

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page i 9-10-2008 #1

Handbook
of
Algorithms
for
Physical
design
Automation

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page ii 9-10-2008 #2

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page iii 9-10-2008 #3

Handbook
of
Algorithms
for
Physical
design
Automation

Edited by

Charles J. alpert
Dinesh p. mehta
Sachin S. Sapatnekar

A N A U E R B A C H B O O K

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page iv 9-10-2008 #4

Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC, except for Chapter 19, © by Jason Cong and Joseph R. Shinnerl. Printed with
permission.
Auerbach is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-0-8493-7242-1 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Handbook of algorithms for physical design automation / edited by Charles J. Alpert, Dinesh P. Mehta,
Sachin S. Sapatnekar.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-8493-7242-1
ISBN-10: 0-8493-7242-9
1. Integrated circuit layout--Mathematics--Handbooks, manuals, etc. 2. Integrated circuit

layout--Data processing--Handbooks, manuals, etc. 3. Integrated circuits--Very large scale
integration--Design and construction--Data processing--Handbooks, manuals, etc. 4. Algorithms. I.
Alpert, Charles J. II. Mehta, Dinesh P. III. Sapatnekar, Sachin S., 1967- IV. Title.

TK7874.55.H36 2009
621.3815--dc22 2008014182

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Web site at
http://www.auerbach-publications.com

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page v 9-10-2008 #5

Dedications

To the wonderful girls in my life:

Cheryl, Candice, Ciara, and Charlie

Charles J. Alpert

To the memory of my grandparents:

Nalinee and Gajanan Kamat, Radha and Shreenath Mehta

Dinesh P. Mehta

To Ofelia and Arunito

Sachin S. Sapatnekar

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page vi 9-10-2008 #6

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page vii 9-10-2008 #7

Contents
Editors . xiii
Contributors.. xv

PART I Introduction

Chapter 1 Introduction to Physical Design . 3

Charles J. Alpert, Dinesh P. Mehta, and Sachin S. Sapatnekar

Chapter 2 Layout Synthesis: A Retrospective . 9

Ralph H.J.M. Otten

Chapter 3 Metrics Used in Physical Design. 29

Frank Liu and Sachin S. Sapatnekar

PART II Foundations

Chapter 4 Basic Data Structures . 55

Dinesh P. Mehta and Hai Zhou

Chapter 5 Basic Algorithmic Techniques . 73

Vishal Khandelwal and Ankur Srivastava

Chapter 6 Optimization Techniques for Circuit Design Applications . 89

Zhi-Quan Luo

Chapter 7 Partitioning and Clustering . 109

Dorothy Kucar

PART III Floorplanning

Chapter 8 Floorplanning: Early Research . 139

Susmita Sur-Kolay

vii

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page viii 9-10-2008 #8

viii Contents

Chapter 9 Slicing Floorplans . 161

Ting-Chi Wang and Martin D.F. Wong

Chapter 10 Floorplan Representations . 185

Evangeline F.Y. Young

Chapter 11 Packing Floorplan Representations .. 203

Tung-Chieh Chen and Yao-Wen Chang

Chapter 12 Recent Advances in Floorplanning .. 239

Dinesh P. Mehta and Yan Feng

Chapter 13 Industrial Floorplanning and Prototyping . 257

Louis K. Scheffer

PART IV Placement

Chapter 14 Placement: Introduction/Problem Formulation . 277

Gi-Joon Nam and Paul G. Villarrubia

Chapter 15 Partitioning-Based Methods . 289

Jarrod A. Roy and Igor L. Markov

Chapter 16 Placement Using Simulated Annealing . 311

William Swartz

Chapter 17 Analytical Methods in Placement . 327

Ulrich Brenner and Jens Vygen

Chapter 18 Force-Directed and Other Continuous Placement Methods . 347

Andrew Kennings and Kristofer Vorwerk

Chapter 19 Enhancing Placement with Multilevel Techniques . 377

Jason Cong and Joseph R. Shinnerl

Chapter 20 Legalization and Detailed Placement . 399

Ameya R. Agnihotri and Patrick H. Madden

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page ix 9-10-2008 #9

Contents ix

Chapter 21 Timing-Driven Placement . 423

David Z. Pan, Bill Halpin, and Haoxing Ren

Chapter 22 Congestion-Driven Physical Design . 447

Saurabh N. Adya and Xiaojian Yang

PART V Net Layout and Optimization

Chapter 23 Global Routing Formulation and Maze Routing .. 469

Muhammet Mustafa Ozdal and Martin D.F. Wong

Chapter 24 Minimum Steiner Tree Construction . 487

Gabriel Robins and Alexander Zelikovsky

Chapter 25 Timing-Driven Interconnect Synthesis . 509

Jiang Hu, Gabriel Robins, and Cliff C. N. Sze

Chapter 26 Buffer Insertion Basics . 535

Jiang Hu, Zhuo Li, and Shiyan Hu

Chapter 27 Generalized Buffer Insertion. 557

Miloš Hrkić and John Lillis

Chapter 28 Buffering in the Layout Environment . 569

Jiang Hu and Cliff C. N. Sze

Chapter 29 Wire Sizing . 585

Sanghamitra Roy and Charlie Chung-Ping Chen

PART VI Routing Multiple Signal Nets

Chapter 30 Estimation of Routing Congestion . 599

Rupesh S. Shelar and Prashant Saxena

Chapter 31 Rip-Up and Reroute . 615

Jeffrey S. Salowe

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page x 9-10-2008 #10

x Contents

Chapter 32 Optimization Techniques in Routing . 627

Christoph Albrecht

Chapter 33 Global Interconnect Planning . 645

Cheng-Kok Koh, Evangeline F.Y. Young, and Yao-Wen Chang

Chapter 34 Coupling Noise . 673

Rajendran Panda, Vladimir Zolotov, and Murat Becer

PART VII Manufacturability and Detailed Routing

Chapter 35 Modeling and Computational Lithography . 695

Franklin M. Schellenberg

Chapter 36 CMP Fill Synthesis: A Survey of Recent Studies. 737

Andrew B. Kahng and Kambiz Samadi

Chapter 37 Yield Analysis and Optimization . 771

Puneet Gupta and Evanthia Papadopoulou

Chapter 38 Manufacturability-Aware Routing .. 791

Minsik Cho, Joydeep Mitra, and David Z. Pan

PART VIII Physical Synthesis

Chapter 39 Placement-Driven Synthesis Design Closure Tool. 813

Charles J. Alpert, Nathaniel Hieter, Arjen Mets, Ruchir Puri, Lakshmi Reddy,
Haoxing Ren, and Louise Trevillyan

Chapter 40 X Architecture Place and Route: Physical Design for the X Interconnect
Architecture . 835

Steve Teig, Asmus Hetzel, Joseph Ganley, Jon Frankle, and Aki Fujimura

PART IX Designing Large Global Nets

Chapter 41 Inductance Effects in Global Nets . 865

Yehea I. Ismail

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page xi 9-10-2008 #11

Contents xi

Chapter 42 Clock Network Design: Basics . 881

Chris Chu and Min Pan

Chapter 43 Practical Issues in Clock Network Design . 897

Chris Chu and Min Pan

Chapter 44 Power Grid Design . 913

Haihua Su and Sani Nassif

PART X Physical Design for Specialized Technologies

Chapter 45 Field-Programmable Gate Array Architectures .. 941

Steven J.E. Wilton, Nathalie Chan King Choy, Scott Y.L. Chin,
and Kara K.W. Poon

Chapter 46 FPGA Technology Mapping, Placement, and Routing . 957

Kia Bazargan

Chapter 47 Physical Design for Three-Dimensional Circuits . 985

Kia Bazargan and Sachin S. Sapatnekar

Index .1003

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page xii 9-10-2008 #12

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page xiii 9-10-2008 #13

Editors
Charles J. Alpert (Chuck)was born in Bethesda,Maryland, in 1969.He received two undergraduate
degrees from Stanford University in 1991 and his doctorate from the University of California, Los
Angeles, California in 1996, in computer science. Upon graduation, Chuck joined IBM’s Austin
Research Laboratory where he currently manages the Design Productivity Group, whose mission is
to develop design automation tools and methodologies to improve designer productivity and reduce
design cost. Chuck has over 100 conference and journal publications and has thrice received the
best paper award from the ACM/IEEE Design Automation Conference. He has been active in the
academic community, serving as chair for the Tau Workshop on Timing Issues and the International
Symposium on Physical Design. He also serves as an associate editor of IEEE Transactions on
Computer-Aided Design. He received the Mahboob Khan Mentor Award in 2001 and 2007 for his
work in mentoring. He was also named the IEEE fellow in 2005.

Dinesh P.Mehta received his BTech in computer science and engineering from the Indian Institute of
Technology, Bombay, India, in 1987; his MS in computer science from the University of Minnesota,
Minneapolis, Minnesota, in 1990; and his PhD in computer science from the University of Florida,
Gainesville, Florida, in 1992. He was on the faculty at the University of Tennessee Space Institute,
Tullahoma, Tennessee from 1992 to 2000,where he received theVice President’s Award for Teaching
Excellence in 1997. He was a visiting professor at Intel’s Strategic CAD Labs in 1996 and 1997.
He has been on the faculty in the mathematical and computer science departments at the Colorado
School of Mines, Golden, Colorado since 2000, where he is a professor and currently also serves as
department head. He is a coauthor of Fundamentals of Data Structures in C++ and a coeditor of
Handbook of Data Structures and Applications. His publications and research interests are in VLSI
design automation, and applied algorithms and data structures. He is a former associate editor of the
IEEE Transactions on Circuits and Systems-I.

Sachin S. Sapatnekar received his BTech from the Indian Institute of Technology, Bombay, India
in 1987; his MS from Syracuse University, New York, in 1989; and his PhD from the University of
Illinois at Urbana–Champaign, Urbana, Illinois, in 1992. From 1992 to 1997, he was an assistant
professor in the Department of Electrical and Computer Engineering at Iowa State University, Ames,
Iowa. Since then, he has been on the faculty of the Department of Electrical and Computer Engi-
neering at the University of Minnesota, Minneapolis, Minnesota, where he is currently the Robert
and Marjorie Henle Professor. He has published widely in the area of computer-aided design of
VLSI circuits, particularly in the areas of timing, layout, and power. He has held positions on the
editorial board of the IEEE Transactions on CAD (he is currently the deputy editor-in-chief), the
IEEE Transactions on VLSI Systems, and the IEEE Transactions on Circuits and Systems II. He has
served on the technical program committee for various conferences, as a technical program co-chair
for Design Automation Conference (DAC), and as a technical program and general chair for both
the IEEE/ACM Tau Workshop and the ACM International Symposium on Physical Design. He is
a recipient of the NSF Career Award, three best paper awards at DAC, and one at International
Conference on Computer Design (ICCD), and the Semiconductor Research Corporation Technical
Excellence award. He is a fellow of the IEEE.

xiii

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page xiv 9-10-2008 #14

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page xv 9-10-2008 #15

Contributors
Saurabh N. Adya
Synopsys, Inc.
Sunnyvale, California

Ameya R. Agnihotri
Magma Design Automation
San Jose, California

Christoph Albrecht
Cadence Research Laboratories
Berkeley, California

Charles J. Alpert
IBM Corporation
Austin, Texas

Kia Bazargan
Department of Electrical and Computer
Engineering

University of Minnesota
Minneapolis, Minnesota

Murat Becer
CLK Design Automation
Littleton, Massachusetts

Ulrich Brenner
Research Institute for Discrete Mathematics
University of Bonn
Bonn, Germany

Yao-Wen Chang
Department of Electrical Engineering
and Graduate Institute of Electronics
Engineering

National Taiwan University
Taipei, Taiwan

Charlie Chung-Ping Chen
Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan

Tung-Chieh Chen
Graduate Institute of Electronics Engineering
National Taiwan University
Taipei, Taiwan

Scott Y.L. Chin
Electrical and Computer Engineering
University of British Columbia
Vancouver, British Columbia, Canada

Minsik Cho
Electrical and Computer Engineering
Department

University of Texas
Austin, Texas

Nathalie Chan King Choy
Electrical and Computer Engineering
University of British Columbia
Vancouver, British Columbia, Canada

Chris Chu
Department of Electrical and Computer
Engineering

Iowa State University
Ames, Iowa

Jason Cong
Computer Science Department
University of California
Los Angeles, California

Yan Feng
Cadence Design Systems
San Jose, California

Jon Frankle
Cadence Design Systems
San Jose, California

Aki Fujimura
Direct 2 Silicon
San Jose, California

Joseph Ganley
Synopsys, Inc.
Vienna, Virginia

Puneet Gupta
Department of Electrical Engineering
University of California
Los Angeles, California

Bill Halpin
Synopsys, Inc.
Sunnyvale, California

xv

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page xvi 9-10-2008 #16

xvi Contributors

Asmus Hetzel
Magma Design Automation, Inc.
San Jose, California

Nathaniel Hieter
IBM Corporation
East Fishkill, New York

Miloš Hrkić
Magma Design Automation
Austin, Texas

Jiang Hu
Department of Electrical and Computer
Engineering

Texas A & M University
College Station, Texas

Shiyan Hu
Department of Electrical and Computer
Engineering

Michigan Technology University
Houghton, Michigan

Yehea I. Ismail
Electrical Engineering and Computer Science
Department

Northwestern University
Evanston, Illinois

Andrew B. Kahng
Electrical and Computer Engineering and
Computer Science and Engineering

University of California
San Diego, California

Andrew Kennings
Department of Electrical and Computer
Engineering

University of Waterloo
Waterloo, Ontario, Canada

Vishal Khandelwal
Synopsys, Inc.
Hillsboro, Oregon

Cheng-Kok Koh
School of Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana

Dorothy Kucar
IBM Corporation
Yorktown Heights, New York

Zhuo Li
IBM Corporation
Austin, Texas

John Lillis
Department of Computer Science
University of Illinois
Chicago, Illinois

Frank Liu
IBM Corporation
Austin, Texas

Zhi-Quan Luo
Department of Electrical and Computer
Engineering

University of Minnesota
Minneapolis, Minnesota

Patrick H. Madden
Computer Science Department
Binghamton University
Binghamton, New York

Igor L. Markov
Department of Electrical Engineering
and Computer Science

University of Michigan
Ann Arbor, Michigan

Dinesh P. Mehta
Department of Mathematical and
Computer Sciences

Colorado School of Mines
Golden, Colorado

Arjen Mets
IBM Corporation
East Fishkill, New York

Joydeep Mitra
Electrical and Computer Engineering
Department

University of Texas
Austin, Texas

Gi-Joon Nam
IBM Corporation
Austin, Texas

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page xvii 9-10-2008 #17

Contributors xvii

Sani Nassif
IBM Corporation
Austin, Texas

Ralph H.J.M. Otten
Eindhoven University of Technology
Eindhoven, the Netherlands

Muhammet Mustafa Ozdal
Intel Corporation
Hillsboro, Oregon

David Z. Pan
Electrical and Computer Engineering
Department

University of Texas
Austin, Texas

Min Pan
Cadence Design Systems, Inc.
San Jose, California

Rajendran Panda
Freescale Semiconductor, Inc.
Austin, Texas

Evanthia Papadopoulou
IBM Corporation
Yorktown Heights, New York

Kara K.W. Poon
Electrical and Computer Engineering
University of British Columbia
Vancouver, British Columbia, Canada

Ruchir Puri
IBM Corporation
Yorktown Heights, New York

Lakshmi Reddy
IBM Corporation
East Fishkill, New York

Haoxing Ren
IBM Corporation
Austin, Texas

Gabriel Robins
Department of Computer Science
University of Virginia
Charlottesville, Virginia

Jarrod A. Roy
Department of Electrical Engineering
and Computer Science

University of Michigan
Ann Arbor, Michigan

Sanghamitra Roy
Department of Electrical and Computer
Engineering

University of Wisconsin–Madison
Madison, Wisconsin

Jeffrey S. Salowe
Cadence Design Systems
San Jose, California

Kambiz Samadi
Department of Electrical and Computer
Engineering

University of California
San Diego, California

Sachin S. Sapatnekar
Electrical and Computer Engineering
Department

University of Minnesota
Minneapolis, Minnesota

Prashant Saxena
Synopsys, Inc.
Hillsboro, Oregon

Louis K. Scheffer
Cadence Design Systems
San Jose, California

Franklin M. Schellenberg
Mentor Graphics Corporation
San Jose, California

Rupesh S. Shelar
Intel Corporation
Hillsboro, Oregon

Joseph R. Shinnerl
Tabula, Inc.
Santa Clara, California

Ankur Srivastava
Department of Electrical and
Computer Engineering

University of Maryland
College Park, Maryland

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C000 Finals Page xviii 9-10-2008 #18

xviii Contributors

Haihua Su
Magma Design Automation, Inc.
Austin, Texas

Susmita Sur-Kolay
Advanced Computing and Microelectronics
Unit

Indian Statistical Institute
Kolkata, India

William Swartz
InternetCAD.com
Dallas, Texas

Cliff C. N. Sze
IBM Corporation
Austin, Texas

Steve Teig
Tabula, Inc.
Santa Clara, California

Louise Trevillyan
IBM Corporation
Yorktown Heights, New York

Paul G. Villarrubia
IBM Corporation
Austin, Texas

Kristofer Vorwerk
Department of Electrical and
Computer Engineering

University of Waterloo
Waterloo, Ontario, Canada

Jens Vygen
Research Institute for Discrete Mathematics
University of Bonn
Bonn, Germany

Ting-Chi Wang
Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan

Steven J.E. Wilton
Electrical and Computer Engineering
University of British Columbia
Vancouver, British Columbia, Canada

Martin D.F. Wong
Department of Electrical and
Computer Engineering

University of Illinois at Urbana–Champaign
Urbana, Illinois

Xiaojian Yang
Synopsys, Inc.
Sunnyvale, California

Evangeline F.Y. Young
Department of Computer Science and
Engineering

Chinese University of Hong Kong Shatin
Hong Kong, China

Alexander Zelikovsky
Department of Computer Science
Georgia State University
Atlanta, Georgia

Hai Zhou
Department of Electrical Engineering
and Computer Science

Northwestern University
Evanston, Illinois

Vladimir Zolotov
IBM Corporation
Yorktown Heights, New York

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S001 Finals Page 1 24-9-2008 #2

Part I

Introduction

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S001 Finals Page 2 24-9-2008 #3

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C001 Finals Page 3 24-9-2008 #2

1 Introduction to Physical
Design

Charles J. Alpert, Dinesh P. Mehta,
and Sachin S. Sapatnekar

CONTENTS

1.1 Introduction.. 3
1.2 Overview of the Physical Design Process. 4
1.3 Overview of the Handbook . 5
1.4 Intended Audience . 7
Note about References . 7

1.1 INTRODUCTION

The purpose of VLSI physical design is to embed an abstract circuit description, such as a netlist, into
silicon, creating a detailed geometric layout on a die. In the early years of semiconductor technology,
the task of laying out gates and interconnect wires was carried out manually (i.e., by hand on graph
paper, or later through the use of layout editors). However, as semiconductor fabrication processes
improved, making it possible to incorporate large numbers of transistors onto a single chip (a trend
that is well captured by Moore’s law), it became imperative for the design community to turn to
the use of automation to address the resulting problem of scale. Automation was facilitated by the
improvement in the speed of computers that would be used to create the next generation of computer
chips resulting in their own replacement! The importanceof automationwas reflected in the scientific
community by the formation of theDesignAutomationConference in 1963 and both the International
Conference on Computer-Aided Design and the IEEE Transactions on Computer-Aided Design in
1983; today, there are several other conferences and journals on design automation.

While the problems of scale have been one motivator for automation, other factors have also
come into play. Most notably, improvements in technology have resulted in the invalidation of some
critical assumptionsmade during physical design: one of these is related to the relative delay between
gates and the interconnect wires used to connect gates to each other. Initially, gate delays dominated
interconnect delays to such an extent that interconnect delay could essentially be ignored when
computing the delay of a circuit. With technology scaling causing feature sizes to shrink by a factor
of 0.7 every 18 months or so, gates became faster from one generation to the next, while wires
became more resistive and slower. Early metrics that modeled interconnect delay as proportional
to the length of the wire first became invalid (as wire delays scale quadratically with their lengths)
and then valid again (as optimally buffered interconnects show such a trend). New signal integrity
effects began to manifest themselves as power grid noise or in the form of increased crosstalk as
wire cross-sections became “taller and thinner” from one technology generation to the next. Other
problems came into play: for instance, the number of buffers required on a chip began to show trends
that increased at alarming rates; the delays of long interconnects increased to the range of several
clock cycles; and new technologies emerged such as 3D stacked structures with multiple layers of

3

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C001 Finals Page 4 24-9-2008 #3

4 Handbook of Algorithms for Physical Design Automation

active devices, opening up, literally and figuratively, a new dimension in physical design. All of these
have changed, and are continuing to change, the fundamental nature of classical physical design.

A major consequence of interconnect dominance is that the role of physical design moved
upstream to other stages of the design cycle. Synthesis was among the first to feel the impact:
traditional 1980s-style logic synthesis (which lasted well into the 1990s) used simplified wire-load
models for each gate, but the corresponding synthesis decisions were later unable to meet timing
specifications, because they operated under gross and incorrect timing estimates. This realization led
to the advent of physical synthesis techniques, where synthesis and physical design work hand in
hand. More recently, multicyle interconnects have been seen to impact architectural decisions, and
there has been much research on physically driven microarchitectural design.

These are not the only issues facing the designer. In sub-90 nm technologies, manufacturability
issues have come to the forefront, andmany of them are seen to impact physical design. Traditionally,
design and manufacturing inhabited different worlds, with minimal handoffs between the two, but
in light of ∗ issues related to subwavelength lithography and planarization, a new area of physical
design has opened up, where manufacturability has entered the equation. The explosion in mask
costs associated with these issues has resulted in the emergence of special niches for field program-
mable gate arrays (FPGAs) for lower performance designs and for fast prototyping; physical design
problems for FPGAs have their own flavors and peculiarities.

Although therewere some early texts on physical design automation in the 1980s (such as the ones
by Preas/Lorenzetti and Lengauer), university-level courses in VLSI physical design did not become
commonplace until the 1990swhenmore recent texts became available.The field continues to change
rapidly with new problems coming up in successive technology generations. The developments in
this area have motivated the formation of the International Symposium on Physical Design (ISPD), a
conference that is devoted solely to the discipline ofVLSI physical design; this and other conferences
became the major forum for the learning and dissemination of new knowledge. However, existing
textbooks have failed to keep pace with these changes. One of the goals of this handbook is to
provide a detailed survey of the field of VLSI physical design automation with a particular emphasis
on state-of-the-art techniques, trends, and improvements that have emerged as a result of the dramatic
changes seen in the field in the last decade.

1.2 OVERVIEW OF THE PHYSICAL DESIGN PROCESS

Back when the world was young and life was simple, when Madonna and Springsteen ruled the
pop charts, interconnect delays were insignificant and physical design was a fairly simple process.
Starting with a synthesized netlist, the designer used floorplanning to figure out where big blocks
(such as arrays) were placed, and then placement handled the rest of the logic. If the design met
its timing constraints before placement, then it would typically meet its timing constraints after
placement as well. One could perform clock tree synthesis followed by routing and iterate over these
process in a local manner.

Of course, designs of today are much larger and more complex, which requires a more complex
physical design flow. Floorplanning is harder than ever, and despite all the algorithms and innovations
described here, it is still a very manual process. During floorplanning, the designers plan their I/Os
and global interconnect, and restrict the location of logic to certain areas, and of course, the blocks
(of which there are more than ever). They often must do this in the face of incomplete timing data.
Designers iterate on their floorplans by performing fast physical synthesis and routing congestion
estimation to identify key problem areas.

Once themain blocks are fixed in location and other logic is restricted, global placement is used to
place the rest of the cells, followed by detailed placement tomake local improvements.The placing of
cells introduces long wires that increase delays in unexpected places. These delays are then reduced

∗ Pun unintended.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C001 Finals Page 5 24-9-2008 #4

Introduction to Physical Design 5

by wire synthesis techniques of buffering and wire sizing. Iteration between incremental placement
and incremental synthesis to satisfy timing constraints today takes place in a single process called
physical synthesis. Physical synthesis embodies just about all traditional physical design processes:
floorplanning, placement, clock tree construction, and routing while sprinkling in the ability to
adapt to the timing of the design. Of course, with a poor floorplan, physical synthesis will fail,
so the designer must use this process to identify poor block and logic placement and plan global
interconnects in an iterative process.

The successful exit of physical synthesis still requires post-timing-closure fix-up to address
noise, variability, and manufacturability issues. Unfortunately, repairing these can sometimes force
the designer back to earlier stages in the flow.

Of course, this explanation is an oversimplification.The physical design flow dependson the size
of the design, the technology, the number of designers, the clock frequency, and the time to complete
the design. As technology advances and design styles change, physical design flows are constantly
reinvented as traditional phases are removed or combined by advances in algorithms (e.g., physical
synthesis) while new ones are added to accommodate changes in technology.

1.3 OVERVIEW OF THE HANDBOOK

This handbook consists of the following ten parts:

1. Introduction: In addition to this chapter, this part includes a personal perspective fromRalph
Otten, looking back on the major technical milestones in the history of physical design
automation. A discussion of physical design objective functions that drive the techniques
discussed in subsequent parts is also included in this part.

2. Foundations: This part includes reviews of the underlying data structures and basic algorith-
mic and optimization techniques that form the basis of the more sophisticated techniques
used in physical design automation. This part also includes a chapter on partitioning and
clustering. Many texts on physical design have traditionally included partitioning as an
integral step of physical design. Our view is that partitioning is an important step in sev-
eral stages of the design automation process, and not just in physical design; therefore, we
decided to include a chapter on it here rather than devote a full handbook part.

3. Floorplanning:This identifies relative locations for themajor components of a chip andmay
be used as early as the architecture stage. This part includes a chapter on early methods for
floorplanning that mostly viewed floorplanning as a two-step process (topology generation
and sizing) and reviews techniques such as rectangular dualization, analytic floorplanning,
and hierarchical floorplanning. The next chapter exclusively discusses the slicing floorplan
representation, which was first used in the early 1970s and is still used in a lot of the recent
literature. The succeeding two chapters describe floorplan representations that are more
general: an active area of research during the last decade. The first of these focuses on
mosaic floorplan representations (these consider the floorplan to be a dissection of the chip
rectangle into rooms that will be populated by modules, one to each room) and the second
on packing representations (these view the floorplan as directly consisting of modules that
need to be packed together). The penultimate chapter describes recent variations of the
floorplanning problem. It explores formulations that more accurately account for intercon-
nect and formulations for specialized architectures such as analog designs, FPGAs, and
three-dimensional ICs. The final chapter in this part describes the role of floorplanning and
prototyping in industrial design methodologies.

4. Placement: This is a classic physical design problem for which design automation solutions
date back to the 1970s. Placement has evolved from a purewirelength-driven formulation to
one that better understands the needs of design closure: routability, white space distribution,
big block placement, and timing. The first chapter in this part overviews how the placement

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C001 Finals Page 6 24-9-2008 #5

6 Handbook of Algorithms for Physical Design Automation

problem has changed with technology scaling and explains the new types of constraints and
objectives that this problem must now address.

There has been a renaissance in placement algorithms over the last few years, and
this can be gleaned from the chapters on cut-based, force-directed, multilevel, and analytic
methods. This part also explores specific aspects of placement in the context of design
closure: detailed placement, timing, congestion, noise, and power.

5. Net Layout and Optimization: During the design closure process, one needs to frequently
estimate the layout of a particular net to understand its expected capacitance and impact on
timing and routability. Traditionally, maze routing and Steiner tree algorithms have been
used for laying out a given net’s topology, and this is still the case today. The first two
chapters of this part overview these fundamental physical design techniques.

Technologyscaling for transistors has occurredmuch faster than forwires, whichmeans
that interconnect delays dominatemuchmore than for previous generations. The delays due
to interconnect are much more significant, thus more care needs to be taken when laying
out a net’s topology. The third chapter in this part overviews timing-driven interconnect
structures, and the next three chapters show how buffering interconnect has become an
absolutely essential step in timing closure. The buffers in effect create shorter wires, which
mitigate the effect of technology scaling. Buffering is not a simple problem, because one has
to not only create a solution for a given net but also needs to be cognizant of the routing and
placement resources available for the rest of the design. The final chapter explores another
dimension of reducing interconnect delay, wire sizing.

6. Routing Multiple Signal Nets: The previous part focused on optimization techniques for
a single net. These approaches need conflict resolution techniques when there are scarce
routing resources. The first chapter explores fast techniques for predicting routing conges-
tion so that other optimizations have a chance to mitigate routing congestionwithout having
to actually perform global routing. The next two chapters focus on techniques for global
routing: the former on the classic rip-up and reroute approach and the latter on alternative
techniques like network flows. The next chapter discusses planning of interconnect, espe-
cially in the context of global buffer insertion. The final chapter addresses a very important
effect from technology scaling: the impact of noise on coupled interconnect lines. Noise
issues must be modeled and mitigated earlier in the design closure flows, as they have
become so pervasive.

7. Manufacturability and Detailed Routing: The requirements imposed by manufacturabil-
ity and yield considerations place new requirements on the physical design process. This
part discusses various aspects of manufacturability, including the use of metal fills, and
resolution-enhancement techniques and subresolution assist features. These techniques have
had amajor impact on design rules, so that classical techniques for detailed routing cannot be
used directly, and we will proceed to discuss the impact of manufacturability considerations
on detailed routing.

8. Physical Synthesis: Owing to the effects that have become apparent in deep submicron
technologies, wires play an increasingly dominant role in determining the circuit perfor-
mance. Therefore, traditional approaches to synthesis that ignored physical design have
been supplanted by a new generation of physical synthesis methods that integrate logic
synthesis with physical design. This part overviews the most prominent approaches in this
domain.

9. Designing Large Global Nets: In addition to signal nets, global nets for supply and clock
signals consume a substantial fraction of on-chip routing resources, and play a vital role in
the functional correctness of the chip. This part presents an overview of design techniques
that are used to route and optimize these nets.

10. Physical Design for Specialized Technologies: Althoughmost of the book deals with main-
stream microprocessor or ASIC style designs, the ideas described in this book are largely

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C001 Finals Page 7 24-9-2008 #6

Introduction to Physical Design 7

applicable to other paradigms such as FPGAs and to emerging technologies such as 3D
integration. These problems requireunique solution techniques that can satisfy these require-
ments. The last part overviews constraints in these specialized domains, and the physical
design solutions that address the related problems.

1.4 INTENDED AUDIENCE

The material in this book is suitable for researchers and students in physical design automation and
for practitioners in industry who wish to be familiar with the latest developments. Most importantly,
it is a valuable complete reference for anyone in the field and potentially for designers who use
design automation software.

Although the book does lay the basic groundwork in Part I, this is intended to serve as a quick
review. It is assumed that the reader has some background in the algorithmic techniques used and in
physical design automation. We expect that the book could also serve as a text for a graduate-level
class on physical design automation.

NOTE ABOUT REFERENCES

The following abbreviations may have been used to refer to conferences and journals in which
physical design automation papers are published.

ASPDAC Asian South Pacific Design Automation Conference
DAC Design Automation Conference
EDAC European Design Automation Conference
GLSVLSI Great Lakes Symposium on VLSI
ICCAD International Conference on Computer-Aided Design
ICCD International Conference on Computer Design
ISCAS International Symposium on Circuits and Systems
ISPD International Symposium on Physical Design
IEEE TCAD IEEE Transactions on the Computer-Aided Design of Integrated Circuits
IEEE TCAS IEEE Transactions on Circuits and Systems
ACM TODAES ACM Transactions on the Design Automation of Electronic Systems
IEEE TVLSI IEEE Transactions on VLSI Systems

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C001 Finals Page 8 24-9-2008 #7

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 9 24-9-2008 #2

2 Layout Synthesis:
A Retrospective

Ralph H.J.M. Otten

CONTENTS

2.1 The First Algorithms (up to 1970) . 9
2.1.1 Lee’s Router .10
2.1.2 Assignment and Placement .12
2.1.3 Single-Layer Wiring .13

2.2 Emerging Hierarchies (1970–1980) .. .14
2.2.1 Decomposing the Routing Space .14
2.2.2 Netlist Partitioning .15
2.2.3 Mincut Placement .16
2.2.4 Chip Fabrication and Layout Styles .17

2.3 Iteration-Free Design .18
2.3.1 Floorplan Design .18
2.3.2 Cell Compilation .19
2.3.3 Layout Compaction .20
2.3.4 Floorplan Optimization .20
2.3.5 Beyond Layout Synthesis .21

2.4 Closure Problems .22
2.4.1 Wiring Closure .22
2.4.2 Timing Closure .23
2.4.3 Wire Planning .24

2.5 What Did We Learn? .25
References .25

2.1 THE FIRST ALGORITHMS (UP TO 1970)

Design automation has a history of over half a century if we look at its algorithms. The first algorithms
were not motivated by design of electronic circuits.Willard Van OrmanQuine’s work on simplifying
truth functions emanated from the philosopher’s research and teaching on mathematical logic. It
produced a procedure for simplifying two-level logic that remained at the core of logic synthesis
for decades (and still is in most of its textbooks). Closely involved in its development were the
first pioneers in layout synthesis: Sheldon B. Akers and Chester Y. Lee. Their work on switching
networks, both combinational and sequential, and their representation as binary decision programs
came from the same laboratory as the above simplification procedure, and preceded the landmark
1961 paper on routing.

9

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 10 24-9-2008 #3

10 Handbook of Algorithms for Physical Design Automation

2.1.1 LEE’S ROUTER

What Lee [1] described is now called a grid expansion algorithm or maze runner, to set it apart from
earlier independent research on the similar abstract problem: the early paper of Edsger W. Dijkstra
on shortest path and labyrinth problems [2] and Edward F. Moore’s paper on shortest paths through
a maze [3] were already written in 1959. But in Lee’s paper the problem of connecting two points
on a grid with its application to printed circuit boards was developed through a systematization of
the intuitive procedure: identify all grid cells that can be reached in an increasing number of steps
until the target is among them, or no unlabeled, nonblocked cells are left. In the latter case, no such
path exists. In the former case, retracing provides a shortest path between the source and the target
(Figure 2.1).

The input consists of a grid with blocked and nonblocked cells. The algorithm then goes through
three phases after the source and target have been chosen, and the source has been labeled with 0:

1. Wave propagation in which all unlabeled, nonblocked neighbors of labeled cells are labeled
one higher than in the preceding wave.

2. Retracing starts when the target has received a label and consists of repeatedly finding a
neighboring cell with a lower label, thus marking a shortest path between the source and
the target.

3. Label clearance prepares the grid for another search by adding the cells of the path just
found to the set of blocked cells and removing all labels.

The time needed to find a path is O(L2) if L is the length of the path. This makes it worst case
O(N2) on an N × N grid (and if each cell has to be part of the input, that is any cell can be initially
blocked, it is a linear-time algorithm). Its space complexity is also O(N2). These complexities were

13 13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

13

1313

13

13

13

13

13

13

13

13

13

13

13

13

13

13

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

1111

11

11

11

11

11

11

11

11

11

11

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10 10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

9

9

9

9

9

9

9

9

9

9

9

9

99

9

9

9

9

9

9

9

9

9

9

9

9

T

8

8

8

88

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

7

7

7

7

7

7

7

7

7 7

7

7

7

7

7

7

7

6

6

6

6

6

6

6

6

6

6

6

6

6

5

5

5

5

5

5

5

55

5

5

4

4

4

4

4

4

4 4

4

3

3

3

3

3

3

3

2

2

2

2

2

1

1

1

S

FIGURE 2.1 Wave propagation and retracing. Waves are sets of grid cells with the same label. The source
S gets label 0. The target T gets the length of the shortest path as a label (if any). Retracing is not unique in
general.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 11 24-9-2008 #4

Layout Synthesis: A Retrospective 11

soon seen as serious problems when applied to real-world cases. Some relief in memory use was
found in coding the labels: instead of labeling each explored cell with its distance to the source, it
suffices to record that number modulo 3, which works for any path search on an unweighted graph.
Here, however, the underlying structure is bipartite, and Akers [4] observed that wave fronts with a
label sequence in which a certain label bit is twice on and then twice off (i.e., 1, 1, 0, 0, 1, 1, 0, …)
suffice. Trivial speedup techniques were soon standard in maze running, mostly aimed at reducing
the wave size. Examples are designating the most off-center terminal as the source, starting waves
from both terminals, and limiting the search to a box slightly larger than the minimum containing
the terminals.

