with Use of Cellular Automata
Franciszek Seredynski, Anna Swiecicka, and
Albert Y. Zomaya .

Cellular Automata, PDEs, and Pattern Formation
Xin-She Yang and Y. Young .

Ant Colonies and the Mesh-Partitioning Problem
Borut Robié, Peter Korosec, and Jurij Silc .

Simulating the Strategic Adaptation of Organizations Using
OrgSwarm Anthony Brabazon, Arlindo Silva,
Ernesto Costa, Tiago Ferra de Sousa, and Michael O’Neill

BeeHive: New Ideas for Developing Routing Algorithms
Inspired by Honey Bee Behavior Horst F. Wedde and
Muddassar Farooq e

Swarming Agents for Decentralized Clustering in Spatial Data
Gianluigi Folino, Agostino Forestiero, and Giandomenico
Spezzano .

Biological Inspired Based Intrusion Detection Models for Mobile
Telecommunication Systems Azzedine Boukerche,

Kathia Regina Lemos Jucd, Jodo Bosco Mangueira Sobral, and
Mirela Sechi Moretti Annoni Notare .

Synthesis of Multiple-Valued Circuits by Neural Networks
Alioune Ngom and Ivan Stojmenovié Co

© 2006 by Taylor & Francis Group, LLC

Contents

. 13-193

. 14-209

. 15-219

. 16-235

. 17-253

. 18-273

. 19-285

. 20-305

. 21-321

. 22-341

. 23-359

. 24-373

Contents

xvii

25 On the Computing Capacity of Multiple-Valued Multiple-Threshold

26

27

28

29

30

31

32

33

34

35

36

Perceptrons Alioune Ngom,
Ivan Stojmenovié, and Jovisa Zunic

. 25-427

Advanced Evolutionary Algorithms for Training Neural Networks

Enrique Alba,]. Francisco Chicano, Francisco Luna,
Gabriel Luque, and Antonio]. Nebro

Bio-Inspired Data Mining Tiago Sousa, Arlindo Silva,
Ana Neves, and Ernesto Costa .

A Hybrid Evolutionary Algorithm for Knowledge Discovery in
Microarray Experiments L. Jourdan, M. Khabzaoui,
C. Dhaenens, and El-Ghazali Talbi

An Evolutionary Approach to Problems in Electrical Engineering
Design Gregor Papa, Jurij Silc, and Barbara Korousic¢-Seljak .

Solving the Partitioning Problem in Distributed Virtual
Environment Systems Using Evolutive Algorithms
Pedro Morillo, Marcos Ferndndez, and Juan Manuel Orduna

Population Learning Algorithm and Its Applications
Piotr Jedrzejowicz . Coe

Biology-Derived Algorithms in Engineering Optimization
Xin-She Yang .

Biomimetic Models for Wireless Sensor Networks
Kennie H. Jones, Kenneth N. Lodding, Stephan Olariu,
Ashraf Wadaa, Larry Wilson, and Mohamed Eltoweissy

A Cooperative Parallel Metaheuristic Applied to the Graph
Coloring Problem Benjamin Weinberg and
El-Ghazali Talbi

Frameworks for the Design of Reusable Parallel and Distributed
Metaheuristics N. Melab, EI-Ghazali Talbi, and S. Cahon .

Parallel Hybrid Multiobjective Metaheuristics on P2P Systems
N. Melab, EI-Ghazali Talbi, M. Mezmaz, B. Wei .

© 2006 by Taylor & Francis Group, LLC

. 26-453

. 27-469

. 28-491

. 29-509

. 30-531

. 31-555

. 32-589

. 33-601

. 34-625

. 35-639

. 36-649

|

Models and Paradigms

Evolutionary
Algorithms

1.1 Introduction..........coeeeeviiiiiiniiiinineiinneene. 1-3
1.2 Learning from Biologyccooeviiiiiiiiiinninn. 1-4
1.3 Nature’s Way for Optimizing 1-5
Algorithm Meets Evolution e The Flavors of Evolutionary
Algorithms
1.4 Dissecting an Evolutionary Algorithm 1-8

The Fitness Function e Initialization e Selection e
Recombination e Mutation e Replacement
1.5 Fields of Application of EAs
1.6 Conclusionsc.vvvuiiiiiiiiiiii e
Enrique Alba Acknowledgments.couvuiuiiiiii
Carlos Cotta References

1.1 Introduction

One of the most striking features of Nature is the existence of living organisms adapted for surviving in
almost any ecosystem, even the most inhospitable: from abyssal depths to mountain heights, from volcanic
vents to polar regions. The magnificence of this fact becomes more evident when we consider that the
life environment is continuously changing. This motivates certain life forms to become extinct whereas
other beings evolve and preponderate due to their adaptation to the new scenario. It is very remarkable
that living beings do not exert a conscious effort for evolving (actually, it would be rather awkward to talk
about consciousness in amoebas or earthworms); much on the contrary, the driving force for change is
controlled by supraorganic mechanisms such as natural evolution.

Can we learn — and use for our own profit — the lessons that Nature is teaching us? The answer is a big
YES, as the optimization community has repeatedly shown in the last decades. “Evolutionary algorithm”
is the key word here. The term evolutionary algorithm (EA henceforth) is used to designate a collection
of optimization techniques whose functioning is loosely based on metaphors of biological processes.

This rough definition is rather broad and tries to encompass the numerous approaches currently
existing in the field of evolutionary computation [1]. Quite appropriately, this field itself is continuously
evolving; a quick inspection of the proceedings of the relevant conferences and symposia suffices to
demonstrate the impetus of the field, and the great diversity of the techniques that can be considered
“evolutionary.”

© 2006 by Taylor & Francis Group, LLC

1-4 Handbook of Bioinspired Algorithms and Applications

This variety notwithstanding, it is possible to find a number of common features of all (or at least
most of) EAs. The following quote from Reference 2 illustrates such common points:

The algorithm maintains a collection of potential solutions to a problem. Some of these possible
solutions are used to create new potential solutions through the use of operators. Operators act on
and produce collections of potential solutions. The potential solutions that an operator acts on are
selected on the basis of their quality as solutions to the problem at hand. The algorithm uses this
process repeatedly to generate new collections of potential solutions until some stopping criterion
is met.

This definition can be usually found in the literature expressed in a technical language that uses terms
such as genes, chromosomes, population, etc. This jargon is a reminiscence of the biological inspiration
mentioned before, and has deeply permeated the field. We will return to the connection with biology
later on.

The objective of this work is to present a gentle overview of these techniques comprising both the
classical “canonical” models of EAs as well as some modern directions for the development of the field,
namely, the use of parallel computing, and the introduction of problem-dependent knowledge.

1.2 Learning from Biology

Evolution is a complex fascinating process. Along history, scientists have attempted to explain its
functioning using different theories. After the development of disciplines such as comparative anatomy
in the middle of the 19th century, the basic principles that condition our current vision of evolution
were postulated. Such principles rest upon Darwin’s Natural Selection Theory [3], and Mendel’s work on
genetic inheritance [4]. They can be summarized in the following points (see Reference 5):

e Evolution is a process that does not operate on organisms directly, but on chromosomes. These
are the organic tools by means of which the structure of a certain living being is encoded, that is,
the features of a living being are defined by the decoding of a collection of chromosomes. These
chromosomes (more precisely, the information they contain) pass from one generation to another
through reproduction.

e The evolutionary process takes place precisely during reproduction. Nature exhibits a plethora
of reproductive strategies. The most essential ones are mutation (that introduces variability in
the gene pool) and recombination (that introduces the exchange of genetic information among
individuals).

e Natural selection is the mechanism that relates chromosomes with the adequacy of the entities they
represent, favoring the proliferation of effective, environment-adapted organisms, and conversely
causing the extinction of lesser effective, nonadapted organisms.

These principles are comprised within the most orthodox theory of evolution, the Synthetic
Theory [6]. Although alternate scenarios that introduce some variety in this description have been
proposed — for example, the Neutral Theory [7], and very remarkably the Theory of Punctuated
Equilibria [8] — it is worth considering the former basic model. It is amazing to see that despite the
apparent simplicity of the principles upon which it rests, Nature exhibits unparalleled power in developing
and expanding new life forms.

Not surprisingly, this power has attracted the interest of many researchers, who have tried to translate the
principles of evolution to the realm of algorithmics, pursuing the construction of computer systems with
analogous features. An important point must be stressed here: evolution is an undirected process, that is,
there exists no scientific evidence that evolution is headed to a certain final goal. On the contrary, it can
be regarded as a reactive process that makes organisms change in response to environmental variations.
However, it is a fact that human-designed systems do pursue a definite final goal. Furthermore, whatever

© 2006 by Taylor & Francis Group, LLC

Evolutionary Algorithms 1-5

this goal might be, it is in principle, desirable to reach it quickly and efficiently. This leads to the distinction
between two approaches to the construction of natureinspired systems:

1. Trying to reproduce Nature principles with the highest possible accuracy, that is, simulate Nature.
2. Using these principles as inspiration, adapting them in whatever required way so as to obtain
efficient systems for performing the desired task.

Both approaches concentrate nowadays on the efforts of researchers. The first one has given rise to
the field of Artificial Life (e.g., see Reference 9), and it is interesting because it allows re-creating and
studying numerous natural phenomena such as parasitism, predator/prey relationships, etc. The second
approach can be considered more practical, and constitutes the source of EAs. Notice anyway that these
two approaches are not hermetic containers, and have frequently interacted with certainly successful
results.

1.3 Nature’s Way for Optimizing

As mentioned above, the standpoint of EAs is essentially practical — using ideas from natural evolution
in order to solve a certain problem. Let us focus on optimization and see how this goal can be achieved.

1.3.1 Algorithm Meets Evolution

An EA is a stochastic iterative procedure for generating tentative solutions for a certain problem P. The
algorithm manipulates a collection P of individuals (the population), each of which comprises one or more
chromosomes. These chromosomes allow each individual represent a potential solution for the problem
under consideration. An encoding/decoding process is responsible for performing this mapping between
chromosomes and solutions. Chromosomes are divided into smaller units termed genes. The different
values a certain gene can take are called the alleles for that gene.

Initially, the population is generated at random or by means of some heuristic seeding procedure. Each
individual in P receives a fitness value: a measure of how good the solution it represents is for the problem
being considered. Subsequently, this value is used within the algorithm for guiding the search. The whole
process is sketched in Figure 1.1.

As it can be seen, the existence of a set F (also known as phenotype space) comprising the solutions for
the problem at hand is assumed. Associated with F, there also exists a set G (known as genotype space).
These sets G and F respectively constitute the domain and codomain of a function g known as the growth
(or expression) function. It could be the case that F and G were actually equivalent, being g a trivial
identity function. However, this is not the general situation. As a matter of fact, the only requirement
posed on g is subjectivity. Furthermore, g could be undefined for some elements in G.

After having defined these two sets G and F, notice the existence of a function ¢ selecting some
elements from G. This function is called the initialization function, and these selected solutions (also
known as individuals) constitute the so-called initial population. This initial population is in fact a pool

F -,
]
g ° o

FIGURE 1.1 Illustration of the evolutionary approach to optimization.

© 2006 by Taylor & Francis Group, LLC

1-6 Handbook of Bioinspired Algorithms and Applications

Evolutionary-Algorithm:

1. P« apply . on @G to obtain u individuals (the initial population);
2. while Termination Criterion is not met do
(a) P' < apply ¢ on P;/* selection */
(b) P” « apply wy, ..., won P’;/* reproduction */
(c) P« apply y on Pand P";/* replacement */
endwhile

FIGURE 1.2 Pseudocode of an evolutionary algorithm.

of solutions onto which the EA will subsequently work, iteratively applying some evolutionary operators
to modify its contents. More precisely, the process comprises three major stages: selection (promising
solutions are picked from the population by using a selection function o), reproduction (new solutions
are created by modifying selected solutions using some reproductive operators w;), and replacement (the
population is updated by replacing some existing solutions by the newly created ones, using a replacement
function). This process is repeated until a certain termination criterion (usually reaching a maximum
number of iterations) is satisfied. Each iteration of this process is commonly termed a generation.

According to this description, it is possible to express the pseudocode of an EA as shown in Figure 1.2.
Every possible instantiation of this algorithmic template! will give rise to a different EA. More precisely,
it is possible to distinguish different EA families, by considering some guidelines on how to perform this
instantiation.

1.3.2 The Flavors of Evolutionary Algorithms

EAs, as we know them now, began their existence during the late 1960s and early 1970s (some earlier
references to the topic exist, though; see Reference 10). In these years — and almost simultaneouly —
scientists from different places in the world began the task of putting Nature at work in algorithmics, and
more precisely in search of problem-solving duties. The existence of these different primordial sources
originated the rise of three different EA models. These classical families are:

e Evolutionary Programming (EP): This EA family originated in the work of Fogel et al. [11].
EP focuses on the adaption of individuals rather than on the evolution of their genetic informa-
tion. This implies a much more abstract view of the evolutionary process, in which the behavior of
individuals is directly modified (as opposed to manipulating its genes). This behavior is typically
modeled by using complex data structures such as finite automata or as graphs (see Figure 1.3[a]).
Traditionally, EP uses asexual reproduction — also known as mutation, that is, introducing slight
changes in an existing solution — and selection techniques based on direct competition among
individuals.

e Evolution Strategies (ESs): These techniques were initially developed in Germany by Rechenberg
[12] and Schwefel [13]. Their original goal was serving as a tool for solving engineering problems.
With this goal in mind, these techniques are characterized by manipulating arrays of floating-point
numbers (there exist versions of ES for discrete problems, but they are much more popular for
continuous optimization). As EP, mutation is sometimes the unique reproductive operator used
in ES; it is not rare to also consider recombination (i.e., the construction of new solutions by
combining portions of some individuals) though. A very important feature of ES is the utilization
of self-adaptive mechanisms for controlling the application of mutation. These mechanisms are
aimed at optimizing the progress of the search by evolving not only the solutions for the problem
being considered, but also some parameters for mutating these solutions (in a typical situation,

"The mere fact that this high-level heuristic template can host a low-level heuristic, justifies using the term
metaheuristic, as it will be seen later.

© 2006 by Taylor & Francis Group, LLC

Evolutionary Algorithms 1-7

(a) Input encoding

(a=n)...(m-n)(a-0)...(m-o)(a—p)..(m-p)(n-g)(0—a)(p—q)...(n-2)(0-2z)(p-2) |

Input layer

Hidden layer

Output layer

FIGURE 1.3 Two examples of complex representations. (a) A graph representing a neural network. (b) A tree
representing a fuzzy rule.

an ES individual is a pair (x,5), where o is a vector of standard deviations used to control the
Gaussian mutation exerted on the actual solution X).

o Genetic Algorithms (GAs): GAs are possibly the most widespread variant of EAs. They were con-
ceived by Holland [14]. His work has had a great influence in the development of the field, to the
point that some portions — arguably extrapolated — of it were taken almost like dogmas (i.e., the
ubiquitous use of binary strings as chromosomes). The main feature of GAs is the use of a recom-
bination (or crossover) operator as the primary search tool. The rationale is the assumption that
different parts of the optimal solution can be independently discovered, and be later combined to
create better solutions. Additionally, mutation is also used, but it was usually considered a second-
ary background operator whose purpose is merely “keeping the pot boiling” by introducing new
information in the population (this classical interpretation is no longer considered valid though).

These families have not grown in complete isolation from each other. On the contrary, numerous
researchers built bridges among them. As a result of this interaction, the borders of these classical families
tend to be fuzzy (the reader may check [15] for a unified presentation of EA families), and new variants
have emerged. We can cite the following:

e Evolution Programs (EPs): This term is due to Michalewicz [5], and comprises those techniques
that, while using the principles of functioning of GAs, evolve complex data structures, as in EP.

© 2006 by Taylor & Francis Group, LLC

1-8 Handbook of Bioinspired Algorithms and Applications

Nowadays, it is customary to use the acronym GA — or more generally EA — to refer to such an
algorithm, leaving the term “traditional GA” to denote classical bit-string based GAs.

e Genetic Programming (GP): The roots of GP can be traced back to the work of Cramer [16], but
it is undisputable that it has been Koza [17] the researcher who promoted GP to its current status.
Essentially, GP could be viewed as an evolution program in which the structures evolved represent
computer programs. Such programs are typically encoded by trees (see Figure 1.3[b]). The final
goal of GP is the automatic design of a program for solving a certain task, formulated as a collection
of (input, output) examples.

e Memetic Algorithms (MAs): These techniques owe their name to Moscato [18]. Some widespread
misconception equates MAs to EAs augmented with local search; although such an augmented EA
could be indeed considered a MA, other possibilities exist for defining MAs. In general, a MA is
problem-aware EA [19]. This problem awareness is typically acquired by combining the EA with
existing algorithms such as hill climbing, branch and bound, etc.

In addition to the different EA variants mentioned above, there exist several other techniques that could
also fall within the scope of EAs, such as Ant Colony Optimization [20], Distribution Estimation Algorithms
[21], or Scatter Search [22] among others. All of them rely on achieving some kind of balance between
the exploration of new regions of the search space, and the exploitation of regions known to be promising
[23], so as to minimize the computational effort for finding the desired solution. Nevertheless, these
techniques exhibit very distinctive features that make them depart from the general pseudocode depicted
in Figure 1.2. The broader term metaheuristic (e.g., see Reference 24) is used to encompass this larger set
of modern optimization techniques, including EAs.

1.4 Dissecting an Evolutionary Algorithm

Once the general structure of an EA has been presented, we will get into more detail on the different
components of the algorithm.

1.4.1 The Fitness Function

This is an essential component of the EA, to the point that some early (and nowadays discredited)
views of EAs considered it as the unique point of interaction with the problem that is intended to be
solved. This way, the fitness function measured how good a certain tentative solution is for the problem
of interest. This interpretation has given rise to several misconceptions, the most important being the
equation “fitness = quality of a solution.” There are many examples in which this is simple not true [19],
for example, tackling the satisfiability problem with EAs (i.e., finding the truth assignment that makes
a logic formula in conjunctive normal form be satisfied). If quality is used as fitness function, then the
search space is divided into solutions with fitness 1 (those satisfying the target formula), and solutions
with fitness 0 (those that do not satisfy it). Hence, the EA would be essentially looking for a needle in
a haystack (actually, there may be more than one needle in that haystack, but that does not change the
situation). A much more reasonable choice is making fitness equal to the number of satisfied clauses in
the formula by a certain solution. This introduces a gradation that allows the EA “climbing” in search of
near-optimal solutions.

The existence of this gradation is thus a central feature of the fitness function, and its actual implemen-
tation is not that important as long this goal is achieved. Of course, implementation issues are important
from a computational point of view, since the cost of the EA is typically assumed to be that of evaluating
solutions. In this sense, it must be taken into account that fitness can be measured by means of a
simple mathematical expression, or may involve performing a complex simulation of a physical system.
Furthermore, this fitness function may incorporate some level of noise, or even vary dynamically. The
remaining components of the EA must be defined accordingly so as to deal with these features of the fitness
function, for example, using a nonhaploid representation [25] (i.e., having more than one chromosome)

© 2006 by Taylor & Francis Group, LLC

Evolutionary Algorithms 1-9

so as to have a genetic reservoir of worthwhile information in the past, and thus be capable of tackling
dynamic changes in the fitness function.

Notice that there may even exist more than one criterion for guiding the search (e.g., we would like to
evolve the shape of a set of pillars, so that their strength is maximal, but so that their cost is also minimal).
These criteria will be typically partially conflicting. In this case, a multiobjective problem is being faced.
This can be tackled in different ways, such as performing an aggregation of these multiple criteria into a
single value, or using the notion of Pareto dominance (i.e., solution x dominates solution y if, and only
if, fi(x) yields a better or equal value than f;(y) for all i, where the f;’s represent the multiple criteria being
optimized). See References 26 and 27 for details.

1.4.2 Initialization

In order to have the EA started, it is necessary to create the initial population of solutions. This is
typically addressed by randomly generating the desired number of solutions. When the alphabet used
for representing solutions has low cardinality, this random initialization provides a more or less uniform
sample of the solution space. The EA can subsequently start exploring the wide area covered by the initial
population, in search of the most promising regions.

In some cases, there exists the risk of not having the initial population adequately scattered all over the
search space (e.g., when using small populations and/or large alphabets for representing solutions). It is
then necessary to resort to systematic initialization procedures [28], so as to ensure that all symbols are
uniformly present in the initial population.

This random initialization can be complemented with the inclusion of heuristic solutions in the initial
population. The EA can thus benefit from the existence of other algorithms, using the solutions they
provide. This is termed seeding, and it is known to be very beneficial in terms of convergence speed, and
quality of the solutions achieved [29,30]. The potential drawback of this technique is having the injected
solutions taking over the whole population in a few iterations, provoking the stagnation of the algorithm.
This problem can be remedied by tuning the selection intensity by some means (e.g., by making an
adequate choice of the selection operator, as it will be shown below).

1.4.3 Selection

In combination with replacement, selection is responsible for the competition aspects of individuals in
the population. In fact, replacement can be intuitively regarded as the complementary application of the
selection operation.

Using the information provided by the fitness function, a sample of individuals from the population is
selected for breeding. This sample is obviously biased towards better individuals, that is good — according
to the fitness function — solutions should be more likely in the sample than bad solutions.?

The most popular techniques are fitness-proportionate methods. In these methods, the probability of
selecting an individual for breeding is proportional to its fitness, that is,

fi

== (L.1)
P ZjePﬁ

where f; is the fitness® of individual i, and p; is the probability of i getting into the reproduction stage. This
proportional selection can be implemented in a number of ways. For example, roulette-wheel selection rolls

2At least, this is customary in genetic algorithms. In other EC families, selection is less important for biasing
evolution, and it is done at random (a typical option in evolution strategies), or exhaustively, that is, all individuals
undergo reproduction (as it is typical in evolutionary programming).

3Maximization is assumed here. In case we were dealing with a minimization problem, fitness should be transformed
$0 as to obtain an appropriate value for this purpose, for example, subtracting it from the highest possible value of the
guiding function, or taking the inverse of it.

© 2006 by Taylor & Francis Group, LLC

1-10 Handbook of Bioinspired Algorithms and Applications

a dice with | P| sides, such that the ith side has probability p;. This is repeated as many times as individuals
are required in the sample. A drawback of this procedure is that the actual number of instances of
individual 7 in the sample can largely deviate from the expected |P| - p;. Stochastic Universal Sampling [31]
(SUS) does not have this problem, and produces a sample with minimal deviation from expected values.
Fitness-proportionate selection faces problems when the fitness values of individuals are very similar
among them. In this case, p; would be approximately |P|~! for all i € P, and hence selection would be
essentially random. This can be remedied by using fitness scaling. Typical options are (see Reference 5):

e Linear scaling: f{ = a - f; + b, for some real numbers a, b.

e Exponential scaling: f = ()k, for some real number k.

e Sigma truncation: f, = max (0, f; — (f — ¢ - o)), where f is the mean fitness of individuals, o is the
fitness standard deviation, and c is a real number.

Another problem is the appearance of an individual whose fitness is much better than the remaining
individuals. Such super-individuals can quickly take over the population. To avoid this, the best option is
using a nonfitness-proportionate mechanism. A first possibility is ranking selection [32]: individuals are
ranked according to fitness (best first, worst last), and later selected — for example, by means of SUS —
using the following probabilities:

1
[P

pi [n_+(n+—n_) i] (1.2)

|P| =1

where p; is the probability of selecting the ith best individual, and n~ + n* = 2.

Another possibility is using tournament selection [33]. In this case, a direct competition is performed
whenever an individual needs to be selected. To be precise, « individuals are sampled at random, and
the best of them is selected for reproduction. This is repeated as many times as needed. The param-
eter o is termed the tournament size; the higher this value, the stronger the selective pressure. These
unproportionate selection methods have the advantage of being insensitive to fitness scaling problems
and to the sense of optimization (maximization or minimization). The reader is referred to, for example,
References 34 and 35 for a theoretical analysis of the properties of different selection operators.

Regardless of the selection operator used, it was implicity assumed in the previous discussion that any
two individuals in the population can mate, that is, all individuals belong to an unstructured centralized
population. However, this is not necessarily the case. There exists a long tradition in using structured
populations in EC, especially associated to parallel implementations. Among the most widely known
types of structured EAs, distributed (dEA) and cellular (cEA) algorithms are very popular optimization
procedures [36].

Decentralizing a single population can be achieved by partitioning it into several subpopulations,
where component EAs are run performing sparse exchanges of individuals (dEAs), or in the form of
neighborhoods (cEAs). The main difference is that a dEA has a large subpopulation, usually much
larger than the single individual that a cEA has typically in every component algorithm. In a dEA, the
subpopulations are loosely coupled, while for a cEA they are tightly coupled. Additionally, in a dEA, there
exist only a few subpopulations, while in a cEA there is a large number of them.

The use of decentralized populations has a great influence in the selection intensity, since not all
individuals have to compete among them. As a consequence, diversity is often better preserved.

1.4.4 Recombination

Recombination is a process that models information exchange among several individuals (typically two
of them, but a higher number is possible [37]). This is done by constructing new solutions using the
information contained in a number of selected parents. If it is the case that the resulting individuals (the
offspring) are entirely composed of information taken from the parents, then the recombination is said to

© 2006 by Taylor & Francis Group, LLC

Evolutionary Algorithms 1-11

Cut point pooTTTTTmTmmmmmmmmmmmmn T A m T AT '

L IEEEREEED: ! + Binarymask 00110100011001:

010011501011010 01001101011010
' Parents

11011010010011 11011010010011

01001110010011 Descendant 01011001010011

FIGURE 1.4 Two examples of recombination on bitstrings: single-point crossover (left) and uniform crossover
(right).

Cutting

, 138456[927 ~
Mappings] , CAr Child

(1)
Mother 438175926
I 0
@) 4

(©)

FIGURE 1.5 PMX at work. The numbers in brackets indicate the order in which elements are copied to the
descendant.

be transmitting [38,39]. This is the case of classical recombination operators for bitstrings such as single-
point crossover, or uniform crossover [40], among others. Figure 1.4 shows an example of the application
of these operators.

This property captures the a priori role of recombination: combining good parts of solutions that have
been independently discovered. It can be difficult to achieve for certain problem domains though (the
Traveling Salesman Problem (TSP) is a typical example). In those situations, it is possible to consider other
properties of interest such as respect or assortment. The former refers to the fact that the recombination
operator generates descendants carrying all features common to all parents; thus, this property can be seen
as a part of the exploitative side of the search. On the other hand, assortment represents the exploratory side
of recombination. A recombination operator is said to be properly assorting if, and only if, it can generate
descendants carrying any combination of compatible features taken from the parents. The assortment is
said to be weak if it is necessary to perform several recombinations within the offspring to achieve this
effect.

The recombination operator must match the particulars of the representation of solutions chosen.
In the GA context, the representation was typically binary, and hence operators such as those depicted
in Figure 1.4 were used. The situation is different in other EA families (and indeed in modern GAs too).
Without leaving GAs, another very typical representation is that of permutations. Many ad hoc operators
have been defined for this purpose, for example, order crossover (OX) [41], partially mapped crossover
(PMX; see Figure 1.5) [42], and uniform cycle crossover (UCX) [43] among others. The reader may check
[43] for a survey of these different operators.

When used in continuous parameter optimization, recombination can exploit the richness of the
representation, and utilize a variety of alternate strategies to create the offspring. Let (xi,...,x,) and

© 2006 by Taylor & Francis Group, LLC

1-12 Handbook of Bioinspired Algorithms and Applications

FIGURE 1.6 An example of branch-swapping recombination, as it is typically used in GP.

(1> - -» yn) be two arrays of real valued elements to be recombined, and let (zj, . . ., z,) be the resulting
array. Some possibilities for performing recombination are the following:

Arithmetic recombination: z; = (x; + yi)/2,1 < i < n.

Geometric recombination: z; = Jxiyib1 <1< n

Flat recombination: z; = ax; + (1 — @)y;, 1 < i < n, where « is a random value in [0, 1].

BLX-a recombination [44]: z; = r; + B(si — 1), 1 < i < n, where r; = min(x;, y;) — «|xi — yil,
si = max(x;, ¥;) + «|x; — yi|, and B is a random value in [0, 1].

e Fuzzy recombination: z; = Q(x;, yi), 1 < i < n, where Q is a fuzzy connective [45].

In the case of self-adaptive schemes as those typically used in ES, the parameters undergoing self-
adaption would be recombined as well, using some of these operators. More details on self-adaption will
follow in next subsection.

Solutions can be also represented by means of some complex data structure, and the recombination
operator must be adequately defined to deal with these (e.g., References 46 to 48). In particular, the field
of GP normally uses trees to represent LISP programs [17], rule-bases [49], mathematical expressions,
etc. Recombination is usually performed here by swapping branches of the trees involved, as exemplified
in Figure 1.6.

1.4.5 Mutation

From a classical point of view (atleast in the GA arena [50]), this was a secondary operator whose mission is
to keep the pot boiling, continuously injecting new material in the population, but at a low rate (otherwise,
the search would degrade to a random walk in the solution space). EP practitioners [11] would disagree
with this characterization, claiming a central role for mutation. Actually, it is considered the crucial part
of the search engine in this context. This later vision has nowadays propagated to most EC researchers
(atleast in the sense of considering mutation as important as recombination).

As it was the case for recombination, the choice of a mutation operator depends on the representation
used. In bitstrings (and in general, in linear strings spanning X", where ¥ is arbitrary alphabet) mutation
is done by randomly substituting the symbol contained at a certain position by a different symbol. If a
permutation representation is used, such a procedure cannot be used for it would not produce a valid
permutation. Typical strategies in this case are swapping two randomly chosen positions, or inverting a
segment of the permutation. The interested reader may check [51] or [5] for an overview of different
options.

If solutions are represented by complex data structures, mutation has to be implemented accordingly.
In particular, this is the case of EP, in which, for example, finite automata [52], layered graphs [53],
directed acyclic graphs [54], etc., are often evolved. In this domain, it is customary to use more than one
mutation operator, making for each individual a choice of which operators will be deployed on it.

In the case of ES applied to continuous optimization, mutation is typically done using Gaussian
perturbations, that is,

zi = x; + Nj(0, 07), (1.3)

© 2006 by Taylor & Francis Group, LLC

Evolutionary Algorithms 1-13

where o; is a parameter controlling the amplitude of the mutation, and N(a, b) is a random number
drawn from a normal distribution with mean a and standard deviation b. The parameters o; usually
undergo self-adaption. In this case, they are mutated prior to mutating the x;’s as follows:

ol =0 eNO+N;07) (1.4)
where 7 and t’ are two parameters termed the local and global learning rate, respectively. Advanced schemes
have been also defined in which a covariance matrix is used rather than independent o;’s. However, these

schemes tend to be unpractical if solutions are highly dimensional. For a better understanding of ES
mutation see Reference 55.

1.4.6 Replacement

The role of replacement is keeping the population size constant.* To do so, some individuals from the
population have to be substituted by some of the individuals created during reproduction. This can be
done in several ways:

e Replacement-of-the-worst: the population is sorted according to fitness, and the new individuals
replace the worst ones from the population.

e Random replacement: the individuals to be replaced are selected at random.

e Tournament replacement: a subset of o individuals is selected at random, and the worst one is
selected for replacement. Notice that if « = 1 we have random replacement.

e Direct replacement: the offspring replace their parents.

Some variants of these strategies are possible. For example, it is possible to consider the elitist versions
of these, and only perform replacement if the new individual is better than the individual it has to replace.

Two replacement strategies (comma and plus) are also typically considered in the context of ES and
EP. Comma replacement is analogous to replacement of the worst, with the addition that the number of
new individuals |P”| (also denoted by A) can be larger than the population size |P| (also denoted by w).
In this case, the population is constructed using the best u out of the A new individuals. As to the plus
strategy, it would be the elitist counterpart of the former, that is, pick the best p individuals out of the
old individuals plus the A new ones. The notation (u, A) — EA and (1 + A) — EA is used to denote these
two strategies.

It must be noted that the term “elitism” is often used as well to denote replacement-of-the-worst
strategies in which |P”| < |P|. This strategy is very commonly used, and ensures that the best individual
found so far is never lost. An extreme situation takes place when |P”| = 1, that is, just a single individual is
generated in each iteration of the algorithm. This is known as steady-state reproduction, and it is usually
associated with faster convergence of the algorithm. The term generational is used to designate the classical
situation in which |P”| = |P|.

1.5 Fields of Application of EAs

Evolutionary algorithms have been thoroughly used in many domains. One of the most conspicuous
fields in which these techniques have been utilized is combinatorial optimization (CO). This way, EAs
have been used to solve classical NP — hard problems such as the Travelling Salesman Problem [57-59],
the Multiple Knapsack Problem [60,61], Number Partitioning [62,63], Max Independent Set [64,65], and
Graph Coloring [66,67], among others.

Other nonclassical — yet important — CO problems to which EAs have been applied are scheduling
(in many variants [43, 68-71]), timetabling [72,73], lot-sizing [74], vehicle routing [75,76], quadratic
assignment [77,78], placement problems [79,80], and transportation problems [81].

4Although it is not mandatory to do so [56], it is common practice to use populations of fixed size.

© 2006 by Taylor & Francis Group, LLC

1-14 Handbook of Bioinspired Algorithms and Applications

Telecommunications is another field that has witnessed the successful application of EAs. For example,
EAs have been applied to the placement of antennas and converters [82,83], frequency assignment
[84-86], digital data network design [87], predicting bandwidth demands in ATM networks [88], error
code design [89,90], etc. See also Reference 91.

Evolutionary algorithms have been actively used in electronics and engineering as well. For example,
work has been done in structure optimization [92], aeronautic design [93], power planning [94], circuit
design [95] computer-aided design [96], analogue-network synthesis [97], and service restoration [98]
among other areas.

Besides the precise application areas mentioned before, EAs have been also utilized in many other
fields such as, for example, medicine [99,100], economics [101,102], mathematics [103,104], biology
[105-107], etc. The reader may try querying any bibliographical database or web search engine for
“evolutionary algorithm application” to get an idea of the vast number of problems that have been tackled
with EAs.

1.6 Conclusions

EC is a fascinating field. Its optimization philosophy is appealing, and its practical power is striking.
Whenever the user is faced with a hard search/optimization task that she cannot solve by classical means,
trying EAs is a must. The extremely brief overview of EA applications presented before can convince the
reader that a “killer approach” is in her hands.

EC is also a very active research field. One of the main weaknesses of the field is the absence of
a conclusive general theoretical basis, although great advances are being made in this direction, and
in-depth knowledge is available about certain idealized EA models.

Regarding the more practical aspects of the paradigm, two main streamlines can be identified:
parallelizing and hybridizing. The use of decentralized EAs in the context of multiprocessors or net-
worked systems can result in enormous performance improvement [108], and constitutes an ideal option
for exploiting the availability of distributed computing resources. As to hybridization, it has become
evident in the last years that it constitutes a crucial factor for the successful use of EAs in real-world
endeavors. This can be achieved by hard-wiring problem-knowledge within the EA, or by combining it
with other techniques. In this sense, the reader is encouraged to read other essays in this volume to get
valuable ideas on suitable candidates for this hybridization.

Acknowledgments

This work has been partially funded by the Ministry of Science and Technology (MCYT) and Regional
Development European Found (FEDER) under contract TIC2002-04498-C05-02 (the TRACER project)
http://tracer.lcc.uma.es.

References

[1] T. Bick, D.B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation. Oxford
University Press, New York, 1997.

[2] T.C.Jones. Evolutionary Algorithms, Fitness Landscapes and Search. Ph.D. thesis, University of
New Mexico, 1995.

[3] C. Darwin. On the Origin of Species by Means of Natural Selection. John Murray, London, 1859.

[4] G. Mendel. Versuche iiber pflanzen-hybriden. Verhandlungen des Naturforschendes Vereines in
Briinn, 4: 347, 1865.

[5] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag,
Berlin, 1992.

[6] J. Huxley. Evolution, the Modern Synthesis. Harper, New York, 1942.

© 2006 by Taylor & Francis Group, LLC

http://tracer.lcc.uma.es

Evolutionary Algorithms 1-15

[7] M. Kimura. Evolutionary rate at the molecular level. Nature, 217: 624—626, 1968.

[8] S.J. Gould and N. Elredge. Punctuated equilibria: The tempo and mode of evolution reconsidered.
Paleobiology, 32: 115-151, 1977.

[9] C.G.Langton. Artificial life. In C.G. Langton, Ed., Artificial Life 1. Addison-Wesley, Santa Fe, NM,
1989, pp. 1-47.

[10] D.B. Fogel. Evolutionary Computation: The Fossil Record. Wiley-1EEE Press, Piscataway, NJ, 1998.

[11] L.J. Fogel, A.J. Owens, and M.]. Walsh. Artificial Intelligence Through Simulated Evolution. John
Wiley & Sons, New York, 1966.

[12] L. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologis-
chen Evolution. Frommann-Holzboog Verlag, Stuttgart, 1973.

[13] H.P. Schwefel. Numerische Optimierung von Computer—Modellen mittels der Evolutionsstrategie,
Vol. 26 of Interdisciplinary Systems Research. Birkhduser, Basel, 1977.

[14] J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Harbor, MI, 1975.

[15] T.Bick. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, 1996.

[16] M.L. Cramer. A representation for the adaptive generation of simple sequential programs.
In J.J. Grefenstette, Ed., Proceedings of the First International Conference on Genetic Algorithms.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1985.

[17] J.R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.

[18] P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards
Memetic Algorithms. Technical report Caltech Concurrent Computation Program, Report 826,
California Institute of Technology, Pasadena, CA, USA, 1989.

[19] P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. In F. Glover and
G. Kochenberger, Eds., Handbook of Metaheuristics. Kluwer Academic Publishers, Boston, MA,
2003, pp. 105-144.

[20] M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo,
and F. Glover, Eds., New Ideas in Optimization. Maiden head, UK, 1999, pp. 11-32.

[21] P.Larranaga and J.A. Lozano. Estimation of Distribution Algorithms. A New Tool for Evolutionary
Computation. Kluwer Academic Publishers, Boston, MA, 2001.

[22] M. Lagunaand R. Marti. Scatter Search. Methodology and Implementations in C. Kluwer Academic
Publishers, Boston, MA, 2003.

[23] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Computing Surveys, 35: 268—308, 2003.

[24] FE Glover and G. Kochenberger. Handbook of Metaheuristics. Kluwer Academic Publishers, Boston,
MA, 2003.

[25] R.E. Smith. Diploid genetic algorithms for search in time varying environments. In Annual
Southeast Regional Conference of the ACM. ACM Press, New York, 1987, pp. 175-179.

[26] C.A. Coello. A comprehensive survey of evolutionary-based multiobjective optimization
techniques. Knowledge and Information Systems, 1: 269-308, 1999.

[27] C.A. Coello and A.D. Christiansen. An approach to multiobjective optimization using genetic
algorithms. In C.H. Dagli, M. Akay, C.L.P. Chen, B.R. Ferndndez, and J. Ghosh, Eds., Intelligent
Engineering Systems Through Artificial Neural Networks, Vol. 5. ASME Press, St. Louis, MO, 1995,
pp. 411-416.

[28] C.R. Reeves. Using genetic algorithms with small populations. In S. Forrest, Ed., Proceedings of the
Fifth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, 1993,
pp- 92-99.

[29] C. Cotta. On the evolutionary inference of temporal Boolean networks. In J. Mira and
J.R. Alvarez, Eds., Computational Methods in Neural Modeling, Vol. 2686 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Heidelberg, 2003, pp. 494-501.

[30] C. Ramsey and].J. Grefensttete. Case-based initialization of genetic algorithms. In S. Forrest,
Ed., Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann,
San Mateo, CA, 1993, pp. 84-91.

© 2006 by Taylor & Francis Group, LLC

1-16

(31]

(32]

(33]

(34]
(35]
(36]

(37]

(38]
(39]

(40]

(41]

(42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

Handbook of Bioinspired Algorithms and Applications

J.E. Baker. Reducing bias and inefficiency in the selection algorithm. In J.J. Grefenstette, Ed.,
Proceedings of the Second International Conference on Genetic Algorithms. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1987, pp. 14-21.

D.L. Whitley. Using reproductive evaluation to improve genetic search and heuristic discovery.
In J.J. Grefenstette, Ed., Proceedings of the Second International Conference on Genetic Algorithms.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1987, pp. 116-121.

T. Bickle and L. Thiele. A mathematical analysis of tournament selection. In L.J. Eshelman,
Ed., Proceedings of the Sixth International Conference on Genetic Algorithms. Morgan Kaufmann,
San Francisco, CA, 1995, pp. 9-16.

E. Canta-Paz. Order statistics and selection methods of evolutionary algorithms. Information
Processing Letters, 82: 15-22, 2002.

K. Deb and D. Goldberg. A comparative analysis of selection schemes used in genetic algorithms.
In G.J. Rawlins, Ed., Foundations of Genetic Algorithms. San Mateo, CA, 1991, pp. 69-93.

E. Alba and J.M. Troya. A survey of parallel distributed genetic algorithms. Complexity, 4: 31-52,
1999.

A.E. Eiben, P.-E. Raue, and Zs. Ruttkay. Genetic algorithms with multi-parent recombination.
In Y. Davidor, H.-P. Schwefel, and R. Ménner, Eds., Parallel Problem Solving from Nature
III, Vol. 866 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, 1994,
pp. 78-87.

C. Cotta and J.M. Troya. Information processing in transmitting recombination. Applied
Mathematics Letters, 16: 945-948, 2003.

N.J. Radcliffe. The algebra of genetic algorithms. Annals of Mathematics and Artificial Intelligence,
10: 339-384, 1994.

G. Syswerda. Uniform crossover in genetic algorithms. In J.D. Schaffer, Ed., Proceedings of the
Third International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, 1989,
pp- 2-9.

L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold Computer Library, New York,
1991.

D.E. Goldberg and R. Lingle, Jr. Alleles, loci and the traveling salesman problem.
In J.J. Grefenstette, Ed., Proceedings of an International Conference on Genetic Algorithms.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1985.

C. Cotta and J.M. Troya. Genetic forma recombination in permutation flowshop problems.
Evolutionary Computation, 6: 25—44, 1998.

L.J. Eshelman and J.D. Schaffer. Real-coded genetic algorithms and interval-schemata. In
D. Whitley, Ed., Foundations of Genetic Algorithms 2. Morgan Kaufmann Publishers, San Mateo,
CA, 1993, pp. 187-202.

E. Herrera, M. Lozano, and J.L. Verdegay. Dynamic and heuristic fuzzy connectives-based cros-
sover operators for controlling the diversity and convengence of real coded genetic algorithms.
Journal of Intelligent Systems, 11: 1013-1041, 1996.

E.Alba,].F Aldana, and J.M. Troya. Full automatic ann design: A genetic approach. In J. Cabestany,
J. Mira, and A. Prieto, Eds., New Trends in Neural Computation, Vol. 686 of Lecture Notes in
Computer Science. Springer-Verlag, Heidelberg, 1993, pp. 399-404.

E. Alba and J.M. Troya. Genetic algorithms for protocol validation. In H.M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, Eds., Parallel Problem Solving from Nature IV. Springer-Verlag,
Berlin, Heidelberg, 1996, pp. 870-879.

C. Cotta and J.M. Troya. Analyzing directed acyclic graph recombination. In B. Reusch, Ed.,
Computational Intelligence: Theory and Applications, Vol. 2206 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Heidelberg, 2001, pp. 739-748.

E. Alba, C. Cotta, and J.M. Troya. Evolutionary design of fuzzy logic controllers using strongly-
typed GP. Mathware & Soft Computing, 6: 109-124, 1999.

© 2006 by Taylor & Francis Group, LLC

Evolutionary Algorithms 1-17

[50]
[51]

[52]

D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, Reading, MA, 1989.

AE. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer-Verlag, Berlin,
Heidelberg, 2003.

C.H. Clelland and D.A. Newlands. PFSA modelling of behavioural sequences by evolutionary
programming. In R.J. Stonier and X.H. Yu, Eds., Complex Systems: Mechanism for Adaptation.
IOS Press, Rockhampton, Queensland, Australia, 1994, pp. 165-172.

X. Yao and Y. Liu. A new evolutionary system for evolving artificial neural networks. IEEE
Transactions on Neural Networks, 8: 694—713, 1997.

M.L. Wong, W. Lam, and K.S. Leung. Using evolutionary programming and minimum descrip-
tion length principle for data mining of bayesian networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 21: 174-178, 1999.

H.-G. Beyer. The Theory of Evolution Strategies. Springer-Verlag, Berlin, Heidelberg, 2001.

E Fernandez, L. Vanneschi, and M. Tomassini. The effect of plagues in genetic programming:
A study of variable-size populations. In C. Ryan et al., Eds., Genetic Programming, Proceedings of
EuroGP’2003,Vol. 2610 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg,
2003, pp. 320-329.

S. Chatterjee, C. Carrera, and L. Lynch. Genetic algorithms and traveling salesman problems.
European Journal of Operational Research, 93: 490-510, 1996.

D.B. Fogel. An evolutionary approach to the traveling salesman problem. Biological Cybernetics,
60: 139-144, 1988.

P. Merz and B. Freisleben. Genetic local search for the TSP: New Results. In Proceedings of the
1997 IEEE International Conference on Evolutionary Computation. IEEE Press, Indianapolis, USA,
1997, pp. 159-164.

C. Cotta and J.M. Troya. A hybrid genetic algorithm for the 0—-1 multiple knapsack problem.
In G.D. Smith, N.C. Steele, and R.E. Albrecht, Eds., Artificial Neural Nets and Genetic Algorithms
3. Springer-Verlag, Wien New York, 1998, pp. 251-255.

S. Khuri, T. Bick, and J. Heitkotter. The zero/one multiple knapsack problem and genetic
algorithms. In E. Deaton, D. Oppenheim, J. Urban, and H. Berghel, Eds., Proceedings of the 1994
ACM Symposium of Applied Computation proceedings. ACM Press, New York, 1994, pp. 188-193.
R. Berretta, C. Cotta, and P. Moscato. Enhancing the performance of memetic algorithms by
using a matching-based recombination algorithm: Results on the number partitioning problem.
In M. Resende and J. Pinho de Sousa, Eds., Metaheuristics: Computer-Decision Making. Kluwer
Academic Publishers, Boston, MA, 2003, pp. 65-90.

D.R. Jones and M.A. Beltramo. Solving partitioning problems with genetic algorithms. In
R.K. Belew and L.B. Booker, Eds., In Proceedings of the Fourth International Conference on Genetic
Algorithms. Morgan Kaufmann, San Mateo, CA, 1991, pp. 442—449.

C.C. Aggarwal,].B. Orlin, and R.P. Tai. Optimized crossover for the independent set problem.
Operations Research, 45: 226-234, 1997.

M. Hifl. A genetic algorithm-based heuristic for solving the weighted maximum independent set
and some equivalent problems. Journal of the Operational Research Society, 48: 612622, 1997.
D. Costa, N. Dubuis, and A. Hertz. Embedding of a sequential procedure within an evolutionary
algorithm for coloring problems in graphs. Journal of Heuristics, 1: 105-128, 1995.

C. Fleurent and J.A. Ferland. Genetic and hybrid algorithms for graph coloring. Annals of
Operations Research, 63: 437-461, 1997.

S. Cavalieri and P. Gaiardelli. Hybrid genetic algorithms for a multiple-objective scheduling
problem. Journal of Intelligent Manufacturing, 9: 361-367, 1998.

D. Costa. An evolutionary tabu search algorithm and the NHL scheduling problem. INFOR, 33:
161-178, 1995.

C.E Liaw. A hybrid genetic algorithm for the open shop scheduling problem. European Journal
of Operational Research, 124: 28—42, 2000.

© 2006 by Taylor & Francis Group, LLC

1-18

(71]

(72]

(73]

(74]

(75]

[76]

[77]

(78]
(79]
(80]
(81]
(82]
(83]

(84]

(85]

(86]

(87]
(88]

(89]

Handbook of Bioinspired Algorithms and Applications

L. Ozdamar. A genetic algorithm approach to a general category project scheduling problem.
IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 29: 44-59,
1999.

E.K. Burke, J.P. Newall, and R.F. Weare. Initialisation strategies and diversity in evolutionary
timetabling. Evolutionary Computation, 6: 81-103, 1998.

B. Paechter, R.C. Rankin, and A. Cumming. Improving a lecture timetabling system for university
wide use. In E.K. Burke and M. Carter, Eds., The Practice and Theory of Automated Timetabling
I1,Vol. 1408 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998, pp. 156-165.

K. Haase and U. Kohlmorgen. Parallel genetic algorithm for the capacitated lot-sizing prob-
lem. In Kleinschmidt et al., Eds., Operations Research Proceedings. Springer-Verlag, Berlin, 1996,
pp. 370-375.

J. Berger and M. Barkaoui. A hybrid genetic algorithm for the capacitated vehicle routing prob-
lem. In E. Cantd-Paz, Ed., Proceedings of the Genetic and Evolutionary Computation Conference
2003, Vol. 2723 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg, 2003,
pp. 646—656.

J. Berger, M. Salois, and R. Begin. A hybrid genetic algorithm for the vehicle routing problem with
time windows. In R.E. Mercer and E. Neufeld, Eds., Advances in Artificial Intelligence. 12th Biennial
Conference of the Canadian Society for Computational Studies of Intelligence. Springer-Verlag,
Berlin, 1998, pp. 114-127.

P. Merz and B. Freisleben. Genetic algorithms for binary quadratic programming. In W. Banzhaf
et al., Eds., Proceedings of the 1999 Genetic and Evolutionary Computation Conference,
Morgan Kaufmann, San Francisco, CA, 1999, pp. 417-424.

P. Merz and B. Freisleben. Fitness landscape analysis and memetic algorithms for the quadratic
assignment problem. IEEE Transactions on Evolutionary Computation, 4: 337-352, 2000.

E. Hopper and B. Turton. A genetic algorithm for a 2d industrial packing problem. Computers ¢
Industrial Engineering, 37: 375378, 1999.

R.M. Krzanowski and J. Raper. Hybrid genetic algorithm for transmitter location in wireless
networks. Computers, Environment and Urban Systems, 23: 359-382, 1999.

M. Gen, K. Ida, and L. Yinzhen. Bicriteria transportation problem by hybrid genetic algorithm.
Computers & Industrial Engineering, 35: 363—-366, 1998.

P. Calegar, E Guidec, P. Kuonen, and D. Wagner. Parallel island-based genetic algorithm for radio
network design. Journal of Parallel and Distributed Computing, 47: 86-90, 1997.

C. Vijayanand, M.S. Kumar, K.R. Venugopal, and P.S. Kumar. Converter placement in all-optical
networks using genetic algorithms. Computer Communications, 23: 1223-1234, 2000.

C. Cotta and J.M. Troya. A comparison of several evolutionary heuristics for the frequency
assignment problem. In J. Mira and A. Prieto, Eds., Connectionist Models of Neurons, Learning
Processes, and Artificial Intelligence, Vol. 2084 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, Heidelberg, 2001, pp. 709-716.

R. Dorne and J.K. Hao. An evolutionary approach for frequency assignment in cellular radio
networks. In 1995 IEEE International Conference on Evolutionary Computation. IEEE Press, Perth,
Australia, 1995, pp. 539-544.

A. Kapsalis, V.J. Rayward-Smith, and G.D. Smith. Using genetic algorithms to solve the radio link
frequency assignment problem. In D.W. Pearson, N.C. Steele, and R.E. Albretch, Eds., Artificial
Neural Nets and Genetic Algorithms. Springer-Verlag, Wien New York, 1995, pp. 37-40.

C.H. Chu, G. Premkumar, and H. Chou. Digital data networks design using genetic algorithms.
European Journal of Operational Research, 127: 140-158, 2000.

N. Swaminathan, J. Srinivasan, and S.V. Raghavan. Bandwidth-demand prediction in virtual path
in atm networks using genetic algorithms. Computer Communications, 22: 1127-1135, 1999.

H. Chen, N.S. Flann, and D.W. Watson. Parallel genetic simulated annealing: A massively parallel
SIMD algorithm. IEEE Transactions on Parallel and Distributed Systems, 9: 126—136, 1998.

© 2006 by Taylor & Francis Group, LLC

Evolutionary Algorithms 1-19

[90]

[97]

(98]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

K. Dontas and K. De Jong. Discovery of maximal distance codes using genetic algorithms.
In Proceedings of the Second International IEEE Conference on Tools for Artificial Intelligence. IEEE
Press, Herndon, VA, 1990, pp. 805-811.

D.W. Corne, M.]. Oates, and G.D. Smith. Telecommunications Optimization: Heuristic and
Adaptive Techniques. John Wiley, New York, 2000.

I.C. Yeh. Hybrid genetic algorithms for optimization of truss structures. Computer Aided Civil
and Infrastructure Engineering, 14: 199-206, 1999.

D. Quagliarella and A. Vicini. Hybrid genetic algorithms as tools for complex optimisation prob-
lems. In P. Blonda, M. Castellano, and A. Petrosino, Eds., New Trends in Fuzzy Logic II. Proceedings
of the Second Italian Workshop on Fuzzy Logic. World Scientific, Singapore, 1998, pp. 300-307.
A.J. Urdaneta, J.F. Gémez, E. Sorrentino, L. Flores, and R. Diaz. A hybrid genetic algorithm for
optimal reactive power planning based upon successive linear programming. IEEE Transactions
on Power Systems, 14: 1292—1298, 1999.

M. Guotian and L. Changhong. Optimal design of the broadband stepped impedance transformer
based on the hybrid genetic algorithm. Journal of Xidian University, 26: 8—12, 1999.

B. Becker and R. Drechsler. Ofdd based minimization of fixed polarity Reed-Muller expressions
using hybrid genetic algorithms. In Proceedings of the IEEE International Conference on Computer
Design: VLSI in Computers and Processor. IEEE, Los Alamitos, CA, 1994, pp. 106-110.

J.B. Grimbleby. Hybrid genetic algorithms for analogue network synthesis. In Proceedings of the
1999 Congress on Evolutionary Computation. IEEE, Washington D.C., 1999, pp. 1781-1787.

A. Augugliaro, L. Dusonchet, and E. Riva-Sanseverino. Service restoration in compensated dis-
tribution networks using a hybrid genetic algorithm. Electric Power Systems Research, 46: 59—66,
1998.

M. Sipper and C.A. Pefia Reyes. Evolutionary computation in medicine: An overview. Artificial
Intelligence in Medicine, 19: 1-23, 2000.

R. Wehrens, C. Lucasius, L. Buydens, and G. Kateman. HIPS, A hybrid self-adapting expert system
for nuclear magnetic resonance spectrum interpretation using genetic algorithms. Analytica
Chimica ACTA, 277: 313-324, 1993.

J. Alander. Indexed Bibliography of Genetic Algorithms in Economics. Technical report
94-1-ECO, University of Vaasa, Department of Information Technology and Production
Economics, 1995.

E Li, R. Morgan, and D. Williams. Economic environmental dispatch made easy with hybrid
genetic algorithms. In Proceedings of the International Conference on Electrical Engineering, Vol.
2. International Academic Publishers, Beijing, China, 1996, pp. 965-969.

C. Reich. Simulation if imprecise ordinary differential equations using evolutionary algorithms.
In J. Carroll, E. Damiani, H. Haddad, and D. Oppenheim, Eds., ACM Symposium on Applied
Computing 2000. ACM Press, New York, 2000, pp. 428—432.

X. Wei and F Kangling. A hybrid genetic algorithm for global solution of nondifferentiable
nonlinear function. Control Theory ¢ Applications, 17: 180-183, 2000.

C. Cotta and P. Moscato. Inferring phylogenetic trees using evolutionary algorithms.
In J.J. Merelo, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas, and H.-P. Schwefel, Eds.,
Parallel Problem Solving from Nature VII, Vol. 2439 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, 2002, pp. 720-729.

G.B. Fogel and D.W. Corne. Evolutionary Computation in Bioinformatics. Morgan Kaufmann,
San Francisco, CA, 2003.

R. Thomsen, G.B. Fogel, and T. Krink. A clustal alignment improver using evolution-
ary algorithms. In David B. Fogel, Xin Yao, Garry Greenwood, Hitoshi Iba, Paul Marrow,
and Mark Shackleton, Eds., Proceedings of the Fourth Congress on Evolutionary Computation
(CEC-2002) Vol. 1. 2002, pp. 121-126.

E. Alba. Parallel evolutionary algorithms can achieve super-linear performance. Information
Processing Letters, 82: 7-13, 2002.

© 2006 by Taylor & Francis Group, LLC

An Overview of
Neural Networks

Models

2.1 Introduction........coceveiiiiiiiiiiiiiiiiii e 2-21
2.2 General Structure of a Neural Network 2-22
Single- and Multi-Layer Perceptrons e Function Representation
2.3 Learning in Single-Layer Models 2-26
Supervised Learning

2.4 Unsupervised Learning..........c.ceeevueiieinnennnnn.. 2-30
K-Means Clustering e Kohonen Clustering e ART1 o ART2

2.5 Learning in Multiple Layer Models..................... 2-32
The Back Propagation Algorithm e Radial Basis Functions

2.6 A Sample of Neural Network Applications 2-35

Expert Systems e Neural Controllers e Decision Makers o

Robot Path Planning e Adaptive Noise Cancellation
Javid Taheri 2.7 CoNCIUSION ...vivititiiii et et ei e eaeaaaes 2-36
Albert Y. Zomaya REfEIENCES «ouviniitint it 2-36

2.1 Introduction

Artificial Neural Networks have been one of the most active areas of research in computer science over
the last 50 years with periods of intense activity interrupted by episodes of hiatus [1]. The premise for
the evolution of the theory of artificial Neural Networks stems from the basic neurological structure of
living organisms. A cell is the most important constituent of these life forms. These cells are connected
by “synapses,” that are the links that carry messages between cells. In fact, by using synapses to carry the
pulses, cells can activate each other with different threshold values to form a decision or memorize an
event. Inspired by this simplistic vision of how messages are transferred between cells, scientists invented
a new computational approach, which became popularly known as Artificial Neural Networks (or Neural
Networks for short) and used it extensively to target a wide range of problems in many application
areas.

Although the shape or configurations of different Neural Networks may look different at the first
glance, they are almost similar in structure. Every neural network consists of “cells” and “links.” Cells are
the computational part of the network that perform reasoning and generate activation signals for other

2-21

© 2006 by Taylor & Francis Group, LLC

2-22 Handbook of Bioinspired Algorithms and Applications

cells, while links connect the different cells and enable messages to flow between cells. Each link is usually
a one directional connection with a weight which affects the carried message in a certain way. This means,
that a link receives a value (message) from an input cell, multiplies it by a given weight, and then passes it
to the output cell. In its simplest form, a cell can have three states (of activation): +1 (TRUE), 0, and —1
(FALSE) [1].

2.2 General Structure of a Neural Network

Cells (or neurons) can have more sophisticated structure that can handle complex problems. These
neurons can basically be linear or nonlinear functions with or without biases. Figure 2.1 shows two simple
neurons, unbiased and biased.

2.2.1 Single- and Multi-Layer Perceptrons

The single-layer perceptron is one of the simplest classes of Neural Networks [1]. The general overview of
this network is shown in Figure 2.2 while the network has » inputs and generates only one output. The
input of the function f(-) is actually a linear combination of the network’s inputs. In this case, W is a
vector of neuron weights, X is the input vector, and y is the only output of the network defined as follows:

W=w w ... wy),

X=0x x ... X

The above-mentioned basic structure can be extended to produce networks with more than one output.
In this case, each output has its own weights and is completely uncorrelated to the other outputs. Figure 2.3

(@)

w

X@——» f(-) —»Yy

Y/\ ~ /_Y_/

Input layer Neuron Output layer
y="1f(wx)
(b) Y
X @——P z ») —»Yy
b
1
\) o —
Input layer Neuron Output layer
y=Ff(wx+Db)

FIGURE 2.1 (a) Unbiased and (b) biased structure of a neural network.

© 2006 by Taylor & Francis Group, LLC

An Overview of Neural Networks Models 2-23

X1
&l
Xo Wy
z ft)y F—»vy
o
Xn "n

Y}\ — Aﬂ_/

Input Layer Neuron Output Layer

FIGURE 2.2 A single output single-layer perceptron.

X1
() —»n

X2

. ACIE 2

o

o

o

° o o
o o
o o

fo(:) —»Vm

Xn
—
—— — A
Input layer Layer-1 Output layer

FIGURE 2.3 A multi output single-layer perceptron.

shows an instant of such a network with the following formulas:

Y =F(W. X+ B),

W1,1 W1,2 e Wl,n
w21
W == . >
Wm,l e Wm,n
X=x x ... xn)T,
Y= 5 oy
B=({b by ... byl
FO)=(AO) AO o fa(Dh

© 2006 by Taylor & Francis Group, LLC

2-24 Handbook of Bioinspired Algorithms and Applications

Y1

Yo

o o o o o

© 0o 0o 0 o

Xn > @ Ym
7 ~~ < ~ - h ~~ A——
Input layer Layer-1 Layer-2 Layer-p Output layer

FIGURE 2.4 The basic structure of a multi-layer neural network.

where # is the number of inputs, m the number of outputs, W the weighing matrix, X the input vector,
Y the output vector, and F(-) the array of output functions.

A multi-layer perceptron can simply be constructed by concatenating several single-layer perceptron
networks. Figure 2.4 shows the basic structure of such network with the following parameters [1]: X is
the input vector, Y the output vector, n the number of inputs, 7 the number of outputs, p the total number
of layers in the network, m; the number of outputs for the ith layer and, n; the number of inputs for the
ith layer.

Note that in this network, every internal layer of the network can have its own number of inputs and
outputs only by considering the concatenation rule, that is, n; = m;_;. The output of the first layer is
calculated as follows:

Z'=F'(W!. X+ BY,

Wi W11,2 Wll,n
Wl — Wzl,l
Win,1 W;u,n
X=x x ... xn)T,
B'=(b b ... b))%
Z'=(4 2 ... Z,LI)T,
F'O =06 A6 o fr O

© 2006 by Taylor & Francis Group, LLC

An Overview of Neural Networks Models 2-25

Consequently the output of the second layer would be:

Z?=FW?*-Z' + B,

2 2
i M2 Win
2
, W1
W=)
2 2
my,1 my,my
2 2 12 2 N\T
B =(by by ... b,),
Z’=(z ... z,iz)T,
FPO =6 6 o LT

and finally the last layer formulation can be presented as follows:

Y = 7P = FP(WP . zP~1 4 BP),

p p p
Wl,l W1,2 e Wl,n
p
W1
WP = ,
p P
Wm1,1 - meymp—l
B =@ by bh)T,
ZP = (zf zf zﬁp)T,
FPey=(ffey o o o

Notice that in such networks, the complexity of the network raises in a fast race based on the number of
layers. Practically experienced, each multi-layer perceptron can be evaluated by a single-layer perceptron
with comparatively huge number of nodes.

2.2.2 Function Representation

Two of the most popular uses of Neural Networks are to represent (or approximate) functions and model
systems. Basically, a neural network would be used to imitate the behavior of a function by generating
relatively similar outputs in comparison to the real system (or function) over the same range of inputs.

2.2.2.1 Boolean Functions

Neural networks were first used to model simple Boolean functions. For example, Figure 2.5 shows how
a neural network can be used to model an AND operator, while Figure 2.6 gives the truth table. Note
that, “1” stands for “TRUE” while “—1” represents a “FALSE” value. The network in Figure 2.5 actually
simulates a linear (function) separator, which simply divides the decision space into two parts.

