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Preface

Forty years ago (1966), Ronald L. Graham formally introduced approximation algorithms. The idea was
to generate near-optimal solutions to optimization problems that could not be solved efficiently by the
computational techniques available at that time. With the advent of the theory of NP-completeness in the
early 1970s, the area became more prominent as the need to generate near optimal solutions for NP-hard
optimization problems became the most important avenue for dealing with computational intractability.
As it was established in the 1970s, for some problems one can generate near optimal solutions quickly,
while for other problems generating provably good suboptimal solutions is as difficult as generating optimal
ones. Other approaches based on probabilistic analysis and randomized algorithms became popular in
the 1980s. The introduction of new techniques to solve linear programming problems started a new wave
for developing approximation algorithms that matured and saw tremendous growth in the 1990s. To
deal, in a practical sense, with the inapproximable problems there were a few techniques introduced in
the 1980s and 1990s. These methodologies have been referred to as metaheuristics. There has been a
tremendous amount of research in metaheuristics during the past two decades. During the last 15 or so
years approximation algorithms have attracted considerably more attention. This was a result of a stronger
inapproximability methodology that could be applied to a wider range of problems and the development
of new approximation algorithms for problems in traditional and emerging application areas.

As we have witnessed, there has been tremendous growth in field of approximation algorithms and
metaheuristics. The basic methodologies are presented in Parts I-III. Specifically, Part I covers the basic
methodologies to design and analyze efficient approximation algorithms for a large class of problems,
and to establish inapproximability results for another class of problems. Part II discusses local search,
neural networks and metaheuristics. In Part III multiobjective problems, sensitivity analysis and stability
are discussed.

Parts IV-VI discuss the application of the methodologies to classical problems in combinatorial opti-
mization, computational geometry and graphs problems, as well as for large-scale and emerging applica-
tions. The approximation algorithms discussed in the handbook have primary applications in computer
science, operations research, computer engineering, applied mathematics, bioinformatics, as well as in
engineering, geography, economics, and other research areas with a quantitative analysis component.

Chapters 1 and 2 present an overview of the field and the handbook. These chapters also cover basic
definitions and notation, as well as an introduction to the basic methodologies and inapproximability.
Chapters 1-8 discuss methodologies to develop approximation algorithms for a large class of problems.
These methodologies include restriction (of the solution space), greedy methods, relaxation (LP and SDP)
and rounding (deterministic and randomized), and primal-dual methods. For a minimization problem
P these methodologies provide for every problem instance I a solution with objective function value
that is at most (14 €) - f*(I), where € is a positive constant (or a function that depends on the instance
size) and f*(I) is the optimal solution value for instance I. These algorithms take polynomial time
with respect to the size of the instance I being solved. These techniques also apply to maximization
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viii Preface

problems, but the guarantees are different. Given as input a value for € and any instance I for a given
problem P, an approximation scheme finds a solution with objective function value at most (1 +€)- f*(I).
Chapter 9 discusses techniques that have been used to design approximation schemes. These approximation
schemes take polynomial time with respect to the size of the instance I (PTAS). Chapter 10 discusses
different methodologies for designing fully polynomial approximation schemes (FPTAS). These schemes
take polynomial time with respect to the size of the instance I and 1/¢. Chapters 11-13 discuss asymptotic
and randomized approximation schemes, as well as distributed and randomized approximation algorithms.
Empirical analysis is covered in Chapter 14 as well as in chapters in Parts IV-VI. Chapters 15-17 discuss
performance measures, reductions that preserve approximability, and inapproximability results.

Part II discusses deterministic and stochastic local search as well as very large neighborhood search.
Chapters 21 and 22 present reactive search and neural networks. Tabu search, evolutionary compu-
tation, simulated annealing, ant colony optimization and memetic algorithms are covered in Chap-
ters 23-27. In Part III, I discuss multiobjective optimization problems, sensitivity analysis and stability of
approximations.

Part IV covers traditional applications. These applications include bin packing and extensions, pack-
ing problems, facility location and dispersion, traveling salesperson and generalizations, Steiner trees,
scheduling, planning, generalized assignment, and satisfiability.

Computational geometry and graph applications are discussed in Part V. The problems discussed in
this part include triangulations, connectivity problems in geometric graphs and networks, dilation and
detours, pair decompositions, partitioning (points, grids, graphs and hypergraphs), maximum planar
subgraphs, edge disjoint paths and unsplittable flow, connectivity problems, communication spanning
trees, most vital edges, and metaheuristics for coloring and maximum disjoint paths.

Large-scale and emerging applications (Part VI) include chapters on wireless ad hoc networks, sensor
networks, topology inference, multicast congestion, QoS multimedia routing, peer-to-peer networks, data
broadcasting, bioinformatics, CAD and VLSI applications, game theoretic approximation, approximating
data streams, digital reputation and color quantization.

Readers who are not familiar with approximation algorithms and metaheuristics should begin with
Chapters 1-6, 9-10, 18-21, and 23-27. Experienced researchers will also find useful material in these basic
chapters. We have collected in this volume a large amount of this material with the goal of making it as
complete as possible. I apologize in advance for omissions and would like to invite all of you to suggest
to me chapters (for future editions of this handbook) to keep up with future developments in the area. I
am confident that research in the field of approximations algorithms and metaheuristics will continue to
flourish for a few more decades.

Teofilo F. Gonzalez

Santa Barbara, California
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About the Cover

The four objects in the bottom part of the cover represent scheduling, bin packing, traveling salesperson,
and Steiner tree problems. A large number of approximation algorithms and metaheuristics have been
designed for these four fundamental problems and their generalizations.

The seven objects in the middle portion of the cover represent the basic methodologies. Of these seven,
the object in the top center represents a problem by its solution space. The object to its left represents
its solution via restriction and the one to its right represents relaxation techniques. The objects in the
row below represent local search and metaheuristics, problem transformation, rounding, and primal-dual
methods.

The points in the top portion of the cover represent solutions to a problem and their height repre-
sents their objective function value. For a minimization problem, the possible solutions generated by an
approximation scheme are the ones inside the bottommost rectangle. The ones inside the next rectangle
represent the one generated by a constant ratio approximation algorithm. The top rectangle represents the
possible solution generated by a polynomial time algorithm for inapproximable problems (under some
complexity theoretic hypothesis).
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1.1 Introduction

Approximation algorithms, as we know them now, were formally introduced in the 1960s to generate
near-optimal solutions to optimization problems that could not be solved efficiently by the computa-
tional techniques available at that time. With the advent of the theory of NP-completeness in the early
1970s, the area became more prominent as the need to generate near-optimal solutions for NP-hard op-
timization problems became the most important avenue for dealing with computational intractability.
As established in the 1970s, for some problems one can generate near-optimal solutions quickly, while
for other problems generating provably good suboptimal solutions is as difficult as generating optimal
ones. Other approaches based on probabilistic analysis and randomized algorithms became popular in
the 1980s. The introduction of new techniques to solve linear programming problems started a new wave
for developing approximation algorithms that matured and saw tremendous growth in the 1990s. To
deal, in a practical sense, with the inapproximable problems, there were a few techniques introduced
in the 1980s and 1990s. These methodologies have been referred to as metaheuristics and include sim-
ulated annealing (SA), ant colony optimization (ACO), evolutionary computation (EC), tabu search
(TS), and memetic algorithms (MA). Other previously established methodologies such as local search,
backtracking, and branch-and-bound were also explored at that time. There has been a tremendous
amount of research in metaheuristics during the past two decades. These techniques have been evalu-
ated experimentally and have demonstrated their usefulness for solving practical problems. During the
past 15 years or so, approximation algorithms have attracted considerably more attention. This was a
result of a stronger inapproximability methodology that could be applied to a wider range of problems
and the development of new approximation algorithms for problems arising in established and emerg-
ing application areas. Polynomial time approximation schemes (PTAS) were introduced in the 1960s
and the more powerful fully polynomial time approximation schemes (FPTAS) were introduced in the
1970s. Asymptotic PTAS and FPTAS, and fully randomized approximation schemes were introduced
later on.

Today, approximation algorithms enjoy a stature comparable to that of algorithms in general and the
area of metaheuristics has established itself as an important research area. The new stature is a by-product
of a natural expansion of research into more practical areas where solutions to real-world problems
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are expected, as well as by the higher level of sophistication required to design and analyze these new
procedures. The goal of approximation algorithms and metaheuristics is to provide the best possible
solutions and to guarantee that such solutions satisfy certain important properties. This volume houses
these two approaches and thus covers all the aspects of approximations. We hope it will serve as a valuable
reference for approximation methodologies and applications.

Approximation algorithms and metaheuristics have been developed to solve a wide variety of problems.
A good portion of these results have only theoretical value due to the fact that their time complexity is a
high-order polynomial or have huge constants associated with their time complexity bounds. However,
these results are important because they establish what is possible, and it may be that in the near future
these algorithms will be transformed into practical ones. Other approximation algorithms do not suffer
from this pitfall, but some were designed for problems with limited applicability. However, the remaining
approximation algorithms have real-world applications. Given this, there is a huge number of important
application areas, including new emerging ones, where approximation algorithms and metaheuristics have
barely penetrated and where we believe there is an enormous potential for their use. Our goal is to collect
a wide portion of the approximation algorithms and metaheuristics in as many areas as possible, as well
as to introduce and explain in detail the different methodologies used to design these algorithms.

1.2 Overview

Our overview in this section is devoted mainly to the earlier years. The individual chapters discuss in detail
recent research accomplishments in different subareas. This section will also serve as an overview of Parts
I, II, and IIT of this handbook. Chapter 2 discusses some of the basic methodologies and applies them to
simple problems. This prepares the reader for the overview of Parts IV, V, and VI presented in Chapter 2.

Even before the 1960s, research in applied mathematics and graph theory had established upper and
lower bounds for certain properties of graphs. For example, bounds had been established for the chro-
matic number, achromatic number, chromatic index, maximum clique, maximum independent set, etc.
Some of these results could be seen as the precursors of approximation algorithms. By the 1960s, it was
understood that there were problems that could be solved efficiently, whereas for other problems all their
known algorithms required exponential time. Heuristics were being developed to find quick solutions
to problems that appeared to be computationally difficult to solve. Researchers were experimenting with
heuristics, branch-and-bound procedures, and iterative improvement frameworks and were evaluating
their performance when solving actual problem instances. There were many claims being made, not all
of which could be substantiated, about the performance of the procedures being developed to generate
optimal and suboptimal solutions to combinatorial optimization problems.

1.2.1 Approximation Algorithms

Forty yearsago (1966), Ronald L. Graham [1] formally introduced approximation algorithms. He analyzed
the performance of list schedules for scheduling tasks on identical machines, a fundamental problem in
scheduling theory.

Problem: Scheduling tasks on identical machines.

Instance: Setof ntasks (1, T, ..., T,) with processing time requirements f1, t, . . ., I, partial order
C defined over the set of tasks to enforce task dependencies, and a set of m identical machines.
Objective: Construct a schedule with minimum makespan. A schedule is an assignment of tasks to
time intervals on the machines in such a way that (1) each task T; is processed continuously for
t; units of time by one of the machines; (2) each machine processes at most one task at a time; and
(3) the precedence constraints are satisfied (i.e., machines cannot commence the processing of a
task until all its predecessors have been completed). The makespan of a schedule is the time at which

all the machines have completed processing the tasks.

The list scheduling procedure is given an ordering of the tasks specified by a list L. The procedure finds
the earliest time f when a machine is idle and an unassigned task is available (i.e., all its predecessors have
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been completed). It assigns the leftmost available task in the list L to an idle machine at time t and this
step is repeated until all the tasks have been scheduled.

The main result in Ref. [1] is proving that for every problem instance I, the schedule generated by
this policy has a makespan that is bounded above by (2 — 1/m) times the optimal makespan for the
instance. This is called the approximation ratio or approximation factor for the algorithm. We also say that
the algorithm is a (2 — 1/m)-approximation algorithm. This criterion for measuring the quality of the
solutions generated by an algorithm remains one of the most important ones in use today. The second
contribution in Ref. [1] is establishing that the approximation ratio (2 — 1/m) is the best possible for list
schedules, i.e., the analysis of the approximation ratio for this algorithm cannot be improved. This was
established by presenting problem instances (for all m and n > 2m — 1) and lists for which the schedule
generated by the procedure has a makespan equal to 2 — 1/ times the optimal makespan for the instance.
A restricted version of the list scheduling algorithm is analyzed in detail in Chapter 2.

The third important result in Ref. [1] is showing that list scheduling procedures schedules may have
anomalies. To explain this, we need to define some terms. The makespan of the list schedule, for instance,
I, using list L is denoted by f1(I). Suppose that instance I’ is a slightly modified version of instance I.
The modification is such that we intuitively expect that f7(I’) < fr(I). But that is not always true, so
there is an anomaly. For example, suppose that I’ is I, except that I’ has an additional machine. Intuitively,
fL(I') < fL(I) because with one additional machine tasks should be completed earlier or at the same
time as when there is one fewer machine. But this is not always the case for list schedules, there are problem
instances and lists for which fr(I’) > fr(I). This is called an anomaly. Our expectation would be valid
if list scheduling would generate minimum makespan schedules. But we have a procedure that generates
suboptimal solutions. Such guarantees are not always possible in this environment. List schedules suffer
from other anomalies. For example, relaxing the precedence constraints or decreasing the execution time
of the tasks. In both these cases, one would expect schedules with smaller or the same makespan. But,
that is not always the case. Chapter 2 presents problem instances where anomalies occur. The main reason
for discussing anomalies now is that even today numerous papers are being published and systems are
being deployed where “common sense”-based procedures are being introduced without any analytical
justification or thorough experimental validation. Anomalies show that since we live for the most part in
a “suboptimal world,” the effect of our decisions is not always the intended one.

Other classical problems with numerous applications are the traveling salesperson, Steiner tree, and
spanning tree problems, which will be defined later on. Even before the 1960s, there were several well-
known polynomial time algorithms to construct minimum-weight spanning trees for edge-weighted
graphs [2]. These simple greedy algorithms have low-order polynomial time complexity bounds. It was
well known at that time that the same type of procedures do not always generate an optimal tour for the
traveling salesperson problem (TSP), and do not always construct optimal Steiner trees. However, in 1968
E. E. Moore (see Ref. [3]) showed that for any set of points P in metric space L < L1 < 2Lg, where L),
Lt,and Lg are the weights of a minimum-weight spanning tree, a minimum-weight tour (solution) for
the TSP and minimum-weight Steiner tree for P, respectively. Since every spanning tree is a Steiner tree,
the above bounds show that when using a minimum-weight spanning tree to approximate a minimum
weight Steiner tree we have a solution (tree) whose weight is at most twice the weight of an optimal Steiner
tree. In other words, any algorithm that generates a minimum-weight spanning tree is a 2-approximation
algorithm for the Steiner tree problem. Furthermore, this approximation algorithm takes the same time as
an algorithm that constructs a minimum-weight spanning tree for edge-weighted graphs [2], since such an
algorithm can be used to construct an optimal spanning tree for a set of points in metric space. The above
bound is established by defining a transformation from any minimum-weight Steiner tree into a TSP tour
with weight at most 2L g. Therefore, LT < 2L [3]. Then by observing that the deletion of an edge in an
optimum tour for the TSP results in a spanning tree, it follows that L) < L. Chapter 3 discusses this
approximation algorithm in detail. The Steiner ratio is defined as Lg/L js. The above arguments show
that the Steiner ratio is at least % Gilbert and Pollak [3] conjectured that the Steiner ratio in the Euclidean
plane equals *2 (the 0.86603 . .. conjecture). The proof of this conjecture and improved approximation
algorithms for different versions of the Steiner tree problem are discussed in Chapters 42.
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The above constructive proof can be applied to a minimum-weight spanning tree to generate a tour for
the TSP. The construction takes polynomial time and results in a 2-approximation algorithm for the TSP.
This approximation algorithm for the TSP is also referred to as the double spanning tree algorithm and is
discussed in Chapters 3 and 31. Improved approximation algorithms for the TSP as well as algorithms for
its generalizations are discussed in Chapters 3, 31, 40, 41, and 51. The approximation algorithm for the
Steiner tree problem just discussed is explained in Chapter 3 and improved approximation algorithms and
applications are discussed in Chapters 42, 43, and 51. Chapter 59 discusses approximation algorithms for
variations of the spanning tree problem.

In 1969, Graham [4] studied the problem of scheduling tasks on identical machines, but restricted
to independent tasks, i.e., the set of precedence constraints is empty. He analyzes the longest processing
time (LPT) scheduling rule; this is list scheduling where the list of tasks L is arranged in nonincreasing
order of their processing requirements. His elegant proof established that the LPT procedure generates a
schedule with makespan at most 3 —5L. times the makespan of an optimal schedule, i.e., the LPT schedul-
ing algorithm has a L approximation ratio. He also showed that the analysis is best possible for all
mand n > 2m + 1. For n < 2m tasks, the approximation ratio is smaller and under some conditions
LPT generates an optimal makespan schedule. Graham [4], following a suggestion by D. Kleitman and
D. Knuth, considered list schedules where the first portion of the list L consists of k tasks with the longest
processing times arranged by their starting times in an optimal schedule for these k tasks (only). Then
the list L has the remaining # — k tasks in any order. The approximation ratio for this list schedule using
list L is 1 +1£r__(%_%' An optimal schedule for the longest k tasks can be constructed in O(km*) time by
a straightforward branch-and-bound algorithm. In other words, this algorithm has approximation ratio
1+ € and time complexity O(n log m + m("™~1=€™/€)_For any fixed constants 1 and €, the algorithm
constructs in polynomial (linear) time with respect to n a schedule with makespan at most 1 4 € times the
optimal makespan. Note that for a fixed constant i, the time complexity is polynomial with respect to #,
but it is not polynomial with respect to 1/¢. This was the first algorithm of its kind and later on it was called
a polynomial time approximation scheme. Chapter 9 discusses different PTASs. Additional PTASs appear in
Chapters 42, 45, and 51. The proof techniques presented in Refs. [1,4] are outlined in Chapter 2, and have
been extended to apply to other problems. There is an extensive body of literature for approximation algo-
rithms and metaheuristics for scheduling problems. Chapters 44, 45, 46, 47, 73, and 81 discuss interesting
approximation algorithms and heuristics for scheduling problems. The recent scheduling handbook [5]
is an excellent source for scheduling algorithms, models, and performance analysis.

The development of NP-completeness theory in the early 1970s by Cook [6] and Karp [7] formally
introduced the notion that there is a large class of decision problems (the answer to these problems is a
simple yes or no) that are computationally equivalent. By this, it is meant that either every problem in
this class has a polynomial time algorithm that solves it, or none of them do. Furthermore, this question
is the same as the P = NP question, an open problem in computational complexity. This question is
to determine whether or not the set of languages recognized in polynomial time by deterministic Turing
machines is the same as the set of languages recognized in polynomial time by nondeterministic Turing
machines. The conjecture has been that P # NP, and thus the hardest problems in NP cannot be solved
in polynomial time. These computationally equivalent problems are called NP-complete problems. The
scheduling on identical machines problem discussed earlier is an optimization problem. Its corresponding
decision problem has its input augmented by an integer value B and the yes-no question is to determine
whether or not thereisa schedule with makespan at most B. An optimization problem whose corresponding
decision problem is NP-complete is called an NP-hard problem. Therefore, scheduling tasks on identical
machines is an NP-hard problem. The TSP and the Steiner tree problem are also NP-hard problems. The
minimum-weight spanning tree problem can be solved in polynomial time and is not an NP-hard problem
under the assumption that P # NP. The next section discusses NP-completeness in more detail. There
is a long list of practical problems arising in many different fields of study that are known to be NP-hard
problems [8]. Because of this, the need to cope with these computationally intractable problems was
recognized earlier on. This is when approximation algorithms became a central area of research activity.
Approximation algorithms offered a way to circumvent computational intractability by paying a price
when it comes to the quality of the solution generated. But a solution can be generated quickly. In other
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words and another language, “no te fijes en lo bien, fijate en lo rapido.” Words that my mother used to
describe my ability to play golf when I was growing up.

In the early 1970s Garey et al. [9] as well as Johnson [10,11] developed the first set of polynomial time
approximation algorithms for the bin packing problem. The analysis of the approximation ratio for these
algorithms is asymptotic, which is different from those for the scheduling problems discussed earlier. We
will define this notion precisely in the next section, but the idea is that the ratio holds when the optimal
solution value is greater than some constant. Research on the bin packing problem and its variants has
attracted very talented investigators who have generated more than 650 papers, most of which deal with
approximations. This work has been driven by numerous applications in engineering and information
sciences (see Chapters 32-35).

Johnson [12] developed polynomial time algorithms for the sum of subsets, max satisfiability, set cover,
graph coloring, and max clique problems. The algorithms for the first two problems have a constant ratio
approximation, but for the other problems the approximation ratio is In nand »€. Sahni [13,14] developed
a PTAS for the knapsack problem. Rosenkrantz et al. [15] developed several constant ratio approximation
algorithms for the TSP. This version of the problem is defined over edge-weighted complete graphs that
satisfy the triangle inequality (or simply metric graphs), rather than for points in metric space as in Ref. [3].
These algorithms have an approximation ratio of 2.

Sahni and Gonzalez [16] showed that there were a few NP-hard optimization problems for which the
existence of a constant ratio polynomial time approximation algorithm implies the existence of a polyno-
mial time algorithm to generate an optimal solution. In other words, for these problems the complexity
of generating a constant ratio approximation and an optimal solution are computationally equivalent
problems. For these problems, the approximation problem is NP-hard or simply inapproximable (under
the assumption that P # NP). Later on, this notion was extended to mean that there is no polynomial
time algorithm with approximation ratio r for a problem under some complexity theoretic hypothesis.
The approximation ratio r is called the in-approximability ratio, and r may be a function of the input size
(see Chapter 17).

The k-min-cluster problem is one of these inapproximable problems. Given an edge-weighted un-
directed graph, the k-min-cluster problem is to partition the set of vertices into k sets so as to minimize
the sum of the weight of the edges with endpoints in the same set. The k-maxcut problem is defined as
the k-min-cluster problem, except that the objective is to maximize the sum of the weight of the edges
with endpoints in different sets. Even though these two problems have exactly the same set of feasible
and optimal solutions, there is a linear time algorithm for the k-maxcut problem that generates k-cuts
with weight at least k;kl times the weight of an optimal k-cut [16], whereas approximating the k-min-
cluster problem is a computationally intractable problem. The former problem has the property that a
near-optimal solution may be obtained as long as partial decisions are made optimally, whereas for the
k-min-cluster an optimal partial decision may turn out to force a terrible overall solution.

Another interesting problem whose approximation problem is NP-hard is the TSP [16]. This is not
exactly the same version of the TSP discussed above, which we said has several constant ratio polynomial
time approximation algorithms. Given an edge-weighted undirected graph, the TSP is to find a least weight
tour, i.e., find a least weight (simple) path that starts at vertex 1, visits each vertex in the graph exactly once,
and ends at vertex 1. The weight of a path is the sum of the weight of its edges. The version of the TSP
studied in Ref. [15] is limited to metric graphs, i.e., the graph is complete (all the edges are present) and the
set of edge weights satisfies the triangle inequality (which means that the weight of the edge joining vertex
iand j is less than or equal to the weight of any path from vertex i to vertex j). This version of the TSP is
equivalent to the one studied by E. E. Moore [3]. The approximation algorithms given in Refs. [3,15] can be
adapted easily to provide a constant-ratio approximation to the version of the TSP where the tour is defined
as visiting each vertex in the graph at least once. Since Moore’s approximation algorithms for the metric
Steiner tree and metric TSP are based on the same idea, one would expect that the Steiner tree problem
defined over arbitrarily weighted graphs is NP-hard to approximate. However, this is not the case. Moore’s
algorithm [3] can be modified to be a 2-approximation algorithm for this more general Steiner tree problem.

As pointed out in Ref. [17], Levner and Gens [18] added a couple of problems to the list of problems
that are NP-hard to approximate. Garey and Johnson [19] showed that the max clique problem has the
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property that if for some constant r there is a polynomial time r-approximation algorithm, then there is
a polynomial time r’-approximation algorithm for any constant r’ such that 0 < r’ < 1. Since at that
time researchers had considered many different polynomial time algorithms for the clique problem and
none had a constant ratio approximation, it was conjectured that none existed, under the assumption that
P = NP. This conjecture has been proved (see Chapter 17).

A PTAS is said to be an FPTAS if its time complexity is polynomial with respect to # (the problem
size) and 1/e€. The first FPTAS was developed by Ibarra and Kim [20] for the knapsack problem. Sahni
[21] developed three different techniques based on rounding, interval partitioning, and separation to
construct FPTAS for sequencing and scheduling problems. These techniques have been extended to other
problems and are discussed in Chapter 10. Horowitz and Sahni [22] developed FPTAS for scheduling
on processors with different processing speed. Reference [17] discusses a simple O(#/€) FPTAS for the
knapsack problem developed by Babat [23,24]. Lawler [25] developed techniques to speed up FPTAS for
the knapsack and related problems. Chapter 10 presents different methodologies to design FPTAS. Garey
and Johnson [26] showed that if any problem in a class of NP-hard optimization problems that satisfy
certain properties has a FPTAS, then P = NP. The properties are that the objective function value of every
feasible solution is a positive integer, and the problem is strongly NP-hard. Strongly NP-hard means that
the problem is NP-hard even when the magnitude of the maximum number in the input is bounded by a
polynomial on the input length. For example, the TSP is strongly NP-hard, whereas the knapsack problem
is not, under the assumption that P # NP (see Chapter 10).

Lin and Kernighan [27] developed elaborate heuristics that established experimentally that instances of
the TSP with up to 110 cities can be solved to optimality with 95% confidence in O(#?) time. This was an
iterative improvement procedure applied to a set of randomly selected feasible solutions. The process was to
perform k pairs of link (edge) interchanges that improved the length of the tour. However, Papadimitriou
and Steiglitz [28] showed that for the TSP no local optimum of an efficiently searchable neighborhood
can be within a constant factor of the optimum value unless P = NP. Since then, there has been quite
a bit of research activity in this area. Deterministic and stochastic local search in efficiently searchable as
well as in very large neighborhoods are discussed in Chapters 18-21. Chapter 14 discusses issues relating
to the empirical evaluation of approximation algorithms and metaheuristics.

Perhaps the best known approximation algorithm is the one by Christofides [29] for the TSP defined over
metric graphs. The approximation ratio for this algorithm is %, which is smaller than the approximation
ratio of 2 for the algorithms reported in Refs. [3,15]. However, looking at the bigger picture that includes
the time complexity of the approximation algorithms, Christofides algorithm is not of the same order as
the ones given in Refs. [3,15]. Therefore, neither set of approximation algorithms dominates the other as
one set has a smaller time complexity bound, whereas the other (Christofides algorithm) has a smaller
worst-case approximation ratio.

Ausiello et al. [30] introduced the differential ratio, which is another way of measuring the quality of the
solutions generated by approximation algorithms. The differential ratio destroys the artificial dissymmetry
between “equivalent” minimization and maximization problems (e.g., the k-max cut and the k-min-
cluster discussed above) when it comes to approximation. This ratio uses the difference between the worst
possible solution and the solution generated by the algorithm, divided by the difference between the worst
solution and the best solution. Cornuejols et al. [31] also discussed a variation of the differential ratio
approximations. They wanted the ratio to satisfy the following property: “A modification of the data that
adds a constant to the objective function value should also leave the error measure unchanged.” That is, the
“error” by the approximation algorithm should be the same as before. Differential ratio and its extensions
are discussed in Chapter 16, along with other similar notions [30]. Ausiello et al. [30] also introduced
reductions that preserve approximability. Since then, there have been several new types of approximation
preserving reductions. The main advantage of these reductions is that they enable us to define large classes
of optimization problems that behave in the same way with respect to approximation. Informally, the class
of NP-optimization problems, NPO, is the set of all optimization problems IT that can be “recognized”
in polynomial time (see Chapter 15 for a formal definition). An NPO problem IT is said to be in APX,
if it has a constant approximation ratio polynomial time algorithm. The class PTAS consists of all NPO
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problems that have PTAS. The class FPTAS is defined similarly. Other classes, Poly-APX, Log-APX, and
Exp-APX, have also been defined (see Chapter 15).

One of the main accomplishments at the end of the 1970s was the development of a polynomial time
algorithm for linear programming problems by Khachiyan [32]. This result had a tremendous impact on
approximation algorithms research, and started a new wave of approximation algorithms. Two subsequent
research accomplishments were at least as significant as Khachiyan’s [32] result. The first one was a faster
polynomial time algorithm for solving linear programming problems developed by Karmakar [33]. The
other major accomplishment was the work of Grotschel et al. [34,35]. They showed that it is possible
to solve a linear programming problem with an exponential number of constraints (with respect to the
number of variables) in time which is polynomial in the number of variables and the number of bits used
to describe the input, given a separation oracle plus a bounding ball and a lower bound on the volume of
the feasible solution space. Given a solution, the separation oracle determines in polynomial time whether
or not the solution is feasible, and if it is not it finds a constraint that is violated. Chapter 11 gives an
example of the use of this approach. Important developments have taken place during the past 20 years.
The books [35,36] are excellent references for linear programming theory, algorithms, and applications.

Because of the above results, the approach of formulating the solution to an NP-hard problem as an
integer linear programming problem and then solving the corresponding linear programming problem
became very popular. This approach is discussed in Chapter 2. Once a fractional solution is obtained, one
uses rounding to obtain a solution to the original NP-hard problem. The rounding may be deterministic
or randomized, and it may be very complex (metarounding). LP rounding is discussed in Chapters 2, 4,
6-9, 11, 12, 37, 45, 57, 58, and 70.

Independently, Johnson [12] and Lovasz [37] developed efficient algorithms for the set cover with
approximation ratio of 1 4 In d, where d is the maximum number of elements in each set. Chvétal [38]
extended this result to the weighted set cover problem. Subsequently, Hochbaum [39] developed an
algorithm with approximation ratio f, where f is the maximum number of sets containing any of the
elements in the set. This result is normally inferior to the one by Chvatal [38], but is more attractive for the
weighted vertex cover problem, which is a restricted version of the weighted set cover. For this subproblem,
itisa 2-approximation algorithm. A few months after Hochbaun’s initial result,! Bar-Yehuda and Even [40]
developed a primal-dual algorithm with the same approximation ratio as the one in [39]. The algorithm
in [40] does not require the solution of an LP problem, as in the case of the algorithm in [39], and its time
complexity is linear. But it uses linear programming theory. This was the first primal-dual approximation
algorithm, though some previous algorithms may also be viewed as falling into this category. An application
of the primal-dual approach, as well as related ones, is discussed in Chapter 2. Chapters 4, 37, 39, 40, and
71 discuss several primal-dual approximation algorithms. Chapter 13 discusses “distributed” primal-dual
algorithms. These algorithms make decisions by using only “local” information.

In the mid 1980s, Bar-Yehuda and Even [41] developed a new framework parallel to the primal-dual
methods. They call it local ratio; it is simple and requires no prior knowledge of linear programming. In
Chapter 2, we explain the basics of this approach, and recent developments are discussed in [42].

Raghavan and Thompson [43] were the first to apply randomized rounding to relaxations of linear
programming problems to generate solutions to the problem being approximated. This field has grown
tremendously. LP randomized rounding is discussed in Chapters 2, 4, 6-8, 11, 12, 57, 70, and 80 and
deterministic rounding is discussed in Chapters 2, 6, 7, 9, 11, 37, 45, 57, 58, and 70. A disadvantage of
LP-rounding is that a linear programming problem needs to be solved. This takes polynomial time with

"Here, we are referring to the time when these results appeared as technical reports. Note that from the journal
publication dates, the order is reversed. You will find similar patterns throughout the chapters. To add to the confusion,
a large number of papers have also been published in conference proceedings. Since it would be very complex to
include the dates when the initial technical report and conference proceedings were published, we only include the
latest publication date. Please keep this in mind when you read the chapters and, in general, the computer science
literature.
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respect to the input length, but in this case it means the number of bits needed to represent the input.
In contrast, algorithms based on the primal-dual approach are for the most part faster, since they take
polynomial time with respect to the number of “objects” in the input. However, the LP-rounding approach
can be applied to a much larger class of problems and it is more robust since the technique is more likely
to be applicable after changing the objective function or constraints for a problem.

The first APTAS (asymptotic PTAS) was developed by Fernandez de la Vega and Lueker [44] for the
bin packing problem. The first AFPTAS (Asymptotic FPTAS) for the same problem was developed by
Karmakar and Karp [45]. These approaches are discussed in Chapter 16. Fully polynomial randomized
approximation schemes (FPRAS) are discussed in Chapter 12.

In the 1980s, new approximation algorithms were developed as well as PTAS and FPTAS based on
different approaches. These results are reported throughout the handbook. One difference was the appli-
cation of approximation algorithms to other areas of research activity (very large-scale integration (VLSI),
bioinformatics, network problems) as well as to other problems in established areas.

In the late 1980s, Papadimitriou and Yannakakis [46] defined MAXSNP as a subclass of NPO. These
problems can be approximated within a constant factor and have a nice logical characterization. They
showed that if MAX3SAT, vertex cover, MAXCUT, and some other problems in the class could be ap-
proximated in polynomial time with an arbitrary precision, then all MAXSNP problems have the same
property. This fact was established by using approximation preserving reductions (see Chapters 15 and 17).
In the 1990s, Arora et al. [47], using complex arguments (see Chapter 17), showed that MAX3SAT is hard
to approximate within a factor of 1 + € for some € > 0 unless P = NP. Thus, all problems in MAXSNP
do not admit a PTAS unless P = NP. This work led to major developments in the area of approximation
algorithms, including inapproximability results for other problems, a bloom of approximation preserving
reductions, discovery of new inapproximability classes, and construction of approximation algorithms
achieving optimal or near optimal approximation ratios.

Feige et al. [48] showed that the clique problem could not be approximated to within some constant
value. Applying the previous result in Ref. [26] showed that the clique problem is inapproximable to within
any constant. Feige [49] showed that the set cover is inapproximable within In n. Other inapproximable
results appear in Refs. [50,51]. Chapter 17 discusses all of this work in detail.

There are many other very interesting results that have been published in the past 15 years. Goemans
and Williamson [52] developed improved approximation algorithms for the maxcut and satisfiability
problems using semidefinite programming (SDP). This seminal work opened a new venue for the de-
sign of approximation algorithms. Chapter 15 discusses this work as well as recent developments in this
area. Goemans and Williamson [53] also developed powerful techniques for designing approximation
algorithms based on the primal-dual approach. The dual-fitting and factor revealing approach is used
in Ref. [54]. Techniques and extensions of these approaches are discussed in Chapters 4, 13, 37, 39, 40,
and 71.

In the past couple of decades, we have seen approximation algorithms being applied to traditional
combinatorial optimization problems as well as problems arising in other areas of research activity. These
areas include VLSI design automation, networks (wired, sensor and wireless), bioinformatics, game theory,
computational geometry, and graph problems. In Section 2, we elaborate further on these applications.

1.2.2 Local Search, Artificial Neural Networks, and Metaheuristics

Local search techniques have along history; they range from simple constructive and iterative improvement
algorithms to rather complex methods that require significant fine-tuning, such as evolutionary algorithms
(EAs) or SA. Local search is perhaps one of the most natural ways to attempt to find an optimal or suboptimal
solution to an optimization problem. The idea of local search is simple: start from a solution and improve
it by making local changes until no further progress is possible. Deterministic local search algorithms
are discussed in Chapter 18. Chapter 19 covers stochastic local search algorithms. These are local search
algorithms that make use of randomized decisions, for example, in the context of generating initial solutions
or when determining search steps. When the neighborhood to search for the next solution is very large,
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finding the best neighbor to move to is many times an NP-hard problem. Therefore, a suboptimal solution
is needed at this step. In Chapter 20, the issues related to very large-scale neighborhood search are discussed
from the theoretical, algorithmic, and applications point of view.

Reactive search advocates the use of simple sub symbolic machine learning to automate the parameter
tuning process and make it an integral (and fully documented) part of the algorithm. Parameters are
normally tuned through a feedback loop that many times depends on the user. Reactive search attempts
to mechanize this process. Chapter 21 discusses issues arising during this process.

Artificial neural networks have been proposed as a tool for machine learning and many results have been
obtained regarding their application to practical problems in robotics control, vision, pattern recognition,
grammatical inferences, and other areas. Once trained, the network will compute an input/output mapping
that, if the training data was representative enough, will closely match the unknown rule that produced
the original data. Neural networks are discussed in Chapter 22.

The work of Lin and Kernighan [27] as well as that of others sparked the study of modern heuristics,
which have evolved and are now called metaheuristics. The term metaheuristics was coined by Glover [55]
in 1986 and in general means “to find beyond in an upper level.” Metaheuristics include Tabu Search
(TS), Simulated Annealing (SA), Ant Colony Optimization, Evolutionary Computation (EC), iterated
local search (ILC), and Memetic Algorithms (MA). One of the motivations for the study of metaheuristics
is that it was recognized early on that constant ratio polynomial time approximation algorithms are not
likely to exist for a large class of practical problems [16]. Metaheuristics do not guarantee that near-optimal
solutions will be found quickly for all problem instances. However, these complex programs do find near-
optimal solutions for many problem instances that arise in practice. These procedures have a wide range
of applicability. This is the most appealing aspect of metaheuristics.

The term Tabu Search (TS) was coined by Glover [55]. TS is based on adaptive memory and responsive
exploration. The former allows for the effective and efficient search of the solution space. The latter is used
to guide the search process by imposing restraints and inducements based on the information collected.
Intensification and diversification are controlled by the information collected, rather than by a random
process. Chapter 23 discusses many different aspects of TS as well as problems to which it has been applied.

In the early 1980s Kirkpatrick et al. [56] and, independently, Cerny [57] introduced Simulated Annealing
(SA) as a randomized local search algorithm to solve combinatorial optimization problems. SA is a local
search algorithm, which means that it starts with an initial solution and then searches through the solution
space by iteratively generating a new solution that is “near” it. Sometimes, the moves are to a worse solution
to escape local optimal solutions. This method is based on statistical mechanics (Metropolis algorithm).
It was heavily inspired by an analogy between the physical annealing process of solids and the problem of
solving large combinatorial optimization problems. Chapter 25 discusses this approach in detail.

Evolutionary Computation (EC) is a metaphor for building, applying, and studying algorithms based on
Darwinian principles of natural selection. Algorithms that are based on evolutionary principles are called
evolutionary algorithms (EA). They are inspired by nature’s capability to evolve living beings well adapted
to their environment. There has been a variety of slightly different EAs proposed over the years. Three
different strands of EAs were developed independently of each other over time. These are evolutionary
programming (EP) introduced by Fogel [58] and Fogel et al. [59], evolutionary strategies (ES) proposed by
Rechenberg [60], and genetic algorithms (GAs) initiated by Holland [61]. GAs are mainly applied to solve
discrete problems. Genetic programming (GP) and scatter search (SS) are more recent members of the EA
family. EAs can be understood from a unified point of view with respect to their main components and
the way they explore the search space. EC is discussed in Chapter 24.

Chapter 17 presents an overview of Ant Colony Optimization (ACO)—a metaheuristic inspired by the
behavior of real ants. ACO was proposed by Dorigo and colleagues [62] in the early 1990s as a method for
solving hard combinatorial optimization problems. ACO algorithms may be considered to be part of swarm
intelligence, the research field that studies algorithms inspired by the observation of the behavior of swarms.
Swarm intelligence algorithms are made up of simple individuals that cooperate through self-organization.

Memetic Algorithms (MA) were introduced by Moscato [63] in the late 1980s to denote a family of
metaheuristics that can be characterized as the hybridization of different algorithmic approaches for a
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given problem. It is a population-based approach in which a set of cooperating and competing agents
are engaged in periods of individual improvement of the solutions while they sporadically interact. An
important component is problem and instance-dependent knowledge, which is used to speed-up the search
process. A complete description is given in Chapter 27.

1.2.3 Sensitivity Analysis, Multiobjective Optimization, and Stability

Chapter 30 covers sensitivity analysis, which has been around for more than 40 years. The aim is to study
how variations affect the optimal solution value. In particular, parametric analysis studies problems whose
structure is fixed, but where cost coefficients vary continuously as a function of one or more parameters.
This is important when selecting the model parameters in optimization problems. In contrast, Chapter 31
considers a newer area, which is called stability. By this we mean how the complexity of a problem depends
on a parameter whose variation alters the space of allowable instances.

Chapters 28 and 29 discuss multiobjective combinatorial optimization. This is important in practice since
quite often a decision is rarely made with only one criterion. There are many examples of such applications
in the areas of transportation, communication, biology, finance, and also computer science. Approximation
algorithms and a FPTAS for multiobjective optimization problems are discussed in Chapter 28. Chapter 29
covers stochastic local search algorithms for multiobjective optimization problems.

1.3 Definitions and Notation

One can use many different criteria to judge approximation algorithms and heuristics. For example the
quality of solution generated, and the time and space complexity needed to generate it. One may measure the
criteria in different ways, e.g., we could use the worst case, average case, median case, etc. The evaluation
could be analytical or experimental. Additional criteria include characterization of data sets where the
algorithm performs very well or very poorly; comparison with other algorithms using benchmarks or
data sets arising in practice; tightness of bounds (for quality of solution, time and space complexity); the
value of the constants associated with the time complexity bound including the ones for the lower order
terms; and so on. For some researchers, the most important aspect of an approximation algorithm is that
it is complex to analyze, but for others it is more important that the algorithm be complex and involve
the use of sophisticated data structures. For researchers working on problems directly applicable to the
“real world,” experimental evaluation or evaluation on benchmarks is a more important criterion. Clearly,
there is a wide variety of criteria one can use to evaluate approximation algorithms. The chapters in this
handbook use different criteria to evaluate approximation algorithms.

For any given optimization problem P, let A, A, ... be the set of current algorithms that generate a
feasible solution for each instance of problem P. Suppose that we select a set of criteria C and a way to
measure it that we feel is the most important. How can we decide which algorithm is best for problem P with
respect to C? We may visualize every algorithm as a point in multidimensional space. Now, the approach
used to compare feasible solutions for multiobjective function problems (see Chapters 28 and 29) can also
be used in this case to label some of the algorithms as current Pareto optimal with respect to C. Algorithm
Ais said to be dominated by algorithm B with respect to C, if for each criterion ¢ € C algorithm B is “not
worse” than A, and for at least one criterion ¢ € C algorithm B is “better” than A. An algorithm is said
to be a current Pareto optimal algorithm with respect to C if none of the current algorithms dominates it.

In the next subsections, we define time and space complexity, NP-completeness, and different ways to
measure the quality of the solutions generated by the algorithms.

1.3.1 Time and Space Complexity

There are many different ways one can use to judge algorithms. The main ones we use are the time and
space required to solve the problem. This can be expressed in terms on #, the input size. It can be evaluated
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empirically or analytically. For the analytical evaluation, we use the time and space complexity of the
algorithm. Informally, this is a way to express the time the algorithm takes to solve a problem of size n and
the amount of space needed to run the algorithm.

It is clear that almost all algorithms take different time to execute with different data sets even when the
input size is the same. If you code it and run it on a computer you will see more variation depending on
the different hardware and software installed in the system. It is impossible to characterize exactly the time
and space required by an algorithm. We need a short cut. The approach that has been taken is to count
the number of “operations” performed by the algorithm in terms of the input size. “Operations” is not an
exact term and refers to a set of “instructions” whose number is independent of the problem size. Then
we just need to count the total number of operations.

Counting the number of operations exactly is very complex for a large number of algorithms. So we
just take into consideration the “highest”-order term. This is the O notation.

Big “oh” notation: A (positive) function f(n) is said to be O(g(n)) if there exist two constants ¢ > 1
and ng > 1 such that f(n) < c¢- g(n) forall n > ny.

The function g(n) is the highest-order term. For example, if f(n) = n®> +20n?, then g(n) = n’. Setting
ngp = 1 and ¢ = 21 shows that f(n) is O(n3). Note that f(n) is also O(n*), but we like g(n) to be the
function with the smallest possible growth. The function f(n) cannot be O(#n?) because it is impossible
to find constants ¢ and ng such that #> + 20n% < cn? forall n > ny.

The time and space complexity of an algorithm is expressed in the O notation and describes their
growth rate in terms of the problem size. Normally, the problem size is the number of vertices and edges
in a graph, the number of tasks and machines in a scheduling problem, etc. But it can also be the number
of bits used to represent the input.

When comparing two algorithms expressed in O notation, we have to be careful because the constants
¢ and ng are hidden. For large n, the algorithm with the smallest growth rate is the better one. When two
algorithms have similar constants ¢ and ng, the algorithm with the smallest growth function has a smaller
running time. The book [2] discusses in detail the O notation as well as other notation.

1.3.2 NP-Completeness

Before the 1970s, researchers were aware that some problems could be computationally solved by algo-
rithms with (low) polynomial time complexity (O(n), O(#n?), O(n?), etc.), whereas other problems had
exponential time complexity, for example, O(2") and O(n!). It was clear that even for small values of n,
exponential time complexity equates to computational intractability if the algorithm actually performs
an exponential number of operations for some inputs. The convention of computational tractability being
equated to polynomial time complexity does not really fit well, as an algorithm with time complexity
O(n'%) is not really tractable if it actually performs 7'
of “tractability,” there is a large class of problems that does not seem to have computationally tractable
algorithms.

We have been discussing optimization problems. But NP-completeness is defined with respect to decision

operations. But even under this relaxation

problems. A decision problem is simply one whose answer is “yes” or “no.” The scheduling on identical
machines problems discussed earlier is an optimization problem. Its corresponding decision problem has
its input augmented by an integer value B and the yes-no question is to determine whether or not there is
a schedule with makespan at most B. Every optimization problem has a corresponding decision problem.
Since the solution of an optimization problem can be used directly to solve the decision problem, we say
that the optimization problem is at least as hard to solve as the decision problem. If we show that the
decision problem is a computationally intractable problem, then the corresponding optimization problem
is also intractable.

The development of NP-completeness theory in the early 1970s by Cook [6] and Karp [7] formally
introduced the notion that there is a large class of decision problems that are computationally equivalent.
By this we mean that either every problem in this class has a polynomial time algorithm that solves it, or
none of them do. Furthermore, this question is the same as the P = NP question, an open problem in

© 2007 by Taylor & Francis Group, LLC



1-12 Handbook of Approximation Algorithms and Metaheuristics

computational complexity. This question is to determine whether or not the set of languages recognized
in polynomial time by deterministic Turing machines is the same as the set of languages recognized in
polynomial time by nondeterministic Turing machines. The conjecture has been that P # NP, and thus
the problems in this class do not have polynomial time algorithms for their solution. The decision problems
in this class of problems are called NP-complete problems. Optimization problems whose corresponding
decision problems are NP-complete are called NP-hard problems.

Scheduling tasks on identical machines is an NP-hard problem. The TSP and Steiner tree problem are
also NP-hard problems. The minimum-weight spanning tree problem can be solved in polynomial and it
is not an NP-hard problem, under the assumption that P  NP. There is a long list of practical problems
arising in many different fields of study that are known to be NP-hard problems. In fact, almost all the
optimization problems discussed in this handbook are NP-hard problems. The book [8] is an excellent
source of information for NP-complete and NP-hard problems.

One establishes that a problem Q is an NP-complete problem by showing that the problem is in NP
and giving a polynomial time transformation from an NP-complete problem to the problem Q.

A problem is said to be in NP if one can show that a yes answer to it can be verified in polynomial
time. For the scheduling problem defined above, you may think of this as providing a procedure that given
any instance of the problem and an assignment of tasks to machines, the algorithm verifies in polynomial
time, with respect to the problem instance size, that the assignment is a schedule and its makespan is
at most B. This is equivalent to the task a grader does when grading a question of the form “Does the
following instance of the scheduling problem have a schedule with makespan at most 300? If so, give a
schedule.” Just verifying that the “answer” is correct is a simple problem. But solving a problem instance
with 10,000 tasks and 20 machines seems much harder than simply grading it. In our oversimplification, it
seems that P # NP. Polynomial time verification of a yes answer does not seem to imply polynomial time
solvability.

A polynomial time transformation from decision problem P; to decision problem P, is an algorithm
that takes as input any instance I of problem P; and constructs an instance f(I) of P,. The algorithm
must take polynomial time with respect to the size of the instance I. The transformation must be such
that f(I) is a yes-instance of P, if, and only if, I is a yes-instance of P;.

The implication of a polynomial transformation Pj« P; is that if P, can be solved in polynomial time,
then so can Py, and if P; cannot be solved in polynomial time, then P, cannot be solved in polynomial
time.

Consider the partition problem. We are given nitems 1, 2, ..., n. Item j hassize s( j). The problem is to
determine whether or not the set of items can be partitioned into two sets such that the sum of the size of the
items in one set equals the sum of the size of the items in the other set. Now let us polynomially transform
the partition problem to the decision version of the identical machines scheduling problem. Given any
instance I of partition, we define the instance f(I) as follows. There are n tasks and m = 2 machines.
Task 7 represents item i and its processing time is s (7). All the tasks are independentand B = Z, 1s(i)/2.
Clearly, f(I) has a schedule with maskespan B iff the instance I has a partition.

A decision problem is said to be strongly NP-complete if the problem is NP-complete even when all the
“numbers” in the problem instance are less than or equal to p(n), where p is a polynomial and # is the
“size” of the problem instance. Partition is not NP-complete in the strong sense (under the assumption
that P # NP) because there is a polynomial time dynamic programming algorithm to solve this problem
when Z s(i) < p(n) (see Chapter 10). An excellent source for NP-completeness information is the book
by Garey and Johnson [8].

1.3.3 Performance Evaluation of Algorithms

The main criterion used to compare approximation algorithms has been the quality of the solution
generated. Let us consider different ways to compare the quality of the solutions generated when measuring
the worst case. That is the main criterion discussed in Section 1.2.
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For some problems, it is very hard to judge the quality of the solution generated. For example, approxi-
mating colors, can only be judged by viewing the resulting images and that is subjective (see Chapter 86).
Chapter 85 covers digital reputation schemes. Here again, it is difficult to judge the quality of the solution
generated. Problems in the application areas of bioinformatics and VLSI fall into this category because, in
general, these are problems with multiobjective functions.

In what follows, we concentrate on problems where it is possible to judge the quality of the solution
generated. At this point, we need to introduce additional notation. Let P be an optimization problem and
let A be an algorithm that generates a feasible solution for every instance I of problem P. We use f 4(I)
to denote the objective function value of the solution generated by algorithm A for instance I. We drop A
and use f(I) when it is clear which algorithm is being used. Let f*(I) be the objective function value of
an optimal solution for instance I. Note that normally we do not know the value of f*(I) exactly, but we
have bounds that should be as tight as possible.

Let G be an undirected graph that represents a set of cities (vertices) and roads (edges) between a pair
of cities. Every edge has a positive number called the weight (or cost) and represents the cost of driving
(gas plus tolls) between the pair of cities it joins. A shortest path from vertex s to vertex ¢ in G is an st-path
(path from s to t) such that the sum of the weight of the edges in it is the “‘least possible among all possible
st-paths.” There are well-known algorithms that solve this shortest-path problem in polynomial time [2].
Let A be an algorithm that generates a feasible solution (st-path) for every instance I of problem P. If for
every instance I, algorithm A generates an st-path such that

f(n) < fA(D+c¢

where ¢ is some fixed constant, then A is said to be an absolute approximation algorithm for problem P
with (additive) approximation bound c. Ideally, we would like to design a linear (or at least polynomial)
time approximation algorithm with the smallest possible approximation bound. It is not difficult to see
that this is not a good way of measuring the quality of a solution. Suppose that we have a graph G and
we are running an absolute approximation algorithm for the shortest path problem concurrently in two
different countries with the edge weight expressed in the local currency. Furthermore, assume that there is
alarge exchange rate between the two currencies. Any approximation algorithm solving the weak currency
instance will have a much harder time finding a solution within the bound of ¢, than when solving the strong
currency instance. We can take this to the extreme. We now claim that the above absolute approximation
algorithm A can be used to generate an optimal solution for every problem instance within the same time
complexity bound.

Theargumentis simple. Given any instance I of the shortest-path problem, we constructaninstance I,
using the same graph, but every edge weight is multiplied by ¢ + 1. Clearly, f*(I.4+1) = (¢ +1) f*(I). The
st-path for Iy constructed by the algorithm is also an st-path in I with weight f( I = f( Iy1)/(c+1).
Since f (Ic+1) < f*(Ic41) + ¢, then by substituting the above bounds we know that

SO _ fUe) e e
f(I)_(c—i-l)S c+1 +c+l_f(1)+c+1

Since all the edges have integer weights, it then follows that the algorithm solves the problem optimally.

In other words, for the shortest path problem any algorithm that generates a solution with (additive)
approximation bound ¢ can be used to generate an optimal solution within the same time complexity
bound. This same property can be established for almost all NP-hard optimization problems. Because of
this, the use of absolute approximation has never been given a serious consideration.
Sahni [14] defines as an € -approximation algorithm for problem P an algorithm that generates a feasible
solution for every problem instance I of P such that
3k
SO
fH(D)
It is assumed that f*(I) > 0. For a minimization problem, ¢ > 0 and for a maximization problem,
0 < € < 1.Inboth cases, € represents the percentage of error. The algorithm is called an e-approximation
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algorithm and the solution is said to be an e-approximate solution. Graham’s list scheduling algorithm [1]
isal—1/n-approximation algorithm, and Sahni and Gonzalez [16] algorithm for the k-maxcut problem is
a %-approximation algorithm (see Section 1.2). Note that this notation is different from the one discussed
in Section 1.2. The difference is 1 unit, i.e., the € in this notation corresponds to 1 + € in the other.
Johnson [12] used a slightly different, but equivalent notation. He uses the approximation ratio p to

mean that for every problem instance I of P, the algorithm satisfies 7% < p for minimization problems,

and f*—(ll) < p for maximization problems. The one for minimization problems is the same as the one given
in Ref. [1]. The value for p is always greater than 1, and the closer to 1, the better the solution generated
by the algorithm. One refers to p as the approximation ratio and the algorithm is a p-approximation
algorithm. The list scheduling algorithm in the previous section is a (2 — #)—approximation algorithm
and the algorithm for the k-maxcut problem is a (%)—approximation algorithm. Sometimes, 1/p is
used as the approximation ratio for maximization problems. Using this notation, the algorithm for the
k-maxcut problem in the previous sectionisa 1 — %{-approximation algorithm.

All the above forms are in use today. The most popular ones are p for minimization and 1/p for
maximization. These are referred to as approximation ratios or approximation factors. We refer to all these
algorithms as e-approximation algorithms. The point to remember is that one needs to be aware of the
differences and be alert when reading the literature. In the above discussion, we make € and p look as
if they are fixed constants. But, they can be made dependent on the size of the problem instance I. For
example, it may be In 1, or n¢ for some problems, where 7 is some parameter of the problem that depends
on I, e.g., the number of nodes in the input graph, and € depends on the algorithm being used to generate
the solutions.

Normally, one prefers an algorithm with a smaller approximation ratio. However, it is not always the
case that an algorithm with smaller approximation ratio always generates solutions closer to optimal than
one with a larger approximation ratio. The main reason is that the notation is for the worst-case ratio
and the worst case does not always occur. But there are other reasons too. For example, the bound for
the optimal solution value used in the analysis of two different algorithms may be different. Let P be the
shortest-path minimization problem and let A be an algorithm with approximation ratio 2. In this case,
we use d as the lower bound for f*(I), where d is some parameter of the problem instance. Algorithm
B is a 1.5-approximation algorithm, but f*(I) used to establish it is the exact optimal solution value.
Suppose that for problem instance I the value of d is 5 and f*(I) = 8. Algorithm A will generate a path
with weight at most 10, whereas algorithm B will generate one with weight at most 1.5 x 8 = 12. So the
solution generated by Algorithm B may be worse than the one generated by A even if both algorithms
generate the worst values for the instance. One can argue that the average “error” makes more sense than
worst case. The problem is how to define and establish bounds for average “error.” There are many other
pitfalls when using worst-case ratios. It is important to keep all this in mind when making comparisons
between algorithms. In practice, one may run several different approximation algorithms concurrently
and output the best of the solutions. This has the disadvantage that the running time of this compound
algorithm will be the one for the slowest algorithm.

There are a few problems for which the worst-case approximation ratio applies only to problem instances
where the value of the optimal solution is small. One such problem is the bin packing problem discussed
in Section 1.2. Informally, p%° is the smallest constant such that there exists a constant K < oo for which

f(D) <pX A+ K

The asymptotic approximation ratio is the multiplicative constant and it hides the additive constant K.
This is most useful when K is small. Chapter 32 discusses this notation formally. The asymptotic notation
is mainly used for bin packing and some of its variants.

Ausiello et al. [30] introduced the differential ratio. Informally, an algorithm is said to be a § differential
ratio approximation algorithm if for every instance I of P

A

(D)= f(I) _
(D)= f*(I) ~
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where w(I) is the value of a worst solution for instance I. Differential ratio has some interesting properties
for the complexity of the approximation problems. Chapter 16 discusses differential ratio approximation
and its variations.

As said earlier, there are many different criteria to compare algorithms. What if we use both the ap-
proximation ratio and time complexity? For example, the approximation algorithms in Ref. [15] and the
one in Ref. [29] are current Pareto optimal with respect to these criteria for the TSP defined over metric
graphs. Neither of the algorithms dominates the others in both time complexity and approximation ratio.
The same can be said about the simple linear time approximation algorithm for the k-maxcut problem in
Ref. [16] and the complex one given in Ref. [52] or the more recent ones that apply for all k.

The best algorithm to use also depends on the instance being solved. It makes a difference whether we
are dealing with an instance of the TSP with optimal tour cost equal to a billion dollars and one with
optimal cost equal to just a few pennies. Though, it also depends on the number of such instances being
solved.

More elaborate approximation algorithms have been developed that generate a solution for any fixed
constant €. Formally, a PTAS for problem P is an algorithm A that given any fixed constant € > 0, it
constructs a solution to problem P such that H“(I_)f;(l)*M' < € in polynomial time with respect to the
length of the instance I. Note that the time complexity may be exponential with respect to 1/¢. For
example, the time complexity could be O(n(l/e)) or O(n 4 490/€)) Equivalent PTAS are also defined
using different notation, for example, based on —% < 1 + € for minimization problems.

One would like to design PTAS for all problems, but that is not possible unless P = N P. Clearly, with
respect to approximation ratios, the PTAS is better than the €-approximation algorithms for some €. But
their main drawback is that they are not practical because the time complexity is exponential on 1/e.
This does not preclude the existence of a practical PTAS for “natural” occurring problems. However, a
PTAS establishes that a problem can be approximated for all fixed constants. Different types of PTAS are
discussed in Chapter 9. Additional PTAS are presented in Chapters 42, 45, and 51.

A PTAS is said to be an FPTAS if its time complexity is polynomial with respect to #n (the problem size)
and 1/e. FPTAS are for the most part practical algorithms. Different methodologies for designing FPTAS
are discussed in Chapter 10.

Approximation schemes based on asymptotic approximation and on randomized algorithms have been
developed. Chapters 11 and 45 discuss asymptotic approximation schemes and Chapter 12 discusses
randomized approximation schemes.
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2.1 Introduction

In Chapter 1 we presented an overview of approximation algorithms and metaheuristics. This serves as
an overview of Parts I, II, and III of this handbook. In this chapter we discuss in more detail the basic
methodologies and apply them to simple problems. These methodologies are restriction, greedy methods,
LP rounding (deterministic and randomized), o vector, local ratio and primal dual. We also discuss in
more detail inapproximability and show that the “classical” version of the traveling salesperson problem
(TSP) is constant ratio inapproximable. In the last three sections we present an overview of the application
chapters in Parts IV, V, and VI of the handbook.

2.2 Restriction

Chapter 3 discusses restriction which is one of the most basic techniques to design approximation algo-
rithms. The idea is to generate a solution to a given problem P by providing an optimal or suboptimal
solution to a subproblem of P. A subproblem of a problem P means restricting the solution space for
P by disallowing a subset of the feasible solutions. The idea is to restrict the solution space so that it
has some structure, which can be exploited by an efficient algorithm that solves the problem optimally
or suboptimally. For this approach to be effective the subproblem must have the property that, for every
problem instance, its optimal or suboptimal solution has an objective function value that is “close” to
the optimal one for P. The most common approach is to solve just one subproblem, but there are al-
gorithms where more than one subproblem is solved and then the best of the solutions computed is the
solution generated. Chapter 3 discusses this methodology and shows how to apply it to several prob-
lems. Approximation algorithms based on this approach are discussed in Chapters 35, 36, 42, 45, 46, 54,
and 73. Let us now discuss a scheduling application in detail. This is the scheduling problem studied by
Graham [1,2].

2-1
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2.2.1 Scheduling

A set of n tasks denoted by Ti, T, ..., T, with processing time requirements #;, , ..., t, have to be
processed by a set of m identical machines. A partial order C is defined over the set of tasks to enforce
a set of precedence constraints or task dependencies. The partial order specifies that a machine cannot
commence the processing of a task until all of its predecessors have been completed. Each task T; has to
be processed for #; units of time by one of the machines. A (nonpreemptive) schedule is an assignment
of tasks to time intervals on the machines in such a way that (1) each task T; is processed continuously
for ¢ units of time by one of the machines; (2) each machine processes at most one task at a time; and
(3) the precedence constraints are satisfied. The makespan of a schedule is the latest time at which a task is
being processed. The scheduling problem discussed in this section is to construct a minimum makespan
schedule for a set of partially ordered tasks to be processed by a set of identical machines. Several limited
versions of this scheduling problem has been shown to be NP-hard [3].

Example 2.1

The number of tasks, #, is 8 and the number of machines, m, is 3. The processing time requirements for the
tasks, and the precedence constraints are given in Figure 2.1, where a directed graph is used to represent
the task dependencies. Vertices represent tasks and the directed edges represent task dependencies. The
integers next to the vertices represent the task processing requirements. Figure 2.2 depicts two schedules
for this problem instance.

In the next subsection, we present a simple algorithm based on restriction to generate provable good
solutions to this scheduling problem. The solution space is restricted to schedules without forced “idle
time,” i.e., each feasible schedule does not have idle time from the time at which all the predecessors of
task T; (in C) are completed to the time when the processing of task T; begins, for each i.

FIGURE 2.1 Precedence constraints and processing time requirements for Example 2.1.

5 14 18 26 5 17 19

2 7|7 6| 2

(@ (b)

FIGURE2.2 (a)and (b) represent two different AAT schedules for Example 2.1. Schedule (b) is a minimum makespan
schedule.
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2.2.2 Partially Ordered Tasks

Let us further restrict the scheduling policy to construct a schedule from time zero till all the tasks have
been assigned. The scheduling policy is: whenever a machine becomes idle we assign one of the unassigned
tasks that is ready to commence execution, i.e., we have completed all its predecessors. Any scheduling
policy in this category can be referred to as a no-additional-delay scheduling policy. The simplest version
of this scheduling policy is to assign any of the tasks (AAT) ready to be processed. A schedule generated by
this policy is called an AAT schedule. These schedules are like the list schedules [1] discussed in Chapter 1.
The difference is that list schedules have an ordered list of tasks, which is used to break ties. The analysis
for both types of algorithms is the same since the list could be any list.

In Figure 2.2 we give two possible AAT schedules. The two schedules were obtained by breaking ties
differently. The schedule in Figure 2.2(b) is a minimum makespan schedule. The reason for this is that the
machines can only process one of the tasks Tj, T5, or Tg at a time, because of the precedence constraints.

Figure 2.2 suggests that an optimal schedule can be generated by just finding a clever method to break
ties. Unfortunately, one cannot prove that this is always the case because there are problem instances for
which all minimum makespan schedules are not AAT schedules.

The makespan of an AAT schedule is never greater than 2 — % times the one of an optimal schedule for
the instance. This is expressed by

f1 1

i<y =
1 I m

where £ is the makespan of any possible AAT schedule for problem instance I and fi is the makespan

of an optimal schedule for I. We establish this property in the following theorem:

Theorem 2.1

For every instance I of the identical machine scheduling problem, and every AAT schedule, —% <2- 71rl
Proof

Let S be any AAT schedule for problem instance I with makespan f 1. By construction of the AAT schedules
it cannot be that at some time 0 < ¢t < f 1 all machines are idle. Let 7] be the index of a task that finishes
at time f.For j =2, 3, ..., if task Ti;_, has at least one predecessor in C, then define i; as the index
of a task with latest finishing time that is a predecessor (in C) of task Ti,;r We call these tasks a chain
and let k be the number of tasks in the chain. By the definition of task Ti]., it cannot be that there is an
idle machine from the time when task T; j completes its processing to the time when task T; i begins
processing. Therefore, a machine can only be idle when another machine is executing a task in the chain.
From these two observations we know that

k n
mf]f(m_l)ztij+ztj
=1 =1

Since no machine can process more than one task at a time, and since not two tasks, one of which
precedes the other in C, can be processed concurrently, we know that an optimal makespan schedule
satisfies

n k
1
%k 3k
fi z;th and  ff = #
j=1 j=1
Substituting in the above inequality, we know that % <2- % O
i

The natural question to ask is whether or not the approximation ratio 2 — % is the best possible for
AAT schedules. The answer to this question is affirmative, and a problem instance for which this bound is
tight is given in Example 2.2.
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m=1 2m—1 m-1 m
1 2m—1 1 m
2 2 m+1
m—1 m—1 2m-2
m | m+1 Ce 2m-2 2m—1

(a) (b)

FIGURE 2.3 (a) AAT schedule. (b) Optimal schedule for Example 2.2.

Example 2.2

There are 2m — 1 independent tasks. The first m — 1 tasks have processing time requirement m — 1, the
next m — 1 tasks have processing time requirement one, and the last task has processing time requirement
equal to m. An AAT schedule with makespan 2 — 1 is given in Figure 2.3(a), and in Figure 2.3(b) we give
a minimum makespan schedule.

Note that these results also hold for the list schedules [1] defined in Chapter 1. These type of schedules
are generated by a no-additional-delay scheduling rule that is augmented by a list that is used to decide
which of the ready-to-process tasks is the one to be assigned next.

Let us now consider the case when ties (among tasks that are ready) are broken in favor of the task with
smallest index (T; is selected before T; if both tasks are ready to be processed and i < j). The problem
instance I4 given in Figure 2.4 has three machines and eight tasks. Our scheduling procedure (augmented
with a tie-breaking list) generates a schedule with makespan 14. In Chapter 1, we say that list schedules
(which are this type of schedules) have anomalies. To verify this, apply the scheduling algorithm to instance
14, but now there are four machines. One would expect a schedule for this new instance to have makespan
at most 14, but you can easily verify that this is not the case. Now apply the scheduling algorithm to the
instance I4 where every task has a processing requirement decreased by one unit. One would expect a
schedule for this new instance to have makespan at most 14, but you can easily verify that is not the case.
Apply the scheduling algorithm to the problem instance I4 without the precedence constraints from task

5 3 4 3
3 5 13
ONORONO : ;
T2 T4 TS5 T7
T3 T6 T8
ONORORONO
3 5 5 3 3 4 6 11 14

FIGURE 2.4 (a) Problem instance with anomalous behavior. (b) AAT schedule with tie-breaking list.
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4 to 5 and task 4 to 6. One would expect a schedule for this instance to have makespan at most 14, but
that is not the case. These are anomalies. Approximation algorithms suffer from this type of anomalous
behavior. We need to be aware of this fact when using approximation algorithms.

As in the case of Example 2.2, the worst case behavior arises when the task with longest processing time
is being processed while the rest of the machines are idle. Can a better approximation bound be established
for the case when ties are broken in favor of a task with longest processing time (LPT)? The schedules
generated by this rule are called LPT schedules. Any LPT schedule for the problem instance in Figure 2.3
is optimal. Unfortunately, this is not always the case and the approximation ratio in general is the same as
the one for the AAT schedules. To see this just partition task 2m — 1 in Example 2.2 (see Figure 2.3[a]) into
a two-task chain. The first one has processing requirement of €, for some 0 < € < 1, and the second one
m — €. The schedule generated by the LPT rule will schedule first all the tasks with processing requirement
greater than 1 and then the two tasks in the chain.

The problem with the LPT rule is that it only considers the processing requirements of the tasks ready
to process, but ignores the processing requirements of the tasks that follow it. We define the weight of a
directed path as the sum of the processing time requirements of the tasks in the path. Any directed path that
starts at task ¢ with maximum weight among all paths that start at task ¢ is called a critical path for task t.
The critical-path (CP) schedule is defined as a no-additional-delay schedule where the decision of which
task to process next is a task whose CP weight is largest among the ready-to-be processed tasks. The CP
schedule is optimal for the problem instance that was generated by replacing the last task in Example 2.2
by two tasks. However, Graham constructed problem instances for which the makespan of the CP schedule
is 2 — 1/m times the length of an optimal schedule.

It is not known whether or not a polynomial-time algorithm exists with a smaller approximation
ratio even when the processing time requirements for all the tasks are identical and m > 3. There is
a polynomial-time algorithm that generates an optimal schedule when m = 2, but the problem with
different task processing times is NP-hard. In the next subsection we present an algorithm with a smaller
approximation ratio for scheduling independent task.

2.3 Greedy Methods

Another way to generate suboptimal solutions is to apply greedy algorithms. The idea is to generate a
solution by making a sequence of irrevocable decisions. Each of these decisions is a best possible choice at
that point, for example, select an edge of least weight, select the vertex of highest degree, or select the task
with longest processing time. Chapter 4 discusses greedy methods. The discussion also includes primal-
dual approximation algorithms falling into this category. Chapter 5 discusses the recursive greedy method.
This methodology is for the case when making the best possible decision is an NP-hard problem. A large
portion of the bin packing algorithms are greedy algorithms. Bin packing and its variants are discussed in
Chapters 32-35. Other greedy methods appear in Chapters 36, 38, 39, 44-46, 49, 50, 58, 59, and 69. Let us
now discuss the LPT scheduling rule for scheduling independent tasks on identical machines.

2.3.1 Independent Tasks

Another version of this scheduling problem that has received considerable attention is when the tasks
are independent, i.e., the partial order between the tasks is empty. Graham’s [2] elegant analysis for LPT
scheduling has become a classic. In fact, the analysis of quite a few subsequent exact and approximation
scheduling algorithms follow the same approach.

First, we analyze the LPT scheduling rule. For this case there is only one possible schedule, modulo the
relabeling of the tasks. We call this a “greedy method” because of the ordering of the tasks with respect
to their processing requirements. This tends to generate schedules where the shortest tasks end up being
processed last and the resulting schedules tend to have near-optimal makespan. However as we shall see,
one may obtain the same approximation ratio by just scheduling the tasks using a list where the 2m task
with longest processing time appear first (in sorted order) and the remaining tasks appear next in any
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order. This approach could be called “limited greedy.” We discuss other approximation algorithms for this
problem after presenting the analysis for LPT schedules.

Let I be any problem instance with 7 independent tasks and m identical machines. We use f7, as the
makespan for the LPT schedule for I and f; as the one for an optimal schedule. In the next theorem we
establish the approximation ratio for LPT schedules.

Theorem 2.2

For every scheduling problem instance I with n independent tasks and m identical machines, every LPT

schedule satisfies ?—;{ <3

3m*

Proof

It is clear that LPT schedules are optimal for m = 1. Assume that m > 2. The proof is by contradiction.
Suppose the above bound does nothold. Let I be a problem instance with the least number of tasks for which
f—;{ >4—4L. Let n the number of tasks in I, m the number of machines, and assume thatt; > t, > --- > #,.
Let k be the smallest index of a task that finishes at time f 1. It cannot be that k < n, as otherwise the

problem instance Ti, Ty, . . ., Tk is also a counterexample and it has fewer tasks than instance I, but by
assumption problem instance I is a counterexample with the least number of tasks. Therefore, k must be
equal to n.

By the definition of LPT schedules, we know that there cannot be idle time before task T;, begins
execution. Therefore,

Zti-l-(m—l)tnszz

i=1

This is equivalent to

1 < 1
fzf;ZtmL(l—E)tn
i=1

Since each machine cannot process more than one task at a time, we know that f} > Y7, t;/m.

f] 1 th
f—;f”(“a)f—;

Since I is a counterexample for the theorem, this bound must be greater than % - ﬁ Simplifying we
know that f;" < 3t,. Since t, is the task with smallest processing time requirement it must be that in an
optimal schedule, for instance, I none of the machines can process three or more tasks. Therefore, the
number of tasks 7 is at most 2m.

For problem instance I, let $* be an optimal schedule with least > fiz, where f; is the makespan in
§* for machine i. Assume without loss of generality that the tasks assigned to each machine are arranged
from largest to smallest with respect to their processing times. All machines have at most two tasks, as S*
is an optimal schedule for I which by definition is a counterexample for the theorem.

Let i and j be two machines in schedule $* such that f; > f;, machine i has two tasks and machine
7 has at least one task. Let a and b be the task index for the last task processed by machine i and j,
respectively. It cannot be that ¢, > 1, as otherwise applying the interchange given in Figure 2.5(a) results

i|:IZ|:>|:IEIi:>|:|
D 17 s [ T[]

(@ (b)

Combining these two bounds we have

FIGURE 2.5 Schedule transformations.
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in an optimal schedule with smaller ) fiz. This contradicts the fact that S* is an optimal schedule with
least ) fiz. Let i and j be two machines in schedule S* such that machine i has two tasks. Let a be the
task index for the last task processed by machine i. It cannot be that f; — t, > f; as otherwise applying
the interchange given in Figure 2.5(b) results in an optimal schedule with smaller Y 2. This contradicts
the fact that S* is an optimal schedule with least > f7.

Since the transformations given in Figure 2.5(a) and Figure 2.5(b) cannot apply, the schedule $* must
be of the form shown in Figure 2.6 after renaming the machines, i.e., machine i is assigned task T;
(if i < n) and task Tpyy—jy1 (if 2m — i + 1 < ). But this schedule is an LPT schedule and f =
f*. Therefore, there cannot be any counterexamples to the theorem. This completes the proof of the
theorem. O

For all m there are problem instances for which the ratio given by Theorem 2.2 is tight. In Figure 2.7 we
give one of such problem instance for three machines.

The important properties needed to prove Theorem 2.2 are that the longest 21 tasks need to be scheduled
via LPT, and either the schedule will be optimal for the 2 task or at least three tasks will be assigned to a
machine. The first set of m tasks, the ones with longest processing time, will be assigned to one machine
each, so the order in which they are assigned is not really important. The next set of m tasks need to be
assigned from longest to shortest processing times as in the LPT schedule. The remaining tasks can be
assigned in any order as long as whenever a machine finishes a task the next task in the list is assigned
to that machine. Any list schedule whose list follows the above ordering can be shown to have makespan
at most % — ﬁ times the one of an optimal schedule. These type of schedules form a restriction on the
solution space.

It is interesting to note that the problem of scheduling 2m independent tasks is an NP-hard problem.
However, in polynomial time we can find out if there is an optimal schedule in which each machine has at

most two tasks. And this is all that is needed to establish the % — ﬁ approximation ratio. One of the first

i+1 | n-1 |

m—1 | m+2 |

m | m+1 |

FIGURE 2.6 Optimal schedule.

5 8 11 5 9

(a) (b)

FIGURE 2.7 (a) LPT schedule. (b) Optimal schedule.
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avenues of research explored was to see if the same approach would hold for the longest 3m tasks. That is,
give a polynomial-time algorithm that finds an optimal schedule in which each machine has at most three
tasks. If such an algorithm exists, we could use it to generate schedules that are within % — ﬁ times the
makespan of an optimal schedule. This does not seem possible as Garey and Johnson [3] established that
this problem is NP-hard.

Other approximation algorithms with improved performance were subsequently developed. Coffman
et al. [4] introduced the multifit (MF) approach. A k attempt MF approach is denoted by MF. The MF
procedure performs k binary search steps to find the smallest capacity ¢ such that all the tasks can be
packed into a set of m bins when packing using first fit with the tasks sorted in nondecreasing order of
their processing times. The tasks assigned to bin i correspond to machine i and c¢ is the makespan of
the schedule. The approximation ratio has been shown to be 1.22 4+ 2~ and the time complexity of the
algorithm is O(nlogn + knlog m). Subsequent improvements to 1.2 4 27k [5] and % + Zik [6] were
possible within the same time complexity bound. However, the latter algorithm has a very large constant
associated with the big “oh” bound.

Following a suggestion by D. Kleitman and D. E. Knuth, Graham [2] was led to consider the following
scheduling strategy. For any k > 0 an optimal schedule for the longest k tasks is constructed and then the re-
maining tasks are scheduled in any order using the no-additional-delay policy. He shows that this algorithm
has an approximation ratio 1 + % and takes O(nlog m+ km) time when there is a fixed number of
machines. This was the first polynomial-time approximation scheme for any problem. This polynomial-
time approximation scheme, as well as the ones for other problems are explained in more detail in Chapter 9.
Fully polynomial-time approximation schemes are not possible for this problem unless P = NP [3].

2.4 Relaxation: Linear Programming Approach

Let us now consider the minimum-weight vertex cover, which is a fundamental problem in the study of
approximation algorithms. This problem is defined as follows

Problem: Minimum-weight vertex cover.

Instance: Given a vertex weighted undirected graph G with the set of vertices V = {vy, vz, ..., v},
edges E = {ey, €2, ..., e} and a positive real number (weight) w; assigned to each vertex v;.
Objective: Find a minimum-weight vertex cover, i.e., a subset of vertices C C V such that every edge
is incident to at least one vertex in C. The weight of the vertex cover C is the sum of the weight of

the vertices in C.

It is well known that the minimum-weight vertex cover problem is an NP-hard problem. Now consider
the following simple greedy algorithm to generate a vertex cover. Assume without loss of generality that
the graph G does not have isolated vertices, i.e., vertices without any edges. An edge is said to be uncovered
with respect to a set of vertices C if both of its endpoints are vertices in V\C, i.e., if both endpoints are
notin C.

Algorithm Min-Weight(G)
Let C = s
while there is an uncovered edge do
Let U be the set of vertices adjacent to at least one uncovered edge;
Add to C aleast weight vertex in set U;
endwhile
end

Algorithm Min-Weight is not a constant-ratio approximation algorithm for the vertex cover problem.
Consider the family of star graphs C each with / 4 1 nodes, I edges, the center vertex having weight k and
the I leaves having weight 1, for any positive integers k > 2 and I > 3. For each of these graphs Algorithm
Min-Weight generates a vertex cover that includes all the leaves in the graph and the weight of the cover

© 2007 by Taylor & Francis Group, LLC



Basic Methodologies and Applications 2-9

is I. For all graphs in K with k = 2, an optimal cover has weight 2 and includes only the center vertex.
Therefore, Algorithm Min-Weight has an approximation ratio of at least //2, which cannot be bounded
above by any fixed constant.

Algorithm Max-Weight is identical to Algorithm Min-Weight, but instead of selecting the vertex in set
U with least weight, it selects one with largest weight. Clearly, this algorithm constructs an optimal cover
for the graphs identified above where Algorithm Min-Weight performs badly. For every graph in /C, this
algorithm selects as its vertex cover the center vertex which has weight k. Now for all graphs in K with
I = 2, an optimal cover consists of both leaf vertices and it has weight 2. Therefore, the approximation
ratio for Algorithm Max-Weight is at least k/2, which cannot be bounded above by any fixed constant.

All of the graphs identified above, where one of the algorithms performs badly, have the property that
the other algorithm constructs an optimal solution. A compound algorithm that runs both algorithms
and then selects the better of the two vertex covers may be a constant-ratio algorithm for the vertex cover
problem. However, this compound algorithm can also be easily fooled by just using a graph consisting
of two stars, where each of the individual algorithms failed to produce good solutions. Therefore, this
compound algorithm fails to generate constant-ratio approximate solutions. One may now argue that we
could partition the graph into connected components and apply both algorithms to each component. For
these “two-star” graphs the new compound algorithm will generate an optimal solution. But in general
this new approach fails to produce a constant-ratio approximate solution for all possible graphs. Adding
an edge between the center vertex in the “two-star” graphs gives rise to problem instances for which the
new compound algorithm fails to provide a constant ratio approximate solution.

A more clever approach is a modified version of Algorithm Min-Weight, where instead of selecting a
vertex of least possible weight in set U, one selects a vertex v in set U with least w(v)/u(v), where u(v) is the
number of uncovered edges incident to vertex v. This seems to be a better strategy because when vertex v is
added to C it covers u(v) edges at a total cost of w(v). So the cost (weight) per edge of w(v) /u(v) isincurred
when covering the uncovered edges incident to vertex v. This strategy solves optimally the star graphs in
K defined above. However, even when all the weights are equal, one can show that this is not a constant
ratio approximation algorithm for the weighted vertex cover problem. In fact, the approximation ratio for
this algorithm is about log n. Instances with a simple recursive structure that asymptotically achieve this
bound as the number of vertices increases can be easily constructed. Chapter 3 gives an example of how
to construct problem instances where an approximation algorithm fails to produce a good solution.

Other approaches to solve the problem can also be shown to fail to provide a constant-ratio approx-
imation algorithm for the weighted vertex cover. What type of algorithm can be used to guarantee a
constant-ratio solution to this problem? Let us try another approach.

Another way to view the minimum-weight vertex cover is by defining a 0/1 variable x; for each vertex v;
in the graph. The 0/1 vector X defines a subset of vertices C as follows. Vertex v; isin C ifand only if x; = 1.
The set of vertices C defined by X isa vertex cover ifand only if for every edge {i, j} inthe graph x; +x; > 1.
The vertex cover problem is expressed as an instance of the 0/1 integer linear programming (ILP) as follows:

minimize Ziev WiXi (2.1)
subjectto x; +x; > 1 V{i, jle E (2.2)
xi€{0,1} VieV (2.3)

The 0/1 ILP is also an NP-hard problem.

Animportant methodology for designing approximation algorithmsis relaxation. In this case one relaxes
the integer constraints for the x; values. That is, we replace constraint (2.3) (x; = {0, 1}) by 0 < x; <1
(or simply x; > 0, which in this case is equivalent). This means that we are augmenting the solution space
by adding solutions that are not feasible for the original problem. This approach will at least provide us
with what appears to be a good lower bound for the value of an optimal solution of the original problem,
since every feasible solution to the original problem is a feasible solution to the relaxed problem (but the
converse is not true). This relaxed problem is an instance of the linear programming (LP) problem which
can be solved in polynomial time. Let X* be an optimal solution to the LP problem. Clearly, X* might
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not be a vertex cover as the x;° values may be noninteger. The previous interpretation for the X* values
has been lost because it does not make sense to talk about a fractional part of a vertex being part of a
vertex cover. To circumvent this situation, we need to use the X™ vector to construct a 0/1 vector X that
represents a vertex cover. For a vector X to represent a vertex cover it needs to satisfy inequality (2.2) (i.e.,
% + %j = 1), for every edge ex = {i, j} € E. Clearly, the inequalities hold for X*. This means that for
each edge ex = {7, j} € E atleast one of x" or x;k has value at least greater than or equal to % So the vector
X defined from X*as %; = 1 if x¥ > % (rounding up) and £; = 0if x7 < % (rounding down) represents a
vertex cover. Furthermore, because of the rounding up the objective function value for the vertex cover X
isat most 2y w;x}". Since ) w;x; value is a lower bound for an optimal solution to the weighted vertex
cover problem, we know that this procedure generates a vertex cover whose weight is at most twice the
weight of an optimal cover, i.e., it is a 2-approximation algorithm. This process is called (deterministic) LP
rounding. Chapters 6,7,9, 11,37, 45,57, 58, and 70 discuss and apply this methodology to other problems.

Another way to round is via randomization, which means in this case that we flip a biased coin (with
respect to x; and perhaps other factors) to decide the value for £;. The probability of X isavertex cover and
its expected weight can be computed. By repeating this randomization process several times, one can show
that a cover with weight at most twice the optimal one will be generated with very high probability. In this
case it is clear that randomization is not needed. However, for other problems it is justified. Chapters 4,
6, 7, 11, 12, 57, 70, and 80 discuss LP randomized rounding, and Chapter 8 discusses more complex
randomized rounding for semidefinite programming (SDP).

The above rounding methods have the disadvantage that an LP problem needs to be solved. Experimental
evaluations over several decades have shown that the Simplex method solves quickly (in poly time) the LP
problem. But the worst-case time complexity is exponential with respect to the problem size. In Chapter 1
we have discussed the Ellipsoid algorithm and more recent ones that solve LP problems. Even though these
algorithms have polynomial-time complexity, there is a term that depends on the number of bits needed
to represent the input. Much progress has been made in speeding up these procedures, but the algorithms
are not competitive with typical O(#?) time algorithms for other problems.

Let us now discuss another approximation algorithm for the minimum vertex cover problem that it is
“independent” of LP, and then we discuss a local-ratio and a primal-dual approach to this problem.

We call this approach the «-vector approach. For every vertex i € V, we define §(i) as the set of edges
incident to vertex i. Let &« = (a1, @2, . . ., &y,) be any vector of m nonnegative real values, where m = | E|
is the number of edges in the graph. For all k multiply the kth edge inequality by a,

apx; +agxj > ap Vex=1{i, j} € E (2.4)

The total sum of these inequalities can be expressed as
S Y wnz Y 23)
i€V ered(i) ex€E

Define 8; = Zekeé(i) af for every vertex i € V. In other words, B; be the sum of the o values of all the
edges incident to vertex i. Substituting in the above inequality we know that

D Bixi= Y (2.6)
ieV ex€E
Suppose that the « vector is such that w; > B; for all i. Then it follows that
dowixi= Y Bixiz Yy (2.7)
ieV ieV ex€E

In other words any vector « such that the resulting vector 8 computed from it satisfies w; > B; provides
us with the lower bound ), . @k for the objective function value of every vector X that represents a
vertex cover. In other words, if we assign a positive weight to each edge in such a way that the sum of the
weight of the edges incident to each vertex i is at most w;, then the sum of the weight of the edges is a
lower bound for an optimum solution.
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This is a powerful lower bound. To get maximum strength we need to find a vector « such that y | ereE Ok
is maximum. But finding this vector is as hard as solving the LP problem described earlier. What if we find a
maximal vector a, 1.e., a vector that cannot possibly be increased in any of its components? This is a simple
task. It is just a matter of starting with an « vector with all entries being zero and then increasing one of its
components until it is no longer possible to do so. We keep on doing this until there are no edges whose
« value can be increased. In this maximal solution, we know that for each edge in the graph at least one
of its endpoints has the property that 8; = w;, as otherwise the maximality of « is contradicted. Define
the vector X from the « vector as follows: x; = 1 if Bi = wj, and x; = 0, otherwise. Clearly, X represents
a vertex cover because for every edge in the graph we know that at least one of its vertices has 8; = w;.
What is the weight of the vertex cover represented by X? We know that Swixi =Y Biki <2k
because each g can contribute its value to at most two g;s. Therefore, we have a simple 2-approximation
algorithm for the weighted vertex cover problem. Furthermore, the procedure to construct the vertex cover
takes linear time with respect to the number of vertices and edges in the graph.

This algorithm was initially developed by Bar-Yehuda and Even [7] using the LP relaxation and its
dual. This approach is called the primal-dual approach. It will be discussed later in this section. The above
algorithm can be proven to be a 2-approximation algorithm without using the ILP formulation. That is,
the same result can be established by just using simple combinatorial arguments [8].

Another related approach, called local ratio, was developed by Bar-Yehuda and Even [9]. Initially, each
vertex is assigned a cost which is simply its weight and it is referred to as the remaining cost. At each step the
algorithm makes a “down payment” on a pair of vertices. This has the effect of decreasing the remaining
cost of each of the two vertices. Label the edges in the graph {ej, ey, . . ., e;,}. The algorithm considers one
edge at a time using this ordering. When the kth edge ex = {i, j} is considered, define yj as the minimum
of the remaining cost of vertex i and vertex j. The edge makes a down payment of y to each of its two
endpoints and each of the two vertices has its remaining cost decreased by y. The procedure stops when
we have considered all the edges. All the vertices whose current cost is zero have been paid for completely
and they are yours to keep. The remaining ones have not been paid for and there are “no refunds” (not
even if you talk to the store manager). The vertices that have been paid for completely form a vertex cover.
The weight of all the vertices in the cover generated by the procedure is at most twice » exeE Vi whichis
simply the sum of the down payments made. What is the weight of an optimal vertex cover? The claim is
itisequalto ), <k Yk The reason is simple. Consider the first step when we introduce y; for edge e;. Let
Iy be the initial problem instance and I; be the resulting instance after deleting edge e; and reducing the
cost of the two endpoints of edge e; by y;. One can prove that f*(Ip) = f*(I;) + y1, and inductively that
() =>. exeE Yk [10]. The algorithm is a 2-approximation algorithm for the weighted vertex cover.
The approach is called local ratio because at each step one adds 2y to the value of the solution generated
and one accounts for y value of an optimal solution. This local-ratio approach has been successfully
applied to quite a few problems. The best feature of this approach is that it is very simple to understand
and does not require any LP background.

The primal-dual approach is similar to the previous ones, but it uses the foundations of LP theory. The
LP relaxation problem is

o N 28
minimize Ziev Wix; (2.8)
subjectto xj +x; > 1 Ver ={i, j} € E (2.9)

x>0 VieV. (2.10)

The LP problem is called the primal problem. The corresponding dual problem is

imi 2.11
maximize ZekeE Yk ( )
j <w; Vi 2.12
subject to Zekea(i) yw<w;VieV ( )
=0 Ve, € E (2.13)
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As you can see the Y vector is simply the o vector defined earlier, and the dual is to find a Y vector with
maximum ) _;_y, ;. Linear programming theory [11,12] states that any feasible solution X to the primal
problem and any feasible solution Y to the dual problem are such that

Z Yk = sz'xi

ex€E ieV

This is called weak duality. Strong duality states that

D= wixt

ex€E ieV

where X* is an optimal solution to the primal problem and Y* is an optimal solution to the dual problem.
Note that the dual variables are multiplied by weights which are the right-hand side of the constraints in
the primal problem. In this case all of them are one.

The primal-dual approach is based on the weak duality property. The idea is to first construct a feasible
solution to the dual problem. That solution will give us a lower bound for the value of an optimal vertex
cover, in this case. Then we use this solution to construct a solution to the primal problem. The idea is
that the difference of the objective function value between the primal and dual solutions we constructed
is “small.” In this case we construct a maximal vector Y (as we did with the « vector before). Then we
note that since the Y vector is maximal, then for at least one of the endpoints (say i) of every edge must
satisfy Inequality 2.12 tight, i.e., ZekES(i) ¥k = w;. Now define vector X with x; = 1 ifinequality (2.12) is
tight in the dual solution. Clearly, X represents a feasible solution to the primal problem and its objective
function value is at most 2y, yx. It then follows by weak duality that an optimal weighted vertex cover
has value at least ), yx and we have a 2-approximation algorithm for the weighted vertex cover. It is
simple to see that the algorithm takes linear time (with respect to the number of vertices and edges in the
graph) to solve the problem.

There are other ways to construct a solution to the dual problem. In Chapters 4 and 13 another method
is discussed for finding a solution to the dual problem. Note the difference in the time required to construct
the solution. Chapter 13 discusses a “distributed” version of this algorithm. This algorithm makes decisions
by using only “local” information. Chapters 37, 39, 40, and 71 discuss several approximation algorithms
based on variations of the primal dual approach. Some of these methods are not exactly primal dual, but
may be viewed this way.

Linear programming has also been used as a tool to compute the approximation ratio of some algorithms.
This type of research may eventually be called the automatic analysis of approximation algorithms. Chapter 3
discusses an early approach to compute the approximation ratio, and Chapter 39 discusses a more recent
one. In the former case, a set of LP needed to be solved. Once this was computed it gave the necessary
insight on how to prove it analytically. In the latter case, one just formulates the problem and finds bounds
for the value of an optimal solution to the LP problem.

2.5 Inapproximability

Sahni and Gonzalez [13] established that constant-ratio polynomial time approximation algorithms exist
for some problems only if P = NP. In other words, finding a suboptimal solution to some problems
is as hard as finding an optimal solution. Any polynomial-time algorithm that generates k-approximate
solution can be used to find an optimal solution to the problem in polynomial-time. One of these problems
is the “classical” version of the TSP defined in Chapter 1, not the restricted one defined over metric graphs.
To prove this result we show that an NP-complete problem, called the Hamiltonian Cycle (HC) problem,
can be solved in polynomial time if there is a polynomial-time algorithm for the TSP that generates a
k-approximate solution, for any fixed constant k. The HC problem is given an undirected graph, G =
(V, E), determine whether on not the graph has a HC. A HC for an undirected graph G is a path that
starts at vertex 1, visits each vertex exactly once, and ends at vertex 1.
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To prove this result a polynomial transformation (Chapter 1 and [3]) is used. Let G = (V, E) be any
instance of the HC problem with n = |V|. Now construct an instance G’ = (V’, E’, W’) of the TSP as
follows. The graph G’ has n vertices and it is complete (all the edges are present). The edge {i, j} in E’
has weight 1 if the edge {i, j} is in E, and weight Z otherwise. The value of Zis (k — I)n+2 > 1. It
will be clear later on why it was defined this way. If the graph G has a HC, then we know that the graph
G’ has a tour with weight n. However, if G does not have a HC, then all tours for the graph G’ have
weight greater than or equal to n — 1 + Z. A k-approximate solution (tour) when f*(G’) = n must have
weight at most f(G’) < kf*(G’) = kn. When G does not have a HC, the best possible tour that can be
found by the approximation algorithm is one with weight at least n — 1 + Z = kn + 1. Therefore, if the
approximation algorithm returns a tour with weight at most k#n, then G has a HC, otherwise (the tour
returned has weight > kn) G does not have a HC. Since the algorithm takes polynomial-time with respect
to the number of vertices and edges in the graph, it then follows that the algorithm solves in polynomial
time the HC problem. So we say that the TSP is inapproximable with respect to any constant ratio. It is
inapproximable in the sense that a polynomial-time constant-ratio approximation algorithm implies the
solution to a computational complexity question. In this case it is the P = NP question.

In the last 15 years there have been new inapproximability results. These results have been for constant,
In n, and #€ approximation ratios. The techniques to establish some of these results are quite complex,
but an important component continues to be reducibility. Chapter 17 discusses all of this work in detail.

2.6 Traditional Applications

We have used the label “traditional applications” to refer to the more established combinatorial optimiza-
tion problems. Although some of the problems falling into the other categories also fall into this category
and vice versa. The problems studied in this part of the handbook fall into the following categories: bin
packing, packing, facility dispersion and location, traveling salesperson, Steiner tree, scheduling, planning,
generalized assignment, and satisfiability. Let us briefly discuss these categories.

One of the fundamental problems in approximations is the bin packing problem. Chapter 32 discusses
online and offline algorithms for one-dimensional bin packing. Chapters 33 and 34 discuss variants of the
bin packing problem. This include variations that fall into the following type of problems: the number of
items packed is maximized while keeping the number of bins fixed; there is a bound on the number of
items that can be packed in each bin; dynamic bin packing, where each item has an arrival and departure
time; the item sizes are not known, but the ordering of the weights is known; items may be fragmented
while packing them into fixed capacity bins, but certain items cannot be assigned to the same bin; bin
stretching; variable sized bin packing problem; and the bin covering problem.

Chapter 35 discusses several ways to generalize the bin packing problem to more dimensions. Two-
and three-dimensional strip packing, bin packing in dimensions two and higher, vector packing, and
several other variations are discussed. Primal-dual approximation algorithms for packing and stabbing (or
covering) problems are covered in Chapter 37. Cutting and packing problems with important applications
in the wood, glass, steel, and leather industries as well as in very large-scale integration (VLSI) design,
newspaper paging, and container and truck loading are discussed in Chapter 36. For several decades,
cutting and packing has attracted the attention of researchers in various areas including operations research,
computer science, manufacturing, etc.

Facility dispersion problems are covered in Chapter 38. Dispersion problems arise in a number of
applications, such as locating obnoxious facilities, choosing sites for business franchises, and selecting
dissimilar solutions in multiobjective optimization. The facility location problem that model the placement
of “desirable” facilities such as warehouses, hospitals, and fire stations are discussed in Chapter 39. These
algorithms are called “dual fitting and factor revealing.”