More significant techniques to reduce complexity were discovered in the second part of the
decade. There are two techniques that deserve a mention in retrospective. The first technique, line
probing, was discovered by David W. Hightower [5] and independently by Koichi Mikami and
Kinya Tabuchi [6]. It addressed both the memory and time aspects of the router’s complexity. The
idea is for each so-called base point to investigate the perpendicular line segments that contain
the base point and extend those segments to the first obstacles on their way. The first base points
are the terminals and their lines are called trial lines of level 0. Mikami and Tabuchi choose next as
base points all grid points on the lines thus generated. The trial lines of the next level are the line
segments perpendicular to the trial line containing their base point. The process is stopped when
lines originating from different terminals intersect. The algorithm guarantees a path if one exists
and it will have the lowest possible number of bends. This guarantee soon becomes very expensive,
because all possible trial lines of the deepest possible level have to be examined.Hightower therefore
traded it for more efficiency in the early stages by limiting the base points to the so-called escape
points, that is, only the closest grid point that allows extension beyond the obstacle that blocked the
trial line of the previous level. Line expansion, a combination of maze running and line probing,
came some ten years later [7], with the salient feature of producing a path whenever one existed,
though not necessarily with the minimum number of bends.

The essence of line probing is in working with line segments for representing the routing space
and paths. Intuitively, it saves memory and time, especially when the search space is not congested.
The complexity very much depends on the data structures maintained by the algorithm. The original
paperswere vague about this, and it was not until the 1980s that specialists in computational geometry
could come up with a rigorous analysis [8]. In practice, line probers were used for the first nets with
distant terminals. Once the routing space gets congested, more like a labyrinth where trial lines are
bound to be very short, a maze runner takes over.

The second techniqueworth mentioning is based on the observation that from a graph theoretical
point of view, Lee’s router is just a breadth-first search thatmay take advantage of special features like
regularity and bipartiteness. But significant speed advantage can be achieved by including a sense
of direction in the wave propagation phase, preferring cells closer to the target. Frank Rubin [9]
implements such an idea by sorting the cells in the wavefront with a key representing the grid
distance to the target. It shifts the character of the algorithm from breadth-first to depth-first search.

This came close to what was developed simultaneously, but in the field of artificial intelligence:
the A∗ algorithm [10]. Here the search is ordered by an optimistic estimate of the source–target
pathlength through the cell. The sum of the number of steps to reach that cell (exactly as in the
original paper of Lee) plus the grid distance to the target (as introduced by Rubin) is a satisfactory
estimate, because the result can never be more than that estimate. This means that it will find the
shortest route, while exploring the least number of grid cells. See Chapter 23 for a more detailed
description of maze routing.

Lee’s concept combined with A∗ is still the basis of modern industrial routers. But many more
issues than just the shortest two-pin net have to be considered. An extension to multiterminal nets is
easy (e.g., after connecting two pins, take the cells on that route as the initial wavefront and find the
shortest path to another terminal, etc.), but it will not in general produce the shortest connecting tree
(for this the Steiner problem on a grid has to be solved, a well-known NP-hard problem, which is

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 12 24-9-2008 #5

12 Handbook of Algorithms for Physical Design Automation

discussed in Chapter 24). Routing in many wiring layers can also straightforwardly be incorporated
by adopting a three-dimensional grid. Even bipartiteness is preserved, but looses its significance
because of preferences in layers and usually built-in resistance against creating vias. The latter and
some other desirable features can be taken care of by using other cost functions than just distance and
tuning these costs for satisfactory results. Also a net ordering strategy has to be determined, mostly
to achieve close to full wire list completion. And taking into account sufficient effects of modern
technology (e.g., cross talk, antenna phenomena, metal fill, lithography demands) makes router
design a formidable task, today even more than in the past. This will be the subject of Chapters 34
through 36 and 38.

2.1.2 ASSIGNMENT AND PLACEMENT

Placement is initially seen as an assignment problem where n modules have to be assigned to at
least n slots. The easiest formulation associated a cost with every module assignment to each slot,
independent of other assignments. The Hungarian method (also known as Munkres’ algorithm [11])
was already known and solved the problem in polynomial time. This was however an unsatisfactory
problem formulation, and the cost function was soon replaced by

∑
i

ai,p(i) +
∑
i,j

ci,jdp(i),p(j)

where
dp(i),p(j) is the distance between the slots assigned to modules i and j
ai,p(i) is a cost associated with assigning module i to slot p(i)
ci,j is a weight factor (e.g., the number of wires between module i and j) penalizing the distance
between the modules i and j

With all ci,j equal to zero, it reduces to the assignment problem above and with all a equal to
zero, it is called the quadratic assignment problem that is now known to be NP hard (the traveling
salesperson problem is but a special case).

Paul C. Gilmore [12] soon provided (in 1962) a branch-and-bound solution to the quadratic
assignment problem, even before that approach had got this name. In spite of its bounding tech-
niques, it was already impractical for some 15 modules, and was therefore unable to replace an
earlier heuristic of Leon Steinberg [13]. He used the fact that the problem can be easily solved when
all ci,j = 0, in an iterative technique to find an acceptable solution for the general problem. His algo-
rithm generated some independent sets (originally all maximal independent sets, but the algorithm
generated independent sets in increasing size and one can stop any time). For each such set, the
wiring cost for all its members for all positions occupied by that set (and the empty positions) was
calculated. These numbers are of course independent of the positions of the other members of that
set. By applying the Hungarian method, these modules were placed with minimum cost. Cycling
through these independent sets continues until no improvement is achieved during one complete
cycle. Steinberg’s method was repeatedly improved and generalized in 1960s.∗

Among the other iterative methods to improve such assignments proposed in these early years
were force-directed relaxation [14]and pairwise interchange [15]. In the formermethod, twomodules
in a placement are assumed to attract each other with a force proportional to their distance. The
proportionality constant is something like the weight factor ci,j above. As a result, a module is
subjected to a resultant force that is the vector sum of all attracting forces between pairs it is involved
in. If modules could move freely, they would move to the lowest energy state of the system. This

∗ Steinberg’s 34-module/36-slot example, the first benchmark in layout synthesis, is only recently optimally solved for
Euclidean norm, almost 40 years after its publication in 1961. The wirelength was 4119.74. The best result of the 1960s
was by Frederick S. Hiller (4475.28).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 13 24-9-2008 #6

Layout Synthesis: A Retrospective 13

is mostly not a desirable assignment because many modules may opt for the same slot. Algorithms
therefore are moved one module at a time to a position close to the zero-tension point

(∑
i cMixi∑
i cMi

,

∑
i cMiyi∑
i cMi

)

Of course, if there is a free slot there, it can be assigned to it. If not, the module occupying it can be
moved in the same way if it is not already at its zero-tension point. Numerous heuristics to start and
restart a sequence of such moves are imaginable, and kept the idea alive for the decennia to come,
only to mature around the year 2000 as can be seen in Chapter 18.

A simple method to avoid occupied slots is pairwise interchange. Two modules are selected
and if interchanging their slot positions improves the assignment, the interchange takes place. Of
course only the cost contribution of the signal nets involved has to be updated. However, the pair
selection is not obvious. Random selection is an option, ordering modules by connectedness was
already tried before 1960, and using the forces above in various ways quickly followed after the idea
got in publication. But a really satisfactory pair selection was not shown to exist.

The constructive methods in the remainder of that decade had the same problem. They were
ad-hoc heuristics based on a selection rule (the next module to be placed had to have the strongest
bond with the ones already placed) followed by a positioning rule (such as pair linking and cluster
development). They were used in industrial tools of 1970s, but were readily replaced by simulated
annealing when that became available. But one development was overlooked, probably because it
was published in a journal not at all read by the community involved in layout synthesis. It was the
first analytic placer [16], minimizing in one dimension

n∑
i,j=1

cij
[
p(i) − p(j)

]2

with the constraints pTp = 1 and
∑

i p(i) = 0, to avoid the trivial solution where all components
of p are the same. That is, an objective that is the weighted sum of all squared distances. Simply
rewriting that objective in matrix notation yields

2pTAp

where A = D − C,D being the diagonal matrix of row sums of C. All eigenvalues of such a
matrix are nonnegative. If the wiring structure is connected, there will be exactly one eigenvalue
of A equal to 0 (corresponding to that trivial solution), and the eigenvector associated with the
next smallest eigenvalue will minimize the objective under the given constraints. The minimization
problem is the same for the other dimension, but to avoid a solution where all modules would be
placed on one line we add the constraint that the two vectors must be orthogonal. The solution of the
two-dimensional problem is the one where the coordinates correspond with the components of the
eigenvectors associated with second and third smallest eigenvalues.

The placement method is called Hall placement to give credit to the inventor Kenneth M. Hall.
When applied to the placement of components on chip or board, it corresponds to the quadratic
placement problem. Whether this is the right way to formulate the wire-length objective will be
extensively discussed in Chapters 17 and 18, but it predates the first analytic placer in layout synthesis
by more than a decade!

2.1.3 SINGLE-LAYERWIRING

Most of the above industrial developmentswere meant for printed circuit boards (in which integrated
circuitswith atmost a few tens of transistors are interconnected in two ormore layers) and backplanes

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 14 24-9-2008 #7

14 Handbook of Algorithms for Physical Design Automation

(inwhich boards are combined and connected). Integrated circuits were not yet subject to automation.
Research, both in industry and academia, started to get interesting toward the end of the decade.With
only one metal layer available, the link with graph planarity was quickly discovered. Lots of effort
went into designing planarity tests, a problem soon to be solved with linear-time algorithms. What
was needed, of course, was planarization: using technological possibilities (sharing collector islands,
small diffusion resistors, multiple substrate contacts, etc.) to implement a circuit using a planarized
model. Embedding the planar result onto the plane while accounting for the formation of isolated
islands, and connecting the component pins were the remaining steps [17].

Today the constraints of those early chips are obsolete. Extensions are still of some validity
in analogue applications, but are swamped by a multitude of more severe demands. Planarization
resurfaced when rectangular duals got attention in floorplan design. Planar mapping as used in these
early design flows started a whole new area in graph theory, the so-called visibility graphs, but
without further applications in layout synthesis.∗

The geometry of the islands provided the first models for rectangular dissections and their
optimization, and for the compaction algorithms based on longest path search in constraint graphs.
These graphs, originally called polar graphs and illustrated in Figure 2.3, were borrowed† from early
works in combinatorics (how to dissect rectangles into squares?) [20]. They enabled systematic
generations of all dissection topologies, and for each such topology a set of linear equations as part
of the optimization tableau for obtaining the smallest rectangle under (often linearized) constraints.
The generation could not be done in polynomial time of course, but linear optimization was later
proven to be efficient.

A straightforward application of Lee’s router for single-layer wiring was not adequate, because
planarity had to be preserved. Its ideas howeverwere used in what was a first form of contour routing.
Contour routing turned out to be useful in the more practical channel routers of the 1980s.

2.2 EMERGING HIERARCHIES (1970–1980)

Ten years of design automation for layout synthesis produced a small research community with a
firm basis in graph theory and a growing awareness of computational complexity. Stephen Cook’s
famous theorem was not yet published and complexity issues were tackled by bounding techniques,
smart speedups, and of course heuristics. Ultimately, and in fact quite soon, they proved to be insuffi-
cient. Divide-and-conquer strategies were the obvious next approaches, leading to hierarchies, both
uniform requiring fewwell-defined subproblems and pluriform leavingmany questions unanswered.

2.2.1 DECOMPOSING THE ROUTING SPACE

A very effective and elegant way of decomposing a problem was achieved by dividing the routing
space into channels, and solving each channel by using a channel router. It found immediate appli-
cation in two design styles: standard cell or polycell where the channels were height adjustable and
channel routing tried to use as few tracks as possible (Figure 2.2 for terminology), and gate arrays
where the channels had a fixed height, which meant that channel router had to find a solution within
a given number of tracks. If efficient minimization were possible, the same algorithm would suffice,
of course. The decision problems, however, were shown to be NP complete.

The classical channel-routing problem allows two layers of wires: one containing the pins at grid
positions and all latitudinal parts (branches), exactly one per pin, and one containing all longitudinal
parts (trunks), exactly one for each net. This generates two kinds of constraints: nets with overlapping
intervals need different tracks (these are called horizontal constraints), and wires that have pins at the
same longitudinal height must change layer before they overlap (the so-called vertical constraints).

∗ In this context, they were called horvert representations [18].
† The introduction of polar graphs in layout synthesis [19] was one on the many contributions that Tatsuo Ohtsuki gave to
the community.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 15 24-9-2008 #8

Layout Synthesis: A Retrospective 15

Brancha bb

Via

Trunk

Tracks

Pins

Longitudinal direction

a b

Column

Net

a

FIGURE 2.2 Terminology in channel routing.

The problem does not always have a solution. If the vertical constraints form cycles, then the routing
cannot be completed in the classical model. Otherwise a routing does exist, but finding the minimum
number of tracks is NP hard [21].

In the absence of vertical constraints, the problem can be solved optimally in almost linear time
by a pretty simple algorithm [22], originally owing to Akihiro Hashimoto and James Stevens, that
is known as the left-edge algorithm.∗ Actually there are two simple greedy implementations both
delivering a solution with the minimum number of tracks. One is filling the tracks one by one from
left to right each time trying the unplaced intervals in sequence of their left edges. The other places
the intervals in that sequence in the first available track that can take it. In practice, the left-edge
algorithm gets quite far in routing channels, in spite of possible vertical constraints. Many heuristics
therefore started with left-edge solutions.

To obtain a properly wired channel in two layers, the requirements that latitudinal parts are one-
to-one with the pins and that each net can have only one longitudinal part are mostly dropped by
introducing doglegs.†Allowing doglegs enables in practice always a two-layer routingwith latitudinal
and longitudinal parts never in the same layer, although in theory problems exist that cannot be solved.
It has been shown that the presence of a single column without pins guarantees the existence of a
solution [23]. Finding the solution with the least number of tracks remains NP hard [24].

Numerous channel routers have been published, mainly because it was a problem that could be
easily isolated. The most effective implementation, without the more or less artificial constraints of
the classical problem and its derivations, is the contour router of Patrick R. Groeneveld [25]. It
solves all problems although in practice notmany really difficult channelswere encountered. Inmod-
ern technologies, with a number of layers approaching ten, channel routing has lost its significance.

2.2.2 NETLIST PARTITIONING

Layout synthesis starts with a netlist, that is, an incidence structure or hypergraph with modules as
nodes and nets as hyperedges. The incidences are the pins. These nets quickly became very large,

∗ It is often referred to as an algorithm for coloring an interval graph. This is not correct, because an interval representation is
assumed to be available. It is, however, possible to color an interval graph in polynomial time. One year after the publication
of the left-edge algorithm, Yanakakis Gavril gave such an algorithm for chordal graphs of which interval graphs are but a
special case.

† Originally, doglegs were only allowed at pin positions. The longitudinal parts might be broken up in several longitudinal
segments. The dogleg router of that paper was probably never implemented and the presented result was edited. The paper
became nevertheless the most referenced paper in the field because it presented the benchmark known as the Deutsch
difficult example. Every channel router in the next 20 years had to show its performance when solving that example.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 16 24-9-2008 #9

16 Handbook of Algorithms for Physical Design Automation

in essence following Moore’s law of exponential complexity growth. Partitioning was seen as the
way to manage complex design. Familiarity with partitioning was already present, because the first
pioneers were involved in or close to teams that had to make sure that subsystems of a logic design
could be built in cabinets of convenient size. These subsystems were divided over cards, and these
cards might contain replaceable standard units. One of these pioneers, Uno R. Kodres, who had
already provided in 1959 an algorithm for the geometrical positioning of circuit elements [26] in a
computer, possibly the first placement algorithm in the field, gave an excellent overview of these
early partitioners [27]. They started with one or more seed modules for each block in the partitioning.
Then, based once more on a selection rule, blocks are extended by assigning one module at a time to
one block. Many variations are possible and were tried, but all these early attempts were soon wiped
out by module migration methods, and first by the one of Brian W. Kernighan and Shen Lin [28].
They started from a balanced two-partition of the netlist, that is, division of all modules into two
nonoverlapping blocks of approximately equal size. The quality of that two-partition was measured
in the number of nets connecting modules in both blocks, the so-called cutsize. This number was
to be made as low as possible. This was tried in a number of iterations. For each iteration, the gain
of swapping two modules, one from each block, was calculated, that is, the reduction in cutsize as
a consequence of that swap. Gains can be positive, zero, or negative. The pairs are unlocked and
ordered from largest to smallest gain. In that order each unlocked pair is swapped, locked to prevent
it from moving back, and its consequence (new blocks and updated gains) is recorded. When all
modules (except possibly one) are locked the best cutsize encountered is accepted. A new iteration
can take place if there is a positive gain left.

Famous as it is, the Kernighan–Lin procedure left plenty of room for improvement. Halfway
in the decade, it was proven that the decision problem of graph partition was NP complete, so the
fact that it mostly only produced a local optimum was unavoidable, but the limitations to balanced
partitions and only two-pin nets had to be removed. Besides a time-complexity of O(n3) for an
n-module problem was soon unacceptable. The repair of these shortcomings appeared in a 1982
paper by Charles M. Fiduccia and Robert M. Mattheyses [29]. It handled hyperedges (and therefore
multipin nets), and instead of pair swapping it used module moves while keeping bounds on balance
deviations, possibly with weighted modules. More importantly, it introduced a bucket data structure
that enabled a linear-time updating scheme. Details can be found in Chapter 7.

At the same time, one was not unaware of the relation between partitioning and eigenvalues. This
relation, not unlike the theory behind Hall’s placement [16], was extensively researched by William
E. Donath and Alan J. Hoffman [30]. Apart from experiments with simulated annealing (not very
adequate for the partitioning problem in spite of the very early analogonwith spin glasses) and using
migrationmethods for multiway partitioning, it would be well into the 1990s before partitioningwas
carefully scrutinized again.

2.2.3 MINCUT PLACEMENT

Applying partitioning in a recursive fashion while at the same time slicing the rectangular silicon
estate in two subrectangles according to the area demand of each block is called mincut placement.
The process continues until blocks with known layouts or suitable for dedicated algorithms are
obtained. The slicing cuts can alternate between horizontal and vertical cuts, or have the direction
depend on the shape of the subrectangle or the area demand. Later, also procedures performing
four-way partition (quadrisection) along with dividing in four subrectangles were developed. A
strict alternation scheme is not necessary and many more sophisticated cut-line sequences have been
developed.MelvinA.Breuer’s paper [31]onmincut placement did not envision deep partitioning, but
large geometrically fixed blocks had to be arranged in a nonoverlappingconfiguration by positioning
and orienting. Ulrich Lauther [32]connected the processwith the polar graph illustrated in Figure2.3.
The mincut process by itself builds a series-parallel polar graph, but Lauther also defined three local
operations, towitmirroring, rotating, and squeezing, thatmore or less preserved the relative positions.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 17 24-9-2008 #10

Layout Synthesis: A Retrospective 17

FIGURE 2.3 Polar graph of a rectangle dissection.

The first two are pretty obvious and do not change the topology of the polar graph. The last one,
squeezing, does change the graph and might result in a polar graph that is not series parallel.

The intuition behind mincut placement is that if fewer wires cross the first cut lines, there will
be fewer long connections in the final layout. An important drawback of the early mincut placers,
however, is that they treat lower levels of partitioning independent from the blocks created earlier,
that is, without any awareness of the subrectangles to which connected modules were assigned.
Modules in those external blocks may be connected to modules in the block to be partitioned, and
be forced unnecessarily far from those modules. Al Dunlop and Kernighan [33] therefore tried to
capture such connectivities by propagating modules external to the block to be partitioned as fixed
terminals to the periphery of that block. This way their connections to the inner modules are taken
into account when calculating cutsizes. Of course, now the order in which blocks are treated has an
impact on the final result.

2.2.4 CHIP FABRICATION AND LAYOUT STYLES

Layout synthesis provides masks for chip fabrication, or more precisely, it provides data structures
from which masks are derived. Hundreds of masks may be needed in a modern process, and with
today’s feature sizes, optical correction is needed in addition to numerous constraints on the con-
figurations. Still, layout synthesis is only concerned with a few partitions of the Euclidean plane to
specify these masks.

When all masks are specific to producing a particular chip, we speak of full-custom design. It
is the most expensive setup and usually needs high volume to be cost effective. Generic memory
always was in that category, but certain application specific designs also qualified. Even in the early
1970s, the major computer seller of the day saw the advantage of sharing masks over as many as
possible different products. They called it the master image, but it became known ten years later
as the gate-array style in the literature. Customization in these styles was limited to the connection
layers, that is, the layers in which fixed rows of components were provided with their interconnect.
Because many masks were never changed in a generation of gate-array designs, these were known
as semi-custom designs. Wiring was kept in channels of fixed width in early gate arrays.

Another master-image style was developed in the 1990s that differed from gate arrays by not
leaving space for wires between the components. It was called sea-of-gates, because the unwired
chip was mostly nothing else than alternating rows of p-type and n-type metal oxide semiconductor
(MOS)-transistors. Contacts with the gates were made on either side of the row, although channel

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 18 24-9-2008 #11

18 Handbook of Algorithms for Physical Design Automation

contactsweremade between the gates. A combination of routerswas used to achieve this over-the-cell
routing. The routers were mostly based on channel routers developed for full-custom chips.

Early field programmable gate arrays predated (and survived) the sea-of-gates approach, which
never became more than niche in the cost-profit landscape of the chip market. It allows indi-
vidualization away from the chip production plant by establishing or removing small pieces of
interconnect.

Academia believed in full-custom, probably biased by its initial focus on chips for analogue
applications.Much of their early adventures in complete chip design for digital applications grew out
of the experience described in Section 2.1.3 and were encouraged by publications from researchers
in industry such as Satoshi Goto [34], and Bryan T. Preas and Charles W. Gwyn [35]. Rather than a
methodology, suggested by the award-winningpaper in 1978, it established a terminology.Macrocell
layout and general-cell assemblies in particular remained for several years names for styles without
much of a method behind it.

Standard-cell (or polycell) layout was a full-custom style that lent itself to automation. Cells
with uniform height and aligned supply and clock lines were called from a library to form rows
in accordance with a placement result. Channel routing was used to determine the geometry of the
wires in between the rows. The main difference with gate-array channels was that the width was to
be determined by the algorithm.Whereas in gate-array styles, the routers had to fit all interconnect in
channels of fixed width, the problem in standard-cell layouts was to minimize the number of tracks,
and whatever the result, reserve enough space on the chip to accommodate them.

2.3 ITERATION-FREE DESIGN

By 1980, industrial tools had developed in what was called spaghetti code, dependingon a few people
with inside knowledge of how it had developed from the initial straightforward idea sufficient for the
simple examples of the early 1970s, into a sequence of patches with multiple escapes from where it
could end up in almost any part of the code. In the meantime, academia were dreaming of compiling
chips. Carver A. Mead and Lynn (or Robert) Conway wrote the seminal textbook [36] on very large
scale integration between 1977 and 1979, and, although not spelled out, the idea of (automatically)
derivingmasks from a functional specification was born shortly after the publication in 1980. A year
later, David L. Johannsen defended his thesis on silicon compilation.

2.3.1 FLOORPLAN DESIGN

From thevarious independentalgorithms for special problemsgrew the layout synthesis as constrained
optimization: wirelength and area minimization under technology design rules. The target was
functionality with acceptable yield. Speed was not yet an issue. Optimum performancewas achieved
withmultichip designs, and it would take another ten years before single-chipmicroprocessorswould
come into their ball park.

The real challenge in those days was the phase problem between placement and routing.
Obviously, placement has a great impact on what is achievable with routing, and can even render
unroutable configurations. Yet, it was difficult to think about routing without coordinates, geomet-
rical positions of modules with pins to be connected. The dream of silicon compilation and designs
scalable over many generations of technologywas in 1980 not more than a firm belief in hierarchical
approacheswith little to go by apart from severe restrictions in routing architecture.∗ A breakthrough
came with the introduction of the concept of floorplans in the design trajectory of chips by Ralph
H.J.M. Otten [37]. A floorplan was a data structure capturing relative positions rather than fixed

∗ There was an exception: when in 1970 Akers teamed up with James M. Geyer and Donald L. Roberts [38] and tried grid
expansion to make designs routable. It consisted of finding cuts of horizontal and vertical segments of only conductor areas
in one direction and conductor free lines in the other. Furthermore, the cutting segment in the conductor area should be
perpendicular to all wires cut. The problems that it created were an early inspiration for slicing.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 19 24-9-2008 #12

Layout Synthesis: A Retrospective 19

coordinates. In a sense, floorplan design is a generalization of placement. Instead of manipulating
fixed geometrical objects in a nonoverlapping arrangement in the plane, floorplan design treats mod-
ules as objects with varying degrees of flexibility and tries to decide on their position relative to the
position of others.

In the original paper, the relative positionswere captured by a point configuration in the plane. By
a clever transformation of the netlist into the so-called dutch metric, an optimal embedding of these
points could be obtained. The points became the centers of rectangular modules with an appropriate
size that led to a set of overlapping rectangles when the point configuration was more or less fit
in the assessed chip footprint. The removal of overlap was done by formulating the problem as a
mathematical program.

Other data structures than Cartesian coordinates were proposed. A significant related data struc-
ture was the sequence pair of Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji
Kajitani in 1997 [39]. Before that, a number of graphs, including the good old-polar graphs from
combinatorial theory, were used and especially around the year 2000 many other proposals were
published. Chapters 9 through 11 will describe several floorplan data structures.

The term floorplan design came from house architecture. Already in 1960s, James Grason [40]
tried to convert preferred neighbor relationships into rectangles realizing these relations. The question
came down to whether a given graph of such relations had a rectangular dual. He characterized such
graphs in a forbidden-graph theorem. The algorithms he proposed were hopelessly complex, but
the ideas found new following in the mid-1980s. Soon simple, necessary, and sufficient conditions
were formulated, and JayaramBhasker and Sartaj Sahni produced in 1986 a linear-time algorithm for
testing the existence of a rectangular dual and, in case of the affirmative, constructing a corresponding
dissection [41].

The success of floorplanningwas partially due to giving answers that seemed to fit the questions
of the day like a glove: it lent itself naturally to hierarchical approaches∗ and enabled global wiring as
a preparation for detailed routing that took place after the geometrical optimization of the floorplan. It
was also helped by the fact that the original method could reconstruct good solutions from abstracted
data in extremely short computation times even for thousands of modules. The latter was also a
weakness because basically it was the projection of a multidimensional Euclidean space with the
exact Dutch distances onto the plane of its main axes. Significant distances perpendicular to that
plane were annihilated.

2.3.2 CELL COMPILATION

Hierarchical application of floorplanning ultimately leads to modules that are not further dissected.
They are to be filled with a library cell, or by a special algorithm determining the layout of that cell
depending on specification and assessed environment. The former has a shape constraint with fixed
dimensions (sometimes rotatable). The latter is often macrocells with a standard-cell layout style.
They lead to staircase functions as shape constraints where a step corresponds to a choice of the
number of rows.

In the years of research toward silicon compilers, circuit families tended to grow. The elementary
static complementary metal oxide semiconductor (CMOS)-gate has limitations, specifically in the
number of transistors in series. This limits the number of distinct gates severely. The new circuit
techniques allowed larger families. Domino logic, for example, having only a pull-down network
determining its function, allows much more variety. Single gates with up to 60 transistors have been
used in designs of the 1980s. This could only be supported if cells could be compiled from their
functional specification.

The core of the problem was finding a linear-transistor array, where only transistors sharing
contact areas could be neighbors. This implied that the charge or discharge network needed a topology
of an Euler graph. In static cmos, both networks had to beEulerian, preferablywith the same sequence

∗ Many even identified floorplanning with hierarchical layout design, clearly an undervaluation of the concept.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 20 24-9-2008 #13

20 Handbook of Algorithms for Physical Design Automation

of input signals controlling the gate. The problem even attracted a later fieldsmedallist in the person of
Curtis T.McMullen [42], but the final word came from the thesis of Robert L.Maziasz [43], a student
of John P. Hayes. Once the sequence was established, the left-edge algorithm could complete the
network, if the number of tracks would fit on the array, which was a mild constraint in practice; but
an interesting open question for research is to find an Euler path leading to a number of tracks under
a given maximum.

2.3.3 LAYOUT COMPACTION

Area minimization was considered to be the most important objective in layout synthesis before
1990. It was believed that other objectives such as minimum signal delay and yield would benefit
from it. A direct relation between yield and active area was not difficult to derive and with gate
delay dominating the overall speed performance, chips usually came out faster than expected. The
placement tools of the day had the reputation of using more chip area than needed, a belief that
was based mainly on the fact that manual design often outperformed automatic generation of cell
layouts. This was considered infeasible for emerging chip complexities, and it was felt that a final
compaction step could only improve the result. Systematic ways of taking a complete layout of a chip
and producing a smaller design-rule correct chip, while preserving the topology, therefore became
of much interest.

Compaction is difficult (one may see it as the translation of topologies in the graph domain to
mask geometries that have to satisfy the design rules of the target technology). Several conceptswere
proposed to provide a handle on the problem: symbolic layout systems, layout languages, virtual
grids, etc. At the bottom, there is the combinatorial problem of minimizing the size of a complicated
arrangement of many objects in several related and aligned planes. Even for simple abstractions
the two-dimensional problem is complex (most of them are NP hard). An acceptable solution was
often found in a sequence of one-dimensional compactions, combined with heuristics to handle the
interaction between the two dimensions (sometimes called 1 1

2
-compaction). Many one-dimensional

compaction routines are efficiently solvable, often in linear time. The basis is found in longest-path
problem, already popular in this context during 1970s. Compaction is discussed in several texts on
VLSI physical design such as those authored byMajid Sarrafzadehand Chak-KuenWong [44], Sadiq
M. Sait and Habib Youssef [45], and Naveed Sherwani [46], but above all in the book of Thomas
Lengauer [47].

2.3.4 FLOORPLAN OPTIMIZATION

Floorplan optimization is the derivation of a compatible (i.e., relative positions of the floorplan are
respected) rectangle dissection, optimal under a given contour score e.g., area and perimeter that
are possibly constrained, in which each undissected rectangle satisfies its shape constraint. A shape
constraint can be a size requirement with or without minima imposed on the lengths of its sides, but
in general any constraint where the length of one side is monotonically nonincreasing with respect
to the length of the other side.

The commonmethodwell into the 1980s was to capture the relative positions as Kirchhoff equa-
tions of the polar graph. This yields a set of linear equalities. For piecewise linear shape constraints
that are convex, a number of linear inequalities can be added. The perimeter can then be optimized
in polynomial time. For nonconvex shape constraints or nonlinear objectives, one had to resort to
branch-and-boundor cutting-planemethods: for general rectangle dissections with nonconvex shape
constraints the problem is NP hard. Larry Stockmeyer [48] proved that even a pseudo-polynomial
algorithm does not exist when P �= NP.

The initial success of floorplan design was, beside the facts mentioned in Section 2.3.1, also
due to a restraint that was introduced already in the original paper. It was called slicing because the
geometry of compatible rectangle dissection was recognizable by cutting lines recursively slicing
completely through the rectangle. That is rectangles resulting from slicing the parent rectangle could

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 21 24-9-2008 #14

Layout Synthesis: A Retrospective 21

either be sliced as well or were not further dissected. This induces a tree, the slicing tree, which in
an hierarchical approach that started with a functional hierarchy produced a refinement: functional
submodules remained descendants of their supermodule.

More importantly, many optimization problems were tractable for slicing structures, among
which was floorplan optimization. A rectangle dissection has the slicing property iff its polar graph
is series parallel. It is straightforward to derive the slicing tree from that graph.Dynamic programming
can then produce a compatible rectangle dissection, optimal under any quasi-concave contour score,
and satisfying all shape constraints [49]. Also labeling a partition tree with slicing directions can be
done optimally in polynomial time if the tree is more or less balanced and the shape constraints are
staircase functions as Lengauer [50] showed. Together with Lukas P.P.P. van Ginneken, Otten then
showed that floorplans given as point configurations could be converted to such optimal rectangle
dissections, compatible in the sense that slices in the same slice respect the relative point positions
[51]. The complexity of that optimization for N rectangles was however O(N6), unacceptable for
hundreds of modules. The procedure was therefore not used for more than 30 modules, and was
reduced toO(N3) by simple but reasonable tricks. Modules with more than 30 modules were treated
as flexible rectangles with limitations on their aspect ratio.

2.3.5 BEYOND LAYOUT SYNTHESIS

It cannot be denied that research in layout synthesis had an impact on optimization in other contexts
and optimization in general. The left-edge algorithmmay be rather simple and restricted (it needs an
interval representation), simulated annealing is of all approaches the most generic. A patent request
was submitted in 1981 by C. Daniel Gelatt and E. Scott Kirkpatrick, but by then its implementation
(MCPlace) was already compared (by havingDonaldW. Jepsen watching the process at a screen and
resetting temperature if it seemed stuck in local minimum) against IBM’s warhorse in placement
(APlace) and soon replaced it [52]. Independent research by Vladimir Cerny [53] was conducted
around the same time. Both used the metropolis loop from 1953 [54] that analyzed energy content of
a system of particles at a given temperature, and used an analogy frommetallurgywere large crystals
with few defects were obtained by annealing, that is, controlled slow cooling.

The invention was called simulated annealing but could not be called an optimization algorithm
because ofmany uncertainties about the schedule (begin temperature, decrements, stopping criterion,
loop length, etc.) and themanual intervention. The annealing algorithmwas therefore developed from
the idea to optimize the performance within a given amount of elapsed CPU time to be used [55].
Given this one parameter, the algorithm resolved the uncertainties by creating a Markov chain that
enhanced the probability of a low final score.

The generic nature of the method led to many applications. Further research, notably by Sara
A. Solla, Gregory B. Sorkin, and Steve R. White, showed that, in spite of some statements about
its asymptotic behavior, annealing was not the method of choice in many cases [56]. Even the
application described in the original paper of 1983, graph partitioning, did not allow the construction
of a state space suitable for efficient search in that way. It was also shown however that placement
with wirelengthminimization as objective lent itself quite well, in the sense that even simple pairwise
interchange produced a space with the properties shown to be desirable by the above researchers.
Carl Sechen exploited that fact and with coworkers he created a sequence of releases of the widely
used timberwolf program [57], a tool based on annealing for placement. It is described in detail in
Chapter 16.

It is not at all clear that simulated annealing performs well for floorplan design where sizes of
objects differ in orders of magnitude. Yet, almost invariably, it is the method of choice. There was
of course the success of Martin D.F. Wong and Chung Laung (Dave) Liu [58] who represented the
slicing tree in polish notation and defined a move set on it (that move set by the way is not unbiased,
violating a requirement underlying many statements about annealing). Since then the community
has been flooded with innovative representations of floorplans, slicing and nonslicing, each time

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 22 24-9-2008 #15

22 Handbook of Algorithms for Physical Design Automation

resorting to annealing as the underlying design engine, without attention for configuring the state
space. Nevertheless, it is the structure of the local minima,∗ determined by themove set that is crucial
for a reliable application of annealing.

2.4 CLOSURE PROBLEMS

The introduction of the fruits of design automation of the 1980s in industry generatedmostly distrust
and disbelief among designers. No longer was it simply computer-aided design limited to liberating
them from routine, but tedious tasks that were reliably performed for them with predictable results.
Modules were absorbed, duplicated, split, and spread, and signal nets had disappeared. The whole
structure of a design might have changed beyond recognition after a single run of retiming. In many
places, designers felt insecure and the introduction of new tools hampered production rather than
boosting it.

Layout synthesis got its share of this skepticism. One of its pioneers phrased it as layout is on its
way out. Yet, there was a solid background in algorithms and heuristics, and a better understanding
of the problem and its context. Many of the original approaches were revisited, improved and, above
all, compared with others on the basis of a commonmeaningful set of benchmarks. No longer was it
acceptable to publish yet another heuristic for a well-known subtask of the layout synthesis problem
with some self-selected examples to suggest effectiveness and efficiency. This book provides ample
evidence that tool making for layout synthesis matured after 1995. The perfection and adaptation of
these tools for the ongoing evolution of silicon technologies is the major achievement of the 1990s.

Beside reliable tools supported by rigorous proofs and unbiased comparison, additional shifts
were needed. The field developed over three decades from translating intuition into (interactive)
procedures, over formulation of well-defined optimization problems, toward integral trajectories
without global iteration. This was feasible as long as there was a dominant objective: get it on a
chip that is manufacturable. Wire-length minimization served as such an objective. There was some
intuition that short wires were good for area, speed, and power, but they were not a target. In the
pioneering stages, this was surprisingly successful: most designswere faster than expected and power
was not yet a problem.