2.2.2.2 Real Valued Functions

In this case, the network weights must be set so that it can generate continuous outputs of a real system.
The generated network is also intended to act as an extrapolator that can generate output data for inputs
that are different from the training set.

© 2006 by Taylor & Francis Group, LLC

2-26 Handbook of Bioinspired Algorithms and Applications

Input layer Neuron Output layer

FIGURE 2.5 A neural network to implement the logical AND.

X
—1 [+1
1|1 -1
X.
2 +1 | -1 +1

FIGURE 2.6 Implementation of the logical AND of Figure 2.5.

2.3 Learning in Single-Layer Models

The main, and most important, application of all Neural Networks is their ability to model a process or
learn the behavior of a system. Toward this end, several algorithms were proposed to train the adjustable
parameters of a network (i.e., W). Basically, training a neural network to adjust the W’s is categorized
into two different classes: supervised and unsupervised [2—-6].

2.3.1 Supervised Learning

The main purpose of this kind of training is to “teach” a network to copy the behavior of a system or a
function. In this case, there is always a need to have a “training” data set. The network topology and the
algorithm that the network is trained with are highly inter-related. In general, a topology of the network
is chosen first and then an appropriate training algorithm is used to tune the weights (W) [7,8].

2.3.1.1 Perceptron Learning

As mentioned earlier, the perceptron is the most basic form of Neural Networks. Essentially, this network
tries to classify input data by mapping it onto a plane. In this approach, to simplify the algorithm,
suppose that the network’s input is restricted to {+1, 0, —1}, while the output can be {+1, —1}. The aim
of the algorithm is to find an appropriate set of weights, W, by sampling a training set, T, that will capture

© 2006 by Taylor & Francis Group, LLC

An Overview of Neural Networks Models 2-27

the mapping that associates each input to an output, that is,

W=mw w ... w),

T = {(RY, S, (R?,$%),...,(RE, SDy},

where 7 is the number of inputs, R’ is the ith input data, S’ represents the appropriate output for the ith
pattern, and, L is the size of the training set. Note that, for the above vector W, w;, is used to adjust the
bias in the values of the weights. The Perceptron Learning can be summarized as follows:

Step 1: Set all elements of the weighting vector to zero, thatis, W =(0 0 --- 0).

Step 2: Select training pattern at random, namely kth datum.

Step 3: IF the current W has not been classified correctly, that is, W - R # S¥, then, modify the
weighing vector as follows: W < W + RkSk,

Step 4: Repeat steps 1 to 3 until all data are classified correctly.

2.3.1.2 Linear Auto-Associators Learning

An auto-associate network is another type of network which has some type of memory. In this network,
the input and output nodes are basically the same. Hence, when a datum enters the network, it passes
through the nodes and converges to the closest memorized data, which was previously stored in the
network during the training process [1].

Figure 2.7 shows an instance of such network with five nodes. It is worthwhile mentioning that the
weighing matrix of such network is not symmetrical. That is, w; ; which relate the node “i” to node “;”
may have different value than w; ;. The main key of designing such network is the training data. In this

case, the assumption is to have orthogonal training data or at least approximately orthogonal, that is,

0 i#j,
T;, T;) ~ L
(1 J> { 1 i=j,
where T; is the ith training data and (-) is the inner product of two vectors. Based on the above assumption
the weight matrix for this network is calculated as follows where ® stands for outer product of two vectors:

FIGURE 2.7 A sample linear auto-associate network with five nodes.

© 2006 by Taylor & Francis Group, LLC

2-28 Handbook of Bioinspired Algorithms and Applications

As it can be seen, the main advantage of this network is in its one-shot learning process, by considering
orthogonal data. Note that, even if the input data are not orthogonal in the first place, they can be
transferred to a new space by a simple transfer function.

2.3.1.3 TIterative Learning

Iterative learning is another approach that can be used to train a network. In this case, the network’s weights
are modified smoothly, in contrast to the one-shot learning algorithms. In general, network weights are set
to some arbitrary values first, then, trained data are fed to the network. In this case, in each training cycle,
network weights are modified smoothly. Then, the training process proceeds until achieving an acceptable
level of acceptance for the network. However, the training data could be selected either sequentially or
randomly in each training cycle [9-11].

2.3.1.4 Hopfield’s Model

A Hopfield neural network is another example of an auto-associative network [1,12—14]. There are two
main differences between this network and the previously described auto-associate network. In this
network, self-connection is not allowed, that is, w; ; = 0 for all nodes. Also, inputs and outputs are either
0 or 1. This means that the node activation is recomputed after each cycle of convergence as follows:

N

S; = Z wij - uj(1), (2.1)
-1

(2.2)

;1 oif S =0,
Y=o ifs; <o.

After feeding a datum into the network, in each convergence cycle, the nodes are selected by a uniform
random function, the input are used to calculate Equation (2.1) and then followed by Equation (2.2) to
generate the output. This procedure is continued until the network converges.

The proof of convergence for this network uses the notion of “energy.” This means that an energy value
is assigned to each state of the network and through the different iterations of the algorithm, the overall
energy is decreased until it reaches a steady state.

2.3.1.5 Mean Square Error Algorithms

These techniques emerged as an answer to the deficiencies experienced by using Preceptrons and other
simple networks [1,15]. One of the most important reasons is the inseparability of training data. If the data
used to train the network are naturally inseparable, the training algorithm never terminates (Figure 2.8).

The other reason for using this technique is to converge to a better solution. In Perceptron learning,
the training process terminates right after finding the first answer regardless of its quality (i.e., sensitivity
of the answer). Figure 2.9 shows an example of such a case. Note that, although the answer found by
the Perceptron algorithm is correct (Figure 2.9[a]), the answer in Figure 2.9(b) is more robust. Finally,
another reason for using Mean Square Error (MSE) algorithms, which is crucial for most neural network
algorithms, is that of speed of convergence.

The MSE algorithm attempts to modify the network weights based on the overall error of all data. In this
case, assume that network input and output data are represented by T;, R; for i = 1,. .., N, respectively.
Now the MSE error is defined as follows:

X
E=— Z(W- T; — R)%.
i=1
Note that, the stated error is the summation of all individual errors for the all the training data. Inspite
of all advantages gained by this training technique, there are several disadvantages, for example, the
network might not be able to correctly classify the data if it is widely spread apart (Figure 2.10). The other

© 2006 by Taylor & Francis Group, LLC

An Overview of Neural Networks Models 2-29

3 i
oL i
1t i
O - .«
N i
2| i
3| g
-3 3

FIGURE 2.8 Inseparable training data set.

(a) 3F

-3 -2 -1 0 1 2 3
FIGURE 2.9 Two classifications for sample data.

disadvantage is that of the speed of convergence which may completely vary from one set of data to
another.
2.3.1.6 The Widow-Hoff Rule or LMS Algorithm

In this technique, the network weight is modified after each iteration [1,16]. A training datum is selected
randomly, then, the network weights are modified based on the corresponding error. This procedure
continues until converging to the answer. For a randomly selected kth entry in the training data, the error
is calculated as follows:

e=(W-Ti— R

The gradient vector of this error would be:

de e de
Ve = e)
oWy oW dWN

© 2006 by Taylor & Francis Group, LLC

2-30 Handbook of Bioinspired Algorithms and Applications

FIGURE 2.10 A data set with far apart solutions.

Hence,

de
—— =2(W - Ty — Ry) - T}.
oW, (k — R) - Ty

Based on the Widow—Hoff algorithm, the weights should be modified opposite the direction of the
gradient. As a result, the final update formula for the weighting matrix W would be:

W =W—p- (W Ty —Ry) - Tt.

Note that, p is known as the learning rate and it absorbs the multiplier of value “2.”

2.4 Unsupervised Learning

This class of networks attempts to cluster input data without the need for the traditional “learn by example”
technique that is commonly used for Neural Networks. Note that, clustering applications tend to be the
most popular type of applications that these networks are normally used for. The most popular networks
in this class are: K-means, Kohonen, ART1, and ART2 [17-21].

2.4.1 K-Means Clustering

This is the simplest technique used for classifying data. In this technique, a network with a predefined
number of clusters is considered, then, each datum is assigned to one of these clusters. This process
continues until all data are checked and classified properly. The following algorithm shows how this
algorithm is implemented:

Step 1: Consider a network with K clusters.

Step 2: Assign all data to one of the above clusters, with respect to the distance between the center of
the cluster and the datum.

Step 3: Modify the center of the assigned cluster.

Step 4: Check all data in the network to ensure proper classification.

Step 5: If a datum has to be moved from one cluster to another, then, update the center of both clusters.

Step 6: Repeat steps 4 and 5 until no datum is wrongly classified.

© 2006 by Taylor & Francis Group, LLC

An Overview of Neural Networks Models 2-31

(a) ' (b) '
(! i mm g .o E EE
o ; =] ; m
________________ S
] i o] : =
+ : + :
mE ; B [N] ; 5 e

FIGURE 2.11 Results for a K-means clustering with (a) correct (b) incorrect number of clusters.

OO0 00000
O 00000

\

OO0OO0O\0OOO0OO0OO0OO0O
oooo\oooooo
oooloeoloooo
oooloooloooo
O0O0O0D0000O0O0
000000000 O0
O0O0O0D0O000O0O0
O0O0O00000O0O0

O O
O0O0

FIGURE 2.12 Output topology of a Kohonen network.

Figure 2.11 shows an instance of applying such network for data classification with the correct and
incorrect number of clusters.

2.4.2 Kohonen Clustering

This classification method clusters input data based on how the topological representation of the data.
The outputs of the network are arranged so that each output has some neighbors. Thus, during the
learning process, not only one output, but a group of close outputs are modified to classify the data. To
clarify the situation, assume that a network is supposed to learn how a set of data is to be distributed in a
two-dimensional representation (Figure 2.12).

In this case, each point is a potential output with a predefined neighborhood margin. For example,
the cell marked as “X” and eight of its neighbors are given. Therefore, whenever this cell gets selected
for update, all its neighbors are included in the process too. The main idea behind this approach for
classifying the input data is analogus to some biological facts. In a mammalian brain, all vision, auditory,
tactile sensors are mapped into a number of “cell sheets.” Therefore, if one of the cells is activated all cells
close to it will be affected, but at different levels of intensity.

2.4.3 ART1

This neural classifier, known as “Adaptive Resonance Theory” or ART, deals with digital inputs (T; € {0, 1}).
In this network, each “1” in the input vector represents information while a “0” entry is considered noise or
unwanted information. In ART, there is no predefined number of classes before the start of classification;
in fact, the classes are generated during the classification process.

Moreover, each class prototype may include the characteristics of more than a training datum. The
basic idea of such network relies on the similarity factor for data classification. In summary, every time

© 2006 by Taylor & Francis Group, LLC

2-32 Handbook of Bioinspired Algorithms and Applications

a datum is assigned to a cluster, firstly, the nearest class with this datum is found, then, if the similarity of
this datum and the class prototype is more than a predefined value, known as a vigilance factor, then, the
datum is assigned to this class and the class prototype is modified to have more similarity with the a new
data entry [1,22,23].

The following procedure shows how this algorithm is implemented. However, the following needs to
be noted before outlining the algorithm:

1. ||X]| is the number of 1’s in the vector X.
2. X - Y is the number of common 1’s between these vectors X and Y.
3. X NY is the bitwise AND operator applied on vectors X and Y.

Step 1: Let B be a small number, n be the dimension of the input data; and p be the vigilance factor
0=<p<1).

Step 2: Start with no class prototype.

Step 3: Select a training datum by random, T.

Step 4: Find the nearest unchecked class prototype, C;, to this datum by minimizing (C;- Tx) /(B+ | Gi))-

Step 5: Test if C; is sufficiently close to Ty by verifying if (C; - Tx)/(B + 11Cill) > (I Tx|I/(B + p))-

Step 6: If it is not similar enough, then, make a new class prototype and go to step 3.

Step 7: If it is sufficiently similar check the vigilance factor: (C; - Ty/|| Tx|l) = p.

Step 8: If vigilance factor is exceeded, then, modify the class prototype by C; = C; N Ty and go to step 3.

Step 9: If vigilance factor is not exceeded, then, try to find another unchecked class prototype in step 4.

Step 10: Repeat steps 3 to 9 until none of the training data causes any change in class prototypes.

2.4.4 ART2

This is a variation to ART1 with the following differences:

1. Data are considered continuous and not binary.

2. The input data is processed before passing it to the network. Actually, the input data is normalized,
then, all elements of the result vector that are below a predefined value are set to zero and the vector
normalized again. The process is used for noise cancellation.

3. When a class prototype is found for a datum, the class prototype vector is moved fractionally toward
the selected datum. As a result, contrary to the operation of ART1, the weights are moved smoothly
toward a new datum. The main reason for such a modification is to ‘memorize’ previously learnt
rules.

2.5 Learning in Multiple Layer Models

As mentioned earlier, multi-layer Neural Networks consist of several concatenated single-layer networks
[1,24-26]. The inner layers, known as hidden layers, may have different number of inputs and outputs.
Because of the added complexity the training process becomes more involved. This section presents two
of the most popular multi-layer neural network are presented.

2.5.1 The Back Propagation Algorithm

Back propagation algorithm is one of the most powerful and reliable techniques that can be used to adjust
the network weights. The main idea of this approach is to use gradient information of a cost function to
modify the network’s weights.

However, using this approach to train multi-layer networks is a little different from single-layer
networks. In general, multi-layer networks are much harder to train than single-layer ones. In fact,
convergence of such networks is much slower and very error sensitive.

© 2006 by Taylor & Francis Group, LLC

An Overview of Neural Networks Models 2-33

)z

Y2

© 0000
©0 0000

m
v/ _(_/
Input layer Layer-1 Layer-2 Output layer

FIGURE 2.13 A single hidden layer network.

In this approach, an input is presented to the network and allowed to “forward” propagate through
the network and the output is calculated. Then, the output will be compared to a “desired” output (from the
training set) and an error calculated. This error is then propagated “backward” into the network and the
different weights updated accordingly. To simplify describing this algorithm, consider a network with
a single hidden layer (and two layers of weights) given in Figure 2.13.

In relation to the above network, the following definitions apply. Of course, the same definitions can
be easily extended to larger networks.

T;,R; for i = 1,..., L: The training set of input and outputs, respectively.

N, S, M: The size of the input, hidden, and output layers, respectively.

W: Network weights from the input layer to the hidden layer.

W?2: Network weights from the hidden layer to the output layer.

X, Z, Y: Input and output of the hidden layer, and the network output, respectively.
F!(-): Array of network functions for the hidden layer.

F2(-): Array of network functions for the output layer.

It is important to note that, in such network, different combinations of weights might produce the
same input/output relationship. However, this is not crucial as long as the network is able to “learn” this
association. As a result, the network weights may converge to different sets of values based on the order of
the training data and the algorithm used for training although their stability may differ.

2.5.2 Radial Basis Functions

Radial Basis Function (RBF) Neural Network is another popular multi-layer neural network [27-31]. The
RBF network consists of two layers, one hidden layer and one output layer. In this network, the hidden
layer is implemented by radial activation functions while the output layer is simply a weighted sum of the
hidden layer outputs.

The RBF neural network is able to model complex mappings, which Perceptron Neural Networks
can only accomplish by means of multiple hidden layers. The outstanding characteristics of such network
makes it applicable for variety of applications, such as, function interpolation [32,33], chaotic time serious
modeling [34,35], system identification [36—38], control systems [39,40], channel equalization [41-43],
speech recognition [44,45], image restoration [46,47], motion estimation [48], pattern classification [49],
and data fusion [50].

© 2006 by Taylor & Francis Group, LLC

2-34 Handbook of Bioinspired Algorithms and Applications

Y1

o000 o0o0

Input layer Hidden layer Output layer

FIGURE 2.14 The basic structure of a RBF network.

The main topology of this network as is shown in Figure 2.14. Many functions were introduced for
possible use in the hidden layer; however, radial functions (Gaussian) remain the most effective to use for
data or pattern classification. The Gaussian functions are defined as follows:

@;(X) = exp|—(X — 1) T (X —),

where j = 1,2,...,L and L represents the number of nodes in the hidden layer, X is the input vector,
wj and I'j are the mean vector and covariance matrix of the jth Gaussian function, respectively. In some
approaches, a polynomial term is appended to the above expression while in others the functions are
normalized to the sum of all Gaussian components as in the Gaussian mixture estimation. Geometrically,
a radial basis function in this network represents a bump in the N-dimensional space where N is the
number of entries (input vector size). In this case, the u; represents the location of this bump in the space
and I'; models its shape.

Because of the nonlinear behavior of this network, training procedure of the RBF network (as in
multi-layer networks) is approached in a completely different manner to that of single-layer networks.
In this network, the aim is to find the center and variance factor of all hidden layer Gaussian functions as
well as the optimal weights for the linear output layer. In this case, the following cost function is usually
considered as the main network objective:

N
Min (Z([Y(T,-) —RIT-[Y(T) — Ri])))

i=0

where N is the number of inputs in the training data set, Y (X) is the output of the network for input X
and, (T, Ry) is the kth training data pair. So, the actual output of the network is a combination of a
nonlinear computation followed by a linear operation. Therefore, finding an optimal set of weights for
hidden layers and output layer parameters is hardly achievable.

In this case, several approaches were used to find the optimal set of weights, however, none of these can
provide any guarantees that optimality can be achieved. For example, many approaches suggest that the
hidden layer parameters are set randomly and the training procedure is just carried on for the output linear
components. In contrast, in some other cases, the radial basis functions are homogenously distributed

© 2006 by Taylor & Francis Group, LLC

An Overview of Neural Networks Models 2-35

over the sample space before finding the output linear weights. However, the back propagation algorithm
seems to be the most suitable approach for training such a network.

2.6 A Sample of Neural Network Applications

This section briefly reviews a number of application areas in which Neural Networks were used effectively,
and this is by no means an exhaustive list of applications.

2.6.1 Expert Systems

One popular application is the use of Neural Networks as expert systems. Several definitions were presented
to clearly distinguish this kind of systems from other approaches [55-57]. Generally, an expert system
is defined as a system than can imitate the action of a human being for a given process. This definition
does not restrict the design of such systems by traditional Artificial Intelligence approaches. Therefore,
avariety of such systems can be built by using Fuzzy Logic, Neural Networks, and Neuro-Fuzzy techniques.
In most of these systems there is always a knowledge-based component that holds information about the
behavior of the system as simple rules followed by operators (usually in Fuzzy Systems) or a large database
collected from the system performance that a neural network can be trained to emulate.

2.6.2 Neural Controllers

Neural controllers are a specific class of the expert systems that deal with the process of regulating a linear
or nonlinear system. There are two methods to train such system, supervised and unsupervised. In the
supervised approach, another controller usually exists and the neural controller is trained to imitate its
behavior. In such case, the neural controller is connected in parallel to the other controller and during the
process, by sampling inputs and outputs, the network is trained to generate similar outputs for similar
inputs of the real controller. This process is known as on-line training. In contrast, in the case of off-line
training a database of the real controller inputs and outputs can be employed to train the network [58—60].

2.6.3 Decision Makers

In this specific class, which can also be viewed as an expert system, a neural network is used to make critical
decisions in unexpected situations. One such popular application is in financial markets such as stock
market applications. One of main characteristics of such systems that distinguish them from simple expert
systems is their stability. In fact, these systems must be able to produce acceptable output for untrained
situations. Therefore, a sufficiently “rich” data set must be used for the training process [61-63].

2.6.4 Robot Path Planning

Another complex scenario in which Neural Networks were used with some promise is that of robot
path planning. In this case, the robot tries to navigate its way to reach a target location. The situation
can be made more complicated by adding obstacles in the environment or even other mobile robots.
Normally, this situation is modeled as an optimization problem in which some cost function is minimized
(e.g., minimize the distance that the robot needs to travel) while satisfying certain constraints (e.g., no
collisions) [64—66].

2.6.5 Adaptive Noise Cancellation

Neural networks have been used very effectively to filter noise. In this case, the target signal (in the training
set) is the non-noisy signal that the input should be generating. The network must learn how to make
imitate the noise and in the process manage to neutralize it. Many approaches were introduced in the
literature over the years and some of these were deployed in real environments [67—69].

© 2006 by Taylor & Francis Group, LLC

2-36

2.7

Handbook of Bioinspired Algorithms and Applications

Conclusion

In this chapter, a general overview of the artificial Neural Networks was presented. These networks vary
in their sophistication from the very simple to the more complex. As a result, their training techniques
vary as well as their capabilities and suitability for certain applications. Neural networks have attracted a
lot of interest over the last few decades and it is expected they will be an active area of research for years
to come. Undoubtedly, more robust neural techniques will be introduced in the future that could benefit

a wide range of complex application.

References

(1]
(2]

(3]

(10]

(11]

(12]

(13]
(14]

(15]

(16]

Gallant, S.I. Neural Network Learning and Expert Systems, MIT Press, Cambridge, MA, 1993.
Karayiannis, N.B. and Venetsanopoulos, A.N. Efficient learning algorithms for Neural Networks
(ELEANNE). IEEE Transactions on Systems, Man, and Cybernetics, 23, 1993, 1372—1383.

Hassoun, M.H. and Clark, D.W. An adaptive attentive learning algorithm for single-layer Neural
Networks. In Proceedings of the IEEE International Conference on Neural Networks, Vol. 1,
July 24-27, 1988, pp. 431-440.

Ulug, MLE. A single layer fast learning fuzzy controller/filter, Neural Networks. In Proceedings of
the IEEE World Congress on Computational Intelligence, Vol. 3, June 27-July 2, 1994, pp. 1662-1667.
Karayiannis, N.B. and Venetsanopoulos, A.N. Fast learning algorithms for Neural Networks.
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 39, 1992, 453-474.
Hrycej, T. Back to single-layer learning principles. In Proceedings of the International Joint
Conference on Neural Networks, Seattle, Vol. 2, July 8-14, 1991, p. 945.

Healy, M.J. A logical architecture for supervised learning, Neural Networks. In Proceedings of
the IEEE International Joint Conference on Neural Networks, Vol. 1, November 18-21, 1991,
pp. 190-195.

Brandt, R.D. and Feng, L. Supervised learning in Neural Networks without feedback network. In
Proceedings of the IEEE International Symposium on Intelligent Control, September 15-18, 1996,
pp- 86—90.

Gong, Y. and Yan, P. Neural network based iterative learning controller for robot manipulators. In
Proceedings of the IEEE International Conference on Robotics and Automation, Vol. 1, May 21-27,
1995, pp. 569574

Park, S. and Han, T. Iterative inversion of fuzzified Neural Networks. IEEE Transactions on Fuzzy
Systems, 8, 2000, 266—280.

Zhan, X., Zhao, K., Wu, S., Wang, M., and Hu, H. Iterative learning control for nonlinear systems
based on Neural Networks. In Proceedings of the IEEE International Conference on Intelligent
Processing Systems, Vol. 1, October 28-31, 1997, pp. 517-520.

Chen, C.J., Haque, A.L., and Cheung,].Y. An efficient simulation model of the Hopfield Neural
Networks. In Proceedings of the International Joint Conference on Neural Networks, Vol. 1, June 7-11,
1992, pp. 471-475.

Galan-Marin, G. and Munoz-Perez, J. Design and analysis of maximum Hopfield networks. IEEE
Transactions on Neural Networks, 12,2001, 329-339.

Nasrabadi, N.M. and Li, W. Object recognition by a Hopfield neural network. IEEE Transactions
on Systems, Man and Cybernetics, 21, 1991, 1523-1535.

Xu, J., Zhang, X., and Li, Y. Kernel MSE algorithm: a unified framework for KFD, LS-SVM and
KRR. In Proceedings of the International Joint Conference on Neural Networks, Vol. 2, July 15-19,
2001, pp. 1486-1491.

Hayasaka, T., Toda, N., Usui, S., and Hagiwara, K. On the least square error and prediction square
error of function representation with discrete variable basis. In Proceedings of the Workshop on
Neural Networks for Signal Processing, Vol. V1. IEEE Signal Processing Society, September 4-6,
1996, pp. 72-81.

© 2006 by Taylor & Francis Group, LLC

An Overview of Neural Networks Models 2-37

[17]
(18]

[19]

[22]

(23]

[34]

[35]

Park, D.-C. Centroid neural network for unsupervised competitive learning. IEEE Transactions on
Neural Networks, 11,2000, 520-528.

Pedrycz, W. and Waletzky, J. Neural-network front ends in unsupervised learning. IEEE
Transactions on Neural Networks, 8, 1997, 390—401.

Park, D.-C. Development of a neural network algorithm for unsupervised competitive learning.
In Proceedings of the International Conference on Neural Networks, Vol. 3, June 9-12, 1997,
pp. 1989-1993.

Hsieh, K.-R. and Chen, W.-T. A neural network model which combines unsupervised and
supervised learning. IEEE Transactions on Neural Networks, 4, 1993, 357-360.

Dajani, A.L., Kamel, M., and Elmastry, M.I. Single layer potential function neural network for
unsupervised learning. In Proceedings of the International Joint Conference on Neural Networks,
Vol. 2, June 17-21, 1990, pp. 273-278.

Georgiopoulos, M., Heileman, G.L., and Huang, J. Properties of learning in ART1. In Proceedings
of the IEEE International Joint Conference on Neural Networks, Vol. 3, November 18-21, 1991,
pp. 2671-2676.

Heileman, G.L., Georgiopoulos, M., and Hwang, J. A survey of learning results for ART1 networks.
In Proceedings of the IEEE International Conference on Neural Networks, IEEE World Congress on
Computational Intelligence, Vol. 2, June 27-July 2, 1994, pp. 1222-1225.

Song, J. and Hassoun, M.H. Learning with hidden targets. In Proceedings of the International Joint
Conference on Neural Networks, Vol. 3, June 17-21, 1990, pp. 93-98.

Kwan, H.K. Multilayer feedbackward Neural Networks. In Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing, Vol. 2, April 14—17, 1991, pp. 1145-1148.
Shepanski, J.E Fast learning in artificial neural systems: multilayer perceptron training using
optimal estimation. In Proceedings of the IEEE International Conference on Neural Networks, Vol. 1,
July 24-27, 1988, pp. 465-472.

Karayiannis, N.B. and Randolph-Gips, M.M. On the construction and training of reformulated
radial basis function Neural Networks. IEEE Transactions on Neural Networks, 14, 2003, 835-846.
Leonard, J.A. and Kramer, M.A. Radial basis function networks for classifying process faults. IEEE
Control Systems Magazine, 11, 1991, 31-38.

Li, R, Lebby, G., and Baghavan, S. Performance evaluation of Gaussian radial basis function
network classifiers. In Proceedings of the IEEE, SoutheastCon, April 5-7, 2002, pp. 355-358.
Heimes, F. and van Heuveln, B. The normalized radial basis function neural network. In Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics, Vol. 2, October 11-14, 1998,
pp. 1609-1614.

Craddock, R.J. and Warwick, K. Multi-layer radial basis function networks. An extension to the
radial basis function. In Proceedings of the IEEE International Conference on Neural Networks, Vol. 2,
June 3-6, 1996, pp. 700-705.

Carr, J.C., Fright, W.R., and Beatson, R.K. Surface interpolation with radial basis functions for
medical imaging. IEEE Transactions on Medical Imaging, 16,1997, 96-107.

Romyaldy, M.A., Jr. Observations and guidelines on interpolation with radial basis function
network for one dimensional approximation problem. In Proceedings of the 26th Annual Conference
of the IEEE Industrial Electronics Society, Vol. 3, October 22-28, 2000, pp. 2129-2134.

Leung, H., Lo, T., and Wang, S. Prediction of noisy chaotic time series using an optimal radial
basis function neural network. IEEE Transactions on Neural Networks, 12,2001, 1163-1172.
Katayama, R., Kajitani, Y., Kuwata, K., and Nishida, Y. Self generating radial basis function as neuro-
fuzzy model and its application to nonlinear prediction of chaotic time series. In Proceedings
of the Second IEEE International Conference on Fuzzy Systems, Vol. 1, March 28—April 1, 1993,
pp. 407-414.

Warwick, K. and Craddock, R. An introduction to radial basis functions for system identification.
A comparison with other neural network methods. In Proceedings of the 35th IEEE Decision and
Control Conference, Vol. 1, December 11-13, 1996, pp. 464—469.

© 2006 by Taylor & Francis Group, LLC

2-38

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

[46]

(47]

(48]
(49]

(50]

(51]
(52]

(53]

(54]

[55]

Handbook of Bioinspired Algorithms and Applications

Lu, Y., Sundararajan, N., and Saratchandran, P. Adaptive nonlinear system identification using
minimal radial basis function Neural Networks. In Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, Vol. 6, May 7-10, 1996, pp. 3521-3524.

Tan, S., Hao, J., and Vandewalle, J. A new learning algorithm for RBF Neural Networks with
applications to nonlinear system identification. In Proceedings of the IEEE International Symposium
on Circuits and Systems, Vol. 3, April 28—May 3, 1995, pp. 1708-1711.

Ibayashi, T., Hoya, T., and Ishida, Y. A model-following adaptive controller using radial basis
function networks. In Proceedings of the International Conference on Control Applications, Vol. 2,
September 18-20, 2002, pp. 820-824.

Dash, PK., Mishra, S., and Panda, G. A radial basis function neural network controller for UPFC.
IEEE Transactions on Power Systems, 15, 2000, pp. 1293-1299.

Deng, J., Narasimhan, S., and Saratchandran, P. Communication channel equalization using
complex-valued minimal radial basis function Neural Networks. IEEE Transactions on Neural
Networks, 13, 2002, 687—-696.

Lee, J., Beach, C.D., and Tepedelenlioglu, N. Channel equalization using radial basis function
network. In Proceedings of the IEEE International Conference on Neural Networks, Vol. 4, June 3-6,
1996, pp. 1924-1928.

Lee, J., Beach, C.D., and Tepedelenlioglu, N. Channel equalization using radial basis function
network. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, Vol. 3, May 7-10, 1996, pp. 1719-1722.

Sankar, R. and Sethi, N.S. Robust speech recognition techniques using a radial basis function
neural network for mobile applications. In Proceedings of IEEE Southeastcon, April 12-14, 1997,
pp. 87-91.

Ney, H. Speech recognition in a neural network framework: discriminative training of Gaussian
models and mixture densities as radial basis functions. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, Vol. 1, April 14—17, 1991, pp. 573-576.
Cha, I. and Kassam, S.A. Nonlinear image restoration by radial basis function networks.
In Proceedings of the IEEE International Conference on Image Processing, Vol. 2, November 13-16,
1994, pp. 580-584.

Cha, I. and Kassam, S.A. Nonlinear color image restoration using extended radial basis function
networks. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, Vol. 6, May 7-10, 1996, pp. 3402—3405.

Bors, A.G. and Pitas, I. Optical flow estimation and moving object segmentation based on median
radial basis function network. IEEE Transactions on Image Processing, 7, 1998, 693-702.

Gao, D. and Yang, G. Adaptive RBF Neural Networks for pattern classifications. In Proceedings of
the International Joint Conference on Neural Networks, Vol. 1, May 12-17, 2002, pp. 846—851.

Fan, C,, Jin, Z., Zhang, J., and Tian, W. Application of multisensor data fusion based on RBF
Neural Networks for fault diagnosis of SAMS. In Proceedings of the 7th International Conference on
Control, Automation, Robotics and Vision, Vol. 3, December 2-5, 2002, pp. 1557-1562.

Tou, J.T. and Gonzalez, R.C. Pattern Recognition, Addison-Wesley, Reading, MA, 1974.

Lo, Z.-P, Yu, Y., and Bavarian, B. Derivation of learning vector quantization algorithms.
In Proceedings of the International Joint Conference on Neural Networks, Vol. 3, June 7-11, 1992,
pp. 561-566.

Burrascano, P. Learning vector quantization for the probabilistic neural network. IEEE Transactions
on Neural Networks, 2, 1991, 458—461.

Karayiannis, N.B. and Randolph-Gips, M.M. Soft learning vector quantization and clustering
algorithms based on non-Euclidean norms: multinorm algorithms. IEEE Transactions on Neural
Networks, 14,2003, 89-102.

Medsker, L. Design and development of hybrid neural network and expert systems. In Proceedings
of the IEEE International Conference on Neural Networks, IEEE World Congress on Computational
Intelligence, Vol. 3, June 27-July 2, 1994, pp. 1470-1474.

© 2006 by Taylor & Francis Group, LLC

An Overview of Neural Networks Models 2-39

[56]

(571

(58]

Kurzyn, M.S. Expert systems and Neural Networks: a comparison, artificial Neural Networks and
expert systems. In Proceedings of the First International Two-Stream Conference on Neural Networks,
New Zealand, November 24-26, 1993, pp. 222-223.

Hudli, A.V,, Palakal, M.J., and Zoran, M.J. A neural network based expert system
model. In Proceedings of the Third International Conference on Tools for Artificial Intelligence,
November 10-13, 1991, pp. 145-149.

Wang, W.-Y., Cheng, C.-Y., and Leu, Y.-G. An online GA-based output-feedback direct adaptive
fuzzy-neural controller for uncertain nonlinear systems. IEEE Transactions on Systems, Man and
Cybernetics, Part B, 34, 2004, 334-345.

Zhang, Y., Peng, P.-Y,, and Jiang, Z.-P. Stable neural controller design for unknown nonlinear
systems using backstepping. IEEE Transactions on Neural Networks, 11, 2000, 1347—-1360.

Nelson, A.L., Grant, E., and Lee, G. Developing evolutionary neural controllers for teams of mobile
robots playing a complex game. In Proceedings of the IEEE International Conference on Information
Reuse and Integration, October 27-29, 2003, pp. 212-218.

Rothrock, L. Modeling human perceptual decision-making using an artificial neural network.
In Proceedings of the International Joint Conference on Neural Networks, Vol. 2, June 7-11, 1992,
pp. 448-452.

Mukhopadhyay, S. and Wang, H. Distributed decomposition architectures for neural
decision-makers. In Proceedings of the 38th IEEE Conference on Decision and Control, Vol. 3,
December 7-10, 1999, pp. 2635-2640.

Rogova, G., Scott, P, and Lolett, C. Distributed reinforcement learning for sequential decision
making. In Proceedings of the Fifth International Conference on Information Fusion, Vol. 2, July 8-11,
2002, pp. 1263-1268.

Taheri, J. and Sadati, N. Fully modular online controller for robot navigation in static and
dynamic environments. In Proceedings of the 2003 IEEE International Symposium on Computational
Intelligence in Robotics and Automation, Vol. 1, July 16-20, 2003, pp. 163-168.

Sadati, N. and Taheri, J. Genetic algorithm in robot path planning problem in crisp and fuzzified
environments. In Proceedings of the IEEE International Conference on Industrial Technology, Vol. 1,
December 11-14, 2002, pp. 175-180.

Sadati, N. and Taheri, J. Solving robot motion planning problem using Hopfield neural network in
a fuzzified environment. In Proceedings of IEEE International Conference on Fuzzy Systems, Vol. 2,
May 12-17, 2002, pp. 1144-1149.

Bambang, R. Active noise cancellation using recurrent radial basis function Neural Networks.
In Proceedings of the Asia-Pacific Conference on Circuits and Systems, Vol. 2, October 28-31, 2002,
pp. 231-236.

Chen, C.K. and Chiueh, T.-D. Multilayer perceptron Neural Networks for active noise cancellation.
In Proceedings of the IEEE International Symposium on Circuits and Systems, Vol. 3, May 1215,
1996, pp. 523-526.

Tao, L. and Kwan, H.K. A neural network method for adaptive noise cancellation, Circuits and
Systems. In Proceedings of the IEEE International Symposium on Circuits and Systems, Vol. 5,
May 30-June 2, 1999, pp. 567-570.

© 2006 by Taylor & Francis Group, LLC

Ant Colony
Optimization

3.1 Biological Backgroundc..ocoiiiii 3-41
3.2 An ACO Algorithm for the TSP.................ooo. 3-43
3.3 Design Decisions
Matrix Interpretation e Solution Construction e Pheromone
Update e Pheromone Initialization e Integration of
Local Search

3.4 Population Based Ant Colony Optimization........... 3-49
Michael Guntsch 3.5 Applicationsooiiiiiiiii 3-50
Jurgen Branke L S L 1o N 3-51

3.1 Biological Background

Although only 2% of all insect species are social, they comprise more than 50% of the total insect biomass
globally [1], and more than 75% in some areas like the Amazon rain forest [2]. By social, we mean
that these insects, including all ants and termites and some subspecies of bees and wasps, live in colonies
composed of many interacting individuals. Insect colonies are capable of solving a number of optimization
problems that none of the individual insects would be able to solve by itself. Some examples are finding
short paths when foraging for food, task allocation when assigning labor to workers, and clustering when
organizing brood chambers, all of which are problems that have counterparts in real world optimization
problems.

In order for a swarm of insects to cooperate in problem solving, some form of communication is
necessary. This communication between the individuals of a colony can be more or less direct, depending
on the exact species. When a social bee has found a food source, it communicates the direction and
distance of the location where it found the food to the other bees by performing a characteristic dance [3].
This is a very direct communication, as the other bees must perceive the dance the one bee is performing
in order to be able to locate the food source. Other forms of direct communication include stimulation
by physical contact or the exchange of food or liquid.

Indirect communication between the individuals of a colony is more subtle and requires one individual
to modify the environment in such a way that it will alter the behavior of individuals passing through
this modified environment at a later time. One scenario where this type of environmentally induced
action exists in nature is when termites construct a nest that has a very complicated structure and exhibits
properties like temperature control [4]. Whenever a construction phase has ended, the surroundings of

3-41

© 2006 by Taylor & Francis Group, LLC

3-42 Handbook of Bioinspired Algorithms and Applications

the worker have changed, and the next phase of working is encouraged, which in turn results in new
surroundings, and so forth. Another example for indirect communication is the laying of pheromone
trails performed by certain species of ants. An ant foraging for food will mark its path by distributing an
amount of pheromone on the trail it is taking, encouraging (but not forcing) ants who are also foraging
for food to follow its path. The principle of modifying the environment in order to induce a change in
behavior as a means of communication is called stigmergy and was first proposed in Reference 5.

Stigmergy is the basis for the organization in many ant colonies. Although the ants have a queen, this
is a specialized ant which is only responsible for laying eggs and does not have any governing function.
Instead, the ants of a colony are self-organized. The term self-organization (SO) is used to describe the
complex behavior which emerges from the interaction of comparatively simple agents. Its origins lie in
the fields of physics and chemistry, where SO is used to describe microscopic operations resulting in
macroscopic patterns, see Reference 6. Through SO, the ants are able to solve the complex problems which
they encounter on a daily basis. The benefits of SO as a basis for problem solving are especially apparent
in its distributed and robust character. Effectively, an ant colony can maintain a meaningful behavior even
if a large number of ants are incapable of contributing for some amount of time.

To better understand the mechanism behind an ant colony’s ability to converge to good solutions when
looking for a short path from the nest to a food source, some experiments were undertaken in References 7
and 8. In Reference 8 a nest of the Argentine ant Linepithema humile was given two paths of identical
length that it could take to reach a food source, and after some time had passed, it was observed that the
ants had converged to one of the paths, following it practically to the exclusion of the alternative. To test
whether this type of ant would converge to the shorter of two alternate paths, an experimental setup
similar to the one depicted in Figure 3.1 was evaluated in Reference 7.

The Argentine ant is practically blind, so it has no means of directly identifying a shorter path. However,
despite this deficiency, a swarm of these ants is capable of finding the shorter path connecting the nest to
the foraging area containing the food, as the experiment shows. Initially, all ants are located at the nest
site. A number of ants start out from the nest in search of food, each ant laying pheromone on its path,
and reach the first fork at point A. Since the ants have no information which way to go, that is, no ant has
walked before them and left a pheromone trail, each ant will choose to go either right or left with equal
probability. As a consequence, about one half of the foraging ants will take the shorter route, the others the
longer route to intersection B. The ants which were on the shorter track will reach this intersection first,
and have to decide which way to turn. Again, there is no information for the ants to use as orientation,
so half of the ants reaching intersection B will turn back toward the nest, while the rest continues toward
the foraging area containing the food. The ants on the longer branch between intersections A and B,
unaffected by the other ants they met head-on, arrive at intersection B and will also split up; however,

Foraging
area

12.5cm

FIGURE 3.1 Single bridge experimental setup.

© 2006 by Taylor & Francis Group, LLC

Ant Colony Optimization 3-43

since the intensity of the pheromone trail heading back toward the nest is roughly twice as high as that of
the pheromone trail heading for the foraging area, the majority will turn back toward the nest, arriving
there at the same time as the other ants which took the long way back. Interestingly, since more ants have
now walked on the short branch between intersections A and B in comparison to the long one, future ants
leaving the nest will now already be more inclined to take the short branch, which is a first success in the
search for the shortest path.

The ants which continued toward the foraging area pick up some food to carry back to the nest. Arriving
atintersection B, the ants will prefer the short branch by the same argument as used above for ants starting
out fresh from the nest. Since the amount of pheromone at intersection A on the path back to the nest is
(roughly) equal to the sum of the pheromone amounts on the two branches leading away from the nest,
the shortest complete path from the foraging area back to the nest is also the most likely to be chosen by
the returning ants. Since the ants are continually distributing pheromone as they walk, the short path is
continually reinforced by more and more ants, until the amount of pheromone placed thereon in relation
to the alternative routes is so high that practically all ants use the shortest path, that is, the system converges
to the shortest path through self-reinforcement.

One point that we have neglected to mention so far is that the pheromone used by ants to mark their
trails slowly evaporates over time. This does not render the arguments used to explain the double bridge
experiment any less valid, it simply makes some of the math used for explanation less rigorous than
implied. Indeed, due to the evaporation of pheromone, a path that has not been chosen for some time,
invariably the long one, will contain almost no traces of pheromone after a sufficient amount of time,
further increasing the likelihood of ants taking the short path identified by the continually updated
pheromone.

In the rest of this chapter, we explain how the concept of marking paths with pheromones can be
exploited to construct algorithms capable of solving highly complex combinatorial optimization problems,
which was first proposed in Reference 9. The following section outlines the structure of Ant Colony
Optimization (ACO) algorithms using the Traveling Salesman Problem as an example. Afterwards, the
design decisions which must be made when implementing an ACO algorithm for a particular problem
are discussed. Finally, a number of applications where ACO algorithms lead to good results are surveyed.

3.2 An ACO Algorithm for the TSP

Consider the problem of finding the shortest tour connecting a number of points v € V in a complete,
weighted graph G = (V,V x V,d) withd : V x V — R™ indicating the distance between nodes. This
problem, also known as the Traveling Salesman Problem (TSP), is a generalization of the problem solved
by the real ants looking for the shortest path between the food source and the nest.

An ACO algorithm for the TSP proceeds iteratively. In every iteration, a number of ants independently
construct tours by moving progressively from the current city to one that has not been visited yet,
completing the tour after all cities have been visited. The decision of which city to move to from the
current location is made using pheromone information t;;, which denotes whether going from city i to
city j led to good solutions in the past, and heuristic information ;;, which signifies an immediate benefit
of moving from city i to city j. For both types of information, larger values are better. In case of the TSP, we
set n;; = 1/d;j to indicate that short distances are preferable to long ones. Unlike biological ants, artificial
ants perform an a posteriori update on the global pheromone information depending on how good the
respective constructed tour is in comparison to the competing ants of the same iteration. Algorithm 3.1
shows a standard ACO algorithm for the TSP.

As can be seen in Algorithm 3.1, the artificial ants used to solve this problem are augmented in a
number of ways in comparison to their biological inspiration. The algorithm starts by initializing all
pheromone values to a level 7y > 0, which is necessary since the ants make decisions according to relative
pheromone values and not absolute ones. We will discuss the merits of the different values for 7y in
Section 3.3. For now, we use 7p = 1.

© 2006 by Taylor & Francis Group, LLC

3-44

Handbook of Bioinspired Algorithms and Applications

Algorithm 3.1 Basic ACO Algorithm for the TSP

PN DU Ry

®

22:
23:
24:
25:
26:
27:
28:
29:
30:

initialize pheromone values Vi, j € [1, 1] : 7jj = 7o
repeat

for eachant! € {1,...,m} do
initialize selection set S — {1,..., n}
randomly choose starting city iy € S for ant |
move to starting city i = i
while S # ¢ do
remove current city from selection set S > S\ {i}

o« B
choose next city j in tour with probability p;; = %
Z Tin " Mip
heS
update solution vector m;(i) > j
move to new city i - j
end while
finalize solution vector 7;(i) > 1
end for
for each solution 7;,1 € {1,..., m} do
n
calculate tourlength f (7)) > Z iy iy
end for =
forall (3, 7) do
evaporate pheromone > (1—p) -1
end for
determine best solution of iteration 77 ™ = arg min f (77;)

le[1,m]
if 7 better than current best 7*,i.e. f(r+) < f(r*) then
setm* >t
end if
forall (4,) € 7+ do
reinforce 7;; > Tj; + A/2
end for
forall (i,j) € 7* do
reinforce 7;; > T;; + A/2
end for

31: until condition for termination met

After the initialization of the pheromone matrix, m ants per iteration each independently construct
a solution for the TSP instance. The solution of ant [is stored in a permutation vector 77}, which contains
the edges that were traversed during tour construction, that is, ant / moved from city i to city 7;(i) in
the tour. In order to ensure that each solution constructed is feasible, each ant maintains a selection set S
which, while the ant constructs a solution, contains all cities that still need to be visited to complete the
tour. The starting city for the ants is chosen randomly, since a tour is a circle visiting all cities and therefore
the starting position is arbitrary. Afterwards, as long as there are still cities that need to be visited, the ant
chooses the next city in the tour in a probabilistic fashion according to Equation (3.1), which is called the

random proportional transition rule:

o B
i i

plj = B "
2 hes Tin " M

© 2006 by Taylor & Francis Group, LLC

Ant Colony Optimization 3-45

The artificial ant tends to move to the city which has the best combination of pheromone information,
signifying a promising overall solution quality, and heuristic information, which equates to a short distance
to the immediate successor in the tour. The pheromone and heuristic information can be weighted with
the parameters &, 8 € R* in order to gauge the influence of the respective information on the decision
process. For the TSP, using @ = 1 and 8 = 5 yields good results, see Section 3.3 for more details.

Once the artificial ant has visited all the cities initially in S, it returns to the starting city, thereby
completing the tour. After m ants have completed their individual tours in this fashion, the solutions are
evaluated and the pheromone information is updated. The update consists of two parts: evaporation and
intensification. The purpose of evaporation is to diminish all pheromone values by a relative amount,
and is accomplished by multiplying all pheromone values with a factor (1 — p), where p is called the
evaporation rate. For the intensification, the best ant of the iteration (with solution 7) and the best
ant found by the algorithm over all iterations (with solution 7*) are used, each updating the pheromone
values corresponding to the edges traversed on the tour with A/2. In conjunction with 7y = 1, setting
A = p usually works well.

After a number of iterations, the exact number correlating to how low the pheromone evaporation is set,
the ants will cease finding new solutions because the pheromone matrix has converged to one solution.
It is customary to stop the ACO algorithm after a number of iterations chosen in accordance with the
evaporation rate p and problem size n in order to facilitate the aggregation and comparison of results.

3.3 Design Decisions

In Section 3.2, we introduced a basic ACO algorithm for the TSP. All ACO algorithms follow a basic layout
which consists of ants repeatedly constructing solutions, which is modeled as a walk through a decision
graph, and updating the pheromone values in order to influence the behavior of future ants [10]. Thus,
the TSP is a very intuitive application for ACO algorithms. In this section, we discuss the design decisions
made for Algorithm 3.1 in more detail and show alternatives used for other problem classes.

3.3.1 Matrix Interpretation

In Section 3.2, we stated that the pheromone value 7;; denotes how opportune it was in the past to move
from city i to city j in the tour. When pheromone values denote a relationship between two items of
a problem instance, for example, two cities in the TSP, we say that the pheromone matrix is encoded in an
item x item fashion. The reason for using an item x item encoding for the TSP is that the tourlength is a
function of the edges traversed in a tour, and hence the pheromone values guide the ants toward solutions
with low overall tourlength. This type of encoding is also used for many other problems, for example,
scheduling problems with setup costs, where the solution quality is derived from a predecessor—successor
relationship. However, for problems like the Quadratic Assignment Problem (QAP), where facilities are
allocated to sites, the goal being to minimize the sum of distance-weighted flows between the facilities
(see Reference 11), it makes no difference whether a facility i was positioned before or after another
facility j. The only information which is relevant for the evaluation function is the location of the site that
facility i is assigned to. Hence, for problems where items need to be positioned optimally, whether in a
geometric sense as for the QAP or in a schedule, for example, when minimizing tardiness, an item x place
encoding is employed, with 7;; denoting how good it was in the past to put item i on place j.

Not all problems allow for the pheromone values to be arranged sensibly in a matrix fashion.
In Reference 12, ACO algorithms are used for constructing a shortest super-sequence to a given number
of strings, that is, the shortest string which contains all given strings as a sequence. The characters of each
string are marked with pheromone information to increase the likelihood of being chosen as the next
character when the ants construct a supersequence. Marking individual nodes (or items) with pheromone
values is proposed in Reference 13 when using ACO algorithms to solve subset problems like the Multiple
Knapsack Problem (MKP), where the optimal subset (in the form of a binary vector stating which items

© 2006 by Taylor & Francis Group, LLC

3-46 Handbook of Bioinspired Algorithms and Applications

are in the subset) to a given number of items is sought which satisfies a number of linear constraints and
maximizes a linear function. The higher the pheromone value assigned to an item is, the more likely its
inclusion in the knapsack becomes.

3.3.2 Solution Construction

As we mentioned in Section 3.2, ants construct solutions by making a number of consecutive local
decisions which result in a global solution. For the TSP and most other ifem X item problems, the exact
sequence of these decisions is the result of the individual decisions made, as the ant continually moves
to the successor to make the next decision. However, for ifem x place problems, the decision sequence
is arbitrary, unless there are precedence constraints. In the absence of such constraints, it is usually best
to randomly permute the decision sequence every time an ant constructs a solution in order to avoid
a bias in the construction process, see Reference 14. Although it is generally preferable to proceed in a
random sequence, for some problems, for example, when scheduling jobs to minimize total tardiness, it
is necessary to start at place 1 and proceed in order so that heuristic information is available (see below);
however, even in these cases, a combination with a random decision sequence yields better results [15].
For the QAP, where so far no effective heuristic guidance for the ants has been discovered, a random
decision sequence should always be employed.

The basic rule by which ants make decisions is the random proportional transition rule defined
by Equation (3.1), in which the existence of heuristic information is already implied. If no heuristic
information is used, the formula is reduced to

¢

v
pi==—72- (3.2)
2 hes Tin
In References 16 and 17, a modification to the random proportional transition rule is proposed which
allows for greater control over the balance between exploration and exploitation. A parameter gy € [0, 1)
denotes the probability for choosing the best combination of pheromone and heuristic information
perceived by the ant, that is, for choosing j with

j=argmaxrtj - ’751’ (3.3)
heS

instead of proceeding probabilistically according to Equation (3.1), which is done with probability (1 —qy).
This pseudo-random proportional rule allows for a calibration of the amount of exploitation (qo-case)
versus biased exploration ((1 —¢qo)-case) performed by the ants, similar to the temperature setting in Simu-
lated Annealing or to reinforcement learning, specifically Q-learning [18]. In most cases, however, it is suf-
ficient to use only the random proportional transition rule defined by Equation (3.1), that s, to set qg = 0.

For an instance of size #, constructing a solution takes O(n?) steps for an ant, since it must make
n decisions and has O(n) candidates for each decision. A common method for reducing this computational
burden for very large problem instances is using so called candidate lists. For example, when using an
ACO algorithm for the TSP, it could make sense to define a candidate list L; for each city i which contains
the £ nearest neighbors of city i. When the ant makes a decision, it uses S; = SN L; instead of S as the
selection set, unless S; = #, in which case the ant reverts to using S. On average, this will greatly reduce the
computational expense of constructing a solution while still maintaining good solution quality, see also
Reference 19.

Equations (3.1), (3.2), or (3.3) are usually applied in permutation problems. For some problem classes,
however, extensions or alternatives exist. For scheduling problems which minimize total tardiness, using
the sum over all pheromone values up to and including i, that is,

i
‘L'i/j = Z Tjjs (3.4)
I=1

© 2006 by Taylor & Francis Group, LLC

Ant Colony Optimization 3-47

instead of using only the pheromone value 7j;, is studied in Reference 20. This type of pheromone
evaluation more accurately reflects that a job which was not chosen for a particular place in the schedule
despite a high pheromone value should be scheduled soon afterwards.

In Reference 21, an ACO algorithm for the Maximum Clique Problem (MCP) is proposed, where new
nodes for the clique C being constructed are chosen by evaluating how strong the pheromone-based con-
nection between nodes already in C and the candidate nodes in S are, that is, the probability to add node i is

o
Tic

pi= (3.5)

Zhes tf,lc
with ¢ = ZjeC 7;; and S being updated in such a way that C' = C U {i} is still a clique for all i € S.
Correspondingly, a pheromone update is undertaken on all edges of the largest final clique of the iteration.

In addition to the pheromone information, ants have the possibility of exploiting heuristic information,
if available. Although not a strict necessity, heuristic guidance usually plays an important role for attaining
a good solution quality. Two known exceptions to this rule are the QAP, where no beneficial heuristic
guidance seems to exist, and the MCP mentioned above, for which results in Reference 21 showed that
employing a straightforward heuristic guidance scheme ultimately led to a worse solution quality.

For the problem classes for which beneficial heuristic guidance does exist, we distinguish between
constant and dynamic heuristic values. For the TSP, the heuristic values n;; = 1/d;; are computed once
and remain constant. For other problems like the Probabilistic TSP (see References 22 and 23) or the single
machine total weighted tardiness problem (SMTWTP), the n;; values are functions of past decisions which
the ant has made, that is, they need to be recalculated during every solution construction. For example,
when considering which job j to schedule at place i when minimizing the total tardiness of all jobs, the
heuristic values
1

i 3.6
"= max(T + pj,) — T (36)

are used in Reference 20, where d; is the due date and p; the processing time of job j,and T = Z;l_:ll DPr(h)
is the sum of processing times of all jobs that have already been scheduled. Even when heuristic values
are dynamic, the effort for their computation should be restricted to constant time if possible, since
otherwise the amount of time necessary for constructing a solution becomes prohibitively large. Another
disadvantage of the heuristic information for the SMTWTP is that it cannot be combined with a random
decision sequence.

Finally, it is possible to influence the ant’s decisions by tuning the pheromone and heuristic weights
« and B. For most applications, setting @ = § = 1 is sufficient. However, tuning these parameters can
lead to better performance for some problem classes. For the TSP, choosing 8 > 1 has been shown to yield
good results, for example, using 8 = 2 in References 17 and 24 or 8 = 5 in References 25 and 26. Using
a steadily decreasing value of B has also been applied successfully for the Resource Constrained Project
Scheduling Problem (RCPSP) in Reference 27. Using values of « > 1 has been shown in Reference 21 to
achieve quicker convergence at the cost of a lower solution quality in the long run.

3.3.3 Pheromone Update

The purpose of the pheromone update is to focus the search process of the ants on a promising portion
of the solution space, which is then explored more extensively in the hope of finding the optimal solution.
The field of update strategies is perhaps the most studied part of ACO algorithms, and a variety of methods
to update the pheromone values have been proposed. In this section, we briefly explain the conceptually
different approaches which have been suggested to update pheromone values, and also explain in detail
some of the more successful strategies.

At the most abstract level, the pheromone update should accomplish a positive reinforcement of those
search space regions which seem promising and a negative reinforcement of all others. The principal

© 2006 by Taylor & Francis Group, LLC

3-48 Handbook of Bioinspired Algorithms and Applications

mechanisms used for this are pheromone evaporation (for the negative reinforcement), which diminishes
all pheromone values by a relative amount each time it is applied, and pheromone intensification (for
the positive reinforcement), achieved by adding an update term to selected pheromone values. Formally,
an update takes the form

Vi,j €[, n]: 1= (1—p)- 7+ Ay, (3.7)

where p € (0, 1]is a parameter of the algorithm denoting how much of the pheromone information is lost
with every application of evaporation. A high evaporation rate will cause a more rapid convergence which
is coupled with less exploration than a low evaporation rate. Thus, the evaporation rate should be tuned
in accordance with the number of iterations that the ACO algorithm is allowed to run. Aj; is an update
value, which is 0 if the edge (i, j) was not traversed by the ant and some value greater than 0 if it was.
The exact value of Aj; and especially the strategy when an update is performed is the key difference
between most types of ACO algorithm. There are two aspects to consider when characterizing pheromone
intensification: which solutions update, and how much is updated by these solutions.

Generally, updates of the pheromone values take place after an iteration of m ants has constructed
solutions. In the Ant System (AS), which was introduced in Reference 9 for solving the TSP, every ant of
the iteration contributes to the pheromone update. For each ant [€ [1, m], the update value A;(I), is
calculated, and the update is performed with the sum of update values A;; = /" | A;;(]). Three different
methods for determining the individual A;; were tested: assigning a constant, using the inverse to the
distance dj; between customers 7 and j, and, performing best and used subsequently, inverse to the length
of the entire tour, that is, the solution quality. In addition to the m ants of an iteration being allowed
to perform an update, it was also proposed to let a number of so called elitist ants, which represent the
best solution found by all ants so far, update the pheromone trail. Using a small number of these elitist
ants, inspired by the elitist strategy in Reference 28, intensifies the search near the currently best solution,
leading to better results overall.

Further research resulted in the introduction of the Ant Colony System (ACS) [16,17]. Here, an online
update of the pheromone values was proposed in order to enforce exploration: each time an ant traversed
an edge (4, j), it would reduce the corresponding pheromone value according to

Tj> (1—p) - Tj+p - 70, (3.8)

thus encouraging subsequent ants to choose different edges (note that this holds only for 7;; > 10). Also,
the global update by all ants at the end of an iteration was replaced by one update performed along the
best tour found so far, that is, by one elitist ant.

Originating from AS and ACS, many other update schemes have been proposed. In References 24
and 29, the MAX-MIN Ant System (MMAS) is introduced, which uses only the best ant of the iteration
and an elitist ant for the positive pheromone update and avoids stagnation in the search process by limiting
pheromone values to the predetermined interval [Tpmin, Tmax]- Limiting the pheromone values also bounds
the minimum and maximum probability with which an edge is selected according to Equation (3.1), if the
heuristic values are bounded as well. In Reference 25, a modification of the AS called AS-rank is proposed,
where the m ants of an iteration are ranked by their solution quality and, together with a number of elitist
ants of maximum rank, update the pheromone trail in proportion to their rank.

Some methods also exist that operate without using evaporation. In Reference 30, pheromone update is
accomplished by comparing the solution quality of the ant to the average quality of the m previous ants. If it
is better, a positive update is performed along the path; if it is worse, the update is negative. Thus, the update
is accomplished in O(m - n) time for m ants, compared to O(n?) for Equation (3.7). In Reference 31,
a population of solutions is maintained from which the pheromone matrix is derived. Updates are
performed on the population, with the insertion of a solution being equivalent to a positive update of the
pheromone matrix, and a deletion to a negative update (nullifying the previous positive update which was
undertaken upon insertion). This update mechanism will be studied in more detail in Section 3.4.

© 2006 by Taylor & Francis Group, LLC

Ant Colony Optimization 3-49

The number of ants m also plays a role in the exact effect of the pheromone updates. The more solutions
are constructed before an update is undertaken, the higher the expected quality of the updating solutions.
However, the number of ants is a linear factor in the runtime of the algorithm, which is why a trade-off
between runtime and quality of the updating solutions must be found. In Reference 17, a method for
finding the optimal number of ants is discussed which relies on knowledge of the average size of the
pheromone values before and after a change, both being a function of the problem size n. Modeling the
local pheromone update as a first-order linear recurrence relation allows m to be expressed as a function
of the average pheromone levels before and after an update, and of the initial pheromone values. Although
the authors cannot provide these pheromone levels, they argue that experimental results show m = 10 to
work well, and this is also the case in our own experiments.

3.3.4 Pheromone Initialization

Having discussed a number of different possibilities for updating pheromone information, we now illus-
trate some possibilities for initializing the pheromone values. Pheromone initialization is usually uniform,
that is, all pheromone values 7;; are assigned an initial value 7¢. A notable exception to this rule is studied in
Reference 32, where the initialization is performed after a number of preprocessing steps used to identify
local optima.

For uniform initialization, the value of 7y must be seen in relation to the value for A in order to
understand its impact on the behavior of the algorithm. Setting typ > A will cause the updates performed
during the initial phase of the ACO algorithm to have practically no effect. Instead, the ants are guided
almost exclusively by the heuristic information until all pheromone values have dropped to lower values.
Conversely, for 19 <« A, there is a high risk of the ACO algorithm converging on the first good solution
found, since the first solution to receive some updates will be highly favored in future decisions due to
Equation (3.1). Setting

A
0= —> (39)
0

which is the maximum value attainable in the long run for any 7;; via Equation (3.7), usually represents
a good trade-off between runtime and exploration.

3.3.5 Integration of Local Search

Local search is a possible augmentation for the ACO algorithm which can be used to further improve
the solutions found by the ants of an iteration (either all or only those used for pheromone intens-
ification) before the pheromone update is performed. Some common local search methods, which
have been especially popular with the TSP and other routing problems, are 2-opt, 3-opt [33], and
Lin—Kernighan (LK) [34]. When applicable, using local search represents a trade-off between quickly
improving solution quality by exploring the neighborhood of a solution and premature convergence to a
local optima. Ideally, the local search performed should be possible in O(#2) steps for instances of size #,
since otherwise it becomes the dominant part of the search process instead of the ants constructing new
solutions.

3.4 Population Based Ant Colony Optimization

Population based Ant Colony Optimization (PACO), introduced in Reference 31, represents a con-
ceptually new and different update scheme to the ACO algorithm. Instead of explicitly maintaining a
pheromone matrix and using evaporation to gradually reduce old or unnecessary pheromone informa-
tion, the PACO algorithm maintains a population of solutions P = {7, ..., m}}, which is updated instead

© 2006 by Taylor & Francis Group, LLC

3-50 Handbook of Bioinspired Algorithms and Applications

of the pheromone matrix, and from which the pheromone values ;; can be derived via
Tij =71+ A- {7 € P|(i,j) € 7}, (3.10)

where A is the update value used.

After m ants have constructed a solution, the best ant is taken as a candidate to update the popu-
lation. For the first k iterations, the candidate solution is added to P in all cases. Once |P| = k, it
becomes necessary to remove a solution from the population in order to maintain a population size
of k. Managing the Population as a FIFO queue, that is, removing the oldest solution and adding
the best of the iteration, has proven to be a very good update method [31] for population sizes of
k < 5, outperforming MMAS and the standard ACO algorithm on the TSP and the QAP. Other
update methods are introduced in Reference 35. It is also possible to define one of the solutions
in the population as the elitist solution, which can only be removed if a better solution is added in
its place.

Since old information is removed via the deletion of solutions from the population instead of pher-
omone evaporation, the PACO algorithm can move to a completely new portion of the search space in
k iterations. Coupled with the explicit storage of solutions which are available for repair, this makes the
algorithm well suited for dynamic problems, see Reference 35. When a number of alternative solutions are
sought, for example, for multi-criteria optimization problems, PACO uses the population to store non-
dominated solutions, achieving a good approximation of the Pareto front [36,37]. Finally, the population
of solutions can be used as an interface with other population driven algorithms like Genetic Algorithms
[38]. See Reference 37 for a more detailed study of the PACO algorithm.