Very interesting approximation algorithms for the prize collecting TSP is studied in Chapter 40. In this
problem a salesperson has to collect a certain amount of prizes (the quota) by visiting cities. A known
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prize can be collected in every city. Chapter 41 discusses branch-and-bound algorithms for the TSP. These
algorithms have been implemented to run in a multicomputer environment. A general software tool for
running branch and bound algorithms in a distributed environment is discussed. This framework may
be used for almost any divide-and-conquer computation. With minor adjustments, this tool can take any
algorithm defined as a computation over directed acyclic graph, where the nodes refer to computations
and the edges specify a precedence relation between computations, and run in a distributed environment.

Approximation algorithms for the Steiner tree problem are discussed in Chapter 42. This problem has
applications in several research areas. One of these areas is VLSI physical design. In Chapter 43, practical
approximations for a restricted Steiner tree problem are discussed.

Meeting deadline constraints is of great importance in real-time systems. In situations when this is not
possible, it is often more desirable to execute some parts of every task, than to give up completely the
execution of some tasks. This model allows for the trade-off of the quality of computations in favor of
meeting the deadline constraints. Every task is logically decomposed into two subtasks, mandatory and
optional. Thistype of scheduling problems fall under the imprecise computation model. These problems are
discussed in Chapter 44. Chapter 45 discussed approximation algorithms for the malleable task scheduling
problem. In this model, the processing time of a task depends on the number of processors allotted to
it. A generalization of both the bin packing and TSP is the vehicle scheduling problem. Approximation
algorithms for this problem are discussed in Chapter 46.

Automated planning consists of finding a sequence of actions that transforms an initial state into one
of the goal states. Planning is widely applicable, and has been used in such diverse application domains
as spacecraft control, planetary rover operations, automated nursing aides, image processing, computer
security, and automated manufacturing. Chapter 47 discusses approximation algorithms and heuristics
for problems falling into this category.

Chapter 48 presents heuristics and metaheuristics for the generalized assignment problem. This problem
is a natural generalization of combinatorial optimization problems including bipartite matching, knapsack
and bin packing problems; and has many important applications in flexible manufacturing systems, facility
location, and vehicle routing problems.

Chapter 49 examines probabilistic greedy heuristics for maximization and minimization versions of the
satisfiability problem.

2.7 Computational Geometry and Graph Applications

The problems falling into this category have applications in several fields of study, but can be viewed as
computational geometry and graph problems. The problems studied in this part of the handbook fall
into the following categories: 2D and 3D triangulations, connectivity problems, design and evaluation
of geometric networks, pair decompositions, minimum edge length partitions, digital geometry, disjoint
path problems, graph partitioning, graph coloring, finding subgraphs or trees with certain properties, etc.

Triangulation is not only an interesting theoretical problem in computational geometry, it also has many
important applications, such as finite element methods for computer-aided design (CAD) and physical sim-
ulations. Chapter 50 discusses approximation algorithms for triangulations in two and three dimensions.

Chapter 51 examines approximation schemes for various geometric minimum-cost k-connectivity
problems and for geometric survivability problems, giving a detailed tutorial of the novel techniques
developed for these algorithms.

Geometric networks arise in many applications. Road networks, railway networks, telecommunication,
pattern matching, bioinformatics—any collection of objects in space that have some connections between
them can be modeled as a geometric network. Chapter 52 considers the problem of designing a “good”
network and the dual problem, i.e., evaluating how “good” a given network is. Chapter 53 givesan overview
of several proximity problems that can be solved efficiently using the well-separated pair decomposition
(WSPD). A WSPD may be regarded as a “small” set of edges that approximates the dense complete
Euclidean graph.
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Approximation algorithms for minimum edge length partitions of rectangles with interior points are
discussed in Chapter 54. This problem has applications in the area of CAD of integrated circuits and
systems. Chapter 55 considers partitions of finite d-dimensional integer grids by lines in two-dimensional
space or by hyperplanes and hypersurfaces in an arbitrary dimension. Some of these problems arise in
the areas of digital image processing (analysis) and neural networks. Chapter 56 discusses the problem of
finding a planar subgraph of maximum weight in a given graph. Problems of this form have applications
in circuit layout, facility layout, and graph drawing.

Finding disjoint paths in graphs is a problem that has attracted considerable attention from at least
three perspectives: graph theory, VLSI design, and network routing/flow. The corresponding literature
is extensive. Chapter 57 explores offline approximation algorithms for problems on general graphs as
influenced from the network flow perspective.

Chapter 58 surveys approximation algorithms and hardness results for different versions of the gen-
eralized Steiner network problem in which we seek to find a low-cost subgraph that satisfies prescribed
connectivity requirements. These problems include the following well-known problems: min-cost k-flow,
min-cost spanning tree, traveling salesman, directed/undirected Steiner tree, Steiner forest, k-edge/node-
connected spanning subgraph, and others.

Besides numerous network design applications, spanning trees also play an important role in several
newly established research areas, such as biological sequence alignments and evolutionary tree construc-
tion. Chapter 59 explores the problem of designing approximation algorithms for spanning-tree problems
under different objective functions. It focuses on approximation algorithms for constructing efficient
communication spanning trees.

Graph partitioning problem arises in a wide range of applications. Due to the complexity of the problem,
heuristics have to be applied to partition large graphs in a reasonable amount of time. Chapter 60 discusses
different approaches to the graph partitioning problem. The k-way partitioning of a hypergraph problem
seeks to minimize a given cost function of such an assignment. A standard cost function is net cut, which
is the number of hyperedges that span more than one partition, or, more generally, the sum of weight of
such edges. Constraints are typically imposed on the solution, and make the problem difficult. Several
heuristics for this problem are discussed in Chapter 61.

In many applications such as design of transportation networks, one often needs to identify a set of
regions/sections whose damage will cause the greatest increase in transportation cost within the network.
Once identified, extra protection can be deployed to prevent them from being damaged. A version of
this problem is finding the most vital edges whose removal will cause the greatest damage to a particular
property of the graph. The problems are traditionally referred to as prior analysis problems in sensitivity
analysis and it is discussed in Chapter 62.

Stochastic local search algorithms for the classical graph coloring problem are discussed in Chapter 63.
This problem arises in many real-life applications like register allocation, air traffic flow management,
frequency assignment, light wavelengths assignment in optical networks, or timetabling. Chapter 64 dis-
cusses ant colony optimization (ACO) for solving the maximum disjoint paths problems. This problem
has many applications including the establishment of routes for connection requests between physically
separated network endpoints.

2.8 Large-Scale and Emerging Applications

The problems arising in the areas of wireless and sensor networks, multicasting, multimedia, bioinformatics
VLSI CAD, game theory, data analysis, digital reputation, and color quantization may be referred to as
problems in “emerging” applications and normally involve large-scale problems instances. Some of these
problems also fall in the other application areas.

Chapter 65 describes existing multicast routing protocols for ad hoc and sensor networks, and analyze
the issue of computing minimum cost multicast trees. The multicast routing problem, and approximation
algorithms for mobile ad hoc networks (MANETs) and wireless sensor networks (WSN’s) are presented.
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Since flat networks do not scale, it is important to overlay a virtual infrastructure on a physical network.
The design of the virtual infrastructure should be general enough so that it can be leveraged by a multitude
of different protocols. Chapter 66 proposes a novel clustering scheme based on a number of properties
of diameter-2 graphs. Extensive simulation results have shown the effectiveness of the clustering scheme
when compared to other schemes proposed in the literature.

Ad hoc networks are formed by collections of nodes which communicate with each other through radio
propagation. Topology control problems in such networks deal with the assignment of power values to the
nodes so that the power assignment leads to a graph topology satisfying some specified properties. The
problem is to minimize a specified function of the powers assigned to the nodes. Chapter 67 discusses some
known approximation algorithms for this type of problems. The focus is on approximation algorithms
with proven performance guarantees.

An important requirement of wireless ad hoc networks is that they should be self-organizing. Energy
conservation and network performance are probably the most critical issues in wireless ad hoc networks,
because wireless devices are usually powered by batteries only and have limited computing capability and
memory. Many proposed methods apply computational geometry technique (specifically, geometrical
spanner) to achieve power efficiency. In Chapter 68, approximation algorithms of power spanner for ad
hoc networks are reviewed.

As networks continue to grow explosively both in size and internal complexity, the ever-increasing
tremendous traffic load and applications drive researchers to develop techniques for analyzing network
performance and managing network resources. To accomplish this, one needs to know the current internal
structure of the network. Discovery of internal information such as topology and localized lossy links plays
an important role in resource management, loss recovery, and congestion control. Chapter 69 proposes a
way to identify this via message multicasting.

Due to the recently rapid development of multimedia applications, multicast has become the critical
technique in many network applications. In multicasting routing, the main objective is to send data from
one or more sources to multiple destinations to minimize the usage of resources such as bandwidth,
communication time, and connection costs. Chapter 70 discusses contemporary research concerning
multicast congestion problems in different type of networks.

Recent progress in audio, video, and data storage technologies has given rise to a host of high-bandwidth
real-time applications such as video conferencing. These applications require Quality of Service (QoS)
guarantees from the underlying networks. Thus, multicast routing algorithms, which manage network
resources efficiently and satisfy the QoS requirements, have come under increased scrutiny in recent years.
Chapter 71 considers the problem of finding an optimal multicast tree with certain special characteristics.
This problem is a generalization of the classical Steiner tree problem.

Scalability is especially critical for peer-to-peer systems. The basic idea of peer-to-peer systems is to
have an open self-organizing system of peers that does not rely on any central server and where peers can
join and leave, at will. This has the benefit that individuals can cooperate without fees or an investment
in additional high-performance hardware. Also, peer-to-peer systems can make use of the tremendous
amount of resources (such as computation and storage) that otherwise sit idle on individual computers
when they are not in use by their owners. Chapter 72 seeks ways of implementing join, leave, and route
operations so that for any sequence of join, leave, and route requests can be executed quickly; the degree,
diameter, and stretch factor of the resulting network are as small as possible; and the expansion of the
resulting network is as large as possible. Good approximate solutions to this multiobjective optimization
problem are discussed in Chapter 72.

Scheduling problems modeling the broadcasting of data items over wireless channels are discussed in
Chapter 73. The chapter covers exact and heuristic solutions for variants of this problem.

Microarrays have been evolving rapidly, and are among the most novel and revolutionary new biotech-
nologies. They allow us to monitor the expression of thousands of genes at once. With a single experiment
billions of individual hypotheses can be tested. Chapter 74 presents three illustrative examples in the
analysis of microarray data sets.
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Chapter 75 considers two problems from computational biology, namely, primer selection and planted
motif search. The closest string and the closest substring problems are closely related to the planted motif
search problem. Representative approximation algorithms for these problems are discussed.

There are interesting algorithmic issues that arise when length constraints are taken into account in
the formulation of a variety of problems on string similarity, particularly in the problems related to
local alignment. Chapter 76 discusses these types of problems which have their roots and most striking
applications in computational biology. Chapter 77 discusses approximation algorithms for the selection of
robust tag single nucleotide polymorphisms (SNPs). This is a problem in human genomics that arises in
the current experimental environment. Chapter 78 considers a sphere packing problem. Recent interest on
this problem was motivated by medical applications in radiosurgery. Radiosurgery is a minimally invasive
surgical procedure that uses radiation to destroy tumors inside the human body.

VLSI has produced some of the largest combinatorial optimization problems ever considered. Placement
is one of the most difficult of these problems. Placement problems with over 10 million variables and
constraints are not unusual, and problem sizes continue to grow with Moore’s law. Realistic objectives
and constraints for placement incorporate complex models of signal timing, power consumption, wiring
routability, manufacturability, noise, temperature, etc. Chapter 79 considers VLSI placement algorithms.

Due to delay scaling effects in deep-submicron technologies, interconnect planning and synthesis are
becoming critical to meeting VLSI chip performance targets with reduced design turnaround time. In
particular, the global routing phase of the design cycle is receiving renewed interest, as it must efficiently
handle increasingly more complex constraints for increasingly larger designs. Chapter 80 presents an
integrated approach for congestion and timing-driven global routing, buffer insertion, pin assignment,
and buffer/wire sizing. This is a multiobjective optimization problem.

Chapters 81-83 discuss game theory problems related to the Internet and scheduling. They deal with ways
of achieving equilibrium. Issues related to algorithmic game theory, approximate economic equilibrium
and algorithm mechanism design are discussed.

Over the last decade, the size of data seen by a computational problem has grown immensely. There
appears to be more web pages than human beings, and web pages have been successfully indexed. Routers
generate huge traffic logs, in the order of terabytes, in a short time. The same explosion of data is felt
in observational sciences because our capabilities of measurement have grown significantly. Chapter 84
considers a processing mode where input items are not explicitly stored and the algorithm just passes over
the data once.

A virtual community can be defined as a group of people sharing a common interest or goal who
interact over a virtual medium, most commonly the Internet. Virtual communities are characterized by
an absence of face-to-face interaction between participants which makes the task of measuring the trust-
worthiness of other participants harder than in nonvirtual communities. This is because of the anonymity
that the Internet provides, coupled with the loss of audiovisual cues that help in the establishment of trust.
As a result, digital reputation management systems are an invaluable tool for measuring trust in virtual
communities. Chapter 85 discusses various systems which can be used to generate a good solution to this
problem.

Chapter 86 considers the problem of approximating “colors.” Several algorithmic methodologies are
presented and evaluated experimentally. These algorithms include dimension weighted clustering approx-
imation algorithms.
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3.1 Introduction

Restriction is one of the most basic techniques to design approximation algorithms. The idea is to generate
a solution to a given problem P by providing an optimal or suboptimal solution to a subproblem of P.
By a subproblem of a problem P we mean restricting the solution space for P by disallowing a subset of
the feasible solutions. The most common approach is to solve one subproblem, but there are algorithms
that first solve several subproblems and the algorithm outputs the best of these solutions. An optimal or
suboptimal solution to the subproblem(s) is generated by any of the standard methodologies.

This approach is in a sense the opposite of “relaxing a problem,” i.e., augmenting the feasible
solution space by including previously infeasible solutions. In this case one needs to solve a superprob-
lem of P. An approximation algorithm for P solves the superproblem (optimally or suboptimally) and
then transforms such solution to one that is feasible for P. Approximation algorithms based on the
linear programming methodology fall under this category. There are many different conversion tech-
niques including rounding, randomized rounding, etc. Chapters 4, 6, 7, and 12 discuss this approach
in detail. Approximation algorithms based on both restriction and relaxation exist. These algorithms
first restrict the solution space and then relaxes it. The resulting solution space is different from the
original one.

In this chapter we discuss several approximation algorithms based on restriction. When designing
algorithms of this type the question that arises is which of the many subproblems should be selected to
provide an approximation for a given problem? One would like to select a subproblem that “works best.”
But what do we mean by a subproblem that works best? The one that works best could be a subproblem,
which results in an approximation algorithm with smallest possible approximation ratio, or it could be a
subproblem whose solution can be computed the fastest, or one may use some other criteria, for example,
any of the ones discussed in Chapter 1. Perhaps “works best” should be with respect to a combination
of different criteria. But even when using the approximation ratio as the only evaluation criteria for an
algorithm, it is not at all clear how to select a subproblem that can be solved quickly and from which a
best possible solution could be generated. These are the two most important properties when choosing a
subproblem. By studying several algorithms based on restriction one learns why it works for these cases
and then it becomes easier to find ways to approximate other problems.

3-1
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The problems that we will discuss in this chapter to illustrate “restriction” are Steiner trees, the traveling
salesperson, covering points by squares, rectangular partitions, and routing multiterminal nets. The Steiner
tree and traveling salesperson problems (TSPs) are classical problems in combinatorial optimization. The
algorithms that we discuss for the TSPs are among the best known approximation algorithms for any
problem.

A closely related approach to restriction is transformation-restriction. The idea is to transform the prob-
lem instance to a restricted instance of the same problem. The difference is that the restricted problem
instance is not a subproblem of original problem instance as in the case of restriction, but it is a “simpler”
problem of the same type. In Section 3.5 we present algorithms based on this approach for routing multi-
terminal nets and embedding hyperedges in a cycle. The fully polynomial-time approximation scheme for
the knapsack problem, based on rounding discussed in Chapter 10, is based on transformation-restriction.
In Section 3.8 we summarize the chapter, and briefly discuss other algorithms based on restriction for path
problems arising in computational geometry.

3.2 Steiner Trees

The Steiner tree problem is a classical problem in combinatorial optimization. Let us define the Steiner
tree problem over an edge-weighted complete metric graph G = (V, E, w), where V is the set of n
vertices, E the set of m = n—n edges, and w: E — RT the weight function for the edges. Since the
graph is metric the set of weights satisfies the triangle inequality, i.e., for every pair of vertices i, j, w(i, j)
is less than or equal to the sum of the weight of the edges in any path from vertex i to vertex j. The
Steiner tree problem consists of a metric graph G = (V, E, W) and a subset of vertices T € V. The
problem is to find a tree that includes all the vertices in T plus some other vertices in the graph such that
the sum of the weight of the edges in the tree is least possible. The Steiner tree problem in an NP-hard
problem.

When T = V the problem is called the minimum-weight (cost) spanning tree problem. By the 1960s
there were several well-known polynomial-time algorithms to construct a minimum-weight spanning

tree for edge-weighted graphs [1]. These simple greedy algorithms have low-order polynomial-time
complexity bounds.

Given an instance of the metric graph Steiner tree problem (G = (V, E, W), T) one may construct
a minimum-weight spanning tree for the subgraph G’ = (T, E’, W’), where E’ and W’ include only
the edges joining vertices in T'. Clearly, this minimum-weight spanning tree is a restricted version of the
Steiner tree problem and it seems a natural way to approximate the Steiner tree problem. This approach was
analyzedin 1968 by E. F. Moore (see Ref. [2]) for the Steiner tree problem defined in metric space. The metric
graph problem, we just defined, includes only a subset of all the possible points in metric space. E. FE. Moore
presented an elegant proof of the fact that in metric space (and also for metric graphs) Ly < LT < 2Ly,
where Ly, LT, and Lg are the weight of a minimum-weight spanning tree, a minimum-weight tour
(solution) for the TSP and minimum-weight Steiner tree for any set of points P, respectively. We will define
the TSP in the next section. Since every spanning tree is a Steiner tree, the above bounds show that when
using a minimum-weight spanning tree to approximate the Steiner tree results in a solution whose weight is
atmost twice the weight of an optimal Steiner tree. In other words, any algorithm that generates a minimum-
weight spanning tree is a 2-approximation algorithm for the Steiner tree problem. Furthermore, this
approximation algorithm takes the same time as an algorithm that constructs a minimum-weight spanning
trees for edge-weighted graphs [1], since such an algorithm can be used to construct an optimal spanning
tree for a set of points in metric space. The above bound is established by defining a transformation from any
minimum-weight Steiner tree into a TSP tour in such a way that L < 2L [2]. Then by observing that the
deletion of an edge in an optimum tour to the TSP results in a spanning tree, onehas L 5y < L 7. The proofis
identical to the one given in the next section where we show this result, but starting from a minimum-weight
spanning tree.
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3.3 Traveling Salesperson Tours

The TSP has been studied for several decades [3]. There are many variations of this problem. One of the
simplest versions of the problem consists of an edge-weighted complete graph and the problem is to find a
minimum-weight tour that starts and ends at vertex one and visits every vertex exactly once. The weight of
a tour is the sum of the weight of the edges in the tour. Sahni and Gonzalez [4] (see Chapter 1) show that
the constant-ratio approximation problem is NP-hard, i.e., if for any constant ¢ there is a polynomial-time
algorithm with approximation ratio c then P = NP.In this section we discuss approximation algorithms for
the TSP defined over complete metric graphs. These algorithms are among the best known approximation
algorithms for any problem. The “double-minimum-weight spanning tree” (DMWST) approximation
algorithm that we discuss in this section is widely known, and it is based on the constructive proof for
the approximation algorithm discussed in the previous section developed for the Steiner tree problem by
E.E. Moore. Additional constant-ratio approximation algorithms for this version of the TSP were developed
by Rosenkrantz et al. [5]. These algorithms as well the DMWST algorithm have an approximation ratio
of 2 — 1/n and take O(n?) time. Since the graph is complete, the time complexity is linear with respect
to the number of edges in the graph. After presenting this result we discuss the improved approximation
algorithm by Christofides [6]. This algorithm has a smaller approximation ratio, but its time complexity
grows faster than that of the previous algorithms.

In the literature you will find that the TSP is also defined with tours visiting each vertex at least once. We
now show that both versions of the TSP defined over metric graphs are equivalent problems. Consider any
optimal tour R where some vertices are visited more than once. Let vertex i be a vertex visited more than
once. Let vertices j and k be visited just before and just after vertex i. Delete from the tour the edges { j, i}
and {7, k} and add edge { j, k}. Because the graph is metric the tour weight will stay the same or decrease. If
it decreases, then it contradicts the optimality of R. So the weight of the tour must be the same as before.
After applying this transformation until it is no longer possible we obtain a tour R’ in which every vertex
is visited exactly once and the weight of R’ is identical to that of R. Since every tour that visits every vertex
exactly once also visits every vertex at least once, it follows that both versions of the problem for metric
graphs have the same optimal tour weight, i.e., both problems are equivalent. Since for the TSP defined
over metric graphs both versions of the problem are equivalent, for convenience we use the definition of
tours to visit each vertex at least once.

Now suppose that you have an optimal tour S for an instance I of the TSP. Applying the above transfor-
mation we obtain an optimal tour S’ in which every vertex is visited exactly once. Deleting an edge from
the tour results in a spanning tree. Therefore, the weight of a minimum-weight spanning tree is a lower
bound for the weight of an optimal tour. The questions are: How good of a lower bound is it? How can
one construct a tour from a spanning tree?

How can we find a tour from a spanning tree T? Just draw the spanning tree in the plane with a vertex
as its root and construct a tour by visiting each edge in the tree T twice as illustrated in Figure 3.1. A more

FIGURE 3.1 Spanning tree (solid lines) and tour constructed (broken lines).
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formal approach is to construct an Euler circuit in the multigraph (graph with multiple edges between
vertices) consisting of two copies of the edges in T. An Euler tour (or circuit) is a path that starts and
ends at the same vertex and visits every edge in the multigraph once. An Euler tour always exists for the
multigraphs we have defined because these multigraphs are connected and all their nodes are of even
degree (the number of edges incident to each vertex is even). These multigraphs are called Eulerian, and
an Euler tour can be constructed in linear time with respect to the number of nodes and edges in the
multigraph [7].

The approximation algorithm, which we refer to as DMWST, constructs a minimum weight spanning
tree, makes a copy of all the edges in the tree, and then generates a tour from this tree with weight equal to
twice the weight of a minimum weight spanning tree. We established before that an optimal tour has weight
greater than the weight of a minimum weight spanning tree, it then follows that the weight of the tour that
the DMWST algorithm generates is at most twice the weight of an optimal tour for G. Therefore, algorithm
DMWST generates 2-approximate solution. Actually the ratio is 2— 1/ n, which can be established when the
edge deleted for an optimal tour to obtain a spanning tree is one with largest weight. The time complexity
of the algorithm is bounded by the time complexity for generating a minimum weight spanning tree, since
an Euler tour can be constructed in linear time with respect to the number of edges in the spanning tree.
We formalize these results in the following theorem.

Theorem 3.1

For the metric traveling salesperson problem, algorithm DMWST generates a tour with weight at most (2—1/ n)
times the weight of an optimal tour. The time complexity of the algorithm is O(n?) time, which is linear time
with respect to the number of edges in the graph.

Proof

The proof for the approximation ratio follows from the above discussion. As Fredman and Tarjan [8] point
out, implementing Prim’s minimum weight spanning tree algorithm by using Fibonacci heaps results in
a minimum weight spanning tree algorithm that takes O(nlog #n 4 m) time. Since the graph is complete,
the time complexity is O(#?), which is linear with respect to the number of edges in the graph. O

So what is the restriction in the above algorithms? We are actually restricting tours for the TSP to traverse
the least possible number of different edges, though a tour may traverse some of these edges more than
once. The minimum number of different edges in G is n — 1 and they form a spanning tree. It is therefore
advantageous to select the edges in a spanning tree of least possible total weight. This justifies the use of a
minimum-weight spanning tree. This is another way to think about the design of the DMWST algorithm.

Christofides [6] modified the above approach so that the tours generated have total weight within
1.5 times the weight of an optimal tour. However, the currently fastest implementation of this procedure
takes O(n®) time. His modification is very simple. First observe that there are many different ways to
transform a spanning tree into an Eulerian multigraph. All possible augmentations must include at least
one edge incident to every odd degree vertex in the spanning tree. Let N be the set of odd degree vertices
in the spanning tree. Christofides, idea is to transform the spanning tree into an Eulerian multigraph by
adding the least number of edges with the least possible total weight. He showed that such set of edges
is a minimum weight complete matching on the graph Gy induced by the set of vertices N in G. A
matching is a subset of the edges in a multigraph, no two of which are incident upon the same vertex.
A matching is complete if every node has an edge in the matching incident to it, and the weight of a
matching is the sum of the weights of the edges in it. A minimum weight complete matching can be
constructed in polynomial time. The edges in the complete matching plus the ones in the spanning tree
form an Eulerian multigraph, and Christofides’ algorithm generates as its solution an Euler tour of this
multigraph.

To establish the 1.5 approximation bound we observe that an optimal tour can be transformed without
increasing its total weight into another tour that visits only the vertices in N because the graph is metric.
One can partition the edges in this restricted tour into two sets such that each set is a complete matching
for the restricted graph. One set contains the even-numbered edges in the tour and the other set the
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odd-numbered edges. Since a minimum weight complete matching for G x has total weight smaller than
the above two matchings, it then follows that the minimum weight complete matching has total weight at
most half of the weight of an optimal tour. Therefore, the edges in the tour constructed by Christofides’
algorithm have weight at most 1.5 times the weight of an optimal tour. The time complexity for Christofides’
algorithm is O(n?) and it is dominated by the time required to construct a minimum weight complete
matching [9,10]. We formalize this result in the following theorem whose proof follows from the above
discussion.

Theorem 3.2 [6]

For the metric traveling salesperson problem, Christofides’ algorithm generates a tour with weight at most
1.5 times the weight of an optimal tour. The time complexity of the algorithm is O(n?).

This approach is similar to the one employed by Edmonds and Johnson [11] for the Chinese Postman
Problem. Given an edge-weighted connected undirected graph, the Chinese Postman problem is to con-
struct a minimum-weight cycle, possibly with repeated edges, which contains every edge in the graph. The
currently best algorithm to solve this problem takes O(n?) time, and it uses shortest paths and weighted
matching algorithms. There are asymptotically faster algorithms when the graphs are sparse and weight
of the edges are integers.

3.4 Covering Points by Squares

Given a set of n points, P = {(x1, y1), (x2, ¥2), . - .» (Xn, ¥»)}, in two-dimensional space and an integer
D, the CS; problem is to find the least number of D x D squares to cover P. The CS; problem as well
as the problem of covering by disks have been shown to be NP-hard [12]. Approximation algorithm for
these problems as well as their generalizations to multidimensional space have been developed [13,14]. All
of these problems find applications in several research areas [12,15,16]. The most popular application is
to find the least number of emergency facilities such that every potential patient lives at a distance at most
D from at most one facility. This application corresponds to covering by the least number of disks with
radius D.

We discuss in this section a simple approximation algorithm based on restriction for the C S, problem.
Assume withoutloss of generality that x; > 0Oand y; > 0and thatatleast one of the points has x-coordinate
value of zero. Define the function I,(P;) = |x;/D]. For k > 0, band k consists of all the points with
I«(P;) = k.

The restriction to the solution space is to only allow feasible solutions where each square covers points
from only one band. Note that an optimal solution to the CS, problem does not necessarily satisfy this
property. For example, the instance with P; = (0.1, 1.0), P, = (0.1, 2.0), P; = (1.1, 0.9), P, = (1.1, 2.1),
and D = 1 has two squares in optimal cover. The first square covers points P; and Pz, and the second
covers P, and P;. However an optimal cover for the points in band 0 (i.e., P; and P,) is one square and the
one for the points in band 1 (i.e., P3 and Py) is two squares. So an optimal cover to the restricted problem
has three squares, but an optimal cover for the CS, problem has two squares.

One reason for restricting the solution space in this way is that an optimal cover for any given band can
be easily generated by a greedy procedure in O(nlog n) time [14]. A greedy approach places a square as
high as possible provided it includes the bottommost point in the band as well as all other points in the
band at a vertical distance at most 1 from a bottommost point. All the points covered by this square are
removed and the procedure is repeated until all the points have been covered. One can easily show that
this is an optimal cover by transforming any optimal solution for the band, without increasing the number
of squares, to the cover generated by the greedy algorithm. By using elaborate data structures, Gonzalez
[14] showed that the greedy algorithm can be implemented to take (nlog s), where s is the number of
squares in an optimal solution. Actually a method that uses considerable more space can be used to solve
the problem in O(#n) time [14].
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The solution generated by our algorithm for the whole problem is the union of the covers for each of
the bands generated by the greedy method. Let f = E + O be the total number of squares, where E (O)
is the number of squares for the even (odd-)-numbered bands. We claim that an optimal solution to the
CS; problem has at least max{E, O} squares. This follows from the fact that an optimal solution for the
even (odd-)-numbered bands is E(O) because it is not possible for a square to cover points from two
different even (odd-)-numbered bands. Therefore, f—,{ < 2, where fI* is the number of squares in an
optima solution for problem instance I. This result is' formalized in the following theorem whose proof
follows from the above discussion.

Theorem 3.3
For the CS, problem the above procedure generates a cover such that f—,{ < 2in O(nlog s) time, where s is

. : ; i
the number of squares in an optimal solution.

A polynomial-time approximation scheme for the generalization of the CS; to d dimensions (the CS4
problem) is discussed in Chapter 9. The idea is to generate a set of solutions by shifting the bands by
different amounts and then selecting as the solution the best cover computed by the algorithm. This
approach is called shifting and was introduced by Hochbaum and Maass [13].

3.5 Rectangular Partitions

The minimum edge-length rectangular partition, RGp problem has applications in the area of computer-
aided design of integrated circuits and systems. Given a rectangle R with interior points P, the RGp
problem is to introduce a set of interior lines segments with least total length such that every point in
P is in at least one of the partitioning line segments, and R is partitioned into rectangles. Figure 3.2(a)
shows a problem instance I and Figure 3.2(b) shows an optimal rectangular partition for the problem
instance I.

A rectangular partition E is said to have a guillotine cut if one of the vertical or horizontal line segments
partitions the rectangle into two rectangles. A rectangular partition E is said to be a guillotine partition
if either E is empty, or E has a guillotine cut and each of the two resulting rectangular partitions is a
guillotine partition.

Finding an optimal rectangular partition is an NP-hard problem [17]. However, an optimal guillotine
partition can be constructed in polynomial time. Therefore, it is natural to restrict the solution space to
guillotine partitions when approximating rectangular partitions.

In Chapter 54 we prove that an optimal guillotine partition has total edge length, which is at most
twice the length of an optimal rectangular partition. Gonzalez and Zheng [18] presented a complex proof
that shows that bound is just 1.75. In Chapter 54 we also explain the basic ideas behind the proof of the
approximation ratio of 1.75. This approach has been extended to the multidimensional version of this
problem by Gonzalez et al. [19].

(a) (b) (c)

FIGURE3.2 (a)Instance I of the RG p problem. (b) Rectangular partition for the instance I. (c) Guillotine partition
for the instance I.
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An optimal guillotine partition can be constructed in O(#°) time via dynamic programming. When #
is large this approach is not practical. Gonzalez et al. [20] showed that suboptimal guillotine partitions
that can be constructed in O(nlog n) time generate solutions with total edge length at most four times
the length of an optimal rectangular partition. As in the case of optimal guillotine partitions this result
has been extended to the multidimensional version of the problem [20]. Clearly, neither of the methods
dominates the other when considering both the approximation ratio and the time complexity bound.

Chapter 42 discusses how more general guillotine cuts can be used to develop a polynomial time
approximation scheme (PTAS) for the TSP in two-dimensional space. Chapter 51 discusses this approach
for the TSP and Steiner tree problems.

3.6 Routing Multiterminal Nets

Let R be a rectangle whose sides lie on the two-dimensional integer grid. A subset of grid points on the
boundary of R that do not include the corners of R is denoted by S and its grid points are called terminal
points. Let n be the number of terminal points, i.e., the cardinality of set S, and let Nj, N, ..., Ny a
partition of S such that each set N; includes at least two terminal points. Each set N; is called a net and
the problem is to make all the terminal points electrically common by introducing a set wire segments.
Terminal points from different nets should not be made electrically common. The wire segment must be
along the grid lines outside R with at most one wire segment assigned to each grid edge. When the grid
edges incident to a grid point belong to wire segments from two nets, the two wires must cross. In other
words, dog-legs (wires from two nets bending at a grid point) are not allowed. The main reasons are that
dog-legs would complicate the layer assignment without improving the layout area.

There are two layers available for the wires. Since dog-legs are not allowed, the layer assignment for the
wire segments is straightforward. All horizontal wire segments are assigned to one layer and all the vertical
ones are assigned to the other. A vertical and horizontal wire segment with a common grid point can be
made electrically common by introducing a via for the connection of the wires at that grid point.

The Multiterminal net routing Around a Rectangle (MAR) problem is given a rectangle R and a set of
nets, find a layout, subject to the constraints defined above, that fits inside a rectangle with least possible
area. Constructing a layout in this case reduces to just finding the wire segments for each net along the
grid lines (without dog-legs) outside R, since the layer assignment is straightforward.

Developing a constant-ratio approximation algorithm for this problem is complex because the objec-
tive function depends on the product of two values, rather than just one value as in most other problems.
Gonzalez and Lee [21] developed a linear-time algorithms for the MAR problem when every net consists
of two terminal points. It is conjectured that the problem is NP-hard when the nets have three terminal
points each. Gonzalez and Lee [21,22] developed constant-ratio approximation algorithms for the MAR
problem [22,23]. The approximation ratios for these algorithms are 1.69 [22] and 1.6 [23]. The approach
is to partition the set of nets into groups and then route each group of nets independently of each other.
Some of the groups are routed optimally. Since the analysis of the approximation ratio for these algo-
rithms is complex, in this section we only analyze the case when the nets contain one terminal point on the
top side of R and one or more terminal points on the bottom side of R. The set of these nets is called N.
The algorithm to route the Np nets is based on restriction and it is quite interesting. Readers interested
in additional details are referred to Refs. [22,23].

Let np be the number of N7p nets. Let E be an optimal area layout for all the nets and let D be E
except that the set of nets in Nyp are all connected by a path that crosses the left side of R. In this case the
layout for the nets Nrp is restricted (only paths that cross the left side of R are allowed). We use Hg (TB)
(Hp(TB)) to denote the height of the layout E ( D) on the top plus the corresponding height on the bottom
side of R. To simplify the analysis, let us assume that every net in Np is connected in E by a path that
either crosses the left or right (but not both) sides of R. Gonzalez and Lee [23] explain how to modify the
analysis when some of these nets are connected by paths that cross both the left and right sides of R.

By reversing the connecting path for a net in Nrg we mean to connect the net by a path that crosses the
opposite side of R, i.e., if it crossed the left side of R it will now cross the right side, or vice versa. When we
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reverse the connecting path for a net the height on the top side plus the bottom side of R increases by at most
two. We say that connecting paths for two Nrp nets cross on the top side of R when their contribution to the
height of the assignment is two for at least one point in between two terminal points. When we interchange
the connecting paths for two Nrp nets that cross on the top side of R we mean reversing both connecting
paths. An interchange increases by at most two the height on the top side plus the bottom side of R.

We transform E to D by reversals to quantify the difference in heights between E and D. The largest
increase in height is when all the N p nets are connected in E by paths that cross the right side of R. In this
case we need to reverse all the connecting paths for the Nyp nets, so Hp(TB) < Hg(TB) + 2nrg. When
one plugs this in the analysis for the whole problem it results in an algorithm with an approximation ratio
greater than 2.

A better approach is to use the following restriction. All the connecting paths for the Nrp nets are
identical, and either they cross the left or the right side of R. In this case we construct two different layouts.
Let D;(Dy) be E except that all the nets in Nrp are connected by a path crossing the left (right) side of R.
Let M be a minimum area layout between D; and D;. In E let I(r) be the number of Nrp nets connected
by a path crossing the left (right) side of R. By reversing the minimum of {/, r} paths it is possible to
transform E to Dj or D,. Therefore, Hy(TB) < Hg(TB) + ntp, which is better by 50% than for the
assignment D defined above.

It is obvious that by trying more alternatives one can obtain better solutions. Let us partition the set of
nets Ntp into two groups, S; and S;. The set S contains the % nets in N7p whose terminal point on the
top side of R is closest to the left side of R, and set S, contains the remaining ones. For i, j € {I, r} let D;;
be E except that all the nets in Sj are connected by paths that cross the “i” side of R and all the nets in S,
are connected by paths that cross the “;” side of R. Let P be a minimum area layout among Dy;, Dy, Dy,
and Dy,. Let [} (r1) be the number of nets in S; connected by a path that crosses the left side of R. We define
I and r, similarly, but using set S;. We show in the following lemma that Hp(TB) < Hg(TB) + %nTB.

Lemma 3.1
Let P and E be the assignments defined above. Then Hp(TB) < Hg(TB) + %"TB

Proof
The proof is by contradiction. Suppose that Hp(TB) > Hg(TB) + %nTB. There are two cases depending
on the values of r; and I,.

Case 1: r1 > I,. To transform assignment E to Dj, we need to interchange /, connecting paths that cross
on the top side of R and reverse r; — I, connecting paths. Therefore, Hp, (TB) < Hg(TB) + 2ry. Since
Hp,, (TB) > Hp(TB) > Hp(TB) + %nTB, we know that 2r; > %nTB, which is equivalent to r; > %nTB.
Sincer; + 11 = %”TB: we know that [; < é”TB~

To transform assignment E to D,, we need to reverse I; + [, connecting paths. Therefore, Hp,, (TB) <
HEg (TB)+2l;+21,.Since Hp,, (TB) > Hp(TB) > HE(TB)—i%nTB,weknowthatll—i—lg > %nTB.Applying
the same argument to assignment D,;, we know ) + 1, > %nTB. Adding these two last inequalities and
substituting the fact that [, + r, = %nTB, we know that I; > L np. This contradicts our previous finding

8
thatl; < %”TB-

Case2: r1 < . A contradiction in this case can be obtained applying similar arguments.
It must then be that Hp(TB) < Hg(TB) + %”TB- O

For three groups, rather than two, Gonzalez and Lee [22] showed that Hp(TB) < Hg(TB)+ %HTB)
where P is the best of the eight assignments generated. This is enough to prove the approximation
ratio of 1.69 for the MAR problem. If instead of three groups one uses six, one can prove Hp(TB) <
HE (TB) 4 0.6n7p, where P is the best of the 64 assignments generated. In this case, the approximation
ratio for the MAR problem is 1.6. Interestingly, partitioning into more groups results in smaller bounds for
this group, but does not reduce the approximation ratio for the MAR problem because the routing of other
nets becomes the bottleneck. We state Gonzalez and Lee’s theorem without a proof. Readers interested in
the proof are referred to Ref. [23].
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Theorem 3.4

For the MAR problem the procedure given in Ref. [23] generates a layout with area at most 1.6 times the area
of an optimal layout in O(nm) time.

An interesting observation is that the proof that the bound Hp(TB) < Hg(TB) + (1.6)ntp holds can
be carried out automatically by solving a set of linear programming problems. The linear programming
problems find the ratios for I; and r; such that the minimum increase from E to one of the layouts is
maximized. Note that some of the “natural” constraints of the problem are in terms max{r;, I}, which
makes the solution space nonconvex. However by replacing it with inequalities of the form r; < I,
and r; > I, we partition the optimization region into several convex regions. By solving a set of linear
programming problems (one for each convex region) the maximum possible increase can be computed.

3.7 Variations on Restriction

A closely related approach to restriction is to generate a solution by solving a restricted problem instance
constructed from the original instance. We call this approach transformation-restriction. For example,
consider the routing multiterminal nets around a rectangle discussed in Section 3.6. Remember that there
are n terminal points and m nets. Suppose that we break every net i with k; points into k; nets with two
terminal points each. The k nets consist of adjacent terminal points of the net. In order for these k; nets to
have different terminal points we make a copy of each terminal point at half-integer points next to the old
ones. Note that a new grid needs to be redefined to include the half-integer points without introducing
more horizontal (vertical) routing tracks above or below (to the left or right) of R. Figure 3.3(b) shows the
details. The resulting 2-terminal net problems can be solved in linear time using the optimal algorithm
developed by Gonzalez and Lee [21]. A solution to this problem can be easily transformed into a solution to
the original problem after deleting the added terminal points as well as some superfluous connections. This
algorithm generates a layout whose total area is at most 4 times the area of an optimal layout. Furthermore,
the layout can be constructed in O(n) time. With respect to the approximation ratio Gonzalez and Lee’s
algorithms [22,23] are better, but these algorithms take O(nm) time, whereas the simple algorithm in this
section takes linear time.

3.7.1 Embedding Hyperedges in a Cycle

In this subsection we present an approximation algorithm for Embedding Hyperedges in a Cycle so as
to Minimize the Congestion (EHCMC). As pointed out in Chapter 70, this problem has applications in
the area of design automation and parallel computing. As input we are given a hypergraph G = (V, H),

where V = {v1, v2, ..., vy} is the set verticesand H = {hy, hy, ..., h,,} the set of hyperedges (or subsets
with at least two elements of the set V). Traversing the vertices vy, vy, ..., vy, in the clockwise direction
| | | |
a a 23 34
a |— — 2 5
— a — 1
5 |
a |— 6 —
a a a 87

(@ (b)

FIGURE 3.3 (a) Net with k-terminal points. (b) Resulting k 2-terminal nets.
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forms a cycle, which we call C. Let v, and v, be two vertices in h; such that v; is the next vertex in h; in
clockwise direction from v;. Then the pair (vs, v¢) for hyperedge h; defines the connecting path for h; that
begins at vertex v, then proceeds in the clockwise direction along the cycle until reaching vertex v;. Every
edge e in the cycle that is visited by the connecting path formed by pair (vs, v) is said to be covered by the
connecting path. The EHCMC problem consists of finding a connecting path ¢; for every hyperedge h;
such that the maximum congestion of an edge in C is least possible, where the congestion of an edge e in
cycle C is the number of connecting paths that include edge e.

Ganley and Cohoon [24] showed that when the maximum congestion is bounded by a fixed constant
k, the EHCMC problem is solvable in polynomial time. But, the problem is NP-hard when there is no
constant bound for k. Frank et al. [25] showed that when the hypergraph is a graph the EHCMC problem
can be solved in polynomial time. We call this problem the Embedding Edges in a Cycle to Minimize
Congestion (EECMC). In this section we present the simple linear-time algorithm with an approximation
ratio of 2 for the EHCMC problem developed by Gonzalez [26].

The algorithm based on transformation-restriction for this problem is simple and uses the same approach
as in the previous subsection. This general approach also works for other routing problems. A hyperedge
with k vertices x1, X, . . ., Xk, appearing in that order around the cycle C is decomposed into the following
k edges {x1, %2}, {x2, x3}, ..., {xk—1, Xk}, {xk> x1}. Note that in this case we do not need to introduce
additional vertices as in the previous subsection because a vertex may be part of several hyperedges. The
decomposition transforms the problem into an instance of the EECMC problem, which can be solved by
the algorithm given in Ref. [25]. From this embedding we can construct an embedding for the original
problem instance after deleting some superfluous edges in the embedding. The resulting embedding can
be easily shown to have congestion of at most twice the one in an optimal solution X. This is because there
is a solution S to the EECMC problem instance in which every connecting path Y in X can be mapped
to a set of connecting paths in S with the property that if the connecting path Y contributes one unit to
the congestion of an edge e, then the set of connecting paths in S contributes 2 units to the congestion
of edge e. Furthermore, each connecting path in S appears in one mapping. The time complexity of the
algorithm is O(n).

3.8 Concluding Remarks

We have seen several approximation algorithms based on restriction. As we have seen the restricted
problem may be solved optimally or suboptimally as in Section 3.5. One generates solutions closer to
optimal, whereas the other generates the solutions faster. These are many more algorithms based on
this technique. For example, some computational geometry problems where the objective function is in
terms of distance have been approximated via restriction [27-30]. These type of problems allow feasible
solutions to be any set of points along a given set of line segments. A restricted problem allows only a set
of points (called artificial points) to be part of a feasible solution. The more artificial points, the smaller
the approximation ratio of the solution; however, it will take longer to solve the restricted problem.

There are problems for which it is not known whether or not there is a constant-ratio approximation
algorithm. However, heuristics based on restriction are used to generate good solutions in practice. One
such problems is discussed in Chapter 73.

A closely related approach to restriction is transformation-restriction. The idea is to transform the
problem instance to a restricted instance of the same problem. The difference is that the restricted problem
instance is not a subproblem of original problem instance as in the case of restriction. In this chapter we
applied this approach to a couple of problems.

Approximations algorithms that are based on restriction and relaxation exist. These algorithms first
restrict the solution space and then relaxes it resulting in a solution space that is different from the original
one. Gonzalez and Gonzalez [31] have applied this approach successfully to the minimum edge length
corridor problem.
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4.1 Introduction

Greedy algorithms can be used to solve many optimization problems exactly and efficiently. Examples
include classical problems such as finding minimum spanning trees and scheduling unit length jobs
with profits and deadlines. These problems are special cases of finding a maximum- or minimum-weight
basis of a matroid. This well-studied problem can be solved exactly and efficiently by a simple greedy
algorithm [1,2].

Greedy methods are also useful for designing efficient approximation algorithms for intractable (i.e.,
NP-hard) combinatorial problems. Such algorithms find solutions that may be suboptimal, but still satisfy
some performance guarantee. For a minimization problem, an algorithm has approximation ratio «, if, for
every instance I, the algorithm delivers a solution whose cost is at most « x OPT(I), where OPT(I) is the
cost of an optimal solution for instance I. An e-approximation algorithm is a polynomial-time algorithm
with an approximation ratio of or.

In this chapter, we survey several NP-hard problems that can be approximately solved via greedy
algorithms. For a couple of fundamental problems, we sketch the proof of the approximation ratio. For
most of the other problems that we survey, we give brief descriptions of the algorithms and citations to
the articles where these results were reported.

4.2 Set Cover

We start with SET COVER, perhaps one of the most elementary of the NP-hard problems. The problem
is defined as follows. The input is a set X = {x1, X2, ..., x,} of elements and a collection of sets S =
{S1, Sz, ..., Sm} whose union is X. Each set S; has a weight of w(S;). A set cover is a subset S’ C S such

4-1
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that USjeS/ Sj = X. Our goal is to find a set cover S’ € S so as to minimize w(S') = Zsies/ w(S;). In
other words, we wish to choose a minimum-weight collection of subsets that covers all the elements.
Intuitively, for a given weight, one prefers to choose a set that covers most of the elements. This suggests
the following algorithm: Start with an empty collection of sets, then repeatedly add sets to the collection,
each time adding a set that minimizes the cost per newly covered element (i.e., the set that minimizes the
weight of the set divided by the number of its elements that are not yet in any set in the collection).

4.2.1 Algorithm for Set Cover

Next we prove that this algorithm has approximation ratio H(|Smax|), where Smax is the largest set in
S and H the harmonic function, defined as H(d) = Zle 1/i. For simplicity, assume each set has
weight 1.

We use the following charging scheme: when the algorithm adds a set S to the collection, let u denote the
number of not-yet-covered elements in S and charge 1/u to each of those elements. Clearly, the weight of the
chosen sets is at most the total amount charged. To finish, we observe that the total amount charged is at
most OPT x H(|Smax|)- To see why this is so, let $* = {es, es_1, . .., €1} be any set in OPT. Assume that
when the greedy algorithm chooses sets to add to its collection, it covers the elements in S* in the order
given (each e; is covered by the time e;_ is). When the charge for an element e; is computed (i.e., when the
greedy algorithm chooses a set S containing e; for the first time) at least i elements (e;, e;—1, €j—2, ..., €1)
in §* are not yet covered. Since the greedily chosen set S contains at least as many not-yet-covered elements
as S*, the charge to e; is at most 1/i. Thus, the total charge to elements in $* is at most

1 1

s s—1

1
+"'+E+1 = H(s) < H(|Smax|)

Thus, the total charge to elements covered by OPT is at most OPT x H(|Smax|). Since every element is
covered by OPT, this means that the total charge is at most OPT x H(|Smax|). This implies that the greedy
algorithm is an H(|Smax|)-approximation algorithm.

These results were first reported in the mid-1970s [3-6]. Since then, it has been proven that no
polynomial-time approximation algorithm for set cover has a significantly better approximation ratio
unless P=NP [7].

The algorithm and approximation ratio extend to a fairly general class of problems called minimizing a
linear function subject to a submodular constraint. This problem generalizes set cover as follows. Instead of
asking for a set cover, we ask for a collection of sets C such that some function f(C) > f(X). The function
f(C) should be increasing as we add sets to C and it should have the following property: if C C C’, then
foranyset S, f(C'U{S'}) — f(C") < f(CU({S}) — f(C). In terms of the greedy algorithm, this means
that adding a set S to the collection now increases fat least as much as adding it later. (For set cover, take
f(C) to be the number of elements covered by sets in C.) See Ref. [8] for details.

4.2.2 Shortest Superstring Problem

We consider an application of the set cover problem, SHORTEST SUPERSTRING problem. Given an alphabet
%, and a collection of 7 strings S = {sy, ..., s}, where each s; is a string from the alphabet X, find
a shortest string s that contains each s; as a substring. There are several constant-factor approximation
algorithms for this problem [9]; here we simply want to illustrate how to reduce this problem to the set
cover problem. The reduction is such that an optimal solution to the set cover problem has weight at most
twice the length of a shortest superstring.

For each s;, sj € Sand for each value 0 < k < min (|s;], |s|), we first check to see if the last k symbols
of s; are identical to the first k symbols of s ;. If so, we define a new string B; jx obtained by concatenating
s; with s ?, the string obtained from s; by deleting the first k characters of s;. Let C be the set of strings
Bijk. For a string w we define S(7r) = {s € S|s is a substring of 7 }. The underlying set of elements of the
set cover is S. The specified subsets of S are the sets S(7) for each m € SUC. The weight of each set S(7r)
is |7 |, the length of the string.
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We can now apply the greedy set cover algorithm to find a collection of sets S(xr;) and then simply
concatenate the strings 7; to find a superstring. The approximation factor of this algorithm can be shown
to be 2H(n).

4.3 Steiner Trees

The STEINER TREE problem is defined as follows. Given an edge-weighted graph G = (V, E) and a set of
terminals S € V, find a minimum-weight tree that includes all the nodes in S. (When S = V, then this
is the problem of finding a minimum-weight spanning tree. There are several very fast greedy algorithms
that can be used to solve this problem optimally.) The Steiner tree problem is NP-hard and several greedy
algorithms have been designed that give a factor 2 approximation [10,11]. We briefly describe the idea
behind one of the methods. Let T; = {s1} (an arbitrarily chosen terminal from S). At each step, T;4) is
computed from T; as follows: attach the vertex from S — T; that is the “closest” to T; by a path to T; and
call the newly added special vertex s; ;. Thus T; always contains the vertices s1, 52, .. ., s;. It is clear that
the solution produces a Steiner tree. It is possible to prove that the weight of this tree is at most twice the
weight of an optimal Steiner tree.

Zelikovsky [12] developed a greedy algorithm with an approximation ratio of 11/6. This bound has
been further improved subsequently, but by using more complex methods.

A generalization of Steiner trees called NODE-WEIGHTED STEINER TREES is defined as follows. Given a
node-weighted graph G = (V, E) and aset of terminals S C V, find a minimum-weight tree that includes
all the nodes in S. Here, the weight of a tree is the sum of the weights of its nodes. It can be shown that
this problem is at least as hard as the set cover problem to approximate [13]. Interestingly, this problem is
solved via a greedy algorithm similar to the one for the set cover problem with costs. We define a “spider”
as a tree on £ terminals, where there is at most one vertex with degree more than 2. Each leaf in the tree
corresponds to a terminal. The weight of the spider is simply the weight of the nodes in the spider. The
algorithm at each step greedily picks a spider with minimum ratio of weight to number of terminals in it.
It collapses all the terminals spanned by the spider into a single vertex, makes this new vertex a terminal
and repeats until one terminal remains. The approximation guarantee of this algorithm is 2 In | S|. Further
improvements appear in Ref. [14]. For more on the Steiner tree problem, see the book by Hwang et al. [15].

4.4 K-Centers

The K-CENTER problem is a fundamental facility location problem and is defined as follows: given an
edge-weighted graph G = (V, E), find a subset S C V of size at most K such that each vertex in V is
close to some vertex in S. More formally, the objective function is defined as follows:

min max min d(u, v)
SCV ueV ves

where d is the distance function. For example, one may wish to install K fire stations and minimize the
maximum distance (response time) from a location to its closest fire station.

Gonzalez [16] describes a very simple greedy algorithm for the basic K -center problem and proves that
it gives an approximation factor of 2. The algorithm works as follows. Initially, pick any node vy as a center
and add it to the set C. Then for i = 1 to K do the following: in iteration 7, for every node v € V, compute
its distance d' (v, C) = mincec d(v, ¢) to the set C. Let v; be a node that is farthest away from C, i.e.,anode
for which d*(v;, C) = maxycy d(v, C). Add v; to C. Return the nodes v, vy, ..., vg_1 as the solution.

The above greedy algorithm is a 2-approximation for the K-center problem. First note that the radius of
our solution is dX (vk, C), since by definition vk is the node that is farthest away from our set of centers.
Now consider the set of nodes vg, vy, ..., vg. Since this set has cardinality K + 1, at least two of these
nodes, say v; and v j, must be covered by the same center ¢ in the optimal solution. Assume without loss
of generality that i < j. Let R* denote the radius of the optimal solution. Observe that the distance from
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each node to the set C does not increase as the algorithm progresses. Therefore d Kk, C) < di(vg, C).
Also we must have d/(vk, C) < d’(vj, C), otherwise we would not have selected node v; in iteration j.
Therefore,

d(c, vi) +d(c, vj) = d(vj, vj) = d/ (v}, C) = d¥(vk, C)

by the triangle inequality and the fact that v; is in the set C at iteration j. But since d(c, v;) and d(c, v ;)
are both at most R*, we have the radius of our solution = dX (v, C) < 2R*.

4.5 Connected Dominating Sets

The connected dominating set (CDS) problem is defined as follows. Given a graph G = (V, E), find
a minimum size subset S of vertices, such that the subgraph induced by S is connected and S forms a
dominating set in G. Recall that a dominating set is one in which each vertex is either in the dominating
set or adjacent to some vertex in the dominating set. The CDS problem is known to be NP-hard.

We describe a greedy algorithm for this problem [17]. The algorithm runs in two phases. At the start of
the first phase all nodes are colored white. Each time we include a vertex in the dominating set, we color
it black. Nodes that are dominated are colored gray (once they are adjacent to a black node). In the first
phase, the algorithm picks a node at each step and colors it black, coloring all adjacent white nodes gray. A
piece is defined as a white node or a black connected component. At each step we pick a node to color black
that gives the maximum (nonzero) reduction in the number of pieces.

It is easy to show that at the end of this phase if no vertex gives a nonzero reduction to the number of
pieces, then there are no white nodes left.

In the second phase, we have a collection of black connected components that we need to connect.
Recursively, connect pairs of black components by choosing a chain of vertices, until there is one black
connected component. Our final solution is the set of black vertices that form the connected component.

Key Property: At the end of the first phase if there is more than one black component, then there is always
a pair of black components that can be connected by choosing a chain of two vertices.

It can be shown that the CDS found by the algorithm is of size at most (In A + 3) - |OPT cps|, where A
is the maximum degree of a node.

Let a; be the number of pieces left after the ith iteration, and a9 = 5. Since a node can connect up
to A pieces, |OPTcps| > %0. (This is true if the optimal solution has at least two nodes.) Consider the
(i 4+ 1)™ iteration. An optimal solution can connect a; pieces. Hence, the greedy procedure is guaranteed
to pick a node which connects at least [ml pieces. Thus, the number of pieces will reduce by at least

4 7 _ e ol .
|—|OPTCDS‘-| 1. This gives us the recurrence relation

a; 1
<-4 <o (1o —— )41
it = ’V|OPTCDS|-‘+ _al( |OPTCD5|>+

| i il 1 j
ai1 < ag 1—7> + (1—7)
! ( |OPT cps| JZ_; |OPT cps|

Notice after |OPT¢pg|In IOPC%% iterations, the number of pieces left is less than 2|OPTcps|. After

Its solution is

this, for each node we choose, we will decrease the number of pieces by at least one until the number
of black components is at most |OPTcpgs|, thus at most |OPT¢cps| more vertices are picked. So after
|OPT cps| In |OPQT% + |OPT¢ps| iterations at most |OPT ¢cps| pieces are left to connect. We connect the
remaining pieces choosing chains of at most two vertices in the second phase. The total number of nodes
chosen is at most |OPT¢ps| In ﬁ + |OPT¢cps| + 2|OPT cps|, and since A > \OP%%’ the solution
found has at most |OPT ¢cps|(In A + 3) nodes.
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4.6 Scheduling

We consider the following simple scheduling problem [18]. There are k identical machines. We are given
a collection of n jobs. Job J; is specified by the vector: (r;, d;, pi, w;). The job has a release time of r;, a
deadline of d; and a processing time of p;. The weight of the job is w;. Our goal is to schedule a subset of the
jobs such that each job starts after its release time and is completed by its deadline. If S is a subset of jobs
that are scheduled, then the total profit due to set Sis > J:es Wi- We do not get any profit if the job is not
completed by its deadline. Our objective is to find a maximum-profit subset of jobs that can be scheduled
on the k machines. The jobs are scheduled on one machine, with no preemption. In other words, if job J;
starts on machine j at time s;, then r; < s; and s; + p; < d;. Moreover, each machine can be executing
at most one job at any point of time.

A number of algorithms for the problem are based on linear program (LP) rounding [18]. A special case
of interest is when all jobs have unit weight (or identical weight). In this case, we simply wish to maximize
the number of scheduled jobs. The following greedy algorithm has the property that it schedules a set of
jobs such that the total number of scheduled jobs is at least pi times the number of jobs in an optimal
schedule. Here py = 1 — ﬁ Observe that when k = 1, then px = %, and this bound is tight for the
greedy algorithm. k

The algorithm considers each machine in turn and finds a maximal set of jobs to schedule for the
machine; it removes these jobs from the collection of remaining jobs, then recurses on the remaining set
of jobs. Now we discuss how a maximal set of jobs is chosen for a single machine. The idea is to pick a job
that can be finished as quickly as possible. After we pick this job, we schedule it, starting it at the earliest
possible time. Making this choice might force us to reject several other jobs. We then consider starting a
job after the end of the last scheduled job, and again pick one that we can finish at the earliest possible
time. In this way, we construct the schedule for a single machine.

4.7 Minimum-Degree Spanning Trees

In this problem, the input is a graph G = (V, E), with nonnegative weights w : E — R on its edges. We
are also given an integer d > 1. The objective of the problem is to find a minimum-weight spanning tree
of G in which the degree of every node is at most d. It is a generalization of the Hamiltonian path problem,
and is therefore NP-hard. It is known that the problem is not approximable to any ratio unless P = NP
or the approximation algorithm is allowed to output a tree whose degree is greater than d. Approximation
algorithms try to find a tree whose degree is as close to d as possible, but whose weight is not much more
than an optimal degree-d tree.

Greedy algorithms usually select one edge at a time, and once an edge is chosen, that decision is never
revoked and the edge is part of the output. Here we add a subset S of edges at a time (e.g., a spanning forest),
where S is chosen to minimize a relaxed version of the objective function. We get an iterative solution
and the output is a union of the edges selected in each of the steps. This approach typically provides a
logarithmic approximation. For minimum-degree spanning trees (MDST), the algorithm finds a tree of
degree O(dlogn), whose weight is within O(log n) of an optimal degree-d tree, where the graph has n
vertices. The ideas have appeared in Refs. [19,20]. Such algorithms in which two objectives (degree and
weight) are approximated are called bicriteria approximation algorithms.

A minimum-weight subgraph in which each node has degree at most d and at least 1 can be computed
using algorithms for matching. Except for possibly being disconnected, this subgraph satisfies the other
properties of an MDST: degree constraints and weight at most OPT. A greedy algorithm for MDST works
by repeatedly finding d-forests, where each d-forest is chosen to connect the connected components left
from the previous stages. The number of components decreases by a constant factor in each stage, and, in
O(log n) stages, we get a tree of degree at most d log n.
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4.8 Maximum-Weight b-Matchings

In this problem, we are interested in computing a maximum-weight subgraph of a given graph G in which
each node has degree at most b. The classical matching problem is a b-matching with b = 1. This problem
can be solved optimally in polynomial time, but the algorithms take about O(#?) time. We discuss a
1/2-approximation algorithm that runs in O(bE + E log E) time. The edges are sorted by weight, with
the heaviest edges considered first. Start with an empty forest as the initial solution. When an edge is
considered, we see if adding it to the solution violates the degree bound of its end vertices. If not, we add it
to our solution. Intuitively, each edge of our solution can displace at most 2 edges of an optimal solution,
one incident to each of its end vertices, but of lesser weight.

4.9 Primal-Dual Methods

In this section we study a powerful technique, namely the primal-dual method, for designing approxi-
mation algorithms [21]. Duality provides a systematic approach for bounding OPT, a key task in proving
any approximation ratio. The approach underlies many approximation algorithms. In this section, we
illustrate the basic method via a simple example.

A closely related method, one that we do not explore here, is the “local-ratio” method developed by
Bar-Yehuda [22]. It seems that most problems that have been solved by the primal-dual method, appear
amenable to attack by the local-ratio method as well.

We use as our example another fundamental NP-hard problem, the VERTEX COVER problem. Given a
graph G = (V, E) with weights on the vertices given by w(v), we wish to find a minimum-weight vertex
cover. A vertex cover is a subset of vertices, S € V, such that for each edge (u, v) € E, either u € S or
v € S or both. This problem is equivalent to the special case of the set cover problem, where each set
contains exactly two elements.

We describe a 2-approximation algorithm. First, write an integer linear program (ILP) for this problem.
For each vertex v in the given graph, the program has a binary variable x, € {0, 1}. Over this space of
variables, the problem is to find

min{Zw(v)xv txytx>1 (Y(u,v) € E)}

veV

It is easy to see that an optimal solution to this integer program gives an optimal solution to the original
vertex cover problem. Thus, the integer program is NP-hard to solve. Instead of solving it directly, we relax
ILP to an LP, which is to optimize the same objective function over the same set of constraints, but with
real-valued variables x, € [0, 1].

Each LP has a dual. Let N(v) denote the neighbor set of v. The dual of LP has a variable y(,,,) > 0 for
each edge (u, v) € E. Over this space of variables, the dual of LP is to find

max{ Z Yuv 't Z Yy <w) (Yve V)}
(w,v)€E ueN(v)

The key properties of these programs are the following:

1. Weak duality: The cost of any feasible solution to the dual is a lower bound on the cost of any
feasible solution to LP. Consequently, the cost of any feasible solution to the dual is a lower bound
on the cost of any feasible solution to ILP.

2. If we can find feasible solutions for ILP and the dual, where the cost of our solution to ILP is at
most o times the cost of our solution to the dual, then our solution to ILP has cost at most & OPT.

One way to get an approximate solution is to solve the vertex cover LP optimally (e.g., using a network
flow algorithm [23]), and then round the obtained fractional solution to an integral solution. Here we
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describe a different algorithm—a greedy algorithm that computes solutions to both ILP and the dual. The
solutions are not necessarily optimal, but will have costs within a factor of 2.

The dual solution is obtained by the following simple heuristic: Initialize all dual variables to 0, then
simultaneously and uniformly raise all dual variables, except those dual variables that occur in constraints that
are currently tight. Stop when all constraints are tight. The solution to ILP is obtained as follows: Compute
the dual solution above. When the constraint for a vertex v becomes tight, add v to the cover. (Thus, the
vertices in the cover are those whose constraints are tight.)

The constraint for vertex v is tight if > ueN(v) Ywv) = w(v). When we start to raise the dual variables,
the sum increases at a rate equal to the degree of the vertex. Thus, the first vertices to be added are those
minimizing 2'((5)) . These vertices and their edges are effectively deleted from the graph, and the process
continues.

The algorithm returns a vertex cover because, in the end, for each edge (u, v) at least one of the two
vertex constraints is tight. By weak duality, to see that the cost of the cover is at most 20PT, it suffices
to see that the cost of the cover S is at most twice the cost of the dual solution. This is true because each
node’s weight can be charged to the dual variables corresponding to the incident edges, and each such dual
variable is charged at most twice:

Zw(v) = Z Z Yuw) < 2 Z Yu,v)

vesS veS ue N(v) (u,v)€E

The equality above follows because w(v) = > . N(v) Yu,v) for each vertex added to the cover. The
inequality follows because each dual variable y(,,,) occurs at most twice in the sum.

To implement the algorithm, it suffices to keep track of the current degree D(v) of each vertex v as well
as the slack W(v) remaining in the constraint for v. In fact, with a little bit of effort the reader can see that
the following pseudocode implements the algorithm described above, without explicitly keeping track of
dual variables. This algorithm was first described by Clarkson [24]:

GREEDY-VERTEX-COVER(G, S)

1 forallv € Vdo W(v) < w(v); D(v) < deg(v)

2 S« @

3 while E # @ do

4 Find v € V for which ‘g((g)) is minimized.

5 forall u € N(v) do

6 E < E\ (u,v)

7 W(u) <~ W(u) — ‘g((;))) and D(u) < D(u) — 1
8 end

9 S« SU{v}and V « V\ {v}

10 end

More sophisticated applications of the primal-dual method require more sophisticated proofs. In some
cases, the algorithm starts with a greedy phase, but then has a final round in which some previously added
elements are discarded. The key idea is to develop the primal solution hand in hand with the dual solution
in a way that allows the cost of the primal solution to be “charged” to the cost of the dual.

Because the vertex cover problem is a special case of the set cover problem, it is also possible to solve
the problem using the greedy set cover algorithm. This gives an approximation ratio of at most H(| V]),
and in fact there are vertex cover instances for which that greedy algorithm produces a solution of cost
Q(H(|V])) OPT. The greedy algorithm described above is almost the same; it differs only in that it
modifies the weights of the neighbors of the chosen vertices as it proceeds. This slight modification yields
a significantly better approximation ratio.
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4.10 Greedy Algorithms via the Probabilistic Method

In their book on the probabilistic method, Alon et al. [25] describe probabilistic proofs as follows:

In order to prove the existence of a combinatorial structure with certain properties, we construct an
appropriate probability space and show that a randomly chosen element in the space has the desired
properties with positive probability.

The method of conditional probabilities is used to convert those proofs into efficient algorithms [26].

For some problems, elementary probabilistic arguments easily prove that good solutions exist. In some
cases (especially when the proofs are based on iterated random sampling), the probabilistic proof can be
converted into a greedy algorithm. This is a fairly general approach for designing greedy algorithms. In
this section we give some examples.

4.10.1 Max Cut

Given a graph G = (V, E), the MAX-CUT problem is to partition the vertices into two sets S and S so as
to maximize the number of edges “cut” (crossing between the two sets). The problem is NP-hard.

Consider the following randomized algorithm: For each vertex, choose the vertex to be in S or S indepen-
dently with probability 1/2. We claim this is a 1/2-approximation algorithm, in expectation. To see why,
note that the probability when any given edge is cut is 1/2. Thus, by linearity of expectation, in expectation
| E|/2 edges are cut. Clearly an optimal solution cuts at most twice this many edges.

Next, we apply the method of conditional probabilities [25,26] to convert this randomized algorithm into
a deterministic one. We replace each random choice made by the algorithm by a deterministic choice that
does “as well” in a precise sense. Specifically, we modify the algorithm to maintain the following invariant:

After each step, if we were to take the remaining choices randomly, then the expected number of
edges cut in the end would be at least |E|/2.

Suppose decisions have been made for vertices V; = {vy, v2, ..., v¢}, but not yet for vertex vsti. Let
S; denote the vertices in V; chosen to be in S. Let S; = V; — S; denote the vertices in V; chosen to be
in S. Given these decisions, the status of each edge in V; x V; is known, while the rest still have a 1/2
probability of being cut. Let x, = |E N (S; x S;)| denote the number of those edges that will definitely
cross the cut. Let e, = |E — V; x V4| denote the number of edges which are not yet determined. Then,
given the decisions made so far, the expected number of edges that would be cut if all remaining choices
were to be taken randomly would be

dr = xt+er/2

The x; term counts the edges cut so far, while the e;/2 term counts the e; edges with at least one undecided
endpoint: each of those edges will be cut with probability 1/2.

Our goal is to replace the random decisions for the vertices with deterministic decisions that guarantee
¢r+1 > ¢y at each step. If we can do this, then we will have |E[/2 = ¢g < ¢1 < --- < ¢y, and, since ¢, is
the number of edges finally cut, this will ensure that at least | E|/2 edges are cut.

Consider deciding whether the vertex v, goes into S;y; or Si11. Let s be the number of vy ’s
neighbors in S;. Let 5 be the number of v, 1’s neighbors in S; 1. By calculation

s/2—5/2  ifvsyisaddedto Siog
5/2 —s/2  otherwise

Qr+1 — ¢ = {

Thus, the following strategy ensures ¢+ > ¢ if s <5, then put vey) in Set1; otherwise put vy in Sii1.
By doing this at each step, the algorithm guarantees that ¢, > ¢,—1 > --- > |E|/2.

We have derived the following greedy algorithm: Start with S = S = (. Consider the vertices in turn. For
each vertex v, put the vertex v in S or S, whichever has fewer of v’s neighbors. We know from the derivation
that this is a 1/2-approximation algorithm.
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4.10.2 Independent Set

Although the application of the method of conditional probabilities is somewhat technical, it is routine,
in the sense that it follows a similar form in every case. Here is another example.

The problem of finding a MAXIMUM INDEPENDENT SET in a graph G = (V, E) is one of the most basic
problems in graph theory. An independent set is defined as a subset S of vertices such that there are no
edges between any pair of vertices in S. The problem is NP-hard. Turan’s theorem states the following:
Any graph G with n nodes and average degree d has an independent set 1 of size at least n/(d + 1). Next,
we sketch a classic proof of the theorem using the probabilistic method. Then we apply the method of
conditional probabilities to derive a greedy algorithm.

Let N(v) = N(v) U {v} denote the neighbor set of v, including v. Consider this randomized algorithm:
Start with I = (). Consider the vertices in a random order. When considering v, add it to I if N(v) N [ = (.

For a vertex v to be added to I, it suffices for v to be considered before any of its neighbors. This happens
with probability | N(v)|~!. Thus, by linearity of expectation, the expected number of vertices added to I

is at least
>IN
v

A standard convexity argument shows this is at least n/(d + 1), completing the proof of Turan’s theorem.

Now we apply the method of conditional probabilities. Suppose the first ¢ vertices V; = {v1, v, ..., v¢}
have been considered. Let I; = V; N I denote those that have been added to I. Let R, = V\ (V; U N(L))
denote the remaining vertices that might still be added to I and let N:(v) = N(v) N R; denote the
neighbors of v that might still be added. If the remaining vertices were to be chosen in random order, the
expected number of vertices in I by the end would be at least

¢ = 1Ll + >IN

VER;

We want the algorithm to choose vertex vy to ensure ¢ry; > ¢¢. To do this, it suffices to choose the
vertex w € R; minimizing | N¢(w)], for then

$ri—d=1— > IN@IT =1 Y NwT =0

ve Ni(w) veNy(w)

This gives us the following greedy algorithm: Start with I = (). Repeat until no vertices remain: Choose
a vertex v of minimum degree in the remaining graph; add v to I and delete v and all of its neighbors from
the graph. Finally, return 1. It follows from the derivation that this algorithm ensures n/(d + 1) < ¢ <
@1 < -+ < ¢y, so that the algorithm returns an independent set of size at least n/(d + 1), where d is the
average degree of the graph.

As an exercise, the reader can give a different derivation leading to the following greedy algorithm (with
the same performance guarantee): Order the vertices by increasing degree, breaking ties arbitrarily. Let 1
consist of those vertices that precede all their neighbors in the ordering.

4.10.3 Unweighted Set Cover

Next we illustrate the method on the set cover problem.

We start with a randomized rounding scheme that uses iterated random sampling to round a fractional
set cover (a solution to the relaxed problem) to a true set cover. We prove an approximation ratio for the
randomized algorithm, then apply the method of conditional probabilities to derive a deterministic greedy
algorithm.

We emphasize that, in applying the method of conditional probabilities, we remove the explicit depen-
dence of the algorithm on the fractional set solution. Thus, the final algorithm does not in fact require
solving the relaxed problem first.
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Recall the definition of the set cover problem from the beginning of the chapter. For this section, we
will assume all weights w(S;) are 1.

Consider the following relaxation of the problem: assign a value z; € [0, 1] to each set S; so as to
minimize ) _; z; subject to the constraint that, for every element x;, ) .. xjes % = 1. We call a z meeting
these constraints a fractional set cover.

The optimal set cover gives one possible solution to the relaxed problem, but there may be other
fractional set covers that give a smaller objective function value. However, not too much smaller. We
claim the following: Let z be any fractional set cover. Then there exists an actual set cover C of size at most
T = TIn(n)|z|], where|z| =, zi.

To prove this, consider the following randomized algorithm: given z, draw T sets at random from the
distribution p defined by p(S;) = z;/|z|. With nonzero probability, this random experiment yields a set
cover. Here is why. A calculation shows that, with each draw, the chance that any given element e is covered
is at least 1/|z|. Thus, the expected number of elements left uncovered after T draws is at most

n(1—1/|z|)T < nexp(—=T/|z]) <1

Since on average less than one element is left uncovered, it must be that some outcome of the random
experiment covers all elements.

Next we apply the method of conditional probabilities. Suppose that ¢ sets have been chosen so far, and
let n; denote the number of elements not yet covered. Then the conditional expectation of the number of
elements left uncovered at the end is at most

¢ = n(1—1/]2)7"

We want the algorithm to choose each set to ensure ¢y < ¢;_1, so that in the end ¢7 < ¢ < 1 and the
chosen sets form a cover.

Suppose the first ¢ sets have been chosen, so that ¢; is known. A calculation shows that, if the next set
is chosen at random according to the distribution p, then E[¢;y1] < ¢ Thus, choosing the next set to
minimize ¢4 will ensure ¢;1 < ¢;. By inspection, choosing the set to minimize ¢ is the same as
choosing the set to minimize ;4.

We have derived the following greedy algorithm: Repeat T times: add a set to the collection so as to
minimize the number of elements remaining uncovered. In fact, it suffices to do the following: Repeat
until all elements are covered: add a set to the collection so as to minimize the number of elements remain-
ing uncovered. (This suffices because we know from the derivation that a cover will be found within
T rounds.)

We have proven the following fact: The above greedy algorithm returns a cover of size at most min,
[In(n)|z|1, where z ranges over all fractional set covers. Since the minimum-size set cover OPT corresponds
to a z with |z| = |OPT]|, we have the following corollary: The above greedy algorithm returns a cover of size
at most [In(n)OPT1.

This algorithm can be generalized to weighted set cover, and slightly stronger performance guarantees
can be shown [3-6]. This particular greedy approach applies to a general class of problems called
“minimizing a linear function subject to a submodular constraint” [8].

Comment: In many cases, applying the method of conditional probabilities will not yield a greedy algo-
rithm, because the conditional expectation ¢; will depend on the fractional solution in a nontrivial way.
In that case, the derandomized algorithm will first have to compute the fractional solution (typically by
solving a linear program). That is Raghavan and Thompson’s standard method of randomized rounding
[27]. The variant we see here was first observed in Ref. [28]. Roughly, to get a greedy algorithm, we should
apply the method of conditional probabilities to a probabilistic proof based on repeated random sampling
from the distribution defined by the fractional optimum.
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4.10.4 Lagrangian Relaxation for Fractional Set Cover

The algorithms described above fall naturally into a larger and technically more complicated class of
algorithms called Lagrangian relaxation algorithms. Typically, such an algorithm is used to find a structure
meeting a given set of constraints. The algorithm constructs a solution in small steps. Each step is made
so as to minimize (or keep from increasing) a penalty function that approximates some of the underlying
constraints. Finally, the algorithm returns a solution that approximately meets the underlying constraints.

These algorithms typically have a greedy outer loop. In each iteration, they solve a subproblem that is
simpler than the original problem. For example, a multicommodity flow algorithm may solve a sequence
of shortest-path subproblems, routing small amounts of flow along paths chosen to minimize the sum of
edge penalties that grow exponentially with the current flow on the edge.

Historical examples include algorithms by von Neumann, Ford and Fulkerson, Dantzig-Wolfe decom-
position, Benders’ decomposition, and Held and Karp. In 1990, Shahrokhi and Matula proved a polynomial
time bound for such an algorithm for multicommodity flow. This sparked a long line of work generalizing
and strengthening this result (e.g., [29-31]). See the recent text by Bienstock [32]. These works focus
mainly on packing and covering problems—LPs and ILPs with nonnegative coefficients.

As arule, the problems in question can also be solved by standard linear programming algorithms such
as the simplex, the ellipsoid, or interior-point algorithms. The primary motivation for studying Lagrangian
relaxation algorithms has been that, like other greedy algorithms, they can often be implemented without
explicitly constructing the full underlying problem. This can make them substantially faster.

As an example, here is a Lagrangian relaxation algorithm for fractional set cover (given an instance of the
set cover problem, find a fractional set cover z of minimum size |z| = ; zi; see the previous subsection
for definitions). Given a set cover instance and ¢ € [0, 1/2], the algorithm returns a fractional set cover of
size at most 1 + O(e) times the optimum:

1. Let N = 21n(n)/e2, where n is the number of elements.
2. Repeat until all elements are sufficiently covered (minj ¢(j) > N).

3. Choose a set S; maximizing » (1-— S)C(]), where ¢(j) denotes the number of times any set

o X;€S;
containing element x; has been chosen so far.

4. Return z, where z; is the number of times S; was chosen divided by N.

The naive implementation of this algorithm runs in O(nMlog(n)/e?) time, where M = > 1Sl
is the size of the input. With appropriate modifications, the algorithm can be implemented to run in
O(Mlog(n)/sz) time.

For readers who are interested, we sketch how this algorithm may be derived using the probabilistic
framework. To begin, we imagine that we have in hand any fractional set cover z*, to which we apply the
following randomized algorithm: Define probability distribution p on the sets by p(S;) = z} /|z*|. Draw
sets randomly according to p until every element has been covered (in a drawn set) at least N = 21n(n) /&>
times. Return z, where z; is the number of times set S; was drawn, divided by N. (The reader should keep in
mind that the dependence on z* will be removed when we apply the method of conditional probabilities.)

Claim: With nonzero probability, the algorithm returns a fractional set cover of size at most (1 + O(g))|z*|.

Next we prove the claim. Let T = |z*| N/(1 — ¢). We will prove that, with nonzero probability, within T
draws each set will be covered at least N times. This will prove the claim because then the size of z is at
most T/N = |z*|/(1 — &).

Fix a given element x ;. With each draw, the chance that x; is covered is at least 1/|z*|. Thus, the expected
number of times x; is covered in T draws is at least T/|z*| = N/(1 — ¢). By a standard Chernoff bound,
the probability that x; is covered less than N times in T rounds is at most exp(—e2N/2(1 —¢)) < 1/n.

By linearity of expectation, the expected number of elements that are covered less than N times in T
rounds is less than 1. Thus, with nonzero probability, all elements are covered at least N times in T rounds.

This proves the claim. Next we apply the method of conditional probabilities to derive a greedy algorithm.
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Let X j; be an indicator variable for the event that x; is covered in round ¢, so that for any j the X/’s
are independent with E[X ;] > 1/|z*|. Let u = N/(1 — ¢&). The proof of the Chernoff-bound bounds
Pr[ ", X < (1 — &)uu] by the expectation of the following quantity:

(1—e)2 Xt (1= g) 2 Xt

(1—g)I=on —  (1—¢g)N

Thus, the proof of our claim above implicitly bounds the probability of failure by the expectation of

(1-— e)zt it
Z (I—S)N

Furthermore, the proof shows that the expectation of this quantity is less than 1.

To apply the method of conditional probabilities, we will choose each set to keep the conditional expec-
tation of the above quantity ¢ below 1.

After the first ¢ sets have been drawn, the random variables X ;5 for s < t are determined, while X j; for
s > tare not yet determined. Using the inequalities from the proof of the Chernoff bound, the conditional
expectation of ¢ given the choices for the first ¢ sets is at most

. [T-.(1—e)%s x ., (1 —g/lz*])
b= 1—e)V
j

This quantity is initially less than 1, so it suffices to choose each set to ensure ¢pr11 < ¢¢. If the t + st
set is chosen randomly according to p, then E[¢;11] < ¢;. Thus, to ensure ¢y < ¢y, it suffices to
choose the set to minimize ¢¢;. By a straightforward calculation, this is the same as choosing the set S;
to maximize ) _ S; (1 — g)¥s=t%Xjt, This gives us the algorithm in question (at the top of this section).
From the derivation, we know the following fact: The algorithm above returns a fractional set cover of size
at most (1 + O(g)) ming+ |z*|, where z* ranges over all the fractional set covers.

4.11 Conclusions

In this chapter we surveyed a collection of problems and described simple greedy algorithms for several of
these problems. In several cases, the greedy algorithms described do not represent the state of the art for
these problems. The reader is referred to other chapters in this handbook to read in more detail about the
specific problems and the techniques that yield the best worst-case approximation guarantees. In many
instances, the performance of greedy algorithms may be better than their worst-case bounds suggest. This
and their simplicity make them important in practice.

For some problems (e.g., set cover), it is known that a greedy algorithm gives the best possible approxi-
mation ratio unless NP € DTIME(#!°81°8"), But for some problems no such intractability results are yet
known. In these cases, instead of proving hardness of approximation for all polynomial-time algorithms,
one may try something easier: to prove that no greedy algorithm gives a good approximation. Of course this
requires a formal definition of the class of algorithms. (A similar approach has been fruitful in competitive
analysis of online algorithms.) Such a formal study of greedy algorithms with an eye toward lower bound
results has been the subject of several recent papers [33].

For additional information on combinatorial optimization, the reader is referred to books by
Papadimitriou and Steiglitz [2], Cook et al. [34], and a series of three books by Schrijver [35]. For more
on approximation algorithms, there is a book by Vazirani [23], lecture notes by Motwani [36], and a book
edited by Hochbaum [37]. There is a chapter on greedy algorithms in several textbooks, such as Kleinberg
and Tardos [38], and Cormen et al. [39]. More on randomized algorithms can be found in a book by
Motwani and Raghavan [40], and a survey by Shmoys [41].
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5.1 Introduction

Greedy algorithms are often the first algorithms that one considers for various optimization problems,
and, in particular, covering problems. The idea is very simple: try to build a solution incrementally by
augmenting a partial solution. In each iteration, select the “best” augmentation according to a simple
criterion. The term greedy is used because the most common criterion is to select an augmentation that
minimizes the ratio of “cost” to “advantage.” We refer to the cost-to-advantage ratio of an augmentation
as the density of the augmentation.

In the set-cover (SC) problem, every set S has a weight (or cost) w(S). The “advantage” of a set S with
respect to a partial cover {Sy, ..., Sk} is the number of new elements covered by S, i.e., |S\ (S1 -+ Sk)|.
In each iteration, a set with a minimum density is selected and added to the partial solution until all the
elements are covered. In the SC problem, it is easy to find an augmentation with minimum density simply
by recomputing the density of every set in every iteration.

In this chapter, we consider problems for which it is NP-hard to find an augmentation with minimum
density. From a covering point of view, this means that there are exponentially many sets. However, these
sets are succinctly represented using a structure with polynomial complexity. For example, the sets can be
paths or trees in a graph. In such problems, applying the greedy algorithm is a nontrivial task. One way
to deal with such a difficulty is to try to approximate a minimum density augmentation. Interestingly,
the augmentation itself is computed using a greedy algorithm, and this is why the algorithm is called the
recursive greedy algorithm.

The recursive greedy algorithm was presented by Zelikovsky [1] and Kortsarz and Peleg [2]. In Ref. [1],
the directed Steiner tree (DST) problem in acyclic graphs was considered. In the DST problem, the input
consists of a directed graph G = (V, E) with edge weights w(e), a subset X € V of terminals, and a
root r € V. The goal is to find a minimum-weight subgraph that contains directed paths from r to every
terminal in X. In Ref. [2], the bounded diameter Steiner tree (BDST) problem was considered. In the
BDST problem, the input consists of an undirected graph G = (V, E) with edge costs w(e), a subset of
terminals X C V, and a diameter parameter d. The goal is to find a minimum-weight tree that spans

5-1
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X with diameter bounded by d. In both papers, it is proved that, for every ¢ > 0, the recursive greedy
algorithm achieves an O(| X|?) approximation ratio in polynomial time. The recursive greedy algorithm
is still the only nontrivial approximation algorithm known for these problems.

The presentation of the recursive greedy algorithm was simplified and its analysis was perfected by
Charikar etal. [3]. In Ref. [3], the recursive greedy algorithm was used for the DST problem. The improved
analysis gave a poly-logarithmic approximation ratio in quasi-polynomial time (i.e., running time is
O(n°1°8M), for a constant ¢).

The recursive greedy algorithm is a combinatorial algorithm (i.e., no linear programming or high
precision arithmetic is used). The algorithm’s description is simple and short. The analysis captures the
intuition regarding the segments during which the greedy approach performs well. The running time of
the algorithm is exponential in the depth of the recursion, and hence, reducing its running time is an
important issue.

We present modifications of the recursive greedy algorithm that enable reducing the running time. Un-
fortunately, these modifications apply only to the restricted case in which the graph isa tree. We demonstrate
these methods on the Group Steiner (GS) problem [4] and its restriction to trees [5]. Following Ref. [6],
we show that for the GS problem over trees, the recursive greedy algorithm can be modified to give a poly-
logarithmic approximation ratio in polynomial time. Better poly-logarithmic approximation algorithms
were developed for the GS problem; however, these algorithms rely on linear programming [5,7].

5.1.1 Organization

In Section 5.2, we review the greedy algorithm for the SC problem. In Section 5.3, we present three
versions of DST problems. We present simple reductions that allow us to focus on only one version.
Section 5.4 constitutes the heart of this chapter; in it the recursive greedy algorithm and its analysis are
presented. In Section 5.5, we consider the GS problem over trees. We outline modifications of the recursive
greedy algorithm that enable a poly-logarithmic approximation ratio in polynomial time. We conclude in
Section 5.6 with open problems.

5.2 A Review of the Greedy Algorithm

In this section we review the greedy algorithm for the SC problem and its analysis.

In the SC problem we are given a set of elements, denoted by U = {1, ..., n} and a collection R of
subsets of U. Each subset S € R is also given a nonnegative weight w(S). A subset C € R is an SC if
Ugee 8 =1{1, ..., n}. The weight of a subset of R is simply the sum of the weights of the sets in R. The
goal in the SC problem is to find a cover of minimum weight. We often refer to a subset of R that is not a
cover as a partial cover.

The greedy algorithm starts with an empty partial cover. A cover is constructed by iteratively asking an
oracle for a set to be added to the partial cover. This means that no backtracking takes place; every set that
is added to the partial cover is kept until a cover is obtained. The oracle looks for a set with the lowest
residual density, defined as follows.

Definition 5.1

Given a partial cover C, the residual density of a set S is the ratio
w(S)
1S\ Usrec S

Note that the residual density is nondecreasing (and may even increase) as the greedy algorithm accu-

pe(S) =

mulates sets. The performance guarantee of the greedy algorithm is summarized in the following theorem
(see Chapter 4).
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Theorem 5.1

The greedy algorithm computes a cover whose costis at most (1 + In n)-w(C*), where C* is a minimum-weight
cover.

There are two main questions that we wish to ask about the greedy algorithm:

Question 1: What happens if the oracle is approximate? Namely, what if the oracle does not return a set
with minimum residual density, but a set whose residual density is at most o times the minimum
residual density? How does such an approximate oracle affect the approximation ratio of the greedy
algorithm? In particular, we are interested in the case that « is not constant (e.g., @ depends on
the number of uncovered elements). We note that in the SC problem, an exact oracle is easy to
implement. But we will see a generalization of the SC problem in which the task of an exact oracle
is NP-hard, and hence we will need to consider an approximate oracle.

Question 2: What happens if we stop the execution of the greedy algorithm before a complete cover is
obtained? Suppose that we stop the greedy algorithm when the partial cover covers 8 - n elements in
U. Can we bound the weight of the partial cover? We note that one reason for stopping the greedy
algorithm before it ends is that we simply run out of “budget” and cannot “pay” for additional sets.

The following lemma helps answer both questions. Let x denote the number of elements that are not
covered by the partial cover. We say that the oracle is or(x)-approximate if the residual density of the set it
finds is at most a(x) times the minimum residual density.

Lemma 5.1 (Charikar et al. [3])

Suppose that the oracle of the greedy algorithm is a(x)-approximate and that a(x)/x is a nonincreasing
function. Let C; denote partial cover accumulated by the greedy algorithm after adding i sets. Then,

w(C;) </” o(x) dx
W(C*) - nflus’eCiS/l X

Proof

The proof is by induction on n. When n = 1, the algorithm sunply returns a set S such that w(S) <
a(1) - w(C*). Since o(x)/x is nonincreasing, we conclude that o ( fo " dx, and the induction basis
follows.

The induction step for n > 1 is proved as follows. Let C; = {Si, ..., S;}. When the oracle computes
S1, its density satisfies: w(S;) /|51| < a(n) w(C*)/n. Hence, w(S;) < |51| o(n) - w(C*). Since a(x)/x
is nonincreasing, | S;] - M < Jumisy) x %) dx. We conclude that

n
w(S1) 5/ A e wic®) (5.1)
n—S ¥

Now consider the residual set system over the set of elements {1, ..., n}\ S; with the sets S’ = S\ S;.

We keep the set weights unchanged, i.e., w(S') = w(S). The collectlon {Sz> e Si} is the output of the

greedy algorithm when given this residual set system. Let n’ = |S; U - - - U §;|. Since C* induces a cover of
the residual set with the same weight as w(C*), the induction hypothesis implies that

n—|Si|
w(Sy) + -+ w(S) < / Md w(C*). (5.2)
—(+lsil) X
The lemma follows now by adding Eq. (5.1) and Eq. (5.2). O
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w(set
w(set;) (setm)

OO ()

FIGURE 5.1 Reduction of SC instance to DST instance.

We remark that for a full cover, since fol dx/x is not bounded, one could bound the ratio by (1) +
f ln @ dx. Note that for an exact oracle «(x) = 1, this modification of Lemma 5.1 implies Theorem 5.1.

Lemma 5.1 shows that the greedy algorithm also works with approximate oracles. If «(x) = O(log x),
then the approximation ratio of the greedy algorithm is simply O(w(n) - logn). But, for example, if
a(x) = x, then the lemma “saves” a factor of log # and shows that the approximation ratio is % -n®. So
this settles the first question.

Lemma 5.1 also helps settle the second question. In fact, it proves that the greedy algorithm (with an

exact oracle) is a bicriteria algorithm in the following sense.

Claim 5.1

If the greedy algorithm is stopped when 8 - n elements are covered, then the cost of the partial cover is bounded
by In (ﬁ) - w(C*).

The greedy algorithm surly does well with the first set it selects, but what can we say about the remaining
selections? Claim 5.1 quantifies how well the greedy algorithm does as a function of the portion of the
covered elements. For example, if 8 = 1 — 1/e, then the partial cover computed by the greedy algorithm
weighs no more than w(C*). (We ignore here the knapsack-like issue of how to cover “exactly” B - n
elements, and assume that, when we stopped the greedy algorithm, the partial cover covers 8 - n elements.)
The lesson to be remembered here is that the greedy algorithm performs “reasonably well” as long as “few”
elements have been covered.

The DST problem is a generalization of the SC problem. In fact, every SC instance can be represented
as a DST instance over a layered directed graph with three vertex layers (see Figure 5.1). The top layer
contains only a root, the middle layer contains a vertex for every set, and the bottom layer contains a vertex
for every element. The weight of an edge from the root to a set is simply the weight of the set. The weight of
all edges from sets to elements are zero. The best approximation algorithm for SC is the greedy algorithm.
What form could a greedy algorithm have for the DST problem?

5.3 Directed Steiner Problems

In this section, we present three versions of DST problems. We present simple reductions that allow us to
focus on only the last version.

Notation and Terminology

We denote the vertex set and edge set of a graph G by V(G) and E(G), respectively. An arborescence T
rooted at r is a directed graph such that (i) the underlying graph of T is a tree (i.e., if edge directions are
ignoredin T, then T is a tree), and (ii) there is a directed path in T from the root r to every node in T. Ifan
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arborescence T is a subgraph of G, then we say that T covers (or spans) a subset of vertices X if X C V(T).
If edges have weights w(e), then the weight of a subgraph G’ is simply £(G) w(e). We denote by T,
the subgraph of T that is induced by all the vertices reachable from v (including v).

5.3.1 The Problems

The DST Problem

In the DST problem the input consists of a directed graph G, a set of terminals X € V(G), positive edge
weights w(e), and aroot r € V(G). An arborescence T rooted at r is a DST if it spans the set of terminals
X. The goal in the DST problem is to find a minimum-weight DST.

The k-DST Problem

Following Ref. [3], we consider a version of the DST problem, called k-DST, in which only part of the
terminals must be covered. In the k-DST problem, there is an additional parameter k, often called the
demand. An arborescence T rooted at r is a k-partial DST (k-DST) if | V(T) N X| > k. The goal in the
k-DST problem is to find a minimum-weight k-partial DST. We denote the weight of an optimal k-partial
DSTby DS*(G, X, k). (Formally, the root r should be a parameter, but we omit it to shorten the notation.)
We encode DST instances as k-DST instances simply by setting k = | X].

The £-Shallow k-DST Problem

Following Ref. [2], we consider a version of the k-DST problem in which the length of the paths from
the root to the terminals is bounded by a parameter £. A rooted arborescence in which every node is at
most £ edges away from the root is called an £-layered tree. (Note that we count the number of layers of
edges; the number of layers of nodes is £ + 1.) In the £-shallow k-DST problem, the goal is to compute a
minimum k-DST among all £-layered trees.

5.3.2 Reductions

Obviously, the k-DST problem is a generalization of the DST problem. Similarly, the £-shallow k-DST
problem is a generalization of the k-DST problem (i.e., simply set £ = |V| — 1). The only nontrivial
approximation algorithm we know is for the £-shallow k-DST problem; this approximation algorithm is
a recursive greedy algorithm. Since its running time is exponential in £, we need to consider reductions
that result with as small as possible values of £.

For this purpose we consider two well-known transformations: transitive closure and layering. We now
define each of these transformations.

Transitive Closure
The transitive closure of G is a directed graph TC(G) over the same vertex set. For every u, v € V, the
pair (u, v) is an edge in E(TC(G)) if there is a directed path from u to v in G. The weight w’'(u, v) of an
edge in E(TC(G)) is the minimum weight of a path in G from u to v.

The weight of an optimal k-DST is not affected by applying transitive closure namely,

DS*(G, X, k) = DS*(TC(G), X, k) (5.3)

This means that replacing G by its transitive closure does not change the weight of an optimal k-DST.
Hence, we may assume that G is transitively closed, i.e., G = TC(G).