By 1990, this was no longer enough. Certainly, speed became an important performance charac-
teristic, and it was forseeable that it would not stay the only additional one. It inspired formulations
where one characteristic was optimized under constraints for the other characteristics. They were
called closure problems: one aspect was to be guaranteed (closed), while others were handled as well
as possible.

2.4.1 WIRING CLOSURE

The research aiming at silicon compilation can therefore be viewed as wiring closure. The phase
problemof placement and routingwhere unroutable placementsmight occur, and, with the increased
chip complexity, not easily repaired, was solved by introducing restrained floorplans. Floorplans
only captured relative positions, but combinedwith efficient optimization, they could provide enough
information to perform global routing. The technology of that era, which allowed not more than two
wiring layers and therefore kept routing separate from the so-called active area, benefited from the
decomposition of the wiring space into channels. Global wiring was therefore in essence assigning
wires to channels.

When adopting slicing as a restraint, a number of conflicts can be avoided.An important property
of slicing structures is that detailed routing can be done with a single algorithm: channel routing.

∗ Sara A. Solla, Gregory B. Sorkin, and Steve R. White [56] proposed a measure for the ultrametricity of the space of local
minima and the barriers between them. A good state space should be close to ultrametric. The proposed measure was the
correlation between the heights of the higher two barriers in every triple of minima. Placement of equal-sized objects score
close to 1, although partitioning typically ends up with 0.6.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 23 24-9-2008 #16

Layout Synthesis: A Retrospective 23

Technology

Buffer insertion

Size
assignment Layout

synthesis

Data
preparation

Wire
planning

Footprint

Timing optimization

Logic
synthesis

Timing
analysis

Conceptual
design Behavioral

synthesis

Library

FIGURE 2.4 Modern flows in design automation.

That is, there is a sequence in which channels can be routed with fully specified longitudinal pin
positions. Switch boxes are not necessary. Moreover, channels are just rectangles between the slices,
with a shape constraint based on the information provided by the global router (almost all channels
can be routed close to density, and density can be estimated when there is a good idea of where the
pins of the nets are going to be).

Shapes only have to be assessed, and the assessment can be updated whenevermore information
comes available. Once the cell assemblers (among which channel routers) are called, the shapes
become final. Floorplan optimization can then be called to convert the floorplan into a placement
with exact coordinates. Slicing floorplans can be optimized quickly. Therefore, there is no harm in
calling it whenever convenient. Thus, iteration-free synthesis was enabled. Figure 2.4 shows in the
black boxes a generic iteration-free flow. The essence is that each block makes its decisions once
and the flow never goes back to it. In the reality of the 1980s, slicing guaranteed wiring when used
in a (possibly hierarchical) floorplanning context. With more wiring layers available, the premise of
this solution was no longer valid.

2.4.2 TIMING CLOSURE

The first reaction to demands concerning speed were to include timing analysis in the tool set. After
producing the geometry of the layout, the netlist got extended with parasitics and other network
elements to determine its performance. The dynamical tuning of net weights was never a good idea
because of convergence problems. Soon wire-load models were developed to obtain more precise
estimates and indicationswhere the critical paths were. Transistor sizing, buffer insertion, and fanout
tree construction could then improve timing without changing the logic. It did not take long before
logic resynthesis entered the scene, using these load models to make another netlist with hopefully
better timing properties. In Figure 2.4, this is indicated by the dashed boxes and arrows.

All these measures introduced iteration, the latter even global iteration over almost the complete
trajectory. And still it could only produce just another local optimum, not likely to be global. In other
words, if timing demandswere not met, one was never sure whether that was because the technology
of the day could not provide it or the tool set simply did not find it. With Moore’s law of unforgiving
push behind the chip market, this was not satisfactory.

A paradigm shift was needed and was found by adopting a delay model for gates that had roots
in a paper by Ivan E. Sutherland and Robert F. Sproull [59], and was justified in practice by Joel

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 24 24-9-2008 #17

24 Handbook of Algorithms for Physical Design Automation

Grodstein, Eric Lehman, Heather Harkness, William J. Grundmann, and Yoshinori Watanabe [60].
The key observation was that the size of a gate with constant delay varies linearly with the load.
Writing this down for a network (not necessarily acyclic) leads to solving a set of linear equations for
gate sizes (a so-called Leontieff system), which can be iteratively updated with the sizes to adjust the
capacitive loads, and will surely converge if there are no limitations on the gate sizes [61]. Timing
could be guaranteed (if feasible) for networks that could be modeled with lumped capacitances,
which was true for all networks within the scope of the logic synthesis tools in those days.

With timing no longer themore or less arbitraryoutcome of an optimizationwith area/wire length
as its objective, the uncertainty shifted to area. Buffer insertion kept a spot in the flow, but now no
longer for improving speed. Buffers can only slow down a path in a network sized by the Leontieff
method. Timing can only be kept within the specification when buffers are inserted in noncritical
paths with enough slack. That might be beneficial, because it may save area, but it would never make
the network faster. In addition, the flow became iteration free again as can be seen in Figure 2.4 with
only the black and grey boxes included.

2.4.3 WIRE PLANNING

The complexity of chips in themeantimehaddeveloped froma state inwhich delaywasmainly caused
by capacitive loads, predominantly gate capacitances, to a situation where most of the global delay
was in the wires. Whereas the Sutherland model maintains it salient property as long as resistance
between the gate and its load could be neglected, it was of little value when performance critically
depends on the distributed resistance and capacitance of wires on today’s chips. A delay model
published shortly after the Second World War [62], named Elmore delay after the author, was the
basis of much of the research on performance of designs in silicon in the second half of the decade
of the 1990s. It was pretty accurate for point-to-point connections when it predicted that the delay
of long wires depended quadratically on their lengths. It could also be used in combination with the
buffer models of Takayasu Sakurai [63] to show that when optimally segmented, the delay became
linear in its length (regardless of the size of these buffers). The length of these segments did depend
on the layer (or rather on the resistance and capacitance per unit length). An interesting observation
however is that the delay of a segment in an optimally segmented and buffered wire (of course also
an optimum size can be determined for the buffers) does not depend on the layer: it depends on the
properties of the transistors in the buffer. This implies that the delay is known as soon as the process
is chosen in which the buffers are going to be made [61].

These theoretical facts open new possibilities for design automation of the backend, and a wealth
of opportunities for research. A lot of assumptions are quite idealistic: there is not always place for a
buffer at its optimal position, derivations are usually for homogeneous wires, connections are trees
in general, etc. But the two observations of delay in length and segment delay independent of layer
enable a scenario for wire planning:

1. Assign global wires as connection between modules that synthesis can cope with and
therefore so small that buffering does not help in speedup.

2. For given chip performance do time budgeting with convex time-size trade-offs for the
modules.

3. Synthesize netlists for the modules with function and delay for all gates.
4. Size the gates for constant delay.

In Figure 2.4, the scenario is depicted (exclude the dashed boxes and arrows) and shows that
no global iterations are implied. An initial footprint has to be chosen though, and convex trade-offs
(enabling efficient area minimization under timing bounds) have to be available (or extracted). Only
after time budgeting is it clear whether the design will fit in the chosen floorplan. Timing closure for
large chips is not yet fully solved.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 25 24-9-2008 #18

Layout Synthesis: A Retrospective 25

2.5 WHAT DID WE LEARN?

The present goal of design automation has to be design closure, that is, how to specify a function to
be implemented on a chip, feed it to an electronic design automation (EDA) tool, and get, without
further interaction, a design that meets all requirements concerning functionality, speed, size, power,
yield, and other costs. It is the obvious quest of industry and the natural evolution from the sequence
of closure problems of the past decennium. Instead of focusing on trade-offs between two or three
performance characteristics whenever such a closure problem surfaces such as how to achieve wire-
ability in placement of components or modules on a chip, how to allocate resources to optimize
schedules, or how to ensure timing convergencewith minimal size, a more general approach should
be taken that in principle accounts for all combinations of performance characteristics [64].

No doubt the best algorithms developed in layout synthesis in the last 15 years will be key
ingredients and will get due attention in this book. Today’s practice of offering rigorous background
and thorough evaluation, preferably using well-established benchmarks, will be exemplified.

REFERENCES
1. C.Y. Lee, An algorithm for path connections and its applications, IRE Transactions on Electronic
Computers, EC-10(3): 346–365, September 1961.

2. E.W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, 1: 269–271,
1959.

3. E.F. Moore, Shortest path through a maze, Annals of the Computation Laboratory of Harvard University,
30: 285–292, 1959.

4. S.B. Akers, A modification of Lee’s path connection algorithm, IEEE Transactions on Electronic
Computers, EC-16(1): 97–98, February 1967.

5. D.W. Hightower, A solution to line-routing problems on the continuous plane, in Proceedings of the 6th
Design Automation Workshop, Las Vegas, NV, pp. 1–24, 1969.

6. K. Mikami and K. Kabuchi, A computer program for optimal routing of printed circuit connectors, IFIPS
Proceedings, H47: 1475–1478, 1968.

7. W. Heyns, W. Sansen, and H. Beke, A line-expansion algorithm for the general routing problem with
a guaranteed solution, in Proceedings of the 17th Design Automation Conference, Minneapolis, MN,
pp. 243–249, 1980.

8. T. Asano, M. Sato, and T. Ohtsuki, Computational geometry algorithms, Chapter 9, in Layout Design and
Verification, ed. T. Ohtsuki, North-Holland, Amsterdam, the Netherlands, pp. 295–347, 1986.

9. F. Rubin, The lee path connection algorithm, IEEE Transactions on Computers, C-23(9): 907–914,
September 1974.

10. P.E. Hart, N.J. Nilsson, and B. Raphael, A formal basis for the heuristic determination of minimum cost
paths, IEEE Transactions on Systems Science and Cybernetics, SSC4(2): 100–107, 1968.

11. J. Munkres, Algorithms for the assignment and transportation problems, Journal of the Society of Industrial
and Applied Mathematics, 5(1): 32–38, March 1957.

12. P.C. Gilmore, Optimal and suboptimal algorithms for the quadratic assignment problem, Journal of the
Society of Industrial and Applied Mathematics, 10(2): 305–313, June 1962.

13. L. Steinberg, The backboard wiring problem: A placement algorithm, Society of Industrial and Applied
Mathematics Reviews, 3(1): 37–50, January 1961.

14. C.J. Fisk, D.L. Caskey, and L.L. West, ACCEL: Automated circuit card etching layout, Proceedings of the
IEEE, 55(11): 1971–1982, November 1967.

15. M. Hanan and J.M. Kurtzberg, A review of the placement and quadratic assignment problems, Society of
Industrial and Applied Mathematics Reviews, 14(2): 324–342, April 1972.

16. K.M. Hall, An r-dimensional quadratic placement algorithm, Management Science, 17(3): 219–229,
November 1970.

17. M.C. van Lier and R.H.J.M. Otten, Automatic IC layout: The model and technology, IEEE Transactions
on Circuits and Systems, 22(11): 845–855, November 1975.

18. R.H.J.M. Otten and J.G. van Wijk, Graph representations in interactive layout design, in Proceedings IEEE
International Symposium Circuits and Systems, New York, NY, pp. 914–918, 1978.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 26 24-9-2008 #19

26 Handbook of Algorithms for Physical Design Automation

19. T. Ohtsuki, N. Sugiyama, and H. Kawanishi, An optimization technique for integrated circuit layout design,
in Proceedings of the ICCST-Kyoto, Kyoto, Japan, pp. 67–68, September 1970.

20. R.L. Brooks, C.A.B. Smith, A.H. Stone, and W.T. Tutte, The dissection of rectangles into squares, Duke
Mathematical Journal, 7: 312–340, 1940.

21. A.S. Lapaugh, Algorithms for integrated circuit layout, PhD thesis, MIT, Boston, MA, November 1980.
22. A. Hashimoto and J. Stevens, Wire routing by optimizing channel assignment within large apertures, in

Proceedings of the 8th Design Automation Workshop, Atlantic City, NJ, pp. 155–169, 1971.
23. P.R. Groeneveld, Necessary and sufficient conditions for the routability of classical channels, Integration,

the VLSI Journal, 16: 59–74, 1993.
24. T.G. Szymanski, Dogleg channel routing is NP-complete, IEEE Transactions on CAD of Integrated Circuits

and Systems, 4(1): 31–41, January 1985.
25. P.R. Groeneveld, H. Cai, and P. Dewilde, A contour-based variable-width gridless channel router, in

Proceedings of the International Conference on Computer-Aided Design, San José, CA, pp. 374–377,
1987.

26. U.R. Kodres, Geometrical positioning of circuit elements in a computer, in AIEE Fall General Meeting,
Chicago, ILL, No. 59-1172, October 1959.

27. U.R. Kodres, Partitioning and card selection, Chapter 4, in Design Automation of Digital Systems, Vol. 1,
ed. M.A. Breuer, Prentice Hall, Englewood Cliffs, NJ, pp. 173–212, 1972.

28. B.W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell System Technical
Journal, 49(2): 291–307, February 1970.

29. C.M. Fiduccia and R.M. Mattheyses, A linear time heuristic for improving network partitions, in
Proceedings of the 19th Design Automation Conference, Las Vegas, NV, pp. 175–181, 1982.

30. W.E. Donath and A.J. Hoffman, Algorithms for partitioning of graphs and computer logic based on
eigenvectors of connection matrices, IBM Technical Disclosure Bulletin, 15: 938–944, 1972.

31. M.A. Breuer, A class of min-cut placement algorithms, in Proceedings of the 14th Design Automation
Conference, New Orleans, LA, pp. 284–290, 1977.

32. U. Lauther, A min-cut placement algorithm for general cell assemblies based on a graph representation, in
Proceedings of the 16th Design Automation Conference, San Diego, CA, pp. 1–10, 1979.

33. A.E. Dunlop and B.W. Kernighan, A procedure for placement of standard-cell VLSI circuit, IEEE
Transactions on CAD of Integrated Circuits and Systems, CAD-4 (1): 92–98, January 1985.

34. S. Goto, An efficient algorithm for the two-dimensional placement problem in electrical circuit layout,
IEEE Transactions on Circuits and Systems, CAS-28 (1): 12–18, January 1981.

35. B.T. Preas and C.W. Gwyn, Methods for hierarchical automatic layout of custom LSI circuit masks, in
Proceedings of the 15th Design Automation Conference, pp. 206–212, 1978.

36. C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, MA, 1980.
37. R.H.J.M. Otten, Automatic floorplan design, in Proceedings of the 19th Design Automation Conference,

Las Vegas, NV, pp. 261–267, 1982.
38. S.B. Akers, J.M. Geyer, and D.L. Roberts, IC mask layout with a single conductor layer, in Proceedings of

the 7th Workshop on Design Automation, San Francisco, CA, pp. 7–16, 1970.
39. H. Murata, F. Fujiyoshi, S. Nakatake, and Y. Kajitani, VLSI module placement based on rectangle packing

by the sequence-pair, IEEE Transactions on Computer-Aided Design, 15: 1518–1524, December 1996.
(ICCAD 1995).

40. J. Grason, A dual linear graph representation for space-filling location problems of the floor plan type,
in Emerging Methods in Environmental Design and Planning, ed. G.T. Moore, Proceedings of the Design
Methods Group, 1st International Conference, Cambridge, MA, pp. 170–178, 1968.

41. J. Bhasker and S. Sahni, A linear algorithm to find a rectangular dual of a planar triangulated graph,
Algorithmica, 3: 247–278, 1988.

42. C.T.McMullen and R.H.J.M.Otten,Minimum length linear transistor arrays inMOS, in IEEE International
Symposium on Circuits and Systems, Kyoto, Japan, pp. 1783–1786, 1988.

43. R.L. Maziasz and J.P. Hayes, Layout Minimization of CMOS Cells, Kluwer Academic Publishers, Boston,
MA; Dordrecht, The Netherlands; London, U.K., 1992.

44. M. Sarrafzadeh and C.-K. Wong, An Introduction to VLSI Physical Design, McGraw-Hill Companies Inc.,
Hightstown, NJ, 1996.

45. S.M. Sait and H. Youssef, VLSI Physical Design Automation, McGraw-Hill Companies Inc./IEEE Press,
Hightstown, NJ, 1995.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 27 24-9-2008 #20

Layout Synthesis: A Retrospective 27

46. N. Sherwani,Algorithms for VLSI Physical Design Automation, Kluwer Academic Publishers, Boston,MA;
Dordrecht, The Netherlands; London, U.K., 1995.

47. T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley & Sons, New York;
Berlin, Germany, 1990.

48. L. Stockmeyer, Optimal orientations of cells in slicing floorplan designs, Information and Control, 57(2–3):
91–101, May/June 1983.

49. R.H.J.M. Otten, Efficient floor plan optimization, in Proceedings of International Conference on Computer
Design, Portchester, NY, pp. 499–503, October–November 1983.

50. T. Lengauer and R. Müller, The complexity of floorplanning based on binary circuit partitions, Techni-
cal Report 46, Department of Mathematics and Computer Science, University of Paderborn, Paderborn,
Germany, 1986.

51. L.P.P.P. van Ginneken and R.H.J.M. Otten, Optimal slicing of plane point placements, Proceedings of the
Conference on European Design Automation, Glascow, U.K., pp. 322–326, 1990.

52. S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Optimization by simulated annealing, Science, 220(4598):
671–680, 1983.

53. V. Cerny, A thermodynamical approach to the travelling salesman problem: An efficient simulation
algorithm, Journal of Optimization Theory and Applications, 45: 41–51, 1985.

54. N.Metropolis, A.W.Rosenbluth,M.N. Rosenbluth, A.H. Teller, andE. Teller, Equations of state calculations
by fast computing machines, Journal of Chemical Physics, 21(6): 1087–1092, 1953.

55. R.H.J.M.Otten and L.P.P.P.van Ginneken, The Annealing Algorithm, Kluwer Academic Publishers, Boston,
MA; Dordrecht, The Netherlands; London, U.K., 1989.

56. S.A. Solla, G.B. Sorkin, and S.R. White, Configuration space analysis for optimization problems, in Dis-
ordered Systems and Biological Organization, eds. E. Bienenstock et al., NATO ASI Series, F20, Springer
Verlag, Berlin, Germany, pp. 283–293, 1986.

57. C. Sechen and A.L. Sangiovanni-Vincentelli, The timberwolf placement and routing package, IEEE Journal
of Solid-State Circuits, 20: 510–522, 1985.

58. D.F. Wong and C.L. Liu, A new algorithm for floorplan design, in Proceedings of the 23rd Design
Automation Conference, Las Vegas, NV, pp. 101–107, 1986.

59. I.E. Sutherland and R.F. Sproull, Logical effort: Designing for speed on the back of an envelope, in Pro-
ceedings of the 1991 University of California Santa Cruz Conference on Advanced Research in VLSI,
ed. C. Sequin, MIT Press, Santa Cruz, CA, pp. 1–16, 1991.

60. J. Grodstein, E. Lehman, H. Harkness,W.J. Grundmann, and Y.Watanabe, A delaymodel for logic synthesis
of continuously-sized networks, inProceedings of the International Conference onComputer-AidedDesign,
San Francisco, CA, pp. 458–462, 1995.

61. R.H.J.M. Otten, A design flow for performance planning: New paradigms for iteration free synthesis,
in Architecture Design and Validation Methods, ed. E. Böerger, Springer, Berlin, Heidelberg, Germany;
New York, pp. 89–139, 2000.

62. W.C. Elmore, The transient analysis of damped linear networks with particular regard to wideband
amplifiers, Journal of Applied Physics, 19(1): 55–63, January 1948.

63. T. Sakurai, Approximation of wiring delay in MOSFET LSI, IEEE Journal of Solid-State Circuits, 18(4):
418–426, August 1983.

64. M.C.W. Geilen, T. Basten, B.D. Theelen, and R.H.J.M. Otten, An algebra of Pareto points, Fundamenta
Informaticae, 78(1): 35–74, 2007.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C002 Finals Page 28 24-9-2008 #21

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 29 29-9-2008 #2

3 Metrics Used in Physical
Design

Frank Liu and Sachin S. Sapatnekar

CONTENTS

3.1 Timing .29
3.1.1 Elmore Delay and Slew Metrics .30

3.1.1.1 Elmore Delay .30
3.1.1.2 Elmore Delay for RC Trees .32
3.1.1.3 Elmore Delay for Nontrees. .33
3.1.1.4 Elmore Slew .34
3.1.1.5 Limitations of Elmore Delay .35

3.1.2 Fast Timing Metrics .35
3.1.2.1 PRIMO and H-Gamma .. .35
3.1.2.2 Weibull-Based Delay .36
3.1.2.3 Lognormal Delay .38

3.1.3 Fundamentals of Static Timing Analysis. .39
3.2 Noise .42
3.3 Power .44

3.3.1 Dynamic Power. .44
3.3.2 Short-Circuit Power .46
3.3.3 Static Power .46

3.4 Temperature .48
Acknowledgment .. .50
References .50

Physical design consists of a number of steps that attempt to optimize one or more specified
design objectives, under one or more design constraints. This optimization is based on predictors
and metrics that measure the value of the circuit property. These metrics must be computationally
efficient, so that theymay be embedded in the inner loop of an optimizer andmay be called repeatedly
during optimization, and yet have sufficient accuracy that is commensurate with the needs of the
specific stage of physical design. In this chapter, we overview several metrics that may be used
in objective and constraint functions in physical design, used to measure circuit properties such as
timing, noise, power, and temperature. It should be noted that although area is also a metric used in
optimization, area metrics are generally quite simple, and are not covered in this chapter.

3.1 TIMING

For most of today’s VLSI designs, a dominant portion is synchronous in nature. In a synchronous
design, a main clock signal is required to coordinate the operation of various logic blocks across
the chip. A highly simplified view of a logic block is shown in Figure 3.1. The block consists of a
cluster of combinational circuits, surrounded by the input and output latch banks, which may, e.g., be

29

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 30 29-9-2008 #3

30 Handbook of Algorithms for Physical Design Automation

Latch bank A Latch bank B

Combinational
elements

Clock

FIGURE 3.1 An illustrative timing diagram of a sequential circuit.

level clocked or edge triggered. A clock signal synchronizes the operations of the latch banks. The
input latch bank provides primary inputs, which are computational results of the previous stage, to
the combinational cluster, and the results of the logic computation are stored (or latched) by the
output latch bank. Because the two latch banks open at a fixed interval, which is determined by the
frequency of the clock signal, the time the combinational cluster takes to complete logic computation
has to meet this constraint. In a modern VLSI design, the circumstance is much more complicated,
but the general principle still holds.

It is quite likely that the combinational cluster will be constructed by the instances of logic gates
from a predefined library. The timing performance of the combinational block is a strong function
of the physical design, such as the placement of the gates, the routing of signal wires, as well as the
sizing of the transistors. Therefore, any of these physical design optimizations must be guided by
fast timing evaluators.

In this chapter,webriefly introduce the timingmetrics commonly used in physical design.We first
review the classic Elmore delay and slew metric, followed by more advanced fast timing estimation
metrics. Finally, we review the fundamentals of static timing analysis of combinational circuits.

3.1.1 ELMORE DELAY AND SLEWMETRICS

The dynamic behavior of an interconnect structure can be described by a system of ordinary differ-
ential equations. From a physical design point of view, this behavior can be characterized by two
quantities: delay and slew (or rise/fall time), as depicted in Figure 3.2. This section outlines tech-
niques for calculating these two quantities efficiently, with the given parameters of the interconnect
structure.

3.1.1.1 Elmore Delay

The Elmore delay was first proposed byW. C. Elmore in 1948 [1], but did not receivemuch attention
for over three decades. It was not until the 1980s, when the wire delays on an integrated circuit
became nonnegligible, that it was rediscovered by Rubenstein et al. [2], and today, it is still the
most popular timing metric in physical optimization. The reason for its popularity can be attributed
not only to its simplicity but also to other important characteristics such as additivity, which we
discuss later.

We will proceed under the reasonable assumption that an interconnect structure can be modeled
as a set of lumped RLC segments, and we represent the impulse response of a specific node voltage
in the circuit by h(t). If we denote the Laplace transformation of h(t) as H(s), we can expand it into
a Taylor series at s = 0:

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 31 29-9-2008 #4

Metrics Used in Physical Design 31

Slew

Delay

t

V

FIGURE 3.2 Delay and slew of a wire segment.

H(s) =
∞�
0

h(t) e−stdt =
∞∑
k=0

(−1)k

k! sk
∞�
0

tkh(t)dt (3.1)

Therefore,

H(s) = m0 + m1s+ m2s
2 + m3s

3 + · · · (3.2)

where

mk = (−1)k

k!
∞�
0

tkh(t)dt for k = 0, 1, 2, . . . (3.3)

The coefficients of the Taylor expansion is commonly known as the (circuit) moments.
For anRCcircuitwithout resistive path toground, the impulse response h(t) satisfies the following

conditions:
⎧⎨
⎩

h(t) ≥ 0, ∀ t
∞�
0

h(t)dt = 1
(3.4)

In probability theory, any continuous real function that satisfies Equation 3.4 is a probability
density function (PDF). The integral of a PDF is defined as a cumulative density function:

S(t) =
t�
0

h(τ)dτ (3.5)

This corresponds to the step response in circuit analysis (Figure 3.3).
Several characteristics are commonly used to describe a statistical distribution. The first is the

mean, which is defined as

µ =
∞�
0

th(t)dt (3.6)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 32 29-9-2008 #5

32 Handbook of Algorithms for Physical Design Automation

Step response
interpreted as CDF

Impulse response
interpreted as PDF

Mean

t

t

Delay

Median

FIGURE 3.3 Elmore delay: approximating the median with the mean.

Another important characteristic is themedian,which is defined as the halfway point on a PDF curve:

M�
0

h(t)dt = 1

2
(3.7)

The similarity between the impulse response of an RC tree and a statistical PDF is quite clear.
Observe that the commonly used 50 percent delay point in circuit analysis actually corresponds to
the median of the underlying distribution. This is the keen observation of Elmore in 1948.Moreover,
he also made the proposal that as the median was difficult to calculate, one could use the mean,
which is much easier to calculate, as an approximation of median:

M ≈ µ = −m1 =
∞�
0

t h(t)dt (3.8)

3.1.1.2 Elmore Delay for RC Trees

For an RC tree (i.e., an RC network with no direct resistive path to ground), the calculation of
Elmore delay can be carried out quite efficiently. In such a case, the Elmore delay between any two
nodes can be expressed as

µ =
∑

Ri ·
∑

downstream

Cj (3.9)

where
Ri is the traversal of the resistors on the unique path between two nodes
Cj permutes all the capacitance seen from resistor Ri

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 33 29-9-2008 #6

Metrics Used in Physical Design 33

R1 R3 R4 R5

R6
C5C4C3

C6C2

C1

R2

A
Z1Y

E2

FIGURE 3.4 An example of RC tree to illustrate the process of calculating Elmore delay.

For the simple example shown in Figure 3.4, the Elmore delay from root node A and fan-out
node Z1 can be calculated by traversing the unique resistive path from Z1 to A:

EDA→Z1 = R5C5 + R4(C4 + C5) + R3(C3 + C4 + C5)

+ R2(C2 + C3 + C4 + C5 + C6)

+ R1(C1 + C2 + C3 + C4 + C5 + C6)

The Elmore delay has a nice property: it is additive. In other words, for two nodes A and C on a
branch, if node B lies between A and C, we can write:

EDA→C = EDA→B + EDB→C

For the example shown in Figure 3.4, we can easily verify that

EDA→Y = R3(C3 + C4 + C5) + R2(C2 + C3 + C4 + C5 + C6)

+ R1(C1 + C2 + C3 + C4 + C5 + C6)

EDY→Z1 = R5C5 + R4(C4 + C5)

Thus,

EDA→Z1 = EDA→Y + EDY→Z1

The Elmore delay of an RC tree has another important property: it can be proven to be the upper
bound of the true 50 percent circuit delay under any input excitation [3]. In other words, if a particular
RC net is optimized based on the Elmore delay, its real delay is guaranteed to be better. Empirically it
has been shown that although the Elmore delay is the upper bound, the error can be quite substantial
in some cases, especially for those nodes close to the driving point. The accuracy for far-end nodes
(those close to the sink pins) is much better. Note that this property only applies to RC trees, and it
does not hold for nontree circuits, e.g., meshes.

The Elmore delay can also be calculated for distributed circuits. For a uniformwire at the length
of L, with a unit resistance R, a unit capacitance C, and a loading capacitance CL, it can be shown
that the Elmore delay at the far-end of the wire is

ED = 1

2
RL(CL + CL)

3.1.1.3 Elmore Delay for Nontrees

For a nontree RC network, the calculation of Elmore delay is more involved. The simple traversal
algorithm for tree-like structures is no longer valid. Instead, we can formulate the circuit into the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 34 29-9-2008 #7

34 Handbook of Algorithms for Physical Design Automation

modified nodal analysis (MNA) formulation and solve for the moments. In this case, a linear circuit
can be formulated as

Gx(t) + C
d

dt
x(t) = Bu(t)

where
G is the conductance matrix
C is the capacitance matrix
matrix B specifies where the excitations are applied

The entries in unknown vector x(t) consists of node voltages, branch currents of voltage sources,
as well as branch currents of inductors. u(t) is the external time-varying excitation. The Laplace
transformation of the MNA formulation is

GX(s) + sCX(s) = BU(s)

The first circuit moment is

m1 = −G−1CG−1B

Therefore, the Elmore delay at a particular node can be calculated by selecting the corresponding
entry in the vector of the first moment:

EDi = eTi G
−1CG−1B

where vector ei is the selection vector with all entries zero except at the ith location.
Computationally, only one LU factorization of the conductancematrixG is required in the above

calculation, and the rest of calculation is merely forward–backward substitution of the prefactorized
matrix as well as matrix–vector multiplication, which can be carried out quite efficiently.

It is also worth pointing out that the above procedure is the general description of the Elmore
delay calculation for any linear circuit. Thus, it can be used to calculate the Elmore delay of an RC
tree as well. However, due to its special topology, the LU factorization of an RC tree can be carried
out without explicit formulation of the conductance and capacitance matrices, and a closed-form
formula, described earlier, for the Elmore delay can be obtained. More details on how to construct
the MNAmatrices and the calculation of Elmore delay for a general circuit can be found in Ref. [4].

3.1.1.4 Elmore Slew

In his original paper, Elmore refereed to slew as the gyration. If we follow the probability interpre-
tation of signal transition, it can be shown that just as the delay corresponds to the median of the
PDF function, the slew corresponds to the variance of the PDF function. A first-order estimate of
variance is the second central moment, which is defined as

σ 2 = m2
1 − 2m2

In practice, because quite often slew is defined as the difference of delay between 10 percent and
90 percent delay points, the above metric needs to be scaled accordingly.

Slew = 8

10

√
m2

1 − 2m2

Note that we need the second circuit moment to calculate the slew. In general, it can be shown that
the second circuit moment can be calculated in MNA formulation as

m2 = G−1CG−1CG−1B

In practice, the factorized matrix G during m1 calculation can be reused to calculate m2.
Therefore, the added computational complexity is only a few matrix–vector multiplications and

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 35 29-9-2008 #8

Metrics Used in Physical Design 35

backward/forward substitutions, which are usually much cheaper than matrix factorization itself. For
RC trees, the matrix does not need to be explicitly formulated and factorized at all. The path-tracing
algorithm used in m1 calculation can be applied as well. More details can be found in Ref. [4].

3.1.1.5 Limitations of Elmore Delay

As we have discussed earlier, the Elmore delay has a few very nice properties when applied on RC
trees. They are

• Easy to calculate
• Proven to be the upper bound for any node under any input excitation
• Additive along the signal path

During physical design, most on-chip signal wires can bemodeled as trees, therefore, the Elmore
delay has been quite popular and has been implemented in many physical design algorithms.

However, the Elmore metric also has some limitations, especially in terms of accuracy. Empiri-
cally it has been shown that even for RC trees, the accuracy of Elmore delay can be over ten times
off at certain nodes, especially for the nodes close to the driving point. The reason for this inaccuracy
can be explained as follows: the essence of Elmore delay is to use mean to approximate median for
a particular PDF. Such an approximation is only accurate when the PDF is unimodal and has zero
skew, e.g., the PDF is symmetric. For an RC tree, this is only true for far-end nodes. For the near-end
nodes (the ones which are close to the driving point), the skewness of the impulse response (which
we interpreted as a PDF) is quite large. As a consequence, the approximation used in Elmore delay
becomes inaccurate.

3.1.2 FAST TIMINGMETRICS

The essence of Elmore delay is the probability interpretation of the impulse response of a linear
circuit. This allows the signal response to be approximated by using a structured continuous function
as the template, thus making it possible to quickly extract delay and slewmetrics. In the derivation of
Elmore delay, it is assumed that the underlyingPDF function is symmetric. A natural extension of the
idea is to remove this assumption: we can use an asymmetric PDF and hopefully the accuracy can be
improved. In the first proposedmethod [5], the gamma distribution functionwas used as the template
function. Later on, other distribution functions are proposed to be the template function, including
theWeibull [6] and lognormal [7] functions. Another benefit of these extended approaches is that we
are no longer limited to the 50 percent delay point. Once the parameters of the function template are
known,we can calculate any percentile delay point. The price we have to pay to get better accuracy is
thatmoremoments are needed. Besides, all of these fast delaymetrics cannot be proved to be the upper
bound of the true delay, although empirically it has been shown that overall they are more accurate.

3.1.2.1 PRIMO and H-Gamma

The idea of PRIMO [5] was to approximate the circuit impulse response as the PDF function of a
gamma distribution. Because only two parameters are needed to determine a gamma distribution,
these two parameters can be easily determined by applying the moment-matching principle. Once
the coefficients of the gamma distribution are known, we do not need to approximate the median
with the mean. Instead, we can directly calculate the median, which corresponds to the 50 percent
delay. Later, an improved version of gamma fitting was introduced in H-gamma [8]. Here, we only
describe H-gamma.

The gamma statistical distribution is defined on support x > 0, with the PDF defined as

f (x; k, θ) = θ kxk−1 e−θx

�(k)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 36 29-9-2008 #9

36 Handbook of Algorithms for Physical Design Automation

where �(k) is the gamma function:

�(k) =
∞�
0

xk−1 e−x dx

Each gamma distribution is uniquely determined by two parameters, k and θ , and both of them have
to be positive. The mean and the variance of a gamma distribution are

mean = k

θ

variance = k

θ 2

To derive H-gamma, we can rewrite the impulse response of a circuit node as

Y(s) = m0 + m1s+ m2s
2 + m3s

3 + · · ·
= m0 + m1s

(
1 + m2

m1

s + m3

m1

s2 + · · ·
)

The series in parenthesis is referred as the normalized homogeneous function. In H-gamma, the
normalized homogeneous function is fit into the PDF of a gamma distribution by matching the first
two moments. The results are

k

θ
= −m2

m1

k

θ 2
= 2

(
m3

m1

)
−
(
m2

m1

)2

Once two parameters k and θ are calculated, we can approximate the step response as

y(t) ≈ 1 + m1

θ ktk−1 e−θ t

�(k)

The delay at any percentile point φ can be calculate by setting the left-hand-side of the above
equation to φ and solve for t. Unfortunately, this process requires a nonlinear iteration method such
as Newton–Raphson because this equation cannot be explicitly solved.

To address this issue, the nonlinear iteration process can be simplified to a table look-up procedure
by scaling time t with θ , and k with −m1. The scaled response approximation can be shown to be

yλ,k(x) = 1 − λxk−1 e−x

�(k)

For any percentileφ, a two-dimensional table needs to be preconstructedwith λ and k as the input and
x as the output. The final delay is then calculated by scaling x with θ : t = x/θ . Empirically it has been
shown that H-gamma metric has good accuracy for both near and far-end nodes. One reason for its
accuracy is particularly due to the fact that threemoments are used to calculate the delay at each node.