3.5 Applications

In this section, we present a survey of some of the noteworthy applications of ACO. Of course, this survey
cannot hope to present a complete overview, and the interested reader is referred to References 26, 39,
and 40 for additional surveys.

One of the earliest and most intuitive applications of ACO was the TSP [9]. Since all ACO algorithms
depend in some fashion on the metaphor of an ant moving through a graph [10], using the TSP to illustrate
the basic principles of Ant Algorithms is a logical choice, and it is also used as the introductory example in
Reference 39. ACO has delivered good results on many TSP instances, especially when combined with local
search [24]. However, due to the existence of very good heuristics like Lin—Kernighan [34] and polynomial
time approximation schemes [41] for the Euclidean TSP, ACO algorithms are not the best choice for this
problem class. The situation is better for the Sequential Ordering Problem (SOP), an extension of the
TSP, where the goal is to find a minimum weight Hamiltonian Path with precedence constraints among
the nodes. Here, a form of Ant Algorithm called Hybrid Ant System (HAS-ACO) [42] is currently one of
the best algorithms available. Other variations of the standard TSP, like the Probabilistic TSP (PTSP) and
Dynamic TSP (DTSP), are also handled well by ACO, using proper heuristic guidance [23] for the PTSP
and pheromone resetting strategies [43,44] or the PACO algorithm [35] for the DTSP.

Another problem related to the TSP is the Vehicle Routing Problem (VRP), in which a number of
customers must be serviced exactly once, and all vehicles begin and end their respective tours at a depot.
The goal is to minimize the number of vehicles while meeting constraints such as capacity per vehicle,
maximum tourlength per vehicle, and time windows. Solving this problem with Ant Systems was first
proposed in Reference 45, and further research has lead to a unified approach for VRPs [46], where the
Ant System is combined with an insertion heuristic from Reference 47.

The QAP, defined in Reference 11 and shown to be NP-hard in Reference 48, is a conceptually different
optimization problem compared to the TSP and its derivates in the sense that the pheromone matrix
is not interpreted in an item X item fashion, but rather as item x place. Applying Ant System to the
QAP was first undertaken in Reference 49, including a heuristic guidance scheme for the ants when

© 2006 by Taylor & Francis Group, LLC

Ant Colony Optimization 3-51

constructing a solution. Addinglocal search to the AS algorithm was shown to be beneficial in Reference 50.
In Reference 51, the Hybrid Ant System (HAS) was introduced and applied to the QAP with good results.
The HAS algorithm uses ants to modify solutions instead of building them, and the pheromone values
are used to remember beneficial changes.

Another class of problems in which ACO algorithms have seen wide and successful application is in
scheduling problems. For scheduling with due dates, for example, the Single Machine Total Weighted
Tardiness Problem (SMTWTP), the pheromone matrix is also interpreted in a item X place fashion.
However, in contrast to the QAP, “place” in this case refers to the place in the schedule and not a physical
location. An ACO algorithm for the SMTWTP was applied in Reference 52, where ACO found the optimal
solution to 125 benchmark problems more often than the other heuristics evaluated. Ant Algorithms have
also been applied to somewhat more complex scheduling problems, for example, job shop scheduling
[53], flow shop scheduling [54], and, most notably, the Resource Constrained Project Scheduling Problem
(RCPSP) [27], where ACO was state of the art at the time of publishing.

Lately, the ACO algorithm has been extended to be able to deal with multi-criteria optimization
problems, in particular the Single Machine Total Tardiness with Setup Costs Problem. Here, two criteria
exist which must be optimized simultaneously, yet cannot be aggregated into a single optimization func-
tion. Rather, the algorithm needs to find a number of solutions which represent different trade-offs
between the two (or more) criteria. The PACO algorithm was modified for optimizing multi-criteria prob-
lems in Reference 36 with further improvements in Reference 28 yielding an algorithm which performs
very well and can deal with an arbitrary number of criteria.

So far, all the problems discussed have been permutation problems, which can be handled quite
well by ACO. However, some efforts have been undertaken to apply ACO to areas where solutions are
not permutations. As mentioned above, in Reference 12, ACO is successfully applied to the shortest
supersequence problem. Also, some partitioning problems, for example, graph coloring [55] and data
clustering [56], have been solved with ACO, with varying degrees of success. In Reference 57, ACO is used
as a generic algorithm for solving Constraint Satisfaction Problems (CSPs) with promising results.

As a final note, although not being an application, in the recent past it has been shown that under certain
conditions, some versions of ACO can provably find the optimal solution to the instance of a problem
with a probability arbitrarily close to 1 [58,59]. Although these results have no immediate impact on
the applicability of ACO algorithms, they put ACO on the same level as Simulated Annealing or Genetic
Algorithms in terms of solution finding capability. Note that with a lower bound greater than 0 on the
probability to find the solution or move closer to the solution in a given iteration, any method will find
the optimum with a probability arbitrarily close to 1, given enough time.

References

[1] R.H. Arnett. American Insects: A Handbook of the Insects of America North of Mexico. Van Nostrand
Rehinhold, New York, 1985.

[2] E.J. Fittkau and H. Klinge. On biomass and trophic structure of the central amazonian rain forest
ecosystem. Biotropica, 5: 2—14, 1973.

[3] K. von Frisch. The Dance Language and Orientation of Bees. Harvard University Press, 1967.

[4] M. Liischer. Air-conditioned termite nests. Scientific American, 205: 138—145, 1961.

[5] P. Grassé. La reconstruction du nid et les coordinations interindividuelles chez bellicositermes
natalensis et cubitermes sp. la theorie de la stigmergie: essai d’interpretation du comportement
des termites constructeurs. Insectes Sociaux, 6: 41-81, 1959.

[6] G. Nicolis and I. Prigogine. Self-Organization in Non-Equilibrium Systems. John Wiley & Sons,
New York, 1977.

[7] S. Goss, S. Aron, J.-L. Deneubourg, and J. Pasteels. Self-organized shortcuts in the argentine ant.
Naturwissenschaften, 76: 579-581, 1989.

[8] J.-L. Deneubourg, S. Aron, S. Goss, and J. Pasteels. The self-organizing exploratory pattern of the
argentine ant. Journal of Insect Behavior, 3: 159-168, 1990.

© 2006 by Taylor & Francis Group, LLC

3-52

(10]

(11]

(12]

(13]

(14]

[15]

(16]
(17]
(18]

(19]

(20]

(21]

(22]

(23]
(24]
(25]
(26]
(27]

(28]
(29]

Handbook of Bioinspired Algorithms and Applications

M. Dorigo. Ottimizzazione, apprendimento automatico, ed algoritmi basati su metafora naturale
(Optimization, learning and natural algorithms) (Italian). Ph.D. thesis. Dipartimento di Elettronica,
Politecnico di Milano, Italy, 1992.

M. Dorigo and G.D. Caro. Ant colony optimization: A new meta-heuristic. In P.J. Angeline,
Z.Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, Eds., Congress on Evolutionary Computation
(CEG), Vol. 2. IEEE Press, Washington, 1999, pp. 1470-1477.

T.C. Koopmans and M.]. Beckman. Assignment problems and the location of economic activities.
Econometrica, 25(1): 53-76, 1957.

R. Michel and M. Middendorf. An ACO algorithm for the shortest common supersequence prob-
lem. In D. Corne, M. Dorigo, and E Glover, Eds., New Ideas in Optimization, McGraw-Hill,
New York, 1999, pp. 51-62.

G. Leguizamé6n and Z. Michalewicz. A new version of ant system for subset problems.
In PJ. Angeline, Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, Eds., Congress of
Evolutionary Computation, Vol. 2. IEEE Press, Washington, 1999, pp. 1459-1464.

D. Merkel and M. Middendorf. On the behaviour of ant algorithms: Studies on simple problems.
In Metaheuristics International Conference (MIC), July 2001, pp. 573-577.

D. Merkle and M. Middendorf. A new approach to solve permutation scheduling problems with
ant colony optimization. In Applications of Evolutionary Computing — Evo Workshops, Vol. 2037
of Lecture Notes on Computer Science. Springer-Verlag, Heidelberg, 2001, pp. 484—493.

M. Dorigo and L.M. Gambardella. Ant colonies for the traveling salesman problem. BioSystems,
43:73-81, 1997.

M. Dorigo and L.M. Gambardella. Ant colony system: A cooperative learning approach to the
traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1: 53—66, 1997.
C.J.C.H. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning, 8: 279-292,
1992.

T. Stiitzle and M. Dorigo. ACO algorithms for the traveling salesman problem. In K. Miettinen,
M. Makela, P. Neittaanmaki, and J. Periaux, Eds., Evolutionary Algorithms in Engineering and
Computer Science, Wiley, New Jersey, 1999, pp. 163-183.

D. Merkle and M. Middendorf. An ant algorithm with a new pheromone evaluation rule for total
tardiness problems. In Applications of Evolutionary Computing — Evo Workshops, Vol. 1803 of
Lecture Notes on Computer Science. Springer-Verlag, Heidelberg, 2000, pp. 287-296.

S. Fenet and C. Solnon. Searching for maximum cliques with ant colony optimization. In G. Raidl
et al., Eds., Applications of Evolutionary Computing — Evo Workshops, Vol. 2611 of Lecture Notes
on Computer Science, Springer, 2003, pp. 236—245.

J. Branke and M. Guntsch. New ideas for applying ant colony optimization to the probabilistic
TSP. In Applications of Evolutionary Computing — Evo Workshops, Vol. 2611 of Lecture Notes in
Computer Science. Springer-Verlag, Heidelberg, 2003, pp. 165-175.

J. Branke and M. Guntsch. Solving the probabilistic tsp with ant colony optimization. Journal of
Mathematical Modelling and Algorithms (JMMA), 3(4): 403-425, 2004.

T. Stiitzle and H. Hoos. Max—min ant system. Future Generation Computer Systems, 16: 889-914,
2000.

B. Bullnheimer, R. Hartl, and C. Strauss. A new rank based version of the ant system — a com-
putational study. Central European Journal for Operations Research and Economics, 7: 25-38,
1999.

D. Corne, M. Dorigo, and E Glover. New Ideas in Optimization. McGraw-Hill, New York, 1999.
D. Merkel, M. Middendorf, and H. Schmeck. Ant colony optimization for resource-constrained
project scheduling. IEEE Transactions on Evolutionary Computation, 6: 333346, 2002.

J. Holland. Adapdation in Natural and Articial Systems. MIT Press, Ann Arbor, MI, 1975.

T. Stiitzle and H.H. Hoos. The max—min ant system and local search for the traveling salesman
problem. In IEEE International Conference on Evolutionary Computation. IEEE Press, Piscataway,
NJ, 1997, pp. 309-314.

© 2006 by Taylor & Francis Group, LLC

Ant Colony Optimization 3-53

[30]

[31]

[45]

[46]

V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for the quadratic
assignment problem. INFORMS Journal on Computing, 11(4): 358-369, 1999.

M. Guntsch and M. Middendorf. A population based approach for ACO. In S. Cagnoni et al., Eds.,
Applications of Evolutionary Computing — Evo Workshops, Vol. 2279 of Lecture Notes on Computer
Science. Springer, 2002, pp. 72-81.

C. Solnon. Boosting ACO with a preprocessing step. In S. Cagnoni, J. Gottlieb, E. Hart,
M. Middendorf, and G. Raidl, Eds., Applications of Evolutionary Computing — Evo Workshops,
Vol. 2279. Springer-Verlag, Kinsale, Ireland, 2002, pp. 161-170.

S. Lin. Computer solutions for the traveling salesman problem. Bell Systems Technical Journal,
44(10): 2245-2269, 1965.

S. Lin and B. Kernighan. An effective heuristic algorithm for the traveling salesman problem.
Operations Research, 21: 498-516, 1973.

M. Guntsch and M. Middendorf. Applying population based ACO to dynamic optimization
problems. In International Workshop on Ant Algorithms ANTS, Vol. 2463 of Lecture Notes on
Computer Science. Springer-Verlag, Heidelberg, 2002, pp. 111-122.

M. Guntsch and M. Middendorf. Solving multi-criteria optimization problems with population-
based aco. In C. Fonseca, P. Fleming, E. Zitzler, K. Deb, and L. Thiele, Eds., Evolutionary Multi-
Criterion Optimization (EMO), Vol. 2632 of Lecture Notes on Computer Science. Springer, Berlin,
Heidelberg, 2003, pp. 464—478.

M. Guntsch. Ant Algorithms in Stochastic and Multi-Criteria Environments, Ph.D. thesis. Insti-
tute AIFB, University of Karlsruhe, January 2004. http://www.ubka.uni-karlsruhe.de/cgibin/
psview?document=2004/wiwi/3.

J. Branke, C. Barz, and I. Behrens. Ant-based crossover for permutation problems. In E. Cantu-Paz,
Ed., Genetic and Evolutionary Computation Conference, Vol. 2723 of Lecture Notes in Computer
Science. Springer, 2003, pp. 754-765.

E. Bonabeau, M. Dorigo, and G. Théraulaz. Swarm Intelligence. Oxford University Press, Oxford,
1999.

T. Stiitzle and M. Dorigo. The ant colony optimization metaheuristic: Algorithms, applica-
tions, and advances. In E Glover and G. Kochenberger, Eds., Handbook of Metaheuristics. Kluwer
Academic Publishers, Norwell, MA, 2002.

S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other
geometric problems. Journal of the ACM, 45: 753-782, 1998.

L.M. Gambardella and M. Dorigo. An ant colony system hybridized with a new local search for
the sequential ordering problem. IN-FORMS Journal on Computing, 12: 237-255, 2000.

M. Guntsch, M. Middendorf, and H. Schmeck. An ant colony optimization approach to dynamic
TSP. In L. Spector et al., Eds., Genetic and Evolutionary Computation Conference (GECCO).
Morgan Kaufmann Publishers, San Francisco, CA, 2001, pp. 860-867.

M. Guntsch and M. Middendorf. Pheromone modification strategies for ant algorithms applied
to dynamic TSP. In E. Boers et al., Eds., Applications of Evolutionary Computing — Evo Work-
shops, Vol. 2037 of Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 2000,
pp. 213-222.

B. Bullnheimer, R. Hartl, and C. Strauss. An improved ant system algorithm for the vehicle routing
problem. Technical report, POM Working Paper No. 10/97, University of Vienna, 1997.

M. Reimann, K. Doerner, and R. Hartl. Analyzing a unified ant system for the vrp and
some of its variants. In G. Raidl et al., Eds., Applications of Evolutionary Computing —
Evo Workshops, Vol. 2611 of Lecture Notes on Computer Science. Springer, Heidelberg, 2003,
pp. 300-310.

M.M. Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations Research, 35(2): 254-265, 1987.

S. Sahni and T. Gonzales. P-complete approximation problems. Journal of ACM, 23(3): 555565,
1976.

© 2006 by Taylor & Francis Group, LLC

http://www.ubka.uni-karlsruhe.de
http://www.ubka.uni-karlsruhe.de

3-54 Handbook of Bioinspired Algorithms and Applications

[49] V. Maniezzo and A. Colorni. The ant system applied to the quadratic assignment problem. IEEE
Transactions on Knowledge and Data Engineering, 5: 769-778, 1998.

[50] T. Stiitzle and H. Hoos. Max—min ant system and local search for combinatorial optimization
problems. In Metaheuristics International Conference (MIC), Kluwer Academic, Norwell, MA,
1997.

[51] L.M. Gambardella, E.D. Taillard, and M. Dorigo. Ant colonies for the QAP. Journal of Operations
Research Society, 2: 167-176, 1999.

[52] A. Bauer, B. Bullnheimer, R. Hartl, and C. Strauss. An ant colony optimization approach for the
single machine total tardiness problem. In Congress on Evolutionary Computation (CEC), IEEE
Press Piscataway, NJ, 1999, pp. 1445-1450.

[53] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant system for job-shop scheduling.
JORBEL — Belgian Journal of Operations Research, Statistics and Computer Science, 34: 39-53,
1994.

[54] T. Stiitzle. An ant approach for the flow shop problem. In 6th European Congress on Intelligent
Techniques & Soft Computing (EUFIT), Vol. 3. Verlag Mainz, Aachen, 1998, pp. 1560—1564.

[55] A. Vesel and J. Zerovnik. How good can ants color graphs? Journal of Computing and Information
Technology — CIT, 8: 131-136, 2000.

[56] N. Monmarche. On data clustering with artificial ants. In A.A. Freitas, Ed., Data Mining with
Evolutionary Algorithms: Research Directions. AAAI Press, Orlando, FL, 1999, pp. 23-26.

[57] C. Solnon. Ants can solve constraint satisfaction problems. IEEE Transactions on Evolutionary
Computation, 6: 347-357, 2002.

[58] W. Gutjahr. ACO algorithms with guaranteed convergence to the optimal solution. Information
Processing Letters, 82: 145-153, 2002.

[59] T. Stiitzle and M. Dorigo. A short convergence proof for a class of ACO algorithms. IEEE
Transactions on Evolutionary Computation, 6: 358-365, 2002.

© 2006 by Taylor & Francis Group, LLC

Swarm Intelligence

41 Introduction..............ccooiiiiiiiiiiiiiiiii 4-55
4.2 Swarm Intelligence Overviewccoevvenenn.. 4-55
Emergent Strategy-Based Paradigm e Highly Distributed
Control Paradigm e Organizing Principles e Swarm
Intelligence Communication Forms e The Limitations of
Swarm Intelligence

Mohamed Belal 4.3 The Main Applications of Swarm Intelligence......... 4-58
]afaar Gaber Ant Colony Optimization e Particle Swarm Optimization

Hoda El-Sayed 4.4 ConclusiOnuivriiriini it 4-62
Abdullah Almojel REfETEIICES «.vetetetet ettt e 4-62

4.1 Introduction

Swarm Intelligence (SI) is a computational and behavioral metaphor for solving distributed problems
inspired from biological examples provided by social insects such as ants, termites, bees, and wasps and
by swarm, herd, flock, and shoal phenomena in vertebrates such as fish shoals and bird flocks.

In other words, SI is based on the principles underlying the behavior of natural systems consisting
of many agents, and exploiting local communication forms and highly distributed control. Thus, the
SIapproach constitutes a very practical and powerful model that greatly simplifies the design of distributed
solutions to different kind of problems. In the last few years, SI principles have been successfully applied
to a series of applications including optimization algorithms, communications networks, and robotics.

4.2 Swarm Intelligence Overview

The SI approach emphasizes two important paradigms: the highly distributed control paradigm and the
emergent strategy-based paradigm.

4.2.1 Emergent Strategy-Based Paradigm

Collective behavior demonstrated by social insects (ants, bees, termites, etc.) often emerges from a small
set of simple low-level interactions between individuals, and between individuals and the environment.
The following example illustrates the concept of emergence. To solve a given task, for example, to sort
elements scattered on the ground, one can write an algorithm wherein a centralized part distributes the
task to achieve between a set of distributed agents. The centralized program, based on the global goal

4-55

© 2006 by Taylor & Francis Group, LLC

4-56 Handbook of Bioinspired Algorithms and Applications

and plans, the current input, and the current state, collects agent results, analyzes them, and decides the
actions to be executed next.

One way of achieving the required task without a centralized part is by the addition of the individual
efforts of a multitude of agents who do not have any idea of the global objective to be reached; that is, there
is the emergence of collective behavior. Deneubourg et al. [1] introduced a model of sorting behavior
in ants. They found that simple model ants were able to sort into piles objects initially strewn randomly
across a plane. To be precise, near an anthill, one can observe that ants run in all directions to gather
corpses, to clean up their nests, or transport their eggs to order them by size etc. One can only imagine
that something, such as a special chemical marker, indicates to individual ants where to place their chips,
and allows them to distinguish an object already arranged from an object to be arranged. But how are
these markers placed and on what criteria? In fact, such interesting collective behavior can be mediated by
nothing more than similar, simple individual behavior. For example, F(1) each ant wanders a bit, (2) if an
ant meets an object and if it does not carry one, it takes it, and (3) if an ant transports an object and there
is a similar object in the same way in front of it, it deposits its load. By following these local strategic rules
with only local perceptual capacities, ants display the ability to perform global sorting and clustering of
objects.

Swarm Intelligence is a new way to control multiple agent systems. The swarm-type approach to
emergent strategy deals with large numbers of homogeneous agents, each of which has fairly limited
capabilities on its own. However, when many such simple agents are brought together, globally interesting
behavior can emerge as a result of the local interactions of the agents and the interactions between the
agents and the environment. A key research issue in such a scenario is determining the proper design of
the local control laws that will allow the collection of agents to solve a given problem.

4.2.2 Highly Distributed Control Paradigm

Swarm Intelligence is, intrinsically, a bottom-up approach. Bottom-up approaches are carried out by
programming large numbers of independent entities with relatively simple sets of rules. Brought together,
constructive behavior emerges, as it does in insects that create complex social behavior and structures
from the combined efforts of individuals with extremely limited intelligence. In contrast, the top-down
approach is based on the classic centralized method (e.g., the Client/Server approach), wherein central
coordination should take place. SI can be applied to fully distributed systems that consist of several
autonomous agents working together with local communication and minimal perception capabilities to
complete one or more tasks.

4.2.3 Organizing Principles

A study of the ST approach reveals a useful set of organizing principles that can guide the design of efficient
distributed applications for different kinds of problems. SI has the following notable features:

Autonomy: The system does not require outside management or maintenance. Individuals are
autonomous, controlling their own behavior both at the detector and effector levels in a
self-organized way.

Adaptability: Interactions between individuals can arise through direct or indirect communication
via the local environment; two individuals interact indirectly when one of them modifies the
environment and the other responds to the new environment at a later time. By exploiting such
local communication forms, individuals have the ability to detect changes in the environment
dynamically. They can then autonomously adapt their own behavior to these new changes. Thus,
swarm systems emphasize auto-configuration capabilities.

Scalability: S1 abilities can be performed using groups consisting of a few, up to thousands of individuals
with the same control architecture.

Flexibility: No single individual of the swarm is essential, that is, any individual can be dynamically
added, removed, or replaced.

© 2006 by Taylor & Francis Group, LLC

Swarm Intelligence 4-57

Robustness: SI provides a good example of a highly distributed architecture that greatly enhances
robustness; no central coordination takes place, which means that there is no single point of failure.
Moreover, like most biological and social systems, and by combining scalability and flexibility
capabilities, the swarm system enables redundancy, which is essential for robustness.

Massively parallel: The swarm system is massively parallel and its functioning is truly distributed.
Tasks performed by each individual within its group are the same. If we view each individual
as a processing unit, SI architecture can be thought of as single instruction stream—multiple data
stream (SIMD) architecture or systolic networks.

Self-organization: Swarm systems emphasize self-organization capabilities. The intelligence exhibited is
not present in the individuals, but rather emerges somehow out of the entire swarm. In other words,
if we view every individual as a processing unit, solutions to problems obtained are not predefined
or preprogrammed but are determined collectively as a result of the running program.

Cost effectiveness: The swarm-type system consists of a finite collection of homogeneous agents, each
of which has fairly limited capabilities on its own. Also, each agent has the same capabilities and
control algorithm. It is clear that the autonomy and the highly distributed control afforded by the
swarm model greatly simplify the task of designing the implementation of parallel algorithms and
hardware. For example, for swarm-type multi-robotic systems, robots are relatively simple and
their design process effort can be kept minimal in terms of sensors, actuators, and resources for
computation and communication.

4.2.4 Swarm Intelligence Communication Forms

SI exploits local communication forms. Interactions between individuals can arise through direct or
indirect communication.

4.2.4.1 Indirect Communication

Indirect communication is implicit communication that takes place between individuals via the environ-
ment. This is known as Stigmergy communication. The Stigmergy concept describes a class of mechanisms
mediating animal-animal interactions through stimuli. When an animal does not explicitly distinguish
between its own activity and the activities of others, its actions include modification of its local envi-
ronment. By sensing its environment, an animal will perform an appropriate action as a response to the
new environment at a later time. Thus, interaction takes place in stages through changes in the local
environment. Note that the behavior of each insect can then be described as a series of stimulus-response
sequences.

There are two forms of Stigmergy. In the Stigmergy Sematectonic communication form, information
is communicated through physical modification of the environment. For example, opening a hole in
the body of a termitary causes a disruption of the termitary’s carefully maintained internal atmosphere
(intense gradients in temperature, humidity, carbon dioxide, and oxygen). Sensing some problem in
the body of the termitary, termites perform the rebuilding function and attack intruders while repairing
the breach in order to restore the termitary’s equilibrium.

In the second form of Stigmergy, some signal substance is deposited in the environment that makes
no direct contribution to the task being undertaken but is used to influence the subsequent behavior
that is task related [2]. For example, for building their nests, termites use highly volatile chemicals
called pheromones. Termites place tiny balls of mud near other balls of mud that have high pheromone
concentrations and, as a consequence, mounds develop. As the mounds grow, pheromones at the bases
evaporate and the termites bring the mud to the top, driving the height of some mounds upward of 30 ft
and causing adjacent mounds to meet in arches.

Pheromone-based Stigmergy is well developed in ants. Ants are capable of finding the shortest path
from a food source to the nest. Also, they are capable of adapting to changes in the environment, and find
a new shortest path once the old one is no longer feasible due to an obstacle [3]. Ants deposit a certain
amount of pheromone while walking, and each ant probabilistically prefers to follow a direction rich in
pheromone rather than a poorer one. Hence, the shorter path will receive a higher amount of pheromone

© 2006 by Taylor & Francis Group, LLC

4-58 Handbook of Bioinspired Algorithms and Applications

and this will in turn cause a higher number of ants to choose the shorter path. This elementary behavior
of real ants explains how they can find the shortest path. The collective behavior that emerges is a form of
autocatalytic behavior (or positive feedback), whereby the more the ants follow the trail the more likely
they are to do so.

4.2.4.2 Direct Communication

Direct communication is explicit communication that can also take place between individuals. Examples
of such interactions are the waggle dance of the honeybee, using antennas, trophallaxis (food or liquid
exchange, e.g., mouth-to-mouth food exchange in honeybees), mandibular contact, visual contact,
chemical contact (the odor of nearby nest mates), etc.

Direct communication can be implemented by mobile wireless ad hoc networks. Individuals have
a very limited memory with the added feature that they are mobile; therefore, they can be considered
mobile agents. Indirect interactions through the environment can be thought of as distributed short-
term memory. Indeed, agents communicate through pheromone trails. When walking toward the colony
or food sources, ants will simply walk toward a high concentration of pheromone. The accumulated
pheromone then serves as a distributed shared memory. Note also that we need an analog for indirect
interaction through the local environment to implement the autoadaptive mechanism. Such a system
can adapt to changes in user behavior and system software through the pheromones. In other words,
pheromones will monitor the state of the machines and the network.

4.2.5 The Limitations of Swarm Intelligence

The swarm approach provides a rich source of inspiration and its principles are directly applicable to
computer systems. However, although it emphasizes auto-configuration, auto-organization, and adapt-
ability capabilities, the swarm-type approach remains useful for non-time-critical applications involving
numerous repetitions of the same activity over a relatively large area, such as finding the shortest path or
collecting rock samples on Mars [4]. Indeed, the swarm-type approach deals with the cooperation of large
numbers of homogeneous agents. Such approaches usually rely on mathematical convergence results
(such as the random walk) that reach the desired outcome over a sufficiently long period of time [4].
Notice that, in addition, the agents involved are homogeneous.

4.3 The Main Applications of Swarm Intelligence

Swarm Intelligence principles have been successfully applied in a variety of problem domains and applic-
ations. An example of successful research direction in SI is ant colony optimization (ACO), which focuses
on discrete optimization problems. Particle swarm optimization (PSO) is also an efficient and general
approach to solve nonlinear optimization problems with constraints. Another example of interesting
research direction is swarm robotics, where the focus is on applying SI techniques to the control of large
groups of cooperating autonomous robots.

4.3.1 Ant Colony Optimization

Ant colony optimization has been applied successfully to a large number of difficult, discrete optimization
problems including the traveling salesman, the quadratic assignment, scheduling, vehicle routing, etc.,
as well as to routing in telecommunication networks. Ant algorithms are a subset of SI. In other words,
ant algorithms can be viewed as multi-agent systems (ant colony), where agents (individual ants) solve
required tasks through cooperation in the same way that ants create complex social behavior from the
combined efforts of individuals.

4.3.1.1 Basic Ant Algorithm

The basic concept underlying the ant algorithm is inspired by the foraging behavior of real ants. When ants
search for food, they start from their nest and move at random toward the food. Ants use highly volatile

© 2006 by Taylor & Francis Group, LLC

Swarm Intelligence 4-59

chemicals called pheromones to provide a sophisticated signaling system. While walking, ants deposit
quantities of pheromone marking the selected routes that they follow with a trail of the substance. When
an ant encounters an intersection, it has to decide which path to follow next. The concentration of
pheromone on a certain path is an indication of its usage. An ant chooses a path with a high probability
to follow and thereby reinforces it with a further quantity of pheromone. Over time, the concentration of
pheromone decreases due to diffusion. This foraging process is an autocatalytic process characterized by
a positive feedback loop, where the probability that an ant chooses any given path increases according to
the number of ants choosing the path on previous occasions. Ants that take the shortest path will reach
the food source first. On their way back to the nest, the ants again have to select a path. After a sufficiently
long period of time, the pheromone concentration on the shorter path will be higher than on other longer
paths. Thus, all the ants will finally choose the shorter path.

This ant foraging process can be used to find the shortest path in networks. Also, ants are capable of
adapting to changes in the environment, and find a new shortest path once the old one is no longer feasible
due to some obstacle. Thus, this process is appropriate to mobile ad hoc networks wherein link changes
occur frequently [5].

Let G = (V, E) be a connected graph with N = | V| nodes. The simple ant colony optimization meta-
heuristic can be used to find the shortest path between a source node vs and a destination node v4 on the
graph G. The path length is defined by the number of nodes on the path. A variable ¢; ; corresponding to
the artificial pheromone concentration is associated with each edge (7,). An ant located in node v; uses
pheromone g; ; to compute the probability of node v; being the next hop. This transition probability p; ;
is defined as:

2 ifjev,
pij = Yjev, Pij Mm}:ﬁJ=lﬁH1§i§N.
0 ifj¢ Vi, jevi

During the process, ants deposit pheromone on the edges. In the simplest version of the algorithm, the
ants deposit a constant amount of pheromone, that is, the amount of pheromone of the edge (i, j) when
an ant moves from node v; to node v; is updated from the formula:

®ij = @ij + Ag.

Moreover, like real ant pheromone, the artificial pheromone concentration should decrease over time.
In the simple ant algorithm this is shown by:

@ij(t+1) = (1 — q@)@ij(t), where0 <g <1

4.3.1.2 The Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most studied NP-hard problems in combinatorial
optimization. In the following, we show how the basic ant algorithm is adapted to solve this problem.

Consider a graph G = (N, E), where N is a set of nodes representing cities and E is a set of arcs fully
connecting the nodes. The distance between cities i and j is denoted dj;. The TSP consists of finding a
minimal length Hamiltonian circuit on the graph G = (N, E). A Hamiltonian circuit of graph G is a
closed tour visiting once and only once all the n = |N| nodes of G, and its length is given by the sum of
the lengths of all the arcs of which it is composed.

A swarm of m ants build tours by executing # steps (one step by node). If all the iterations are done in
parallel, the m tours will be built in # iterations. The number of ants m at each iteration is kept constant.
The addition of new pheromone and pheromone evaporation are executed after all ants have completed
their tour, that is, after they have built a complete tour. Each ant has a memory that contains the list of
already visited cities. This list is used to define the set of cities that the ant located on city i still has to

© 2006 by Taylor & Francis Group, LLC

4-60 Handbook of Bioinspired Algorithms and Applications

visit. Recall that a feasible tour visits a city exactly once. Additionally, this allows the ant to cover the same
tour (i.e., path) to deposit delayed pheromones on the visited arcs. The probability with which an ant k
chooses to go from city i to city j while building its tour at the algorithm iteration ¢ is:

a;,j(t)
Pi(,];)(t) =1 Ly 4i1(D)

0 otherwise,

if je vV,

where Vi(k) denotes the set of the neighborhood of node i that ant k has not visited yet.
The ant decision value a;,j(¢) is obtained by the composition of the local pheromone trail value with a
local heuristic value that supports the nearest neighbors as follows:

(g3 (0)1[dy]
Y ten; lpin (1% [dy]=F

ai,j(t) = forj € N;,

where N; is the set of neighbors of node 7, and « and B are two parameters that control the relative weight
of the pheromone trail and the heuristic value. A heuristic value should measure or estimate the relevance
of adding an arc (4, j). A reasonable heuristic for TSP is 1/dj;, the inverse of the distance between cities
iand j.

After all the ants have completed their tour, pheromone evaporation on arcs is executed. Each ant k
deposits a quantity of pheromone

——— ifarc(i,j) € T® (1),
k
Ag01(]]0(0 — 1 L®@)

0 otherwise,

where T™ (t) is the tour by ant k at iteration ¢ and L (¢) is its length. Note that the shorter the tour of
ant k, the greater is the amount of pheromone deposited.
The addition of new pheromone and pheromone evaporation are set by the following formula:

Pi(t) = (1 — Pyt —m) + Y gl

k=1

(1),

where g is the pheromone decay trail, 0 < g < 1. The initial amount of pheromone ¢;;(0) is set to the
same small positive value on all arcs. The suitable value for q is 0.5, which ensures a tradeoff between
sufficient positive feedback and the exploration of new cycles. For a and 8, optimal values are ¢ ~ 1 and
1 < B < 5. Note that with @ = 0, the algorithm corresponds to the classical greedy algorithm, and with
o > 2, all the agents converge to the same cycle, which is not necessarily optimal.

The comparison of this algorithm with other heuristics such as tabu search and simulated annealing on
small TSP problems (n = 30 cities), emphasizes its efficiency. The same technique presented here for TSP
was applied to solve other optimization problems such as job scheduling, QAP, and routing in networks
[2,5-8].

4.3.1.3 Comparison with Other Nature-Inspired Algorithms

A number of modern optimization techniques are inspired by nature. In simulated annealing modeled
from the thermodynamic behavior of solids, particles in solution space move under the control of
a randomized scheme, with probabilities according to some typically Boltzmann-type distribution.
Genetic algorithms (GAs) start with a randomly generated population and use crossover and mutation
operators to update it together with fitness function to evaluate the individuals. Neural networks (NNs)

© 2006 by Taylor & Francis Group, LLC

Swarm Intelligence 4-61

are a distributed learning technique in which the knowledge associated with a trained neural network is
not stored in any specific location but encoded in a distributed way across its weight matrix.

Ant colony optimization shares many common points with these nature-inspired approaches. ACO,
SA, and GA share the same update mechanism with random techniques. Randomness is present in the
fuzzy behavior of ants [8]. ACO shares with GA some organizing principles of social population such as
interaction and self-organization. ACO shares with NN trained networks the property that knowledge is
distributed throughout the network. Moreover, ACO, like NN, exhibits emergence capabilities [8].

4.3.2 Particle Swarm Optimization

Particle swarm optimization algorithms are also a subset of SI. The basic concept of PSO is inspired by the
social behavior of bird flocking and fish schooling. More precisely, PSO is a parallel evolutionary computa-
tion technique that provides a collaborative population-based search model. Individuals of the population
called particles fly around in a multidimensional search space. During flight, each particle adjusts its pos-
ition according to its own experience and according to the experience of a neighboring particle, moving
toward the best position encountered by itself or its neighbors. Thus, the PSO system combines local
search methods (through self-experience) with global search methods (through neighboring experience),
attempting to balance exploration and exploitation [9,10].

In practice, a PSO algorithm is initialized with a population of random candidate solutions or particles.
Two factors characterize a particle status on the search space: its position and its velocity. Additionally, the
performance of each particle is measured according to a problem-dependent fitness function (i.e., cost
function). Each particle is assigned a randomized velocity and is iteratively moved through the problem
space. It is attracted towards the location of the best fitness achieved so far by the particle itself and by the
location of the best fitness achieved so far across its neighborhood. Two versions of PSO exist depending
on the neighborhood topology used to exchange experience among particles. In the global version of the
algorithm, the neighborhood of the particle is the entire population (i.e., the entire swarm). In the local
version, the swarm is divided into overlapping neighborhoods of particles.

4.3.2.1 The Standard PSO Algorithm
The basic PSO algorithm can be described by the following equations:

Vit +1) = avi(t) + bin (p — xi(1) + b (p — xi (1)),
xi(t +1) = x;(¢t) + vi(k + 1),

where v;(t) denotes the velocity of particle i, which represents the distance to be traveled by this particle
from its current position, that is, the difference between two successive particle positions; x;(t) represents
the particle position; pfl) represents its own previous best position; and pfz) is the best value obtained so
far by any particle among the neighbors. In the global version of the algorithm, pfz) represents the globally
best position among the whole swarm. Particles change their position (or state) in the following manner.
At iteration ¢, the velocity v;(t) is updated based on its current value affected by a tuning parameter q,
and on a term that attracts the particle towards previously found best positions. The strength of attraction
is given by the coefficients b; and b,. The particle position x;(¢) is updated using its current value and
the newly computed velocity v;(t + 1). The three tuning parameters, a, b;, and by, influence greatly the
algorithm performance. The inertia weight a is a user specified parameter, a large inertia weight pressures
towards global exploration in a new search area while a small inertia pressures towards fine tuning the
current search area. Positive constant acceleration coefficients (or learning factors) b; and b, control the
maximum step size of the particle, usually by = by = 2. Suitable selection of the tuning factors a, by,
and b, can provide a balance between the global (i.e., state space exploration), and local search (i.e., state
space exploitation). Random numbers r; and r, are selected in the range [0, 1] and they introduce useful
randomness for state space exploitation.

© 2006 by Taylor & Francis Group, LLC

4-62 Handbook of Bioinspired Algorithms and Applications

In the following, we show how this basic PSO algorithm can be adapted to solve an optimization
problem. The task-mapping problem (TMP) is one of the most studied NP-hard problems in distributed
computing.

4.3.2.2 PSO for Task Assignment Problems

An important issue in distributed computing is the efficient assignment of computations into different
processing elements. Given the graph of clustered tasks and the graph of the target distributed architecture,
one should find a mapping by placing the highly communicative tasks on adjacent nodes of the processor
network. It is well known that TMP is NP-hard. Salman et al. [9] use the PSO approach to address this
problem.

For each problem, particles should be designed such that potential solutions can be represented. This
is the key issue in designing a PSO algorithm. For a TMP, each particle is represented by a vector of length
equal to M, which corresponds to the number of vertices in the task-graph. The value of each element in
the particle is an integer in the range [1, N, where N is the number of processors in the target architecture.
For example, for a task-graph with eight vertices and three processors, the particle representation (1, 2,
1, 2, 2, 3, 1, 3) means that tasks 1, 3, and 7 are assigned to processor 1; tasks 2, 4, and 5 are assigned
to processor 2; and tasks 6 and 8 are assigned to processor 3. Thus, a particle position corresponds to
an M-coordinate position in an M-dimensional search space. According to the PSO equations presented
here, each particle is iteratively moved (i.e., flies) through an M-dimensional search space [9].

4.3.2.3 Comparison with Other Nature-Inspired Algorithms

Particle swarm optimization and genetic algorithm have some common features. Both algorithms start
with a group of a randomly generated population and use fitness values to evaluate the individuals.
Moreover, both update the population and search for the optimum with random techniques. However,
PSO does not use genetic operators like crossover and mutation. Particles update themselves with internal
velocities (i.e., the difference between two successive particle positions). Note also that a PSO algorithm
uses a tracking memory that accelerates its convergence to the best solution, even in the local version in
most cases [11].

The performance of a PSO algorithm presented in Reference 9 is evaluated in comparison with a GA on
randomly generated mapping problem instances. The results showed that the quality of the PSO algorithm
solution is better than that of the GA’s in most of the test cases and, in addition, the PSO algorithm runs
faster than that of the GA's.

Further, the PSO approach seems to be a promising method to train ANN. Indeed, PSO can be used to
replace the back-propagation learning algorithm in ANN. For example, Reference 12, showed that PSO is
faster and gets better results in most cases than the evolutionary approach.

4.4 Conclusion

Swarm Intelligence is a rich source of inspiration for our computer systems. Specifically, SI has many fea-
tures that are desirable for distributed computing. These include auto-configuration, auto-organization,
autonomy, scalability, flexibility, robustness, emergent behavior, and adaptability. These capabilities sug-
gest a wide variety of applications that can be solved by SI principles. We believe that the emergence
paradigm and the highly distributed control paradigm will be fruitful to new technologies, such as
nanotechnology, massively parallel supercomputers, embedded systems, and scalable systems for deep
space applications.

References

[1] J.L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chrétien. The
dynamics of collective sorting, robot-like ants and ant-like robots. In Simulation of Animal

© 2006 by Taylor & Francis Group, LLC

Swarm Intelligence 4-63

Behaviour: From Animal to Animals (J.A. Meyter and S. Wilson, Eds.), MIT Press, Cambridge,
MA, 1991, pp. 356-365.

T. White. Swarm intelligence and problem solving in telecommunications. Canadian Artificial
Intelligence Magazine, spring, 1997.

R. Beckers, J.L. Deneubourg, and S. Goss. Trails and U-turns in the selection of the shortest path
by the ant Lasius niger. Journal of Theoretical Biology, 159, 397-415, 1992.

Lynne E. Parker. ALLIANCE: An architecture for fault tolerant multi-robot cooperation. IEEE
Transactions on Robotics and Automation, 14, 220-240, 1998.

Mesut Giines and Otto Spanio. Ant-routing-algorithm for mobile multi-hop ad-hoc networks. In
Network Control and Engineering for Qos, Security and Mobility II, Kluwer Academic Publishers,
2003, pp. 120-138.

Eric Bonabeau and Guy Theraulaz. Intelligence Collective, Edition HERMES, Paris, 1994.

Marc Dorigo, Eric Bonabeau, and Guy Theraulaz. Ant algorithms and stigmergy. Future Generation
Computer Systems, 16, 851-871, 2000.

B. Denby and S. Le Hégarat-Mascle. Swarm intelligence in optimization problems. Nuclear
Instruments and Methods in Physic Research Section A, 502, 364-368, 2003.

Ayed Salman, Imtiaz Ahmad, and Sabah Al-Madani. Particle swarm optimization for task
assignment problem. Microprocessors and Microsystems, 26, 363-371, 2002.

Ioan Cristian Trelea. The particle swarm optimization algorithm: Convergence analysis and
parameter selection. Information Processing Letters, 85, 317-325, 2003.

X. Hu, R. Eberhart, and Y. Shi. Particle swarm with extended memory for multiobjective
optimization. In Proceedings of the IEEE Swarm Intelligence Symposium, 2003, Indianapolis,
IN, USA.

L. Messerschmidt and A.P. Engelbrecht. Learning to play games using a PSO-based competitive
learning approach. In Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and
Learning, 2002.

© 2006 by Taylor & Francis Group, LLC

Parallel Genetic
Programming;:
Methodology, History,
and Application to
Real-Life Problems

5.1 Introduction to Genetic Programming 5-65
How GP Works
5.2 Models of Parallel and Distributed GP................. 5-70

Parallelizing at the Fitness Level e Parallelizing at the
Population Level
5.3 The Length of Individuals and Measurement of

RESUILS «.veneeiteee e 5-72
5.4 Parallel GP: The History........cocooveveiiiiiinnnnnen. 5-73
5.5 ApPHCAtionsouviitireiiiiiie e 5-74
Typical GP Problems
5.6 Real-Life Applicationsccccevviiiiiiiinineinne.n. 5-75

Placement and Routing in FPGA e Medical Knowledge
Representation by Means of GP

5.7 Concluding Discussioncocevevuineeninninennen. 5-82
Francisco Fernandez Acknowledgment...................cccoiiiiiiiiieieeeaeeeeeennn 5-82
de Vega REfEIONCES «v.uvi ittt et 5-82

5.1 Introduction to Genetic Programming

Software industry costs are mainly influenced by human resources required for developing software,
because software development is still supported by human expertise. Although prices for hardware have
dropped during the last 50 years, costs for hiring computer engineers have steadily increased in the same
period. Hence the advent of new techniques for automatic software development would be welcomed by
the software industry.

Scientists have been interested for long in the search for techniques capable of automatic software
development. The first attempts to endow computers with the ability to learn can be traced back to
the 1950s. The term machine learning, which was coined at that time, embodied the idea of computer
algorithms that can learn by themselves through experience [1].

5-65

© 2006 by Taylor & Francis Group, LLC

5-66 Handbook of Bioinspired Algorithms and Applications

The finding of reliable methods for automatic programming would be a revolution for computer
science, and would completely change our perception of the software industry.

Although the proposal described in the 1950s was of interest, until very recently results have not unveiled
the potential that techniques of machine learning can attain. This potential has been clearly shown by a new
technique that can be considered part of “evolutionary algorithms” (EAs), genetic programming (GP) [2].

Genetic programming is aimed at evolving computer programs. It begins with a basic description of
the problem to be solved, after which the initialization process takes place; GP proceeds by automatically
generating a set of candidate solutions for the problem to be solved. Each of the candidate solutions
takes the shape of a computer program. Finally, GP enters a loop that evaluates each of the solutions,
selects the best one — according to a measurement criteria — and produces a new set of candidate
solutions employing the information contained in those selected solutions that acts as parents for the next
generation.

Not only GP but also the set of techniques comprised within the EA field resembles the natural evolution
of species in nature, as described by the Natural Evolution Theory [3].

Among the techniques that arose under the umbrella of natural evolution, genetic algorithms [4],
evolutionary programming [5], and evolution strategies [6,7] have matured and demonstrated their
usefulness.

During the last few years, GP has demonstrated not only its capability of automatically developing
software modules [8], but has also been employed for designing industrial products with outstanding
quality — such as electronic circuits that have been recently patented [9].

Although GP has proved its usefulness, the computational resources required for solving complex
problems may become huge. In such instances, improvement of the technique is sought by using concepts
borrowed from the parallel processing area. Not only GP but also EA have incorporated some degree of
parallelization when difficult problems are to be solved.

This chapter focuses on parallel genetic programming. We first provide some basic ideas about how GP
works, and then how it can be parallelized. Finally, after reviewing the history of the field, we show some
problems — benchmark and real-life problems — that are solved by Parallel GP.

5.1.1 How GP Works

5.1.1.1 The GP Algorithm

The GP algorithm is quite similar to other EAs. The idea behind this group of techniques is to improve a set
of candidate solutions for the problem at hand by means of a series of iterations. Thus, by applying several
genetic operators, partial solutions from different individuals in the population will combine to produce
an optimal or at least a useful solution for the problem to be solved. One of the main features of GP is that
every individual from the population is a computer program — a candidate program that tries to solve
the problem we are facing. At the end of the evolutionary process, the best individual from the population
will be the program that solves the problem in the best way among all the programs evaluated so far.
The main steps in the algorithm are the following:

1. Initialize the population of candidate solutions (individuals) for the problem to be solved.

2. Evaluate all of the individuals in the population and assign them a fitness value.

3. Select individuals in the population who will become parents. A selection algorithm is employed
in this step.

. Apply genetic operations to the selected individuals in order to create new ones — descendants.

. Introduce these new individuals into the new population.

. If the population is not saturated go to step 3.

. If the termination criterion is reached, then present the best individual as the output. Otherwise,
replace the existing population with the new population and go to step 3.

N Y U s

In the following sections, we will describe the different steps of the algorithm; but before that, an
introduction to program representation is offered.

© 2006 by Taylor & Francis Group, LLC

Parallel Genetic Programming 5-67

5.1.1.2 Terminal and Function Sets

As stated earlier, GP populations are made up of computer programs. Therefore, each individual is
a program, and usually, these programs are encoded be means of tree-like structures. The reason for
employing tree structures is simply a tradition that has been inherited from the times when Koza described
the technique [2]. Recently, other data structures have been successfully employed [10].

Each individual is made up of functions — internal nodes — and terminals — the leaves of the tree
(see Figure 5.1). Both sets have to be decided according to the problem to be solved. The intuition about
the general shape that a solution for the problem might adopt usually helps GP designer for the selection
of these sets. For instance, if we try to discover the shape of a function by means of GP when solving
a symbolic regression problem, probably, we should include arithmetic functions in the function set.
Nevertheless, no guarantee about the suitability of the set is frequently provided.

The terminal set is usually made up of variables and constant values that are significant for the problem
at hand.

Thus, the first concern for GP designers is to appropriately define the function and terminal sets: even
when the solution to the faced problem is not known, one should take care that a solution can be found
using the functions and terminals selected.

For making things easier, we will now describe a very simple problem, and we will see how terminal
and function sets can be decided, and how the problem is then solved.

For instance, suppose we want to solve this problem: find an algorithm that accepts an integer number
as the input and returns double the value of the input. Although the problem is extremely easy, it will
be illustrative for demonstrating the power of GP. The technique is capable of developing the algorithm
without any help from human programmers.

The first step is to build both terminal and function sets useful for the problem at hand. In this problem,
we know that the function that the algorithm has to implement is simply F(#n) = (n+ n), so we know that
the function set should include an operator for computing addition, so that F = {+}, and the terminal
set must include a parameter for the input T = {n}. Once the appropriate sets have been established, GP
can develop by means of the evolution of an individual like that depicted in the left part of Figure 5.2.

But of course, a different selection for the function and terminal sets might also lead to a solution for
the problem. Consider the following sets: F = {x}, and T = {2, n}. This time we have not only included
a parameter in the terminal set, but also a constant value. Again, GP could obtain a solution like that
depicted in the right part of Figure 5.2.

Although one could think that any function and terminal set will be useful for solving the problem, this
is not always the case. If we choose the sets F = {—} and T = {n}, no matter which function we might
build (n,n — n,n — n — n,...) using these sets, the solution would never be found. Notice that we use a
binary subtraction operator; if we add the equivalent unary operator, the solution could be built as (n—n).

() F={+)
oo T={n}

FIGURE5.1 Individuals in GP are usually encoded by means of tree structures.

3

F=(+] F={)
T={n} T={2.,n}

FIGURE 5.2 Two solutions for the problem, employing different terminal and function sets.

© 2006 by Taylor & Francis Group, LLC

5-68 Handbook of Bioinspired Algorithms and Applications

Even when the designer does not know the optimal solution, he should be able to extract some inform-
ation from the high-level specification of the problem, which helps him to define the appropriate function
and terminal sets.

5.1.1.3 Fitness Function

It is not only the task of defining the terminal and function sets that is crucial for obtaining good results
when using GP, a good fitness function is also required. The idea behind any EA is that good parents will
probably have similar or sometimes better children, and after a number of generations, descendants will
be good enough for solving the problem. But behind this idea, there is a need for a measure that correctly
classifies individuals from the population as good or bad. If the function in charge of measuring and
classifying individuals — who would later become parents — does not take into account good traits for
the problem, and instead assigns high fitness values to individuals with a poor performance, the algorithm
will probably never find a solution for the problem.

So, the fitness function is in charge of evaluating individuals from the population and assigning them
a value according to the performance obtained when solving the problem. High fitness values will thus
favor individuals for being selected when generating descendants. On the other hand, if a minimization
problem is faced, low fitness values are preferred instead.

For the problem described above, a good fitness function would be in charge of evaluating an indi-
vidual — computer program — and comparing the values returned by that program with those values that
should really be obtained, and are computed by using the objective function F(n) = {n + n}. Therefore,
the fitness function will compute an error value. This error value is considered the fitness value for the
individual; low fitness values are thus preferred for this problem.

The selection of a good fitness function is easy for the example shown here, because we know the
objective function. However, this is not a typical case, and the election of a good fitness function is a
difficult task, given that no clue about the shape of the solution for the problem is known.

After the fitness function has been defined, the GP algorithm possesses the capability of choosing
good individuals for breeding purposes. Good individuals have higher probabilities of producing good
and sometimes better descendants than bad individuals. Nevertheless, the GP algorithm choose’s good
individuals with a given probability, so that worse ones also have opportunities for transmitting their
genetic material to descendants.

The process of transmitting genetic material to descendants is not merely performed by copying selected
individuals. A set of genetic operations are applied instead, so that the information transmitted is somehow
altered and descendants will thus differ from parents while at the same time they will inherit their features.
Therefore, in the process of creating new candidate solutions, several genetic operators act as the source
for the variation that is required.

5.1.1.4 Genetic Operations

Genetic operators are the variation mechanisms that generate new candidate solutions, similar to their
parents but including some differences. If parents are good, they are allowed to breed new individuals
that share some features with them but that are not completely identical to them. Possibly, some of these
offspring can have better fitness than their parents. Some of them will also have worse fitness values, but
evolution will discard them as generations are computed. On the other hand, sometimes bad individuals
are selected for breeding, and may produce individuals that will help to solve the problem by introducing
new genetic material in the population.

A couple of genetic operators are usually in charge of this task: crossover and mutation. Crossover takes
two parents and mixes them up with a given probability so that new individuals are generated. Mutation
takes an individual and randomly changes a part of it with a certain probability.

In GP, when tree structures are employed, crossover exchanges two randomly selected subtrees (see
Figure 5.3) of the parents, while mutation randomly modifies a subtree from an individual (see Figure 5.4).

© 2006 by Taylor & Francis Group, LLC

Parallel Genetic Programming 5-69
Crossover points are
e randomly selected ‘
° ° Parent A Parent B f

Subtrees are exchanged °

f in decendants X
Decendant #1 0 6

Decendant #2

Crossover ° °

FIGURE 5.3 Tree-based GP crossover. The two parents exchange one of their subtrees in order to generate two new
offspring.

Subtree selected New randomly
for mutation generated subtree

Mutation

FIGURE 5.4 Tree-based GP mutation. A subtree is randomly selected from the parent and replaced with another
randomly generated subtree.

5.1.1.5 Termination Criterion

The GP algorithm may be stopped when a satisfactory solution has been found, or after a given number
of generations have been computed.

Although the first criteria is the preferred one, given that it means that the solution has been found,
the second one is also employed because computational resources available are always limited. Frequently,
the process has to be stopped when no more time for computing is available. This latter case is a problem
for GP researchers, and also for any research dealing with EAs. The fact is that EAs are useful for difficult
problems, and sometimes the difficulty of the problem is so large that the computational resources required
for solving it are not available.

Researchers have been fighting this problem during the last decade and have tried to improve the
algorithms for tackling more difficult problems. One of the more successful way of improving algorithms
is by adding some degree of parallelization. Parallel EAs thus allow us to employ parallel architectures
and distributed computing resources. In the next section we describe the development of a parallel
version of GP.

© 2006 by Taylor & Francis Group, LLC

5-70 Handbook of Bioinspired Algorithms and Applications

5.2 Models of Parallel and Distributed GP

Typically, the reason for parallelizing any computer algorithm is to achieve time saving. In EAs there is a
second reason: the implementation of the new parallel EA may improve the convergence process, so that
a smaller number of iterations will be required for finding a solution of similar quality as when using the
classic algorithm. Although this second improvement is not always present, some smart decisions when
developing the parallel algorithm will provide these two advantages.

The necessity for a parallel implementation is frequently crucial, given that a large set of individuals
has to be evaluated for many generations, and large amounts of computational resources are consequently
required. In GP, parallelization is even more important: researchers have demonstrated that the size of
individuals tends to grow when generations are progressively computed and evolved [11]. Therefore,
computational resources required for the GP algorithm will not be constant along generations, but will
increase as they are computed.

When parallelism is added to any EA, different models can be employed, depending upon the operations
that are parallelized. Usually, parallelization can be applied at the level of the population and at the level
of the fitness evaluation. In the following sections, we briefly describe these models, concentrating on GP;
for a more detailed discussion, see Reference 12.

5.2.1 Parallelizing at the Fitness Level

The simplest way of applying parallelism to the GP algorithm, is to distribute the evaluation of individuals
among several processors (see Figure 5.5). The main algorithm — the master — is computed in one
processor, and the individuals are sent to other processors that in turn will evaluate and return the fitness
values to the main process. This model is useful when the evaluation process is the most time-consuming
step of the algorithm, which is usually the case in many real-life problems.

A well-known feature of GP individuals is the differences in size and complexity when compared to other
individuals belonging to the same population. This requires the application of a load balancing policy (see
for instance Reference 13). Load balancing can automatically be obtained if steady-state reproduction is
used instead of generational reproduction.

® o
05 0

TTTT

3 05 7 1
3—Fitness values are returned
to the main processor

1—Individuals are sent
for evaluation

2—Each processor evaluates one individual

FIGURE 5.5 Parallelizing at the fitness level. Different processors or workstations are in charge of evaluating
individuals, while the main processor runs the GP algorithm.

© 2006 by Taylor & Francis Group, LLC

Parallel Genetic Programming 5-71

We have to bear in mind that the previously described parallel algorithm is basically the same as the
sequential version, the only difference is the parallel evaluation of individuals.

In the next section we describe other ways of developing parallel GP, but with some changes to the basic
algorithm, which will also help to solve the problem at hand more quickly.

5.2.2 Parallelizing at the Population Level

Populations of any species in nature feature a spatial distribution that usually depends on the orography
of the landscape. They are said to be grouped in demes, semi-independent groups of individuals that
are relatively isolated and scarcely interact with other neighboring demes by migrating some of their
individuals.

This idea can be applied to GP, and different models have been proposed during the last few years.
Although a detailed description of the algorithms can be found in Reference 14, we present here the main
features of the new models.

5.2.2.1 The Island Model

The idea of having several semi-independent groups of individuals can also be applied to GP (see
Figure 5.6). We could thus build a parallel algorithm by distributing the whole population of individuals
among the processors available. Each of the processors will thus be in charge of applying evolution to its
deme, and sometimes will exchange good individuals with other neighboring processors. This model is
usually called the Island Model [15,16].

The idea is that each of the subpopulation focuses on a different area of the search space, because the
convergence process within each of the deme takes a different path; and this is an important difference
from the classic algorithm. Researchers have found that this difference helps to solve problems tackled
by GP in a smaller number of steps, which is a new advantage for the parallel model. Researchers have
also found that this model helps to add diversity to populations, which is a good feature for avoiding
premature convergence.

Different connection topologies have been employed during the last few years. The most common
ones are rings, two- and three-dimensional meshes, stars and hypercubes, although recently a random
communication topology has also been defined in which a given subpopulation sends its emigrants to
another randomly chosen subpopulation [17]. The most common replacement policy replaces the worst k
individuals in the receiving population with k immigrants, who are the best k individuals of their original
island.

We may notice that the new parallel GP algorithm requires several new parameters:

. Number of subpopulations

. Frequency of exchange

. Number of exchanged individuals
. The communication topology

. Replacement policy

Ul W W N =

FIGURE 5.6 General island topology.

© 2006 by Taylor & Francis Group, LLC

5-72 Handbook of Bioinspired Algorithms and Applications

Some of these important parameters have been studied recently [14]. Researchers have found that a good
choice for the previous parameters is to send 10% of individuals from each subpopulation to an adjacent
one every 10 generations. The communication topology does not affect significantly the convergence
process. On the other hand, a compromise between the number of subpopulations and the total number
of individuals employed for solving the problem has to be adopted: if each of the subpopulations is made
up of a small number of individuals, the exploration phase performed by each of the subpopulation will
not be satisfactory.

A difference may be established between the parallel model we use and the parallel architecture we
employ to run that algorithm. When dealing with distributed EAs, such as island GP, one can run the
algorithm on both distributed memory multiprocessor machines and also on the network of workstations
(NOWs).

In these architectures, the address spaces of each processor are separated and communication between
processors must be implemented through some form of message passing. NOWs are widely used because
of their low cost and ubiquity, although their performances are limited by communication latencies and
heterogeneous workload distribution. In the case of parallel EAs, given that the communication step is
not the most time-consuming part of the algorithm, and the migration step is rarely performed, these
kinds of low-cost architecture are useful enough.

The migrations between the different demes can be implemented, for example, using the Message
Passing Interface Standard (MPI) with synchronous communication operations, that is, each island
runs a standard generational GP and individuals are exchanged at fixed synchronization points between
generations. Implementation details can be found in Reference 18.

Researchers have also found that the Island Model may obtain better results than the panmictic model —
classic model — even when it is run on a standard sequential machine [19]. The improvement does not
come from the parallelization of the operations, because only one processor is employed, but from the
change in the model. The Island Model introduces the migration step that helps to conserve diversity
during the run, which is good for the finding of better solutions.

Other spatial distributions are also available for parallel EAs. For instance, one could distribute each of
the individuals from the population on a two-dimensional grid (other dimensions are also possible). The
idea is that each of the individuals interact only with their direct neighbors. Therefore, reproduction and
mating take place locally for each of the individuals.

The model allows the slow diffusion of information from good individuals across the grid, and semi-
isolated niches of individuals arise in different areas of the space.

5.3 The Length of Individuals and Measurement of Results

As described earlier, GP individuals may feature different sizes and complexities because variable-size
individuals are employed. This means that the evaluation of a population of individuals does not neces-
sarily always require the same amount of computing resources, even when the number of individuals is
always the same.

There is a second factor that directly influences the way we should measure results: Researchers have
found that the length of individuals progressively increases in a given experiment as generations are com-
puted [20]. Therefore, even for a particular experiment, different generations require different computing
time to be evaluated. So, if one wants to compare a technique with another one, the comparison has to
be carefully carried out. This is the case for parallel GP: we are not only interested in solving a particular
problem, but also want to know the power of the new technique when compared with the more common
implementation of GP.

Traditionally, researchers present results comparing fitness values — quality of solutions — and the
number of generations required to find that particular solution. In the case of GP,a better way of comparing
results is by computing the total number of nodes evaluated until a given fitness value is found [17]. This
is particularly useful for evaluating parallel GP when compared with GP, because the measure is not

© 2006 by Taylor & Francis Group, LLC

Parallel Genetic Programming 5-73

biased by the different speeds of each of the processors or computers in charge of evaluating each of the
subpopulation. This measure will by itself show us the advantage of the model, and this advantage will
be observed even when it is employed in a sequential machine. Of course, in a given architecture and a
real-life problem, the time required for obtaining a particular solution is the right measure: researchers
try to obtain a solution for a problem as soon as possible.

For computing fitness values, a useful figure is the Mean Best Fitness (MBE, the average over a number
of runs) of the best fitness value at the end of the run. Nevertheless, when difficult problems are evaluated,
none knows in advance whether the global optimum has been obtained or not. Therefore, the idea is to
take the measure when a specified amount of computational effort has been spent.

In the comparisons we show below, we employ the measure described here: MBF versus computing
effort (total number of nodes evaluated).

5.4 Parallel GP: The History

A number of researchers have applied ideas borrowed from the parallel processing field to GP. Probably,
the first attempt to develop a parallel version of GP was carried out by Tufts in 1993 [21]. The idea
described was simply to evaluate simultaneously a number of individuals from the GP population, by
using several processors. The problem addressed was a classification over a set of customers, in order to
predict credit card attrition.

A couple of years later, Juille and Pollack described a parallel implementation of GP on a fine-grained
SIMD architecture [22]. They employed a MasPar MP-2 Computer. Although they first presented a
study on the parallel evaluation of S-expressions on the computer, which basically corresponds to a
parallelization based on the fitness level, they also described a proposal based on the Island Model,
employing a ring topology for communicating subpopulations. They demonstrated the usefulness of the
implementation by using the Tic-Tac-Toe problem.