Layering

Let £ denote a positive integer. We reduce the directed graph G into an £-layered directed acyclic graph
LGy as follows (see Figure 5.2). The vertex set V(LGy) is simply V(G) x {0, ..., £}. The jth layer
in V(LGy) is the subset of vertices V(G) x {j}. We refer to V(G) x {0} as the bottom layer and to
V(G) x {£} as the top layer. The graph LG, is layered in the sense that E(LGy) contains only edges
from the V(G) x {j + 1} to V(G) x {j}, for j < £. The edge set E(LG,) contains two types of
edges: regular edges and parallel edges. For every (1, v) € E(G) and every j < ¢, there is a regular
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Vx {¢}

Vx {1}

V x {0}

FIGURE5.2 Layering of a directed graph G. Only parallel edges incident to images of u, v € V(G) and regular edges
corresponding to (u, v) € E(G) are depicted.

edge (u, j +1) — (v, j) € E(LGy). For every u € V and every j < £, there is a parallel edge
(u, j +1) = (u, j) € E(LGg). All parallel edges have zero weight. The weight of a regular edge is
inherited from the original edge, namely, w((u, j + 1) — (v, j)) = w(u, v). The set of terminals X’ in
V(LG,) is simply X x {0}, namely, images of terminals in the bottom layer. The root in L G is the node
(, £). The following observation shows that we can restrict our attention to layered graphs.

Observation 5.1

There is a weight- and terminal-preserving correspondence between £-layered r -rooted trees in G and (r, £)-
rooted trees in LGy. In particular, w(LT}) = DS*(LGg, X', k), where LT} denotes a minimum-weight
k-DST among all £-layered trees.

Observation 5.1 implies that if we wish to approximate L T*, then we may apply layering and assume
that the input graph is an £-layered acyclic graph in which the root is in the top layer and all the terminals
are in the bottom layer.

Limiting the Number of Layers
As we pointed out, the running time of the recursive greedy algorithm is exponential in the number of
layers. It is therefore crucial to be able to bound the number of layers. The following lemma bounds the
penalty incurred by limiting the number of layers in the Steiner tree. The proof of the lemma appears in
Appendix A and uses notation introduced in Section 5.4. (A slightly stronger version appears in Ref. [8],
with the ratio 2171/¢ . ¢ . k1/¢)

Lemma 5.2 (Zelikovsky [1], corrected in Helvig et al. [8])
If G is transitively closed, then w(LT}") < % k¥ . DS*(G, X, k).
It follows that an «-approximate algorithm for an £-shallow k-DST is also an a-approximation algo-

rithm for k-DST, where 8 = % - k2/¢. We now focus on the development of an approximation algorithm
for the £-shallow k-DST problem.
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5.4 A Recursive Greedy Algorithm for ¢-Shallow k-DST

This section presents a recursive greedy algorithm for the £-shallow k-DST problem. Based on the layering
transformation, we assume that the input graph is an €-layered acyclic directed graph G. The set of
terminals, denoted by X, is contained in the bottom layer. The root, denoted by r, belongs to the top layer.

5.4.1 Motivation

We now try to extend the greedy algorithm to the £-shallow k-DST problem. Suppose we have a directed
tree T C G that is rooted at r. This tree only covers part of the terminals. Now we wish to augment T so
that it covers more terminals. In other words, we are looking for an r-rooted augmenting tree T;,¢ to be
added to the T. We follow the minimum density heuristic, and define the residual density of T;,¢ by
A w(T, ug )

|(Taug N X)\(T N X))

All we need now is an algorithm that finds an augmenting tree with the minimum residual density.
Unfortunately, this problem is by itself NP-hard. Consider the following reduction: Let G denote the

pT(Tuug)

two-layered DST instance mentioned above to represent an SC instance. Add a layer with a single node r’
that is connected to the root r of G. The weight of the edge (', r) should be large (say, n times the sum of
the weights of the sets). It is easy to see that every minimum density subtree must span all the terminals.
Hence, every minimum density subtree induces a minimum-weight SC, and finding a minimum density
subtree in a three-layered graph is already NP-hard. We show in Section 5.4.3 that for two or less layers,
one can find a minimum density augmenting tree in polynomial time.

We already showed that the greedy algorithm also works well with an approximate oracle. So we try
to approximate a subtree with minimum residual density. The problem is how to do it? The answer is by
applying a greedy algorithm recursively!

Consider an ¢-layered directed graph and a root r. The algorithm finds a low-density £-layered aug-
menting tree by accumulating low-density (¢ — 1)-layered augmenting trees that hang from the children
of r. These trees are found by augmenting low-density trees that hang from grandchildren of r, and so on.
We now formally describe the algorithm.

5.4.2 The Recursive Greedy Algorithm

Notation

We denote the number of terminals in a subgraph G’ by k(G’) (i.e., k(G') = | X N V(G')|). Similarly, for
a set of vertices U, k(U) = | X N U|. We denote the set of vertices reachable in G from u by desc(u). We
denote the layer of a vertex u by layer (u) (e.g., if u is a terminal, then layer (1) = 0).

Description

A listing of the algorithm DS(u, k, X) appears as Algorithm 5.1. The stopping condition is when u belongs
to the bottom layer or when the number of uncovered terminals reachable from u is less than the demand
k (i.e., the instance is infeasible). In either case, the algorithm simply returns the root {r}.

The algorithm maintains a partial cover T that is initialized to the single vertex u. The augmenting tree
Taug is selected as the best tree found by the recursive calls to the children of u (together with the edge from
u to its child). Note that the recursive calls are applied to all the children of u and all the possible demands
k. After Taug is added to the partial solution, the terminals covered by T;, are erased from the set of
terminals so that the recursive calls will not attempt to cover terminals again. Once the demand is met,
namely, k terminals are covered, the accumulated cover T is returned.

The algorithm is invoked with the root r, the demand k, and the set of terminals X. Note that if the
instance is feasible (namely, at least k terminals are reachable from the root), then the algorithm never
encounters infeasible subinstances during its execution.
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Algorithm 5.1  DS(u, k, X)—A recursive greedy algorithm for the Directed Steiner Tree Problem. The
graph is layered and all the vertices in the bottom layer are terminals. The set of terminals is denoted by
X. We are searching for a tree rooted at u that covers k terminals.

: stopping condition: if layer (1) = 0 or k(desc(u)) < k then return ({u}).

: initialize: T <« {u}; X™® « X.

: while k(T) < k do

recurse: for every v € children(u) and every k' < min{k — k(T), |desc(v) N X™)|}

=N =

Tv,k’ < DS(U, k/, Xres).

5:  select: Let T;,¢ be a lowest residual density tree among the trees T, ¢ U {(u, v)}, where
v € children(u) and k' < k — k(T).

6: augment &update: T < T U Tyue; X™ < X\ V(Tyq).

: end while

8: return (7).

~N

5.4.3 Analysis

Minimum Residual Density Subtree
Consider a partial solution T rooted at u accumulated by the algorithm. A tree T’ rooted at u is a candidate
tree for augmentation, if (i) every vertex v € V(T’) in the bottom layer of G is in X" (i.e., T' covers only
new terminals) and (i) 0 < k(T’) < k — k(T) (i.e., T’ does not cover more terminals than the residual
demand). We denote by T}, a tree with minimum residual density among all the candidate trees.

We leave the proof of the following lemma as an exercise.

Lemma 5.3

. . . . Wi .

Assume that w;, ki > 0, for every 0 < i < n. Then, min; 7+ < ZZ’ kl < max; 2.
1 . l 1

1

>

Corollary 5.1

If u is not a terminal, then we may assume that u has a single child in T,

Proof

We show that we could pick a candidate tree with minimum residual density in which u has a single child.
Suppose that u has more than one child in T;,. To every edge e; = (u, vj) € E(T,,) we match a subtree
Aej of T/. The subtree Agj contains u, the edge (u, v;), and the subtree of T, hanging from vj. The
subtrees {Ae;le; form an edge-disjoint decomposition of T. Let w; = w(Ae;) and k; = k(Aej\T). Since
u is not a terminal, the subtrees { A, }¢; partition the terminals in V/( T)),and k(T)) = > j k;. Similarly,
w(T)) = > Wi By Lemma 5.3, it follows that one of the trees A, j has a residual density that is not
greater than the residual density of T,,. Use this minimum residual density subtree instead of T},, and the
corollary follows. O

Density

Note that edge weights are nonnegative and already covered terminals do not help in reducing the residual
density. Therefore, every augmenting tree T;, covers only new terminals and does not contain terminals
already covered by T. It follows that every terminal in T;,, belongs to X" and, therefore, k(Tsug) =
| Taug N X"|. We may assume that the same holds for T;;; namely, T, does not contain already covered
terminals. Therefore, where possible, we ignore the “context” T in the definition of the residual density
and simply refer to density, i.e., the density of a tree T is p(T') = w(T')/|V(T') N X]|.
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Notation and Terminology

A directed star is a one-layered rooted directed graph (i.e., there is a center out of which directed edges
emanate to the leaves). We abbreviate and refer to a directed star simply as a star. A flower is a two-layered
rooted graph in which the root has a single child.

Bounding the Density of Augmenting Trees
When layer (u) = 1, if u has least k terminal neighbors, then the algorithm returns a star centered
at u. The number of edges emanating from r in the star equals k, and these k edges are the k lightest
edges emanating from r to terminals. It is easy to see that in this case the algorithm returns an optimal
k-DST.

The analysis of the algorithm is based on the following claim that bounds the ratio between the densities
of the augmenting tree and T,

Claim 5.2 (Charikar et al. [3])

If layer (u) > 2, then, in every iteration of the while loop in an execution of DS(u, k), the subtree Ty,q satisfies
p(Taug) < (layer (u) — 1) - p(Ty)

Proof

The proof is by induction on layer (u). Suppose that layer (u) = 2. By Corollary 5.1, T}, is a flower that
consists of a star S, centered at a neighbor v of u, the node u, and the edge (1, v). Moreover, S, contains the
k(T)) closest terminals to v. When the algorithm computes Taug it considers all stars centered at children
v’ of u consisting of the k' < k— k(T) closest terminals to v'. In particular, it considers the star S, together
with the edge (u, v). Hence, p(Tayg) < po( T}), as required.

We now prove the induction step for layer (1) > 2. Let i = layer (u). The setting is as follows: During
an execution of DS(u, X), a partial cover T has been accumulated, and now an augmenting tree Tj,¢ is
computed. Our goal is to bound the density of T;,g.

By Corollary 5.1, u has a single child in T). Denote this child by /. Let B,; denote the subtree of T/, that
hangs from «' (i.e., By = T,\{u, (u, u')}). Let k¥’ = k(T).

We now analyze the selection of T;,¢ while bearing in mind the existence of the “hidden candidate” T,
that covers k’ terminals. Consider the tree T,y p computed by the recursive call DS(¢/, k', X"). We would
like to argue that T,y ;s should be a good candidate. Unfortunately, that might not be true! However, recall
that the greedy algorithm does “well” as long as “few” terminals are covered. So we wish to show that a
“small prefix” of T,y i is indeed a good candidate. We now formalize this intuition.

The tree T,y is also constructed by a sequence of augmenting trees, denoted by {A;};. Namely,
Tvw =U jAj- We identify the smallest index £ for which the union of augmentations A; U --- U A
covers at least kK’ /(i — 1) terminals (recall that i = layer (1)). Formally,

-1 y ¢
k LJIAJ‘ <(1,_1)§k LJlAj
1= 1=

Our goal is to prove the following two facts. Fact (1): Let kK = k(Uf-:1 Aj), then the candidate

tree T,y v = DS(u/, k”, X") equals the prefix Uf-:l Aj. Fact (2): The density of T, j is small, i.e.,
(T ) < (i = 1) - p(By).

The first fact is a “simulation argument” since it claims that the union of the first £ augmentations
computed in the course of the construction of T,/ j is actually one of the candidate trees computed
by the algorithm. This simulation argument holds because, as long as the augmentations do not meet
the demand, the same prefix of augmentations is computed. Note that k” is the formalization of “few”
terminals (compared to k’). Using k' /(i — 1) as an exact measure for a few terminals does not work because
the simulation argument would fail.

The second fact states that the density of the candidate T,y is smaller than (i — 1) - p(B,/). Note
that B,y and A; U --- U Ay—; may share terminals (in fact, we would “like” the algorithm to “imitate”
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B, as much as possible). Hence, the residual density of B,; may increase as a result of adding the trees
Ay, ..., Ag_1. However, since k(A; U --- U Ag_1) < k'/(i — 1), it follows that even after accumulating
Ap U ---U Ag_y, the residual density of B,; does not grow much. Formally, the residual density of B,y
after accumulating A; U - - - U Ay_ is bounded as follows:

W(Bu/)
PTUAU-UAe) (Bu) = 17— k(A1 U--- Ar_y)
o B
K-
i—1
1—2

We now apply the induction hypothesis to the augmenting trees A ; (for j < £),and bound their residual
densities by (layer (u') — 1) times the “deteriorated” density of B,s. Formally, the induction hypothesis
implies that when A; is selected as an augmentation tree its density satisfies:

,O(A]) = (1 - 2) : p(TUAlv‘»UAj,l)(Bu/)
= (@ —1)-p(By) (byEq.(54))

By Lemma 5.3, ,O(L_Ji»:1 Aj) <maxj=1.¢p(Aj). Hence, o(Ty ) < (i — 1) - p(B,), and the second
fact follows.
To complete the proof, we need to deal with the addition of the edge (u, /).

w(u, u') + w(Ty )
k//

k/
= 1)+ p( Ty p) (sincek”? 1>
.

p({(u’ ul)} U Tu/,k”) =
/
- w(u, u)
< %
(i—1)-p({(w, )} U By) (by fact [2])
= (i—1)-p(T)
The claim follows since {(u, u')} U T,y 3~ is only one of the candidates considered for the augmenting tree
Taug and hence p(Toue) < p({(w, ')} U Ty jr). .

IA

Approximation Ratio
The approximation ratio follows immediately from Lemma 5.1.

Claim 5.3
Suppose that G is £-layered. Then, the approximation ratio of Algorithm DS(r, k, X) is O(£ - log k).

Running Time

For each augmenting tree, Algorithm D S(u, k, X) invokes at most # - k recursive calls from children of u.
Each augmentation tree covers at least one new terminal, so there are at most k augmenting trees. Hence,
there are at most 7 - k2 recursive calls from the children of u. Let time (£) denote the running time of
DS(u, k, X), where £ = layer (u). Then the following recurrence holds: time (€£) < (n - k2) - time (€ — 1).
We conclude that the running time is o(nt - k%),

5.4.4 Discussion

Approximation of k-DST

The approximation algorithm is presented for £-layered acyclic graphs. In Section 5.3.2, we presented a
reduction from the k-DST problem to the £-shallow k-DST problem. The reduction is based on layering
and its outcome is an £-layered acyclic graph. We obtain the following approximation result from this
reduction.
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Theorem 5.2 (Charikar et al. [3])

For every £, there an O(£> - k*/*)-approximation algorithm for the k-DST problem with running time
O(k2t . nb),

Proof
The preprocessing time is dominated by the running time of DS(r, k, X) on the graph after it is transitively
closed and layered into £ layers.

Let R* denote a minimum residual density augmenting tree in the transitive closure of the graph
(without the layering). Let T} denote a minimum residual subtree rooted at u in the layered graph among
the candidate trees that cover k(R*) terminals. By Lemma 5.2, w(T}.) < ¢/2 - k(R*)Y/2 . w(R*), and
hence, p(Tjx) < €/2 - k(R*)/2 . p(R*). Since p(T},) < p(Tx), by Claim 5.2 it follows that p(T,,e) <
(6 —1)-£/2- k¥t p(R¥).

We now apply Lemma 5.1. Note that f %dx = % - x2/t . Hence, w(T) = O(£3 - k¥'%), where T is the
tree returned by the algorithm, and the theorem follows. |

We conclude with the following result.

Corollary 5.2

For every constant & > 0, there exists a polynomial-time O(k'/®)-approximation algorithm for the k-DST
problem. There exists a quasi-polynomial-time O(log> k)-approximation algorithm for the k-DST problem.

Proof
Substitute £ = 2/¢ and £ = log k in Theorem 5.2. O

Preprocessing
Computing the transitive closure of the input graph is necessary for the correctness of the approximation
ratio. Recall that Lemma 5.2 holds only if G is transitively closed.

Layering, on the other hand, is used to simplify the presentation. Namely, the algorithm can be described
without layering (see Refs. [2,3]). The advantage of using layering is that it enables a unified presentation
of the algorithm (i.e., there is no need to deal differently with one-layered trees). In addition, the layered
graph is acyclic, so we need not consider multiple “visits” of the same node. Finally, for a given node u,
we know from its layer what the recursion level is (i.e., the recursion level is £ — layer (1)) and what the
height of the tree we are looking for is (i.e., current height is layer (u)).

Suggestions for Improvements
One might try to reduce the running time by not repeating computations associated with the computations
of candidate trees. For example, when computing the candidate T, x—k(7) the algorithm computes a
sequence of augmenting trees that is used to build also other candidates rooted at v that cover fewer
terminals (we relied on this phenomenon in the simulation argument used in the proof of Claim 5.2).
However, such improvements do not seem to reduce the asymptotic running time; namely, the running
time would still be exponential in the number of layers and the basis would still be polynomial. We discuss
other ways to reduce the running time in the next section.

Another suggestion to improve the algorithm is to zero the weight of edges when they are added to the
partial cover T (see Ref. [1]). Unfortunately, we do not know how to take advantage of such a modification
in the analysis and, therefore, keep the edge weights unchanged even after we pay for them.

5.5 Improving the Running Time

In this section, we consider a setting in which the recursive greedy algorithm can be modified to obtain
a poly-logarithmic approximation ratio in polynomial time. The setting is with a problem called the GS
problem, and only part of the modifications are applicable also to the k-DST problem. (Recall that the
problem of finding a polynomial-time poly-logarithmic approximation algorithm for k-DST is still open.)
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Motivation
We saw that the running time of the recursive greedy algorithm is O((nk?)%), where k is the demand (i.e.,
number of terminals that needs to be covered), the degree of a vertex can be as high as n— 1 (since transitive
closure was applied), and £ is the bound on the number of layers we allow in the k-DST.

To obtain polynomial running times, we first modify the algorithm and preprocess the input so that its
running time is log() (). We then set £ = log 1/ loglog 1. Note that

log n
(lOg n)lnglngn =n

Hence, a polynomial running time is obtained.
Four modifications are required to make this idea work:

1. Bound the number of layers—we already saw that the penalty incurred by limiting the number of
layers can be bounded. In fact, according to Lemma 5.2, the penalty incurred by £ = log n/ loglog n
is poly-logarithmic (since £ - k/¢ = (logn)©)).

2. Degree reduction—we must reduce the maximum degree so that it is poly-logarithmic, otherwise
too many recursive calls are invoked. Preprocessing of GS instances over trees achieves such a
reduction in the degree.

3. Avoid small augmenting trees—we must reduce the number of iterations of the while loop. The
number of iterations can be bounded by (log n)¢ if we require that every augmenting tree must
cover at least a poly-logarithmic fraction of the residual demand.

4. Geometric search—we must reduce the number of recursive calls. Hence, instead of considering all
demands below the residual demand, we consider only demands that are powers of (1 + ¢).

The GS Problem over Trees
We now present a setting where all four modifications can be implemented. In the GS problem over trees,
the input consists of: (1) an undirected tree T rooted at r with nonnegative edge edges w(e), and (2) groups
gi € V(T) of terminals. A subtree T" C T rooted at r covers k groups if V(T") intersects at least k groups.
We refer to a subtree that covers k groups as a k-GS tree. The goal is to find a minimum-weight k-GS tree.
We denote the number of vertices by n and the number of groups by m. For simplicity, assume that
every terminal is leaf of T and that every leaf of T is a terminal. In addition, we assume that the groups g;
are disjoint. Note that the assumption that the groups are disjoint implies that Y ", |gi| < n.

Bounding the Number of Layers

Lemma 5.2 applies also to GS instances over trees, provided that transitive closure is used. Before transitive
closure is used, we direct the edges from the node closer to the root to the node farther away from the
root. As mentioned above, limiting the number of layers to £ = log n/ loglog n incurs a poly-logarithmic
penalty.

However, there is a problem with bounding the number of layers according to Lemma 5.2. The problem
is that we need to transitively close the tree. This implies that we lose the tree topology and end up with
an directed acyclic graph instead. Unfortunately, we only know how to reduce the maximum degree of
trees, not of directed acyclic graphs. Hence, we need to develop a different reduction that keeps the tree
topology.

In Ref. [6], a height reduction for trees is presented. This reduction replaces T by an £-layered tree T'.
The penalty incurred by this reduction is O(n¢/*), where c is a constant. The details of this reduction
appear in Ref. [6].

Reducing the Maximum Degree

We now sketch how to preprocess the tree T to obtain a tree v( T) such that: (i) There is a weight preserving
correspondence between k-GS trees in T and in v(T). (ii) The maximum number of children of a vertex
in v(T) is bounded by an integer 8 > 3. (iii) The number of layers in v(T) is bounded by the number of
layers in T plus [logg, n]. We set B = [log ], and obtain the required reduction.
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We define a node v € V(T) to be B-heavy if the number of terminals that are descendents of v is at
least n/B; otherwise v is B-light.

Given a tree T rooted at u and a parameter S, the tree v(T) is constructed recursively as follows. If uis a
leaf, then the algorithm returns u. Otherwise, the star induced by u and its children is locally transformed
as follows. Let vy, vy, ..., vk denote the children of u.

1. Edges between u and B-heavy children v; of u are not changed.

2. The B-light children of u are grouped arbitrarily into minimal bunches such that each bunch (except
perhaps for the last) is B-heavy. Note that the number of leaves in each bunch (except perhaps for
the last bunch) is in the half-closed interval [n,/8, 2n,/8). For every bunch B, a new node b is
created. An edge (u, b) is added as well as edges between b and the children of u in the bunch B.
The edge weights are set as follows: (a) w(u, b) <— 0, and (b) w(b, v;) < w(u, v;).

After the local transformation, let v}, v}, ..., v’j be the new children of u. Some of these children are
the original children and some are the new vertices introduced in the bunching. The tree v(T) is obtained
by recursively processing the subtrees T/, for 1 < i < j, in essence replacing T,; by v(T,/).

The maximum number of children after processing is at most 8 because thetsubtreesl{Tv/_ }i partition
the nodes of V(T,) — {u} and each tree except, perhaps one, is S-heavy. The recursion is applied to
each subtree T/, and hence v(T) will satisfies the degree requirement, as claimed. The weight preserving
correspondencé between k-GS trees in T and in v(T) follows from the fact that the “shared” edges (u, b)
that were created for bunching together B-light children of u have zero weight.

We now bound the height of v(T). Consider a path p in v(T) from the root r to a leaf v. All we need
to show is that p contains at most logg,, n new nodes (i.e., nodes corresponding to bunches of B-light
vertices). However, the number of terminals hanging from a node along p decreases by a factor of at least
B/2 every time we traverse such a new node, and the bound on the height of v(T) follows.

The Modified Algorithm
We now present the modified recursive greedy algorithm for GS over trees. A listing of the modified
recursive greedy algorithm appears as Algorithm 5.2.

Algorithm 5.2  Modified-GS(u, k, G)—Modified recursive greedy algorithm for k-GS over trees.

1: stopping condition: if u is a leaf then return ({u}).
2: Initialize: cover <— {u} and G™* <« G.
3: while k(cover) < k do
4 recurse: for every v € children(u) and
for every k' power of (1 + A) in [y, - (k — k(cover)), k — k(cover)]

T,k < Modified-GS(v, k', G™).

o

select: (pick the lowest density tree)
Taug < MIN-DENSITY { T,, v U {(1, v)} } .

6 augment & update: cover < cover U Tpug; G < G\ (g; : Tyg intersects g;}.
7:  keep k/ h(T,)-cover: if first time k(cover) > k/ h(T,) then covery, < cover.
8
9

: end while
: return (lowest density tree € {cover, coverp}).

The following notation is used in the algorithm. The input is a rooted undirected tree T that does not
appear as a parameter of the input. Instead, a node u is given, and we consider the subtree of T that hangs
from u. We denote this subtree by T,,. The partial cover accumulated by the algorithm is denoted by cover.
The set of groups of terminals is denoted by G. The set of groups of terminals not covered by cover is
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denoted by G"™. The number of groups covered by cover is denoted by k(cover). The height of a tree T, is
the maximum number of edges along a path from u to a leaf in T;,. We denote the height of T, by h(T,).

Two parameters A and y,, appear in the algorithm. The parameter A is set to equal 1/ h(T). The parameter
yy satisfies 1/y, = |children (v)|- (1 4+ 1/1) - (1 + A).

Lines that are significantly modified (compared to Algorithm 5.1) are underlined. In line 4, two mod-
ifications take place. First, the smallest demand is not one, but a poly-logarithmic fraction of the residual
demand (under the assumption that the maximum degree and the height is poly-logarithmic). Second,
only demands that are powers of (14 1) are considered. In line 7, the algorithm also stores the partial cover
that first covers at least 1/ h(T,) of the initial demand k. This change is important for the simulation ar-
gument in the proof. Since the algorithm does not consider all the demands, we need to consider also the
partial cover that the simulation argument points to. Finally, in line 9, we return the partial cover with the
best density among cover and covery,. Again, this selection is required for the simulation argument.

Note that modified-GS(u, k, G) may return now a cover that covers less than k groups. If this happens
in the topmost call, then one needs to iterate until a k-GS cover is accumulated.

The following claim is proved in Ref. [6]. It is analogous to Claim 5.2 and is proved by rewriting the
proof while taking into account error terms that are caused by the modifications. Due to lack of space, we
omit the proof.

Claim 5.4 (Chekuri et al. [6])
The density of every augmenting tree Ty,q satisfies
p(Taug) < (1+ 1) h(T,) - p(T))

The following theorem is proved in Ref. [6]. The assumptions on the height and maximum degree are
justified by the reduction discussed above.

Theorem 5.3

Algorithm modified-GS(r, k, G) is a poly-logarithmic approximation algorithm with polynomial running
time for G S instances over trees with logarithmic maximum degree and O(log n/loglog n) height.

5.6 Discussion

In this chapter, we presented the recursive greedy algorithm and its analysis. The algorithm is designed for
problems in which finding a minimum density augmentation of a partial solution is an NP-hard problem.
The main advantages of the algorithm are its simplicity and the fact that it is a combinatorial algorithm.
The analysis of the approximation ratio of the recursive greedy algorithm is nontrivial and succeeds in
bounding the density of the augmentations.

The recursive greedy algorithm has not been highlighted as a general method, but rather as an algorithm
for Steiner tree problems. We believe that it can be used to approximate other problems as well.

Open Problems

The quasi-polynomial-time O(log® k)-approximation algorithm for DST raises the question of finding
a polynomial-time algorithm with a poly-logarithmic approximation ratio for DST. In particular, the
question is whether the running time of the recursive greedy algorithm for DST can be reduced by
modifications or preprocessing.
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Appendix A

Proof of Lemma 5.2

We prove that given a k-DST T in a transitive closed directed graph G, there exists a k-DST T’ such that:
(i) T’ is £-layered and (ii) w(T’) < % k¥t w(T). The proof uses the notation introduced in Section 5.4.

Notation

Consider a rooted tree T. The subtree of T that consists of the vertices hanging from v is denoted by
T,. Let @ = k*/¢. We say that a node v € V(T) is a-heavy if k(T,)) > k(T)/a. A node v is a-light if
k(T,) < k(T)/a. A node v is minimally o -heavy if v is a-heavy and all its children are «-light. A node v
is maximally a-light if v is «c-light and its parent is «-heavy.

Promotion

We now describe an operation called promotion of a node (and hence the subtree hanging from the node).
Let G denote a directed graph that is transitively closed. Let T denote a rooted tree at r that is a subgraph
of G. Promotion of v € V(T) is the construction of the rooted tree T’ over the same vertex set with the
edge set: E(T') = E(T) U {(r, v)}\{(p(v), v)}. The promotion of v simply makes v a child of the root.

Height Reduction

The height reduction procedure is listed as Algorithm 5.3. The algorithm iteratively promotes minimally
a-heavy nodes that are not children of the root, until every a-heavy node is a child of the root. The
algorithm then proceeds with recursive calls for every maximally «-light node. There are two types of
maximally «-light nodes: (1) children of promoted nodes, and (2) «-light children of the root (that have
not been promoted).

Algorithm 5.3 HR(T, r, o)—A recursive height reduction algorithm. T is a tree rooted at r, and @ > 1
is a parameter.

stopping condition: if V(T) = {r} then return ({r}).
T « T.
while v € V(T’) : v is minimally a-heavy & dist(r, v) > 1 do
T <« promote(T', v)
end while
for all maximally «-light nodes v € V(T’) do
T’ « tree obtained from T after replacing T, by HR(T}, v, «).
end for
return (T7).

AR P AR LR e

The analysis of the algorithm is as follows. Let hy (k(T)) denote an upper bound on the height of the
returned tree as a function of the number of terminals in 7. The recursion is applied only to maximally
a-light trees that are one or two edges away from the current root. It follows that h, (k(T)) satisfies the
recurrence

ha(K') < ha (K /o) +2

Therefore, hy (k') < 2log, k'.
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Bounding the Weight

We now bound the weight of the tree T’ returned by the height reduction algorithm. Note that every edge
¢/ € E(T') corresponds to a path path(e’) € T. We say that an edge e € E(T) is charged by an edge
¢ € E(T') if e € path(e’). If we can prove that every edge e € E(T) is charged at most 8 times, then
w(T') < B - w(T).

We now prove that every edge e € E(T) is charged at most « - log,, k(T) times. It suffices to show that
every edge is charged at most o times in each level of the recursion. Since the number of terminals reduces
by a factor of at least « in each level of the recursion, the recursion depth is bounded by log,, k(T). Hence,
the bound on the number of times that an edge is charged follows.

Consider an edge e € E(T) and one level of the recursion. During this level of the recursion, «-heavy
nodes are promoted. The subtrees hanging from the promoted nodes are disjoint. Since every such subtree
contains at least k(T)/« terminals, it follows that the number of promoted subtrees is at most . Hence,
the number of new edges (r, v) € E(T’) from the root r to a promoted node v is at most «. Each such
new edge charges every edge in E(T) at most once, and hence every edge in E(T) is charged at most «
times in each recursive call. Note also that the recursive calls in the same level of the recursion are applied
to disjoint subtrees. Hence, for every edge e € E(T), the recursive calls that charge e belong to a single
path in the recursion tree.

We conclude that the recursion depth is bounded by log,, k(T) and an edge is charged at most & times
in each recursive call. Set £ = 2log, k(T), and then o log, k(T) = % - k%/¢. The lemma follows. O
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6.1 Introduction

In this chapter we discuss the role of linear programming (LP) in the design and analysis of combinatorial
approximation algorithms. Our emphasis is on NP-hard problems in combinatorial optimization. One
aspect of their computational hardness is that such problems lack a good characterization of optimal
solutions. Thus, approximating the optimum often involves finding a tight-as-possible bound on the
optimal value that can be computed efficiently. LP is a powerful tool in deriving such bounds. The starting
point is usually a formulation of the combinatorial optimization problem as an integer linear program.
As a concrete example, consider the problem of VERTEX COVER. Given an undirected graph G = (V, E)
with nonnegative weights on the vertices w: V — N, we wish to find a minimum-weight set of vertices
V' C V such that for every e € E, e N V' # . This is a well-known NP-hard problem (see Ref. [1]),
and here is a natural way to express it as an integer linear program. For every i € V assign an indicator
variable x; € {0, 1}, indicating whether or not i € V’. The constraints e N V' # @ can be expressed as
xi + xj > 1, where e = {i, j}. The resulting program is

minimize Y, w(i)x;
subjectto  xi+x;>1 V{i jl€ E (6.1)
x; € {0, 1} VieV (6.2)

An ideal bound on the optimum can be derived by optimizing the same objective function over the
convex hull of the integer solutions. As the vertices of the convex hull are integer solutions, this would yield
an optimal solution. Unfortunately, the fact that VERTEX COVER is NP-hard implies that we are not aware of
a concise representation of this linear program. In particular, the convex hull has an exponential number
of facets, corresponding to an exponential number of linear constraints. A polynomial-time algorithm
that, given a vector x € RY, finds a violated constraint or verifies that x is in the convex hull (a so-called
separation oracle) is unlikely to exist. However, we can compute a lower bound on the optimum by relaxing
the integrality constraints (6.2). Thus we get the following linear programming relaxation for VERTEX COVER:

minimize Y, w(i)x;
subjectto  xj+xj>1 V{i,jl€E
x>0 VieV (6.3)

Notice that in an optimal solution there is no reason to set any variable x; to a value greater than 1, so we
do not have to add explicitly the inequalities x; < 1,Vi € V.

6-1
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There are several ways in which such a bound can be used to derive an approximation algorithm. The
most straightforward method is to solve the linear program, getting an assignment of potentially fractional
values to the variables, then use these values to generate an integral solution. Such a procedure is called
rounding. This chapter’s focus is on rounding procedures. Other methods merely use the LP relaxation (or
its dual) as a tool for analyzing the performance of an algorithm that does not explicitly solve the linear
program. The performance of the approximation algorithm is compared with the solution to the linear
program, rather than to the optimal solution of the NP-hard optimization problem. We will not discuss
such methods (including the primal-dual schema and dual fitting) here. These methods are discussed in
Chapters 2, 4, 13, 37, 39, 40, 71, and 82. Additional LP rounding applications are discussed in Chapters 7,
9,11, 12, 70, and 80.

An important invariant of an LP relaxation is its integrality ratio, which is the worst-case ratio, over all
possible inputs to the combinatorial optimization problem, between the linear program’s optimal value
and the optimization problem’s optimal value. Unless the relaxation is used in conjunction with other
techniques, the integrality ratio usually determines our expectation as to the best guarantee that can be
achieved by an approximation algorithm relying on the relaxation.

In the following section, we review some of the methods used to derive approximation algorithms from
LP relaxations, following the example of VERTEX COVER and many other examples.

6.2 Rounding

How tight is the lower bound min {Ziev w(i)x; : (6.1) and (6.3)}? Consider the clique K,, with unit
weights on the vertices. Clearly, any n — 1 vertices form a vertex cover, and if at least two vertices are
excluded from the solution, then there will be at least one edge that is not covered. Thus, the cost of an
optimal vertex cover is n — 1. In contrast, assigning x; = % to all vertices i is a feasible solution to VC-LP,
and its cost is 7. So the integrality ratio of VC-LP is at least 2 — % The following theorem proves that this
is essentially tight.

Theorem 6.1 (Nemhauser and Trotter [2])

Every basic feasible solution to the system of linear inequalities consisting of (6.1) and (6.3) is half-integral.

Proof

Consider a feasible solution x that is not half-integral. We may assume that no entry of x exceeds 1, otherwise
it is not a basic solution. Let V- ={i € V: 0 < x; < %} andlet Vt ={ie V: % < xi < 1}. At least
one of these sets is not empty. Let € > 0 be a real number such that foreveryi € V7,0 < x; &+ € < %,
and for everyi € VT, % < x; £€ < 1. Put

xXi+e 1€V~
X, =QX—6€ 1€ v+
Xi, ie V\(V-uU VY

and
xi—¢€ 1€V~
xr={xi+e ieVt
Xi» ie V\(V- U V)
Both x~ and x™ are feasible solutions, x~ # x*, and x = %(x’ + xT). Therefore, x cannot be a basic
solution. 0

Theorem 6.1 immediately leads to the following approximation algorithm, due to Hochbaum [3]. Solve
the above linear program obtaining a basic optimal solution x*. Set V' = {i € V : xf > %}. Clearly V'
is a vertex cover. (In fact, we do not even need half-integrality. Every feasible solution x has the property
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D> owii) <2 wli)xf

eV’ ieV

that for every edge {i, j} € E, either x; > % orxj > %.) Also, by the choice of V' we have that

Therefore, the above algorithm gives a 2 approximation to VERTEX COVER.

Half-integral relaxations that can be rounded easily are rare. In most cases where rounding works, it
requires far greater effort and sophistication. Consider the problem of scheduling jobs on a set of unrelated
machines so as to minimize the makespan, or R||Cpay in standard scheduling theory notation. The input
to this problem consists of m machines and # jobs; job j is a sequence of p1j, p2j,..., pmj, where
pij € NU {oo} denotes the processing time of job j on machine i. The goal is to find an assignment of
jobs to machines ¢ : {1, 2, ..., n} — {1, 2, ..., m} that minimizes the makespan (i.e., the maximum load
on a machine), which is

max Z Pij

jept()
Clearly, this problem can be solved by the combination of binary search on the minimum makespan M,
and a procedure to decide if a solution with makespan at most M exists and provide such a solution if it
exists. An obvious formulation of the decision problem as an integer solution to a set of linear constraints
uses indicator variables x;; € {0, 1}, where x;; = 1if and only if job j is assigned to machine i. Formally,
the set of constraints is

Zx,-,- >1 Vj (6.4)
i
Z pijxij <M Vi (6.5)
j
xij €{0,1} Vi, j (6.6)

The first set of constraints (6.4) ensures that every job is assigned to a machine. The second set of con-
straints (6.5) ensures that the load on each machine is at most the target M. A 0-1 vector x that satisfies
all of the above constraints corresponds to a solution with makespan at most M. As R||Cpax is NP-hard,
finding a feasible solution x is NP-hard. We thus relax the integrality constraints (6.6), replacing them by
the constraints

xij =0 Vi j (6.7)

One last modification is necessary to make this relaxation useful. A fractional solution may assign a fraction
ofa job j to a machine i for which p;; > M. This clearly cannot happen in an integer solution, but might
happen in a fractional solution. We therefore eliminate from the inequalities all variables x;; for which
pij > M.

A 2-approximation algorithm for R||Cp,x based on solving the resulting system of linear inequalities is
a trivial consequence of the following theorem.

Theorem 6.2 (Lenstra et al. [4])

Any basic solution to the above system of linear inequalities can be rounded in polynomial time to give an
assignment of jobs to machines such that the load on any machine does not exceed 2 M.

Proof

The number of constraints (6.4) and (6.5) is n + m, so a basic solution x has at most n + m nonzero
entries. Any job j that is assigned fractionally to two or more machines contributes at least two nonzero
entries. Therefore, at most m jobs are assigned fractionally. To round the fractional solution, assign job j
to machine i whenever x;; = 1. Let the set of remaining jobs be J. As explained, | J | < m. Find a matching
¢:] —{1,2,..., m},whereajob j € J is matched to a machine i = ¢(j) such that x;; > 0. (The proof
that such a matching exists is rather involved. We do not include it here.) Assign the jobs in ] according to
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the matching ¢. The analysis of the performance guarantee is quite simple. Assume that a fractional basic
solution x exists. The load due to the jobs not in J is at most the fractional load, which is at most M. A
job j € J adds a load of at most M to ¢( j), because x;; > 0 implies that p;; < M. Therefore, the total
load on any machine is at most 2 M. O

Another useful tool is filtering, which is a technique to exclude some nonzero expensive entries in
a fractional solution, leaving a “critical mass” that can be rounded with provable performance. This
technique was first proposed by Lin and Vitter [5]. Here we demonstrate its use in gettinga constant factor
approximation algorithm for METRIC FACILITY LOCATION, following the work of Shmoys et al. [6]. For the
sake of simplifying the presentation, we do not try to optimize the performance guarantee. In one simple
version of METRIC FACILITY LOCATION we are given a finite metric space (X, d) and a cost function on the
points f : X — N. The points represent both clients, each having a unit demand, and potential locations
for facilities. The cost of constructing a facility at i € X is f(i). Each client j € X is served by the closest
facility 7 at cost d(i, j). The goal is to minimize the total construction cost plus the total service cost. Here
is one way to express the problem using mixed integer programming.

minimize 37y f(D)xi + 32, iex Al 1)yij

subject to Vij < X Vi, je X (6.8)
Diex yij =1 VieX (6.9)
x; € {0, 1} Vie X (6.10)

The obvious LP relaxation replaces the integrality constraints (6.10) with
x>0 VieX (6.11)

This relaxation can be used to derive a constant factor approximation algorithm for METRIC FACILITY
LOCATION, as the following theorem states.

Theorem 6.3

There is a polynomial-time algorithm that computes, for every vectors x, y that satisfy the constraints (6.8),
(6.9), and (6.11), integral vectors x', y' satisfying the same constraints, such that

ST F@x+ > dl )y <4 D> fx+ > dG, )y

ieX i,jeX ieX i,jeX

Proof

We may assume that for every j € X, >, y yij = 1, otherwise we can scale y,; without violating the
constraints and without increasing the cost of the solution. For every j € X, let pj = . yd(i, j) yij
be the expected service cost for client j under the distribution y4 ;. By Markov’s Inequality, at least % of
the mass of the distribution lies on potential facility locations i with d(i, j) < %p - We would like to
choose the cheapest of these facility locations to open a facility there and serve client j. However, the
problem with this idea is that the sets of close facilities for different clients may overlap partially, thus
we may charge the same probability mass several times. To overcome this difficulty, we consider a set of
clients that have disjoint sets of close facilities. Sort the clients by nondecreasing order of p;, then select a
maximal sequence of clients J such that the balls B(j, 40;/3) ={i € X: d(i, j) < 4p;j/3},forall j € J,
are all disjoint. In each ball, select the cheapest location i and set x; = 1 for all such i. Set x; = 0 for all
other i. Finally, for every j € X, set y! j=1 for a location i with x; = 1 which is closest to j, and set
¥ i=0 for all other locations i. We have that

Yo fix=ad DT fm<4d fi)x

ieX jej ieB(j,pj) ieX
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Consider j € J. Let i’ be the location with ylf/j = 1. The cost of serving j is

o 4 4 .
d(i, j) = 305= 3> 40 yij
ieX
Finally, consider j ¢ J. There exists j' € J suchthat pjs < pjand B(j’, 4p;/3) N B(j, 4p;/3) # . Let
i’ be the location with y/, j = 1. Then,

oo 4 8 ..
(i, j) < 3Pit 3Py = 4pj = 4Zd(z, yij
ieX

This concludes the proof. O

We conclude this section with a brief description of Jain’s iterative rounding method, which he used
to derive a 2-approximation algorithm for the GENERALIZED STEINER NETWORK problem [7]. The input to
this problem is an undirected graph G = (V, E), edge costs c: E — N, and connectivity requirements
r:V x V — N.The goalis to find a subgraph G’ = (V, E’) of minimum total edge cost > _,_p/ c(e), such
that for every i, j € V there are at least r (4, j) edge-disjoint paths connecting i and j in G'. (Clearly, we
may assume that r is symmetric, that is, r(i, j) = r(j, i).) The basis for Jain’s algorithm is the following
formulation of GENERALIZED STEINER NETWORK. Let f : 2V - Zbedefined by f(S) = maxjegs, jgs (i, j).
Thus, f(S) denotes the connectivity requirement across the cut (S, V\S). Forevery e € E, let x, € {0, 1}
be an indicator variable that will be set to 1 ifand only if e is included in the solution E’. Then, GENERALIZED
STEINER NETWORK can be expressed as follows:

minimize D eck cle)xe
subject to Ze:|eﬁ5|=1 xe> f(S) VScCV (6.12)
x. € {0, 1} Ve € E (6.13)

The function f that is used here is weakly supermodular, which means that f(V) = 0, and for every
A, B C V,either f(A)+ f(B) < f(A\B)+ f(B\A)or f(A)+ f(B) < f(AN B)+ f(AU B) (or
both). In fact, Jain’s approximation algorithm works for any weakly supermodular function f. It is based
on the obvious LP relaxation of the above integer program, replacing the integrality constraints (6.13) by

0<x,.<1 Ve€eE (6.14)

Note that the resulting linear program has an exponential number of constraints. However, often an
efficient separation oracle can be designed, so the linear program can be solved in polynomial time. This
is the case with GENERALIZED STEINER NETWORK; the separation oracle computes for every pair of nodes
i, j € V aminimum cut in G with edge capacities x and checks if the cut capacity is at least r(i, j). The
approximation algorithm is based on the following theorem.

Theorem 6.4 (Jain [7])

If f is weakly supermodular, then for every basic solution x to the inequalities (6.12) and (6.14) there exists

e € E such that x, > %

The proof of this theorem is quite complicated and is therefore not included here. Given an optimal
basic solution x, we generate an integer solution x’ as follows. For every e € E such that x, > %, we set
x, =1.Let E| = {e € E: x, > %} Then we recompute a basic fractional solution x! with the added
condition that the edges in E1 must be picked. To compute x!, we solve the following linear program:

minimize ZeeE\E1 cle)x,
subject to Ze:leﬂSl:lxe > f(S)—|{fe€ E;: lenS|=1}] VScCV (6.15)
0<x <1 Ve € E\E, (6.16)
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It can be shown easily that if f is weakly supermodular then so is the function g given by g(S) =
f(S) —|{e € E;: len S| = 1}|, so Theorem 6.4 applies to x'. We continue to round the solution
iteratively and recompute a basic fractional solution to the remaining problem until no more edges need
to be taken. This gives a 2 approximation for GENERALIZED STEINER NETWORK.

6.3 Randomized Rounding

Consider the problem of MAXIMUM COVERAGE. The input is a collection of subsets Si, S5, ..., Sy, over the
baseset {1, 2, ..., n},and a positive integer k € {1, 2, ..., m}. The goalisto find k subsets S;;, S, ..., Sj
such that their union U};ZI Si; has maximum cardinality. The following is a standard formulation of the
problem:

maximize Z';zl z;

subjectto  z; Smin{l, Zi:jes,-xi} Vie{l,2,...,n} (6.17)
Soilxi=k (6.18)
x; € {0, 1} Vie{l,2,...,m} (6.19)

Here the variable x; is the indicator for including the set S; in the solution. The variable z; gets set to 1
if and only if j is covered by the sets taken in the solution. In the obvious LP relaxation, these variables
are set to values in the interval [0, 1]. One interpretation of the relaxation is that now x; stands for the
probability of including S; in the solution and z; for the probability of covering j. However, we have no
guarantee that a sample space with the desired probabilities exists. Nevertheless, this interpretation proves
to be fruitful. Consider the following probabilistic algorithm. Pick k sets at random by sampling k times
independently from the distribution Pr given by Pr[S;] = x—k‘ (Note that ) ; Pr[S;i] = 1, so this is indeed
a distribution over the sets.) Let E j denote the event that j is covered by the random choice of k sets. We
have that

Pr(E;] =1— Pr[E|]

v Il
— —

| |

/N

—

' |
=D =
"5 M

kel

=

This implies an approximation guarantee of e;el as the expected number of elements covered is e;el > 2>
and ) jZj is an upper bound on the optimal value.

Often, bounds onlarge deviations are useful in the context of randomized rounding. Let X;, X3, X3, ...,
X, be independent indicator random variables with Pr[X; = 1] = p;. Let X = Z?:lXi. By the
linearity of expectation, E[X] = ;" pi. The following Chernoff-like bound is attributed to Spencer
(see Ref. [8]).

Lemma 6.1
For everye > 0,
o€ E[X]
Pr(X > (1+¢€)E[X]] < (m)

For an application, consider Raghavan and Thompson’s [9] problem of integral multicommodity flow
CONGESTION MINIMIZATION that we present here in its simplest unit capacities version. Given a (directed)
graph G = (V, E) and a list of source—destination pairs (s, #1), (52, ), ..., (Sk, t) (also called
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commodities), find, for every i € {1,2,...,k}, a path p; in G from s; to #;, minimizing the maxi-
mum number of paths that cross a single arc. Consider the following equivalent integer programming
formulation. For i € {1, 2, ..., k}, let P; denote the set of all simple paths in G from s; to f;. (Note that
| P;] might be exponentially large in the input size. We will deal with this issue later.)

minimize u
subject to > pep, f;; =1 Vie{l,2,...,k} (6.20)
S Y pepprefp = VecE (6.21)
fpefo1} Vie{l,2,...,k}, Vpe P; (6.22)

If we relax the integrality constraints (6.22), we get a linear program whose solution assigns, for every
commodity i € {1, 2, ..., k}, a probability distribution f? over P;. (In other words, we get a fractional
multicommodity flow solution.) As mentioned, the number of variables in this linear program is ex-
ponential in the input size. It is nevertheless possible to solve it in time polynomial in the input size
using a separation oracle for the dual. A more standard approach is to replace this linear program with a
polynomial-size linear program that has arc flow variables and flow conservation constraints. The com-
puted flows can be decomposed into a polynomial number of flow paths (see, e.g., the book [10]). Either
way, we will get distributions f' that have polynomial-size support. Note that max{1, u} is a lower bound
for MINIMUM CONGESTION, as the optimal value is at least 1. We will use this bound in analyzing the
following approximation algorithm.

The algorithm applies randomized rounding. For every commodity i € {1, 2, ..., k}, we choose at
random a single path p according to the distribution f (i.e., the probability of choosing p is fp’,) Consider
anarce € E. Clearly, the probability that the path for a commodity i uses e is precisely g; = > peb;: poe fpr
Let X; be an indicator random variable that is set to 1 if and only if commodity 7 uses e. Thus, the load on
eisgiven by X = Zle X;. We have that

k k
EIXI=Yai=Y Y f
i=1

i=1 peP;: p>se

which is exactly the load on e in the linear program. Unfortunately, if there is more than one arc in the
graph we cannot guarantee that all the arcs simultaneously will not be loaded more than the expectation.
However, by Lemma 6.1, for a constant ¢ > 0,

log |E|

PriX>c—>——
[ log log| E|

max{1, E[X]}] < ﬁ

Therefore, with probability at least %, every arc carries at most c% max{1, u} paths. In fact, if u
is large, then the approximation guarantee improves. For example, if u = log | E|, we can apply Lemma 6.1
with a constant € to get a constant factor approximation. As u grows further, the approximation guarantee
approaches 1.

6.4 Metric Spaces

Some problems in combinatorial optimization, most notably problems involving cuts in undirected
graphs, can be interpreted naturally as optimization over a class of metric spaces. For example, con-
sider the MINIMUM MULTICUT problem, introduced by Klein et al. [11]. The input to this problem is a
graph G = (V, E) with nonnegative edge capacities ¢ : E — N, a positive integer k, and a set of k pairs of
nodes T = {{s1, t1}, {52, &}, ..., {sk> t}} called terminal pairs. The goal is to find a set of edges F C E of
minimum total capacity ¢(F) = )z c(e) whose removal disconnects every pair of terminals in T This
problem can be formalized as the following integer program. Let P denote the set of paths in G connecting
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sjand t;, for some i € {1,2, ..., k}.

minimize ), p c(e)x.
subject to Zeep xe>1 VpeP (6.23)
x. € {0, 1} Vee E (6.24)

As usual, an LP relaxation is derived by replacing the integrality constraints (6.24) with
x>0 Ve€E (6.25)

Note that the resulting linear program may have an exponential number of constraints. However, this
can be dealt with using the same methods explained in the discussion on CONGESTION MINIMIZATION
in the previous section. Let x be any feasible solution to the linear program. One way to interpret the
solution is the following. Define a semi-metric! d on V by setting d(u, v) to be the shortest path be-
tween u and v under edge weights given by x. Then the constraints (6.23) put d(s;, t;) > 1 for all
i € {1,2,..., k}. In fact, every such metric d corresponds to a feasible solution x by setting, for every
e = (u,v) € E, x, = d(u, v). Our hope is to find a way to “round” the semi-metric d to a multicut
without increasing the objective function too much. Note that a multicut F corresponds to a semi-metric
8 on V that satisfies the constraints (6.23) and also has §(u, v) € {0, 1} for every u, v € V. More specif-
ically, §(#, v) = 0 if and only if u and v are in the same connected component after removing the edges
in F.

Indeed, Garg et al. [12] analyzed such a rounding procedure which is based on earlier work of Leighton
and Rao [13] on SPARSEST CUT, a problem that will be discussed below.

Theorem 6.5 (Garg et al. [12])

There is a polynomial-time algorithm that, given input x € R¥ that satisfies the constraints (6.23) and (6.25),
finds a multicut F such that ¢(F) = O(ZeeE c(e)x.log k).

Proof
Let d be the semi-metric on V that is derived from x. Let w € V be a terminal (i.e., v = s; or v = ; for
some i € {1,2,..., k}). For p € [0, 00), let E, denote the set of edges {u, v} such that d(u, w) < p and

d(v, w) > p. Consider the function f:[0, c0) — N that is given by f'(p) = ZeeEpc(e). Let f(p) =

%ZegEc(e)xe—i-fop (&) d&,so f'(p) = %.Note that for every p € [0, 00), f(p) <2, pc(e)xe.
Now,

1/3 ¢/
f'(p) dp:1n<f(1/3)) “Ink

o flp) f) )~
Therefore, there exists p € [0, 1/3] such that f'(p) < 3f(p)In k. (Such p is easily found in polyno-
mial time.) Note that as p < %, it is impossible that for any i € {1, 2, ..., k} both d(w, s;) < p and
d(w, ) < p.

The multicut F is generated inductively as follows. Pick a terminal w = w;. Find p = p; as explained
above, and eliminate from G the set {v € V: d(v, w;) < p1}. Let G! = (V!, E!) denote the remaining
graph. Suppose that wy, wa, ..., w; have been picked already. Pick a terminal w = w11 in G? (i.e.,
d(wes1, ws) > ps foralls € {1, 2, ..., 1}). If there is no such terminal, then output F = U!_, (E,, N E*).
Otherwise, find p = ps11 in G' as explained above, and eliminate from G’ theset {v € V': d(v, wsy1) <
pi41) to create G, Note that ¢ never exceeds k.

'A semi-metric d onaset Visafunctiond: V x V — R that satisfies the following conditions: (i) d(v, v) = 0, for
every v € V; (ii) 8(u, v) = §(v, u), for every u, v € V;and (iii) §(u, v) + 8(v, w) > 8(u, w), for every u, v, w € V.
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By the above discussion, F is a multicut. For p € [0, ps],let f{(p) = >

>

s=1

e Ep NES c(e). As

Ps
%§c@%+/ ﬂ®%>52§c@&
0

ecE ecE

the O(log k) bound on the approximation guarantee follows. O

Consider the problem of SPARSEST CUT. Given an undirected graph G = (V, E) with edge capacities
¢: E — Nand a demand function h: V x V — N, the goal is to find a cut (S, S) that minimizes the cut

ratio
Ze: |Sﬂe|=lc(e)
ZueSAveSh(l’l’ v)

Leighton and Rao [13] gave an O(log|V|) approximation algorithm for the case that h is uniform (i.e.,
h(u, v) = 1 for every pair of nodes u, v € V), using the “region growing” technique discussed above in
the context of MINIMUM MULTICUT. We now discuss the general case.

Acut (S, S)in G partitions the node set V into two nonempty parts S and S. We can associate with (S, S)
a cut semi-metric g on V. The semi-metric §g is defined by §s(x, y) = lifx # yand [{x, y} N S| = 1;
otherwise 85(x, y) = 0. The cone of linear combinations of cut semi-metrics on V with nonnegative
coefficients is precisely the cone of | V|-point subsets of L;. Useful polytopes can be derived from this cone
by adding linear constraints that normalize the maximum or average distance. In particular, SPARSEST CUT
can be formalized as follows:

minimize Z{u)v}:eeEc(e) Z@;éSgVBs(u, V)As
subject to Zu,vev h(u, v) Z@#ngcﬁs(u, Wisg =1
As >0 VO#ASCV
This is a linear program with an exponential number of variables. (Note that the solution might be a
convex combination of optimal cuts.) In view of the NP-hardness of SPARSEST CUT, it is unlikely that
this LP can be solved in time polynomial in the size of G. A polynomial-time solvable relaxation can be
derived by extending the optimization over all semi-metrics, not just nonnegative linear combinations of
cut semi-metrics. This gives the following LP relaxation for SPARSEST CUT:
minimize Z{u’v}:eeE c(e)d(u, v)
subject to Zu,vev h(u, v)d(u,v) =1 (6.26)

d is a semi-metric on V'
The following lemma is crucial.

Lemma 6.2 (Bourgain [14])

There is a constant k > 0 such that the following holds. Let d be a semi-metric on a finite set of points X.
Then, there exists n € N and a mapping ¢ : X — R" such that for every x, y € X,

1
g X A0 7) = le) = ()l < d(x, )

Let supp(h) denote the support of the demand function h, i.e., the set of pairs u, v € V such that
h(u, v) > 0.

Theorem 6.6 (Aumann and Rabani [15]; Linial et al. [16])

There exists a constant k > 0 such that the following holds. Let d be a semi-metric on V that satisfies the
constraint (6.26). Then, one can find in polynomial time a cut (S, S) in G such that

Z cle)d(u, v) < M <kK- Z c(e)d(u, v) log [supp(h)|

{1 0)—ceE ZueS/\veSh(u’ v) {,v)=ecE
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Proof

Use a modification of Bourgain’s Lemma 6.2 to map d and L; semi-metric such that the distances between
pairs of points in supp (/) do not shrink by more than a factor of O(log |supp(#)|) and no distance expands.
Then use the fact that any L; semi-metric can be expressed as a nonnegative linear combination of cut
semi-metrics to find a cut with a good ratio. O

We note that the bounds in Theorems 6.5 and 6.6 asymptotically match the known integrality gaps. The
bad examples are constructed using bounded degree expander graphs. See Refs. [12,13,15,16] for more
details.

We conclude this section and the chapter with a discussion of spreading metrics, a class of relaxations
introduced by Even et al. [17]. We will demonstrate the technique with the problem of MINIMUM LINEAR
ARRANGEMENT. Given an undirected graph G = (V, E), the goal is to find a bijection ¢ : V. — {1, 2, ...,
| V|} that minimizes Z{uw}eE l@(1) — ¢(v)|. Note that one property of any such bijection is that every
subset of nodes U € V must be “well spread” in the sense that for every u € U, Y, iy lo(1) — ¢(v)| =
i(l UJ> — 1). This is precisely the property that the spreading metric relaxation for MINIMUM LINEAR
ARRANGEMENT exploits. Rather than optimizing over all bijections (which is NP-hard), we optimize over
all metrics that satisfy the spreading constraints. Formally, we solve the following LP relaxation:

minimize Z{u,v}eE d(u, v)
subjectto >y d(u,v) > %(|U|2 —1) YUCV, YueU (6.27)

d is a metricon V

Note that the number of constraints is exponential in the size of the input graph G. However, given a
metric d that does not satisfy all the constraints (6.27), it is easy to find a violated constraint in polynomial
time by examining all the polynomially many combinatorially distinct balls in d. Thus, the relaxation can
be solved in polynomial time.

Theotrem 6.7 (Rao and Richa [18])

Given a metric d on V that satisfies all the constraints (6.27), one can find in polynomial time a bijection
¢:V—>{1,2,...,|V]|} such that

> lp(w) — )| < Olog V) - > d(u,v)

{u,v}eE {u,v}€E

Proof
We describe the “rounding” algorithm. If G is not connected, we can deal with each connected component
separately, so we may assume without loss of generality that G is connected. Consider a node s € V. Define
levels with respect to s that are indexed by i € N. We say that an edge {u, v} € E is at level i if and only
if d(s, u) < iand d(s, v) > i. The weight w; of level i is the total number of edges at level i. We say that
level 7 has label k if and only if 2k < w; < 2%1 Note that due to constraints (6.27), there are at least % V|
levels with strictly positive weight. Thus, putting D = ) (w01 4(1, V), there is alabel k such that at least
@ | V| levels are labeled with k. Let these levels be 71, iy, . . ., iy. Let Hy denote the subgraph induced
by the nodes v € V such that d(s, v) < i;.For j =1,2,..., m— 1, let Hj denote the subgraph induced
by the nodes v € V such that i; < d(s, v) < ijy1. Finally, let Hy, denote the subgraph induced by the
nodes v € V such that i,, < d(s, v). Recursively apply the above procedure to each of the subgraphs
Hj, j € {0, 1,2, ..., m}. The output linear arrangement is composed of the concatenation of the linear
arrangements for these subgraphs.

The analysis of the performance guarantee follows by devising a charging scheme, stating the charged
cost as a recurrence relation and bounding the recurrence solution. The analysis is rather technical and
therefore it is excluded here. a
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7.1 Introduction

Many combinatorial optimization problems can be cast as integer linear programming problems. A linear
programming relaxation of an integer program provides a natural lower bound (in case of minimization
problems) on the value of the optimal integral solution. An optimal solution to the linear programming
relaxation may not necessarily be integral. If there exists a procedure to obtain an integral solution “close”
to the fractional solution then we have an approximation algorithm. This process of obtaining the integral
solution from the fractional one is referred to as “rounding.” Our goal is to present an ensemble of rounding
techniques (which is by no means complete) that have enjoyed some success. On occasion, for detailed
correctness of proofs, we refer the reader to the original paper.

Rounding techniques can be broadly divided into two categories: those that round variables nondeter-
ministically (also called as randomized rounding), and those that round variables deterministically. The
randomized rounding techniques presented typically yield solutions whose expected value is bounded. At
times, the rounding steps can be made deterministic (derandomized) by using the method of conditional
expectation due to Erdgs and Selfridge [1]. We refer the reader to Alon and Spencer ([2], Chapter 15) for
the method of conditional expectation. Both randomized as well as deterministic rounding can be further
classified into techniques that round the variables independently, and those that round the variables in
groups (dependently). Our presentation is along similar lines; in Section 7.2 we discuss nondeterministic
rounding techniques due to Raghavan and Thompson [3], Goemans and Williamson [4], Bertsimas et al.
[5], Goemans and Williamson [6], and Arora et al. [7]. We discuss deterministic rounding techniques
due to Lin and Vitter [8], Jain [9], Ageev and Sviridenko [10], and Gaur et al. [11] in Section 7.3. Finally
we conclude with a discussion. For other applications of rounding we refer the reader to the books by
Hochbaum [12] and Vazirani [13].

Next, we define the performance ratio of an approximation algorithm. Associated with every instance
7 of an NP-optimization problem P is a nonempty set of feasible solutions S. To each solution S € S,
we assign a number called its value. For a minimization (maximization) problem, the goal is to determine
the solution with the minimum (maximum) value. The solution with the minimum (maximum) value is
denoted as OPT(Z) or simply as OPT when there is no ambiguity. Let A be an algorithm whose running
time is bounded by a polynomial in the length of the input. ALG(Z) (or simply ALG) denotes the value

7-1
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of the solution returned by algorithm A on problem P. For a minimization (maximization) problem, the
performance ratio of A is defined as « = max7(ALG(Z)/OPT(Z)) (¢ = minz(ALG(Z)/OPT(Z))). For
minimization (maximization) problems @ > 1 (¢ < 1). The other commonly used convention is to define
o = mingz (OPT(Z)/ALG(Z)) for a minimization problem (in which case, & < 1).

7.2 Nondeterministic Rounding

7.2.1 Independent Rounding

In this section we illustrate the technique due to Raghavan and Thompson [3]. They developed the first
constant-factor approximation algorithm for the minimum-width routing problem in two dimensions.
Here we illustrate their technique on the Set Cover problem, basing our presentation on Vazirani [13].
Given a collection S = {81, Sy, ..., Sy} of subsets of some universe U = {1, 2, ..., n}, the problem is to
determine the minimum number of sets from S that cover all the elements of U. Let x; be the variable
associated with set S;. Given below is the integer program IP and the corresponding linear programming
relaxation LP for the set cover problem. The first constraint in the IP ensures that each element i € U is
covered by some set in S, and the second constraint stipulates that the sets are picked integrally.

IP: minimize > jell,m Xi LP: minimize > jell,m) *j
subject to: Zj:iesj xj>1VieU subject to: Zj:iesj xj>1VieU
xj€{0,1} Vie U 0<x;<1VieU

Let x* be the optimal solution to the linear programming relaxation above. In each iteration, we round
each variable x; to 1 with probability x* 7 and to 0 with probability 1 — x . Each set S; for which x; = 11is
picked in the solution. The probability that element i € U is not covered inan iterationis [ ; jies; (1- )
If the element i € Uoccursinthe ksets S;;, Siy, ..., Sj,, the values x x ...> X} are constralned by the
1nequahty Z _1 X{ = 1, since the element i € U is covered by the opt1mal Lp solutlon The probability
H i= (1= xf ) is then minimized when each value x}' i takes the value 1/ k. Thus, the probability that ele-

menti € Ui 1s not covered in an iteration is at least (1— 1/ k)% > 1/e. Thus the probability that i € U is not
covered after clog n iterations is (1/ e)clogn < 1 /(4n) for some constant c. Equivalently, the probability
that the solution computed after clog iterations is not a valid cover is at most » ., 1/(4n) = 1/4.
Furthermore, the expected number of sets in the solution computed is (Z (1,m) Xj *)clog n. The prob-
ability that the number of sets is more than four times this expected value is at most 1/4 (follows from
the Markov inequality). Therefore, with probability at least 1/2, the algorithm returns a cover with cost at
most (Z]-e[l,m] x?)4c log n, implying that the performance ratio is O(log n). Srinivasan [14], observing
that the constraints in the set cover problem are positively correlated, showed that the performance ratio
of the randomized rounding algorithm is log (|U|/OPT) + O(log log (|U|/OPT)) + O(1).

Next, we consider an interesting idea due to Goemans and Williamson [4], in which two randomized
rounding algorithms are run on each problem instance, and the better of the two is returned as the
solution. This technique is used for the maximum satisfiability problem to obtain a 3/4-approximation
algorithm, though each algorithm by itself does not provide a 3/4-approximation ratio. In the weighted
version of the maximum satisfiability problem, we are given a Boolean formula in conjunctive normal
form with weights on the clauses, and the goal is to determine an assignment of values (true/false) to the
literals, such that the sum of weights of the clauses satisfied is maximized. The simpler rounding algorithm
uses a purely randomized rounding, where each variable is set to true (false) with probability 1/2. If a
clause j has k literals, then the probability that this clause is not satisfied is 1/2% (corresponding to the
situation when each of the k variables is set to 0). Thus, the probability that the clause is satisfied equals
1 — (1/2%). To illustrate the second rounding algorithm (using linear programming) for this problem,
we let CT denote the unnegated literals in the jth clause and C i the negated literals in the jth clause
in formula C. The integer program IP and the corresponding linear programming relaxation LP for the
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problem are given below.

IP: maximize Z w;zj LP: maximize Z w;zj
jeC jeC
subject to: subject to:
in—i— Z(l—xi)zzj' VieC in—i— Z(l—xi)ZZj VieC
iec].+ ieCy iecj+ ieCy

zj, xi €{0,1} Vi, j 0<zj,xi<1 Vij

Let x*, z* be the optimal solution to the linear programming relaxation LP. The rounding sets literal i
to true with probability x}* (without loss of generality we assume clause j contains only positive literals).
The probability that clause j is satisfied after this roundlng is1 -], C+(1 — x). If clause j contains
k literals, x;,, Xiy, . . . co X j @ are constralned by the 1nequahty Z] 1 X =25
a constraint in the LP formulation. The probablhty H — x}) is then maximized when each value
x} takes the value z’; / k. Thus, the probability that clause ] is not satisfied after the rounding is at most
(1 — z’}‘ / k)¥. Thus the probability that clause j is satisfied after the rounding is at least 1 — (1 — 2%/ k)*.
Observing that 1 — (1 — z* / k> 7 J( —(1-=1/ k) )for0 < z*% = 1 (due to concavity), the probability
that clause j is satisfied is at least Z (1 —(1— l/k) ).

The bound of 3/4 follows from the fact that for each clause j, max{(1 — 1/2k) z*(l —(1—-1/ )k )} >
max{z*(l - 1/2k) z*(l —(1— l/k) )} > ’ {1 - 1/2") 1-(1- l/k) )} > 3/42 for every positive
1nteger k.

, Xi;» the values x7' B x

7.2.2 Dependent Rounding

7.2.2.1 Simultaneous Rounding

The idea of simultaneously rounding a set of variables was used by Bertsimas et al. [5] to establish the
integrality of several well-known polytopes. In particular, they established the integrality of the polytopes
associated with the minimum s — ¢ cut, p-median on a cycle, uncapacitated lot sizing, and boolean
optimization. Using this technique, Bertsimas et al. [5] established abound of 2(1—1/ 25) for the minimum
k-sat problem. A bound of 2 is established for the feasible cut problem, by showing it is equivalent to
vertex cover, which is approximable within a factor of 2 [15]. Here we illustrate the technique due to
Bertsimas et al. [5] on the feasible cut problem. This technique is particularly interesting as the analysis of
the performance ratio is considerably simplified.

Given a graph G = (V, E) with weights on the edges, M a set of pairs of nodes in G, and a source
vertex s. The problem is to determine a cut of minimum weight with the additional constraints that s
belongs to the cut, but for any pair (i, j) € M, both i and j are not in the cut. The integer program IP for
the feasible cut problem and the corresponding linear programming relaxation LP are given below.

IP: minimize Z(i J)eE CijXij

subjectto:  xjj; > yi —yj V(i j)€E
xij>yj—yi V0, j)eE
yvi+y;j <1 VG, j)eM

ys =1

xij> yj € {0, 1} Vi, j

LP: minimize Z(i J)eE CijXij

subjectto:  xj; > yi —yj V(i j)€E
xij>yj—yi V0 j)eE
yi+yi <1 V(G j)eM

ys =1

0<xij,yj <1 Vi j

In this technique the variables are rounded simultaneously with respect to a random variable. Let U
be a random value in [1/2, 1] generated uniformly. Given an optimal solution (x*, y*) to the linear
program LP, construct the cut as follows: if y¥ < U then y; = 0,and if y¥ > U then y; = 1. The rounding
operation gives a feasible cut, since for each (i, j) € M at most one of y}, y* 7 is greater than 1/2. Let Zjp
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be the value of the optimal solution to IP, Zyp the value of the optimal solution to LP, and E(Zp) the
expected value of the solution obtained after rounding.

Theorem 7.1

Minimum feasible cut can be approximated within a factor of 2.

Proof

Clearly, Zjp < E(ZR). We show that E(Zg) < 2Zpp. If E(x;j) < Zx;»*j for all 4, j, then by linearity of
expectation the result holds. Without loss of generality assume that y < y}f. If y’]'f < 1/2then E(x;j) = 0.
If yf < 1/2 < yj, then E(xjj) = P(U € [1/2, y;]) = 2(y; — 1/2) < 2(y] — y{). I y¥ = 1/2, then
E(xij) = 2()/;< — y¥). This implies that E(x;;) < 2(y;f —yi) < 2xl*] 0

7.2.2.2 Rounding against a Hyperplane

The first substantial improvement for the Max-Cut problem was made by Goemans and Williamson [6],
who presented a 0.87856 factor approximation based on semidefinite programming. The above bound is
also applicable to the Max 2-Sat problem. They also gave a 0.7584 factor approximation algorithm for the
Max Sat problem. Here we outline their technique for the Max-Cut problem. Given a graph G = (V, E)
with weights on the edges, the objective is to partition the vertices of G such that the sum of weights of
the cut edges is maximized. The problem is formulated first as a quadratic (nonlinear) program, and a
relaxation of the quadratic program is defined in which each variable corresponds to a vector. An optimal
solution to this relaxed nonlinear program is then computed. Given a random hyperplane, the vertices
are partitioned into two sets, corresponding to points above and below the hyperplane. This partition has
the desired bound. For details of the proof and the algorithm for computing the optimal solution to the
relaxed program VP, we refer the reader to Vazirani [13] and Chapter 8 on Semidefinite Programming by
Ye, So, and Zhang. Next, we describe their formulations and the randomization procedure.

QP: maximize l/ZZ(i)j)EE wij(1 = yiy;j) VP: maximize UzZ(i,j)eE wii(1 —vjvj)
subject to: yl-z =1 VieV subject to: virvi=1 VieV
yvieZ VieV v ER" VieV
Let r be a uniformly distributed vector in unit sphere S,,—1, then S = {i : v; - r > 0} and V'\ S are the
two sets defining the partition.

7.2.2.3 Extensions

Next we outline some extensions of the basic rounding technique. In all these techniques, the variables
are rounded randomly in a somewhat dependent fashion. First we consider the assignment problem in
the presence of covering constraints. Given a complete bipartite graph G = (AU B, E), with |A| = | B|,
and weights on the edges. The objective is to find a matching of minimum weight that satisfies the
covering constraints. The integer program IP and the linear programming relaxation LP for the assignment
problem are given below.

IP: minimize Z(i,j)eE CijXij LP: minimize Z(i,j)eE CijXij
subject to: DjepXij=1VieA subject to: YjepXij=1Vie A
ZieAxi]‘ZIVjeB ZieAxijzlvjEB
Yica jes afxij = b¥ Vk e [1, K] Yica jep % = b¥ Yk €[1,K]
xij, yj €{0,1} Vie A, j € B 0<xij,yj<1VieA jeB

In the absence of the covering constraint (3 ;. A, jeB af‘j Xij > bk), the polytope associated with the
IP is integral. But in the presence of the covering constraints we can only guarantee a fractional optimal
solution to the LP in polynomial time. One possibility is to obtain an integral solution by rounding [3] the
optimal fractional solution. One major difficulty with independent rounding in the presence of equality
constraints is that the probability that the constraint is satisfied could be as low as 1/e (consider the case
when all the x;;s have the same value 1/| A|). Therefore, the expected number of equality constraints
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satisfied in one rounding iteration is low. However, the covering constraints are satisfied almost approxi-
mately. Arora et al. [7] developed a randomized rounding technique that obtains an integral solution (from
the fractional solution), which satisfies (| A| — o(] A]) equality constraints and all the covering constraints
almost approximately (3 ;. 4 jeB Zk]x, iz bk — O(JTA] max{a } ). Next, we describe their rounding al-
gorithm for the case when all the fractional values are constants. For the rounding in the general case, and
for the proofs we refer the reader to the original paper. Let x* be the optimal fractional solution. The
algorithm first constructs a multigraph from the bipartite graph as follows: for each edge in G, toss a
biased coin (with probability of head x*j) O (log’ (1)) times. If heads show up a times then the multigraph
has a copies of edge (i, j). The multigraph is a union of paths and cycles of length O(,/n) (if not then we
have to delete O(/n) edges). Now these paths and cycles are further divided into ®(/n) groups of size
O(4/n) each. Within each group, either all the edges of A are picked or all the edges of B are picked, and the
decision is equally likely. Using a generalization of this technique, Arora et al. [7] were able to demonstrate
polynomial-time approximation schemes for dense instances of minimum linear arrangement problem,
minimum cut linear arrangement problem, maximum acyclic subgraph problem, and the betweenness
problem.

Next we briefly mention some other techniques. Srinivasan [16] developed a rounding technique based
on distributions on level sets, and established better approximation ratios for low-congestion multipath
routing problem, and the maximum coverage version of set cover problem. Gandhi et al. [17] devel-
oped a new rounding scheme based on the pipage rounding method of Ageev and Sviridenko [10] (see
Section 7.3.4), and the level set-based method of Srinivasan [16] to obtain better approximation algorithms
for the throughput maximization problem in broadcast scheduling, the delay minimization problem in
broadcast scheduling, and the capacitated vertex cover problem. Another dependent rounding technique
has been developed by Doerr [18], with applications to digital halftoning. Doerr [19] developed another
dependent randomized rounding technique that respects cardinality constraints.

7.3 Deterministic Rounding

7.3.1 Scaling

Scaling is an important technique that has been applied to covering problems such as Vertex Cover to
obtain a simple 2-factor approximation. Our presentation is based on Hochbaum [12] (Chapter 3). Given
that it is still not known whether vertex cover admits an approximation ratio strictly better (by a constant)
than 2, scaling seems to be a powerful technique. Given a graph G = (V, E) with weights on the vertices.
The objective is to determine a minimum-weight set S C V, such that every edge has at least one endpoint
in S. Given below is the integer program IP and the corresponding linear programming relaxation LP.

IP: minimize Doicv Wik LP: minimize Doicy WiXi
subjectto: x; +x;>1 V(i j)€E subjectto:  xj+x; >1 V(i j)€E
x; €{0,1} VieV 0<x;<1 VieV

Let x* be the optimal solution to the linear program LP. Let S be the set of vertices j such that x >1/2.
Sis a cover because for each edge (i, j) either x; or x; is > 1/2, and the weight of S is at most 2 Z cy Wix}
Interestingly, the algorithm by Gonzalez [20] is the only factor 2 approximation algorithm for vertex cover,
whose proof does not rely on the theory of linear programming.

7.3.2 Filter and Round

Sahni and Gonzalez [21] showed that for certain problems including the p-median problem, the tree
pruning problem, and the generalized assignment problem, finding an «a-approximate solution is NP-
hard. In light of the previous result, the next best thing is to find an a-approximate solution with the
minimum number of constraint violations. Lin and Vitter [8] gave such approximation algorithms for the
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problems mentioned above. For the generalized assignment problem, we refer the reader to Chapter 48 by
Yagiura and Ibaraki. Here we will illustrate their technique on the p-median problem. Our presentation
is based on Lin and Vitter [8]. Given a complete graph G on n vertices with weights on the edges and an
integer p, the problem is to determine p vertices (medians) so that the sum of the distances from each vertex
to its closest median is minimized. The integer program IP and the corresponding linear programming
relaxation LP are given below.

IP: minimize Zi,jevcijxij LP: minimize Zi,jevcijxij
subject to: Ejevxij =1 VieV subject to: Zjevxij =1 VieV
xij<yj VijeVv xij<yj VijevVv
DjevVi=P djevVi=P
xij> yj € {0, 1} Vi, j 0<xij,y; <1 Vi j

Given an optimal solution x*, y* to the LP, we obtain an integer program FP (called a filtered program)
by setting some variables in x to 0. The FP has the property that any integral feasible solution is at most
(1 4 o) times the value of the optimal solution to LP. First, a fractional feasible solution to FP is constructed
from x*, y*. A feasible integral solution to FP is then obtained using either randomized rounding or some
greedy rounding. Here we illustrate a deterministic (greedy) rounding method. We assume certain lemmas
to illustrate the technique. For the proof of the lemmas, we refer the reader to the original paper by Lin
and Vitter [8].

Lemma 7.1
Given y, the optimal values for x can be computed for the linear programming problem LP.

Given an optimal solution x*, y* to the LP, for a vertex i € V, let V; be the set of vertices j such that
cij < (1+a) > jev Cij xl*] The FP and the reduced filtered program (RFP) necessary to compute the
solution to FP by Lemma 7.1 are

FP: minimize L

subject to: v xii=1 VieV
) 2 jev, %ij RFP: minimize Yjev?i

subjecttor 3.y yj =1 VieV
yj €{0,1} Vi, j

xij <Ly; Vi,jeV
Zje 14 y] = p
xij=0 VieV,jeV\Vy
xij, ¥yj €{0,1} Vi, j
L corresponds to the factor by which the covering constraints are violated. The following lemma holds
by construction.
Lemma 7.2
Any feasible (integral) solution to FP has value at most (1 + «) times the value of the optimal solution to the

linear programming relaxation LP.

It is the case that ) jevi yj-‘ > /(1 4+ a). Therefore, a feasible fractional solution to RFP with value
(14 1/a)p can be constructed (by assigning y; = y}?(l + a)/a). RFP is nothing but set cover, and alog n
approximate integral solution can be constructed using the greedy heuristic of Chvétal [22]. Therefore, by
Lemma 7.2 we have a (1 + «)p log n approximate constraint violations with value at most (1 4 «) times
the value of the optimal solution to the integer program.

7.3.3 Iterated Rounding

The technique of iterated rounding was introduced by Jain [9], who gave a 2-factor approximation
algorithm for the generalized Steiner network problem. Consider the problem of finding a minimum-cost
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edge-induced subgraph of a graph that contains a prespecified number of edges from each cut. Formally,
G = (V, E) is a graph with weights on the edges. Also given is a function f : 2¥ — Z. The problem is
to determine a minimum-weight set of edges such that for every R subset of V, the number of edges is
3(R) > f(R),where §(R) are the edges in the cut defined by the vertices in R. Given below are the integer
program IP and the corresponding linear programming relaxation LP.

IP: minimize Y ecE WeXe LP: minimize D ek WeXe
subject to: EeeB(R) > f(R) VSCV subject to: Zeeé(R) > f(R) VSCV
x.€{0,1} VieE 0<x.<1 ViekE

Note that both the programs above contain exponentially many constraints. Jain [9] gives a separation
oracle for the linear programming relaxation. Using this separation oracle, an optimal solution can be
computed in polynomial time [23]. Furthermore, Jain establishes the following:

Theorem 7.2

Any basic feasible solution to the linear programming relaxation has at least one variable with value > 1/2.

Based on the previous theorem, one can construct a solution as follows: find an optimal solution (basic)
to the LP, include all the edges with a value > 1/2 in the solution, then recursively solve the subproblem
obtained by deleting the edges included in the solution.

7.3.4 Pipage Rounding

Pipage rounding was developed by Ageev and Sviridenko [10], who applied it to the maximum coverage
problem, hypergraph maximum k-cut with given sizes of parts, and scheduling on unrelated parallel
machines. They showed that the maximum coverage problem can be approximated within 1 — (1 — 1/ k)*
where k is the maximum size of any subset, thereby improving the previous bound of 1 — 1/e due to
Cornuejols et al. [24]. For the hypergraph max k-cut they obtained a bound of 1 — (1 — 1/r)" — 1/77,
where 1 is the cardinality of the smallest edge in the hypergraph. For the scheduling problem on unrelated
machines, they considered an additional constraint on the number of jobs that a given machine can process
and obtained the bound of 3/2. A similar bound was also established by Skutella [25] in the absence of
cardinality constraints. For the case of two machines, the current best bound is 1.2752 due to Skutella
[25], obtained by rounding the semidefinite programming relaxation using the dependent rounding
technique of Goemans and Williamson [6]. Ageev et al. [26] obtained a 1/2-approximation algorithm
for the max-dicut problem with given sizes of parts by a refined application of the pipage rounding.
Recently, Galluccio and Nobili [27] have improved the approximation ratio from 3/4 to 1 — 1/2q for
the maximum coverage problem when all the sets are of size 2, where every clique in a clique cover of
the input graph has size at least g. Note that g > 2. This problem is also known as the maximum vertex
cover problem. Pipage rounding is especially suited to problems involving assignment and cardinality
constraints.

Our description of the pipage rounding is based on Ageev and Sviridenko [10]. The idea is to determin-
istically round a fractional solution to an integral solution, while ensuring that the objective function value
does not decrease in the rounding process. If the starting fractional solution was at least ¢ times the optimal
fractional solution, then the pipage rounding will guarantee a c-approximation algorithm. The rounding
process converts a fractional solution into another fractional solution with less number of nonintegral
components. The “§-convexity” of the objective functions guarantees that the objective function value
does not decrease in the rounding process.

Let G = (V, E) be a bipartite graph with capacities ¢, on the vertices. Let f(X) be a polynomially
computable function defined on the values X = {x, : e € E} assigned to the edges of G. Consider the
following integer program IP whose solution is an assignment of 0, 1 to the edges that maximizes f(X)
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subject to the capacity constraints, and its linear programming relaxation LP:

IP: maximize f(X) LP: maximize f(X)
subject to: ZeeN(U) Xe<c, YveV subject to: ZeeN(u) Xe<c, YveV
x, €{0,1} VeeE 0<x,<1 VeeE

We do not assume that the optimal solution to the LP is computable in polynomial time. Given a
fractional solution X, let G(X) be the subgraph induced by the edges that are assigned a nonintegral
value in X. G(X) either contains a path P or a cycle C. Let P,(C,) be the odd-indexed edges in the
P(C). Similarly, P.(C,) the set of even-indexed edges in P(C). Given P(C), let Ib = min{min{x, : e €
Py(Cy)}, min{l — x, : e € P,(C,)}}. Similarly, define ub = min{min{l — x, : e € P,(C,)}, min{x, :
e € P.(C.)}}. f is said to be §-convex with respect to § € [Ib, ub] if for each fractional solution and
all paths and cycles it is convex in 8. Given §-convexity, the maximum of f in [Ib, ub] is attained at one
of the endpoints. Pipage rounding amounts to either successively adding and deleting ub, or successively
deleting and adding /b, from the values assigned to the edges in P(C). This process yields a solution with
a reduced number of nonintegral components. Let us examine the case when all the capacities are 1, and
f computes the sum of the values assigned to the edges. In this case, the solution to the IP corresponds
to a maximum matching, and the solution to the linear program corresponds to the maximum fractional
matching. The pipage rounding (as can be readily verified) in this case converts the fractional matching
into an integral matching of same or larger size. To compute an «-approximation it remains to find a
function g that approximates f within « such that maximum of g can be computed in polynomial time,
subject to the constraints in the LP.

We illustrate the application of pipage rounding to the maximum coverage problem, where we are given
a collection S of weighted subsets of ground set I, and an integer k. The goal is to determine X C I of
cardinality k such that the sum of the weights of the sets in S that intersect with X is maximized. Associated
with each element i € I is a variable x;, and associated with each element S; of S is a variable z;. Given
below is an integer program for the maximum coverage problem.

IP: maximize Z;.":l wjzj
subject to: Ziesj x >zj, VSjeS§
i xi =k

xi€{0,1} Viel

The objective function in IP above can be replaced with f = Z;-":l wi(l— HiE 5. (I = x;)) as it has
the same value over all integral vectors x. Replace f by g = Z;-":l wjmin{l, > . 5; %;}. It can be shown
that f and g are §-convexand g approximates f withina factor of 1—(1—1/ k), where kis the cardinality of
the largest element of S. Furthermore, the fractional optimal solution to g, subject to the constraints in
IP can be computed in polynomial time.

7.3.5 Decompose and Round

We next describe a deterministic technique due to Gaur et al. [11]. This technique is applicable to
geometric covering problems, and can be thought of as an extension of the scaling technique. We consider
covering problems of the form min cx, subjectto Ax > b, x € {0, 1}"", where Aisan m x n matrix with
0, 1 entries, and c, x are vectors of dimension # and b is a vector with m entries. The geometry of the
problem under consideration imposes a structure on A, and this helps us in the application of the scaling
technique. We begin with a few definitions. Let C = {1, ..., n} be the set of indices of the columns in
Aand R = {1, ..., m} the set of indices of the rows in A. Denote by R = {Ry, Ry, ..., Ri} a partition
of R, and by C = {Cy, C, ..., Ci} a partition of the columns of A. A(R;, C;) is the matrix obtained
from A by removing the columns in C\ Cj, and the rows in R\ R;. A matrix A is totally unimodular if
the determinant of every square submatrix of A is +1. We say A is partially unimodular with respect to C
and R if for all C; € C, Rj € R, A(Rj, C;) is totally unimodular. For a partially unimodular matrix A,
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|C] = |R] is also known as the partial width of A. It is well known that if M is block structured and if all
the blocks are totally unimodular then M is totally unimodular. This fact, with a suitable reordering of the
rows and columns, implies the following:

Lemma 7.3

Let Ap be the matrix whose ith diagonal block corresponds to A(R;, C;) (all other entries are 0) then Ap is
totally unimodular, if A is partially unimodular with respect to R, C.

We next describe the rectangle stabbing problem, and show that its coefficient matrix is partially
unimodular and has partial width 2. A log n factor approximation for the rectangle stabbing problem is
due to Hassin and Megiddo [28]. Given a set of axis-aligned rectangles (in 2D), the problem is to determine
the minimum number of axis-parallel lines that are needed to stab all the rectangles. Let H be the set of
horizontal lines going through the horizontal edges of the rectangles, V the set of vertical lines going
through the vertical edges of the rectangles, and R the set of all rectangles. Let H,(V;) be the set of lines
from H(V) that intersect rectangle r € R. Given below is the integer program IP and the corresponding
linear programming relaxation LP.

IP: minimize Doieg i+ ZjeV Vj LP: minimize D e hi+ Ejev Vj
subject to: Zi:ieH, hi + Zj:jev, vj>1 VreR subject to: Zi:ieH, hi+2j:jev, vj>1VreR
hi,vj€{0,1} Vie H,je V 0<h,vj<1VieH jeV

Let A be the coefficient matrix corresponding to the programs above.

Lemma 7.4
A is partially unimodular with respect to C = {H, V} and R = {Ry, Ry} as computed below.

Given an optimal solution 4*, v* to the linear programming relaxation LP, we construct a partition R =
{Rn, Ry, = R\Rp}oftherectangles of R as follows: Ry, is the set of all the rectangles r such that Zi:ie H, h; >
1/2. Let Ap be the block diagonal matrix whose blocks are A(Ry, H) and A(Ry, V). A(Ry, H) and
A(R,, V) aretotally unimodular as the columns can be reordered so that each row has the consecutive ones
property. By Lemma 7.3, Ap is totally unimodular. Consider the program min cx subject to Apx > 1, x €
{0, 1}". Conforti et al. [29] showed that the polytope associated with Ap is integral, hence the optimal
integral solution has the same value as the optimal fractional solution. Note that (2h*, 2v*) is feasible in
the previous problem. Therefore, the performance ratio is 2 as ALG < (2h*, 2v*) and OPT > (h*, v*).
Furthermore, the addition of capacity constraints on H and V does not affect the performance ratio.
These results can be generalized for arbitrary weights on the lines and requirements on the rectangles in d
dimensions. For recent results on the rectangle stabbing problem with soft capacities see Even et al. [30].
The case when rectangles have zero height has been studied extensively, see Chapter 37 by Kovaleva and
Spieksma.

A brief comment about the technique is in order. Every matrix A is partially unimodular with respect
to the following partitions: C;, Cy, ..., Cy, where C; is the ith column in A. Let x* be the optimal
solution to the LP. Consider the following partition of rows: rectangle r belongs to set R; in the partition
if xf Alr, i] = maxje(1,...n] {x;fA[r, j1}. Ap can now be constructed from the blocks A(R;, C;). Once
again, by Lemma 7.3 Ap is totally unimodular as each A(R;, C;) is a column vector with all ones (the
determinant for every square submatrix is 1) and totally unimodular. Let t be the maximum number of
nonzero entries in a row of A. The performance ratio using the algorithm and the argument aboveis 1 /7.
This is similar to the bound obtained for the set cover problem using the scaling technique. In this sense,
our approach can be viewed as a generalization of the scaling technique.

The arguments outlined in the preceding paragraphs lead to the following theorem.
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Theorem 7.3

Given a covering problem of the form min cx, subjectto Ax > b, x € {0, 1}", if A is partially unimodular
and has partial width 1 /o, there exists an approximation algorithm with performance ratio a.

In light of the preceding theorem it is natural to study algorithms (exact and approximation) for
determining the minimum cardinality partitions with respect to which A is partially unimodular. We are
not aware of any existing results and pose the determination of minimum partial width as an interesting
open problem, with application to the theory of approximation algorithms.

Next, we consider an application of the rectangle stabbing problem to a load balancing problem that
arises in the context of scheduling on multiprocessor systems. In the rectilinear partitioning problem,
the input is a matrix of integers, and the problem is to partition the matrix using h horizontal lines and
v vertical lines, such that the load inside each rectangle (formed by two consecutive horizontal and vertical
lines) is minimized, where the load of a rectangle is defined to be the sum of entries in the rectangle. Given
an instance of the rectilinear partitioning problem we construct an instance of the rectangle stabbing
problem as follows: let L be the minimum load (we can obtain this by using binary search), all the
submatrices with load in excess of L correspond to rectangles in the rectangle stabbing problem. Note
that if all the rectangles are stabbed then the load is at most L. As we only have a 2-factor approximation
algorithm for the rectangle stabbing problem, the number of lines returned can be twice the number of
lines stipulated. Therefore, a solution to the rectilinear partitioning problem is obtained by removing every
second line (horizontal as well as vertical). In the process of removing the alternate lines, a new rectangle
is formed whose load is at most 4 L. Therefore, the performance ratio is 4.

7.4 Discussion

Numerous techniques have been developed over the last two decades to convert an optimal fractional
solution (to the linear programming relaxation of an integer program) to an approximate integral solution.
These techniques can be divided into two broad categories: those that use randomized strategies and ones
that use deterministic strategies. Most of the randomized strategies can be made deterministic (at the
expense of increased running time) using the method of conditional expectation. The applicability of the
strategies is most evident in the context of packing and covering types of problems. Some success has been
obtained in the application of these techniques in the presence of cardinality constraints.
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8.1 Introduction

Following the seminal work of Goemans and Williamson [1], there has been an outgrowth in the use of
semidefinite programming (SDP) for designing approximation algorithms. Recall that an o-approximation
algorithm for a problem 7 is a polynomial-time algorithm such that for every instance I of 7, it delivers
a solution that is within a factor of & of the optimum value [2]. It is well known that SDPs can be solved in
polynomial time (up to any prescribed accuracy) via interior-point algorithms (see, e.g., Refs. [3,4]), and
they have been used very successfully in the design of approximation algorithms for a host of NP-hard
problems, e.g., graph partitioning, graph coloring, and quadratic optimization [1-9], just to name a few.

Before we delve into the main topics of this chapter, let us first review Goemans and Williamson’s
technique of analyzing SDP relaxations and point out its limitations. Consider the following (real)
discrete quadratic programming (QP) problem:

maximize Z Qij(1 — xixj)
i j (8.1)
subjectto xx € {—1,1}, k=1,2,...,n
where Q is an n X n symmetric, positive-semidefinite matrix. Problem (8.1) captures a wide variety of
combinatorial optimization problems (e.g., MAX CUT), and is known to be NP-hard. It is thus natural
to search for a relaxation of problem (8.1) that is polynomial-time solvable and yields a provably good
approximation ratio. One standard approach is to relax the binary variables x; to unit vectors v; in some

8-1
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Hilbert space </; and to replace the product x;x; by the inner product v; - vj in <. This gives the
following mathematical program:

maximize Z Qij(1 —v;-vj)
i j (8.2)
subjectto |vkll=1, k=1,2,...,n

Problem (8.2) is an instance of an SDP and is a so-called SDP relaxation of problem (8.1). Now, let wqp
and wgpp be the optimal values of problems (8.1) and (8.2), respectively. It is clear that wspp > wqp,
since any feasible solution to problem (8.1) is also a feasible solution to problem (8.2). Let {v], ..., v}}
be a solution to problem (8.2), which can be obtained in polynomial time (see, e.g., Refs. [3,4]). Goemans
and Williamson [1] then proposed to round this solution via a random hyperplane. Specifically, let r € R”
be a random vector drawn uniformly from the unit sphere S"~! (see, e.g., Ref. [10] for how this could be
done). Then, set %; = sgn(v;f - 1), where

1 ifx>0
sgnlx) = -1 ifx<0

It is clear that the rounded solution {%, ..., X,} is a feasible solution to problem (8.1), but how does it
compare with the optimal solution? In the case where the entries of Q are nonnegative (i.e., Q;; > 0 for
all 4, j), Goemans and Williamson [1] gave the following elegant analysis. First, using a geometric
argument and some analysis, one can show that

2
E[l - kikj] = arccos(vj - vjf) > c(1—vf - v’]k») (8.3)

for some constant ¢ > 0. Now, since Q;; > 0and 1 — v;" . vf > 0, we have
Q,’jE[l — 561'561‘] >c- Qij(l — v;" . Uf) (8.4)

Thus, upon summing over i, j, we conclude that
Z QijE[1 - %i%j] > CZ Qij(1 —vj - v})
i,j i,j

Notice that the right-hand side is simply ¢ - wsp p, which is atleast ¢ - w g p. Thus, it follows that the above
algorithm gives an 1/c-approximation to the optimal value of problem (8.1) in expectation.
Now, consider the following related problem:

maximize Z Qijxixj
i, j (8.5)
subjectto xx € {—1,1}, k=1,2,...,n
and its natural SDP relaxation:
maximize Z Qij(vi - vj)
i, j (8.6)
subjectto |kl =1, k=1,2,...,n

It is tempting to analyze problem (8.6) using the same approach. Indeed, by using the same rounding
scheme, one can show that

2
E[k,‘kj] = arcsin(v; - v?)
and that for —1 < ¢ < 1, arcsin(x) and x differ only by a constant factor. However, as one readily observes,
the inequality (8.3) only provides a term-by-term estimate of the objective function and not a global
estimate. Thus, if we do not assume that the entries of Q are nonnegative, then the same analysis will
not go through, as inequality (8.4) will no longer be valid. However, the bottleneck in the analysis lies

© 2007 by Taylor & Francis Group, LLC



Analyzing Semidefinite Programming Relaxations 8-3

in (8.3), where we replace the equality by an inequality. Thus, if we could express E[X;X;] in such a way
so that equality can be preserved throughout, then we may be able to circumvent the aforementioned
diffculty and establish approximation guarantees for problem (8.6).