3.1.2.2 Weibull-Based Delay

Another proposed delay metric uses Weibull distribution as the underlying function template. The
advantage of using the Weibull distribution is that the percentile points are very easy to calculate.
A Weibull distribution is defined on the support of t > 0 and is determined by two parameters:

f (x : α, β) = αβ−αxα−1 e−(x/β)α

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 37 29-9-2008 #10

Metrics Used in Physical Design 37

Both parameters, α and β, must be positive. The mean and variance of a Weibull distribution is

Mean = β�(1 + θ)

Variance = β2[�(1 + 2θ) − �2(1 + θ)]

Unlike the gammadistribution, in which the distribution parameters can be easily calculated from
moments, the Weibull distribution requires iterative evaluation of gamma functions. To simplify the
process, it is proposed that a look-up table be precharacterized. The look-up table requires the first
two circuit moments as inputs and it returns the parameter θ :

r Log10(r) θ

0.63096 −0.2 0.48837
0.79433 −0.1 0.76029
1.00000 +0.0 1.00000
1.25892 +0.1 1.22371
1.58489 +0.2 1.43757
1.99526 +0.3 1.64467
2.51189 +0.4 1.84678
3.16228 +0.5 2.04507
3.98107 +0.6 2.24031
5.01187 +0.7 2.43305
6.30957 +0.8 2.62371
7.94328 +0.9 2.81262

10.00000 +1.0 3.00000
12.58925 +1.1 3.18607
15.84893 +1.2 3.37098

where r = m2/m2
1. Note that it is recommended to use log10(r) value in the interpolation. Once θ is

known, the other parameter, β, is calculated by using the following equation:

β = −m1

�(1 + θ)

Although an evaluation of the gamma function is again needed, the following table can be used to
avoid the evaluation:

x Gamma(x)

1.0 1.00000
1.1 0.95135
1.2 0.91817
1.3 0.89747
1.4 0.88726
1.5 0.88623
1.6 0.89352
1.7 0.90864
1.8 0.93138
1.9 0.96176
2.0 1.00000

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 38 29-9-2008 #11

38 Handbook of Algorithms for Physical Design Automation

The table only covers the data range between 1 and 2, and the following recursive property of the
gamma function can be used to calculate other x:

�(x + 1) = x�(x) ∀ x > 1

Once α and β are known, the delay at any percentile φ can be calculated as

tφ = β

(
ln

1

1 − φ

)θ

In particular, the 50 percent delay point can be calculated as

t0.5 = β[ln(2)]θ ≈ β · (0.693)θ

3.1.2.3 Lognormal Delay

Another delaymetric uses lognormaldistribution for probability interpretation of response signal [7].
The lognormal distribution is determined by two parameters µ and σ . Its PDF is defined as

f (x;µ, σ) = 1

xσ
√
2π

exp

{ [ln(x) − µ]2
2σ 2

}

Similar to Weibull-based delay, the first two circuit moments are matched to the moments of the
distribution to calculate µ and σ . Once they are known, the delay can be calculated by calculating
the median of the lognormal distribution. After simplification, it turns out that the 50 percent delay
metric is a closed form of the two circuit moments:

t0.5 = m2
1√

2m2

The lognormal distribution can also be used to provide a closed-form slew metric. Because slew
metric is equivalent to the difference of two delay points (e.g., 10 percent and 90 percent delay), the
accuracy requirement is higher. In some cases, especially for the near-end nodes, metrics based on
two moments may not be sufficiently accurate. To achieve the balance between the accuracy and
complexity, a three-piece approach was proposed, based on the value of r = m1/

√
m2:

• r ≤ 0.35:

Slew12 = m2
1√

2m2

(
ekS

√
2 − e−kS√2

)

where S = √
ln(2m2/m2

1), and the value of k depends on the definition of slew and is
explained later.

• r ≥ 1

Slew23 =
√
2m2 − m2

1

z(z − 1)

(
ek

√
2 ln(z) − e−k√2 ln(z)

)

where z = (y−1/y)2+1 and y = 3
√

(γ + √
4 + γ 2)/2, where γ = (−6m3+6m1m2−2m3

1)/

(2m2 − m2
1)

3/2 and k is the function of slew ratio.
• 0.35 < r < 1

Slew =
(
20

13
r − 7

13

)
slew23 + 20

13
(1 − r) slew12

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 39 29-9-2008 #12

Metrics Used in Physical Design 39

The value k is the scaling factor needed to reflect difference in terms of slew definition. It is
calculated based on the table below:

Slew Definition k

10/90 0.9063
20/80 0.5951
25/75 0.4769
30/70 0.3708

3.1.3 FUNDAMENTALS OF STATIC TIMING ANALYSIS

As discussed earlier in this section, a sequential circuit consists of combinational elements and
sequential elements and can be represented as a set of combinational blocks that lie between latches.
This subsection presents methods that compute the delay of a combinational logic block.

A combinational logic circuit can be represented as a timing graph G = (V ,E), where the
elements of V , the vertex set, are the logic gates in the circuit and the primary inputs and outputs
of the circuit. A pair of vertices, u and v ∈ G, are connected by a directed edge e(u, v) ∈ E if
there is a connection from the output of the element represented by vertex u to the input of the
element represented by vertex v. A simple logic circuit and its corresponding graph are illustrated
in Figure 3.5a and b, respectively. In this section, we present techniques that are used for the static
timing analysis of digital combinational circuits. The word “static” alludes to the fact that this timing
analysis is carried out in an input-independent manner, and purports to find the worst-case delay of
the circuit over all possible input combinations. The method is often referred to as CPM (critical
path method). The computational efficiency of CPM has resulted in its widespread use, even though
it has some limitations.

The CPM-based algorithm, applied to a timing graph G = (V,E), can be summarized by the
pseudocode shown below:

Algorithm CRITICAL_PATH_METHOD
Q = ∅;
for all vertices i ∈ V

n_visited_inputs [i] = 0;
/∗ Add a vertex to the tail of Q if all inputs are ready ∗/
for all primary inputs i

/∗ Fanout gates of i ∗/
for all vertices j such that (i → j) ∈ E

if (++n_visited_inputs[j] == n_inputs[j]) addQ(j,Q);
while (Q �= ∅) {

g = top(Q);
remove (g,Q);
compute_delay[g]
/∗ Fanout gates of g ∗/
for all vertices k such that (g → k) ∈ E

if (++n_visited_inputs[k] == n_inputs[k]) addQ(k,Q);
}

The procedure is best illustrated bymeans of a simple example. Consider the circuit in Figure 3.6,
which shows an interconnection of blocks. Each of these blocks could be as simple as a logic gate

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 40 29-9-2008 #13

40 Handbook of Algorithms for Physical Design Automation

t

I1

I2

I4

I5

I3

O1

O2

G5

G6

G3

G4

G2

G1

s

(a) (b)

G6

G5
G1

G2
G3

G4

O1

O2

I4

I5

I3

I2
I1

FIGURE 3.5 (a) An example combinational circuit and (b) its timing graph. (From Sapatnekar, S. S., Timing,
Kluwer Academic Publisher, Boston, MA, 2004. With permission.)

or could be a more complex combinational block, and is characterized by the delay from each input
pin to each output pin. For simplicity, this example will assume that for each block, the delay from
any input to the output is identical. Moreover, we will assume that each block is an inverting logic
gate such as a NAND or a NOR, as shown by the “bubble” at the output. The two numbers, dr/df ,
inside each gate represent the delay corresponding to the delay of the output rising transition, dr, and
that of the output fall transition, df , respectively. We assume that all primary inputs are available at
time zero, so that the numbers “0/0” against each primary input represent the worst-case rise and
fall arrival times, respectively, at each of these nodes. The critical path method proceeds from the
primary inputs to the primary outputs in topological order, computing the worst-case rise and fall
arrival times at each intermediate node, and eventually at the outputs of a circuit.

A block is said to be ready for processing when the signal arrival time information is avail-
able for all of its inputs; in other words, when the number of processed inputs of a gate g,
n_visited_inputs[g], equals the number of inputs of the gate, n_inputs[g]. Notation-
ally, we refer to each block by the symbol for its output node. Initially, because the signal arrival
times are known only at the primary inputs, only those blocks that are fed solely by primary inputs are
ready for processing. In the example, these correspond to the gates i, j, k, and l. These are placed in a
queue Q using the function addQ, and are processed in the order in which they appear in the queue.

In the iterative process, the block at the head of the queue Q is taken off the queue and scheduled
for processing. Each processing step consists of

m

a
b

c
d

e
f

g
h

2/1

4/2

4/2

3/1

3/5

8/5

7/6

7/11

0/0
0/0

0/0
0/0

0/0
0/0

0/0
0/0

p

n

o

l

k

j

i
2/1

4/2

3/1

4/2
2/2

1/3

3/2

1/1

FIGURE 3.6 An example illustrating the application of the CPMon a circuit with inverting gates. The numbers
within the gates correspond to the rise delay/fall delay of the block, and the bold numbers at each block output
represent the rise/fall arrival times at that point. The primary inputs are assumed to have arrival times of zero,
as shown. (From Sapatnekar, S. S., Timing, Kluwer Academic Publisher, Boston, MA, 2004. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 41 29-9-2008 #14

Metrics Used in Physical Design 41

• Finding the latest arriving input to the block that triggers the output transition (this involves
finding the maximumof all worst-case arrival times of inputs to the block), and then adding
the delay of the block to the latest arriving input time, to obtain the worst-case arrival time
at the output. This is represented by function compute_delay in the pseudocode.

• Checking all of the block that the current block fans out to, to find out whether they are
ready for processing. If so, the block is added to the tail of the queue using function addQ.

The iterations end when the queue is empty. In the example, the algorithm is executed as follows:

Step 1: In the initial step gates, i, j, k, and l are placed on the queue because the input arrival
times at all of their inputs are available.

Step 2: Gate i, at the head of the queue, is scheduled. Because the inputs transition at time 0,
and the rise and fall delays are 2 and 1 units, respectively, the rise and fall arrival times
at the output are computed as 0+ 2 = 2 and 0+ 1 = 1, respectively. After processing
i, no new blocks can be added to the queue.

Step 3: Gate j is scheduled, and the rise and fall arrival times are similarly found to be 4 and 2,
respectively. Again, no additional elements can be placed in the queue.

Step 4: Gate k is processed, and its output rise and fall arrival times are computed as 3 and 1,
respectively. After this computation, we see that all arrival times at the input to gate m
have been determined. Therefore, it is deemed ready for processing, and is added to
the tail of the queue.

Step 5: Gate l is now scheduled, and the rise and fall arrival times are similarly found to be 4
and 2, respectively, and no additional elements can be placed in the queue.

Step 6: Gate m, which is at the head of the queue, is scheduled. Because this is an inverting
gate, the output falling transition is caused by the latest input rising transition, which
occurs at time max(4, 3) = 4. As a consequence, the fall arrival time at m is given by
max(4, 3) + 1 = 5. Similarly, the rise arrival time at m is max(2, 1) + 1 = 3. At the
end of this step, both n and p are ready for processing and are added to the queue.

Step 7: Gate n is scheduled, and its rise and fall arrival times are calculated asmax(1, 5)+3 = 8
and max(2, 3) + 2 = 5 respectively.

Step 8: Gate p is now processed, and its rise and fall arrival times are found to be max(5, 2)+
2 = 7 and max(3, 4) + 2 = 6, respectively. This sets the stage for adding gate o to the
queue.

Step 9: Gate o is scheduled, and its rise and fall arrival times are max(5, 6) + 1 = 7
and max(8, 7) + 3 = 11, respectively. The queue is now empty and the algorithm
terminates.

The worst-case delay for the entire block is therefore max(7, 11) = 11 units.
Because there are many paths in a combinational block, it is important to identify the path

(or paths) on which the worst-case delay of the whole block is achieved for physical design opti-
mization. The critical path, defined as the path between an input and an output with the maximum
delay, can be easily found by using a tracebackmethod.We begin with the block whose output is the
primary output with the latest arrival time: this is the last block on the critical path. Next, the latest
arriving input to this block is identified, and the block that causes this transition is the preceding
block on the critical path. The process is repeated recursively until a primary input is reached.

In the example, we begin with Gate o at the output, whose falling transition corresponds to the
maximum delay. This transition is caused by the rising transition at the output of gate n, which
must therefore precede o on the critical path. Similarly, the transition at n is affected by the falling
transition at the output of m, and so on. By continuing this process, the critical path from the input
to the output is identified as being caused by a falling transition at either input c or d, and then
progressing as follows: rising j → falling m → rising n → falling o.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 42 29-9-2008 #15

42 Handbook of Algorithms for Physical Design Automation

3.2 NOISE

Coupling noise is yet another unwanted side effect of the scaling in deep submicron technology,
and its impact can be reduced through physical design transformations. The effect arises due to
geometric scaling, which requires the wires to be narrower and the spacing between adjacent wires
smaller. On the other hand, because the chip size is also getting larger (in terms of multiples of the
minimum feature size), it is necessary to reduce wire resistance by increasing the aspect ratio of
the wire cross section. The compounded effect is the increase of the coupling capacitance between
adjacent signal wires.

When two interconnect networks are capacitively coupled, usually the one with the stronger
driving gate is referred to as the aggressor, while the one with the weaker driver is called the victim.
It is quite possible that an aggressor can affect multiple victims, and a victim can have more than
one aggressors. For simplicity, we only discuss the case with one aggressor and one victim. These
ideas can be easily extended to more general cases. The application domain for this analysis is in
noise-aware routing. For scalable methods that can be applied to full-chip noise analysis, the reader
is referred to Chapter 34.

When the aggressor switches, if the victim is quiet, then the coupling will generate a glitch on
the victim wire. If the glitch is sufficiently large and occurs within a certain timing window, the
(erroneous) glitch can be latched into a memory storage element and cause a logic error. If the victim
is also switching, then depending on the polarities of the signals and the corresponding switching
windows, the signal on the victim wire can be slowed down or sped up, which may cause timing
violations. Although very elaborate algorithms are available to estimate the coupling effects between
the signal wires, (see Refs. [9,10]), it is highly desirable to correct the problem at its root, i.e., during
the physical design phase.

The exact amount of noise injected to the victim net from the aggressor is a function of circuit
topologies and values of both aggressor and victim nets, as well as the properties of the signal. To
accurately estimate the noise, every component of the coupled network is required, which is not
realistic during physical design. Fortunately, there is a simple noise metric equivalent to Elmore
delay in timing [11].

In Ref. [11], it is assumed that the excitations in the aggressor net are infinite ramps, which are
signals whose first derivatives are zero before t = 0, and constant afterward. From the circuit analysis
point of view, the coupling capacitors act like differentiators. Thus, the coupling node voltage will
come to a steady state, whose level can be used as an indicator of the coupling effect. For a circuit of
general topology, the noise metric must be solved with circuit analysis techniques, which involves
the construction of MNA formulations and solving of the matrices. The MNA matrices of a coupled
circuit can be written as

[
G11 0
0 G22

] [
x1

x2

]
+
[
C11 Cc

CT
c C22

] [
ẋ1

ẋ2

]
=
[
B1

0

]
u

In the above equation, the first partition is the aggressor net while the second partition is the victim
net. The submatrices G11 and C11 represent the conductance and capacitance of the aggressor net;
and G22 and C22 represent the conductances and capacitances of the victim net; while Cc represents
the coupling between the two nets. According to Ref. [11], simple algebraic manipulations can be
employed to estimate the worst case as

V2,max = G−1
22 CcG−1

11 B1 u̇

Note that the worst-case noise is only a function of the resistances of the victim and aggressor nets, as
well as the coupling capacitances. It is not a function of the self-capacitances of the two nets (under
the assumption that the input is an infinite ramp).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 43 29-9-2008 #16

Metrics Used in Physical Design 43

If both aggressor and victim nets have tree-like topologies, then the above noise metric can be
calculated with a simple graph traversal, which is similar to the Elmore delay calculation of tree-like
RC networks. To illustrate the procedure, we can rewrite the worst-case noise metric as

Ic = CcG−1
11 B1 u̇

V2,max = G−1
22 Ic (3.10)

Because the excitation in the aggressor net is an infinite ramp, the term Ic represents the coupling
current injected into the victim net. If the aggressor net is properly connected, then it can be shown
using simple circuit arguments [11] that the injected current is simply Ccu̇. The calculation of the
voltage in the victimnet can then be carried out using a procedure similar toElmore delaypropagation,
except that we traverse the tree from the root to the leaf nodes. To illustrate the procedure, we give
a simple example shown in Figure 3.7.

Because the noise is not a function of the self-capacitance of either the aggressor or the victim,
it is not drawn in the diagram. In the first step of the calculation, the equivalent current injections from
the aggressor net is calculated, which correspond to evaluating the first equation in Equation3.10.
Because there is no direct resistive path to ground and there is only one independent voltage source
in the aggressor, it is trivial to show that

I1 = C1 · u̇
I2 = C2 · u̇
I3 = C3 · u̇

We then replace the coupling capacitors of the victim with those current sources. Because the root
of the tree is grounded, we calculate the worst-case noise by a graph traversal, from root to leaves:

IB,max = R1(C1 + C2 + C3)u̇

ID,max = R1(C1 + C2 + C3)u̇+ R2(C2 + C3)u̇

IE,max = R1(C1 + C2 + C3)u̇+ R2(C2 + C3)u̇+ R3(C3)u̇

IF,max = R1(C1 + C2 + C3)u̇+ R2(C2 + C3)u̇

AlthoughDevgan’s metric is easy to calculate, its accuracy is limited. For fast transitions, in par-
ticular, the metric evaluates to a physically impossible value that exceeds the supply voltage. Note
that the evaluation is still correct, as Devgan’s noise metric only guarantees an upper bound on the
noise; however, the accuracy in such cases is clearly limited.

To improve accuracy, a further improvement of the static noise metric was proposed in Ref. [12],
which extended the idea of Devgan’s metric through the use of more than one moment. In addition,

R1 R3

R

R2

F

EDB

C1 C2 C3

Victim

Aggressor

R1 R3

R

R2

F

E
DB

Victim

I1 I2 I3

(a) (b)

FIGURE 3.7 Anexample ofworst-case noise calculation, showing (a) the original circuit and (b) the equivalent
circuit when coupling capacitors are replaced by injected noise current sources. (From Sapatnekar, S. S.,Timing,
Kluwer Academic Publisher, Boston, MA, 2004. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 44 29-9-2008 #17

44 Handbook of Algorithms for Physical Design Automation

C1

0

R1
C2

R2

Cc V

VictimAggressor

FIGURE 3.8 Circuit diagram for the derivation of the transient noise peak.

the aggressor excitation was assumed to be a first-order exponential function rather than an infinite
ramp. To obtain a closed-form noise metric, the response at the victim net was calculated using
moment-matching approach.

Another type of noise metric that takes the transient approach is the work in Ref. [13]. Instead
of assuming that the excitation at the aggressor is an infinite ramp, it is assumed that the aggressor
excitation is a step signal. However, the circuit topology is highly simplified so that a close-formnoise
metric can be derived. The aggressor–victim pair is simplified as shown in Figure 3.8 [13], where R1

is the total resistance of the aggressor and R2 is the total resistance of the victim. Note that the victim
is grounded by a zero-valued voltage source. It then can be proved that the noise peak at node V is

XV = 1

1 + C2
Cc

+ R1
R2

(
1 + C1

Cc

)

An alternative two-stage π model is presented in the metric in Ref. [14].
For long global nets, there is also the possibility that two nets are inductively coupled, especially

when the the aggressor and victim nets are in parallel, such as in a bus structure. The analysis and
estimation of the inductively coupling is much more involved. Because inductive coupling mostly
occurs in selected cases, quite often detailed circuit analysis is affordable. In many cases, various
types of shielding are implemented to minimize the inductive coupling effect [15,16].

3.3 POWER

With the decreasing transistor channel lengths and increasing die sizes, power dissipation has become
a major design constraint. There are three major components of power dissipation: the dynamic
power, the short-circuit power, and the static power. Historically, the dynamic power and short-
circuit power have been the subject of many studies. In recent years, as the complimentary metal
oxide semiconductor (CMOS) devices rapidly approach the fundamental scaling limit, static power
has become a major component of the total power consumption. We discuss these components
separately in the subsequent subsections.

3.3.1 DYNAMIC POWER

For a CMOS circuit, its states are represented by the charges stored at various metal oxide semicon-
ductor field effect transistors (MOSFETs). When the circuit is operating, the change of the circuit
states is realized by charging and discharging of these transistors. This charge/discharge operation
can be illustrated in the simple circuit shown in Figure 3.9.When the circuit is in quiescence, inverters
INV1, INV2, and INV3 store 1, 0, and 1, respectively. When a falling transition occurs at the input

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 45 29-9-2008 #18

Metrics Used in Physical Design 45

M1

M2

M3

M4

M5

M6

INV1 INV2 INV3

FIGURE 3.9 A simple circuit to illustrate charging and discharging of the gate capacitors.

of INV1, the state of INV2 changes from 0 to 1, by charging the gate capacitor of MOSFETM3 and
M4 via transistor M1. In the meantime, the state of INV3 changes from 1 to 0, which is achieved by
discharging the gate capacitor of M5 and M6 to ground (via M4).

Consider gate INV1, whose output is being charged from low to high. During this transition, the
output parasitic capacitance is charged, and some energy is dissipated in the (nonlinear) positive-
channel metal oxide semiconductor (PMOS) transistor resistance. It can be shown that for a single
transition, each of these components equals 1

2
CLV 2

DD, where CL is the load capacitance at the output,
and this energy is supplied by the VDD source. In a subsequent cycle, when the output of INV1
discharges, all of the dynamic energy dissipated in the negative-channelmetal oxide semiconductor
(NMOS) transistor comes from the capacitor CL, and none comes from VDD. Therefore, for every
high-to-low-to-high transition, the energy dissipated in a single cycle can be calculated as

Pdynamic = CgateV
2
DD (3.11)

where Cgate is the total capacitance of all gate capacitors involved. If a rising transition occurs next,
the energy stored at the gate capacitance of M3 and M4 is simply dissipated to ground.

This concept can be generalized from inverters to arbitrary gates, and the essential idea and the
formula remain valid. If the clock frequency is f and the gate switches on every clock transition,
then the number of transitions is multiplied by f . The power dissipated can then be calculated as
the energy dissipated per unit time. In general, though, a gate does not switch on every single clock
transition, and if α is the probability that a gate will switch during a clock transition, the dynamic
power of the gate can be estimated as

Pdynamic = αCgateV
2
DD f (3.12)

Here, α is referred to as the switching factor for the gate.
The total power of the circuit can be computed by summing up Equation3.12 over all gates in

the circuit. For a circuit in which the final signal value settles to VDD, as is the case for static CMOS
logic, the above calculation is accurate; simple extensions are available for other logic circuits (such
as pass transistor logic) where the signal value does not reach VDD [17].

The value of α is dependent on the context of the gate in the circuit. For tree-like structures, this
computation is straightforward, but for general circuits with reconvergent fanout, it is quite difficult
to accurately calculate the switching factors [18]. Nevertheless, numerous heuristic approaches are
available, and are widely used.

From the physical design point of view, usually the supply voltage VDD is determined by the
technology and the switching factor α is determined by the logic synthesis. Therefore, only gate
capacitanceCgate can be optimized during the physical optimizationphase.As shown inEquation3.12,
the smaller the overall gate capacitance, the smaller the dynamic power. The minimization of the
overall gate size (while maintaining the necessary timing constraints) is actually the same objective

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 46 29-9-2008 #19

46 Handbook of Algorithms for Physical Design Automation

of many physical design algorithms. Therefore, an optimal solution of those algorithms is also the
optimal solution in terms of dynamic power.

Another approach to reduce dynamic power is to avoid unnecessary toggling of the devices. This
is possible for state-storage devices such as latches and flip-flops. A carefully designed clock gating
scheme can greatly reduce dynamic power. However, usually these techniques are beyond the scope
of physical design flows.

3.3.2 SHORT-CIRCUIT POWER

The mechanism of short-current power can be illustrated in the simple example shown in Figure 3.9.
For INV1, when the falling transition occurs at the input, the PMOS device M1 switches from off
to on, while the NMOS device M2 switches from on to off. Because of the intrinsic delays of the
MOSFET devices as well as the loading effect of the gate capacitance of INV2, the switching cannot
occur instantaneously. For a short period during the transition, both M1 and M2 are partially on,
thus providing a direct path between the power supply and the ground. Certain amount of power is
dissipated by this short-circuit current, which is also referred as the shoot-through current.

The short-circuit power has strong dependence on the capacitive load and the input signal tran-
sition time. Although accurate circuit simulation can be applied to calculate the short-circuit power,
such an approach is prohibitively expensive. Amore realistic approach is to estimate the short-circuit
power via empirical equations. Some analysis techniques are proposed in Refs. [19,20]. However,
according to many reports, the short-circuit current only accounts for between 5 and 10 percent of
total power consumption in a well-designed circuit.

3.3.3 STATIC POWER

In a digital circuit, MOSFET devices function as switches to realize certain logic functions. Ideally,
we would like these switches to be completely off when the the controlling gate is off. However,
MOSFET devices are far from ideal. Evenwhen the circuit is not operating, theMOSFET devices are
“leaking” current between terminals. Although each transistor only leaks a small amount of current,
the overall full chip leakage can be substantial due to the sheer number of transistors.

There are two major components of leakage current: subthreshold leakage current and gate tun-
neling current [21]. These two components are illustrated in Figure 3.10. The subthreshold leakage
current (I1 in Figure 3.10) is the leakage current between the drain and source node when the device
is in the off state (the voltage between the gate and source terminal is zero). Historically, in 0.25µm
and higher technology nodes, the subthreshold leakage was small enough to be negligible (several
orders ofmagnitude smaller than the on-current).However, the traditional scaling requires the reduc-
tion of supply voltage VDD, along with the reduction of the channel length. As a consequence, the
threshold voltage must be scaled accordingly to maintain the driving capability of the MOSFET

I2

I1

Source

Drain

Gate

FIGURE 3.10 Two major components of the leakage current.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 47 29-9-2008 #20

Metrics Used in Physical Design 47

device. The smaller threshold voltage causes large increase of subthreshold leakage current, so that
this is a significant factor in nanometer technologies.

The second component of the static power is the gate tunneling current (I2 in Figure 3.10), which
is also the consequence of scaling. As the device dimensions are reduced, the gate oxide thickness
also has to be reduced. An unwanted consequence of thinner gate oxide thickness is the increased
gate tunneling leakage current.

Many factors can affect the amount of subthreshold leakage current, including many device and
environmental variables. An expression for the subthreshold leakage current density, i.e., the current
per unit transistor area, is given by Ref. [22]:

Jsub = W

Leff

µ

√
qεsiNcheff

2φs

υ2
T exp

(
Vgs − Vth

ηυT

)[
1 − exp

(−Vds

υT

)]
(3.13)

The details of the parameters in the above equation can be found in Ref. [22]. Here we would like to
mention a few points:

• Term υT = kT/q is the thermal voltage, where k is the Boltzmann’s constant, q is the
electrical charge, and T is the junction temperature. From the equation, we can see that the
leakage is an exponential function of the junction temperature T .

• Symbol Vth represents the threshold voltage. It can be shown that for a given technology,
Vth is a function of the effective channel length Leff . Therefore, subthreshold leakage is also
an exponential function of effective channel length.

• Drain-to-source voltage, Vds, is closely related to supply voltage VDD, and has the same
range in static CMOS circuits. Therefore, subthreshold leakage is an exponential function
of the supply voltage.

• Threshold voltage Vth is also affected by the body bias VBS. In a bulk CMOS technology,
because the body node is always tied to ground for NMOS andVDD for PMOS, the body bias
conditions for stacked devices are different, depending on the location of the off device on
a stack (e.g., top of the stack or bottom of the stack). As a result, the subthreshold leakage
current can quite vary when different input vectors are applied to a gate with stacks.

For the gate tunneling current, a widely used model is the one provided in Ref. [23]:

Jtunnel = 4πm∗q

h3
(kT)2

(
1 + γ kT

2
√
EB

)
exp

(
EF0,Si/SiO2

kT

)
exp

(
−γ

√
EB

)
(3.14)

where
T is the operating temperature
EF0,Si/SiO2 is the Fermi level at the Si/SiO2 interface
m∗ depends on the the underlying tunneling mechanism

Parameters k and q are defined as above, and h is Planck’s constant: all of these are physical
constants. The term γ = 4πtOX

√
2mOX/h, where tox is the oxide thicknes, and mox is the effective

electron mass in the oxide. Besides physical constants and many technology-dependent parameters,
it is quite clear that the gate-tunneling leakage depends on the gate oxide thickness and the operating
temperature. The former is a strong dependence, but the latter is more complex: over normal ranges
of operating temperature, the variations in gate leakage are roughly linear. In comparison with sub-
threshold leakage, which shows exponential changes with temperature, these gate leakage variations
are often much lower. More details about this model can be found in Ref. [23].

One possible solution to mitigate the negative impact of gate current is to use material with
higher dielectric constants (so-called high-k material) in junction with metal gates [24]. In many

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 48 29-9-2008 #21

48 Handbook of Algorithms for Physical Design Automation

current technologies, the gate leakage component is non-negligible. Recently, some progress has
been reported on the development of high-k material. If successfully deployed, the new technology
can reduce gate tunneling leakage by at least an order of magnitude, and at least postpone the point
at which gate leakage becomes significant.

Owing to the power consumption limit dictated by the air-cooling technique widely accepted by
the industry and market, power consumption, especially static power, has become a major design
constraint. In addition to the advancements inmanufacturing technology andmaterial science, several
circuit level power reduction techniques also have implications on the physical design flow. They
include power gating, Vth (or effective channel length) assignment, input vector assignment, or any
combination of these methods. More details on these topics can be found in Refs. [21,25–27].

3.4 TEMPERATURE

One of the primary effects of increased power dissipation is that it can lead to a higher on-chip
operating temperature. High chip temperature is not only a performance issue but also a reliability and
cost issue. High channel temperature affectsMOSFET device performance by reducing the threshold
voltageVth and themobility. IfVDD is unchanged, the lowered threshold voltage usually leads to larger
driving current, while reduced mobility leads to smaller driving current. For a normal design with an
increase of 100◦C, the effect is dominated by mobility reduction, thus higher temperature leads to
smaller overall driving capability [28], although inverse temperature dependence,where the speedof a
gate increaseswith temperature, is also seen [29]. For interconnect networks, higherwire temperature
will cause larger interconnect delay becausemetal has positive temperature coefficients. For example,
for every 10◦C increase, the resistivity of copper will increase by approximately 3 percent. On the
reliability side, at elevated temperature, the metal molecules are more prone to electromigration,
negative temperature bias instability (NBTI) [30–32], and time-dependentoxide breakdown (TDDB)
[33]. Thus, temperature is always an important factor in reliability analysis. From a cost point of
view, the cost of a heat sinking solution increases steeply with the total power dissipation of the chip.
Air-cooled technologies are the cheapest option, but these can achieve only a certain level of cooling;
beyond this level, all available options are substantially more expensive, and in today’s commercial
world, they are not viable for consumer products.

For many high-performance microprocessors, due to the large size of the die and large power
dissipation, it is common to observe a temperature differential of 30◦C–50◦C between regions with
high switching activity levels (e.g., a processor core) and thosewith lowactivity levels (e.g.,memory).
Potentially, these large spatial distributions can cause functional failures.

Before describing the flow of thermal analysis, we briefly describe how heat is dissipated from
today’s IC product. Figure 3.11 shows a highly simplified cross section of a typical IC product. Most

 Si substrate with active devices

 SiO2 (if SOI)

 Si substrate

 Heat spreader

 Heat sink

 PCB

 Package
C4

BEOL metal and ILD layers

FIGURE 3.11 Simplified cross section to illustrate heat transfer from an IC chip.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 49 29-9-2008 #22

Metrics Used in Physical Design 49

high-performance IC designs use C4 technology for I/O and power delivery (versus the cheaper
wire-bond technology that is used for lower performance parts). Hundreds to thousands of lead C4’s
are placed on top of the metal layer, and are connected to the printed circuit board (PCB) via the
package. On the substrate side, a heat spreader is mounted next to the die, which is connected to
a heat sink. The whole structure actually is “flipped” upside down so that a heat sink is on the top
(thus C4 technology is also called flip-chip technology). The heat can be dissipated from both the
heat sink side and the C4 side. However, because the heat sink has much smaller thermal resistivity,
majority of the heat is dissipated from the heat sink.

There are three major mechanisms for heat transfer: conduction, convection, and radiation [34].
Convection occurs when heat is transferred by fluid movement (e.g., air or water). Radiation is the
mechanismwhen the heat is transferred by photons of light in the spectrum. For modern IC products,
convection and radiation only occur at interface of the heat sink, while almost all on-chip heat transfer
is through conduction. The heat transfer at the heat sink interface is often described as a macromodel.
For on-chip thermal analysis, cooling issues related to the heat sink are often decoupled from on-chip
analysis by assuming it to be at the ambient temperature. Therefore, we only focus on conduction in
this section.

The fundamental physics law governing heat conduction is the Fourier’s law. If uniformmaterial
is assumed, it can be described as

∇2T(r) + g(r)
kr

= ρc

kr

∂T

∂ t

where
k is the thermal conductivity at the particular location
ρ is the density of the material
c is the specific heat capacity
g is the volume power density, which is also location dependent

Usually the problem is formulated in three-dimensional space, therefore r is a three-dimensional
array r = (x, y, z). Because the time constant of on-chip temperature change is usually in the order
of milliseconds, while the operating frequency of electric signal is in the picoseconds range, it is
often assumed that the thermal dissipation is a steady-state problem. Under this assumption, the heat
diffusion equation can be simplified as

∇2T(r) = −g(r)
kr

(3.15)

To solve the above three-dimensional thermal equation, appropriate boundary conditions need
to be established. Because many layers of materials are involved and they all have different thermal
conductivities, also due to the fact that power density distribution is uneven across the die, usually
relatively fine spatial discretization is needed. Overall, it is difficult to solve the problem analytically.
Instead a numerical method is applied.

Like other partial differential equations, the heat diffusion problem can be solved using the
finite difference method [35,36], the finite element method, or the boundary element method [37].
A commonly used method is the finite difference method. Because ∇2T(r) = ∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
, if we

discretized the space in 3D space, the term ∂2T
∂x2

can be approximated by

∂2T

∂x2
≈ Ti+1, j, k − 2Ti, j, k + Ti−1, j, k

�x2

where i, j, and k are the indexes in the x, y, and t directions, respectively. After some algebraic
manipulation, the steady-state thermal diffusion problem can be formulated into the matrix form:

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 50 29-9-2008 #23

50 Handbook of Algorithms for Physical Design Automation

GT = P

where
G is the thermal conductance matrix
unknown vector T is the steady-state temperature at all mesh points

Depending on the resolution required, the size of the problem can be quite large. The problem
can be solved by applying a direct solver or using iterative techniques [35,38,39].

Like the finite difference method, the finite element method also results in a matrix of the type

KT = P (3.16)

although in this case, the left-hand side coefficient matrix is denser (but still qualifies as a sparse
matrix). The T variables here are node temperatures in the discretization, and the elements of K
can be set up using element stamps. The finite element method essentially uses a polynomial fit
within each grid cell, and the element stamps represent this fit. In the finite element parlance, the
left-hand side matrix,K , is referred to as the global stiffness matrix. Stamps for boundary conditions
can similarly be derived. Conductive boundary conditions simply correspond to fixed temperatures;
because these parameters are no longer variables, they can be eliminated and the quantities moved
to the right-hand side so that K is nonsingular.

As discussed earlier, a change in temperature will change the threshold voltage and mobility of
a MOSFET device [28]. Usually, but not always, an elevated temperature causes the reduction of the
overall driving strength of theMOSFET device. However, as the voltage supplyVDD gets close to 1-V
range, the reduction of mobility may not offset the increase of driving capability due to the lowering
of threshold voltageVth. In other words, the higher temperature causes the transistors to have stronger
driving capability, which in turn make the temperature increase further. Moreover, the subthreshold
leakage increases exponentiallywith temperature, so that a small change in the temperature can result
in a large change in the static power. When this happens, a positive feedback loop is formed between
temperature and transistor driving capability. The issue is especially troublesome during “burn-in”
testing, when the finished product is stress-tested under a higher supply voltage and an increased
ambient temperature. During testing, the phenomenon is often referred as thermal runaway. Once
this happens, the usual outcome is the complete destruction of the product. Fortunately, so far there
have been no reports that thermal runaway happens for products operating under normal conditions,
but nevertheless, thermal effects can cause parts to deviate from their prescribed power and timing
specifications.

ACKNOWLEDGMENT

Part of Section 3.1.3 has been published in Timing, authored by Sachin Sapatnekar, by Kluwer
Academic Publishers in 2004 [40]. (Used with kind permission of Springer Science and Business
Media.)

REFERENCES
1. W. C. Elmore. The transient response of damped linear networks with particular regard to wideband

amplifiers. Journal of Applied Physics, 19:55–63, January 1948.
2. J. Rubenstein, P. Penfield, and M. A. Horowitz. Signal delay in RC tree networks. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 202–211, July 1983.

3. R. Gupta, B. Tutuianu, and L. T. Pileggi. The Elmore delay as a bound for RC trees with generalized input
signals. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 16(1):95–104,
January 1997.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 51 29-9-2008 #24

Metrics Used in Physical Design 51

4. L. T. Pillage and R. A. Rohrer. Asymptotic wavelform evaluation for timing analysis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 9(4):352–366, April 1990.