Koza and Andre [23] described latter an implementation of parallel GP based on the Island Model
employing a network of Transputers — single VLSI devices containing 32-bit on-chip processor, on-chip
memory, and several independent serial bi-direction physical on-chip communication links. The physical
topology was based on a central supervisory process (the boss process) and 64 transputers, each running
the basic GP algorithm, and the migration step for sending and receiving individuals. They employed
a cellular topology, so that every node was physically connected to four neighbors in the network. The
problem selected for the tests was the even-5-parity function. Several migration rates were employed.
The main conclusion was that parallelization delivered more than linear speedup in solving the problem.
Nevertheless, this result was questioned a couple of years later by Punch [24]. The fact is that the new
implementation of the algorithm not only uses a parallel architecture but also modifies the main algorithm,
so that the new one helps to improve the performances obtained when solving a problem.

The same year other implementation based on the bulk synchronous programming (BSP) model was
presented [25], although this time no super-linear speedup was reported. The results showed that the
Island Model achieved better speedups than panmictic GP — the classic version.

Another version of parallel GP was described by Stoffel and Spector [23]. Instead of using tree-based GP,
they employed linear programs that were run on a stack-based virtual machine. By means of a symbolic
regression problem, authors showed that parallel GP can save computing effort.

In 1997, Oussaidéne et al. [13] applied a combination of fitness level parallelization and the island-based
approach of parallel GP to trading model induction. They simultaneously tackled the load balancing
problem that arises because of the different shapes and sizes of individuals in GP, which affects the
performance of the parallel system when different individuals are evaluated on different processors. The
proposal was to employ a dynamic scheduling algorithm based on a steady-state version of GP.

Inapaper published by Punch [24] in 1998, the super-linear speedup reported by Koza [23] is questioned
by a series of tests. The benchmark problems selected there were the royal tree and the ant problem.
According to Punch, the features of the problem influences the results obtained. Particularly, the number

© 2006 by Taylor & Francis Group, LLC

5-74 Handbook of Bioinspired Algorithms and Applications

of solutions in the search space greatly influences the performance of the Island Model. Therefore, the
conclusion was that multiple-solution problems would be more amenable to multiple populations than
single-solution problems. On the other hand, nondeceptive problems would also be more amenable to
multiple populations than deceptive problems.

In the aforementioned papers, different parallel GP models are employed to study the improvement
achieved when different benchmark and real-life problems are tackled. Nevertheless, no indepth study on
specific parameters of the new models is presented until 2000. For instance, Tongchim and Chongstitvatana
[26] studied synchronous and asynchronous versions of parallel GP. Results demonstrated that the parallel
asynchronous algorithms obtains better results.

On the other hand, a whole study on the migration policies, topology, and other important parameters
for the Island Model is presented for GP in 2003 [14]. Similarly, a study is performed, employing a parallel
version of GP based on a cellular approach [27].

Plenty of results dealing with the application of parallel GP to real-life problems, and also papers
focusing on any of the important parameters for the new model are available today. Recently, researchers
have shown that the technique is even capable of solving some problems and obtaining solutions better
than any other techniques previously invented by human being. The results are so impressive that they
have even been patented. For instance, Koza [9] describes several applications of parallel GP that had led
to solutions to problems; these applications are novel and useful enough to be patented. Particularly, Koza
[28] describes some results that can be considered as inventions. He presented several analogue circuits
that have been discovered by means of parallel GP. Some of those circuits — later patented — can probably
be considered as the first inventions developed by computers.

In the following section, we show by means of two examples, how parallel GP can be applied to solving
a real-life problem.

5.5 Applications

In this section, we briefly describe several benchmark problems that have been traditionally employed for
testing GP performances, and also present two different real-life problems that have been addressed by
means of parallel GP.

5.5.1 Typical GP Problems

We briefly describe several benchmark problems that have been traditionally used for experimenting with
GP: the even parity problem, the artificial ant on the Santa Fe trail problem [2,20], the symbolic regression
problem [24] and the royal tree problem [24]. They are useful for analyzing properties of genetic operators
or different implementations of GP, and their description are provided as a reference for readers interested
in GP. Although we don’t show here results obtained with these problems, interested readers may refer to
References 19 and 17. We focus instead on a couple of real-life problems that have been tackled by means
of parallel GP.

Even Parity k Problem. The boolean even parity k function of k boolean arguments returns frue if an even
number of its boolean arguments evaluates to true, otherwise it returns false. If k = 4, then 16 fitness cases
must be checked to evaluate the fitness of an individual. The fitness is computed as 16 minus the number of
hits over the 16 cases. Thus a perfect individual has fitness 0, while the worst individual has fitness 16. The
set of functions to be employed for GP individuals might be the following one: F = {AND, OR, NOT}.
The terminal set in this problem is composed of k different boolean variables T = {v1,..., vN}.

Artificial Ant Problem on the Santa Fe Trail. In this problem, an artificial ant is placed on a 32 x 32
toroidal grid. Some of the cells from the grid contain food pellets. The goal is to find a navigation
strategy for the ant that maximizes its food intake. Typically, the function set employed is the following
one: F = {if — food — ahead} while the terminal set is T = {left, right, forward} as described in Ref-
erence 2. As fitness function, we use the total number of food pellets lying on the trail (89) minus the

© 2006 by Taylor & Francis Group, LLC

Parallel Genetic Programming 5-75

PN
/B\ /B\ B B
A A A A A A/ \AA/ x
[O T I O I
X X X X X X XX X

FIGURE5.7 The Royal Tree Problem. Examples of perfect trees.

amount of food eaten by the ant from the path. This turns the problem into a minimization one, like the
previous one.

Symbolic Regression Problem. The problem aims to find a program that matches a given equation. We
employ the classic polynomial equation f(x) = x* + x> 4+ x? 4+ x, and the input set is composed
of 1000 fitness cases. For this problem, the set of functions used for GP individuals is the following:
F = {%,//,+, —}, where // is like / but returns 0 instead of error when the divisor is equal to 0, thus
allowing syntactic closure. The fitness computes the sum of the square errors at each test point. Again,
lower fitness means a better solution.

The Royal Tree Problem. This Problem [24] is commonly used as a standard function for testing the
effectiveness of GP. It consists of a single base function that is specialized into as many cases as necessary,
depending on the desired complexity of the resulting problem.

A series of functions, a, b, ¢, etc., with increasing arity are defined. (An a function has arity 1, a
b function has arity 2, and so on.) A number of terminals x, y, and z are also defined.

A level-a tree is an a root node with a single x child. A level-b tree is a b root node with two level a trees
children. A level-c tree is a ¢ root node with three level-b trees as children. A level-e tree has depth 5 and
326 nodes, while a level-f tree has depth 6 and 1927 nodes. Perfect trees are defined as shown in Figure 5.7.

The raw fitness of a subtree is the score of its root. Each function calculates its score by adding up the
weighted scores of its direct children. If the child is a perfect tree of the appropriate level (for instance, a
complete level-c tree beneath a d node), then the score of that subtree, times a FullBonus weight, is added
to the score of the root. If the child’s root is incorrect, then the weight is Penalty. After scoring the root,
if the function is itself the root of a perfect tree, the final sum is multiplied by CompleteBonus. Typical
values used are: FullBonus = 2, PartialBonus = 1, Penalty = 1/3, and CompleteBonus = 2. The score
base case is a level-a tree, which has a score of 4 (the a—x connection is worth 1 times the FullBonus, times
the CompleteBonus).

5.6 Real-Life Applications

As described in Section 5.4, there is plenty of research dealing with parallel GP. We describe here a couple
of real-life problems that have been tackled by using it. Results show that the technique can successfully
solve the problems addressed.

5.6.1 Placement and Routing in FPGA

Field Programmable Gate Arrays (FPGAs) are integrated devices used for the implementation of digital
circuits by means of a configuration or programming process. Several manufacturers and different kinds
of FPGAs are available.

One of the best known is the island-based FPGA (this island has nothing to do with island-based EAs).
This model includes three main components: configurable logic blocks (CLBs), input—output blocks
(I0Bs), and connection blocks (see Figure 5.8). Configurable logic blocks are used to implement all
the logic circuitry — they have different configuration possibilities, and are positioned like matrix on
the FPGA.

© 2006 by Taylor & Francis Group, LLC

5-76 Handbook of Bioinspired Algorithms and Applications

|
LT
I

FIGURE 5.8 Island-based FPGA.

The IOBs allow the connection of the circuit implemented by the CLBs with any external system. Finally,
the connection blocks (switch-boxes and interconnection lines) are employed for the internal routing of
the circuit.

One of the main steps in the FPGA design process is the placement and routing. We present a meth-
odology that is based on parallel GP. The methodology has also been employed for tackling Multi-FPGA
Systems Synthesis [29].

The problem we try to solve begins with a circuit description, and the goal is to place components
and wires in an FPGA. Genetic programming is thus in charge of encoding circuits, so that a graph —
circuit — is described by means of a tree — GP individual. In the following, we describe how graphs are
encoded by means of trees.

Although several authors have implemented GP in hardware [30,31], the idea here is completely
different: we use GP for implementing circuits on hardware.

5.6.1.1 Circuits Encoding Using Trees

When implementing a circuit on an FPGA, each of the circuit components has to be implemented into
a different CLB, and then the CLBs have to be connected according to the circuit topology. Given that
circuits are encoded by means of trees, and that evolution will generate new circuits, a fitness function is
required for analyzing these circuits, deciding if they are correct or not, and their degree of resemblance
with the circuit that is being to implemented.

Any circuit is made up of components and connections. Given that components compute very easy
logic functions, any of them can be implemented into any CLB from the FPGA. Therefore, we can describe
a given circuit in a way similar to the example depicted in Figure 5.9. This means that we only have to
connect CLBs from the FPGA according to the interconnection model that a given circuit implements, and
then we can configure each of the CLBs with the function that each component performs in the circuit.

Circuits have to be encoded by means of trees, because we employ tree-based GP. We can first label
each component from the circuit with a number, and then assign components’ labels to the ends of
wires connected to them (as shown in Figure 5.9). Wires can now be disconnected without losing any
information. All the wires can be included within a tree by connecting each of the wires as a branch of
the tree and keeping them all together in the same tree. The circuit can be easly rebuilt later by using the
labels as a guide.

By labeling both extremes of wires, we will have all the information required for reconstructing the
circuits. This way of representing circuits allows us to go back and construct the real graph. Moreover, any
given tree, randomly generated, will always correspond to a particular graph, regardless of the usefulness
of the associated circuit. In this proposal, each node from the tree is representing a connection, and each
branch is representing a wire.

© 2006 by Taylor & Francis Group, LLC

Parallel Genetic Programming 5-77

FIGURE 5.10 Mapping an individual into a circuit.

5.6.1.2 GP Sets

The function set for our problem contains only one element: F = {SW}, Similarly, the terminal set
contains only one element T = {CLB}. But SW and CLB may be interpreted differently depending on the
position of the node within a tree. Sometimes a terminal node corresponds to an IOB connection, while
sometimes it corresponds to a CLB connection in the FPGA. Similarly, an internal node — SW node —
sometimes corresponds to a CLB connection (the first node in the branch), while others affect switch
connections in the FPGA (internal node in a branch, see Figure 5.10). Each of the nodes in the tree will
thus contain different information:

1. If we are dealing with a terminal node, it will have information about the position of CLBs, the
number of pins selected, the number of wires to which it is connected, and the direction we are
taking when placing the wire.

2. If we are, instead, in a function node, it will have information about the direction we are taking.
This information enables us to establish the switch connection, or in the case of the first node of
the branch, the number of the pin where the connection ends.

5.6.1.3 Evaluating Individuals

To evaluate an individual we must convert the genotype (tree structure) to the phenotype (circuit in the
FPGA), and then compare it to the circuit provided by the partitioning algorithm. We developed an FPGA
simulator for this task. This software allows us to simulate any circuit and to check its resemblance to
other circuits. Therefore, this software tool is in charge of taking an individual from the population and
evaluating every branch from the tree in a sequential way, establishing the connections that each branch
specifies. Circuits are thus mapped by visiting each of the useful nodes of the trees and making connections
on the virtual FPGA, thus obtaining phenotype.

© 2006 by Taylor & Francis Group, LLC

5-78 Handbook of Bioinspired Algorithms and Applications

5.6.1.4 Results

Figure 5.9 graphically depicts one of the test circuits that has been used for validating the methodology.

The main parameters employed were the following: maximum number of generations equal to 500,
maximum tree depth equal to 30, steady state, tournament selection of size 10, crossover probability
equal to 98%, mutation probability equal to 2%, ramped half-and-half initialization, elitism (i.e., the best
individual has been added to the new population at each generation). We employed 5 subpopulations of
500 individuals each, with a period of migration of 10 generations. The GP tool we used is described in
Reference 18.

Figure 5.11 shows one of the proposed solutions among those obtained with parallel GP for the circuit.
A very important fact is that each of the solutions that GP found possesses different features, such as area
of the FPGA used and position of the input/output terminals. This means that the methodology could
easily be adapted for managing typical constraints in FPGA placement and routing.

Figure 5.12 presents a comparison of parallel GP and classic GP when applied to the problem of
placement and routing on FPGAs. We can see that parallel GP,employing 5 populations and 500 individuals
per population, achieved better convergence results than GP with 2500 individuals — the same total
amount of individuals: PGP converges more quickly and obtains slightly better results.

The methodology has been successfully applied to Multi-FPGAs System Synthesis [29]. Figure 5.13
shows a picture of the device that was built for testing the methodology.

14 4]
]

"tq_l
=

|
E

4~

L

FIGURE5.11 A solution generated by PGP.

R
A \\\\\\mn%
" 2 Al

',

FIGURES5.12 Comparison between parallel GP — 5 pop., 500 individuals each — and classic GP — 2500 individuals.
50 runs have been performed and averaged for each curve.

© 2006 by Taylor & Francis Group, LLC

Parallel Genetic Programming 5-79

—— Parallel GP
10x10°
OX 0 GP
g 6x105
£
i
2x10°
5% 105 15x10° 25%x10°

Effort

FIGURE5.13 A Multi-FPGA board designed for testing the methodology.

5.6.2 Medical Knowledge Representation by Means of GP

In this section we present another real-life problem that has been solved by means of parallel GP. We apply
GP to the acquisition of medical knowledge. We are focussing on burn diagnosing.

An adaptive system capable of classifying is developed by means of parallel GP. It uses a set of parameters,
obtained by specialist doctors, to predict the evolution of a burn according to its initial stages. The system
is first trained with a set of parameters and the results of evolutions that have been recorded over a set
of clinical cases. Once the system is trained, it is an aid to deciding how new cases will probably evolve.
Thanks to the use of parallel GP, an explicit expression of the input parameter is provided, and this explicit
expression takes the form of a decision tree, which will be incorporated into software tools that help
physicians in their everyday work.

Of course the aim here is not to suppress the task of specialists, but to help them make more accurate
diagnoses. Furthermore, developing software tools for medical diagnosis may help nonspecialist doctors
when immediate treatment must be applied.

5.6.2.1 The Problem of Burn Diagnosing

When somebody suffers a burn it is necessary to find out its degree, in order to apply the best treatment
from the beginning. This classification problem is recognized as being difficult because it is not always
clear how much tissue damage there is and how it will evolve.

If we are interested in developing an automatic classifier system capable of deciding the diagnosis of a
burn, this system must first be able to extract information from a burn by analyzing a picture of it, and
second embody that information in a knowledge system. This knowledge system could take the form of a
decision tree. Bearing in mind the feasibility of GP for representing trees, the link between GP and medical
knowledge systems is straightforward.

Two different problems must thus be solved: image processing and knowledge representation. We
describe here a methodology for representing the knowledge used by a specialist when diagnosing by
means of parallel GP. So, the input for the methodology is the features that have been previously extracted
by an image processing system. The system must be capable of predicting how a burn will evolve, allowing
users to choose the most suitable treatment.

We believe that EAs have an important advantage over other kinds of machine learning techniques such
as neural networks: they have the ability to provide information not only about classification, but also
about the route taken to reach a decision.

© 2006 by Taylor & Francis Group, LLC

5-80 Handbook of Bioinspired Algorithms and Applications

5.6.2.2 Classifying by Means of Decision Trees

Medical diagnosis is a classification problem, in which the search space is made up of a set of points with
n-coordinates. Each coordinate is allocated a value for a given symptom. The aim is to find the category
to which a point belongs and this data will give us the diagnosis.

Sometimes we are not only interested in obtaining a classifier but also in retrieving important inform-
ation from the problem’s input parameters. Several classifier systems for medical diagnosis have been
designed based on decision trees and decision rules [32]. They take the parameters and classify the data.

The decision tree approach [33] falls into the category of inductive learning methods. Taking a set of
examples, the aim is to construct a tree that is able to classify new samples within the search space.

Decision trees usually classify the members of a set as either positive or negative examples. In this
application of parallel GP, due to the number of possibilities involved in burn diagnosis, we extend the
classic approach to multi-class decision-making, as in other medical diagnosis research [34]. In fact
a decision tree is a chain of if-then-else constructions that can be seen as a computer program. Each
condition is applied to some specific input parameters. The parameters will thus lead us along a branch
of the tree, finally reaching a decision, which is the category to which the input data belongs.

We want to generate the decision tree automatically according to a group of clinic cases that make up
the training set. This will be done by means of parallel GP.

Bearing in mind that in GP each individual adopts the shape of a tree, a decision tree can be considered
to be an individual. If we apply GP to finding a specific decision tree, at the end of the process the best
individual takes the form of that decision tree, that is, the genotype of the individual presents the chain of
decisions that are necessary for a diagnosis to be made.

When using GP for decision tree extraction, the function set will only be composed of the if-then-else
instruction, and some logical operators (see Section 5.3). As a consequence, any tree can be constructed.
The terminal set will contain the parameters we have decided to study in each burn.

5.6.2.3 A Case Study: Burns Unit, Virgen del Rocio Hospital. Seville, Spain

In order to apply the methodology, the collaboration of medical specialists from the area of burns treatment
was required.

The Burns Unit, at Virgen del Rocio Hospital, was in charge of retrieving information about real cases
of burns. A form was provided for several specialists to collect information on cases, which would be
useful for testing the problem. Several photographs were taken in each of the cases, and several features
of burns were noted in the form.

Thirty one different clinical cases were studied. Each completed form was accompanied by two pho-
tographs. No image processing has been done, but photographs are necessary for studying the different
parameters that will be automatically retrieved in the future. In this research, following the specialists’
indications, just three parameters have been studied.

No photographs are shown here, in order to preserve the privacy of the people who took part in the
study, but all of them are stored in the Burns Unit at the Virgen del Rocio Hospital, Seville, Spain.

We are aware that an accurate diagnosis requires the study of additional features, but we believe that
these three parameters are enough to see how the methodology works, and to obtain a first sketch for a
knowledge system based on GP.

Following specialist doctors’ advice, we decided to develop the first version of the knowledge system
taking into account just three different parameters from each picture:

1. Color (C): Several possible values: White, Black, Yellow, Red, Pink, and combinations
2. Dryness (D): Two possibilities: True or False
3. Ampoule (A): Two possibilities: Absent or Not

Although studying a wider set of parameters would be more useful, this simple model confirms the
validity of the methodology employed. The aim was not to create a tool that can classify 100% of the cases

© 2006 by Taylor & Francis Group, LLC

Parallel Genetic Programming 5-81

but to demonstrate how easily a doctor’s knowledge can automatically be captured by means of GP and
decision trees.

Four kinds of diagnosis are possible for a burn: first degree, surface second degree, deep second degree,
and third degree.

In order to train the system, a table with parameters, taken by studying the photographs and diagnoses,
was built.

5.6.2.4 Results

A set of 31 clinical cases were provided by doctors, and these cases were used to train the system. Each of
them was allocated its corresponding parameters together with the result of its evolution over a couple of
weeks. This table of values was given to the algorithm in order for it to train.

Due to how GP works, the terminal and function sets were established as F = {ifthenelse, >, =, <,
AND,NOT} and T = {C, D, A}.

We ran the algorithm employing 5 populations of 2000 individuals each, with a period of migration
of 10 generations. We waited for 60 generations before taking the results. At the end, the best decision
tree we obtained was able to classify correctly 27 out of 31 cases. This was due to the presence of several
cases with the same parameters but with different evolution values. It was, consequently, impossible to
categorize these cases accurately. Figure 5.14 shows the decision tree obtained.

The meanings for nodes are the following: A, Ampoule; D, Dryness; C, Color; D2, Deep second degree;
S2, Surface second degree; 3, third degree; P, Pink color; Y, Yellow color.

Bearing in mind that each color has an integer number associated with it, comparisons among them are
meaningful. Of course, many different versions of the same tree can be obtained in different executions
of the algorithm. For the sake of simplicity, we show just one.

Using this methodology, we are able to represent medical knowledge by means of decision trees. This
is just an example about the use of GP for the task proposed, although for obtaining a completely reliable
decision tree a much larger set of examples must be used, and training and test sets have to be built and
employed in the learning process.

Finally, Figure 5.15 presents a comparison between parallel GP and GP when applied to the problem
of medical knowledge representation. We can see that parallel GP employing 5 populations and 2000
individuals per population achieved better convergence results than GP with 10000 individuals (the same
total amount of individuals).

We have to consider that the curve shown for PGP is not taking into account the time savings obtained
when using a parallel architecture, such as a multiprocessor system or a cluster of computers. If we take
both improvements into account — time savings and improvement in the convergence process — parallel
GP is far superior to plain GP.

FIGURE 5.14 Burn diagnosing decision tree.

© 2006 by Taylor & Francis Group, LLC

5-82 Handbook of Bioinspired Algorithms and Applications
—— Parallel GP
1400 Ll GP
1000
@
()
=
L 600
200
2x10° 6x10° 10x10° 14x10°
Effort
FIGURE5.15
5.7 Concluding Discussion

In this chapter, we have presented parallel GP and its application to some real-life problems. We have
described the methodology and its history. We have also provided a set of benchmark problems commonly
used in GP. We have finally shown how parallel GP can be applied to the problem of placing and routing

circuits on FPGAs and also to the problem of extracting medical knowledge for burn diagnosing.

Acknowledgment

Part of this research has been possible thanks to Ministerio de Ciencia y Tecnologia research projects
number TTIC2002-04498-C05-01.

References

(1]
(2]
(3]
(4]

[5

[6

(7]

[8

(9]

(10]

T. Mitchell. Machine Learning. McGraw Hill, New York, 1996.

J.R. Koza. Genetic Programming. The MIT Press, Cambridge, MA, 1992.

C. Darwin. On the Origin of Species by Means of Natural Selection. John Murray, London, 1859.
John H. Holland. Adpatation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, M1, 1975.

L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial intelligence through a simulation of evol-
ution. In M. Maxfield, A. Callahan, and L.J. Fogel, Eds., Biophysics and Cybernetic Systems:
Proceedings of the second Cybernetic Sciences Symposium, Spartan Books, Washington, D.C., 1965,
pp. 131-155.

I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen
Evolution. frommann-holzbog, Stuttgart, 1973. German.

H.P. Schwefel. Evolutionsstrategie und numerische Optimierung. Ph.D thesis, Technische
Universitat Berlin, Berlin, 1975.

W.B. Langdon. Data Structures and Genetic Programming: Genetic Programming + Data Structures =
Automatic Programming! Kluwer Academic Publishers, New York, 1998.

J.R. Koza, EH. Bennett III, and O. Stiffelman. Genetic programming as a Darwinian invention
machine. Genetic Programming: Proceedings of EuroGP ’99, LNCS, Vol. 1598. Springer-Verlag, May
1999.

K. Stoffel and L. Spector. High-performance, parallel, stack-based genetic programming. In
Koza, J.R., et al., Eds., Genetic Programming 1996: Proceedings of the First Annual Conference.
Stanford University, MIT Press, CA, 1996, pp. 224-229.

© 2006 by Taylor & Francis Group, LLC

Parallel Genetic Programming 5-83

[11] W.B. Langdon and R. Poli. Fitness causes bloat. In R. Roy P.K. Chawdhry and R.K. Pant, Eds., Soft
Computing in Engineering Design and Manufacturing. Springer-Verlag, London, 1997, pp. 13-22.

[12] M. Tomassini. Parallel and distributed evolutionary algorithms: a review. In K. Miettinen,
M. Mikeld, P. Neittanméki, and J. Périaux, Eds., Evolutionary Algorithms in Engineering and
Computer Science. John Wiley & Sons, New York, 1999, 113-133.

[13] M. Oussaidéne, B. Chopard, O. Pictet, and M. Tomassini. Parallel genetic programming and its
application to trading model induction. Parallel] Computing, 23: 1183-1198, 1997.

[14] E Ferndndez, M. Tomassini, and L. Vanneschi. An empirical study of multipopulation genetic
programming. Genetic Programming and Evolvable Machines, 4: 21-52, 2003.

[15] J.P. Cohoon, S.U. Hegde, W.N. Martin, and D. Richards. Punctuated equilibria: A parallel genetic
algorithm. In J.J. Grefenstette, Ed., Proceedings of the Second International Conference on Genetic
Algorithms. Lawrence Erlbaum Associates, Mahwah, NJ, 1987, p. 148.

[16] R. Tanese. Parallel genetic algorithms for a hypercube. In J.J. Grefenstette, Ed., Proceedings of
the Second International Conference on Genetic Algorithms. Lawrence Erlbaum Associates, 1987,
pp. 177-183.

[17] E Fernandez de Vega. Distributed Genetic Programming Models with Application to Logic Syn-
thesis on FPGAs. Ph.D. thesis, Computer Science Department, University of Extremadura, Céceres,
Spain, 2001.

[18] E. Ferndndez, M. Tomassini, L. Vanneschi, and L. Bucher. A distributed computing environment
for genetic programming using MPI. In J. Dongarra, P. Kaksuk, and N. Podhorszki, Eds., Recent
Advances in Parallel Virtual Machine and Message Passing Interface, Vol. 1908 of Lecture Notes in
Computer Science. Springer-Verlag, Heidelberg, 2000, pp. 322-329.

[19] E Fernandez, M. Tomassini, and J.M. Sanchez. Experimental study of isolated multipopulation
genetic programming. In IEEE International Conference on Industrial Electronics, Control and
Instrumentation, Nagoya, Japan, 2000. IEEE Press, Washington, 2000, pp. 2672-2677.

[20] W.B. Langdon and R. Poli. Foundations of Genetic Programming. Springer-Verlag, Berlin, 2002.

[21] P. Tufts. Parallel case evaluation for genetic programming. In 1993 Lectures in Complex Systems,
Vol. VI of Santa Fe Institute Studies in the Science of Complexity, 1993, pp. 591-596.

[22] H. Juille and J.B. Pollack. Parallel genetic programming and fine-grained SIMD architecture. In
E.V. Siegel and J.R. Koza, Eds., Working Notes for the AAAI Symposium on Genetic Programming.
MIT, Cambridge, MA, November 10-12, 1995. AAAI, pp. 31-37.

(23] PJ. Angeline and K.E. Kinnear Jr. (Eds.). Advances in Genetic Programming 2. The MIT Press,
Cambridge, MA, 1996.

[24] W. Punch. How effective are multiple populations in genetic programming. In J.R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, D. Goldberg, H. Iba,
and R.L. Riolo, Eds., Genetic Programming 1998: Proceedings of the Third Annual Conference.
Morgan Kaufmann, San Francisco, CA, 1998, pp. 308-313.

[25] D.C. Dracopoulos and S. Kent. Bulk synchronous parallelisation of genetic programming. In Jerzy
Wasniewski, Ed., Applied Parallel Computing: Industrial Strength Computation and Optimization;
Proceedings of the third International Workshop, PARA °96, Springer-Verlag, Berlin, Germany, 1996,
pp. 216-226.

[26] S.Tongchim and P. Chongstitvatana. Nearest neighbor migration in parallel genetic programming
for automatic robot programming. In Proceedings of the Sixth International Conference on Control,
Automation, Robotics and Vision, Singapore, December 2000.

[27] G. Folino, C. Pizzuti, and G. Spezzano. A scalable cellular implementation of parallel genetic
programming. IEEE Transactions on Evolutionary Computation, 7: 37-53, 2003.

(28] J.R. Koza, EH. Bennett III, D. Andre, and M.A. Keane. Genetic Programming III: Darwinian
Invention and Problem Solving. Morgan Kaufmann, San Francisco, CA, 1999.

[29] E Fernandez, I. Hidalgo, J. Lanchares, and J.M. Sanchez. A methodology for reconfigurable hard-
ware designed based upon evolutionary computation. Microprocessors and Microsystems. Elsevier,
28:363-371, 2004.

© 2006 by Taylor & Francis Group, LLC

5-84 Handbook of Bioinspired Algorithms and Applications

[30] P. Martin. A hardware implementation of a genetic programming system using FPGAs and
Handel-C. Genetic Programming and Evolvable Machines, 2: 317-343, 2001.

[31] M.I.Heywood and A.N. Zincir-Heywood. Register based genetic programming on fpga computing
platforms. In R. Poli, W. Banzhaf, W.B. Langdon, J.E. Miller, P. Nordin, and T.C. Fogarty, Eds.,
Proceedings of the European Conference on Genetic Programming, Vol. 1802 of Lecture Notes in
Computer Science. Springer-Verlag, London, 2000, pp. 44-59,

[32] J. H. Holmes. Discovering risk of disease with a learning classifier system. In T. Bick, Ed., Proceed-
ings of the Seventh International Conference on Genetic Algorithms (ICGA97). Morgan Kaufmann,
San Francisco, CA, 1997.

[33] J.R. Quinlan. Decision trees and instance-based classifiers. In The Computer Science and
Engineering Handbook, 1997, pp. 521-535.

[34] M. Kurzynski. The application of unified and combined recognition decision rules to the
multistage diagnosis problem. In Proceedings of the 20th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, Vol. 3. Hong-Kong, 1998, pp. 1194-1197.

© 2006 by Taylor & Francis Group, LLC

Parallel Cellular
Algorithms and
Programs

6.1 INtroduction....cocvvvveeeeeeeeeeiiiiiiiiieeeeeeeenns 6-85
6.2 Cellular Automatacoeevviinneeiiinneeiiinnnnenns 6-86
6.3 Parallel CA Systems.......coovvieiieiriiiiiiinnennenn.. 6-87

CAMELot—CARPET e Other Cellular-Based Parallel Systems
6.4 Programming Standard and Nonstandard Parallel

Cellular Automatacooevieiiiiiiiiiiiiinennenn. 6-93
Inhomogeneous CA e Asynchronous and Probabilistic CA e
Partitioned CA

6.5 Programming Emergent Systems as Massively
Parallel CA: Examplescoooiiiiiiiii.. 6-95
The Q2R Ising Model e Epidemic Diffusion Simulation

6.6 Conclusioncoeviviiiiiiiiii i 6-98

Domenico Talia REfEIENCeS oottt e 6-100

6.1 Introduction

An emergent phenomenon is the large-scale group behavior of a system that does not seem to have any
explanation in terms of the single constituent parts only. In other words, emergence can be defined by
saying that “the whole is greater than the sum of the parts.” In emergent systems, we can consider two
different levels of description: the microscopic level, where all the single components are taken into account;
and the macroscopic level, where emergent behavior occurs as the synthesis of the complex interaction of
the microscopic components. To bring emergent systems out of a speculative horizon it is necessary to
experiment and test them. In particular, emergent system simulation on parallel computers is an essential
practice for an indepth analysis and evaluation of the accuracy of the proposed models of emergent
behavior.

The programming of emergent phenomena and systems using traditional programming models and
tools is very difficult and involves long and complex coding. This is mainly because these approaches
are based on the design of a system as a whole; hence, design and programming do not start from basic
elements. It is better to design emergent systems by means of paradigms that allows for expressing the
behavior of single elements and their interactions. The global behavior of these systems then emerges from

6-85

© 2006 by Taylor & Francis Group, LLC

6-86 Handbook of Bioinspired Algorithms and Applications

the evolution and interaction of a massive number of elements; hence, it does not need to be explicitly
coded.

The cellular automata (CA) model is a massively parallel computational model that can be effectively
used for the investigation and simulation of emergent phenomena and systems. Cellular automata are
inherently parallel; therefore, they can be used to model and simulate very large-scale emergent systems on
parallel computers [1,2]. Cellular parallel tools allow for the exploitation of the inherent parallelism of CA
in the implementation of natural solvers that simulate dynamical emergent systems by a massive number
of simple agents (cells) that interact locally. Parallel cellular languages and environments provide useful
design and programming tools for the development of scalable simulations and models of emergent
behavior. This approach is a valid alternative to complex and expensive laboratory experiments and
simulations [3].

We discuss here how the basic CA concepts are related to emergent systems, describe parallel CA
environments and tools for programming emergence in complex systems, and present some significant
programming examples of emergent systems. The remainder of the chapter is organized as follows:
Section 6.2 introduces CA and Section 6.3 outlines the main issues in parallel CA programming, describes
the main features of the CAMELot environment and its programming language CARPET and discusses
some related systems. Section 6.4 shows how different classes of CA can be implemented by using the
CARPET language. Section 6.5 presents two examples of emergent phenomena programmed according to
the parallel CA model in the CARPET cellular language and gives performance figures for them. Finally,
Section 6.6 draws some conclusions.

6.2 Cellular Automata

Cellular automata are discrete dynamical systems in that space, time, and properties can have only a finite
number of states [4]. They are an effective model for exploring systems with no central control. Given that
the rules are executed in parallel on every cell, we can easily explore systems, using a decentralized control,
in which simple local interaction takes place for a large population of cells over some period of time. The
basic idea is to describe a complex system and simulate it by the interaction of a massive number of cells
following simple rules. Thus, a complex system is not described with complex global equations but the
complexity emerges from the interaction of simple local rules.

A CA can be defined as a d-dimensional Euclidean space (where d = 1,2,3 is used in practice),
partitioned into cells of uniform size, each one embedding an identical elementary automaton (ea). Input
for each ea is given by the states of the elementary automata in the neighboring cells, where neighborhood
conditions are determined by a pattern invariant in time and constant over the cells. At the time r = 0,
ea are in arbitrary states and the CA evolves changing the state of all ea at discrete times, according to a
local rule. Each cell in the regular spatial lattice can have any one of a finite number of states. As mentioned
before, the states of the cells in the lattice are updated according to a local rule called the state transition
function. That is, the state of a cell at a given time depends only on its own state in the previous time step
and the states of its nearby neighbors at the previous time step [5].

Here, we summarize the basic CA concepts useful for programming emergence.

e Transition function: Set of rules that define how the state of each cell changes on the basis of its
current state and the states of its neighbor cells.

e State: The state of a cellular automaton (global state) is completely specified by the values of the
variables at each cell (local state). The state of a cell is a simple or structured variable (see substate)
that takes values in a finite set. The cell state can be either a numeric value or a property. For
instance, if each cell represents part of a landscape, then the state might contain the altitude or the
type of land.

e Substate: If the cell state is represented as a structured variable, substates are the fields of the
structure that represent the attributes of the cell state. For example, if each cell represents a particle,
its state can be composed of two substates that represent particle mass and speed.

© 2006 by Taylor & Francis Group, LLC

Parallel Cellular Algorithms and Programs 6-87

FIGURE 6.1 CA neighborhoods.

e Neighborhood: The set of cells that a cell interacts with. The neighborhood of a cell is typically
taken to be all immediately adjacent cells. Simple neighborhoods of a cell (C) in a two-dimensional
lattice are shown in Figure 6.1.

Let us define a CA as the 4-tuple (Ed, S, N, o), where

Elisa regular lattice (the elements of E are called cells).

S is a finite set of states.

N a finite set (with [N| = n) of neighborhood indices such that for all x in N, all ¢ in E4 : ¢ 4+ x
in E4.

e 0 : §" — §atransition function.

A configuration C,: E? — S is a function that associates a state with each cell of the lattice. The effect
of the transition function o is to change the configuration C; into the new configuration C;; according
to Cry1(c) = o ({Ce(i): iin N(c)}), where N(c¢) denotes the set of neighbors of cell ¢, N(¢) = {i in E4;
¢ — iin N}. In standard CA, all cells of the automaton are updated synchronously in parallel; whereas
extended CA models define asynchronous updating [6]. In section 6.4, we discuss nonstandard CA models.
The state of the entire automaton advances in discrete time steps. Therefore, in CA the transition function
plays a role analogous to that of the evolution equation in classical dynamical models. The global behavior
of the system is not directly specified but it is determined, in other words, it emerges by the evolution of
the states of all cells as a result of multiple interactions. Cellular automata capture the peculiar features of
systems that may be seen to evolve exclusively according to the local interactions of their constituent parts,
and guarantee computational universality. Furthermore, applied aspects of modeling have been widely
investigated from a theoretical viewpoint [4,5].

6.3 Parallel CA Systems

For the implementation of CA on parallel computers two main approaches can be used. One is to write
programs that encode the CA rules in a general-purpose parallel programming language such as HPF,
HPC++, Linda, or CILK or to use a high-level sequential language such as C, Fortran, or Java with one
of the low-level toolkits/libraries currently used to implement parallel applications such as MPI, RMI,
PVM, or OpenMP. This approach does not require a parallel programmer to learn new language syntax
and programming techniques for cellular programming. However, it is not simple enough to be used by
programmers who are not experts in parallel programming, and the code consists of a large number of
instructions even if simple cellular models must be implemented.

The other possibility is to use a high-level language specifically designed for CA, in which it is possible
to directly express the features and the rules of CA, and then use a compiler to translate the CA code
into a program executable on parallel computers. This second approach has the advantage that it offers a
programming paradigm that is very close to the CA abstract model and that the same CA description could
possibly also be compiled into different codes for various parallel machines. Furthermore, in this approach,
parallelism is transparent from the user, so the programmers can concentrate on the specification of the
model without worrying about architecture-related issues. In summary, it leads to the writing of software

© 2006 by Taylor & Francis Group, LLC

6-88 Handbook of Bioinspired Algorithms and Applications

that does express the cellular paradigm in a natural way; these programs are simpler to read, change, and
maintain. On the other hand, the regularity of computation and locality of communication allow CA
programs to get good performance and scalability on parallel architectures.

Recently, several CA environments have been implemented on current desktop computers. Examples of
these systems are CAT, CelLab, CaSim, CDM, Cellsim, DDLab, and Mathematica. A longer list can be found
in Reference 7, in which the main features of these systems are outlined. Sequential CA-based systems can
be used for educational purposes and very simple simulations, but real-world phenomena simulations
generally take a very long time, or in some cases cannot be executed on this class of systems because
of memory or computing power limits. Therefore, massively parallel computers are the appropriate
computing platform for the execution of CA models when real-life problems must be solved. In fact,
for two- and three-dimensional CA of large size the computational load can be enormous. Thus, if CA
are to be used for investigating large complex phenomena, their implementation on high performance
computers composed of several processors is a must.

In particular, general-purpose distributed-memory parallel computers offer a very useful architecture
for a scalable CA machine in terms of speed-up, programmability, and portability. These systems are based
on a large number of interconnected processing elements (PE), which perform a task in parallel. According
to this approach, in recent years several parallel cellular software environments have been developed.

Significant examples of these parallel cellular systems are CAMELot, StarLogo, NEMO, P-CAM [8],
Cellular, ParCel-1, PECANS [9], and DEVS. Some are discussed in Reference 1. Together with these
software systems, parallel CA hardware has been developed for a more efficient execution of CA algorithms.
Two examples of CA hardware are the CAM-8 machine [10] and the CEPRA FPGA machine. These two
systems are special purpose machines that exploit CA parallelism in a very efficient way, although they are
specialized machines that do not support general computation models.

Cellular automata parallel systems allow a user to exploit the inherent parallelism of CA to support the
efficient simulation of complex systems that can be modeled by a very large number of simple elements
(cells) with local interaction only. Cellular automata-based languages share several features such as a
common computational paradigm and some differences such as, for example, different constructs to
specify details of a CA or of mapping and output visualization. Many real-world applications in science
and engineering, such as lava-flow simulations, molecular gas simulation, landslide modeling, freeway
traffic flow, three-dimensional rendering, soil bioremediation, biochemical solution modeling, and forest
fire simulation, have been implemented by using these CA languages. Moreover, parallel CA languages can
be used to implement a more general class of fine-grained applications such as finite elements methods,
partial differential equations, and systolic algorithms.

The main issues that influence the way in which CA languages support the design of applications on
high performance architectures are:

1. The programming approach: The unit of programming is the single cell of the automaton.

2. The cellular lattice declaration: It is based on the definition of the lattice dimension and the lattice
size.

3. The cell state definition and operations: Cell state is defined as a single variable or a record of typed
variables; cell state access and update operations are needed.

4. The neighborhood declaration and use: Neighborhood concept is used to define interaction among
cells in the lattice.

5. The Parallelism exploitation: The unit of parallelism is the cell, and parallelism, like communication,
is implicit.

6. The cellular automata mapping: Data partitioning and process-to-processor mapping is implicit at
the language level.

7. The output visualization: Automaton global state, as the collection of the cell states, is shown as it
evolves.

Many of these issues are taken into account in parallel CA systems and similar or different solutions are
provided by parallel CA languages. By discussing these concepts, we intend to illustrate how this class of

© 2006 by Taylor & Francis Group, LLC

Parallel Cellular Algorithms and Programs 6-89

languages can be effectively used to implement high-performance applications in science and engineering
using the massively parallel cellular approach.

Programming Approach. When a programmer starts to design a parallel cellular program, she/he must
define the structure of the lattice that represents the abstract model of a computation in terms of cell-
to-cell interaction patterns. Then it must concentrate on the unit of computation that is a single cell of
the automaton. The computation to be performed must be specified as the evolution rule (transition
function) of the cells that compose the lattice. Thus, as against other approaches, a user does not specify
a global algorithm that contains the program structure in an explicit form. The global algorithm consists
of all the transition functions of all cells that are executed in parallel for a certain number of iterations
(steps).

It is worth to notice that in some CA languages it is possible to define transition functions that change
in time and space to implement inhomogeneous CA computations. Thus, after defining the dimension
(e.g., one-, two-, or three-dimensional) and the size of the CA lattice, she/he needs to specify, by the
conventional and the CA statements, the transition function of the CA that will be executed by all the
cells. Then the global execution of the cellular program is performed as a massively parallel computation
in which implicit communication occurs only among neighbor cells that access each other’s state.

Cellular Lattice Declaration. As mentioned in the previous section, the lattice declaration defines the
lattice dimension and the lattice size. Most languages support two-dimensional rectangular lattices only
(e.g., CANL and CDL). However, some of them, such as CARPET and Cellang, allow the definition of
one-, two-, and three-dimensional lattices. Some languages allow also the explicit definition of boundary
conditions, such as CANL [9], which allows adiabatic boundary conditions where absent neighbor cells
are assumed to have the same state as the center cell. Others implement reflecting conditions that are
based on mirroring the lattice at its borders. Most languages use standard boundary conditions such as
fixed and toroidal conditions.

Cell State. The cell state contains the values of data on which the cellular program works. Thus the
global state of an automaton is defined by the collection of the state values of all the cells. While low-level
implementations of CA allow to define the cell state as a small number of bits (typically 8 or 16 bits),
cellular languages such as CARPET, CANL, DEVS-C++, and CDL allow a user to define cell states as a
record of typed variables as follows:

cell=(direction : int ; speed : float);

where two substates are declared for the cell state. According to this approach, the cell state can be composed
of a set of substates that are of integer, real, char, or Boolean type and in some cases (e.g., CARPET), arrays
of these basic types can also be used. Together with the constructs for cell state definition, CA languages
define statements for state addressing and updating that address the substates by using their identifiers;
for example, cell.direction indicates the direction substate of the current cell.

Neighborhood. An important feature of CA languages that differentiate them from array-based languages
and standard data-parallel languages is that that they do not use explicit array indexing. Thus, cells are
addressed with a name or the name of the cells belonging to the neighborhood. In fact the neighborhood
concept is used in the CA setting to define interaction among cells in the lattice. In CA languages, the
neighborhood defines the set of cells whose state can be used in the evolution rule of the central cell. For
example, if we use a simple neighborhood composed of four cells we can declare it as follows

neigh cross=(up, down, left, right);

and address the neighbor cell states by the ids used in the above declaration (e.g., down. speed,
left.direction). The neighborhood abstraction is used to define the communication pattern among

© 2006 by Taylor & Francis Group, LLC

6-90 Handbook of Bioinspired Algorithms and Applications

cells. It means that at each time step, a cell sends to and receives from the neighbor cells the state values.
In this way implicit communication and synchronization are realized in cellular computing.

The neighbor mechanism is a concept similar to the region construct that is used in the ZPL
language [11], in which regions replace explicit array indexing making the programming of vector-
or matrix-based computations simpler and more concise. Furthermore, this way of addressing the lattice
elements (cells) does not require compile-time sophisticated analysis and complex run-time checks to
detect communication patterns among elements.

Parallelism Exploitation. Cellular automata languages do not provide statements to express parallelism
at the language level. It turns out that a user does not need to specify what portion of the code must be
executed in parallel. In fact, in parallel CA languages the unit of parallelism is a single cell, and parallelism,
like communication and synchronization, is implicit. This means that in principle the transaction function
of every cell is executed in parallel with the transaction functions of the other cells. In practice, when
coarse-grained parallel machines are used, the number of cells N is greater than the number of available
processors P, so each processor executes a block of N/P cells that can be assigned to it using a domain
decomposition approach.

CA Mapping. Like parallelism and communication, data partitioning and process-to-processor mapping
is implicit in CA languages. The mapping of cells (or blocks of them) onto the physical processors that
compose a parallel machine is generally done by the run-time system of each particular language and the
user usually intervenes in selecting the number of processors or some other simple parameter.

Some systems that run on MIMD computers use load balancing techniques that assign at run-time the
execution of cell transition functions to processors that are unloaded, or use greedy mapping techniques
that avoid some processor to become unloaded or free during the CA execution for along period. Examples
of these techniques can be found in References 1, 12, and 13.

Output Visualization and Monitoring. A computational science application is not just an algorithm.
Therefore it is not sufficient to have a programming paradigm for implementing a complete application. It
is also significant to dispose of environments and tools that help a user in all the phases of the application
development and execution. Most of the CA languages we are discussing here provide a development
environment that allows a user not only to edit and compile the CA programs, but also to monitor the
program behavior during its execution on a parallel machine, by visualizing the output as composed of
the states of all cells. This is done by displaying the numerical values or by associating colors to these
values. Examples of these parallel environments are CAMEL for CARPET, PECANS for CANL, and DEVS
for DEVS-C++. Some of these environments provide dynamic visualization of simulations together with
monitoring and tuning facilities. Users can interact with the CA environment to change values of cell
states, simulation parameters, and output visualization features. These facilities are very helpful in the
development of complex scientific applications and make it possible to use these CA environments as real
problem-solving environments (PSEs) [14].

In the rest of this section we outline some of the listed issues by discussing the main features of
CAMELot, a general-purpose system that can be easily used for programming emergent systems using
the CARPET cellular programming language according to a massively parallel paradigm and some related
parallel CA environments and languages.

6.3.1 CAMELot—CARPET

CAMELot (CAMEL open technology) is a parallel software environment designed to support the parallel
execution of cellular algorithms, the visualization of the results, and the monitoring of cellular program
execution [15]. CAMELot is an MPI-based portable version of the CAMEL system based on the CARPET
language. CARPET (CellulAR Programming EnvironmenT) offers a high-level cellular paradigm that
offers to a user the main CA features to assist her/him in the design of parallel cellular algorithms without
apparent parallelism [6].

© 2006 by Taylor & Francis Group, LLC

Parallel Cellular Algorithms and Programs 6-91

A CARPET user can develop cellular programs describing the actions of many simple active elements
(implemented by cells) interacting locally. Then, the CAMELot system executes in parallel cell evolution
and allows a user to observe the global complex evolution that arises from all the local interactions.

CARPET uses a C-based grammar with additional constructs to describe the rules of the transition
function of a single cell. In a CARPET program, a user can define the basic rules of the system to be
simulated (by the cell evolution rule), but she/he does not need to specify details about the parallel
execution. The language includes

1. A declaration part (cadef£) that allows to specify:
o the dimension of the automaton (dimension);
the radius of the neighborhood (radius);
the type of the neighborhood (neighbor);
the state of a cell as a record of substates (state);
aset of global parameters to describe the global characteristics of the system (parameter);
a set of constructs for addressing and updating the cell states (e.g., update, GetX,
GetY, GetZ).

Figure 6.2 shows a simple CA programmed in CARPET that implements the Fredkin’s rule. This is a
simple rule: a cell becomes alive if the number of living cells in its neighborhood is odd; if the number of
living cells in its neighborhood is even a cell becomes dead. Fredkin’s rule is very simple, however it has
the fascinating property that any initial pattern of living cells is replicated several times on a larger scale.

CARPET and CAMELot have been used for implementing high-performance real-world simulations
based on the emergence paradigm such as lava flow, traffic flow, and forest fire simulations [6]. In
Section 6.5 the CARPET language is used to program two significant examples of emergent systems. Its
main linguistic features are outlined by describing how it supports the implementation of real emergent
applications.

#define dead 0

#define alive 1

cadef

{

dimension 2;

radius 1;

state (short value) ;

neighbor Neumann([4] ([0,-1]North, [-1,0]West,

[0,1]South, [1,0] East) ;

int sum=0;
{ for (i=0; i<4; i++)
sum = sum + Neumann[i] value;
if (sum%2 == 0)
update (cell value, dead);
else

update (cell value, alive);

FIGURE 6.2 The Fredkin’s rule written in CARPET.

© 2006 by Taylor & Francis Group, LLC

6-92 Handbook of Bioinspired Algorithms and Applications

6.3.2 Other Cellular-Based Parallel Systems

As mentioned before, some cellular-based systems have recently been developed. Among these we discuss
some representative examples such as Cellular, DEVS-C4-+, and ZPL. In particular, ZPL is a language for
parallel programming that has not been specifically designed for CA, but it shares with parallel cellular
languages the same rationale and some basic ideas.

The Cellular system [16] consists of a CA-based programming language, named Cellang, an abstract
virtual CA machine for execution of cellular programs, named avcam, and a viewer named cellview, which
is used to examine the cell values in a graphic format. Cellang combines the classic CA programming
paradigm, like CARPET or CDL, with that of agents. The results of an execution can either be viewed
graphically, as an output stream of cell locations and values, or passed through a custom filter before
being reported. The current implementation of the Cellang compiler generates codes both for sequential
computers and shared-memory multiprocessor systems. However, the system has not been implemented
on distributed-memory parallel machines or PC clusters.

The NEMO (Neighbourhood Modeling) system is an environment based on CA designed by the
Carleton’s PARAllel DIGital Modeling (PARADIGM) group [12]. The main component of the NEMO
systems is the Cell driver. The Cell driver is the parallel kernel of NEMO that provides the parallel
execution of a NEMO application and interacts with the other components. In addition to the Cell driver,
NEMO contains the Neighbourhood Analysis (NAN) driver, which is designed to support the parallel
computation of spatial statistics on very large lattices, and the Propagation driver (PD), which supports
the modeling in parallel of processes in a lattice that spreads along an active boundary. Moreover, NEMO
provides a display facility for the visualization of graphical data from the simulation. As against CAMELot
and Cellular, NEMO does not offer a high-level language to implement cellular programs although some
default functions can be used.

DEVS-C++- is a high-performance environment based on the DEVS (Discrete Event System Specifica-
tion) formalism that supports the analysis, design, and simulation of discrete event dynamical systems [17].
The DEVS formalism, based on CA theory and discrete event simulation, provides a means of specifying
a mathematical object called system defined as a lattice of cells. DEVS-C++ is a DEVS parallel imple-
mentation that uses the C++ language for programming simulation and models designed by the DEVS
formalism. Applications are programmed using a set of specifically designed classes (included in the Con-
tainer and Devs libraries) provided by the DEVS-C++ environment in an object-oriented programming
framework. The Devs class is the basic class to provide methods for the DEVS formalism. Such methods
are implemented as virtual methods to be defined by users. A Java version of the system has been recently
developed.

ZPL is a data-parallel array programming language designed for fast execution on both sequential and
parallel computers [11]. Like CARPET, ZPL is implicitly parallel, that is, the programmer does not express
the parallelism; the ZPL compiler and run-time system will generate parallel codes and map processes on
processors. As cellular languages, ZPL is suitable only for regular parallel computations.

A fundamental concept in ZPL is the notion of a region. Fortran and other array languages refer to
subarrays using the so-called slice or triple notation, whereas ZPL uses the concept of a region. A region
is simply a set of indices, that is,

region X = [1..n, 1..n];

specifies the standard indices of an nxn array. A ZLP program next declares a set of directions. Directions
are used to transform regions, as in the expression north of X. As in cellular programming, array indexing
is avoided in ZPL by referring to adjacent array elements using the @ operator, which is similar to the
neighborhood mechanism of CARPET. An expression A@d, executed in the context of a region X, results
in an array of the same size and shape as X composed of elements of A offset in the direction d. ZPL does
not have parallel directives as in data-parallel languages such as HPF or other forms of explicit parallelism.
This implicit computation can be parceled out to different processors to get parallelism. Thus, parallelism,
as in cellular programming, comes simply from the semantics of the array operations.

© 2006 by Taylor & Francis Group, LLC

Parallel Cellular Algorithms and Programs 6-93

6.4 Programming Standard and Nonstandard Parallel
Cellular Automata

Nonstandard models of CA can be divided between modifications and generalizations according to ter-
minology introduced by Worsch [7], where several nonstandard automata are described. By modifications
of CA we denote computational models that can simulate CA and can be simulated by CA with a linear
overhead in time and space (number of cells). On the other hand, generalizations of CA are models that
cannot be shown to be simulated by CA in linear time.

In Section 6.4.1, we concentrate on discussing how CARPET can be used for implementing four types
of nonstandard CA: inhomogeneous, synchronous, probabilistic, and partitioned CA.

6.4.1 Inhomogeneous CA

Inhomogeneous CA are a generalization of standard CA. In CA we can have spatial inhomogeneity,
temporal inhomogeneity, or both. In spatially inhomogeneous CA, there is not a single transition function
o, but there is a set of different transition functions o1, 03, ..., on, associated to different cells or regions
of a CA in which also different neighborhoods can be defined. This class of automata can be implemented
in CARPET using the operations GetX, GetY, GetZ that return the value of the coordinates X, Y, and
Z of a cell in the CA lattice. For example, if we want to use a different transition function in a rectangular
region of a two-dimensional lattice we can write a code as follows

{

if ((GetX >= 100 && GetX <= 200) && (GetY >= 80 && GetY <= 400)
{ trans-functi()}

else
{ trans-funct2()}

}

The same approach can be used for different transition functions for cells that belong to the border of
lattice to define boundary conditions. For instance, if two border sides are identified by the coordinates
X = 0and X = 400, to use a transition function for the cells that are placed on that borders we can write

if ((GetX == 0 | | GetX == 400)
{ border-trans-funct () }
else
{ normal-trans-funct ()}

In temporal inhomogeneous CA, the transaction function changes during time. This generalization of
standard CA is very useful in modeling and simulation of phenomena that consist of more computational
phases. Thus, for a certain number of iterations a function oy, is used, then another function oy, is used
for another time interval, and so on depending on the kind of computation that must be performed.

This class of CA can be easily programmed in CARPET by using the predefined variable step. For
example, Figure 6.3 shows the structure of a CARPET algorithm for a two-dimensional CA composed of a
sequence of three different transition functions. Temporal inhomogeneity can also be implemented using
conditions that include the step variable and more complex logic expressions.

6.4.2 Asynchronous and Probabilistic CA

Asynchronous CA are only a modification of the standard CA model. In an asynchronous CA, each cell at
each time step ¢ can choose nondeterministically between keeping its current state s(t — 1) or changing its

© 2006 by Taylor & Francis Group, LLC

6-94 Handbook of Bioinspired Algorithms and Applications

cadef
{
dimension 2;

radius 1;

if (step == 1)
trans functl () ;
else
if (step > 1 && step <= 10)
trans_funct2() ;
else

trans_ funct2() ;

FIGURE 6.3 CARPET code for a temporal inhomogeneous CA.

state according to the transition function o. This class of CA is useful in the simulation of asynchronous
systems, where it is not necessary to update the state of its components at the same time.

Asynchronous CA can be programmed in CARPET by using the random function that allows to
express nondeterminism in the local transition function of each cell. The random (n) function returns
a pseudo random integer number between 0 and n. We can use it when the state of a cell must be updated.
For example, the following instructions show the nondeterministic update of a substate of a cell (notice
that the randomize function call creates a different seed for the random number generator, avoiding
that the same random value is generated for every cell):

cadef

{

state (int substatel, float substatel);

}

randomize () ;

if (random(n)> n/2)
update (cell substate2, X)

else
./* the cell state is not updated */

The random function can be also used for the implementation of probabilistic CA that in some
aspects are similar to asynchronous CA. In a probabilistic CA, given a local configuration ¢, each cell
can enter a new state s with a probability o (¢, s) and ¥;cs0 (¢, s) = 1. This type of CA is useful in the
simulation of probabilistic phenomena that occur in physics and other sciences. As mentioned before,
by the use of the random function it is possible to implement this modification of the standard CA
model in CARPET. In particular, this can be done by a using a swi tch statement with probability values
(computed on the basis of a random number) assigned to the different case branches that must contain
an update operation whose execution will depend on the probability assigned to its own branch.

© 2006 by Taylor & Francis Group, LLC

Parallel Cellular Algorithms and Programs 6-95

cadef
{
dimension 2;
radius 1;
state (int subl, sub2, sub3, sub4);
neighbor VonNeu[4] ([0,-1]North, [-1,0]West, [0,1]South, [1,0] East);
1

{
sum = VonNeu[1l] subl+VonNeu([2] sub2+VonNeu[3] sub3+VonNeul[4] sub4;
if (sum <= 2)

int sum=0;

update (cell subl, 0);
update (cell sub2, 1);

update (cell sub3, 0);
update (cell sub4, 1);

FIGURE 6.4 A simple two-dimensional partitioned CA written in CARPET.

6.4.3 Partitioned CA

Another significant modification of the standard CA model is represented by the partitioned CA. Whereas
in a standard CA, a cell can use the whole state of each neighboring cell to compute its next state, in a
partitioned CA only the component S,,; of a neighbor #; is used to determine the new state of a cell. Thus,
each cell reads only the component 7 of a cell n; that belongs to its neighborhood. The transition function
of a partitioned CA can be expressed as

0: 851 X Spp X oo X Spp = Syt X Spp X oo X Sk

where N = {n,n,, ..., ni}. Partitioned CA is useful in modeling systems where each cell in a neigh-
borhood contributes toward the change of the state of a central cell. Moreover, they can be used to make
possible the implementation of transition functions that otherwise would be infeasible for software or
hardware limits. In fact, in them the domain of ¢ is of size |S| instead of |S|!N'.

The implementation of partitioned CA in CARPET is quite direct because the language allows the
definition of the cell state as a set of substates. Thus we can define the cell state of a partitioned CA as
composed of a number of substates equal to the number of neighbors. Figure 6.4 shows a simple CARPET
program that implements a two-dimensional partitioned CA.

The state of a cell is updated according to the sum of the ith component of the neighbor cell i. Since a
radius 1 von Neumann neighborhood is defined, the cell state is composed of four substates. If we use a
Moore neighborhood, a state composed of eight substates must be used.

6.5 Programming Emergent Systems as Massively
Parallel CA: Examples

Emergent behavior not only occurs in nature and in life sciences such as biology and medicine, but
significant examples of emergent systems can be found in physics, computer science, and engineering.
For instance, network synchronization, distributed mobile sensors, cooperative environments, peer-to-
peer computing, and distributed control systems are emergent systems that today occur in many real-life

© 2006 by Taylor & Francis Group, LLC

6-96 Handbook of Bioinspired Algorithms and Applications

problems. We cannot discuss these systems in detail, but we give here two simple but significant examples
of how to program emergent systems on parallel machines using a massively parallel cellular paradigm.

In particular, this section presents two examples of emergent systems programmed by using the
CARPET language that we implemented on a Linux cluster. The first example is the Q2R Ising model and
the second one is an epidemics diffusion model.

6.5.1 The Q2R Ising Model

The Ising model is one of the pillars of statistical mechanics. Each cell represents a spin that can have
two values (1/0, up/down), and neighboring cells have an energetic preference to be the same value. As a
system of 1/0 spins, it is a model for magnetism: like iron, there is a temperature (the Neel point) above
which the magnetization “melts” away. Run at high temperatures to see the melted state, and run at low
temperatures to see the magnetized state. The Q2R model is an Ising model with particular properties.

Q2R cellular automata are a good example for addressing an old question: How is thermodynamic
irreversibility, as seen in entropy increase, compatible with microscopic reversibility, as in Newton’s
equations of motion? The Boltzmann—Zermelo argument says that the time for returning to the low-
entropy initial state of a large system are far longer than the age of the universe. How can we test this
assertion? Molecular dynamics in its usual form is inadequate to address this question, since arithmetic
rounding errors as well as discretization of space and time preclude return to the exact initial configuration.
Monte Carlo simulations of Ising models avoid such errors but require random numbers and are therefore
not reversible in the usual sense. The Q2R update rules of CA for microcanonical Ising models are reversible
and the system returns exactly to the initial configuration after an exponentially long time.

In Q2R, all of the spins are flipped simultaneously, while in the canonical Ising model only one randomly
selected spin is flipped at a time. The spin-flipping decision is deterministic in Q2R while it is probabilistic
in the Metropolis model. Both versions of the Ising model give many comparable results. Computer
simulation of Q2R CA helps us to understand some very old fundamental problems.

Here we show the simple implementation of the Q2R model using the CARPET language and some
preliminary performance results on a parallel machine. Figure 6.5 shows the CARPET code composed
of a very short number of instructions that have been executed on a cluster of PentiumlIII connected
by Myrinet. The program uses a two-dimensional automaton with a Moore neighborhood composed of
eight neighbor cells; to flip the cell spin, the neighbor cells’ spins are summed and then, depending on the
current value of the cell, the central cell spin is updated.

Table 6.1 shows the performance results (elapsed time in seconds) up to 12 processors for the execution
of 100 iteration steps considering four different lattice sizes. As shown in Figure 6.6, the algorithm is scalable
despite its simplicity. Relative speedup is very close to ideal. Although the code of each cell is simple, the
application makes efficient use of the 12 parallel processors. In fact efficiency (E = speedup/Procs) ranges
from 0.9 to 1, this means that 90% to 100% of the computing power of each CPU is exploited.

6.5.2 Epidemic Diffusion Simulation

The dominant features of an epidemic, its distribution over areas of land, and its evolution through time,
are the result of the dynamic interactions of the host and pathogen systems, both of which are influenced
by numerous complex biological processes. Hence, models must somehow describe the relationships
among the individuals, the time, and the space to apply possible infection conditions on them depending
on the neighboring infected individuals. Based on these properties, epidemic diffusion is an emergent
phenomenon that can be effectively modeled using CA. In a cellular model of a plant epidemic, the
host population is divided into small-scale units, each of which is located at a cell on a two-dimensional
lattice. Models can be used to develop understanding of quantitative or qualitative behavior, or to make
predictions of the dynamics of biological systems.

Figure 6.7 shows the CARPET code that implements a simulation of an epidemic with three types of
cells: cells representing healthy cells/creatures, other cells representing sick ones, and blank cells. Healthy

© 2006 by Taylor & Francis Group, LLC

Parallel Cellular Algorithms and Programs

#define up 1
#define down 0
cadef
{
dimension 2;
radius 1;
state (short spin);

neighbor Moore[8] ([0,-1]N, [-1,-1]NW,

}
int i;
short sum = 0;
{
for (1 = 0; 1 < 8; 1i++)
sum = Moore[i] spin + sum;
if (sum == 4)
{ if (cell spin == down)
update (cell spin, up);
else

update (cell spin,down) ;

[-1,0]lw, [-1,1]sw, [0,1]s,
[1,1]sE, [1,0]E, [1,-1]NE);

FIGURE 6.5 The Q2R Ising model written in the CARPET language.