It turns out that such an expression is possible. In his proof of Grothendieck’s inequality—a well-known
inequality in functional analysis—Rietz [11] has established the following identity:

%]E[sgn(b - G)sgn(c-G) = (b-c)+E [(b G- \/f sgn(b - G)>

X (C-G—\/gsgn(uG))}

where b, ¢ € R" are unit vectorsand G = (gy, . .., g») is a standard Gaussian random vector, i.e., the g;’s
are i.i.d. standard normal random variables. This identity was established in 1974, but its use for analyzing
SDP relaxations was not discovered until 2004, when Alon and Naor [12] used it to analyze the SDP
relaxation of a certain quadratic program. To see how this identity can be used to analyze problem (8.6),
we firstlet G € R” be a standard Gaussian random vector and set %; = sgn(v; - G). Then, using (8.7), we
see that

s A A * *
2 Z QiE[%i%j] = Z Qij(vi - v})
L] i, ]
#3005 [(-6- /T it ) (57 65 swni 0|
hJ
= wspp + Z QijE [(vl* -G — \/g sgn(v;" . G))

i, j

X (v;‘ -G — \/g sgn(vjf . G))]
We now claim that
Z Qj;E {(vf -G — \/f sgn(v} - G)> (vj -G — \/f sgn(v’; . G)>} >0 (8.8)
i J

Assuming this, we see that

(8.7)

2
Z QijE [%i%j] = — Wspp
bj

thus showing that the above algorithm gives an 2/m-approximation. We remark that Nesterov [8] has
established the above result using a different technique, but as we shall see, the technique we presented
can be applied to analyze other SDP relaxations as well.

To establish (8.8), let N be the standard Gaussian measure, i.e.,

dN(r) = exp (—||r||2/2) dr

1
(27 )n/2

where [|r[|> = rlz + .-+ r2 and dr is the n-dimensional Lebesgue measure. Consider the Hilbert space
L2(N), i.e., the space of all real-valued measurable functions f on R"” with fR" | f|2 dN < 00 (see, e.g.,
Ref. [13] for details). Recall that the inner product on L%(N) is given by

(fus fo) E/ fu(r) fu(r) dN(r) = E[ fu fo]
Rﬂ
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Now, observe that for each vector u € R”, the function s, : R” — R given by

hy()=u-r— \/gsgn(u-r)

is an element of L2(N). Thus, it follows that

E |:hu:‘hv;‘i| =K |:(U;k -G - \/f sgn(v;k . G)) (U}k .G — \/f Sgl’l(l)); . G)):|

is an inner product of two vectors in the Hilbert space L2(N). Moreover, we may consider Q as a positive-
semidefinite operator defined on the n-dimensional subspace spanned by the vectors {hUT y w5 By} These
observations allow us to conclude that (8.8) holds.

It is now instructive to review what we have done. We begin with the identity (8.7), which can be
written in the form

YELf(b-G)f(c- G =(b-c)+E[(b-G—yf(b-G))(c-G—y[flc-G))]

where f is a rotational invariant rounding function and y > 0 a constant. This suggests that by choosing
different f’s, we may be able to analyze various SDP relaxations. Indeed, this is the idea behind the results
in Ref. [14], where the authors showed how to choose appropriate f’s to analyze the SDP relaxations of a
class of discrete and continuous quadratic optimization problems in complex Hermitian form. Specifically,
consider the following problems:

maximize zHQz

. k 1 . (8'9)
subjectto zje{l,w,...,0" '}, j=1,2,...,n
and
maximize z7Qz
subjectto |zj|=1, j=1,2,...,n (8.10)

ze C"

where Q € C™" is a Hermitian matrix, o the principal kth root of unity, and z!? denotes the conjugate
transpose of the complex vector z € C”. The difference between problems (8.9) and (8.10) lies in the values
that the decision variables are allowed to take. In problem (8.9), we have discrete decision variables, and
such variables can be conveniently modeled as roots of unity. However, in problem (8.10), the decision
variables are constrained to lie on the unit circle, which is a continuous domain. Such problems arise
from many applications. For instance, the MAX-3-CUT problem where the Laplacian matrix is positive,
semidefinite can be formulated as an instance of problem (8.9). On the other hand, problem (8.10) arises
from the study of robust optimization as well as control theory [15,16].

Just like their real counterparts, both of these problems are NP-hard, and thus we will settle for approx-
imation algorithms. In the following sections, we will present a generic algorithm and a unified treatment
of the two seemingly very different problems (8.9) and (8.10) using their natural SDP relaxations, and to
derive approximation guarantees using variants of the identity (8.7).

8.2 Complex Quadratic Optimization

Let Q € C™ " be a Hermitian matrix, where n > 1 is an integer. Consider the following discrete quadratic
optimization problem:

maximize zHQz
- (8.11)

subjectto zje{l,w,...,0" '}, j=12,...,n
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where w is the principal kth root of unity. We note that as k goes to infinity, the discrete problem (8.11)
becomes a continuous optimization problem:

maximize z7Qz
subjectto |zj|=1, j=1,2,...,n (8.12)
ze C"
Although problems (8.11) and (8.12) are quite different in nature, the following complex semidefinite
program provides a relaxation for both of them:
maximize Q-+ Z
subjectto Zjj =1, j=12,...,n (8.13)
Z>0
As before, we use wspp to denote the optimal value of the SDP relaxation (8.13).
Our goal is to get a near-optimal solution for problems (8.11) and (8.12). Below we present a generic

algorithm due to Ref. [14] that can be used to solve both problems (8.11) and (8.12). The algorithm is
quite simple, and it is similar in spirit to the algorithm of Goemans and Williamson [1,7].

Algorithm

STEP 1: Solve the SDP relaxation (8.13) and obtain an optimal solution Z*. Since Z* is positive-
semidefinite, we can obtain a Cholesky decomposition Z* = VVH, where V = (v, va, .. ., vp).

STEP 2: Generate two independent normally distributed random vectors x € R” and y € R" with
mean 0 and covariance matrix %In, where I, is the n x n identity matrix. Let r = x + yi.

STEP3: For j=1,2,...,mletz; = f(v; - r), where the function f(-) depends on the structure of
the problem and will be fixed later. Let 2 = (%), 23, . . ., 2,) be the resulting solution.

To prove the performance guarantee of the above algorithm, we are interested in analyzing the quantity:

E[z7Qz] = QuuElf (v 1) f(op 1]
I,m

Thus, it would be sufficient to compute the quantity E[f (v; - r) f (v, - r)] for any [, m, and this will be the
main concern of the analysis. The analysis, of course, depends on the choice of the function f(-). However,
the following Lemma will be useful and it is independent of the function f(-). Recall that for two vectors
b,ce C",wehaveb-c=37"_, bjc;.

Lemma 8.1

For any pair of vectorsb, c € C",E[(b-r)(c-r)] =b-c, wherer = x+ yi andx € R" and y € R" are
two independent normally distributed random vector with mean 0 and covariance matrix %In.

Proof
This follows from a straightforward computation

E[(b-r)(c-n]=E || b7, <kark) = Y biaEFjnd = bjcj
j=1 j=1

k=1 jk=1

where the last equality follows from the fact that the entries of x and y are independent, normally
distributed with mean 0 and variance 1/2. O

In the sequel, we shall use r ~ AN¢(0, I,;) to indicate that r is an n-dimensional standard complex
normal random vector, i.e., r = x + yi, where x, y € R" are two independent normally distributed
random vectors, each with mean 0 and covariance matrix % I,.
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8.3 Discrete Problems Where Q Is Positive Semidefinite

In this section, we assume that Q is Hermitian and positive semidefinite. Consider the discrete complex
quadratic optimization problem (8.11). In this case, we define the function f(-) in the generic algorithm
presented in Section 8.2 as follows:

1 if arg(z) € [—n/k, /k)
w if arg(z) € [/ k, 37/ k)

fo=19. . (8.14)

o* 1 if arg(z) € [(2k —3)m/k, 2k — 1)m/ k)
By construction, we have z; € {l,w,..., a)k_l} for j = 1,2,...,n ie, z is a feasible solution of
problem (8.11). Now, we can establish the following lemma.
Lemma 8.2
For any pair of vectors b, c € C" and r ~ N¢(0, I,), we have

I ksin(m/ k)
E[(b- )] =——F—F(b-
[(b-r)flc-1)] N (b-c)

Proof
By rotation invariance, we may assume without loss of generality that b = (by, b2,0,...,0) and ¢ =

(1,0, ...,0). Then, we have

E[(bi71 + ba12) f(71)] = biE[r1 f(r1)]

ﬁ//(x—iy)f(x—iy) exp{—(x* + y*)} dx dy
T JRJR

bl /00/27'[ y i _pz

— p e fpe=t?)e”” do dp

T Jo Jo

Now, forany j = 1,..., kif(2j—3)7r/k <0 < (2j—1)x/k,then—2j—1)n/k < —0 < —(2j—3)7/k,
or

2k—27+1 2k—2j+3
gl g T
k k
It then follows from the definition of f(-) that
f(pe—ie) — f(pei(ZTE—Q)) — a)k—j+l

and hence f(pe= ) = /™1, Therefore, we have

(2j—Dr/k i . . Q2j-Dr/k
/ f(pe=i9)e % dh = /™! / e % do = 2sin(r/ k)
Qj-3)m/k Qj-3)m/k

In particular, the above quantity is independent of j. Thus, we conclude that

2r
/ f(pe*’le)fm d6 = 2ksin(rr/ k)
0

MOI’COVCI‘, since we have

oo
T
/ 1026—;02 dp = £
0 4
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it follows that

ksin(m/ k) b — ksin(r/ k)
2 2w

as desired. O

E[(bi71 + bor2) f(r1)] = (b-c)

We are now ready to prove the main result of this section.

Theorem 8.1

Suppose that Q is Hermitian and positive semidefinite. Then, there exists a
algorithm for problem (8.11).

(ksin(F))?

e approximation

Proof
By Lemmas 8.1 and 8.2, we have

{(b-r) - kjif(b-r)} {(w) 2T f(w)H

in(%) ~ ksin(%)

E

= (b O+ —F _Ef(b-n)fe ]

(ksin(}))
It follows that

ksi T2 M n ksi T \\2
B[z Q2] = % SN amvr-vm) + esinCE)) SN am
I=1 m=1 I=1 m=1

x E l{(vz-r)— kfif,,)f(w-r)} {(vm-m zﬁﬂvm-r)H
k

We now claim that

n n
> amE

I=1 m=1

{(vz r) — kz.izf(vl : r)} {(vm r) — ;@f(vm : r)H >0 (8.16)
sm(r) ksm(r)

To see this, let G be the standard complex Gaussian measure, i.e.,
1 2
dG(r) = — XP (—||r|| ) dr

where |7 = |r1|? 4 - - - + |ru|? and dr is the 2n-dimensional Lebesgue measure. Consider the Hilbert
space L2(G), i.e., the space of all complex-valued measurable functions f on C" with fC” IfI? dG < oo.
Recall that the inner product on L2(G) is given by

(fur fo) E/ fur) fu(r) dG(r) = E[fu fo]
Cﬂ
Now, observe that for each vector u € C", the function h,: C" — C given by

v

ksin(%)

flu-r)

hy(r)=u-r—

is an element of L2(G). Thus, it follows that

27 2 7
{(vz r) — mf(vz . r)} {(vm ) — Ksin() f(vm~r)H

is an inner product of two vectors in the Hilbert space L?(G). Moreover, we may consider Q as a positive

E[hyhy,,| =E

semidefinite operator defined on the n-dimensional subspace spanned by the vectors {hy,, ..., hy,}.
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These observations allow us to conclude that (8.16) holds. Finally, upon substituting (8.16) into (8.15),
we obtain

(ksm( )? - — (ksm( )?

Z Z Qim(V1 - Vm) = ————— Wspp

I=1 m=1

E[z7 Q2] >

(ksin(%))?

i.e., our algorithm gives a —

-approximation. |

It is interesting to note that the above result can be obtained via a completely different technique.
In Ref. [17], the authors developed a closed-form formula for computing the probability of a complex-
valued normally distributed bivariate random vector to be in a given angular region. Using this for-
mula and the series expansions of certain trigonometric functions, they are able to establish the same
result.

As an application of Theorem 8.1, we consider the MAX-3-CUT problem, which is defined as follows.
We are given an undirected graph G = (V, E) with V being the set of nodes and E being the set of edges.
For each edge (i, j) € E, there is a weight w;; that could be positive or negative. For a partition of V into
three subsets V;, V5, and V3, we define

Vi, Vo, V3)={(i,j) e E:ie Vk, je Vi for k#1}
and

w(Vi, Vi, i) = Y wij

(1, j)€8(V1, V2, V3)

Our goal is to find a tripartition (V;, V3, V3) such that w(§(V;, V3, V3)) is maximized. Note that the
MAX-3-CUT problem is a generalization of the well-known MAX—CUT problem. In the MAX—CUT problem,
we require one of the subsets, say V3, to be empty.

Goemans and Williamson [7] have given the following complex QP formulation for the MAX-3-CuUT
problem:

N 1 Y
maximize EZ(i,j)eEWlJ(z Zi - zj — zj z,)

. : (8.17)
subjectto  z; € {1, w, w?} forall jeV

Based on this formulation and its SDP relaxation, Goemans and Williamson [7] were able to give an 0.836-
approximation algorithm for the MAX-3-CUT problem when the weights of the edges are nonnegative,
i.e., w;jj > 0forall (i, j) € E.(Theyalso showed that their algorithm is actually the same as that of Frieze
and Jerrum [5], and thus give a tighter analysis of the algorithm in Ref. [5].) However, their analysis does
not apply if some of the edges have negative weights.

Note that since w;; = w j;, problem (8.17) is equivalent to

maximize %ZHLZ
. 2 . (8.18)
subjectto  zj € {1, w, @*} forall jeV

where L is the Laplacian matrix of the graph G = (V, E), i.e, L;jj = —w;jand L;j; = E G, j)eE Wij:

£ (3sm( ))

However, by Theorem 8.1, problem (8.18) can be approximated by a factor o ~ 0.537.

Therefore, we obtain the following result:

Corollary 8.1

There is a randomized 0.537-approximation algorithm for the MAX-3-CUT problem when the Laplacian
matrix is positive-semidefinite.
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8.4 Continuous Problems Where Q Is Positive-Semidefinite

Now, let us consider problem (8.12) when Q is positive-semidefinite. This problem can be seen as a
special case of problem (8.11) by letting k — oo. In this case, the function f(-) is defined as follows:

{l—;l if|t| >0
fl) = (8.19)
0 ift=0

a2
Note that as k — o0, we have W — /4. This establishes the following result, which has been
proved independently by Ben-Tal et al. [16] and Zhang and Huang [17]. However, the proof presented
above is quite a bit simpler.

Corollary 8.2

Suppose that Q is positive semidefinite and Hermitian. Then, there exists a % -approximation algorithm for
problem (8.12).

8.5 Continuous Problems Where Q Is Not Positive-Semidefinite

In this section, we deal with problem (8.12) where the matrix Q is not positive-semidefinite. However,
for convenience, we assume that wgpp > 0 so that the standard definition of approximation algorithm
makes sense for our problem. It is clear that wgpp > 0 as long as all the diagonal entries of Q are zeros.

Assumption 8.1

The diagonal entries of Q are all zeros, i.e., Q;; =0fori=1,2,...,n
In fact, Assumption 8.1 leads to the even stronger result that follows.

Lemma 8.3
If Q satisfies Assumption 8.1, then there exists a constant C > 0 such that

wspp = C E lgij|> > 0
1<i,j<n

Proof
It is straightforward to show that problem (8.12) is equivalent to

» Re(Q)  Im(Q)) (x
maximize (x7, yT) —Im(Q) Re(Q) y

subject to x? + y? =1, j=1,2,...,n (8.20)
x,y € R"
Moreover, the objective value of problem (8.20) is bounded below by the objective value of the following
problem:
maximize Im(Q)
I m Q) Re(Q)
subject to x? = %, j=12,. (8.21)
2 _ 1
Yi= 12 j=
X,y € R"
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Since Q satisfies Assumption 8.1, the diagonal entries of

<Re(Q) Im(Q))
—Im(Q) Re(Q)

must also be zeros. It has been shown in Ref. [18] that for any real matrix A = (a;j)uxn with a zero
diagonal, the optimal objective value of

maximize xT Ax
subject to x? =1, j=L2,...,n (8.22)

x € R"

is bounded below by C, /2 lei,an |a;j|?, for some constant C > 0 which is independent of A. This

implies that the optimal objective value of problem (8.21) is at least

1
SC 2 D0 2ReaipP + ImgipP) = C | > laiil?

1<i,j<n 1<i,j<n
which leads to the desired result. O

Again, we use our generic algorithm presented in Section 8.2. In this case, we specify the function f(-)
as follows:

iflt| < T

t
T =
= 8.23
1o {ﬁ if[t] > T (822

where T is a parameter which will be fixed later. If welet z; = f(v; - r), then the solution z = (z1, ..., z4)
obtained by this rounding may not be feasible, as the point may not have unit modulus. However, we
know that |z;| < 1. Thus, we can further round the solution as follows:

) z/|z| with probability (1 + |z|)/2
z =
—z/|z| with probability (1 — |z])/2
The following lemma is a direct consequence of the second randomized rounding.

Lemma 8.4

Fori # j, we haveE[%ié_j] = E[zZ]].

Proof
By definition, conditioning on z;, z j»we have
AT N N zizj
Elzizj |z, zj] = Prizi = zi/|zl, zj = Zj/|Zj|}m
1 )
R . zizZj
+Pr{zi = zi/lzi|, 2j = —zj/|zjl} — ———
|zi| - |Z]]
s . ZizZj
+Pr(z = —zi/lzl, 2 = zj/zjl} — ———
|zil - |Z]]
. . zizj
+Priz = —zi/lzil, 2j = —zj/|zj|} ——L—
|zi| - |Z]]
1 zZiz; 1 ZizZj
= —(1+lzi|zj)—L= = =(1 — |zl - l2jD)———=
2 lzil - |zj] 2 |zi| - |Zj]
= ZiZ_j
The desired result then follows from the tower property of conditional expectation. |
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This shows that the expected value of the solution on the circle equals that of the “fractional” solution
obtained by applying f(-) to the SDP solution. Therefore, we could still restrict ourselves to the rounding
function f(-).

Now, define

1 1
g(T) = o = e + V(L= 9(V2T))
where @ (-) is the probability distribution function of N'(0, 1).

Lemma 8.5

For any pair of vectors b, c € C" andr ~ N¢(0, I,), we have

E[(b-7)f(c-r)] =g(T)(b-c)

Proof
Again, without loss of generality, we assume that ¢ = (1,0, ...,0) and b = (b, 02,0, ...,0). Let 14 be
the indicator function of the set A, i.e.,, 1 4(w) = 1if w € Aand 1 4(w) = 0 otherwise. Then, we have
r r
El(b-r)f(c-1)] =E [(bm + baa) - umg}] +E {(bm + bm)ﬁ S T
1

1
= ?E [b1lr1)* - Lyni<y] + E [brlril - L=y

1

. _/ (x> + yz) exp(—(x2 + yz)) dxdy
T Jx2py2<12

~lS

b
+2 / Va2 + y2 exp(—(x* + y) dx dy
T Jx24y2>T2

bl 2 T bl 2 00
- b / 0 exp(—p?) dp do + 2 / / p? exp(—p?) dp d6
7T Jo 0 T Jo T

= g(T)b

where the last equality follows from the facts

T
1
/ o’ exp(—pz) dpo = 3 (1 —(T?>+1) exp(—Tz))
0

and

*° 1

/ o expl=p)do = & (Texp(~T%) + V(1 ~ S(V2T)))

T

This completes the proof. O

In a similar fashion, one can show the following:

Lemma 8.6
For any pair of vectors b, ¢ € C" andr ~ N¢(0, I,), we have

1
—exp(—Tz)

Bl flc- @ 1l = 75 — 3
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Now, by putting everything together, we obtain the following:

Theorem 8.2
If Q satisfies Assumption 8.1, then there exists a constant C > 0 such that
1
E [27Qz] > w
(27 Qz] = 3im(p) SPP
S

where B = max{ 5, M

Co /Dt men 1Tk 2

Proof
By Lemmas 8.1 and 8.5, we have

E[{(b-r) — Tf(b-r){(c-r) = Tflc -}l =1 —2Tg(T)(b-c)+ TE[f(b-r) f(c-1)]
It follows that

ZZZTg _Ika(vk Um)

k=1 m=1

+ % SN aimEl e 1) = Tf (k- W H - 1) = Tf (0 1)}]

k=1 m=1

Again, the quantity E[{(b-r) — Tf(b-r)}{(c-r) — Tf(c-r)}] can be seen as an inner product of two
vectors in a Hilbert space. Moreover, by letting b = ¢ and using Lemma 8.6, we know that the norm of an
Euclidean unit vector in this Hilbert space is

2 —2Tg(T) — exp(—T?) = exp(—T?) — 2T/m(1 — ®(~/2T))

It follows that

= ZqumE[{ vk - 1) = Tf (Wi - W - 1) = Tf Wy - 1)}]

k=1 m=1

k=1 m=1
In contrast, by Lemma 8.3, we have wspp > C, /Zl<k m<n |qkm|?> > 0 for some constant C > 0. It

follows that

% DO @Bl (k1) = Tf (o - HWm - 1) = Tf (0 1)}]

k=1 m=1

exp(—T?) = 2T/m(1 — ®(V2T)) X1k m=n |9kml

z - T2 - WsDP
C\/ Zlfk,mﬁn |qk"1|2

exp(=T%) —2T/m(1 - d)(ﬁT))ﬁ

> o) wspp
<k,m<n |q ml .. .
where = max Lich ‘ . This implies that
\/Zl<k m<n|qkm|
T 2Tg(T) —1  exp(—T2)—2T (1—¢(IT))
E[£7Qz] = ( g T2 -2 }/2— WSDP
1= (24 B) exp(—T?)
= T2 Wspp
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By letting T = \/Zln,B,wehaveIE[zHQé] > ﬁwspp. O
Note that

Zlfk,mgn |q1<m|

\/ Zlfk,msn |ka|2

1
< —
T n

Therefore, we have

Corollary 8.3
If Q satisfies Assumption 8.1, then E [2H Q%] > O() wspp.

Inn

8.6 Discrete Problems Where Q Is Not Positive-Semidefinite

Let us now consider problem (8.11) where Q is an indefinite Hermitian matrix with diag(Q) = 0. Its
approximability was left open in Ref. [14] and is recently resolved by Huang and Zhang [19]. It is interesting
to note that the techniques of Huang and Zhang encompass well-known ideas in the literature. Specifically,
their rounding is similar to a technique introduced in Ref. [20], and their analysis uses some of the ideas
from Ref. [21]. To be precise, let Z* be an optimal solution to problem (8.11). Then, let r ~ N¢(0, Z*)
be a Gaussian random vector, and for each j = 1,2, ..., n, set

, ri/lrjl iflrjl > T
Z. =
ri/ T if|rj| <T

where T > 0 is a parameter to be chosen later. As earlier, each Z'] satisfies |ij| < 1. However, the solution
{z}, ..., 2} is not feasible to problem (8.11). Thus, we need to perform a second randomized rounding
as follows:

zj =o' with probability (1 + Re(w™'Z}))/ k
where! =0,1,...,k—1land j =1,2,..., n. Observe that

k—1 —1 k—1
(14 Re(w™'2))) 1 AN
() -

1=0

and hence, we indeed have a probability distribution. The following lemma is similar in spirit to Lemma 8.4
and is crucial to the analysis.

Lemma 8.7
For j # land k > 3, we have E [21?1] = %E {2/]?1}

To analyze the quality of the solution {21, ..., 2,}, we need the following lemma (see also Ref. [21]):

Lemma 8.8
Forj#1land T > 1, wehave E[|A ji|] < exp(—Tz)(4 +5/T), where Aj; = 171/ T2 — z’];;

Proof
We first divide C? into the following (possibly overlapping) regions:

A={(rjr):lrjl =T, Inl =T}, B={(rjyr):Inl > T}, C=A{(rj,n):Irjl > T}
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By symmetry, we may assume that E[|A j;| - 1¢] < E[|A j;| - 1g]. Thus, we have
E[lAjl] <E[A ;- 14 +E[A ;] - 1] + E[JAji] - 1c] < E[lAji| - 14] 4 2E[|A ] - 1]

By construction, we have E[|A j;| - 14] = 0. Now, suppose that E[r;7]] = Z’]'fl = yei“. Since we have
T 1y el
r] ye 1

ri=yen+V1—y2h, n=n

n
( ) ~ NC(O’ 12)
A
Hence, we conclude that

1 oo p2om N o0 , 5
P(nl > T) = P(ly| > T) = f/ / ret d9dr:2/ re " dr = o T
T Jr Jo T

it follows that

where

Now, note thatIE[|z}Z|] <E[1p]=P(nl >T) = e_TZ. Moreover, since y < 1, we have
Ellrjfil - 15) = B[ (ye il + /1= y227) - 15

<E[(Inf*+nl-IAl) - 15]

1 oo p2om 5 1 oo p2m 1 oo p2om )
—// rie " dedr+<—// rzdedr> (—// rle”" d0dr>
T Jr Jo T Jr Jo 7T Jo Jo

T
(TZ n */—% n 1) T +% (1 - q>(ﬁT)>

where ®(-) is the cumulative distribution function of the real-valued standard normal distribution. It then
follows that

|77l — 2 (1 JT T
E[|Ajl|'lB]§E|: T2 +|Z/]Z;| <e F+ﬁ+2 —|—ﬁ(l—¢>(\/§T))

whence

2 T
N

Elap]<e T (=
[l ]l”_e <T2 T

+ 4) n %(1 — ®(V2T)) (8.24)

Now, observe that

i ST e NVZ 2 el N
?(1—®(«/5T))=F/T esd55?A sesd5=ﬁe

and hence it follows from (8.24) that

_ JT+4 \/7? 2 5
EfAay <e T [ Y R AL (442
[lAjl] <e < Spa T 4 <e + o

as desired. O
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Now, by using Lemmas 8.7 and 8.8, and the techniques similar to that in Ref. [21], we are led to the
following result:

Theorem 8.3
Suppose that n > 3, and set T = +/91n n. Then, we have E[z7Qz] > O (ﬁ) WSDP.

8.7 Summary

We presented a generic algorithm and a unified treatment of the two seemingly very different quadratic
optimization problems in complex Hermitian form. Since these problems are NP-hard, we settled for

approximation algorithms. We used their natural SDP relaxations, and to derive approximation guarantees
we used variants of the Rietz identity [11].
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9.1 Introduction

Let IT be an NP-hard optimization problem, and let A be an approximation algorithm for I1. For an
instance I of I, let A(I) denote the objective value when running A on I, and let OPT(I) denote the
optimal objective value. The approximation ratio of A for the instance I is Ro(I) = A(I)/OPT(I), thus,
when IT is minimization (maximization) problem R4(I) > 1 (Ra(I) < 1).

A polynomial-time approximation scheme (PTAS) is an algorithm that takes as input an additional
parameter, ¢ > 0, which determines the desired approximation ratio. As ¢ approaches 0, the approximation
ratio gets arbitrarily close to 1. The time complexity of the scheme is polynomial in the input size, but may
be exponential in 1/e. This gives a clear trade-off between running time and quality of approximation.
Formally,

Definition 9.1

An approximation scheme for an optimization problem I is an algorithm A which takes as input an instance
I of I1 and an error bound e, runs in time polynomial in | I|, and has approximation ratio R4(I, ¢) < (1+¢).
In fact, such an algorithm A is a family of algorithms A such that for any instance I, Ra, (I) < (1 + ¢).

The approximation algorithm A may be deterministic or randomized. In the latter case, the result is a
randomized approximation scheme.

Definition 9.2

A randomized approximation scheme for an optimization problem I1 is a family of algorithms A, which
run in time polynomial in | I| and have, for any instance I, expected approximation ratio EXP[Ry,(I)] <
(1+¢).

9-1
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9-2 Handbook of Approximation Algorithms and Metaheuristics

In some approximation schemes, an additive constant k, whose value is independent of I and ¢, is added
to the approximation ratio. Asymptotically, this constant is negligible, thus, such a scheme is called an
asymptotic PTAS.

Definition 9.3

An asymptotic approximation scheme for an optimization problem I1 is a family of algorithms Ag that run
in time polynomial in | I|, such that, for some constant k and for any instance I, A.(I) < (1+¢)OPT(I) + k.

We refer the reader to Chapter 11 in this handbook for a detailed study of such schemes.

Some approximation algorithms provide a solution for a relaxed instance of the problem. For exam-
ple, in packing problems, an algorithm may pack the items in bins whose sizes are slightly larger than
the original. The objective value is achieved relative to the relaxed instance. This type of algorithm is
called a dual approximation algorithm [1], or approximation with resource augmentation [2]. A dual
approximation scheme is a family of algorithms A, that run in time polynomial in ||, such that, for
any instance I, A(I) < (1 4+ ¢)OPT(I), and A(I) is achieved for resources augmented by factor of
(1+e).

Depending on the function f(|I|, 1/¢), which gives the running time of the scheme, some schemes
are classified as quasi-polynomial and others as fully polynomial. In particular, when the running time is
O(nbolylog(m)y ywe get a quasi-PTAS (see, e.g., Refs. [3,4]); when the running time is polynomial in both
|I] and 1/¢ we get a fully polynomial-time approximation scheme (FPTAS). Such schemes are studied in
detail in Chapter 10.

There is wide literature on approximation schemes for NP-hard problems. Many of these works present
PTASs for certain subclasses of instances of problems, which are in general extremely hard to solve. While
some of the proposed schemes may have running times which render them inefficient in practice, these
works essentially help identify the class of problems that admit PTAS. There have been some studies also
toward characterizing this class of problems (see, e.g., Refs. [5,6] and Chapter 17 of this book). We focus
here on the techniques that have been repeatedly used in developing PTASs.

We refer the reader also to the comprehensive survey on Approximation Algorithms by Motwani [7], a
tutorial by Schuurman and Woeginger [8], and the survey on scheduling by Karger et al. [9], from which
we borrowed some of the examples in this chapter.

9.2 Partial Enumeration

9.2.1 Extending Partial Small-Size Solutions

There are two main techniques based on extending partial small-size solutions. The first technique exploits
our ability to solve the problem optimally on a constant-size subset of the instance. Thus, initially, such a
constant-size subset is selected. This subset contains the most “significant” elements in the instance. We
identify elements as significant depending on the problem at hand. The problem is solved optimally for
this subset. This can be done by exhaustive search, since there is only a constant number of elements to
consider. Next, this optimal partial solution is extended into a complete one, using some heuristic which
has a bounded approximation ratio.

In the second technique, none of the elements is initially identified as “significant”; instead, all partial
solutions of constant size are considered, and each is extended to a complete solution using some heuristic.
The best extension is selected to be the output of the scheme.

The time-complexity analysis of such PTASs is based on the fact that the number of possible subsets, or
solutions that are considered, is exponential in the (constant) size of these subsets. The step in which the
constant-size partial solution is extended is usually based on some greedy rule that may require sorting,
and is polynomial. The parameter ¢ specifying the required approximation ratio of (1 + €) determines the
size k of the partial solution to which an exponential exhaustive search is applied. This implies that the
running time of such schemes is exponential in 1/¢.
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9.2.1.1 Extending an Optimal Solution for a Single Subset

We present the first technique in the context of a classical scheduling problem, namely, the problem of
finding the minimum makespan (MM) (or, overall completion time) of a schedule of 7 jobs on m identical
machines. The main idea in the PTAS of Graham [10] is to first optimally schedule the k longest jobs and
then schedule, using some heuristic, the remaining jobs. Formally, the input for the MM problem consists
of n jobs and m identical machines. The goal is to schedule the jobs nonpreemptively on the machines in
a way that minimizes the maximum completion time of any job in the schedule.

Denote by py, ..., p, the processing times of the jobs. Assume that # > m, and that the processing
times are sorted in nonincreasing order, that is, forall i < j, p; > p;. A well-known heuristic for the
makespan problem is the LPT rule, which selects the longest unscheduled job in the sorted list and assigns
it to a processor which currently has the minimum load. The PTAS combines an optimal schedule of the
longest k jobs with the longest processing time (LPT) rule, applied to the remaining jobs.

Formally, for any k € [0, n], the algorithm Ay is defined as follows:

1. Schedule optimally, with no intended idles, the first k jobs.
2. Add the remaining jobs greedily using the LPT rule.

Theorem 9.1

Let Ax(I) denote the makespan achieved by Ay on an instance I, and let OPT(I) denote the minimum
makespan of I, then

- 4
Ax(I) < OPT(I) (l + I Lk/mj)

Proof

Let T denote the makespan of an optimal schedule of the first k jobs. Clearly, T is a lower bound for
OPT(I), thus, if the makespan is not increased in the second step, i.e., Ax(I) = T, then A is optimal for I.
Otherwise, the makespan of the schedule is greater than T. Let j be the job to determine the makespan
(the one which completes last). By the definition of LPT, this implies that all the machines were busy when
job j started its execution (otherwise, job j could start earlier). Since the optimal schedule from step 1
has no intended idles, all the machines are busy during the time interval (0; Ax(I) — p;).

Let P =) _7 | pi be the total processing time of the 1 jobs. By the above, P > m(Ax(I) — pj) + pj.
Also, since the jobs are sorted in nonincreasing order of processing times, we have that p; < pxy1, and
therefore, P > mAx(I) — (m — 1) px+1. A lower bound for the optimal solution is the makespan of a
schedule in which the load on the m machines is perfectly balanced; thus, OPT(I) > P /m, which implies
that Ax(I) < OPT(I) + (1 — L) s,

Tobound A (I)intermsof OPT(I),weneedtobound pi4 intermsof OPT(I). To obtainsuchabound,
consider the k + 1 longest jobs. In an optimal schedule, some machine is assigned at least [(k + 1)/ m] >
1 + |k/m] of these jobs. Since each of these jobs has processing time at least px11, we conclude that
OPT(I) > (1 + |k/m]) px+1, which implies that pxy; < OPT(I)/(1 + [k/m]). It follows that

-4

To observe that the above family of algorithms is a PTAS, we relate the value of k to (1 + ¢), the required
approximation ratio. Given ¢ > 0, let k = fls;g m). It is easy to verify that the corresponding algorithm
Ay achieves approximation ratio at most (1 + ¢). Thus, we conclude that for a fixed m, there is a PTAS for
the MM problem.

Note that for any fixed k, an optimal schedule of the first k jobs can be found in O(m¥) steps. Applying the
LPT rule takes additional O(nlog n) steps. For A, we get that the running time of the scheme is O(m™"/#),
i.e., exponential in m1 (that is assumed to be constant) and 1/e. This demonstrates the basic property of
approximation schemes: a clear trade-off between running time and the quality of approximation.
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9.2.1.2 Extend All Possible Solutions for Small Subsets

The second technique, of considering all possible subsets, is illustrated in an early PTAS of Sahni for the
knapsack problem [11]. An instance of the knapsack problem consists of 7 items, each having a specified size
and a profit, and a single knapsack having size B. Denote by s; > 0, p; > 0 the size and profit associated
with item i. The goal is to find a subset of the items such that the total size of the subset does not exceed
the knapsack capacity, and the total profit associated with the items is maximized.

The PTAS in Ref. [11] is based on considering all O(kn*) possible subsets of size at most k, where k is
some fixed constant. Each of these subsets is extended to a larger feasible subset by adding more items to
the knapsack, using some greedy rule. The best extension among these O(kn*) candidates is selected to
be the output of the scheme. Formally, for any k € [0, n], the algorithm Ay is defined as follows:

1. (Preprocessing) Sort the items in nonincreasing order of their profit densities, p;/s;.
2. For each feasible subset of at most k items.

(a) Pack the subset in the knapsack.

(b) Add to the knapsack items in the sorted list one by one, while there is enough available capacity.
3. Select among the packings generated in Step 2, one which maximizes the profit.

Theorem 9.2
Let P(Ayx) denote the profit achieved by Ak, and let P(OPT) denote the optimal profit, then

P(OPT) < P(Ak)(1+-%>

Proof

Let OPT be any optimal solution. If |OPT| < k we are done, since the subset OPT will be considered
in some iteration of Step 2. Otherwise, let H = {aj, ay, ..., ak} be the set of k most profitable items in
OPT. There exists an iteration of Ay in which H is considered. We show that the profit gained by Ay in
this iteration yields the statement of the theorem. Consider the list L} = OPT\H = {ak41, ..., ax} of
the remaining items of OPT, in the order they appear in the sorted list. Recall that, at some point, Ag
will try H as the initial set of k packed items. The algorithm will then add greedily items, as long as the
capacity constraint allows. If all the items are packed, Ay is clearly optimal; otherwise, at some point there
is not enough space for the next item. Let m be the index of the first item in L; which is not packed in
the knapsack by Ay, i.e., the items a4, .. ., d,—1 are packed. The item a,, is not packed because B,, the
remaining empty space at this point, is smaller than s,,. The greedy algorithm packed into the knapsack
only items with profit density at least py,/sy. At the time that a,, is dropped, the knapsack contains the
items from H, the items a4, ..., d,—1 and some items which are not in OPT.

Let G denote the items packed in the knapsack so far by the greedy stage of Ax. All of these items have
profitdensityatleast p,,/s,. In particular, theitems in G\OPT thathave total size A = B—( Be—i—z i1 D)
all have profit density atleast py/s. Thus, the total profit of the items in G is P(G) > > /", k+1 pi+A % .
We conclude that the total profit of the items in OPT is

K 0P|
P(OPT) = pi+ Z pi+ Z pi
i=1 i=k+1
m—1
smm+<mw ) ( &>W
i=1
— P(H) + P(G) + Bef—’” < P(HUG) + pm

Since Ay packs at least H U G, we get that P(Ax) > P(H) + P(G), which implies that P(OPT) —
P(Ak) < pm. Given that there are at least k items with a profit at least as large as a,, (those selected
to H), we conclude that p,, < P(OPT)/(k + 1). This gives the approximation ratio. O
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Assuming a single preprocessing step, in which the items are sorted by their profit densities, each subset
is extended to a maximal packing in time O(n). Since there are O(kn*) possible subsets to consider, the
total running time of the scheme is O(knk+1 ).

To obtain a PTAS for the knapsack problem, let A, be the algorithm Ay with k = [1/e7. By the above,
the approximation ratio is at most 1 + ¢, and the running time of A, is O( é itz ).

The technique of choosing the best among a small number of partial packings was applied also to

variants of multidimensional packing. A detailed example is given in Section 9.3.2.

9.2.2 Applying Enumeration to a Compacted Instance

In this section we present the technique of applying exhaustive enumeration to a modified instance, in
which we have a more compact representation of the input. Approximation schemes that are based on this
approach consist of three steps:

1. The instance I is modified to a simpler instance, I’. The parameter ¢ determines how rough I’ is
compared with I. The smaller &, the more refined is I'.

2. The problem is solved optimally on I'.

3. An approximate solution for I is induced from the optimal solution for I’.

The challenge is to modify I in the first step into an instance I’ that is simple enough to be solved in
polynomial time, yet not too different from the original I, so that we can use an exact solution for I’ to
derive an approximate solution for I.

The use of this technique usually involves partitioning the input into significant and nonsignificant
elements. The partition depends on the problem at hand. For example, it is natural to distinguish between
long and short jobs in scheduling problems, and between big and small, or high-profit and low-profit
elements, in packing problems. For a given instance, the distinction between the two types of elements
usually depends on the input parameters (including ¢), and on the optimal solution value.

In some cases, the transformation from I to I’ involves only grouping the nonsignificant elements. Each
group of such elements thus forms a single significant element in I’. As a result, the instance I’ consists of
a small number of significant elements. More details and an example for this type of transformation are
given in Section 9.2.2.1.

In other cases, all the elements, or only the more significant ones, are transformed into a set of elements
with a small number of distinct values. This approach is described and demonstrated in Section 9.2.2.2.

9.2.2.1 Grouping Subsets of Elements

We illustrate the technique with the PTAS of Sahni [12] for the MM problem on two identical machines.
The input consists of # jobs with processing times p;, ..., p,. The goal is to schedule the jobs on two
identical parallel machines in a way that minimizes the latest completion time. In other words, we seek a
schedule which balances the load on the two machines as much as possible.

Let P = E';Zl pj denote the total processing time of all jobs, and let p;qx denote the longest pro-
cessing time of a job. Let C = max(P/2, pmax)- Note that C is alower bound on the MM (i.e., OPT > C),
since P /2 is the schedule length if the load is perfectly balanced between the two machines, and since some
machine must process the longest job.

The first step of the scheme is to modify the instance I into a simplified instance I’. This modification
depends on the value of C and on the parameter €. Given I, ¢, partition the jobs into small jobs—of length
at most ¢ C, and big jobs—of length greater than ¢C. Let Pg denote the total length of small jobs. The
modified instance I’ consists of the big jobs in I together with | Ps/(¢C)] jobs of length ¢ C.

Next, we need to solve optimally the MM problem for the instance I’. Note that all jobs in I’
have length at least ¢C and their total size is at most P, the total processing time of the jobs in the
original instance, since the small jobs in I are replaced in I’ by jobs of length ¢C with total length
at most Pg. Therefore, the number of jobs in I’ is at most the constant P/eC < 2/e. An optimal
schedule of a constant number of jobs can be found by exhaustive search over all O(22/¢) possible
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schedules. This constant number is independent of #, but grows exponentially with ¢, as we expect from
our PTAS.

Finally, we need to transform the optimal schedule of I’ into a feasible schedule of I. Note that, for the
makespan objective, we are only concerned about the partition of the jobs between the machines, while
the order in which the jobs are scheduled on each machine can be arbitrary. Denote by OPT(1’) the length
of the optimal schedule for I’. To obtain a schedule of I, each of the big jobs is scheduled on the same
machine as in the optimal schedule for I’. The small jobs are scheduled greedily in an arbitrary order
on the first machine until, for the first time, the total load on the first machine is at least OPT(I’). The
remaining small jobs are scheduled on the second machine. Clearly, the overflow on the first machine is
at most £ C (maximal length of a small job). Also, since the total number of (¢C)-jobs was defined to be
| Ps/(eC)], the overflow on the second machine is also bounded by £ C. Therefore, the resulting makespan
in the schedule of I is at most OPT(I’) + ¢C.

To complete the analysis we need to relate OPT(I’) to OPT(I).

Claim 9.1
OPT(I') < (1 +¢)OPT(I)

Proof

Given a schedule of I, in particular an optimal one, a schedule for I’ can be derived by replacing—on
each machine separately—the small jobs with jobs of size ¢ C, with at least the same total size. Recall that
the number of (¢C)-jobs in I’ is | Ps/(¢C)]. Regardless of the partition of the small jobs in I between
the two machines, the result of this replacement is a feasible schedule of I’ whose makespan is at most
OPT(I) + ¢C. Since OPT(I) > C, the statement of the claim holds. |

Back to our scheme, we showed that the optimal schedule of I’ is transformed into a feasible schedule
of I whose makespan is at most OPT(I") 4 ¢ C. By Claim 9.1, this value is at most (1 4+ &) OPT(I) + eC <
(142¢)OPT(I). By selecting ¢’ = £/2, and running the scheme with &', we get the desired ratio of (1 + ¢).

The above scheme can be extended to any constant number of machines. For arbitrary number of
machines, a more complex PTAS exists: the scheme of Ref. [1], which requires reducing the number of
distinct values in the input, is given in the next section.

9.2.2.2 Reducing the Number of Distinct Values in the Input

Any optimization problem can be solved optimally in polynomial, or even constant, time if the input size is
some constant. For many optimization problems, an efficient algorithm exists if the input size is arbitrary,
but the number of distinct values in the input is some constant. Alternatively, the problem can be solved
by a pseudopolynomial-time algorithm (e.g., by dynamic programming), whose running time depends
on the instance parameters, and is therefore polynomial only if the parameter values are polynomial in
the problem size.

The idea behind the technique that we describe below is to transform the elements (or sometimes, only
the significant elements) in the instance I into an instance I’ in which the number of distinct values is fixed,
or to scale the values according to the input size. The problem is then solved on I’, and the solution for I’
is transformed into a solution for the original instance. The nonsignificant elements, which are sometimes
omitted from I’, are added later to the solution, using some heuristic. The parameter ¢ determines the
(constant) number of distinct values contained in I’: the smaller the ¢, the larger the number of distinct
values. The following are the two main approaches for determining the values in I’.

1. Rounding. The values in I’ form an arithmetic series in which the difference between elements is a
function of &. For example, multiples of £2 T, for some value T. In this approach, the gap between
any two values bounds the difference between the original value of an element in I and the value
of the corresponding element in I’. Note that the number of elements whose values are rounded to
a single value in I’ can be arbitrary.
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2. Shifting. The values in I’ are a subset of the values in I, selected such that the distribution on the
number of values in I that are shifted to a single value in I’ is uniform. However, in contrast to
the rounding approach, there is no bound on the difference between the value of an element in I
and its value in I’. For example, partition the elements into [1/£%] groups, each having at most
Ln/e?] elements, and fix the values in each group to be (say) the minimal value of any element in
the group.

In both approaches, the approximation ratio is guaranteed to be (1 + ¢) if I’ is close enough to I.
Formally, an optimal solution for I’ induces a solution for I whose value is greater/smaller by a factor of at
most (1 + ¢). Another factor of (1 + &) may be added to the approximation ratio due to the nonsignificant
items—in case they are handled separately.

We demonstrate this technique with the classic PTAS of Hochbaum and Shmoys [1] for the MM problem
on parallel machines. The input for the problem is a set of  jobs having processing times pi, ..., py, and
m identical machines; the goal is to schedule the jobs on the machines in a way that minimizes the latest
completion time of any job. The number of machines, m, can be arbitrarily large (otherwise, a simpler
PTAS exists; see Section 9.2.2.1).

First, note that the MM problem is closely related to the bin packing (BP) problem. The input for BP
is a collection of items whose sizes are in (0, 1). The goal is to pack all items using a minimal number of
bins. Formally, let I = {p1, ..., pn} be the sizes in a set of n items, where 0 < p; < 1. The goal is to
find a collection of subsets U = {Bj, By, ..., Bx} which forms a disjoint partition of I, such that for all
i,1<i<k, EjeB,- pj < 1, and the number of bins, k, is minimized.

The exact solutions of MM and BP relate in the following way. It is possible to schedule all the jobs
in an MM instance on m machines with makespan C,,,x if and only if it is possible to pack all the
items in a BP instance, where the size of item j is p;/Ciax, in m bins. The relation between the
optimal solutions does not remain valid for approximations. In particular, BP admits an asymptotic
FPTAS (see Chapter 11), while MM does not. However, this relation can be used to develop a PTAS for
MM.

Let OPTgp(I) be the number of bins in an optimal solution of BP, and let OPT p;p1(I) = Cpyax be an
optimal solution for MM. Denote by é the BP input in which all the values are divided by d. We already
argued that

1
OPTgp <E) <m & OPTym(I,m)<d

We define a dual approximation scheme for BP. For an input I, we seek a solution with at most OPTgp
bins, where each bin is filled to capacity at most 1 + . In other words, we relax the bin capacity constraint
by a factor of 1 + €. Let dual.(I) be such an algorithm, and let DUAL, (I) be the number of bins in the
corresponding packing.

Theorem 9.3
If there exists a dual approximation algorithm for BP, then there is a PTAS for the MM problem.

Proof
The PTAS performs a binary search to find OPTp. To bound the range in which the optimal makespan
is searched, two lower bounds and one upper bound for this value are used. The lower bounds are the
length of the longest job and the load on each machine when the total load is perfectly balanced. That is, let
SIZE(I, m) = max{rlfn > Pi> Pmax)> then OPTan > SIZE(I, m). The upper bound uses the fact that the
simple list scheduling algorithm attains a 2-ratio to SIZE(I, m) [10], therefore OPT\y < 2SIZE(I, m).
Now it is possible to perform a binary search to find OPT pp. Instead of checking whether OPTpy < d,
the algorithm checks whether DUALs(é) < m.
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upper = 2SIZE(I, m)
lower = SIZE(I, m)
repeat until lower = upper
d = (lower 4 upper) /2
call dual. (4)
if DUAL:(3) > m
lower < d
else
upper < d
d* < upper

return dualg(%)

Initially, OPTapy(I, m) < upper = OPTBp(ﬁ) < m. Since dual; is a relaxation of BP,
DUAL,(—L-) < OPTgp(—L.). This implies that DUAL( Ly < 4y, By the update rule, the above

upper upper
remains true during the execution of the loop. However,

upper’ —

upper

and thus (1 + &) upper remains an upper bound on OPT (1, m) during the search. Similarly, before the
loop OPT pp(I, m) > lower, which remains true since DUALS(WIW) > m, is an invariant of the loop,

1
DUAL, () < m= OPTym(I, m) < (1+ &)upper

and

1 1
OPTpgp > DUAL, > m = OPTym(I, m) > lower
lower lower

Thus, the solution value is bounded above by
(I4+e&)-d*=(1+¢) upper=(1+¢)-lower < (1+ &)OPTrpm(I, m)

In practice, assume that we stop the binary search after k iterations. At this time, it is guaranteed that
upper — lower < Z_kSIZE(I, m) < Z_kOPTMM( I, m), and the value of the solution is bounded above by
(14¢)-d* = (1+¢)-upper < (1+¢) - (lower+2~XOPTypi (I, m)) < (14¢€)(142"%)OPT (I, m).

By choosing k = O(log é), and taking in the scheme ¢’ = ¢/3, we obtain a (1 + ¢)-approximation. []

We now describe the dual, approximation scheme for BP. This scheme uses the rounding and grouping
technique.

Theorem 9.4
bs
There exists an O (n[s2 W) -time dual approximation scheme for BP.

Proof

Recall that, for a given ¢ > 0, the dual approximation scheme needs to find a packing of all items using
at most OPTgp bins, such that the total size of the items packed in each bin is at most 1 + ¢. The basic
idea is to omit first the “small” items and then round the sizes of the “big” items; this yields an instance
in which the number of distinct item sizes is fixed. We can now solve the problem exactly using dynamic
programming, and the solution induces a solution for the original instance, where each bin is filled up to
capacity 1 + ¢.

The first observation is that small items, whose sizes are less than €, can be initially omitted. The problem
will be solved for big items only and the small items will be added later on greedily, in the following manner:
if there is a bin filled with items of total size less than 1, small items are added to it; otherwise, a new bin is
opened. If no new bin is opened, then, clearly, no more than the optimum number of bins is used (as the
dual PTAS uses the minimal number of bins for the big items). If new bins were added, then all original
bins are filled to capacity at least 1, and all the new bins (except maybe the last one) are also filled to
capacity at least 1. This is optimal since OPT(I) > [y p;1 > DUAL(I). We conclude that, without loss
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of generality, all items are of size ¢ < p; < 1. Divide the range [&, 1] into intervals of size £2. This gives
S= (Elﬂ intervals. Denote by /; the endpoints of the intervals and let b; be the number of elements whose
sizes are in the interval (I;, l;41].

We now examine a packed bin. Since the minimal item size is ¢, the bin can contain at most Léj
items. Denote by X; the number of items in the bin whose sizes are in the interval (/;, [;11]. X; is in the
range [0, Léj ). Let the vector (Xj, ..., Xs) denote the configuration of the bin. The number of feasible
configurations is bounded above by [éj S. A configuration is feasible if and only if ZiS=1 X;l; < 1.

For any bin B whose packing forms a feasible configuration, the total size of the items in the bin is

bounded by

pi<y Xilign<)d Xi(li+eH)<14&) X; < 1+z-:2-l <l4e¢
jEZB j jEZB jti jGZB j\j jGZB j c
Therefore, it is sufficient to solve the instance with all item sizes rounded down to sizes in {I1, ..., Is}.
Finally, we describe a dynamic programming algorithm which solves the BP problem exactly when the
number of distinct item sizes is fixed. Let BINS(by, by, . . ., bs) be the minimal number of bins required
to pack by items of size I, b, items of size I, . . ., and bg items of size I5. Let C denote the set of all feasible
configurations. Observe that, by a standard dynamic programming recursion,

BINS(by, by, ..., bs) =1+ mingcBINS(b; — X1, b — X5, ..., bs — X5)

We minimize over all possible vectors (X, X3, ..., X;) that correspond to a feasible packing of the
“first” bin (counted by the constant 1), and the best way to pack the remaining items (this is the recursive
call). Thus, the dynamic programming procedure builds a table of size 15, where the calculation of each
entry requires O( L%J 5).

This yields a running time of

of 17) =o(21¥) (o) m

The technique of applying enumeration to a compacted instance through grouping/rounding has been
extensively used in PTASs for scheduling problems (see, e.g., Refs. [13-15]). A common approach for
compacting the instance is to reduce the input parameters to poly bounded, i.e., parameters whose values
can be bounded as function of the input size. This approach is used, e.g., in the PTAS of Chekuri and
Khanna for preemptive weighted flow time [4] (See the survey paper [9]).

9.2.3 More on Grouping and Shifting

In the following we outline two extensions of the techniques described in this section.

Randomized Grouping

In some cases, we need to define a partition of the input elements to groups (Ij, .. ., Ix), using for each
element x a parameter of the problem, g(x), such that the elements in two groups I; and I differ
in their g(x) value by roughly a factor of &, for some o > 1. When such partition is infeasible, we
can use randomization to achieve an expected separation between groups. For a parameter > 1, the
following randomized geometric grouping technique yields an expected separation that is logarithmic
in . This technique extends the deterministic geometric rounding technique described in Section 9.2.2.2.
Initially, pick a number r € [1, «] at random, by a probability distribution having the density function
f(y) = 1/yIna. An element x with the value g(x) belongs to the group I; if g(x) € [ra/, ra/*1]. Thus,
the index of the group to which x belongs, denoted by g(x), is a random variable which can take two
possible values: |log, q(x)] or [log, q(x)] + 1. It can be shown that for a fixed «, the number of distinct
partitions induced by the random choices of 7 is at most the number of elements in the input. This enables
to easily derandomize algorithms that use randomized geometric grouping. The technique was applied,
e.g., by Chekuri and Khanna [4] in a PTAS for preemptive weighted flow time.

© 2007 by Taylor & Francis Group, LLC



9-10 Handbook of Approximation Algorithms and Metaheuristics

Oblivious Shifting

While applying the standard shifting technique (as described in Section 9.2.2.2) requires knowing the initial
input parameters, it is possible to apply shifting also when not all values are known a-priori. In oblivious
shifting, the input size is initially known, and the scheme starts by defining the number of values in the
resulting instance, but the actual shifted values are revealed at a later stage, by optimizing on these values,
considering the constraints of the problem. The technique can be used for defining a “good” compacted
instance from a partial solution for the problem, which can then enable to obtain a complete solution for
the problem efficiently.

For example, a variant of the BP problem, in which items may be fragmented, is solved in Ref. [16] in
two steps. Given the input, we need to determine the set of items that will be fragmented, as well as the
fragment sizes in a feasible approximate solution. Since the possible number of fragment sizes is large, a
compact vector of fragments is generated, which contains a bounded number of unknown shifted fragment
sizes. The actual sizes of the shifted fragments are determined by solving a linear program (LP) which
attempts to find a feasible packing of these fragments. A detailed description is given in Ref. [16].

9.3 Rounding Linear Programs

In this section we discuss approximations obtained using linear programming relaxation of the integer
program formulation of a given optimization problem. We refer the reader to Chapters 6 and 7 of this
handbook for further background on linear programming and rounding linear programs. Most generally,
the technique is based on solving a linear programming relaxation of the problem, for which an exact
or approximate solution can be obtained efficiently. This solution is then rounded, thus yielding an
approximate integral solution. The (fractional) solution obtained for the LP needs to have some nice
properties that would allow rounding to be not too harmful, in terms of ¢, the accuracy parameter of the
scheme. One such property of an LP, which is commonly used, is the existence of a small basic solution. We
illustrate below the usage of this property, with examples from vector scheduling (VS) and covering integer
programs. An LP has a small basic solution, if there exists an optimal solution in which the number of
nonzero variables is small as a function of the input size and ¢. For such a solution, the error incurred
by rounding can be bounded, such that the resulting integral solution is within factor of 1 + ¢ from the
optimal. A natural example is the class of LPs in which either the number of variables or the number of
constraints is some fixed constant. For such programs, there exists a basic solution in which the number
of nonzero variables is fixed; however, depending on the problem, and in particular, on the value of an
optimal solution for the LP, a basic solution can be “small,” even if the number of nonzero variables is
relatively large, for example, 2 (gn), where 7 is the number of variables.

LP rounding can be combined with the techniques described in Section 9.2. In Section 9.3.1 we show
the usage of LP rounding for a given subset of input elements satisfying certain properties. In Section 9.3.2
we show how LP rounding can be combined with the selection of all possible (small) subsets.

9.3.1 Solving LP for a Subset of Elements

As mentioned earlier, in many problems, an approximation scheme can be obtained by partitioning a set
of input elements to subsets, and solving the problem for each subset separately. For some subsets, a good
solution can be obtained by rounding an LP relaxation of the problem.

In certain assignment problems, we can find an almost integral basic solution for an LP, for part of
the input, since the relation between the number of variables and nontrivial constraints in the linear
programming relaxation, combined with the assignment requirement of the problem, imply that only few
variables can get fractional values. This essential property is used, e.g., in the PTAS of Chekuri and Khanna
for the VS problem [17]. The VS problem is to schedule d-dimensional jobs on m identical machines, such
that the maximum load over all dimensions and over all machines is minimized. Formally, an instance I of
VS consists of njobs, /1, ..., Ju, where J j is associated with a rational d-dimensional vector (p}, RN p?),
and m machines. We need to assign the jobs to the machines, i.e., schedule a subset of the jobs, A;, on
machine 7, 1 < i < m, such that max; <j<,, max;<p<4 Z]jEAi p? is minimized.
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Note that in the special case where d = 1, we get the minimum makespan problem (see Section 9.2.2.2).
The PTAS in Ref. [17] for the VS problem, where d is fixed, applies a nontrivial generalization of the PTAS
of Hochbaum and Shmoys for the case d = 1 [1]. The scheme is based on a primal-dual approach, in
which the primal problem is VS and the dual problem is vector packing. Thus, the machines are viewed
as d-dimensional bins, and the schedule length as bin capacity (or height). W.l.o.g., we may assume that
the optimal schedule has the value 1. Given an € > 0 and a correct guess of the optimal value, we describe
below an algorithm A, that returns a schedule of height at most 1 + . Arriving at the correct guess involves
a binary search for the optimal value (which can be done in polynomial time; see below).

Let § = ¢/d be a parameter. The scheme starts with a preprocessing step, which enables to bound
the ratio of the largest coordinate to the smallest nonzero coordinate in any input vector. Specifically, let
I J; lloo= maxi<p<d p;’ be the £o norm of Jj, 1 < j < n, then, for any Jj,andany 1 < h < d, if
p? <31 Jj lloo> we set p;’ = 0. As shown in Ref. [17], any valid schedule for the resulting modified
instance, I’, yields a valid solution for the original instance, I, whose heightis at most (1+¢) times thatof I'.

We consider from now on only transformed instances. The scheme proceeds by partitioning the jobs to
the sets L (large) and S (small). The set L consists of all vectors whose £+, norm is greater than §, and S
contains the remaining vectors. The algorithm A, packs first the large jobs and then the small jobs. Note
that while in the case of d = 1 these packings are done independently, for d > 2, we need to consider the
interaction between these two sets. Similar to the scheme of Hochbaum and Shmoys [1], a valid schedule is
found for the jobs by guessing a configuration. In particular, let the d-tuple (ay, ..., a4) 0 < ap < [1/¢],
1 < h < d, denote a capacity configuration, that is, the way some bin is filled. Since d > 2 is a constant,
the possible number of capacity configurations, given by W = (1 + [1/£])4, is also a constant. Then, by
numbering the capacity configurations, we describe by a W-tuple M = (m;, . .., my ) the number of bins
having capacity configuration w, where 1 < w < W. The possible number of bin configurations is then
O(m"). This allows to guess a bin configuration which yields the desired (1 + &)-approximate solution
in polynomial time.

We say that a packing of vectors in a bin respectsa capacity configuration (ay, . . ., a4) if the height of the
packing is smaller than eay, for any 1 < h < d. Given a capacity configuration (4ay, .. ., a4), we define the
empty capacity configuration to be the d-tuple (ay, ..., ag), where a = [1/e]+ 1 —ap, for1 < h < d.

For a given bin configuration, M, we denote by M the bin configuration obtained by taking for each of
the bins in M the corresponding empty capacity configuration.

The scheme performs the following two steps for each possible bin configuration, M: (i) decides whether
vectors in L can be packed respecting M, and (ii) decides whether vectors in S can be packed respecting
M. Given that we have guessed the correct bin configuration M, both steps will succeed, and we get a
packing of height at most 1 + ¢.

We now describe how the scheme packs the large and the small vectors. The vectors in L are packed using
rounding and dynamic programming. In particular, since by definition, any entry in a vector in L has the
value 8% or greater, we use geometric rounding, that is, for each vector J ;, and any entry p;‘, 1<h<d,
p? is rounded down to the nearest value of the form 82(1 + ¢)f, for 0 < t < [% log1/87. Denote the
resulting set of vectors L', and the modified instance I’. The vectors in L’ can be partitioned into

d
2
q= (1+ fg10g1/81> 9.1)
classes. The proofs of the next lemmas are given in Ref. [17].

Lemma 9.1

Given a solution for I', replacing each vector in L’ by the corresponding vector in L results in a valid solution
for I whose height is at most 1 + ¢ times that of I'.

Lemma 9.2

Given a correct guess of a bin configuration M, there exists an algorithm which finds a packing of the vectors
in L’ that respects M, and whose running time is O((d/8)1mn1), where q is given in Eq. (9.1).
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The small vectors are packed using a linear programming relaxation and careful rounding. Renumber
the vectorsin Sby 1, ..., |S|. Let x;; € {0, 1} be an indicator variable for the assignment of the vector J ;
to machine i, 1 < j < n,1 < i < m. In the LP relaxation x;; > 0. We solve the following LP.

(L) > phxji<b], 1<i<m 1<h=<d 9.2)
JieS

SPixji=1, 1<j<]|S] (9.3)

xji =2 0, 1<j<n 1<i<m (9.4)

The constraints (9.2) guarantee that the packing does not exceed a given height bound in any dimension
(i.e., the available height after packing the large vectors). The constraints (9.3) reflect the requirement
that each vector is assigned to one machine. A key property of the LP, which enables to obtain an integral
solution that is close to the fractional, is given in the next result.

Lemma 9.3

In any basic feasible solution for LP, at most d - m vectors are assigned (fractionally) to more than one machine.

Proof

Recall that the number of nonzero variables, in any basic solution for an LP, is bounded by the number of
tight constraints in some optimal solution (since nontight constraints can be omitted). Since the number
of nontrivial constraints (i.e., constraints other than x;; > 0) is (| S| + d - m), it follows that the number
of strictly positive variables in any basic solution is at most (| S| 4 d - m). Since each vector is assigned to
at least one machine, the number of vectors which are fractionally assigned to more than one machine is
atmost d - m. |

The above type of argument was first made and exploited by Potts [18] in the context of parallel machine
scheduling. It was later applied to other problems, such as job shop scheduling (see, e.g., Ref. [19]).

Thus, we solve the above program and obtain a basic solution. Denote by S’ the set of vectors which are
assigned fractionally to two machines or more. Since | S'| < d - m, we can partition the set S’ to subsets of
size at most d each, and schedule the ith set to the ith machine. Since || J; [lco< § = ¢/d, forall J; € S,
the total height of the machines is violated at most by ¢ in any dimension. We can therefore summarize in
the following theorem.

Theorem 9.5

Forany e > 0, thereis a (1 + &)-approximation algorithm for VS whose running time is (nd/s)o(f), where
f = O((REEY)
. .

Proof

By the above discussion, given the correct guess of the optimal value, the scheme yields a schedule of value
(height) at most 1 + O(e) the optimal. We need to find a packing of the vectors in L and S, for each
bin configuration M. The running time for a single configuration is dominated by the packing of L, and
since the number of configurations is m" = O(n©1/¢ D ), we get the running time from Lemma 9.2. The
value of an optimal schedule can be guessed, within factor 1 + ¢, by obtaining first a (d 4 1)-approximate
solution. This can be done by applying an approximation algorithm for resource constrained scheduling
due to Ref. [20]. O

9.3.2 LP Rounding Combined with Enumeration

As described in Section 9.2.1, a common technique for obtaining a PTAS is to extend all possible solutions
for small subsets of elements. This technique can be combined with LP rounding as follows. Repeatedly
select a small subset of input elements, Sy C I, to be the basis for an approximate solution; solve an LP for
the remaining elements, I'\ S,. Select the subset Sg which gives the best solution. We exemplify the usage
of the technique to obtain a PTAS for covering integer programs with multiplicity constraints (CIP). In this
core problem, we must fill up an R-dimensional bin by selecting (with bounded number of repetitions)
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from a set of n R-dimensional items, such that the overall cost is minimized. Formally, let A = {a;;}
denote the sizes of the items in the R dimensions, 1 < j < R, 1 < i < n; the cost of item i is ¢; > 0. Let
x; denote the number of copies selected from item i, 1 < i < n. We seek an n-vector x of nonnegative
integers, which minimizes cTx, subject to the R constraints given by Ax > b, where b; > 0 is the size
of the bin in dimension j. In addition, we have multiplicity constraints for the vector x, given by x < d,
where d € {1, 2, ...}".

Covering integer programs form a large subclass of integer programs encompassing such NP-hard
problems as minimum knapsack and set cover. This implies the hardness of CIP in fixed dimension (i.e.,
where R is a fixed constant). For general instances, the hardness of approximation results for set cover
carry over to CIP. Comprehensive surveys of known results for CIP and CI Ps, where the multiplicity
constraints are omitted, are given in Refs. [21,22] (see also in Ref. [23]).

We describe below a PTAS for CIP in fixed dimension. The scheme presented in Ref. [21] builds on the
classic LP-based scheme due to Frieze and Clarke for the R-dimensional knapsack problem [24]. Consider
an instance of CIP in fixed dimension, R. We want to minimize ) ._, ¢;x; subject to the constraints
Z?Zlaijxi >bjforj=1,...,Randx; € {0, 1,...d;}fori=1,..., n

Assume that we know the optimal cost, C, for the CIP instance. The scheme of Ref. [21] uses a reduction
to the binary minimum R-dimensional multiple choice knapsack (R-MMCK) problem. For some R > 1, an
instance of binary R-MMCK consists of a single R-dimensional knapsack, of size b; in the jth dimension,
and m sets of items. Each item has an R-dimensional size and is associated with a cost. The goal is to pack
a subset of items, by selecting at most one item from each set, such that the total size of the packed items
in dimension j is atleast bj, 1 < j < R, and the overall cost is minimized.

Given the value of C, the parameter ¢, and a CIP instance with bounded multiplicity, the scheme
constructs an R-MMCK instance in which the knapsack capacities in the R dimensionsare b;,1 < j < R.
Also, there are 1 sets of items denoted by A’, 1 < i < n. Let K' be the integer value satisfying d;c; €
[kisC/ n (K + 1)eC/ n), then the number of items in Alis K' = min(K?, Ln/e]). The set Al represents
all possible values which x; can take in the solution for CIP. In particular, the kth item in A, denoted
(i, k), represents the assignment of a value in [0, d;] to x;, such that c(i, k), the total cost incurred
by item i is in [keC/n, (k + 1)eC/n). This total cost is rounded down to the nearest integral multiple
of eC/n; thus, c(i, k) = keC/n. The size of the item (i, k) in dimension j, 1 < j < R, is given by
s; (i, k)= ajj.

Given an instance of R-MMCK, guess a partial solution, given by a small size set, S; these items have the
maximal costs in some optimal solution. The size of S is a fixed constant, namely, |S| = h = LMJ.
The set S will be extended to an approximate solution, by solving an LP for the remaining items. The
value of h is chosen such that the resulting solution is guaranteed to be within 1 4+ ¢ from the optimal,
as computed below. Let E(S) be the subset of items with costs that are larger than the minimal cost of
any item in S, thatis, E(S) = {(i, k) & S| c(i, k) > cmin(S)}, where ¢in(S) = ming; gyes c(i, k). Select
all the items (i, k) € S, and eliminate from the instance all the items (i, k) € E(S) and the sets A’ from
which an item has been selected. In the next step we find an optimal basic solution for the following LP, in
which x;  is an indicator variable for the selection of the item (3, k).

n K!
(LP(S)) minimize Z in,k - c(i, k)

i=1 k=1
Ki

subject to in,k <1, fori=1,...,n,
k=1

n K!

ZZS;‘(L k)xix > bj forj=1,...,R

i=1 k=1
0<xir <1 for(i k) ¢ SUE(S)

xik=1 for(i, k) € S
xik =0 for (i, k) € E(S)
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Given an optimal fractional solution for the above program, we get an integral solution as follows. For
any i, 1 <i < n,let kpjax = kmax(i) be the maximal value of 1 < k < K' such that xi k > 0, then we set
Xi ko = 1 and, for any other item in A’, x; y = 0. Finally, we return to the CIP instance and assign to x;
the maximum value for which the total (rounded down) cost for item 7 is c(7, kjax)-

The next three lemmas show that the scheme yields a (1 4 ¢)-approximation to the optimal cost, and
that the resulting integral solution is feasible.

Lemma 9.4

If there exists an optimal (integral) solution for CIP with cost C, then the integral solution obtained from the
rounding for R-MMCK has the cost z < (1 + ¢)C.

Proof

Let x* be an optimal (fractional) solution for the linear program LP(S), and let S* be the corresponding
subset of items, that is, $* = {(i, k)| x; = 1}. If |S*| < h then we are done: in some iteration, the
scheme will try S*; otherwise, let S* ={(i1, k1), ..., (ig, kg¢)}, such that c(iy, ki) > - - - > c(ig, k), for
some ¢ > h. Let S} = {(i1, k1), ..., (ip, kn)}, and 0 = E?:l c(it, k¢). Then, for any item (i, k) ¢
(S U E(S}))), we have c(i, k) < o/ h. Let z*, 2 denote the optimal (integral) solution and the solution
output by the scheme for the R-MMCK instance, respectively. Denote by x? (Sp), x! (S}) the basic and
integral solutions of LP(S) as computed by the scheme, for the initial guess Sj.

By the above rounding method, for any 1 < i < n, the cost of the item selected from A’ is c(i, kpax)-
Let F denote the set of items for which the basic variable was a fraction, thatis, F = {(i, k)| xfk( S;’;) < 1},
and let § = Z(i,k)eF c(i, k).

Then, we get that

n K
2= cli, (ST

i=1 k=1

n K!
>N el bxl (S — 8

i=1 k=1

Recall that in any basic solution for an LP, the number of nonzero variables is bounded by the number
of tight constraints in some optimal solution. Assume that in the optimal (fractional) solution of LP(S})
there are L tight constraints, where 0 < L < n + R. Then in the basic solution XB(SZ), at most L
variables can be strictly positive. Thus, at least L — 2R variables get an integral value (i.e., “1”), and
|F| < 2R. Note that for any (i, k) € F, c(i, k) < o/ h,since F N (S} U E(S};)) = . Hence, we get that
72 r+ s >4 B> 2 0

The next two lemmas follow from the rounding method used by the scheme.
Lemma 9.5

The scheme yields a feasible solution for the CIP instance.
Lemma 9.6
The cost of the integral solution for the CIP instance is at most z + ¢ C.

Note that C can be guessed in polynomial time within factor (1 + ¢), using binary search over the range
(0, Z?:l d;c;). Thus, combining the above lemmas we get:

Theorem 9.6
There is a PTAS for CIP in fixed dimension.

Consider now the special case where the multiplicity constraints are omitted; that is, each variable x; can
get any nonnegative (integral) value. For this special case, we can use a linear programming formulation
in which the number of constraints is R, which is fixed. A PTAS for this problem can be derived from

© 2007 by Taylor & Francis Group, LLC



Polynomial-Time Approximation Schemes 9-15

the scheme of Chandra et al. [25] for integer multidimensional knapsack. Drawing from recent results for
CIPs, we describe below the PTAS in Ref. [21], which improves the running time in Ref. [25] by using a
fast approximation scheme for solving the LP.

A Scheme for CIP
The scheme, called below multidimensional cover with parameter ¢ (M DC,), proceeds in the following
steps:

(i) Foragivene € (0,1),leté =[R-((1/e) — 1)T.
(if) Renumber theitemsby 1, ..., n,suchthatc; > ¢y > -+ > ¢y
(iii) Denote by 2 the set of integer vectorsx = (xy, . .., x;) satisfying x; > 0, and Z?:] x; < §.Forany
vector x € 2: Let d > 1 be the maximal integer i for which x; # 0. Find a (1 4 €)-approximation
to the optimal (fractional) solution of the following LP.

n

(LP')  minimize Z Cizi

i=d+1
n n
subject to Z aijzi > bj — Zaijxi forj=1,..., R (9.5)
i=d+1 i=1

zi>0fori=d+1,...,n

The constraints (9.5) reflect the fact that we need to fill in each dimension j at least the capacity
bj — Z?zl ajjx;, once we obtained the vector x.

Let zj,d +1 < i < n,bea (1 + ¢)-approximate solution for LP’. We take [%;] as the integral
solution. Denote by Cppc(x) = Zf: a4 Cilzil, the value obtained from the rounded solution,
andlet c(x) = 1| cix;.

(iv) Select the vector x* for which Cpypc, (x*) = ming(c(x) + Cympc(x)).

We now show that MDC; is a PTAS for CIP. Let C, be the cost of an optimal integral solution for the
CIP instance.

Theorem 9.7

MDC; is a PTAS for CIP~, which satisfies the following. (i) If C, # 0, 0o then Cyvpc,/Co < 1 + €.
(ii) The running time of algorithm MDCy is O(nlR/e1. s% log C), where C = max) <<y, ¢; is the maximal
cost of any item, and its space complexity is O(n).

To prove the theorem, we need the next lemma.

Lemma 9.7

Foranye > 0, a (1 + &)-approximation to the optimal solution for LP' can be found in O(1/&* Rlog(C - R))
steps.

Proof

For a system of inequalities as given in LP’, there is a solution in which at most R variables get nonzero
values. This follows from the fact that the number of nontrivial constraints is R. Hence, it suffices to solve
LP' forthe (";d) possible subsets of R variables, outof(z441, . . ., z,). This can be done in polynomial time
since R is fixed. Now, for each subset of R variables, we have an instance of the fractional covering problem,
for which we can use a fast approximation scheme (see, e.g., in Ref. [26]) to obtain a (1 + ¢)-approximate

solution. O
Proof of Theorem 9.7

For showing (i), assume that the optimal (integral) solution for the CIP,, instance is obtained by the
vectory = (1, ..., ¥n). If Z?:l yi < 8 then Cypc, = C,, since in this case y is a valid solution, and

y € Q, therefore, in some iteration MDC; will examine y. Suppose that > "_, y; > 3, then we define the
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vector X = (y1, ..., Yd—1, Xd> 0, ..., 0), such that y; + - - - 4+ y4_1 + x4 = §. (Note that x; # 0.) Let

C,(x) = Zl”: d1 CiZi be the approximate fractional solution for LP’. We have that x € €, therefore,
Cmpc(x) — Co(x) < Reg (9.6)

Let C, (x) be the optimal fractional solution for LP’ with the vector x. Note that C,, the optimal (integral)
solution for CIP«, satisfies

Co > c(x) + Cp(x) (9.7)
since C,(x) is a lower bound for the cost incurred by the integral values y441, ..., y,. In addition,
c(x) + Cupc(x) = Cumpc, (9.8)
Hence, we get that
Co _  c+CX 1 Cmpc(x) — Co(x)
Cmpc, ~— ¢(x) + Cupc(x) c(x) + Cupc(x) — Co(x)

L _ Cmpc() = Co(x)(1 —¢)
c(x) + Cupc(x) — Co(x)

( Cupc(x) — Co(x) >
1—¢)(1-— =
c(x) + Cupc(x) — Co(x)

v

S (1—e) (1 _ Cwmpc(x) — Co()f) )
8ca + Cumpc(x) — Co(x)

The first inequality follows from Eq. (9.7) and Eq. (9.8), and the third inequality follows from the fact
that C,(x)(1 — &) < C,(x) < C,o(x). The last inequality follows from the fact that c(x) > 8c,.
Using Eq. (9.6), we get that CA/C[:;CS > (1—¢&)l — Rcg/(8cqg + Reg) = (1 —¢)2. Taking in the scheme
& = g/2, we get the statement in (7).

Next, we show (ii). Note that [Q2] = O(#®) since the number of possible choices of 1 nonnegative
integers, whose sum is at most 8 is bounded by (";5) . Now, given a vector x € €2, we can compute Cypc(X)

in O(nR) steps since at most R variables out of zj, 1, ..., z, can have nonzero values. Multiplying by
the complexity of the FPTAS for fractional covering, as given in Lemma 9.7, we get the statement of the
theorem. O

Enumeration is combined with LP rounding also in the PTAS of Caprara et al. [27] for the knapsack
problem with cardinalities constraints, and in a PTAS for the multiple knapsack problem due to Chekuri
and Khanna [28], among others. The scheme in Ref. [27] is based on the scheme of Frieze and Clarke [24],
with the running time improved by factor of #, the number of items. The scheme in Ref. [24] is also the
basis for PTASs for other variants of the knapsack problem. (A comprehensive survey is given in Ref. [29];
see also Ref. [30].)

9.4 Approximation Schemes for Geometric Problems

In this section we present approximation techniques that are specialized for geometric optimization
problems. For a complete description of these techniques we refer the reader to the survey by Arora [31],
Chapter 11 in Ref. [32], and Chapter 8 and Section 9.3.3 in Ref. [33]. A typical input for a geometric
problem is a set of elements in the space (such as points in the plane); the goal is to connect or pack these
elements in a way that minimizes the resources used (e.g., total length of connecting lines, total number
of covering objects).
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9.4.1 Randomized Dissection

We present below the techniques used in the PTAS of Arora [34] for the Euclidean Traveling Salesman
Problem (TSP). In the classical TSP, given are nonnegative edge weights for the complete graph K,,, and
the goal is to find a tour of minimum cost, where a tour refers to a cycle of length #. In other words, the
goal is to find an ordering of the nodes such that the total cost of the edges along the path visiting all
nodes according to this ordering is minimal. In general, TSP is NP-hard in the strong sense, and it cannot
be approximated within any multiplicative factor ¢ > 1, unless P = NP. The PTAS of Arora considers
the relaxed problem of Euclidean TSP. The input is a set of n points in 5%, and the edge weights are the
Euclidean (£,) distances between them.

The idea of the PTAS is to dissect the plane into squares, and to look (using dynamic programming)
for a tour that crosses the resulting grid lines only at specific points, denoted portals. The parameter & of
the PTAS determines the depth of the recursive dissection as well as the density of the portals. A smaller
¢ results in more portals and a finer dissection, which lead to a less restricted tour and a larger dynamic
programming instance. Randomization is used to determine an initial shift of the grid lines.

A dissection of a square is a recursive partitioning into squares. It can be viewed as a tree of squares
whose root is the square we started with. Each square in the tree is partitioned into four equal squares,
which are its children. The leaves are squares of a small sidelength—determined by the parameter ¢ of the
PTAS.

The location of the grid lines is determined randomly as follows. Given a set of 1 points in %2, enclose
the points in a minimum bounding square. Let £ be the side of this square. Let p € %2 be the lower left
endpoint of the bounding box. Enclose the bounding box inside a larger square, denoted the enclosing box
of sidelength L = 2¢, and position the enclosing box such that p has distance a from the left edge and b
from the lower edge, where a, b < £ are chosen randomly. The randomized dissection is the dissection
of this enclosing box. Note that the randomness is used only to determine the placement of the enclosing
box (and its accompanying dissection).

We now describe the PTAS in Ref. [34] for the Euclidean TSP, which uses the above randomized
dissection. Formally, for every & > 0, this PTAS finds a (1 + ¢)-approximation to Euclidean TSP.

First, perform randomized dissection to the bounding box of the # points. Recall that L is the side of
the enclosing box. The recursive procedure of subdividing the squares stops when the sidelengths of the
squares becomes less than Le/8n, or when each square at the last level contains at most one point. We may
assume (by scaling) that L is a power of 2 and that the sides of squares at the last level are unit length. Thus,
at most log L iterations are required, and L < 8n/e. When there is more than one point in a unit square,
consolidate them into one new “bigger” point. Any tour for the resulting set of points can be augmented to
a tour for the original set of points with an increase in length bounded by /2nLe /81, which is negligible,
since L < OPT/2. Henceforth, we shall assume that there is at most one point per unit square.

The level of a square in the dissection is its depth in the recursive dissection tree; the root square has
level 0. We also assign a level from 0 to log(L — 1) to each horizontal and vertical grid line that participates
in the dissection. The horizontal (resp., vertical) line that divides the enclosing box into two has level 0.
Similarly, the 27 horizontal and 2/ vertical lines that divide the level i squares into level i + 1 squares
have level i. The following property of a randomized dissection is used: Any fixed vertical grid line that
intersects the bounding box of the instance has probability 27! = ¥ to be a line at level i.

Next, the location of the portals is determined. Let m = % log L. The parameter mis the portal parameter
that determines the density of the points the path can pass through. A level i line has 2/*!m equally spaced
portals. In addition, we also refer to the corners of each square as a portal. Since a level i line has 2/*!
level i + 1 squares touching it, it follows that each side of the square has at most m + 2 portals (m regular
portals plus the 2 corners), and a total of at most 4m + 4 portals on its boundary. A portal-respecting tour
is one that, whenever it crosses a grid line, does so at a portal.

Finally, dynamic programming is used to find the optimum portal-respecting tour in time 2°"™ L log L.
Since m = O(log n/¢), we get a total running time of #°1/#), The dynamic programming as well as the
complete analysis of bounding the PTAS error and the time complexity are given in Ref. [31].
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Note that since the PTAS uses randomization, the error of the PTAS is a random variable. Formally,
let OPT denote the cost of the optimum salesman tour and OPT,, p, ,, denote the cost of the best portal-
respecting tour when the portal parameter is # and the random shifts are a, b.

Theorem 9.8

The expectation (over the choices of a, b) of OPTg4,p, m — OPT is at most 21og L/ mOPT, where L is the
sidelength of the enclosing box.

As mentioned in the survey of Arora [31], this method of dissection can be used to develop PTASs for
other geometric optimization problems such as minimum Steiner tree, facility location with capacities
and demands, and Euclidean min-cost k-connected subgraph.

Another class of geometric optimization problem is the class of clustering problems, such as metric
max-cutand k-median. Inrecent research on clustering problems, a core idea in the design of approximation
schemesis to use random sampling of data points from a biased distribution, which depends on the pairwise
distances. This technique is used, e.g., in the PTAS of Fernandez de la Vega and Kenyon for metric max-cut
[35], and in the work of Indyk on metric 2-clustering [36]. For more details on the technique and its
applications, we refer the reader to Ref. [37].

9.4.2 Shifted Plane Partitions

The shifting technique that is applied to geometric problems is based on selecting the best solution over
a (polynomial size) set of feasible solutions. Each candidate feasible solution is obtained using a divide-
and-conquer approach, in which the plane is partitioned into disjoint areas (strips). The technique can be
applied to geometric problems such as square packing or covering with disks, which arise in Very Large
Scale Integration (VLSI) design, image processing, and many other important areas. A common goal in
these problems is to cover or pack elements (e.g., points in the plane) into a minimal number of objects
(e.g., squares of given size).

Recall that each candidate solution is obtained by using divide-and-conquer approach, in which the
plane is partitioned into strips. A solution for the original problem is formed by taking the union of the
solutions for these strips. Consecutive solutions refer to consecutive partitions of the plane into strips,
which differ from each other by shifting the partitioning bars, using the shifting parameter. The smaller the
shifting parameter, the larger the number of candidate solutions to be considered, and the better resulting
approximation.

We illustrate the shifting technique for the problem of covering n points in the two-dimensional plane.
The complete analysis is given in Refs. [33,38]. Assume that the # points are enclosed in an area I. The goal
is to cover these points with a minimal number of disks of diameter D. Denote by £ the shifting parameter.
The area I is divided into vertical strips of width D. Each set of £ consecutive strips are grouped together
to form strips of width £ D. Note that there are £ different ways to determine this grouping—and they can
derive from each other by shifting the partitioning bars to the right over distance D. Denote the £ distinct
partitions obtained this way by Si, S, ..., Se.

Let A be an algorithm to solve the covering problem on strips of width at most £ D. The algorithm A
can be used to generate a solution for a given partition S;. We apply A to each strip in S; and then union
the sets of disks used. The shift algorithm, s 4, defined for a given A, uses A to solve the problem for the ¢
possible partitions and selects the solution that requires minimum number of disks.

The following lemma gives the performance ratio of s 4 (denoted r;,) as function of £ and the perfor-
mance ratio of A (denoted r4).

Tsy =TA <1 + 1)
4 4

The algorithm A may itself be derived from an application of the shifting technique. In our example, to

Lemma 9.8

solve the covering problem on a strip of width £ D, the strip is cut into squares of size £ D x £ D, for which
an optimal solution can be found by exhaustive search.
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We note that the above shifting technique can be used to derive PTASs for several other problems, includ-
ing minimum vertex cover and maximum independent set in planar graphs [39]. The idea is that a planar
graph can be decomposed into components of bounded outer-planarity. The solution for each component
can be found using dynamic programming. The shifting idea is to remove one “layer” from the graph in
each iteration. This removal guarantees that the number of cross-cluster edges is small, so by considering
the union of the local cluster solutions one can get a good approximation for the original problem.

9.5 Concluding Remarks

There are many other interesting applications of the techniques described in this chapter. We mention
a few of them. Golubchik et al. [49] apply enumeration to a structured instance in solving the problem
of data placement on disks (see also Ref. [40]). The technique of extending solutions for small subsets is
applied by Khuller et al. [41] to the problem of broadcasting in heterogeneous networks. Kenyon et al. [42]
used a nontrivial combination of grouping with periodic scheduling to obtain a PTAS for data broadcast.

As mentioned in Section 9.4, some techniques are specialized for certain types of problems. For graph
problems, some PTASs exploit the density of the input graph (see, e.g., Ref. [43]). There are PTASs which
build on the properties of planar graphs (see, e.g., Refs. [44,45]).

Finally, we have mentioned in Sections 9.2.3 and 9.4 some techniques used in randomized approximation
schemes. A detailed exposition of randomized approximation schemes for counting problems is given in
Chapter 11 in Ref. [46] (see also Chapter 12 of this handbook). Benczir and Karger presented in Ref. [47]
randomized approximation schemes for cuts and flows in capacitated graphs. Efraimidis and Spirakis
used in Ref. [48] the technique of filtered randomized rounding in developing randomized approximation
schemes for scheduling unrelated parallel machines.
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10.1 Introduction

This chapter reviews three general methods—rounding, interval partitioning, and separation—proposed
by Sahni [1] to transform pseudopolynomial-time algorithms into fully polynomial-time approximation
schemes. The three methods, which generally apply to dynamic-programming and enumeration-type
pseudopolynomial-time algorithms, are illustrated using the 0/1-knapsack and multiconstrained shortest
paths problems. Both of these problems are known to be NP-hard and both are solvable in pseudopoly-
nomial time using either dynamic programming or enumeration.

10.2 Rounding

The rounding method of Ref. [1] is also known by the names digit truncation and scaling. The key idea
in the rounding method is to reduce the magnitude of some or all of the numbers in an instance so that
the pseudopolynomial-time algorithm actually runs in polynomial time on the reduced instance. The
amount by which each number is reduced is such that the optimal solution for the reduced instance is an
€-approximate solution for the original instance.

Rounding up, rounding down, and random rounding are three possible strategies to construct the
reduced instance. In each, we employ a rounding factor §(#, €), where n is a measure of the problem size.
For convenience, we abbreviate §(#, €) as §. When rounding up, each number « (for convenience, we
assume that all numbers in all instances are positive) that is to be rounded is replaced by [«/87] and when
rounding down, « is replaced by |«/8]. In random rounding, we round up with probability equal to the
fractional part of «/8 and round down with probability equal to 1—the fractional part of «/§. So, for
example, if& = 7and § = 4, « is replaced by (or reduced to) 2 when rounding up and by 1 when rounding
down. In random rounding, « is replaced by 2 with probability 0.75 and by 1 with probability 0.25.
Random rounding is typically implemented using a uniform random number generator that generates
real numbers in the range [0, 1). The decision on whether to round up or down is made by generating

10-1
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a random number. If the generated number is < the fractional part of /8, we round up; otherwise, we
round down.!

As an example of the application of rounding, consider the 0/1-knapsack problem, which is known to
be NP-hard [3]. In the 0/1-knapsack problem, we wish to pack a knapsack (bag or sack) with a capacity
of c. From a list of n items/objects, we must select the items that are to be packed into the knapsack. Each
item 7 has a weight w; and a profit p;. We assume that all weights and profits are positive integers. In
a feasible knapsack packing, the sum of the weights of the packed objects does not exceed the knapsack
capacity ¢, which also is assumed to be a positive integer. Since an item with weight more than ¢ cannot
be in any feasible packing, we may assume that w; < ¢ for all i. An optimal packing is a feasible packing
with maximum profit. The problem formulation is

n
maximize g pixi

i=1
subject to the constraints

n
Zwixifc and x; € {0,1}, 1<i<n
i=1

In this formulation we are to find the values of x;. When x; = 1, it means that object i is packed into
the knapsack, and x; = 0 means that object i is not packed.

For the instance n = 5, (p1, ..., p5) = (wi,..., w5) = {1,2,4, 8,16} and ¢ = 27, the optimal
solutionis X = (x1, x2, ..., x5) = (1, 1, 0, 1, 1), which corresponds to packing items 1, 2, 4, and 5 into the
knapsack. This solution uses all of the knapsack capacity and yields a profit of 27. With each feasible packing,
we associate a profit and weight pair (P, W), where P is the sum of the profits of the items in the packing
and W < ¢ the sum of their weights. For example, a packing that generates a profit of 15 and uses 20 units of
capacity is represented by the pair (15, 20). P is the profit or value of the packing (P, W) and W its weight.

Several of the standard algorithm design methods of Ref. [3]—for example backtracking, branch and
bound, dynamic programming, and divide and conquer—may be applied to the knapsack problem.
Backtracking and branch and bound result in algorithms whose complexity is O(2") and dynamic
programming results in a pseudopolynomial-time algorithm whose complexity is O(min{2", nF, nc}),
where F is the value of the optimal solution [4]. A pseudopolynomial-time algorithm with this same
complexity also may be arrived at using an enumerative approach. By coupling a divide and conquer
step to this enumerative algorithm, we obtain a pseudopolynomial-time algorithm whose complexity is
O(min{zn/z, nE, nc}) [4].

Let (P1, W1) and (P2, W2) represent two different feasible packings of items selected from the first i
items. Tuple (P1, W1) dominates( P2, W2)iffeither P1 > P2and W1 < W2or P1 > P2and W1 = W2.
The enumerative algorithm for the 0/1-knapsack problem constructs a list of (or enumerates) the profit
and weight pairs that correspond to all possible nondominated feasible packings. This list is constructed
incrementally. Let S; be the list of nondominated profit and weight pairs for all possible feasible packings
chosen from the first i items. We start with the list Sy = {(0, 0)}, and construct Si, Sy, ..., S, in this
order. Note that each S;, i > 0, may be constructed from S;_; using the equality

Si=Si1®{(a+ pi, b+wi)l(a,b) € Si—1 and b+ w; < ¢} (10.1)

where @ denotes a union in which dominated pairs are eliminated. Eq. (10.1) simply states that the
nondominated pairs obtainable from the first i items are a subset of those obtainable from the first i — 1

There is a similar sounding, but quite different, method for approximation algorithms—randomized rounding
—due to Raghavan and Thompson [2]. In randomized rounding, we start with an integer linear program formulation;
relax the integer constraints to real number constraints; solve the resulting linear program; transform the noninteger
values in the obtained solution to the linear program to integers using the random rounding strategy stated above.
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items (these have x; = 0) plus those obtainable from feasible packings of the first i items that necessarily
include w; (i.e., x; = 1). The subset is identified by eliminating dominated pairs. Trying Eq. (10.1) out in
the above n = 5 instance, we get (since P = W for every pair (P, W) in this example, we represent each
pair by a single number)

So = {0}

S = {0} & {1} = {0, 1}

S ={0,1}® {2,3} = {0, 1, 2, 3}
S3=1{0,1,2,3}®{4,5,6,7} ={0, 1,2, 3,4, 5,6, 7}
S4=1{0,...,7}®1{8,...,15} ={0, ..., 15}
Ss=1{0,...,15} @ {16,...,27} = {0, ..., 27}

For thecase n =4, (p1, ..., pa) = (w1, ..., wa) ={1, 1, 8, 8}, and ¢ = 17, we get

So = {0}

S ={0} @ {1} ={0, 1}

S ={0,1}&({1,2} ={0, 1,2}

S$3=1{0,1,2}®{8,9,10} = {0, 1, 2, 8, 9, 10}

S¢=1{0,1,2,8,9, 10} ® (8,9, 10, 16, 17} = {0, 1, 2, 8, 9, 10, 16, 17}

The solution to the knapsack instance may be determined from the S;s using the procedure of
Figure 10.1.

For our n = 5 instance with ¢ = 27, (P, W) is determined to be (27, 27) in Step 1. In Step 2, x5 is set
to 1as (27,27) ¢ Sy and P and W are updated to 11. Then x4 is set to 1 as (11, 11) & Sz and P and W
are updated to 3. Next, x3 is set to 0 as 3 € Sy. x; and x; are set to 1 in the remaining two iterations of the
for loop.

The S;s may be implemented as sorted linear lists (note that the dominance rule ensures that if S; is in
ascending order of P, §; is also in ascending order of W; also, no two pairs of S; may have the same P or
the same W value). The set S; may be computed from S;_; in O(|S;_;|) time using Eq. (10.1). The time
to compute all ;s is, therefore, > °; _; ., |Si—1]. (Note that in S, we need to only compute the pair with
maximum profit. When the S;s are in ascending order of profit, this maximum pair may be determined
easily.) From Eq. (10.1) it follows that |S;| < 2% (this also follows from the observation that there are 2
different subsets of 7 items). Also, since the w;sand p;s are positive integers and S; has only nondominated
pairs, | S;| < min{F, ¢} + 1. Hence, the time needed to generate the S;s is O(min{2", nF, nc}). If the
sorted linear lists are array lists, each S; may be searched for (P, W) in O(log|S;|) time. In this case the
complexity of the procedure to determine the x;s from the S;sis O(n*min{n, log F, log c}). This may be
reduced to O(n) by retaining with each (P, W) € S; a pointer to the pair (P, W) or (P — p;, W— w;) that
isin S;_; (note that at least one of these pairs must be in S;_;). These pointers are added to the members

Step 1: [Determine solution value]
Determine the pair (P, W) € S,, with maximum profit value. The value of an optimal packing is P.

Step 2: [Determine 8|
for (i=mn;¢>0;i— —)
if(PW) €S ) {m=1P-=p; W—=uwy;}
else z; = 0;

FIGURE 10.1 Procedure to determine x;s from the S;s.
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of §; at the time S; is constructed using Eq. (10.1). The inclusion of these pointers does not change the
asymptotic complexity of the procedure to compute the S;s.

The enumerative pseudopolynomial-time algorithm just described for the knapsack problem may be
transformed into a fully polynomial-time approximation scheme by suitably rounding down the p;s.
Suppose we round using the rounding factor § to obtain the reduced instance with p; = [ p;/§] and
w; = wi, 1 < i < n,and ¢’ = c. The time to solve the reduced instance is O(nF’), where F’ is
the value of the optimal solution to the reduced problem (we assume the reduction is sufficient so that
nF’ < min{2", nc'}). Notice that the original and reduced instances have the same feasible packings; only
the profit associated with each feasible packing is different. A feasible packing has a smaller profit in the
reduced instance than in the original instance.