5. R. Kay and L. Pileggi. PRIMO: Probability interpretation of moments for delay calculation. In Proceedings
of the ACM/IEEE Design Automation Conference, San Francisco, CA, pp. 463–468, 1998.

6. F. Liu, C. V. Kashyap, and C. J. Alpert. A delay metric for RC circuits based on the Weibull distribution.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA,
pp. 620–624, 2002.

7. C. J. Alpert, F. Liu, C. V. Kashyap, and A. Devgan. Close-form delay and skew metrics made easy. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23(12):1661–1669, December
2004.

8. T. Lin, E. Acar, and L. Pileggi. H-gamma: AnRCdelaymetric based on a gamma distribution approximation
of the homogeneous response. In Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, San Jose, CA, pp. 19–25, 1998.

9. K. L. Shepard, V. Narayanan, and R. Rose. Harmony: Static noise analysis of deep submicron digital
integrated circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
18(8):1132–1150, August 1999.

10. P. Chen, D. A. Kirkpatrick, and K. Keutzer. Miller factor for gate-level coupling delay calculation.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA,
pp. 68–74, 2000.

11. A. Devgan. Efficient coupled noise estimation for on-chip interconnects. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, San Jose, CA, pp. 147–153, 1997.

12. M. Kuhlmann and S. S. Sapatnekar. Exact and efficient crosstalk estimation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 20(7):858–866, July 2001.

13. A. Vittal and M. Marek-Sadowska. Crosstalk reduction for VLSI. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 16(3):290–298, March 1997.

14. J. Cong, D. Z. Pan, and P. V. Srinivas. Improved crosstalk modeling for noise-constrained interconnect
optimization. In Proceedings of the Asia/South Pacific Design Automation Conference, Yokohama, Japan,
pp. 373–378, 2001.

15. L. He and K.M. Lepak. Simultaneous shield insertion and net ordering for capacitive and inductive coupling
minimization. In Proceedings of the ACM International Symposium on Physical Design, San Diego, CA,
pp. 55–60, 2000.

16. Y. Massoud, S. Majors, J. Kawa, T. Bustami, D. MacMillen, and J. White. Managing on-chip inductive
effects. IEEE Transactions on VLSI Systems, 10(6):789–798, December 2002.

17. N. Weste and K. Eshraghian. Principles of CMOS VLSI Design, 2nd edn. Addison-Wesley, Reading, MA,
1993.

18. F. Najm. A survey of power estimation techniques in VLSI circuits. IEEE Transactions on VLSI Systems,
2(4):446–455, December 1994.

19. A. Hirata, H. Onodera, and K. Tamaru. Estimation of short-circuit power dissipation for static CMOS gates.
IEICE Transactions on Fundamentals of Electronics, E00-A(1):304–311, January 1995.

20. K. Nose and T. Sakurai. Analysis and future trend of short-circuit power. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 19(9):1023–1030, September 2000.

21. K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. Leakage current mechanisms and leakage reduc-
tion techniques in deep-micrometer CMOS circuits. Proceedings of the IEEE, 91(2):305–327, February
2003.

22. S.Mukhopadhyay, A. Raychowdury, K. Roy, andC.Kim.Accurate estimation of total leakage in nanometer-
scale bulk CMOS circuits based on device geometry and doping profile. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 24(3):363–381, March 2005.

23. K. Bowman, L. Wang, X. Tang, and J. D. Meindl. A circuit-level perspective of the optimum gate oxide
thickness. IEEE Transactions on Electron Devices, 48(8):1800–1810, August 2001.

24. B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee. Ultrathin hafnium oxide
with low leakage and excellent reliability for alternative gate dielectric application. In Technical Digest
of International Electron Devices Meeting (IEDM), Washington, D.C., pp. 133–136, 1999.

25. F. Gao and J. P. Hayes. Exact and heuristic approach to input vector control for leakage power reduction.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(11):2564–2571,
November 2006.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C003 Finals Page 52 29-9-2008 #25

52 Handbook of Algorithms for Physical Design Automation

26. S. Mutoh et al. 1-V power supply high-speed digital circuit technology with multithreshold voltage CMOS.
IEEE Journal of Solid-State Circuits, 30(8):847–854, August 1995.

27. D. Lee, D. Blaauw, and D. Sylvester. Static leakage reduction through simultaneous υt/tox and state assign-
ment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(7):1014–1029,
July 2005.

28. K. Kanda, K. Nose, H. Kawaguchi, and T. Sakurai. Design impact of positive temperature dependence on
drain current in sub-1-V CMOS VLSIs. IEEE Journal of Solid-State Circuits, 36(10):1559–1564, October
2001.

29. V. Gerousis. Design and modeling challenges for 90 nm and 50 nm. In Proceedings of the IEEE Custom
Integrated Circuits Conference, San Jose, CA, pp. 353–360, 2003.

30. D. K. Schroder. Negative bias temperature instability: Road to cross in deep submicron silicon semicon-
ductor manufacturing. Journal of Applied Physics, 94(1):1–18, July 2003.

31. M. A. Alam. A critical examination of the mechanics of dynamic NBTI for pMOSFETs. In IEEE
International Electronic Devices Meeting, Washington, D.C., pp. 14.4.1–14.4.4, 2003.

32. S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. An analytical model for negative bias temperature instability
(NBTI). In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, San Jose,
CA, pp. 493–496, 2006.

33. A. M. Yassine, H. E. Nariman, M. McBride, M. Uzer, and K. R. Olasupo. Time dependent breakdown of
ultrathin gate oxide. IEEE Transactions on Electron Devices, 47(7):1416–1420, July 2000.

34. J. H. Lienhard and J. H. Lienhard. A Heat Transfer Textbook, 3rd edn. Phlogiston Press, Cambridge, MA,
2005.

35. Y. Cheng and S. M. Kang. A temperature-aware simulation environment for reliable ULSI chip design.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(10):1211–1220,
October 2000.

36. T. -Y.Wang and C. C. -P. Chen. 3-D thermal-ADI: A linear-time chip level transient thermal simulator. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 21(12):1434–1445, December
2002.

37. Y. Zhan, B. Goplen, and S. Sapatnekar. Electrothermal analysis and optimization techniques for nanoscale
integrated circuits. In Proceedings of the Asia/South Pacific Design Automation Conference, Yokohama,
Japan, pp. 219–222, 2006.

38. H. Qian, S. Nassif, and S. Sapatnekar. Randomwalks in a supply network. In Proceedings of the ACM/IEEE
Design Automation Conference, Anaheim, CA, pp. 93–98, 2003.

39. P. Li, L. T. Pileggi, M. Ashehi, and R. Chandra. IC thermal simulation and modeling via efficient multigrid-
based approaches. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
25(9):1763–1776, September 2006.

40. S. Sapatnekar, Timing, Kluwer Academic Publishers, Boston, MA, 2004.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S002 Finals Page 53 24-9-2008 #2

Part II

Foundations

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S002 Finals Page 54 24-9-2008 #3

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 55 24-9-2008 #2

4 Basic Data Structures

Dinesh P. Mehta and Hai Zhou

CONTENTS

4.1 Introduction.. .55
4.2 Input Data Structures. .55
4.3 Data Structures Used during PD.. .57

4.3.1 Floorplanning Data Structures .57
4.3.2 Geometric Data Structures .57

4.3.2.1 Interval Trees .57
4.3.2.2 kd Trees .58

4.3.3 Spanning Graphs: A Global Routing Data Structure .59
4.3.4 Max-Plus Lists. .60

4.4 Layout Data Structures. .62
4.4.1 Corner Stitching .63
4.4.2 Quad Trees and Variants .65

4.4.2.1 Bisector List Quad Trees .66
4.4.2.2 kd Trees .67
4.4.2.3 Multiple Storage Quad Trees .67
4.4.2.4 Quad List Quad Trees .67
4.4.2.5 Bounded Quad Trees .68
4.4.2.6 HV Trees .68
4.4.2.7 Hinted Quad Trees .69

Acknowledgment .70
References .70

4.1 INTRODUCTION

Physical design automation may be viewed as the process of converting a circuit into a geometric
layout. We distinguish between three categories of data structures for the purpose of organizing this
chapter:

1. Data structures used to represent the input to physical design: the circuit or the netlist
2. Data structures used during the physical design process
3. Data structures used to represent the output of physical design: the layout

4.2 INPUT DATA STRUCTURES

A circuit consists of components and their interconnections. Each component contains logic that
implements some functionality. It also has pins (or terminals) with which it communicates with
other components. The entire circuit also needs to be able to communicate with the rest of the world
and does so through the use of external pins. An interconnection connects (or makes electrically

55

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 56 24-9-2008 #3

56 Handbook of Algorithms for Physical Design Automation

A

B

C
O

C1

C2

C3

C4

N2

N1

N3

N4

N5

N6

N7

Net 1: (A , C1.in1, C2.in1)

Net 2: (B , C1.in2, C3.in1)

Net 3: (C , C2.in2, C3.in2)

Net 4: (C1.out, C4.in1)

Net 5: (C2.out, C4.in2)

Net 6: (C3.out, C4.in3)

Net 7: (C4.out, O)

FIGURE 4.1 Circuit and its netlist.

equivalent) a set of two or more pins. These pins may be associated with the components or may be
external pins. Each interconnection is called a net. The circuit is described by a list of all nets, the
netlist. Figure 4.1 showsa simple example,where the components are simple logic gates.Components
do not necessarily have to be logic gates. A component could bemore complex. For example, it could
be a multiplier that was manually designed or designed by some other tool. The chip corresponding
to a circuit can itself be a component in a larger circuit.

The mathematical structure that comes closest to representing a circuit is the hypergraph. A
hypergraph consists of a set of vertices and a set of hyperedges, where each hyperedge connects a set
of k ≥ 2 vertices. (When k = 2 for each edge, the hypergraph reduces to the more familiar graph.) A
hypergraph approximates a circuit in that each vertex is mapped to a component and each hyperedge
corresponds to a net. Even so, the hypergraph is not a complete representation of a circuit:

1. Components may have associated physical attributes. For example, if the component is a
rectangle, its height and width will be provided; locations of pins on the rectangle may also
be provided.

2. Nets have an associated direction, which play a role during routing. Consider Net 1 in
Figure 4.1 that interconnects three terminals. Pin A is the source of the signal and C1.in1
and C2.in1 are the sinks.

3. Nets connect pins, but hyperedges connect components. You could fix this by having vertices
model pins rather than components, but then you lose the property that some pins are
associated with a single component. If this component is moved, all of its pins must move
with it.

The number of mathematical and algorithmic tools available for hypergraphs is small relative
to that for graphs. So, it is unlikely that there is much to be gained even if the hypergraph was
a complete representation. As a result, a netlist is sometimes represented by a graph. This is not
unreasonable because it turns out that the vast majority of nets are indeed two-terminal nets. There
is no well-defined way to convert a net with more than two terminals into one or more graph edges.
One approach is to add an edge between every pair of terminals in the net. A netlist converted into a
graph is often represented by a connectivity matrix. A matrix element in position [i][j] denotes the
number of nets that connect modules i and j.∗

The netlist of Figure 4.1 is a complete description of a circuit. It may be read from a circuit
file, parsed and used to populate an internal data structure. This internal data structure is the start-
ing point of the physical design process. How should this internal data structure be organized? It

∗ This is actually a multigraph and not a graph because many edges are permitted between a pair of vertices.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 57 24-9-2008 #4

Basic Data Structures 57

seems obvious that at a minimum, the data structure should consist of a list of nets, where each net
object contains a list of pins. Should there also be a list of componentswhere each component object
also contains a list of pins? Should each component contain a list of nets that are incident on it? Is
it necessary to instantiate a pin object? If so, should it contain pointers to the component and net
to which it belongs? The answer to these questions depend on what kinds of queries will be posed
to the data structure by the particular physical design (PD) tool. One size does not fit all.

4.3 DATA STRUCTURES USED DURING PD

There are too many data structures in this category to describe in this chapter. Fortunately, the vast
majority of these are traditional data structures such as arrays, linked lists, search trees, hash tables,
and graphs.We do not discuss these structures as they are typically covered in an undergraduate data
structures text (e.g., Ref. [1]). Graph algorithms are covered in Chapter 5. Below, we sample some
advanced data structures that have either been specifically designed with PD applications in mind or
have found widespread application in PD.

4.3.1 FLOORPLANNING DATA STRUCTURES

Several innovative data structures (representations) have been developed for floorplanning.We defer
a discussion of these data structures to the floorplanning section of the handbook, where they are
discussed in considerable detail (see Chapters 9 through 11).

4.3.2 GEOMETRIC DATA STRUCTURES

Each stage of physical design automation has a significant geometric aspect, with the possible
exception of partitioning that is more of a graph-theoretic problem. The computational geometry
literature [2] describes a number of geometric data structures. The benefit of using geometric data
structures is that a query has a better time complexity than it would on a simple data structure such
as an array or a linked list. Implementing geometric data structures can be time consuming, but they
may be found in algorithmic or geometric libraries [3,4]. A practitioner should weigh their benefits
against the simplicity of arrays and linked lists. Examples of geometric data structures include interval
trees, range trees, segment trees, kd trees, and priority search trees. Voronoi diagrams and Delaunay
triangulations may also be viewed as geometric data structures. Some of these structures can be
extended to higher dimensions although this comes at the cost of simplicity and time complexity.
Two or three dimensions are usually sufficient for physical design applications. These data structures
are often used in conjunction with the planesweep algorithm technique. Describing all of these data
structures is beyond the scope of this chapter. Instead, we pick two, the interval tree and kd tree, and
describe these briefly to give the reader a flavor of how they work.

4.3.2.1 Interval Trees

Most physical designs can be represented as a set of axis-parallel rectangles. The boundaries of these
rectangles can be viewed as intervals. One common operation needed on these intervals is to find a
subset of them that intersect with a perpendicular line. If such a query only happens a limited number
of times, it can be efficiently processed by a sweep-line algorithm inO(n log n) time. However, when
such queries need to be done repeatedly, it is better to preprocess the intervals and store them in a
data structure that can answer the queries more efficiently. The interval tree is a structure that can be
built in O(n log n) time and then answers the query in O(log n + k) time, where k is the number of
intervals intersecting the perpendicular line.

Even though an interval lies on a line that is a one-dimensional space, it is actually a two-
dimensional datum because it has two independent parameters. An interval starting at a and ending
at b is represented by [a, b]. It is not possible to have a total order over the set of intervals. The idea of

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 58 24-9-2008 #5

58 Handbook of Algorithms for Physical Design Automation

a
b

c d
e f

x1 x2 x3

x2

x1 x3

e e

bac cab

df fd

FIGURE 4.2 Set of intervals and its interval tree.

the interval tree is to partition the set of intervals into three groups based on a given point x: intervals
to the left of the point L(x), intervals to the right of the point R(x), and intervals overlapping with
the point C(x). The subsets L(x) and R(x) of intervals can be recursively represented. The subset
C(x) also needs to be organized for the queries. Even though C(x) could include all the intervals in
the original set, organizing them is much simpler: they can be ordered both on their left points and
on their right points. If the query point q < x, only the left points of C(x) need to be checked in
increasing order; if q > x, only the right points of C(x) need to be checked in decreasing order. To
balance L(x) and R(x), thus to have a short tree, it is desired to use the median of all the endpoints
as x. Figure 4.2 shows an interval tree for a set of intervals, where the intervals in C(x) are organized
in two lists according to their left and right points.

The following result can be easily proved based on the above discussion.

Theorem 1 For a given set of n intervals, an interval tree can be constructed in O(n log n) time;
with it, a query on the intervals containing a given point can be answered in O(log n+k) time, where
k is the number of covering intervals.

Applications of interval trees may be found in Refs. [5–7].

4.3.2.2 kd Trees

The query facilitated by a kd tree can be viewed as the reverse of that by an interval tree. In one dimen-
sion, a set of points are given and a query by an interval wants to find all the points in it. If the queries
happen a limited number of times, they can be efficiently processed by linear scans of the points in
O(n) time.When queries need to be done frequently, a sorted array or a binary tree can be built by pre-
processing, and a query can be done inO(logn+k) timewhere k is the number of points on the interval.

A kd tree is simply an extension of this binary tree to higher dimension space. It first partitions
all the points into two groups of almost the same size along one dimension, and then recursively
partitions the groups along other dimensions. It follows the same order of dimensions for further
partitionings. Figure 4.3 shows a kd tree for a set of points on a plane (two-dimensional space)

0

1 2

4 5 63

7

0

1

2

3
4

5
6

7

a

b
c

d
e

f g

h i
j

a

8

8

b

e c d

h f

j g i

FIGURE 4.3 Set of points on the plane and its kd tree.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 59 24-9-2008 #6

Basic Data Structures 59

Algorithm KdTreeQuery(v, R)
if v is a leaf

then output the point if it is in R
else {

if left(v) is fully contained in R
then output points in left(v)
else if left(v) intersects R

then KdTreeQuery (left(v),R)
// similar code for right (v) omitted

}

FIGURE 4.4 Range query algorithm on a kd tree.

with a horizontal partitioning followed by a vertical one. The algorithm for building a kd tree is
straightforward, based on recursive bipartitioning of the points along one dimension. Its runtime is
in O(n log n). Given an orthogonal range, a query on a kd tree will give all the points within the
range. The range query algorithm is just a simple extension of the interval query on binary trees and
it is described in Figure 4.4.

Theorem 2 A kd tree for n points can be built in O(n log n) time; a query with an axis-parallel
range can be performed in O(n1−1/d + k) where d > 1 is the dimension and k is the number of points
within the range. In a two-dimensional plane, a query takes O(

√
n + k) time.

An application of the kd tree may be found in Ref. [8].

4.3.3 SPANNING GRAPHS: A GLOBAL ROUTING DATA STRUCTURE

Given a set of n points in a plane, a spanning tree is a set of edges that connects all n points and
contains no cycles. When each edge is weighted using some distance metric, the minimum spanning
tree is a spanning tree whose sum of edge weights is minimum. If Euclidean distance (L2) is used,
it is called the Euclidean minimum spanning tree; if rectilinear distance (L1) is used, it is called
the rectilinear minimum spanning tree (RMST). The RMST is often used as a starting point for
constructing a Steiner tree, which is used extensively in global routing (see Chapter 24).

The usual approach for constructing a minimum spanning tree is to first define a complete
weighted graph on the set of points and then to construct a spanning tree on it, for example, by running
Kruskal’s algorithm (see Chapter 5).Given a set of pointsV , an undirected graphG= (V ,E) is called
a spanning graph if it contains a minimum spanning tree. The cardinality of a graph is its number
of edges. The complete graph has a cardinality of �(n2), which is expensive. For the L2 metric,
the Delaunay triangulation, a spanning graph of cardinality O(n), can be constructed in �(n log n)
time. However, this approach does not work for the L1 metric as the Delaunay triangulation may
be degenerate. Zhou et al. [9] describe a rectilinear spanning graph of cardinality O(n) that can be
constructed inO(n log n) time [9]. Its use in the construction of a Steiner tree is described in Ref. [10].
We sketch the salient features of this data structure below.

Minimum spanning tree algorithms use two properties to infer the inclusion and exclusion of
edges in a minimum spanning tree:

1. Cut property states that an edge of smallest weight crossing any partition of the vertex set
into two parts belongs to a minimum spanning tree.

2. Cycle property states that an edge with largest weight in any cycle in the graph can be safely
deleted.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 60 24-9-2008 #7

60 Handbook of Algorithms for Physical Design Automation

R1

R2

R3

R4R5

R6

R7

R8

s

s

p
q

(a) (b)

FIGURE 4.5 Octal partition of the plane.

Define the octal partition of the plane with respect to s as the partition induced by the two
rectilinear lines and the two 45◦ lines through s, as shown in Figure 4.5a. Here, each of the regions
R1 through R8 includes only one of its two bounding half line as shown in Figure 4.5b.

Lemma 1 Given a point s in the plane, each region Ri, 1 ≤ i ≤ 8, of the octal partition has the
property that for every pair of points p, q ∈ Ri, ‖pq‖ < max(‖sp‖, ‖sq‖).

Here ‖sp‖ is the L1-distance between s and p. Consider the cycle on points s, p, and q and suppose
‖sp‖ < ‖sq‖. From the cycle property, edge sq can safely be excluded from the spanning graph.
This can be extended to excluding edges from s to all points in R1, except for the nearest one.

A property of the L1-metric is that the contour of equidistant points from s forms a line segment
in each region. In regions R1,R2,R5, and R6, these segments are captured by an equation of the form
x + y = c; in regions R3,R4,R7, and R8, they are described by the form x − y = c. This property is
used to devise a planesweep algorithm to construct the spanning graph. For each point s, we need to
find its nearest neighbor in each octant.We illustrate how to efficiently compute the nearest neighbor
in R1 for each point. Other octants are similarly processed. For the R1 octant, a sweep line is moved
along all points in increasing order of x+ y. During the sweep, we maintain an active set consisting
of points whose nearest neighbors in R1 are yet to be discovered. When a point p is processed, we
identify all points in the active set that have p in their R1 regions. Suppose s is such a point in the
active set. Because points are scanned in increasing x + y, p must be the nearest point to s in R1.
Therefore, we add edge sp to the spanning graph and delete s from the active set. After processing
these active points, we also add p to the active set. Each point is added and deleted at most once
from the active set. The runtime for the sweep is O(n log n). Each point s has an edge to its nearest
neighbor in each octant. This gives a spanning graph of cardinality �(n).

4.3.4 MAX-PLUS LISTS

Max-plus lists are applicable to slicing floorplans [11], technologymapping [12], and buffer insertion
[13] problems. Consider a list where each item consists of a pair of elements (m, p). Each item
represents a possible solution to an optimization problem that seeks to minimize both m and p (e.g.,
m and p could represent the height and width of a chip). Solution j is said to be redundantwith respect
to solution i if i.m ≤ j ·m and i · p ≤ j · p because it is no better than i on either attribute. Consider
a list of three solutions: S1 = (5, 4), S2 = (4, 6), and S3 = (5, 5). S3 is redundant wrt S1. Neither S1
nor S2 is redundant wrt any of the other solutions. Redundant elements are discarded from the list.

Consider an ordered list A = [(A1 · m,A1 · p), . . . , (Aq · m,Aq · p)] such that Ai · m> Aj · m ∧
Ai · p<Aj · p for any i< j. Such an ordering of solutions is always possible if redundant solutions
are not present in the list. Our example list of three elements above can be rewritten as [(5,4), (4,6)].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 61 24-9-2008 #8

Basic Data Structures 61

These lists arise in the context of dynamic programming, which tries to find an optimal solution
to a problem by first finding optimal solutions to subproblems and then merging them to find an
optimal solution to the larger problem.Each list represents possible optimal solutions to a subproblem.
Merging them gives us a list of possible optimal solutions to the bigger problem.

We next define the list merge. Given two ordered lists A and B as defined above with q and r
elements, respectively, compute another listC such that each element c ofC is obtained by combining
an element a of A with an element b of B using the max-plus operation as follows:

c.m = max(a ·m, a · m)

c.p = a · p+ b · p

Redundant solutions are not permitted in C. Thus, C only contains the irredundant combinations
among the qr possible combinations of elements in A and B. Let the size of C be s.

To illustrate the rationale for themax-plus operation to combineelements, consider two rectangles
with dimensions h1 × w1 and h2 × w2. Suppose one rectangle is stacked on top of the other and we
wish to determine the dimensions of the smallest bounding box that encloses both rectangles. The
height of this bounding box is the sum of the heights of the two rectangles while its width is the
maximum of the two rectangle widths; that is, the max plus operation. In buffer insertion, the two
quantities are delay (maximum operation) and downstream capacitance (plus operation).

Stockmeyer [11] proposed an algorithm to perform the list merge in time O(q + r). However,
when themerge tree is skewed, it takes r2 time to combine all the lists even though the total number of
items in C is r. Stockmeyer’s algorithm is inefficient when the two lists have very different lengths.
An extreme case is when a single item is being merged with a big list. In this case, the algorithm
reduces to a linear time search to find the location of an element in a sorted list. Balanced binary
search trees [14] were used to represent each list so that a search can be done in O(log r) time. In
addition, to avoid updating the p values individually, the update was annotated on a node for the
rooted subtree. Shi’s algorithm is faster when the merge tree is skewed, with O(r log r) time relative
to Stockmeyer’s O(r2) time. However, Shi’s algorithm is complicated and much slower when the
merge tree is balanced.

To summarize, the merge of two candidate lists using balanced binary search trees can only
speed up the merge of two candidate lists of very different lengths (unbalanced situation), but not
the merge of two candidate lists of similar lengths (balanced situation).

Figure 4.6 illustrates the best data structure for maintaining solutions in each of the two extreme
cases: the balanced situation requires a linked list that can be viewed as a totally skewed tree; the
unbalanced situation requires a balanced binary tree. However,most cases in reality are between these
extremes, where neither data structure is the best. The max-plus list is an efficient data structure for
the merge operation [15]. As shown in Figure 4.6, it can adapt to the structure of the merge tree: it
becomes a linked list in balanced situations and behaves like a balanced binary tree in unbalanced
situations. The merge algorithm based on max-plus list has the same asymptotic time complexity as
that used in Refs. [14,16] but is easier to implement and more efficient in practice [15].

The max-plus list is based on the skip list [17]. Because a max-plus list is similar to a linked list,
its merge operation is just a simple extension of Stockmeyer’s algorithm. During each iteration of
Stockmeyer’s algorithm, the current item with the maximal m value in one list is finished, and the

Linked list
(totally skewed tree)

Balanced binary tree
Max-plus list

Balanced situation Unbalanced situation

FIGURE 4.6 Flexibility of max-plus list.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 62 24-9-2008 #9

62 Handbook of Algorithms for Physical Design Automation

new item is equal to the finished item with its p value incremented by the p value of the other current
item. The idea of the max-plus list is to finish a sublist of more than one item at one iteration. Assume
that Ai · m > Bj · m, we want to find a i ≤ k ≤ a such that Ak · m ≥ Bj · m but Ak+1 · m < Bj · m.
These items Ai, . . . ,Ak are finished and put into the new list after their p values are incremented by
Bj · p. The speedup over Stockmeyer’s algorithm comes from the fact that this sublist is processed
(identified and updated) in a batch mode instead of item by item. The forward pointers in a max-plus
list are used to skip items when searching for the sublist, and an adjust field is associated with each
forward pointer to record the incremental amount on the skipped items. Each item is defined by the
following C code:

struct maxplus_item{
int level; /∗ the level∗/
float m, p; /∗ the two values∗/
float ∗adjust;
struct maxplus_item ∗∗forward; /∗forward pointers∗/

}

The size of adjust array is equal to the level of this item, and adjust[i] means that the p values of all
the items jumped over by forward[i] should add a value of adjust[i].

Two skip lists with sizes q and r(q ≤ r) can be merged in O(q+ q log r/q) expected time [18].
This quantity is proportional to the number of jump operations performed on the skip list. Max-plus
lists are merged in a similar manner, except that the adjust field need to be updated. The complexity
is also proportional to the number of jump operations. However, it can be shown that the number of
jump operations in a maxplusmerge is within a constant facor of the number of jumps in an ordinary
skip list. Thus, the expected complexity of a max-plus merge is identical to that of a skip-list merge,
which is the same as that of a balanced binary search tree.

4.4 LAYOUT DATA STRUCTURES

Transistors and logic gates are manufactured in layers on silicon wafers. Silicon’s conductivity can
be significantly improved by diffusing n- and p-type dopants into it. This layer of the chip is called
the diffusion (diff) layer. The source and drain of a transistor are formed by separating two n-type
regions with a p-type region (or vice versa) and its gate is formed by sandwiching a silicon dioxide
(an insulator) layer between the p-type region and a layer of polycrystalline silicon (a conductor).
Because polycrystalline silicon (poly) is a conductor, it is also used for short interconnections (wires).
Although poly conducts electricity, it is not sufficient to complete all the interconnections in one layer.
Modern chips usually have several layers of aluminum (metal), a conductor, separated from each
other by insulators on top of the poly layer. These make it possible for the gates to be interconnected
as specified in the design. Note that a layer of material X (e.g., poly) does not mean that there is a
monolithic slab of poly over the entire chip area. The poly is only deposited where gates or wires are
needed. The remaining areas are filled with insulating materials and for our purposes may be viewed
as being empty. In addition to the layers as described above, it is necessary to have a mechanism for
signals to pass between layers. This is achieved by contacts (to connect poly with diffusion or metal)
and vias (to connect metal on different layers).

A layout data structure stores andmanipulates the rectangles on each layer. Some important high-
level operations that a layout data structuremust support are design-rule checking, layout compaction,
and parasitic extraction. Design rules specify geometric constraints on the layout so that the patterns
on the processed wafer preserve the topology of the designs. An example of a design rule is that
the width of a wire must be greater than a specified minimum. If this constraint is violated, it is
possible that for the wire to be discontinuous because of errors in the fabrication process. Additional
design rules for CMOS technology may be found in Ref. [19, p. 142]. Capacitance, resistance, and

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 63 24-9-2008 #10

Basic Data Structures 63

inductance are commonly referred to as parasitics. After a layout has been created, the parasiticsmust
be computed to verify that the circuit will meet its performance goals. The parasitics are computed
from the geometry of the layout. For example, the resistance of a rectangular slab ofmetal is ρl

tw
, where

ρ is the resistivity of the metal and l, w, and t are the slab’s length, width, and thickness, respectively.
See Ref. [19, Chapter 4] formore examples. Compaction tries to make the layout as small as possible
without violating any design rules. Reducing chip area dramatically reduces cost per chip. (The cost
of a chip can grow as a power of five of its area [20].) Two-dimensional compaction is NP-hard, but
one-dimensional compaction can be carried out in polynomial time. Heuristics for two-dimensional
compaction often iteratively interleave one-dimensional compactions in the x- and y-directions. For
more details, see Ref. [21].

4.4.1 CORNER STITCHING

In a layout editor, a user manually designs the layout, by inserting rectangles of the appropriate
dimensions at the appropriate layer. The MAGIC system [22] developed at U.C. Berkeley includes a
layout editor. The corner-stitching data structure was proposed by Ousterhout [23] to store nonover-
lapping rectilinear circuit components in MAGIC. The data structure is obtained by partitioning
the layout area into horizontally maximal rectangular tiles. There are two types of tiles: solid and
vacant, both of which are explicitly stored in the corner-stitching data structure. Tiles are obtained
by extending horizontal lines from corners of all solid tiles until another solid tile or a boundary of
the layout region is encountered. The set of solid and vacant tiles so obtained is unique for a given
input. The partitioning scheme ensures that no two vacant or solid tiles share a vertical side. Each
tile T is stored as a node that contains the coordinates of its bottom left corner, x1 and y1, and four
pointers N , E, W , and S. N (respectively, E, W , S) points to the rightmost (respectively, topmost,
bottommost, leftmost) tile neighboring its north (respectively, east, west, south) boundary. The x and
y coordinates of the top right corner of T are T .E → x1 and T .N → y1, respectively, and are easily
obtained in O(1) time. Figure 4.7 illustrates the corner-stitching data structure.

Corner stitching supports a rich set of operations. These include simple geometric operations like
insertion and deletion of rectangles, point finding (search for the tile containing a specified point),
neighbor finding (find all tiles that abut a given tile), area searches (do any solid tiles intersect a
given rectangular area?), and area enumeration (enumerate all tiles that intersect a given rectangular
area). It also supports more sophisticated operations like plowing (move a large piece of a design in
a specified direction) and one-dimensional compaction. We describe the point-find operation below
to provide the reader with a flavor of the corner-stitching data structure (Figure 4.8). Given a pointer
to an arbitrary tile T in the layout, the algorithm seeks the tile in the layout containing the point P.

Figure 4.9 illustrates the execution of the point-find operation on a pathological example. From
the start tile T , the while loop of line 5 follows north pointers until tile A is reached. We change

N
EW

S

A B

C

D ET

FIGURE 4.7 Corner stitching data structure. Pointers (stitches) are shown for tile T .

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 64 24-9-2008 #11

64 Handbook of Algorithms for Physical Design Automation

Algorithm Tile Point_Find (Tile T, Point P)
1. current =T;
2. while (P is not contained in current)
3. while (P.y does not lie in current’s y-range)
4. if (P.y is above current) current=current → N;
5. else current=current → S;
6. while (P.x does not lie in current’s x-range)
7. if (P.x is to the right of current) current=current → E;
8. else current=current → W;
9. return (current);

FIGURE 4.8 Point find in corner stitching.

directions at tile A because its y-range contains P. Next, west pointers are followed until tile F is
reached (whose x-range contains P). Notice that the sequence of west moves causes the algorithm to
descend in the layout resulting in a vertical position that is similar to that of the start tile. As a result
of this misalignment, the outer while loop of the algorithmmust execute repeatedly until the point is
found (note that the point will eventually be found because the point-find algorithm is guaranteed to
converge). Point_Find has a worst case complexity is O(n) and its average complexity is O(

√
n). In

comparison, a tree-type data structure has an average case complexity of O(log n). The slow speed
may be tolerable in an interactive environment and may be somewhat ameliorated in that it could
often take O(1) time because of locality of reference (i.e., two successive points searched for by a
user are likely to be near each other requiring fewer steps of the point-find algorithm).

The space requirements of corner stitching must take into account the number of vacant tiles.
Mehta [24] shows that the number of vacant tiles is 3n+ 1 − k, where n is the number of solid tiles
and k is a quantity that depends on the geometric locations of the tiles.

Expanded rectangles [25] expands solid tiles in the corner-stitching data structure so that each
tile contains solid material and the empty space around it. No extra tiles are needed to represent
empty space. Marple et al. [26] developed a layout system called tailor that was similar to MAGIC
except that it allowed 45◦ layout. Thus, rectangular tiles are replaced by trapezoidal tiles. Séquin

Start

AB

C

D

E

F

FIGURE 4.9 Illustration of point find operation and misalignment.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 65 24-9-2008 #12

Basic Data Structures 65

and Façanha [27] proposed two generalizations to geometries including circles and arbitrary curved
shapes, which arise in microelectromechanical systems. As with its corner-stitching-based predeces-
sors, the layout area is decomposed in a horizontally maximal fashion into tiles. Consequently, tiles
have upper and lower horizontal sides. Their left and right sides are represented by parameterized
cubic Bezier curves or by composite paths composed of linear, circular, and spline segments. Mehta
and Blust [28] extended Ousterhout’s corner-stitching data structure to directly represent L-shape
and other simple rectilinear shapes without partitioning them into rectangles. This results in a data
structure that is topologically different from the other versions of corner stitching described above.

Because, in practice, circuit components can be arbitrary rectilinear polygons, it is necessary to
partition them into rectangles to enable them to be stored in the corner-stitching format.MAGIC han-
dles this by using horizontal lines to partition the polygons.Nahar and Sahni [29] studied this problem
and presented an algorithm to decompose a polygon that outperforms the standard planesweep algo-
rithm. Lopez andMehta [30] presented algorithms for the problemof breaking an arbitrary rectilinear
polygon into L-shapes using horizontal cuts to optimize its memory requirements.

Corner stitching requires rectangles to be non-overlapping.So, an instance of the corner-stitching
data structure can only be used for a single layer. However, corner stitching can be used to store
multiple layers in the following way. Consider two layers A and B. Superimpose the two layers. This
can be thought of as a single layer with four types of rectangles: vacant rectangles, type A rectangles,
type B rectangles, and type AB rectangles. Unfortunately, this could greatly increase the number of
rectangles to be stored. It also makes it harder to perform insertion and deletion operations. Thus, in
MAGIC, the layout is represented by a number of single-layer corner-stitching instances and a few
multiple-layer instances when the intersection between rectangles in different layers is meaningful,
for example, transistors are formed by the intersection of poly and diffusion rectangles.

4.4.2 QUAD TREES AND VARIANTS

In contrast to layout editors, industrial layout verification benefits from a more automated approach.
This is better supported by hierarchical structures such as thequad tree.The underlyingprincipleof the
quad tree is to recursively subdivide the two-dimensional layout area into four quads until a stopping
criterion is satisfied. The resulting structure is represented by a tree with a node corresponding to
each quad, with the entire layout area represented by the root. A node contains children pointers to
the four nodes corresponding the quads formed by the subdivision of the node’s quad. Quads that
are not further subdivided are represented by leaves in the quad tree.

Ideally, each rectangle is the sole occupant of a leaf node. In general, of course, a rectangle does
not fit inside any leaf quad, but rather intersects two or more leaf quads. To state this differently, it
may intersect one or more of the horizontal and vertical lines (called bisectors) used to subdivide the
layout region into quads. Three strategies have been considered in the literature as to where in the
quad tree these rectangles should be stored. These strategies, which have given rise to a number of
quad tree variants, are listed below and are illustrated in Figure 4.10:

1. Smallest: Store a rectangle in the smallest quad (not necessarily a leaf quad) that contains
it. Such a quad is guaranteed to exist because each rectangle must be contained in the root
quad.