TABLE 6.1 Performance of the Q2R Ising Program

Automata 1 2 4
size Proc Procs Procs
1152 x 1152 17.2 8.1 4.4
2304 x 2304 67.4 37.8 17.4
4608 x 4608 275.7 139.8 69.2

9216 x 9216 10354 561.8 268.8

8
Procs

2.2
9.3
33.9
144.1

Procs

1.4
5.8
23.8
94.9

Note: Elapsed time in sec x 100 steps

6-97

cells become sick with a chance of 55% when next to a sick cell. Sick cells recover at any given time step
with a probability of 80%, but have a 10% chance of dying. The simple behavior of a single cell can
be programmed in CARPET as shown in Figure 6.7 and the global behavior of the epidemic implicitly
emerges by the parallel execution of a large number of cells that dynamically interact according to a simple

neighbor pattern.

Such a CA program can be used to investigate spatial clustering effects in the spread of a simple epidemic
or it can be the basic skeleton for a more complex model with many degrees of freedom. Its use makes
it very easy to try and test different scenarios and “what if” situations such as effects of vaccination,

preventive measures, or the effects of new drugs.

Table 6.2 shows the performance results (elapsed time in seconds) up to 12 processors for the execution

of 100 iteration steps considering four different lattice sizes.

© 2006 by Taylor & Francis Group, LLC

6-98 Handbook of Bioinspired Algorithms and Applications

Ising
—a—1152x1152 —o—2304x2304 —e— 4068x4068 —<— 9216x9216 |

14 -

12+

10

Speedup

0 T T T T T T]
0 2 4 6 8 10 12 14

Processors

FIGURE 6.6 The speedup of the Q2R Ising CA program.

Figure 6.8 shows the corresponding speedup. As the number of processors increases there is a cor-
responding increase in the relative speedup, which implies that the computational power of the cluster
processors is exploited in an efficient way. In fact, efficiency of the parallel epidemics program ranges from
0.97 to 1, this means that all the CPUs are fully used during the CA program execution.

6.6 Conclusion

A large number of applications can be naturally expressed by combining the emergent system model and
the massively parallel paradigm. In many cases, designers do not use this approach because the available
tools do not support it. However, parallel implementation of CA-based emergent computation systems
and phenomena represent a valid and effective approach in the study of several classes of problems. These
kinds of simulation are very helpful in vital scientific areas such as biology, physics, chemistry, medicine,
social science, and economy. Cellular automata are a viable abstract model for representing emergent
decentralized systems and phenomena in those and other areas.

In this chapter, we discussed how to use parallel CA for complex system development and described
the main features of parallel CA environments for developing scalable emergent systems and phenomena.
Parallel cellular languages and tools provide a high-level framework for emergent computation and, at the
same time, they offer a scalable setting for getting high performance using parallel architectures. While
efforts in traditional sequential computer languages and systems design focused on how to express and
implement imperative operations and data, the main goal of the cellular paradigm is to offer a massively
parallel computational model based on a large number of simple cellular objects and operations that are
suitable for defining emergent complex systems.

We showed, through CARPET example programs, how the combination of the CA model with parallel
computing techniques and systems could be exploited to efficiently implement emergent computation
structures. Finally, modeling and simulation work through parallel cellular methods helps researchers by

© 2006 by Taylor & Francis Group, LLC

Parallel Cellular Algorithms and Programs

#define blank 0
#define healthy 1
#define sick 2
cadef
{
dimension 2;
radius 1;
state (short status);
neighbor Moore([8] ([0,-1]N, [-1,-1INW, [-1,0]W, [-1,1]SW, [0,1]8S,
[1,1]8E, [1,0]E, [1,-1]NE);
parameter (probS 0.55, probR 0.8, probD 0.1);
}
int i; float probX; short cond = 0;
{
for (i = 0; 1 < 8 && cond == 0; 1i++)
if (cell _status == healthy && Moore[i]_ status == sick)
{ probX = random(1);
if (probX <= probSs)
update (cell status, sick);
cond = 1;
}
if (cell_status == sick)
{ probX = random (1) ;
if (probX <= probR)
update (cell status, healthy);
else
{ probX = random(1) ;
if (probX <= probD)
update (cell status,blank) ;
}
b}

FIGURE 6.7 The simple epidemics model written in the CARPET language.

TABLE 6.2 Performance of the Epidemics Program

Automata 1 2 4 8 12
size Proc Procs Procs Procs Procs
1152 x 1152 19.3 9.5 4.9 2.4 1.6
2304 x 2304 77.5 43.4 19.1 10.2 6.7
4608 x 4608 3164 154.2 80.5 39.5 26.9
9216 x 9216 12209 627.2 313.2 166.5 104.3

Note: Elapsed Time in sec x 100 steps

© 2006 by Taylor & Francis Group, LLC

6-99

6-100

Handbook of Bioinspired Algorithms and Applications

14 4 Epidemics
—A—1152x1152 —0—2304x2304
12 —@—4068x4068 —*—9216x9216
10
o 8
=}
e}
[0
[0
Q.
0 g4
4
2_
0 T T T T T T 1
0 2 4 6 8 10 12 14
Processors

FIGURE 6.8 Speedup of the epidemics CA program.

setting up a cross-disciplinary framework and assisting the designers during software development from
the design phase to the execution, tuning, and validation phases. Therefore, these environments can be
used as virtual laboratories where scientists may work cooperatively by programming and experimenting
as in a real laboratory, getting data and knowledge on the modeled systems.

A Linux version of the CAMELot system is available online at the webpage www.icar.cnr.it/
spezzano/camelot/carpet.html. Programmers, scientists, students, and professionals may
download and use it to simulate complex systems according to the CA model.

References

(1]

D. Talia, “Cellular processing tools for high-performance simulation,” IEEE Computer, 33, 44-52,
2000.

J.R. Weimar, Simulation with Cellular Automata, Logos-Verlag, Berlin, 1997.

M. Sipper, “The Emergence of Cellular Computing,” IEEE Computer, 32, 18-26, 1999.

J. von Neumann, Theory of Self Reproducing Automata, University of Illinois Press, IL, 1966.

S. Wolfram, “Computation theory of cellular automata,” Communicates in Math. Physics, 96, 15-57,
1984.

D. Talia, “Implementing Standard and Nonstandard Parallel Cellular Automata in CARPET,”
In Proceedings of the 9th Euromicro Workshop on Parallel and Distributed Processing (PDP 2001),
Mantova, Italy, IEEE Computer Society Press, Washington, 2001, pp. 243-249.

T. Worsch, “Simulation of cellular automata,” Future Generation Computer Systems, 16, 157—170,
1999.

A. Schoneveld and J.E. de Ronde, “P-CAM: a framework for parallel complex systems simulations,”
Future Generation Computer Systems, 16,217-234, 1999.

L. Carotenuto, F. Mele, M. Mango Furnari, and R. Napolitano, “PECANS: A parallel environment
for cellular automata modeling,” Complex Systems, 10, 23—41, 1996.

© 2006 by Taylor & Francis Group, LLC

http://kms.icar.cnr.it
http://kms.icar.cnr.it

Parallel Cellular Algorithms and Programs 6-101

[10] T. Toffoli and N. Margolus, Cellular Automata Machines: A New Environment for Modeling. The
MIT Press, Cambridge, MA, 1986.

[11] B.L. Chamberlain et al., “The Case for high level parallel programming in ZPL,” IEEE
Computational Science & Engineering, 5, 76—86, 1998.

[12] C. Hecker, D. Roytenberg, J.-R. Sack, and Z. Wang, “System development for parallel cellular
automata and its applications,” Future Generation Computer Systems, 16, 235-247, 1999.

[13] M. Cannataro, S. Di Gregorio, R. Rongo, W. Spataro, G. Spezzano, and D. Talia, “A Parallel Cellular
automata environment on multicomputers for computational science,” Parallel Computing, 21
803-824, 1995.

[14] E. Gallopoulos, E.N. Houstis, and J.R. Rice, “Workshop on problem-solving environments:
findings and recommendations,” ACM Computing Surveys, 27, 277-279, 1995 .

[15] G. Spezzano and D. Talia, “Programming cellular automata algorithms on parallel computers,”
Future Generation Computer Systems, 16,203-216, 1999.

[16] J.D. Eckart, “Cellang 2.0: Reference Manual,” ACM Sigplan Notices, 27,107-112, 1992.

[17] P.Z.Zeigler et al., “The DEVS environment for high-performance modeling and simulation,” IEEE
Computational Science & Engineering, 4, 61-71, 1997.

© 2006 by Taylor & Francis Group, LLC

Enrique Alba
Bernabe Dorronsoro
Mario Giacobini
Marco Tomassini

7.1 Introduction

Decentralized Cellular

Evolutionary
Algorithms

7.1 Introduction............ccocooiiiiiiiiiiiiii 7-103
7.2 Synchronous and Asynchronous cEAs 7-104
7.3 New cEA Variants Based on a Modified Ratio 7-105
7.4 Selection Pressure, Grid Shape, and Time.............. 7-107
7.5 Experiments in Discrete Optimization................. 7-107
Massively Multimodal Deceptive Problem (MMDP) e
Frequency Modulation Sounds (FMS) e Multimodal Problem
Generator (P-PEAKS) e Error Correcting Code Design
Problem (ECC) e Maximum Cut of a Graph (MAXCUT) e
Minimum Tardy Task Problem (MTTP) e Satisfiability
Problem (SAT) e Experimental Analysis
7.6 Experiments in Continuous Optimization............. 7-115
Rastrigin’s Function e Ackley’s Function e
Fractal Function e Experimental Analysis
7.7 Conclusionsoooiiiiiiiiiiiii 7-118
Acknowledgments..........coooiiiiiiiiiiiiiii 7-119
Referencesouvuiuiiiiiiiiiiii i 7-119

This chapter focuses on the class of algorithms called cellular evolutionary algorithms (cEAs). Here,
we present the canonical algorithm and suggest the interesting variants targeted to solve complex problems
accurately with a minimum effort for customization. These techniques, also called diffusion or fine-
grained models, have been popularized, among others, by the early work of Gorges-Schleuter [1] and
Manderick and Spiessens [2]. The basic idea is to add some structure to the population of tentative
solutions. The pursued effect is to improve on the diversity and exploration capabilities of the algorithm
while, still admitting an easy combination with local search and other search techniques to improve on

exploitation.

© 2006 by Taylor & Francis Group, LLC

7-103

7-104 Handbook of Bioinspired Algorithms and Applications

These structured models are based on a spatially distributed population in which genetic operations
may only take place in a small neighborhood of each individual. Usually, individuals are arranged on
a regular grid of dimensions, d = 1,2, or 3. cEAs are a kind of decentralized EA model [3]. They are not
a parallel implementation of an EA; in fact, although parallelism could be used to speed up the search,
we do not address parallel implementations in this work. In addition, it is worth remarking that, although
SIMD (single instruction stream—multiple data stream) machine implementations were popular a decade
ago, this is no longer true, and today the best distributed implementation of a cEA should make use of
domain decomposition on clusters of networked machines.

Although, fundamental theory is still an open research line for cEAs, they have been empirically reported
as being useful in maintaining diversity, and promoting slow diffusion of solutions through the grid. Part
of their behavior is due to a lower selection pressure compared with that of panmictic EAs (here panmictic
means that, any individual may mate with any other individual in the population). The influence of the
selection method [4,5], neighborhood [6], and grid topology on the efficiency of cEAs in comparison with
other EAs [7] have been investigated in detail, and tested on different applications, such as combinatorial
and numerical optimization.

Cellular evolutionary algorithms can be seen as stochastic cellular automata (CA) [8,9] where the
cardinality of the set of states is equal to the number of points in the search space. CAs, as well as cEAs,
usually assume a synchronous or “parallel” update policy, in which all the cells are updated simultaneously.
However, this is not the only option available. Indeed, several works on asynchronous CAs have shown
that sequential update policies have a marked effect on their dynamics [10,11]. Furthermore, the shape of
the structure in which individuals evolve has a deep impact on the performance of the cEA. The algorithm
admits a special, easy modulation of its shape that can sharpen the exploration or the exploitation
capabilities of the canonical technique, as shown in Reference 7. Thus, it is interesting to investigate
asynchronous cEAs and nonsquare shaped cEAs, in order to analyze their problem solving capabilities,
which is the subject of the second part of this chapter.

This work is organized as follows. Section 7.2 contains some background on synchronous and asyn-
chronous cEAs. In Section 7.3, we discuss the ability of cEAs for changing their behavior depending
on the population shape. In Section 7.4, we illustrate, quantitatively, the modifications on the selection
intensity due to asynchronicity and population shape. We deal with a set of discrete and continuous
benchmark problems in Sections 7.5 and 7.6, respectively, with the goal of analyzing the actual computa-
tional power of the algorithms. Finally, Section 7.7 discusses our conclusions, as well as some comments
on future work.

7.2 Synchronous and Asynchronous cEAs

In this section we summarize the canonical behavior of cEAs. A cEA starts with the cells (individuals) in a
random state and proceeds by successively updating them using evolutionary operators, until a termination
condition is met. Updating a cell in a cEA means selecting two parents in the individual’s neighborhood
(including the individual itself), applying genetic operators to them, and finally replacing the individual
if an offspring has a better fitness or using another replacement policy.

Cells can be updated synchronously or asynchronously. In synchronous (parallel) update all the cells
change their states simultaneously, while in asynchronous, or sequential, update cells are updated one at
a time in some order. There exist many ways for sequentially updating the cells of a cEA (an excellent
discussion of asynchronous update in cellular automata, which are essentially the same system as a cEA,
is available in Reference 10). We consider four asynchronous update methods: fixed line sweep (LS), fixed
random sweep (FRS), new random sweep (NRS), and uniform choice (UC).

e In fixed line sweep, the simplest method, the n grid cells are updated sequentially (1,2,. .., n) line
after line.

© 2006 by Taylor & Francis Group, LLC

Decentralized Cellular Evolutionary Algorithms 7-105

e In fixed random sweep, the next cell to be updated is chosen with uniform probability without

replacement; this will produce a certain update sequence (le , czk, ...» ¢, where cf; means that
cell number p is updated at time g and (j, k, ..., m) is a permutation of the n cells. The same

permutation is then used for all update cycles.

e The new random sweep method works like FRS, except that a new random cell permutation is used
for each sweep through the array.

e In uniform choice, the next cell to be updated is chosen at random with uniform prob-
ability and with replacement. This corresponds to a binomial distribution for the update
probability.

The concept of generation that is customarily used in EAs and in synchronous cEAs has to be replaced
by time step in the asynchronous cases. A time step is defined as updating » times sequentially, which
corresponds to updating all the n cells in the grid for LS, FRS, and NRS, and possibly less than 7 different
cells in the UC method, since some cells might be updated more than once. It should be noted that, with
the exception of LS, the other asynchronous updating policies are stochastic, representing an additional
source of nondeterminism besides that of the genetic operators.

7.3 New cEA Variants Based on a Modified Ratio

After explaining the basic algorithm and the asynchronous variants in Section 7.2, we now pro-
ceed to characterize the population grid itself. For this goal, we use the “radius” definition given in
Reference 7, which is refined from the seminal one appeared in Reference 6 to account for non-
square grids. The grid is considered to have a radius equal to the dispersion of #n* points in a circle
centered in (X, y) (Equation [7.1]). This definition always assigns different numerical values to different
grids.

n*
S i
x== U=

+> (i —»)?
n* ’

Z?:l Vi

: (7.1)
n

rad:/zm—a‘c)z

Although it is called a “radius,” rad measures the dispersion of n* patterns. Other possible measures
for symmetrical topologies would allocate the same numerical value to different topologies (which is
undesirable). Two examples are, the radius of a circle surrounding a rectangle containing the topology, or
an asymmetry coefficient. The definition not only characterizes the grid shape but also provides a radius
value for the neighborhood. As proposed in Reference 6, the grid-to-neighborhood relationship can be
quantified by the ratio between their radii (Equation [7.2]).

. radNeighborhood
ratiocga = —cgoriood, (7.2)
ra-dTopology
When solving a given problem with a constant number of individuals (n = »*, for making fair

comparisons) the topology radius will increase as the grid gets thinner (Figure 7.1[b]). Since the neighbor-
hood is kept constant in size and shape throughout this chapter (we always use linear5 (L5), Figure 7.1[a]),
the ratio will be smaller as the grid gets thinner.

This ratio value directly influences the behavior of the algorithm. During the search for reducing the
ratio means reducing the global selection intensity on the population (see Section 7.4), thus promoting
exploration, that is, the importance of such a ratio measure. This is expected to allow a higher diversity
in the genotype that could improve the results in difficult problems (such as in multimodal or epistatic
tasks). On the other hand, the search performed inside each neighborhood is guiding the exploitation
of the algorithm. In this chapter we study how the ratio affects the search efficiency over a variety of
domains. Changing the ratio during the search is a unique feature of cEAs that can be used to shift from

© 2006 by Taylor & Francis Group, LLC

7-106 Handbook of Bioinspired Algorithms and Applications

a b rad,

()OOOOO ()0.000
OXON XOXORNN N X N N J rad,
C0O000 00000 00000OCGOCGO
OO0 eo0000 0000O0C0OCOCGCO
O0O0O0O0O o000 o000OC0OCGOOCGO

radjnears= /2—;2 =0.8944 rad,>rad; then radio,< ratio,

FIGURE 7.1 (a) Radius of neighborhood L5. (b) 5 x 5 = 25 and 3 x 8 & 25 grids; equal number of individuals
with two different ratios.

@ 01234567 (b)

012 34567 8 9101112131415

Relocation

NOoO O~ WN=O

0
1
2
3
2

(2, 4)— ([2-8+4] div 16, [2.8 +4] mod 16)=(1, 4)

FIGURE 7.2 Relocation of an individual and its neighbors when the grid changes from (a) 8 x 8 to other (b) with
shape 4 x 16.

exploration to exploitation at a minimum complexity without introducing another new algorithm family
in the literature.

Many techniques for managing the exploration/exploitation trade-off are possible. Among them, it is
worth to mention the heterogeneous EAs [12,13], in which algorithms with different features run in
separate subpopulations and collaborate in order to avoid premature convergence. A different alternative
is using Memetic Algorithms [14], in which local search is combined with the genetic operators in order to
promote local exploitation.

Since, a shift between exploration and exploitation can be made by changing the shape of the population
(and thus its radius), one can think on changing it during the search. Hence, we theoretically consider
the population as a list of length 1 - n, such that, the first row of the m x n grid is composed by the first
n individuals of the list, the second row is made up with the next » individuals, and so on. Therefore,
when performing a change from a m x n grid to a new m’ x n’ grid (being m - n = m’ - n’) the individual
placed at position (i, j) will be relocated as follows:

(5,/)) = (li*n+jldiv/, [i* n+j] mod #'). (7.3)

We call this redistribution method contiguous, because the new grid is filled up by following the order of
appearance of the individuals in the list. Figure 7.2 contains an example of a grid change from 8 x 8 to 4 x 16.
It can be shown, how an individual in position (2, 4) is relocated at (1, 4), changing its neighbors placed
at its north and south positions, and keeping close to those placed at its east and west positions. Hence,
the change in the grid shape can be seen as an actual migration of individuals among neighborhoods,
which will introduce additional diversity into the population for the forthcoming generations. Note that
in this chapter we only use static ratios, that is, grid and neighborhood shapes that do not change during
the run.

© 2006 by Taylor & Francis Group, LLC

Decentralized Cellular Evolutionary Algorithms 7-107

1.0

0.9 3
0.8 4
0.7 4
0.6 §
0.5
0.4 4

Best proportion

0.34

0.2

. L5 (32x32)
0.1 7 EE C21 (64x64)

0 T .’ T T T T
0 4 8 12 16 20 24 28 32 36 40

Number of generations

FIGURE7.3 Growth curves of the best individual for two cEAs with different neighborhood and population shapes,
but similar ratio values. The vertical axis represents the proportion of population consisting of best individual as a
function of time.

7.4 Selection Pressure, Grid Shape, and Time

Selection pressure is related to the concept of takeover time, which is the time taken for a single best
individual to colonize the whole population with copies of itself under the effects of selection only [15].
Shorter takeover time mean a more intense selection.

Algorithms with similar ratio show a similar selection pressure, as stated in Reference 5. In Figure 7.3,
we plot such a similar behavior for two algorithms with different neighborhood and population radii, but
having two similar ratio values. The algorithms plotted are those using a L5 neighborhood with a 32 x 32
population, and a compact21 (C21), neighborhood with a population of 64 x 64 individuals. In the C21
neighborhood a central cell is surrounded by two cells in all directions, including the diagonals, and the
four corner cells are cut out.

Hence, it may be very interesting to see how the shape of the grid influences the search of the algorithm.
Thus, we study the selection pressure for synchronous cGAs with different grid shapes. In Figure 7.4 we
plot the selection pressure for different cGAs using L5 neighborhood and six possible grid shapes for a
population of 1024 individuals. Note that the selection pressure induced in synchronous rectangular grids
falls under the curve for a synchronous square grid (32 x 32 population), which means that thinner grids
favor a more explorative style of search.

If we now keep the shape of the grid constant (say a square), but allow the cell update mode to
change, we observe a similar effect on the selection pressure: the global selection pressure induced by
the various asynchronous policies fall between the low synchronous limit and the high panmictic bound
(see Figure 7.5, [16]). Thus, by varying the update policies it is possible to influence the explorative or
exploitative character of the search.

7.5 Experiments in Discrete Optimization

In this section we present the set of discrete problems that we have chosen, to study the behavior of our
algorithms. The selected benchmark is representative because it contains many different interesting fea-
tures found in optimization, such as epistasis, multimodality, deceptiveness, use of constraints, parameter
identification, and problem generators. These are important ingredients in any work trying to evaluate
algorithmic approaches with the objective of getting reliable results, as stated by Whitley et al. [17].

© 2006 by Taylor & Francis Group, LLC

7-108

Handbook of Bioinspired Algorithms and Applications

- r
—— Ratio 0.003 (1x 1024 population) /
0.9 = = Ratio 0.006 (2x512 population))
—— Ratio 0.012 (4 x256 population) 1

08r.. Ratio 0.024 (8x 128 population) |
c | Ratio 0.047 (16256 population) |
S 0.7r :
= + = . Ratio 0.069 (32x32 population) |
5 .
o
S 06
[}
©
S 05
RS
=
2 04t
2
m 03Ff

021

0.1r

= L
100 10! 102

Number of generations

FIGURE7.4 Takeover times with tournament selection using a L5 neighborhood in a population of 1024 individuals
with different grid shapes; mean values over 100 runs. The vertical axis represents the proportion of population

consisting of best individual as a function of time. Horizontal axis is in logarithmic scale.

0.9

0.8

0.7

0.6

0.5

0.4

Best individual proportion

0.3

0.2

0.1

- /
/
i /
| /
/
L /
!/
i 1/ —— Synchronous
— UC
r — — NRS
— — LS
- S Panmictic
0 10 20 30 40

Time steps

50

FIGURE7.5 Takeover times with tournament selection using a L5 neighborhood in a 32 x 32 grid; mean values over
100 runs. The vertical axis represents the proportion of population consisting of best individual as a function of time.

We experiment with the set of problems studied in Reference 7 which includes the massively multimodal
deceptive problem (MMDP), the frequency modulation sounds (FMSs), and the multimodal problem
generator P-PEAKS; we then extend this basic three-problem benchmark with error correcting code
design (ECC), maximum cut of a graph (MAXCUT), the minimum tardy task problem (MTTP), and the
satisfiability problem (SAT).

© 2006 by Taylor & Francis Group, LLC

Decentralized Cellular Evolutionary Algorithms 7-109

Unitation Subfunction value Massively Multimodal Deceptive Problem
0 1.000000 ® 10
1 0.000000 S o8
2 0.360384 506
3 0.640576 B 0.4
4 0.360384 202
5 0.000000 3 0.0+
6 1.000000 6 1 2 3 4 5 6

Unitation

FIGURE 7.6 Basic deceptive bipolar function (s;) for MMDP.

The choice of this set of problems is justified by both their difficulty and their application domains
(parameter identification, telecommunications, combinatorial optimization, scheduling, etc.). This gives
us a high level of confidence in the results obtained, although the evaluation of conclusions is consequently
more laborious than with a small test suite.

The problems selected for this benchmark are explained in Sections 7.5.1 to 7.5.7. We include the
explanations in the chapter to make it self-contained and to avoid the typical small information lacks that
could preclude other researchers from reproducing the results. Finally, in Section 7.5.8 we present and
analyze the results.

7.5.1 Massively Multimodal Deceptive Problem (MMDP)

The MMDP is a problem that has been specifically designed to be difficult for an EA [18]. It is made up
of k deceptive subproblems (s;) of six bits each, whose value depends on the number of ones (unitation)
that a binary string has (see Figure 7.6). It is easy to see (graphic of Figure 7.6) that these subfunctions
have two global maxima and a deceptive attractor in the mid-point.

In MMDP, each subproblem s; contributes to the fitness value according to its unitation (Figure 7.6).
The global optimum has a value of k and it is attained when every subproblem is composed of zero
or six ones. The number of local optima is quite large (22), while there are only 2 global solutions.
Therefore, the degree of multimodality is regulated by the k parameter. Here, we use a considerably large
instance of k = 20 subproblems. The instance we try to maximize for solving the problem is shown in
Equation (7.4), and its maximum value is equal to k.

k
fumpp(3) = Z fitnesss;. (7.4)

i=1

7.5.2 Frequency Modulation Sounds (FMS)

The FMS problem [19] is defined as, determining the six real parameters, X = (a1, w1, a2, w2, az, w3),
of the frequency modulated sound model given in Equation (7.5) for approximating it to the sound wave
given in Equation (7.6) (where & = 2 - /100). The parameters are defined in the range [—6.4, +-6.35],
and we encode each parameter into a 32 bit substring in the individual.

y()=a-sin(w - t-0 +ay-sin(wy - t-0 + a3 - sin(ws - t - 0))), (7.5)
y() =1.0-sin(5.0-¢t-6 —1.5-sin(4.8-t-60 + 2.0 -sin(4.9 - t - 0))). (7.6)

The goal is to minimize the sum of square errors given by Equation (7.7). This problem is a highly com-
plex multimodal function having strong epistasis, with optimum value 0. Due to the extreme difficulty of
solving this problem with high accuracy, without applying local search or specific operators for continuous

© 2006 by Taylor & Francis Group, LLC

7-110 Handbook of Bioinspired Algorithms and Applications

optimization (such as gradual GAs [13]), we stop the algorithm when the error falls below 1072, Hence,
our objective for this problem will be to minimize Equation (7.7)

100

fims () = Y (1) — yo(1))*. (7.7)

t=0

7.5.3 Multimodal Problem Generator (P-PEAKS)

The P-PEAKS problem [20] is a multimodal problem generator. A problem generator is an easily param-
eterizable task, which has a tunable degree of epistasis, thus admitting to derive instances with growing
difficulty. In addition, using a problem generator removes the opportunity to hand-tune algorithms to
a particular problem, therefore allowing a larger fairness when comparing algorithms. With a problem
generator, we evaluate our algorithms on a high number of random problem instances, since a different
instance is solved each time the algorithm runs, the predictive power of the results for the problem class
as a whole is increased.

The idea of P-PEAKS is to generate P random N-bit strings that represent the location of P peaks in
the search space. The fitness value of a string is the number of bits the string has in common with the
nearest peak in that space, divided by N (as shown in Equation [7.8]). By using a small/large number of
peaks we can get weakly/strongly epistatic problems. In this chapter we have used an instance of P = 100
peaks, of length N = 100 bits each, which represents a medium/high epistasis level [7]. The maximum
fitness value for this problem is 1.0.

1
max {N — Hamming D(X, Peak;)}. (7.8)

. X) = —
fp-pPEAKS (X) N oA

7.5.4 Error Correcting Code Design Problem (ECC)

The ECC problem was presented in Reference 21. We will consider a three-tuple (1, M, d), where n is
the length of each codeword (number of bits), M is the number of codewords, and d is the minimum
Hamming distance between any pair of codewords. Our objective will be to find a code that has a value
for d as large as possible (reflecting greater tolerance to noise and errors), given previously fixed values
for n and M. The problem we have studied is a simplified version of that in Reference 21. In our case,
we search half of the codewords (M /2) that will compose the code, and the other half is made up by the
complement of the codewords computed by the algorithm.
The fitness function to be maximized is:

1
M M -2’
2iz1 2=z 4

fecc = (7.9)

where dj; represents the Hamming distance between codewords i and j in the code C (made up of
M codewords, each of length 7). Here, we consider an instance where M = 24 and n = 12. The search
space is of size (4(2)26), which is approximately 1087, The optimum solution for M = 24 and #n = 12 has a
fitness value of 0.0674 [22].

7.5.5 Maximum Cut of a Graph (MAXCUT)

The MAXCUT problem looks for a partition of the set of vertices (V') of a weighted graph G = (V, E)
into two disjoint subsets Vj and V; so that the sum of the weights of the edges with one endpoint in Vj
and the other in V] is maximized. For encoding the problem, we use a binary string, (x1, X2, .. ., Xy), of
length n where each digit corresponds to a vertex. If a digit is 1 then the corresponding vertex is in set V;

© 2006 by Taylor & Francis Group, LLC

Decentralized Cellular Evolutionary Algorithms 7-111

if it is O then the corresponding vertex is in set Vj. The function to be maximized [23] is:

n—1 n
fmaxcur(X) = Z Z wij - [xi - (1 — x7) + x5 - (1 — x3)]. (7.10)
i=1 j=i+1

Note that wj; contributes to the sum only if nodes i and j are in different partitions. While one can
generate different random graph instances to test the algorithm, here we have used the case “cut20.09,”
with 20 vertices and a probability of 0.9 of having an edge between any two randomly chosen vertices.
The maximum fitness value for this instance is 56.740064.

7.5.6 Minimum Tardy Task Problem (MTTP)

The MTTP [24] is a task-scheduling problem wherein each task i from the set of tasks T' = {1,2,...,n}
has a length /; (the time it takes for its execution), a deadline d; (before which a task must be scheduled,
and its execution completed), and a weight w;. The weight is a penalty that has to be added to the objective
function in the event that the task remains unscheduled. The lengths, weights, and deadlines of the tasks
are all positive integers. Scheduling the tasks of a subset S of T is to find the starting time of each task in S,
such that at most one task at a time is performed and each task finishes before its deadline.

We characterize a one-to-one scheduling function g defined on a subset of tasks S € T : S — Z1tU{0},
so that for all tasks 7, j € S has the following properties:

1. A task cannot be scheduled before the previous one is completed: g(i) < g(j) = g(i) + 1l < g(j).
2. Every task finishes before its deadline: g(i) + ; < d;.

The objective function for this problem is to minimize the sum of the weights of the unscheduled tasks.
Therefore, the optimum scheduling minimizes Equation (7.11):

furTe (%) = Z wj. (7.11)
ieT—S
The schedule of tasks S can be represented by a vector X = (x1,%,...,%,;) containing all the tasks

ordered by its deadline. Each x; € {0, 1}, where if x; = 1 then task i is scheduled in S, while if x; = 0
means that task i is not included in S. The fitness function is the inverse of Equation (7.11), as described
in Reference 23. We have used in this study an instance called “mttp20,” with size 20, and maximum fitness
value of 0.02439.

7.5.7 Satisfiability Problem (SAT)

The SAT problem has received much attention by the scientific community since it plays a central role in
NP-completeness [25]. The SAT problem was the first that was demonstrated to belong to the NP class of
problems.

The SAT problem consists of assigning values to a set of n boolean variables x = (x1, %2, . .., x,) such
that they satisfy a given set of clauses ¢; (X), .. ., ¢, (X), where ¢;(X) is a disjunction of literals, and a literal
is a variable or its negation. Hence, we can define SAT as a function f : B” — B, B = {0, 1} like:

foar(X) = a () A X)) A A cp(X). (7.12)

An instance of SAT, X, is called satisfiable if fsar(X) = 1, and unsatisfiable otherwise. A k-SAT instance
consists of clauses with length k. When k > 3 the problem is NP-hard [25]. In this chapter we will consider
an instance of 3-SAT made up of 430 clauses and 100 variables. This instance belongs to the well-known

© 2006 by Taylor & Francis Group, LLC

7-112 Handbook of Bioinspired Algorithms and Applications

phase transition of hard SAT instances. The fitness function is a linear function of the number of satisfied
clauses. In this, we use the so-called stepwise adaptation of weights (SAWs) [26]:

fSAW(;C) =wr-a (;C) +o Wiy Cm(;é)- (7.13)

This function weighs the values of the clauses with w; € B in order to give more importance to those
clauses which are not yet satisfied by the current best solution. These weights are adjusted dynamically
according to w; = w; + 1 — ¢;(x*), x* being the current fittest individual.

7.5.8 Experimental Analysis

Although a full-length study of the problems presented in Section 7.5.7 is beyond the scope of this work,
we present results comparing synchronous and asynchronous cEAs, and also cEAs having different values
of the ratio, always with a constant neighborhood shape (L5). Note that it is not our aim to compare cEAs
performance with state-of-the-art algorithms and heuristics for combinatorial and numerical optimi-
zation. To end this, we should at least tune the parameters and include local search capabilities in the
algorithm, which is not the case. Thus, the results only pertain to the relative performance of the different
cEA update methods and ratios among themselves.

In this section we present the results of solving some problems using JCell v1.5, our custom simulation
program written in Java, with three different static ratios. The configuration of the algorithm for the
binary encoded problems is shown in Table 7.1, and the static ratios used are shown in Table 7.2.

The following tables show the results for the problems mentioned preciously: MMDP (Table 7.3),
FMS (Table 7.4), P-PEAKS (Table 7.5), ECC (Table 7.6), MAXCUT (Table 7.7), MTTP (Table 7.8), and
SAT (Table 7.9). In these tables we report the average of the final best fitness of the algorithm, the
average number of evaluations to obtain the optimum value (if obtained), and the hit rate (percentage
of successful runs). Therefore, we are analyzing the final distance to the optimum (especially interesting
when the optimum is not found), the effort of the algorithm, and the expected efficacy of the algorithm,
respectively. In order to get reliable results, we have performed 100 independent runs for any algorithm
and for every problem in the test suite.

From the inspection of these tables some conclusions can be clearly drawn. First, the studied asyn-
chronous algorithms tend to need a smaller number of generations than the synchronous ones to locate
an optimum, in general. Moreover, the differences among asynchronous and synchronous algorithms

TABLE 7.1 Parameterization Used in the Algorithm for the
Binary Encoded Problems

Population size 400 individuals

Selection of parents Binary tournament 4 binary tournament
Recombination DPX, p. = 1.0

Bit mutation Bit-flip, py, = 1/L (10/L for EMS)
Individual length L

Replacement Rep_if_Better

DPX indicates standard double point crossover.

TABLE 7.2 Studied Ratios

Name (shape of population) Value of ratio
Square (20 x 20 individuals) 0.11
Rectangular (10 x 40 individuals) 0.075
Narrow (4 x 100 individuals) 0.031

© 2006 by Taylor & Francis Group, LLC

Decentralized Cellular Evolutionary Algorithms 7-113

TABLE 7.3 MMDP with a Maximum of
1000 Generations

Average

solution Average Hit rate
Algorithm (best = 20) generations (%)
Square 19.813 214.2 57
Rectangular 19.824 236.1 58
Narrow 19.842 299.7 61
LS 19.518 343.5 23
FRS 19.601 209.9 31
NRS 19.536 152.9 28
ucC 19.615 295.7 36

TABLE 7.4 FMS Problem with a Maximum of
3000 Generations

Average

solution Average Hit rate
Algorithm (best > 100) generations (%)
Square 90.46 437.4 57
Rectangular 85.78 404.3 61
Narrow 80.76 610.9 63
LS 81.44 353.4 58
FRS 73.11 386.2 55
NRS 76.21 401.5 56
ucC 83.56 405.2 57

TABLE 7.5 P-PEAKS Problem with a Maximum of
100 Generations

Average

solution Average Hit rate
Algorithm (best = 1) generations (%)
Square 1.0 51.8 100
Rectangular 1.0 50.4 100
Narrow 1.0 53.9 100
LS 1.0 34.8 100
FRS 1.0 38.4 100
NRS 1.0 38.8 100
ucC 1.0 40.1 100

TABLE 7.6 ECC Problem with a Maximum of
500 Generations

Average

solution Average Hit rate
Algorithm (best = 0.0674) generations (%)
Square 0.0670 93.9 85
Rectangular 0.0671 93.4 88
Narrow 0.0673 104.2 94
LS 0.0672 79.7 89
FRS 0.0672 82.4 90
NRS 0.0672 79.5 89
ucC 0.0671 87.3 86

© 2006 by Taylor & Francis Group, LLC

7-114 Handbook of Bioinspired Algorithms and Applications

TABLE 7.7 MAXCUT Problem with a Maximum of
100 Generations

Average

solution Average Hit rate
Algorithm (best = 56.74) generations (%)
Square 56.74 11.3 100
Rectangular 56.74 11.0 100
Narrow 56.74 11.9 100
LS 56.74 9.5 100
FRS 56.74 9.7 100
NRS 56.74 9.6 100
19/@) 56.74 9.6 100

TABLE 7.8 MTTP with a Maximum of 50 Generations

Average
solution Average Hit rate
Algorithm (best = 0.02439) generations (%)

Square 0.02439 8.4 100
Rectangular 0.02439 8.3 100
Narrow 0.02439 8.9 100
LS 0.02439 5.9 100
FRS 0.02439 6.2 100
NRS 0.02439 6.3 100
ucC 0.02439 6.3 100

TABLE 7.9 SAT Problem with a Maximum of
3000 Generations

Average

solution Average Hit rate
Algorithm (best = 430.0) generations (%)
Square 429.54 703.1 79
Rectangular 429.67 706.3 84
Narrow 429.61 763.7 81
LS 429.52 463.2 78
FRS 429.67 497.7 85
NRS 429.49 610.5 75
ucC 429.50 725.5 76

are statistically significant (with two exceptions), thus indicating that the asynchronous versions perform
more efficiently with respect to cEAs with a changing ratio.

On the contrary, synchronous algorithms perform like asynchronous or even better in terms of the
percentage of solutions found (hit rate), while the quality of solutions found by the algorithms does not
always have significant differences (the exceptions are probably due to the difference on the hit rate).

Another interesting result is that, we can define two classes of problems: those solved by any method
to optimality (100% hit rate) and those in which no 100% rate is achieved at all. Problems seem to be
amenable for cEAs directly, or to need some (yet unstudied) help, for example, by including local search.

In order to summarize the large set of results and get some useful conclusion, we present a ranking with
the best algorithms by following three different metrics: average best final solution, average number of
generations on success, and hit rate. Table 7.10 shows the three mentioned rankings. These rankings have

© 2006 by Taylor & Francis Group, LLC

Decentralized Cellular Evolutionary Algorithms 7-115

TABLE7.10 Ranking of the Algorithms with Discrete Problems

Average Average

solution generations Hit rate (%)
1 Narrow 10 1 LS 14 1 Narrow 6
1 Rectangular 10 2 NRS 16 2 Rectangular 10
3 Square 14 3 FRS 18 3 FRS 14
4 FRS 15 4 UC 30 4 1S 15
5 LS 18 5 Rectangular 33 5 Square 17
5 UC 18 6 Square 37 6 UC 19
7 NRS 21 7 Narrow 48 7 NRS 21

been computed by adding the position (from better to worse: 1, 2, 3, . . .) that algorithms are allocated for
the previous results presented from Table 7.3 to Table 7.9, according to the three criteria.

As we would expect after the previous comments, according to the average final best fitness and hit rate
criteria, synchronous algorithms with any of the three studied ratios are, in general, more accurate than
all the asynchronous ones for our test problems, with a special leading position for narrow population
grids. On the other hand, asynchronous versions clearly outperform any of the synchronous algorithms,
in terms of the average number of generations (efficiency), with a trend toward LS as being the best ranked
flavor of cEA for our discrete test suite.

7.6 Experiments in Continuous Optimization

We will extend the work of the previous sections by testing all the algorithms with some continuous
functions in order to get a more extensive study. This study may be interesting for analyzing the behavior
of the algorithms in continuous optimization, in contrast to the study performed on discrete optimi-
zation. The functions selected for the study are the three typical multimodal numerical benchmarks:
Rastrigin’s (RASTR), Ackley’s (ACKL), and fractal (FRAC) function. These three problems are real-
coded in the algorithms, while previously the standard binary-coded individuals were used (Section 7.5).
That is the cause for our special interest on experimenting with a more traditional global optimiza-
tion. The codification employed for these three problems has been made by following Michalewicz’s
implementation [27].

7.6.1 Rastrigin’s Function

The generalized RASTR function is a sinusoidally modulated function with a global minimum of zero at
the origin. It is a typical example of nonlinear multimodal function. It was first proposed by Rastrigin
as a two-dimensional function and has been generalized by Mithlenbein and Schlierkamp-Voosen [28].
This function is a fairly difficult problem due to its large search space and large number of local minima,
although the function is separable and the local minima are symmetrical (Equation [7.14]).

n
frasTR (X) = nA + Z xlz — A cos(wx;). (7.14)
i=1

The constants are given by A=10 and w=2x. The domain of variables x;,i = 1,...,n, is
—5.12 < x; < 5.12 and n = 10. The function has a global minimum at the point f (0) = 0.

7.6.2 Ackley’s Function

Ackley’s function is a multimodal test function obtained by cosine modulation of an exponential func-
tion. Originally proposed by Ackley [29] as a two-dimensional function, it has been generalized by

© 2006 by Taylor & Francis Group, LLC

7-116 Handbook of Bioinspired Algorithms and Applications

Bick et al. [30] (see Equation [7.15]). Contrary to Rastrigin’s, Ackley’s function is not separable, even
though it shows a regular arrangement of the local optima.

n 1/2 n
__ iy 2 _ 1 4
fackL(X) = —a exp[b (n ; X)] exp (n ; cos(cxl)> +a+e. (7.15)

The constants are a =20, b =0.2,and ¢ = 27. The variables x;, i = 1, ..., nare in the domain —32.768 <
x; < 32.768. This function has a global minimum at the point f(0) = 0.

7.6.3 Fractal Function

This function has been taken from Reference 31, were its construction, as well as motivations for introduc-
ing it as a test problem, are given. Indeed, the function allows the degree of ruggedness to be controlled,
and it is likely to capture features of real-world noisy objective functions.

frrac(x) = Z(C/(xi) +xr -1, (7.16)
i=1
where
C(2) .
—— ifz#£0,
Oy = LompEn
1 if z=0,
and
. 1—cos(biz)
C@= 2 oy
j=—00

For the runs, we have chosen the constants D = 1.85 and b = 1.5. The 20 variables x; (x; = 1,...,20)
vary in the range [—5,5]. The infinite sum in the function C(z) is practically calculated starting with
j = 0 and alternating the signs of the j values. The sum is stopped when the relative difference between
its previous and present value is lower than 1078, or when j = 100 is reached.

7.6.4 Experimental Analysis

In this section we will study the results of our experiments with the proposed continuous problems,
as we did in Section 7.5.8 for the discrete case. We maintain, in this case, the ratios used for the synchronous
algorithms with respect to those studied in Section 7.5, as well as the asynchronous update criteria. On
the other hand, we needed a specific configuration for the genetic operators and theirs probabilities in the
case of real-encoded problems. This codification is given in detail in Table 7.11.

The following tables present the results of our experiments with RASTR (Table 7.12), ACKL (Table 7.13),
and FRAC (Table 7.14) problems. Like in the case of discrete problems, these tables contain values for
the average of the final best fitness, the average generations needed for finding it, and the hit rate. These
three values are calculated over 100 independent runs. For the three real-coded problems a run is stopped
successfully as soon as an individual is found with fitness within 0.1 from the optimum.

The results obtained with continuous problems are not as clear as in the discrete case. Regarding the
average number of generations needed to find an optimal solution, asynchronous algorithms do not
always perform a lesser number of generations with respect to synchronous ones; for example, ACKL and
FRAC problems. Differences among synchronous and asynchronous algorithms are usually significant.

© 2006 by Taylor & Francis Group, LLC

Decentralized Cellular Evolutionary Algorithms 7-117

TABLE 7.11 Parameterization Used in the Algorithm for the
Real-Encoded Problems

Population size 400 individuals

Selection of parents Binary tournament + binary tournament
Recombination AX, pc =10

Bit mutation Uniform, p;; = 1/2L

Individual length L

Replacement Rep_if Better

AX stands for standard arithmetic crossover.

TABLE 7.12 RASTR Problem with a Maximum of
700 Generations

Average

solution Average Hit rate
Algorithm (best < 0.1) generations (%)
Square 0.0900 323.8 100
Rectangular 0.0883 309.8 100
Narrow 0.0855 354.2 100
LS 0.0899 280.9 100
FRS 0.0900 289.6 100
NRS 0.0906 292.2 100
ucC 0.0892 292.4 100

TABLE 7.13 ACKL Problem with a Maximum of
500 Generations

Average

solution Average Hit rate
Algorithm (best < 0.1) generations (%)
Square 0.0999 321.7 78
Rectangular 0.0994 293.1 73
Narrow 0.1037 271.9 65
LS 0.0932 302.0 84
FRS 0.0935 350.6 92
NRS 0.0956 335.5 87
ucC 0.0968 335.0 85

TABLE 7.14 FRAC Problem with a Maximum of 100

Generations

Average

solution Average Hit rate
Algorithm (best < 0.1) generations (%)
Square 0.0224 75.2 94
Rectangular 0.0359 62.8 78
Narrow 0.1648 14.6 16
LS 0.0168 69.7 98
FRS 0.0151 71.5 100
NRS 0.0163 73.6 98
ucC 0.0138 72.8 96

© 2006 by Taylor & Francis Group, LLC

7-118 Handbook of Bioinspired Algorithms and Applications

TABLE7.15 Ranking of the Algorithms with Continuous Problems

Average Average

solution generations Hit rate (%)
1 UC 8 1 LS 7 1 FRS 3
2 LS 9 2 Narrow 9 5 NRS 5
2 FRS 9 2 Rectangular 9 4 LS 7
4 NRS 13 4 FRS 13 6 UC 8
4 Rectangular 13 5 UC 14 7 Square 11
6 Narrow 15 6 NRS 15 3 Rectangular 13
7 Square 16 7 Square 17 2 Narrow 15

This result tells us about a larger efficiency of changing ratio cGAs, which contrast with the findings for
discrete problems. On the other hand, contrary to that observed in the case of discrete problems, the
success rates of asynchronous algorithms are greater than those of synchronous, in general. Contrary to
the results of Section 7.5.8, where either all the algorithms get a 100% hit rate or none finds the solution
in every run for any problem, the FRS cEA is the unique algorithm which is able to find the solution in all
the executions for FRAC problem.

In order to summarize these results, and following the structure of Section 7.5.8, we present in Table 7.15
aranking with the best algorithms in all the problems by means of the average solution found, the number
of generations needed to find an optimal solution, and the success rate. It can be seen in this table that
there exists a trend of asynchronous algorithms that perform better than synchronous ones in terms of
the average solution found and the success rate, while synchronous changing-ratio algorithms seem to be
more efficient than most asynchronous ones, in general (square and LS are the exceptions).

7.7 Conclusions

In the first part of this chapter we have described several asynchronous update policies for the population
of a cEA, followed by some ratio policies, all of them inducing a different kind of search in the cEA. One
can tune the selection intensity of a cEA by choosing the update policy and grid ratio without having to
deal with additional numerical parameter settings. This is a clear advantage of the algorithms that allows
users to utilize existing knowledge instead of inventing a new class of heuristic.

Our conclusion is that cEAs can be easily induced to promote exploration or exploitation by simply
changing the update policy or the ratio of the population. This opens new research lines to decide efficient
manners of shifting from one given policy/ratio to another in order for the optimum to be reached with
a smaller effort when compared with the basic cEA or other types of EAs.

In a later part of the chapter we have applied our extended cEAs to a set of both discrete and continuous
test problems. Although our goal has not been to compete with state-of-the-art specialized heuristics, the
results clearly show that cEAs are very efficient optimization techniques, that could be further improved
by being hybridized with local search techniques [32]. The results on the test problems largely confirm,
with some small exceptions, that the solving abilities using the various update/ratio modes are directly
linked to their induced selection pressures, showing that exploitation plays an important role. It is clear
that the role of exploration might be more important on even harder problem instances, but this aspect
can be addressed in our algorithms by using more explorative settings, as well as by using different cEA
strategies at different times during the search, dynamically [33].

We conclude that, with respect to discrete problems, asynchronous algorithms are more efficient than
synchronous; with statistically significant values for most problems. On the other hand, if we pay attention
to the success (hit) rate, it can be concluded that the synchronous policies for the different evaluated ratios
outperform the asynchronous algorithms: slightly in terms of the average final fitness, and clearly in terms
of probability of finding a solution (i.e., frequency of optimum location).

© 2006 by Taylor & Francis Group, LLC

Decentralized Cellular Evolutionary Algorithms 7-119

On the contrary, if we pay attention to the experiments on continuous problems we can get different
(somewhat complementary) conclusions. Asynchronous algorithms outperform synchronous ones in the
cases of average solutions found and hit rate (significant differences in many cases), while in the average
number of generations synchronous algorithms are, in general, more efficient than asynchronous ones.

As future research, we plan to address a single problem of large difficulty and to characterize selection
intensity analytically for all the models.

Acknowledgments

This work has been partially funded by the Ministry of Science and Technology (MCYT) and Regional
Development European Fund (FEDER) under contract TIC2002-04498-C05-02 (the TRACER project)
http://tracer.lcc.uma.es. We thank J. Kaempf for performing a part of the computer simula-
tions for the real-valued problems. M. Giacobini gratefully acknowledges financial support by the Fonds
National Suisse pour la Recherche Scientifique under contract 200021-103732/1.

References

[1] M. Gorges-Schleuter. ASPARAGOS an asynchronous parallel genetic optimisation strategy.
In J.D. Schaffer, Ed., Proceedings of the Third International Conference on Genetic Algorithms,
Morgan Kaufmann, San Francisco, CA, 1989, pp. 422—427.

[2] B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In J.D. Schaffer, Ed.,
Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufmann,
San Francisco, CA, 1989, pp. 428—-433.

[3] E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 6: 443—462, 2002.

[4] M. Gorges-Schleuter. An analysis of local selection in evolution strategies. In Genetic and
Evolutionary Conference, GECCO99, Vol. 1, Morgan Kaufmann, San Francisco, CA, 1999,
pp. 847-854.

[5] J. Sarma and K.A. De Jong. An analysis of local selection algorithms in a spatially structured
evolutionary algorithm. In T. Bick, Ed., Proceedings of the Seventh International Conference on
Genetic Algorithms, Morgan Kaufmann, San Francisco, CA, 1997, pp. 181-186.

[6] J. Sarma and K.A. De Jong. An analysis of the effect of the neighborhood size and shape on
local selection algorithms. In H.M. Voigt, W. Ebeling, I. Rechenberg, and H.P. Schwefel, Eds.,
Parallel Problem Solving from Nature (PPSN IV), Vol. 1141 of Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, 1996, pp. 236-244.

[7] E. Alba and]J.M. Troya. Cellular evolutionary algorithms: Evaluating the influence of ratio.
In M. Schoenauer et al., Eds., Parallel Problem Solving from Nature, PPSN VI, Vol. 1917 of Lecture
Notes in Computer Science, Springer-Verlag, Heidelberg, 2000, pp. 29-38.

[8] M. Tomassini. The parallel genetic cellular automata: Application to global function optimization.
In R.E Albrecht, C.R. Reeves, and N.C. Steele, Eds., Proceedings of the International Conference on
Artificial Neural Networks and Genetic Algorithms, Springer-Verlag, Heidelberg, 1993, pp. 385-391.

[9] D. Whitley. Cellular genetic algorithms. In S. Forrest, Ed., Proceedings of the Fifth International
Conference on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1993, p. 658.

[10] B. Schonfisch and A. de Roos. Synchronous and asynchronous updating in cellular automata.
BioSystems, 51: 123—143, 1999.

[11] M. Sipper, M. Tomassini, and M.S. Capcarrere. Evolving asynchronous and scalable non-uniform
cellular automata. In Proceedings of International Conference on Artificial Neural Networks and
Genetic Algorithms (ICANNGAZY97), Springer-Verlag KG, Vienna, 1998, pp. 67-71.

[12] P. Adamidis and V. Petridis. Co-operating populations with different evolution behaviours. In Pro-
ceedings of the Third IEEE Conference on Evolutionary Computation, IEEE Press, Washington, 1996,
pp. 188-191.

© 2006 by Taylor & Francis Group, LLC

http://tracer.lcc.uma.es

7-120 Handbook of Bioinspired Algorithms and Applications

[13] E Herrera and M. Lozano. Gradual distributed real-coded genetic algorithms. IEEE-EC, 4: 43—62,
2000.

[14] P.Moscato. Memetic algorithms. In P.M. Pardalos and M.G.C. Resende, Eds., Handbook of Applied
Optimization, Oxford University Press, Oxford, 2000, pp. 157-167.

[15] D.E.Goldbergand K. Deb. A comparative analysis of selection schemes used in genetic algorithms.
In G.J.E. Rawlins, Ed., Foundations of Genetic Algorithms, Morgan Kaufmann, San Francisco, CA,
1991, pp. 69-93.

[16] M. Giacobini, E. Alba, and M. Tomassini. Selection intensity in asynchronous cellular evolutionary
algorithms. In E. Canta-Paz et al., Eds., Proceedings of the Genetic and Evolutionary Computation
Conference GECCO’03, Springer-Verlag, Berlin, 2003, pp. 955-966.

[17] D. Whitley, S. Rana, J. Dzubera, and K.E. Mathias. Evaluating evolutionary algorithms. Artificial
Intelligence, 85:245-276, 1997.

[18] D.E. Goldberg, K. Deb, and J. Horn. Massively multimodality, deception and genetic algorithms.
In R. Minner and B. Manderick, Eds., Parallel Problem Solving from Nature, PPSN II,
North-Holland, 1992, pp. 37-46.

[19] S. Tsutsui and Y. Fujimoto. Forking genetic algorithm with blocking and shrinking modes.
In S. Forrest, Ed., Proceedings of the fifth International Conference of Genetic Algorithms,
Morgan Kaufmann, San Mateo, CA, 1993, pp. 206-213.

[20] K.A. De Jong, M.A. Potter, and W.M. Spears. Using problem generators to explore the effects of
epistasis. In T. Bick, Ed., Proceedings of the Seventh ICGA, Morgan Kaufmann, San Francisco, CA,
1997, pp. 338-345.

[21] EJ. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-Holland,
Amsterdam, 1977.

[22] H. Chen, N.S. Flann, and D.W. Watson. Parallel genetic simulated annealing: A massively parallel
SIMD algorithm. IEEE Transactions on Parallel and Distributed Systems, 9: 126—136, 1998.

[23] S. Khuri, T. Bick, and J. Heitkotter. An evolutionary approach to combinatorial optimization
problems. In Proceedings of the 22nd ACM Computer Science Conference, ACM Press, Phoenix, AZ,
1994, pp. 66-73.

[24] D.R. Stinson. An Introduction to the Design and Analysis of Algorithms, 2nd ed. (1987). The Charles
Babbage Research Center, Winnipeg, Manitoba, Canada, 1985.

[25] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman, San Franciso, CA, 1979.

[26] A. Eiben and J. van der Hauw. Solving 3-SAT with adaptive genetic algorithms. In Proceedings of
the Fourth IEEE Conference on Evolutionary Computation, IEEE, Piscataway, NJ, 1997, pp. 81-86.

[27] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed. Springer-
Verlag, Heidelberg, 1996.

[28] H. Miihlenbein and D. Schlierkamp-Voosen. The science of breeding and its application to the
breeder genetic algorithm (bga). Evolutionary Computation, 1: 335-360, 1993.

[29] D.H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer, Boston, MA, 1987.

[30] T. Bick, G. Rudolf, and H.-P. Schwefel. Evolutionary programming and evolution strategies:
Similarities and differences. In D.B. Fogel and W. Atmar, Eds., Proceedings of the Second Conference
on Evolutionary Programming, Evolutionary Programming Society, La Jolla, CA, 1993, pp. 11-22.

[31] T. Bédck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms. Oxford University Press, New York, 1996.

[32] G. Folino, C. Pizzuti, and G. Spezzano. Parallel hybrid method for SAT that couples genetic
algorithms and local search. IEEE Transactions on Evolutionary Computation, 5: 323—-334, 2001.

[33] E.Albaand B. Dorronsoro. The exploration/exploitation tradeoff in dynamic cellular evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 9(2): 126—142, 2005.

© 2006 by Taylor & Francis Group, LLC

Optimization via
Gene Expression
Algorithms

8.1 Introduction............ccoioiiiiiiiiiiiiiiii 8-121
8.2 The Central Dogma of Biologyc.coceeenin. 8-122
8.3 Borrowing from Naturecccooeviiiiiininn. 8-123
8.4 The Gene Expression Algorithm 8-123
8.5 Advantages in Using Gene Expression.................. 8-125
8.6 Prior Research in Gene Expression Algorithms........ 8-125
8.7 Gene Expression for the TSPc.oo. 8-126

Construction Heuristics e Genetic Algorithms and the TSP o
The TSP Gene Expression Algorithm
8.8 A New Gene Representationcccoevvveinnenn. 8-129
The Inversion Vector e Recovering the Permutation e Using
the Inversion Vector

8.9 Experimental Resultsc..coooiiiii.. 8-131
8.10 Final Discussion........ovvvviiiiiiiiniiieeeeeeeeennnnnnns 8-132
Forbes Burkowski RELEIOIICES .. vvvveee ettt e 8-133

8.1 Introduction

The extreme diversity of life forms on our planet is a testament to the many ways in which millions of
different species have adapted to the huge number of biological niches that are available ranging, as they
do, over extremes in temperature and pressure in air, land, and water. Viewed in an abstracted formulation,
we may consider evolutionary adaptation of species within a biological niche to be a robust search and
optimization mechanism (Fogel, 1994), the phenotype changing over time so that the species survives
in its competitive environment. Under the Darwinian view, evolutionary processes are involved with
reproduction, mutation, competition, and selection. The bioinspired strategies of genetic algorithms and
evolutionary optimization, in general, strive to capture these biologically robust search mechanisms by
formulating mathematical models that search function domains using algorithmic procedures that mimic
some of the evolutionary processes of the cell, for example, mutation, and crossover. Before discussing
these procedures, let us go over a superficial but quick review of the main biological events in the cell.

8-121

© 2006 by Taylor & Francis Group, LLC

8-122 Handbook of Bioinspired Algorithms and Applications

DNA with introns and exons
(RERRRRRRRRRRRNRRRARNII TTTTTITITTT TTTTTTTTTTITT TTTITTITITE]

Transcription: * # $ * * * * Primary

LTI TTTITTITTIT T [T mRNA

RNA transcript
splicing:

Mature mRNA (introns eliminated)

¢ mRNA goes
¢ to a ribosome
for translation:

A protein sequence is produced

FIGURE 8.1 The central dogma.

8.2 The Central Dogma of Biology

During the 1950s Watson and Crick proposed the central dogma of biology. The basic idea was that
information within a cell flowed from DNA to RNA to protein. Protein was not able to influence DNA.
We now know that this is too simple. For example, a virus such as HIV can change the DNA of a host cell
to achieve the replication of the virus.

Nonetheless, as a generalization, the central dogma is a reasonable assumption. Figure 8.1 illustrates the
main events. The interested reader may consult almost any undergraduate text on genetics or biomolecular
chemistry to get the details, for example, Lewin (1997). A single DNA molecule is comprised of a sequence
of nucleotides: Adenine, Guanine, Cytosine, and Thymine typically denoted as A, G, C, and T. The
sequence can be subdivided into intron and exon subsequences. Exons contain nucleotides that specify
the content of protein, while introns (sometimes called “junk” DNA) contain nucleotide subsequences with
a significance that is largely unknown. During the operation of transcription, some particular sequence
of introns and exons making up a gene will be transcribed to form a primary mRNA transcript, which
essentially contains the same code sequence as the DNA except that thymine is replaced with a different
nucleotide called Uracil, that is, U replaces T in the reproduced string. Later a splicing event removes all
intron nucleotides and the mature mRNA is ready for translation by a ribosome, a very large assembly
of molecules that takes the available amino acids in the cell and links them into long chains that make
up a protein. The ordering of the amino acids in the protein sequence is dictated by three letter codons
originally within the exons of the DNA. The now somewhat outmoded “one gene, one protein” hypothesis
states that, a single gene in the DNA is responsible for the specification of one type of protein in the cell.

As seen in this setting, mutation is an event that typically introduces a single nucleotide substitution
in the DNA of a gamete cell that will participate in reproduction (sperm or egg). In crossover, there is an
interchange of material between two different molecules of DNA, each containing the same sequence of
genes but typically with slightly different nucleotide sequences within these genes.

Of course, nature achieves its complexity using strategies that go well beyond simple mutation and
crossover of genes. For example, while codons in the DNA will prescribe the sequence of amino acids in
protein, other mechanisms at the molecular level work on some proteins to modify them. This posttran-
slational modification and alternate splicing strategies that leave out or reorder exons allow the cell to
have many more different proteins than the original “one gene, one protein” hypothesis indicated. Another
example of increased complexity is the huge evolutionary leap that took place when some early primordial
cell became endowed with mitochondria, the energy producing organelles is now present in all cells.
This event is considered to have started as a symbiotic relationship between two cellular structures, one
enveloping the other. In support of this view, we note that mitochondria have their own DNA, which does

© 2006 by Taylor & Francis Group, LLC

Optimization via Gene Expression Algorithms 8-123

A 4

Modify gene
and generate
phenotype

Is
phenotype
fit?

Yes

Replace
phenotype

FIGURE8.2 The reproductive cycle.

not exactly follow the same encoding as regular DNA. This symbiotic combination illustrates a mechanism
that achieves a remarkable advance in complexity without any reliance on mutation and crossover per se.

8.3 Borrowing from Nature

Ever since the seminal work by John Holland in 1975 (Holland, reprinted 1992), the evolutionary
computation research community has experimented with a wide range of mathematical models for
function optimization. Since the full mechanism of biological evolution is daunting in its formidable
complexity, these mathematical models must necessarily pick some limited feature of the entire process
and this source of “bioinspiration” becomes the central theme of the model. For example, the binary
representation of a gene is formatted to represent a feasible solution of some optimization problem and
a fitness function is applied to the gene to assess how well the feasible solution meets the requirements
of the problem. If the gene has produced a high fitness evaluation then that gene stays in a population
of such genes, otherwise it is replaced. Figure 8.2 provides a summary of the basic idea. Creation of
new genes and selection strategies to chose the surviving genes are basic to the procedures involved with
genetic algorithms. As optimization strategies, genetic algorithms take inspiration from the evolutionary
strategies of the cell and incorporate concepts and mathematical objects that show some relationship with
biological genes, mutation, crossover, etc. We will assume that the reader is familiar with these ideas.