Consider any feasible packing (x1, . . ., x,). Since p; %8 < p; < (p; +1) %,

8 * Z p;xi < Z pixi <4 % Z(p: + 1)x; (10.2)
i i i
So,

SE' < F <8(F' +n) (10.3)

Suppose we use the just described rounding strategy on our n =4 examplewith (p1, ..., ps)=(wy, ...,
wq)=(1,1,8,8), c=17and § = 3. We obtain (p}, ..., pj) =(0,0, 2, 2), (w}, ..., wy)=(1, 1, 8, 8)and
¢ = 17.0ne of the optimal solutions for the reduced instance has (x;, x2, x3, x4) = (0, 0, 1, 1) and the value
of this solution is p} + pj = 4. In the original instance, the solution (0, 0, 1, 1) has value 16. Note that many
different knapsack instances round to the same reduced instance. For example, (p1, ..., ps) = (2, 1,6,7),
(w1, ..., wq) =(1,1,8,8)and ¢ = 17 (using § = 3). The value of the solution (0, 0, 1, 1), for this original
instance, is 13. From Eq. (10.2), regardless of the original instance, the value of (0, 0, 1, 1) must be at least
8% pixi = 12 and cannot equal or exceed § % > (p; + 1)x; = 18.

To ensure that every optimal solution to the reduced instance also defines an e-approximate solution
for the original instance, we must select § carefully. Let F be the value, in the original instance, of the
optimal solution for the reduced instance. From Eq. (10.2) and Eq. (10.3), we obtain

F>68F >F—ns

So,(F—F) < nsand (F — F) /F < n8/ F.To gurantee that the optimal solution for the reduced instance
is an e-approximate solution for the original instance, we require n8/F < € or § < € F/n. Since the
reduced instance has smaller p; values and hence smaller complexity when § is larger, we would like to use

§=¢€F/n

With this choiceof 8, F’ < F /8 = n/e (Eq.[10.3]).50,|S;| < n/e+1and the complexity of the enumer-
ative algorithm becomes O(n?/¢). In other words, the enumerative algorithm becomes a fully polynomial-
time approximation scheme for the 0/1-knapsack problem! Unfortunately, this choice of § is problematic
as we cannot easily compute F. Since any § < € F/n guarantees e-approximate solutions, we may use

8 =€LB/n

where LB < F is a lower bound on the value of the optimal solution. Let Pmax = max;{ p;} be the max-
imum profit value. Since w; < ¢ for all i (by assumption), Pmax < F, and LB = Pmax is a lower bound
on F. So, using § = € Pmax/ n guarantees e-approximate solutions. Since F < nPmax, ' < nPmax/$§ =
#n? /e and the complexity of the enumerative algorithm becomes O(1n’/¢).

An alternative way to determine a lower bound for F is to sort the knapsack items into nondecreasing
order of profit denisty p;/w; and pack the items into the knapsack in density order upto and including the
first item that causes the knapsack to be either filled or overfilled. Note that if there is no such first item,
all items can be packed into the knapsack and this packing represents the optimal solution. Also note that

if the stated packing strategy fills the knapsack completely, it represents an optimal packing. So, assume
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that the capacity is exceeded. Let F be the value of this packing that overfills the knapsack. In Ref. [5], it
is shown that F/2 < F < F. So, using § = € F/(2n) as the rounding factor, guarantees €-approximate
solutions. Since F < F, F/ < F /8 and, for the reduced instance, |S;| < F/8 + 1 = 2n/e + 1. For the
reduced instance, the complexity of the enumerative algorithm is, therefore, O(n?/€) and we get a fully
polynomial-time e -approximation scheme of this complexity.

10.3 Interval Partitioning

Unlike rounding, which reduces an instance to one that is easier to solve using a known pseudopolynomial-
time algorithm, in interval partitioning we work with the nonreduced (original) instance. In interval
partitioning, we partition the solution space into buckets or intervals and for each interval, we retain only
one of the (feasible) solutions (or partial solutions) that fall into it.

For the 0/1-knapsack problem, for example, each pair (P, W) € S;,i < n, represents a feasible solution.
We may partition the solution space based on the profit value of the pair (P, W). If we partition using an
interval size of §, then the intervals are [0, §), [5, 258), [25, 38), and so on. When two or more solutions
fall into the same interval, all but one of them is eliminated. Specifically, we eliminate all but the one with
least weight. Let S/ be the list of (P, W) pairs for all possible feasible packings chosen from the first i items
subject to the interval partitioning constraint that S/ has at most 1 (P, W) pair in each interval. We begin
with §j = {(0, 0)} and compute S from S/_, using the equation

S,( = 51{71 Of{(a+ pi, b+ wi)|(a, b) € 8271 and b+ w; <} (10.4)

where © denotes a union in which only the least weight pair from each interval is retained. The maximum
profit pair in S}, is used as the approximate optimal solution. The x;s for this pair are obtained using the
procedure of Figure 10.1 with §; replaced by S..

Consider the 0/1-knapsack instance n = 5, (p1, ..., ps) = (wi,..., ws) = {1,2,4, 8,16}, and
¢ = 27, which was first considered in Section 10.2. Suppose we work with an interval size § = 2. The
intervals are [0, 2), [2, 4), [4, 6), and so on. The Slfs are

So = {0}
S ={0} o {1} = {0}
S, ={0}o{2)=1{0,2}
S5 =1{0,2} © {4, 6} = {0, 2, 4, 6}
Szll =1{0,2,4,6} ®{8,10, 12, 14} = {0, 2, 4, 6, 8, 10, 12, 14}
St =1{0,2,4,...,14} © {16, 18,20, ..., 26} = {0, 2, 4, ..., 26}
The maximum profit pair in Sy is (26, 26). For this instance, therefore, the best solution found using
interval partitioning with § = 2 has a profit 1 less than that of the optimal.
Consider the instance n = 6, (p1, ..., ps) = (W1, ..., we) = (1,2,5,6,8,9), and ¢ = 27. Suppose
we use § = 3. The intervals are [0, 3), [3, 6), [6,9), and so on. The Slfs are
So = {0}
§; = {0} © {1} = {0}
S$; = {0} © {2} = {0}
S; = {0} © {5} = {0, 5}
Sy =1{0,5 0 {6, 11} = {0, 5,6, 11}
St =1{0,5,6,11} © {8, 13, 14, 19} = {0, 5, 6, 11, 13, 19}
St =1{0,5,6, 11, 13,19} O {9, 14, 15, 20, 22} = {0, 5, 6, 9, 13, 15, 19, 22}
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The profit of the best solution found for this instance is 22; the profit for the optimal solution is 27. Note
that if ¢ were 28 instead of 27,

St =1{0,5,6,11,13, 19} © {9, 14, 15, 20, 22, 28} = {0, 5, 6,9, 13, 15, 19, 22, 28}

and we would have found the optimal solution.

Let F be the value of the solution found by interval partitioning. It is easy to see that F < F + n8. So,
(F — F)/F < n8/F.To guarantee that the solution found using interval partitioning is an €-approximate
solution, we require nd/ F < e. For this, we must choose § so that 8§ < € F /n. Since F is hard to compute,
we opt to select § as in Section 10.2. Both the choices § = € Pmax/n and § = ¢ F /(2n) guarantee that
the solution generated using interval partitioning is €-approximate. When § = € Pmax/n, the number
of intervals is F/8 + 1 < nPmax/8 + 1 = n*>/e + 1 and the complexity of the (modified) enumerative
algorithm is O(n?/€). When § = € F/(2n), the number of intervalsis F/§ +1 < F/§ +1 = 2n/e + 1
and the complexity is O(n?/¢).

10.4 Separation

An examination of our n = 6 example of Section 10.3 reveals that interval partitioning misses some
opportunities to reduce the size of an S/ while yet preserving the relationship F < E 4 n8, which is
necessary to ensure an e-approximate solution. For example, in S we have two solutions, one with value 5
and the other with value 6. Although these are within § of each other, they fall into two different intervals
and so neither is eliminated. In the separation method, we ensure that the value of retained solutions
differs by more than §.

For the 0/1-knapsack problem, let S/ be the list of (P, W) pairs for all possible feasible packings chosen
from the first i items subject to the separation constraint that no two pairs of S; have value within § of
each other. We begin with Sj = {(0, 0)} and compute S/ from S;” | using the equation

S/ =S/, ®{(a+ pi, b+wil(a, b) € S/, and b+w; <c} (10.5)
where ® denotes a union that implements the separation constraint. More precisely, suppose that
T=S8",®{(a+ pi,b+wl(a,b) e S, and b+ w; <c}
Let (P;, W;), 1 <i < |T| be the pairs in T in ascending order of profit (and hence of weight). The set Sf’

is obtained from T using the code of Figure 10.2.

The maximum profit pair in S, is used as the approximate optimal solution.

Consider the n = 6 example of Section 10.3. S/ = S/, 0 < i < 3. The remaining S/'s are
S¢ = {0}
S/ = {0} ® {1} = {0}
S, = {0} ® {2} = {0}
§§ = {0} ® {5} = {0, 5}
Sy =1{0,5}® {6, 11} = {0, 5, 11}
S =1{0,5,11} ® {8, 13, 19} = {0, 5, 11, 19}
S¢ ={0,5,11, 19} ® {9, 14, 20} = {0, 5, 9, 14, 19}

Sit = AP, W)k
Pprev = Py

for (int i =1;¢ <= |T}; i+ +)

if (P1 > Pprm) + 6) {S;, = Sv” U {(Pz W7)}7 Pprm) = Pza}

FIGURE 10.2 Computing S/ from T.
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The profit of the best solution found for this instance is 19; the profit for the optimal solution is 27. We
could have produced a slightly better solution by noting that we can replace the computation of S, by a
step in which we determine the maximum profit pair in

Sh_i®{(a+ pi,b+wi)l(a,b) € S,_; and b+ w; <c}

For our example, this pair has value 20. )

Let F be the value of the solution found by the separation method. It is easy to see that F < F + 4.
So, § < €F/n ensures that an e-approximate solution is found. As was the case in Section 10.3, for
the knapsack problem, the choices § = €Pmax/n and € F /(2n) guarantee that the solution generated
using separation is €-approximate. When § = € Pmax/ n, the complexity of the (modified) enumerative
algorithm is O(#3/€) and when § = € F/(2n), the complexity is O(n?/e).

Intuitively, we may expect that using the same § value, | S| < |S;| for all i. Although this relationship
holds for the n = 6 example considered above, the relationship does not always hold. For example, consider
the knapsack instance n = 5, (p1, ..., ps) = (w1, ..., ws) = (30, 10, 51, 51, 51), ¢ = 186, and § = 20.
Using interval partitioning, we get

So = {0}
S; = {0} © {30} = {0, 30}
S; = {0, 30} ® {10, 40} = {0, 30, 40}
S, = {0, 30, 40} © {51, 81, 91} = {0, 30, 40, 81}
Sfl = {0, 30, 40, 81} © {51, 81, 91, 132} = {0, 30, 40, 81, 132}
SL = {0, 30, 40, 81, 132} © {51, 81, 91, 132, 183} = {0, 30, 40, 81, 132, 183}
and using separation, we get
S¢ = {0}
S/ = {0} ® {30} = {0, 30}
S§ = {0, 30} ® {10, 40} = {0, 30}
Sy ={0,30} ® {51, 81} = {0, 30, 51, 81}
Sy = {0, 30, 51, 81} ® {51, 81, 102, 132} = {0, 30, 51, 81, 102, 132}
SY = {0, 30, 51, 81, 102, 132} ® {51, 81, 102, 132, 153, 183} = {0, 30, 51, 81, 102, 132, 153, 183}

10.5 0/1-Knapsack Problem Revisited

In Sections 10.2-10.4, we saw how to apply the generic rounding, interval partitioning, and separation
methods to the 0/1-knapsack problem and obtain an €-approximate fully polynomial-time approximation
scheme for this problem. The complexity of the approximation scheme is either O(n°/€) or O(n?/e),
depending on the choice of §. By tailoring the approximation method to the application, we can, at times,
reduce the complexity of the approximation scheme. Ibarra and Kim [5], for example, combine rounding
and interval partitioning to arrive at an O(nlogn — (loge)/e*) e-approximate fully polynomial-time
approximation scheme for the 0/1-knapsack problem. Figure 10.3 gives their algorithm. The correctness
proof and complexity analysis can be found in Ref. [5].

10.6 Multiconstrained Shortest Paths

10.6.1 Notation

Assume that a communication network is represented by a weighted directed graph G = (V, E), where V/
is the set of network vertices or nodes and E the set of network links or edges. We use n and e, respectively,
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Step 1: [Determine ¢
Sort the n items into nondecreasing order of profit density p;/w;.
Let Fbe as in Section ??.
Let § = €2F/9.

Step 2: [Partition Items]
Let small be the items with p; < eF/3.
Let big be the remaining items.

Step 3: [Rounding]
Let big’ be obtained from big by rounding down the profits using the rounding factor 4.
For each rounded-down profit p, retain up to 9/ (62])) items of least weight.
Let big” be the resulting item set.
Let m be the number of items in big”.

Step 4: [Interval Partitioning]
Use interval partitioning on big” and determine SJ,.

Step 5: [Augmentation]
Augment each (P, W) € S}, by adding in items from small in order of nondecreasing density so as not
to exceed the capacity of the knapsack.
Select the augmentation that yields maximum profit as the approximate solution.

FIGURE 10.3 Fully polynomial-time €-approximation scheme of Ref. [5].

to denote the number of nodes and links in the network, that is, n = | V| and e = | E|. We assume that
each link (u, v) of the network has k >1 nonnegative weights w;(u, v), 1 < i < k. These weights, for
example, may represent link cost, delay, and delay-jitter. The notation w(u, v) is used to denote the vector
(w1(u, v), ..., wr(u, v)), which gives the k weights associated with the edge (u, v). Let p be a path in the
network. We use w;( p) to denote the sum of the w;s of the edges on the path p.

wi(p) =Y wilu,v)
(w,v)ep
By definition, w(p) = (w1(p), ..., wi(p)).
In the multiconstrained path (k-MCP) problem, we are to find a path p from a specified source vertex s
to a specified destination vertex d such that

wi(p) <c¢j, 1<i<k (10.6)

The c¢;s are specified QoS (quality of service) constraints. Note that Eq. (10.6) is equivalent to w(p) < ¢,
where ¢ = (cy, ..., ck). A feasible path is any path that satisfies Eq. (10.6).

The restricted shortest path (k-RSP) problem is a related optimization problem in which we are to find
a path p from s to d that minimizes w1 ( p) subject to

wi(p) <ci, 2<i<k

An algorithm is an €-approximation algorithm (or simply, an approximation algorithm) for k-MCP iff
the algorithm generates a source to destination path p that satisfies Eq. (10.6) whenever the network has
a source to destination path p’ that satisfies

wi(p) <exc, 1=<i=<k (10.7)

where € is a constant between 0 and 1.

Both the k-MCP and k-RSP problems for k>1 are known to be NP-hard [6] and several
pseudopolynomial-time algorithms, heuristics, and approximation algorithms have been proposed [7-9.]
Jaffe [10] has proposed a polynomial-time approximation algorithm for 2-MCP. This algorithm, which
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uses a shortest path algorithm such as Dijkstra’s [11], replaces the two weights on each edge by a
linear combination of these two weights. The algorithm is expected to perform well when the two
weights are positively correlated. Chen and Nahrstedt [12] use rounding to arrive at a polynomial-time
approximation algorithm for k-MCP. Korkmaz and Krunz [13] propose a randomized heuristic that
employs two phases. In the first phase a shortest path from each vertex of V to the destination vertex d
is computed for each of the k weights as well as for a linear combination of all k weights. The second
phase performs a randomized breadth-first search for a solution to the k-MCP problem. Yuan [14] has
proposed two heuristics for k-MCP—Iimited granularity and limited path. By properly selecting the
parameters for the limited granularity heuristic (LGH), this heuristic becomes an e-approximation
algorithm for k- MCP.

The papers [15-19] use rounding (up, down, and random) and interval partitioning to arrive at fully
polynomial-time approximation schemes for k-RSP. Song and Sahni [20] use rounding (up), interval
partitioning, and separation to develop fully polynomial-time approximation schemes for k-MCP. We
focus on the work of Ref. [20] and this section is derived from Ref. [20].

10.6.2 Extended Bellman-Ford Algorithm

This is an extension of the well-known dynamic programming algorithm due to Bellman and Ford that is
used to find shortest paths in weighted graphs [11]. The original Bellman—Ford algorithm was proposed
for graphs in which each edge has a single weight. The extension allows for multiple weights (e.g., cost,
delay, and delay-jitter).

Let u and v be two vertices in an instance of k-MCP. Let p and g be two different u to v paths. Path p
is dominated by path q iff w(q) < w(p) (i.e, wi(q) < wi(p),1 <i <k).

In its pure form, the Bellman—Ford algorithm works in # — 1 (# is the number of vertices in the graph)
rounds numbered 1 through #n — 1. In round 1, the algorithm implicitly enumerates one-edge paths from
the source vertex; then, in round 2, those with two edges are enumerated; and so on until finally paths with
n — 1 edges are enumerated. Since no simple path has more than n — 1 edges, by the end of round n — 1,
all simple paths have been (implicitly) enumerated. The enumeration of paths that have i + 1 edges is
accomplished by considering all one-edge extensions of the enumerated i-edge paths. During the implicit
enumeration, suboptimal paths (i.e., paths that are dominated by others) are eliminated. Suppose we have
two paths p and g to vertex u and that p is dominated by g. If path p can be extended to a path that
satisfies Eq. (10.6), then so also can q. Hence there is no need to retain p for further enumeration by path
extension. Actual implementations rarely follow the pure Bellman—Ford paradigm and enumerate some
paths of length more than i + 1 in round i.

Figure 10.4 gives the version of the Extended Bellman—Ford algorithm employed by Ref. [20]. This
version is very similar to the version used by Yuan and others [14,21]. PATH(u) is a set of paths from
the source s to vertex u. PATH(u) never contains two paths p and g for which w(p) < w(q). Lines
12-14 initialize PATH(u) for all vertices u. The for loop of lines 16-20 attempts to implement the pure
form of the Extended Bellman—Ford algorithm and performs the required # — 1 rounds (there is a
provision to terminate in fewer rounds in case the previous round added a path to no PATH(u)). The
method Relax(u, v) extends the new? paths in PATH(u) by appending the edge (u, v). Feasible extended
paths (i.e., those that satisfy the k constraints of Eq. [10.6]) are examined further. If v is the destination,
the algorithm terminates as we have found a feasible source to destination path. Let the extended path
pll(u, v) be r. The inner for loop (lines 4-8) removes from PATH(v) all paths that are dominated by
r (lines 7 and 8). This loop also verifies that r is not dominated by a path in PATH(v) (lines 5 and 6).
Notice that if r is dominated by or equal to a path in PATH(v), r cannot dominate a path in PATH(v).
Finally, in lines 9 and 10, r is added to PATH(v) only if it is not dominated by or equal to any path in
PATH(v).

2A path is new iff it has not been the subject of a similar extension attempt on a previous round.
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Relax(u, v)

1. for each new p € PATH(u) such that w(p) + w(u, v) < c do
2 if (v = d) return TRUE;

3 Flag = TRUE;

4 for each ¢ € PATH (v) do

5. if (w(q) < w(p) + w(u, v))

6. Flag = FALSE; Break; // exit inner for loop
7 if ((w(p) + w(u, ) < w(9))

8. remove ¢ from PATH (v);

9. if (Flag == TRUE)

10. insert p||(u, v) into PATH(v); Change = TRUE;
11. return FALSE;

Extended Bellman—Ford(G, ¢, s, d)

12. fori=0ton — 1do

13.  PATH(i) = NULL;

14. PATH(s) = {s};

15. Result = FALSE;

16. for round =1ton — 1 do

17. Change = FALSE;

18. for each edge (u, v) € E do

19. if (Relax(u, v)) return “YES”;
20. if (Change == FALSE) return “NO”;
21. return “NO”;

FIGURE 10.4 Extended Bellman—Ford algorithm for k-MCP.

To see that the algorithm of Figure 10.4 is not a faithful implementation of the pure form of the
Bellman—Ford algorithm, consider any iteration of the for loop of lines 16-20 (i.e., consider one round)
and suppose that edge (u, v) is considered before edge (v, w) in the for loop of lines 13—14. Follow-
ing the consideration of (u, v), PATH(v) possibly contains paths with round edges. So, when (v, w) is
considered, Relax extends the paths in PATH(v) by a single edge (v, w) thereby permitting a path of
length round + 1 to be included in PATH(w). This lack of faithfulness in implementation of the pure
Bellman—Ford algorithm does not affect the correctness of the algorithm and, in fact, agrees with the
traditional implementation of the Bellman—Ford algorithm for the case when each edge has a single weight
(i.e., k=1) [11].

Another implementation point worth mentioning is that although we have defined PATH(u) to be a set
of paths from the source to vertex u, it is more efficient to implement PATH(u) to be the set of weights (or
more accurately, weight vectors w( )) of these paths. This, in fact, is how the algorithm is implemented in
Ref. [14].

10.6.3 Rounding
Let§; = ¢; x (1 —€)/n,2 < i < k. Suppose we replace each w;(u, v) with the weight

Wi w) = P2y,

Let p be a path such that it satisfies Eq. (10.7). Then,
wi(p) < wi(p) +ndi <eci + (1 —€)ci = ¢;

So, algorithm Extended Bellman—Ford of Figure 10.4 when run with the edge weights w;(u, v) replaced
by the weights w’(u, v), 2 < i < k will find a feasible path (either p or some other feasible path). In an
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implementation of the rounding method, we actually replace each w;(u, v),2 < i < k by

W v) = 20y
8i
and each ¢; by [¢;/8;],2 < i < k. From the computation stand point, using the w’s is equivalent to using
the w/’s.

Let S = (n/(1 — ) 1. In the ws formulation, it is easy to see that |PATH(u)| < S. Hence the
complexity of Extended Bellman—Ford when the w! (equivalently, w/) weights are used is O(ne $%) and
we have a fully polynomial-time approximation scheme for k-MCP. For the case k = 2, the complexity
is O(neS) if we employ the merge strategy of Horowitz and Sahni [4] to implement Relax (i.e., maintain
PATH(u) in ascending order of wy; extend the new paths in one step; then merge these extensions with
PATH(v) in another step).

10.6.4 Interval Partitioning and Separation

In interval partitioning, we partition the space of [w2(p), w3(p), ..., wk(p)] values into buckets of size
[82, 83, . . ., 8k]. PATH(u) is maintained so as to have at most one path in each bucket. When a Relax step
attempts to put a second path into a bucket, only the path with the smaller w; value is retained. When the
;s are chosen as in Section 10.6.3, we get a fully polynomial-time approximation scheme. By choosing
larger values for the §;s, we lose the guarantee of an e-approximate solution but we reduce the run time.
We use the term interval partitioning heuristic (IPH) to refer to the interval partitioning algorithm in which
the §;s are chosen arbitrarily.

Figure 10.5 gives the relax method used by IPH. The driver Extended Bellman—Ford is unchanged.
By choosing the number of buckets (equivalently, the bucket size) as in Section 10.6.3, we get a fully
polynomial-time e-approximation scheme. The proof of this claim is quite similar to that of the proof
provided in Section 10.6.3.

Theorem 10.1
IPH is an € -approximation algorithm for k-MCP when the bucket size is chosen as in Section 10.6.3.

Inthe separation method, PATH(u) is such that no two paths of PATH(v) are within §; /2 of their w; values
for2 < i < k.So,if weattempt toadd to PATH(v) apath g such that w; (p)+68;/2 < wi(q) < wi(p)+38i/2,
2 <i < k, where p € PATH(v), then only the path with the smaller w; value is retained.

Since separation comes with greater implementation overheads than associated with interval partition-
ing [20] focuses on the interval partitioning method for k-MCP.

RelaxIPH(u, v)
1. for each new p € PATH(u) such that w(p) + w(u, v) < ¢ do
2 if (v = d) return TRUE;

3 Let r = p||(u, v);

4. Let ¢ € PATH (v) such that r and ¢ fall in the same bucket;
5. if (there is no such gq)

6 Add r to PATH (v); Change = TRUE;

7 else if (wy(r) < wy(q))

8 Replace ¢ by 7 in PATH(v); Change = TRUE;

9. return FALSE;

FIGURE 10.5 Relax method for IPH.
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10.6.5 The Heuristics of Yuan [14]

The LGH of Yuan [14] combines the interval partitioning and rounding methods. PATH(v) is represented
as a (k — 1)-dimensional array with each array position representing a bucket of size [s2, s3, ..., sk]. As
in the pure form of interval partitioning, each bucket can have at most one path. However, unlike interval
partitioning, the exact w; values of the retained path are not stored. Instead, the w; values, 2 < i < k
are rounded up to the maximum possible for the bucket; the smallest w; value of the paths that fall
into a bucket is stored in the bucket. Note that because of the rounding of the w; values, 2 < i < k,
we do not store these values along with the path; they may be computed as needed from the bucket
indexes.

We may regard the LGH as one with delayed rounding; the rounding done at the outset when the
traditional rounding method is used, is delayed to the time a path is actually constructed. By incorporating
buckets, we eliminate the need to store the w;, 2 < i < k, values stored explictly with each path when
either the rounding or interval partitioning methods are used. Although there is a reduction in space
(by a factor of k) on a per path basis, the array of buckets used to implement each PATH(u) needs
[[,<i<k ci/si space, whereas when the w;s are explicitly stored, the space requirements can be reduced to
O(k * total number of paths stored). The time complexity of LGH is O(ne H2<i<k ci/si).

Note that when s; = 8;,2 < i < k, the LGH becomes an e-approximation algorithm.

The limited path heuristic (LPH) of Yuan [14] limits the size of PATH(v) to be X, where X is a specified
parameter. It differs from Extended Bellman—Ford (Figure 10.4) only in that line 9 is changed to if (Flag
== True && |PATH(v)| < X). With this modification, the complexity of Extended Bellman—Ford becomes
O(neX?). The success of LPH hinges on the expectation that the first X nondominated paths, to vertex
v, found by Extended Bellman—Ford are more likely to lead to a feasible path to the destination than
subsequent paths to v. In a pure implementation of the Bellman—Ford method (which Figure 10.4 is not),
this expectation may be justified with the expectation that paths to nondestination vertices with a smaller
number of edges (these are found first in a pure Bellman—Ford algorithm) are more likely to lead to a
feasible path to the destination than those with a larger number of edges.

10.6.6 Generalized Limited Path Heuristic

LPH limits the number of paths in PATH(u) to be at most X. In generalized limited path heuristic (GLPH),
the constraint on the number of paths is

Z |PATH(u)| < (n— 1) x X
ueV,u=#s

While both LPH and GLPH place the same limit on the total number of paths retained (i.e., (n — 1) * X),
LPH accomplishes this by explicitly restricting the number of paths in each PATH(u), u # s to be no more
than X.

To ensure a performance at least as good as that of LPH, GLPH ensures that each PATH(u) maintains
a superset of the PATH(u) maintained by LPH. So, GLPH permits the size of a PATH(u) to exceed X so
long as the sum of the sizes is no more than (n — 1) * X. When the sum of the sizes equals (n — 1) % X,
we continue to add paths to those PATH(u)s that have fewer than X paths. However, each such addition
is accompanied by the removal of a path that would not be in any PATH(v) of LPH.

10.6.7 Hybrid Interval Partitioning Heuristics (HIPHs)

Although IPH becomes an e-approximation algorithm when the bucket size is chosen appropriately, LPH
is expected to perform well on many real-world networks because we expect paths with a small number
of edges to be more likely to lead to feasible source—destination paths than those with a large number of
edges. In this section we describe four hybrid heuristics: HIPH1, HIPH2, HIPH3, and HIPH4.

HIPH1 and HIPH2 combine IPH and LPH into a unified heuristic that has the merits of both. HIPH1
maintains two sets of paths for each vertex u € V. The first set PATH(u) is limited to have at most X
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Relax HIPH1(u, v)

1. for each new p € PATH(u) such that w(p) + w(u, v) < ¢ do
2. if (v = d) return TRUE;

3. Flag = TRUE;

4. for each ¢ € PATH(v) do

5. if (w(p) + w(v, v) > w(g))

6. Flag = FALSE; Break; // exit for loop

7. if ((w(p) + w(u, v)) < w(g)

8. remove ¢ from PATH(v);

9. if (Flag == TRUE)

10. if (|[PATH(v)| < X)

11. insert p||(u, v) into PATH(v); Change = TRUE;

12. else

13. do lines 3-8 of RelaxIPH using ipPATH in place of PATH,

14. // Relax using ipPATH in place of PATH
15. return RelazIPH(u, v);

FIGURE 10.6 Relax method for HIPHI.

paths. This set is a faithful replica of PATH(u) as maintained by LPH. The second set, ipPATH(u), uses
interval partitioning to store additional paths found to vertex u. For the source vertex s, PATH(s) = {s}
and ipPATH(s)= ¢. Figure 10.6 gives the new relax method employed by HIPHI. It is easy to see that
if on entry to RelaxHIPHI1, PATH(u) as maintained by HIPH1 is the same as that maintained by the
relax method of LPH, then on exit, PATH(v) is the same for both HIPH1 and LPH. Since both heuristics
start with the same PATH(u) for all 4, both maintain the same PATH(u) sets throughout. Hence HIPH1
produces a feasible solution whenever LPH does. Furthermore, because HIPH1 maintains additional paths
in ipPATH( ), it has the potential to find feasible source-to-destination paths even when LPH fails to do
so. It is easy also to see that when bucket size is selected as in Section 10.6.3, HIPH1 is an €-approximation
algorithm.

Theorem 10.2

HIPH1 is an € -approximation algorithm for k-MCP when the bucket size for ipPATH( ) is chosen as in Section
10.6.3. Further, for any given X, HIPH1 finds a feasible source-to-destination path whenever LPH finds such
a path.

HIPH2 is quite similar to HIPH1. In HIPH1 the extension r = p||(u, v) of a path p € ipPATH(u)
can be stored only in ipPATH(v). In HIPH2, however, this extension is stored in PATH(v) whenever
|PATH(v)| < X. When |PATH(v)| = X, lines 4-8 of RelaxIPH are applied (using ipPATH(v) in place of
PATH(v)) to determine the fate of r. With this change, PATH(u) as maintained by LPH may not be the same
as that maintained by HIPH2. However, by choosing the bucket size for ipPATH(u) as in Section 10.6.3,
HIPH?2 becomes an e-approximation algorithm.

Theorem 10.3
HIPH?2 is an €-approximation algorithm for k-MCP when the bucket size for ipPATH( ) is chosen as in
Section 10.6.3.

HIPH3 and HIPH4 are the GLPH analogs of HIPH1 and HIPH?2; that is they are based on GLPH rather
than LPH.

Theorem 10.4

HIPH3 and HIPH4 are € -approximation algorithms for k-MCP when the bucket size for ipPATH( ) is chosen
as in Section 10.6.3.
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Dataset Algorithm
LGH | LPH | IPH | GLPH | HIPH1 | HIPH2 | HIPH3 | HIPH4
8 x 8 mesh, k = 2, unbiased - 8% - 4 8 8 4 4
16 x 16 mesh, k = 2, unbiased - - - 8%/16 16* 16* 8%/16 | 8*/16
8 x 8 mesh, k = 2, biased - - - 8 8% 4*/8 2% /4 2%/4
16 x 16 mesh, & = 2, biased - - 1 16 16* 1 8 1
Power-law, k = 2, unbiased - 4%/8 | 16* 2 4*/8 4 1*/2 1*/2
Power-law, k = 2, biased - 4*/8 | 16* 2 4*/8 4 2 2
ADC, k = 2 ] 16 | 1* 8 16 1%/8 8 1%/8

FIGURE 10.7 Smallest X at which competitive ratio becomes 1.0 [20].

10.6.8 Performance Evaluation

The existence ratio (ER) and competitive ratio (CR) are defined, respectively, by Yuan [14] to be the number
of routing requests satisfied by the extended Bellman—Ford algorithm divided by the total number of routing
requests and the number of routing requests satisfied by a heuristic divided by the number satisfied by
the extended Bellman—Ford algorithm. For example, if we make 500 routing requests, 100 of which are
satisfiable, the ER is 100/500 = 0.2. If LPH is able to find a feasible path for 80 of the 100 requests for
which such a path exists, the CR of LPH is 80/100 = 0.8.

Song and Sahni [20] report on an extensive simulation study involving mesh [14], power-law [22], and
augmented directed chain (ADC) [20] networks. Figure 10.7 gives the smallest of the tested X values for
which the CR becomes 1.0. For the case when k = 2, X is the bound placed on | PATH(u)| and |ipPATH (u))|.
In particular, for LGH, X is the number of positions in the one-dimensional array used to represent each
PATH(u) and for IPH, X is the number of intervals for each PATH(u). GLPH working on a network with n
vertices is able to store at most X (n— 1) paths, which is the maximum number of paths in all PATH (u)lists
of LPH. For the hybrid heuristics HIPH1 and HIPH2, |PATH(u)| < X and |ipPATH(u)| < X. For HIPH3
and HIPH4, Y |PATH(u)| < X*(n—1)and |ipPATH(u)| < X. Note that since every heuristic other than
LGH stores both w; and w; for each path while LGH stores only w;, the worst-case space requirements of
LGH for any X are one-half for LPH and GLPH and one-fourth for HIPH1 through HIPH4. In Figure 10.7,
X values labeled with an “x” indicate that the CR becomes almost 1.0, more precisely, larger than 0.99. So,
for example, the entry 8 * /16 for GLPH, HIPH3, and HIPH4 working on 16 x 16 unbiased meshes means
that these heuristics achieved a CR very close to 1.0 when X = 8 and a CR of 1.0 when X = 16. The “—”
in the entry for 16 x 16 unbiased meshes for LGH means that the CR ratio for LGH did not become close
to 1.0 for any of the tested X values.

10.6.9 Summary

All of the studied k- MCP heuristics, with the exception of GLPH, become € -approximation schemes when
the bucket size is chosen as in Section 10.6.3. Although GLPH has the same bound on total memory as
does the limited path heuristic LPH of Ref. [14], GLPH provides better CR; in fact, GLPH finds a feasible
path whenever LPH does and is able to find feasible solutions for several instances on which LPH fails
to do so. The IPH heuristic achieves significantly better CRs than are achieved by the LGH of Ref. [14].
LPH and GLPH do well on graphs in which there is at least one feasible path that has a small number
of edges. On ADCs that do not have such feasible paths, LPH and GLPH provide miserable performance
[20]. The hybrid heuristics HIPH1 through HIPH4 combine the merits of IPH (e-approximation when
bucket size is chosen properly) and LPH and GLPH (guaranteed success when the graph has a feasi-
ble path with few edges). Of the four hybrid heuristics, HIPH4 performed best in the experiments of
Ref. [20].
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11.1 Introduction

We illustrate the concept of asymptotic (fully) polynomial-time approximation schemes (APTAS,
AFPTAS) via a study of the bin packing problem. We discuss in detail an APTAS due to Fernandez de la Vega
and Lueker [1] and an AFPTAS due to Karmakar and Karp [2]. Many of the algorithmic and analytical
techniques described in this chapter can be applied elsewhere in the development and study of other
polynomial-time approximation schemes. We conclude with a brief survey of other bin packing-related
results and other examples of APTAS and AFPTAS.

We first introduce the classic bin packing problem, which is NP-complete. Informally, we are given a
collection of items of sizes between 0 and 1. We are required to pack them into bins of unit size so as to
minimize the number of bins used. Thus, we have the following minimization problem.

BIN PACKING (BP):

* [Instances] I = {s1, s2, ..., Sy}, such that Vi, s; € [0, 1].

+ [Solutions] A collection of subsets 0 = {Bj, B, ..., B} which is a disjoint partition of I, such
that Vi, B; C I and ZjeB,- sj <1

+ [Value] The value of a solution is the number of bins used, or f(o) = |o| = k.

BIN PACKING is a perfect illustration of why sometimes the absolute performance ratio is not the best
possible definition of the performance guarantee for an approximation algorithm. Recall that the absolute
performance ratio, a.k.a. the approximation ratio, of an algorithm A for a minimization problem is
defined as

Ry = inf{r | Ra(I) = O?)(TI()I) < r,VI}
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where A(I) and OPT(I) denote the value of algorithm A’s solution and the optimal solution for instance
I, respectively.! Note that the problem of deciding if an instance of BIN PACKING has a solution with
two bins is N'P-complete—this is exactly the PARTITION problem [3]. This implies that no algorithm
can guarantee an approximation ratio better than 3/2 for BIN PACKING. Consequently, no approximation
schemes, PTAS or FPTAS [4], exist for BIN PACKING.

The hardness of 3/2 comes from the fact that we cannot decide between two or three bins, a difference
of one bin only. It is the small value of the optimum solution that makes the approximation ratio appear to
be large; the approximation ratio is misleading, since on larger instances the ratio could still be bounded
by a small constant. Therefore, we introduce the asymptotic performance ratio:

Definition 11.1

The asymptotic performance ratio, R, of an approximation algorithm A for an optimization problem is
RY =inf{r |3Ny, Ra(I) <r forall I with OPT(I) > Ny}

For BIN PACKING, the 3/2-hardness result does not preclude the existence of asymptotic approximation
schemes, which give an approximation factor that approaches 1 in the limit:

Definition 11.2

AnAsymptotic PTAS (APTAS) is a family of algorithms{A¢ | € > 0} such thateach A¢ runsin time polynomial
in the length of the input and R} <1+ €.

Definition 11.3

An Asymptotic FPTAS (AFPTAS) is a family of algorithms {Ac |€ > 0} such that each A¢ runs in time
polynomial in the length of the input and 1/€, while R} <1+ €.

In this chapter we present two algorithms, an APTAS and an AFPTAS, due to Fernandez de la Vega
and Lueker [1] and Karmakar and Karp [2], respectively, for BIN PACKING. The algorithmic and analytic
tools demonstrated here are widely applicable to the study and development of approximation schemes.
Some of the techniques, such as interval partitioning, have been applied to similar problems such as
Multiprocessor Scheduling, Knapsack [3] and various packing-related problems and their generalizations.
Other techniques are more general and apply in a broader range of problem settings; for instance, linear
programming is a very powerful tool and has been used with enormous success throughout operations
research, management science, and theoretical computer science.

The rest of this chapter is organized as follows: Section 11.2 presents a summary of the techniques used
in the two algorithms; Section 11.3 presents the APTAS, Section 11.4 presents the AFPTAS, and finally,
Section 11.5 summarizes some other results related to BIN PACKING, and lists some other examples of
APTAS and AFPTAS.

11.2 Summary of Algorithms and Techniques

The first result we present is due to Fernandez de la Vega and Lueker [1], who provided an APTAS for BIN
PACKING that runs in linear time and has A¢(I) < (14 ¢€) - OPT(I) + 1. To be more specific, the running
time is linear in the size of the input instance I but is severely exponential in €. Note that the reason this
scheme is an APTAS, and not a PTAS, is the additive error term of 1 in the approximation bound. The
basic techniques used in this result may be summarized as follows:

'R4(I), the absolute performance ratio of algorithm A on an input instance I, is defined as OPT(I)/ A(I) for
maximization problems. Such a definition ensures that Ro(I) > 1 always.
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+ Separate handling of “small” items.
+ Discretization via interval partitioning or linear grouping.
+ Rounding of “fractional” solutions.

We then present the modification of this result due to Karmakar and Karp [2], which leads to an AFPTAS
for BIN PACKING. They give an approximation scheme with a performance guarantee similar to the one
described above, with running time improved to O(%).

We now derive the results described above. Our presentation combines the methods of Fernandez de
la Vega and Lueker with those of Karmakar and Karp, as the two techniques share many of the same basic
tools. The general approach used in both techniques is as follows: We first define a restricted version of
the problem in which all items are of at least some minimum size, and the item sizes can only take on
a few distinct values. This new version of BIN PACKING turns out to be reasonably easy to solve. Then
we provide a two-step reduction from the original problem instance to a restricted problem instance.
The first step is to pull out the “small” items; it is shown that given any packing of the remaining items, the
small items can be added back in without a significant increase in the number of bins used. The second
step is to divide the item sizes into m intervals, and replace all items in the same interval by items of the
same size. It turns out that this “linear grouping” affects the value of the optimal solution only marginally.
In the next two sections, we consider each of these ingredients in turn and finally show how they can be
combined to produce an APTAS and then an AFPTAS.

11.3 Asymptotic Polynomial-Time Approximation Scheme

Definition 11.4
For any instance I = {sy, ..., sp}, let SIZE(I) = Z?:l s; denote the total size of the n items.

Recall that OPT(I) denotes the value of the optimal solution, i.e., the minimum number of unit size
bins needed to pack the items. We now give two inequalities relating these quantities.

Lemma 11.1
SIZE(I) < OPT(]) < |I| = n.

Proof

In the optimal solution, at best each bin is filled to its maximum capacity, i.e., 1. Thus, the total number
of bins needed is at least SIZE(I)/1, proving SIZE(I) < OPT(I). Since each item is of size between
0 and 1, putting each item in a separate bin is clearly a feasible (if not optimal) solution, proving
OPT(I) < |I| = n. O

Lemma 11.2
OPT(I) < 2 - SIZE(]) + 1.

Proof

Prove by contradiction. Suppose this is not the case, i.e., there exists an instance I, where OPT(I) >
2 - SIZE(I) + 1. Then in the optimal solution, there must exist at least two bins that are at least half empty.
Otherwise, we have at least OPT(I) — 1 number of bins that are at least half full, i.e., (OPT(I) — 1)/2 <
SIZE(I), which contradicts our initial assumption. Now the fact that we have two bins at least half empty
contradicts the assumption that we have an optimal solution. We could have easily combined the two bins
into one, and reduce the number of bins used by 1. Thus, our initial assumption must be false, proving
the lemma. O

We will represent an instance I as an ordered list of items I = sisp ... s, such that 1 > s; >
sp > >5,> 0.
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Definition 11.5

LetI) = x1%2...%p and Iy = y1y2 ... yn be two instances of equal cardinality. The instance I, is said to
dominate the instance I, or I > L, if it is the case that x; > y;, for all i.

The following lemma follows from the fact that any feasible packing of I; gives a feasible packing of I,
using the same number of bins.

Lemma 11.3

Let I} and I, be two instances of equal cardinality such that I, > I. Then, SIZE(I;) > SIZE(L) and
OPT(L) > OPT(L,).

We define a restricted version of BIN PACKING as follows. Suppose that the item sizes in I take on only
m distinct values. Now the instance I can be represented as a multiset of items which are drawn from
these m types of items.

Definition 11.6

Suppose that we are given m distinct item sizes V.= {v1, ..., Uy}, suchthatl > vy > vy > -+ > vy, > 0,
and an instance 1 of items whose sizes are drawn only from V. Then, we can represent I as multiset Mj =
{n1 1 vy, my Vo, ..., Ny Uy}, where n; is a nonnegative integer denoting the number of items in I of sizev;.

It follows that |My| = > /", nj = n, SIZE(M;) = Y i~ njvi = SIZE(I) and OPT(M;) = OPT(I).
We now define RBP, the restricted version of BIN PACKING.

Definition 11.7

Forall0 < 8 < 1 and positive integers m, the problem RBP[8, m] is defined as BIN PACKING restricted to
instances where the item sizes take on at most m distinct values and the size of each item is at least §.

Next we show how to approximately solve RBP via a linear programming formulation.

11.3.1 Restricted Bin Packing

Assume that § and m are fixed independently of the input size n. The input instance for RBP[S§, m] is
amultiset M = {n; : v;,n : V2, ..., Uy ¢ Uy, suchthat 1 > vy > vy > -+ > v, > 8. Let
n=|M| =", n;.In the following discussion, we will assume that the underlying set V for M is fixed.
Note that, given M, it is trivial to determine V and verify that M is a valid instance of RBP[§, m].

Consider a packing of some subset of the items in M into a unit size bin. We can denote this packing by
a multiset {b; : v, by : V2, ..., by : Uy}, such that b; is the number of items of size v; that are packed
into the bin. More concisely, having fixed V, we can denote the packing by the m-vector B = (by, ..., by,)
of nonnegative integers. We will say that two bins packed with items from M are of the same type if the
corresponding packing vectors are identical:

Definition 11.8
Abin type T is an m-vector (T, . .., T,,) of nonnegative integers such that 27;1 Tiv; <1.

Having fixed the set V, the collection of possible bin types is fully determined and is finite, because each
T; in T must take on an integer value from 0 to | 1/v;]. Let T', ..., T denote the set of all legal bin types
with respect to V. Here g, the number of distinct types, is a function of § and m. We bound the value of g
in the following lemma:

Lemma 11.4
Letk = L%J. Then

q(8, m) < (m:k)
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Proof

Each type vector T' = (T{, ..., Tp,) has the property that, for all i, T! > 0 and Y.~ | T'v; < 1. It
follows that Zlm:l Ti’ < k, since we have a lower bound of § on the values v; in V. Thus, each type vector
corresponds to a way of choosing m nonnegative integers whose sum is at most k. This is the same as
choosing m + 1 nonnegative integers whose sum is exactly k. The number of such choices is an upper
bound on the value of g. A standard counting argument now gives the desired bound. O

Consider an arbitrary feasible solution x to an instance M of RBP[§, m]. Each packed bin in this
solution can be classified as belonging to one of the (8, m) possible types of packed bins. The solution x
can therefore be specified completely by a vector giving the number of bins of each of the g types.

Definition 11.9

A feasible solution x to an instance M of RBP[S, m] is a q-vector of nonnegative integers, say x =
(x1, ..., Xq), where x; denotes the number of bins of type T* used in x.

Note that not all g-vectors correspond to a feasible solution. A feasible solution must guarantee, for
each i, that exactly n; items of size v; are packed in the various copies of the bin types. The feasibility
condition can be phrased as a series of linear equations as follows:

q
Vie{l,..., m, thT;= n;
t=1

Let the matrix A be a ¢ X m matrix whose tth row is the type vector T!, and n = (ny, ..., n,) denote
the multiplicities of the various item sizes in the input instance M. Then the above set of equations can
be concisely expressed as X. A = 7. The number of bins used in the solution x is simply x - 1= S Xt
where T denotes all-ones vector. In fact, we have proved the following lemma.

Lemma 11.5

The optimal solution to an instance M of RBP[8, m)] is exactly the solution to the following integer linear
program ILP( M)

minimize x-1
subject to
x>0
X-A>n

We have replaced the equations by inequalities, but, since a packing of a superset of M can always be
converted into a packing of M using the same number of bins, the validity of the lemma is unaffected.
It is also worth noting that the matrix A is determined completely by the underlying set V; the vector 7,
however, is not determined a priori but depends on the instance M.

How easy is it to obtain this integer program? Note that the number of constraints in ILP(M) is
exponentially large in terms of § and m. However, we are going to assume that both § and m are constants
which are fixed independently of the length of the input, which is n. Thus, ILP( M) can be obtained in time
linear in n, given any instance M of cardinality #.

How about solving ILP? Recall that the integer programming problem is NP-complete in general [3].
However, there is an algorithm due to Lenstra [5-7] that solves any integer linear program in time linear
in the number of constraints, provided the number of variables is fixed. This is exactly the situation in ILP:
the number of variables g is fixed independent of #, as is the number of constraints, which is g 4+ m. Thus,
we can solve ILP exactly in time independent of n. (A more efficient algorithm for approximately solving
ILP will be described in a later section.) The following theorem results. Here f(§, m) is some constant
which depends only on § and m.
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Theorem 11.1
Any instance of RBP[8, m] can be solved in time O (n + f(8, m)).

11.3.2 Eliminating Small Items

We now present the second ingredient of the APTAS devised by Fernandez de la Vega and Lueker: the
separate handling of small items. It is shown that if we have a packing of all items except those whose sizes
are bounded from above by §, then it is possible to add the small items back in without much increase in
the number of bins. This fact is summarized in the following lemma; the rest of this subsection is devoted
to the proof of this lemma.

Lemma 11.6

Fix some constant § € (0, %]. Let I be an instance of BIN PACKING and suppose that all items of size greater
than § have been packed into B bins. Then it is possible to find in linear time a packing for I which uses at
most max{p, (1 + 28)- OPT(I) + 1} bins.

Proof
The basic idea is to start with the packing of the “large” items and to use the greedy algorithm First Fit to
pack the “small” items into the empty space in the 8 bins.

First Fit (FF) is a classic bin packing algorithm of historical importance, as we shall see later. The
algorithm is as follows. We are given the set of items in an arbitrary order, and we start with zero bins. For
each item in the list, we consider the existing bins (if any) in order and place the item in the first bin that
can accommodate it. If no existing bin can accommodate it, we make a new bin after all the existing ones,
and put the item in the new bin.

To use First Fit to add the small items into an existing packing of the large ones, we can start by
numbering the g bins in an arbitrary fashion, and also ordering the small items arbitrarily. Then we run
First Fit as usual using this ordering to decide where each small item will be placed. If at some point the small
items do not fit into any of the currently available bins, a new bin is initiated.

In the best case, the small items can all be greedily packed into the 8 bins which were open initially.
Clearly, the lemma is valid in that case. Suppose now that some new bins were required for the small items.
We claim that at the end of the entire process, each of the bins used for packing I has at most § empty
space in it, with the possible exception of at most one bin. To see why this claim holds, note that at the
moment when the first new bin was started, each of the original bins must have had at most § free space.
Next, observe that whenever another new bin was opened, no earlier bin could have had more than § free
space. Therefore, at every moment, at most one bin had more than § free space.

Let B/ > B be the total number of bins used by FF. We are guaranteed that all the bins, except one, are
at least 1 — § full. This implies that SIZE(I) > (1 — 8)(B’ — 1). But we know that SIZE(I) < OPT(I),
implying that

1
B < mOPT(I) +1<(1428)-OPT(I)+1

and we have the desired result. O

11.3.3 Linear Grouping

The final ingredient needed for the APTAS is called interval partitioning or linear grouping. This is a
technique for converting an instance I of BIN PACKING into an instance M of RBP[8, m], for an appropriate
choice of § and m, without changing the value of the optimal solution too much. Let us assume for now
that all the items in I are of size at least 8, for some choice of § € (0, %]. All that remains is to show how
to obtain an instance where the item sizes take on only m different values. First, let us fix some parameter
k, a nonnegative integer to be specified later. We now show how to convert an instance of RBP[§, n] into
an instance of RBP[8, m], for m = |n/k].
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Definition 11.10

Given an instance I of RBP[§, n] and a parameter k, let m = |n/k]. Define the groups of items G; =
SG—Dk+1 --- Siks fori=1, ..., m,andlet Gyq1 = Smk41 ... Sn.

Here, the group G contains the k largest items in I, G, the next k largest items, and so on. The
following fact is an easy consequence of these definitions.

Fact 11.1

G >Gy == Gy

From each group G; we can obtain a new group of items H; by increasing the size of each item in G;
to that of the largest item in that group. The following fact is also obvious.

Definition 11.11

Let v; = s(ji—1)k+1 be the largest item in group G;. Then the group H; is a group of |G;| items, each of
size v;. In other words, H; = vjv; ... v; and |H;| = |G;|.

Fact 11.2

H>G >H>Gy>:-> Hy>Gyand Hyr1 > Gy

The entire point of these definitions is to obtain two instances of RBP[8, m] such that their optimal
solutions bracket the optimal solution for I. These instances are defined as follows.

Definition 11.12
Let the instance [0 = HoH3 ... Hpyy1 and Iy = HHH, Hs ... Hyppq.

Note that I1o is an instance of RBP[§, m]. Moreover, it is easy to see that I < Iyy. We now present some
properties of these three instances.

Lemma 11.7
OPT(Irp) < OPT(I) < OPT(Iyr) < OPT(Iro) + k
SIZE(I10) < SIZE(I) < SIZE(Iyp) < SIZE(I1p) + k

Proof
First, observe that

Iro=HH; ... HyHpyy1 < G1Gy ... Gy X

where X is any set of | Hy41]| items from G,,. The right-hand side of this inequality is a subset of I,
and so, from Lemma 11.3, OPT(I;p) < OPT(I) and SIZE(I;p) < SIZE(I). Similarly, since I < Iy,
OPT(I) < OPT(Iyy) and SIZE(I) < SIZE(Iyp).

Now observe that Iy; = HjI1o. Given any packing of I1p, we can obtain a packing of Igr which
uses at most k extra bins. (Just pack each item in H) in a separate bin.) This implies that OPT(Igy) <
OPT(I10) + k and SIZE(Iyy) = SIZE(I10) + SIZE(Hy) < SIZE(I1o) + k. O

It is worth noting that the result presented in this lemma is constructive. It is possible in O(nlog n)
time to construct the instances I1o and Iy, and given an optimal packing of I1 it is possible to construct
a packing of I that meets the guarantee of the above lemma. To construct Iro and Ixy, it is necessary only
to sort the items and perform the linear grouping. (Actually, one ingredient is still unspecified, namely
the value of k; this will be given in the next section.) Given a packing of I1o, we can assign all elements in
I\ G| to bins according to the assignments of the corresponding members of I1o; finally, each member of
G can get its own bin.
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11.3.4 APTAS for Bin Packing

We now put together all these ingredients and obtain the APTAS. The algorithm A, for any € € (0, 1],
takes as input an instance I of BIN PACKING consisting of 7 items.

Algorithm A.:

Input: Instance I consisting of » item sizes {s1, ..., su}.

Output: A packing into unit-sized bins.
L&« 5

2. Set aside all items of size smaller than §, obtaining an instance J of RBP[S, '] with v’ = |]|.

3. k< [% n']

4. Perform linear grouping on J with parameter k. Let J1o be the resulting instance of RBP[§, m] and
Jur = Hi U Jio, with |Hi| = kand m = [ %],

5. Pack Jrp optimally using Lenstra’s algorithm on ILP(J10).

. Pack the k items in Hj into at most k bins.

7. Obtain a packing of J using the same number of bins as in steps 5 and 6, by replacing each item in
JHr by the corresponding (smaller) item in J.

8. Using FF, pack all the small items set aside in step 2, using new bins only if necessary.

(=)}

How many bins does A¢ use in the worst case? Observe that we have packed the items in J gz, hence the
items in J, into at most OPT(J1p) + k bins. Consider now the value of k in terms of the optimal solution.
Since all items have size at least € /2 in J, it must be the case that SIZE(] ) > en’/2. This implies that

2./

k< +1<e-SIZE(J)+1<e-OPT(]J)+1

Using Lemma 11.7, we obtain that J is packed into a number of bins not exceeding
OPT(Jro) + k < OPT(J) +€-OPT(J) +1 = (1+¢€)- OPT(]) +1

Finally, Lemma 11.6 implies that, while packing the small items at the last step, we use a number of bins
not exceeding

max{(1+¢€)-OPT(J)+1, (1+¢€)-OPT(I)+1} < (1+¢€)- OPT(I) +1
since OPT(J) < OPT(I). We have obtained the following theorem.

Theorem 11.2
The algorithm A¢ finds a packing of I into at most (1 + €) - OPT(I) + 1 bins in time c(€)n log n, where c(€)

is a constant depending only on €.

For the running time, note that the only really expensive step in the algorithm is the one where we solve
ILP using Lenstra’s algorithm. As we observed earlier, this requires time linear in #, although it may be
severely exponential in § and m, which are functions of €.

11.4 Asymptotic Fully Polynomial-Time
Approximation Scheme

Our next goal is to convert the preceding APTAS into an AFPTAS. The reason that the above scheme
is not fully polynomial is the use of the algorithm for integer linear programming, which requires time
exponential in 1/e. We now describe a technique for getting rid of this step via the construction of a
“fractional” solution to the restricted bin packing problem, and a “rounding” of this to a feasible solution
which is not very far from optimal. This is based on the ideas due to Karmakar and Karp.
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11.4.1 Fractional Bin Packing and Rounding

Consider again the problem RBP[§, m]. By the preceding discussion, any instance I of this problem can
be formulated as the integer linear program ILP(I).

minimize x-1
subject to
x>0
X-A=n

Note that we are stating the last constraint as we originally did: as an equality. Recall that Aisa g x m matrix,
X a g-vector, and 7 an m-vector. The bin types matrix A as well as 7 are determined by the instance I.

Consider now the linear programming relaxation of ILP(I). This system LP(I) is exactly the same as
ILP(I), except that we now relax the requirement that x be an integer vector. Recall that SIZE(I) is the
total size of the items in I, and that OPT(I) is the value of the optimal solution to ILP(I) as well as the
smallest number of bins into which the items of I can be packed.

Definition 11.13
LIN(I) is the value of the optimal solution to LP(I), the linear programming relaxation of ILP(I).

What does a noninteger solution to LP(I) mean? The value of x; is a real number that denotes the
number of bins of type T* which are used in the optimal packing. One may interpret this as saying that
items can be “broken up” into fractional parts, and these fractional parts can then be packed into fractional
bins. This in general would give us a solution of value SIZE(I), but keep in mind that the constraints in
LP(I) do not allow any arbitrary “fractionalization.” The constraints require that in any fractional bin,
the items packed therein must be the same fraction of the original items. Thus, this solution does capture
some of the features of the original problem. We will refer to the solution of LP(I) as a fractional bin
packing.

To analyze the relationship between the fractional and integral solutions to any instance we will
have to use some basic facts from the theory of linear programming. The uninitiated reader is re-
ferred to any standard textbook for a more complete treatment; e.g., see the book by Papadimitriou and
Steiglitz [8].

Consider the system of linear equations implicit in the constraint> X. A = 7. Here we have m linear
equations in g variables, where g is much larger than m. This is an underconstrained system of equations.
Let us assume that rank( A) = m; it is easy to modify the following analysis when rank( A) < m. Assume,
without loss of generality, that the first m rows of A form a basis, i.e., they are linearly independent. The
following are standard observations from linear programming theory.

Definition 11.14

A basic feasible solution to LP is a solution x* such that only the entries corresponding to the basis of A are
nonzero. In other words, x;' = 0 for alli > m.

Fact 11.3
Every LP has an optimal solution which is a basic feasible solution.
We can now derive the following lemma which relates LIN(I) to both SIZE(I) and OPT(I).

Lemma 11.8
For all instances I of RBP[§, m],

1
SIZE(I) < LIN(I) < OPT(I) < LIN(I) + %

2We will ignore the nonnegativity constraints for now as they do not bear upon the following discussion.
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Proof

To prove the first inequality, we note that SIZE(I) = Z]m:1 njvj = ZT:l (X Aj)vj, where we use A;
to mean the jth column of A. This sum is equal to Z?:l xi(ZTzl aijv;). Note that forall 1 < i < ¢,
Z;-":l ajjvj < 1is the total size accounted for by the ith bin type and is therefore at most 1. It follows

that SIZE(I) < ?:1 x; = LIN(I). The second inequality follows from the observation that an optimal
solution to ILP(I) is also a feasible solution to LP(I).

To see the last inequality, fix I and let y be some basic optimal solution to LP(I). Since ¥ has at most
m nonzero entries, it uses only m different types of bins. Rounding up the value of each component of 7
will increase the number of bins by at most m, and will yield a solution to ILP. The bound promised in the

lemma is slightly stronger and may be observed as follows. Define the vectors w and Z in the following way:

Vi, wi=lyil
Vi, zi =y —w;

The vector w is the integer part of the solution and z the fractional part. Let J denote the instance of
RBP[8, m] that consists of the items not packed in the (integral) solution specified by w. (Note that ] is,
indeed, a legal instance of RBP[§, m], i.e., all items occur in integral quantities, because in w, all bin types,
and therefore all items, occur in integral quantities.) The vector Z gives a fractional packing of the items
in J, such that each of the m bin types is used a number of times which is a fraction less than 1.

Just as SIZE(I) < LIN(I), a similar argument implies that

SIZE(]) < LIN(J)
By Lemma 11.2 we know that
OPT(J) <2-SIZE(J) + 1

It is also obvious that OPT(]) < Z:ﬂ:l z; < m, since rounding each nonzero z; up to 1 gives a feasible
packing of J. Thus,

OPT(J) < min{m, 2 - SIZE(J) + 1}
(m+2-SIZE(J)+1)/2

1
= SIZE(]) + %

A

We will now bound OPT(I) in terms of LIN(I) and m.

OPT(I) < OPT(I — J) + OPT(])
<> wi+ (SIZE(I) + mTH)

The first inequality follows from the fact that independent integer packings of I — J and J can be com-
bined to form an integer packing of I. The second and third follow from facts proved above, and the fact
that w is a feasible solution to the RBP[8, m] instance I. The fourth holds because Z is a feasible
fractional packing of J . Finally, the equality holds by the optimality of y as a solution to LIN(I). O

It is not very hard to see that all of the above is constructive. More precisely, given the solution to LP(I),
we can construct in linear time a solution to I such that the bound from the above theorem is met: We
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take an optimal basic solution y and break it into w and Zz as described, and define J as above. We find
an integral solution for J either by rounding up each nonzero entry to 1 or by using First Fit, whichever
produces a better solution. We then put together the solution given by w and that found for J.

The only problem is that it is not obvious that we can solve the linear program in fully polynomial
time, even though there exist polynomial-time algorithms for linear programming [9], unlike the general
problem of integer programming. The reason is that the number of variables is still exponential in 1/e.
All we have achieved is that we no longer need to solve an integer program.

Karmakar and Karp show how to get around this problem by resorting to the ellipsoid method of
Grotschel et al. [6,7,10]. In this method, it is possible to solve a linear program with an exponential
number of constraints in time which is polynomial in the number of variables and the number sizes, given
a separation oracle. A separation oracle takes any proposed solution vector x and either guarantees that it
is a feasible solution, or provides any one constraint which is violated by it. Karmakar and Karp gave an
efficient construction of a separation oracle for LP(I). This would result in a polynomial-time algorithm
for LP(I) if it had a small number of variables, even if it has an exponential number of constraints.
Since our situation is exactly the reverse, i.e., we have a small number of constraints and an exponential
number of variables, we will consider the dual linear program for LP(I), which has the desired features of
a small number of variables. By Linear Program Duality, its optimal solution corresponds exactly to the
optimal solution of LP(I).

One important detail is that it is impossible to solve LP(I) exactly in fully polynomial time. However, it
can be solved within an additive error of 1 in fully polynomial time. Moreover, the implementation of the
separation oracle is in itself an approximation algorithm. The idea behind this method is due to Gilmore
and Gomory [11] who observed that, in the case of an infeasible proposed solution, a violated constraint
can be computed via the solution of a knapsack problem. Since this problem is A/P-complete, one must
resort to the use of an approximation scheme for KNAPSACK [3], and so the solution of the dual is not
exact but a close approximation. Karmakar and Karp used this approximate solution to the dual to obtain
an approximate lower bound on the optimal value of the original problem. Having devised the procedure
for efficiently computing an approximate lower bound, they then construct an approximate solution.

This algorithm is rather formidable and the details are omitted as it is outside the scope of this discussion.
The following theorem results.

Theorem 11.3

There is a fully polynomial-time algorithm A for solving an instance I of RBP[§, m] such that A(I) <
LIN(I) + 2 + 1.

11.4.2 AFPTAS for Bin Packing

We are now ready to present the AFPTAS for BIN PACKING. We will need the following variant of
Lemma 11.7.

Lemma 11.9

Using the linear grouping scheme on an instance I of RBP[8, n], we obtain an instance Iro of RBP[8, m] and
a group Hy such that, for Iy; = Hi I1o,

LIN(Ir0) = LIN(I) = LIN(Iar) < LIN(Iro) + k

Proof
The proof is almost identical to that of Lemma 11.7. Recall that m = |n/k]. Take the original instance
I, and define Gy, ..., Gut1, Hi, ..., Hy, Iro, and Igr as before. From Lemma 11.3 the first two

inequalities follow. The third follows from the fact that, given a solution to I, we can solve Iy by putting
all members of Iy U I in the bins assigned by the given solution, and then putting each member of H;
in a bin by itself. O
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The basic idea behind the AFPTAS of Karmakar and Karp is very similar to that used in the APTAS. We
first eliminate all the small items, and then apply linear grouping to the remaining items. The resulting
instance of RBP[8, m] is then formulated as an ILP, and the solution to the corresponding relaxation LP
is computed using the ellipsoid method. The fractional solution is then rounded to an integer solution.
The small items are then added into the resulting packing exactly as before.

Algorithm A:

Input: Instance I consisting of » item sizes {s1, ..., su}.

Output: A packing into unit-sized bins.

1. § < 5.

2. Set aside all items of size smaller than §, obtaining an instance J of RBP[S, '] with v’ = |]|.

3. k< [92]

4. Perform linear grouping on J with parameter k. Let J10 be the resulting instance of RBP[§, m] and
Jur = Hy U Jio, with |Hj| = kand m = L%J

5. Pack the k items in Hj into at most k bins.

. Pack Jro using the ellipsoid method and rounding the resulting fractional solution.

7. Obtain a packing of J using the same number of bins as used for J gy, by replacing each item in [y
by the corresponding (smaller) item in J.

8. Using FF, pack all the small items set aside in step 2, using new bins only if necessary.

(=)}

Theorem 11.4
The approximation scheme { Ac : € > 0} is an AFPTAS for BIN PACKING such that

Ad(D) < (1+¢€)- OPT(I) + Giz +3

Proo
The {unning time is dominated by the time required to solve the linear program, and we are guaranteed
that this is fully polynomial.
By Lemma 11.8, the number of bins used to pack the items in J1( is at most
m+1
2

given the preceding lemmas and the choice of m. The number of bins used to pack the items in Hj is at
most k, which in turn can be bounded as follows using the observation that OPT(J ) > SIZE(] ) > en’/2:

1
(LIN(J10) + 1) + < OPT(I) + > 12

n'e?
k< ’V 2 -‘ <e-OPT(J)+1<e-OPT(I)+1
Thus, the total number of bins used to pack the items in ] cannot exceed

1
(1+e)~OPT(I)+€—2+3

Lemma 11.6 guarantees that the small items can be added without an increase in the number of bins, and
so the desired result follows. O

11.5 Related Results

We conclude the chapter by presenting a literature survey on topics related to BIN PACKING and asymptotic
approximation schemes.

BIN PACKING is a classic problem in theoretical computer science; the algorithms proposed for this
problem, and the analysis of these algorithms, employ a wide variety of techniques. In the foregoing
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discussion, we used the fact that the First Fit algorithm has an asymptotic worst-case performance ratio
of 2, but this is not the best bound. Ullman [12] proved an asymptotic worst-case performance bound
of 17/10 for this algorithm, and subsequent papers [13—15] reduced the additive constant term from
3 to 1 or less eventually. First Fit is not the only algorithm considered for BIN PACKING. Many other
online algorithms, semionline algorithms, and offline algorithms have been proposed and their worst-
and average-case behavior studied extensively. We refer the reader to survey articles by Coffman et al.
[16-18], and Chapters 32—-35 of this handbook for further details.

There are several commonly considered variants of the basic bin packing problem, all of which are
NP-complete. In most of these cases, it is reasonably easy to come up with bounded-ratio approxima-
tions. These variants can be classified under four main headings: packings in which the number of items
per bin is bounded, packings in which certain items cannot be packed into the same bin, packings in
which there are constraints (e.g., partial orders) on the way in which the items are packed, and dynamic
packings in which items may be added and deleted. These variants are discussed in Chapters 33—35 of this
handbook.

There are also some generalizations of the basic packing problem, many of which are covered in the
three survey papers and chapters mentioned above. While some generalizations do not admit APTAS or
AFPTAS, several approximation schemes have been found successful, generally based on the ideas described
above. Here we focus on three generalizations that admit APTAS and AFPTAS: packings into variable-sized
bins, multidimensional bin packing, and BIN COVERING, the dual of BIN PACKING.

Murgolo shows an approximation scheme for the case of variable-sized bins [19]. For multidimensional
bin packing, APTAS have recently been found for packing d-dimensional® cubes into the minimum number
of unit cubes by Bansal and Sviridenko [20], and Correa and Kenyon [21], independently. Interestingly, the
problem of packing (two-dimensional) rectangles into squares does not admit APTAS or AFPTAS [20].
However, for a more restricted version, namely, a two-stage packing of the rectangles, Caprara et al.
show an AFPTAS [22]. The dual problem of BIN PACKING is BIN COVERING, in which we want to maximize
the total number of bins used, but must fill each bin to at least a certain capacity. Jansen and Solis-Oba
show an AFPTAS for BIN COVERING [23].

BIN PACKING is not the only problem that admits APTAS and AFPTAS. Raghavan and Thompson give an
APTAS for the 0-1 multicommodity flow problem [24]. Their approaches include probabilistic rounding
of fractional linear-programming solutions. Cohen and Nakibli [25] show an APTAS for a somewhat
related problem, the n-hub shortest path routing problem. The goal is to minimize the overloading of
links in a directed network with pairwise source—sink flows, by setting an n-hub route for each source—sink
pair. This APTAS also uses probabilistic rounding. Aingworth et al. [26] show an AFPTAS for pricing Asian
options on the lattice, using discretization to reduce the number of possible option values.

There are other problems that admit absolute approximation algorithms, i.e., algorithms guaranteed
to produce solutions whose costs are at most an additive constant away from the optimal. In contrast to
APTAS and AFPTAS, whose approximation ratios approach a value arbitrarily close to 1 as the optimal
cost grows, these algorithms have an asymptotic performance ratio equal to 1; that is, as the optimal cost
grows, the approximation ratio of an absolute approximation algorithm approaches 1 itself. Examples
of problems admitting absolute approximations include minimum-edge coloring [27] and minimum-
degree spanning tree [28], where the approximate solution is guaranteed to exceed the optimal solution
by at most 1. The techniques used in these algorithms, however, differ from the ones discussed in this
chapter. A variation of Karmakar and Karp’s ideas leads to a stronger result for BIN PACKING, which is
the construction of an approximation algorithm A that is fully polynomial and has the performance
guarantee A(I) < OPT(I)+ O(log2 OPT(I)). One is tempted to believe that there also exists an absolute
approximation algorithm for BIN PACKING, i.e., an algorithm that runs in polynomial time and guarantees
that A(I) < OPT(I) + O(1). The existence of such an algorithm is still an open question.

3Here d is assumed to be a fixed constant.
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12.1 Introduction

Randomization (i.e., the use of random choice as an algorithmic step) is one of the most interesting tools
in designing efficient algorithms. A remarkable property of randomized algorithms is their structural
simplicity. In fact, in several cases, while the known deterministic algorithms are quite involved, the
randomized ones are simpler and much easier to code.

This happens also in the case of approximation algorithms to NP-hard problems. In fact, it is exactly the
area of efficient approximations where the value of randomization has been demonstrated via at least two
very general techniques. The first of them is the notorious randomized rounding method, which provides
an unexpected association between the optimal solutions of 0/1 integer linear programs (ILPs) and their
linear programming (LP) relaxations. Randomized rounding is a way to return from the fractional optimal
values of the LP relaxation (which can be efficiently computed) to a good integral solution, whose expected
cost is the cost of the fractional solution! We demonstrate this method here via an example application
to the optimization version of the NP-complete set cover problem, and we comment also on its use (as a
random projection technique) in approximations via semidefinite programs.

The second technique is used in approximately counting the number of solutions to #P-complete
problems. Most of this technique is built around the Markov chain Monte Carlo (MCMC) method. It
essentially states that the time required for a Markov chain to mix (to approach its steady state) is an
approximate estimator of the size of the state space of the chain (i.e., the number of the combinatorial
objects that we wish to count). If the Markov chain is rapidly mixing (i.e., it converges in polynomial time),
then we can also count the size of the state space approximately in polynomial time. We demonstrate this
second approach here via an application to approximate counting of a special kind of colorings of the
vertices of a graph.

The main drawback of the use of randomization in approximations is that it may only derive good
results in expectation (or sometimes with high probability). This means that in certain inputs arandomized
approximation technique may take a lot of time (if we want it not to fail) or may even fail. In certain cases,
it is possible to convert a randomized approach to a deterministic one via a derandomization technique

12-1
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(for example, either by making the random choices dependent on each other and thus reduce the amount
of randomness to the limit of allowing a deterministic brute-force search of the probability space, or by
the use of conditional probabilities). We do not discuss derandomization here, since its application has
been quite limited and since our purpose is to let the reader appreciate the simplicity and generality of the
randomized methods.

12.2 Optimization and Randomized Rounding

12.2.1 Introduction

NP-hard optimization problems are not known to allow finding optimal solutions efficiently. Their com-
binatorial structure is elaborate and sometimes quite cryptic in the general sense.

Many NP-hard optimization problems can be coded as ILPs. In fact, in quite a lot of them, the values of
the integer variables involved are only 0 and 1. We are then speaking of 0/1 Integer Linear Programming
Problems (or 0/1 ILP). An example here is hard problems involving Boolean solutions.

Relaxing the integer constraints of the form “x; € {0, 1}” to the linear inequalities “0 < x; < 1,
converts a 0/1 ILP into an LP problem. Nowadays it is known that LP optimization problems can be
solved in polynomial time (via the ellipsoid or interior point methods). This strong similarity between
0/1 ILP and LP allows us to design efficient approximation algorithms for the hard problem at hand.

A feasible solution to the LP-relaxation can be thought of as a fractional solution to the original problem.
The set of feasible solutions of a system of linear inequalities is known to build a polytope (a convex,
multidimensional object, a polyhedron, like a diamond). To search for an optimum with respect to a linear
function in a polytope is not so hard, since it has been proved that the optimum is located in some vertex
of the polytope. However, in the case of an NP-hard problem, we cannot expect the polyhedron defining
the set of feasible solutions to have integer vertices. Thus, our task is to somehow transform the optimal
solution of the LP relaxation into a near-optimal integer solution.

A basic technique for obtaining approximation algorithms using LP is what we call LP rounding: i.e.,
solve the (relaxed) linear program and then convert the fractional solutions obtained (e.g., x; = 2/3) to
an integral solution (e.g., here x; = 1 seems more reasonable than x; = 0) trying of course to make sure
that the cost of the solution does not increase much in the process.

A natural idea for rounding an optimal fractional solution is to view the fractions as probabilities. Then
we can “flip coins” with these probabilities as biases, and round accordingly. So, the case “x; = 2/3,
obtained via LP, now leads to an experiment where “x; = 1 with probability 2/3 and 0 else.” This idea
is called randomized rounding. In the sequel, we present the method via an application to the set cover
problem. This application is also demonstrated in the book of Vazirani [1]. We try to be more thorough
here and provide details.

12.2.2 The Set Cover Problem

The set cover problem is one of the oldest known NP-complete problems (it generalizes the vertex cover
problem).

Problem SET COVER
Given is a universal set U of n elements and also a collection of subsets of U, S = {S;, S, ..., Sx}. Given
is also a cost function c: S — QT.

We seek to find a minimum cost subcollection of S that covers all the elements of U.

Note here that the cost of a subcollection of S, e.g., F = {S;;, ..., Sj; } is Z};’:l C(Sij ). Note also that
any feasible answer to the problem requires covering all of U, i.e., if F is a feasible answer, then we demand
that U)]‘: 1Si; = U. Define the frequency of an element of U to be the number of sets it is in.

Let us denote the frequency of the most frequent element by f. The various known approximation
algorithms for set cover achieve one of the two approximation factors O(log n) or f. The special case with
f = 2 1is, basically, the vertex cover problem in graphs (see Ref. [2]).
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12.2.3 The Set Cover as an Integer Program

To formulate the set cover problem as a problem in 0/1 ILP, let us assign a variable x(S;) for each set
S; € S. This variable will have the value 1 iff the set S; is selected to be in the set cover (and will have the
value 0 else).

Clearly, for each element « € U we want it to be covered, i.e., we want it to be in at least one of the
picked sets. In other words, we want, for each & € U that, at least one of the sets containing it is picked by
our candidate algorithm. These considerations give the following ILP program.

Set Cover ILP
Minimize 3¢ g c(Si)x(Si)
subject to:
Vo e U D g pes X(Si) =1
and x(S;) € {0, 1} forall S; € S.

The LP relaxation of this integer program can be obtained by replacing each “x(S;) € {0, 1}” with
“0 < x(S;) < 17 The reader can easily see that the upper bound on x(S;) is redundant here. So we get
the following linear program:

Set Cover Relaxation
Minimize ¢ g c(Si)x(S;)
subject to:
(WY e U 5 pes, x(Si) = 1
(2)VSie S x(Si) =0

Note 1: A solution to the above LP is a “fractional” set cover.

Note 2: A fractional set cover may be cheaper than the optimal (integral) set cover! To see this, let
U = {a, a3, a3} and S = {81, S, S3} with S; = {1, a3}, S = {2, a3} and S5 = {3, a1}, and let
c(Si) = 1,i =1, 2, 3. Any integral cover must pick two sets, for a cost of 2. However, if we pick each set
with x(S;) = 1/2, we satisfy all the constraints and the cost of the fractional cover obtained is 3/2.

Note 3: The LP dual (see, e.g., Ref. [3]) of the set cover relaxation is a “packing” LP: The dual tries
to pack the “material” into elements, trying to maximize the total amount packed, but no set must be
“overpacked” (i.e., the total amount of the material packed into the elements of the set should not exceed
its cost). The duality of covering—packing is a basic remark and has given lots of approximation results.

12.2.4 A Randomized Rounding Approximation to Set Cover

Let x(S;) = pi,i =1, ..., k bean optimal solution to the set cover relaxation program. Such a solution
can be found in polynomial time.

Now, for each S; € S, select S; with probability p;, independently of the other selections.

Note: We can do it via choosing (independently for each i) k values y, . .., yx randomly and uniformly
from the interval [0, 1]. Then, for i = 1to k, if y; € [0, p;], we select S;, otherwise we do not.

Let F be the collection of the selected sets via the experiment.

The expected cost of F is

E(cost(F)) = Z c(S;) - Prob{S; is selected}
S;eS
that is,

E(cost(F)) = Z c(Si) pi

SieS
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But{p;,i =1, ..., k}is the optimal solution to the set cover relaxation program, hence Zsies c(Si)pi
is the optimal (minimum) value. Let us denote it by OPTr (optimal for the relaxation).

Now let us examine whether F is a cover. For an o € U, suppose that o occurs in A sets of S. W.lo.g.,
let the probabilities of these sets in the optimal solution of the relaxation be pi, ..., py. Since all the
constraints are satisfied by the optimal solution, we get

pr+-+p>1 (12.1)
But
A
Prob{w is covered by F} =1 — H(l — pi)
i=1
Because of Eq. (12.1), the above expression becomes minimum when p; =--- = py = %, )

A
1 1
Prob{a is covered by F} > 1 — <1 — )\) >1—-
e

where e >~ 2.73 is the basis of the natural logarithms. The above analysis holds for any & € U.
We now repeat the part of the experiment where we pick the collection F, independently each time.
Let us pick the collections Fy, Fs, ..., F;. Let F = UleFi. So, foralla € U

~ 1\’
Prob{a is not covered by F} < (—)
e

By summing over all « € U we have

. 1\’
Prob{F is not a cover} < n (—) (12.2)
e
By selecting now t = log & n (with & > 4, a constant) we eventually get
- 1 1
Prob{F isnota cover} < n— = — (12.3)
4n 4

Having established that F is a cover with constant probability let us see its cost. Clearly,
E(c(F)) < OPTg - logén

Thus, by the Markov inequality (Prob{X > mE[X]} < 1/m, for x > 0) we get

- 1
Prob{c(F) > 40PTy - logén} < 1 (12.4)
Let A be the (undesirable) event: “F is not a valid cover or ¢(F) is at least 4OPT g log&n”
1 1 1
Prob(A) < — + - = — 12.5
rO()_4+4 5 (12.5)

Note that, given F, we can verify in polynomial time whether the negation of A holds. If it holds (this
happens with probability > 1/2) then we have an F which is (a) a valid set cover, (b) with cost at most
4log & n times above the OPTR.

Let OPT be the optimal cost of the integer program. Clearly OPTr < OPT hence, when A holds, we
have found a valid cover with an approximation ratio (w.r.t. the cost)

_ c(F) - c(F)
~ OPT ~ OPTg
Now, if A happens to hold, then we repeat the entire algorithm. The expected number of repetitions

needed to get a valid cover with R = ©(log n) is then at most 2.
We summarize all this in the following.

<4logén
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Theorem 12.1
The method of randomized rounding gives us in expected polynomial time a valid set cover with a cost

approximation ratio R = ©(log n).

Note: The algorithm presented here never errs (since we repeat it if F is not a valid cover of small cost).
The penalty is time, but it is small since the number of repetitions follows a geometric distribution.

12.2.5 A Remark in the Analysis

In the analysis of the last section we established Eq. (12.2) namely

t
- 1
Prob{F is not a cover} < n <>
e

where t is the number of collections selected independently. By using t = & log n with & > 2 we get

—2logn l
T on
with an expected cover cost of E(c(F)) < OPTg - &logn, i.e., E(c(F)) < OPT - 2log n.
If we are satisfied with a good expected cost, we can stop here. We get a valid cover with probability at
least 1 — % in one repetition and the expected cost is @ (OPT - log n).

Prob{F is not a cover} < ne

12.2.6 Literature Notes

For more information about set cover approximation via randomized rounding, see the excellent book
by Vazirani, Chapter 14. For a more advanced randomized rounding method for set cover see Ref. [4].
A quite similar method can be applied to the MAX-SAT problem (see Ref. [1], Chapter 16 or Ref. [5],
Chapter 7). Randomized rounding (actually the random projection method) has been also used together
with semidefinite programming to give an efficient approximation to the MAX-CUT problem and its
variations (see Ref. [1], Chapter 26) or the seminal work of Goemans and Williamson [6] who introduced
the use of semidefinite programs in approximation algorithms.

12.3 Approximate Counting Using the Markov Chain
Monte Carlo Method

The MCMC method is a development of the classic, well-known Monte Carlo method for approximately
estimating measures and quantities whose exact computation is a difficult task. In fact, the Monte Carlo
method expresses the quantity under evaluation (say x) as the expected value x = E(X) of a random
variable X, whose samples can be estimated efficiently. By taking the mean of a sufficiently large set of
samples, an approximate estimation of the quantity of interest can be obtained.

Jerrum [7] illustrates the use of the Monte Carlo method by a simple example: the estimation of the
area of the region of the unit square defined by a system of polynomial inequalities. To do this, points of
the unit square are randomly uniformly sampled, i.e., a point is chosen uniformly at random (u.a.r.) and
then it is tested whether it belongs to the region of interest (i.e., whether it satisfies or not all inequalities
in the system). The probability that a randomly chosen point belongs to the area under investigation (i.e.,
the expectation of a random variable indicating whether the chosen point satisfies all inequalities in the
system or not) is then an estimate of the area of the region of interest. By performing a sufficiently
long sequence of such trials and taking their sample mean, an approximate estimation is obtained. More
complex examples are the estimation of a size of a tree by sampling paths from its root to a leaf [8] and
the estimation of the permanent of a 0,1 matrix [9].

It is, however, not always possible to get such samples of the random variable used. The Markov chain
simulation can then be employed. The main idea of the MCMC method is to construct, for a random
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variable X, a Markov chain whose state space is (or includes) the range of X. The Markov chain constructed
should be ergodic, i.e., it converges to a stationary distribution 77, and this stationary distribution matches
the probability distribution of the random variable X. The desired samples can then be (indirectly) obtained
by simulating the Markov chain for sufficiently many steps T, from any fixed initial state, and by taking
the final state reached. If T is large enough, the Markov chain gets very close to stationarity and, thus, the
distribution of the samples obtained in this way is very close to the probability distribution of the random
variable X; the obtained samples are thus close to perfect and the approximation error will be negligible.

The estimation of a sufficiently large time T is important for the efficiency of the simulation. In contrast
to the classical theory of stochastic process that only studies the asymptotic convergence to the stationarity,
the MCMC method investigates the nonasymptotic speed of convergence and thus the computational
efficiency in practical applications of the simulation. The efficiency of an algorithm using the method
depends on how small the number of simulation steps T is. In efficient algorithmic uses of the MCMC
method with provable performance guarantees (not just heuristic applications), we require T to be small,
i.e., very much smaller than the size of the state space of the simulated space. In other words, we want the
Markov chain to get close to stationarity after a very short random walk on its state space. We call this time
the “mixing time” of the chain and we say that an efficiently converging chain is “rapidly mixing.”

Proving satisfactory upper bounds for the mixing time of the simulated Markov chain is in fact the
most interesting (nontrivial) point in the application of the MCMC method. Several analytical tools have
recently been devised, including the “canonical path” argument, the “conductance” argument, and the
“coupling” method. We here choose to illustrate the application of the “coupling” method in a particular
approximate counting problem, the problem of counting radiocolorings of a graph. For the other two
methods, the reader can consult Refs. [7 and 10].

The approximate counting problem is a general computing task of estimating the number of elements
in a combinatorial space. Several interesting counting problems turn out to be complete for the com-
plexity class #P of counting problems, and thus efficient approximation techniques become essential.
Furthermore, the problem of approximate counting is closely related to the problem of random sampling
of combinatorial structures, i.e., generating the elements of a very large combinatorial space randomly
according to some probability distribution. Combinatorial sampling problems have major computational
applications, including (besides approximate counting) applications in statistical physics and in combi-
natorial optimization.

12.3.1 Radiocolorings of Graphs

An interesting variation of graph coloring is the k-coloring problem of graphs, defined as follows ( D(u, v)
below denotes the distance of vertices u and v in a graph G).

Definition 12.1 k-Coloring Problem (Hale [11])

Given a graph G(V, E) find a function¢ : V — {1,..., oo} such thatV u,v € V,x € {0,1, ..., k}:
if D(u,v) = k — x+ 1 then |¢, — ¢y| = x. This function is called a k-coloring of G. Let |¢p(V)| = A.
Then A is the number of colors that ¢ actually uses (it is usually called order of G under ¢). The number
v = maxyevP(v) — min,evd(u) + 1 is usually called the span of G under ¢.

The problem of k-coloring graphs is well motivated by practical considerations and algorithmic appli-
cations in modern networks. In fact, k-coloring is a discrete version of the frequency assignment problem
(FAP) in wireless networks. Frequency assignment problem aims at assigning frequencies to transmitters
exploiting frequency reuse while keeping signal interference to acceptable levels. The interference between
transmitters are modeled by an interference graph G(V, E), where V(| V| = n) corresponds to the set
of transmitters and E represents distance constraints (e.g., if two neighbor nodes in G get the same or
close frequencies then this causes unacceptable levels of interference). In most real-life cases, the net-
work topology formed has some special properties, e.g., G is a lattice network or a planar graph. The
FAP is usually modeled by variations of the graph coloring problem. The set of colors represents the
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available frequencies. In addition, each color in a particular assignment gets an integer value which has
to satisfy certain inequalities compared to the values of colors of nearby nodes in G (frequency-distance
constraints). The FAP has been considered in Refs. [12-14]. Planar interference graphs have been studied
in Refs. [15,16].

We have studied the case of k-coloring problem, where k =2 called the radiocoloring problem (RCP).

Definition 12.2 RCP

Given a graph G(V, E) find a function ® : V. — N* such that |®(u) — ®(v)| > 2 if D(u, v) = 1 and
|®(u) — ®(v)| > 1if D(u, v) = 2. The least possible number A (order) needed to radiocolor G is denoted
by Xorder(G). The least possible number v = maxyev®(v) — mingey®(u) + 1 (span) needed for the
radiocoloring of G is denoted as Xspan(G).

Real networks reserve bandwidth (range of frequencies) rather than distinct frequencies. In this case,
an assignment seeks to use as small range of frequencies as possible. It is sometimes desirable to use as few
distinct frequencies of a given bandwidth (span) as possible, since the unused frequencies are available for
other use. Such optimization versions of the RCP are defined as follows.

Definition 12.3 Min Span RCP

The optimization version of the RCP that tries to minimize the span. The optimal span is called Xpap.

Definition 12.4 Min Order RCP

The optimization version of the RCP that tries to minimize the order. The optimal order is called X orger-

Fotakis et al. [17] provide an O(nA) algorithm that approximates the minimum order of RCP, Xy ey
of a planar graph G by a constant ratio which tends to 2 as the maximum degree A of G increases.

We study here the problem of estimating the number of different radiocolorings of a planar graph G. This
is a #P-complete problem. We employ here standard techniques of rapidly mixing Markov chains and the
new method of coupling for proving rapid convergence (see, e.g., Ref. [18]) and we present a fully polynomial
randomized approximation scheme (FPRAS) for estimating the number of radiocolorings with A colors for
a planar graph G, when A > 4A + 50.

Results on radiocoloring other types (periodic, hierarchical) of graphs can be found in [19-21].

12.3.2 Outline of Our Approach

Let G be a planar graph of maximum degree A = A(G) on vertexset V = {0, 1,...,n — 1} and C be
a set of A colors. Let @ : V — C be a (proper) radiocoloring assignment of the vertices of G. Such a
radiocoloring always exists if A > 2A + 25 and can be found by the O(nA) time algorithm provided in
Ref. [17].

Consider the Markov chain ( X;) whose state space R = Ry (G) is the set of all radiocolorings of G with
A colors and whose transition probabilities from state (radiocoloring) X; are modeled by

1. choosing a vertex v € V and a color ¢ € C uniformly at random (u.a.r.),
2. recoloring vertex v with color c. If the resulting coloring X’ is a valid radiocoloring assignment
thenlet X;y; = X', else X¢y1 = X;.

The procedure above is similar to the “Glauber dynamics” of an antiferromagnetic Potts model at zero
temperature, and was used in Ref. [18] to estimate the number of proper colorings of any low-degree graph
with k colors.

The Markov chain (X;), which we refer to in the sequel as M(G, 1), is ergodic (as we show below),
provided A > 2A + 26, in which case its stationary distribution is uniform over R. We show here that
M(G, 1) is rapidly mixing, i.e., converges, in time polynomial in n, to a close approximation of the
stationary distribution, provided that A > 2(2A 4 25). This can be used to get an FPRAS for the number
of radiocolorings of a planar graph G with A colors, in the case where A > 4A + 50.

© 2007 by Taylor & Francis Group, LLC



12-8 Handbook of Approximation Algorithms and Metaheuristics

12.3.3 The Ergodicity of the Markov Chain M(G, 1)

For t € Nlet P': R2 — [0, 1] denote the t-step transition probabilities of the Markov chain M(G, 1)
so that P'(x, y) = Pr{X, = y|Xo = x}, Vx, y € R. It is easy to verify that M(G, 1) is (a) irreducible
and (b) aperiodic. The irreducibility of M(G, A) follows from the observation that any radiocoloring x
may be transformed to any other radiocoloring y by sequentially assigning new colors to the vertices V in
ascending sequence; before assigning a new color c¢ to vertex v it is necessary to recolor all vertices u > v
that have color c. If we assume that A > 2A + 26 colors are given, removing the color ¢ from this set, we are
left with > 2A 425 for the coloring of the rest of the graph. The algorithm presented in Ref. [17] shows that
the remaining graph can by radiocolored with a set of colors of this size. Hence, color ¢ can be assigned to v.

Aperiodicity follows from the fact that the loop probabilities are P(x, x) # 0, Vx € R.

Thus, the finite Markov chain M(G, 1) is ergodic, i.e., it has a stationary distribution 7 : R — [0, 1]
such that lim;— o0 P'(x, y) = 7(y), Vx, y € R.Nowif r’ : R — [0, 1] is any function satisfying “local
balance,” i.e., 7'(x) P(x, y) = 7'(y)P(y, x) thenif > _p7'(x) = 1 it follows that 7 is indeed the
stationary distribution. In our case P(y, x) = P(x, y), thus the stationary distribution of M(G, 1) is
uniform.

12.3.4 Rapid Mixing

The efficiency of any approach like this to sample radiocolorings crucially depends on the rate of con-
vergence of M(G, X) to stationarity. There are various ways to define closeness to stationarity but all are
essentially equivalent in this case and we will use the “variation distance” at time ¢ with respect to initial
vertex x:

1
8x(1) = rggglPt(x’ ) —x(8)| =3 §R |P(x, y) = 7 (y)]
ye

where P!(x, S) = Z)/ES P'(x, y)and (S) = oo (x).

Note that this is a uniform bound over all events S C R of the difference of probabilities of event S
under the stationary and t-step distributions.

The rate of convergence to stationarity from initial vertex x is

7.(€) = min{t : 8.(¢) <€,V >t}

Our strategy is to use the coupling method, i.e., construct a coupling for M = M(G, 1), i.e., a stochastic
process (X;, Yy) on R x R such that each of the processes (X;), (Y:), considered in isolation, is a faithful
copy of M. We will arrange a joint probability space for (X;), (Y7) so that, far from being independent, the
two processes tend to coupleso that X; = Y, for tlarge enough. If coupling can occur rapidly (independently
of the initial states Xy, Yp), we can infer that M is rapidly mixing, because the variation distance of M
from the stationary distribution is bounded above by the probability that (X;) and (Y;) have not coupled
by time ¢.

The key result we use here is the Coupling Lemma (see Ref. [22] and Chapter 4 by Jerrum [7]), which
apparently makes its first explicit appearance in the work of Aldous [23], Lemma 3.6 (see also Diaconis
[24], Chapter 4, Lemma 5).

Lemma 12.1

Suppose that M is a countable, ergodic Markov chain with transition probabilities P (-, -) and let (X, Yr),
t € IN) be a coupling of M. Suppose further that t : (0, 1] — IN is a function such that Pr(Xye) # Yie)) <
€, Ve € (0, 1], uniformly over the choice of initial state ( Xy, Yo). Then the mixing time T (€) of M is bounded
above by t(€). S

The transition (X;, Y;) = (X¢41, Yi41) in the coupling is defined by the following experiment:

(1) Selectv € Vu.a.r.
(2) Compute a permutation g(G, Xy, Y¢) of C according to a procedure to be explained below.
(3) Choosea color ¢ € C u.a.r.
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(4) In the radiocoloring X; (respectively Y;) recolor vertex v with color ¢ (respectively g(c)) to get a
new radiocoloring X’ (respectively Y’).

(5) If X’ (respectively Y') is a (valid) radiocoloring then X;+; = X’ (respectively Y;41 = Y7), else let
Xi+1 = X; (respectively Y1 = Yy).

Note that whatever procedure is used to select the permutation g, the distribution of g(c) is uniform,
thus (X¢) and (Y;) are both faithful copies of M.

We now remark that any set of vertices F € V can have the same color in the graph G? only if they can
have the same color in some radiocoloring of G. Thus, given a proper coloring of G2 with A’ colors, we
can construct a proper radiocoloring of G by giving the values (new colors) 1, 3, ..., 21" — 1 in the color
classes of G2. Note that this transformation preserves the number of colors (but not the span).

Now let A = A; C V be the set of vertices on which the colorings of G? implied by X;, Y; agree and
Dim = D; C V be the set on which they disagree. Let d’(v) be the number of edges incident at v in G>
that have one point in A and one in Dim. Clearly, if #' is the number of edges of G? spanning A, D, we
get ZUGA d'(v) = ZUGD d'(v)=m.

The procedure to compute g(G, Xy, Y) is as follows:

(a) If v € D then g is the identity.

(b) Ifv € Athen proceed as follows: Denote by N the set of neighbors of v in G2. Define C,, € C to be
the set of all colors ¢, such that some vertex in N receives ¢ in radiocoloring Y; but no vertex in N
receives ¢ in radiocoloring Y;. Let Cy, be defined as C, with the roles of Xy, Y; interchanged. Observe
CxN Cy=@and|Cyl, |Cy| < d'(v). Let, wlo.g., |Cx| < |Cy|. Choose any subset C;, C C, with
|C;,| < |Cx|andlet Cyx = {c1, ..., ¢r ), C’y = {c], ..., ¢;} beenumerations of Cx, C,s coming from
the orderings of X;, Y;. Finally, let g be the permutation (cy, ¢}), ..., (¢, c.), which interchanges
the color sets Cx, C, and leaves all other colors fixed.

It is clear that | Dyy1| — | Dy| € {—1, 0, 1}.