2. Single: Store a rectangle in precisely one of the leaf quads that it intersects.
3. Multiple: Store a rectangle in all of the leaf quads that it intersects.

Obviously, if there is only one rectangle in a quad, there is no need to further subdivide the quad.
However, this is an impractical (and sometimes impossible) stopping criterion.Most of the quad-tree
variants discussed below have auxiliary stopping criteria. Some subdivide a quad until it reaches a
specified size related to the typical size of a small rectangle. Others stop if the number of rectangles
in a quad is less than some threshold value. Figure 4.11 lists and classifies the quad-tree variants.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 66 24-9-2008 #13

66 Handbook of Algorithms for Physical Design Automation

A AC

D4D3D2D1

C

D4D3D2D1

r t

v

s

u

r t

v

s

ut

s

u

Single Multiple

B B

D4D3D2D1

t

v

s
r A B

C

D1 D2

D3

D4

u

s

u

r

v

Smallest

A B C

t

FIGURE 4.10 Quad-tree variations.

4.4.2.1 Bisector List Quad Trees

Bisector list quad trees (BLQT) [31], which was the first quad-tree structure proposed for VLSI
layouts, used the smallest strategy. Here, a rectangle is associated with the smallest quad (leaf or
nonleaf) that contains it. Any nonleaf quad Q is subdivided into four quads by a vertical bisector
and a horizontal bisector. Any rectangle associated with this quad must intersect one or both of the
bisectors (otherwise, it is contained in one of Q’s children, and should not be associated with Q).
The set of rectangles are partitioned into two sets: V , which consists of rectangles that intersect the
vertical bisector, andH, which consists of rectangles that intersect the horizontal bisector. Rectangles

Author Abbreviation Year of Publication Strategy

Kedem BLQT 1982 Smallest
Rosenberg kd 1985 N/A
Brown MSQT 1986 Multiple
Weyten et al. QLQT 1989 Multiple
Pitaksanonkul et al. BQT 1989 Single
Lai et al. HV 1993 Smallest
Lai et al. HQT 1996 Multiple

FIGURE 4.11 Summary of quad-tree variants.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 67 24-9-2008 #14

Basic Data Structures 67

that intersect both bisectors are arbitrarily assigned to one of V and H. These lists were actually
implemented using binary trees. The rationale was that because most rectangles in integrated circuit
(IC) layouts were small and uniformly distributed, most rectangles will be at leaf quads. A region-
search operation identifies all the quads that intersect a query window and checks all the rectangles
in each of these quads for intersection with the query window.

4.4.2.2 kd Trees

Rosenberg [32] compared BLQTwith kd trees and showed experimentally that kd trees outperformed
an implementation of BLQT. Rosenberg’s implementation of the BLQT differs from the original in
that linked lists rather than binary trees were used to represent bisector lists. It is hard to evaluate the
impact of this on the experimental results, which showed that point-find and region-search queries
visit fewer nodes when the kd tree is used instead of BLQT. The experiments also show that kd trees
consume about 60–80 percent more space than BLQTs.

4.4.2.3 Multiple Storage Quad Trees

In 1986, Brown proposed a variation [33] called multiple storage quad trees (MSQT). Each rectangle
is stored in every leaf quad it intersects. (See the quad tree labeled “Multiple” in Figure 4.10.) An
obvious disadvantage of this approach is that it results in wasted space. This is partly remedied by
only storing a rectangle once and having all of the leaf quads that it intersects contain a pointer to
the rectangle. Another problem with this approach is that queries such as region search may report
the same rectangle more than once. This is addressed by marking a rectangle when it is reported
for the first time and by not reporting rectangles that have been previously marked. At the end of
the region-search operation, all marked rectangles need to be unmarked in preparation for the next
query. Experiments on VLSI mask data were used to evaluate MSQT for different threshold values
and for different region-search queries. A large threshold value results in longer lists of pointers in
the leaf quads that have to be searched. On the other hand, a small threshold value results in a quad
tree with greater height and more leaf nodes as quads have to be subdivided more before they meet
the stopping criterion. Consequently, a rectangle now intersects and must be pointed at by more
leaf nodes. A region-search query with a small query rectangle (window) benefits from a smaller
threshold because it has to search smaller lists in a handful of leaf quads. A large window benefits
from a higher threshold value because it has to search fewer quads and encounters fewer duplicates.

4.4.2.4 Quad List Quad Trees

In 1989, Weyten and De Pauw [34] proposed a more efficient implementation of MSQT called quad
list quad trees (QLQT). For region searches, experiments on VLSI data showed speedups ranging
from 1.85 to 4.92 over MSQT, depending on the size of the window. In QLQT, four different lists
(numbered 0–3) are associated with each leaf node. If a rectangle intersects the leaf quad, a pointer
to it is stored in one of the four lists. The choice of the list is determined by the relative position of
this rectangle with respect to the quad. The relative position is encoded by a pair of bits xy. x is 0 if
the rectangle does not cross the lower boundary of the leaf quad and is 1, otherwise. Similarly, y is 0
if the rectangle does not cross the left boundary of the leaf quad and is 1, otherwise. The rectangle is
stored in the list corresponding to the integer represented by this two bit string. Figure 4.12 illustrates
the concept. Notice that each rectangle belongs to exactly one list 0. This corresponds to the quad
that contains the bottom left corner of the rectangle. Observe, also, that the combination of the four
lists in a leaf quad gives the same pointers as the single list in the same leaf in MSQT. The region
search of MSQT can now be improved for QLQT by using the following procedure for each quad
that intersects the query window. If the query window’s left edge crosses the quad, only the quad’s
lists 0 and 1 need to be searched. If the window’s bottom edge crosses the quad, the quad’s lists 0
and 2 need to be searched. If the windows bottom left corner belongs to the quad, all four lists must

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 68 24-9-2008 #15

68 Handbook of Algorithms for Physical Design Automation

t

u v

s
r A B

C

D1 D2

D3 D4

C

D4D3D2D1

r s

u
u

v

t

u

t

A B

1 1

0 0

3 0

2

s

t

FIGURE 4.12 Leaf quads are A, B, C, D1, D2, D3, and D4. The rectangles are r–v. Rectangle t intersects
quads C, D3, and D4 and must appear in the lists of each of the leaf nodes in the quad tree. Observe that t does
not cross the lower boundaries of any of the three quads and x = 0 in each case. However, t does cross the
left boundaries of D3 and D4 and y = 1 in these cases. Thus, t goes into list 1 in D3 and D4. Because t does
not cross the left boundary of C, it goes into list 0 in C. Note that the filled circles represent pointers to the
rectangles rather than the rectangles themselves.

be searched. For all other quads, only list 0 must be searched. Thus, the advantages of the QLQT
over MSQT are as follows:

1. QLQT has to examine fewer list nodes than MSQT for a region-search query.
2. Unlike MSQT, QLQT does not require marking and unmarking procedures to identify

duplicates.

4.4.2.5 Bounded Quad Trees

Later, in 1989, Pitaksanonkul et al. proposed a variation of quad trees [35] that we refer to as bounded
quad trees (BQT). Here, a rectangle is only stored in the quad that contains its bottom left corner
(see the quad tree labeled “Single” in Figure 4.10). This may be viewed as a version of QLQT that
only uses list 0. Experimental comparisons with kd trees show that for small threshold values, quad
trees search fewer nodes than kd trees.

4.4.2.6 HV Trees

Next, in 1993, Lai et al. [36] presented a variation that once again uses bisector lists. It overcomes
some of the inefficiencies of the original BLQT by a tighter implementation. An HV tree consists of
alternate levels of H-nodes and V -nodes. An H-node splits the space assigned to it into two halves
with a horizontal bisector, while a V -node does the same by using a vertical bisector. A node is not
split if the number of rectangles assigned to it is less than some fixed threshold.

Rectangles intersecting an H-node’s horizontal bisector are stored in the node’s bisector list.
Bisector lists are implemented using cut trees. A vertical cutline divides the horizontal bisector into
two halves. All rectangles that intersect this vertical cutline are stored in the root of the cut tree. All
rectangles to the left of the cutline are recursively stored in the left subtree and all rectangles to the
right are recursively stored in the right subtree. So far, the data structure is identical to Kedem’s binary

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 69 24-9-2008 #16

Basic Data Structures 69

2 9 11 12 15 16 1814 21 25

1
2
3
4
5
6
7
8

1

E

F
C

D

B

A
Xbds(11,15)
Ybds(2,8)

Xbds(2,9)
Ybds(2,7.5)

Xbds(16,21)
Ybds(4,7)

Q1

Q2

Root

NodeL NodeR

203 8

C D

E FA B

FIGURE 4.13 Bisector list implementation in HVT. All rectangles intersect the thick horizontal bisector line
(y = 5). The first vertical cutline at x = 13 corresponding to the root of the tree intersects rectangles C and D.
These rectangles are stored in a linked list at the root. Rectangles A and B are to the left of the vertical cutline
and are stored in the left subtree. Similarly, rectangles C and D are stored in the right subtree. The X bounds
associated with the root node are obtained by examining the x coordinates of rectangles C and D, while its Y
bounds are obtained by examining the y coordinates of all six rectangles stored in the tree. The two shaded
rectangles are query rectangles. For Q1, the search will start at root, but will not search the linked list with C
andD becauseQ1’s right side is to the left of root’s lower x bound. The search will then examine nodeL, but not
nodeR. For Q2, the search will avoid searching the bisector list entirely because its upper side is below root’s
lower y bound.

tree implementation of the bisector list. In addition to maintaining a list of rectangles intersecting a
vertical cutline at the corresponding node n, the HV tree also maintains four additional bounds that
significantly improve performance of the region-search operation. The bounds y_upper_bound and
y_lower_bound are the maximum and minimum y coordinates of any of the rectangles stored in n
or in any of n’s descendants. The bounds x_lower_bound and x_upper_bound are the minimum and
maximum x coordinates of the rectangles stored in node n. Figure 4.13 illustrates these concepts.
Comprehensive experimental results comparingHVTwith BQT, kd, and QLQT showed that the data
structures ordered frombest to worst in terms of space requirementswere HVT, BQT, kd, and QLQT.
In terms of speed, the best data structures were HVT and QLQT followed by BQT and finally kd.

4.4.2.7 Hinted Quad Trees

In 1997,Lai et al. [37]described a variation of theQLQTthatwas specifically designed for design-rule
checking.Design-rule checking requires one to check rectangles in the vicinity of the query rectangle
for possible violations. Previously, this was achieved by employing a traditional region query whose
rectangle was the original query rectangle extended in all directions by a specified amount. Region
searches start at the root of the tree and proceed down the tree as discussed previously. The hinted
quad tree is based on the philosophy that it is wasteful to begin searching at the root, when, with
an appropriate hint, the algorithm can start the search lower down in the tree. Two questions arise
here: at which node should the search begin and how does the algorithm get to that node? The node
at which the design rule check for rectangle r begins is called the owner of r. This is defined as
the lowest node in the quad tree that completely contains r expanded in all four directions. Because
the type of r is known (e.g., whether it is n-type diffusion or metal), the amount by which r has to
be expanded is also known in advance. Clearly, any rectangle that intersects the expanded r must
be referenced by at least one leaf in the owner node’s subtree. The owner node may be reached by
following parent pointers from the rectangle. However, this could be expensive. Consequently, in
HQT, each rectangle maintains a pointer to the owner virtually eliminating the cost of getting to
that node. Although this is the main contribution of the HQT, there are additional implementation
improvements over the underlying QLQT that are used to speed up the data structure. First, the
HQT resolves the situation where the boundary of a rectangle stored in the data structure or a query
rectangle coincides with that of a quad. Second, HQT sorts the four lists of rectangles stored in each
leaf node with one of their x or y coordinates as keys. This reduces the search time at the leaves

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 70 24-9-2008 #17

70 Handbook of Algorithms for Physical Design Automation

and consequently makes it possible to use a higher threshold than that used in QLQT. Experimental
results showed that HQT outperforms QLQT, BQT, HVT, and kd on neighbor-search queries by at
least 20 percent. However, its build time and space requirements were not as good as some of the
other data structures.

ACKNOWLEDGMENT

Section 4.4 was reproduced with permission of Taylor & Francis Group, LLC, from Chapter 52
(LayoutData Structures), inHandbookofData Structures andApplications, Chapman andHall/CRC
Press, edited by Dinesh P. Mehta and Sartaj Sahni.

REFERENCES
1. E. Horowitz, S. Sahni, and D. Mehta. Fundamentals of Data Structures in C++, Second Edition. Summit,

NJ: Silicon Press, 2007.
2. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms
and Applications, Second Edition. Berlin, Germany: Springer-Verlag, 2000.

3. K. Mehlhorn and S. Naher. LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge,
United Kingdom: Cambridge University Press, 1999.

4. http://www.cgal.org/.
5. S.C. Maruvada, K. Krishnamoorthy, F. Balasa, and L.M. Ionescu. Red-black interval trees in device-level

analog placement. IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, E86-A (12): 3127–3135, Japan, December 2003.

6. J. Cong, J. Fang, and K.-Y. Khoo. An implicit connection graph maze routing algorithm for ECO routing.
Proceedings of the International Conference on Computer-Aided Design, San Jose, California, 1999.

7. H.-Y. Chen, Y.-L. Li, and Z.-D. Lin. NEMO: A new implicit connection graph-based gridless router with
multi-layer planes and pseudo-tile propagation. International Symposium on Physical Design, San Jose,
California, 2006.

8. S. Liao, N. Shenoy, and W. Nicholls. An efficient external-memory implementation of region query with
application to area routing. Proceedings of the International Conference on Computer Design, Freiburg,
Germany, 2002.

9. H. Zhou, N. Shenoy, and W. Nicholls. Efficient spanning tree construction without Delaunay triangulation.
Information Processing Letters, 81(5), 2002.

10. H. Zhou. Efficient steiner tree construction based on spanning graphs. IEEE Transactions on Computer
Aided Design, 23(5): 704–710, May 2004.

11. L. Stockmeyer. Optimal orientations of cells in slicing floorplan designs. Information and Control, 59:
91–101, 1983.

12. K. Keutzer. Dagon: Technology binding and local optimization by dag matching. In Proceedings of the
Design Automation Conference, Miami Beach, Florida, pp. 617–623, June 1987.

13. L.P.P.P. van Ginneken. Buffer placement in distributed RC-tree networks for minimal Elmore delay. In
Proceedings of the International SymposiumonCircuits and Systems, NewOrleans, Louisiana, pp. 865–868,
1990.

14. W. Shi. A fast algorithm for area minimization of slicing floorplans. IEEE Transactions on Computer Aided
Design, 15: 550–557, 1996.

15. R. Chen and H. Zhou. A flexible data structure for efficient buffer insertion. In Proceedings of the
International Conference on Computer Design, pp. 216–221, San Jose, CA, October 2004.

16. W. Shi and Z. Li. An o(n log n) time algorithm for optimal buffer insertion. In Proceedings of the Design
Automation Conference, pp. 580–585, Anaheim, CA, June 2003.

17. W. Pugh. Skip lists: A probabilistic alternative to balanced trees.Communications of the ACM, 33(6), 1990.
18. W. Pugh. A Skip List Cookbook. Technical Report CS-TR-2286.1. College Park, MD: University of

Maryland, 1990.
19. N.H.E.Weste and K. Eshraghian. Principles of CMOSVLSIDesign: A Systems Perspective, Second Edition.

New York: Addison Wesley, 1993.
20. J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach, Third Edition.

New York: Morgan Kaufmann, 2003.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 71 24-9-2008 #18

Basic Data Structures 71

21. D.G. Boyer. Symbolic layout compaction review. In Proceedings of 25th Design Automation Conference,
Anaheim, California, pp. 383–389, 1988.

22. J. Ousterhout, G. Hamachi, R.Mayo,W. Scott, and G. Taylor.Magic: AVLSI layout system. InProceedings
of 21st Design Automation Conference, pp. 152–159, 1984.

23. J.K. Ousterhout. Corner stitching: A data structuring technique for VLSI layout tools. IEEE Transactions
on Computer-Aided Design, 3(1): 87–100, 1984.

24. D.P. Mehta. Estimating the memory requirements of the rectangular and L-shaped corner stitching data
structures. ACM Transactions on the Design Automation of Electronic Systems, 3(2), April 1998.

25. M. Quayle and J. Solworth. Expanded rectangles: A new VLSI data structure. In Proceedings of the
International Conference on Computer-Aided Design, pp. 538–541, 1988.

26. D.Marple, M. Smulders, and H. Hegen. Tailor: A layout system based on trapezoidal corner stitching. IEEE
Transactions on Computer-Aided Design, 9(1): 66–90, 1990.

27. C.H. Séquin and H. da Silva Façanha. Corner stitched tiles with curved boundaries. IEEE Transactions on
Computer-Aided Design, 12(1): 47–58, 1993.

28. D.P. Mehta and G. Blust. Corner stitching for simple rectilinear shapes. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 16: 186–198, February 1997.

29. S. Nahar and S. Sahni. A fast algorithm for polygon decomposition. IEEE Transactions on Computer-Aided
Design, 7: 478–483, April 1988.

30. M. Lopez and D. Mehta. Efficient decomposition of polygons into L-shapes with applications to VLSI
layouts. ACM Transactions on Design Automation of Electronic Systems, 1: 371–395, 1996.

31. G. Kedem. The quad-CIF tree: A data structure for hierarchical on-line algorithms. In Proceedings of the
19th Design Automation Conference, Washington, pp. 352–357, 1982.

32. J.B.Rosenberg.Geographical data structures compared:A studyof data structures supporting regionqueries.
IEEE Transactions on Computer-Aided Design, 4(1): 53–67, 1985.

33. R.L. Brown. Multiple storage quad trees: A simpler faster alternative to bisector list quad trees. IEEE
Transactions on Computer-Aided Design, 5(3): 413–419, 1986.

34. L. Weyten and W. de Pauw. Quad list quad trees: A geometric data structure with improved performance
for large region queries. IEEE Transactions on Computer-Aided Design, 8(3): 229–233, 1989.

35. A. Pitaksanonkul, S. Thanawastien, and C. Lursinsap. Comparison of quad trees and 4-D trees: New results.
IEEE Transactions on Computer-Aided Design, 8(11): 1157–1164, 1989.

36. G. Lai, D.S. Fussell, and D.F. Wong. HV/VH trees: A new spatial data structure for fast region queries. In
Proceedings of the 30th Design Automation Conference, Dallas, Texas, pp. 43–47, 1993.

37. G. Lai, D.S. Fussell, and D.F.Wong. Hinted quad trees for VLSI geometry DRC based on efficient searching
for neighbors. IEEE Transactions on Computer-Aided Design, 15(3): 317–324, 1996.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C004 Finals Page 72 24-9-2008 #19

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 73 23-9-2008 #2

5 Basic Algorithmic
Techniques

Vishal Khandelwal and Ankur Srivastava

CONTENTS

5.1 Basic Complexity Analysis .73
5.2 Greedy Algorithms .75
5.3 Dynamic Programming .76
5.4 Introduction to Graph Theory .77

5.4.1 Graph Traversal/Search .78
5.4.1.1 Breadth First Search .. .78
5.4.1.2 Depth First Search .. .78
5.4.1.3 Topological Ordering .. .79

5.4.2 Minimum Spanning Tree .79
5.4.2.1 Kruskal’s Algorithm.. .80
5.4.2.2 Prim’s Algorithm .80

5.4.3 Shortest Paths in Graphs .80
5.4.3.1 Dijkstra’s Algorithm .81
5.4.3.2 Bellman Ford Algorithm .81

5.5 Network Flow Methods .82
5.6 Theory of NP-Completeness. .84
5.7 Computational Geometry .85

5.7.1 Convex Hull .85
5.7.2 Voronoi Diagrams and Delaunay Triangulation .. .86

5.8 Simulated Annealing .86
References .87

This chapter provides a brief overview of some commonly used general concepts and algorithmic
techniques. The chapter begins by discussing ways of analyzing the complexity of algorithms, fol-
lowed by general algorithmic concepts like greedy algorithms and dynamic programming. This is
followed by a comprehensive discussion on graph algorithms including network flow techniques.
This is followed by discussions on NP completeness and computational geometry. The chapter ends
with the description of the technique of simulated annealing.

5.1 BASIC COMPLEXITY ANALYSIS

An algorithm is essentially a sequence of simple steps used to solve a complexproblem.An algorithm
is considered good if its overall runtime is small and the rate at which this runtime increases with
the problem size is small. Typically, this runtime complexity is analytically measured/modeled as a
function of the total number of elements in the input problem. To make this analysis simpler, several
notations and conventions have been developed.

73

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 74 23-9-2008 #3

74 Handbook of Algorithms for Physical Design Automation

c2h (n)

c1h (n)

f (n)

nn0

f (n)

n0

ch(n)
f (n)

nn0

ch(n)

O -notation Ω-notationΘ-notation

FIGURE 5.1 Complexity analysis.

�-Notation
For a function h(n),�[h(n)] represents the set of all functions that satisfy the following:

�[h(n)] = { f (n): there exist positive constants c1 and c2 and an n0 such that

0 ≤ c1h(n) ≤ f (n) ≤ c2h(n) ∀ n ≥ n0}

Conceptually, the set of functions f (n) are sandwiched between c1h(n) and c2h(n). In such scenarios,
h(n) is said to be the asymptotically tight bound (see Figure 5.1) for f (n). Therefore, if an algorithm
has a complexity of f (n) (takes f (n) steps to execute), then its complexity could be classified as
�[h(n)].
O-Notation
For a function h(n),O[h(n)] represents a set of functions that satisfy the following:

O[h(n)] = { f (n): there exist positive constants c and an n0 such that

0 ≤ f(n) ≤ ch(n) ∀ n ≥ n0}

The O-notation represents an upper bound (see Figure 5.1) for the set of functions f (n). Therefore,
an algorithm with complexity f (n) could be classified as an algorithm with complexity O[h(n)].
�-Notation
For a function h(n),�[h(n)] represents a set of functions that satisfy the following:

�[h(n)] = { f (n): there exist positive constants c and an n0 such that

0 ≤ ch(n) ≤ f (n) ∀ n ≥ n0}

The �-notation represents a lower bound (see Figure 5.1) for the set of functions f (n).

EXAMPLE

Analysis of the Complexity of Sort

Sort (Array:A, size:N):
last = N
While last >= 1

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 75 23-9-2008 #4

Basic Algorithmic Techniques 75

max = A[1]
max-location = 1
For i = 1 to last

If (A[i] > max)
max = A[i]
max-location = i

temp = A[max-location]
A[max-location] = A[last]
A[last] = temp
last = last − 1

Return A

The outer while loop runs N times. For the first time the inner loop runs N times, followed
by N − 1 and then N − 2, etc. So the total number of iterations in this algorithm become N + N −
1 + N − 2 + · · · + 1 = N(N + 1)/2.

Now it can be seen that the algorithmic complexity of sort, f (N) = N(N + 1)/2 is O(N2) and
also �(N2).

5.2 GREEDY ALGORITHMS

An algorithm is defined as a sequence of simple steps that solves a more complicated problem. At
each step, the algorithm makes a decision from a set of choices. Greedy algorithms [1] have the
property of making a choice that looks the best at that time. This may or may not guarantee the
optimality of the final solution. The key advantage of greedy algorithms is simplicity. In this section,
wewill discuss the basic properties that a problemmust have for greedy strategies to yield the optimal
solution. If we can demonstrate the following properties in a problem, then greedymethodswill yield
the optimal solution:

1. Problem can be modeled as a combination of a greedy choice and a smaller subproblem.
2. There exists an optimal solution to the problem in which the greedy choice has been made.
3. Combination of the optimal solution to the subproblem and the greedy choice results in the

optimal solution to the overall problem.

EXAMPLE

Fractional Knapsack Problem

Given a knapsack of a certain sizeW and n items, with the ith item having a value of vi and a quantity
of wi. We would like to fill the knapsack with the maximum valued goods.

The algorithm is as follows:

1. Sort the items in decreasing order of vi/wi.
2. Start from the first item in the list and pick as much as you can.
3. If space still left, then go to the next item and repeat.

Note that we select as much as possible of the most valuable item (largest vi/wi). This is a greedy step.
The remaining space in the knapsack is filled by the remaining items. This constitutes the subproblem.
It can be shown that the above three properties hold for the fractional knapsack problem and therefore it
is solvable optimally using greedy strategies.

There are many problems (including the 0–1 generalization of the knapsack problem where we are
forced to choose the entire item or none at all) where a greedy scheme cannot guarantee optimality. In

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 76 23-9-2008 #5

76 Handbook of Algorithms for Physical Design Automation

such scenarios, greedy schemes are usually employed as heuristics resulting in quick but good solutions
to the problem, although not provably optimal.

5.3 DYNAMIC PROGRAMMING

The technique of dynamic programming (DP) [1] essentially is a way of utilizing the availability
of cheap memory to improve the runtime of algorithms. This technique was invented by Richard
Bellman in 1953. Beforewe go into the details of this technique, let us discuss the following sequence
of steps for solving a problem:

1. Break the problem into smaller subproblems.
2. Solve the smaller subproblems optimally.
3. Combine the optimal solutions to the smaller subproblems to get a solution to the original

problem.

Now the term optimal substructure means that the optimal solution to the subproblems can be
used to generate the optimal solution to the overall problem. If indeed this is true then the above-
mentioned sequence of steps for solving a problem must generate the optimal solution to the overall
problem. DP also generates the optimal solution using the same principle. Let us illustrate the DP
philosophy using an example.

EXAMPLE

Generation of the N th Fibonacci Number

Solution

A simple way of generating the N th Fibonacci number could be as follows:

FIBONACCI(N)
If N = 0 or 1

then return N
Else

return FIBONACCI(N−1) + FIBONACCI(N−2)

Note that this problem demonstrates optimal substructure because the optimal solution to the
problem of size N can be generated by the optimal solution for subproblem of size N − 1 and N − 2.
The complexity of this algorithm could be analyzed as follows. Let T(N) represent the complexity
of optimally solving a problem of size N . So

T(N) = T(N − 1) + T(N − 2) for N > 1

It could be shown that T(N) is an exponential function of N , which clearly is impractical for
large problems. Nonetheless, from close inspection, we find that to solve the subproblem of size
N − 1, we will inevitably solve a subproblem of size N − 2. This property is called overlapping
subproblems. Existence of overlapping subproblems could be utilized to improve the complexity of
the above algorithm. Basically, every time a subproblem of a certain size is encountered for the first
time, its optimal solution could be stored. Next time, if the optimal solution to this subproblem is
needed, it could simply be accessed from memory. Using such techniques, a modified algorithm for
Fibonacci numbers is as follows:

MODIFIED FIBONACCI(N)
For i = 1 to N

M[i] = −1
Function Fib(N)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 77 23-9-2008 #6

Basic Algorithmic Techniques 77

If M[N] ! = −1
M[N] = Fib(N−1) + Fib(N−2)

return M[N]

In this algorithm, the array M stores the optimal solution (Fibonacci values). Whenever the
solution of a subproblem is needed, it could be simply read from this array without having to
perform the whole computation again from scratch. This technique is called memoization. It could
be seen that the complexity of this algorithm is no longer exponential.

Although the Fibonacci example is not an optimization problem, it illustrates the concept behind
DP quite well. DP is essentially a divide-and-conquer approach in which larger complex problems
are subdivided in simpler subproblems. The existence of the optimal substructure property ensures
that optimality of the overall problem will be maintained. Furthermore, overlapping subproblems
could be stored in memory (memoization) for improving the runtime complexity of the algorithm.
DP-based approaches for a given problem could be developed as follows:

1. Express the overall problem in the form of subproblems.
2. Investigate if the optimal substructure property holds.
3. Investigate the existence of overlapping subproblems.
4. Develop a memoization-based approach in which the solutions to overlapping subproblems

are stored in memory, hence improving the computational complexity.

Several physical design/synthesis problems including buffer insertion for wiring trees and
technology mapping could be solved optimally using DP [5].

5.4 INTRODUCTION TO GRAPH THEORY

Graph theory [1,2] is believed to have begun in the year 1736 with the publication of the solution to
the Konigsberg bridge problem, developed by Euler. A graph is characterized byG = (V ,E), where
V is the set of vertices and E is the set of edges between them (see Figure 5.2). These edges could
either be directed (leading to a directed graph) or undirected (undirected graph). Graphs provide an
excellent way to abstract various problems in physical synthesis and design. Combinational circuits
are typically modeled as directed acyclic graphs and placement netlists are also modeled as graphs.

Definition 1 Path: A sequence of vertices and edges in which no vertex is repeated.

Definition 2 Cycle: A sequence of vertices v0, v1, v2, . . . , vn where vn = v0 and all other vertices
are different.

TreePath Cycle

FIGURE 5.2 Examples of graphs.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 78 23-9-2008 #7

78 Handbook of Algorithms for Physical Design Automation

5.4.1 GRAPH TRAVERSAL/SEARCH

Searching a graph is the process of hopping from one vertex to the other in search for the appropriate
vertex or edge. Graph search is used extensively in physical synthesis and design problems when
a gate of a specific characteristic is being searched. It also finds widespread application in timing
analysis. Two schemes for searching on a graph have been developed

5.4.1.1 Breadth First Search

Given a graphG= (V ,E) and a source vertex s, breadth first search (BFS) systematically investigates
all the vertices that can be reached from s. The algorithm is outlined below:

BFS(G(V,E),s)
For each vertex u ∈ V − {s}

Status[u] = untouched
Distance[u] = ∞

Distance[s] = 0
QUEUE = {s}
While QUEUE! = NULL

u = FRONT(QUEUE) /∗ The function FRONT returns the front
of a queue ∗/

For each vertex v that can be directly reached from u
If Status[v] = untouched

Status[v] = touched
Distance[v] = Distance[u] + 1
ENQUEUE(QUEUE, v)

DEQUEUE(QUEUE) /∗ Remove the Front Vertex from the Queue ∗/
Status[u] = Finished

In this algorithm, the frontier between the discovered and undiscovered vertices proceeds like
a wavefront. Starting from the source, all vertices immediately adjacent to it are investigated. This
is followed by investigation of all vertices adjacent to these and so on. This algorithm finds the
minimum number of edges between the source s and the vertices that are reachable from s (this
information gets stored in the array Distance). If a vertex cannot be reached then its distance from
the source is infinity.

5.4.1.2 Depth First Search

Unlike BFS that proceeds as a wavefront, depth first search (DFS) investigates deeper in the graph
till it cannot go any further. At this point, it backtracks to the nearest vertex and investigates its
neighbors once again in a depth first manner. This process continues till no further vertices can be
explored. The algorithm is outlined below:

DFS(G(V,E)) Touch-DFS(u)
For each vertex u Status[u] = touched

Status[u] = untouched Time = Time + 1
Time = 0 Starting-Time[u] = Time
For each vertex u For each v that can be reached from u

If Status[u] = untouched If Status[v] = untouched

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 79 23-9-2008 #8

Basic Algorithmic Techniques 79

Touch-DFS(u) Touch-DFS(v)
Status[u] = finished
Time = Time + 1
Finishing-Time[u] = Time

As indicated in the algorithm above, we start with a vertex and investigate deeper into the
neighborhood till we cannot go any further. At this point, we go one level above to the previous
vertex and investigate deep into the graph once again. A vertex is deemed finished if all the vertices
adjacent to it have been touched in a depth first manner. Note that Starting-Time and Finishing-Time,
respectively, indicate the time stamp at which we begin investigating a vertex and at which we have
investigated its entire neighborhood.

The runtime complexity of both BFS and DFS is O(|V | + |E|).

5.4.1.3 Topological Ordering

Definition 3 Directed Acyclic Graph (DAG): A directed graph G = (V ,E) in which there are no
directed cycles.

Directed acyclic graphs can be used to model most combinational circuits and therefore are
particularly important for VLSI computer-aided design (CAD). Topological ordering in DAGs is an
ordering v0, . . . , vn of all vertices in V such that for a given vertex vi, all the vertices in V that have a
path either directly or indirectly to vi must come before vi in this ordering.

Topological ordering can be generated using DFS by sorting the nodes in decreasing order of
their finishing times.

5.4.2 MINIMUM SPANNING TREE

Let us suppose we have an undirected graphG = (V ,E)where each edge (u, v) has a weightw(u, v).
A spanning tree on such a graph is defined as follows:

Definition 4 Spanning tree: A spanning tree of a graph G = (V ,E) is a subgraph G′ = (V ,E ′),
which has the same vertices as G and the edges E ′ ⊆ E such that G′ forms a tree.

A minimum spanning tree (MST) of a graph G is a spanning tree with the minimum total
weight (of all edges) among all possible spanning trees of G (see Figure 5.3). There are two popular
algorithms for finding the MST of a graph: Kruskal’s algorithm and Prim’s algorithm.

Initial graph MST

4

15

3
25

2

1

FIGURE 5.3 Minimum spanning tree.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 80 23-9-2008 #9

80 Handbook of Algorithms for Physical Design Automation

5.4.2.1 Kruskal’s Algorithm

Kruskal’s algorithm proceeds by starting with a set of disconnected trees (a forest) of vertices in G
and merges them in such a way that we eventually get the MST of G. The algorithm is as follows:

Kruskal(G=(V,E))
Each node in G represents a trivial Tree.
Sort all edges in E in non-decreasing order of weights
For each edge (u,v) ∈ E in the non-decreasing order

If u and v are in separate trees
Merge the two trees into one by connecting them

through the edge (u,v)

The algorithm starts by assigning all nodes to separate trees. Then it traverses the edges in
nondecreasing order of their weights. If an edge merges two separate trees then it is used to create a
larger tree otherwise it is discarded. The algorithm terminates after generating the MST.

5.4.2.2 Prim’s Algorithm

Unlike Kruskal’s algorithm, that maintains multiple trees and merges them iteratively, Prim’s algo-
rithm has only one tree and merges more vertices in this tree till the MST is created. The algorithm
is outlined as follows:

Prim(G=(V,E))
Start with any vertex in V and assign it to a Tree T
While there exist vertices in G not in T

Find a vertex in G-T which is closest to T
Expand T by including this vertex

MSTs are used extensively in physical design to predict the wirelengh of interconnects when the
placement information is available and routing is not known.

5.4.3 SHORTEST PATHS IN GRAPHS

The problem of shortest paths in graphs has several important practical applications. Given a graph
G = (V ,E) (directed or undirected) and edge weights, try to find the shortest weighted path from
a given source s to all other vertices (single-source shortest path problem) or between all pair of
vertices. The overall weight of a path is simply the sum of all the edge weights on it.

Let us start the discussion with the single-source shortest path problem. Given a source s, we
would like to find the shortest path to all other vertices in the graph. Definition of a shortest path
between two vertices becomes ambiguous when there exists a negative weight cycle between the
source and the destination. We can simply find a shorter route by indefinitely going around this
negative cycle (and therefore reducing the overall path weight). We describe two algorithms for
finding the shortest paths: Dijkstra’s algorithm and Bellman Ford algorithm. Dijkstra’s algorithm
assumes all the edge weights are positive and therefore there are no negative weighted cycles either.
On the other hand, Bellman Ford algorithm can handle negative weighted edges and also detect the
existence of negative weighted cycles (a case where shortest path is not defined).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 81 23-9-2008 #10

Basic Algorithmic Techniques 81

5.4.3.1 Dijkstra’s Algorithm

This algorithm takes a weighted graph G with positive edge weights, a source vertex, and generates
the shortest weighted path solution. It initializes two sets S and S′. The set S consists of all vertices in
Gwhose shortest path from s has been calculated and the set S′ consists of all the remaining vertices.
Initially, S = {s} and S′ = V − {s}. We also initialize a label array L, which stores the labeling for
the vertices. The moment a vertex u is included in the set S, its labeling L[u] is exactly the weight of
the shortest path between s and u. Initially, L[s] = 0 and L[u] = ∞ ∀ u ∈ V − {s}. In the next step,
the labels of all the vertices v in S′, which are adjacent to a vertex u in S are updated as follows. If
L[u] +weight(u, v) ≤ L[v] then L[v] = L[u] +weight(u,v). After updating all the labels, the vertex
in S′ that has the smallest label is chosen and moved to the set S. At this point, the label of this node
corresponds to the weight of the shortest path from s. These sequence of steps are continued till S′

is null. The algorithm is formally outlined below:

Dijkstra(G=(V,E))
S = {s}, S′ = V − {s}
L[s] = 0, L[u] = ∞ ∀ u ∈ V − {s}
L[u] = weight[su] ∀ u adjacent to s
While S′ ! = NULL

Find Minimum L[u] ∀ u in S′

S = SU {u}
S′ = S′ − {u}
For each v in S′ that is adjacent to u

If L[v] ≥ L[u] + weight(uv)
L[v] = L[u] + weight(uv)

It could be seen that this is a greedy algorithm because at each step a greedy choice is executed
(the vertex with the smallest labeling is chosen). This greedy algorithm indeed results in the optimal
solution.