Researchers have borrowed many other features from evolutionary biology. For example, research
developing genetic algorithms inspired by gene duplication (Sawai and Adachi, 1999) and gene signaling
(Goldberg et al., 1989). Although not discussed in Section 8.3, most genes occur in a cell with duplication.
This is known as diploidy and the corresponding mathematical exploration of this within a genetic
algorithm framework has been studied (Bagley, 1967; Smith, 1988). Recalling that introns do not directly
specify amino acid sequences, the presence of noncoding areas in a binary gene for genetic algorithms has
also been considered (Wu and Lindsay, 1995).

The main content of this chapter presents yet another mathematical model that is based on a biological
feature, namely that of gene expression.

8.4 The Gene Expression Algorithm

The many thousands of proteins produced by living cells collectively make up the phenotype of the
individual. The external environment will subject this individual to competitive pressures that effectively
serve to determine whether that individual will reproduce or be eliminated. In general, genes are expressed

© 2006 by Taylor & Francis Group, LLC

8-124 Handbook of Bioinspired Algorithms and Applications

Problem
specification

O\

Evaluate
objective
function

Fitness
value

Binary gene

FIGURE 8.3 Fitness evaluation from a binary gene.

Problem
specification

- T
. '

L ' ~

. | <

,r’/ Gene expression algorithm el ..

X A

Binary gene

>

Intermediate
representation

<

Problem
phenotype

Lg

Fitness
value

Evaluate
objective
function

FIGURE 8.4 Fitness evaluation from a phenotype.

by being chosen for transcription leading ultimately to some particular protein with possible modification.
The important issue is that, fitness is essentially due to the capabilities of protein making up the phenotype.
More significantly, fitness is not an immediate property of the genes that have been expressed.

In the traditional genetic algorithm (Goldberg, 1989: 60), the phenotype of an individual is the decoded
parameter or parameters of the binary gene. We use Figure 8.3 to describe a somewhat simplified version
of the algorithm, showing how the problem specification will dictate the format of a binary gene. A
subsequent calculation using an objective function evaluates the fitness of that gene. In this scenario, the
fitness function is applied directly to the binary gene. As noted by Mitchell (1996) p. 6:, there is often no
notion of a phenotype in the context of genetic algorithms, although more recently, various works have
presented various models to incorporate them.

When a genetic algorithm involves a gene expression strategy, the fitness function is applied to a
computed phenotype that is more than a simple alternate representation of the binary gene. Typically,
the computation of this phenotype is fairly complicated and is achieved by an algorithm that is called a
gene expression algorithm. As shown in Figure 8.4, the gene expression strategy utilizes an intermediate
stage that produces a final phenotype, which is then subjected to fitness evaluation. To make the biological
inspiration more obvious, we simplify the transformation of cellular information as follows:

DNA gene — mRNA — protein for the phenotype.

In our computational environment, we will have various binary representations that run in parallel with
this natural model:

gene — intermediate representation — phenotype.

The intermediate representation may be absent or may exist as a sequence of intermediate transformations
depending on the requirements of the algorithm. The most significant component of our strategy is
that, we use a gene expression algorithm to produce a binary phenotype representation that is ready for
fitness evaluation. The phenotype meets various feasibility requirements and, in its construction, the

© 2006 by Taylor & Francis Group, LLC

Optimization via Gene Expression Algorithms 8-125

gene expression algorithm utilizes various parameters that eventually take on values that are determined
through the use of a genetic algorithm. Another description of the gene expression strategy would be the
use of optimization heuristics that are dependent on parameters derived via evolutionary computation.

Itis important to understand how an algorithm designer might approach a problem with the intention of
utilizing a gene expression algorithm. In the traditional deployment of a genetic algorithm, the algorithm
designer would have a binary string acting as a gene and then would exercise the genetic algorithm with an
appropriate fitness function applied to such a gene. With a gene expression algorithm, some appropriate
data structure (usually a binary string) acts as a phenotype structure which provides an input for the
fitness function. The “cleverness” of the algorithm designer is then challenged by two goals:

1. Specify the format of a binary gene (suitable for mutation and crossover operations) that can then
be transformed into the phenotype structure.
2. Design the gene expression algorithm that does this transformation.

8.5 Advantages in Using Gene Expression

As will be demonstrated in the sections to follow, using a gene expression algorithm has significant
advantages:

e Separation of Design Concerns: The binary representation of a feasible solution for an optimization
problem may be unsuitable for genetic algorithm operators, such as crossover. Using the gene
expression strategy, the parameters of the optimization heuristics can be encoded in a binary
representation that is completely different from the binary representation of the phenotype to be
used for a fitness evaluation. This facilitates the design of representations that are appropriate for
their utilization: the gene for crossover, the phenotype for fitness evaluation.

e Generation of Feasible Phenotypes: Frequently, the designer of a genetic algorithm must take special
pains to ensure that a crossover operation generates a child gene that is a valid member of the search
space. Since a gene expression algorithm is responsible for the generation of a phenotype, we can
demand that the constraint of feasibility be a part of the gene expression algorithm, the onus of
this responsibility being taken away from the reproductive subsystem that must build a valid gene.

e Using Optimization Heuristics to Extend Genetic Algorithms: Researchers studying optimization and
search strategies for hard NP-complete problems have developed sophisticated “problem specific”
heuristics that, in typical applications, generate very reasonable approximations. Gene expression
algorithms can often take advantage of these techniques thus incorporating solution strategies that
are not typically a part of the traditional approach provided by a simple genetic algorithm.

e Using Genetic Algorithms to Extend Optimization Heuristics: We may gain a mutual benefit by
combining problem specific heuristics with a genetic algorithm approach. Often, the specification
of the heuristic is highly deterministic but will perform better when a stochastic element is provided,
in this case, through the use of an evolutionary computation environment.

8.6 Prior Research in Gene Expression Algorithms

In addition to the work of Julstrom that is mentioned later, we discuss two other research efforts dealing
with gene expression algorithms. Ferreira (2001) introduces a methodology called gene expression pro-
gramming. The main idea is that a binary gene is transformed into an expression tree. The expression
tree (ET) is an infix expression for a program that may be evaluated when actual values are assigned to the
variables located in the leaves of the binary ET. During a training phase, a fitness function compares
the evaluation done by the tree with prescribed target values. The expression algorithm determines
how the ET is constructed from any valid gene made up of variable names and arithmetic operators.
The strategy is applied to problems such as symbolic regression, planning, Boolean concept learning, and
cellular automata rules.

© 2006 by Taylor & Francis Group, LLC

8-126 Handbook of Bioinspired Algorithms and Applications

Another interesting set of gene expression papers has been written by Hillol Kargupta. He uses the idea of
genetic code-like transformations. Kargupta (1999) emphasizes the importance of learning functions from
data. This would have application in areas such as inductive learning, statistics, data mining, and optimiza-
tion. In this approach, a function islearnt or induced by generating the coefficients in its Fourier expansion.
In general, a function (e.g., a fitness function) defined on an n-bit binary string, requires O(2") Fourier
coefficients. Hence, this inductive procedure is computationally inefficient. However, it is sometimes
possible to find very reasonable approximations of a function if the set of Fourier coefficients has a
smaller subset of “large” coefficients that are polynomial in number. In such a case, it must be demon-
strated that the power spectrum, defined by the set of coefficients, has a high concentration of energy in a
few coefficients (O(#*) in number) with an exponential drop-off in the magnitude of all other nonzero
coefficients. This is equivalent to the demand that, the “small” coefficients (O(2") in number) be expo-
nentially small so that, cumulatively, they do not amount to any significant sum. The contribution of this
chapter to gene expression resides in the observation that for some functions with O(2") large coefficients,
it is possible to use a “genetic code-like” transformation of the data that will transform the function into
a new function that has only O(n¥) large coefficients. The strategy is considered to involve a gene expres-
sion algorithm because we assume that the given function is defined on a phenotype space and the gene
expression algorithm is used to derive a possibly degenerate transformation that establishes a mapping
between a phenotype string and its gene image, which typically has a length that is a small integer multiple
of the phenotype string length. This is similar to a natural system in which the coding part of the gene
has a string length that is three times the length of the amino acid sequence that it encodes. After such a
transformation of data, the fitness function can be seen to have the gene space as its domain and if the
genetic code-like transformation is defined in the appropriate manner, then the fitness function will have
O(n*) large Fourier coefficients. These are two other papers (Kargupta and Park, 2000; Kargupta and
Ghosh, 2002) that deal with there related issues.

8.7 Gene Expression for the TSP

In the rest of this chapter we review the work presented by Burkowski (2003) which demonstrates the
application of the gene expression algorithm to the traveling salesperson problem (TSP). We will assume
that the reader is familiar with the basic notion of the TSP. We will also limit our attention to the Euclidean
case of finding a minimum length tour through # cities assuming both, the triangle inequality and the
symmetry of the intercity distances.

It should be stressed that we are not advocating the use of this algorithm as a serious performance
contender in the solution of a TSP. There are currently many highly successful optimization strategies
to derive near-optimal solutions of the TSP for problem instances involving several hundred or even
thousands of cities. When compared with any algorithm, that is a variant of a genetic algorithm, they are
typically much faster and produce better results. Our choice of the TSP as a problem to be solved by a gene
expression algorithm is mainly being done to illustrate the techniques employed by this methodology with
the goal of showing that it can meet the demands of a difficult problem.

Numerous papers have been written in this field of research and a fine bibliography can be found in
Reinelt (1994). Reinelt provides the reader with a useful categorization of TSP heuristics: Construction
heuristics are used to rapidly derive a somewhat coarse approximation to an optimal tour while improve-
ment heuristics are used to modify a given tour in an effort to shorten its length, hopefully deriving an
optimal tour. The improvement heuristics include the well-known 2-Opt, 3-Opt, and Lin—Kernighan
heuristics commonly used in practice.

8.7.1 Construction Heuristics

Among the construction heuristics, we can find various insertion strategies that typically start with a short
subtour going through a small subset of the cities and subsequently employ some technique to enlarge the
tour by iteratively adding more cities until a full tour is generated. As described by Ausiello et al. (1999)

© 2006 by Taylor & Francis Group, LLC

Optimization via Gene Expression Algorithms 8-127

we can derive a tour T from a set of cities C by doing tour extensions of a tour that initially starts as some
single city in C:

begin
Select any city ¢ in C;
T := <C>;

c c - {c};:

while C != ¢ do

begin
Let ¢ = £(C, T) in C be the city
meeting the insertion criterion;
Insert ¢ into T;
C := C- {c};

end

end

There is a variety of choice for the city selection function £. For example, we may select a city using one
of the following predefined criteria:

Nearest Neighbor: Select the city that is nearest to the last city inserted in T.

o Nearest Insertion: Select the city that has the minimal distance from any city already included in the
subtour T.

Farthest Insertion: Select the city whose distance from the nearest city in T is maximal.

Cheapest Insertion: Select the city whose insertion in T involves the minimum increase in path
length.

8.7.2 Genetic Algorithms and the TSP

The application of genetic algorithms to the TSP has been met with mixed success by many research
studies. A key issue is the quest for an effective gene representation. A good introduction to these issues
can be found in the work done by Michalewicz (1992). Further research in Tao and Michalewicz (1998)
report on the inver-over operator for fast, high quality solutions to the TSP. In Nagata and Kobayashi
(1997) a technique called edge assembly crossover is used.

An interesting strategy in applying GAs to the TSP has been done by Julstrom (1999). He uses an
insertion heuristic that is guided by selection priorities, which are specified by means of a binary gene.
This is an interesting strategy because the gene is not attempting to directly describe a feasible solution.
Instead, it essentially defines a plan of action that leads to a feasible solution. Of course, in a natural setting
the DNA of an animal is similarly utilized. DNA is used to specify a collection of proteins that function
in the environment of a cell, leading to the characteristics of a phenotype that then exhibits an observable
fitness. Our optimization strategies mimic this flow of information: the facilitation of gene expression
followed by phenotype generation leading to fitness evaluation.

© 2006 by Taylor & Francis Group, LLC

8-128 Handbook of Bioinspired Algorithms and Applications

8.7.3 The TSP Gene Expression Algorithm

Our construction heuristic is similar in spirit to the insertion strategies mentioned earlier; however, admits
more flexibility in which it involves more choice at each step of the construction. This extra choice at each
step allows us to formulate a strategy that involves a stochastic component. This is done by using a priority
vector that will specify the sequence of choices made in the complete construction of a feasible tour. The
stochastic part of this strategy arises because such a priority vector is derived from a gene in a population
that is subjected to an evolutionary process. We now describe this in more detail using the terminology
introduced earlier:

e The gene representation will be an inversion vector (to be defined later).
e The intermediate representation is a priority vector.
e The phenotype representation is a sequence of cities defining a tour.

We start by describing the conversion of a priority vector to a tour and then describe the inversion vector.

8.7.3.1 A Priority Vector is an Intermediate Representation

We assume that, our TSP instance involves # cities labeled 1,2, 3, ..., n. We define an intermediate rep-
resentation p to be a vector p = [ay, a4y, . . ., a,]. Such a vector is intended to represent some permutation
of the set {1,2,3,. .., n}. In other words, p will be the numbers 1,2,3,...,n in some “scrambled” order.
As described later, the entries in this vector will represent the priority order in which a set of subtours is
coalesced to form a final full tour.

8.7.3.2 Merging of Subtours to Derive the Phenotype

The phenotype corresponding to this intermediate representation will be a Hamiltonian tour represented
by a sequence of cities. It will have the same appearance as a priority vector but the significance of its
components will be very different. To build the phenotype corresponding to some particular priority
vector, we go through the following n + 1 steps:

Step(0): Build a set of subtours initialized to be n elementary subtours each containing a single city.
We then process the entries of the priority vector in a consecutive order.

Step(i): Find the subtour containing the city labeled a; and merge this subtour with its closest
neighboring subtour.

On completion of the final step, we will have a full n-city tour. To derive the phenotype, we simply read
out the cities in the final tour that is just constructed. To provide more details about step(i) we describe
the merge of subtours as follows: Two subtours are merged by making two cuts (removing an edge from
each subtour), thus opening up both subtours, and then reconnecting them to make one large subtour
(Figure 8.5).

Given an arbitrary subtour Sy, the closest neighboring subtour Sc is defined to be the subtour providing
the lowest merge cost. The merge cost of any two subtours is the minimal merge cost calculated by

b

FIGURE 8.5 Merge of two subtours.

© 2006 by Taylor & Francis Group, LLC

Optimization via Gene Expression Algorithms 8-129

evaluating all possible cut pairs, one cut from each subtour. We define the cost of a merge as follows:
cost of merge = total length of edges added — total length of edges deleted.

Merging two single city subtours will produce a simple two city loop and merging a single city subtour
with a multi-city subtour is essentially the insertion strategy described earlier.

It should be noted that, this strategy does more than simply generating feasible “single loop” tours.
Each tour constructed is typically a reasonable approximation. Experimentation with the TSPLIB test
suite (Reinelt, 1991) shows that an arbitrary priority vector (without any improvements facilitated by the
genetic algorithm described later) will generate a tour that is roughly within 15% to 20% of optimal.

8.7.3.3 Evaluation of Fitness

Once the phenotype (i.e., a full tour) is constructed, we calculate the sum of all intercity distances covered
by the tour and obtain the fitness calculation associated with the given priority vector.

8.8 A New Gene Representation

We now describe the binary gene representation. To the best of our knowledge, this is a novel data
representation for a TSP problem and we expect that future refinements of this strategy should produce
some interesting avenues of exploration.

8.8.1 The Inversion Vector

Let us consider ay, g, . . ., a, to be a permutation of the set {1, 2, ..., n}. The set is deliberately chosen to
be a set of integers because we wish to have the ability to perform order comparisons on the given elements.
Asin Knuth (1998)! we define an inversion vector by, by, . . ., b, of the permutation aj, as, . . . , a, by letting
b;j be the number of elements to the left of j that are greater than j. For example, the permutation:

ai, d,...,a;, = 176958342
generates the inversion vector:
bi,byy. .., b, =075531010.

To illustrate why this is true, note that b5 = 3 because there are 3 elements in the permutation, namely 7,
6, and 9 that are greater than 5 and situated to the left of 5.
Because of the manner in which the b; are defined, we will always have the following equations:

0<b <n-—-1,
0<bh<n-2,
(8.1)
0<by,—1 <1,
.= 0.

'We have adopted the terminology inversion to pay proper respect to Knuth who has a prior use of this term in
the context of a permutation. For Knuth inversion is used in the sense of a two element swap. The reader should not
confuse our use of the term with the notion of inversion as used in genetics.

© 2006 by Taylor & Francis Group, LLC

8-130 Handbook of Bioinspired Algorithms and Applications

8.8.2 Recovering the Permutation

As noted by Marshall Hall (1956), there is a one-to-one correspondence between the set of all permutations
of {1, 2, ..., n}and the set of inversion vectors that are constrained to follow the dictates of (1). In fact, if we
are given the inversion vector we can easily recover the original permutation by successively determining
the relative placement of the elements, considering them in the order of largest to smallest. In the given
example, we would write down 9 (the largest number in the city set), then place 8 to the right of 9, since the
inversion vector indicates that there is a number to the left of 8 that is larger than 8. Similarly, we place 7 to
the left of 9 since there is a 0 in the 7 position of the inversion vector, indicating that there are no elements
to the left of 7 that are larger than 7. The 1 in position 6 of the inversion vector will cause the 6 to be written
between the 7 and the 9. The permutation elaborated up to this point will be 7 6 9 8. By continuing in
this fashion, until all the numbers are written out, we can recover the original permutation. The following
table gives the order of element insertion and the results:

Next element to be put

into the permutation Result

9 9

8 98

7 798

6 7698

5 76958

4 769584

3 7695834

2 76958342
1 176958342

8.8.3 Using the Inversion Vector

Why go through the trouble of expressing a permutation as an inversion vector? We do this because
the representation is wonderfully compatible with a crossover operation. Note that any two properly
formed inversion vectors will follow the constraints dictated by Equations (8.1). Furthermore, a crossover
operation between these two inversion vectors will preserve the relative positions of entries in the inversion
vectors produced by the crossover. Hence, a child is immediately a legitimate representation of some
inversion vector since it too will adhere to the constraints imposed by Equation (8.1). By following the
recovery instructions described in Section 8.10, the inversion vector of the child can be converted to a
priority vector and we can commence the generation of a phenotype.

Most importantly, there is no need for any further “postcrossover” modifications of the representation
such as we see with the adjacency representation or the PMX representation (Michalewicz, 1992: 168-172).
It should be noted that the ordinal representation discussed by Michalewicz is also “crossover compatible”;
however, in practice, the representation shows poor experimental results since there is little evidence
of good parents producing good children due to the disruptive effects of crossover with this type of
representation. If the reader indulges in some “back-of-the-envelope” experimentation, you will discover
that the inversion vector representation does exhibit some degree of priority preservation from parent to
child when a crossover is applied. This is fairly easy to appreciate since the inversion vector, by counting
elements larger than a given element, will tend to place a city in a particular comparison relation with the
other cities. This is a quality that is not supported by the ordinal representation.

Since a suitable TSP tour representation has been something of a Holy Grail in the GA community,
we initially went through the trouble of designing an experiment that used the inversion vector as the
representation of the permutation of cities in a tour. Although results were somewhat encouraging, there
was still too much disruption, and experiments demonstrated a disappointing lack of inheritance of high

© 2006 by Taylor & Francis Group, LLC

Optimization via Gene Expression Algorithms 8-131

TABLE 8.1 Experimental Results (Population Size = 256)

Number CPU

Problem Opt. Tour Quality oftour time
instance length length of tour evals. sec
att48 10,628 10,653 1.0024 640 9
berlin52 7,542 7,718 1.0233 1,024 12
ch130 6,110 6,336 1.0370 640 49
ch150 6,528 6,910 1.0585 768 89
eil101 629 647 1.0286 896 40
eil51 426 432 1.0140 896 9
kroA100 21,282 22,043 1.0358 640 26
lin105 14,379 14,747 1.0256 1,024 43
tsp225 3,919 4,002 1.0212 1,536 420

TABLE 8.2 Experimental Results
(Population Size = 1024)

Number CPU
Problem Opt. Tour Quality oftour time
instance length length of tour evals. sec
att48 10,628 10,628 1.0 2,560 25
berlin52 7,542 7,542 1.0 3,072 39
ch130 6,110 6,227 1.0191 6,144 483
ch150 6,528 6,711 1.0280 4,096 503
eil101 629 641 1.0191 3,584 169
eil51 426 427 1.0023 3,072 34
kroA100 21,282 21,831 1.0258 4,608 199
lin105 14,379 14,379 1.0 6,144 266
tsp225 3,919 3,952 1.0084 8,704 2,745

quality paths. As a consequence, we have chosen to work with the permutation as representing not the
order of the cities but rather the order of merging subtours as described earlier.

8.9 Experimental Results

All experiments were done using problem instances taken from TSPLIB (Reinelt, 1991). The quality of
the final approximations is presented as the ratio of final tour length divided by the published optimal
tour length. A population size of 256 members was used. Each new generation of 128 genes replaced
the least fit half of the population. A roulette strategy was used for selection of parent genes. If two
successive generations produced no improvement in the best fitness evaluation then the production of a
new generation was stopped, mutation was not used. Results are presented in Table 8.1. See Table 8.2 for
the same experiment run with a population size of 1024. Processing times (600 MHz Pentium III) are in
seconds.

The objective of the experiment was both to test the feasibility of the gene expression model and to
verify the utility of the inversion vector strategy. We contend that our results are very encouraging and
provide empirical evidence that the gene expression approach is a viable strategy.

Figures 8.6 through 8.10 show the progress of the algorithm in the solution of the Berlin52 problem
from TSPLIB (Reinelt, 1991). In all figures except for the last one, the final tour is provided as a lighter
line. In Figure 8.6, we see that the first ten merge operations produce short subtours that are in line with
the final tour. Figures 8.7 to 8.9 show the solution as a growing set of subtours appearing as small loops
that undergo various merging operations. Figure 8.10 is the final tour represented in dark black lines.

© 2006 by Taylor & Francis Group, LLC

8-132 Handbook of Bioinspired Algorithms and Applications

FIGURE 8.6 After 10 merge operations.

FIGURE 8.7 After 20 merge operations.

FIGURE 8.8 After 30 merge operations.

8.10 Final Discussion

In this chapter, we have described a mathematical model for an optimization strategy that is inspired
by gene expression in a living cell. We have argued that, there are various advantages in using separate
representations for genes and phenotypes with the specific intention that the gene will provide a set of

© 2006 by Taylor & Francis Group, LLC

Optimization via Gene Expression Algorithms 8-133

FIGURE 8.9 After 40 merge operations.

FIGURE 8.10 The optimal tour.

parameters that define the construction of a phenotype that will then be subjected to a fitness evaluation.
In particular:

e We have a gene representation that is compatible with crossover and a phenotype representation
with the usual appearance of a Hamiltonian path.

e All phenotypes generated by the gene expression algorithm are valid representations suitable for
fitness evaluation.

e Our experiments show that, utilization of a sophisticated algorithm such as subtour merging gives
the evolutionary computation a “head start” in the construction of good approximations to the
optimal tour.

e Our experiments further demonstrate that a TSP construction heuristic will do better when
combined with a subsystem for evolutionary computation.

We have referred to the heuristic strategy used to construct a phenotype as a gene expression algorithm
since gene expression in the living cell is responsible for utilizing the gene when protein products contrib-
uting to the phenotype need to be synthesized. While there is no guarantee that such a gene expression
algorithm can ever produce an optimal solution for an NP-complete problem our empirical evidence
shows that optimal solutions for a TSP instance can at times be constructed using a subtour merging
heuristic adapted to work with a genetic algorithm. This at least holds the promise of providing a viable
evolutionary computation environment for future avenues of research.

References

Ausiello G., Crescenzi P., G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi (1999) Complexity
and Approximation. Springer-Verlag, Berlin.

© 2006 by Taylor & Francis Group, LLC

8-134 Handbook of Bioinspired Algorithms and Applications

J.D. Bagley (1967) The behaviour of adaptive systems which employ genetic and correlation algorithms.
Dissertation Abstracts International, 28, 5106B (University Microfilms No. 68-7556).

EJ. Burkowski (2003) Proximity and priority: Applying a gene expression algorithm to the traveling
salesperson problem, paper presented at NIDISC’03 (The Sixth International Workshop on Nature
Inspired Distributed Computing) Nice, France, April 22-26, 2003.

C. Ferreira (2001) Gene expression programming: A new adaptive algorithm for solving problems.
Complex Systems, 13, 87—129.

D.B. Fogel (1994) An introduction to simulated evolutionary optimization. IEEE Transactions on Neural
Networks, 5, 3—14.

D. Goldberg (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley
Publishing, Reading, MA.

D.E. Goldberg, B. Korb, and K. Deb (1989) Messy genetic algorithms: Motivation, analysis, and first
results. Complex Systems, 3, 493-530.

J.H. Holland (1992) Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA.

B. Julstrom (1999) Coding TSP tours as permutations via an insertion heuristic. In SAC 99, Proceedings
of the 1999 ACM Symposium on Applied Computing. ACM Press, New York, pp. 297-301.

H. Kargupta (1999) A striking property of genetic code-like transformations. School of EECS Technical
report EECS-99-004, Washington State University, Pullman, WA.

H. Kargupta and S. Ghosh (2002) Toward machine learning through genetic code-like transformations.
Genetic Programming and Evolvable Machines, 3, 231-258.

H. Kargupta and B.H. Park (2000) Gene expression and fast construction of distributed evolutionary
representation. Evolutionary Computation, 9, 45—68.

D. Knuth (1998) The Art of Computer Programming, Sorting and Searching, Vol. 3, 2nd ed. Addison-Wesley,
Reading, MA.

B. Lewin (1997) Genes VI. Oxford University Press, New York.

Z. Michalewicz (1992) Genetic Algorithms + Data Structures= Evolution Programs. Springer-Verlag,
Berlin.

M. Mitchell (1996) An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA.

Y. Nagata and S. Kobayashi (1997) Edge assembly crossover: A high-power genetic algorithm for the travel-
ing salesman problem. In Proceedings of the Seventh International Conference on Genetic Algorithms,
T. Bick (Ed.), pp. 450-457.

G. Reinelt (1991) TSPLIB — A Traveling Salesman Problem Library, ORSA Journal on Computing, 3,
376-384. See also: http://softlib.rice.edu/softlib/tsplib/

G. Reinelt (1994) The Traveling Salesman. Springer-Verlag, Berlin.

H. Sawai and A. Adachi (1999) Genetic algorithms inspired by gene duplication. Congress on Evolutionary
Computation, July. 1999, IEEE Press, Washington, D.C., pp. 480-487.

R.E. Smith (1988) An investigation of diploid genetic algorithms for adaptive search of non-stationary
functions, TCGA report No. 88001, University of Alabama, The Clearinghouse for Genetic
Algorithms, Tuscaloosa.

G. Tao and Z. Michalewicz (1998) Inver-over operator for the TSP. In Proceedings of the 5th Parallel Problem
Solving from Nature, T. Baeck, A. Eiben, M. Schoenauer, and H. Schwefel (Eds.), Lecture Notes in
Computer Science. Springer-Verlag, Amsterdam, pp. 803—-812.

A. Wu and R. Lindsay (1995) Empirical studies of the genetic algorithm with non-coding segments.
Journal a Evolutionary Computation, 3, 121-147.

A.Wu and R. Lindsay (1996) A survey of intron research in genetics. Parallel Problem Solving from Nature
(PPSN 1V), H. Voigt, W. Ebeling, 1. Rechenberg, and H. Schwefel (Eds.), Springer-Verlag, Berlin,
pp. 101-110.

© 2006 by Taylor & Francis Group, LLC

http://softlib.rice.edu

Dynamic Updating
DNA Computing
Algorithms

9.1 Introduction........coceveeiiiiiiniiniiiiiiiniinienen. 9-135
Motivation e Our New Model
9.2 The New Fundamental Algorithm...................... 9-138
Coloring Problem e The New Algorithm
9.3 Dynamically Updating the Answers 9-140
Zhiquan Frank Qiu 9.4 CONCIUSION ...ttt 9-144
Mi Lu RELETENCES ... enenineeat et 9-144

9.1 Introduction

It has been clearly shown that DNA computing can be used to solve those problems that are currently
intractable on even the fastest electronic computers. For methods to design the algorithms for DNA
computing, however, is not straightforward. To develop efficient DNA computing algorithms requires a
strong background in both DNA molecule and computer engineering. All of these algorithms need to start
over from the very beginning when their initial conditions change. It is very frustrating, especially when
the initial condition change is very small. The existing models based on which a few DNA computing
algorithms were developed are not able to accomplish the dynamic updating.

People have been talking about the huge memory made possible through DNA computing due to
the fact that each strand can be treated as both storage media and processor for a long time. Currently,
there is no existing application that has used this huge memory because although it is easy to read
from this memory, it is extremely hard to store data in it. Memories can only be ready after data has been
stored.

A new DNA computing model is introduced based on which new algorithms are developed to solve
the 3-coloring problem. These algorithms are presented as vehicles to demonstrate the advantages of the
new model. They can be expanded to solve other NP-complete problems. They have the advantage of
dynamic updating, so answers can be changed when the initial conditions are modified. The new model
takes advantage of this huge memory by generating “lookup tables” during the process of implementing
the algorithms. When the initial conditions change, the answers are changed accordingly. The new model
can be used to solve computationally intense problems both efficiently and attractively.

9-135

© 2006 by Taylor & Francis Group, LLC

9-136 Handbook of Bioinspired Algorithms and Applications

9.1.1 Motivation

A strand of DNA is composed of four different base nucleotides: A (adenine), C (cytosine), G (guanine),
and T (thymine). When attached to deoxyribose, these base nucleotides can be strung together to form a
strand. Because DNA strand can be used to encode information and DNA bio-operations are completely
based on the interactions between strands, each DNA strand can be counted as a processor as well as
storage media. Numerous strands are involved in DNA bio-operations and the interactions between one
another occur simultaneously. This, then, can be viewed as a realization of massive parallel processing.

Since Adleman [1] solved a 7-vertex instance of the Hamiltonian Path Problem, a well-known repre-
sentative of NP-complete problems, the major goal of subsequent research in the area of DNA computing
has been to develop new techniques for solving NP-complete problems. NP-complete problems are those
problems for which no polynomial-time algorithm has yet been discovered, in contrast to polynomial-time
algorithms whose worst-case run time is O(n%) for some constant k, where n is the size of the problem.

Consider that 1 litre of water can hold 10> DNA strands. The potential computing power is significant,
and this recognition raises the hope of solving problems currently intractable on electronic computers.
Rather than using electronic computers upon which the time needed to solve NP-complete problems
grows exponentially with the size of the problem, DNA computing technology can be used to solve
these problems within a time proportional to the problem size. An NP-complete problem that may take
thousands of years for current electronic computers to solve would take a few months, if the existing DNA
computing techniques were adopted.

As indicated in several articles [2—7], most DNA computing algorithms are based on certain developed
DNA computing models. The most popular models are the sticker based model [8,9], the surface-based
model [10,11], and the self-assembly based model [12,13]. The problem with the sticker-based model is
that the stickers annealed to the long strand may fall off during bio-operations, thus causing a very high rate
of error. The limitation of the surface based model is that the scale of computation is severely restricted by
the two-dimensional nature of surface based computations. The shortcoming of the self-assembly based
model is that it makes use of biological operations that are not yet matured.

While the theory of molecular computation has developed rapidly, most of these algorithms usually
take months to solve problems that may take thousands of years to solve with electronic computers. The
problem is that when the initial condition changes, the algorithms have to start over again. Here, a new
DNA computing model, which can eliminate this problem, is introduced. Based on this model, algorithms
can be designed to dynamically update the answer. When the initial condition changes, the new algorithms
can continue with the current process, and the solution for the new problem can be generated by a few extra
processes. In addition, this new model can also be used to solve several similar problems simultaneously.

9.1.2 Our New Model

Our new model uses only the DNA biological operations that are matured [1,6]. The following are the
basic principle operations: synthesis, ligation, separation, combination, and detection that are picked for
the new model.

Synthesis I(P, 7r): this operation is used to generate a pool of coded strands, P, following the predefined
criteria 7. Different applications code strands differently use the four base nucleotides: A, G, T, and C.
A group of strands are defined as one set and a pool is defined as the container holding a set of strands.
If the criteria are the colors of a node in a graph, then a pool of strands coding all the possible colors
for the nodes is expected after synthesis. In the graph coloring problem, the colors of a number of
nodes are encoded by the strands. A few consecutive nucleotides on the strand coded for the color of
one node form a region. For example, in Figure 9.1, one strand consists of three regions such that
s = {RBR} where (CCAAG), (AATTC), and (CCAAG) each represents the color for one node as R(Red),
B(Blue), and R(Red), respectively. Ligation L(Ps, Py, P;): this operation is used to bind strands in P; with
strands in P,. Each code s1; in Py, is ligated to every other code s; in P,. Assuming before the ligation,
strands in P; represent the codes {s;;|i = 1,2,..., ¢, where s;; € P;} and those in P, represent the code

© 2006 by Taylor & Francis Group, LLC

Dynamic Updating DNA Computing Algorithms 9-137

Node #2 colored as Blue
GAATCAATTC

ATGGGCCAAG GCCTCCAAG
AYaAYA)
SISISISISISIS SIS IS

Node #1 colored as Red Node #3 colored as Red
FIGURE 9.1
Temperature control fluid
_Jg One pool
Gel running buffer]
The other pool
Capture layers
FIGURE 9.2
{s2jlj = 1,2,..., c,where 5p; € P»}, after the ligation, the ligated strands are stored in P; and they represent
the code {s1;]i = 1,2, ..., c,where 5;; € P1} where s, = s;;spj,fork =i+ (j—1) x c.

In separation operation, many identical short strands defined as probes are attached to magnetic beads.
These probes are then sent into the pool containing the strands to be separated. Every probe will be
paired up with a complementary strand and together they form a double helix. Such pair-ups occur only
under the Watson—Crick complement rule: C only pairs with G and T only pairs with A. For example,
in Figure 9.1, if the strands containing the region for node 1 colored as ‘R’ need to be separated, the
DNA short strands TACCCGGTTC should be used as a probe because TACCCGGTTC complements
ATGGGCCAAG. Also, the double helix can be separated by heating in order to have the paired strands
part from each other without breaking the chemical bonds that hold the nucleotides together inside the
single strand. The strands in the pool containing a region that complements the probes will be hybridized
to, and captured by, the probe while all those without the region will remain in the pool [8].

A gel-based separation technique for DNA computing [14] has been developed that uses gel-layer
probes instead of the bead to capture the strands. The capture layer only retains the strand with a region
that complements the probe when it is cooled down, and will let all strands pass when the layer is heated
up. The advantage of using gel-based probes over bead-based probes is that the gel-based method is more
accurate when capturing DNA molecules. In Figure 9.2, which illustrates the gel-based separation, a set
of strands runs from the left side buffer to the right. At each capture layer, the temperature is cold in
order to capture the desired strands, and all unwanted strands are passed through into one pool. Then the
temperature is raised to let all desired strands in the layer pass into another pool. The strands from the
left buffer are separated and stored in two different pools:

Combination B(P, Py, P;): to pour two pools, P; and P, together to form a new pool, P.
Detection D(P): to check if there is any strand left in the pool, P. If the answer is “yes,” the strands in
the pool may need to be decoded.

The rest of this chapter is organized as follows: Section 9.2 gives an introduction to our new algorithm
and how, based on the new model we purposed, it solves the 3-coloring problem. The complexity analysis
of the new algorithm is provided in Section 9.3, which shows how dynamic updating can be accomplished.
The last section makes the conclusion.

© 2006 by Taylor & Francis Group, LLC

9-138 Handbook of Bioinspired Algorithms and Applications

9.2 The New Fundamental Algorithm

This new algorithm for the 3-coloring problem has been developed based on the newly developed DNA
computing model. The basic algorithm that will generate the answer to the 3-coloring problem of a given
graph will be introduced in this section. The algorithm will be advanced to show how the answer can be
dynamically updated and this will be shown in Section 9.2.1.

9.2.1 Coloring Problem

The 3-coloring problem is a special case of the k-coloring problem where k = 3, is a well-known
representative of the class of NP-complete problems. A new algorithm for solving the 3-coloring problem
will be introduced, and will simplify the explanation of our new DNA computing model. These when
developed can be expanded to solve the k-coloring problem and hereby can be generalized to solve many
other NP-complete problems.

k-coloring problem: k-coloring problems require the coloring of an undirected graph G = (V, E) in
such a way that no two adjacent vertices share the same color [15]. The two nodes connected by an edge
are referred to as adjacent vertices. The solution is a function ¢: V. — 1,2, ..., k such that c(u) # c(v)
for every edge (u, v) € E. In other words, the numbers 1,2, .. ., k represent the k colors, and the adjacent
vertices must have different colors. The k-coloring problem determines whether k colors are enough to
color a given graph [16].

A simple example graph with 10 nodes and 10 edges, G(10, 10), is given in Figure 9.3. From the graph,
it is clearly shown that the graph can be colored if k > 3.

In order to solve this 3-coloring problem, it is necessary to generate a pool of encoded DNA strands to
represent all the possible color patterns of the n-node graph where each color pattern is an assignment of
colors of nodes [17,18]. For example, for nodes nj nyn3ng, “BBRG” is one pattern, which assigns n; with
color Blue, n, with color Blue, n3 with color Red and n4 with color Green. “RGBB” is another pattern
with given color Red, Green, Blue, and Blue to njnyn3ny, respectively. After the strands are generated
and stored in one pool, the color patterns with no color conflict need to be separated. Two nodes
along an edge are defined as having color conflicts when they have the same color. For the color patters
with any color conflicts along some edges of the graph, the corresponding strands must be filtered from
the pool.

The new algorithm will be introduced in Section 9.2.2. The dynamically updating algorithm and the
advantages of the new algorithms will be described in Section 9.2.3.

FIGURE 9.3

© 2006 by Taylor & Francis Group, LLC

Dynamic Updating DNA Computing Algorithms 9-139

/G \ Recursive dividing step #

AA
Gs G4 G Ge 1
¥
GZb—1
\ < v
G0+ b
G’y (CA

FIGURE 9.4

9.2.2 The New Algorithm

Given a graph G = (V,E),V = {v;|i = 1,2,...,n} isaset of nodes and E = {¢j|j = 1,2,...,m} is
the corresponding set of edges. The new approach to solving the 3-coloring problem for such graph is
divide and merge. Partition graph G into two subgraphs: G; = (V1, E;) and G, = (V, E;) such that
ViUV, =V, V1NV, =¢and |Vi| & |V,| by eliminating all edges (1, v) such that u € V; and v € V,.
This set of edges, called C, is referred to as the cut set of G [15,19]. The partition process can be executed
recursively. That means, subgraphs G; can be partitioned into Gy;y; and Gyj4+, until each subgraph
contains only one vertex, and n subgraphs exist in total as shown in Figure 9.4.

After partitioning the graph G into n subgraphs, the algorithms start to merge every two subgraphs
recursively and in parallel. Before each merge, every subgraph is colored with three colors. During the
merge process, the color patterns of the two subgraphs are combined together. The merge operation
continues until the original graph G is reestablished. To merge two subgraphs, the edges in the cut sets
earlier eliminated for partitioning the subgraphs will be added back. Each addition of such edges will
introduce some color conflicts if the nodes linked by the edge are of the same color. The color patterns
that worked for the subgraphs may not work for the merged graphs after the subgraphs are combined.
Some combined color patterns will be eliminated. This elimination process will continue until the color
patterns that are legitimate for the graph are found.

The algorithm to solve the 3-coloring on a sparse graph is shown in Figure 9.5. The first for loop is used
to generate n pools of strands representing all possible color patterns for n subgraphs while initially each
subgraph contains only one node.

The function of the while loop is first to merge the pairs of the two subgraphs. The bio-operation used
to merge two subgraphs is ligation. This step ligates the strands in two pools in order to form longer
strands. If the color pattern for the first subgraph is s; and that for the second graph is s;, all the s; should
be ligated to s;. The strands for one color pattern of a subgraph is replicated and each duplicated copy is
ligated to those strands representing the color patterns of the other subgraph. All the color patterns of the
merged graph will be represented by the ligated longer strands after the merge operation.

Inside the while loop, multiple copies of all strands in every pool need to be prepared for the following
round of ligation. The duplication can be accomplished by using the polymerase chain reaction (PCR)
process [17,20].

After the merge, some ligated strands encoding the color patterns with color conflicts introduced by
those edges in all cut sets are eliminated in the partition step. The next task is to investigate all edges in the

© 2006 by Taylor & Francis Group, LLC

9-140 Handbook of Bioinspired Algorithms and Applications

Algorithm 1.

Fori=1tondo

In parallel (I(P;, color of node i))

End

F=n

While f£1 do

In parallel (Make multiple copies of strands in all pools)
For all odd | do

In parallel (L (P;, P;, Piy1))

In parallel (relabel all pools 1 to /2)

End

f=f/2

End

S (P, Py, Py, ©), 6;is color conflicts along e;

K=1;

Fori=2tomdo

S (Py, P4y, P41, 0), 6; is color conflicts along e;
Forj=1to k do

In parallel { S (Pg, Py, P, 8) }, 6; is color conflicts along e;
End

Forj=1to k do

In parallel do ((B(Py;, Pj.15, Pjp))

End

B (Py, Py, 6)

B (Pik+1, Pks. 6)

K=k+1

End

Check if P is empty to return “yes” or “no” accordingly.

FIGURE 9.5

cut sets and detect all the color conflicts caused. The task can be accomplished by the separation operation
to filter out all strands that contain any color conflict from the pool. Two nodes, i and j, are connected by
an edge. The pool is first separated into three pools while each pool contains the strands coloring node i
as R, G, and B. The strands having node j colored as R, G, and B are filtered out by using the separation
operation.

The answer to the 3-coloring problem is “yes” if there is any strand left in the final pool. The answer is
“no” and the graph cannot be colored by only three colors if there is no strand left.

9.3 Dynamically Updating the Answers

Once a solution to the 3-coloring problem of the graph is obtained, given minor changes in the initial
condition, it is significant to have a method that can quickly update the solution without restarting the
algorithm and completely recalculating. What is presented next is an effort to make such dynamically
updating solution both realistic and efficient.

For 3-coloring problem, four possible changes may occur with the initial condition: nodes and edges are
inserted or removed. Based on the original solution “yes” or “no” to the original graph, different strategies
need to be considered to update the answer.

Beginning with the easiest updating strategies, if the original answer is “yes” and an edge or node is
removed from the original graph, the answer will remain “yes.”

If the original answer is “no,” it will remain “no” if a node or edge is added.

If the original answer is “yes,” it can be changed to “no” after a node is inserted into the graph. An example
is shown in Figure 9.6. The graph shown in Figure 9.6(a) has the answer “yes” for the 3-coloring problem

© 2006 by Taylor & Francis Group, LLC

Dynamic Updating DNA Computing Algorithms 9-141

(a) (b)

FIGURE 9.6

FIGURE 9.7

of the given graph. The answer can be changed to “yes” after one node is inserted to the graph as shown
in Figure 9.6(b).

If the original answer is “no,” it can be changed to “yes” after a node is removed from the edge. An example
is shown in Figure 9.7. Figure 9.7(a) contains the graph with the answer “no” for the 3-coloring problem.
The answer is changed to “yes” after one node is removed from the graph as shown in Figure 9.7(b).

If an edge is removed or inserted to the graph, it can be dealt with similarly because at least one edge
should be removed if a node is eliminated and at least one edge should be added when a node is inserted.

What is illustrated next shows how to dynamically update a solution when a node or edge is inserted
into the graph, following an original answer “yes.” The strands in the final set, Py, are checked for possible
new answers. The final set is the only set that can be used because it is the only set that contains the
strands representing all possible coloring solution that do not have any color conflicts among all the nodes
except the newly added one. Only the color conflicts that occur between the newly added node and nodes
connected with it need to be checked based on these sets. Only the newly added edges are checked for
color conflicts.

The most difficult case occurs when a node or edge is removed from a graph with an original answer of
“no.” The answer to the new graph may be either “yes” or “no.” To remove a node includes removing both
the node itself and all the edges connecting the new node to the graph. What follows is the dynamically
updating algorithm for this case. The DNA computing result that reflects an original answer of “no” is

© 2006 by Taylor & Francis Group, LLC

9-142 Handbook of Bioinspired Algorithms and Applications

Algorithm 2.

Fori=1to ado

In parallel (S (Py;, Prewi> Psi» 6;), 6; is color conflicts along exact i # of edges)
End

B (Pnew: ¢, 9)

Fori=1to o do

In parallel (B (Pnewv Pnewv I:’newi))

End

B (Pnew’ Pt: Pnew)

Forj=1to f do

S (Prews Prews Prewss Wi), W is the colored contflicts based on edge e;
End

Check if P, is empty to return “yes” or “no” accordingly.

FIGURE 9.8

represented by an empty P; set with no strand. All other sets represent the coloring patterns of the original
graph with the color conflicts. After removing the nodes or edges, some coloring patterns may no longer
have conflicts. The task now is to identify those patterns represented by DNA strands. Here, the strand
sets that need to be examined is limited. Only those strands representing color patterns with color conflict
involving the pair of nodes connected by the edges being removed are checked. Finding the above strand
sets takes O(«) steps, where « is the number of edges being removed. This process is much less expensive
than recomputing the updated graph from the very beginning when « is not large.

The detailed algorithm needed to find the answer for the new graph with the removed edges, based on
the original “no” answer, is illustrated in Figure 9.8.

When only one edge is removed from the original graph, pool Py is checked. This is because Py;
contains all the strands representing all the color combinations for the graph that have no color conflicts
along all edges, except one.

Assuming that the two nodes along the edge being removed are n; and n,, the strands that need to be
separated from the pool are those that have the two nodes colored as {RR}, {BB}, and {GG}. That means
that only those strands, which have two identically colored nodes are extracted to a new pool, Pyew. If Ppew
is not empty, the answer to the 3-coloring problem for the new graph is “yes,” which is different from the
original graph. Otherwise, the “no” answer remains.

When two edges are removed from the graph, both Pr; and Py, need to be checked. This is because Py,
may contain strands that represent color combinations that have color conflicts along both the edges being
removed. Pr; may contain strands that represent color combinations of the graph with a color conflict
along only one of the two edges being removed. Suppose the two edges being removed are ¢; and e,.
Then, strands that need to be extracted from pool Py, using the separation operation must represent the
color combinations of the graph having color conflicts along both edges. Strands that should be extracted
from Pyy are those representing color combinations with color conflict along either e; or e;. The extracted
strands are stored in a new pool, Pyew. If Ppey is not empty, the answer to the 3-coloring problem for the
new graph is “yes,” which is different from the original graph. Otherwise, the answer for the 3-coloring
problem to the new graph remains “no.”

When « different edges are removed from the original graph, « different pools should be checked.
These pools are Pry, Pry, .. ., Pyy. For different pools, different operations need to be undertaken. For
pool Pyy, all strands are left due to the color conflict along one edge. If the edge that caused the conflict
is removed, the answer will change to “yes.” Because of this, all strands in this pool representing those
color combinations with color conflicts along one of the o edges that have been removed should represent
the answer to the 3-coloring problem of the new graph. For pool Py, all strands representing the color
combinations have color conflicts along two, and only two, of the edges being removed, representing the
answers to the 3-coloring problem of the new graph. For pool P; where ¢ < «, all strands representing
the color combinations having color conflicts along exactly ¢ different edges being removed will generate
the answer to the 3-coloring problem for the new graph. All strands extracted from these sets are stored

© 2006 by Taylor & Francis Group, LLC

Dynamic Updating DNA Computing Algorithms 9-143

in a new pool, Ppey. If Ppey is not empty, the answer to the 3-coloring problem for the new graph is “yes,”
and thus different from the original graph. The answer is “no” if Py is empty.

When the graph is changed by both removing and adding edges, multiple processing steps need to be
considered. Assuming that the number of edges being removed is & and the number of edges being added
is B, the strands with color conflicts along the removed edges should be found first. This will put the
strands to be considered for the following operations in one pool, Ppey, instead of involving several pools.
Those a edges should first be considered by using the method introduced above to go through « different
pools. Then, P; is combined with Ppe, and relabeled Pyey. This is due to the fact that those strands that
may generate the “yes” answer are distributed in « 4 1 different pools. Collecting the strands in one pool
will save time and further operations as compared to working on these pools one at a time. If no strands
are left in pool Pyey, then the answer to the new graph is “no.” If there are some strands in pool Pyey after
o edges are removed, color conflicts along B edges are checked. This operation can be accomplished in a
manner similar to what has been described above for adding edges.

Compared to the existing algorithms, our new method can dynamically update the solution when the
initial condition changes for the 3-coloring problem of a graph. It can also solve the 3-coloring problem
for many graphs that are similar to each other. The complexity of the existing algorithm is O(m + n),
where 7 is the number of vertices and m is the number of edges [18]. If the updating process is not used,
any change to the initial condition will result in a restarting of the process. With our new algorithm,
the number of extra processes that need to be undertaken depends upon the significance of the changes.
The complexity of the updating process is O(« + 8), where « is the number of edges being removed. g is
the number of edges being added.

When this method is used to solve the 3-coloring problem for multiple graphs that are similar to each
other, the time complexity is O(@) after the solution for one graph is generated, where 0 is the difference
between the number of edges of the two graphs.

It is necessary to check the extra space and effort that may be necessary for making dynamic updating
available. First, m additional containers are needed to keep all m extra sets of strands. Second, the extra
DNA material for generating these sets needs to be contained. Because strands are generated to represent all
color combinations for the graph before the separation process takes place, no extra material is necessary
as compared with the existing algorithms until the answer is generated for the original graph. The extra
material is only necessary if new solution needs to be formed for the modified graph when the edges
and/or nodes are added.

When the procedure for approaching a 3-coloring problem of a given graph is finished and a new graph
is provided, how can one determine whether to start again from the beginning or to use the dynamic
updating method to generate the new answer?

Assuming that the implementation of the algorithms introduced above for the 3-coloring problem of
the graph with n nodes and m edges has been finished, the 3-coloring problem of a new graph needs
to be solved. This new graph has N nodes and M edges. This graph can be converted from the existing
graph by first removing § nodes and « edges, and then adding y nodes and S edges. The new graph can
be generated by changing the original graph, or it can be treated as a totally new graph. In order to solve
the problem for the new graph, N ligation and M separation operations are necessary if the algorithm is
being restarted from the beginning. The total time necessary is:

T)=NxI+Mxs,

where [is the time for each ligation operation and s is the time necessary for each separation operation.
Here, combinations are ignored due to their simplicity because the time needed for the combination
operations is very short, as compared to the other operations used in DNA computing. When the answer
is generated based on the pools already generated using this new, dynamically updating strategy, the time
necessary for reaching the answer is

Th=@+B)xs+yxL

© 2006 by Taylor & Francis Group, LLC

9-144 Handbook of Bioinspired Algorithms and Applications

In order to take advantage of the new method, the time that is needed must be shorter than restarting
the algorithm from the beginning.

TZ = Tl)
(@+B)xs+y xXI<NxXxI+Mxs,
@+ B xs+yxl<n+y—-8)xl+(m+p—a)xs,
because N=n+y —8and M = m + B — «. It is easy to get
m—a)xs+n—98) xI>axs,
as n — § is always >0, the above condition can be tightly restrained as follows:
(m—a) Xs>a Xs.

So, o < m/2. The algorithm needs to be restarted from the beginning only when the change is significant,
which means, when more than half of the edges need to be removed to generate the new graph from the
original.

Given the above condition, it is clear that there is no need to retain all m sets. At least half of the pools

can be destroyed in order to save storage space. This will save the expenses once required for storing m sets
of strands and the material needed to work on them.

9.4 Conclusion

A new model for DNA computing is introduced. Based on the new model, our new algorithms for the
3-coloring problem have been presented. The new algorithms have the advantage of dynamic updating,
as compared to the existing algorithms. These new algorithms represent a huge improvement over the
existing algorithms.

Instead of restarting the DNA computing algorithm from the very beginning every time the initial
condition would change, this new method can generate the new solution through a few extra DNA
operations based on the existing answer. It can also quickly solve problems similar to those already solved.

No extra material is needed to prepare for the dynamically updating process. The only expense is some
extra storage containers for storing the additional pools of DNA strands. As compared to the existing
DNA computing algorithms, this new method can achieve a solution much more quickly after the answer
for the first problem is generated and it is very financially efficient. This will make DNA computing more
attractive to potential users who want to solve the problem that is currently unsolvable.

References

[1] L. Adleman. Molecular computation of solutions to combinatorial problems. Science, 1021-1024,
1994.

[2] Y. Gao, M. Garzon, R.C. Murphy, J.A. Rose, R. Deaton, D.R. Franceschetti, and S.E. Stevens Jr.
DNA implementation of nondeterminism. In Proceedings of the Third DMIACS Workshop on DNA
Based Computers, University of Pennsylvania, June 1997, pp. 204-211.

[3] G. Gloor, L. Kari, M. Gaasenbeek, and S. Yu. Towards a DNA solution to the shortest common
superstring problem. In Proceedings of the Fourth International Meeting on DNA Based Computers,
University of Pennsylvania, June 1998, pp. 111-116.

[4] V.Gupta,S. Parthasarathy, and M.]. Zaki. Arithmetic and logic operation with DNA. In Proceedings
of the Third DIMACS Workshop on DNA Based Computers, University of Pennsylvania, June 1997,
pp. 212-222.

© 2006 by Taylor & Francis Group, LLC

Dynamic Updating DNA Computing Algorithms 9-145

[5] P. Kaplan, D. Thaler, and A. Libchaber. Parallel overlap assembly of paths through a directed
graph. In Proceedings of the Third DIMACS Workshop on DNA Based Computers, University of
Pennsylvania, June 1997, pp. 127-141.

[6] R.Lipton. Using DNA to Solve SAT, 1995.

[7] Z.E Qiuand M. Lu. Arithmetic and logic operations for DNA computers. In Parallel and Distributed
Computing and Networks (PDCN’98), IASTED, December 1998, pp. 481-486.

[8] S.Roweis, E. Winfree, R. Burgoyne, N. Chelyapov, M. Goodman, P.R. Othemund, and L. Adleman.
A sticker based architecture for DNA computation. In Proceedings of the Second Annual Meeting
on DNA Based Computers, Princeton University, June 1996, pp. 1-27.

[9] S.Roweis, E. Winfree, R. Burgoyne, N. Chelyapov, M. Goodman., P.R. Othemund, and L. Adleman.
A sticker based model for DNA computation. Journal of Computational Biology, 5: 615-629, 1998.

[10] Q.Liu, Z. Guo, A.E. Condon, R.M. Corn, M.G. Legally, and L.M. Smith. A surface-based approach
to DNA computation. In Proceedings of the Second Annual Meeting on DNA Based Computers,
Princeton University, June 1996, pp. 206-216.

[11] L. Wang, Q. Liu, A. Frutos, S. Gillmor, A. Thiel, T. Strother, A. Condon, R. Corn, M. Lagally, and
L. Smith. Surface-based DNA computing operations: Destroy and readout. In Proceedings of the
Fourth International Meeting on DNA Based Computers, University of Pennsylvania, June 1998,
pp- 247-248.

[12] E. Winfree. Proposed techniques. In Proceedings of the Fourth International Meeting on DNA Based
Computers, University of Pennsylvania, June 1998, pp. 175-188.

[13] E. Winfree, X. Yang, and N.C. Seeman. Universal computation via self-assembly of DNA: Some
theory and experiments. In Proceedings of the Second Annual Meeting on DNA Based Computers,
Princeton University, June 1996, pp. 172-190.

[14] R.S.Braich, C.Johnson, PW.K. Rothemund, D. Hwang, N. Chelyapov, and L.M. Adleman. Solution
of a satisfiablility problem on a gel-based DNA computer. In Proceedings of the Sixth International
Meeting on DNA Based Computers, June 2000, pp 31-42.

[15] J. Clark and D.A. Holton. A First Look at Graph Theory. World Scientific, Singapore, 1991.

[16] T.H. Cormen, C.E. Leisenson, and R.L. Rivest. Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

[17] L. Adleman. On constructing a molecular computer, 1995.

[18] E. Bach and A. Condon. DNA models and algorithms for NP-complete problem. Journal of
Computer and System Sciences, 57: 172—186, 1996.

[19] N. Christofides. Graph Theory: An Algorithmic Approach. Academic Press, New York, 1975.

[20] P.D. Kaplan, G. Cecchi, and A. Libchaber. DNA-based molecular computation: template-template
interactions in pcr. In Proceedings of the Second Annual Meeting on DNA Based Computers,
Princeton University, June 1996, pp. 159-171.

© 2006 by Taylor & Francis Group, LLC

10

A Unified View on
Metaheuristics and

Their Hybridization

10.1 Introduction.........coevuiviiiiiiiinniiiiiiiiniennenne. 10-147
10.2 Related Workcoooiiiiiiiiiiiiiiiiiiiiiis 10-148
10.3 A Unified Framework for Iterative Search

Heuristics .ovvvvniiiiiiiiiiiciicii e 10-148
10.4 Some Thoughts about Memory......................... 10-150
10.5 Combining Evolutionary Algorithms and Ant

Colony Optimizationoouvvueieieiininnennenn. 10-151

Basic Evolutionary Algorithm e Basic Ant Colony
Optimization e Hybrid Algorithms

Jurgen Branke 10.6 Empirical Evaluationcocooeviviiiiiiniinnnnn.. 10-153
Michael Stein 10.7 ConcluSiONueviririeiieieiii e 10-155
Hartmut Schmeck S 1S 1S 1 o RO 10-155

10.1 Introduction

Over the past decades, a multitude of new search heuristics, often called “metaheuristics” have been
proposed, many of them inspired by principles observed in nature. Common representatives include
evolutionary algorithms (GAs) [1], ant colony optimization (ACO) [2], simulated annealing [3], tabu
search [4], or estimation of distribution algorithms [5]. Besides the book at hand, overviews of several
such metaheuristics can be found, for example, in References 6 and 7 or 8.

Each of these metaheuristics has been proven successful on a variety of applications. Although there
have been attempts to compare their performance, the results are contradicting and inconclusive. There
does not seem to be a superior candidate that should generally be preferred over the others. Thus, it is
not surprising that recently, there has been a growing interest in hybridization of these metaheuristics
(cf. Section 10.2).

In this chapter, we propose a simple unified framework that describes the fundamental principle
common to all metaheuristics. The framework focuses on the commonalities rather than the differences
between search algorithms. Due to its simplicity and generality, it suggests a natural way for hybridization,
basically turning the variety of metaheuristics into one large toolbox from which an algorithm designer
can choose those parts that seem most appropriate for the application at hand. The power of the model

10-147

© 2006 by Taylor & Francis Group, LLC

10-148 Handbook of Bioinspired Algorithms and Applications

to unify different metaheuristics will be demonstrated at the example of combining EAs and ACO, and we
will report on some preliminary empirical results on the performance of the hybrids so generated.

The chapter is structured as follows: in Section 10.2, we will survey some related work. Then, in
Section 10.3, we will describe the proposed unified framework. A specific aspect of that framework,
the organization of memory, is discussed in Section 10.4. Section 10.5 demonstrates the application
of the model to the hybridization of EAs and ACO. The resulting hybrids are compared empirically in
Section 10.6. The chapter concludes with a summary and some suggestions for future work.

10.2 Related Work

There have been numerous attempts to combine aspects of different metaheuristics, usually in the hope of
keeping the benefits and avoiding the pitfalls of the pure heuristics. Examples include, but are not limited
to, combinations of EAs and simulated annealing [9,10], EAs and tabu search [11], EAs and ACO [12],
ACO and tabu search [13], or EAs and particle swarm optimization [14]. Also, there is growing interest in
the field of memetic algorithms [15], which focuses on the combination of EAs and local search.

Calegari et al. [16] developed a taxonomy to describe iterative optimization heuristics, but as the goal of
a taxonomy is to differentiate rather than to unify, it generally hides the commonalities and opportunities
for hybridization. An overview on hybrid approaches involving biologically inspired heuristics, together
with a valuable classification and a grammar for hybridization schemes can be found in Reference 17.

An early attempt to create a general framework for designing metaheuristics can be found in
Reference 18. The suggested framework is more fine-grained and not quite as general as the frame-
work that we suggest. It attempts to incorporate not only metaheuristics, but also more classical search
methods like branch and bound. Implicit assumption of the framework seems to be that the algorithm
operates on (partial) solutions, that is, that the memory stores (partial) solutions.

After an extensive description and classification of different metaheuristics, Blum and Roli [19] develop
a unified view on the intensification and diversification aspects of algorithmic components. Analyzing
the signature of available algorithm components in the developed framework, and identifying suitable
combinations, seems to be a promising way toward the development of a systematic design approach for
hybrid metaheuristic algorithms.

A framework that is focused on algorithms that use an updated parameterized model to generate can-
didate solutions was presented in Reference 20. It offers a unified view on ACO, estimation of distribution
algorithms (EDAs) and related methods.

10.3 A Unified Framework for Iterative Search Heuristics

Most modern search heuristics like EAs, simulated annealing, ACO, or tabu search, are iterative and
repeatedly probe the search space at new locations.

What distinguishes them from random search is primarily that they maintain some sort of memory
of the information gathered during the search so far, and that they use this information to select the
location where the search space should be tested next. The proposed general model, first presented in
Reference 21, follows from this observation and is depicted in Figure 10.1: new solutions are constructed
based on information stored in the memory, possibly involving several construction operators that may
be applied in parallel (e.g., when different solutions are generated by different operators in each iteration)
or sequentially (e.g., when a local optimizer is applied to each solution generated). The construction
operators can be rather simple (as e.g., a single bit flip) or rather complicated (e.g., a local optimizer). The
new solutions are then evaluated and can be used to update the memory, after which the cycle repeats.

In the following sections, we will show in more detail how this general framework can be used to
describe some of the aforementioned metaheuristics:

e Evolutionary algorithms store information about the previous search in the form of a set of solutions
(population). New solutions are constructed by selecting two solutions (parents), combining them

© 2006 by Taylor & Francis Group, LLC

A Unified View on Metaheuristics and Their Hybridization 10-149

Construction operators %

—
YR
N
N)
—

Select one or
several operators

Memory

-~

Tabu list Pheromone matrix
143578411935013681087
435784119350136810876
357841193501368108769

578411935013681087692 Construct New solutions

143578411935013681087 .

435784119350136810876 new solutions

357841193501368108769

POpUIatiOn 578411935013681087692

143578411935013681087
435784119350136810876 7
357841193501368108769
578411935013681087692
143578411935013681087
435784119350136810876
357841193501368108769
578411935013681087692

7

7
7

Probabilistic model

Other memory
operators

Memory update

Select one or
several operators

(IO
OO

. /

Update operators

FIGURE 10.1 Unified framework for iterative search algorithms.

in some way (crossover), and performing some local modifications (mutation). Then, the memory
is updated by inserting the new solutions into the population. Although there exist a variety of
EA variants, they all fit into this general framework. For example, evolution strategies with self-
adaptive mutation can be specified by extending the memory to also maintain information about
the strategy parameters. Steady state genetic algorithms update the population after every newly
generated solution, while genetic algorithms with generational reproduction generate a whole new
population of individuals before updating the memory.

Simulated annealing only maintains a single solution in the memory. In addition to that, it keeps
track of time by a temperature variable. New solutions are created by local modifications more or
less equivalent to the mutation operator in EAs. The new solution replaces the current memory
solution depending on the quality difference and the temperature.