(i) Consider first the probability that | Dy | = | D¢|+ 1. For this event to occur, the vertex v selected in
step (1) of the procedure for g must lie in A and hence we follow (b). If the new radiocolorings are to
disagree at vertex v then the color ¢ selected in line (3) must be an element of C,,. But |C,| < d'(v)

hence
1 d (v) m
Pr{| D =|D 1} < — = 12.6
Dl =D+ 1)< =) —— = — (12.6)
veEA
(ii) Now consider the probability that | D;11| = | D¢| — 1. For this to occur, the vertex v must lie in

Dim and hence the permutation g selected in line (2) is the identity. For X;41, Yi+1 to agree at v,
it is enough that color ¢ selected in step (3) is different from all the colors that X;, Y; imply for the
neighbors of v in G2. The number of colors ¢ that satisfy this is (by our previous results) at least
A —2(2A +25) + d'(v) hence,

Pr{lDt+1| = |Dt| — 1}

\%

1 Z A —202A 425) + d'(v)
n

A
veD

A —2(2A +25 /
L RZ20QAFB) (12.7)
An An

_ A=2(2A+425) _
Deﬁnenowa_i)\n and,B_M.So

Pr{|Diy1| = |Di| + 1} < B

and Pr{| Dry1| = [ D¢ — 1} = a| D¢ + B
Given o > 0,1.e. A > 2(2A + 25), from Eq. (12.6) and Eq. (12.7), we get

E(ID1D) = BUDil + 1) + (| Del 4+ B)(IDe| — 1) 4+ (1 — | Di| — 28)| Dy
= (1 —a)| Dyl
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Thus, from Bayes, we get E(| Di+1]) < (1 — @)f|Do| < n(1 — )’
and since | Dy| is a nonnegative random variable, we get, by the Markov inequality, that

Pr{D; # 0} < n(1 — )’ < ne™®*
So, we note that, V € > 0, Pr{D; # (0} < € provided that t > al In (g) thus proving Theorem 12.2.

Theorem 12.2

Let G be a planar graph of maximum degree A on n vertices. Assuming A > 2(2A + 25) the convergence time
7(€) of the Markov chain M(G, A) is bounded above by

A n
W€ = oAy M (E)

regardless of the initial state x. O

12.3.5 An FPRAS for Radiocolorings with A Colors
We first provide the following definition.

Definition 12.5

A randomized approximation scheme for radiocolorings with A colors of a planar graph G is a probabilistic
algorithm that takes as input the graph G and an error bound € > 0 and outputs a number Y (a random
variable) such that

Pr{(1—¢€) [R(G) =Y = (1+6€)|R(G)]} =

B~ W

Such a scheme is said to be fully polynomial if it runs in time polynomial in n and € ~'. We abbreviate such
schemes to FPRAS.

The technique we employ is as in Ref. [18] and is fairly standard in the area. By using it we get the
following theorem.

Theorem 12.3
There is an FPRAS for the number of radiocolorings of a planar graph G with A colors, provided that ). >
2(2A + 25), where A is the maximum degree of G.

Proof
Recall that R; (G) is the set of all radiocolorings of G with X colors. Let m be the number of edges in G
and let

G=Gu2Gm-12--2G1 2 Gy

be any sequence of graphs where G;_ is obtained by G; by removing a single edge. We can always erase
an edge whose one node is of degree at most 5 in G;. Clearly
(G = LRHGWI IRAGyn)] IRA(G )
[Ru(Gm—1)|  |R(Gp—2)] [ Ry (Go)
But | Ry (Gy)| = A" for all kinds of colorings. The standard strategy is to estimate the ratio
RG]
C RG]

| R (Go)l

foreachi, 1 <i < m.

Suppose that graphs G;, G;_; differ in the edge {u, v}, which is present in G; but notin G;_;. Clearly,
Ry (Gi) € Ru(Gji—1). Any radiocoloring in Ry (G;i—1)\ Ry (G;) assigns either the same color to u, v or
the color values of u, v differ by only 1. Let deg(v) < 5 in G;. So, we now have to recolor u with one of
at least A — (2A 4+ 25), i.e., at least 2A + 25, colors (from Section 5 of Ref. [18]). Each radiocoloring of
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R).(G;) can be obtained in at most one way by our algorithm of the previous section as the result of such

a perturbation, thus
1 2A 425
- < 7_'— <p;i < 1 (128)
2= 2(A+1)+25

To avoid trivialities, assume 0 < € < 1, n > 3and A > 2.
Let Z; € {0, 1} be the random variable obtained by simulating the Markov chain M(G;_1, 1) from any

certain fixed initial state for
A 4dnm
T=———mnln|—
A —2(2A +25) €

steps and returning to 1 if the final state is a member of R, (G;) and O else. Let u; = E(Z;). By our theorem
of rapid mixing, we have

Pi 4m_M1_Pl am

and by Eq. (12.8), we get

Note that E(Y) = A"z - - - iom. But

Var(y) < YAz D) 11 (1 + Var(zi)) ~1

(mipa -+ m)? w?

i=1

By using standard techniques (as in Ref. [18]) one can easily show that Y satisfies the requirements for an
FPRAS for the number of radiocolorings of graph G with A colors | Ry (G)|. O
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13.1 Introduction

The spread of computer networks, from sensor networks to the Internet, creates an ever-growing need
for efficient distributed algorithms. In such scenarios, familiar combinatorial structures such as spanning
trees and dominating sets are often useful for a variety of tasks. Others, like maximal independent sets,
turn out to be a very useful primitive for computing other structures. In a distributed setting, where
transmission of messages can be orders of magnitude slower than local computation, the expensive resource
is communication. Therefore, the running time of an algorithm is given by the number of communication
rounds that are needed by the algorithm. This will be made precise below.

In what follows we will survey a few problems and their solutions in a distributed setting: dominating
sets, edge and vertex colorings, matchings, vertex covers, and minimum spanning trees. These problems
were chosen for a variety of reasons: they are fundamental combinatorial structures; computing them is
useful in distributed settings; and they serve to illustrate some interesting techniques and methods.

Randomization, whose virtues are well known to people coping with parallel and distributed algorithms,
will be a recurrent theme. In fact, only rarely it has been possible to develop deterministic distributed
algorithms for nontrivial combinatorial optimization problems. Here, in the section on vertex covers, we
will discuss a novel and promising approach based on the primal-dual methodology to develop efficient,
distributed deterministic algorithms. One of the main uses of randomization in distributed scenarios
is to break the symmetry. This is well illustrated in Section 13.2. discussing dominating sets. Often,
the analysis of simple randomized protocols requires deep results from probability theory. This will be
illustrated in Section 13.3, where martingale methods are used to analyze some simple, and yet almost
optimal, distributed algorithms for edge coloring. The area of distributed algorithms for graph problems
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is perhaps unique in complexity theory because it is possible to derive several nontrivial absolute lower
bounds (that is, not relying on special complexity assumptions such as P # NP). This will be discussed in
Section 13.6.

Let us then define the computation model. We have a message-passing, synchronous network: vertices
are processors, edges are communication links, and the network is synchronous. Communication proceeds
in synchronous rounds: in each round, every vertex sends messages to its neighbors, receives messages from
its neighbors, and does some amount of local computation. It is also assumed that each vertex has a unique
identifier. In the case of randomized algorithms each node of the network has access to its own source of
random bits. In this model, the running time is the number of communication rounds. This will be our notion
of “time.” As remarked, this is a very reasonable first approximation since typically sending a message is
orders of magnitude slower than performing local computation.

Although we place no limits on the amount of local computation, the algorithms we describe perform
polynomial-time local computations only. Under the assumption that local computations are polynomial
time several of the algorithms that we describe are “state of the art,” in the sense that their approximation
guarantee is the same, or comparable, to that obtainable in a centralized setting. It is remarkable that this
can be achieved in a distributed setting.

The model is in some sense orthogonal to the Parallel Random Access Machine (PRAM) model for
parallel computation where a set of polynomially many, synchronous processors access a shared memory.
There communication is free: any two processors can communicate in constant time via the shared memory.
In the distributed model, in contrast, messages are routed through the network and therefore the cost of
sending a message is at least proportional to the length of the shortest path between the two nodes. On the
other hand, local computation is inexpensive, while this is the expensive resource in the PRAM model.

Note that there is a trivial universal algorithm that always works: The network elects a leader which
then collects the entire topology of the network, computes the answers, and notifies them to the other
nodes. This will take a time proportional to the diameter of the network, which can be as large as n,
the number of nodes. In general, we will be looking for algorithms that take polylogarithmically, in n,
many communication rounds, regardless of the diameter of the network. Such algorithms will be called
efficient.

Note the challenge here: if a protocol runs for ¢ rounds then each processor can receive messages from
nodes at distance at most . For small values of ¢ this means that the network is computing a global function
of itself by relying on local information alone.

13.2 Small Dominating Sets

In this section we study the minimum dominating set (MDS) problem. The advent of wireless networks
gives a new significance to the problem since (connected) dominating sets are the structure of choice to set
up the routing infrastructure of such ad hoc networks, the so-called backbone (see, for instance, Ref. [1]
and references therein). In the sequel we describe a nice algorithm from Ref. [2] for computing small
dominating sets. The algorithm is in essence an elegant parallelization of the well-known greedy heuristic
for set cover [3,4]. Randomness is a key ingredient in the parallelization. The algorithm computes, on any
input graph, a dominating set of size at most O(log A)opt, where as customary A denotes the maximum
degree of the graph and opt is the smallest size of a dominating set in the input graph. By “computing
a dominating set” we mean that at the end of the protocol every vertex decides whether it is in the
dominating set or not. The algorithm was originally developed for the PRAM model but, as we will show,
it can be implemented distributively. It is noteworthy that the approximation bound is essentially the “best
possible” under the assumption that every node performs a polynomially bounded computation during
every round. “Best possible” means that there exists a constant ¢ > 0 such that a ¢ log n-approximation
would imply that P = NP [5], while a (¢ In n)-approximation, for a constant ¢ < 1, would imply that NP
could be solved exactly by means of slightly superpolynomial algorithms [6,7].
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We shall then describe a surprisingly simple deterministic algorithm that, building on top of the domi-
nating set algorithm, computes a “best possible” connected dominating set, in O(log n) additional com-
munication rounds [8].

There are other nice algorithms to compute dominating sets efficiently in a distributed setting. The
algorithm in Ref. [9] is a somewhat different parallelization of the greedy algorithm, while Ref. [10]
explores an interesting trade-off between the number of rounds of the algorithm and the quality of the
approximation that it achieves. This paper makes use of LP-based methods, an issue that we will explore
in Section 13.5.

13.2.1 Greedy

Let us start by reviewing the well-known greedy heuristic for set cover. Greedy repeatedly picks the set of
minimum unit cost, creating a new instance after every choice by removing the points just covered. More
formally, let (X, F, ¢) be a set cover instance, where X is a ground set of elements and F := {S;:S; €
X, i € [m]} is a family of nonempty subsets of X with positive costs ¢(S) > 0. The goal is to select a
subfamily of minimum cost that covers the ground set. The cost of a subfamily is the sum of the costs of
each set in the subfamily.

Dominating set is a special case of set cover. A graph G with positive weights c(u), u € V(G), can be
viewed as a set system {S, : u € V(G)} with S, := N(u) U {u}, where N(u) is the set of neighbors of ,
and ¢(S,) = c(u).

Given a set cover instance I := (X, F, ¢), let c(e) := mingcscF % be the cost of the element e € X.
This is the cheapest way to cover e where we do the accounting in the following natural way: when we pick
a set, its cost is distributed equally to all elements it covers. An algorithm A may pick a certain set S’ at
this stage, then in this accounting scheme, each element e € S’ pays the price p(e) := C|(SS’/|) . Once set s’ is
picked, we create a new instance I’ with ground set X’ := X — § and set system F’ whose sets are defined
as 8, == §; — S. The new costs coincide with the old ones: ¢(S') = ¢(S), for all S € F’. The algorithm
continues in the same fashion until all elements are covered.

Greedy selects a set S at each stage that realizes the minimum unit cost, i.e., p(e) = c(e) at each stage.
In other words, greedy repeatedly selects the set that guarantees the smallest unit price. For the discussion
to follow concerning the distributed version of the algorithm it is important to notice that each element

e is assigned a price tag p(e) only once, at the time when it is covered by greedy. For a subset A C X, let
g(A) =5 cea P(e). Then g(X), the sum of the unit prices, is the total cost incurred by greedy. The crux
of the analysis is the next lemma.

Lemma 13.1

For any set S, g(S) < His|c(S) where H := 1 + % + % + -+ % is the kth harmonic number.

Proof

Sort the elements of S according to the time when they are covered by greedy, breaking ties arbitrarily.

Let ej, e, - - -, ek be this numbering. When greedy covers e; it must be that p(e;) < % The claim
follows. O

Clearly we have that g(AU B) < g(A) 4+ g(B). Denoting with C* an optimal cover, we have, by
Lemma 13.1,

g(X) = g(Usec+S) < Z g(8) = Z Hise(S) < msaxH\S| Z c(8) < msaxH|5|0pt
SeC* Sec* Sec*

It is well known that log k < Hi < log k + 1. In the case of the dominating set the bound becomes
g(X) < Hayq10pt = O(log A)opt

where A is the maximum degree of the graph.
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FIGURE 13.1 Example of lower-bound graph for k = 6. The number of nodes is n = k(k + 1)/2 = @(k?). The
bottom nodes are selected by greedy, one by one from left to right. The number of rounds is k — 1.

13.2.2 Greedy Hordes

We now proceed to parallelize greedy. Figure 13.1 shows that the number of steps taken by greedy can be
Q(4/n). The problem lies in the fact that at any stage there is just one candidate set that gives the minimum
unit cost ¢. It is to get around this problem that we introduce the following notion. A candidate is any set
S such that

¢ < ﬂ <2¢ (13.1)
S|
Let us modify greedy in such a way that, at any step, it selects any set satisfying this condition. With this
modification, the solution computed by greedy will still be at most O(log #)opt since the algorithm pays
at most twice the smallest unit price the overall we lose only a factor of 2 in the approximation.

Suppose now that the algorithm is modified in such a way that it adds to the solution all candidates
satisfying Eq. (13.1). With this modification, the graphs of Figure 13.1 will be covered in O(log n) steps.
But as the example of the clique shows (all the nodes are selected) this increase in speed destroys the
approximation guarantee. This is because the key requirement of the sequential greedy procedure is
violated. In the sequential procedure, the price p(e) is paid only once, at the time when e is covered. If we
do things in parallel we need to keep two conflicting requirements in mind: picking too many sets at once
can destroy the approximation guarantee, but picking too few can result in slow progress. And we must
come up with a charging scheme to distribute the costs among the elements in a manner similar to the
sequential case.

Rajagopalan and Vazirani solved this problem by devising a scheme that picks enough sets to make
progress but at the same time retains the parsimonius accounting of costs like in the sequential version.
Specifically, for every set S selected by greedy, the cost ¢(S) will be distributed among the elements of a
subset T C S of at least | S|/4 elements. Crucially, the elements of T will be charged only once. If we can
do this then we will lose another factor of 4 in the approximation guarantee with respect to greedy, all in
all losing a factor of 8.

The scheme works as follows: line up the candidate sets satisfying Eq. (13.1) on one side and all the
elements on the other. The elements are thought of as voters and cast their vote for one of the candidate
sets containing them by an election. An election is conducted as follows:

+ A random permutation of the candidates is computed.

+ Among all the candidate sets that contain it, each voter votes for that set which has the lowest
number in the permutation.

« A candidate is elected if it obtains at least % of the votes of its electorate. Elected candidates enter
the set cover being constructed.

The cost of the set can now be distributed equally among the elements that voted for it, i.e., at least a
quarter of the elements.

Let us now describe the distributed implementation of this scheme in the specific case of the set system
corresponding to the dominating set problem. During the execution nodes can be in four different states:

+ They can be free. Initially all vertices are free.
+ They can be dominated.

© 2007 by Taylor & Francis Group, LLC



Distributed Approximation Algorithms via LP-Duality and Randomization 13-5

+ They can be dominators. Dominators are added to the dominating set and removed from the graph.
+ They can be out. Vertices are out when they are dominated and have no free neighbors. These
vertices are removed from the graph since they can play no useful role.

The algorithm is a sequence of log A phases during which the following invariant is maintained, with high
probability. At the beginning of phase i,i = 1, 2, ..., log A, the maximum degree of the graph is at most
A /21~ The candidates during phase i are all those vertices whose degree is in the interval (A /27, A /2171]
i.e., they satisfy condition (13.1). Note that candidates can be free or dominated vertices. The voters are
those free nodes that are adjacent to a candidate. This naturally defines a bipartite graph with candidates
on one side, voters on the other, and edges that represent domination relationships. Each phase consists
of a series of O(log n) elections. A free vertex can appear on both sides, since a free vertex can dominate
itself. We shall refer to the neighbors of a candidate ¢ in the bipartite graph as the electorate of ¢, and
to the neighbors of a voter v as the pool of v. Elections are carried out and elected candidates enter the
dominating set.

Step 1 of each election seems to require global synchronization, but a random permutation can be
generated if the value of 7 is known. If each element picks a random number between 1 and n* then with
probability 1 — 1/ 15~ all choices will be distinct. Thus, the probability that there is a collision is negligible
during the entire execution of the algorithm.

After every election, nodes are removed for two different reasons. Elected nodes disappear from the
candidate side of the bipartition, while their neighbors disappear from the other side since they are no
more free. In the analysis we will show that after one election the expected number of edges that disappear
from the bipartite graph is a constant fraction of the total. This automatically implies that the total number
of elections to remove all edges from the graph is O(log n) with overwhelming probability. More precisely,
for any ¢ > 0 there is @ > 0 such that, the probability that the bipartite graph is nonempty after « log n
elections is at most n~¢ [11,12]. It follows that & can be chosen in such a way that the probability that
some phase does not end successfully is negligible.

A voter v is influential for a candidate ¢ if at least % of the voters in ¢’s electorate have degree no greater
than that of v. Let d(v) denote the degree of v.

Lemma 13.2
For any two voters v and w, d(v) > d(w), in c’s electorate, Pr[w votes ¢ | v votes c] > %
Proof

Let Np denote the number of neighbors that v and w have in common, let N, the number of neighbors of
v that are not neighbors of w, and N,, the number of neighbors of w that are not neighbors of v. Then,
Pr{w votes c, v votes c]| N, + Ny

Pr[w votes ¢ | v votes c] = — >
Pr[v votes c] N, + Ny + N,

1 0
2
Lemma 13.3

Let v be an influential voter for c. Then, Pr[c is elected | v votes c] > %.

Proof
Let X := (# votes for ¢) and Y := ¢ — X where, with abuse of notation we use ¢ to denote the size of ¢’s
electorate. Then, by Lemma 13.2

c

o | W

E[X | v votes c] > Z Pr[w votes ¢ | v votes c] >
w:d(w)<d(v)
Applying Markov’s inequality to Y we get

Pr[c not elected | v votes ¢] = Pr[X < ¢/4 | v votes c] = Pr[Y > 3¢/4 | v votes c]
- 4 E[Y | v votes c] _ 4(c — E[X | v votes c])
- 3¢ 3¢
The claim follows. O

5
< =
6
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Lemma 13.4
Fix a phase and let m denote the total number of edges in the bipartite graph at any stage in this phase. Let X
denote the number of edges removed from the bipartite graph after one election. Then, E[X] > 7.

Proof
An edge vc is good if v is influential for ¢. By definition, at least % of the edges are good. Then,

E[X] = Z Pr[c is elected, v votes c]d(v)

vce

Z Pr[c is elected, v votes c]d(v)

ve good

Z Pr{v votes c] Pr[c is elected | v votes c]d(v)

ve good

Z Pr{c is elected | v votes c]

ve good

v

v

" byL 13.3
54 DyLlemmal3. 0

As remarked, this lemma implies that, with high probability, O(log n) rounds are sufficient for every
phase. Theresulting running timeis O(log nlog A) communication rounds, while the approximation guar-
antee is O(log A). Vertices must know 7 to compute a permutation and to run the correct number of elec-

v

tions, and they mustknow A to decide whether they are candidates at the current phase. Alternatively, if only
the value of # is known, the algorithm can execute O(log 1) phases, for a total of O(log2 n) many rounds.

13.2.3 Small Connected Dominating Sets

In this section we develop an efficient distributed algorithm for computing “best possible” connected
dominating sets. Again, by this we mean that the protocol computes a connected dominating set of size
at most O(log A) times the optimum. Nowadays, connected dominating sets are quite relevant from
the application point of view since they are the solution of choice for setting up the backbones of self-
organizing networks such as ad hoc and sensor networks (see Ref. [1] and references therein). A backbone
is a subnetwork that is in charge of administering the traffic inside a network.

What is remarkable from the algorithmic point of view is that connectivity is a strong global property,
and yet we will be able to obtain it by means of a distributed algorithm that relies on local information
alone. The overall strategy can be summarized as follows:

+ Compute a small dominating set.
+ Connect it up using a sparse spanning network.

We saw in the previous section how to take care of step 1. To connect a dominating set we can proceed
as follows. Let D be the dominating set in the graph G created after step 1. Consider an auxiliary graph
H with vertex set D and where any two u, v € D that are at distance 1, 2, or 3 in G are connected by an
edge in H. It is easy to see that H is connected if G is (which we assume). Every edge in H corresponds
to a path with 0, 1, or 2 vertices in G. If we inserted all such vertices we would still have a dominating
set, since adding vertices can only improve domination. The resulting set would however be too large in
general, since H can have as many as | D|? edges, each contributing with two vertices. The best way to
connect D up would be to compute a spanning tree T If we could do this, adding to D all vertices lying on
paths corresponding to the edges of T, we would obtain the desired approximation since E(T) = |D| — 1
and recalling that |D| is a O(log A)-approximation. Therefore, denoting with D* and C* an optimal
dominating and connected dominating set, respectively, we would have (with some abuse of notation)
that |[D U V(T)| < 3|D| < O(log A)| D*| < O(log A)|C*|.

The problem however is that, as we discuss in Section 13.6.1, computing a spanning tree takes time
Q(4/n). In what follows we show a very simple algorithm that computes, in O(log|V(G)|) many
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communication rounds, a network S C H such that (a) S is connected, (b) |E(S)| = O(|D]), and
(c) V(S) = D. In words, S is a sparse connected network that spans the whole of D with linearly many
edges. If we can compute such an S than we will have a connected dominating set of size at most O(log A)
times the optimum. S will not be acyclic but this is actually a positive thing since it makes S more resilient
to failures. In fault-prone environments such as ad hoc and sensor networks this kind of redundancy is
actually very useful. The key to computing S is given by the following lemma (see, for instance Ref. [13,
Lemma 15.3.1]). Recall that the girth of a graph G is the length of the shortest cycle in G.

Lemma 13.5
Let G = (V, E) be a graph of girth g, and let m := |E| and n := | V|. Then, m < n + nlt2/(g=1),

Proof

Assume ¢ = 2k + 1 and let d := Z*. Consider the following procedure. As long as there is a vertex whose
degree is less than d, remove it. Every time we remove a vertex the new minimum degree is at least as large
as the old one. Therefore, this procedure ends with a graph whose minimum degree is at least d. Now pick
any vertex in this graph and start a breadth first search. This generates a tree in which the root has at least
d children and every other node has at least d — 1 children. Moreover, assigning level 0 to the root, this
tree is a real tree up to and including level k — 1, i.e., no two vertices of this Breadth-First Search (BFS)
exploration coincide up to that level. Therefore,

n>1+d+dd—1)+--4dd—1D1>(d -1k
Recalling the definition of d, the claim follows. The proof for the case ¢ = 2k is analogous. O

Note that if g = 2log n+ 1 then m < 3n. Define a cycle to be smallif it is of length at most 2 log n + 1.
The following amazingly simple protocol removes all small cycles while, crucially, preserving connectivity:

+ If an edge is the smallest in some small cycle, it is deleted.

Assume that every edge in the graph has a unique identifier. An edge is smaller than another edge if its
identifier is smaller than that of the other edge. It is clear that every small cycle is destroyed. The next
lemma shows that connectivity is preserved.

Lemma 13.6

The above protocol preserves connectivity.

Proof

Sort the edges by increasing IDs and consider the following sequential procedure. At the beginning all
edges are present in the graph. At step i edge e; is considered. If ¢; is in a small cycle then it is removed. This
breaks all small cycles and preserves connectivity, since an edge is removed only when there is another path
connecting its endpoints. The claim follows by observing that the sequential procedure and the distributed
protocol remove the same set of edges. O

To implement the protocol we only need to determine the small cycles to which an edge belongs. This
can be done by a BFS of depth O(log n) starting from every vertex. If edges do not have distinct IDs to start
with they can be generated by selecting a random number in the range [#2°], which ensures that all IDs are
distinct with overwhelming probability. This requires the value of # or m to be known. This sparsification
technique appears to be quite effective in practice [1].

13.3 Coloring: The Extraordinary Career of a Trivial Algorithm

Consider the following sequential greedy algorithm to color the vertices of an input graph with A 41
colors, where A is the maximum degree: pick a vertex, give it a color not assigned to any of its neighbors;
repeat until all vertices are colored. In general, A can be quite far from the optimal value x (G) but it
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should not be forgotten that the chromatic number is one of the most difficult combinatorial problems to
approximate [14-16].

In this section we will see how efficient distributed implementations of this simple algorithm lead to
surprisingly strong results for vertex and especially edge coloring. Consider first the following distributed
implementation. Each vertex u is initially given a list of colors L, := {1, 2, ..., A 4+ 1}. Computation
proceeds in rounds, until the graph is colored. One round is as follows: each uncolored vertex u picks a
tentative color t, € L,; if no neighboring vertex has chosen the same tentative color, f, becomes the final
color of u, and u stops. Otherwise L, is updated by removing from it all colors assigned to neighbors of
u at the current round. We shall refer to this as the trivial algorithm. It is apparent that the algorithm is
distributed.

The trivial algorithm is clearly correct. An elementary, but nontrivial analysis shows that the probability
that an uncolored vertex colors itself in one round is at least i [17]. As we discussed in the previous section,
this implies that the algorithm will color the entire network within O(log n) communication rounds, with
high probability.

The following slight generalization is easier to analyze. At the beginning of every round, uncolored
vertices are asleep and wake up with probability p. The vertices that wake up execute the round exactly as
described earlier. At the end of the round, uncolored vertices go back to sleep. In other words, the previous
algorithm is obtained by setting p = 1. In the sequel we will refer to this generalization as the (generalized)
trivial algorithm. Luby analyzed this algorithm for p = % [18]. Heuristically, it is not hard to see why the
algorithm makes progress in this case. Assume u is awake. The expected number of neighbors of u that
wake up is d(u)/2 < |L,|/2.

In the worst case, these neighbors will pick different colors and all these colors will be in L. Even then,
u will have probability at least % to pick a color that creates no conflict. Thus, with probability % a vertex
wakes up and, given this, with probability at least % it colors itself. The next proposition formalizes this
heuristic argument.

Proposition 13.1

When p = % the probability that an uncolored vertex colors itself in one round is at least %.

Proof
Let t,, denote the tentative color choice of a vertex u.

Pr[u does not color | u wakes up] = Pr[3v € N(u) t, = t,| u wakes up]
< Z Pr(t, = t, | uwakes up]

ve N(u)

= Z Pr[t, = t, | uand v wake up]Pr[v wakes up]
ve N(u)

=2 |LLmLLUgE 2 L1 %E%
S LT 2= 4 L

Therefore,
1
Pr[u colors itself] = Pr[u colors itself | u wakes up]Pr[u wakes up] > 1 0

Note that the trivial algorithm works just as well if the lists are initialized as L,, := {1, 2, ..., d(u) + 1},
for all u € V(G), for any value of p > 0. Interestingly, in practice, with p = 1 the trivial algorithm is
much faster than Luby’s one. In fact, experimentally, the speed of the algorithm increases regularly and
monotonically as p tends to 1 [19].

In the distributed model we can simulate the trivial algorithm for the line graph with constant-time
overhead. In this case, the algorithm will be executed by the edges rather than the vertices, each edge e
having its own list L. In this fashion we can compute edge colorings that are approximated by a factor of 2
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(since 2A — 1 colors are used). It is a challenging open problem whether an O(A)-approximation can be
computed deterministically in the distributed model. The best known result so far is an O(A logn)-
approximation [20]. But the real surprise is that the trivial algorithm computes near-optimal edge
colorings!

Vizing’s theorem shows that every graph G can be edge colored sequentially in polynomial time with A
or A + 1 colors (see, for instance, Ref. [21]). The proof is in fact a polynomial-time sequential algorithm
for achievinga A + 1 coloring. Thus edge coloring can be well approximated. It is a very challenging open
problem whether colorings as good as these can be computed fast in a distributed model.

If the edge lists L.’s are initialized to contain just a bit more than A colors, say |L.| = (1 + €)A for
all e, then the trivial algorithm will edge color the graph within O(log #) communication rounds. Here
€ can be any fixed, positive constant. Some lists can run out of colors and, consequently, the algorithm
can fail, but this happens with a probability that goes to 0 as n, the number of vertices, grows. All this is
true, provided that the minimum degree §(G) is large enough, i.e., §(G) > logn [22,23]. For A-regular
graphs the condition becomes A > log n.

In fact, the trivial algorithm has in store more surprises. If the input graph is A-regular and has no
triangles, it colors the vertices of the graph using only O(A /log A) colors. This is in general optimal, since
there are infinite families of triangle-free graphs that need these many colors [24]. Again, the algorithm
fails with negligible probability, provided that A >> log n. For the algorithm to work, the value of p must
be set to a value that depends on the round: small initially, it grows quickly to 1 [25].

The condition A 33> log n appears repeatedly. The reason is that these algorithms are based on powerful
martingale inequalities and this condition is needed to make them work. These probabilistic inequalities
are the subject of the next section.

13.3.1 Coloring with Martingales

Let f(X1, ..., Xy,) beafunction for which we can compute E[ f], and let the X;’s be independent. Assume
moreover that the following Lipshitz condition (with respect to the Hamming distance) holds:
[f(X)— f(V)] <ci (13.2)

whenever X := (x1, ..., x,) and Y := (y1, ..., y,) differ only in the ith coordinate. Then, f is sharply
concentrated around its mean:

Pr| f —E[f]] > 1] < 2¢2/%ic (13.3)

This is the simplest of a series of powerful concentration inequalities dubbed the method of bounded
differences (MOBD) [26]. The method is based on martingale inequalities (we refer the reader to the
thorough and quite accessible treatment in Ref. [12]). In words, if a function does not depend too much
on any coordinate then it is almost constant.

To appreciate the power and ease of use of Eq. (13.3) we derive the well-known Chernoff-Hoeffding
bound (see, among others Refs. [12,27,28]). This bound states that if X := Z?:l X; is the sum of
independent, binary random variables X; € {0, 1}, then X is concentrated around its mean: Pr[| X —
E[X]] > ] < 2¢=2t%/"_ This captures the well-known fact that if a fair coin is flipped many times we
expect HEADS to occur roughly 50% of the time, and this bound gives precise probability estimates of
deviating from the mean. This bound can be recovered from Eq. (13.3) simply by defining f := X and by
noticing that condition (13.2) holds with ¢; = 1.

We now apply the MOBD to the analysis of the trivial algorithm in a simplified setting. Let us assume
that the network is a triangle-free, d-regular graph. We analyze what happens to the degree of a node after
the first round. The probability with which an edge colors itself is (1 — %)M—z ~ eiz Therefore, denoting
with f the new degree of vertex u, we have that E[ f ] = ©(d). At first blush it may seem that the value
of f depends on the tentative color choices of ®(d?) edges: those incident on u and the edges incident
on them. But it is possible to express f as a function of 2d variables only, as follows. For every v € N(u)
consider the bundle of d — 1 edges incident on v that are not incident on u, and treat this bundle as a

© 2007 by Taylor & Francis Group, LLC



13-10 Handbook of Approximation Algorithms and Metaheuristics

single random variable, denoted as B,. B, is a random vector with d — 1 components, each specifying the
tentative color choice of an edge incident on v (except uv). Furthermore, for every edge e = uv, let X,
denote e’s color choice. Thus, f depends on d variables of type X, and on d variables of type B,. What
is the effect of these variables on f? If we change the value of a fixed X,, and keep all remaining variables
the same, this color change can affect at most two edges (one of which is e itself). The resulting c, is 2.
The cumulative effect of the first d variables of type X, is therefore 4d.

Note now that since the network is triangle-free, changing the value of a bundle B, can only affect
the edge uv the bundle is incident to. Thus, the effect of changing B, while keeping everything else
fixed is 1. Summing up, we get a total effect of >, ¢} = 5d. Plugging in this value in Eq. (13.3), for
t = €d, where 1 > € > 0 we get, Pr[|f — E[f]] > ed] < 2e72€°4/5 We can see here why it is
important to have d > logn. With this condition, the bound is strong enough to hold for all vertices
and all rounds simultaneously. In fact, a value d = ©(log ) would seem to be enough, but the error
terms accumulate as the algorithm progresses. To counter this cumulative effect, we must have d >
log n.

This establishes that the graph stays almost regular after one round (and in fact at all times), with high
probability. For the full analysis one has to keep track of several other quantities besides vertex degrees,
such as the size of the color lists. While the full analysis of the algorithm is beyond the scope of this survey,
this simple example already clarifies some of the issues. For instance, if the graph is not triangle-free, then
the effect of a bundle can be much greater than 1. To cope with this, more powerful inequalities, and a
more sophisticated analysis, are needed [12,22,23,29]. We remark that in general these inequalities do not
even require the variables X; to be independent. In fact, only the following bounded difference condition
is required:

[E[fIX1, ..., Xi—1, Xi =a] — [E[fIX1, ..., Xi—1, Xi =b]| < ¢

If this condition holds for all possible choices of a and b, and for all 7, then Eq. (13.3) follows. What is
behind this somewhat contrived definition is the fact that the sequence Y; := E[ f| X1, ..., Xi—1, Xi]
is a martingale (the so-called Doob martingale). A martingale is simply a sequence of random variables
Zo, Z15 .. .» ZysuchthatE[ Z;| 2, ..., Zi—1] = Z;,fori =1, 2, ..., n. Atypical example of a martingale
is a uniform random walk in the integer lattice, where a particle can move left, right, up, or down with
equal probability. If Z; denotes the distance of the particle from the origin, the expected distance after one
step stays put. A close relative of the Chernoff~-Hoeffding bound, known as Azuma’s inequality, states that

if a martingale sequence Zy, Zi, ..., Z, satisfies the bounded difference condition | Z; — Z;_1| < ¢; for
i=1,2,...,n, then it is unlikely that Z,, is far from Zy:
Pr[| Zy — Zo| > 1] < 2¢ 20/ Fic (13.4)

In words, if a martingale sequence does not make big jumps, then it is unlikely to stray afar from its
starting point. This is true for the random walk; it is very unlikely that after n steps the particle will be far
from the origin. Note that for a Doob martingale Yy = E[ f] and Y;, = f, so that Eq. (13.4) becomes
Eq. (13.3).

To see the usefulness of this more awkward formulation, let us drop the assumption that the network is
triangle-free and analyze again what happens to the vertex degrees, following the analysis from Ref. [29].
As observed this introduces the problem that the effect of bundles can be very large: changing the value of
B, can affect the new degree by as much as d — 1. We will therefore accept the fact that the new degree of
a vertex is a function of ©(d?) variables, but we will be able to bound the effect of edges at distance one
from the vertex. Fix a vertex v and let N'(v) denote the set of “direct” edges—i.e., the edges incident
on v—and let N?(v) denote the set of “indirect edges” that is, the edges incident on a neighbor of v.
Let N'2(v) := N'(v)|J N?(v). Finally, let T := (T, ..., Tp,), m = |E(G)|, be the random vector
specifying the tentative color choices of the edges in the graph G. With this notation, the number of edges
successfully colored at vertex v is a function f(T;, e € N L2(v)) (to study f or the new degree is the same:
if f is concentrated so is the new degree).
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Let us number the variables so that the direct edges are numbered after the indirect edges (this will be
important for the calculations to follow). We need to compute

A= |E[f | Te—1, T = ak] — E[f | Tk—1, Tk = ]| (13.5)

We decompose f as a sum to ease the computations later. Introduce the indicator functions f,, e € E:
fe(c) is 1 if edge e is successfully colored in coloring ¢, and 0 otherwise. Then f =" _, fo. Hence we
are reduced, by linearity of expectation, to computing for each e € N'(v), |Pr[fo = 1| Tx_1, Tk =
ck] =Prife=1| Tr_1, Tk = ]l

To compute a good bound for A in Eq. (13.5), we shall lock together two distributions Y and Y’. Y
is distributed as T conditioned on Tj_1, Tx = ck, and Y’, while Y’ is distributed as T conditioned on
Ti—1, Tk = c}. We can think of Y” as identically equal to Y except that Y’; = ¢}.. Such a pairing (Y, Y') is
called a coupling of the two different distributions [ T|Tx—1, Tk = cx] and [T|Tx—1, Tk = c;f]. It is easily
seen that by the independence of all tentative colors, the marginal distributions of Y and Y’ are exactly
the two conditioned distributions [T | Tx—1, Ty = ck] and [T | Tk_1, T = ¢} ], respectively. Now let us
compute |E[f(Y) — f(Y")]].

First, let us consider the case when ey, ..., ex € N2(v), ie., only the choices of indirect edges are
exposed. Let ex = (w, z), where w is a neighbor of v. Then, for a direct edge e # vw, fo(y) = fe(y’)
because in the joint distribution space, yand y’ agree on all edges incident on e. So we only need to compute
|E[fuw (Y) —fuw (Y”)]|. To bound this simply, we observe first that f,,,(¥) — fuw(y’) € [—1, 1] and second
that f,,,(¥) = fuw(p’) unless yy, = ¢k or yyyy = ¢} Thus we can conclude that E[f.,, (Y) —fu, (Y7)]] <
PriYe=c VYe=¢l < %.

Infact, one can do a tighter analysis using the same observations. Letus denote f.(¥, yw,z = c1, Ye = ¢2)
by fe(c1, ¢2). Note that fy (ck, ck) = 0 and similarly f,,, (¢}, ¢}) = 0. Hence

Elfe(Y) — fe(Y) | 2] = (fow(ck, ck) = fow(cho ck)IPr[Ye = ck]
+(fvw(ck, C;<) - fvw(c;@ Ci))Pr[Ye = C;<]

1

= (fvw(ck) Ci) - va(C;o Ck))g
(Here we used the fact that the distribution of colors around v is unaffected by the conditioning around z

and that each color is equally likely.) Hence |E[fe(Y) — fe(Y")]| < %.

Now let us consider the case when e € N'(v), i.e., choices of all indirect edges and of some direct edges
have been exposed. In this case, we merely observe that f is Lipshitz with constant 2: | f(y) — f(y")] <2

whenever yand y’ differ in only one coordinate. Hence we can easily conclude that |E[f(Y) — f(Y")]| < 2.
Overall, A < 1/d for an edge ex € N2(v), and A; < 2 foran edge ey € N'(v). Therefore, we get

1

§ 2 _ § §

A= E + 4<4d+1
k ee N2(v) eeN!(v)

We thus arrive at the following sharp concentration result by plugging into Eq. (13.3): Let v be an arbitrary
vertex and let f be the number of edges successfully colored around v in one stage of the trivial algorithm.
Then,

2
Prl| f — EIf]] >1] < 2exp (-ﬁ)
2

Since E[ f ] = ©(d), this is a very strong bound.

13.4 Matchings

Maximum matching is probably one of the best studied problems in computer science: given a weighted
undirected graph G = (V, E), compute a subset of pairwise nonincident edges (matching) of maximum
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cost. For simplicity, we will focus on the the cardinality version of the problem, where all the edges have
weight 1.

Itis not hard to show that a maximum matching cannot be computed efficiently (i.e., in polylogarithmic
time) in a distributed setting.

Lemma 13.7

Any distributed maximum matching algorithm requires Q2 (n) rounds.

Proof

Consider the following mailing problem: let P be a path of n = 2k + 1 nodes, and let £ and r be the left
and right endpoints of the path, respectively. Moreover, let ¢ be the central node of the path. Nodes £ and
r receive the same input bit b, and the problem is to forward b to the central node c. Clearly, this process
takes at least k rounds.

Now assume by contradiction that there exists a o(n) distributed maximum matching protocol M.
We can use M to solve the mailing problem above in the following way. All the nodes run M on the
auxiliary graph P(b) obtained from P by removing the edge incident to £ if b = 1, and the edge
incident to r otherwise. If b = 1 (b = 0), the edge on the left (right) of v must belong to the (unique)
maximum matching. This way ¢ can derive the value of the input bit b in 0(n) = o(k) rounds, which is a
contradiction. (]

Fischer etal. [30] described a parallel algorithm to compute a near-optimal matching in arbitrary graphs.
Their algorithm can be easily turned into a distributed protocol to compute a k/(k + 1)-approximate
solution in polylogarithmic time, for any fixed positive integer k > 0. A crucial step in the algorithm by
Fischer et al. is computing (distributively) a maximal independent set. Since this subproblem is rather
interesting by itself in the distributed case, in Section 13.4.1 we will sketch how it can be solved efficiently.
In Section 13.4.2 we will describe and analyze the algorithm by Fischer et al.

13.4.1 Distributed Maximal Independent Set

Recall that an independent set of a graph is a subset of pairwise nonadjacent nodes. No deterministic
protocol is currently known for the problem. Indeed, this is one of the main open problems in distributed
algorithms. Luby [31] and independently Alon et al. [32] gave the first distributed randomized algorithms
to compute a maximal independent set. Here we will focus on Luby’s result, as described in Kozen’s
book [33].

As the algorithm by Fischer et al., Luby’s algorithm was originally thought for a parallel setting, but it
can be easily turned into a distributed algorithm. It is worth noticing that transforming an efficient parallel
algorithm into an efficient distributed algorithm is not always trivial. For example, there is a deterministic
parallel version of Luby’s algorithm, while, as mentioned above, no efficient deterministic distributed
algorithm is known for the maximal independent set problem.

Luby’s algorithm works in stages. In each stage, one (not necessarily maximal) independent set I is
computed, and the nodes I are removed from the graph together with all their neighbors. All the edges
incident to deleted nodes are also removed. The algorithm ends when no node is left. At the end of the
algorithm a maximal independent set is given by the union of the independent sets I computed in the
different stages.

It remains to describe how each independent set I is computed. Each node v in the (current) graph
independently becomes a candidate with probability #(U) Then, for any two adjacent candidates, the one
of lower degree is discarded from S (ties can be broken arbitrarily). The remaining candidates form the
set I.

Each stage can be trivially implemented with a constant number of communication rounds. The expected
number of rounds is O(log n). More precisely, in each stage at least a constant expected fraction of the
(remaining) edges are removed from the graph.
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A crucial idea in Luby’s analysis is the notion of good nodes: a node v is good if at least one-third of its
neighbors have degree not larger than v. In particular, this implies

1 1
> 20 ~ 6 (13.6)

ue N(v)

Otherwise v is bad. Although there might be few good nodes in a given graph, the edges incident to at
least one good node are a lot. Let us call an edge good if it is incident to at least one good node, and bad
otherwise. The following lemma holds.

Lemma 13.8

At least one-half of the edges are good.

Proof

Direct all the edges toward the endpoint of higher degree, breaking ties arbitrarily. Consider any bad edge
e directed toward a given (bad) node v. By definition of bad nodes, the out-degree of v is at least twice its

own in-degree. Thus we can uniquely map e into a pair of edges (either bad or good) leaving v. Therefore,
the edges are at least twice as many as the bad edges. O

Thus it is sufficient to show that in a given stage each good node is removed from the graph with constant
positive probability.

Lemma 13.9
Consider a node v in a given stage. Node v belongs to I with probability #(v).

Proof
Let L(v) = {u € N(v) | d(u) > d(v)} be the neighbors of v of degree not smaller than d(v). Then

1 1 1

Privg IlveS) < ZPr(ueSlveS):ZPr(ueS)S sz(u)f sz(v)sz
ueL(v) ueL(v) ueL(v) ueL(v)

Hence Pr(ve I) = Pr(ve I|ve S) Pr(ve S) > % zdl(v) = 4dl(v)' O

Lemma 13.10
Let v be a good node in a given stage. Node v is discarded in the stage considered with probability at least 1/36.

Proof
We will show that v € N(I) = Uy N(u) with probability at least 1/36. The claim follows. If v has a
neighbor u of degree at most 2, by Lemma 13.9, Pr(v € N(I)) > Pr(ueI) > 4d(u) 1

Now assume that all the neighbors of v have degree 3 or larger. It follows that, for every nelghbor uofv,
= % .Hence by Eq. (13.6) there exists a subset M(v) of neighbors of v such that é <D e M)

1
A =

Pr(v e N(I)) > Pr(Que M(v)NI)
> Z Pr(uel)— Z PrlueIAnwel)
ue M(v) u, we M(v), u#w
1
> Z m— Z PV(MGS/\WES)
ue M(v) u, weM(v), u#w
1
> - - Pr(ue S)Pr(w e S)
> Z
ue M(v) u,we M(v), u#w
1
>
> Y mme X Y s
ue M(v ) ue M(v) we M(v)
1 1 1\ 1 1
= > _— = _ = —
Z 2(w) > 2d(u)_<2 3)6 36 O
eM(v ue M(v)
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13.4.2 The Distributed Maximum Matching Algorithm

Consider an arbitrary matching M of a graph G = (V, E). A node is matched if it is the endpoint of some
edge in M, and free otherwise. An augmenting path P with respect to M is a path (of odd length) whose
endpoints are free and whose edges are alternatively inside and outside M. The reason of the name is that
we can obtain a matching M’ of cardinality | M| + 1 from M, by removing from M all the edges which are
also in P, and by adding to M the remaining edges of P (in other words, M’ is the symmetric difference
M@ P of Mand P).

The algorithm by Fischer et al. is based on the following two lemmas by Hopcroft and Karp [34]. Let
two paths be independent if they are node-disjoint. Note that a matching can be augmented along several
augmenting paths simultaneously, provided that such paths are independent.

Lemma 13.11

If a matching is augmented along a maximal set of independent shortest augmenting paths, then the shortest
augmenting paths length grows.

Lemma 13.12
Suppose a matching M does not admit augmenting paths of length 2k — 1 or smaller. Then the size of M is at

least a fraction Wkl of the maximum matching size.

Proof

Let M* be a maximum matching. The symmetric difference M = M @ M* contains |M*| — | M|
independent augmenting paths with respect to M. Since each of these paths contains at least k edges of
M, | M*| — | M| < |M]|/ k. The claim follows. O

We are now ready to describe and analyze the approximate maximum matching algorithm by Fischer
etal. The algorithm proceeds in stages. In each stage i,i € {1, 2, .. ., k}, the algorithm computes a maximal
independent set P; of augmenting paths of length 27 — 1 with respect to the current matching M. Then M
is augmented according to P;. Stage i can be implemented by simulating Luby’s algorithm on the auxiliary
graph induced by the augmenting paths considered, where the nodes are the paths and the edges are the
pairs of nonindependent paths. In particular, Luby’s algorithm takes O(log %) rounds in expectation in
the auxiliary graph, where each such round can be simulated within O(i) rounds in the original graph.
Note that, by Lemma 13.11, at the end of stage i there are no augmenting paths of length 2i — 1 or smaller.
It follows from Lemma 13.12 that at the end of the kth stage the matching computed is Wkl -approximate.
The total expected number of rounds is trivially O(k>logn). The following theorem summarizes the
discussion above.

Theorem 13.1

For every integer k > 0, there is a distributed algorithm which computes a matching of cardinality at
least Wkl times the maximum matching cardinality within O(k? log n) communication rounds in expectation.

Wattenhofer and Wattenhofer [35] gave a O(log2 n) randomized algorithm to compute a constant
approximation in the weighted case. In the deterministic case weaker results are available. This is mainly
due to the fact that we are not able to compute maximal independent sets deterministically. Han¢kowiak
et al. [36,37] described an efficient distributed deterministic algorithm to compute a maximal matching.
Recall that any maximal matching is a 2-approximation for the maximum matching problem. Recently, a
1.5 deterministic distributed approximation algorithm was described in Ref. [38].

13.5 LP-Based Distributed Algorithms

It might come as a surprise that LP-based methods find their application in a distributed setting. In this
section we describe some primal-dual algorithms for vertex cover problems that give “state-of-the-art”
approximations. In general, it seems that the primal-dual method, one of the most successful techniques
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in approximation algorithms, when applied to graph algorithms exhibits “local” properties that makes
it amenable to a distributed implementation. The best way to explain what we mean is to work out
an example.

We will illustrate the method by considering the vertex cover problem: given an undirected graph
G = (V, E), with positive weights {c(v)}yev, compute a minimum-cost subset V' of nodes such that
each edge is incident to at least one node in V’. This NP-hard problem is approximable within 2 [39],
and not approximable within 1.1666 unless P = NP [40]. In the centralized case there is a primal-dual
2-approximation algorithm. The distributed implementation we give yields a 2 + € approximation, where
€ can be any fixed constant greater than 0. The number of communication rounds of the algorithm is
O(logn log é).

The sequential primal-dual algorithm works as follows. We formulate the problem as an integer pro-
gram (IP):

min Z c(v) - xy (IP)
veV

st.  xy+x,>1 Ve=(u,v)€E (13.7)

x €{0,1} VYveV (13.8)

The binary indicator variable x,, for each v € V, takes value 1 if v € V’, and 0 otherwise.

We now let (LP) be the standard LP relaxation obtained from (IP) by replacing the constraints (13.8) by
xy > 0 for all v € V. In the linear programming dual of (LP) we associate a variable «, with constraints
(13.7) for every e € E. The linear programming dual (D) of (LP) is then

max Z e (D)

ecE

s.t. Z o, <clv) YveV (13.9)
e=(u,v)€E
o, >0 Vee E (13.10)

The starting primal and dual solutions are obtained by setting to 0 all the variables x, and «.. Observe that
the dual solution is feasible while the primal one is not. We describe the algorithm as a continuous process.
We let all the variables «, grow at uniform speed. As soon as one constraint of type (13.9) is satisfied with
equality (it becomes tight), we set the corresponding variable x, to 1, and we freeze the values «, of the
edges incident to v. The «a-values of frozen edges do not grow more, so that the constraint considered
remains tight. The process continues until all edges are frozen. When this happens the primal solution
becomes feasible. To see why, suppose not. But then there is an edge e = uv which is not covered, i.e.,
Xy = xp = 0. This means that the constraints corresponding to u and v are not tight and o, can continue
to grow, a contradiction.

Thus the set V' := {u : x, = 1} is a cover. Its cost is upper-bounded by twice the cost of the dual

solution:
=) =D Y w=2> e

veV veV’ veV’ e=(u,v)eE ecE

Thus the solution computed is 2-approximate by weak duality.
The continuous process above can be easily turned into a discrete one. Let ¢/ (v) be the difference between
the right- and the left-hand side of constraints (13.9) in a given instant of time (residual weight):

e=(u,v)eE

Moreover, let d’(v) be the current number of nonfrozen (active) edges incident to v. The idea is to raise
in each step the dual value «, of all the active edges by the minimum over all nodes v such that x, = 0 of
the quantity ¢’(v)/d’(v). This way, in each step at least one extra node enters the vertex cover.
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There is a simple-minded way to turn the algorithm above into a distributed algorithm: each node v
maintains the quantities ¢’(v) and d’(v). A node is active if ¢'(v) > 0 and d’(v) > 0, that is if v and at
least one of its neighbors are not part of the vertex cover. In each round each active node v sends a proposal
c/(v)/d'(v) to all its active neighbors. Then it decreases ¢’(v) by the minimum of all the proposals sent
and received. If ¢/(v) becomes 0, v enters the vertex cover. Otherwise, if d’(v) becomes 0, v halts since all
its neighbors already belong to the vertex cover.

The main drawback of this approach is that it is very slow. In fact, it may happen that in each step
a unique node enters the vertex cover, thus leading to a linear number of rounds. Khuller et al. [41]
showed how to circumvent this problem by losing something in the approximation. Here we will present
a simplified version of their algorithm and analysis (which was originally thought for weighted set cover
in a parallel setting). The idea is to slightly relax the condition for a node v to enter the vertex cover: it is
sufficient that the residual weight ¢’(v) falls below € c(v), for a given (small) constant € > 0.

Theorem 13.2

The algorithm above computes a —=

1= -approximate vertex cover within O(logn log é) rounds.

Proof
The bound on the approximation easily follows by adapting the analysis of the primal-dual centralized
approximation algorithm:

(1—¢€)apx = Z(l—e)c(v)f Z Z o, 522ae§20pt

veV’ veV’ e=(u,v)€eE ecE

To bound the number of rounds we use a variant of the notion of good nodes introduced in Sec-
tion 13.4.1. Consider the graph induced by the active nodes in a given round, and call the corresponding
edges active. Let us direct all the active edges toward the endpoint which makes the smallest proposal.
A node is good if its in-degree is at least one-third of its (total) degree. By basically the same argument as
in Section 13.4.1, at least one-half of the edges are incident to good nodes. Moreover, the residual weight
of a node which is good in a given round decreases by at least one-third in the round considered. As a
consequence, a node can be good in at most log; é rounds (after those many rounds it must enter the
vertex cover).

We will show next that the total number of active edges halves every O(log %) rounds by means of a po-
tential function argument. It follows that the total number of rounds is O(log m log %) = O(logn log %).
Let us associate 2log; , é credits to each edge, and thus 2mlog; é credits to the whole graph. When a
node v is good in a given step, we remove one credit from each edge incident to it. Observe that an active
edge e in a given round must have at least two credits left. This is because otherwise one of the endpoints of
e would already belong to the vertex cover, and thus e could not be active. By m; we denote the number of
active edges in round j. Recall that in each round at least one-half of the edges are incident to a good node,
and such edges loose at least one credit each in the round considered. Thus the total number of credits
in round j decreases by a quantity g; which satisfies g; > m;/2. Consider an arbitrary round 7, and let
k be the smallest integer such that m; < m;/2 (or i + k is the last round). It is sufficient to show that
k = O(log é). Ineachround j, j € {i,i +1,..., i+ k — 1}, the number of edges satisfies m; > m; /2.
The total number of credits at the beginning of round i is at most 2m; logs , 1, and the algorithm halts
when no credit is left. Therefore,

1 i+k—1 i+k—1 m; i+k—1 mi m; 1 1
j=i j=i j=i

By choosing € = 1/(nC + 1), where C is the maximum weight, the algorithm by Khuller et al. computes
a 2-approximate vertex cover within O(log n log(#C)) rounds. Recently, Grandoni et al. [42] showed how
to achieve the same task in O(log(nC)) rounds by means of randomization. They reduce the problem
to the computation of a maximal matching in an auxiliary graph of nC nodes (to have an idea of the
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FIGURE 13.2 A weighted graph G (on the left) with the corresponding auxiliary graph G. A maximal matching M
of G is indicated via broken lines. The nodes of G such that all the corresponding nodes in G are matched form a
2-approximate vertex cover.

reduction, see Figure 13.2). Such matching can be computed in O(log(nC)) rounds via the randomized,
distributed maximal matching algorithm by Israeli and Itai [43]. The authors also show how to keep small
the message size and the local computation time by computing the matching implicitly.

The capacitated vertex cover problem is the generalization of the vertex cover problem where each node
v can cover only a limited number b(v) < d(v) of edges incident to it. Grandoni et al. [44] showed how
to compute within O( log "C) rounds an (2 + €)- -approximate solution, if any, which violates the capacity
constraints by a factor at most (4 + €). They also proved that any distributed constant approximation
algorithm must violate the capacity constraints by a factor at least 2. This, together with the known lower
bounds on the approximation of (classical) vertex cover, shows that their algorithm is the best possible
modulo constants. The algorithm by Grandoni et al. builds up on a primal-dual centralized algorithm
developed for the purpose, which computes a 2 approximation with a factor 2 violation of the capacity
constraints. Turning such primal-dual algorithm into a distributed protocol is far more involved than in
the case of classical vertex cover.

13.6 What Can and Cannot Be Computed Locally?

This fundamental question in distributed computing was posed by Naor and Stockmeyer [45]. Here,
“locally” means that the nodes of the network use information available locally from a neighborhood that
can be reached in time much smaller than the size of the network. For many natural distributed network
problems such as leader election and consensus the parameter determining the time complexity is not
the number of vertices, but the network diameter D, which is the maximum distance (number of hops)
between any two nodes [46]. A natural question is whether other fundamental primitives can be computed
in O(D) time in a distributed setting. If the model allows messages of unbounded size, then there is a
trivial affirmative answer to this question: collect all the information at one vertex, solve the problem
locally and then transmit the result to all vertices. The problem is therefore only interesting in the more
realistic model where we assume that each link can transmit only B bits in any time step (B is usually
taken to be a constant or O(log n)).

A landmark negative result in this direction was that of Linial [47] which investigated the time com-
plexity of various global functions of a graph computed in a distributed setting. Suppose that n processors
are arranged in a ring and can communicate only with their immediate neighbors. Linial showed that a
three-coloring of the n-cycle requires time 2 (log* n). This result was extended to randomized algorithms
by Naor [48]: any probabilistic algorithm for three-coloring the ring must take at least % log® n—2 rounds,
otherwise the probability that all processors are colored legally is less than % The bound is tight (up to a
constant factor) in light of the deterministic algorithms of Cole and Vishkin [49].

There has been surprisingly little continuation of work in this direction until fairly recently. Garay
etal. [50] gave an algorithm of complexity O( D+ /nlog n) to compute a minimum spanning tree (MST)
of a graph on n vertices with diameter D. Similar bounds were attained by other methods, but none
managed to break the /n barrier, leading to the suspicion that it might be impossible to compute the
MST in time o(4/7) and so this problem is fundamentally harder than the other paradigm problems. The
issue was finally settled by Peleg and Rubinovich [51], who showed a € (1/n) lower bound on the problem
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(up to log factors). Subsequently, Elkin [52] improved the lower bound and also extended it to distributed
approximation algorithms. Kuhn et al. [53] gave lower bounds on the complexity of computing the
minimum vertex cover (MVC) and the MDS of a graph: in k communication rounds, the MVC and MDS
can only be approximated to factors of (n‘kz/ k)and Q(AV/K / k) (where A is the maximum degree of the
graph). Thus, the number of rounds required to reach a constant or even a polylog approximation is at least
Q(4/log n/log log n) and 22(log A / log log A). The same lower bounds also apply to the construction of

maximal matchings and maximal independent sets via a simple reduction.

13.6.1 A Case Study: Minimum Spanning Tree

Here, we give a self-contained exposition of the lower bound for the MST problem due to Refs. [51,52].
We will give the full proof of a bound somewhat weaker than the optimal result of Elkin to convey the
underlying ideas more clearly. The basic idea is easy to explain using the example of Peleg and Rubinovich
[51] (see Figure 13.3). The network consists of m? country road and one highway. Each country road
has m toll stations and between every two successive toll station are m towns. The highway has m toll
stations with no towns in between. Each toll station number i on each country road is connected to the
corresponding highway toll station. The left end of the country road i is labelled s; and its right end ;.
The left end of the highway is labelled s and the right end r. This is the basic underlying graph. Note that
there are © (m*) vertices and the diameter is ® (m).

As for the weights, every edge along the highway or on the country roads has weight 0. The roads
connecting the toll stations on the country roads to the corresponding toll stations on the highway have
weight oo except for the first and last toll stations. The toll station connections at the right end between each
r; and r are all 1. At the left end, between each s; and s, they take either the value 0 or co.

What does the MST of this network look like? First, we may as well include the edges along the highway
and each path since these have zero cost. Also the intermediate connecting edges have weight oo and so are
excluded. That leaves us with the connecting edges on the left and on the right. The choice here depends
on the weights on the left connecting edges. There are m connecting edges from the left vertex s. If the edge
(s, si) has weight co, then we must exclude this and include the matching connection (r;, r) at the right
end. In contrast, if edge (s, s;) has weight 0, then we must include this and exclude the corresponding edge
(r;, r) attheright to r. Thus there are m? decisions made at s depending on the weights of the corresponding
edges, and these decisions must be conveyed to r to pick the corresponding complementary edges. How
quickly can these 72 bits be conveyed from s to r? Clearly, it would take very long to route along the
country roads, and so one must use the highway edges instead. Each highway edge can forward only B bits
at any time step. So, heuristically, transporting the 2 bits takes Q (11> / B) steps.

To make this heuristic argument formal, Peleg and Rubinovich introduced a mailing problem to be
solved on a given network. In the example above, the sender s has m? bits that need to be transported
to the receiver r. At each step one can forward B bits along any edge. How many steps do we need to
correctly route the m? bits from the sender to the receiver? It is easy to see that there is a reduction
from the mailing problem to that of computing the MST: for each of the input bits at s, set the weights
on the connecting edges accordingly: the weight (s, s;) is oo if the input bit i is 1 and 0 otherwise.
Now compute the MST. Then, if vertex r notices that the edge (r;, r) is picked in the MST, it decodes i

Sy T4
S3 T3
S T
52 T2
51 8]

FIGURE 13.3 MST lower bound graph for m = 2. The black nodes are the toll stations and the white nodes are
the towns.
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as 1 and as 0 otherwise. This will correctly solve the mailing problem, due to the structure of the MST
discussed above. Thus, a lower bound on the mailing problem implies the same lower bound on the MST
problem.

In fact by a slight change, the correspondence can be extended from exact to approximation algorithms.
Elkin [52] introduced the corrupted mail problem. Here there are I" bits at the sender exactly oI" of which
are 1’s, where o and I are parameters. In the example above, I' = m?. The receiver should get I' bits
delivered to it, but these are allowed to be somewhat corrupted. The restrictions are (a) any input bit that
was 1 must be transmitted correctly without corruption and (b) the total number of 1’s delivered can be at
most BT", where B > « is another parameter. Consider solving the (¢, 8) corrupted mail problem on the
Peleg—Rubinovich example. As in the reduction before, the vertex s sets the weights on the left connections
according to its input and so exactly «I" connections have weight co, and the rest 0. The optimal MST has
weight exactly " obtained by picking the corresponding right connections. Now, instead of the optimal
MST, suppose we apply a protocol to compute a 8/« approximation. This approximate MST can have
weight at most I, and it must include the connection edges at r paired with the infinite weight edges at
s. Thus, if r sets its bits as before corresponding to which of its connections are in the approximate MST,
we get a correct protocol for the (o, 8) corrupted mail problem. Thus a lower bound for the (e, 8)
corrupted mail problem implies the same lower bound for a g—approximate MST.

We are thus left with the task of proving a lower bound for the corrupted mail problem. Let the state
¥ (v, t) of avertex v at some time t denote the sequence of messages it has received up to this time. Consider
the start vertex s at time 0: this can be in any of (arr) states corresponding to the input it receives. At this
time, on the other hand, the vertex r (and indeed, any other vertex) is in a fixed state (having received no
messages at all). As time progresses and messages are passed, the set of possible states that other vertices
are in expands. Eventually, the set of possible states that vertex r is in must be large enough to accommodate
the output corresponding to all the possible inputs at s. Each possible state of r with at most BI" 1’s can be
the correct answer to at most (5 11: ) input configurations at s. Hence, the set of output states at r must be at
least (arr)/(gll:) > (1/ep)°L.

Now, we will argue that it must take a long time for any protocol, before enough messages arrive at r
for the set of its possible states to have this size. Consider the tail sets T;, i > 1 which consist of the tail of
each country road from vertex i until the end, and the corresponding fragment of the highway consisting
of the vertices h;/m)m until h,2. Also, set Ty := V' \ {hg}. For a subset of vertices U, let C(U, t) denote
the set of all possible vectors of states of the vertices in U at time ¢, and let p(U, t) := |C(U, t)|. Note that
o(Tp, 0) = 1 although p({s},0) = (arr).

We now focus on how set of configurations of the tail sets T; grow in time. Fix a configuration C €
C(T;, t). How many configurations in C(T;41, t+ 1) can this branch into? The tail set Ty is connected to
the rest of the graph by one highway edge f and by m? path edges. Each of the path edges carries a unique
message determined by the state of the left endpoint in configuration C. The state of the left endpoint of
the highway edge f is not determined by C and hence there could be a number of possible messages that
could be relayed along it. However, because of the restriction that at most B bits can be transmitted along
an edge at any time step, the total number of possible behaviors observable on edge f at this time step
is at most 28 + 1. Thus the configuration C can branch off into at most 28 + 1 possible configurations
C' € C(Ti+1, t + 1). Thus we have argued that for 0 < t < m?, p(Tie1, t+ 1) < Q28 + Dp(L, 1). By
induction, this implies that for 0 < ¢ < m?, p(T;, t) < (28 + 1)*. Thus finally, we have, that if t* is the
time at which the protocol ends, then either t* > m?, or (1/e8)*" < p({r}, t*) < p(Tp, t*) < B+,
Hence, +* > min(m?, al"log(#)/(B +1)).

Recalling that I' = 7 in our specific graph, and taking 8 to be a constant such that e < 1, t* =
Q(am?/ B), or, in terms of the number of vertices n = @ (m*) of the graph, t* = Q(a+/n/B). If we have
a H := B/a approximation algorithm for the MST, this implies that t* = €(,/n/HB), implying the
trade-off t* H = Q(/n/B) between time and approximation. Elkin [52] improves the lower bound for
t* to t* = Q (y/n/B/H), implying the time-approximation trade-off ** H = Q (y/n/B), and gives a
protocol achieving this trade-off.
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13.6.2 The Role of Randomization in Distributed Computing

Does randomization help in a distributed setting? This is a fundamental open question in distributed
computing. For some of the problems discussed, such as three-coloring on a ring, we have noted that
matching lower bounds hold for randomized algorithms. By the usual application of Yao’s Minimax
Theorem, Elkin’s lower bound also applies to randomized algorithms. For the problem of computing
maximal matchings and maximal independent sets, there are simple randomized algorithms, whereas the
result of Kuhn et al. [53] shows a superpolylog lower bound for deterministic algorithms. A classification
of problems by the degree to which randomization helps is an interesting open problem.
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14.1 Introduction

Heuristic algorithms are often difficult to analyse theoretically; this holds in particular for advanced,
randomised algorithms that perform well in practice, such as high-performance stochastic local search
(SLS) procedures (also known as metaheuristics) [1]. Furthermore, for various reasons, the practical
applicability of the theoretical results that can be achieved is often very limited. Some theoretical results
are obtained under idealised assumptions that do not hold in practical situations—as is the case, for
example, for the well-known convergence result for simulated annealing [2]. Also, most complexity results
apply to worst-case behaviour, and average-case results, which are fewer and typically much harder to
prove, are often based on instance distributions that are unlikely to be encountered in practice. Finally,
theoretical bounds on the run times of heuristic algorithms are typically asymptotic and do not reflect
the actual behaviour accurately enough for many purposes, in particular, for comparative performance
analyses. For these reasons, researchers (and practitioners) typically use empirical methods when analysing
or evaluating heuristic algorithms.

In many ways, the issues and considerations arising in the empirical analysis of algorithmic behaviour
are quite similar to those commonly encountered in experimental studies in biology, physics or any other
empirical science. Fundamentally, to investigate a complex phenomenon of interest, the classical scientific
cycle of observation, hypothesis, prediction and experiment is followed to obtain a model that explains the
phenomenon. Different from natural phenomena, algorithms are completely specified and mathematically
defined at the lowest level; still, in many cases, this knowledge is insufficient for theoretically deriving
all relevant aspects of their behaviour. In this situation, empirical approaches, based on computational
experiments, are often not only the sole way of assessing a given algorithm, but also have the potential to
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provide insights into practically relevant aspects of algorithmic behaviour that appear to lie well beyond
the reach of theoretical analysis.

Some general goals are common to all empirical studies: Reproducibility ensures that experiments can
be repeated with the same outcome; it requires that all relevant experimental conditions and protocols
are specified clearly and in sufficient detail. In the empirical analysis of algorithmic behaviour, repro-
ducibility is greatly facilitated by the fact that actual computations can in principle be replicated exactly.
However, complications can arise when dealing with randomised algorithms or randomly generated in-
put data, in which case statistical significance and sample sizes can become critical issues (despite the
fact that typically, pseudo-random number generators are used to implement random processes). Com-
parability with past and future related results ensure that empirical results are useful in the context of
larger scientific endeavours. To achieve this goal, experiments have to be designed in such a way that
their results can be meaningfully compared to those from relevant previous works and facilitate com-
parisons with related results expected from future experiments. Finally, perhaps the main goal of any
empirical study is to gain insight and understanding; this implies that experiments should be designed
in such a way that their outcome is likely to shed light on important, previously open questions regard-
ing the phenomenon of interest. In the empirical analysis of algorithms, in many cases these questions
are of the form ‘Algorithm A has property X, and in particular, ‘Algorithm A performs better than
Algorithm B’.

14.2 Decision Algorithms

Many computational problems take the form of decision problems, in which solutions are characterised
by a set of logical conditions. As an example, consider the following decision variant of the travelling
salesman problem (TSP): given an edge-weighted graph and a real number b, does there exist a Hamiltonian
cycle (i.e., a round trip that visits every vertex exactly once) with total weight at most b? Other well-known
examples of decision problems include the propositional satisfiability problem (SAT), the graph colouring
problem and certain types of scheduling problems.

A decision algorithm is an algorithm that takes as an input an instance of a given decision problem
and determines whether the instance is soluble, i.e., whether it has a solution. In most cases, if a solution
is found, that solution is also returned by the algorithm. Note that this notion of a decision algorithm
includes algorithms that may be incomplete, i.e., may fail to return a correct result within bounded time,
or even incorrect, i.e., sometimes return erroneous results. In the following, we will focus on decision
algorithms that are correct, but incomplete; this captures most heuristic decision algorithms, including,
for example, almost all SLS algorithms for SAT.

14.2.1 Analysis on Single Instances

The primary performance metric for complete (and correct) decision algorithms is typically run time, i.e.,
the time required for solving a given problem instance. For incomplete algorithms, it may happen that,
although the given problem instance is soluble, a solution cannot be found. (In this case, the algorithm
may not terminate, or signal failure, for example, by returning ‘no solution found’.) Obviously, such cases
need to be noted; by further analysing them, valuable insights into weaknesses of the algorithm (or errors
in its implementation) can be obtained.

Run time is typically measured in terms of CPU time (rather than wall-clock time) to minimise
the impact of other processes that are running concurrently (e.g., system processes). Obviously, CPU
time measurements are always based on a concrete implementation and run-time environment, i.e.,
machine and operating system; to facilitate reproducibility and comparability, a specification of the
run-time environment (comprising at least the processor type and model, clock speed and amount of
RAM, as well as the operating system, including version number) should be given along with any CPU time
result.
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It is often desirable to further abstract from details of the implementation and run-time environment,
especially in the context of comparative performance studies. This can be achieved using operation counts,
which reflect the number of elementary operations that are considered to contribute significantly towards
an algorithm’s performance, and cost models, which relate the cost of these operations (typically in terms
of run time per execution) relative to each other or absolute in terms of CPU time for a given imple-
mentation and run-time environment [3]. For SLS algorithms, a commonly used operation count is the
number of local search steps. When measuring performance in terms of operation counts, care should
be taken to select elementary operations whose cost per step is constant or close to constant within and
between runs of the algorithm on the same instance. In this situation, operation counts and CPU-time
measurements are related to each other by scaling with a constant factor that only depends on the given
problem instance. Using operation counts and an associated cost model rather than CPU-time measure-
ments as the basis for empirical studies often gives a clearer and more detailed picture of algorithmic
performance.

While performance analysis of deterministic decision algorithms on a single problem instance consists of
a simple run-time measurement, matters are slightly more involved if the algorithm under consideration is
randomised. In that case, the run time of an algorithm A applied to a given problem instance 7 corresponds
toarandom variable R T4 ;the probability distribution of R Ty,  is called the run-time distribution (RTD)
of A on . Clearly, the run-time behaviour of an algorithm A on a given problem instance 7 is completely
and precisely characterised by the respective RTD. Furthermore, this RTD can be estimated based on run-
time measurements obtained from multiple independent runs of A on 7. For sufficiently high numbers of
runs, the empirical RTDs thus obtained approximate the underlying theoretical RTD arbitrarily accurately.
In practice, empirical RTDs based on 20-100 runs are sufficient for most purposes (this will be further
discussed later in this chapter).

Graphical representations of empirical RTDs are often useful; plots of the respective cumulative distri-
bution functions (CDFs) are easily obtained (see Ref. [1]) and, unlike histograms, show the underlying data
in full detail. They also make it easy to read quantiles and quantile ratios (such as the median and quartile
ratio) directly off the plots; these basic descriptive statistics provide the basis for quantitative analyses and
many statistical tests, which are discussed later. Compared to averages and empirical standard deviations,
medians and quantile ratios have the advantage of being less sensitive with respect to outliers. Given the
fact that the RTDs of many randomised heuristic algorithms show very large variability, the stability of
basic descriptive statistics can become an important consideration. For the same reason, empirical RTDs
are often best presented in the form of semi-log or log-log plots. Figure 14.1 shows an example of a typical
empirical RTD plot.
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FIGURE 14.1 Left: Example of an empirical run-time distribution of an SLS algorithm for SAT applied to a hard
problem instance; right: semi-log plot of the same RTD. P (solve) denotes the probability for finding a solution within
the given run time.
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14.2.2 Analysis on Instance Ensembles

Typically, the behaviour of heuristic algorithms is analysed on a set or ensemble of instances. The selection
of such benchmark sets is an important factor in the design of an empirical study, and the use of inadequate
benchmark sets can lead to questionable results and misleading conclusions. Although the criteria for
benchmark selection depend significantly on the problem domain under consideration, on the hypotheses
and goals of the empirical study and on the algorithms being analysed, there are some general principles
and guidelines, which can be summarised as follows (for more details, see Ref. [1]): Benchmark sets should
contain a diverse collection of problem instances, ideally including instances from real-world applications
aswell asartificially crafted and randomly generated instances; the instances should typically be intrinsically
hard or difficult to solve for a broad range of algorithms. Furthermore, to facilitate the reproducibility
of empirical analyses and the comparability of results between studies, it is important to use established
benchmark sets (in particular those available from public benchmark libraries, such as ORLIB [4], TSPLIB
[5] or SATLIB [6]), and to make newly created test-sets available to other researchers.

The basic approach to the empirical evaluation of an algorithm on a given ensemble of problem instances
is to perform the same type of analysis described in the previous section on each individual instance. For
small ensembles, it is often possible to analyse and report the results of this analysis for all instances,
for example, in the form of tables or multiple RTD plots. When dealing with bigger ensembles, such
as benchmark sets obtained from random instance generators, it becomes important to characterise the
performance of a given algorithm on individual instances as well as across the entire ensemble. The latter
can be achieved by aggregrating the results obtained on all individual instances into a so-called search cost
distribution (SCD). For a deterministic algorithm applied to a given benchmark set, the empirical SCD
is obtained from the run-time measurements on each individual problem instance. Analogous to RTDs,
SCDs are typically best analysed qualitatively by means of CDF plots and quantitatively by means of basic
descriptive statistics, such as quantiles and quantile ratios. For randomised decision algorithms, SCDs can
be computed based on the median (or mean) run times for each individual instance; this means that each
point in the SCD plot corresponds to a statistic of an entire RTD. It is often appropriate to also analyse in
more detail a small set of RTDs that have been carefully selected in such a way that they representatively
illustrate the variation in algorithm behaviour across the ensemble.

In many cases, it is also of considerable interest to investigate the dependence of algorithmic performance
on certain instance features, such as problem size. This is often done by studying the correlation between
the feature value for a given problem instance and the corresponding run time (or RTD) across the
ensemble, for example, by means of simple correlation plots or using appropriate statistics, such as the
Pearson correlation coefficient, and possibly also significance tests. The issues faced in this context are very
similar to those arising in the comparative analysis of multiple algorithms on instance ensembles and will
be further discussed in Section 14.2.4. In terms of qualitative analyses, choosing an appropriate graphical
representation, such as a semilogarithmic plot for the functional dependence of mean cost on problem
size, is often the key for easily detecting interesting behaviour (e.g., exponential scaling).

14.2.3 Comparative Analysis on Single Instances

In many empirical studies, the main goal is to establish the superiority of one heuristic algorithm over
another. The most basic form of this type of analysis is the comparative analysis between two decision
algorithms on a single problem instance. If both algorithms are deterministic, this amounts to a straight-
forward comparison between the respective run-time measurements. Clearly, in the case of incomplete
algorithms or prematurely terminated runs, it needs to be noted if one or both algorithms failed to solve
the given problem instance.

If at least one of the algorithms is randomised, the situation is slightly more complicated. Intuitively, an
algorithm A shows superior performance compared to another algorithm B on a given problem instance
if for no run time, A has a lower solution probability than B, and there are some run times for which the
solution probability of A is higher than that of B. In that case, we say that A probabilistically dominates B
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TABLE 14.1 Upper Bounds on the Performance Differences Detectable by
the Mann—Whitney U-Test for Various Sample Sizes (Number of Runs per

RTD)

Significance Level 0.05, power 0.95 Significance Level 0.01, power 0.99
Sample size my [/ m, Sample size my [ my
3010 1.1 5565 1.1
1000 1.18 1000 1.24
122 1.5 225 1.5
100 1.6 100 1.8
32 2 58 2
10 3 10 3.9

Notes: m; / m, denotes the ratio between the medians of the two given RTDs. The
values in this table have been obtained using a standard procedure based on adjusting
the statistical power of the two-sample ¢-test to the Mann—Whitney U-test using a
worst-case Pitman asymptotic relative efficiency (ARE) value of 0.864.

on 7 (see Ref. [1]). A probabilistic domination relation holds between two decision algorithms on a given
problem instance if, and only if, their respective cumulative RTD graphs do not cross each other. This
provides a simple method for graphically checking probabilistic domination between two SLS algorithms
on individual problem instances. The concept of probabilistic domination also applies to situations where
one of A and B is deterministic, since in terms of analysing run-time behaviour, deterministic decision
algorithms can be seen as special cases of randomised decision algorithms that have degenerate RTDs
whose CDFs are simple step functions. In situations where a probabilistic domination relation does not
hold, that is, there is a crossover between the respective RTD graphs, which of the two given algorithms is
preferable in terms of higher-solution probability depends on the time the algorithms are allowed to run.

Statistical tests can be used to assess the significance of empirically measured performance differences
between randomised algorithms. In particular, the Mann—Whitney U-test (or, equivalently, the Wilcoxon
rank sum test) can be used to determine whether the medians of two given RTDs are equal [7]; a rejection
of this null hypothesis indicates significant performance differences. The widely used ¢-test compares the
means of two populations, but it requires the assumption that the given samples are normally distributed
with identical variance—an assumption which is usually not met when analysing individual RTDs. The
more specific hypothesis whether the theoretical RTDs of two decision algorithms are identical can be
tested using the Kolmogorov—Smirnov test for two independent samples [7].

An important question arising in comparative performance analyses of randomised algorithms is that of
sample size: How many independent runs should be performed when measuring the respective empirical
RTDs? Generally, the ability of statistical tests to correctly distinguish situations in which the given null
hypothesis is correct from those where it is incorrect crucially depends on sample size. This is illustrated
in Table 14.1, which shows the performance differences between two given RTDs that can be detected by
the Mann—Whitney U-test for standard significance levels and power values in dependence of sample size.
(The significance level and power value indicate the maximum probabilities that the test incorrectly rejects
or accepts the null hypothesis that the medians of the given RTDs are equal, respectively.)

In cases where probabilistic domination does not hold, the previously mentioned statistical tests are still
applicable. However, they do not capture interesting and potentially important performance differences
that can be easily seen from the respective RTD graphs. Such an example is depicted in Figure 14.2.

14.2.4 Comparative Analysis on Instance Ensembles

Comparative performance analyses of two decision algorithms on ensembles of problem instances are
based on the same data used in the comparative analysis on the respective single instances. When dealing
with two deterministic decision algorithms, A and B, this results in pairs of run times for each problem
instance. In many cases, particularly when evaluating algorithms on big and diverse benchmark sets, there
will be cases where A performs better than B and vice versa. In such situations it can be beneficial to use
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FIGURE 14.2 RTD:s for two SLS algorithms for the TSP that for a given benchmark instance are required to find an
optimal solution. Between 20 and 30 CPU s the two RTDs cross over.

statistical tests to assess the significance of the observed performance differences; this is particularly the
case for benchmark sets obtained from random instance generators. The binomial sign test as well as the
Wilcoxon-matched pairs signed-rank test determine whether the median of the paired differences is statisti-
cally significantly different from zero, indicating that one algorithm performs better than the other [7]. The
Wilcoxon test is more sensitive, but requires the assumption that the distribution of the paired differences
is symmetric. The well-known t-test for two dependent samples requires assumptions on the normality and
homogeneity of variance of the underlying distributions of search cost over the given instance ensembles,
which are typically not satisfied when dealing with the run times of heuristic algorithms.

If one or both of the given algorithms are randomised, the same tests can be applied to RTD statistics,
such as the median (or mean) run time. However, this approach does not capture qualitative differences
in performance, particularly as given in cases where there is no probabilistic domination of one algorithm
over the other, and may suffer from inaccuracies due to a lack of statistical stability of the underlying RTD
statistics. Therefore, additional analyses should be performed. In particular, the statistical significance of
the performance differences (such as median run time) on each individual problem instance should be
investigated using an appropriate test (such as the Mann—Whitney U-test). Furthermore, for each instance
itshould be checked whether a probabilistic domination relation holds; based on this information, the given
instance ensemble can be partitioned into three subsets: (i) those instances on which A probabilistically
dominates B, (ii) those on which B probabilistically dominates A, and (iii) those for which probabilistic
domination is not observed. The relative sizes and contents of these partitions give a rather realistic and
detailed picture of the algorithms’ relative performance on the given set of instances.

Particularly for large instance ensembles, it is often useful to study the correlation between the perfor-
mance of algorithms A and B across the given set of instances. This type of analysis can help to expose
(and ultimately, remedy) weaknesses of an algorithm and to refine claims about its relative superiority
for certain types of problem instances. For qualitative analyses of performance correlation, scatter plots
can be used in which each instance is represented by one point, whose coordinates correspond to the
performance of A and B applied to that instance. Performance measures used in this context are typically
run time in case of deterministic algorithms, and RTD statistics, such as the median run time, otherwise.
It should be noted that in the case of randomised algorithms, statistical instability of RTD statistics due
to sampling error limits the accuracy of performance measurements. An example of such an analysis is
shown in Figure 14.3.

© 2007 by Taylor & Francis Group, LLC



Empirical Analysis of Randomized Algorithms 14-7

1000
0
- 100
o [ .
o .
’ +

?J ++ ; < F tr ’ +
g 10 o :?,vt'*vJ, +:tr *
< A A
2 +ﬁfuf‘+ﬁ T o
= e N +
®© o j:w ¥ + N
ke 1 i

N

0.1 & :
0.1 1 10 100 1000

Median run-time MMAS (CPU s)

FIGURE 14.3 Correlation between the median run times required by two high-performance SLS algorithms for
finding optimal solutions to a set of 100 TSP instances of 300 cities each; each median was measured across 10 runs
per algorithm. The band between the two outer lines indicates performance differences that cannot be assumed to be
statistically significant for the given sample size of the underlying RTDs.

Quantitatively, the correlation can be summarised using the empirical correlation coefficient. When
the nature of an observed performance correlation seems to be regular (e.g., a roughly linear trend in
the scatter plot), a simple regression analysis can be used to model the corresponding relationship in the
algorithms’ performance. It is often useful to perform correlation analyses on log-transformed data; this
facilitates capturing general polynomial relationships.

To test the statistical significance of an observed performance correlation, nonparametric tests, such as
Spearman’s rank order test or Kendall’s tau test, can be employed [7]. These tests determine whether there
is a significant monotonic relationship in the performance data. They are preferable over tests based on
Pearson’s product-moment correlation coefficient, which require the assumption that the two random
variables underlying the performance data stem from a bivariate normal distribution. (This assumption
is often violated when dealing with run times of heuristic algorithms over instance ensembles.)

14.3 Optimisation Algorithms

In many situations, the objective of a computational problem is to find a solution that is optimal with respect
to some measure of quality or cost. An example of such an optimisation problem is the widely studied TSP:
given an edge-weigthed graph G, find a Hamiltonian cycle with minimal total weight, i.e., a shortest round
trip that visits every vertex of G exactly once. Another example is MAX-SAT, the optimisation variant of the
SAT problem, where the objective is to find an assignment of truth values to the propositional variables in a
given formula F in conjunctive normal form such thata maximal number of clauses of F are simultaneously
satisfied.

The measure to be optimised in an optimisation problem is called the objective function, and the term
solution quality is used to refer to the objective function value of a given candidate solution. In most cases,
solution qualities take the form of real numbers, and the goal is to find a candidate with either minimal
or maximal solution quality. Optimisation problems can include additional logical conditions that any
candidate solution needs to satisfy to be deemed valid or feasible. In the case of the TSP, such a logical
condition states that to be considered a valid solution, a path in the given graph must be a Hamiltonian
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cycle. Logical conditions can always be integrated into the objective function in such a way that valid
solutions are characterised by objective function values that exceed a specific threshold in solution quality.

An optimisation algorithm is an algorithm that takes as an input an instance of a given optimisation
problem and returns a valid solution (or may determine that no valid solution exists). Optimisation
algorithms that are theoretically guaranteed to find an optimal solution for any soluble problem instance
within bounded time are called complete or exact; algorithms that are guaranteed to always return a solution
that is within a specific constant factor of an optimal solution are called approximation algorithms.

When evaluating the performance of optimisation algorithms (theoretically or empirically), it is often
useful to study the ratio between the solution quality achieved by the algorithm, g, and the optimal
solution quality for the given problem instance, g*. This performance measure is called the approximation
ratio; formally, to be uniformly applicable to minimisation and maximisation problems, it is defined as
r:= max{q/q", q4*/q}. When used in the empirical analysis of optimisation algorithms, solution qualities
are often expressed in percent deviation from the optimum; this measure of relative solution quality is
defined as q" := (r — 1) x 100. For most heuristic optimisation algorithms, in particular for those based
on SLS methods, there is a trade-off between run time and solution quality: the longer the algorithm is
run, the better solutions are produced. The characterisation of this trade-off is of significant importance
in the empirical analysis of optimisation algorithms.

14.3.1 Analysis on Single Instances

As in the case of decision algorithms, the empirical analysis of a deterministic optimisation algorithm on a
single problem instance is rather straightforward, and many of the same considerations (particularly with
respect to measuring run times and failure to produce valid solutions) apply. Run time / solution quality
trade-offs are characterised by the development of solution quality over time, in the form of so-called
solution quality over time (SQT) curves; these represent for each point in time ¢ the quality of the best
solution seen up to time ¢ (the so-called incumbent solution) and are hence always monotone.

A slightly more complicated situation arises when dealing with randomised optimisation algorithms.
Following the same approach as for randomised decision algorithms, run time is considered a random
variable; in addition, a second random variable is used to capture solution quality, and the joint probability
distribution of these two random variables characterises the behaviour of the algorithm on a given problem
instance precisely and completely. For a given algorithm and problem instance, this probability distribution
is called the bivariate RTD of A on  [1]; it can be visualised in the form of a cumulative distribution
surface, each point of which represents the probability that A applied to 7 reaches (or exceeds) a certain
solution quality bound within a certain amount of time (see Figure 14.4).

Empirical bivariate RTDs can be easily determined from multiple solution quality traces, each of which
represents the development of solution quality over time for a single run of the algorithm on the given
problem instance. A solution quality trace usually consists of pairs (t, q) for each point in time ¢ at which
an improvement in the incumbent solution, i.e., a new best solution quality g within the current run,
has been achieved. As in the case of the (univariate) RTDs for decision algorithms, a sufficient number of
independent runs (i.e., solution quality traces) on any given problem instance is required for measuring
reasonably accurate empirical bivariate RTDs; obviously, the same holds for basic descriptive RTD statistics
on the solution quality obtained within a given run time, or the run time required for reaching a given
solution quality.

Multivariate probability distributions are more difficult to handle than univariate distributions. There-
fore, rather than working directly with bivariate RTDs, it is often preferable to focus on the (univariate)
distributions of the run time required for reaching a given solution quality threshold instead. These
qualified run-time distributions (QRTDs) are the marginals of a given bivariate RTD for a specific bound
on solution quality; intuitively, they correspond to cross-sections of the respective two-dimensional cu-
mulative RTD graph for fixed solution quality values (see Figure 14.4). QRTDs directly characterise the
ability of an SLS algorithm for an optimisation problem to solve the associated decision problems for the
given solution quality bound. They are particularly useful for analysing an algorithm’s ability to find opti-
mal, close-to-optimal or feasible solutions and can be studied using exactly the same techniques as those
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FIGURE 14.4  Top left: Bivariate RTD for an SLS algorithm applied to a TSP benchmark instance; the other plots give
different views on the same distribution; top right: QRTDs for various relative solution quality bounds (percentage
deviation from optimum); bottom left: SQDs for various run-time bounds (in CPU s); and bottom right: SQT curves
for various SQD quantiles.

applied to the (univariate) RTDs of decision algorithms. A detailed picture of the behaviour of arandomised
optimisation algorithm on a single problem instance can be obtained by analysing series of qualified RTDs
for increasingly tight solution quality thresholds. The solution quality bounds used in a QRTD analysis
are typically derived from knowledge of optimal solutions or bounds on the optimal solution quality; the
latter case includes bounds obtained from long runs of heuristic optimisation algorithms.

Another commonly used way of studying the behaviour of randomised optimisation algorithms on a
given problem instance is to analyse the distribution of solution qualities obtained over multiple indepen-
dent runs with a fixed time bound. Technically, these so-called solution quality distributions (SQDs) are the
marginals of the underlying bivariate RTDs for a fixed run-time bound. They correspond to cross-sections
of the two-dimensional cumulative RTD graph for fixed run-time values; in this sense, they are orthogonal
to QRTDs (see Figure 14.4). Again, these univariate distributions can be studied using essentially the same
techniques as for analysing the RTDs of decision algorithms.

Closely related to SQDs are the asymptotic solution quality distributions obtained in the limit for arbitrar-
ily long run times. For complete and probabilistically approximately complete optimisation algorithms,
which are guaranteed to find an optimal solution to any given problem instance with arbitrarily high
probability given sufficiently long run time, the asymptotic SQDs are degenerate distributions whose
probability mass is completely concentrated on the optimal solution quality of the given problem instance.
When dealing with randomised optimisation algorithms with an algorithm-dependent termination crite-
rion, such as randomised iterative improvement methods that terminate upon reaching a local minimum,
it is often also useful to study termination time distributions (TTDs), which characterise the distribution
of the time until termination over multiple independent runs.
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Finally, the SQT curves described earlier in the context of characterising run time / solution quality
trade-offs for deterministic optimisation algorithms can be generalised to randomised algorithms. This is
done by replacing the uniquely defined solution quality values obtained by a deterministic algorithm for
any given run-time bound by statistics of the respective SQDs in the randomised case. Although historically,
this type of analysis has most commonly used SQT curves based on mean solution quality values, it is often
preferable to use SQTs that reflect the development of SQD quantiles (such as the median) over time, since
these tend to be statistically more stable than means. SQTs based on SQD quantiles also offer the advantage
that they directly correspond to horizontal sections or contour lines of the underlying bivariate RTD sur-
faces. Combinations of such SQTSs can be very useful for summarising certain aspects of a complete bivariate
RTD; they are particularly well suited for analysing trade-offs between run time and solution quality (see
Figure 14.4). However, the investigation of individual SQTs offers a fairly limited view of an optimisation
algorithm’s run-time behaviour in which important details can be easily missed and should therefore be
complemented with other approaches, such as QRTD or SQD analysis. All these analyses can be carried
out on the same set of solution quality traces collected over multiple indendent runs of the algorithm.

14.3.2 Comparative Analysis on Single Instances

The basic approach used for the comparative analysis of two (or more) optimisation algorithms on a single
problem instance is analogous to that for decision algorithms. Often, a fixed target solution quality is used
in this context, in which case the analysis involves the QRTDs of the algorithms with respect to that solution
quality bound. Alternatively, a bound on run time can be used, and the respective SQDs can be compared
using the same methods as in the case of RTDs for decision algorithms. (It may be noted that the SQDs
of high-performance algorithms for high run times typically have much lower variance than QRTDs.)

Both of these methods do not take into account trade-offs between run time and solution quality. To
capture such trade-offs, it is useful to extend the concept of domination introduced earlier for decision
algorithms. We first note that in the case of two deterministic optimisation algorithms, A and B, this
is straightforward: A dominates B on a given problem instance 7 if A gives consistently better solution
quality than B for any run time. This implies that the respective SQT curves do not cross each other. In
the case of crossing SQTs, which of the two algorithm is preferable in terms of solution quality achieved
depends on the time the algorithms are allowed to run.

When generalised to randomised algorithms, this leads to the concept of probabilistic domination. Ana-
logous to the case of randomised decision algorithms, probabilistic domination between two randomised
optimisation algorithms holds if, and only if, their (bivariate) cumulative RTD surfaces do not cross each
other. Note that this implies that there is no crossover between any SQDs for the same run-time bound, or
between any QRTDs for any solution quality bound. In practice, probabilistic domination can be tested
based on a series of QRTDs for different solution quality bounds (or SQDs for various run-time bounds).
This does not require substantial experimental overhead, since the solution quality traces underlying
empirical QRTDs for the best solution quality bound also contain all the information for QRTDs for
lower-quality bounds. When probabilistic domination does not hold, the run-time/solution quality trade-
offs between the given algorithms can be characterised using the same data. In many cases, the results from
empirical performance comparisons between randomised optimisation algorithms can be conveniently
summarised using SQT curves over multiple SQD statistics (e.g., median and additional quantiles) in
combination with SQD plots for selected run times.

14.3.3 Analysis on Instance Ensembles

The considerations arising when extending the analyses described in the previous sections to ensembles
of problem instances are essentially the same as in the case of decision algorithms (see Sections 14.2.2
and 14.2.4). It is convienent (and in some special cases sufficient) to perform the analysis for a single
solution quality or run-time bound, in which case the methodology is analogous to that for decision
algorithms. However, in most cases, run time / solution quality trade-offs need to be considered. This
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can be achieved by analysing SCDs or performance correlations for multiple solution quality or run-time
bounds in addition to a more detailed analysis for carefully selected individual instances.

In the analysis of optimisation algorithms on instance ensembles, it is typically much preferable to
use relative rather than absolute solution qualities. This introduces a slight complication when dealing
with benchmark instances for which (provably) optimal solution qualities are unknown. To deal with
such instances, theoretically or empirically determined bounds on the optimal solution quality, including
best solution qualites achieved by high-performance heuristic algorithms, are often used. In this context,
particularly when conducting performance comparisons related to the ability of various algorithms to
find optimal or close-to-optimal solutions, it is very important to ensure that the bounds used in lieu of
provably optimal solutions are as tight as possible.

14.4 Advanced RTD-Based Analysis

The measurement of RTDs for decision and optimisation problems can serve not only as a first step in the
descriptive and comparative analysis of algorithm behaviour, as shown in the previous sections, but it can
also form the basis of more advanced analysis techniques, for example, for examining scaling behaviour
or performance robustness with respect to an algorithm’s parameter settings. In what follows, we briefly
outline such types of analyses; while our discussion is focused on RTDs for decision algorithms or, equiv-
alently, on QRTDs for optimisation algorithms, many of its aspects can be extended in a straightforward
way to the analysis of SQDs for optimisation algorithms.

14.4.1 Scaling with Instance Size

Animportant question is how an algorithm’s performance scales with the size of the given problem instance.
One approach to studying scaling behaviour is to base the analysis on individual instances of various sizes.
However, since there is often very substantial variation in run time between instances of the same size,
scaling studies are better based on ensembles of instances for each size. Then, the set of techniques discussed
in the previous section can be applied by first measuring RTDs on individual instances; next, SCDs can
be derived from appropriately chosen statistics of these RTDs, as discussed in Section 14.2.2; and finally,
various statistics of these SCDs can be analysed in dependence of instance size.

As afirst step, it is often useful to analyse the scaling data graphically. In this context, the use of semi-log
or log-log plots can be very helpful: in particular, exponential scaling of mean or median search cost
is reflected in a linear relationship between instance size and the logarithm of run time, while a linear
relationship between the logarithms of both, instance size and run time is indicative of polynomial scaling.
To analyse scaling behaviour in more detail, function fitting techniques, such as statistical regression, can
be used. A simple example of an empirical scaling analysis is given in Figure 14.5.