5.4.3.2 Bellman Ford Algorithm

Dijkstra’s algorithm cannot handle edge weights that are negative. Bellman Ford algorithm not only
handles negative edge weights but also detects the existence of negative weighted cycles (that are
reachable from the source s). The algorithm is iterative in nature. Once again it has a label array L.
L[s] is initializes to 0 and infinity for all other vertices. The algorithm is outlined below:

Bellman Ford (G=(V,E))
L[s] = 0, L[u] = ∞ ∀ u ∈ V − {s}
For i = 1 to Number of Vertices

For each edge (u,v) ∈ E
If L[v] ≥ L[u] + weight(uv)

L[v] = L[u] + weight(uv)

The algorithm is quite self-explanatory. It could be proved that if there are no negative
weighted cycles reachable from s then the array L has the shortest path to each vertex in the graph.
Detection of negative weighted cycles (reachable from s) can be done by the following simple
procedure:

Negative Cycle Detection
Let L be the labeling of all nodes after application

of Bellman Ford

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 82 23-9-2008 #11

82 Handbook of Algorithms for Physical Design Automation

For each edge (u,v) ∈ E
If L[v] > L[u] + weight(uv)

Return: Negative Weighted Cycle Exists

The all pair shortest path problem tries to find the shortest paths between all vertices. Of course,
one approach is to execute the single-source shortest path algorithm for all the nodes. Much faster
algorithms like Floyd Warshall algorithm, etc. have also been developed.

5.5 NETWORK FLOW METHODS

Definition 5 A network is a directed graph G = (V ,E) where each edge (u, v) ∈ E has a capacity
c(u, v) ≥ 0. There exists a node/vertex called the source, s and a destination/sink node, t. If an edge
does not exist in the network then its capacity is set to zero.

Definition 6 A flow in the network G is a real value function f : VXV → R. This has the following
properties:

1. Capacity constraint: Flow f (u, v) ≤ c(u, v) ∀ u, v ∈ V
2. Flow conservation: ∀ u ∈ V − {s, t},�v∈vf (u, v) = 0
3. Skew symmetry: ∀ u, v ∈ V , f (u, v) = −f (v, u)

The value of a flow is typically defined as the amount of flow coming out of the source to all
the other nodes in the network. It can equivalently be defined as the amount of flow coming into the
sink from all the other nodes in the network. Figure 5.4 illustrates an example of network flow.

Definition 7 Maximum flow problem is defined as the problem of finding a flow assignment to
the network such that it has the maximum value (note that a flow assignment must conform to the
flow properties as outlined above).

Network flow [4] formulations have large applicability in various practical problems including
supply chain management, airline industry, and many others. Several VLSI CAD applications like
low power resource binding, etc. can be modeled as instances of network flow problems. Network
flow has also been applied in physical synthesis and design problems like buffer insertion.

Next, an algorithm is presented that solves the maximum flow problemoptimally. This algorithm
was developed by Ford and Fulkerson. This is an iterative approach and starts with f (u, v) = 0 for

Source: s

Cap = 1

Cap = 1 Cap = 1

Cap = 1

Cap = 2

Cap = 2

Destination: t

Flow = 1

Flow = 1

Flow = 1

Flow = 1

Flow = 1

Flow = 0

FIGURE 5.4 Network flow.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 83 23-9-2008 #12

Basic Algorithmic Techniques 83

all vertex pairs (u, v). At each step/iteration, the algorithm finds a path from s to t that still has
available capacity (this is a very simple explanation of a more complicated concept) and augments
more flow along it. Such a path is therefore called the augmenting path. This process is repeated till
no augmenting paths are found. The basic structure of the algorithm is as follows:

Ford-Fulkerson (G,s,t)
For each vertex pair (u,v)

f(u,v) = 0
While there is an augmenting path p from s to t

Send more flow along this path without violating
the capacity of any edge

Return f

At any iteration, augmenting path is not simply a path of finite positive capacity in the graph.
Note that capacity of a path is defined by the capacity of the minimum capacity edge in the path. To
find an augmenting path, at a given iteration, a new graph called the residual graph is initialized. Let
us suppose that at a given iteration all vertex pairs uv have a flow of f (u, v). The residual capacity is
defined as follows:

cf(u, v) = c(uv) − f (u, v)

Note that the flow must never violate the capacity constraint. Conceptually, residual capacity is
the amount of extra flow we can send from u to v. A residual graph Gf is defined as follows:

Gf = (V ,Ef) where Ef = {(u, v),∈ V X V : cf(u, v) > 0}

The Ford Fulkerson method finds a path from s to t in this residual graph and sends more flow
along it as long as the capacity constraint is not violated. The run-time complexity of Ford Fulkerson
method is O(E∗fmax) where E is the number of edges and fmax is the value of the maximum flow.

Theorem 1 Maximum Flow Minimum Cut: If f is a flow in the network then the following
conditions are equivalent

1. f is the maximum flow
2. Residual network contains no augmenting paths
3. There exists a cut in the network with capacity equal to the flow f

A cut in a network is a partitioning of the nodes into two: with the source s on one side and
the sink t on another. The capacity of a cut is the sum of the capacity of all edges that start in the s
partition and end in the t partition.

There are several generalizations/extensions to the concept of maximum flow presented above.

Multiple sources and sinks: Handling multiple sources and sinks can be done easily. A super source
and a super sink node can be initialized. Infinite capacity edges can then be added from super source
to all the sources. Infinite capacity edges can also be added from all the sinks to the super sink.
Solving the maximum flow problem on this modified network is similar to solving it on the original
network.

Mincost flow: Mincost flow problems are of the following type. Assuming we need to pay a price for
sending each unit of flow on an edge in the network. Given the cost per unit flow for all edges in the
network, we would like to send the maximum flow in such a way that it incurs the minimum total

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 84 23-9-2008 #13

84 Handbook of Algorithms for Physical Design Automation

cost. Modifications to the Ford Fulkerson method can be used to solve the mincost flow problem
optimally.

Multicommodity flow: So far the discussion has focused on just one type of flow. Several times many
commodities need to be transported on a network of finite edge capacities. The sharing of the same
network binds these commodities together.

These different commodities represent different types of flow. A version of the multicommodity
problem could be described as follows. Given a network with nodes and edge capacities/costs,
multiple sinks and sources of different types of flow, satisfy the demands at all the sinks while
meeting the capacity constraint and with the minimum total cost. Themulticommodity flow problem
is NP-complete and has been an active topic of research in the last few decades.

5.6 THEORY OF NP-COMPLETENESS

For algorithms to be computationally practical, it is typically desired that their order of complexity
be polynomial in the size of the problem. Problems like sorting, shortest path, etc. are examples for
which there exist algorithms of polynomial complexity. A natural question to ask is “Does there
exist a polynomial complexity algorithm for all problems?”. Certainly, the answer to this question is
no because there exist problems like halting problem that has been proven to not have an algorithm
(much less a polynomial time algorithm). NP-complete [3] problems are the ones for which we do
not know, as yet, if there exists a polynomial complexity algorithm. Typically, the set of all problems
that are solvable in polynomial time is called P. Before moving further, we would like to state that
the concept of P or NP-complete is typically developed around problems for which the solution is
either yes or no, a.k.a., decision problems. For example, the decision version for the maximum flow
problem could be “Given a network with finite edge capacities, a source, and a sink, can we send at
least K units of flow in the network?” One way to answer this question could be to simply solve the
maximum flow problem and check if it is greater than K or not.

Polynomial time verifiability: Let us suppose an oracle gives us the solution to a decision problem. If
there exists a polynomial time algorithm to validate if the answer to the decision problem is yes or no
for that solution, then the problem is polynomially verifiable. For example, in the decision version
of the maximum flow problem, if an oracle gives a flow solution, we can easily (in polynomial time)
check if the flow is more than K (yes) or less than K (no). Therefore, the decision version of the
maximum flow problem is polynomially verifiable.

NP class of problems: The problems in the set NP are verifiable in polynomial time. It is trivial to
show that all problems in the set P (all decision problems that are solvable in polynomial time) are
verifiable in polynomial time. Therefore, P ⊆ NP. But as of now it is unknown whether P = NP.

NP-complete problems: They have two characteristics:

1. Problems can be verified in polynomial time.
2. These problems can be transformed into one another using a polynomial number of steps.

Therefore, if there exists a polynomial time algorithm to solve any of the problems in this set,
each and every problem in the set becomes polynomially solvable. It just so happens that to date
nobody has been able to solve any of the problems in this set in polynomial time. Following is an
procedure for proving that a given decision problem is NP-complete:

1. Check whether the problem is in NP (polynomially verifiable).
2. Select a known NP-complete problem.
3. Transform this problem in polynomial steps to an instance of the pertinent problem.
4. Illustrate that given a solution to the known NP-complete problem, we can find a solution

to the pertinent problem and vice versa.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 85 23-9-2008 #14

Basic Algorithmic Techniques 85

If these conditions are satisfied by a given problem then it belongs to the set of NP-complete
problems.

The first problem to be proved NP-complete was Satisfiability or SAT by Stephen Cook in his
famous 1971 paper “The complexity of theorem proving procedures,” in Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing. Shortly after the classic paper by Cook, Richard
Karp proved several other problems to be NP-complete. Since then the set of NP-complete problems
has been expanding. Several problems in VLSI CAD including technology mapping on DAGs, gate
duplication on DAGs, etc. are NP-complete.

EXAMPLE

Illustrative Example: NP-Completeness of 3SAT

3SAT: Given a set of m clauses anded together F = C1 · C2 · C3 · · · · · Cm. Each clause Ci is a logical
OR of at most three boolean literals Ci = (a+ b+ ō) where ō is the negative phase of boolean variable
o. Does there exist an assignment of 0/1 to each variable such that F evaluates to 1? (Note that this is a
decision problem.)

Proof of NP-Completeness: Given an assignment of 0/1 to the variables, we can see if each clause eval-
uates to 1. If all clauses evaluate to 1 thenF evaluates to 1 else it is 0. This is a simple polynomial time algo-
rithm for verifying the decision given a specific solution or assignment of 0/1 to the variables. Therefore,
3SAT is in NP. Now let us transform the well-known NP-complete problem SAT to an instance of 3SAT.

SAT: Given a set of m clauses anded together G = C1 · C2 · C3 · · · · · Cm. Each clause Ci is a logical
OR of boolean literals Ci = (a + b + ō + e + f + · · ·). Does there exist an assignment of 0/1 to each
variable such that G evaluates to 1. (Note that this is a decision problem.)

To perform this tranformation, we look at each clause Ci in the SAT problem with more than three
literals. LetCi = (x1 + x2 + x3 + · · · + xk). This clause is replaced by k−2 new clauses eachwith length 3.
For this to happen, we introduce k−3 new variables ui, . . . , uk−3. These clauses are constructed as follows.

Pi = (x1 + x2 + u1)(x3 + ū1 + u2)(x4 + ū2 + u3)(x5 + ū3 + u4) · · · (xk−1 + xk + ūk−3)

Note that if there exists an assignment of 0/1 to x1, . . . , xk for which Ci is 1, then there exists an
assignment of 0/1 to u1, . . . , uk−3 such that Pi is 1. If Ci is 0 for an assignment to x1, . . . , xk , then there
cannot exist an assignment to u1, . . . , uk−3 such that Pi is 1. Hence, we can safely replace Ci by Pi for
all the clauses in the original SAT problem with more than three literals. An assignment that makes Ci 1
will make Pi 1. An assignment that makes Ci as 0 will make Pi as 0 as well. Therefore, replacing all the
clauses in SAT by the above-mentioned transformation does not change the problem. Nonetheless, the
transformed problem is an instance of the 3SAT problem (because all clauses have less than or equal to
three literals). Also, this transformation is polynomial in nature. Hence, 3 SAT is NP-complete.

5.7 COMPUTATIONAL GEOMETRY

Computational geometry dealswith the study of algorithms for problems pertaining to geometry. This
theory finds application in many engineering problems includingVLSI CAD, robotics, graphics, etc.

5.7.1 CONVEX HULL

Given a set of n points on a plane, each characterized by its x and y coordinates. Convex hull is the
smallest convex polygon P for which these points are either in the interior or on the boundary of
the polygon (see Figure 5.5). We now present an algorithm called Graham’s scan for generating a
convex hull of n points on a plane.

Graham Scan(n points on a plane)
Let p0 be the point with minimum y coordinate
Sort the rest of the points p1, . . ., pn−1 by the polar

angle in counterclockwise order w.r.t. p0

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 86 23-9-2008 #15

86 Handbook of Algorithms for Physical Design Automation

Convex hull Voronoi diagrams Delaunay triangulation

FIGURE 5.5 Computational geometry.

Initialize Stack S
Push(p0,S)
Push(p1,S)
Push(p2,S)
For i = 3 to n−1

While (the angle made by the next to top point on S,
top point on S and pi makes a non left turn)

Pop(S)
Push(pi, S)

Return S

The algorithm returns the stack S that contains the vertices of the convex hull. Basically, the
algorithm starts with the bottom-most point p0. Then it sorts all the other points in increasing order
of the polar angle made in counterclockwise direction w.r.t p0. It then pushes p0, p1, and p2 in the
stack. Starting from p3, it checks if top two elements and the current point pi forms a left turn or not.
If it does then pi is pushed into the stack (implying that it is part of the hull). If not then that means
the current stack has some points not on the convex hull and therefore needs to be popped. Convex
hulls, just like MSTs, are also used in predicting the wirelength when the placement is fixed and
routing is not known.

5.7.2 VORONOI DIAGRAMS AND DELAUNAY TRIANGULATION

A Voronoi diagram is a partitioning of a plane with n points (let us call them central points) into
convex polygons (see Figure 5.5). Each convex polygon has exactly one central point. Also, any
point within the convex polygon is closest to the central point associated with the polygon.

Delaunay triangulation is simply the dual of Voronoi diagrams. This is a triangulation of central
points such that none of the central points are inside the circumcircle of a triangle (see Figure 5.5).

Although we have defined these concepts for a plane, they are easily extendible to multiple
dimensions as well.

5.8 SIMULATED ANNEALING

Simulated annealing is a general global optimization scheme. This technique is primarily inspired
from the process of annealing (slow cooling) in metallurgy where the material is cooled slowly to
form high quality crystals. The simulated annealing algorithm basically follows a similar principle.
Conceptually, it has a starting temperature parameter that is usually set to a very high quantity. This

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 87 23-9-2008 #16

Basic Algorithmic Techniques 87

temperature parameter is reduced slowly using a predecided profile. At each temperature value, a
set of randomly generated moves span the solution space. The moves basically change the current
solution randomly.A move is accepted if it generates a better solution. If a move generates a solution
quality that is worse than the current one then it can either be accepted or rejected depending on
a random criterion. Essentially, outright rejection of bad solutions may result in the optimization
process getting stuck in local optimum points. Accepting some bad solutions (and remembering the
best solution found so far) helps us get out of these local optimums and move toward the global
optimum. At a given temperature, a bad solution is accepted if the probability of acceptance is
greater than the randomness associated with the solution. The pseudocode of simulated annealing is
as follows:

Simulated Annealing
s := Initial Solution s0; c = Cost(s); T = Initial Temperature Tmax
current best solution = s
While (T > Final Temperaure Tmin)

K = 0
While (K <= Kmax)

Accept = 0
s1 = Randomly Perturb Solution(s)
If(cost(s1) < cost(s))

Accept = 1
Else

r = random number between [0,1] with uniform
probability

if (r < exp(−L(cost(s) − cost(s1))/T))
\∗ Here L is a constant ∗\
Accept = 1

If Accept = 1
s = s1
If (cost(s1) < cost(current best solution))

current best solution = s1
k = k + 1

T = T∗ (scaling ά)

Simulated annelaing has found widespread application in several physical design problems like
placement, floorplanning, etc. [6]. Many successful commerical and academic implementations
of simulated annealing-based gate placement tools have made a large impact on the VLSI CAD
community.

REFERENCES
1. T.H. Cormen, C.L. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms, The MIT Press,

Cambridge, Massachusetts, 2001.
2. G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graph Theory, McGraw-Hill, Singapore,

1993.
3. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,

W.H. Freeman and Company, New York, 1999.
4. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice

Hall, Englewood Cliffs, New Jersey, 1993.
5. G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, New York, 1994.
6. M. Sarrafzadeh and C.K. Wong, An Introduction to VLSI Physical Design, McGraw-Hill, New York, 1996.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C005 Finals Page 88 23-9-2008 #17

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 89 23-9-2008 #2

6 Optimization Techniques for
Circuit Design Applications

Zhi-Quan Luo

CONTENTS

6.1 Introduction.. .89
6.2 Optimization Concepts. .90

6.2.1 Convex Sets .90
6.2.2 Convex Cones .91
6.2.3 Convex Functions .91
6.2.4 Convex Optimization Problems .92

6.3 Lagrangian Duality and the Karush–Kuhn–Tucker Condition .94
6.3.1 Lagrangian Relaxation .96
6.3.2 Detecting Infeasibility. .98

6.4 Linear Conic Optimization Models .99
6.4.1 Linear Programming .99
6.4.2 Second-Order Cone Programming .99
6.4.3 Semidefinite Programming . 100

6.5 Interior Point Methods for Linear Conic Optimization.. 100
6.6 Geometric Programming.. 102

6.6.1 Basic Definitions . 102
6.6.2 Convex Reformulation of a GP . 102
6.6.3 Gate Sizing as a GP . 103

6.7 Robust Optimization . 104
6.7.1 Robust Circuit Optimization under Process Variations. 105

Acknowledgment .. 108
References . 108

6.1 INTRODUCTION

This chapter describes fundamental concepts and theory of optimization that are most relevant to
physical design applications. The basic convex optimization models of linear programming (LP),
second-order cone programming, semidefinite programming (SDP), and geometric programming
are reviewed, as are the concept of convexity, optimality conditions, and Lagrangian relaxation.
Finally, the concept of robust optimization is introduced and a circuit optimization example is used
to illustrate its effectiveness.

The goal of this chapter is to provide an overview of these developments and describe the basic
optimization concepts, models, and tools that are most relevant to circuit design applications, and
in particular, to expose the reader to the types of nonlinear optimization problems that are “easy.”
Generally speaking, any problem that can be formulated as a linear program falls into this category.
Thanks to the results of research in the last few years, there are also classes of nonlinear programs
that can now be solved in computationally efficient ways.

89

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 90 23-9-2008 #3

90 Handbook of Algorithms for Physical Design Automation

Until recently, the work-horse algorithms for nonlinear optimization in engineering design have
been the gradient descent method, Newton’s method, and the method of least squares. Although
these algorithms have served their purpose well, they suffer from slow convergence and sensitivity
to the algorithm initialization and stepsize selection, especially when applied to ill-conditioned or
nonconvex problem formulations. This is unfortunate because many design and implementation
problems in circuit design applications naturally lead to nonconvex optimization formulations, the
solution of which by the standard gradient descent or Newton’s algorithm usually works poorly.
The main problem with applying the least squares or the gradient descent algorithms directly to
the nonconvex formulations is slow convergence and local minima. One powerful way to avoid
these problems is to derive an exact convex reformulation of the original nonconvex formulation.
Once a convex reformulation is obtained, we can be guaranteed of finding the globally optimal
design efficiently without the usual headaches of stepsize selection, algorithm initialization, and
local minima. There has been a significant advance in the research of interior point methods [8] and
conic optimization [11] over the last two decades, and the algorithmic framework of interior point
algorithms for solving these convex optimization models are presented.

For some engineering applications, exact linear or convex reformulation is not always possible,
especially when the underlying optimization problem is NP-hard. In such cases, it may still be
possible to derive a tight convex relaxation and use the advanced conic optimization techniques to
obtain high-quality approximate solutions for the original NP-hard problem. One general approach
to derive a convex relaxation for an nonconvex optimization problem is via Lagrangian relaxation.
For example, some circuit design applications may involve integer variables that are coupled by
a set of complicating constraints. For these problems, we can bring these coupling constraints to
the objective function in a Lagrangian fashion with fixed multipliers that are changed iteratively.
This Lagrangian relaxation approach removes the complicating constraints from the constraint set,
resulting in considerably easier to solve subproblems. The problem of optimally choosing dual
multipliers is always convex and is therefore amenable to efficient solution by the standard convex
optimization techniques.

To recognize convex optimization problems in engineering applications, onemust first be familiar
with the basic concepts of convexity and the commonly used convex optimization models. This
chapter starts with a concise review of these optimization concepts and models including linear
programming, second-order cone programming (SOCP), semidefinite cone programming, as well as
geometric programming, all illustrated through concrete examples. In addition, the Karush–Kuhn–
Tucker optimality conditions are reviewed and stated explicitly for each of the convex optimization
models, followed by a description of the well-known interior point algorithms and a brief discussion
of their worst-case complexity. The chapter concludes with an example illustrating the use of robust
optimization techniques for a circuit design problem under process variations.

Throughout this chapter, we use lowercase letters to denote vectors, and capital letters to
denote matrices. We use superscript T to denote (vector) matrix transpose. Moreover, we denote
the set of n by n symmetric matrices by Sn, denote the set of n by n positive (semi) definite matrices
(Sn

++)Sn
+. For two givenmatrices X and Y , we use “X � Y” (X � Y) to indicate that X−Y is positive

(semi)-definite, and X • Y:= ∑
i,j XijYij = tr XYT to indicate the matrix inner product. The Frobenius

norm of X is denoted by ‖X‖F = √
tr XXT. The Euclidean norm of a vector x ∈ �n is denoted ‖x‖.

6.2 OPTIMIZATION CONCEPTS

6.2.1 CONVEX SETS

A set S ⊂ �n is said to be convex if for any two points x, y ∈ S, the line segment joining x and y also
lies in S. Mathematically, it is defined by the following property

θx + (1 − θ)y ∈ S, ∀ θ ∈ [0, 1] and x, y ∈ S.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 91 23-9-2008 #4

Optimization Techniques for Circuit Design Applications 91

Many well-known sets are convex. For example, the unit ball S = {x | ‖x‖ ≤ 1}. However, the unit
sphere S = {x | ‖x‖ = 1} is not convex because the line segment joining any two distinct points is
no longer on the unit sphere. In general, a convex set must be a solid body, containing no holes, and
always curved outward. Other examples of convex sets include ellipsoids, hypercubes, and so on.
In the context of linear programming, the constraining inequalities geometrically form a polyhedral
set, which is easily shown to be convex.

In the real line �, convex sets correspond to intervals (open or closed). The most important
property about convex set is the fact that the intersection of any number (possibly uncountable) of
convex sets remains convex. For example, the set S = {x | ‖x‖ ≤ 1, x ≥ 0} is the intersection of the
unit ball with the nonnegative orthant (�n

+), both of which are convex. Thus, their intersection S is
also convex. The unions of two convex sets are typically nonconvex.

6.2.2 CONVEX CONES

A convex coneK is a special type of convex set that is closed under positive scaling: for each x ∈ K
and each α ≥ 0, αx ∈ K. Convex cones arise in various forms in engineering applications. The most
common convex cones are

1. Nonnegative orthant �n
+

2. Second-order cone (also known as ice-cream cone):

K = SOC(n) = {(t, x) | t ≥ ‖x‖}

3. Positive semidefinite matrix cone

K = Sn
+ = {X | X symmetric and X � 0}

For any convex cone K, we can define its dual cone

K∗ = {x | 〈x, y〉 ≥ 0, ∀ y ∈ K}

where 〈·, ·〉 denotes the inner product operation. In other words, the dual cone K∗ consists of all
vectors y that form a nonobtuse angle with all vectors in K. We will say K is self-dual if K = K∗. It
can be shown that the nonnegative orthant cone, the second-order cone, and the symmetric positive
semidefinite matrix cone are all self-dual. Notice that for the second-order cone, the inner product
operation 〈·, ·〉 is defined as

〈(t, x), (s, y)〉 = ts + xTy, for all (t, x) and (s, y) with t ≥ ‖x‖ and s ≥ ‖y‖

and for the positive semidefinite matrix cone

〈X , Y〉 = X • Y =
∑
i,j

XijYij

6.2.3 CONVEX FUNCTIONS

A function f (x): �n → � is said to be convex if for any two points x, y ∈ �n

f (θx + (1 − θ)y) ≤ θ f (x) + (1 − θ)f (y), ∀ θ ∈ [0, 1]

Geometrically, this means that, when restricted over the line segment joining x and y, the linear
function joining (x, f (x)) and (y, f (y)) always dominates the function f .

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 92 23-9-2008 #5

92 Handbook of Algorithms for Physical Design Automation

There are many examples of convex functions. Any linear function is convex. Other examples
include the commonly seen univariate functions |x|, ex, x2 as well as multivariate functions aTx+ b,
‖Ax‖2, where A, a, and b are given data matrix/vector/constant.We say f is concave if −f is convex.
The entropy function−∑i xi log xi is a concave function over�n

+. If f is continuously differentiable,
then the convexity of f is equivalent to

f (y) ≥ f (x) + ∇f (x)T(y − x), ∀ x, y ∈ �n

In other words, the first-order Taylor series expansion serves as a global under-estimator of f . In
addition, if f is twice continuously differentiable, then the convexity of f is equivalent to the positive
semidefiniteness of its Hessian matrix:*

∇2f (x) � 0, ∀ x ∈ �n

The above criterion shows that a linear function is always convex, while a quadratic function xTPx+
aTx + b is convex if and only if P � 0. Notice that the linear plus the constant term aTx + b do not
have any bearing on the convexity (or the lack of) of f . A function f is said to be concave if −f is
convex.One can think of numerous examples of functionswhich are neither convex nor concave. For
instance, the function x3 is convex over [0,∞) and concave over the region (−∞, 0], but is neither
convex nor concave over �.

Themost important property about convex functions is the fact that they are closed under summa-
tion, positive scaling, and the point-wise maximum operations. In particular, if the {fi}’s are convex,
then so is maxi{fi(x)} (even though it is typically nondifferentiable). A notable connection between
convex set and convex function is the fact that the level sets of any convex function f (x) are always
convex, that is, {x | f (x) ≤ c} is convex for any c ∈ �. The converse is not true, however. For
example, the function f (x) = √|x| is nonconvex, but its level sets are convex.

6.2.4 CONVEX OPTIMIZATION PROBLEMS

Consider a generic optimization problem (in the minimization form)

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , r
x ∈ S

(6.1)

where
f0 is called the objective function (or cost function)
{fi}mi=1 and {hj}rj=1 are called the inequality and equality constraint functions, respectively
S is called a constraint set

In practice, S can be implicitly defined by an oracle such as a user-supplied software. The
optimization variable x ∈ �n is said to be feasible if x ∈ S and it satisfies all the inequality and
equality constraints. A feasible solution x∗ is said to be globally optimal if f (x∗)≤ f (x) for all feasible
x. In contrast, a feasible vector x̄ is said to be locally optimal if there exists some ε > 0 such that
f (x̄) ≤ f (x) for all feasible x satisfying ‖x − x̄‖ ≤ ε.

The optimization problem (Equation 6.1) is said to be convex if (1) the functions fi (i =
0, 1, 2, . . . ,m) are convex; (2) hj(x) are affine functions (i.e., hj is of the form aTj x + bj for some
aj ∈ �n and bj ∈ �); and (3) the set S is convex. Violating any one of the above three conditions will
result in a nonconvex problem. Notice that if we “minimize” to “maximize” and change direction

* The Hessian is essentially the second derivative for a multivariate function.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 93 23-9-2008 #6

Optimization Techniques for Circuit Design Applications 93

of the inequalities from “fi(x) ≤ 0” to “fi(x) ≥ 0,” then Equation 6.1 is convex if and only if all
fi(x)(i = 0, 1, 2, . . . ,m) are concave.

A linear programming problem is one where all of fi(x), {x ∈ 0, . . . ,m} and hj(x), j ∈ {0, . . . , r}
are linear functions, and this is trivially a convex formulation. Linear programs are generally solved
using the simplex method, or by interior point methods. In specific cases, where the linear program
has a specific structure, domain-specific algorithms may be used. For example, the shortest path
problem can be written as a linear program, but is most efficiently solved using graph algorithms.
Other linear programming problems with specific structures are the network flow problem, and an
example of applying network flows to physical design can be seen in Chapter 32.

For a more general example of a convex optimization problem, consider the following entropy
maximization problem:

maximize
n∑
i=1

xi log xi

subject to
n∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, . . . , n

Ax = b, j = 1, 2, . . . , r

where the linear equalities Ax = b may represent the usual moment matching constraints.
Let us now put in perspective the role of convexity in optimization. It is well known that, for the

problem of solving a system of equations, linearity is the dividing line between the easy and difficult
problems.* Once a problem is formulated as a solution to a system of linear equations, the problem
is considered done because we can simply solve it either analytically or using existing numerical
softwares. In fact, there are many efficient and reliable softwares available for solving systems of
linear equations, but none for nonlinear equations. The lack of high-quality softwares for solving
nonlinear equations is merely a reflection of the fact that they are intrinsically difficult to solve.

In contrast, the dividing line between the easy and difficult problems in optimization is no
longer linearity, but rather convexity. Convex optimization problems are the largest subclass of
optimization problems that are efficiently solvable, whereas nonconvex optimization problems are
generically difficult. The theories, algorithms, and software tools for convex optimization problems
have advanced significantly over the last 50 years. There are now (freely downloadable) high-quality
software that can deliver accurate solutions efficiently and reliably without the usual headaches
of initialization, stepsize selection, or the risk of getting trapped in a local minimum. Once an
engineering problem is formulated in a convex manner, it is reasonable to consider it “solved” (or
game over), at least from the engineering perspective.

For any convex optimization problem, the set of global optimal solutions is always convex.
Moreover, every local optimal solution is also a global optimal solution, so there is no danger of being
stuck at a local solution. There are other benefits associated with a convex optimization formulation.
For one thing, there exist highly efficient interior point optimization algorithms whose worst-case
complexity (i.e., the total number of arithmetic operations required to find an ε-optimal solution)
grows gracefully as a polynomial function of the problem data length and log 1/ε. In addition, there
exists an extensive duality theory for convex optimization problems, a consequence of which is the
existence of a computable mathematical certificate for infeasible convex optimization problems. As
a result, well-designed software for solving convex optimization problems typically return either an
optimal solution, or a certificate (in the form of a dual vector) that establishes the infeasibility of
the problem. The latter property is extremely valuable in engineering design because it enables us to
identify constraints which are very restrictive.

* These notions can be made precise using the computational complexity theory; for example, NP-hardness results.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 94 23-9-2008 #7

94 Handbook of Algorithms for Physical Design Automation

6.3 LAGRANGIAN DUALITY AND THE KARUSH–KUHN–TUCKER
CONDITION

Consider the following (not necessarily convex) optimization problem:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , r
x ∈ S

(6.2)

Let p∗ denote the global minimum value of Equation 6.2. For symmetry reason, we will call Equa-
tion 6.2 the primal optimization problem and x the primal vector. Introducing a dual variable λ ∈ �m

and ν ∈ �r , we can form the Lagrangian function

L(x, λ, ν) := f0(x) +
m∑
i=1

λifi(x) +
r∑
j=1

νjhj(x)

The so-called dual function d(λ, ν) associated with Equation 6.2 is defined as

d(λ, ν) := min
x∈S

L(x, λ, ν)

Notice that, as a point-wise minimum of a family of linear functions (in (λ, ν)), the dual function
d(λ, ν) is always concave. We will say (λ, ν) is dual feasible if λ ≥ 0 and d(λ, ν) is finite. The
well-known weak duality result says the following.

Proposition 1 For any primal feasible vector x and any dual feasible vector (λ, ν), there holds

f (x) ≥ d(λ, ν)

In other words, for any dual feasible vector (λ, ν), the dual function value d(λ, ν) always serves as a
lower bound on the primal objective value f (x). Notice that x and (λ, ν) are chosen independent of
each other (so long as they are both feasible). Thus, p∗ ≥ d(λ, ν) for all dual feasible vector (λ, ν).
The largest lower bound for p∗ can be found by solving the following dual optimization problem:

maximize d(λ, ν)

subject to λ ≥ 0, ν ∈ �r (6.3)

Notice that the dual problem (Equation 6.3) is always convex regardless of the convexity of the
primal problem (Equation 6.2), because d(λ, ν) is concave. Let us denote the maximum value of
Equation 6.3 by d∗. Then, we have p∗ ≥ d∗. Interestingly, for most convex optimization problems
(satisfying some mild constraint qualification conditions, such as the existence of a strict interior
point), we actually have p∗ = d∗ (strong duality).

In general, the dual function d(λ, ν) is difficult to compute. However, for special classes of
convex optimization problems (see Section 6.4), we can derive their duals explicitly. Below is a
simple example illustrating the concept of duality for linear programming.

EXAMPLE

Let us consider the following linear programming problem

minimize x1 + x2
subject to x1 + 2x2 = 2,

(x1, x2)T ∈ �2
+

(6.4)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 95 23-9-2008 #8

Optimization Techniques for Circuit Design Applications 95

The primal optimal solution is unique and equal to (x∗
1 , x

∗
2) = (0, 1), with p∗ = x∗

1 + x∗
2 = 1. The

Lagrangian function is given by L(x, ν) = x1 + x2 + ν(2− x1 − x2), and the dual function is given by

d(ν) = min
(x1,x2)T∈�2+

[x1 + x2 + ν(2 − x1 − 2x2)]

= 2ν + min
(x1,x2)T∈�2+

[(1 − ν)x1 + (1 − 2ν)x2]

=
{
2ν if ν ≤ 1

2

−∞ otherwise

Thus, the dual linear program can be written as

maximize d(ν) = 2ν
subject to ν ≤ 1

2

Clearly, the dual optimal solution is given by ν∗ = 1/2 and the dual optimal objective value is d∗ = 1.
Thus, we have in this case p∗ = d∗. In light of Proposition 1, the dual optimal solution ν∗ = 1/2
serves as a certificate for the primal optimality of (x∗

1 , x
∗
2).

Next, we present a local optimality condition for the optimization problem (Equation 6.2). For
ease of exposition, let us assume S = �. Then, a necessary condition for x∗ to be a local optimal
solution of Equation 6.2 is that there exists some (λ∗, ν∗) such that

fi(x
∗) ≤ 0, ∀ i = 1, 2, . . . ,m (6.5)

hj(x
∗) = 0, ∀ j = 1, 2, . . . , r (6.6)

λ∗ ≥ 0 (6.7)

∇f0(x∗) +
m∑
i=1

λ∗
i ∇fi(x∗) +

r∑
j=1

ν∗
j ∇hj(x∗) = 0 (6.8)

λ∗
i fi(x

∗) = 0, ∀ i = 1, 2, . . . ,m (6.9)

Collectively, the conditions given by Equations 6.5 through 6.9 are called the Karush–Kuhn–Tucker
(KKT) condition for optimality. Notice that the first two conditions given by Equations 6.5 and
6.6 represent primal feasibility of x∗, condition given by Equation 6.7 represents dual feasibility,
condition given by Equation 6.8 is equivalent to ∇xL(x∗, λ∗, ν∗) = 0, while the last condition given
by Equation 6.9 signifies the complementary slackness for the primal and dual inequality constraint
pairs: fi(x) ≤ 0 and λi ≥ 0.

For the above linear programming example, we can easily check whether the vector (x∗
1 , x

∗
2) =

(0, 1) and the Lagrangian multipliers (λ∗
1, λ

∗
2, ν

∗) = (1
2
, 0, 1

2
) satisfy the above KKT condition.More-

over, they are the unique solution of Equations 6.5 through 6.9. Thus, (x∗
1 , x

∗
2) = (0, 1) is the unique

primal optimal solution for Equation 6.4.
In general, the KKT condition is necessary but not sufficient for optimality. However, for

convex optimization problems (and under mild constraint qualification conditions), the KKT condi-
tion is also sufficient. If the constraints in Equation 6.2 are absent, the correspondingKKT condition
simply reduces to the well-known stationarity condition for unconstrained optimization problem:
∇f0(x∗) = 0. That is, the unconstrained local minimums must be attained at stationary points (at
which the gradient of f0 vanishes). However, in the presence of constraints, local optimal solutions
of Equation 6.2 are no longer attained at a stationary point; instead, they are attained at a KKT point
x∗, which together with some dual feasible vector (λ∗, ν∗) satisfies the KKT condition (Equations 6.5
through 6.9).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 96 23-9-2008 #9

96 Handbook of Algorithms for Physical Design Automation

6.3.1 LAGRANGIAN RELAXATION

Lagrangian duality theory presented above can also be used to derive convex relaxations of nonconvex
optimization problems. An example of its application in physical design is provided in Chapter 32.