Tabu search, just as simulated annealing, creates new solutions based on a single current solution in
the memory. Additionally, it maintains so-called tabu-lists to avoid revisiting previous solutions.
These tabu lists are generally recently visited solutions or recently performed move operations.
New solutions are created by local modifications, while taking into account the tabu list. More
advanced tabu search algorithms can comprise of a number of additional memory structures,
like for example, a long-term frequency memory that records the number of times a particular
component has appeared in a solution.

© 2006 by Taylor & Francis Group, LLC

10-150 Handbook of Bioinspired Algorithms and Applications

e Particle swarm optimization uses a swarm (set) of particles (current solutions). The search process
can be imagined as a parallel search of particles “moving” through the landscape defined by the
fitness function. In addition to their locations (solution characteristics), the memory contains for
each particle the personal best solution encountered so far and a velocity, which can be seen as a
kind of general accumulated search direction. In every iteration, new solutions are generated by
moving the particles according to their velocity, and a linear, spring-like attraction to their personal
best solution encountered and the overall best solution encountered by any of the swarm’s particles.
Memory update includes an update of the particle locations, the personal best solutions, and the
particles’ velocities.

e Ant colony optimization, when compared to the approaches outlined earlier, has a completely dif-
ferent way to store information about the search conducted so far. Instead of storing complete
solutions, it accumulates information about which partial decisions have been successful when
constructing solutions from scratch. For example, for the traveling salesperson problem, it main-
tains a (so-called pheromone) matrix indicating for each city how desirable it is to visit another city.
Using this matrix, new solutions are constructed systematically, starting at a random city, and iter-
atively selecting the next city probabilistically according to the relative preferences encoded in the
matrix. Usually, several new solutions are generated that way, and then the best solution found is
used to update the matrix, increasing the probability that future ants will make the same decisions.
An elitist ant (best solution found so far) can be modeled by an additional (complete) solution
stored in the memory.

e Estimation of distribution algorithms, similar to ACO, construct solutions based on a probabilistic
model, only that the probabilistic model is not necessarily stored in the form of a matrix. The
new solutions are then evaluated, and the information gained is used to update the probabilistic
model. The class of EDAs contains a multitude of different approaches that vary primarily in the
complexity of the probabilistic model (in particular whether they take variable dependencies into
account or not), and in the way the probabilistic model is updated (incrementally or reconstructed
every iteration based on the generated samples). Note that many EDA approaches actually do not
use a probabilistic model as main memory component, but instead rely on a population of solutions
as underlying memory structure, and construct a new probabilistic model in every iteration based
on the current population.

Given a description of the different metaheuristics in this general form has many benefits. First, it
creates a common language, which allows researchers from different fields to understand each other’s
approaches easily. Second, it moves the focus from the complete algorithms to the components. And
third, it provides the interfaces for the different components to work together.

Based on the presented unified framework, it is almost straightforward to combine different com-
ponents from different algorithmic paradigms: an algorithm designer can easily select a combination of
memorization features, choose a suitable set of construction operators or create new ones that make use
of the combined set of selected memorization features, and then decide how the memory is updated with
the newly generated information. The framework allows for a lot of freedom: new solutions may be con-
structed in different ways, using different information from the memory, the solutions thus constructed
using one part of the memory may be used to update another part of the memory, and so on.

10.4 Some Thoughts about Memory

Since it is basically the memory that differentiates metaheuristics from random search, the organization
of the memory seems to be a crucial aspect. Generally, it would be desirable to store in the memory all
the information gathered during the search so far. However, that is usually impossible, not only because
of memory space restrictions, but also because extracting relevant information from such a huge memory
would be prohibitively slow. Therefore, the information has to be condensed in some way.

© 2006 by Taylor & Francis Group, LLC

A Unified View on Metaheuristics and Their Hybridization 10-151

Depending on what information is stored in the memory, metaheuristics may be classified into solution-
based or model-based (cf. [20]).

The approaches from the former category primarily keep some of the solutions generated so far.
Simulated annealing just stores a single solution; EAs and tabu search store a set of solutions. Although
the way these solutions are selected is different for the different algorithms, the implicit assumption
always is that the stored solutions sufficiently represent the promising regions of the search space and
appropriately reflect the history of the search.

Ant Colony Optimization belongs to the latter category: it assumes that the problem is to make a
sequence of decisions, and then accumulates information about the desirability of making a certain
decision in a given situation (state). It builds a model of construction methods. The space and complexity
limitations are observed by restricting the number of states, and by ignoring interdependencies between
decisions. For example, the state usually considered when solving a traveling salesperson problem is the
current city, independent of the sequence of cities visited so far. Because usually, only complete solutions
(corresponding to a combination of decisions) can be evaluated, but the memory stores desirability of
decisions, ACO has to assign the credit for a good solution to the individual decisions. Currently, this is
done in a straightforward way by simply distributing the credit evenly.

The class of EDAs is rather broad, and by using a population of solutions as well as a probabilistic
model, different instantiations can be closer to either the solution-based or the model-based memory
category. They are more or less decision-based (i.e., construct solutions step by step) but may keep track
of variable dependencies through graphical models (e.g., Bayes networks or Gaussian networks).

Obviously, each of the above memorization schemes has its benefits and its drawbacks. Storing complete
solutions preserves all the interdependencies between decision variables and thus implicitly takes epistasis’
into account. However, it discards a lot of the solutions generated. On the other hand, the decision-
based memorization scheme used for example, in ACO integrates information about many generated
solutions (information is only slowly evaporated), at the expense of losing a lot of information about
interdependencies.

From the above considerations, it seems natural that a combination of these two fundamental mem-
orization schemes may be beneficial, which is one of the reasons why we decided to further explore the
combination of EAs and ACO using the framework proposed in Section 10.3.

Furthermore, it should be mentioned that besides information about the search space, it seems prom-
ising to also store information about algorithmic parameters or meta-information about the search like
some characteristics of the fitness values observed over time. Examples for such meta-knowledge are
the already mentioned self-adaptive mutation in evolution strategies, or the dependence of the tempera-
ture parameter on the fraction of accepted moves in simulated annealing. Tabu search may have several
additional memorized features like the frequency of certain moves in the past, etc. Another example, in
particular for hybrid approaches, would be to track the performance of different operators in order to
decide which operators should be used more often. Again, all those aspects easily fit into the proposed
framework.

10.5 Combining Evolutionary Algorithms and
Ant Colony Optimization

In this section, we propose a number of EA/ACO hybrids, which attempt to combine the two memorization
schemes. Before that, however, let us briefly present the pure EA and ACO we built on. The application
considered is the traveling salesperson problem (TSP).

!Epistasis, in the field of evolutionary computation, generally refers to the fact that different components of the
solution interact.

© 2006 by Taylor & Francis Group, LLC

10-152 Handbook of Bioinspired Algorithms and Applications

10.5.1 Basic Evolutionary Algorithm

The standard EA uses a population of # individuals as memory. Individuals are represented as permuta-
tions, and the population is initialized randomly. A new individual is constructed by first selecting two
parents according to linear ranking selection, applying crossover, and mutating the resulting offspring.
As crossover operator, one of the following operators was used:

e Order crossover (OX) selects a random connected part of one parent and fills the remaining places
with the missing cities in the order they occur in the other parent [22].

e Edge recombination crossover (ERX) attempts to preserve as many edges as possible. It iteratively
constructs a tour, starting from a random city. At each step, it first considers the (up to four) cities
that are neighbors (i.e., connected) to the current location in either of the two parents. If at least
one of those has not yet been visited, it selects the city that has the fewest yet unvisited other cities
as neighbors in the parents. Otherwise, a random successor is selected [23].

Mutation exchanges the position of two randomly selected cities. The mutation operator is called
repeatedly with probability py,, that is, an individual is mutated i times with probability (pm)'(1 — pm).

In each cycle, k individuals are constructed (usually k = 1) and, to update the memory, the worst
individuals in the population are replaced.

10.5.2 Basic Ant Colony Optimization

The memory structure of ACO is an m x m pheromone matrix with m being the number of cities in the
problem. Initially, all values 7j; of the matrix are set to 0.5. New individuals are constructed by starting at
a random city i, and choosing the following city j probabilistically according to the relative pheromone
values in row i of the pheromone matrix, that is, with probability

¢

1
Pij = a’
2ieu T

where U being the set of yet unvisited cities and « being a user-defined weighting parameter.

After the k new solutions of one cycle have been constructed, pheromone is evaporated by multiplying
every element 7;; of the pheromone matrix with (1 — p) where p is the pheromone evaporation rate. Then,
the best individual found in the iteration is used to update the pheromone matrix by adding 1/L to all
matrix elements 7;; where the edge from city i to city j is part of the corresponding tour with length L.

Furthermore, the algorithm maintains the overall best solution as an elite that is also used to update
the matrix in the above way in every cycle.

Note that for many optimization problems, the construction procedure as used by ACO allows to
incorporate heuristic knowledge in a very elegant way. In the case of TSP, for example, this can be done
by simply preferring close cities in the selection process.

The selection probabilities then become

o B
Yij ij

Pj= ——,
Yiev T '75

where n;; = 1/d;; being the reciprocal of the distance dj; between cities i and j and 8 being the weight for
the heuristic information.

Naturally, a direct comparison of algorithms that use heuristic knowledge with algorithms that do not
is not fair. Since the focus of this chapter is not to construct the best algorithm to solve TSP, but rather
to study the effect of different memorization schemes and algorithmic hybrids, most of the approaches
suggested later do not incorporate problem-specific knowledge. Nevertheless, we will also briefly report
on the performance of ACO and a hybrid operator when they incorporate heuristic knowledge.

© 2006 by Taylor & Francis Group, LLC

A Unified View on Metaheuristics and Their Hybridization 10-153

10.5.3 Hybrid Algorithms

50/50: Maybe the most straightforward combination of EAs and ACO is to simply use both basic algorithms
to generate a portion of the new solutions each. More specifically, in every cycle, we generate 50% of the
k new solutions on the basis of the pheromone matrix, while the remaining 50% are generated using the
edge recombination operator. The complete set of k new solutions is then used in the standard way to
update the pheromone matrix as well as the population.

Pheromone Completion (PC) crossover: This operator at the same time uses pheromone matrix and
population to create a new individual. First, an individual is selected from the population by rank-based
selection. A random connected part of that individual is then chosen, and this partial permutation
is completed using the standard ACO construction operator, that is, probabilistically according to the
pheromone matrix. After k individuals have been created that way, the new individuals are used to
update the pheromone matrix as well as the population. Note that this operator is somewhat similar to
the approach suggested by Miagkikh and Punch [24]. However, while we are proposing to use separate
memory structures for the population and the pheromone matrix, they propose to use a population of
“agents,” each agent consisting of a solution and an individual pheromone matrix. It is difficult to reason
whether using a global pheromone matrix or individual pheromone matrices is more promising. A global
pheromone matrix collects more information and will, therefore, perhaps be a better guide in particular in
short runs. Individual pheromone matrices, on the other hand, allow for different solutions to be encoded
simultaneously, which may be more beneficial for long optimization runs, when diversity is a major
issue.

Pheromone-supported Edge Recombination (PsER) crossover: It may happen that all the four edges used
by the edge recombination operator to select the next city lead to cities that have already been visited.
In these cases, edge recombination selects a city randomly. The pheromone-supported edge recombination
operator suggested here instead uses the probabilistic selection based on the pheromone matrix. Again,
the resulting individual is subject to mutation, and after k individuals have been created, all of them are
used to update both the pheromone matrix as well as the population.

Mutating Ants (MutA): ACO maintains diversity by choosing cities probabilistically in every step, and
thus does not seem to require additional mutations. However, a simple change, like swapping two cities
(i.e., what mutation does) is very unlikely to be produced by the probabilistic construction procedure.
Therefore, we here suggest to mutate the solutions created by the ACO, adding a different kind of change.

Ant-based crossover (ABX): The idea of this hybrid is to combine ACO’s sequential construction and
elegant integration of heuristic knowledge with the population-based memory of EAs. ABX selects parents
from the population just as an ordinary EA. These parents are used to construct a temporary pheromone
matrix, by initializing all pheromones to the same small value, and allowing the parents to place addi-
tional pheromone on the solutions (paths) they represent. New solutions are then constructed in an ACO
way, based on the temporary pheromone matrix and possible heuristic knowledge. Only the best of the
generated solutions is returned as child and used to update the population (memory). It is straightfor-
ward to extend this idea by running an ACO on the temporary pheromone matrix for a few iterations
(allowing the generated solutions to update the temporary pheromone matrix before generating some
more solutions). ABX has first been proposed in Reference 25, and for the tests given later, we simply
used the same parameter settings that had shown to be successful in that paper: two parents are selected,
and the ACO is run on the temporary matrix for 5 iterations with 12 ants each. Only the best solution
found is returned as a child.

10.6 Empirical Evaluation

Since ACO is primarily designed for permutation problems, we chose a simple symmetric Euclidean TSP
with 100 cities to compare the different algorithms. Three problem instances of varying difficulty have
been created: in problem PO, all cities are located equally spaced on a unit circle. To generate problem
instances P3 and P6, the location of each of PO’s city has been moved in a random direction by a distance

© 2006 by Taylor & Francis Group, LLC

10-154 Handbook of Bioinspired Algorithms and Applications

of 0.3 or 0.6, respectively. The three resulting problems are visualized in Figure 10.2. Independent of the
problem instance, each algorithm was allowed to create and evaluate 200,000 solutions.

Comparing different algorithms is a tricky business, because the results are highly dependent on the
parameters used. Therefore, we tested all possible combinations of the parameter settings depicted in
Table 10.1.

A comparison of the performance of the different algorithms on all three problems is presented in
Table 10.2. The table reports the performance of the best parameter setting for each algorithm. All results
are averaged over 30 runs with different random seeds. ACO with incorporated heuristic knowledge
(B = 5), and ABX is also included for comparison.

Looking at the basic algorithms first, it is obvious that the edge recombination crossover yields signifi-
cantly better results than the order crossover, which again performs better than ACO. The EA is able to
find the optimal solution for the simple problem (which is approximately the circumference of a unit

@ (b))
1.5¢ 1.5¢ 15} LS
+ o4+ st + o+
T A 1t + - Tt 1 + F S + 7t
g " + T . N "
0.5 # *i wor R w +
el i % 05 . & + 051 s e w7 N
0 4 Lok e i
[%_ or st 0f ks + { % * v
k3 F . I, + + ., Lt +
-0.5} tq; & —-0.5} PR w +F 05} L 1 L .
e " e o . oy + *
-1t st -1r ! :;:r +1++ -1t r i+ + Ty !
¢
ot j; L + R A
-1.5¢ -1.5} -1.5¢ 4y
Si5-1-050 05 1 15 5-1-050 05 1 15 i5-1-056 0 05 1 15

FIGURE 10.2 Location of cities in problem instance (a) PO, (b) P3, and (c) Pé.

TABLE 10.1 Parameter Settings Tested
a k P n Pm s
ACO 1,510 10,20,50,100 0.005,0.01,0.05 — — —
EA with ERX — — — 100, 200, 300 0.3,0.5 1.25,1.5,2.0
EA with OX — — — 100,200,300 0.3,0.5 1.25,1.5,2.0
50/50 1,5 10, 20, 50 0.005, 0.01, 0.05 200, 300 0.3,0.5 1.5
PsER crossover 1,5 10, 20, 50 0.005, 0.01, 0.05 200, 300 0.3,0.5 1.25,1.5,2.0
PC crossover 1,5 10, 20, 50 0.005, 0.01, 0.05 200, 300 0.3,0.5 1.25,1.5,2.0
MutA 1,510 10,20,50,100 0.005,0.01,0.05 — 0.3,0.5 —
TABLE 10.2 Tour Length of the Best Solution Found by the Different
Algorithms
Problem instance
Algorithm 0.0 0.3 0.6
Pure ACO 14.22 24.54 29.76
EA with ERX 6.28 18.29 23.22
EA with OX 12.25 22.30 28.72
Hybrids 50/50 6.58 18.17 23.92
PC crossover 12.61 22.21 28.56
PsER crossover 6.28 17.59 22.88
MutA 8.51 18.05 24.21
With heuristic knowledge ACO + heuristic 6.28 16.11 21.80
ABX 6.28 16.11 21.80

© 2006 by Taylor & Francis Group, LLC

A Unified View on Metaheuristics and Their Hybridization 10-155

circle, i.e., 277), but deviates from the optimal solution for the other two problems (the optimum is not
known, but ACO with heuristic knowledge achieves better results). ACO, on the other hand, seems to be
fairly unaffected by the structure of the problem.

As to the hybrids, only the pheromone-supported ER crossover was a clear winner. Simple mutation
of the solutions constructed by ACO also performed very well, and consistently outperformed the basic
ACO approach, indicating that the algorithm indeed benefited from the mix of operators. The pheromone
completion crossover was disappointing (although still better than the basic ACO). However, these results
are preliminary, and may be due to the specific problem instances chosen. Certainly, there are problems
where ACO prevails, while for other problems, EAs perform better. Yet other problems may require a
hybrid approach to be solved.

As expected, heuristic domain knowledge is able to drastically improve performance. The ACO with
heuristic knowledge as well as ABX generate equally good (presumably optimal) results on all problem
instances, outperforming all methods without heuristic knowledge. Note that besides the idea of ABX,
incorporation of domain knowledge into the EA is not as straightforward, and we have not been able to
produce similar results, for example, by seeding the population with a heuristic (results not reported).
As the results show, the problem instances examined are too simple if heuristic knowledge is incorporated.
On the larger problem instances used in Reference 25, ACO and ABX clearly outperformed a standard EA
with ERX, and ABX outperformed ACO by ~1.3%.

10.7 Conclusion

In this chapter we have presented a unified framework for iterative search heuristics. According to the
framework, each search heuristic maintains some sort of memory of the search history, which is used to
construct new solutions, which are then evaluated and used to update the memory. Furthermore, we have
argued that different memory schemes have different advantages, and that a search heuristic should benefit
from combining different memorization paradigms.

The presented unified framework suggests a natural way for hybridization, and we have demonstrated
its usefulness by deriving several interesting combinations of EAs and ACO and conducting a preliminary
empirical evaluation of the resulting hybrids. A closer look at the compatibility of different memory
schemes, and how they are best combined, is subject to future research. For the algorithm designer,
of course, it would be invaluable to know which operators and memory schemes are most promising
depending on the application at hand. However, that assumes a useful categorization of problems, and is
thus several steps in the future. Overall, we hope that this chapter helps to gain a general understanding
of different metaheuristics and of the way they interact.

References

[1] K.A. DeJong. Evolutionary Computation. MIT Press, Cambridege, MA, 2002.

[2] E.Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems.
Oxford University Press, Oxford, 1999.

[3] E.Aartsand]. Korst. Simulated Annealing and Boltzmann Machines. John Wiley & Sons, New York
1989.

[4] FE Glover. Tabu search — p. I. ORSA Journal of Computing, 1: 190206, 1989.

[5] P. Larranaga and J.A. Lozano, Eds. Estimation of Distribution Algorithms. Kluwer Academic,
New York, 2002.

[6] C. Reeves, Ed. Modern Heuristic Techniques for Combinatorial Optimization. McGraw-Hill,
New York, 1995.

[7] E.L. Aarts and J.K. Lenstra, Eds. Local Search in Combinatorial Optimization. Wiley, Chichester,
1997.

[8] Z.Michalewicz and D.B. Fogel. How to Solve It: Modern Heuristics. Springer, New York, 1999.

© 2006 by Taylor & Francis Group, LLC

10-156 Handbook of Bioinspired Algorithms and Applications

[9] D.E. Brown, C.L. Huntley, and A.R. Spillane. A parallel genetic heuristic for the quadratic
assignment problem. In International Conference on Genetic Algorithms, Morgan Kaufmann, San
Francisco, CA, 1989, pp. 406—415.

[10] S.W. Mahfoud and D.E. Goldberg. Parallel recombinative simulated annealing: A genetic
algorithm. Parallel Computing, 21: 1-28, 1995.

[11] C. Fleurent and J. Ferland. Genetic and hybrid algorithms for graph coloring. Technical report,
Departement d‘Informatique, Montreal, Canada, 1994.

[12] V.V. Miagkikh and W.E. Punch. An approach to solving combinatorial optimization problems
using a population of reinforcement learning agents. In Genetic and Evolutionary Computations
Conference, Morgan Kaufmann, San Francisco, CA, 1999, pp. 1358-1365.

[13] E.-G. Talbi, O. Roux, C. Fonlupt, and D. Robilliard. Parallel ant colonies for the quadratic
assignment problem. Future Generation Computer Systems, 17: 441-449, 2001.

[14] T. Krink and M. Lovbjerg. The lifecycle model: Combining particle swarm optimisation, genetic
algorithms and hillclimbers. In J.J. Merelo, P. Adamidis, H.-G. Beyer, J.-L. Fernandez-Villacanas,
and H.-P. Schwefel, Eds., Parallel Problem Solving from Nature, Vol. 2439 of Lecture Notes in
Computer Science, Springer, New York, 2002, pp. 621-630.

[15] P. Moscato. Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, and E. Glover,
Eds., New Ideas in Optimization, McGraw Hill, New York, 1999, chap. 14, pp. 219-234.

[16] P. Calegari, G. Coray, A. Hertz, D. Kobler, and P. Kuonen. A taxonomy of evolutionary algorithms
in combinatorial optimization. Journal of Heuristics, 5: 145-158, 1999.

[17] E.-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics, 8: 541-564, 2002.

[18] R. Poli and B. Logan. The evolutionary computation cookbook: Recipes for designing new
algorithms. In Online Workshop on Evolutionary Computation, 1996, pp. 33-36.

[19] C. Blum and A. Roli. Metaheurisitics in combinatorial optimization: Overview and conceptual
comparison. ACM Computer Survey, 35: 268308, 2003.

[20] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for combinatorial
optimization. Technical report TR/IRIDIA/2000-15, INRIDIA, Universite Libre de Bruxelles, 2001.

[21] J. Branke, M. Stein, and H. Schmeck. A Unified Framework for Metaheuristics. Technical
report 417, University of Karlsruhe, Institute AIFB, Karlsruhe, Germany, 2002.

[22] L. Davis. Applying adaptive algorithms to epistatic domains. In International Joint Conference on
Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, 1985, pp. 162-164.

[23] D. Whitley, T. Starkweather, and D’A. Fuquay. Scheduling problems and traveling salesman:
The genetic edge recombination operator. In J. Schaffer, Ed., International Conference on Genetic
Algorithms, Morgan Kaufmann, San Francisco, CA, 1989, pp. 133-140.

[24] V.V. Miagkikh and W.E. Punch. Global search in combinatorial optimization using reinforce-
ment learning algorithms. In Congress on Evolutionary Computation, IEEE, Piscataway, 1999,
pp- 189-196.

[25] J.Branke, C. Barz, and I. Behrens. Ant-based crossover for permutation problems. In E. Cantu-Paz,
Ed., Genetic and Evolutionary Computation Conference, Vol. 2273 of Lecture Notes in Computer
Science, Springer, New York, 2003, pp. 754-765.

© 2006 by Taylor & Francis Group, LLC

11

The Foundations of
Autonomic
Computing

11.1 Introduction............ccoviiiiiiiiiiiiiiinin. 11-157
11.2 Autonomic Nervous System.............cceeviiuenenn. 11-158
Ashby’s Ultrastable System e The Nervous System as a
Subsystem of Ashby’s Ultrastable System

11.3 Autonomic Computing Paradigm 11-161
Architecture of an Autonomic Component
11.4 Autonomic Computing Systemsc.coeeunenn. 11-163
11.5 Tllustrative Example: Distributed Cellular DEVS
Dynamic Forest Fire Simulation........................ 11-164

Forest Fire Cell as an Autonomic Component e Forest Fire
Cell Space as Autonomic Coupled Component e Dynamic
Composition and Self-Management of Forest Fire Application

Salim Hariri 11.6 The Autonomic Computing Landscape................ 11-171
Bithika Khargaria AutoMate — Enabling Autonomic Applications e Autonomia

Manish Parashar 11.7 SUMMATY «.euiiiiiiieeiie et 11-174
Zhen Li RELETENCES .. uentneneitete et 11-174

11.1 Introduction

The advances in computing and communication technologies and software tools have resulted in an
explosive growth in networked applications and information services that cover all aspects of our life. These
services and applications are inherently complex, dynamic, and heterogeneous. In a similar way, the under-
lying information infrastructure, for example, the Internet, is large, complex, heterogeneous, and dynamic,
globally aggregating large numbers of independent computing and communication resources, data stores,
and sensor networks. The combination of the two results in application development, configuration, and
management complexities that break current computing paradigms, which are based on static behaviors,
interactions, and compositions of components and services. As a result, applications, programming
environments, and information infrastructures are rapidly becoming brittle, unmanageable, and insecure.
This has led researchers to consider alternative programming paradigms and management techniques that
are based on strategies used by biological systems to deal with complexity, dynamism, heterogeneity, and
uncertainty.

11-157

© 2006 by Taylor & Francis Group, LLC

11-158 Handbook of Bioinspired Algorithms and Applications

Autonomic computing is inspired by the human autonomic nervous system, which has developed
strategies and algorithms to handle complexity and uncertainties, and aims at realizing computing systems
and applications capable of managing themselves with minimum human intervention. In this chapter,
we first give an overview of the architecture of the nervous system and use it to motivate the autonomic
computing paradigm. We then illustrate how this paradigm can be used to build and manage complex
applications. Finally, we present an overview of existing autonomic computing systems and applications
and highlight two such systems.

11.2 Autonomic Nervous System

The human nervous system is, to the best of our knowledge, the most sophisticated example of autonomic
behavior existing in nature today [1]. It is the body’s master controller that monitors changes inside and
outside the body, integrates sensory input, and effects appropriate response. In conjunction with the
endocrine system, which is the body’s second important regulating system, the nervous system is able to
constantly regulate and maintain homeostasis. Homeostasis is one of the most remarkable properties of
highly complex systems. A homeostatic system (e.g., a large organization, an industrial firm, a cell) is an
open system that maintains its structure and functions by means of a multiplicity of dynamic equilibriums
that are rigorously controlled by interdependent regulation mechanisms. Such a system reacts to every
change in the environment, or to every random disturbance, through a series of modifications that are
equal in size and opposite in direction to those that created the disturbance. The goal of these modifications
is to maintain internal balances.

The manifestation of the phenomenon of homeostasis is widespread in the human system. As an
example, consider the mechanisms that maintain the concentration of glucose in the blood within
limits — if the concentration should fall below about 0.06%, the tissues will be starved of their chief
source of energy; if the concentration should rise above about 0.18%, other undesirable effects will occur.
If the blood-glucose concentration falls below about 0.07%, the adrenal glands secrete adrenaline, which
causes the liver to turn its stores of glycogen into glucose. This passes into the blood and the blood-glucose
concentration drop is opposed. Further, a falling blood-glucose also stimulates appetite causing food
intake, which after digestion provides glucose. On the other hand, if the blood-glucose concentration rises
excessively, the secretion of insulin by the pancreas is increased, causing the liver to remove the excess
glucose from the blood. Excess glucose is also removed by muscles and skin, and if the blood-glucose con-
centration exceeds 0.18%, the kidneys excrete excess glucose into the urine. Thus, there are five activities
that counter harmful fluctuations in blood-glucose concentration [2].

The above example focuses on the maintenance of the blood-glucose concentration within safe or
operational limits that have been “predetermined” for the species. Similar control systems exist for other
parameters such as systolic blood pressure, structural integrity of the medulla oblongata, severe pressure
of heat on the skin, and so on. All these parameters have a bearing on the survivability of the organism,
which in this case is the human body. However, all parameters are not uniform in their urgency or their
relations to lethality [2]. Parameters that are closely linked to survival and are closely linked to each other
so that marked changes in one leads sooner or later to marked changes in the others, have been termed as
essential variables by Ashby in his study of the design for a brain [2], which is discussed later.

11.2.1 Ashby’s Ultrastable System

Every real machine embodies no less than an infinite number of variables [2], and for our discussion
we can safely think of the human system as represented by a similar sets of variables, of which we will
consider a few. In order for an organism to survive, its essential variables must be kept within viable
limits (see Figure 11.1). Otherwise the organism faces the possibility of disintegration and loss of identity
(i.e., dissolution or death) [2].

The body’s internal mechanisms continuously work together to maintain its essential variables within
their limits. Ashby’s definition of adaptive behavior as demonstrated by the human body follows from

© 2006 by Taylor & Francis Group, LLC

The Foundations of Autonomic Computing 11-159

Evo 4 Viability zone
EV1
FIGURE 11.1 Essential variables.
Environment N Essential variables
Motor Sensor
channels channels
Reacting part R |« Step mechanisms/input parameter S

FIGURE 11.2 The ultrastable system architecture [2].

this observation. He states that a form of behavior is adaptive if it maintains the essential variables within
physiological limits [2] that define the viability zone. Two important observations can be made:

e The goal of the adaptive behavior is directly linked with the survivability of the system.
e If the external or internal environment pushes the system outside its physiological equilibrium
state, the system will always work toward coming back to the original equilibrium state.

Ashby observed that many organisms undergo two forms of disturbance: (1) frequent small impulses
to main variables and (2) occasional step changes to its parameters. Based on this observation, he devised
the architecture of the Ultrastable system that consists of two closed loops (see Figure 11.2): one that
controls small disturbances and a second that is responsible for longer disturbances.

As shown in Figure 11.2, the ultrastable system consists of two subsystems, the environment and the
reacting part (R). R represents a subsystem of the organism that is responsible for overt behavior or
perception. It uses the sensor channels as part of its perception capability and motor channels to respond
to the changes impacted by the environment. These set of sensors and motor channels constitute the
primary feedback between R and the environment. We can think of R as a set of behaviors of the organism
that gets triggered based on the changes affected by the environment. S represents the set of parameters
that triggers changes in relevant features of this behavior set. Note that in Figure 11.2, S triggers changes
only when the environment affects the essential variables in a way that causes them to go outside their
physiological limits. As mentioned earlier, these variables need to be maintained within physiological
limits for any adaptive system/organism to survive. Thus we can view this secondary feedback between
the environment and R as responsible for triggering the adaptive behavior of the organism. When the
changes impacted by the environment on the organism are large enough to throw the essential variables
out of their physiological limits, the secondary feedback becomes active and changes the existing behavior
sets of the organism to adapt to these new changes. Notice that any changes in the environment tend to
push an otherwise stable system to an unstable state. The objective of the whole system is to maintain
the subsystems (the environment and R) in a state of stable equilibrium. The primary feedback handles

© 2006 by Taylor & Francis Group, LLC

11-160 Handbook of Bioinspired Algorithms and Applications

finer changes in the environment with the existing behavior sets to bring the whole system to stable
equilibrium. The secondary feedback handles coarser and long-term changes in the environment by
changing its existing behavior sets and eventually brings back the whole system to stable equilibrium state.
Hence, in a nutshell, the environment and the organism always exist in a state of stable equilibrium and
any activity of the organism is triggered to maintain this equilibrium.

11.2.2 The Nervous System as a Subsystem of Ashby’s Ultrastable System

The human nervous system is adaptive in nature. In this section we apply the concepts underlying the
Ashby’s ultrastable system to the human nervous system. The goal is to enhance the understanding of
an adaptive system and help extract essential concepts that can be applied to the autonomic computing
paradigm presented in the following sections.

As shown in Figure 11.3, the nervous system is divided into the Peripheral Nervous System (PNS) and
the Central Nervous System (CNS). The PNS consists of sensory neurons running from stimulus receptors
that inform the CNS of the stimuli and motor neurons running from the CNS to the muscles and glands,
called effectors, which take action. CNS is further divided into two parts: sensory—somatic nervous system
and the autonomic nervous system. Figure 11.4 shows the architecture of the autonomic nervous system
as an Ashby utrastable system.

As shown in Figure 11.4, the sensory and motor neurons constitute the sensor and motor channels
of the ultrastable system. The triggering of essential variables, selection of the input parameter S and
translation of these parameters to the reacting part R constitute the workings of the nervous system.
Revisiting the management of blood-glucose concentration within physiological limits discussed earlier,
the five mechanisms that get triggered when the essential variable (i.e., concentration of glucose in blood)

Sensory neurons Sensory neurons

Autonomic Central Sensory-
nervous nervous somatic
system system (CNS) nervous

system

Motor neurons Motor neurons

FIGURE 11.3 Organization of the nervous system.

Internal External

environment environment

Essential variables (EV)

Environment ‘

FIGURE 11.4 Nervous system as part of an ultrastable system.

© 2006 by Taylor & Francis Group, LLC

The Foundations of Autonomic Computing 11-161

goes out of the physiological limits change the normal behavior of the system such that the reacting part R
works to bring the essential variable back within limits. It uses its motor channels to effect changes so that
the internal environment and the system (organism) come into the state of stable equilibrium. It should be
noted that the environment here is divided into the internal environment and external environment. The
internal environment represents changes impacted internally within the human system and the external
environment represents changes impacted by the external world. However, the goal of the organism is to
maintain the equilibrium of the entire system where all the subsystems (the organism or system itself, and
the internal and external environments) are in stable equilibrium.

11.3 Autonomic Computing Paradigm

An autonomic computing paradigm, modeled after the autonomic nervous system, must have a mech-
anism whereby changes in its essential variables can trigger changes in the behavior of the computing
system such that the system is brought back into equilibrium with respect to the environment. This state
of stable equilibrium is a necessary condition for the survivability of the organism. In the case of an
autonomic computing system, we can think of survivability as the system’s ability to protect itself, recover
from faults, reconfigure as required by changes in the environment, and always maintain its operations at
a near optimal performance. Its equilibrium is impacted by both the internal environment (e.g., excessive
CPU utilization) and the external environment (e.g., protection from an external attack). The autonomic
computing system requires: (1) sensor channels to sense the changes in the internal and external envi-
ronment, and (2) motor channels to react to and counter the effects of the changes in the environment
by changing the system and maintaining equilibrium. The changes sensed by the sensor channels have
to be analyzed to determine if any of the essential variables has gone out of their viability limits. If so,
it has to trigger some kind of planning to determine what changes to inject into the current behavior of
the system such that it returns to the equilibrium state within the new environment. This planning would
require knowledge to select the right behavior from a large set of possible behaviors to counter the change.
Finally, the motor neurons execute the selected change. “Sensing,” “Analyzing,” “Planning,” “Knowledge,”
and “Execute” are in fact the keywords used to identify an autonomic system [3]. We use these concepts
to present the architecture of an autonomic component that represents the smallest unit of an autonomic
application or a system with self-managing capabilities.

11.3.1 Architecture of an Autonomic Component

An autonomic component (see Figure 11.5) is the smallest unit of an autonomic application or system.
Multiple autonomic components (units) can be composed to form an autonomic application or system,
which is a self-contained software module or system with specified input/output interfaces and explicit
context dependencies. It also has embedded mechanisms for self-management responsible for providing
functionalities, exporting constraints, managing its own behavior in accordance with context and policies,
and interacting with other components. For example, an autonomic component consists of the following
parts:

Managed Element: This is the smallest unit of the application and it contains executable code
(e.g., numerical model of a physical process) and a data structure that defines the executable
code’s attributes (e.g., its purpose, operation, input and output requirements, criteria for when and
how to control it). At runtime, the managed element can be affected in different ways, for example,
it can encounter a failure during execution, it can be externally attacked, or it may slow down and
affect the performance of the entire application.

Environment: The environment represents all the factors that can impact the managed element. The
environment and the managed element can be two subsystems forming a stable system. Any
change in the environment causes the whole system to go from a stable state to an unstable state.
This change is then offset by reactive changes in the managed element causing the system to move

© 2006 by Taylor & Francis Group, LLC

11-162 Handbook of Bioinspired Algorithms and Applications

Input ports QOutput ports
Control
PE PE
KE KE
programmed autonomic
behavior behavior

M & A Cardinals

a0
@ G cardina
N

(8] (A] (s]
Managed element N

Environment
Internal External

FIGURE 11.5 An automatic component.

back from the unstable state to a different stable state. Notice that the environment consists of
two parts — internal and external. The internal environment consists of changes internal to the
managed element, which can be looked at as reflecting the state of the application. The external
environment can be thought of as reflecting the state of the execution environment.

Control: Each autonomous component has its own manager that: (1) accepts user-specified require-
ments (fault tolerance, performance, security, etc.) (2) interrogates the data structure that
characterizes the executable code (3) senses the state of the overall computation (4) determines the
nature and instantaneous state of the overall computational environment and (5) uses this infor-
mation to control the operation of its associated executable code within the overall system in order
to effectively achieve the user-specified requirements. This process is accomplished on-the-fly and
continuously throughout the execution of the overall computation. As is evident from Figure 11.5,
the control part consists of two control loops — the local loop and the global loop.

The local loop can only handle known environment states. Its knowledge engine contains the
mapping of environment states to behaviors. For example, when the load on the local system goes
above the threshold value, the local control loop will work toward balancing the load by either con-
trolling the local resources available to the managed element or by reducing the size of the problem
handled by this element. This will work only if the local resources can handle the computational
requirements. However, the local loop is blind to the overall behavior of the entire application or
system and thus cannot achieve the desired global objectives. In a scenario where the entire system
is affected, the local loop will continue repeating local optimization that may lead to degradation
in performance and result in unadapted or chaotic behavior. At some point, one of the essential
variables of the system (in this case, a performance cardinal) overshoots its limits. This is when the
global loop comes into action.

The global loop can handle unknown environment states and may involve machine learning.
It uses four cardinals for the monitoring and analysis of the managed elements. These are
performance, configuration, protection, and security. These cardinals are like the essential variables
described in Ashby’s ultrastable system. This control loop acts toward changing the existing behavior
of the managed element such that it can adapt itself to changes in the environment. For example, in
load-balancing, the desired behavior of the managed element (as directed by the local loop) requires
its local load to be within prescribed limits. However, the local loop might not be able to maintain
the local load within these acceptable limits, which in turn might degrade the performance of the
overall system. Consequently, this change in the overall performance cardinal triggers the global

© 2006 by Taylor & Francis Group, LLC

The Foundations of Autonomic Computing 11-163

loop, which then selects an alternate behavior pattern from the pool of behavior patterns for the
managed element. This analysis and planning uses its knowledge engine. Finally, the new plan is
executed to adapt the behavior of the managed element to the new environment conditions.

Input and Output Ports: Many interacting autonomous components may be composed to form a
complex application. These autonomic components use the input and output ports for such a
composition.

11.4 Autonomic Computing Systems

An autonomic computing system can be a collection of autonomic components, which can manage their
internal behaviors and relationships with others in accordance to high-level policies. The principles that
govern all such systems have been summarized as eight defining characteristics [4]:

Self-Awareness: an autonomic system knows itself and is aware of its state and its behaviors.

Self-Protecting: an autonomic system is equally prone to attacks and hence it should be capable of
detecting and protecting its resources from both internal and external attack and of maintaining
overall system security and integrity.

Self-Optimizing: an autonomic system should be able to detect suboptimal behaviors and intelligently
perform self-optimization functions.

Self-Healing: an autonomic system must be aware of potential problems and should have the ability to
reconfigure itself to continue to function smoothly.

Self-Configuring: an autonomic system must have the ability to dynamically adjust its resources based
on its state and the state of its execution environment.

Contextually Aware: an autonomic system must be aware of its execution environment and be able to
react to changes in the environment.

Open: an autonomic system must be portable across multiple hardware and software architectures, and
consequently it must be built on standard and open protocols and interfaces.

Anticipatory: an autonomic system must be able to anticipate, to the extent possible, its needs and
behaviors and those of its context, and be able to manage itself proactively.

Sample self-managing system/application behaviors include installing software when it detects that
the software is missing (self-configuration), restarting a failed element (self-healing), adjusting current
workload when it observes an increase in capacity (self-optimization), and taking resources offline if it
detects an intrusion attempt (self-protecting).

Each of the attributes listed above are active research areas toward realizing autonomic systems and
applications. Generally, self-management is addressed in four primary system/application aspects, that is,
configuration, optimization, protection, and healing. Further, self-management solutions typically consist
of the steps outlined earlier: (1) the application and underlying information infrastructure provide infor-
mation to enable context and self-awareness (2) system/application events trigger analysis, deduction, and
planning using system knowledge and (3) plans are executed using the adaptive capabilities of the system.
An autonomic system implements self-managing attributes using the control loops described earlier to
collect information, makes decisions, and adapt, as necessary.

Autonomic components need to collaborate to achieve coherent autonomic behaviors at the application
level. This requires a common set of underlying capabilities including representations and mechanisms for
solution knowledge, system administration, problem determination, monitoring and analysis, and policy
definition, enforcement, and transaction measurements [5]. For example, a common solution knowledge
capability captures installation, configuration, and maintenance information in a consistent manner,
and eliminates the complexity introduced by heterogeneous tools and formats. Common administrative
console functions ranging from setup and configuration to solution runtime monitoring and control
provide a single platform to host administrative functions across systems and applications, allowing users
to manage solutions rather than managing individual systems/applications. Problem determination is one

© 2006 by Taylor & Francis Group, LLC

11-164 Handbook of Bioinspired Algorithms and Applications

of the most basic capabilities of an autonomic element and enables it to decide on appropriate actions when
healing, optimizing, configuring, or protecting itself. Autonomic monitoring is a capability that provides
an extensible runtime environment to support the gathering and filtering of data obtained through sensors.
Complex analysis methodologies and tools provide the power and flexibility required to perform a range
of analyses of sensor data, including deriving information about resource configuration, status, offered
workload, and throughput. A uniform approach to defining the policies is necessary to support adaptations
and govern decision-making required by the autonomic system. Transaction measurements are needed to
understand how the resources of heterogeneous systems combine into a distributed transaction execution
environment. Using these measurements, analysis and plans can be derived to change resource allocations
to optimize performance across these multiple systems as well as determine potential bottlenecks in the
system.

11.5 Illustrative Example: Distributed Cellular DEVS Dynamic
Forest Fire Simulation

One important feature of autonomic applications is their ability to change the components and the
structure that interconnects these components at runtime as required by the self-control and management
algorithms. For example, in fire forest simulation, you might need to change the type of components used
to simulate the fire depending on the current atmosphere conditions (rain, dry, speed of wind), and the
vegetation type at each computational grid. The runtime system framework will then modify the data
structures of the autonomic components in order to add or remove components.

The forest fire simulation model has been developed using the concepts of cellular automata. A cellular
automaton is an array of identically programmed automata, or “cells,” which interact with one another.
Essentially, it is a one-dimensional (1D) string of cells, a 2D Grid or a 3D solid and has three important
features — state, neighborhood, and its program. Just as every living cell contains all of the instructions
for its replication and operation, each individual cell in a cellular automaton can be programmed with a
set of rules that defines how its state changes in response to its current state and that of the neighbors.
In the forest fire model, the forest is represented as a 2D cell space composed of cells of dimensions / x b
(I: length, b: breadth). For each cell there are eight major wind directions N, NE, NW, S, SE, SW, E, W as
shown in Figure 11.6 and Figure 11.7

A group of such individual cells will together constitute, a Virtual Computational Unit (VCU). The
weather and vegetation conditions are assumed to be uniform within a cell, but may vary in the entire
cell space. A cell interacts with its neighbors along all the eight directions as listed earlier, using input and

NW N NE
h
W |« > E
SW SE
S

FIGURE 11.6 Cell with major wind directions.

NW N NE
wo [~

Y

m}*
A

Sw SE

FIGURE 11.7 Fire directions after ignition.

© 2006 by Taylor & Francis Group, LLC

The Foundations of Autonomic Computing 11-165

Input ports Output ports

Autonomic manager
Analyze

Monitor Execute
|

(S| —[A]

FIGURE 11.8 A forest fire cell expressed as an autonomic component.

output ports (the DEVS-Java model). A cell is programmed to undergo state changes from “unburned”
to “burning” if it is hit by an igniter or gets a notification message to compute its fire-line intensity value.
The cell changes state from “unburned” to “burning” only if the computed fire-line intensity is above a
threshold value for “burning.” During the “burning” phase, the cell propagates to eight different fire
components along the eight directions (refer to Figure 11.5). The direction and value of maximum fire
spread is computed using Rothermel’s fire spread model [6]. The remaining seven components are then
derived using a different decomposition algorithm. Rothermel’s model takes into account the wind—speed
and direction, the vegetation type, the calorific value of the fuel, and terrain type in calculating the fire
spread.

11.5.1 Forest Fire Cell as an Autonomic Component
A single forest fire cell is modeled by an Autonomic Component (Figure 11.8), which consists of:

1. Specification: get notification messages from neighbor cell or igniter and send notification messages
to the neighbor cells.

2. States: windew, windys, vegy, veg ., veg;, unburned, burning, burned, blocked.

3. Actions: partition cell space horizontally/vertically, allocate/de-allocate resources, migrate compon-
ent, add/delete coupling, start, terminate, pause, resume, and so on.

4. Policies: for self-optimizing, self-healing, self-configuration, and self-protecting.

The set of all possible actions on the component, are distributed into different policies that can be
activated at runtime based on the component current state and the state of the physical resources. The
policies are then used to map the states to the actions, as shown in Figure 11.9. In the following, we will
explain few of these mappings with example scenarios.

Case 1: State change from winde,, to windy triggers actions guided by the self-optimizing policy.

The entire forest cell space is to be distributed into smaller units consisting of individual forest cells
such that each group of forest cells executes on a single compute node. Since this application involves a
lot of interactions between neighboring cells, an optimal cell space partitioning plan must ensure that
neighbor cells do not spend too much time communicating with each other. One strategy is to partition
cells based on wind direction. As is evident from Figure 11.10, the wind direction determines the direction
of the communications among neighboring cells in the cell space. Thus, a partitioning strategy based
on wind direction will ensure that most of the communication occurs within the cells assigned to a single
compute node.

As seen from Figure 11.11, as the wind direction changes from east—west to north—south, the state of
the fire cell changes from windey to windp, after a certain time. At the end of the time advance, an output

© 2006 by Taylor & Francis Group, LLC

11-166 Handbook of Bioinspired Algorithms and Applications

Self-optimizing
actions

Self-
optimizing
policies

Pause

Resume

Partition cell space
horizontally

Self-protecting
actions

Self-
protecting Partition cell space vertically
policies Allocate resources

wind,,

wind, De-allocate resources

vegy

vedm

Migrate component

Start

Self-healing veg,
actions Self- Unburned
healing Burning Self-conflgurlng
Terminate policies Self- actions

Burned ‘ configuring

policies
Blocked
Ready
Failed

Stopped

Resume

Pause

Delete coupling
Add coupling

Migrate
component

FIGURE 11.9 Mapping from states to actions governed by policies.

a N
(a))
2
1 5 N North or south
wind directions
N
A
S EE—

East or west
wind directions

(b) [N / AA
\ \ 1 1 ; /
N N \\ . J/ /
2N 2 / North—east or south-west
S \, N\, ’ ’ / . . .
“ % / S # wind direction
\ \ / s
N\, \ 4 ’
N, \, 4 /
N, N\, 4 ’
N, N\, 4 ’
N\, N\ 4 ’
N, \, / /
N N Y / / N
\ /
N
\ A / £ 4

North—west or south—east
wind direction

FIGURE 11.10 Partitioning of cell space based on wind direction.

© 2006 by Taylor & Francis Group, LLC

The Foundations of Autonomic Computing

Repartition
cell space
vertically

11-167

N

Time advance

> 1

| Generate output |

Cstate: wind,,,

Cstate: wind,g

I

State
transition

FIGURE 11.11

State transition guided by the self-optimization policy.

Cact: pause

Cact: migrate component

<Cact: partition cell space vertically>
<Cpol: self-optimization policy >

Cact: resume

9
9
)i

Cstate: burning

Cstate: failed

Cstate: stopped

Cstate: ready

Cstate: burning

S

Internal transition

n

due to
ode failure

FIGURE 11.12 Sets of state transitions and actions guided by self-healing policies.

is generated, which involves a self-optimization action. In this case, the requested action is to repartition
the cell space vertically. Referring to Figure 11.11, we see that this action is mapped with the state windp,
The autonomic manager uses its monitoring and analysis engines to detect this state change. The planning
engine then generates the appropriate action as shown in Figure 11.11. The appropriate action (mapping
function) is a part of the knowledge stored in the knowledge engine. Finally, the execution engine executes

this action.

Case 2: State change from burning to failed triggers actions guided by the self-healing policy.

A scenario where a component stops running due to a failure in the node is shown in Figure 11.12.
A series of state changes generates the corresponding actions as shown in Figure 11.12. Finally the
component resumes execution from the last check-pointed state and its state changes into burning.

© 2006 by Taylor & Francis Group, LLC

11-168 Handbook of Bioinspired Algorithms and Applications

Input ports Output ports

Autonomic manager

Group of forest
cells

Execute

Input|ports
i "p Output ports

Output ports Input ports Output ports Input ports

Autonomic manager Autonomic manager

-

Autonomic manager

Analyze Plan Analyze Plan Analyze Plan

-

Execute Monitor Execute Monitor Execute

FIGURE 11.13 A group of forest fire cells expressed as an autonomic coupled component.

11.5.2 Forest Fire Cell Space as Autonomic Coupled Component

The forest fire cell space is nothing but a collection of forest cells that are connected in a particular manner
to create the entire forest application. In terms of our autonomic component formalisms, we can view the
forest cell space as a collection of autonomic forest cells (Figure 11.13).

A forest fire autonomic coupled component consists of: (1) specification: a union of a group individual
forest cell autonomic components with connected input, output ports. (2) actions: repartition cell space,
migrate, pause, resume. (3) global policies: for self-optimization, self-configuration, and so on to manage
the autonomic capabilities of the coupled component which, in our case, is the collection of forest fire
cells. The interaction between the states, actions, and policies are very much similar as explained earlier.
In what follows, we will explain this interaction in the context of the forest fire application.

Load balanced execution is crucial to the performance of the forest fire application because the
entire application proceeds at the speed of the slowest problem piece (VCU) in the entire cell space.
In Figure 11.14, we depict a scenario where the complexity of VCU1 (number of forest cells) is
reduced by removing some cells from that VCU and adding them to another VCU2 that is lightly
loaded.

VCULI starts at loadHigh. Note that this state is a union of the states of the cells in that VCU. Hence
loadHigh is the union of burningl, burning2, unburned3, . .., burning,. This could be a possible scenario
because cells perform the major amount of computation during the burning state. Hence, if the complexity
of VCUL1 is high and in addition, most of the cells in it are burning, then it can go to the loadHigh state.
The self-optimization policy for this VCU then selects the defined individual cell action to migrate cells.
This causes the VCU to transition to state paused. The next action is to select cells for migration. Again, the
self-optimizing policy uses its criteria to guide the selection of cells for migration. For example, it might
pick cells with the objective of minimal increase in communication overhead after the migration. At this
point the VCU goes to state reconfigure. The corresponding action is to remove couplings for the selected
cells. After this action is applied on the VCU, it goes back to state ready when it is ready to run again
with the load reduced. Its execution is then resumed when it changes state to the loadMid state and starts
execution.

© 2006 by Taylor & Francis Group, LLC

CCact: migrate cells

(7 S

CCact: remove couplings

(7 S !

CCstate: loadHigh

CCstate: paused CCstate: reconfigure

CCstate: ready CCstate: loadMid

ai=i=

VCU1 before repartitioning

N 7

CCact: select cells for migration

CCact: resume

VCU1 after\j

repartitioning

FIGURE 11.14 Sets of state transitions and actions guided by self-optimizing policies bring a component from heavily loaded to lightly loaded state.

© 2006 by Taylor & Francis Group, LLC

Sunndwo) JTwIouoINy Jo sUOTIBpuUNog 3L,

69T-11

Input interfaces Output interfaces

Input interfaces Output interfaces

Autonomic manager

Analyze

Knowledge
Self-healing
 —

Self-configuring

Self-optimizing

Input interfaces Output interfaces

2. Operational rules
3. Neighbor information
4. Local computation

Autonomic manager

Analyze

Knowledge
Self-healing
 —
Self-configuring

Self-optimizing

2. Operational rules
3. Neighbor information
4. Local computation

Autonomic manager

Analyze

Knowledge
Self-healing
—
Self-configuring

Self-optimizing

2. Operational rules
3. Neighbor information
4. Local computation

Output interfaces

Input interfaces

Input interfaces Output interfaces

Autonomic manager

Analyze

Knowledge
Self-healing
" —

Self-configuring

Self-optimizing Execute|

1D

2. Operational rules

3. Neighbor information
4. Local computation

Autonomic manager

Analyze

Knowledge
Self-healing
—

Self-configuring

Self-optimizing

FIGURE 11.15 Forest cell space dynamically reconfigures itself.

© 2006 by Taylor & Francis Group, LLC

2. Operational rules
3. Neighbor information
4. Local computation

Input interfaces Output interfaces

Autonomic manager
Analyze

Knowledge
Self-healing
—
Self-configuring

Self-optimizing

2. Operational rules

3. Neighbor information
4. Local computation

0ZT-1T

suoned1[ddy pue suItIoS[y parrdsurorg jo JooqpueH]

The Foundations of Autonomic Computing 11-171

11.5.3 Dynamic Composition and Self-Management of Forest Fire
Application

As discussed previously, we might encounter scenarios where the cells need to be dynamically deleted
from or added to the cell space. In this section, we will discuss how our framework achieves this objective.

As shown in Figure 11.15, two cells have burned and the other cells are burning. Hence, the couplings of
the burned cells are to be dynamically removed from this group of cells at runtime (denoted by the “cross”
in Figure 11.15). The monitoring engine senses this state change from burning to burned. It notifies the
analysis engine and planning engine. The planning engine then looks up the appropriate action for this
state by using the information stored in the self-configuration policy. In this case, the action is to remove
the couplings of the burned cells. Now, the execution engine deletes the specific ports and then sets the
new state of the VCU as ready and the VCU resumes execution.

11.6 The Autonomic Computing Landscape

There have been a number of research efforts in both academia and industry addressing autonomic
computing concepts and investigating the issues outlined earlier. Existing projects and products can
be broadly classified as: (1) Systems that incorporate mechanisms to address autonomic properties for
problem determination, autonomic monitoring, complex analysis, policies for autonomic managers, and
transaction measurements. (2) Systems that investigate models, programming paradigms and develop-
ment environments to support the development of autonomic applications and systems. Systems in the
former category are summarized in Table 11.1, while systems in the latter category are summarized in
Table 11.2.

TABLE 11.1 Systems Incorporating Autonomic Properties

System Application area Addressed autonomic issues
addressed/Key issues

OceanStore [7,8] Global, consistent, highly-available Self-healing, self-optimization,
persistent data storage self-configuration, self-protection
Policy-based caching, routing substrate
adaptation, autonomic replication,
continuous monitoring, testing,
and repairing
Storage Tank [9] Multi-platform, universally Self-optimization, self-healing
accessible storage management Policy-based storage and data management,
server redirection and
log-based recovery

Océano [10] Cost effective scalable management of computing Self-optimization, self-awareness
resources for software farms Autonomic demands distribution,
constant component monitoring
SMART DB2 [11] Reduction of human intervention & cost for DB2 Self-optimization, self-configuration

Autonomic index determination,
disaster recovery, continuous monitoring
of DB2’s health and alerting the DBA
AutoAdmin [12] Reduction of total cost of ownership (TCO) Self-tuning, self-administration
Usage tracking, index tuning and
recommending based on workload
Sabio [13] Autonomic classification of documents Self-organization, self-awareness
Group documents according to the
word and phrase usage
Q-Fabric [14] System support for continuous online management Self-organization
Continuous online quality management
through “customizability” of each
application’s QoS

© 2006 by Taylor & Francis Group, LLC

11-172 Handbook of Bioinspired Algorithms and Applications

TABLE 11.2 Systems Support Development of Autonomic Applications and Systems

System Focus Autonomic issues addressed
KX (Kinesthetics eXtreme) [15] Retrofitting automicity Enabling autonomic properties
in legacy systems
Anthill [16] P2P systems based on Ant colonies Complex adaptive behavior
of P2P systems
Astrolabe [17] Distributed information management Self-configuration, monitoring
and to control adaptation
Gryphon [18] Publish/subscribe middleware Large communication
Smart Grid [19] Autonomic principles applied Autonomic Grid computing
to solve Grid problems
Autonomia [20] Model and infrastructure Autonomic applications
for enabling autonomic
applications
AutoMate [21] Execution environment for autonomic applications Autonomic applications

Two projects, AutoMate [21] and Autonomia [20], belonging to the second category, directly investig-
ate the key issues of autonomic component/service definition and construction, autonomic application
construction, execution and management, and autonomic middleware services. These systems are briefly
described below.

11.6.1 AutoMate — Enabling Autonomic Applications

Project AutoMate (TASSL, Rutgers University) [21] investigates autonomic strategies to deal with the
challenges of complexity, dynamism, heterogeneity, and uncertainty in Grid computing systems, and
enables systems and applications that are capable of managing (i.e., configuring, adapting, optimizing,
protecting, healing) themselves. The overall goal of Project AutoMate is to investigate conceptual models
and implementation architectures that can enable the development and execution of such self-managing
Grid applications. Specifically, it investigates programming models, frameworks, and middleware services
that support the definition of autonomic elements, the development of autonomic applications as the
dynamic and opportunistic composition of these autonomic elements, and the policy, content, and
context driven definition, execution, and management of these applications.

A schematic overview of AutoMate is presented in Figure 11.16. AutoMate builds on emerging
Grid/P2P middleware services to define and manage virtual organizations. Its key components include
the Accord [22] programming system, the Rudder [23] decentralized coordination framework and
agent-based deductive engine, and the Meteor [24] content-based middleware providing support for
content-based routing, discovery and associative messaging. Project AutoMate additionally includes the
Sesame context-based access control infrastructure, the DAIS cooperative-protection services and the
Discover collaboratory [25] services for collaborative monitoring, interaction, and control.

The core components of AutoMate have been prototyped and are being currently used to enable
self-managing applications in science and engineering (e.g., autonomic oil reservoir optimizations,
autonomic runtime management of adaptive simulations, etc.) and to enable sensor-based perva-
sive applications. Further information about AutoMate and its components can be obtained from
http://automate.rutgers.edu/.

11.6.2 Autonomia

Autonomia (University of Arizona) provides application developers with the tools required to specify the
appropriate control and management schemes, the services to deploy and configure required software
and hardware resources, and to run applications. Autonomia can efficiently support the development
of pervasive systems and services, and provides an environment to make the control and management

© 2006 by Taylor & Francis Group, LLC

http://automate.rutgers.edu

The Foundations of Autonomic Computing

Ontology, taxonomy

!

Meteor/squid
content-based
middleware

Autonomic grid applications

Decentralized coordination engine

agent framework,
decentralized reactive tuple space

Semantic middleware services
content-based discovery, associative messaging

Content overlay

o
£x
BEO :
8 £ a;) Programming system
8 g £ autonomic components, dynamic composition,
<] g opportunistic interactions, collaborative monitoring/
o control

82IAI8S uonoslold SYa/eweses

content-based routing engine,
self-organizing overlay

FIGURE 11.16 AutoMate architecture.

Application
management
editor

aJema|ppiw

UoIBUIPIO0D

19ppny

11-173

AMS

Autonomous run-time engines

Self- Self- Self-
deploying || protecting healing
: Policy Engine

v

Self- ‘_’ Policy
optimizing repository &

Application autonomic manger (AAM)

Repository interface

“'Managed elements

Host 1

Host 2

Ilnterface I

Mobile agent 1 &

l Interface I

Mobile agent 2

L. Host N

NMobile agent N

FIGURE 11.17 Autonomia architecture.

of large-scale parallel and distributed applications autonomic. Autonomia provides online monitoring
and management to maintain the desired autonomic attributes of applications as well as system services,

achieving self-deployment, self-configuration, self-optimization, self-healing, and self-protection by the

policy engines.

© 2006 by Taylor & Francis Group, LLC

11-174 Handbook of Bioinspired Algorithms and Applications

The main modules of Autonomia include Application Management Editor (AME), Autonomic
Middleware Services (AMS) and Application Autonomic Manager (AAM). The AME is a graphical user
interface for developing an application using pre-developed and standard components and specifying the
management requirements for each application component. The AMS provides common middleware
services and tools needed by applications and systems to automate the required control and management
functions. The AAM mainly focuses on setting up the application execution environment. It acts as the
application administrator that is responsible for allocating the appropriate resources to run the application
and maintaining the application requirements at runtime.

11.7 Summary

In this chapter, we presented the autonomic computing paradigm, which is inspired by biological systems
such as the autonomic human nervous system and which enables the development of self-managing
computing systems. These systems use autonomic strategies and algorithms to handle complexity and
uncertainties with minimum human interference, thus shifting the burden of managing systems from
people to technologies. An autonomic computing system is a collection of autonomic components, which
implement an intelligent control loop to monitor, analyze, plan, and execute using knowledge of the
environment.

Several research efforts focused on enabling the autonomic properties address four main areas: (1) A self-
healing system could be expected to heal program parts that malfunction. (2) Self-protection of systems
to prevent large-scale correlated attacks or cascading failures from permanently damaging valuable infor-
mation and critical system functions. (3) Self-configuration that involves automatic incorporation of
new components and automatic component adjustment to new conditions. (4) Self-optimization on
a system level addressing automatic parameter tuning. Projects in both industry and academia have
addressed autonomic behaviors at all levels of system management, from the lowest levels of the hardware
to the highest levels of software systems and applications. At the hardware level, systems are dynamically
upgradable [26], while at the operating system level, active operating system code is replaced dynamically
[27]. Efforts have also focused on autonomic middleware, programming systems, and runtime [21, 28].
At the application level, self-optimizing databases and web servers dynamically reconfigure to adapt service
performance. The challenges to achieve true autonomic computing still exist, which will be accomplished
through a combination of process changes, skills evolution, new technologies and architecture, and open
industry standards.

References

[1] Autonomic Nervous System. http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/P/PNS.
html#autonomic

[2] W. Ross Ashby. Design for a Brain, 2nd ed., Revised, Chapman & Hall Ltd, London, 1960.

[3] J.O. Kephart and D.M. Chess. The vision of autonomic computing. IEEE Computer, 36, 41-50,
2003.

[4] IBM Corporation. Autonomic computing concepts. http://www-3.ibm.com/autonomic/library.
shtml, 2001.

[5] IBM. An Architectural Blueprint for Autonomic Computing, April 2003.

[6] R. Rothermel. A mathematical model for predicting fire spread in wildland fuels. Research paper
INT-115. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and
Range Experiment Station, 1972.

[7] Oceanstore. http://oceanstore.cs.berkeley.edu, July 8, 2002.

[8] J. Kubiatowicz. OceanStore: Global-scale persistent storage. Stanford Seminar Series, Stanford
University, 2001.

© 2006 by Taylor & Francis Group, LLC

http://www.rcn.com
http://www.rcn.com
http://oceanstore.cs.berkeley.edu

The Foundations of Autonomic Computing 11-175

[25]

[26]

(27]

(28]
[29]

(30]

IBM Almaden Research. IBM storage tank — A distributed storage system WhitePaper. January 24,
2002.

The Océano Project, http://www.research.ibm.com/oceanoproject, IBM Corporation.

Guy M. Lohman and Sam Lightstone. SMART: Making DB2 (More) Autonomic. In Very Large
Data Bases (VLDB) Conference 2002.

S. Chaudhuri. AutoAdmin: Self-tuning and self-administering databases. http://research.
microsoft.com/research/dmx/autoadmin, Microsoft Research Center.

R. Pool. Natural selection, a new computer program classifies documents automatically, 2002.
Q-fabirc. http://www.cc.gatech.edu/systems/projects/ELinux/qfabric.html.