Additional support for observed or conjectured scaling behaviour can be obtained by interpolation
experiments, where for instance sizes that are in the range of the previously analysed instance ensembles
additional data points are measured, or by extrapolation experiments, where an empirically fitted scaling
function is used to predict the SCD statistics for larger instance sizes and deviations from the predicted
values are analysed to possibly further refine the hypothesis on the scaling behaviour.

14.4.2 Impact of Parameter Settings

Many heuristic algorithms have one or more parameters that control their behaviour; as an example,
consider the tabu tenure parameter in tabu search, a well-known SLS method (see also Chapters 19 and
23). The settings of such control parameters often have a significant yet theoretically poorly understood
impact on the performance of the respective algorithm, which can be empirically studied by analysing
the variation of an algorithm’s RTD (or RTD statistics) in response to changes in its parameter settings.
Often, the data required for this type of parameter sensitivity analysis is readily available from experiments
conducted to optimise parameter settings for achieving peak performance.
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FIGURE 14.5 Scaling of the median and the 0.9 percentile for the search cost of solving SAT-encoded graph colouring
instances with an SLS algorithm. Both statistics show evidence of exponential scaling.

It should be noted that in the case of randomised algorithms, the variation of run time for a fixed
parameterisation and problem instance often depends on the parameter settings and should therefore be
studied. For many SLS algorithms, suboptimal parameter values can cause search stagnation and extremely
high variability in run time; in such situations, larger sample sizes may be required for obtaining reasonably
accurate estimates of RTD statistics. Furthermore, for many heuristic algorithms with multiple parameters,
the effects of various parameters are typically not independent, and experimental design techniques have
to be employed for studying the nature and strength of these parameter dependencies.

Another important aspect of investigating parameter-dependent algorithmic performance deals with
consistency across instance ensembles, i.e., with the question to which degree the impact of parameter
settings is similar across the instances in a given ensemble. One way of approaching this issue is to treat
different parameterisations like different algorithms, and to use the methods for comparative performance
analysis on instance ensembles from Section 14.2.4 (in particular, correlation analysis of RTD statistics).
Consistency of performance-optimising parameter settings is often of particular interest. When consistent
behaviour across an ensemble is not observed, it may still be possible to relate aspects of parameter-
dependent run-time behaviour to specific characteristics of the instances. Such characteristics could be of
purely syntactic nature (such as instance size or clauses/variables ratio for SAT instances) or they may be
based on some deeper semantic properties (such as search space features in the case of SLS algorithms).

The need for manually tuning parameters can cause problems in practical applications of heuristic
algorithms as well as in their empirical analysis. In particular, comparative performance analyses can yield
misleading results when parameter settings have been tuned unevenly (i.e., more effort has been spent in
optimising parameter settings for one of the algorithms). To alleviate these problems, automatic tuning
techniques have been proposed [8,9]. Furthermore, mechanisms for adapting parameter values while
solving a given problem instance have been used with considerable success, in particular in the context of
reactive search methods (see Chapter 21).

14.4.3 Stagnation Detection

Intuitively, a randomised heuristic decision algorithm shows stagnation behaviour if for long runs, the
probability of finding a solution can be improved by restarting the algorithm at some appropriately chosen
cut-off time. For search algorithms, this effect may be due to the inability of the algorithm to trade off
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FIGURE 14.6  Left: Empirical QRTD of an iterated local search algorithm for finding the optimal solution of TSPLIB
instance pcb442 (ILS); comparison with an exponential distribution (ed[m] = 1 — p-runtime/m) reveals severe
stagnation behaviour. Right: Best fit of an empirical RTD by an exponential distribution. The fit passes a x> goodness-
of-fit test at a significance level of o = 0.05.

effectively exploration of the search space and exploitation of previous search experience, and may be
related to the algorithm getting trapped in specific areas of the search space.

Interestingly, it is relatively straightforward to detect such stagnation behaviour from an empirical
RTD. It is easy to see that only for RTDs that are identical to an exponential distribution, a well-known
probability distribution from statistics, such restarts do not result in any performance loss or improvement
[11] (essentially, this is due to the memory-less property of the exponential distribution). This insight
provides the basis for detecting stagnation situations by comparing empirical RTDs of a given algorithm
to exponential distributions. Stagnation behaviour is present if there is an exponential distribution whose
CDF graph meets that of the empirical RTD from below but never crosses it. This situation is illustrated
in Figure 14.6 (left pane); the arrows indicate the optimal cut-off time for a static restart strategy, which
can also be determined from the RTD.

In general, the detection of stagnation situations using the RTD-based methodology can be a key
element in the systematic development of randomised heuristic algorithms; for example, in the case of
SLS algorithms, the occurrence of search stagnation often indicates the need for additional or stronger
diversification mechanisms. (For further details, see Chapter 4 of Ref. [1].)

14.4.4 Functional Characterisation of Empirical RTDs

It is often useful (though not always possible) to characterise empirical RTDs by means of simple
mathematical functions. For example, the RTDs of many high-performance SLS algorithms are well ap-
proximated by exponential distributions (see, e.g., Ref. [11]). Such characterisations are not only useful in
the context of stagnation analysis (as explained in the previous section), but also provide detailed and often
very accurate summarisations of an algorithm’s run-time behaviour. Furthermore, they can help in gaining
insights into an algorithm’s properties by providing a basis for modelling its behaviour mathematically.

In the context of functional RTD characterisations, it is particularly appealing to model empirical
RTDs using parameterised continuous probability distributions known from statistics. This can be done
using standard fitting techniques to determine suitable parameter values; the quality of the resulting
approximations can be evaluated using goodness-of-fit tests, such as the x? test or the Kolmogorov—
Smirnov test [7]. (For an illustration, see right pane of Figure 14.6.) The same methods can be used for
functionally characterising other empirical data, such as SQDs or SCDs.

When dealing with large instance ensembles, the fitting and testing process needs to be automated. This
way, more general hypotheses regarding an algorithm’s run-time behaviour can be investigated empirically.
Like any empirical approach, this method cannot be used for proving universal results on an algorithms’
behaviour on an entire (infinite) class of problem instances, but it can be very useful in formulating,
refining or falsifying hypotheses on such results.
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14.5 Extensions

Most empirical analyses of heuristic algorithms in the literature focus on “classical” A/P-hard
problems. It is clear, however, that sound empirical methodologies are equally important when tackling
conceptually more involved types of problems, such as multiobjective, dynamic or stochastic optimisation
problems.

Multiobjective problems. In multiobjective problems, several, typically conflicting optimisation criteria
need to be considered simultaneously. For these problems, a common goal is to identify the set of Pareto-
optimal solutions [12], i.e., solutions for which there exists no alternative that is strictly better with respect to
all optimisation criteria. Such multiobjective problems arise in many engineering and business applications,
and heuristic algorithms are widely used for solving them [13,14]. The behaviour of these algorithms can be
analysed empirically using a suitably generalised notion of multivariate RTDs. Since the dimensionality of
the RTDs to be measured in this case is equal to the number of objective functions plus one, data collection
and analysis are considerably more complex than in the case of single-objective optimisation problems.
While we are not aware of any studies based on these multivariate RTDs, the marginal distributions
obtained when keeping the computation time fixed have received considerable attention. The analysis of
these so-called attainment functions has been proposed by Fonseca et al. [15] and has been acknowledged
as one of the few approaches for a correct analysis of the performance of randomised algorithms for
multiobjective optimisation [16].

Dynamic problems. In many applications, some aspects of a given problem instance may change while
trying to find or implement a solution. Such dynamic problems are encountered, for example, in many
distribution problems, where traffic situations can change as a result of congested or blocked routes. Two
common goals in dynamic problems are to minimise the delay in recovering solutions (of a certain quality)
after a change in the problem instance has occurred and to miminise disruptions of the current solution,
i.e., the amount of modifications required to adapt the current solution to the changed situation. The
empirical analysis of heuristic (and in particular, randomised) algorithms for both of these situations
can be handled using relatively straightforward extensions of the RTD-based methodology. In the case of
dynamic optimisation problems, tradeoffs between solution quality and the amount of disruption can be
studied using the same techniques as for static multiobjective problems. Also, particularly for dynamic
optimisation problems where changes occur rather frequently, it can be useful to analyse the development
of solution quality (or, for randomised algorithms, SQDs) over time, using suitable generalisations of the
RTD-based techniques for static optimisation problems.

Stochastic problems. In some practical applications, important properties of solutions are subject to
statistical variation. For many stochastic optimisation problems, variations in the quality of a given solution
are caused by random changes (or uncertainty) in solution components that are characterised in the form
of probability distributions; for example, in stochastic routing problems, the costs associated with using
certain connections may be specified by Gaussian distributions. A typical goal when solving stochastic
optimisation problems is to find a solution with optimal expected quality. In some cases, the expected
quality of a solution can be determined analytically, and algorithms for such problems can be analysed
using the same empirical methods as described for conventional deterministic problems. In other cases,
approximation or sampling methods have to be used for estimating the quality of candidate solutions.
While in principle, the techniques described in this chapter can be extended to these cases, empirical
analyses (as well as algorithm development) are more involved; for example, when measuring empirical
SQDs, a trade-off arises between the number of algorithm runs and the number of samples used to estimate
the quality of incumbent solutions.
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14.6 Further Reading

The use of principled and advanced techniques for the empirical analysis of deterministic and randomised
heuristic algorithms is gaining increasing acceptance among researchers and practitioners. In this chapter,
we have described the analysis of RTDs as a core technique for the empirical investigation and char-
acterisation of randomised algorithms [17]. While RTDs have been previously reported in the literature
[18-20], they have typically been used for purely descriptive purposes or in the context of investigating the
parallelisation speed-up achievable by performing multiple independent runs of a sequential algorithm.
A more detailed description of the RTD-based methodology is given in Chapter 4 of Ref. [1]. RTD-based
methods are now being used increasingly widely for the empirical study of a broad range of SLS algorithms
for numerous combinatorial problems [21-29].

SQDs of randomised heuristic optimisation algorithms have been occasionally reported in the literature;
they have been used, for example, to obtain results on the scaling of SLS behaviour [30]. SQDs can also
be used for estimating optimal solution qualities for combinatorial optimisation problems [31,32]. SCDs
over ensembles of problem instances have been measured and characterised for deterministic, complete
algorithms for binary constraint satisfaction problems and SAT [33,34].

There is a growing body of work on general issues in empirical algorithmics. Several articles provide
guidelines for the experimental study of mathematical programming software [35,36] and heuristic algo-
rithms [37], with the aim of increasing the reproducibility of results. General guidelines for the experimental
analysis of algorithms have also been proposed by McGeoch and Moret [38—40]. Johnson [41] gives an
overview of guidelines and potential pitfalls in empirical algorithmics research. A more scientific approach
to experimental studies of algorithms in optimisation has been advocated by Hooker [42,43], who empha-
sised the need for formulating and empirically investigating hypotheses about algorithm properties and be-
haviour rather than limiting the experimental study of algorithms to simplistic performance comparisons.

At the core of any empirical approach to investigating the behaviour and performance of randomised
algorithms are statistical methods. Cohen’sbook [44] provides a good introduction to empirical methodsin
computing science with an emphasis on algorithms and applications in artificial intelligence. The handbook
by Sheskin [7] is an excellent source for detailed information on statistical tests and their application, while
Siegel et al. [45] and Conover [46] provide more specialised introductions to nonparametric statistics. For
an introduction to the important topic of experimental design and data analysis we refer to the books of
Dean and Voss [47] and Montgomery [48].
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15.1 Introduction

The technique of transforming a problem into another in such a way that the solution of the latter entails,
somehow, the solution of the former is a classical mathematical technique that has found wide applica-
tion in computer science since the seminal works of Cook [1] and Karp [2], who introduced particular
kinds of transformations (called reductions) with the aim of studying the computational complexity of
combinatorial decision problems. The interesting aspect of a reduction between two problems consists in
its twofold application: on the one hand it allows to transfer positive results (resolution techniques) from
one problem to the other and, on the other hand, it may also be used for deriving negative (hardness)
results. In fact, as a consequence of such seminal work, by making use of a specific kind of reduction,
the polynomial-time Karp-reducibility, it has been possible to establish a complexity partial order among
decision problems, which, for example, allows us to state that, modulo polynomial-time transformations,
the SATISFIABILITY problem is as hard as thousands of other combinatorial decision problems, even though
the precise complexity level of all these problems is still unknown.

Strictly associated with the notion of reducibility is the notion of completeness. Problems that are
complete in a complexity class via a given reducibility are, in a sense, the hardest problems of such class.
Besides, given two complexity classes C and C' C C, if a problem IT is complete in C via reductions
that belong (preserve membership) to C/, to establish whether C' C C, it is “enough” to assess the actual
complexity of IT (informally, we say that IT is a candidate to separate C and C).

In this chapter we will show that an important role is played by reductions also in the field of approx-
imation of hard combinatorial optimization problems. In this context, the kind of reductions which will
be applied are called approximation preserving reductions. Intuitively, in the most simple case, an approxi-
mation preserving reduction consists of two mappings f and g: f maps an instance x of problem IT into
an instance f(x) of problem IT’, ¢ maps back a feasible solution y of IT’ into a feasible solution g(y) of T
with the property that g(y) is an approximate solution of problem IT whose quality is almost as good
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as the quality of the solution y for problem IT'. Clearly, again in this case, the role of an approximation
preserving reduction is twofold: on the one hand it allows to transfer an approximation algorithm from
problem IT' to problem IT; on the other, if we know that problem IT cannot be approximated beyond a
given threshold, such limitation applies also to problem IT'.

Various kinds of approximation-preserving reducibilities will be introduced in this chapter and we will
show how they can be exploited in a positive way, to transform solution heuristics from a problem to
another and how, on the contrary, they may help in proving negative, inapproximability results.

It is well known that NP-hard combinatorial optimization problems behave in a very different way
with respect to approximability and can be classified accordingly. While for some problems there exist
polynomial-time approximation algorithms that provide solutions with a constant approximation ratio
w.r.t. the optimum solution, for some other problems even a remotely approximate solution is computa-
tionally hard to achieve. Analogous to what happens in the case of the complexity of decision problems,
approximation-preserving reductions allow to establish a partial order among optimization problems in
terms of approximability properties, independently from the actual level of approximation that for such
problems can be achieved (and that in some cases is still undefined). Approximation-preserving reductions
can also be used to define complete problems which play an important role in the study of possible separa-
tions between approximation classes. The discovery that a problem is complete in a given approximation
class provides a useful insight in understanding what makes a problem not only computationally hard but
also resilient to approximate solutions.

As a final remark on the importance of approximation-preserving reductions, let us observe that such
reductions require some correspondence between the combinatorial structure of two problems be estab-
lished. Thisis not the case for reductions between decision problems. For example, in such a case, we see that
all NP-complete decision problems turn out to be mutually interreducible by means of polynomial-time
reduction while when we consider the corresponding optimization problems, the different approximability
properties come to evidence. As a consequence, we can say that approximation-preserving reductions are
also a useful tool to analyze the deep relation existing between combinatorial structure of problems and
the hardness of approximation.

The rest of this chapter is organized as follows. The next section is devoted to basic definitions and
preliminary results concerning reductions among combinatorial optimization problems. In Section 15.3 we
provide the first, simple example of approximation-preserving reducibility, namely the linear reducibility,
that while not as powerful as the reducibilities that will be presented in the sequel is widely used in practice.
In Section 15.4, we introduce the reducibility that, historically, has been the first to be introduced, the
strict reducibility and we discuss the first completeness results based on reductions of such kind. Next, in
Section 15.5, we introduce AP-reducibility, and in Section 15.6 we discuss more extensive completeness
results in approximation classes. In Section 15.7, we present a new reducibility, called FT-reducibility,
that allows to prove the polynomial-time approximation scheme (PTAS)-completeness of natural NP-
optimization (NPO) problems. Finally, in Section 15.8, we present other reductions with the specific aim
of proving further inapproximability results. The last two sections of the chapter contain conclusions and
references.

In this chapter we assume that the reader is familiar with the basic notions of computational complex-
ity regarding both decision problems and combinatorial optimization problems, as they are defined in
Chapter 1.

15.2 Basic Definitions

Before introducing the first examples of reductions between optimization problems, let us recall the
definitions of the basic notions of approximation theory and of the most important classes of optimization
problems, characterized in terms of their approximability properties. First of all we introduce the class
NPO which is the equivalent, for optimization problems, of the class of decision problems NP.
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Definition 15.1
An NP optimization problem, NPO, I1 is defined as a four-tuple (Z, Sol, m, goal) such that

« T is the set of instances of I1 and it can be recognized in polynomial time;

- given x € I, Sol(x) denotes the set of feasible solutions of x; for any y € Sol(x), |y| (the size of y) is
polynomial in | x| (the size of x ); given any x and any y polynomial in | x|, one can decide in polynomial
time if y € Sol(x);

« givenx € T and y € Sol(x), m(x, y) denotes the value of y and can be computed in polynomial time;

« goal € {min, max} indicates the type of optimization problem.

Given an NPO problem IT = (Z, Sol, m, goal) an optimum solution of an instance x of IT is usually
denoted y*(x) and its measure m(x, y*(x)) is denoted by opt(x).

Definition 15.2

Given an NPO problem Il = (Z, Sol, m, goal), an approximation algorithm 4 is an algorithm that given an
instance x of I1 returns a feasible solution y € Sol(x). If A runs in polynomial time with respect to |x|, 4 is
called a polynomial-time approximation algorithm for IT.

The quality of the solution given by an approximation algorithm A for a given instance x is usually mea-
sured as the ratio p o(x), approximation ratio, between the value of the approximate solution, m(x, A(x)),
and the value of the optimum solution op#(x). For minimization problems, therefore, the approximation
ratio is in [1, 0o0), while for maximization problems it is in [0, 1].

Definition 15.3

An NPO problem I1 belongs to the class APX if there exist a polynomial-time approximation algorithm A and
a value r € Q such that, given any instance x of I1, pa(x) < r (resp., pa(x) > r) if Il is a minimization
problem (resp., a maximization problem). In such a case, A is called an r -approximation algorithm.

Examples of combinatorial optimization problems belonging to the class APX are MAX SATISFIABILITY, MIN
VERTEX COVER, and MIN EUCLIDEAN TSP.

In some cases, a stronger form of approximability for NPO problems can be obtained by a PTAS that
is a family of algorithms A, such that, given any ratio r € Q, the algorithm A, is an r-approximation
algorithm whose running time is bounded by a suitable polynomial p as a function of |x|.

Definition 15.4

An NPO problem I1 belongs to the class PTAS if there exists a PTAS A, such that, given anyr € Q,r # 1, and
any instance x of I1, pa, (x) < r (resp., pa, (x) > r) if I1 is a minimization problem (resp., a maximization
problem).

Among the problems in APX listed above, the problem MIN EUCLIDEAN TSP can be approximated by means
of a PTAS and hence belongs to the class PTAS. Moreover, other examples of combinatorial optimization
problemsbelonging to the class PTAS are MIN PARTITIONING and MAX INDEPENDENT SET ON PLANAR GRAPHS.

Finally, a stronger form of approximation scheme can be used for particular problems in PTAS, such as,
for example, MAX KNAPSACK or MIN KNAPSACK. In such cases, in fact, the running time of the algorithm A,
is uniformly polynomial in r as made precise in the following definition.

Definition 15.5

An NPO problem 1 belongs to the class fully polynomial-time approximation scheme (FPTAS) if there exists
a PTAS 4, such that, given any r € Q, r # 1, and any instance x of I, py, (x) < r (resp., pa,(x) > 1)
if I1 is a minimization problem (resp., a maximization problem) and, furthermore, there exists a two variate
polynomial q such that the running time of A,(x) is bounded by q(x, 1/(r — 1)) (resp., q(x, 1/(1 — 1)) in
case of maximization problems).
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It is worth remembering that under the hypothesis that P # NP all the above classes form a strict hierarchy
that is FPTAS C PTAS C APX C NPO.

Let us note that there also exists other notorious approximability classes, as Poly-APX, Log-APX,
Exp-APX, the classes of problems approximable within ratios that are, respectively, polynomials (or
inverse of polynomials if goal = max), logarithms (or inverse of logarithms), exponentials (or inverse of
exponentials) of the size of the input. The best studied among them is the class Poly-APX. Despite their
interest for sake of conciseness these classes are not dealt in the chapter.

When the problem of characterizing approximation algorithms for hard optimization problems was
tackled, soon the need arose for a suitable notion of reduction that could be applied to optimization
problems to study their approximability properties [3]:

What is it that makes algorithms for different problems behave in the same way? Is there some stronger
kind of reducibility than the simple polynomial reducibility that will explain these results, or are they
due to some structural similarity between the problems as we define them?

Approximation preserving reductions provide an answer to the above question. Such reductions have an
important role when we wish to assess the approximability properties of an NPO optimization problem
and locate its position in the approximation hierarchy. In such a case, in fact, if we can establish a rela-
tionship between the given problem and other known optimization problems, we can derive both positive
information on the existence of approximation algorithms (or approximation schemes) for the new prob-
lem or, on the other side, negative information, showing intrinsic limitations to approximability. With
respect to reductions between decision problems, reductions between optimization problems have to be
more elaborate. Such reductions, in fact, have to map both instances and solutions of the two problems,
and they have to preserve, so to say, the optimization structure of the two problems.

The first examples of reducibility among optimization problems were introduced by Ausiello et al. in
Refs. [4,5] and by Paz and Moran in Ref. [6]. In particular, in Ref. [5], the notion of structure preserving
reducibility is introduced and for the first time the completeness of MAX WSAT (weighted-vertex SAT) in
the class of NPO problems is proved. Still it took a few more years until suitable notions of approximation
preserving reducibilities were introduced by Orponen and Mannila in Ref. [7]. In particular, their paper
presented the strict reduction (see Section 15.4) and provided the first examples of natural problems who
are complete under approximation preserving reductions: (MIN WSAT, MIN 0-1 LINEAR PROGRAMMING, and
MIN TSP).

Before introducing specific examples of approximation preserving reduction in the next sections, let us
explain more formally how reductions between optimization problems can be defined, starting from the
notion of basic reducibility (called R-reducibility in the following, denoted <r) which underlays most of
the reducibilities that will be later introduced.

Definition 15.6

Let T1; and T1, be two NPO maximization problems. Then we say that I1; <g Tl if there exist two
polynomial-time computable functions f, g that satisfy the following properties:

« f:In, - In, such that ¥x; € Iy, f(x1) € Im,; in other words, given an instance x1 in Iy, f
allows to build an instance x; = f(x1) in Ty;

« g : I, x Solm, — Solm, such that, ¥(x1, y2) € (Zr1, x Solm, (f(x1))), g(x1, y2) € Solm, (x1); in
other words, starting from a solution y, of the instance x, g determines a solution y; = g(x1, y2) of
the initial instance x; .

Aswe informally said in the introduction, the aim of an approximation preserving reduction is to guarantee
that if we achieve a certain degree of approximation in the solution of problem IT5, then a suitable degree of
approximation is reached for problem IT; . As we will see, the various notions of approximation preserving
reducibilities that will be introduced in the following, essentially differ in the mapping that is established
between the approximation ratios of the two problems.
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Before closing this section, let us introduce the notion of closure of a class of problems under a given
type of reducibility. In what follows, given two NPO problems IT and IT’, and a reducibility X, we will
generally use the notation I1 <x IT’ to indicate that IT reduces to I1’ via reduction of type X.

Definition 15.7

Let C be a class of NPO problems and X a reducibility. Then, the closure C* of C under X is defined as: T =
{IT € NPO: 31T’ € C, IT <x IT'}.

15.3 The Linear Reducibility

The first kind of approximation preserving reducibility that we want to show is a very natural and simple
transformation among problems which consists of two linear mappings: one between the values of the
optimum solutions of the two problems and one between the errors of the corresponding approximate
solutions, the linear reducibility (L-reducibility, denoted <[ ).

Definition 15.8

Let I1y and I, be two problems in NPO. Then, we say that I1y < Iy, if there exist two functions f and g
(basic reduction) and two constants 1 > 0 and ay > 0 such thatVx € I, andVy' € Solm, ( f(x)):

* optp, (f(x)) < a1 optp, (x);
* [mm, (x, g(y) — optpy, (%) < a2lmm, (f(x), y') — optr, (f(x))].

This type of reducibility has been introduced in Ref. [8] and has played an important role in the char-
acterization of the hardness of approximation. In fact it is easy to observe that the following property
holds.

Fact 15.1

Given two problems Tl and T, if T1 <| T’ and 1" € PTAS, then Tl € PTAS. In other words, the L-reduction
preserves membership in PTAS.

Example 15.1

MAX 3-SAT <| MAX 2-SAT. Let us consider an instance ¢ with m clauses (w.Lo.g., let us assume that all clauses
consist of exactly three literals); let lil, 12, and I? be the three literals of the ith clause, i = 1, ..., m. To any
clause we associate the following 10 new clauses, each one consisting of at most two literals: 1}, 12, I3, 1, T} v
2NV E BV VLB VIE BV IE, wherel? is a new variable. Let C! be the conjunction of the 10
clauses derived from clause C;. The formula ¢’ = f(¢) is the conjunction of all clauses C}, i = 1, ..., m,
ie,d = f(¢) = A, C! and it is an instance of MAX 2-SAT.

It is easy to see that all truth assignments for ¢’ satisfy at most seven clauses in any C;. On the other side,
for any truth assignment for ¢ satisfying C;, the following truth assignment for I} is such that the extended
truth assignment satisfies exactly seven clauses in C!: if exactly one (resp., all) of the variables I}, I2, I3 is
(resp., are) set to true, then I} is set to false (resp., true); otherwise (exactly one literal in Cj is set to false), I*
can be indifferently true or false. Finally, if C; is not satisfied ( li], liz, and l? are all set to false), no truth
assignment for lf can satisfy more than six clauses of C; while six are guaranteed by setting l? to false. This
implies that opt(¢’) = 6m + opt(¢) < 13 opt(¢) (since m < 2 opt(¢), see Lemma 15.2 in Section 15.6.2).

Given a truth assignment for ¢', we consider its restriction T = g(¢, t’) on the variables of ¢; for such
assignment T we have: m(¢, t) > m(¢’, t') — 6m. Then, opt(¢) — m(¢, ) = opt(¢’) — 6m — m(¢p, T) <
opt(¢')—m(¢’, T'). This means that the reduction we have defined is an L-reduction witha; = 13 anday = 1.

L-reductions provide a simple way to prove hardness of approximability. An immediate consequence of
the reduction that has been shown above and of Fact 15.1 is that, since MAX 3-SAT does not allow a PTAS
(see Chapter 17) so does MAX 2-SAT. The same technique can be used to show the nonexistence of PTAS
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for a large class of optimization problems, among others MAX CUT, MAX INDEPENDENT SET- B (i.e., MAX
INDEPENDENT SET on graphs with bounded degree), and MIN VERTEX COVER.

Before closing this section, let us observe that the set of 10 2-SAT clauses that we have used in Example 15.1
for constructing the 2-SAT formula ¢’ = f(¢), is strongly related to the bound on approximability estab-
lished in the example. Really, the proof of the result is based on the fact that at least six out of the 10 clauses
can always be satisfied while exactly seven out of 10 can be satisfied, if and only if the original 3-SAT clause is
satisfied. A combinatorial structure of this kind, which allows to transfer (in)approximability results from
a problem to another, is called a gadget (see Ref. [9]). The role of gadgets in approximation-preserving
reductions will be discussed further in Section 15.8.

15.4 Strict Reducibility and Complete Problems in NPO

As we informally said in the introduction, an important characteristic of an approximation preserving
reduction from a problem II; to a problem IT, is that the solution y; of problem IT; produced by
the mapping g should be at least as good as the original solution y, of problem IT,. This property is
not necessarily true for any approximation preserving reduction (it is easy to observe that, for example,
L-reductions do not always satisfyit), butitis true for the most natural reductions that have been introduced
in the early phase of approximation studies: the strict reductions [7].

In the following, we present the strict reducibility (S-reducibility, denoted <s ) referring to minimization
problems, but the definition can be trivially extended to all types of optimization problems.

Definition 15.9

Let T1; and I1, be two NPO minimization problems. Then, we say that I1; <s Tl if there exist two
polynomial-time computable functions f, g that satisfy the following properties:

+ f and g are defined as in a basic reduction;
* Vx €Iy, Vy € Solm, (f(x), pri, (f(x), y) = pmy (%, g(x, ¥)).

It is easy to observe that the S-reducibility preserves both membership in APX and in PTAS.

Proposition 15.1

Given two minimization problems I1) and Iy, if 1} <g I1; and 1, € APX (resp., 1y € PTAS), thenTl; €
APX (resp., I1; € PTAS).

Example 15.2

Consider the MIN-WEIGHTED VERTEX COVER problem in which the weights of vertices are bounded by a
polynomial p(n) and let us prove that this problem S reduces to the unweighted MIN VERTEX COVER problem.
Let us consider an instance (G(V, E), w) of the former and let us see how it can be transformed into an
instance G'(V', E') of the latter. We proceed as follows: for any vertex v; € V, with weight w;, we construct
an independent set W; of w; new vertices in V'; next, for any edge (v;, vj) € E, we construct a complete
bipartite graph among the vertices of the independent sets W; and W; in G'. This transformation is clearly
polynomial since the resulting graph G’ has Y i_, wi < np(n) vertices.

Let us now consider a cover C' of G’ and, w.Lo.g., let us assume it is minimal w.r.t. inclusion (in case it
is not, we can easily delete vertices until we reach a minimal cover). We claim that at this point C' has the
form: U§:1 Wi;, ie., thereis an £ such that C' consists of £ independent sets W;. Suppose that the claim is
not true. Let us consider an independent set Wi which is only partially included in C' (that is a nonempty
portion W, of it belongsto C'). Let us also consider all independent sets W), that are entirely or partially included
in C' and moreover are connected by edges to the vertices of Wy. Two cases may arise: (i) all considered sets 1
have their vertices included in C'; in this case the existence of W;, would contradict the minimality of C';
(ii) among the considered sets W), there is at least one set Wy out of which only a nonempty portion Wé is
included in C'; in this case, since the subgraph of G’ induced by Wy U W, is a complete bipartite graph, the
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edges connecting the vertices of Wp\W;J with the vertices of Wy\ W(; are not covered by C' and this would
contradict the assumption that C' is a cover of G'. As a consequence, the size of C' satisfies |C'| = Z?Zl Wi
and the function g of the reduction can then be defined as follows:if C' isacover of G’ andif W;,i =1, ..., ¢,
are the independent sets that form C’, then a cover C for G contains all corresponding vertices vy, ..., vg
of V. Clearly g can be computed in polynomial time.

From these premises we can immediately infer that the same approximation ratio that is guaranteed for A

on G’ is also guaranteed by g on G. The shown reduction is hence an S-reduction.

An immediate corollary of the strict reduction shown in the example is that the approximation ratio 2
for MIN VERTEX COVER (that we know can be achieved by various approximation techniques, see Ref. [10])
also holds for the weighted version of the problem, dealt in Example 15.2.

The S-reducibility is indeed a very strong type of reducibility: in fact it requires a strong similar-
ity between two optimization problems and it is not easy to find problems that exhibit such similar-
ity. The interest for the S-reducibility arises mainly from the fact that by making use of reductions of
this kind, Orponen and Mannila have identified the first optimization problem that is complete in the
class of NPO minimization problems: the problem MIN WSAT. Let us consider a Boolean formula in
conjunctive normal form ¢ over n variables xi, ..., x, and m clauses. Any variable x; has a positive
weight w; = w(x;). Let us assume that the truth assignment that puts all variables to frue is feasible,
even if it does not satisfy ¢. Besides, let us assume that #; is equal to 1 if T assigns value true to the ith
variable and 0 otherwise. We want to determine the truth assignment t of ¢ which minimizes >, wit;.
The problem MAX WSAT can be defined in similar terms. In this case, we assume that the truth assign-
ment that puts all variables to false is feasible and we want to determine the truth assignment t that
maximizes Z?:l wit;. In the variants MIN W3-SAT and MAX W3-SAT, we consider that all clauses contain
exactly three literals.

The fact that MIN WSAT is complete in the class of NPO minimization problems under S-reductions
implies that this problem does not allow any constant-ratio approximation (unless P = NP) [5-7].In fact,
due to the properties of S-reductions, if a problem which is complete in the class of NPO minimization
problems was approximable then all NPO minimization problems would. Since it is already known that
some minimization problems in NPO do not allow any constant-ratio approximation algorithm (namely
MIN TSP on general graphs), then we can deduce that (unless P = NP) no complete problem in the class
of NPO minimization problems allows any constant-ratio approximation algorithm.

Theorem 15.1

MIN WSAT is complete in the class of minimization problems belonging to NPO under S-reductions.

Proof

The proof is based on a modification of Cook’s proof of the NP-completeness of SAT [1]. Let us consider
a minimization problem IT € NPO, the polynomial p which provides the bounds relative to problem IT
(see Definition 15.1) and an instance x of IT. The following nondeterministic Turing machine M (with
two output tapes T; and T>) generates all feasible solutions y € Sol(x) together with their values:

« generate y, such that |y| < p(|x]|);
« if y ¢ Sol(x), then reject; otherwise, write y on output tape Tj, m(x, y) on output tape T, and
accept.

Let us now consider the reduction that is currently used in the proof of Cook’s theorem (see Ref. [11]) and
remember that such reduction produces a propositional formula in conjunctive normal form that is satisfied
ifand only if the computation of the Turing machine accepts. Let ¢ be such formulaand x,,, x,—1, ..., xp
the variables of ¢ that correspond to the cells of tape T, where M writes the value m(x, y) in binary
(w.lo.g., we can assume such cells to be consecutive), such that a satisfying assignment of ¢, x; is true
if and only if the (n — i)-th bit of m(x, y) is equal to 1. Given an instance x of IT the function f of the
S-reduction provides an instance of MIN WSAT consisting of the pair (¢, ¥), where ¢ (x) = ¢ (x;) = 2f
fori =0, ..., nand ¥ (x) = 0, for any other variable x in ¢,.
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The function g of the S-reduction is defined as follows. For any instance x of I and any solution 7’ €
Sol( f(x)) (i.e., any truth assignment t’ which satisfies the formula ¢, [for simplicity we only consider the
case in which the formula ¢, is satisfiable] ), we recover from ¢, the representation of the solution y written
on tape T;. Besides, we have that m(x, g(x, t/)) = Zt’(x,-):true 21 = m((¢x> ¥), '), where by /(x;)
we indicate the value of variable x; according to the assignment 7’. As a consequence, m(x, g(x, t/)) =
m( f(x), ') and henceforth, r(x, g(x, ')) = r( f(x), T’), and the described reduction is an S-reduction.

|

After having established that MIN WSAT is complete for NPO minimization problems under the S-
reducibility we can then proceed to find other complete problems in this class.

Let us consider the following definition of the MIN 0-1 LINEAR PROGRAMMING problem (the problem
MAX 0-1 LINEAR PROGRAMMING can be defined analogously). We consider a matrix A € Z"*" and two
vectors b € Z™and w € N”. We want to determine a vector y € {0, 1}" that verifies Ay > band minimizes
the quantity w - .

Clearly, MIN 0-1 LINEAR PROGRAMMING is an NPO minimization problem. The reduction from MIN
WSAT to MIN 0-1 LINEAR PROGRAMMING is a simple modification of the standard reduction among the
corresponding decision problems. Suppose that the following instance of MIN 0-1 LINEAR PROGRAMMING,
consisting of a matrix A € Z"™*" and two vectors b e Z"and w € N, isthe image f(x) ofaninstance x of
MIN WSAT and suppose that y is a feasible solution of f(x) whose valueis m( f(x), y) = w-y. Then, g(x, )
is a feasible solution of x, that is a truth assignment t, whose value is m(x, t) = ZLI w;t; where t; is
equal to 1 if 7 assigns value true to the ith variable and 0 otherwise. Since we have Y | witi = w - J,
it is easy to see that the reduction ( f, g, ¢), where c is the identity function, is an S-reduction! and,
as a consequence, MIN 0-1 LINEAR PROGRAMMING is also complete in the class of NPO minimization
problems.

It is not difficult to prove that an analogous result holds for maximization problems, that is, MAX WSAT
is complete under S-reductions in the class of NPO maximization problems.

At this point of the chapter we still do not have the technical instruments to establish a more pow-
erful result, that is, to identify problems which are complete under S-reductions for the entire class of
NPO problems. To prove such a result we need to introduce a more involved kind of reducibility, the
AP-reducibility (see Section 15.5). In fact, by means of AP-reductions MAX WSAT can itself be reduced to
MIN WSAT and vice versa (see Ref. [12]) and therefore it can be shown that (under AP-reductions) both
problems are indeed NPO-complete.

15.5 AP-Reducibility

After the seminal paper by Orponen and Mannila [7], research on approximation preserving reducibility
was further developed (see, e.g., Refs. [13—15]); nevertheless, the beginning of the structural theory of ap-
proximability of optimization problems can be traced back to the fundamental paper by Crescenzi and Pan-
conesi [16] where reducibilities preserving membership in APX (A-reducibility), PTAS (P-reducibility),
and FPTAS (F-reducibility) were studied and complete problems for each of the three kinds of reducibil-
ities were shown, respectively in NPO, APX, and PTAS. Unfortunately, the problems which are proved
complete in APX and PTAS in this paper are quite artificial.

Along a different line of research, during the same years, the study of logical properties of optimization
problems has led Papadimitriou and Yannakakis [8] to the syntactic characterization of an important class
of approximable problems, the class Max-SNP. Completeness in Max-SNP has been defined in terms of
L-reductions (see Section 15.3) and natural complete problems (e.g., MAX 3-SAT, MAX 2-SAT, and MIN
VERTEX COVER-B) have been found. The relevance of such an approach is related to the fact that it is
possible to prove that Max-SNP-complete problems do not allow PTAS (unless P = NP).

Note that, in this case, the reduction is also a linear reductions with o; = a, = 1.
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The two approaches have been reconciled by Khanna et al. [17], where the closure of syntactically
defined classes with respect to an approximation preserving reduction were proved equal to the more
familiar computationally defined classes. As a consequence of this result, any Max-SNP-completeness
result appeared in the literature can be interpreted as an APX-completeness result. In this paper a new type
of reducibility is introduced, the E-reducibility. With respect to the L-reducibility, in the E-reducibility
the constant o is replaced by a polynomial p(|x|). This reducibility is fairly powerful since it allows to
prove that MAX 3-SAT is complete for APX-PB (the class of problems in APX whose values are bounded
by a polynomial in the size of the instance) such as MAX 3-SAT. However, it remains somewhat restricted
because it does not allow the transformation of PTAS problems (such as MAX KNAPSACK) into problems
belonging to APX-PB.

The final answer to the problem of finding the suitable kind of reducibility (powerful enough to establish
completeness results both in NPO and APX) is the AP-reducibility introduced by Crescenzi et al. [12].

In fact, the types of reducibility that we have introduced so far (linear and strict reducibilities) suffer from
various limitations. In particular, we have seen that strict reductions allow us to prove the completeness
of MIN WSAT in the class of NPO minimization problems, but are not powerful enough to allow the
identification of problems which are complete for the entire class NPO. Besides, both linear and strict
reductions, in different ways, impose strong constraints on the values of the solutions of the problems
among which the reduction is established.

In this section, we provide the definition of the AP-reducibility (denoted <ap) and we illustrate its
properties. Completeness results in NPO and in APX based on AP-reductions are shown in Section 15.6.

Definition 15.10

LetT1; and I, be two minimization NPO problems. An AP-reduction between I1 and I, isatriple( f, g, a),
where f and g are functions and o is a constant, such that, for any x € I, andr > 1:

* f(x, 1) € In, iscomputableintimets(|x|, r) polynomialin|x| for afixedr; t¢(n, -) is nonincreasing;

s for any y € Solm,(f(x, 1)), g(x, y,r) € Solm,(x) is computable in time tz(|x|, y, r) which is
polynomial both in |x| and in |y| for an fixed r; ty(n, n, -) is nonincreasing;

* forany y € Solm, (f(x, 7)), pri, ( f(x, ), y) < r implies pr, (x, g(x, y, 7)) < 1+ a(r —1).

It is worth underlining the main differences of AP-reductions with respect to the reductions introduced
until now. First, with respect to L-reductions the constraint that the optimum values of the two problems are
linearly related has been dropped. Second, with respect to the S-reductions we allow a weaker relationship
to hold between the approximation ratios achieved for the two problems. Besides, an important condition
which is needed in the proof of APX-completeness is that, in AP-reductions, the two functions f and g
may depend on the approximation ratio r. Such extension is somewhat natural since there is no reason
to ignore the quality of the solution we are looking for, when reducing one optimization problem to
another and it plays a crucial role in the completeness proofs. However, since in many applications such
knowledge is not required, whenever functions f and g do not use the dependency on r, we will avoid
specifying this dependency. In other words, we will write f(x)and g(x, y)instead of f(x, r) and g(x, y, 1),
respectively.

Proposition 15.2

Given two minimization problems I1; and Iy, if I1} <ap Il and I1; € APX (resp., [1, € PTAS),
then T1; € APX (resp., I1; € PTAS).

As alast remark, let us observe that the S-reducibility is a particular case of AP-reducibility, corresponding
to the case in which @ = 1. More generally, the AP-reducibility is sufficiently broad to encompass almost
all known approximation preserving reducibilities while maintaining the property of establishing a linear
relation between performance ratios: This is important to preserve membership in all approximation
classes.
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15.6 NPO-Completeness and APX-Completeness

15.6.1 NPO-Completeness

In the preceding section, we have announced that by means of a suitable type of reduction we can transform
an instance of MAX WSAT into an instance of MIN WSAT. This can now be obtained by making use of
AP-reductions. By combining this result with Theorem 15.1 and with the corresponding result concerning
the completeness of MAX WSAT in the class of NPO maximization problems, we can assemble the complete
proof that MIN WSAT is complete for the entire class NPO under AP-reductions. The inverse reduction,
from MIN WSAT to MAX WSAT can be shown in a similar way, leading to the proof that also MAX WSAT is
complete for the entire class NPO under AP-reductions.

Theorem 15.2
MAX WSAT can be AP-reduced to MIN WSAT and vice versa.

Proof (Sketch)
The proof works as follows. First a simple reduction can be defined which transforms a given instance ¢ of
MAX WSAT into an instance ¢’ of MIN WSAT with o depending on r. Such reduction can then be modified into
areal AP-reduction in which « isa constant, not depending on r, while, of course, the functions f and g will
depend on r. We limit ourselves to describing the first step. The complete proof can be found in Ref. [18].

Let ¢ be the formula produced in the reduction proving the completeness of MAX WSAT for the class
of NPO maximization problems. Then, f(¢) be the formula ¢ A a1 A -+ A s, where o is z; = (V] A
<+~ ATj_1 A V), Z1, ..., Zs are new variables with weights w(z;) = 2ifori=1, ..., s,and all other
variables (even the v variables) have zero weight. If 7 is a satisfying truth assignment for f(¢), let g(¢, 7)
be the restriction of T to the variables that occur in ¢. This assignment clearly satisfies ¢. Note that exactly
one among the z variables is true in any satisfying truth assignment of f(¢). If all z variables were false,
then all v variables would be false, which is not allowed. However, it is clearly not possible that two z
variables are true. Hence, for any feasible solution t of f(¢), we have that m( f(¢), t) = 2¢, for some i
with 1 < i < s. This finally implies that 2° /m( f(¢), T) < m(¢, g(¢, v)) < 2.2°/m( f(¢), 7). This is
particularly true for the optimal solution (observe that any satisfying truth assignment for ¢ can be easily
extended to a satisfying truth assignment for f(t)). Thus, after some easy algebra, the performance ratio
of g(¢, ) with respect to ¢ verifies (¢, g(¢, 7)) > 1/2r( f(¢), T)).

The reduction satisfies the approximation preserving condition with a factor « = (2r — 1)/(r — 1). To
obtain a factor & not depending on r, the reduction can be modified by introducing 2¥ more variables for
a suitable integer k. |

Other problems that have been shown NPO-complete are MIN (MAX) W3-SAT and MIN TSP [7]. As it
has been observed before, as a consequence of their NPO-completeness under approximation preserving
reductions, for all these problems any r-approximate algorithm with constant r does not exist unless
P = NP.

15.6.2 APX-Completeness

As it has been mentioned above, the existence of an APX-complete problem has already been shown in
Ref. [16] (see also Ref. [19]), but the problem that is proved complete in such framework is a rather
artificial version of MAX WSAT. The reduction used in such a result is called P-reduction. Unfortunately,
no natural problem has been proved complete in APX using the same approach. In this section, we prove
the APX-completeness under AP-reduction of a natural and popular problem: MAX 3-SAT. The proof is
crucially based on the following two lemmas (whose proofs are not provided in this paper).

The first lemma is proved in Ref. [20] and is based on a powerful algebraic technique for the represen-
tation of propositional formule (see also Ref. [18]), while the second one states a well-known property of
propositional formule and is proved in Refs. [3,18].
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Lemma 15.1

There is a constant € > 0 and two functions f; and gs such that, given any propositional formula ¢ in con-
junctive normal form, the formulayy = f;(¢) is a conjunctive normal form formula with at most three literals
per clause which satisfies the following property: for any truth assignment T satisfying at least a portion1 — €
of the maximum number of satisfiable clauses inyr, gs(¢p, T') satisfies ¢ if and only if ¢ is satisfiable.

Lemma 15.2

Given a propositional formula in conjunctive normal form, at least one-half of its clauses can always be satisfied.

Theorem 15.3
MAX 3-SAT is APX-complete.

Proof (Sketch)

As it has been done in the case of the proofs of NPO-completeness, we split the proof in two parts. First,
we show that MAX 3-SAT is complete in the class of APX maximization problems and then we show that
any APX minimization problem can be reduced to an APX maximization problem. To make the proof
easier, we adopt the convention used in Ref. [18]. The approximation ratio of a maximization problem in
this context will be defined as the ratio between the value of the optimum solution opt(x) and the value of
the approximate solution m(x, A(x)). For both maximization and minimization problems, therefore, the
approximation ratio is in [1, o). Let us first observe that MAX 3-SAT € APX since it can be approximated
up to the ratio 0.8006 [9].

Now we can sketch the proof that MAX 3-SAT is hard for the class of maximization problems in APX. Let
us consider a maximization problem IT € APX. Let Ay be a polynomial-time rj-approximation algorithm
for I. To construct an AP-reduction, let us define the parameter « as follows: « = 2(rplogrnp +rp — 1)
x((1 4 €)/€), where € is the constant of Lemma 15.1. Let us now choose r > 1 and let us consider the
following two cases: 1 + «a(r — 1) > rmpand 1 +a(r — 1) < .

In the case 1 + «(r — 1) > rq, given any instance x of IT and given any truth assignment t for MAX
3-SAT, we trivially define f(x, r) to be the empty formula and g(x, 7, ) = A (x). It can easily be seen
that r(x, g(x, 7, r)) < rg <14 a(r — 1) and the reduction is an AP-reduction.

Let us then consider the case 1 + «(r — 1) < rq and let us define r,, = 1 + a(r — 1); then, r =
((rp = 1)/a)+1.If we define k = [logrn 1|, we can partition the interval [m(x, A (x)), rmm(x, An(x))]
in the following k subintervals: [m(x, Arr(x)), rpm(x, An(x))], [r,im(x, An(x)), r,i“m(x, Ap(x)], i =
1, ..., k=2, [r,’f‘lm(x, An(x)), rmm(x, An(x))]. Thenwehave m(x, A (x)) < opt(x) < rmpm(x,An(x))
< r,’fm(x, An(x)), i.e., the optimum value of instance x of IT belongs to one of the subintervals.

Note that by definition k < (rrplogrm + rop — 1)/(r, — 1) and by making use of the definitions of &, 1,
and k, we obtain r < (¢/(2k(1 + €))) + 1.

Foranyi = 0,1, ..., k — 1, let us consider an instance x of IT and the following nondeterministic
algorithm, where p is the polynomial that bounds the value of all feasible solutions of IT:

+ guess a candidate solution y with value at most p(|x|);
« if y € Solp(x) and mp(x, y) < r}["l m(x, Ar(x)), then return yes, otherwise return #o.

Applying once again the technique of Theorem 15.1, we can construct k propositional formule ¢, ¢1, ...,
@k—1 such that for any truth assignment t; satisfying ¢;, i =0, 1, ..., k — 1, in polynomial time we can
build a feasible solution y of the instance x with mp(x, y) > rim(x, Ag(x)).

Hence, the instance ¥ of MAX 3-SAT that we consider is the following: ¥ = f(x,r) = A;:é <(0i),
where f; is the function defined in Lemma 15.1; w.l.o.g., we can suppose that all formulee f(¢;), i =
0, ..., k— 1, contain the same number of clauses.

Denote by T a satisfying truth assignment of ¢ achieving approximation ratio r and by r; the approxi-
mation ratio guaranteed by t over f;(¢;). By Lemma 15.2 we get m(r; — 1)/(2r;) < opt(yy) —m(y, T) <
km(r — 1)/r. Using this expression for i = 0, ..., k — 1, we have m(r; — 1)/2r; < km(r — 1)/r, which
implies 1 — (2k(r —1)/r) < 1/r; and, finally, r; < 1 + €.
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Using Lemma 15.1 again, we derive that,fori = 0, ..., k—1,thetruthassignmentt; = g;(¢i, ) (where
g5 is as defined in Lemma 15.1) satisfies ¢; if and only if ¢; is satisfiable. Let us call i* the largest i for
which t; satisfies ¢;; then, r,’;* m(x, An(x)) < optp(x) < rfj“m(x, Ar(x)). Starting from 7;, we can
then construct a solution y for IT whose value is at least r,i: m(x, Ar1(x)). This means that y guarantees an
approximation ratio r,,. In other words, r(x, y) < r, = 1 + a(r — 1) and the reduction ( f, g, o) that we
have just defined (where g consists in applying g;, determining i* and constructing y starting from ;)
is an AP-reduction.

Since IT is any maximization problem in APX, the completeness of MAX 3-SAT for the class of maxi-
mization problems in APX follows.

We now turn to the second part of the theorem. In fact, we still have to prove that all minimization
problems in APX can be AP-reduced to maximization problems and, henceforth, to MAX 3-SAT.

Let us consider a minimization problem IT € APX and an algorithm A with approximation ratio r
for IT; let k = [r]. We can construct a maximization problem I1" € APX and prove that IT <ap IT". The
two problems have the same instances and the same feasible solutions, while the objective function of I1" is
defined as follows: given an instance x and a feasible solution y of x, mpy(x, y) = (k+ 1)mp(x, A(x)) —
kmn(x, y), it mp(x, y) < mn(x, A(x)), my (x, y) = mn(x, A(x)), otherwise.

Clearly, mpy(x, A(x)) < optpy(x) < (k+ 1)mp(x, A(x)) and, by definition of IT', the algorithm A is
also an approximation algorithm for this problem with approximation ratio k + 1; therefore, IT" € APX.
The reduction from IT to T1" can now be defined as follows: for any instance x of I, f(x) = x; for any
instance x of I1 and for any solution y of instance f(x) of IT, g(x, y) = y, if mr(x, y) < mn(x, A(x)),
g(x, y) = A(x), otherwise @ = k + 1. Note that f and g do not depend on the approximation ratio r.

We now show that the reduction we have just defined is an AP-reduction. Let y be an r’-approximate
solution of f(x); we have to show that the ratio rij(x, g(x, y)) of the solution g(x, y) of the instance x
of IT is smaller than, or equal to, 1 + a(r" — 1). We have the following two cases: mp(x, y) < mp(x, A(x))
and m(x, y) > mp(x, A(x)).

In the case mp(x, y) < mp(x, A(x)), we can derive mry(x, y) < (1 + a(r’ — 1)) opty(x). In other
words, rri(x, g(x, y)) = rm(x, y) < 1+ a(r’ —1).

In the case m(x, y) > mpm(x, A(x)), since « > 1, we have rr(x, g(x, y)) = rn(x, A(x)) =
(% y) <’ < 1+a(r —1).

In conclusion, all minimization problems in APX can be AP-reduced to maximization problems in
APX and all maximization problems in APX can be AP-reduced to MAX 3-SAT. Since the AP-reduction is
transitive, the APX-completeness of MAX 3-SAT is proved. a

15.6.3 Negative Results Based on APX-Completeness

Similar to what we saw for completeness in NPO, also completeness in APX implies negative results in terms
of approximability of optimization problems. In fact if we could prove that an APX-complete problem
admits a PTAS, then so would all problems in APX. However, it is well known that, unless P = NP, there
are problems in APX that do not admit a PTAS (one example for all, MIN SCHEDULING ON IDENTICAL
MACHINES, see Ref. [18]), therefore, under the same complexity theoretic hypothesis, no APX-complete
problem admits a PTAS.

As a consequence of the results in the previous subsection, we can therefore assert that, unless P = NP,
MAX 3-SAT does not admit a PTAS, neither do all other optimization problems that have been shown
APX-complete (MAX 2-SAT, MIN VERTEX COVER, MAX CUT, MIN METRIC TSP, etc.).

Note that the inapproximability of MAX 3-SAT has been proved by Aroraetal. [20] inabreakthrough paper
by means of sophisticated techniques based on the concept of probabilistically checkable proofs, without
any reference to the notion of APX-completeness. This fact, though, does not diminish the relevance of
approximation preserving reductions and the related completeness notion. In fact, most results that state
the nonexistence of PTAS for APX optimization problems have been proved starting from MAX 3-SAT,
via approximation preserving reductions that allow to carry over the inapproximability results from one
problem to another. Second, it is worth noting that the structure of approximation classes with respect
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to approximation preserving reductions is richer than it appears from this chapter. For example, beside
complete problems, other classes of problems can be defined inside approximation classes, identifying the
so called intermediate problems (see Ref. [18]).

15.7 FT-Reducibility

As we have already pointed out in Section 15.5, PTAS-completeness has been studied in Ref. [16] under the
so-called F-reduction, preserving membership in FPTAS. Under this type of reducibility, a single problem,
a rather artificial version of MAX WSAT has been shown PTAS-complete. In fact, F-reducibility is quite
restrictive since it mainly preserves optimality, henceforth, existence of a PTAS-complete polynomially
bounded problem is very unlikely.

In Ref. [21], a more “flexible” type of reducibility, called FT-reducibility has been introduced. It is
formally defined as follows.

Definition 15.11

Let T1 and T1' be two maximization integer-valued problems. Then, T1 FT-reduces to T (denoted by T1 <pt
IT') if, for any € > 0, there exist an oracle le, for I and an algorithm A calling Qg/ such that

- O produces, for any a € [0, 1] and for any instance x' of TV, a feasible solution O (x') of x that
is an (1 — a)-approximation;

« for any instance x of T, y = AG(QE,, x) € Sol(x); furthermore the approximation ratio of y is at
least (1 — €);

. ianH/(~) runs in time polynomial in both | f(x)| and 1/«, then AE(OOI?/(f(x)), x) is polynomial in
both |x| and 1 /€.

For the case where at least one among IT and IT’ is a minimization problem it suffices to replace 1 — ¢
or/and 1 — « by 1 + € or/and 1 + «, respectively.

Asone can see from Definition 15.11, FT-reduction is somewhat different from the other ones considered
in this chapter and, inany case, itis not conformal to Definition 15.6. In fact, it resembles a Turing-reduction.
Clearly, FT-reduction transforms an FPTAS for [T’ into an FPTAS for IT, i.e., it preserves membership in
FPTAS. Note also that the F-reduction, as it is defined in Ref. [16], is a special case of the FT-reduction,
since the latter explicitly allows multiple calls to oracle ) while for the former this fact is not explicit.

Theorem 15.4

Let T be an NP-hard problem in NPO. If TI" € NPO-PB (the class of problems in NPO whose values are
bounded b¥ a polynomial in the size of the instance), then any NPO problem FT reduces to TT'. Consequently,
(i) PTAS ' = NPO and (ii) any NP-hard polynomially bounded problem in PTAS is PTAS-complete under
FT-reductions.

Proof (Sketch)
We first prove the following claim: if an NPO problem 1’ is NP-hard, then any NPO problem Turing reduces
(see Ref. [18]) to T1'.

To prove this claim, let IT be an NPO problem and g be a polynomial such that |y|<q(|x|), for any
instance x of IT and for any feasible solution y of x. Assume that the encoding n(y) of y is binary. Then
0 < n(y) < 290%) — 1. We consider problem IT which is the same as IT up to its value that is defined
by mp (x, y) = 200D+ 0 (o, y) + n(y). I my(x, y1) = mp(x, y2), then mp(x, y1) = mnu(x, y2). So,
if a solution y is optimal for x, with respect to I1, it is so with respect to I1. Remark now that IT and its
evaluation version IT, are equivalent since given the value of an optimal solution y, one can determine 7(y)
(hence y) by computing the remainder of the division of this value by 241*D*1_Since IT" is NP-hard, it can
be shown that one can solve the evaluation problem I1,, henceforth IT if one can solve, the (constructive)
problem I1’ and the claim is proved.
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We now prove the following claim: let [T € NPO-PB; then, any NPO problem Turing-reducible to T’ is
also FT-reducible to TT'.

To prove this second claim, let IT be an NPO problem and suppose that there exists a Turing-reduction
between IT and IT'. Let OB/ be as in Definition 15.11. Moreover, let p be a polynomial such that for any
instance x” of I1" and for any feasible solution y’ of x’, m(x’, y')< p(|x’|). Let x be an instance of I1. The
Turing-reduction claimed gives an algorithm solving IT using an oracle for I1". Consider now this algorithm
where we use, for any query to the oracle with the instance x’ of IT’, the approximate oracle Qarl[/ (x'), with
a = 1/(p(]x’]) + 1). This algorithm is polynomial and produces an optimal solution, since a solution y’
being an (1 — (1/(p(|x’|) 4+ 1)))-approximation for x’ is an optimal one. So, the claim is proved.

From the combination of the above claims the theorem is easily derived. O

Observe finally that MAX PLANAR INDEPENDENT SET and MIN PLANAR VERTEX COVER are in both PTAS [22]
and NPO-PB. So, the following theorem concludes this section.

Theorem 15.5
MAX PLANAR INDEPENDENT SET and MIN PLANAR VERTEX COVER are PTAS-complete under FT-reductions.

15.8 Gadgets, Reductions, and Inapproximability Results

As it has been pointed out already in Section 15.3, in the context of approximation preserving reductions,
we call gadget a combinatorial structure which allows to transfer approximability (or inapproximability)
results from a problem to another. A classical example is the set of 10 2-SAT clauses that we have used
in Example 15.1 for constructing the 2-SAT formula starting from a 3-SAT formula. Although gadgets are
used since the seminal work of Karp on reductions among combinatorial problems, the study of gadgets
has been started in Refs. [9,23]; from the latter derive most of the results discussed in this section.

To understand the role of gadgets in approximation preserving reductions, let us first go back to
linear reductions and see what are the implications on the approximation ratio of two problems IT and IT/,
deriving from the fact that IT <|_ IT’. Suppose ITand I’ are minimization problems, f, ¢, @1, and «; are the
functions and constants that define the linear reduction, x is an instance of problem I, f(x) is the instance
of problem IT’ determined by the reduction, and y is a solution of f(x). Then, the following relationship
holds between the approximation ratios of [T and IT": rry(x, g(x, ¥)) < 1 +ajaa(rpy( f(x), y) — 1), and,
therefore, we have that rry < 1+ (r — 1)/(ojp) implies rpp < r.

In the particular case of the reduction between MAX 3-SAT and MAX 2-SAT, we have ajoep = 13 and,
therefore, we can infer the following results on the approximability upper bounds and lower bounds of
the two problems, which may be proved by a simple calculation:

+ Since it is known that MAX 2-SAT can be approximated with the ratio 0.931 [24], then MAX 3-SAT
can be approximated with ratio 0.103.

+ Since it is known that MAX 3-SAT cannot be approximated beyond the threshold 7/8, then MAX 2-SAT
cannot be approximated beyond the threshold 103/104.

Although better bounds are now known for these problems (see Karloff and Zwick [25]), it is important to
observe that the above given bounds may be straightforwardly derived from the linear reduction between
the two problems and are useful to show the role of gadgets. In such reduction, the structure of the gadget
is crucial (it determines the value o) and it is clear that better bounds could be achieved if the reduction
could make use of “smaller” gadgets. In fact, in Ref. [9], by cleverly constructing a more sophisticated type
of gadget (in which, in particular, clauses have real weights), the authors derive a 0.801 approximation
algorithm for MAX 3-SAT, improving on previously known bounds.

Based on Ref. [23], in Ref. [9] the notion of o gadget (i.e., gadget with performance «) is abstracted
and formalized with reference to reductions among constraint satisfaction problems. In the same paper,
it is shown that, under suitable circumstances, the search for (possibly optimum) gadgets to be used
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in approximation preserving reductions, can be pursued in a systematic way by means of a computer
program. An example of the results that may be achieved in this way is the following.

Let PCy and PC; be the families of constraints over three binary variables defined as PC;(a, b, ¢) = 1,
ifa®b®c=1i,PCi(a, b, c) = 0, otherwise, and let DICUT be the family of constraints corresponding
to directed cuts in a graph. There exists optimum 6.5 gadgets (automatically derived by the computer
program) reducing PCy and PC; to DICUT. As a consequence, for any € > 0, MAX DICUT is hard to
approximate to within 12/13 + €.

15.9 Conclusion

A large number of other approximation preserving reductions among optimization problems, besides
those introduced in this chapter, have been introduced throughout the years. Here we have reported only
the major developments. Other overviews of the world of approximation preserving reductions can be
found in Refs. [12,26].

As we have already pointed out in Section 15.2, we have not dealt in this chapter with approximability
classes beyond APX, even if intensive studies have been performed, mainly for Poly APX. In Ref. [17],
completeness results are established, under the E-reduction, for Poly-APX-PB (the class of problems in
Poly APX whose values are bounded by a polynomial in the size of the instance). Indeed, as we have
already discussed in Section 15.5, use of restrictive reductions as the E-reducibility, where the functions f
and g do not depend on any parameter € seems very unlikely to be able to handle Poly-APX-completeness.
As it is shown in Ref. [21] (see also Chapter 16), completeness for the whole Poly APX can be handled,
for instance, by using PTAS-reduction, a further relaxation of the AP-reduction where the dependence
between the approximation ratios of IT and I1’ is not restricted to be linear [27]. Under PTAS-reduction,
MAX INDEPENDENT SET is Poly-APX-complete [21].

Before concluding, it is worth noting that a structural development (based on the definition of approx-
imability classes, approximation preserving reductions, and completeness results), analogous to the one
that has been carried on for the classical approach to the theory of approximation, has been elaborated
also for the differential approach (see Chapter 16 for a survey). In Refs.[21,28] the approximability classes
DAPX, Poly-DAPX and DPTAS are introduced, suitable approximation preserving reductions are defined
and complete problems in NPO, DAPX, Poly-DAPX, and DPTAS, under such kind of reductions, are
shown.
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16.1 Introduction

In this chapter we introduce the so-called differential approximation ratio as a measure of the quality of
the solutions obtained by approximation algorithms. After providing motivations and basic definitions
we show examples of optimization problems for which the evaluation of approximation algorithms based
on the differential ratio appears to be more meaningful than the usual approximation ratio used in
the classical approach to approximation algorithms. Finally, we discuss some structural results concerning
approximation classes based on the differential ratio. Throughout the chapter we make use of the notations
introduced in Chapter 15. Also, given an approximation algorithm A for an NP optimization problem IT
(the class of these problems is called NPO), we denote by m(x, y), the value of the solution y computed
by A on instance x of 1. When clear from the context, reference to A will be omitted. The definitions of
most of the problems dealt in this chapter can be found in Refs. [1,2]; also, for graph-theoretic notions,
interested readers are referred to Ref. [3].

In several cases, the commonly used approximation measure (called standard approximation ratio in
what follows) may not be very meaningful in characterizing the quality of approximation algorithms.
This happens, in particular, when the ratio of m(x, y, ), the value of the worst solution for a given
input x, to the value of the optimum solution opt(x) is already bounded (above, if goal(TT) = min, below,
otherwise). Consider, for instance, the basic maximal matching algorithm for MIN VERTEX COVER that
achieves approximation ratio 2. In this algorithm, given a graph G(V, E), a maximal' matching M of G
is computed and the endpoints of the edges in M are added in the solution for MIN VERTEX COVER. If M is
perfect (almost any graph, even relatively sparse, admits a perfect matching [4]), then the whole of V will be
included in the cover, while an optimum cover contains at least a half of V. So, in most cases, the absolutely
worst solution (that one could compute without using any algorithm) achieves approximation ratio 2.

The remark above is just one of the drawbacks of the standard approximation ratio. Various other
drawbacks have been also observed, for instance, the artificial dissymmetry between “equivalent”

'With respect to inclusion.
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minimization and maximization problems (e.g., MAX CUT and MIN CLUSTERING, see Ref. [5]) introduced
by the standard approximation ratio. The most blatant case of such dissymmetry is the one appearing
when dealing with the approximation of MIN VERTEX COVER and MAX INDEPENDENT SET (given a graph, a
vertex cover is the complement of an independent set with respect to the vertex set of the graph). In other
words, using linear programming vocabulary, the objective function of the former is an affine transfor-
mation of the objective function of the latter. This equivalence under such simple affine transformation
does not reflect in the approximability of these problems in the classical approach: the former problem
is approximable within constant ratio, in other words it belongs to the class APX of problems that are
approximable within constant ratios (see Chapter 15 for definitions of approximability classes based on the
standard approximation paradigm; the ones based on the differential paradigm are defined analogously
in this chapter, see Section 16.5), while the latter is inapproximable within ratio 2 (1), for any € > 0
(see Ref. [6] and Chapter 17). In other words, the standard approximation ratio is unstable under affine
transformations of the objective function.

To overcome these phoenomena, several researchers have tried to adopt alternative approximation mea-
sures not suffering from these inconsistencies. One of themis theratio §(x, y) = (w(x)—m(x, y))/(w(x)—
opt(x)), called differential ratio in the sequel, where w(x) is the value of a worst solution for x, called
worst value. It will be formally dealt in the next sections. It has been used rather punctually and without
following a rigorous axiomatic approach until the paper in Ref. [7] where such an approach is formally
defined. To our knowledge, differential ratio is introduced in Ref. [8] in 1977, and Refs. [9-11] are, to
our knowledge, the most notable cases in which this approach has been applied. It is worth noting that
in Ref. [11], a weak axiomatic approach is also presented.

Finally, let us note that several other authors that have also recognized the methodological problems
implied by the standard ratio, have proposed other alternative ratios. It is interesting to remark that, in most
cases, the new ratios are very close, although with some small or less small differences, to the differential
ratio. For instance, in Ref. [12], for studying MAX TSP, it is proposed that the ratio d(x, y, z) = | opt(x) —
m(x, y)|/| opt(x) — z,|, where z, is a positive value computable in polynomial time, called reference value.
It is smaller than the value of any feasible solution of x, hence smaller than w(x) (for a maximization
problem a worst solution is the one of the smallest feasible value). The quantities | opt(x) — m(x, y)| and
| opt(x) — z,| are called deviation and absolute deviation, respectively. The approximation ratio d(x, y, z,)
depends on both x and z,, in other words, there exist a multitude of such ratios for an instance x of
an NPO problem, one for any possible value of z,. Consider a maximization problem IT and an instance x
of IT. Then, d(x, y, zr) is increasing with z,, so, d(x, y, z,) < d(x, y, ®(x)). In fact, in this case, for
any reference value z,: r(x, y) > 1 — d(x, y,z,) > 1 — d(x, y, w(x)) = §(x, y), where r denotes the
standard approximation ratio for I1. When w(x) is computable in polynomial time, d(x, y, w(x)) is the
smallest (tightest) over all the d-ratios for x. In any case, if for a given problem, one sets z, = w(x), then
d(x, y, w(x)) = 1 — 8(x, y) and both ratios have the natural interpretation of estimating the relative
position of the approximate solution-value in the interval worst solution-value—optimal value.

16.2 Toward a New Measure of Approximation Paradigm

In Ref. [7], the task of adopting is undertaken, in an axiomatic way, an approximation measure founded
on both intuitive and mathematical links between optimization and approximation. It is claimed there
that a “consistent” ratio must be order preserving (i.e., the better the solution the better the approximation
ratio achieved) and stable under affine transformation of the objective function. Furthermore, it is proved
that no ratio function of two parameters—for example, m, opt—can fit this latter requirement. Hence, it
is proposed what will be called differential approximation ratio® in what follows. Problems related by affine
transformations of their objective functions are called affine equivalent.

2This notation is suggested in Ref. [7]; another notation drawing the same measure is z-approximation suggested
in Ref. [13].

© 2007 by Taylor & Francis Group, LLC



Differential Ratio Approximation 16-3

Consider an instance x of an NPO problem IT and a polynomial-time approximation algorithm A
for II, the differential approximation ratio 84 (x, y) of a solution y computed by A in x is defined by:
Su(x, y) = (w(x) — mp(x, y))/(w(x) — opt(x)), where w(x) is the value of a worst solution for x,
called worst value. Note that for any goal, §a(x, y) € [0, 1] and, moreover, the closer §4(x, y) to 1, the
closer my(x, y) to opt(x). By definition, when w(x) = opt(x), i.e., all the solutions of x have the same
value, then the approximation ratio is 1. Note that, my(x, y) = 8a(x, y) opt(x) + (1 — Sa(x, ¥))w(x).
So, differential approximation ratio measures how an approximate solution is placed in the interval
between w(x) and opt(x).

We note that the concept of the worst solution has a status similar to the optimum solution. It depends
on the problem itself and is defined in a nonconstructive way, i.e., independently of any algorithm that
could build it. The following definition for worst solution is proposed in Ref. [7].

Definition 16.1

Given an NPO problem I1 = (Z, Sol, m, goal), a worst solution of an instance x of Il is defined as an
optimum solution of a new problem I1 = (Z, Sol, m, goal), i.e., of an NPO problem having the same sets of
instances and of instances and of feasible solutions and the same value-function as I1 but its goal is the inverse
w.r.t. T1, i.e., goal = min ifgoal = max and vice versa.

Example 16.1

The worst solution for an instance of MIN VERTEX COVER or of MIN COLORING is the whole vertex set
of the input graph, while for an instance of MAX INDEPENDENT SET the worst solution is the empty set.
However, if one deals with MAX INDEPENDENT SET with the additional constraint that a feasible solution
has to be maximal with respect to inclusion, the worst solution of an instance of this variant is a minimum-—
maximal independent set, i.e., an optimum solution of a very well-known combinatorial problem, the MIN
INDEPENDENT DOMINATING SET. Also, the worst solution for MIN TSP is a “heaviest” Hamiltonian cycle of
the input graph, i.e., an optimum solution of MAX TSP, while for MAX TSP the worst solution is the optimum
solution of a MIN TSP. The same holds for the pair MAX SAT, MIN SAT.

From Example 16.1, one can see that, although for some problems a worst solution corresponds to some
trivial input parameter and can be computed in polynomial time (this is, for instance, the case with MIN
VERTEX COVER, MAX INDEPENDENT SET, MIN COLORING, etc.), several problems exist for which determining
a worst solution is as hard as determining an optimum one (as for MIN INDEPENDENT DOMINATING SET,
MIN TSP, MAX TSP, MIN SAT, MAX SAT, etc.).

Remark 16.1

Consider the pair of affine equivalent problems MIN VERTEX COVER, MAX INDEPENDENT SET, and an input
graph G(V, E) of order n. Denote by t(G) the cardinality of a minimum vertex cover of G and by a(G), the
stability number of G. Obviously, T (G) = n—a(G). Based upon what has been discussed above, the differential
ratio of some vertex cover C of G is§(G, C) = (n—|C|)/(n—1(G)). Sincetheset S = V\ C isanindependent
set of G, its differential ratio is 5(G, S) = (|S| — 0)/(¢(G) — 0) = (n — |C])/(n — T(G)) = §(G, C).

As we have already mentioned, the differential ratio, although not systematically, has been used several
times by many authors, before and after [7], in various contexts going from mathematical (linear or
nonlinear) programming [14-16] to pure combinatorial optimization [9,10,13,17,18]. Sometimes the
use of the differential approach has been disguised by considering the standard approximation ratio of
affine transformations of a problem. For instance, to study differential approximation of BIN PACKING, one
can deal with standard approximation of the problem of maximizing the number of unused bins; for MIN
COLORING, the affinely equivalent problem is the one of maximizing the number of unused colors, for MIN
SET COVER, the problem consists in maximizing the number of unused sets, etc.
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16.3 Differential Approximation Results for Some
Optimization Problems

In general, no systematic way allows to link results obtained in standard and differential approxima-
tion paradigms when dealing with minimization problems. In other words, there is no evident transfer of
positive or inapproximability results from one framework to the other. Hence, a “good” differential approx-
imation result does not signify anything for the behavior of the approximation algorithm studied, or of the
problem itself, when dealing with the standard framework, and vice versa. Things are somewhat different
for maximization problems with positive solution-values. In fact, considering an instance x of a maxi-
mization problem IT and a solution y € Sol(x) that is a §-differential approximation, we immediately get:

m(x, y) — w(x) -5 m(x, y)

w(x) wwz0 mx, y)
opt(x) —w(x) — 26+ (1-9)

opt(x) - opt(x) opt(x) -

So, positive results are transferred from differential to standard approximation, while transfer of inap-
proximability thresholds is done in the opposite direction.

Fact 16.1

Approximation of a maximization NPO problem T1 within differential approximation ratio §, implies its
approximation within standard approximation ratio §.

Fact 16.1 has interesting applications. The most immediate of them deals with the case of maximization
problems with worst-solution values 0. There, standard and approximation ratios coincide. In this case,
the differential paradigm inherits the inapproximability thresholds of the standard one. For instance, the
inapproximability of MAX INDEPENDENT SET within n¢~!, for any € > 0 [6], also holds in the differential
approach.

Furthermore, since MAX INDEPENDENT SET and MIN VERTEX COVER are affine equivalent, henceforth
differentially equiapproximable, the negative result for MAX INDEPENDENT SET is shared, in the differential
paradigm, by MIN VERTEX COVER.

Corollary 16.1

Both MAX INDEPENDENT SET and MIN VERTEX COVER are inapproximable within differential ratios n€ =, for
any € > 0, unless P = NP.

Note that differential equi-approximability of MAX INDEPENDENT SET and MIN VERTEX COVER makes that,
in this framework the latter problem is not constant approximable but inherits also the positive standard
approximation results of the former one [19-21].

In what follows in this section, we mainly focus ourselves on three well-known NPO problems: MIN
COLORING, BIN PACKING, TSP in both minimization and maximization variants, and MIN MULTIPROCESSOR
SCHEDULING. As we will see, approximabilities of MIN COLORING and MIN TSP are radically different from
the standard paradigm (where these problems are very hard) to the differential one (where they become
fairly well approximable). For the first two of them, differential approximability will be introduced by
means of more general problem that encompasses both MIN COLORING and BIN PACKING, namely, the MIN
HEREDITARY COVER.

16.3.1 Min Hereditary Cover

Let 7 be a nontrivial hereditary property® on sets and C a ground set. A 7r-covering of C is a collection S =
{S1, S2, ..., S4} of subsets of C (i.e., a subset of 26), any of them verifying 7 and such that U?:] Si=C.

3 A property is hereditary if whenever it is true for some set, it is true for any of its subsets; it is nontrivial if it is true
for infinitely many sets and false for infinitely many sets also.
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Then, MIN HEREDITARY COVER consists, given a property m, a ground set C and a family S including any
subset of C verifying 7, of determining a -covering of minimum size. Observe that, by definition of the
instances of MIN HEREDITARY COVER, singletons of the ground sets are included in any of them and are
always sufficient to cover C. Henceforth, for any instance x of the problem, w(x) = |C|.

It is easy to see that, given a -covering, one can yield a m-partition (i.e., a collection S where for any
Siy Sj € S, §iN'S; = ¥) of the same size, by greedily removing duplications of elements of C. Henceforth,
MIN HEREDITARY COVER or MIN HEREDITARY PARTITION are, in fact, the same problem. MIN HEREDITARY
COVER has been introduced in Ref. [22] and revisited in Ref. [13] under the name MIN COVER BY INDEPEN-
DENT SETS. Moreover, in the former paper, using a clever adaptation of the local improvement methods
of Ref. [23], a differential ratio 3/4 for MIN HEREDITARY COVER has been proposed. Based on Ref. [24], this
ratio has been carried to 289/360 by Ref. [13].

A lot of well-known NPO problems are instantiations of MIN HEREDITARY COVER. For instance, MIN
COLORING becomes a MIN HEREDITARY COVER problem, considering as ground set the vertices of the input
graph and as set system, the set of the independent sets* of this graph. The same holds for the partition of
the covering of a graph by subgraphs that are planar, or by degree-bounded subgraphs, etc. Furthermore,
if any element of C is associated with a weight and a subset S; of C is in S if the total weight of its members
is at most 1, then one recovers BIN PACKING.

In fact, an instance of MIN HEREDITARY COVER can be seen as a virtual instance of MIN SET COVER, even
if there is no need to make it always explicit. Furthermore, the following general result links MIN k-SET
COVER (the restriction of MIN SET COVER to subsets of cardinality at most k) and MIN HEREDITARY COVER
(see Ref. [25] for its proof in the case of MIN COLORING; it can be easily seen that extension to the general
MIN HEREDITARY COVER is immediate).

Theorem 16.1

If MIN k-SET COVER is approximable in polynomial time within differential approximation ratio 8, then
MIN HEREDITARY COVER is approximable in polynomial time within differential approximation ratio
min{$, k/(k + 1)}.

16.3.1.1 Min Coloring

MIN COLORING has been systematically studied in the differential paradigm. Subsequent papers [(18,23,
24,26-29)] have improved their differential approximation ratio from 1/2 to 289/360. This problem is also
a typical example of a problem that behaves in completely different ways when dealing with the standard or
the differential paradigms. Indeed, dealing with the former one, MIN COLORING is inapproximable within
ratio n! ¢, for any € > 0, unless problems in NP can be solved by slightly superpolynomial deterministic
algorithms (see Ref. [1] and Chapter 17).

As we have seen previously, given a graph G(V, E), MIN COLORING can be seen as a MIN HEREDITARY
COVER problem considering C = V and taking for S the set of the independent sets of G. Accord-
ing to Theorem 16.1 and Ref. [24], where MIN 6-SET COVER is proved approximable within differential
ratio 289/360, one can derive that it is also approximable within differential ratio 289/360. Note that any
result for MIN COLORING also holds for the minimum vertex-partition (or covering) into cliques problem
since an independent set in some graph G becomes a clique in the complement G of G (in other words,
this problem is also an instantiation of MIN HEREDITARY COVER). Furthermore, in Refs. [26,27], a differen-
tial ratio preserving reduction is devised between minimum vertex-partition into cliques and minimum
edge-partition (or covering) into cliques. So, as in the standard paradigm, all these three problems have
identical differential approximation behavior.

Finally, it is proved in Ref. [30] that MIN COLORING is DAPX-complete (see also Section 16.5.3.1);
consequently, unless P = NP, it cannot be solved by polynomial-time differential approximation schemata.
This derives immediately that neither MIN HEREDITARY COVER belongs to DPTAS, unless P = NP.

“It is well known that the independence property is hereditary.
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16.3.1.2 Bin Packing

We now deal with another very well-known NPO problem, the BIN PACKING. According to what has
been discussed above, BIN PACKING being a particular case of MIN HEREDITARY COVER, it is approximable
within differential ratio 289/360. In what follows in this section, we refine this result by first presenting an
approximation preserving reduction transforming any standard approximation ratio p into differential
approximation ratio § = 2 — p. Then, based on this reduction we show that BIN PACKING can be solved
by a polynomial-time differential approximation schema [31]; in other words, BIN PACKING € DPTAS.
This result draws another, although less dramatical than the one in Section 16.3.1.1, difference be-
tween standard and differential approximation. In the former paradigm, BIN PACKING is solved by an
asymptotic polynomial-time approximation schema, more precisely within standard approximations ratio
14+ €+ (1/opt(L)), for any € > 0 ([32]), but it is NP-hard to approximate it by a “real” polynomial-time
approximation schema [2].

Consideralist L = {x, ..., x,}, instance of BIN PACKING, assume, without loss of generality, that items
in L are rational numbers ranged in decreasing order and fix an optimum solution B* of L. Observe that
w(L) = n. For the purposes of this section, a bin i will be denoted either by b;, or by explicit listing of the
numbers placed in it; finally, any solution will be alternatively represented as union of its bins.

Theorem 16.2

From any algorithm achieving standard approximation ratio p for BIN PACKING, can be derived an algorithm
achieving differential approximation ratio § = 2 — p.

Proof (Sketch)
Let k* be the number of bins in B* that contain a single item. Then, it is easy to see that there exists
an optimum solution B* = {x} U --- U {xpx} U B} for L, where any bin in B3 contains at least two

items. Furthermore, one can show that, for any optimum solution B = {bj:j=1,...,0pt(L)} and
for any set J C {1, ..., opt(L)}, the solution B; = {bj € B : j € J} is optimum for the sublist
Li=Ujej b;.

Consider now Algorithm SA achieving standard approximation ratio p for BIN PACKING, denote by SA(L)
the solution computed by it, when running on an instance L (recall that L is assumed ranged in decreasing
order), and run the following algorithm, denoted by DA in the sequel, which uses SA as subprocedure:

1. fork=1tonset: Ly = {Xkt1, --.> Xn}, Be = {x1} U --- U {xx} USA(Lg);
2. output B = argmin{|Bk| : k=0, ..., n—1}.

Let B* be the optimum solution claimed above. Then, B} is an optimum solution for the sublist L.
Observe that Algorithm SA called by DA has also been executed on L+ and denote by By the solution
so computed by DA. The solution returned in step 2 verifies | B| < |Bj+|. Finally, since any bin in B}
contains at least two items, |Li+| = n — k* > 2 opt(Lj+). Putting all this together, we get Spa(L, B) =
(n—Bl)/(n—opt(L)) = (ILks| — | Bis]) /(I L] — opt(Lg=)) = 2 — p. 4

In what follows, denote by SA any polynomial algorithm approximately solving BIN PACKING within
(fixed) constant standard approximation ratio p, by ASCHEMA(¢€) the asymptotic polynomial-time standard
approximation schema of Ref. [32], parameterized by € > 0, and consider the following algorithm,
DSCHEMA (L is always assumed ranged in decreasing order):

1. fixaconstant € > Oandsetn = [2(p — 1 + €)/€%];

2. fork=mn—n+1,..., nbuildlist Lx_; where Li_; isasin step 1 of Algorithm DA (Theorem 16.2);

3. for any list L; computed in step 2 above, perform an exhaustive search on L;, denote by E; the
solution so computed, and set B; = {{x} : x € L\ L;} U E;;

4. store B, the smallest of the solutions computed in Step 3;

. run DA both with SA and ASCHEMA(¢/2), respectively, as subprocedures on L;

6. output the best among the three solutions computed in steps 4 and 5.

9]
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Theorem 16.3 (Demange et al. [31])

Algorithm DSCHEMA is a polynomial-time differential approximation schema for BIN PACKING. So,
BIN PACKING € DPTAS.

Proof (Sketch)

Since p and € do not depend on n, neither does 1, computed at step 1. One can then show that when dealing
withalist L suchthat|L«41| < 1, BINPACKING can be solved in polynomial time when 7 is a fixed constant.
However, assuming | Lx+41| > 7, then, one can prove that, if opt(Lj+41) < €|Li+41]/(psa — 1 + €), the
approximation ratio of algorithm DA, when calling SA as subprocedure, is § > 1 — € while, if opt(Lj+41) >
€|Li++1]/(psa — 1 + €), then the approximation ratio of algorithm DA, when calling ASCHEMA(€/2) as
subprocedure, is also § > 1 — €. So, when |Li+41| > 2(p — 1 + E)/Gz, step 5 of DSCHEMA achieves
differential approximation ratio 1 — €. Putting things together derives the result. O

Let us note that, as we will see in Section 16.5.4, BIN PACKING is DPTAS-complete; consequently, unless
P = NP it is inapproximable by fully polynomial-time differential approximation schemata. Inapprox-
imability of BIN PACKING by such schemata has also been shown independently in Ref. [19].

16.3.2 Traveling Salesman Problems

MIN TSP is one of the most paradigmatic problems in combinatorial optimization and one of the hardest one
to approximate. Indeed, unless P = NP, no polynomial algorithm can guarantee, on an edge-weighted
complete graph of size n when no restriction is imposed to the edge weights, standard approximation
ratio O(2P("M), for any polynomial p. As we will see in this section things are completely different when
dealing with differential approximation where MIN TSP € DAPX. This result draws another notorious
difference between the two paradigms.

Consider an edge-weighted complete graph of order n, denoted by K,;, and observe that the worst MIN
TSP-solution in K, is an optimum solution for MAX TSP. Consider the following algorithm (originally
proposed by Monnot [33] for MAX TSP) based upon a careful patching of the cycles of a minimum-weight
2—matching5 of K,

« compute M = (Cy, Cy, ..., Cx); denote by{vi] 2j=1 ...,k i=1,..., |Cj|}, the vertex set
of Cj;if k = 1, return M; ' '
+ for any Cj, pick arbitrarily four consecutive vertices v], i=1, ..., &if|Cj| =3, v] = v{;for Cy
(the last cycle of M), pick also another vertex, denoted by u that is the other neighbor of v{‘ in Cg
(hence, if |Cx| = 3, then u = vé‘ while if |Cy| = 4, then u = vi‘);

- if k is even (odd), then set:

— R = USZH], oD} ULf o)) A= {of, o)), 03, 0D} USSP 4037, 63, 0377, 0372

(R, =u" Hd v AL = {0 oDy U2 (@ 03), 03, 03, T = (M R U A

-k = }{(vl,vz)}u{(u, VO, Ay = (1, 0)), (vl,vl)}Uk 2/2 (v 2 21+1) (v21+1, %j+2)}
(Rz_U] H], o)) Ay = (of, by U2 ] 0], (0], 2”1)}), Ty = (M\ Ry) U Ay
—Rs = UAZ1{(], v )} U (K, vD)), A5 = (05, v)), <v3,v3)}uk 2w v, 37 6

(Rs = Uk {(w], v}, A3 = {0k, vy USE V2 4031 0))), (0] ,vif“)}>,T3=(M\R3>UA3;

+ output T the best among Tj, T, and Ts.

> A minimum-weight 2-matching is a minimum total weight partial subgraph of K, any vertex of which has degree
at most 2; this computation is polynomial, see, for example, Ref. [34]; in other words, a 2-matching is a collection of
paths and cycles, but when dealing with complete graphs a 2-matching can be considered as a collection of cycles.
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As proved in Ref. [33], the set (M \ U? 1 R;) Uf’ 1 Aiisa feasible solution for MIN TSP, the value of which is
a lower bound for w(K},); furthermore, m(K,, T) < (Z?Zl m(Ky, T;))/3. Then, a smart analysis, leads
to the following theorem (the same result has been obtained, by a different algorithm working also for

negative edge weights, in Ref. [13]).

Theorem 16.4 (Monnot [33])
MIN TSP is differentially 2/3-approximable.

Notice that MIN TSP, MAX TSP, MIN METRIC TSP, and MAX METRIC TSP are all affine equivalent (see Ref. [35]
for the proof; for the two former problems, just replace weight d(i, j) of edge (v;, v;) by M — d(i, j),
where M is some number greater than the maximum edge weight). Hence, the following theorem holds.

Theorem 16.5

MIN TSP, MAX TSP, MIN METRIC TSP, and MAX METRIC TSP are differentially 2/3-approximable.

A very famous restrictive version of MIN METRIC TSP is the MIN TSP12, where edge weights are all either 1
or 2. In Ref. [36], it is proved that this version (as well as, obviously, MAX TSP 12) is approximable within
differential ratio 3/4.

16.3.3 Min Multiprocessor Scheduling

We now deal with a classical scheduling problem, the MIN MULTIPROCESSOR SCHEDULING [37], where we
are given ntasks #1, . . ., t, with (execution) time lengths I(¢;), j = 1, ..., n, polynomial with n, that have
to be executed on m processors, and the objective is to partition these tasks on the processors in such a
way that the occupancy of the busiest processor is minimized. Observe that the worst solution is the one
where all the tasks are executed in the same processor; so, given an instance x of MIN MULTIPROCESSOR
SCHEDULING, @ (x) = Z’;:l I(tj). A solution y of this problem will be represented as a vector in {0, 1}"",
the nonzero components y* of which correspond to the assignment of task j to processor i.

Consider a simple local search algorithm that starts from some solution and improves it upon any
change of the assignment of a single task from one processor to another. Then the following result can be
obtained [38].

Theorem 16.6

MIN MULTIPROCESSOR SCHEDULING is approximable within differential ratio m/(m + 1).

Proof (Sketch)

Assume that both tasks and processors are ranged with decreasing lengths and occupancies, respectively.
Denote by I( p;), the total occupancy of processor p;, i = 1, ..., m. Then, opt(x) > I(#;) and I(p;) =
Z?zl y}l(tj) = maxj=,., m{I(p;) = 27‘:1 y;-l(tj)}. Denote, w.l.o.g., by 1, ..., g, the indices of the
tasks assigned to pj. Since y is a local optimum, it verifies, for i = 2,...,m, j = 1,...,q: I(¢;) +
I(pi) = I(p1). We can assume g > 2 (on the contrary y is optimum). Then, adding the preceding
expression for j = 1, ..., q, we get [(p;) > I(p1)/2. Also, adding I( p;) with the preceding expression
for I(p;), i = 2,..., m, we obtain w(x) > (m + 1)I(p1)/2. Putting all this together we finally get
m(x, ) = 1(p1) < (mopt(x)/(m+ 1)) + (@(x)/(m + 1)). O

16.4 Asymptotic Differential Approximation Ratio

In any approximation paradigm, the notion of asymptotic approximation (dealing, informally, with a class
of “interesting” instances) is pertinent. In the standard paradigm, the asymptotic approximation ratio is
defined on the hypothesis that the interesting (from an approximation point of view) instances of the
simple problems are the ones whose values of the optimum solutions tend to oo (because, in the opposite
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case,® these problems, called simple [39], are polynomial). In the differential approximation framework,
on the contrary, the size (or the value) of the optimum solution is not always a pertinent hardness criterion
(see Ref. [40] for several examples about this claim). Henceforth, in Ref. [40], another hardness criterion, the
number o (x) of the feasible values of x, has been used to introduce the asymptotic differential approximation
ratio. Under this criterion, the asymptotic differential approximation ratio of an algorithm A is defined as

oo L . o(x) — m(x, y)
8 (x, y) = kli)m II;le {w(x) p— } (16.1)

o(x)=k
Let us note that o(x) is motivated by, and generalizes, the notion of the structure of the instance intro-
duced in Ref. [9]. We also notice that the condition o (x) > k characterizing “the sequence of unbounded
instances” (or “limit instances”) cannot be polynomially verified.” But in practice, for a given problem,
it is possible to directly interpret condition o (x) > k by means of the parameters w(x) and opt(x) (note
that o (x) is not a function of these values). For example, for numerous cases of discrete problems, it is
possible to determine, for any instance x, a step 7w (x) defined as the least variation between two feasi-
ble values of x. For example, for BIN PACKING, 7 (x) = 1. Then, o(x) < ((w(x) — opt(x))/m(x)) + 1.
Therefore, from Eq. (16.1):

5°(x, )= lim  inf {M}
koo () —opt(x) w(x) — opt(x)

)
Whenever 7 can be determined, condition (w(x) — opt(x))/m(x) > k — 1 can be easier to evaluate than
o(x) > k, and in this case, the former condition is used (this is not senseless since we try to bound below
the ratio).

The adoption of o (x) as hardness criterion can be motivated by considering a class of problems, called
radial problems in Ref. [40], that includes many well-known combinatorial optimization problems, as BIN
PACKING, MAX INDEPENDENT SET, MIN VERTEX COVER, MIN COLORING, etc. Informally, a problem IT is radial
if, given an instance x of IT and a feasible solution y for x, one can, in polynomial time, on the one hand,
deteriorate y as much as one wants (up to finally obtain a worst-value solution) and, on the other, greedily
improve y to obtain (always in polynomial time) a suboptimal solution (eventually the optimum one).

Definition 16.2

A problem Tl = (Z, Sol, m, goal) is radial if there exists three polynomial algorithms &, v, and ¢ such that,
forany x € I:

1. & computes a feasible solution y% for x;

2. for any feasible solution y of x strictly better (in the sense of the value) than y°), algorithm ¢ computes
a feasible solution ¢ (y) (if any) with m(x, ¢(y)) strictly worse than m(x, y);

3. for any feasible solution y of x with value strictly better than m(x, y\?)), there exists k € N such that
5 (y) = ¥y (where ¢¥ denotes the k-times iteration of ¢ );

4. for a solution y such that, either y = y\9, or y is any feasible solution of x with value strictly better
thanm(x, y0), ¥ (y) computes theset of ancestorsof y, defined by yr (y) = ¢~ ({y}) = {z: ¢(2) =y}
(this set being eventually empty).

Let us note that the class of radial problems includes in particular the well-known class of hereditary
problems for which any subset of a feasible solution remains feasible. In fact, for a hereditary (maximization)
problem, a feasible solution y is a subset of the input data, for any instances x, (*) = @, and for any other
feasible solution y, ¢ (y) is just obtained from y by removing a component of y. The hereditary notion
deals with problems for which a feasible solution is a subset of the input data, while the radial notion
allows problems for which solutions are also second-order structures of the input data.

The case where optimum values are bounded by fixed constants.

"The same holds for the condition opt(x) > k induced by the hardness criterion in the standard paradigm.
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Proposition 16.1 (Demange and Paschos [40])

Letk be a fixed constant and consider a radial problem I1 such that, for any instance x of T1 of sizen, o (x) < k.
Then, I1 is polynomial-time solvable.

16.5 Structure in Differential Approximation Classes

What has been discussed in the previous sections makes it clear which the entire theory of approximation,
which tries characterize and classify problems with respect to their approximability hardness, can be
redone in the differential paradigm. There exist problems having several differential approximability
levels and inapproximability bounds. What follows further confirms this claim. It will be shown that the
approximation paradigm we deal with allows to devise its proper tools and to use them to design an entire
structure for the approximability classes involved.

16.5.1 Differential NPO-Completeness

Obviously, the strict reduction of Ref. [41] (see also Chapter 15), can be identically defined in the frame-
work of the differential approximation; for clarity, we denote this derivation of the strict reduction by
D-reduction. Two NPO problems will be called D-equivalent if there exist D-reductions from any of them
to the other one.

Theorem 3.1 in Ref. [41] (where the differential approximation ratio is mentioned as a possible way
of estimating the performance of an algorithm), based upon an extension of Cook’s proof [42] of SAT
NP-completeness to optimization problems, works also when the differential ratio is dealt instead of the
standard one. Furthermore, solution friv, as defined in Ref. [41] is indeed a worst solution for MIN WSAT.
However, the following proposition holds.

Proposition 16.1 (Ausiello et al. [43])
MAX WSAT and MIN WSAT are D-equivalent.

Proof (Sketch)

With any clause £1 V - - - V £; of an instance ¢ of MAX WSAT, we associate in the instance ¢’ of MIN WSAT the
clause £; V- - -\ £;. Then, if an assignment y satisfies the instance ¢, the complement y’ of y satisfies ¢’, and
vice versa. So, m(¢, y) = Z?:l w(x;) — m(¢’, y'), for any y'. Thus, §(¢, y) = 8(¢’, ¥'). The reduction
from MIN WSAT to MAX WSAT is completely analogous. (|

In a completely analogous way, as in Proposition 16.1, it can be proved that MIN 0-1 INTEGER PRO-
GRAMMING and MAX 0-1 INTEGER PROGRAMMING are also D-equivalent. Putting all the above together the
following holds.

Theorem 16.7

MAX WSAT, MIN WSAT, MIN 0-1 INTEGER PROGRAMMING, and MAX 0-1 INTEGER PROGRAMMING are NPO-
complete under D-reducibility.

16.5.2 The Class 0-DAPX

Informally, the class 0-DAPX is the class of NPO problems for which the differential ratio of any polynomial-
time algorithm is equal to 0. In other words, for any such algorithm, there exists an instance on which it
will compute its worst solution. Such situation draws the worst case for the differential approximability
of a problem. Class 0-DAPX is defined in Ref. [43] by means of a reduction called G-reduction. It can be
seen as a particular kind of the GAP-reduction [1,44,45].

Definition 16.3

A problem T is said to be G-reducible to a problem I, if there exists a polynomial reduction that transforms
any §-differential approximation algorithm for I1', § > 0, into an optimum (exact) algorithm for T1.
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Let IT be an NP-complete decision problem and IT" an NPO problem. The underlying idea for IT <¢ IT’
in Definition 16.3 is, starting from an instance of I1, to construct instances for I’ that have only two distinct
feasible values and to prove that any differential §-approximation for IT’, § > 0, could distinguish between
positive instances and negative instances for IT. Note finally that the G-reduction generalizes both the
D-reduction of Section 16.5.1 and the strict reduction of Ref. [41].

Definition 16.4

0-DAPX is the class of NPO problems 1 for which there exists an NP-complete problem I1 G-reducible to TT'.
A problem is said to 0-DAPX-hard, if any problem in 0-DAPX G reduces to it.

An obvious consequence of Definition 16.4 is that 0-DAPX is the class of NPO problems T1 for which
approximation within any differential approximation ratio § > 0 would entail P = NP.

Proposition 16.3 (Bazgan and Paschos [46])
MIN INDEPENDENT DOMINATING SET € 0-DAPX.

Proof (Sketch)

Given an instance ¢ of SAT with n variables x1, ..., x, and m clauses Cj, ..., Cy,, construct a graph G,
instance of MIN INDEPENDENT DOMINATING SET associating with any positive literal x; a vertex u; and with
any negative literal X; a vertex v;. For i = 1, ..., n, draw edges (u;, v;). For any clause Cj, add in G
a vertex w; and an edge between w; and any vertex corresponding to a literal contained in C;. Finally,
add edges in G to obtain a complete graph on w1, ..., w,,. An independent set of G contains at most
n + 1 vertices. An independent dominating set containing the vertices corresponding to true literals of
a nonsatisfiable assignment and one vertex corresponding to a clause not satisfied by this assignment,
is a worst solution of G of size n + 1. If ¢ is satisfiable then opt(G) = n. If ¢ is not satisfiable then
opt(G) = n+ 1. So, any independent dominating set of G has cardinality either n or n + 1. O

By analogous reductions, restricted versions of optimum-weighted satisfiability problems are proved
0-DAPX in Ref. [47].
Finally, the following relationship between NPO and 0-DAPX holds.

Theorem 16.8 (Ausiello et al. [43])
Under D-reducibility, NPO-complete = 0-DAPX-complete C 0-DAPX.

If, instead of D, a stronger reducibility is considered, for instance, by allowing f and/or g to be multivalued
in the strict reduction, then, under this type of reducibility, it can be proved that NPO-complete =
0-DAPX [43].

16.5.3 DAPX- and Poly-DAPX-Completeness

In this section we address the problem of completeness in the classes DAPX and Poly-DAPX. For this pur-
pose, we first introduce a differential approximation schemata preserving reducibility, originally presented
in Ref. [43], called DPTAS-reducibility.

Definition 16.5
Given two NPO problems 1 and T1', T1 DPTAS reduces to I1' if there exist a (possibly) multivalued function

f=(f, fas---> fn), where h is bounded by a polynomial in the input length, and two functions g and c,
computable in polynomial time, such that

« forany x € I, foranye € (0, 1) NQ, f(x,€) € Iy

« forany x € I, foranye € (0,1) N Q, for any X' € f(x, €), for any y € solpy(x'), g(x, y, €) €
solrr (x);

cc:(0,)NQ— (0, 1)NQ;

s for any x € Ip, for any e € (0,1) N Q, for any y € Uf‘zlsoln/(f,-(x,e)), Aj<h such that
S (fj(x, €), y)=1 — c(e) implies Sri(x, g(x, y, €)) =21 — €.
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16.5.3.1 DAPX-Completeness

If one restricts her/himself to problems with polynomially computable worst solutions, then things are
rather simple. Indeed, given such a problem I1 € DAPX, it is affine equivalent to a problem IT’ defined
on the same set of instances and with the same set of solutions but, for any solution y of an instance x
of I, the measure for solution y with respect to I’ is defined as mp/ (x, y) = mn(x, y) — w(x). Affine
equivalence of [T and IT’ ensures that [1" € DAPX; furthermore, wpy/(x) = 0. Since, for the latter problem,
standard and differential approximation ratios coincide, it follows that [T" € APX. MAX INDEPENDENT SET is
APX-complete under PTAS-reducibility [48], a particular kind of the AP-reducibility seen in Chapter 15.
So, IT" PTAS reduces to MAX INDEPENDENT SET. Putting together affine equivalence between I1 and IT/,
PTAS-reducibility between IT" and MAX INDEPENDENT SET, and taking into account that composition of
these two reductions is an instantiation of DPTAS-reduction, we conclude the DAPX-completeness of
MAX INDEPENDENT SET.

However, things become much more complicated, if one takes into account problems with nonpolyno-
mially computable worst solutions. In this case, one needs more sophisticated techniques and arguments.
Weinformally describe here the basic ideas and the proof schema in Ref. [43]. Itis first shown that any DAPX
problem IT is reducible to MAX WSAT- B by a reduction transforming a polynomial-time approximations
schema for MAX WSAT- B into a polynomial-time differential approximation schema for IT. For simplicity,
denote this reduction by S-D. Next, a particular APX-complete problem I1" is considered, say MAX
INDEPENDENT SET- B. MAX WSAT- B, that is in APX, is PTAS-reducible to MAX INDEPENDENT SET- B. MAX
INDEPENDENT SET- B is both in APX and in DAPX and, moreover, standard and differential approximation
ratios coincide for it; this coincidence draws a trivial reduction called ID-reduction. It trivially transforms
a differential polynomial-time approximation schema into a standard polynomial-time approximation
schema. The composition of the three reductions specified (i.e., the S-D-reduction from I'Tto MAX WSAT- B,
the PTAS-reduction from MAX WSAT- B to MAX INDEPENDENT SET- B, and the ID-reduction) is a DPTAS-
reduction transforming a polynomial-time differential approximation schema for MAX INDEPENDENT SET-
B into a polynomial-time differential approximation schema for IT, i.e., MAX INDEPENDENT SET-B is
DAPX-complete under DPTAS-reducibility.

Also, by standard reductions that turn out to be DPTAS-reductions also, the following can be proved
[30,43].

Theorem 16.9

MAX INDEPENDENT SET- B, MIN VERTEX COVER- B, for fixed B, MAX k-SET PACKING, MIN k-SET COVER, for
fixed k, and MIN COLORING are DAPX-complete under DPTAS-reducibility.

16.5.3.2 Poly-DAPX-Completeness

Recall that a maximization problem IT € NPO is canonically hard for Poly-APX [49], if and only if there
exist a polynomially computable transformation T from 3SAT to IT, two constants ng and ¢ and a func-
tion F, hard for Poly,8 such that, given an instance x of 3SAT on n > ng variables and a number N > ¢,
the instance x' = T(x, N) belongs to Zr; and verifies the following three properties: (i) if x is satis-
fiable, then opt(x’) = N; (ii) if x is not satisfiable, then opt(x’) = N/F(N); (iii) given a solution
y € solr(x’) such that m(x’, y) > N/F(N), one can polynomially determine a truth assignment
satisfying x.

Based on DPTAS-reducibility and the notion of canonical hardness, the following is proved in Ref. [30].

Theorem 16.10

If a (maximization) problem I1 € NPO is canonically hard for Poly-APX, then any problem in Poly-DAPX
DPTAS reduces to T1.

8The set of functions from N to N is bounded by a polynomial; a function f € Poly is hard for Poly, if and only if
there exists three constants k, ¢, and ny such that, for any n > ng, f(n) <kF(n°).
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As it is shown in Ref. [49], MAX INDEPENDENT SET is canonically hard for Poly-APX. Furthermore, MIN
VERTEX COVER is affine equivalent to MAX INDEPENDENT SET. Henceforth, use of Theorem 16.10 immediately
derives the following result.

Theorem 16.11
MAX INDEPENDENT SET and MIN VERTEX COVER are complete for Poly-DAPX under DP TAS-reducibility.

16.5.4 DPTAS-Completeness

Completeness in DPTAS (the class of NPO problems that are approximable by polynomial time differential
approximation schemata) is tackled by means of a kind of reducibility preserving membership in DFPTAS,
which is called DFT-reducibility in Ref. [30]. This type of reducibility is the differential counterpart of
the FT-reducibility introduced in Section 15.7 of Chapter 15 and can be defined in an exactly similar
way. Based on DF T -reducibility, the following theorem holds ([30]; its proof is very similar to the one of
Theorem 15.4 in Chapter 15). Before stating it, we need to introduce the class of diameter polynomially
bounded problems that is a subclass of the radial problems seen in Section 16.4. An NPO problem I1
is diameter polynomially bounded if and only if, for any x € Zy, | opt(x) — w(x)| < q(|x]). The class of
diameter polynomially bounded NPO problems will be denoted by NPO-DPB.

Theorem 16.12 (Bazgan et al. [30])

Let TI' be an NP-hard problem NPO-DPB. Then, any problem in NPO is DFT reducible to T1'. Conse-
quently, (i) the closure of DPTAS under DF T-reductions is the whole NPO and (ii) any NP-hard problem in
NPO-DPB N DPTAS is DPTAS-complete under DF T-reductions.

Consider now MIN PLANAR VERTEX COVER, MAX PLANAR INDEPENDENT SET, and BIN PACKING. They are
all NP-hard and in NPO-DPB. Furthermore, they are all in DPTAS (for the first two problems, this is
derived by the inclusion of MAX PLANAR INDEPENDENT SET in PTAS proved in Ref. [50]; for the third one,
see Section 16.3.1.2). So, the following theorem holds and concludes this section [30].

Theorem 16.13

MAX PLANAR INDEPENDENT SET, MIN PLANAR VERTEX COVER, and BIN PACKING are DPTAS-complete under
DFT-reducibility.

16.6 Discussion and Final Remarks

As we have already claimed in the beginning of Section 16.5, the entire theory of approximation can be
reformulated in the differential paradigm. This paradigm has the diversity of the standard one, it has a
nonempty scientific content and, to our opinion, it represents in some sense a kind of revival for the
domain of the polynomial approximation.

Since the work in Ref. [7], a great number of paradigmatic combinatorial optimization problems has
been studied in the framework of the differential approximation. For instance, KNAPSACK has been studied
in Ref. [7] and revisited in and Ref. [13]. MAX CUT, MIN CLUSTER, STACKER CRANE, MIN DOMINATING
SET, MIN DISJOINT CYCLE COVER, and MAX ACYCLIC SUBGRAPH have been dealt in Ref. [13]. MIN FEEDBACK
ARC SET is also studied in Ref. [38] together with MIN FEEDBACK NODE SET. MIN VERTEX COVER and MAX
INDEPENDENT SET are studied in Refs. [7,13]. MIN COLORING is dealt in Ref. [18,23,24, 26-30], while MIN
WEIGHTED COLORING (where the input is a vertex-weighted graph and the weight of a color is the weight of
the heaviest of its vertices) is studied in Ref. [51] (see also Ref. [52]). MIN INDEPENDENT DOMINATING SET is
dealt in Ref. [46]. BIN PACKING is studied in Refs. [27,31,40,53]. MIN SET COVER, under several assumptions
on its worst value, is dealt in Refs. [7,13,54], while MIN WEIGHTED SET COVER is dealt in Refs. [27,54].
MIN TSP and MAX TSP, as well as, several famous variants of them, MIN METRIC TSP, MAX METRIC TSP,
MIN TSPab (the most famous restrictive case of this problem is MIN TSP12), and MAX TSPab are studied
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in Refs. [13,33,35,36,55]. STEINER TREE problems under several assumptions on the form of the input
graph and on the edge weights are dealt in Ref. [56]. Finally, several optimum satisfiability and constraint
satisfaction problems (as MAX SAT, MAX E2SAT, MAX 3SAT, MAX E3SAT, MAX EkSAT, MIN SAT, MIN kSAT, MIN
EkSAT, MIN 2SAT, and their corresponding constraint satisfaction versions) are studied in Ref. [57].

Dealing with structural aspects of approximation, besides the existing approximability classes (de-
fined rather upon combinatorial arguments) two logical classes have been very notorious in the stan-
dard paradigm. These are Max-NP and Max-SNP, originally introduced in Ref. [58] (see also Chap-
ters 15 and 17). Their definitions, independent from any approximation ratio consideration, make that
they can identically be considered also in differential approximation. In the standard paradigm, the
following strict inclusions hold: PTAS C Max-SNP C APX and MAX-NP C APX. As it is proved
in Ref. [57], MAX SAT ¢ DAPX, unless P = NP. This, draws an important structural difference in the
landscape of approximation classes in the two paradigms, since an immediate corollary of this result is that
MAX-NP ¢ DAPX. Position of Max-SNP in the differential landscape is not known yet. It is conjectured,
however, that MAX-SNP ¢ DAPX. In any case, formal relationships of Max-SNP and Max-NP with the
other differential approximability classes deserve further study.
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17.1 Introduction

This chapter is devoted to the core theory of inapproximability. Undoubtedly, the most fundamental part
of the theory, with its numerous consequences, is the probabilistically checkable proofs (PCPs) theorem,
which asserts that MAX-3SAT is NP-hard to approximate within a factor of 1 + € (for some € > 0). In
Section 17.9 we sketch a recently obtained short proof to it [1].

Our survey places particular emphasis on the various kinds of reductions that are employed in the
theory. We would like to convey our conviction that the entire theory is the study of these reductions and
their compositions. We have found it important to introduce the reader to the proof and code-checking
intuition. These play a key role in the theory, have been guiding its development, and even today, when
alternative interpretations are available, still prove to be indispensable when trying to obtain stronger
results.

Unfortunately, we had to make sacrifices to keep the size of the chapter within limits. We discuss only
a handful of specific optimization problems. We could not have possibly opened the treasure chest of ad
hoc inapproximability reductions, there are just so many of them. We have also omitted discussing how
the syntax of optimization problems can often give a guideline to their (in)-approximability status. This
subject, called the syntactic versus semantic view of (in)-approximability, is under heavy investigation and
several advances have been reported recently [2,3]. We have found no room to convey recent excitement
about the unique game conjecture and its consequences [4,5]. Finally, the chapter is concerned only with
NP optimization problems. Probabilistic debate systems [6] and inapproximability of #P problems are out
of the scope of this survey.

17-1
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17.2 NP Optimization: Approximability and Inapproximability

Optimization problems are either maximization or minimization problems:
OPT(x) = max F(x,y) (maximization problem)
y€D(x)
OPT(x) = min F(x,y) (minimization problem)
y€D(x)

where x € {0, 1}* is a string describing the input and F(x, y) is a real-valued function (we often also
assume nonnegativity). The witness y comes from a set that may depend on the input.

One may think of max and min as quantifiers. In analogy with NP, the class NPO is the set of those
optimization problems for which F(x, y) and the relation y € D(x) are polynomial-time computable.
Here, the polynomial is in terms of |x|, the input length. We may get rid of the sometimes annoying
y € D(x) domain condition by setting F(x, y) definitely smaller (larger) than OPT(x) if y & D(x).
This, however, might add extra complexity to the calculation of F(x, y). NPO consists of NP maximiza-
tion and NP minimization problems. To turn an NP maximization (minimization) problem into an NP
problem we just augment the input with a threshold value and ask if OPT is larger (smaller) than the
threshold.

While some important optimization problems are not in NPO, most of those that come from real life are.
Examples are abundant: coloring, allocation, scheduling, Steiner tree problems, TSP, linear and quadratic
programming, knapsack, vertex cover, etc. All of these examples (except linear programming) are NP-
hard, and the best we can hope is to find quick approximate solution for them.

Approximation Ratio
Letx — A(x)(Vx: A(x) € D(x))beamap. Thismapissaid to approximate OPT(x) = maxye p(x) F (x, )
to within a factor of r(x) > 1if

Vx: OPT(x) < r(x)F(x, A(x))

The best such r(x) is also called the approximation ratio achieved by A. If there is a polynomial-time
computable A that achieves approximation ratio r(x), we say that OPT is approximable within a factor
of 7(x). When we seek to approximate OPT, we often choose r(x) to be a function of the input length. If
the input is a graph, r(x) is typically chosen to be a function of the number of vertices or edges, but we
could also make it dependent on the maximal degree, the girth, etc. When OPT is a minimization problem
the bound in the above definition is replaced by F (x, A(x)) < OPT(x)r(x). (In the literature sometimes
1/r(x) is called the approximation ratio. The two definitions can be told apart, since in our definition
r(x) is always greater than 1.)

Example 17.1 (Set cover)

Let x describe a polynomial size set system S (say, by listing the elements of each set in S), let y describe
asubsystem S’ C S, and let y € D(x) iff US" = US. The set cover problem is asking to find y € D(x)
such that |§’| is minimized. It can be shown that there is a polynomial-time algorithm that approximates
the set cover problem within a factor of 1 +In| U S].

Inapproximability
For the above example Feige has shown that set cover cannot be approximated within a factor of
(1 —€)In|US]| in P for any fixed € > 0 unless NP C DTIME(r'°8 1087 [7]. In general, a statement
that there is no polynomial-time algorithm for OPT with approximation ratio r(x) under some complex-
ity theoretic hypothesis is referred to as an inapproximability result, where r(x) is called inapproximability
ratio.

Feige’s result is sharp in the sense that the set cover is approximable in polynomial time within a ratio
of Cln|US| if and only if C > 1 (under our complexity theoretic hypothesis). Thus, In |U S| may be
viewed as the approximation boundary of the set cover problem. In general, we call a function r(x) an
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approximation boundary of problem OPT if OPT is polynomial-time approximable within a factor of r(x) C
forany C > 1,but OPT is (conditionally) hard to approximate within a factor of r (x) C for any C < 1. The
above is sometimes understood in the logarithmic sense, i.e., when r(x)C is replaced by r(x)€. The latter
is clearly a weaker condition. For many NPO problems a type of dichotomy holds: approximating them
beyond their approximation boundary is NP-hard. (The other alternative could be that the complexity of
approximating them gradually increases as r(x) decreases.)

For a long time no approximation boundaries were known for major NPO problems. The appearance
of the theory of probabilistically checkable proofs (PCP theory) has changed this situation. In its rise,
numerous exact inapproximability results (including the one above by Feige) were proven. This theory is
the subject of our next sections.

17.2.1 The Emergence of the PCP Theory

Motivated by Graham’s [8] exact bounds on the performance of various bin packing heuristics, Johnson
[9] gave algorithms for the Subset Sum, the Set Cover, and the MAX k-SAT problems with guarantees
on their performances (1 + o(1), O(log|S]), 2k / (Zk — 1), respectively). He also gave inapproximability
results, but unfortunately they referred only to specific algorithms. Nevertheless, he has brought up the
issue of classifying NPO problems by the best approximation ratio achievable for them in polynomial time.
Although the goal was set, only a handful of inapproximability results existed. Sahni and Gonzalez [10]
proved the inapproximability of the non-metric traveling salesman and some other problems (under P =
NP). Garey and Johnson [11] introduced gap amplification techniques to show that the chromatic number
of a graph cannot be approximated to within a factor of 2 — € unless P = NP, and an approximation
algorithm for the max clique within some constant factor could be turned into an algorithm which
approximates max clique within any constant factor.

The old landscape of approximation theory of NPO radically changed when in 1991 Feige et al. [12] for
the first time used Babai et al’s characterization of NEXP in terms of multiprover interactive proof systems
[13] to show that approximating the clique within any constant factor is hard for NTIME(n!/108 logn),
Simultaneously, Papadimitriou and Yannakakis [14] defined a subclass of NPO, what they called MAXSNP,
in which problems have an elegant logical description and can be approximated within a constant factor.
They also showed that if MAX3SAT, vertex cover, MAX CUT, and some other problems in the class, could
be approximated in polynomial time with an arbitrary precision, the same would hold for all problems in
MAXSNP. They established this fact by reducing MAXSNP to these problems in an approximation preserving
manner. They called their special reduction L-reduction and considered MAXSNP-completeness with
respect to it a strong indication that a problem does not have polynomial-time approximation scheme
(PTAS) (i.e., a sequence of polynomial-time algorithms achieving 1 4 1/k accuracy for k = 1,2, ...).
Their work showed great insight. What was missing was a relation between MAXSNP-completeness and
usual hardness assumptions such as P ## NP. In 1992, Arora et al. [15] showed that MAX3SAT is hard
to approximate within a factor of 1 + € for some € > 0 unless P = NP. Their proof relied on PCPs,
and employed several intricate arguments. They took techniques from Refs. [13,16-18], in particular,
the important “proof recursion” idea of Arora and Safra [17]. The term PCP was also coined in the latter
article. Rapid development came on the heals of these results:

1. Inapproximability of NPO problems.
2. Construction of approximation algorithms achieving optimal or near-optimal ratios (e.g., Ref. [19]).
3. Abloom of approximation preserving reductions and discovery of new (in)approximability classes.

PCP theory has turned out to be the key ingredient in determining the approximation boundaries of
many NPO problems. Some problems remain open, like the Asymmetric Traveling Salesperson Problem,
whose approximability status is not yet clarified. In a latest development, Dinur [1] gave a simplified
proof for the ALMSS (Arora—Lund—Motwani-Sudan—Szegedy) theorem [20] (see a sketch in Section 17.9)
eliminating much of the difficult algebra of the original proof.
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17.3 Approximation-Preserving Reductions

Reduction is perhaps the most useful concept in algorithm design. Interestingly, it also turns out to be
the most useful tool in proving computational hardness [21-23]. When in problem A Cook reduces to
B, the hardness of B follows from the hardness of A. Unfortunately, Cook reduction does not ensure that
if Ais hard to approximate then B is hard to approximate. For reducing hardness of approximation new
definitions are necessary.

Let F(x, y) and F,(x/, y) be functions that are to be optimized for y and y’ (maximized or minimized
in an arbitrary combination). Let OPT) (x) and OPT(x") be the corresponding optimums. A Karp-Levin
reduction involves two maps:

1. a polynomial-time map f to transform instances x of OPT] into instances x' = f(x) of OPT;
[Instance Transformation];

2. a polynomial-time map g to transform (input, witness) pairs (x’, y') of OPT, into witnesses y of
OPT;.
[Witness Transformation].

Observe that the witness transformation goes from OPT, to OPTj. Let opt; = OPT(x), opt, =
OPT,( f(x)), appr; = Fi(x, g(f(x), ¥)), and appr, = F2( f(x), y').

The centerpiece of any approximation-preserving reduction scheme is a relation between these four
quantities. This relation must express: “If appr, well approximates opt,, then appr, well approximates
opt,” The first paper which defines an approximation preserving reduction was that of Orponen and
Mannila [24]. Up to the present time more than eight notions of approximation preserving reductions
exist differing only in the relation required between opt,, opt,, appr,, and appr,. For an example, consider
the L-reduction of Papadimitriou and Yannakakis [14]. The required relations are opt, < cjopt; and
lappr, — opt,| < c2lappr, — opt,| for some constants c1 and c;. It easily follows from the next lemma,
that L-reduction preserves PTAS.

Lemma 17.1

A reduction scheme preserves PTAS iff it enforces that
lappr, — opt,|/opt; — O whenever |appr, — opt,|/opt, — 0.

Proof

Here we only prove the “if” part. Assume we have a PTAS for OPT; and that OPT; reduces to OPT5.
To get a PTAS for OPT(x) first we construct f(x). Using the e-approximation algorithm A, for OPT),
we find a witness y' such that (1 — €)OPT,(f(x)) < F(f(x),y’) < (1 + €)OPT,(f(x)). Hence
|F2( f(x), ¥') — OPT,( f(x))|/OPT>( f(x)) < €. When € tends to 0, from the condition of the lemma
we obtain that | F1(x, g( f(x), ¥')) — OPT1(x)|/OPT(x) also tends to 0. Thus using f, g, and A (for

decreasing epsilon) we can build a sequence of algorithms that serves as a PTAS for OPT]. O

The main advantage of approximation-preserving reductions is that they enable us to define large classes
of optimization problems that behave in the same way with respect to approximation. A prominent example
is MAXSNP: all problems in this class are constant-factor approximable, as shown via the L-reduction of
Papadimitriou and Yannakakis.

17.4 Gap Problems, Karp Reductions, and the PCP Theorem

It soon became clear that besides approximation-preserving reductions, PCP theory also requires reduc-
tions between new types of problems, called promise problems. Promise problems are functions with three
possible values: 0, 1, and “undefined.” They occur as intermediate steps in reduction sequences from
decision problems to functions. In PCP theory context Bellare et al. in Ref. [25] were the first to explain
reductions through promise problems.
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Let OPT be a minimization problem. Assume that for every input x we have two bounds: a lower bound
Ti(x) and an upper bound T,(x), both are polynomial-time computable in x. It is easy to see that if we
can efficiently approximate OPT(x) within a factor better than r(x) = T,(x)/ Tj(x), then with only a
polynomial (additive) overhead in the running time we can also solve:

« if OPT(x) > T,(x), the output is 0,
+ if OPT(x) < Tj(x), the outputis 1,
- if Ti(x) < OPT(x) < T,(x), the output can be anything.

We call the above problem a gap problem and refer to it as Gap(OPT, Tj, T,). If OPT happens to be a
maximization problem, the above definition stays valid, only the roles of 0 and 1 get exchanged.

Example 17.2

For graph G let x (G) be the chromatic number of G. OPT = x is a minimization problem. Let T} = 3,
T, = | V(G)|%2%, where V(G) denotes the vertex set of the input graph. Karger, Motwani and Sudan solved
Gap(x, 3, |V(G) 0-26) in polynomial time. In fact, their algorithm well-colors any three chromatic graph
using at most | V(G)|%2° colors. It is a famous open problem if for any € > 0 there is a polynomial-time
algorithm that colors a three chromatic graph with | V(G)|€ colors.

Witness giving condition: An algorithm for the problem Gap(OPT, Tj, T,,), where OPT is an NP mini-
mization problem, satisfies the Witness giving condition if for every x with OPT(x) < Tj(x) the algorithm
gives a “witness” y for which F(x, y) < T,(x). If OPT is a maximization problem then the witness giving
condition requires that for every input x for which OPT(x) > T,(x), the algorithm computes a witness y
for which F(x, y) > Tj(x). Almost all polynomial-time solutions given to gap problems satisfy the witness
giving condition.

Gap problems yield themselves to Karp reductions as explained below. For brevity we assume that OPT
is an NP maximization problem.

Karp reduction from languages to gap problems
Let L € X* be a language. A Karp reduction from L to Gap(OPT, Tj, T,) is a polynomial-time map f
from X* to input instances of OPT such that

1. if x € L, then OPT( f(x)) > T,(f(x));
2. ifx ¢ L, then OPT( f(x)) < Ti( f(x)).

For the above type of reduction the most prominent example is the PCP theorem:

Theorem 17.1 (PCP Theorem)

For some e > 0 it holds, that for every language L € NP there exists a polynomial-time computable function
f : * — {3CNF formulas}, such that

1. ifx € L, then f(x) is a formula in which all disjunctions are simultaneously satisfiable;
2. ifx & L, then f(x) is a formula in which one can satisfy at most 1 — € fraction of all clauses.

Remark 17.1

The problem of maximizing the {mction of satisfied clauses of a 3CNF formula is called MAX-3SAT. Formally,
letgp = /\?Ll(yfil’l \% yfiz’z \ yi,g‘s) be a 3CNF formula. For an assignment y, define

. b; b; b; .
F(¢, y) = I{i | (y;5' v y;5 v ;¥ )evaluates to true under assignment y}|/ m.

Then MAX-3SAT(¢) = max, F(¢, y).

We can restate Theorem 17.1 that any language in NP is Karp reducible to Gap(MAX — 3SAT, 1 — ¢, 1).
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Karp reduction between gap problems

Let OPT} and OPT, be maximization problems, Tj, T, T}, T, polynomial-time computable functions.
Let f be a polynomial-time computable function from the set of input instances for OPT) to the set of
input instances for OPT, such that

1. if OPTy(x) < Tj(x), then OPT( f(x)) < T/ ( f(x));
2. if OPT(x) > T,(x), then OPT( f(x)) > T,( f(x)).

Then f is a Karp reduction from Gap(OPT,, Tj, T,,) to Gap(OPT3, l/ , T))). The above definition carries
over without any difficulty to those cases when one or both of OPT} and OPT; are minimization problems.
If such reduction exists and Gap(OPT1, Tj, T;,) is NP-hard then Gap(OPT>, Tl’, T)) is also NP-hard.

Example 17.3

For graphs G and H we denote by G x H their strong product: V(G x H) = V(G) x V(H), E(Gx H) =
{((ug, v1), (uz, v2)) | (u1, up) € E(a) A (v, 1p) € E(ﬁ)},where G and H are obtained from G and H
by adding a loop to every node. Let w (G) denote the maximum clique size of graph G. It is easy to see that
o(G x H) = w(G)w(H). Let f bethemap G — G x G and let ] < u be arbitrary positive constants.
The above implies that f is a Karp reduction from the gap problem Gap(w, I, u) to Gap(w, 12, u?).

The following scheme is a high-level description of the way we prove inapproximability results:

3SAT
U PCP theorem (Karp reduction)
gap-3SAT
J Karp reduction
Other gap problems
U trivial
Corresponding inappr. results
Y Approx. preserving reduction

Inappr. results

17.5 Probabilistic Verification: The FGLSS Graph

PCP theory grew out of the observation that probabilistic proof systems can be viewed as optimization
problems. At the time of their discovery probabilistic proof systems were a surprising novelty. At the
present time they represent a distinct contribution of the theory of computing to logic and mathematics.
Their two origins are zero-knowledge proof systems [26]and Arthur—Merlin games [27].

Among all probabilistic proof systems, the so-called Multiprover interactive proof system (MIP) of
Ben-Or et al. [28] is what we apply in the theory of PCPs. The polynomial-time randomized verifier of
an MIP “interrogates” two (or more) noncommunicating all-powerful provers about the truth-hood of a
statement. Instead of MIPs we consider a roughly equivalent system.

Probabilistic Oracle Machines (POM)
Let M”(x, r) be a probabilistic RAM with oracle y and random string r. M is said to accept a language L
with completeness « and soundness 8 (1 > o > 8 > 0) iff

+ if x € L, then there is a y such that Prob, (M’ (x,r) = 1) > «;
« if x € L, then for every y it holds that Prob,(M”(x, r) = 1) < B.

The relevant parameters are the amount of randomness used (|7]), the query size (g), the completeness
parameter (o), and the soundness parameter (8). The query size is the number of positions of y that M
looks at for the worst-case input of size n. Every position of y contains an element of the %, the alphabet
of y, which is assumed to be {0, 1}, unless otherwise said. If the alphabet size is larger, then |X| is also a
parameter. Recently, there is also an interest in minimizing the proof size, | y| [1,29,30].
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Probabilistically Checkable Proofs (PCP)
The witness y written on a POM machine’s oracle tape is also called a Probabilistically Checkable Proof.
The POM that checks the PCP is called a “PCP verifier.” We use the terms “POM” and “PCP verifier”
interchangeably. The latter term was born from an “anthropomorphic” interpretation of the verification
process. We often speak in the first person when we describe the verifier’s actions. Most PCP verifiers are
nonadaptive: they ask all questions to the oracle at once.

To see the connection between proof systems and combinatorial optimization, let M be a POM with
parameters |r|, ¢, @, B and consider the problem

OPT p1(x) = max Prob, (M”(x, r))
y

Observe that if x € L, then OPTp(x) > o and if x ¢ L, then OPT(x) < B, i.e., L Karp reduces to
Gap(OPTpy, B, ). Thus, if L is NP-hard, approximating OPT s within a factor better than «/8 is also
NP-hard. The significance of parameters |r| and g will soon be clear.

Feige etal. have turned the MIP = NEXPtheorem of Babai, Fortnow, and Lund into an in-approximability
result. It had to be scaled down first to the polynomial level, resulting in the statement: For an NP-complete
language, L, thereisa C > 0 and a probabilistic oracle machine M* with query size randomness bounded
by (log #)¢, completeness parameter 1 and soundness parameter 1/n. Hence OPT s+ cannot be approx-
imated by a factor of n. If this does not sound impressing, it is because computing OPT s+ was not a
frequently studied optimization problem. Feige et al. transformed OPT s+ (or any OPT ) into a maxi-
mum clique problem. Below we describe the transformation:

FGLSS (Feige-Goldwasser—Lovisz—Safra—Szegedy) transformation
For a string x € {0, 1}" and a probabilistic oracle machine M”(x, r) we define a graph Gy, ps. The vertices
of G, p are ordered tuples (r, a) of 0-1 strings (|a| = g) such that M accepts if it has access to an oracle y

that gives a1, aa, ..., aq for answers to the g subsequent queries of M, when we run it on inputs x and r.
The main point is that given a = aj, az, ..., a5 we do not need the entire y to compute M”(x, r). Every
oracle y that answers ay, az, . . ., a4 to the k subsequent queries of M”(x, r) is said to be consistent with

(r, a), as long as it also holds that M”(x, r) accepts. If M”(x, r) rejects, y is defined to be inconsistent
with (r, a) for any a. Clearly, for fixed y and r if there is an a such that (r, a) is consistent with y, then this
a is unique. For r = 1’ € {0, 1}* and a, a’ € {0, 1} we have an edge between (r, a) and (+/, a’) in Gy, M
if there is an oracle y consistent with both. The following is easy to see:

Lemma 17.2

Let (r1, a1), (r2, a2), ..., (15, as) form a clique in G pr. Then there is an oracle y consistent with (r;, a;)
forl <i<s.

For a fixed oracle y the number of rs that are consistent with y (meaning that there exists an a such
that (r, a) is consistent with y) is proportional with the probability over r that M”(x, r) accepts. Thus,
OPT p(x) is proportional with the max clique size of G, u-

Since the number of all possible (r, a) pairs is 2!"1+4, graph G, ps has at most 2/"1+4 vertices. Applying
this to the verifier M* of Feige et al. we get that the number of vertices of G,y is at most 22108 M° Since
any algorithm that approximates OPT ps+ within a factor of n can solve N P, we can use any algorithm that
approximates the max clique size of G, p+ within a factor of # to build an NP solver. The overhead is the cost
of the FGLSS transformation, which is polynomial in the size of G, p+. Expressing all parameters in terms
of N = |V(Gyx, m+)|, we get that for some constant C’ the max clique problem of a graph with N nodes
is not approximable in polynomial time within a factor of 2008 N e unless NP € DTIME(2(08 N e ).
In [12,17,20,25,31-34] (starting with the original paper) the result was subsequently improved. The best
current improvement is:

Theorem 17.2 (Zuckerman [34])
There arey, ¢ > 0 such that the maximal clique size of a graph with N nodes cannot be approximated within

a factor ofz(log% in polynomial time unless NP € DTIME(21°8 N)%),
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17.6 PCPs and Constraint Satisfaction Problems

We have seen that constructing a POM with small parameters has immediate inapproximability conse-
quences. In Ref. [20] an even more dramatic consequence was found effecting the entire class MAXSNP:

Lemma 17.3

If for a language L there is a POM with perfect completeness, soundness y < 1, logarithmic randomness and
constant query size, then L Karp reduces to Gap(MAX — 3SAT, B, 1) for some B < 1.

Indeed, let the POM in the lemma be M”(x, r). Since M queries at most ¢ = O(1) bits, for fixed x and
r there is constant-size Boolean formula, @, , expressing if the verifier accepts or rejects the bits it views.
We have

m;lerob(My(x, r)=1) = rn;lx|{r|<bx,,(y) =1}|/2!"! (17.1)

Constraint Satisfaction Problems (CSP)

The problem on the right-hand side of Eq. (17.1) is a MAX-CSP problem. A kCSP is a generalization of
kSAT, where clauses can be any k-variable Boolean expressions. kCSPs are typically defined on Boolean
variables, but it is easy to extend this definition to the case when the variables take values from a general
constant-size alphabet X. In this case we talk about a [k, X]CSP.

Fact 17.1

Every PCP with completeness o, soundness y, query size k, and witness-alphabet ¥ can be turned into a
Gap(MAX — [k, Z]CSP, y, «) instance.

In particular Eq. (17.1) reduces the L of Lemma 17.3 to Gap(MAX — [q, X]CSP, y, 1), where X is the
alphabet of M. To prove Lemma 17.3 we need to reduce Gap(MAX — [g, £]CSP, y, 1) to Gap(MAX — 3SAT,
y’, 1). This is done by gadgets (in this case we have to transform little nondeterministic 3SAT formulas
replacing the constraints of the k-CSP). Lemma 17.3 explains why we want to construct PCPs with constant
number of check bits.

17.7 Codes and PCPs

Perhaps unexpectedly, when turning NP machines into POMs, it is not the machine, but rather the witness
(or proof, in other words) that goes under a meaningful transformation. The old witness (let it be a
coloring, a TSP tour, etc.) becomes a new and very interesting object, called PCP. (Of course, the machine
needs to be adapted to the new checking task, but what motivates its actions is the presumed structure
of the new witness.) To understand this better, let 3z N(x, z) be an NP machine, which we would like
to transform into a POM that recognizes the same language. Without the loss of generality we can think
of N as a machine for the chromatic number problem, x as a graph, and z as a coloring on the nodes.
N verifies if z assigns different colors to all pairs of adjacent nodes in x.

Assume we manage to “encode” every witness (i.e., coloring) z into some string y(x, z) (which may be
viewed as a “probabilistically checkable version” of the same coloring) and design a probabilistic oracle
machine M”(x, r) (also called checker or verifier) such that

1. if N(x, z) = 1, then MY (x, r) = 1 for every r.

2. for every x the string y(x, z) (transformed from an original potential witness z) is an element of
an error correcting code Cy, that corrects § fraction of errors.

3. if y is not §-close to Cy, then Prob,(M” (x,r) = 1) < 0.5.

4. if y is 8-close to some y' € Cy, but ¥ is not equal to some y(x, zp) for some zy for which
N(x, z9) = 1, then Prob,(M”(x,r) =1) < 0.5.
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Then M is a POM with completeness 1 and soundness 0.5 that recognizes the same language as N. The
completeness property follows from 1. To see the soundness property assume that Yz N(x, z) = 0. For
some y how can M”(x, r) be accepting with probability greater than 0.5? From 3 we see that for this y has
to be §-close to the the code {y(x, z)|z}. But then there is a zy such that y is §-close to zg. Then 4 gives a
contradiction, since N(x, zy) = 0.

The above way of constructing PCPs gives a general philosophy. Point 3 calls for constructing codes
such that a POM with small query size can tell with large certainty if a word is §-far from a code word.
In fact, the POM can be viewed as performing two procedures: (1) checking for closeness to the code and
(2) given that yis close to the code, checking ifitis an encoding of a witness that makes N accept. Sometimes
these two tasks are merged together.

In Refs. [12,13,16] the technique to construct a PCP encoding code was arithmetization. When arith-
metizing, the encoding function is the generalized Reed Solomon encoding. The PCP properties of this
code are not straightforward. A technical detail, but important for the further developments, is that in
these articles § is not a constant, but rather inverse polylogarithmic.

In Ref. [17] the parameters were further reduced to |q| = |r] = O(logn) reaching an important
milestone: NP was characterized for the first time as PCP(log 1, log ) (the two arguments are the number
of the random bits and the number of the query bits).

In Ref. [20] the number of check bits had to be decreased to constant. Are there any error correcting
codes over ¥ = {0, 1} that can be checked with constant number of queries even if we allow the code word
to be exponentially long, and we do not require any additional properties? The answer is yes, and these
codes play a fundamental role in the PCP theory.

Hadamard Code i
Let z € {0, l}k. We encode z as the sequence of all scalar products had(z) = (z, U)UE{O’I}](. Here (z, v) lef
>, zivi mod 2. The above is known as the Hadamard encoding.

Lemma 17.4
Lety = (yv)yeqo,1)+ be any vector of length 2K with elements from {0, 1}. Then

1. Ify = had(z) for some z € {0, l}k then for every v, t € {0, l}k we have y, + yr = Yy1¢.
2. If y is e-far in Hamming distance from every word from the Hadamard code, then

(v, Olyy + ¥ # yore)l = € 2%

The above lemma, which was first discovered with a slightly weaker constant by Blum et al. [18], gives a
procedure to check membership in the Hadamard code: Pick v, t € {0, 1}¥ randomly and independently,
and rejectif y, + y: # yy+¢. Thelemma implies that if y is at least €-far from all code words, the check gets
rejected with probability at least €. However, if it is a code word, the check gets accepted with probability 1.
A further feature of the Hadamard code is that from any string y close to had(z) we can recover any mod 2
subset-sum of the bits of z with high certainty, but we cannot easily recover nonlinear (in the two-element
field arithmetic) functions of the encoded string. Arora etal. [20] employed the Hadamard encoding in their
construction. The role of exponentially large codes in the PCP theory is made clearer in the next section.

We now describe another code, which is checkable with a constant number of bits and has the added
nice feature that one can also recover any Boolean function of the encoded string with high certainty
using only two queries. The checking procedure is remarkably efficient: three queries suffice. The code was
invented by Bellare et al. [25] and was wonderfully analyzed by Hastad [35], who showed how this code
plays a main role in obtaining sharp inapproximability results with it. It is also employed in the recent
short proof for the PCP theorem.

The Long Code

Encode z (z € {0, l}k) by the list of values that all Boolean functions take on z. We get long(z). Unlike the
Hadamard code, the long code is nonlinear, although it is a subset of a Hadamard code. Since the number
of Boolean functions that take k input bits is 22k, the length of the long code is doubly exponential. The
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elements of the code are indexed by the names of the corresponding Boolean functions. There is another
interpretation of the long code, which may be interesting. First encode zin unary and then encode unary(z)
with the Hadamard code. long(z) = had(unary(z)). If we have an abstract set S instead of {0, l}k we may
also encode its elements with the long code. Let F be the set of all functions f : S — {0, 1}. For z € S we
define longg(z) = ( f(2)) e, a string of length 2181,

Folding
If y = long4(z) then for every f € F wehave y—~r = —yys. Let so € S be an arbitrarily chosen element of
S. For every f exactly one of f(sq), = f(so) is 0. The folded long code long’ contains only those entries
yf of the long code for which f(so) = 0. Hence its words are from 25\ls0}, When we describe a test for the
folded long code it is often convenient to talk about y r even when f(so) # 0. Under this, by definition,
we mean y ¢ = —y- f. To retrieve this value the tester needs to read only one bit from y. We call the above
extension the unfolding of y. In PCP theory we always work with the folded code. Long code tests are
studied by Fourier analytic techniques [31,35,36], and using the folded version gives nicer formulas. Also,
if we unfold any string in 25\(0} (not only a code word) then the unfolded string in 2° will have Hamming
weight exactly 2/5I71,

Let fiVv LV ---V fi = land y = long/(z) for some z = {0, l}k.Thenyf1 VypVee-Vys =1 must
hold. This observation makes it possible to check long) as follows:

Lemma 17.5 (Dinur [1])

For any finite set S the folded code long's(z) can be checked looking at only three positions corresponding to
functions whose OR is 1. The first two functions of the triplet are randomly selected, while the third one is
chosen by a random process (we do not give here the simple details) such that the OR of the three functions is 1.
The procedure then accepts if by V by v b3 = 1, where by, ba, and b3 are the three returned code bits. For the
procedure the following holds:

1. Ify = longs(2), then y is accepted with probability 1.
2. If dist(y, long) > 8, then y is rejected with probability 0.0018.

17.8 Holographic Proofs and the Proof Recursion Idea

Babai et al. [16] have shown how to test randomly a (theorem, proof) pair without reading neither the
theorem nor the proof. The theorem is assumed to be in an arbitrary error correcting format and the proof
serves to check both the theorem and its format. When we say “proofs” and “theorems” normally we mean
the corresponding notions of predicate calculus, but to understand this section one needs to think more
generally (and in a sense, simpler). Ref. [16] considers abstract proof systems. In the most general case, the
minimal requirement from a proof system is that it characterizes a set called THEOREMS, which com-
prises all “true statements.” THEOREMS < {0, 1}* may be any language. The notion is merely syntactic.
A slightly less minimal requirement is that THEOREMS be recursively enumerable. If so, then there is a
polynomial-time machine N such that x € THEOREMSif and onlyif 3x N(x, y). Here, y can be arbitrar-
ily long compared with x. We prefer to rename x and y and write the above as 3 proof N(theorem, proof).
We would like to emphasize that theorems and proofs are only strings. No semantics is attached to them.
The only way to get convinced if a (theorem, proof) pair is valid if we run N on it.

The next step in Ref. [16] is to introduce the notion of “holographic” proof systems. Let us assume that
the theorems of a conventional (nonholographic) abstract proof system form the set THEOREMS. Let
Ex : {0, 1} — {0, 1}"® be a family of efficiently computable error correcting encoding that correct &
fraction of errors. Let E(x) = E|y(x). We define a new set

THEOREMS = {E(x)|x € THEOREMS}

This transformation of the theorem set makes it error-resistant: Even if we delete or change a constant
(< ) fraction of a theorem € THEOREMS, we can recover it using error correction. More importantly,
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if THEOREMS, is recursively enumerable (RE), then Ref. [16] shows how to build a “holographic proof
system” for THEOREMS (below L stands for THEOREMYS)):

Theorem 17.3 (Babai et al. [16])

Let Ey : {0, 1}* — {0, 1} be a family of efficiently computable error correcting encodings that correct 8
fraction of errors. For every L € RE with verifier N, there is a probabilistic oracle machine M>7 (k, r) (k is
the length of the unencoded theorem, z € {0, 1}"®)) such that

1. Ifx € L, |x| = k, then any witness yo for which N(x, yo) = 1 can be turned into a witness y for M
for which MEG)Y(k, r) = 1 for every r. The transformation takes polynomial time in | yo|.

2. Let THEOREMSy = {E(x)|x € L N {0, 1}X}. For every z with dist(z, THEOREMS}) > & h(k) and
for every y we have Prob,(M?7 (k,r) =1)) < 1/2.

3. The query size and |r| are only polylogarithmic in |z| + | y|.

If we allow exponential blow-up in the parameters, then a much simpler holographic proof checker was
found by Dinur [1], which she uses in her simple proof for the PCP theorem:

Assignment Tester of Dinur
Let F be an arbitrary Boolean function on k variables. Let E : {0, 1} > {0, 1} bean arbitrary encoding
that corrects 10% of errors, and let

THEOREMS < {E(x)|x € {0, 1}¥: F(x) = 1)

The Dinur assignment tester is a holographic proof system for z € THEOREMS. Dinur’s holographic
proof for some E(x) € THEOREMS is simply y = lonyTHEOREMS(E(x)). Given a candidate (z, y) for a
(theorem, proof) pair, the verifier checks that the following hold:

1. yis close to some member of longrrrorEMS:
2. assuming that the first condition holds, y is close to long’rrorems(2)-

The second check is the reason why z of the true prover needs to come from an error correcting code. The
first check is done as in Lemma 17.5. The second check is done by selectinga random index1 < p < land
checking if the pth bit of zis correctly encoded in y. For this the verifier picks arandom f : {0, 1}/ — {0, 1}
and checks if yr + y 4z, = 25, where 7, is the function that projects a word to its pth bit: w — w.
Remark: 77, behaves as any other Boolean valued function on THEOREMS. In particular, the folded long
code lets it to recover via the expression y s + yfix,, where f isarbitrary.

The verifier, instead of checking both 1 and 2, selects either 1 or 2 with 50% probability. If the above
verification process is accepting with probability 0.999, then y is close to some long rorpms(Z)- Also,
7 is close to z in Hamming distance. This in turn means that z decodes to x = E —1(2), where F(x) = 1.

Reducing the Query Size

The query size of the above procedure is 3. As we see in the next section, it has a definite advantage to
reduce the number of queries of the verifier to two even at the price of increasing the alphabet size to eight.
To this end Dinur employs the following nice standard trick. To y we add another proof, y/, that contains
all the triplets of bits that are potentially read by the checking procedure. The alphabet of y’ is {0, 1}°. The
verifier proceeds according to the same protocol as before, but when a check is to be performed, it reads
the corresponding triplet, 7, from y’. To make sure that 7 faithfully describes the corresponding three bits
of zU y, it randomly selects one of the three bits of 7, compares it with the corresponding bitin zU y, and
rejects if 7 lies about it. The following is not hard to show:

Lemma 17.6

There is fixed ¢ > 0 such that if z is §-far from THEOREMS then for every y, y' the above 2-query verifier
rejects (z, y U y') with probability at least c¢§. On the other hand, if z € THEOREMS then there exist y, y'
such that the verifier accepts (z, y U y') with probability 1.

The holographic proof idea was slightly generalized in Refs. [1,10,37,38].
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Proof Recursion

Arora and Safra [17] were the first to describe proof recursion, a method in PCP building to decrease the
query size. Proof recursion builds on the holographic proof idea. Below we explain it in its simplest form.
In this form proof recursion is used to decrease the size of the alphabet of the witness tape rather than the
query size. In the process the query size should not increase by much. If the alphabet size is small but the
query size is large, to do the proof recursion, we first need another transformation that trades query size
for alphabet size by reducing the former and increasing the latter (see a simple example above). In general,
if the query size is nonconstant, to achieve this trade-off may be quite technical.

Outer Verifier

Let M be a POM, called outer verifier, that makes a constant number of queries, but its witness is over a
large alphabet, j;¢. Let E be a binary error correcting encoding of X;, that corrects constant fraction
of errors. From a witness ( y;)1<j<m we create another witness ( E(¥;))1<i<m> 1.e., we encode every symbol
of the witness (or proof) individually and concatenate the resulting code words.

Inner Verifier

To check the new witness we use a verifier that works under the holographic proof principles. Let us
assume that the outer verifier for a random string r would read yi,, iy, ..., yi, and accept if some
Boolean predicate F(y;,, ..., y,'q) equals 1. Define:

THEOREMS = (E(01)E(02) ... E(0g)|F (01,02, ..., 04) = 1)

Note that if E corrects § fraction of errors, then E1 = E x --- x E still corrects §/q fraction of
errors, so THEOREMS is in an error correcting format (recall that by our assumption g is a constant).
Therefore, a holographic proof checker capable of recognizing THEOREMS can be applied. (BFLS, D,
and other constructions ensure the existence of such proof checkers for a wide range of parameters.)
This proof checker, also called the inner verifier, needs to have access to a holographic proof besides

E(y1)E(y2) ... E(yq).

Composed Verifier
We need to build an inner verifier for every fixed r as follows. The composed verifier, given r, first computes
the indices of the check bits of the outer verifier, and the Boolean predicate F, that represents the acceptance
condition of the outer verifier for this r. From F, it determines THEOREMS, and computes a random
query of the associated inner verifier. For this the composed verifier uses an additional random string r’
with length that agrees with the randomness required by the inner verifier. Then the composed verifier
makes the queries. This is the only occasion when it reads anything from the witness tape. Thus the query
and alphabet sizes of the composed verifier are that of the inner verifier. The composed proof itself is
(E(yi)1<i<m U, holo,, where holo, is the holographic proof associated with random string .
Building an outer verifier is not trivial, and it is a main technical component in Ref. [17]. Arora et al.
[20] build a verifier that is both inner and outer, and which needs only logarithmic randomness and
polylogarithmic query bits. They compose this verifier with itself a constant number of times. The verifier
has a natural size parameter, which is set differently throughout the levels of composition. In particular,
the size rapidly shrinks in every new iteration. For the last time they use a different inner verifier whose
alphabet size is 2, and query size is constant similarly to Dinur’s assignment tester. The latter was a novel
idea at the time. To achieve significant improvement of the parameters in just a constant number of
iterations the outer verifier must be very powerful, which makes the ALMSS [20] construction involved.
To keep the number of iterations constant appeared to be necessary, because in their case every iteration of
the proof recursion either added a constant to the query size or shrunk the completeness-soundness gap.
In Refs. [1,38] gap-increasing reductions help to get around this. Shortly after Ref. [20] a powerful gap-
increasing reduction, called parallel repetition was invented by Raz [39], and exploited in constructions
to obtain sharp inapproximability results [35]. The parallel repetition, unlike the reductions in [1,38],
which only add a constant to |r|, increases || by a constant factor, so it can be used only (essentially) once
without making |r| superlogarithmic.
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17.9 A Short Proof of the PCP Theorem

Before Refs. [1,38] several different proofs have been made for the PCP theorem, but their rough structure
did not differ much. One of the nice features of the new proofis that it can be almost fully explained without
mentioning PCPs, and talking only about Gap-CSPs (see Section 17.6). In particular, Dinur proves the
following form of the PCP theorem:

Theorem 17.4

Let ¥ = {0, 1}°. Then [2, £]CSP Karp reduces to Gap(MAX — [2, X]CSP, 0.9999, 1) in polynomial time.
(Note: [2, £]CSP is NP-complete.)

For the rest of the section we fix ¥ = {0, 1}°.

Instance Size and Satisfiability Gap
For a CSP & = /\:":1 ®d;, define the instance size as |®| = m. The satisfiability gap of ® is sat(P) =
miny [{i|®;(y) = 0}|/m (one minus the maximal fraction of the simultaneously satisfiable constraints).
In words, Eq. (17.1) says

Let ® be a [k, X ]CSP instance. Either sat(®) = 0 (the formula is satisfiable) or sat(®) > 1/|®]| (the
formula is not satisfiable). The satisfiability gap cannot be smaller than 1/|®| since if the formula is not
satisfiable then at least one component of ® is not satisfied under any assignment. Dinur constructs a
reduction that enlarges this tiny gap to a constant, while keeping the gap of satisfiable instances 0. The
reduction makes small progresses at a time.

It is sufficient to show that any [2, £ ]CSP instance ® can be reduced in polynomial time to a [2, £ ]CSP
instance @’ with the following properties:

Lifdis satisﬁable then @' is satisfiable.
1) < 1007 o
3. sat(dD ) > min{2 sat(®), 0.0001}.
We say that a [2, X]CSP instance is d-regular, expanding, if the graph we obtain by replacing each

constraint with the corresponding pair of variables is a d-regular expander. Let ® be an arbitrary [2, X ]CSP.
Let d = 11 and ¢ be a constant to be determined later. We obtain @’ from @ in three steps:

d e 2, Z]CSP — (to improve on the structure)
&, € d-regular, expanding [2, £]CSP — (to gain the gap)

M4 .
Dy € (2, »(@+1)'271csp — (to reduce the alphabet size)
@' € [2, X]CSP

Furthermore: (1) If ® is satisfiable then so are @, @y, and ®’, (2) Each reduction increases the
size of the instance only by a constant factor: |®| < 30|®|, [Ppie| = (d + 1)r5_1|<1>mg|, |®'| <

rs
Q2 |<I>;,lg| and (3) The satisfiability gaps change as

sat(®eg) > 0.1 sat(P)
sat(®Pypig) > min{200000 sat(P ), 0.001}
sat(®’) > 0.0001 sat(Dy;,)

Only for the ®p;; — @' reduction we need PCP ideas, although very little.

Reducing the Alphabet Size

In fact, Sections 17.7 and 17.8 have already prepared us to understand this reduction. Since & = {0, 1}?,
we can identify Tp;q def 5@+ )7 with {0, 1}3(d+1> 1 . If @y is a positive instance (i.e., satlsﬁgble)
we encode eagh letter of the satisfying assignment with some encoding function E : {0, 1}3(d+1)

{0, 1330 @+ that corrects constant fraction of errors (from coding theory we know that such encoding
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exists). If v; and v are two variables on which ® ;¢ has a constraint, we install a Dinur Assignment Tester
(see the previous section, Lemma 17.6) which checks the property:
THEOREMS;, ; = {(E(0), E(e")|(o,0’) € Ziig satisfy all constraints on v;, v}

The proof, (E(c), E(c")), is encoded, as required. A little detail is that the encoding is E x E, rather
than E, but E x E still corrects constant fraction of errors. Let us denote the holographic proof of this
assignment tester by holo; j, and the set ofall i, j pairs for which such a tester is built, by H. The properties
of the Dinur Assignment Tester guarantee that when the constraint is satisfied, and the prover is faithful to
the protocol, all tests are accepting. The tester looks at binary constraints over the alphabet & = {0, 1}3,
therefore, by Fact 17.1 it can be turned into a [2, {0, 1}*] CSP. This CSP is made just for a single constraint
of ®yp;e. To obtain @’ we unite the above sets for all constraints of ®y;,. The variables are all bits of all
encoded variables of ®p,g together with | J; jeH holo; ;.

Assume now that ®y;, is a negative instance. It takes a little argument to show that in this case the
satisfiability gap of @’ constructed above is at least 0.0001sat(®) g, independently of t. The transformation
blows up the instance size by only a constant factor (dependent of ¢, but it is all right). These were all we
wanted to achieve in this stage.

Making It Regular, Expanding

The ® — @, reduction is even simpler. It is a fairly standard transformation which involves creating
deg v clones of every node v of the constraint graph of ®. We distribute the outgoing edges among the
clones: Each clone remains connected to exactly one outgoing edge. For every v we fit a degree d’ expander
(say, with d’ = 5) on its clones putting equality constraints on the new edges. This way we obtain a
d’ + 1-regular graph, which may not be an expander itself (recall that we did not have any assumption on
the original graph). To ensure the expanding property, we now add new edges with empty constrains on
them. The new edges form a degree d’ expander on the entire vertex set. The final graph is d = 2d’ + 1-
regular and it is an expander. Throughout the whole construction we preserve multiple edges (possibly
with different constraints).

Powering

The second reduction is a wonderful new addition to PCP theory and this is the one that really gains us
the gap. We define an operation on binary constraint systems, called powering. Let G be a constraint graph
and t > 1 be an integer. First we add a loop to each node (with an empty constraint). We denote the
resulting graph with G + I. Then we construct (G + I)? in such a way that

+ The vertices of (G + I)" are the same as the vertices of G.

+ Edges: u and v are connected by k edges in (G + I)" iff the number of ¢ steps paths from u to v in
G + I is exactly k.

+ Alphabet: The alphabet of (G + I)! is E(d‘H)“m, where every vertex specifies values for all of its
neighbor reachable in [#/2] steps.

+ Constraints: The constraint associated with an edge (u, v) of (G + I)" is satisfied iff the assignments
for u and v are consistent with an assignment that satisfies all of the constraints induced by the
[t/2] neighborhoods of u and v.

If G is satisfiable then (G + I)! is satisfiable as well. More importantly, powering has the following
satisfiability gap enlarging property:

Lemma 17.7 (Amplification Lemma [1])

Let X be an arbitrary constant-size alphabet. There exists a constant y = y(d, |2|) > 0 such that for any
t > 0 and for any d-regular expanding constraint graph G:

sat((G + I)') > y+/tmin {Q(G), lt}
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We define @y = (Ppeg + [ )!. Parameter t has to be chosen so that we get a large enough Q(Qbig) /
sat(P ) ratio to compensate for the loss in the satisfiability gap in the first and third transformations,
and even gaining a factor of 2 over that. This can be ensured because of Lemma 17.7.

Many of the stated properties of the reductions are intuitively clear, although some require nontrivial
arguments. To get Theorem 17.4 we need to cycle through the reduction set —log,c times (or, if we
do not know «, more), where « is the satisfiability gap of the very first instance. —log,a < logm, so
the size of the final instance is polynomially bounded by that of the first, where the size of the latter
is m.
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18.1 Introduction

Typically, a combinatorial optimization problem involves a set E of elements (called ground set) and the
goal is to arrange, group, order, or select a subset of elements from E that optimizes a given objective
function. Classical examples of combinatorial optimization problems include the minimum spanning tree
problem, the shortest paths problem, and the traveling salesman problem [1].

Local search is perhaps one of the most natural ways to attempt to solve a combinatorial optimization
problem. The idea oflocal search is simple: Given a (probably not very good) solution s for a combinatorial
optimization problem, try to improve the value of the solution by making “local changes” to s. A local
change might involve, for example, adding elements from the ground set to s, removing elements from s,
changing the way in which elements are grouped in s, or changing the order of the elements in s. If an
improvement can be achieved in this manner, then a new solution s’ is obtained. This process is continued
until no further improvement can be obtained.

Local search has been successfully used to find good solutions for a large number of complex problems,
the most famous of them probably being the traveling salesman problem [1]. The empirical performance
of local search algorithms has been extensively studied for a large number of problems in scheduling,
Very Large Scale Integration design, network design, distributed planning and production control, and
many other fields [2]. Most of these studies concluded that local search is a good method for efficiently
computing near-optimum solutions to problems of realistic sizes (see, e.g., Refs. [2,3]). In this chapter
we explore the use of local search in the design of approximation algorithms with provable performance
guarantee for NP-hard combinatorial optimization problems.

The idea of local search might be better understood by considering an example. In the multiproces-
sor scheduling problem the goal is to schedule a set ] = {ji, j2,..., ju} of jobs into a group M =
{Mj, My, ..., My} of m identical machines so that the completion time of the last job, also called the
makespan of the schedule, is minimized. Each job j; has a processing time p;, and every machine can
process only one job at a time. Furthermore, we assume that the processing of a job cannot be interrupted
(i.e., preemptions are not allowed).

Let us consider a specific instance of the multiprocessor scheduling problem. Let | = {1, j2, 3, ja»
5> je} with processing times p; =3, p» =2, p3=3, pa=4, ps=2,and ps=1,and M = {M,;, M, Ms}.

18-1
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FIGURE 18.1 A schedule for J.
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FIGURE 18.2 Local improvements for the solution in Figure 18.1.

A solution for this instance of the multiprocessor scheduling problem is shown in Figure 18.1. Machine
M processes jobs ji, j2, j3, and je requiring total processing time 3 + 2 + 3 + 1 = 9. This is the
load of machine M. The loads of M, and M3 are 4 and 2, respectively. The makespan or length of this
schedule is equal to the completion time of the last job, and it is also equal to the maximum machine load,
namely 9.

We can make local changes to this solution to try to improve the makespan. For example, we could
move a job from one machine with maximum load to a machine with minimum load. If, say, we move j3
from M to M, we get the solution shown in Figure 18.2(a) with makespan 8. As this solution is better
than the first one, we keep it and try to further improve it. Now we can move jg to M3 to get the solution
depicted in Figure 18.2(b) with makespan 5.

This last solution cannot be improved by moving any one of the jobs to a different machine. In fact,
one can show that this is an optimum solution for the problem since the total processing time of all the
jobs is 15 and, thus, 3 machines need at least 15/3 = 5 units of time to process them all.

18.1.1 Local Search and Combinatorial Optimization

Formally, a combinatorial optimization problem IT consists of a collection of instances (S, c). For each
instance (S, ¢), S is the set of feasible solutions, and it consists of a family of subsets from a finite ground set
E. The second component ¢ of an instance is an objective function ¢ : S — IR. The goal of a combinatorial
optimization problem is to find a solution s* € S with minimum or maximum objective value, i.e.,
c(s*) = optimumc(s)
seS

where optimum is either min or max.

A neighborhood function N : S — 2 specifies for each solution s € S a subset A'(s) of neighbors of s,
or solutions that are “close” to s. The local search algorithm that we informally described above is called
the iterative improvement algorithm.

Algorithm Iterativelmprovement (S, N, c)

In: Set S of feasible solutions, neighborhood function NV, and objective function c.
Out: A local optimum solution s € S with respect to A/ and c.

1. Compute an initial feasible solution s € S.
2. while N(s) contains a better solution than s do {
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3. Choose a solution s’ € A/ (s) with better value c(s’) than c(s).
4, Sets < s

}
5. Output s.

The solution s computed by the algorithm has the best possible value among all the solutions in its
neighborhood N (s)

c(s) = optimumc(s’) (18.1)
s'e N(s)
Therefore, this solution s is called a local optimum with respect to N and c. The set of local optimum
solutions in the feasible solution set S with respect to a neighborhood function NV and objective function
c is denoted as L/ (S). A local optimum solution is not necessarily a global optimum solution s*. To see
this, let us consider the same instance of the multiprocessor scheduling problem described above. For a
feasible schedule s, the objective function c(s) gives the makespan of the schedule. Let us use the same
neighborhood function defined before, i.e., A'(s) includes all solutions that can be obtained from s by
moving a single job from a machine with maximum load to one with minimum load. This neighborhood
function is called the jump of move neighborhood [4]. Let the initial solution be as shown in Figure 18.3.
Note that since Mj and M, have maximum load, this solution is local optimum as moving a single
job cannot decrease the makespan. The makespan of this local optimum solution is 6, while the global
optimum solution of Figure 18.2(b) has makespan 5.
Given a combinatorial optimization problem IT with instances (S, ¢) and a local search algorithm A
that uses neighborhood function \V, we define the locality gap o 4 of A as the largest possible ratio between
the value of a local optimum solution and a global optimum one

oA = max max {ﬁ, @} : ¢(s*) = optimumc(s’) (18.2)
S,o)ell | sepe(s) Le(s*) c(s) s'eS

Therefore, if an algorithm A can compute in polynomial time a local optimum solution for a combina-
torial optimization problem IT with respect to a given neighborhood function, then A is an approximation
algorithm for IT with approximation ratio o 4.

18.1.2 The Complexity of Computing Local Optimum Solutions

There is a large number of combinatorial optimization problems and natural neighborhood functions for
them, for which we do not know any polynomial-time algorithm for computing local optimum solutions.
There has been a lot of research on characterizing the class of problems that admit polynomial-time
algorithms for finding local optimum solutions. One of the most notable works in this area is the research
by Johnson et al. [5], who introduced the complexity class PLS of Polynomial-time Local Search problems.

This class includes all those problems and associated neighborhood functions which admit polynomial-
time algorithms for deciding whether a given feasible solution is locally optimum and, if not, computes a
better solution in its neighborhood. There is a reduction among problems in the class PLS which defines
a subclass of complete PLS problems. It is unknown whether there exists polynomial-time algorithms for
computing local optimum solutions for PLS-complete problems.

My J1 J2 | Js
M, ja Js
My J3

T T

Time

FIGURE 18.3 A local optimum solution with respect to the jump neighborhood and makespan objective function.
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If we look closely at the Iterativelmprovement algorithm described above, we note that its time com-
plexity is dominated by the number of iterations of the while loop and by the time needed to search the
neighborhood for a better solution. Given a combinatorial optimization problem, it is possible to scale the
objective function c, so it yields integer values for all feasible solutions. Then, the Iterativelmprovement
algorithm will terminate in a pseudopolynomial number of iterations, since each iteration improves the
value of the solution by an integral amount.

This observation led Orlin et al. [6] to study approximate locally optimum solutions: Given a value
&> 0, a solution s for an instance (S, ¢) of a combinatorial minimization problem is an e-local optimum
with respect to the neighborhood function N if

c(s) —c(s’) <ec(s’) foralls’ e N(s)

Approximate locally optimum solutions can be defined in a similar manner for maximization problems. In
Ref. [6] itis shown that every combinatorial optimization problem with a neighborhood function that can
be efficiently searched has a fully polynomial-time algorithm for computing e-local optimum solutions.
This is a very interesting result, since as we show in Section 18.4, ¢-local optimum solutions might be
shown to be nearly global optimum.

18.1.3 Local Search in Approximation Algorithms

Despite its simplicity, local search has not been extensively used to design approximation algorithms.
Among the reasons for this are that computing the locality gap of alocal search algorithm is not easy, and for
many problems natural local search algorithms have very large locality gaps leading to poor approximation
algorithms. Consider, for example, the multiprocessor scheduling problem described above and the jump
neighborhood function. Let us consider an instance of the problem, where J consists of an even number
n = km of jobs with unit processing times for some integer value k > 0, and let M consists of 7 machines.
The solution shown in Figure 18.4 for this instance (half of the jobs are processed on machine M; and
the other half on M) is a local optimum solution as moving a single job cannot decrease the makespan.
An optimum solution, however, distributes the jobs evenly among all machines, and so it has makespan
k. The locality gap of the Iterativelmprovement algorithm with the jump neighborhood function is, then,
at least km_k/z =2,

The problem with alocal search algorithm based on the jump neighborhood is that it might get “trapped”
in a local optimum solution of value far away from the optimum. If a neighborhood function is such that
a local search algorithm always finds a global optimum solution, regardless of the initial solution, such
a neighborhood function is called exact. For neighborhood functions that are not exact, getting trapped
in a local optimum is a big problem, hence various local search techniques have been designed that can
move a local search algorithm away from a local optimum solution. Variable-depth search, tabu search,
simulated annealing, and genetic algorithms are among these techniques. In this chapter we consider only
iterative improvement algorithms, as more complex local search techniques are much harder to analyze.
In the sequel “local search” will mean iterative improvement.

M, |G| g o Iy
]\[2 j%+1 j%+2 PN jn,
M,
M,

m

Time

FIGURE 18.4 Instance showing a large locality gap for the jump neighborhood.
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When designing an approximation algorithm using local search, if the locality gap of the algorithm
with the selected neighborhood function is too large, we can try to improve it by selecting a different
neighborhood function, and sometimes (as we show in the next section) by modifying the cost function.

Let us again consider the multiprocessor scheduling problem. Two other neighborhood functions that
have been used for designing local search algorithms for this problem are the swap and push neighborhoods
[4]. In the swap neighborhood, two jobs j; and ji on different machines are swapped (thus, interchanging
their machine allocations). The push neighborhood allows moving a job j; from its current machine M;
to a different one, Mj, and then it allows to recursively move from M, those jobs with processing times
smaller than p;. It is not hard to find instances showing that, like the jump neighborhood, these two
neighborhood functions have a large locality gap.

We could also define a k-jump neighborhood function, where up to k jobs are selected and moved to
other machines. By selecting a sufficiently large value for k (e.g., by choosing k = n) we guarantee that the
neighborhood function is exact and, therefore, that a local search algorithm based on such a neighborhood
function will always find optimum solutions. The problem with this function is that given a solution s, the
size of its neighborhood [N (s)| is exponential in k. Therefore, Step 3 of algorithm Iterativelmprovement
might require time that is exponential in k. The main challenge when designing a good local search
approximation algorithm is to select a neighborhood function that yields small enough neighborhoods,
so that deciding whether the current solution is a local optimum, or finding a better solution can be done
efficiently, and such that the locality gap of the algorithm is small.

Computing the locality gap of a local search algorithm is, in general, not easy. We need to make use of
the structural properties of local optimum solutions and relate them to the properties of global optimum
solutions. In the next two sections we describe local search approximation algorithms for two NP-hard
problems to illustrate this process. Sometimes it is a good idea to use Eq. (18.1) defining a local optimum
solution to relate the value of local optimum and global optimum solutions. This idea is used in the last
section of this chapter to design an approximation algorithm for the k-median problem.

18.2 An Approximation Algorithm
for Multiprocessor Scheduling

As the example in Figure 18.4 shows, a local search algorithm for multiprocessor scheduling based on the
jump neighborhood might return a solution that is much worse than the optimum. This happens when
the algorithm gets trapped in a local optimum where several machines have the maximum load and the
rest of them are idle. As in this case more than one machine has maximum load, moving a single job will
not decrease the makespan of the schedule. However, by moving a job from a maximum load machine to
an idle one, the number of machines with largest load will decrease. If we continue moving jobs away from
machines with maximum load, eventually we might be able to decrease the makespan of the solution.

To force the Iterativelmprovement algorithm to continue moving jobs away from machines with largest
load, let us define a new objective function ¢’ that assigns to every schedule s a pair (c(s), d(s)), where
c(s) is the makespan of s and d(s) the number of machines with load c(s). Given two solutions s and s/,
welet ¢/(s) < ¢/(s) if c(s) < c(s") orif c(s) = c(s’) and d(s) < d(s').

Given a schedule s, its neighborhood A (s) has size at most O(mn) since a neighbor of s can be
obtained by moving any of the # jobs to any of the m — 1 machines which do not process it in s. Further-
more, we show below that the Iterativelmprovement algorithm requires O(#?) iterations to find a local
optimum solution. Thus, the time complexity of Iterativelmprovement with the jump neighborhood is
O(mn?).

We use the arguments presented in Ref. [7] to bound the number of iterations of the algorithm. Let
Cmax (i) and Cpin(7) denote, respectively, the maximum and minimum machine loads at the beginning
of the ith iteration. Let A(i) = Cpax (i) — Cmin (7). Since every iteration moves a job from a machine with
maximum load to a machine with minimum load, then Cp,x(i) is a monotone nonincreasing function
and Cpin (i) a monotone nondecreasing function. Therefore, A(7) is also monotone nonincreasing.
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We will bound the number of iterations by first bounding the maximum number of times that a job
can be moved to other machines. Consider a job j; that is moved to some machine My during the rth
iteration. This means that Cyjn(r) = £( M, 1), where £( My, 7) is the load of M at the beginning of the
rth iteration. Then, assume that j; is moved from My to some other machine at a later iteration g > r;
thus, Cmax(q) = £(Mg, q).

We need to consider two cases:

+ Assume that no job is moved to machine My between iterations r + 1 and q. Then,

Cimax(q) = €(Mk, q) < t(Mg, ) + pi = Cmin(r) + pi < Cmin(q) + pi
The last inequality follows since Cpin(7) is nondecreasing. Therefore,
Pi = Cmax(q) — Cmin(q) = A(g)
This implies that job j; cannot be moved during the gth iteration since by moving j; to a different
machine the value of the objective function ¢’ will not decrease.

+ Therefore, at least one job needs to be moved to My duringiterationsr +1, ..., q. Let jj be the last
one of these jobs, and let j, be moved to My during iteration u. Then, Cmin(#) = €( M, u) and

Cmax(ﬂ) = £( My, Q) < (Mg, u) + ph = Cnin (1) + Ph = Cmin(Q) + ph

Hence,

ph = Cmax(Q) - Cmin(Q) = A(Q)

This implies that job j; will not move during the following iterations.

From the above arguments, we conclude that a job j; can move more than once, only if between any
two consecutive moves at least one other job jj gets fixed on some machine from which it will not move
any further. Since at most n — 1 job movements can use jj, as the job that gets fixed, then the total number
of job movements (and, thus, the total number of iterations of the algorithm) is Oo(n?).

Theorem 18.1

The Iterativelmprovement algorithm with the jump neighborhood function and cost function ¢’ always finds
a schedule s with makespan at most 2 — % times the optimum one.

The proof of this theorem is essentially the same as Graham’s proof for the performance ratio of his
List scheduling algorithm [8]. Consider an instance (S, ¢) of the multiprocessor scheduling problem. The
feasible set S is formed by all possible ways of scheduling the jobs J on the machines M. Let s* be an
optimum solution for this instance and let s be the local optimum solution computed by Iterativelm-
provement with the jump neighborhood and objective function ¢’ (see Figure 18.5). Let M; be a machine
with maximum load ¢(s) and let j, be the last job processed by M;.

M,

|
M, !

]le J7

M ;

Time

FIGURE 18.5 Solution computed by Iterativelmprovement.
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Let j, start processing at time ¢, so ¢(s) = t + p,. Since s is a local optimum solution, then every
machine has load at least . To see this, observe that if some machine My has load smaller than ¢, then
moving j, to My would decrease the cost ¢’(s) of the solution. Since every machine’s load is at least ¢, then

1 1
r<— Z;pi—pr <5 ——pr
Ji€

as no schedule can process all jobs in ] in time smaller than % > jie Pi- Therefore,

o1
c(s)=t+pr <c(s )_;Pr‘i‘Pr

c(s*) + (1 - i) pr
m

c(s*) + <1 — l)c(s*) as pr < c(s")
m
c(s*) (2 — l)
m

18.3 Finding Spanning Trees with Many Leaves

IA

In this section we describe the local search algorithm of Lu and Ravi [9] for the maximum leaves spanning
tree problem: Given an undirected graph G = (V, E), find a spanning tree of G with maximum number
of leaves. This problem is known to be NP-hard and MAX SNP-complete [10]. The algorithm of Lu and
Ravi is simply the Iterativelmprovement algorithm with the exchange neighborhood function, described
below. The feasibility space S for this problem includes all spanning trees of the input graph G. For any
spanning tree s € S, the objective function ¢(s) gives the number of leaves in s.

Consider a spanning tree s. The exchange neighborhood of s is formed by all spanning trees that differ
from s in a single edge, i.e.,

N(s) ={s': s’ isaspanning tree of Gand |s Ns'| = n — 2}

where 7 is the number of vertices of G. Here we view a spanning tree s as a collection of edges. Let
(u, v) € E\s be an edge that does not belong to the spanning tree s. Let s, be the unique path in s
between vertices 1 and v. Note that if we add edge (u, v) to s we create a unique cycle, and by removing
from this cycle any edge in s,, we create a new spanning tree (see Figure 18.6). Since the path s, can
have at most n — 1 edges, then the neighborhood S(s) of s has size at most m(n — 1), where m is the
number of edges in the graph. As this neighborhood function has polynomial size, Step 3 of algorithm
Iterativelmprovement can be performed in O(mn) time.

Furthermore, each iteration of the algorithm increases the value of the solution s by at least 1. The initial
solution so must have at least 2 leaves, so c(sg) > 2. Each iteration increases the value of the solution, and

FIGURE 18.6 Neighborhood of spanning tree s. Edge (1, v) does not belong to s.
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c(s) cannot exceed n — 1. Therefore, the maximum number of iterations that the while loop can perform
is n — 3. The time complexity of algorithm Iterativelmprovement is, then, O(mn?). Now, let us compute
the locality gap of the algorithm.

Theorem 18.2
The IterativeImprovement algorithm with the exchange neighborhood function has a locality gap of 10.

To prove the theorem we need to recall some basic properties of spanning trees. Let T be a spanning
tree of a given graph G = (V, E). A path in T containing only nodes of degree 2 in T is called a 2-path.
For the rest of this section we use the convention that when referring to a tree T, the degree of a vertex u
is the degree of u in T (not the degree of u in the graph G). So, for example, if u is a leaf of T we will say
that the degree of u is 1.

Property 18.1
The number of nodes N3(T) of degree at least 3 in a spanning tree T of G is at most the number of leaves in
T minus 2, i.e.,

N;(T) < e(T) -2

Proof

A spanning tree has maximum number of vertices of degree at least 3 if it is a full binary tree. In a full
binary tree the number of leaves is one more than the number of internal nodes. Since in a full binary tree
all internal nodes, except the root, have degree 3, then c(T') = N3(T’) + 2 for any binary tree T’, and so

N;(T) = ¢(T) -2
for any spanning tree T of G. O

Property 18.2
The number P>(T) of 2-paths in any tree T is at most twice the number of leaves of T minus 3, i.e.,
Py(T) =2¢(T) -3

Proof
Let us choose a vertex of degree at least 3 as the root of T. Note that if the tree does not have any vertices
of degree larger than 2 then T is a path, so P»(T) = Ll and ¢(T) = 2.

A 2-path in T either connects a leaf or a vertex of degree at least 3 with its unique nearest ancestor of
degree at least 3. Thus, every leaf and every node of degree at least 3 (except the root) has associated a
unique 2-path, and so

Py(T) = e(T) 4+ N3(T) — 1 < 2¢(T) — 3 O

The last ingredient that we need to prove the theorem is the following lemma that relates the number
of leaves in any spanning tree with the number of 2-paths in the local optimum tree s selected by the
algorithm Iterativelmprovement.

Lemma 18.1

Let T be a spanning tree of a graph G = (V, E) and let s be the tree selected by Iterativelmprovement. Let p
be a2-path of s. At most 4 vertices in p can be leavesin T.

Proof

We prove the lemma by contradiction. Assume that there is a 2-path p in s such that at least five of its
vertices are leaves in T. Let wy, w2, w3, wy, and ws be five of the leaves of T that belong to p, as shown
in Figure 18.7. Note that if two vertices u;, u; of p are not adjacent in p, then there cannot be an edge
between them in G. This is because if such an edge exists, then adding (u;, ;) to s forms a unique cycle
(see Figure 18.8); removing any edge of this cycle, other than (u;, u ), would increase the number of leaves

© 2007 by Taylor & Francis Group, LLC



Local Search 18-9

p

FIGURE 18.7 2-Path p of s. Edge (1, v) does not belong to s.

@O~ OO0

P

OO &0

FIGURE 18.8 Cycle formed by the inclusion of edge (u;, u;) to p.

of s by 2, contradicting the assumption that s is a local optimum solution with respect to the exchange
neighborhood.

Let us pick any vertex r notin p as the root of T Let (u, v) be the first edge in the path from w3 to r that
does not belong to p (see Figure 18.7). Note that by the above argument, u and v cannot both belong to p.
Without loss of generality let v not belong to p. Assume that the path s, in s from v to w3 goes through
vertices w1 and w; (the other case, when such a path goes through w4 and ws is similar). Adding edge
(1, v) to s creates a unique cycle. Also, observe that u is an internal vertex in s, and thus, by adding (u, v)
to s we decrease the number of leaves of s by at most 1. If we now remove from p any edge (w, w’) in the
path from w) to w, we create a new spanning tree s’ in which w and w’ are leaves, and so c(s") > ¢(s) +1,
contradicting the assumption that s is a local optimum solution. O

Now, we are ready to prove the theorem and to show that the Iterativelmprovement algorithm with the
exchange neighborhood has approximation ratio at most 10. Let s* be a spanning tree of G with maximum
number of leaves. Every leaf of s* must be either

(a) aleaf of s; the total number of these leaves is at most c(s),

(b) avertex of degree at least 3 in s; there are at most N3(s) < c¢(s) — 2 of these leaves by Property 18.1,
or

(c) avertex in a 2-path of s; by Lemma 18.1 and Property 18.2, the number of these leaves is at most
4P)(s) < 8c(s) —12.

Combining (a)—(c), the number of leaves in s* is
c(s*) < c(s) + c(s) =24 8c(s) — 12 < 10¢(s)

Therefore,

%
c(s*) <10
c(s)

In Ref. [9] it is shown that by using more complex arguments, it can be proven that the locality gap of
the algorithm is at most 5. Furthermore, by using a neighborhood function that allows the simultaneous
exchange of two tree edges with two nontree edges, Lu and Ravi [9] show that the Iterativelmprovement
algorithm has locality gap 3.
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18.4 Clustering Problems

In a clustering problem we are given a weighted graph G = (V, E) and the goal is to partition the vertices
of G into groups or clusters so that a certain objective function is optimized. Two classical clustering
problems are the k-median problem and the facility location problem. In the k-median problem it is
desired to partition the set of vertices V into k clusters, each with a distinguished vertex called a center or
median, so that the sum of distances from the vertices to their clusters’ medians is minimized.

Consider, for example, the weighted graph in Figure 18.9. If k = 2, then the two medians in an optimum
solution are vertices 3 and 6. These two medians define a partition of the set of vertices, as each vertex must be
in the same cluster as its nearest median (ties are broken arbitrarily); thus, the clusters are {1, 2, 3, 4, 8} and
{5, 6, 7, 9}. The sum of distances from the vertices to their nearest mediansis 1 +1+2+34+1+4+2+43 = 13.
A related problem is the k-means [11] problem where the goal is to minimize the sum of squared distances
from the vertices to the medians.

In the facility location problem each vertex u of the graph has associated a cost f(u) and the goal is to
select a set F of vertices (and, thus, to partition G into |F| clusters) so that the total cost wer f(u) of
the vertices in F plus the sum of distances from the vertices in V\ F to F is minimized. Consider again
the same graph of Figure 18.9. If the cost f(u) of each vertex u is 3, then an optimum solution for the
corresponding facility location problem is F = {3, 6}, and the cost of this solution is 3 4+ 3 4+ 13 = 19.

Local search algorithms have been recently used to design good approximation algorithms for a variety
of clustering problems including the k-median, k-means, and facility location problems [11-14]. In the
next section we describe the algorithm of Arya et al. [15] for the metric version of the k-median problem.

18.4.1 Local Search Algorithm for the k-Median Problem

Consider a weighted graph G = (V, E) in which the edge weight function d: E — IR satisfies the triangle
inequality, i.e., for any three vertices u, v, w € V, d(u, v) + d(v, w) > d(u, w). The metric k-median
problem is the k-median problem restricted to weighted graphs with weight functions that satisfy the
triangle inequality.

Since a feasible solution for the k-median problemisaset s C V of k vertices, the feasible set S consists
of all subsets of k vertices. A natural way of defining the neighborhood of a solution s is through the use
of the swap operation. A swap operation replaces one vertex in s with a vertex in V\s, so N'(s) = {s" :
s" = (s\{u}) U {v} for every u € s, v € V\s}. For notational simplicity we denote the set (s\{u}) U {v} as
s — u+ v. The objective function ¢(s) = > uev A(u, s) gives the sum of distances from the vertices to the
medians in the solution s. The distance d(u, s) from a vertex u to the set s is defined as the distance from
u to its closest median in the set s.

FIGURE 18.9 Clustering the vertices around vertices 3 and 6.
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The size of the neighborhood A/ (s) of a solution s is k(1 — k). However, the number of iterations of the
algorithm might not be polynomial in the size of the input. We show in the next section how to overcome
this problem.

Theorem 18.3
The IterativeImprovement algorithm with the swap neighborhood has a locality gap of 5.

Let s = {s1, 52, ..., sk} be the solution computed by the algorithm. This set partitions the vertices V
into k clusters Vi, V4, ..., Vi, where all vertices in cluster V; are closer to s; than to any other median in s
(ties are broken arbitrarily). Let s* = {s{, s3, ..., s}} be an optimum solution, and let V{*, V", ..., V}
be the partition induced by s*. For any vertex u € V let V,(,) denote its cluster in s and let s, () be the
median in cluster V5 (,,). Then, the value ¢(s) of solution s is c(s) = Euev A(u, sg(u))-

Note that since s is a local optimum solution, then no swap operation can improve its value, i.e., for
any pair of vertices s; € s,v € V\s,

c(s —si+v)=>c(s) (18.3)
To prove Theorem 18.3, first we will pair each median s} € s* with some median p(s¥) € s in such a way

that no vertex in s is paired with more than two vertices of s*. The pairing relation p is specified below.
By inequality (18.3), for every vertex s} € s*,

c(s=p(sH+sH)—c(s)=0 (18.4)

and this inequality holds regardless of whether s} is in s or not.
Observe that ¢(s — p(s¥) + s7) and ¢(s) differ only by the contributions made by those vertices in
p(s})’s cluster and s’s cluster to the values of the two solutions, as shown in Figure 18.10. Therefore,

0<c(s—p(sf)+sf)—cls) < Z(d(u,S*)—d(u,S)H Z (d(v, s —p(s])+s7)—d(v, )

ueVv; Ve Vo (s \Vi'
(18.5)
Adding inequalities (18.5) over all medians s € s*, we get
0= Y (cls = p(s) +5F) = e(s))
sfes*
<D sy —dw )+ > Y (@dys—p(sH) +s7) —d(v,5))  (186)
sfes* ueVvr s7es* veV, i\ Vi

Vole(sy)

FIGURE 18.10 Solutions s and s — p(s}) + s¥.
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Let us look closely at the first term on the right-hand side of this last inequality. Since Uf»‘zl V=V,

then
Z Z (d(u, s*) — d(u, s)) = Z d(u, s*) — Z d(u, s) = c(s*) — c(s) (18.7)

s;es* ueVyr ueV ueV

The second term in the last inequality of (18.6) is more complicated, so we will spend most of the rest of
this section showing that

YooY s —psH4s)) = dv,s)) < de(s™) (18.8)
ST e VeV (o) \ V'
Combining Egs. (18.6)—(18.8) we get
0 < c(s*) — c(s) +4c(s™) = 5¢(s*) — c(s)
From which it follows that
c(s)
c(s*) —
as Theorem 18.3 claims. It just remains to prove inequality (18.8). The proof in Ref. [15] for the validity
of this inequality is an elegant argument that exploits the fact that the edge weights satisfy the triangle

inequality. First, let us define the relation p. We partition the set s of k medians into three groups, A;, Bs,
and C;, as follows:

1
A = {s; es:|V,-ﬂV;‘| < E|V]’»"| for all clusters Vj‘, 1<j<k}

1
B ={sies:|Vin V;‘| > E|V]’-"| for exactly one cluster V]*, 1<j<k}
Cs = s\(As U By)
Observe that set B; associates exactly one vertex s}* with each vertex s; € Bs. For each s; € Bs, we define
the relation p as follows:

1
p(s;f) =s;, where s}‘ is such that | V; N V;"| > E|V]*|

For the remaining |s| — | Bs| medians in s*, the relation p associates them to vertices in A;. Vertices
in C; are not mapped to any of the medians in the optimum solution. Note that for every vertex s; € Cj
there are at least two medians s}f, sZ‘ whose clusters share at least half of their vertices with s;’s cluster.
Therefore, |C;| < 1(|s| — | Bs|) and so | As| > (|s| — | B;]).

Let A; = {s0, 51, -..» 5|a,|—1} and let the, still, unmapped medians in s* be U* = {s, s/, ...,
SI*SI—IBS\—I}' Then, for all sj-‘ € U* we define

P(s7) = Sjmod|A|

Note that at most two medians of s* are mapped to the same vertex of s.

Consider a pair (p(s}), s}), and the swap operation that exchanges these two vertices transforming the
solution s into s — p(s¥) + s. As Figure 18.10 shows, this swap modifies some of the clusters by reassigning
some of the vertices in Vj p(s1) and V;*. The change in the cost of the solution (see inequality [18.5])
is

D dw s —duw s+ Y (s —p(s) +57) —d, )

ueVvy Ve Voo \ Vi

To find an upper bound for this value, we define a 1-1 and onto function 7 : V. — V that for every
median s} € s* maps vertices in its cluster V;* to V;*. The function is defined as follows. Fix a vertex
s; € s*. Sort the vertices in cluster V;* so that vertices in V;* N V; appear before vertices in V;* N V; for all
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Vo(p(s1))

FIGURE 18.11 Reassigning vertices from Voto(s2))-

1 < j < £ < k. Index the vertices in V;* in this order starting at 0. Let the vertices indexed in this manner
be v, vfi, ..., v;“(pfl), where p = | V;*|. Now, define
n(v;‘j) =v],, wherer = (i + LgD mod p, forall0<j<d-—1
Note that even when we do not know the optimum solution s*, we know that such solution exists
and, thus, this function also exists. Consider a vertex v € Vj(,(s#))\ V;* as depicted in Figure 18.11. Let
1

v belong to cluster V7 in the optimum solution. Since |V (5(s¥)) N V;‘I < %I V]f"l, then by the definition
of 7, we know that 7(v) & Vj(,(s*)) and, thus, in solution s this vertex 7z (v) belongs to some cluster
1

Ve # Vo(o(s7))-
Since the swap operation that exchanges p(s;) and s}, removes only one vertex, p(s}), from s, then
sg € s — p(sF) + s¥. Therefore,

d(v, s = p(si) +57) < d(v, s¢)
Then, by the triangle inequality (see Figure 18.11),

d(v, s — p(sH) +s7) < d(v, s¢)

< d(v,s7) +d(s}, m(v)) + d(7 (v), s¢)

= d(v,s™) + d((v), s¥) + d(r(v), 5)
Adding these inequalities for all vertices s} as required on the left-hand side of Eq. (18.8) yields

YooY s =G +sP) = d(v, 5)

ST €T VeV (s \ Vi

=D ) (@ s +dw), s

ST VeV (i \ Vi
+d(7(v), s) — d(v, 5))
Since Ugresx (Vi (p(s%)) \ Vi') S V and p associates at most two vertices from s* with any vertex in s, then
1 1

YooY @S +dE), s +drw), s) - d,5)

57 €57 VeV (s \ Vi

<2 (d(v, s +d(w(v), s)
veV
+d((v), s) — d(v, 5))
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Recall that the function 7 is 1-1 and onto, therefore,

Z d(v, s*) = Z d(w(v), s*) = c(s*) and

veV veV
D dr),s) =) d,s) = cls)
veV veV

Combining these inequalities yields

Yo D s —p(sH) +s]) = d(v, 5)) < 4e(sY)

$jEST VeV (p(ein\Vi

as required.

18.4.2 Approximate Local Optimum Solutions

Even when the locality gap of the above algorithm is at most 5, it is not an approximation algorithm,
as the number of iterations needed by Iterativelmprovement to find a local optimum solution might be
superpolynomial. This is because the algorithm might potentially select as intermediate solutions a large
fraction of all the subsets of k vertices in the input graph G.

To fix this problem we can change the stopping condition of the Iterativelmprovement algorithm so it
finishes as soon as it finds an approximate local optimum solution, i.e., when the solution s is such that
every neighboring solution s’ € N (s) has value

c(s) > (1 —g)c(s)

for some accuracy ¢ > 0. By changing in this manner the condition of the while loop in Step 2 of the
algorithm, we ensure that in each iteration the value of the solution decreases by at least a factor of 1 — ¢.
Therefore, the maximum number of iterations is log(c(sg)/c(s*))/ log( ﬁ ), which is polynomial in the
size of the input; s is the initial solution selected in Step 1.

If we change the algorithm as described above, the analysis needs to change also, since now condition
(18.4) does not hold, but the following one does:

(s —p(sf)+5s7) = (1 —e)c(s) forallsf e s*

Using this inequality in our analysis gives only a slight worsening in the locality gap (and, thus on the
approximation ratio) of the algorithm, as now

c(s) - 5
c(s*) 7 1—3¢
Arya et al. [15] show that by using the p-swap neighborhood which puts in the neighborhood A/ (s) of
a solution s any subset s’ of k vertices that differs from s in at most p vertices, the Iterativelmprovement
algorithms has locality gap (3 + 2/ p). To the date when this paper was written this was the best known
approximation algorithm for the metric k-median problem.
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19.1 Introduction

Stochastic local search (SLS) algorithms are among the most successful techniques for solving compu-
tationally hard problems from computing science, operations research and various application areas;
examples range from propositional satisfiability, routing and scheduling problems to genome sequence
assembly, protein structure prediction and winner determination in combinatorial auctions. Because of
their versatility and excellent performance in combination with the fact that efficient implementations can
often be achieved relatively easily, SLS methods enjoy an ever-increasing popularity among researchers
and practitioners.

Local search techniques have a long history; they range from simple constructive and iterative improve-
ment algorithms to rather complex methods that require significant fine-tuning, such as evolutionary
algorithms (EAs) or simulated annealing (SA). The key idea behind local search is to iteratively expand
or improve a current candidate solution by means of small modifications. Most local search algorithms
make use of randomised decisions, for example, in the context of generating initial solutions or when
determining search steps, and are therefore referred to as stochastic local search algorithms. (It may be
noted that formally, deterministic local search algorithms can be seen as special cases of SLS algorithms,
since deterministic decisions can be modelled using degenerate probability distributions.) To define an SLS
algorithm, the following components have to be specified. (A formal definition can be found in Chapter 1
of the book by Hoos and Stiitzle [1].)

Search space: the set of candidate solutions (or search positions) for the given problem instance; candidate
solutions typically consist of a number of discrete solution components.

Solution set: specifiesall search positions that are considered to be (feasible) solutions of the given problem
instance.

Neighbourhood relation: specifies the direct neighbours of each candidate solution s, i.e., the search
positions that can be reached from s in one search step.

Memory states: used to hold information about the search mechanism beyond the search position (e.g.,
tabu tenure of solution components in tabu search (TS), or temperature in SA); there may be only
a single, constant state in the case of algorithms that do not use memory, such as simple iterative
improvement.

Initialisation function: specifies search initialisation in the form of a probability distribution over
initial search positions and memory states.

19-1
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Stochastic Local Search:

determine initial search state
While termination criterion is not satisfied:
perform search step
if necessary, update incumbent solution
return incumbent solution or report failure

FIGURE 19.1 General outline of an SLS algorithm.

Step function: determines the computation of search steps by mapping each search position and memory
state to a probability distribution over its neighbouring search positions and memory states.
Termination predicate: used to decide search termination based on the current search position and

memory state.

Based on these components, SLS algorithms work as illustrated in Figure 19.1. When applied to optimi-
sation problems, whose definition comprises an objective function that specifies the quality of solutions,
SLS algorithms need to keep track of the best solution encountered during the search process, the so-called
incumbent solution. For decision problems, the search process is usually terminated as soon as a solution
for the given problem instance is found, and repeated updating of an