G. Kaiser, P. Gross, G. Kc, J. Parekh, and G. Valetto. An approach to autonomizing legacy systems.
In Workshop on Self-healing, Adaptive and Self-managed Systems, New York City, NY, June 23, 2002.
Anthill. http://www.cs.unibo.it/projects/anthill/index.html.

Robbert van Renesse, Kenneth Birman, and Werner Vogels. Astrolabe: A robust and scalable
technology for distributed system monitoring, management, and data mining. ACM Transactions
on Computer Systems, 21, 164-206, 2003.

Gryphon. http://www.research.ibm.com/gryphon/gryphon.html

Smart Grid, http://www.ldeo.columbia.edu/res/pi/4d4/testbeds/

S. Hariri, Lizhi Xue, Huoping Chen, Ming Zhang, S. Pavuluri, and S. Rao. Autonomia:
an autonomic computing environment. In Proceedings of the Performance, Computing, and
Communications Conference, IEEE International, April 9-11, 2003.

M. Agarwal, V. Bhat, H. Liu, et al. AutoMate: Enabling autonomic applications on the grid. In
Autonomic Computing Workshop Fifth Annual International Workshop on Active Middleware Services
(AMS’03), June 25-25, 2003.

H. Liu, M. Parashar, and S. Hariri. A component-based programming framework for autonomic
applications. In Proceedings of Ist IEEE International Conference on Autonomic Computing
(ICAC-04), IEEE Computer Society Press, Washington, 2004, pp. 278-279.

Z.Liand M. Parashar. Rudder: A rule-based multi-agent infrastructure for supporting autonomic
grid applications. In Proceedings of 1st IEEE International Conference on Autonomic Computing
(ICAC-04); May 2004, pp. 10-17.

N.Jiang, C. Schmidt, V. Matossian, and M. Parashar. Content-based Middleware for Decoupled Inter-
actions in Pervasive Environments, Rutgers University, Wireless Information Network Laboratory
(WINLAB), Piscataway, NJ, USA, 2004.

V. Bhat and M. Parashar. Discover middleware substrate for integrating services on the grid.
In Proceedings of 10th International Conference on High Performance Computing (HiPC 2003),
Springer-Verlag, Heidelberg, December 2003, pp. 373-382.

J. Jann, L.M. Browning, and R.S. Burgula. Dynamic reconfiguration: Basic building blocks for
autonomic computing on ibm pseries servers. IBM Systems Journal, 2003.

J. Appavoo, K. Hui, C.A.N. Soules, R.W. Wisniewski, D.M. Da Silva, O. Krieger, M.A. Auslander,
D.J. Edelsohn, B. Gamsa, G.R. Ganger, P. McKenney, M. Ostrowski, B. Rosenburg, M. Stumm,
and J. Xenidis. Enabling autonomic behavior in systems software with hot swapping. IBM Systems
Journal, 2003.

James Kaufman and Toby Lehman. Optimal grid: Grid middleware for high performance
computational biology. Research report, IBM Almaden Research Center.

P. Horn. Autonomic Computing: IBM’s Perspective on the State of Information Technology,
http://www.research.ibm.com/autonomic/, October 2001.

Adaptive Systems. http://www.cogs.susx.ac.uk/users/ezequiel/AS/lectures.

© 2006 by Taylor & Francis Group, LLC

http://www.research.ibm.com
http://research.microsoft.com
http://research.microsoft.com
http://www.cc.gatech.edu
http://www.cs.unibo.it
http://www.research.ibm.com
http://www.ldeo.columbia.edu
http://www.research.ibm.com
http://www.sussex.ac.uk

11

Application Domains

Michelle Moore

12.1 Introduction

12

Setting Parameter
Values for Parallel
Genetic Algorithms:
Scheduling Tasks on
a Cluster

12.1 Introduction...........ooooeiiiiiiiiiiiiiiiniiiiinenn.. 12-179
12.2 Backgroundcooiiiiiiiiiiii 12-181
12.3 The Task-Scheduling Problem 12-181
Definitions e The Computational Model e Complexity of
the Problem e The Optimal Algorithm e P-GOA Time and
Space Complexity
12.4 The Genetic Approach..........ccooeviviiiiiiiiinnnn... 12-183
GAs and Optimization e The Genetic Metaphor
12.5 Genetic Operators and Parameters 12-184
Encoding and Initialization e The Sizing Equations and
Population Distribution e Fitness and the Objective
Function e Survival, Mating, and Mutation e Migration
Frequency, Policy, and Rate
12.6 Experiment Designcooeiiiiiiiiiiiiiiiinnennn.. 12-186
The Data Sets e The Test Programs e Sizing Equation
Variable Value Computation e Scaling Factor
12.7 Results and Conclusions...............coooeeiiiiiinnn.. 12-189
Acknowledgments............cooiiiiiiiiiii 12-191
Referencescooviuiiiiiiiiiiiiiiiiii 12-191

Optimization problems are widespread and appear frequently in a variety of common, everyday applica-

tions. For example, a shipping company handles containers of varying sizes and shapes, and wants to pack
the maximum possible number into a fixed space. This packing plan must be generated for each truck. An
airport wants to determine the fastest pattern for their fleet of snow plows and dump trucks for clearing

© 2006 by Taylor & Francis Group, LLC

12-179

12-180 Handbook of Bioinspired Algorithms and Applications

snow from the runways. Since heavier snowfall will require more trips by the dump trucks, they also need
the plowing pattern generator to include the rate of snowfall in the computations. Finally, consider a
school district that needs to reduce the amount of fuel used by its 40 buses, and wants to determine the
shortest route that will allow children to be picked up at their homes. The district has a call-in system
for children who need not be picked up on a particular day, so the route plan has to be updated every
morning.

In each of these examples, the result must be determined quickly. Unfortunately, in order to determine
the very best answer in each case, all possible solutions must be considered. For example, in order to
determine the best bus route to pick up 50 children for one bus in a fixed area requires that 50! routes
be examined. That is 3.04e64 routes for a single bus. For 40 buses of 50 children each, there are 2000!
possible schedules! Because of the amount of time taken to find an optimal answer to these types of
computationally intractable problems, approximation algorithms are developed to find acceptably good
answers in a reasonable amount of time.

The decision to use an approximation algorithm raises additional questions. How close will a particular
approximation algorithm’s answer be to the optimal answer? Will the approximation algorithm be able
to find this answer fast enough? In all the examples given, there is a limit to the amount of time that can
be spent to find a solution. The program implementing the algorithm must guarantee a solution before
the time limit is reached.

Biologically inspired optimization methods such Genetic Optimization Algorithms (GOAs) offer the
advantage of an immediate approximate solution. The available time is then used to refine that solution
to bring it as close as possible to the optimal. Of course, in real applications, the actual optimal solution
is not known. However, where optimal solutions are known, GOA approximations frequently find them.
When the optimal is not found, the approximation is usually very close. GOAs can be written to execute in
parallel to speed up the process of finding an optimal or approximate solution. Communication of local
results among Parallel GOAs (P-GOAs) can often improve both the quality of the approximations and the
speed at which they are found.

Thelikelihood that a very good solution will be found when using a P-GOA depends largely on the values
of the parameters used by the program. These parameters include population size, deme size (the number
of individuals on each processor), number of generations, rate of communication, and communication
frequency. This chapter discusses a mathematical method to determine appropriate P-GOA values for
these parameters for a multiprocessor scheduler. The computations required to determine proper values
for the P-GOA parameters are shown in detail. In addition, known optimal schedules are compared with
schedules generated using the P-GOA and the results are shown.

The analysis and experimentation discussed here represents ongoing investigation. The results presented
here represent the culmination of an initial attempt to find an “all purpose” sizing formula for task
scheduling in a computational science programming environment. Using the work by Canti-Paz [1] and
Goldberg et al. [2] as a theoretical and practical foundation, numerous computations were explored,
and trials were run using a variety of equations. An “all purpose” formula was not found; however, it is
now clear what can be accomplished using this sort of methodology, and what problem qualities suggest
a very different approach. The material in some of the sections of this chapter has appeared in previous
discussions of the progress in this area [3—6]. It has been repeated here so that this chapter may be read
without the need to refer to the earlier work.

The rest of this chapter is organized as follows. Section 12.2 outlines the background of the sample
problem and of previous work related to parameter value selection for parallel Genetic Algorithms (GAs).
Section 12.3 presents the problem-specific scheduling model and the complexity of the problem. This
material has appeared in previous publications. Section 12.4 introduces GAs and the application of the
genetic metaphor to the scheduling problem, which has appeared in previous publications. Section 12.5
describes the genetic operators and the parameter variables used in the scheduler. This section is similar
to discussions in Reference 6, but provides the critical modifications that produced a successful deme
sizing equation for the task scheduling P-GOA. Readers familiar with the previous reports might begin
their reading in Section 12.5. Section 12.6 describes the design of the experiments and describes how

© 2006 by Taylor & Francis Group, LLC

Setting Parameter Values for Parallel Genetic Algorithms 12-181

particular values were chosen for the sizing equations. Section 12.7 details the results of the experiments
and summarizes the conclusions.

12.2 Background

A multiprocessor scheduling problem is used to illustrate appropriate calculations for determining
several important parameter values for a P-GOA solution approximation. The schedule to be developed
by the P-GOA specifies the processor on which each of the tasks required for a particular application
is to run. This application schedules tasks on a cluster of homogeneous processors with an Ethernet
connection. The task execution times and communication times are known in advance. This models
the scheduling requirements that may be encountered when performing distributed database queries or
when doing “production runs” in computational science applications with known computation times and
varying data. In applications such as these, execution and communication times can be known (or at least
estimated very closely) in advance.

Parameter sizing methods were reported by Goldberg [7], Goldberg et al. [2], and others. Precise analysis
of these methods for selected problems and processor topologies were presented by Cantt-Paz [1]. In his
forward [1], Goldberg states, “I believe it is fair to say that prior to this work, the design of parallel GAs
was something of an empirical black art, guided largely by ad hoc trial and error experimentation.” The
statistical analysis presented in these works had their basis in schema theory. Schema theory attempts
to provide an explanation for the behavior of genetic algorithms. Analysis of this explanation of GA
behavior resulted in precise formulae for determining, a priori, the values of GA input parameters that
would produce a particular solution quality.

A number of objections to schema theory have been published. A recent book by Reeves and Rowe [8]
summarizes many of these objections, and provides sufficient bibliographic information to begin a more
in-depth investigation into the reasoning of schema theory detractors. They suggest that schema theory-
based analysis can be fruitful for specific categories of GAs. However, they insist that the behavior of other
types of GAs differs vastly from that described by schema theory. Nevertheless, the benefits of calculating
accurate GA parameters in advance, in terms of time saved and solution quality, can be sizable for some
applications. In this chapter, effective parameters are found for a task-scheduling problem by applying
appropriately adapted analysis.

In Reference 3 these concepts were first applied to this scheduling problem. In References 4 to 6, an
in-depth examination of three deme sizing equations developed over time by Cantd-Paz, Goldberg, and
others was reported in terms of their applicability to the scheduling problem. Information in Reference 6
outlined how to apply the equations to the cluster-scheduling problem, specifically detailing the appro-
priate determination of values for the equation variables. This chapter explains refinements developed
through analysis of the most promising equations, and provides the rationale for making those refine-
ments. Justification of approximations used in parameter computations and modifications to the original
equations are explained.

12.3 The Task-Scheduling Problem

The task-scheduling problem presented here has been the sample problem during the various stages
of analysis of the parameter sizing computation development. This definition and description of the
scheduling problem has appeared, in slightly varying form in References 3 to 6.

12.3.1 Definitions

A task #; is represented as a taskpair (e;, ¢;), consisting of an execution time e; and a communication
time ¢;. The total number of tasks to schedule is n. The symbol p; represents one of the m processors
available to the scheduler. The makespan of a schedule is the time at which the execution of all taskpairs

© 2006 by Taylor & Francis Group, LLC

12-182 Handbook of Bioinspired Algorithms and Applications

is completed. The optimal makespan is the shortest possible period in which a given set of taskpairs can
execute on the available multiprocessor system. The goal of the scheduler is to produce schedules with
makespans as close to optimal as possible within a predictable and practical amount of time. In summary,
the set of tasks {fo, . . ., t,—1} is scheduled to execute on a system of m processors {po, . . ., pm—1}-

Tasks are created and scheduled by an initial processor designated py. The time py uses to create
a schedule for the given set of tasks is not considered as a part of the makespan. The time required to
send the task assignments to the other processors is assumed constant and is therefore not considered.
Any final computations that must occur after all results are communicated back to py are unaffected
by the particular schedule, and are not included in the schedule quality evaluations. Finally, messages
and processes for control or monitoring are assumed to have no effect on the relative efficiencies of the
schedules, so these values are also not considered in the evaluation of schedule quality.

The time required for each task to execute and communicate a result (or estimations of these times)
is available in advance. Dependent computations are grouped into a single task so that each task is
independent. Consequently, there are no precedence constraints on the tasks. However, the computation
portion of each task must complete execution before its corresponding message is sent.

12.3.2 The Computational Model

The target hardware environment is a cluster system using message passing. The cluster consists of
m processors {po, ..., Pm—1} connected by a shared Ethernet bus. All processors are identical and the
communication bandwidth between {p1, ..., pn—1} and po is constant. The processor that creates the set
of tasks and the schedule is represented as pg. This process requires no communication time in order to
complete its tasks. Processors {pi, . . . , pm—1} represent the additional processors to which pg sends tasks or
control messages, and from which py receives the computation results. Tasks scheduled on {py, ..., pm—1}
are not considered complete until the result message has left the communication channel. After all n tasks
have been completed, py may use the results obtained to execute a final computation. However, since
this final execution time is the same regardless of the manner in which the tasks are scheduled, its value
is ignored during schedule quality evaluation.

Only one message may be transmitted to or from a processor and only one task may execute on a
processor at a time. All schedules and tasks are non-preemptive. If there is a task available to execute, and
a processor is available at that time, the task will be scheduled. If the communication channel is avail-
able, the message will be transmitted immediately after the associated task is completed. Otherwise, the
message will be transmitted as soon as messages associated with any previously executed tasks leave the
communication bus.

12.3.3 Complexity of the Problem

In References 8 to 10 and 17, GAs were shown to provide effective approximations for combinatorial
optimization problems. The combinatorial optimization problem of finding a schedule on m > 2 identical
processors that minimizes a finish time for independent tasks consisting of execution times has been shown
to be in class NP [11,12,19]. In addition to execution times, ¢;, the amount of time, ¢;, required to return
the result of each computation over the communication channel is also considered. Therefore, in order
to schedule n taskpairs {1, ..., t;,—1}, the values of {(ey,), . . ., (en—1, cn—1)} must be considered. This
problem can be transformed into the above scheduling problem by setting its communication times to
zero, and is clearly in NP. When communication times are nonzero, the communication channel is an
additional resource that must be scheduled, which increases problem complexity. The quality or “fitness”
of the schedule is the total time required for all tasks to complete execution. An exhaustive search of
all possible schedules will require time bounded by © ("), where # is the number of tasks to schedule,
and m is the number of processors to schedule. The addition of a communication bus that must also be
“scheduled” increases the complexity of the problem. Since the problem is NP-complete, approximation
algorithms for scheduling attempt to create schedules as close to the optimal as possible.

© 2006 by Taylor & Francis Group, LLC

Setting Parameter Values for Parallel Genetic Algorithms 12-183

12.3.4 The Optimal Algorithm

In order to accurately evaluate the schedules produced by the P-GOA, optimal schedules were generated
for a series of small scheduling problems. It was necessary to keep the problems fairly small due to the
complexity of an optimal algorithm. Consider if 71 is the number of processors and 7 is the number of tasks,
an exhaustive search will require m" time to evaluate every schedule. If a branch and bound algorithm
is used to avoid unfruitful partial schedules, the worst case will occur if data requires all branches to be
searched, giving a worst-case complexity of O(m"). A parallel version of the optimal algorithm executed
on r processors has complexity O(m"/r), again an exponential time complexity measure. Because of the
time required to obtain comparison values using an optimal algorithm, the size of the test cases was kept
small.

12.3.5 P-GOA Time and Space Complexity

The space requirements of the sequential version of the genetic schedule optimization algorithm are linear,
population_size X number_of _tasks x 2

and the execution time complexity of the sequential version of the genetic schedule optimization
algorithm is

num_generations x population_size x number_of _tasks x number_of _processors.
The scheduler is cost optimal in that the space complexity of the P-GOA is
(population_size x number_of _tasks x 2)/r
and the execution time complexity of the P-GOA is
(num_generations x population_size x number_of _tasks x number_of _processors) /1,

where r is the number of processors on which the scheduler is executed.

12.4 The Genetic Approach
12.4.1 GAs and Optimization

In 1975, Holland [13] introduced the idea of combining directed randomness with adaptation as a search
and optimization technique. Since that time, GAs have been used in a wide array of applications. In
addition, the characteristics of GAs have been studied extensively, and diverse theoretical explanations
for the ability of these complex systems to generate solutions have appeared [18]. GAs have been used to
approximate solutions for a wide variety of NP-complete problems [2,9].

A GA begins with a population of initial coded “guesses” (chromosomes) at a solution. These guesses
may be randomly generated or produced using a problem specific heuristic. An application specific
fitness or objective function is applied to each chromosome, and the “better” individuals are selected to
“survive.” Survivor individuals are then merged together to form a new generation (mating). Occasionally,
portions of the chromosomes of an individual are randomly altered (mutation). This process of fitness
determination, mating, and mutation is repeated for a given number of generations, or until the individuals
improve sufficiently to achieve a predefined goal. The simplest algorithms often view an individual as
a single chromosome. However, applications with multiple constraints may employ individuals with
multiple chromosomes.

© 2006 by Taylor & Francis Group, LLC

12-184 Handbook of Bioinspired Algorithms and Applications

12.4.2 The Genetic Metaphor

The P-GOA employs methods and metaphors from nature and genetics to “evolve” an initial population
of solutions (schedules in this case) into high quality solutions. The initial population of schedules is
randomly generated. The fitness, or quality, of each schedule is evaluated. The “fitter” schedules are
saved and used as a “mating pool.” Finally, these schedules are paired randomly to create new schedules
until there are enough “offspring” to return the population to its original size. The P-GOA divides the
population of schedules into local demes and distributes them over the available processors. Periodically,
individual schedules are allowed to migrate to other processors in hopes of speeding the rate of schedule
improvement.

The P-GOA represents each schedule as a single chromosome. Each individual schedule consists of
lval genes, where lval is the number of tasks to be scheduled. Each position of the chromosome corresponds
to a task, and the values at each position correspond to a processor number. A schedule for six tasks on
five processors might appear as (1 3 4 2 3 0), indicating that £, is executed on py, t; is executed on p3, and
so on. Chromosomes are also referred to as strings. The cardinality of the string alphabet is the number
of digit values that may appear on the chromosome. Many GAs use binary alphabets, but in general, we
may say that a chromosome string has a x-ary alphabet where the cardinality is x. In the given example,
the cardinality of the alphabet ()) is equal to five.

12.5 Genetic Operators and Parameters

12.5.1 Encoding and Initialization

For scheduling in the P-GOA, each chromosome encodes a schedule solution and each gene represents
a scheduled task. The number of genes in a chromosome equals #, which is the number of tasks to be
scheduled. In the P-GOA, allele values represent the processor to which a task is assigned. Allele values
range from 0 to m — 1, where m equals to the number of processors available. For example, given the
following taskpair set:

{(7,16), (11,22), (12, 40), (15,22), (17, 23),
(17,23), (19, 23), (20, 28), (20, 27), (26, 27),
(28,31), (36,37), (31, 29), (28, 22), (23, 19),
(22,18), (22,17), (29, 16), (27, 16), (35, 15)},

the optimal schedule on three processors would appear as
10000000200011111212.

The optimal makespan for this sequence of tasks is 202.

Various population “seeding” techniques were examined in Reference 14. However, for general
GA schedulers, random initialization of the population of schedules has proven to be the most effective
initialization technique and is used here.

12.5.2 The Sizing Equations and Population Distribution

As mentioned previously, the determination of population and deme sizes for practical applications of
parallel GAs required a great deal of what was frequently termed “empiricism,” that is, trial and error.
Cantu-Paz [1] offered a way to analyze a particular problem so that a very precise population and deme
size, an efficient migration strategy, and an effective processor topology could be determined in advance.

© 2006 by Taylor & Francis Group, LLC

Setting Parameter Values for Parallel Genetic Algorithms 12-185

The analysis here considers only deme sizing, sets migration to the maximum possible value, and uses
a fully connected system.

Consideration of collateral noise (the noise of other partitions when deciding between best and second
best building block) is built into the sizing equation. External noise may exist if fitness cannot be directly
calculated. This was not the case for the scheduling application, so the sizing computation does not require
adjustments for external noise. Each of the processors used in finding the schedule is assigned n4 schedules
to evolve locally.

Analysis produced a sizing equation that is identical to the one given in Reference 1. However, many of
the variables could not be calculated in the same manner as in Reference 1 and required approximations.
In addition, experiments revealed that a scaling factor was needed to compensate for a crucial difference
in this application. Unlike the applications in Reference 1, the scheduler does not need to converge. It is
only necessary to find one schedule of the required quality. The scaling factor will be discussed in detail
in Section 12.6.4. The equation, minus scaling, is given below:

ng = sqrt(—x X In(1 — Pyp))

, 12.1
@p—1/p (20

where

x = cardinality of the chromosome string alphabet, the number of processors

k = building block size, the number of fixed positions in the schema

Py, = probability that one partition (one building block) in one deme is correct, probability of success

per deme &~ Q/m — sqrt(In(r))/sqrt(2m)

Q = required problem solution quality = (1 — o) m

a = the probability of making the wrong choice between two competing schema

m = number of partitions in the string, number of building blocks Ival/k

Ival = length of the chromosome (schema), the number of tasks

r = the number of processors used to create the schedule

p=~0—q),~1/2+ ¥/sqrt(2m)

7 = the constant value 3.14159

¥ = d/ (0w sqrt(2m’))

d = signal difference for peak to peak (mean to mean) function difference between the best and the
second best competing individuals, this affects the likelihood of choosing the better individual

Obb = sqrt(afz) the average building block standard deviation

afz = overall variance of all schemas for each fixed position =Y 7", aff

~ (fmax - fmin)2

> (12.2)

fmax = maximum fitness function value possible
fmin = minimum fitness function value possible

12.5.3 Fitness and the Objective Function

Tasks assigned to processors other than py, will have an associated message that must be scheduled. The
total message time will therefore be longer than the task execution time on p;,__,—1. Tasks assigned to po
do not require message time, so the greater of the communication completion time and the execution
time on py, will be the makespan

makespan = MAX(py, message time).

© 2006 by Taylor & Francis Group, LLC

12-186 Handbook of Bioinspired Algorithms and Applications

Because the goal of the scheduler is to minimize the makespan, the fitness of an individual chromosome
string is evaluated as

fitness = —1 x makespan.

12.5.4 Survival, Mating, and Mutation

Each generation, the average of all the individual makespans is calculated. Schedules with makespans
less than or equal to the average are placed in the survivor pool. Each individual schedule with a fitness
greater than or equal to the average fitness is allowed to reproduce and survive to the next generation.
This rank-based selection method combines truncation selection and (y + A) selection. The top 1/v of
the population is selected. Then the y = 1/v parents mate to create A offspring. The union of y and A
constitute the next generation. This allows very fit individuals to survive and mate repeatedly.

Survivors are randomly chosen, with replacement, to produce offspring until the size of the population
returns to its original level. Each mating produces a single offspring. As with sexual reproduction, an
offspring is created from the genes of the two parents. Each allele is randomly chosen from one parent
or the other. Mating is accomplished using uniform crossover with a 0.5 crossover probability [15,16].
In other words, when creating an offspring from a pair of schedules, the offspring’s processor assignment
for each task is equally likely to match either parent.

In addition, a 2.5% mutation probability is applied for each allele. This means that after crossover, the
GA allows for a .025 probability for each task being reassigned to a randomly chosen processor. This is
a relatively high mutation rate, but was chosen to prevent premature convergence from occurring due to
small deme sizes. The process of selection, mating, crossover, and mutation occurred for 1000 generations.
This is a relatively small number of generations. The goal of the scheduler is to find near optimal schedules
in a very short amount of time. A small number of generations, combined with a deme size no larger than
necessary, allows this to be accomplished.

12.5.5 Migration Frequency, Policy, and Rate

The initial population of schedules is distributed among the available cluster nodes. After each generation,
the more fit individuals of each deme are copied and distributed among the other demes, replacing the
least fit individuals. The P-GOA uses the migration rate necessary to fill the positions left open by the unfit
individuals. Migration occurs after selection and before mating so that the new migrants can contribute to
the next generation. After each migration, the local iterations of selection, mating, crossover, and mutation
resume. When the execution of 1000 generations completes, the P-GOA outputs the best schedule found
so far, along with its makespan.

Using the results from the migration policy analysis and experiments in Reference 1, migration
follows what is called a “best—worst policy,” since migrants take the place of the least fit individu-
als in each deme. The proportion of migrants to the population as a whole is the migration rate.
Since migrants are sent to replace individuals below average, the rate of migration decreases as the
fitness values begin to converge. Since the individual schedules remain on their original processors and
copies are sent to other processors, this process is sometimes referred to as “pollination” rather than
migration.

12.6 Experiment Design

The experiments performed by Goldberg et al. [2,7] and Cantu-Paz [1] to verify the given calculations and
guidelines, involved problems qualitatively different from the scheduling problem described here. Their
experiments involved binary encodings only. The schedule encoding is m-ary, where m is the number of
processors. For the scheduling problem, this is the same as x -ary where yx is the alphabet size. The fitness
of their experimental individuals involved functional calculations that directly evaluated the encodings.

© 2006 by Taylor & Francis Group, LLC

Setting Parameter Values for Parallel Genetic Algorithms 12-187

In the scheduling application, fitness is an indirect computation requiring an evaluation of the meaning
and implications (i.e., effect on communication time) of the encoding. When they compared expected
confidence levels with experimental results, the degree of correctness was defined as the percentage of
alleles possessing the correct value when the algorithm converged. In the scheduling application, the degree
of correctness is defined as the “nearness” to the optimal schedule that can be obtained in a limited amount
of time by the best individual. These differences were overcome by problem specific interpretations of
the meanings of the equation variables and by employing a scaling factor to adjust the output of the
equation.

12.6.1 The Data Sets

The initial data set consisted of taskpair sets, each containing 20 normally distributed, randomly generated
(e, ¢) task pairs. The mean execution time was 25 with a standard deviation of 2%. Three communication
means were used, 10, 25, and 40, (std = 0.02) to vary the relative effects of communication overhead.
This data set was used throughout the experiments with various sizing equations. The final deme sizing
equation reported here was also tested using the original data sets as well as data sets of exponentially
distributed task execution and mean times, taskpair sets of varying sizes, and data sets with larger or
smaller means and standard deviations.

12.6.2 The Test Programs

The parallel scheduling program was written in C using LAM MPI constructs to execute on multiple
cluster processors. The migration rate was set to the maximum that could occur for the deme with the
most survivors after selection. Migration occurred at every generation.

In order to evaluate the quality of the schedules that were produced, actual optimal schedules were
found for the data sets. Because of the exponentially increasing amount of time required to find the
comparison optimal schedules, the number of tasks in the tests sets was kept small. A sizing program was
written to calculate population sizes that corresponded to varying predicted levels of schedule accuracy.
The sizing program generated population and deme sizes using probabilities of success of 0.80, 0.85, 0.90,
0.95, and 0.99. Deme sizes were generated at each confidence level with each of the three communication
means. To reduce the effect of stochastic variance, five runs were averaged for each communication mean
at each confidence level. The program to find the optimal schedule for each of these cases was also executed
five times, and the results were averaged for comparison. An expected quality of 80% meant that when
deme size was calculated at the 80% confidence level. They were expected to produce schedules that
would allow all tasks to complete execution in an amount of time exceeding the optimal by no more
than 20%.

12.6.3 Sizing Equation Variable Value Computation
The graphs shown represent results when the following variable values were set to the given values:

r = 12, the number of processors used to create the schedule, the number of cluster nodes running the
P-GOA scheduler.
X = 5, the number of processors to be scheduled, the cardinality of the alphabet, the number of
possible allele values.
k = 1, the size of a building block.
Ival = 15, the number of tasks to schedule, the number of genes in the chromosome.
m = the number of partitions, the number of building block sets in the chromosome string, since the
building block size is 1, Ival/k = 15.
m =m-—1.

Signal difference is defined in Reference 1 as the difference in the means of the fitness distri-
bution produced by the best building block and that produced by the second best building block.

© 2006 by Taylor & Francis Group, LLC

12-188 Handbook of Bioinspired Algorithms and Applications

The fitness distribution associated with a particular building block in a task schedule cannot be
directly determined from the value assigned to the building block. Fitness calculations must consider
the meaning of the allele value in terms of previous assignments and the effect on communication time.
Consequently, the P-GOA scheduler considers the smallest possible difference in average makespans
and the average execution time. The average of these two values is used as an estimate for signal
difference.

d~ (14 pe)/2.

This value will vary in relationship with the means of the data set values. Data sets with larger execution
times will have larger signal difference values.

The worst possible schedule for a given data set could be generated if tasks were scheduled to
maximize the makespan. This worst fitness for the specific scheduling problems is calculated as
follows:

fmax A if e < e val pe + e which in this example is 15 x 25 + 10 = 385,
if ue = e IMval e + e which in this example is 15 x 25 + 25 = 400,

if ue > e Ival uc + e which in this example is 15 x 40 + 25 = 625.

The minimum makespans were estimated using observations of task placements found by the optimal
algorithm

1

fmin 2 if pe < pe (1/num_procs) lval pre + 2. 3 x 15 x 25 + 10 = 135,
. 1

if e > e (1/num_procs) val juc + pe 3 x 15 x 40 + 25 = 225.

Next, the probability of retaining the best building block between generations on at least one deme is

p~ % + ¥ /sqrt(2m) where ¥ = d/(opp sqrt(2m’)),

~ % + (13/(opp, sqrt(28)) /sqrt(2m)),

~ 0.5+ (13/opp X 5.292)/0.251,
~ 0.5 + 2.457 /(o x 0.251),

~ 0.5 + 9.789/01pp,
where
Obb = sqrt(of)
and

sz ~ (fmax _fmin)z/lzy

© 2006 by Taylor & Francis Group, LLC

Setting Parameter Values for Parallel Genetic Algorithms 12-189

then

if (e < e sqrt(ofz) ~ sqrt((385 — 135)2/12) =72.17
p A 0.549.789/72.17 = 0.636,

if i = pe sqrt(of) A sqrt((400 — 135)%/12) = 76.50
p A~ 0.5+ 9.789/76.50 = 0.628,

if i > pe sqrt(of) ~ sqrt((625 — 225)%/12) = 115.47
p A 0.549.789/115.47 = 0.585.

12.6.4 Scaling Factor

Because the P-GOA does not need to converge on a schedule of the required quality, merely find at least
one, the population size can be scaled down. Previous calculations produced population sizes that met
or exceeded predicted quality at the 95 to 99% confidence levels. This was the primary goal; however,
it was discouraging that the deme sizes produced for the lower confidence levels produced schedules
whose quality far exceeded the predicted quality. This “excess” quality was not a problem in practical
terms; however, it indicated that the sizing equations were not capturing an important feature in the
behavior of the scheduler. It is well known that fitness in GAs tends to improve at a logarithmic rate. Early
improvements come quickly, but later ones appear more slowly. Since the deme sizes produced accurate
results at the higher range, a scaling factor was needed to make the deme sizes reflect the rate of increase
at the lower quality levels. Deme sizes were scaled so that they used the calculated size for the highest
confidence level. These sizes were decreased at an exponential rate until they reached the lowest confidence
level.

12.7 Results and Conclusions

The sizing equation produced very accurate deme sizes for the scheduling problem where the task sizes
were normally distributed. Table 12.1 shows the accuracy levels for each population size for averaged
results with all communication means. Figure 12.1 illustrates how closely the actual makespans generated
track the makespans predicted by the equation.

Tests run with larger data sets, varying data means, and varying standard deviations gave similar results.
The deme sizing equation with the scaling factor applied provides sizes that allow the P-GOA scheduler
to produce schedules with makespans very close to a predetermined accuracy. In addition, the very small
populations at the lower confidence levels allows for trade-offs between accuracy and speed. Clearly, this
deme sizing equation captures the behavior of the P-GOA for this scheduling application.

In fact, Tables 12.2 to 12.4 show the best approximate makespan found for each of the five tests that
were run for each communication mean. These approximate makespans are shown with the optimal
makespans for each run and with the generation number in which the best approximate makespan was

TABLE 12.1 Accuracy Levels for Each
Population Size — Normal Data

Deme size Actual Predicted
7 0.805 0.80

10 0.878 0.85

14 0.950 0.90

24 0.975 0.95

50 0.997 0.99

© 2006 by Taylor & Francis Group, LLC

12-190 Handbook of Bioinspired Algorithms and Applications

All means — normal

1.1

T 11

£

3 0.9

]

[}

3 0.8 1

£

s actual

z o074 ____. predicted
0.6 T T T T T

7 10 14 24 50

Deme size

FIGURE 12.1 Average results, all communication means — normal data.

TABLE 12.2

Optimal Normal 10 Generations
115 115 78

117 117 404

118 119 462

118 118 40

114 114 620
TABLE 12.3

Optimal Normal 25 Generations
194 195 112

193 195 124

195 197 630

194 194 609

191 191 40
TABLE 12.4

Optimal Normal 40 Generations
230 231 800

236 237 366

242 242 18

244 245 126

237 237 13

found. The tables illustrate that the P-GOA found the optimal makespan 53.33% of the time. When the
optimal was not found, the approximation was very close.

However, experiments with exponentially distributed data yielded very disappointing results.
Makespans in all experiments were far from optimal. The distribution of the data is undeniably a strong
factor in the applicability of the sizing equations. This is a serious limitation, but it should be kept in
perspective. The results of the sizing equation were disappointing, but the scheduler was able to pro-
duce schedules that were <3% away from the predicted quality at the high range (99%). In practical
terms, this is quite useful and the scheduler is ready for experimental incorporation into a cluster system.
Table 12.5 provides the average quality measures compared with the predicted quality at each population
size calculated. Figure 12.2 illustrates the disappointing performance.

© 2006 by Taylor & Francis Group, LLC

Setting Parameter Values for Parallel Genetic Algorithms 12-191

TABLE 12.5 Accuracy Levels for Each
Population Size — Exponential Data

Deme size Actual Predicted
7 0.436 0.80

10 0.541 0.85

14 0.668 0.90

24 0.842 0.95

50 0.962 0.99

Exponential — all means
1.14

S
o8l 777

0.7 4
0.6
0.5 4
0.4

Nearness to optimal

— actual
---. predicted

7 10 14 24 50
Deme size

FIGURE 12.2 Average results, all communication means — exponential data.

A great deal of analytical work is needed before an “all purpose” parameter sizing methodology can be
found for P-GOAs, but it is encouraging that a “special purpose” parameter sizing methodology has been
proven for at least one complex optimization problem. The only data specific variables needed by the
P-GOA scheduler are the means of the task execution times and communication times. For the type of
ongoing computational science application that this scheduler was designed to work with, this information
is either available or easily estimated.

Acknowledgments

Research Assistants John Picarazzi, Shelia Poorman, Brian McCord, Tzintzuni Garcia, William Jackson,
Simon San Miguel, Jason Picarazzi, and Lucas Wilson have contributed or are currently contributing to
this project. This work is supported by NASA Grant NAG9-1401 and NSF Grant NSF 01-171.

References

[1] Canta-Paz, E. Efficient and Accurate Parallel Genetic Algorithms, Kluwer Academic Publishers,
Dordrecht, 2000.

[2] Goldberg, D., Deb, K., and Clark, J. Genetic algorithms, noise, and the sizing of populations.
Complex Systems, 6, 1992, 332-362.

[3] Moore, M. Parallel genetic algorithms to find near optimal schedules for tasks on multiprocessor
architectures. In Proceedings of Communicating Process Architectures, Bristol, UK, September 2001,
pp- 27-36.

[4] Moore, M. An accurate and efficient parallel genetic algorithm to schedule tasks on a cluster. In
Proceedings of the International Parallel and Distributing Processing Symposium, Nature Inspired
Distributed Computing Workshop, Nice, France, April 2003.

© 2006 by Taylor & Francis Group, LLC

12-192 Handbook of Bioinspired Algorithms and Applications

[5] Moore, M. Accurate calculation of deme sizes for a parallel genetic scheduling algorithm.
In Proceedings of Communicating Process Architectures, Enschede, NL, September 2003,
pp. 305-314.

[6] Moore, M. An accurate parallel genetic algorithm to schedule tasks on a cluster. Parallel Computing,
30(5-6), 2004, 567-583.

[7] Goldberg, D. Sizing populations for serial and parallel genetic algorithms. In Proceedings of the
Third International Conference on Genetic Algorithms, Fairfax, VA, USA, June 1989, pp. 70-79.

[8] Reeves, C. and Rowe, K., Genetic Algorihtms: Principles and Perspectives, Kluwer Academic
Publishers Group, Boston, MA, 2003.

[9] De Jong, K. and Spears, W. Using genetic algorithms to solve NP-complete problems. In Pro-
ceedings of the Third International Conference on Genetic Algorithms, Fairfax, VA, USA, June 1989,
pp. 124-132.

[10] Hou, E.,Hong, R., and Ansari, N. Efficient multiprocessor scheduling based on genetic algorithms.
In Proceedings of the 16th Annual Conference of the IEEE Industrial Electronics Society, Asilomar,
CA, USA, November 1990, pp. 1239-1243.

[11] Coffman, E. Introduction to Deterministic Scheduling Theory, Computer and Job-Shop Scheduling
Theory. John Wiley & Sons, New York, 1976.

[12] Horowitz, E. and Sahni, S. Exact and approximate algorithms for scheduling non-identical
processors. Journal of the ACM, 23,1976, 317-327.

[13] Holland, J. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor,
M]I, 1975.

[14] Kidwell (Moore), M. Using genetic algorithms to schedule distributed tasks on a bus-based system.
In Proceedings of the Fifth International Conference on Genetic Algorithms, Urbana-Champaign, IL,
USA, July 1993, pp. 368-374.

[15] Eshelman, L., Caruana, R., and Schaffer, J. Biases in the crossover landscape. In Proceedings of the
Third International Conference on Genetic Algorithms, Fairfax, VA, USA, June 1989, pp. 10-19.

[16] Syswerda, G. Uniform crossover in genetic algorithms. In Proceedings of the Third International
Conference on Genetic Algorithms, 1989, pp. 2-9.

[17] Goldberg, D. Genetic Algorithms Search, Optimization, and Machine Learning. Addison-Wesley,
Reading, MA, 1989.

[18] Mitchell, M. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, 1996.

[19] Salleh, S. and Zomaya, A. Scheduling in Parallel Computing Systems. Kluwer Academic Publishers
Group, Dordrecht, The Netherlands, 2000.

© 2006 by Taylor & Francis Group, LLC

Kris Crnomarkovic
Albert Y. Zomaya

© 2006 by Taylor & Francis Group, LLC

13

Genetic Algorithms
for Scheduling in
Grid Computing

Environments:
A Case Study

13.1 Introduction......cooeiiiieiiiiie it 13-194

13.2 Background
List Scheduling Heuristics e GridSim e Task Graphs for Free
e Genetic Algorithms

13.3 Related Work...........ooooii 13-197
A Comparison Study of Static Mapping Heuristics o
A Dynamic Matching and Scheduling Algorithm for
HC Systems

13.4 Development Workc.ccooviiiiiiiiiiiiiniinnnn.. 13-197
DAG Support e The TaskBroker e Mapping Heuristic
Extensions e GA Mapping Heuristic

13.5 Results ...ooooviiiiiiiiiiii 13-201
Methodology e Comparisons of the Objective Functions
of GA e GA Onset Trials e Large-Scale DAGs o
Fast Greedy Variants

13.6 Further Work.............ooi 13-204
Network Latency e Multiple User Environments e
Randomized Heterogeneous Processor Environments e
Inconsistent Execution

13.7 Conclusionsoveuiieinintiiiiiiiiiie e 13-205
REfErencesooveueiuiit i 13-205
Appendix A. Test Processor Configuration.................... 13-206
Appendix B. Sample Task Graph............cooviiiinnn... 13-207
13-193

13-194 Handbook of Bioinspired Algorithms and Applications

13.1 Introduction

The proliferation of the Internet and the availability of powerful computers and high-speed networks as
low-cost commodity components are changing the way computing is done today. The interest in cou-
pling geographically distributed computational resources is also growing for solving large-scale problems,
leading to what is popularly called Grid Computing. Grids enable the sharing, selection, and aggregation
of suitable computational and data resources for solving large-scale data intensive problems in science,
engineering, and commerce [1-3].

An important issue for Grid and other Heterogeneous Computing environments is how to assign
tasks to resources and order execution of the tasks to maximize some performance criterion of the Grid
environment. These procedures are termed matching and scheduling, and taken together, are known as
mapping. There are two different types of mapping: static and dynamic. Static mapping is performed
when the applications are mapped in an offline planning phase, for example, planning the schedule for a
set of production jobs. Dynamic mapping is performed when the applications are mapped in an online
fashion, for example, when tasks arrive at unknown intervals and are mapped as they arrive (the workload
is not known a priori) [4,5]. In both cases, this generalized mapping problem has been shown to be
NP-hard (e.g., in References 6 to 8).

The goal of this study has been to investigate classes of scheduling algorithms for service-based Grid
Environments, that is, where a known request is served to a user or users. Such an environment may
involve request scheduling, which is a task scheduling architecture that uses a service request as the minimal
scheduling unit. A service request is considered to be finer-grained than a job request. A single server would
be able to handle multiple requests [9].

This chapter examines some variations of conventional schedulers for dynamic mapping of depen-
dent tasks. Section 13.2 describes further background material. Section 13.3 discusses related work
in the literature. Section 13.4 describes enhancements made to a grid simulation toolkit and intro-
duces a genetic mapping heuristic. Section 13.5 gives the results from the study. Section 13.6
describes some further work that might be considered, and Section 13.7 draws some conclusions from
the work.

13.2 Background
13.2.1 List Scheduling Heuristics

As described in Section 13.1, this chapter focuses on the dynamic scheduling of tasks on a service-oriented
Grid, a network of heterogeneous machines. The service to be scheduled may be represented by a task
graph or directed acyclic graph (DAG). The DAG specifies the tasks that make up the service, as well as the
dependencies between tasks [10].

The scheduling of DAGs may be done using a number of broad strategies, including Clustering
Algorithms [11]. Clustering Algorithms are not considered in this chapter, but involve mapping sub-
sets of tasks that have large inter-task communications to a set of processors with high bandwidth and
low latency (e.g., see Reference 12).

An example of a generational algorithm is a List Scheduler. A List Scheduler performs mappings based
upon a subset of the tasks in the DAG. It only attempts to schedule those tasks that have had all dependency
relationships fulfilled. This subset of tasks is called a meta-task and consists of tasks that are independent
with respect to each other. This greatly simplifies the mapping process and allows it to be done dynamically.
An auxiliary algorithm then maps this meta-task to available resources. When a rescheduling event (such
as a task finishing) occurs, a new meta-task is constructed and scheduled. The expected execution time of
each task on every resource is considered to be known a priori. This assumption is typically made when
conducting mapping research [11,13].

The mapping of tasks to resources, whether static or dynamic, is an NP-hard problem. Finding an
optimal solution is intractable. Therefore, a heuristic is normally used to choose a mapping.

© 2006 by Taylor & Francis Group, LLC

Genetic Algorithms for Scheduling in Grid Computing Environments: A Case Study 13-195

Some examples [1,4,14,15] of simple mapping heuristics are:

e OLB (Opportunistic Load Balancing): OLB assigns each task, in arbitrary order, to the next available
machine, regardless of the task’s expected execution time on that machine.

e UDA (User Defined Assignment): UDA assigns each task, in arbitrary order, to the machine with the
best expected execution time for that task, regardless of that machine’s availability.

e Fast Greedy: Each task is assigned to the resource with the minimum completion time. The tasks
are assigned in an arbitrary order.

e Min—Min: The Min—Min heuristic begins with the set U of all unmapped tasks. For each task in
U, the minimum completion time on all machines is calculated. The task with the earliest overall
minimum completion time is selected and assigned to the machine that yielded that minimum
completion time. This task is removed from U, and the process reiterated until all tasks have been
mapped. Min—Min attempts to map as many tasks as possible to their first choice of machine,
under the assumption that this will result in a shorter makespan. Min—Min has been reported as
superior to many other simple mapping heuristics [14].

e Max—Min: Max—Min is similar to Min—Min except that the task with the latest minimum comple-
tion time is selected and mapped. Max—Min attempts to minimize the penalties incurred by the
scheduling of long-running tasks.

13.2.2 GridSim

GridSim [3,16,17] (http://www.gridbus.org/gridsim/) is a toolkit that supports the modeling and simula-
tion of parallel and distributed computing environments. Entities such as users, applications, resources,
and schedulers may be incorporated, primarily to aid in the design and evaluation of scheduling
algorithms. The features of GridSim are described in Reference 17.

GridSim embodies a layered and modular architecture [17] to make use of existing infrastructure such
as the open-source discrete-event simulator SimJava [18], which itself runs in a java virtual machine. The
layered structure is as follows:

e The gridbroker package provides high-level support for Schedulers or Grid Resource Brokers.
Some of the main classes are:

e Broker, which encapsulates a Scheduler — The Broker incorporates a variant of the Fast
Greedy heuristic within its default time-optimized job scheduler.

o BrokerResource, which embodies a Resource, as known to the Broker.

e UserEntity, which represents a user as known to the Broker.

e Experiment,which managesthe work done by the Broker forthe UserEntity. Itincludes
aGridletList object that represents the tasks to be scheduled.

e The GridSim package provides the basic grid infrastructure used by gridbroker. It includes
the following primary classes:

e GridSim. Thisclassrepresentsagrid entity and gives it communication and simulation support.

e Gridlet. A class that represents a single independent task. It includes attributes such as
execution size and size of input and output files. As it models an independent task, there is no
support for multiple input and output file sizes.

e GridletList. A class that encapsulates a set of independent tasks. It simply extends the
java utility class LinkedList, while adding support for sorting component Gridlet objects by
execution size.

e GridResource. A class that embodies a grid computing resource. Its attributes are specified
in the member class ResourceCharacteristics.

e ResourceCharacteristics. A class that embodies the attributes of a grid computing
resource. It is used to specify characteristics such as CPU speed, baud rate, availability, and cost.

© 2006 by Taylor & Francis Group, LLC

http://www.gridbus.org

13-196 Handbook of Bioinspired Algorithms and Applications

e The SimJava package is a general-purpose discrete-event simulation package implemented in Java.
Simulations in SimJava contain a number of entities each of which runs in parallel in its own
thread. An entity’s behavior is encoded in Java using its body () method [17].

e The Java Virtual Machine (JVM) provides the runtime environment for SimJava, and hence
GridSim. Since the JVM essentially interprets code that has been compiled for it, it does not
provide the raw performance of a fully compiled language; however, implementations of JVMs
exist for multiprocessor systems and clusters [19], and so it does provide scalable support for grid
simulations.

13.2.3 Task Graphs for Free

Task Graphs for Free (TGFF) [20] is an open-source package that generates random or semi-random task
graphs, or DAGs. Such task graphs are ideal for scheduler simulation research. The task graphs may be
generated to have a series-parallel-like structure or may be more purely random.

A generated graph consists of tasks and arcs. Arcs are the dependencies that link tasks. A defini-
tions file (i.e., a .tgffopt file) is created that specifies the parameters for construction of the graph
or graphs, as well as the corresponding tables that define task attributes and arc attributes. Upon
processing by the TGFF utility, a text file (a .tgff file) is produced that fully specifies the task
graph [20].

13.2.4 Genetic Algorithms

Genetic Algorithms (GAs) are often used to solve difficult optimization problems heuristically. GAs seek
to make use of the fundamental principle of biological evolution, Natural Selection. A GA mirrors the
same mechanisms by evolving a population of fixed size through a large number of generations. The
population consists of randomly generated candidate solutions encoded as a string of bits or numbers,
called a chromosome. An objective function is used to evaluate the chromosomes yielding a fitness value that
reflects the suitability of the candidate solution. The fitness value is used to select a subset of individuals.
This subset is then subjected to the processes of mutation and crossover, resulting in the next generation
of individuals. Mutation and crossover help the GA to escape from local optima in the solution space and
find near-optimal solutions to a problem.

Selection of parents for the next generation uses a competitive evaluation of the objective function
for members of the population. The degree to which the fit individuals are likely to be selected is called
the selective pressure. Surprisingly, too high a selective pressure is undesirable, since it may lead to the
population converging overly quickly to a local optimum and not finding a global optimum. Various
mechanisms have been used to moderate the selective pressure, an example of which is fournament
selection. In tournament selection, a set of individuals (generally two) is randomly selected from the
population. The fittest individual is then selected as a parent [21].

Note that, in tournament selection, the fittest individual in the population may well not proceed to the
next generation. However, if the GA is engineered such that such an individual is guaranteed to proceed
to the next generation, then the GA is said to have the quality of elitism.

Mutation involves a random change to a chromosome and so has the chance of introducing great
novelty into the population. However, when the mutation rate is too high, good solutions tend to be
overwritten, and the population tends not to converge to a solution.

Crossover emulates the genetic mixing effects of biological sex. It allows successful individuals to share
their genetic material, and may therefore result in offspring that combine the virtues of both parents.
Crossover is a considerably more important optimization mechanism than mutation [21]. Crossover may
involve a division in one or many places in the chromosome. A crossover with a single point of division is
termed Single-Point Crossover.

© 2006 by Taylor & Francis Group, LLC

Genetic Algorithms for Scheduling in Grid Computing Environments: A Case Study 13-197

13.3 Related Work
13.3.1 A Comparison Study of Static Mapping Heuristics

Genetic Algorithms may be used in the static mapping of independent tasks to resources. In [1] the
GA was used to find near-optimal mappings using populations of 200 chromosomes. The chromosomes
were encoded mappings, represented by a vector of t integers, where the ith integer represents the ith
task, and its value represents the machine to which it has been mapped. The GA used the makespan as
the objective function. Elitism was used to retain the best solution between generations. The GA used
one of three termination criteria, either stopping after 1000 iterations, or after no change in the elite
chromosome for 150 generations, or after all chromosomes have converged. The termination criterion
that was generally triggered was the second criterion, that is, no change in the elite chromosome for
150 generations.

For each optimization task, the GA was executed eight times: four times with a random initial pop-
ulation, and four times with populations seeded with the Min—Min solution. Note that the best GA
solution always came from a population seeded with a Min—Min solution. The GA always improved on
the Min—Min solution, providing an improvement of up to 10%.

It was decided to attempt a variant of this optimization technique, for a dynamic generational scheduler
operating on a set of dependent tasks. The GA was used to find a near-optimal mapping for each meta-
task during each scheduling event. The intention was to improve upon the performance of a Min—-Min
generational List Scheduler.

13.3.2 A Dynamic Matching and Scheduling Algorithm for HC Systems

In the paper [13], the critical path length for a task is defined as the longest path from the task node to an exit
node. The paper describes a hybrid remapper, which uses a combination of static and run-time generated
information. It uses the critical path length as a motivating factor in its Minimum Completion Time Static
Priority Algorithm. The concept of a Critical Path was used in the FAST GREEDY CRITICAL mapping
heuristic and the SUM_CRITICAL FINISH objective function.

13.4 Development Work

While GridSim is a versatile and powerful simulation toolkit, it is not perfectly suited to the needs of this
project. It was therefore extended in a number of ways.

First, GridSim is designed for the scheduling of independent tasks, that is, there is no support for task
dependencies because GridSim is principally designed for job scheduling. Second, GridSim is intended
as an application level scheduler, whereas the project requirement was for a scheduler at a service-level.
Third, there is no facility in GridSim for flexible configuration of brokers or execution environment.
It was therefore extended to provide xml-based support for broker configuration and task and resource
specification. (Similarly, TGFF was later integrated, so that the broker might directly parse .t g£ £ definition
files.)

Various other extensions were also made to the broker, such as the implementation of several alternate
mapping heuristics, in particular, one based on a genetic algorithm.

Where possible, all extensions were made by the creation of the new packages:

e gridscheduler
e gridscheduler.ga

© 2006 by Taylor & Francis Group, LLC

13-198 Handbook of Bioinspired Algorithms and Applications

Only one class in the gridsim and gridbroker packages was directly amended. All the required
functionality was generally accommodated by writing new subclasses of the existing gridsim or
gridbroker classes.

13.4.1 DAG Support

Since GridSim is not designed for the scheduling of dependent tasks, a number of classes required extension
to permit scheduling simulation of DAGs. The class GridSim.Gridlet required support to specify
its ancestor and dependent tasks. It was decided not to model the data size of these dependencies. As the
project was a simulation of a service-based broker, it was accepted that communications would, in fact, be
centralized via the broker itself. Therefore, the data sizes of the various dependencies could be represented
by the input and output data sizes of the task itself. Gridlet was, therefore, extended by the new
gridscheduler class Tasklet. The new class has additional attributes to identify its predecessors
and successors, as well as its critical path length. The critical path length was an attribute added late in the
development phase of the project, and is intended to support a new heuristic. It is a measure of the size of
the execution path from the task to the latest subsequent point of termination [13].

Gridlet itself was the only class in the GridSim packages that was directly altered. Some small changes
were made to support a new status: PREPARED. This new status indicates that the task has no further
dependencies, and may now be executed by the processor. It follows CREATED in the life cycle of a
Gridlet, and precedes READY, QUEUED, INEXEC, SUCCESS, and FAILED. READY means that the
task has been assigned to a resource. QUEUED means that the task has been committed to a resource and is
in its input queue. The meanings of the other statuses are as implied by the labels. The PREPARED status
is essential in the operation of a generational scheduler.

Similarly, the class GridSim.GridletList represents a meta-task, a set of independent tasks.
While it did not require extension for any fundamental new functionality, it was extended by the class
TaskGraph to provide support for a number of methods relating to sets of tasks. The getWaiting ()
method was provided to return those tasks in the TaskGraph in a state of PREPARED. The
setPredecessors() method was added to set the predecessors for all tasks in a TaskGraph, given
that all successors had already been set — the rationale being that fewer errors would then be made in the
xml definition files of TaskGraphs. This class was made redundant with the introduction of support for
TGFF definition files. Two inner classes were created to provide support for sorting the TaskGraph by
fanout size or CriticalPathLength. The setCriticalPathLengths() method was added in
order to set all critical path lengths for tasks in the TaskGraph. This method delegates to the Tasklet
method setAndGetCriticalPathLength (). Setting of the critical path length (cpl) uses the
following simple recursive algorithm, which is executed for the initiating task or tasks:

cpl = execution size of this task
if this task has dependent tasks
cpl + = max(cpl of all dependent tasks)

The GridSim class ResourceCharacteristics was extended by the class TaskResource-
Characteristics, in order to allow the baud-rate of the resource to be visible by the broker. This
visibility was needed so that the broker would be able to include an estimate for the communication delay
in its mapping heuristic calculations.

For this reason, the gridbroker class BrokerResource was extended by the class
TaskBrokerResource, and the method getExpectedCompletionTime () was overridden
to add a term for the communication delay to the estimate. The expected completion time is given by:

completion time = exec + max(avail, comms)

avail = earliest time at which a resource is available
exec = anticipated execution time for a task

comms = expected communication delay

© 2006 by Taylor & Francis Group, LLC

Genetic Algorithms for Scheduling in Grid Computing Environments: A Case Study 13-199

The use of the max() function reflects the assumption that communications transmission may proceed
in parallel with waiting for the processor to be available.

If the task in question has no predecessors, or is colocated with all such predecessors, then the commu-
nication delay is considered to be only a nominal amount — reflecting only an initiating communication
from the scheduler. A corresponding method isCoLocated () was created to test whether the task is
colocated. This method is also used by the TaskBroker class (see Section 4.2) when tasks are forwarded
to resources; if a task is colocated, then the input file size of the Tasklet is also set to a nominal value.

A simple and popular model of the communication delay for message passing is:

message time = latency + message size/bandwidth

This model includes a term for the latency of the communication link. However, a bandwidth-only
model has been found to lead to better predictions of communication delay, at least in some applications
[22]. Tt was therefore considered not essential to add a network latency component to the GridSim
communication delay methods.

13.4.2 The TaskBroker

The gridbroker class Broker wasreplaced by the new gridscheduler class TaskBroker. Broker
was designed for the scheduling of independent tasks using one of several economic- or deadline-based
optimization schemes, based on cost, time, or combined cost/time optimizations. The architecture is
described in Reference 17.

For the purposes of this investigation, the economic and deadline support of the Broker class was
ignored. The base time optimization scheduling was instead extended to incorporate a Generational
Scheduler for DAGs. Time-shared processors have not been supported.

The scheduleAdviser() method, which builds a list of those tasks that are to be scheduled,
was amended to only schedule PREPARED tasks (i.e., those tasks for which all parent tasks have com-
pleted successfully). It does this by moving such tasks from the existing glPreparedList to the
new glWaitingList collection (note that glPreparedList actually holds those tasks that are
CREATED, rather than PREPARED, and so is something of a misnomer). It then invokes one of two
new methods: scheduleWith ListInsertion()or scheduleWith ListInsertionFG();
these methods use various heuristics to map the available tasks to resources.

13.4.3 Mapping Heuristic Extensions

The existing broker used a variant of the Fast Greedy mapping heuristic (Section 13.2.1). In Fast Greedy,
each task is assigned to the resource with the minimum completion time. The tasks are assigned in
an arbitrary order. The existing broker instead assigned tasks in increasing order of execution size, in
an attempt to maximize packing of tasks.

TaskBroker applies various different heuristics. All may be defined in the broker configuration. The
configuration parameter <heuristic> defines the desired heuristic.

The scheduleWith ListInsertionFG() method applies various variants of the Fast Greedy
heuristic:

e FAST GREEDY BASE. The base Fast Greedy heuristic.

e FAST GREEDY. Fast Greedy as originally used by GridSim, that is, with tasks mapped in order of
execution size.

e FAST GREEDY FANOUT. Fast Greedy, but with the tasks mapped in reverse order of the number
of dependent tasks. This is an attempt to execute those tasks that may have many child tasks first.

e FAST GREEDY CRITICAL. Fast Greedy, but with the tasks mapped in reverse order of the
critical path length. This is an attempt to map those tasks that are in the critical path of a task graph
first.

© 2006 by Taylor & Francis Group, LLC

13-200 Handbook of Bioinspired Algorithms and Applications

The scheduleWith ListInsertion () method applies the Min_Min heuristic or the GA
heuristic. The configuration parameter <minmin limit> governs when the GA is invoked for any
particular scheduling event. When the size of the meta-task (the set of tasks to be scheduled) is less than
or equal to the minmin 1limit, then Min_Min is used to schedule the meta-task, otherwise the GA is
invoked to find a near-optimal mapping.

13.4.4 GA Mapping Heuristic

The GA described in Reference 1 was used as the model for the GA heuristic used in this project to map
the meta-task arising at each scheduling event. The GA heuristic was designed to be entirely configurable
(see Section 13.4.2).

The functions of the various GA configuration parameters are as follows:

e heuristic. See Section 13.4.3.

e minmin limit. See Section 13.4.3.

e minmin seed. Indicates whether the initial population will be seeded with the Min_Min
solution.

e population_size. The size of the population selected for breeding.

e max_generations. The GA stops after this number of generations.

e max winning run. The GA stops if the same Chromosome is the elite value for this number
of generations.

e crossover_ rate. The proportion of parent matings that result in crossover, and therefore
recombine genetic information.

e mutation_ rate. The proportion of Chromosomes that will have a gene randomly changed.

e fertility rate. The proportion of the population that attempts to breed each generation.

e random_injection. A proportional injection of random Chromosomes injected every
generation. Not yet implemented.

e elitism Whether or not the elite Chromosome is guaranteed to survive to the next generation.

e objective. The objective function used by the GA. In this implementation, the value returned
by the objective function is actually the inverse fitness — for example, in the case of MAKESPAN,
we wish it minimized. The following objective functions are available:
o MAX FINISH (a.k.a. MAKESPAN). The makespan of a mapping, which is the latest time of

completion of the mapped tasks (see Section 13.4.1).
o SUM_TASK FINISH. The sum of all completion times of the mapped tasks.
o SUM_PE FINISH. The sum of all last completion times of all processors.
o SUM_TASK CRITICAL. The sum, for all mapped tasks, of the products of their completion
times and the log of their critical path lengths.

The classes in the gridscheduler.ga package are:

e Evolution. Encapsulates the scheduler GA itself. Contains the method evolve(), which
performs the complete evolutionary process and returns the solution as a Chromosome.

e Population. The set of Chromosomes that encapsulate the mappings currently under
consideration.

e Chromosome. Specifies the processor mappings for all tasks currently ready for execution.
A SingleGene object specifies each task mapping. The Chromosome contains a collection
of these SingleGene objects.

e SingleGene. A container for a gene within a Chromosome. Each gene specifies the mapping
of a task to a processor [resource] and the priority of the mapping to the resource. The priority is
encoded as an integer value. If another SingleGene in the Chromosome specifies that its task
is to be mapped to the same resource with a higher priority, then the other task will be scheduled
before this one.

© 2006 by Taylor & Francis Group, LLC

Genetic Algorithms for Scheduling in Grid Computing Environments: A Case Study 13-201

e Evaluation. A container for the result of an evolutionary generation, that is, whether the
evolution has completed; why it has completed; how many generations the result took; and the
elite Chromosome itself. Completion may have occurred for one of three criteria described in
Section 13.3.1.

e Mating. Encapsulates the genetic pairing of two Chromosomes, which may share genetic
information to produce two [genetically related] offspring.

e GaRandom. A simple class with static methods to return random numbers efficiently.

13.5 Results
13.5.1 Methodology

The GridSim distribution, including its example source files, was used as the starting point for this project.
A number of incremental changes were then made in order to provide needed support (see Section 13.4).

With the implementation of the GA mapping heuristic, a large number of tests were carried out using
a TGFF generated task graph. These tests indicated that the GA heuristic gave a nearly 8% improvement
over a Min—Min heuristic for the task graph in question. Interestingly, the GA heuristic displayed a large
degree of variability in its performance. In a typical set of 100 simulations for the task graph, the GA

heuristic gave an improvement of 7.8%, but with a standard deviation of 5%. However, the vast majority
of results were an improvement over the control Min—Min result.

An identical heterogeneous processor arrangement was used for this and all subsequent tests. The
configuration file for this is given in Appendix A.

In recognition that this result was for only a single task graph, a script was designed to generate
multiple variants of similar task graphs and compare the performance of a trial heuristic against the
Min—-Min heuristic for all of these task graphs.

Fortunately, TGFF includes excellent support for just this scenario, as it accepts a random number
generator seed parameter. This seed affects all the randomized aspects of the generated task graph.
Varying the seed while holding all other parameters constant generates task graph families containing an
arbitrary number of task graphs. Given an identical seed, an identical task graph is produced [20].

The script invokes TGFF with an incremented seed, starting from a value of zero (the default value),
generating a family of n task graphs. For each generated task graph, first the Min-Min heuristic is run
and then the trial heuristic is run m times. Therefore, each test involved running the trial heuristic n x m
times.

These task graph family tests revealed that the previously recorded 8% improvement had merely been
due to a fortunate choice of task graph. The results of other task graphs in th