To understand the idea, consider the following (not necessarily convex) optimization problem:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , r
x ∈ S

(6.10)

where the explicit constraints fi(x) ≥ 0 and hj(x) = 0 are assumed to be the complicating constraints.
All other easy constraints are implicitly modeled by the membership condition x ∈ S. Lagrangian
relaxation is a powerful approach to approximately solve the (possibly nonconvex) optimization
problem given by Equation 6.10. Its basic procedure can be described as follows. For any fixed dual
multipliersλ ∈ �m

+ and ν ∈ �r , we dualize the complicating constraints and compute the dual function

d(λ, ν) = min
x∈S

L(x, λ, ν) = min
x∈S

(
f0(x) +

m∑
i=1

λifi(x) +
r∑
j=1

νjhj(x)

)
(6.11)

Because the membership condition x ∈ S consists of only easy constraints, the computation of
d(λ, ν) can bemuch simpler than the original problem (Equation6.10). In fact, formany applications,
the constraint functions fi and hj are separable (e.g., linear functions):

fi(x) :=
n∑

k=1

fik(xk), hj(x) :=
n∑

k=1

hjk(xk), 0 ≤ i ≤ m, 1 ≤ j ≤ r

and the constraint set S has a Cartesian product form

S := S1 × S2 × · · · × Sn

In this case, the minimization of L(x, λ, ν) over S can be decomposed naturally along each variable
xi, and the corresponding Lagrangian relaxation procedure is known as Lagrangian decomposition:

d(λ, ν) = min
x∈S

L(x, λ, ν)

= min
x∈S

(
f0(x) +

m∑
i=1

λifi(x) +
r∑
j=1

νjhj(x)

)

= min
x∈S1× S2×···× Sn

n∑
k=1

(
f0k(xk) +

m∑
i=1

λifik(xk) +
r∑
j=1

νjhjk(xk)

)

=
n∑

k=1

min
xk∈Sk

(
f0k(xk) +

m∑
i=1

λi fik(xk) +
r∑
j=1

νjhjk(xk)

)

In this way, the computation of dual function d(λ, ν) and its sub differential is decomposed along
each coordinate and therefore greatly simplified.

Lagrangian relaxation aims to
maximize d(λ, ν)

subject to λ ≥ 0
(6.12)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 97 23-9-2008 #10

Optimization Techniques for Circuit Design Applications 97

by repeatedly updating the dual multipliers λ, ν. As noted earlier, the dual problem (Equation 6.12)
is always convex and the weak duality implies f (x) ≥ d(λ, ν) for any pair of primal–dual feasible
solutions x and (λ, ν). Thus, the maximum dual objective value d∗ serves as a lower approximation
of primal optimal value p∗.

The updating of dual parameters (λ, ν) can be accomplished by any of the standard convex
optimization procedures. A popular approach is to make the adjustment along the gradient ascent
direction of d(λ, ν). This requires the computation of∇d(λ, ν)which may not exist because the dual
objective function is often non differentiable (whenever the primal objective function contains flat
pieces). Fortunately, we can easily obtain a subgradient of the dual function d(λ, ν), and adjust the
multipliers along a subgradient direction.* In particular, for any λ ∈ �m

+ and ν ∈ �r , let us use x(λ, ν)

to denote a minimizer of Equation 6.11. Then, a subgradient of the dual objective function at (λ, ν) is

g[x(λ, ν)] = {f1[x(λ, ν)], . . . , fm[x(λ, ν)], h1[x(λ, ν)], . . . , hr[x(λ, ν)]} (6.13)

The convex hull of all subgradients of dual function d at (λ, ν) is called the subdifferential of d(λ, ν)

which we denote by

∂d(λ, ν) := Conv{g[x(λ, ν)] | x(λ, ν) is a minimizer of Equation 6.11}

Thus, at each iteration k, we can adjust the multipliers according to

λk+1
i := [

λki + αk fi(x(λ
k, νk))

]
+ , i = 1, 2, . . . ,m

νk+1
j := νkj + αkhj(x(λ

k, νk)), j = 1, 2, . . . , r

where [·]+ denotes the projection to the set of nonnegative real numbers and {αk} is a sequence of
stepsizes satisfying

αk > 0,
∞∑
k=1

αk = ∞,
∞∑
k=1

(αk)2 < ∞

Moreover, if (λ∗, ν∗) is amaximizer of the dual problem (Equation 6.12), then the optimality condition
implies the existence of a subgradient g∗ ∈ ∂d(λ∗, ν∗) such that

{
g∗
i ≤ 0, and g∗

i < 0 implies ν∗
i = 0, for i = 1, 2, . . . ,m

g∗
j = 0, ∀ j = 1, 2, . . . , r

(6.14)

In general, there may not be a maximizer x(λ∗, ν∗) of Equation 6.11 such that g∗ = g(x(λ∗,µ∗)). If
this is the case, then there is a positive duality gap between the primal and dual pair (Equations 6.10
through 6.12). Otherwise, if there exists an x(λ∗, ν∗) such that g∗ = g[x(λ∗,µ∗) (which is the case
when ∂d(λ∗,µ∗) is a singleton), then there is no duality gap and x(λ∗,µ∗) is an optimal solution of the
primal nonconvex problem (Equation 6.10). Indeed, the feasibility of x(λ∗, ν∗) can be seen from the
dual optimality conditionEquation 6.14,which requires the subgradient vectorg∗ at (λ∗, ν∗) to satisfy

g∗
i ≤ 0, i = 1, 2, . . . ,m; g∗

j = 0, j = 1, 2, . . . , r

In light of Equation 6.13, this is further equivalent to the primal feasibility of x(λ∗, ν∗)

fi[x(λ∗, ν∗)] ≤ 0, i = 1, 2, . . . ,m; hj[x(λ∗, ν∗)] = 0, j = 1, 2, . . . , r

* A vector g is a subgradient of a concave function f at x if f (y) ≤ f (x) + gT(y− x) ∀ y.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 98 23-9-2008 #11

98 Handbook of Algorithms for Physical Design Automation

For an integer linear programming problem, we can use x ∈ S to model the integer constraints.
The remaining linear constraints (inequalities and equalities) can be brought to the objective function
in aLagrangian fashion via fixedmultipliers. In this case, the resultingLagrangian relaxation is known
to yield a tighter lower bound for the original problem than the straightforward linear programming
relaxation (i.e., simply dropping the integer constraint x ∈ S).

6.3.2 DETECTING INFEASIBILITY

Efficient detection of infeasibility is essential in engineering design applications. However, the prob-
lem of detecting and removing the incompatible constraints is NP-hard in general, especially if the
constraints are nonconvex. However, for convex constraints, we can make use of duality theory to
prove inconsistency. Let us consider the following example.

EXAMPLE

Determine if the following linear system is feasible or not:

x1 + x2 ≤ 1

x1 − x2 ≤ −1

−x1 ≤ −1

Let usmultiply the last inequality by 2 and add it to the first and the second inequalities. The resulting
inequality is 0 ≤ −1, which is a contradiction. This shows that the above linear system is infeasible.

In general, a linear system of inequalities

Ax ≤ b (6.15)

is infeasible if and only if there exists some λ ≥ 0, such that

λTA = 0, λTb < 0 (6.16)

Clearly, the existence of a suchλ serves as a certificate for the incompatibility of the linear inequalities
in Equation 6.15. What is interesting (and nontrivial) is the fact that the converse is also true. That
is, if the system (Equation 6.15) is infeasible, then there always exists a mathematical certificate λ

satisfying Equation 6.16. Results of this kind are called the theorems of alternatives, and are related
to the well-known Farkas’ lemma for the linear feasibility problem.

The above result can also be extended to the nonlinear context. For instance, consider a system
of convex (possibly nonlinear) inequality system:

f1(x) < 0, f2(x) < 0, . . . , fm(x) < 0 (6.17)

Then, either Equation 6.17 is feasible or there exists some λ �= 0 satisfying

λ ≥ 0, g(λ) = inf
x

{λ1f1(x) + λ2f2(x) + · · · + λmf (x)} ≥ 0 (6.18)

Exactly one of the above two conditions holds true. The existence of a λ �= 0 satisfying Equation 6.18
proves the infeasibility of Equation 6.17. Such a λ serves as a certificate of infeasibility. Modern
software (e.g., SeDuMi [9]) for solving convex optimization problems either generate an optimal
solution or a certificate showing infeasibility. In contrast, software for nonconvex optimization prob-
lems cannot detect infeasibility. They typically fail to converge when the underlying problem is
infeasible, either due to data overflow or because the maximum number of iterations is exceeded.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 99 23-9-2008 #12

Optimization Techniques for Circuit Design Applications 99

6.4 LINEAR CONIC OPTIMIZATION MODELS

We now review several most commonly used convex optimization models in engineering design
applications. Consider a primal–dual pair of linear conic optimization problems:

minimize C •X
subject to AX = b, X ∈ K (6.19)

and

maximize bTy
subject to A∗y + S = C, S ∈ K∗ (6.20)

where
A is a linear operator mapping an Euclidean space onto another Euclidean space
A∗ denotes the adjoint of A
K signifies a pointed, closed convex cone
K∗ is its dual cone

The problems given by Equations 6.19 and 6.20 include many well-known special cases
listed below.

6.4.1 LINEAR PROGRAMMING

K = �n
+

In this case, the linear conic optimization problem reduces to

minimize cTx
subject to Ax = b, x ≥ 0

(6.21)

and its dual becomes

maximize bTy
subject to ATy + s = c, s ∈ 0

(6.22)

The optimality condition is given by

Ax = b, x ≥ 0, ATy+ s = c, s ∈ 0, xTs = 0.

6.4.2 SECOND-ORDER CONE PROGRAMMING

K =
n∏
i=1

SOC(ni)

Let x̃ = (x̃1, x̃2, . . . , x̃k)T with x̃i = (ti, xi)T ∈ SOC(ni) (namely, ti ≥ ‖xi‖). Similarly, we denote
x̃ = (s̃1, s̃2, . . . , s̃k)T with s̃i = (τi, si)T ∈ SOC(ni). The data vector c̃ = (c̃1, c̃2, . . . , c̃k)T with
c̃i ∈ �ni , and the data matrix Ã ∈ �m×(n1+···+nk). In this case, the linear conic optimization problem
(Equation 6.19) reduces to

minimize c̃Tx̃
subject to Ãx̃ = b, x̃i ∈ SOC(ni), ∀ i (6.23)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 100 23-9-2008 #13

100 Handbook of Algorithms for Physical Design Automation

and its dual becomes

maximize bTy
subject to ÃTy+ s̃ = c̃, s̃i ∈ SOC(ni), ∀i (6.24)

The optimality condition is given by

Ãx̃ = b, x̃ ∈
n∏
i=1

SOC(ni), ÃTy + s̃ = c̃, s̃ ∈
n∏
i=1

SOC(ni), x̃Ts̃ = 0

6.4.3 SEMIDEFINITE PROGRAMMING

K = Sn
+ or (Hn

+)

In this case, the linear conic optimization problem reduces to

minimize C •X
subject to Ai •X = bi, i = 1, 2, . . . ,m, X ≥ 0

(6.25)

and its dual becomes

maximize bTy
subject to

∑m
i=1 Ai

Tyi + S = C, S ≥ 0
(6.26)

The optimality condition is given by

Ai •X = bi, X � 0,
m∑
i=1

Ai
Tyi + S = C, S ≥ 0, X • S = 0

6.5 INTERIOR POINT METHODS FOR LINEAR CONIC OPTIMIZATION

For ease of exposition, we focus on the SDP case with K = Sn
+. The other cases can be treated

similarly (in fact, they are special case of SDP). In practice, sometimes it is more convenient to work
with the so-called rotated second order cone: {(t, s, x) ∈ �n | ts ≥ ‖x‖2, t ≥ 0, s ≥ 0}. This cone is
equivalent to the standard SOC(n) via a simple linear transformation.

Assume that the feasible regions of the SDP pair (Equations 6.19 and 6.20) have nonempty
interiors. Thenwe can define the central path of Equations 6.19 and 6.20 as {(X(µ), S(µ))} satisfying

A∗y(µ) + S(µ) = C

AX(µ) = b

X(µ)S(µ) = µI

(6.27)

where µ is a positive parameter. By driving µ → 0 and under mild assumptions, the central path
converges to an optimal primal–dual solution pair for Equations 6.19 and 6.20.Notice that the central
path condition (Equation 6.27) is exactly the necessary and sufficient optimality condition for the
following convex problem:

minimize C •X − µ log det(X)

subject to AX = b, X ∈ Sn
+

(6.28)

In other words, the points on the central path corresponds to the optimal solution of Equation 6.28
and the associated optimal dual solution. Here the function− log det(X) is called the barrier function
for the positive semidefinite matrix cone Sn

+.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 101 23-9-2008 #14

Optimization Techniques for Circuit Design Applications 101

Many interior point algorithms follow (approximately) the central path to achieve optimality.
As a result, the iterates are required to remain in a neighborhood of the central path that can be
defined as

N (γ) =
{
(X , y, S) | AX = b,A∗y + S = C,X ≥ 0, S ≥ 0,

∥∥∥∥X1/2SX1/2 − X • S

n
I

∥∥∥∥
F

≤ γ
X • S

n

}

With this definition, a generic interior point path-following algorithm can be stated as follows:

Generic Path-Following Algorithm

Given a strictly feasible primal-dual pair (X0, y0, S0) ∈ N (γ) with 0 < γ < 1. Let k = 0.
REPEAT (main iteration)

Let X = Xk , y = yk , S = Sk, and µk = X • S/n.
Compute a search direction (Xk,	yk,	Sk).
Compute the largest step tk such that

(X + tk	Xk, y+ tk	yk, S + tk	Sk) ∈ N (γ).

Set Xk+1 = X + tk	Xk , yk+1 = y + tk	yk, Sk+1 = S + tk	Sk.
Set k = k + 1.

UNTIL convergence.

There are many choices for the search direction (X ,	y,	S). For example, we can take it as
the solution of the following linear system of equations:

A∗	y+ 	S = C − S − A∗y

A	X = b

HP(XS + X	S) = µI − HP(XS)

(6.29)

where P is a nonsingular matrix and

HP(U) = 1

2
[PUP−1 + (PUP−1)T]

Different choices of P lead to different search directions. For example, P = I corresponds to the
so-called AHO direction [11].

The standard analysis of path-following interior point methods shows that a total of
O(

√
n log(µ0/ε)) main iterations are required to reduce the duality gap X • S to less than ε. Each

main iteration involves solving the linear system of equations (Equation 6.29) whose size depends on
the underlying coneK. IfK = �n

+ (linear programming), the linear system is of size O(n), implying
each main iteration has an arithmetic complexity of O(n3). In the case where K = ∏n

i=1 SOC(ni)
(SOCP), the linear system (Equation 6.29)will have sizeO(
ini), so the complexity of solving Equa-
tion 6.29 isO((
ini)3). For the SDP case whereK = Sn

+, the size of the linear system (Equation 6.29)
is O(n2), so the amount of work required to solve Equation 6.29 is O(n6). Combining the estimates
of the number of main iterations with the complexity estimate per each iteration yields the overall
complexity of interior point methods. In general, the computational effort required to solve SDP is
more than that of SOCP, which in turn is more than that of LP. However, the expressive power of
these optimization models rank in the reverse order.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 102 23-9-2008 #15

102 Handbook of Algorithms for Physical Design Automation

6.6 GEOMETRIC PROGRAMMING

For circuit design applications, we often encounter optimization problems with design variables
corresponding to the geometry of the circuit. Such problems naturally take the form of a geometric
program(GP)whose definition is described below.An example of a geometric program in the context
of physical design is described in Chapter 29.

6.6.1 BASIC DEFINITIONS

A monomial function is defined as

f (x) = cxα1
1 x

α2
2 · · · xαn

n

where
c ≥ 0
αj ∈ �
domain of f (x) is {x | xi ≥ 0}

For example, f (x) = 5x2.31 x
−0.7
2 x2.53 is a monomial. The nonnegativity of variables {xi} follow

from the fact that they correspond to geometric sizing parameters. Notice that a monomial function
is nonconvex in general. For instance, f (x1, x2) = x1x2 is a nonconvex monomial.

A posynomial function is defined as the sum of monomial functions

f (x) =
r∑

k=1

ckx
α1k
1 xα2k

2 · · · xαnk
n

where
ck ≥ 0
αik ∈ �
and again the domain of f (x) is {x | xi ≥ 0}

An example of posynomial is given by f (x1, x2, x3) = x21x
−1
2 x0.53 + 2x2.11 x

3
2 .

A GP is an optimization problem in the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m

hi(x) = 1, i = 1, . . . , p
(6.30)

where
f0, . . . , fm are posynomial functions
h1, . . . , hp are monomial functions

In this original form, GP is not a convex problem in general because the constraint functions
{fi}’s are not convex and the equality functions {hj}’s are not affine. However, there exists a nonlinear
transformation under which the GP problem (Equation 6.30) can be reformulated as an equivalent
convex optimization problem.

6.6.2 CONVEX REFORMULATION OF A GP

Consider the following nonlinear transformation:

yi = log xi, xi = eyi

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 103 23-9-2008 #16

Optimization Techniques for Circuit Design Applications 103

Under this transformation, a monomail function f (x) = cxα1
1 x

α2
2 · · · xαn

n can be written as

log f (ey1 , . . . , eyn) = α1y1 + · · · + αnyn + β

which is affine in y, where β = log c. Moreover, if f (x) = ∑r
k=1 ckx

α1k
1 x

α2k
2 · · · xαnk

n is posynomial
then

log f (ey1 , . . . , eyn) = log
r∑

k=1

exp(α1ky1 + · · · + αnkyn + βk)

which is convex in y, where βk = log ck . Consequently, under this transformation, the geometric
program (Equation 6.30) in convex form in terms of variables {yi} is

minimize log f0(ey1 , . . . , eyn)
subject to log fi(ey1 , . . . , eyn) ≤ 0, i = 1, . . . ,m

log hi(ey1 , . . . , eyn) = 0, i = 1, . . . , p

Once this convex reformulation is solved, say, using interior point methods, we can recover the
original design variables {xi} using the inverse transform xi = eyi . In this way, every GP, even
though nonconvex in its original form, can be efficiently solved using interior point methods in
polynomial time. More details can be found in Refs. [3,4].

6.6.3 GATE SIZING AS A GP

The conventional gate sizing problem is formulated as

minimize area =
n∑
i=1

aiWiLi

subject to delay ≤ Tspec

Wmin ≤ Wi, Lmin ≤ Li, ∀ i = 1, . . . , n

(6.31)

where
Wi and Li are, respectively, the width and the effective channel length of gate i
ai is some weight factor

Using the Elmore delay model,* which is used for simplicity, each gate i in the circuit can be
replaced by an equivalent RoniCi element, where Roni represents the effective on resistance of the
pull-up or the pull-down network, and the term Ci subsumes the source, drain, and gate capacitances
of the transistors in the gate. The expressions for Roni and Ci for a gate i are given by

Roni = αLi
Wi

, Ci = βLiWi + γ (6.32)

where α, β, and γ are known constants.
From Equation 6.32, we see that both the capacitances and the on resistance of the transistors

in a gate are posynomial functions of the vectors W = (. . . ,Wi, . . .)T and L = (. . . , Li, . . .)T.
Consequently, the term RoniCi, which is the equivalent delay contribution of gate i in the circuit, is
also a posynomial function ofW and L. By breaking the circuit into a series of RC trees, and applying
the Elmore delay computations at each node of the circuit graph, we see that the delay constraint of
Equation 6.31 at the primary outputs of the circuit can be replaced bym posynomial delay constraints
of the form ∑

l

Kl

∏
j

W
aj
j L

bj
j ≤ ti (6.33)

* Other more accurate convex gate delay models may be used instead of the Elmore model.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 104 23-9-2008 #17

104 Handbook of Algorithms for Physical Design Automation

where
m is the number of nodes in the circuit graph
Kl is a constant coefficient of the lth monomial term that can be derived from Equation 6.32,
ti is the arrival time at gate i
aj, bj ∈ {−1, 0, 1} are the exponents of the jth components of the W and L vectors

By substituting Equation 6.33 in Equation 6.31 for all gates in the circuit, the transistor sizing
problem is formulated as a GP having a posynomial objective function and posynomial inequal-
ity constraints. The resulting GP can be solved using standard convex optimization techniques. In
Section 6.7, we show how the robust version of the standard GP formulation (Equation 6.31) can be
converted to another GP.

6.7 ROBUST OPTIMIZATION

Robust optimization models in mathematical programming have received much attention recently
(see, e.g., Refs. [1,2,5]). In this subsection we briefly review some of these models and some
extensions.

Consider a convex optimization for the form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

(6.34)

where each fi is convex. In many engineering design applications, the data defining the constraint
and the objective functions may be inexact, corrupted by noise or may fluctuate with time around
a nominal value. In such cases, the traditional optimization approach simply solves Equation 6.34
by using the nominal value of the data. However, an optimal solution for the nominal formulation
(Equation 6.34) may yield poor performance or become infeasible when each fi is perturbed in the
actual design. In other words, optimal solutions for Equation 6.34may be misleading or even useless
in practice. A more appropriate design approach is to seek a high-quality solution that can remain
feasible and deliver high-quality performance in all possible realizations of unknown perturbation.
This principle was formulated rigorously in Refs. [1,2,5]. Specifically, the data perturbation can be
modeled using a parameter vector δ, with δ = 0 representing the nominal unperturbed situation. In
other words, we consider a family of perturbed functions parameterized by δ: fi(x; δ), with δ taken
from an uncertainty set 	 containing the origin. Then a robustly feasible solution x is the one that
satisfies

fi(x; δ) ≤ 0, ∀ δ ∈ 	 or equivalently max
δ∈	

fi(x; δ) ≤ 0

Thus, a robustly feasible solution x is, in a sense, strongly feasible because it is required to satisfy
all slightly perturbed version of the nominal constraint fi(x; 0) = fi(x) ≤ 0. The robust optimal
solution can now be defined as a robust feasible solution that minimizes the worst-case objective
value maxδ∈	 f0(x; δ). This gives rise to the following formulation:

minimize maxδ∈	 f0(x; δ)
subject to fi(x; δ) ≤ 0, ∀ δ ∈ 	, i = 1, 2, . . . ,m

(6.35)

Let us assume that the perturbation vector δ enters the objective and the constraint functions fi in
such a way that preserves convexity, that is, each fi(x; δ) remains a convex function for each δ ∈ 	.
As a result, the robust counterpart (Equation 6.35) of the original (nominal case) convex problem
(Equation 6.34) remains convex because its constraints are convex (for each i and δ) and the objective
function maxδ∈	 f0(x; δ) is also convex.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 105 23-9-2008 #18

Optimization Techniques for Circuit Design Applications 105

Much of the research in robust optimization is focused on finding a finite representation of the
feasible region of Equation 6.35, which is defined in terms of infinitely many constraints (one for
each δ ∈). Assume that the uncertainty parameter δ can be partitioned as δ = (δ0, δ1, δ2 . . . , δm)T

and that the uncertainty set has a Cartesian product structure	 = 	0 ×	1 ×· · ·×	m, with δi ∈ 	i.
Moreover, assume that δ enters fi(x; δ) in an affine manner. Under these assumptions, it is possible
to characterize the robust feasible set of many well-known classes of optimization problems in a
finite way. In particular, consider the robust linear programming model proposed by Ben-Tal and
Nemirovskii [2]:

minimize max
‖	c‖≤ε0

(c+ 	c)Tx

subject to (ai + 	ai)Tx ≥ (bi + 	bi),
for all ‖(ai,	bi)‖ ≤ εi, i = 1, 2, . . . ,m

(6.36)

where each εi > 0 is a prespecified scalar. In the above formulation, we have δi = (ai,	bi)
and ∆i = {(ai,	bi) | ‖(ai,	bi)‖ ≤ εi}. It is known that the above robust LP can be
reformulated as a SOCP [2]. Refs. [1,2,5] have shown that the robust counterpart of some other
well-known convex optimization problems can also be reformulated in a finite way as a conic
optimization problem, often as an SOCP or SDP. Next we consider a robust formulation of a
geometric program.

6.7.1 ROBUST CIRCUIT OPTIMIZATION UNDER PROCESS VARIATIONS

We use a simple example to explain the procedure to incorporate the process variation effects
in the delay constraints set. We use the toy circuit of Figure 6.1, comprising just one driver
gate and one load gate, for this illustration. The main idea can be generalized to arbitrarily large
circuits.

For simplicity we neglect the interconnect delay and the effect of drain and source capacitances
of the driver gate. Applying the Elmore delay model to the gates of circuit of Figure 6.1, we can
write the delay constraint for the circuit as

k1l1l2w2

w1

+ k2l2
w2

≤ tspec (6.37)

where k1 and k2 are constants. To ensure that the delay constraint of Equation 6.37 is met under the
effect of random process variations, we impose the following condition

max
(l−l0,w−w0)∈∆

(
k1l1l2w2

w1

+ k2l2
w2

)
≤ tspec (6.38)

where
w0 and l0 represent, respectively, the nominal values of the transistor w and l
∆ signifies the uncertainty region

A

1 2

CB

FIGURE 6.1 Simple example circuit.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 106 23-9-2008 #19

106 Handbook of Algorithms for Physical Design Automation

To simplify the above robust constraint, we approximate the constraint function by the first-order
Taylor series expansion around the nominal value (w0, l0) and arrive at the following simplified robust
constraint:

k1l10 l20w20

w10

+ k2l20
w20

+ max
(δl,δw)∈∆

(
k1l10 l20δw2

w10

+ k1l20w20δl1
w10

+ k1l10w20δl2
w10

+k2δl2
w20

− k1l10 l20w20δw1

w2
10

− k2l20δw2

w2
20

)
≤ tspec (6.39)

where δw = w−w0 and δl = l− l0 denote, respectively, the randomvariations inw and l. Employing
the ellipsoid uncertainty model

∆ = {(δl, δw) : (δlt , δwt)P−1(δlt , δwt)t ≤ 1} (6.40)

for the random parameter variations, we are led to

⎡
⎢⎢⎣

δw1

δw2

δl1
δl2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

(P1/2u)1
(P1/2u)2
(P1/2u)3
(P1/2u)4

⎤
⎥⎥⎦ (6.41)

where
P is the covariance matrix of the random vector (l,w) of the driver and the load gate of
Figure 6.1

u is the vector characterizing the variation within the four-dimensional ellipsoid centered at the
nominal values of w and l, with ‖u‖ ≤ 1

We introduce two vectors φ1 and φ2 to collect the positive and negative coefficients of the
variational parameters of Equation 6.39 respectively:

φ1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
k1l10

l20
w10

k1 l20
w20

w10

k1l10
w20

w10
+ k2

w20

⎤
⎥⎥⎥⎥⎥⎥⎦
, φ2 =

⎡
⎢⎢⎢⎢⎢⎣

−k1l10 l20w20
w210

−k2 l20
w220

0
0

⎤
⎥⎥⎥⎥⎥⎦

(6.42)

From the definitions in Equations 6.41 and 6.42, the linearized robust constraint Equation 6.39 can
be rewritten as

k1l10 l20w20

w10

+ k2l10
w20

+ max
‖u‖≤1

(〈P1/2φ1, u〉 + 〈P1/2φ2, u〉) ≤ tspec (6.43)

where 〈·, ·〉 represents the standard inner product. By the Cauchy–Schwartz inequality, a sufficient
condition for Equation 6.43 is

k1l10 l20w20

w10

+ k2l10
w20

+ ‖P1/2φ1‖ + ‖P1/2φ2‖ ≤ tspec (6.44)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 107 23-9-2008 #20

Optimization Techniques for Circuit Design Applications 107

We then introduce two auxiliary variables r1 and r2 as

r1 = ‖P1/2φ1‖, i.e., r21 = φT
1Pφ1

r2 = ‖P1/2φ2‖, i.e., r22 = φT
2Pφ2 (6.45)

The inequality of Equation 6.44 can then be replaced by the following equivalent constraints:

w1l10 l20w20

w10

+ k2l10
w20

+ r1 + r2 ≤ tspec (6.46)

φT
1Pφ1r

−2
1 ≤ 1 (6.47)

φT
2Pφ2r

−2
2 ≤ 1 (6.48)

The inequality of Equation 6.46 is clearly a posynomial in terms of l, w, and the auxiliary
variables r1 and r2. By construction, all the elements of φ1 are posynomials, and all the nonzero
elements of φ2 are negative of posynomials. The covariance matrix P has all nonnegative elements,
because a negative correlation between random variables representing theW and L variations would
not have any physical meaning. Thus, the quadratic terms φT

1Pφ1 = ∑
i,j Pijφ1iφ1j and φT

2Pφ2 =∑
i,j Pijφ2iφ2j are a summation of monomials with positive coefficients. Consequently, the constraints

of Equations 6.47 and 6.48 are also posynomials. Note that the inequality in Equations 6.47 and 6.48
will be forced to equality at optimality, because the auxiliary variables r1 and r2 (which represent

(a) (b)

Violations in NR design

Percent slack

P
er

ce
nt

 v
io

la
tio

ns

10 20 30 40 50
0

10

20

30

40

50

60

70

80

90
Area overhead in R design

Percent slack

P
er

ce
nt

 a
re

a
ov

er
he

ad

10 20 30 40 50
0

5

10

15

20

25

30

35

FIGURE 6.2 Nonrobust and robust designs for C499 circuit for different values of Tspec. (a) Timing violations
for nonrobust designs. (b) Area overhead for robust designs. (From Singh, J., et al., Robust gate sizing by
geometric programming, Proceedings of 2005 IEEEDesign and Automation Conference, Anaheim, California,
2005.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C006 Finals Page 108 23-9-2008 #21

108 Handbook of Algorithms for Physical Design Automation

the maximum variation in the uncertainty ellipsoid) are to be minimized. Hence, by following the
procedure outlined above, we have converted the robust posynomial constraint of Equation 6.38 to
a set of posynomial constraints of Equations 6.46 through 6.48.

For a general circuit, the procedure described for the example circuit of Figure 6.1 can be
repeated for each constraint. Thus, by adding at most two auxiliary variables for each constraint j,
we can explicitly account for the robustness against the process uncertainties while still maintaining
the desirable posynomial structure of the original constraints (Equation 6.37). By this procedure, we
can convert a conventionalGP formulation of the gate sizing problem to a robust gate sizing problem,
which is also a GP itself. The latter can be efficiently solved using the standard convex optimization
techniques (e.g., Ref. [7]).

We have applied the robust gate sizing technique to a ISCAS 85 benchmark circuit (C499).
The cell library selected consists of inverters and two and three input NAND and NOR gates. We
use a TSMC 180nm technology parameter [10] to estimate the constants for the on resistance and
the source, drain, and gate capacitances. We assume capacitive loading for the gates. The objective
function chosen for the optimization is to minimize Area = ∑

i miwili, where m is the number of
transistors in gate i. We have implemented the proposed robust gate sizing procedure in a C program,
and used an optimization software [7] to solve the final GP. The final result is illustrated in Figure 6.2.

ACKNOWLEDGMENT

The text in Section 6.7 is based on a joint work [6] with Dr. Jaskirat Singh and Professor Sachin
Sapatnekar. The author hereby gratefully acknowledges their contribution to this work.

REFERENCES
1. Ben-Tal, A., El Ghaoui, L., and Nemirovskii, A., Robust semidefinite programming, in Handbook of
Semidefinite Programming, edited by Wolkowicz, H., Saigal, R., and Vandenberghe, L., Kluwer Academic
Publishers, March 2000.

2. Ben-Tal, A. and Nemirovskii, A., Robust convex optimization, Mathematics of Operations Research, 23,
769–805, 1998.

3. Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press, Cambridge, United
Kingdom, 2003.

4. Chiang, M., Geometric programming for communication systems, Foundations and Trends in Communi-
cations and Information Theory, 2005.

5. El Ghaoui, L., Oustry, F., and Lebret, H., Robust solutions to uncertain semidefinite programs, SIAM
Journal on Optimization, 9(1), 1998.

6. Singh, J., Nookala, V., Luo, Z.-Q., and Sapatnekar, S., Robust gate sizing by geometric programming,
Proceedings of 2005 IEEE Designa and Automation Conference, June 13–17, 2005, Anaheim, California.

7. Mosek Software, Available at http://www.mosek.com.
8. Nesterov, Y. and Nemirovskii, A., Interior Point Polynomial Methods in Convex Programming, SIAM
Studies in Applied Mathematics 13, Philadelphia, PA, 1994.

9. Sturm, J.F., Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones, Opti-
mization Methods and Software, 11–12, 625–653, 1999. See http://fewcal.kub.nl/sturm/software/
sedumi.html for updates.

10. TSMC: 180 nm Test Data, Available at http://www.mosis.org/Technical/Testdata/tsmc-018-prm.html.
11. Wolkowicz, H., Saigal, R., and Vandenberghe, L., Handbook of Semidefinite Programming: Theory,

Algorithms and Applications, Kluwer Academic Press, pp. 163–188, 1999.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 109 24-9-2008 #2

7 Partitioning and Clustering

Dorothy Kucar

CONTENTS

7.1 Preliminaries . 110
7.1.1 Net Models . 111
7.1.2 Partitioning and Clustering Metrics . 112

7.2 Move-Based Partitioning Methods . 114
7.2.1 Kernighan–Lin Heuristic . 114
7.2.2 Fiduccia–Mattheyses Heuristic . 115
7.2.3 Improvements on the Fiduccia–Mattheyses Heuristic . 116
7.2.4 Simulated Annealing . 117

7.3 Mathematical Partitioning Formulations .. 118
7.3.1 Quadratic Programming Formulation . 119

7.3.1.1 Lower Bounds on the Cutset Size. 120
7.3.1.2 Partitioning Solutions from Multiple Eigenvectors . 122

7.3.2 Linear Programming Formulations .. 122
7.3.3 Integer Programming Formulations . 123
7.3.4 Network Flow . 124
7.3.5 Dynamic Programming . 126

7.4 Clustering . 126
7.4.1 Hierarchical Clustering . 127
7.4.2 Agglomerative Clustering . 127

7.4.2.1 Clustering Based on Vertex Ordering.. 127
7.4.2.2 Clustering Based on Connectivity . 128
7.4.2.3 Clustering Based on Cell Area . 130

7.5 Multilevel Partitioning . 130
7.5.1 Multilevel Eigenvector Partitioning . 130
7.5.2 Multilevel Move-Based Partitioning . 131
7.5.3 New Innovations in Multilevel Partitioning .. 132

7.6 Conclusion.. 132
Acknowledgments .. 132
References . 132

Modern standard cell placement techniques must handle huge and ever-increasing design sizes. It is
computationally infeasible to place flattened representations of designs of this scale. A key step in
cell placement is obtaining a smaller representation of the design that captures the global connectivity
of the original design. This is what is known as partitioning and clustering. Partitioning is typically
used to divide a netlist into two or four blocks, then recursively applied to the subregions such that
the wiring cost between blocks is minimized. Clustering, on the other hand, is inherently a bottom-up
approach, where cells are initially assigned to their own block, then they are gradually merged into

109

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 110 24-9-2008 #3

110 Handbook of Algorithms for Physical Design Automation

larger and larger blocks. The purpose of clustering is to reduce the problem size to more manageable
proportions and to recover structural information implicit in the original netlist. Modern placers use a
combination of clustering and partitioning to reduce runtimes and preserve structure that was present
in the original netlist. The very large scale integrated (VLSI) design automation community has added
several twists to the original graph-theoretic formulation, including fixing vertices to specific blocks,
assigning weights to vertices, and introducing timing constraints into the formulation.

This survey consists of five sections. Section 7.1 introduces the basic concepts and notations
relevant to partitioning and clustering. Section 7.2 describes move-based partitioning techniques.
Section 7.3 describes mathematical partitioning formulations. Section 7.4 describes clustering
techniques, which are employed in multilevel partitioners, described in Section 7.5.

7.1 PRELIMINARIES

In this chapter, a circuit is a collection of elementary switching elements called standard cells and
possibly largermacroblocks, connected to one another by wires at the same electrical potential called
signal nets enclosed by some sort of boundary. The points at which signal nets come into contact
with cells are called pins. If a pin connects cells to areas outside the circuit boundary, it is referred to
as a terminal (Figure 7.1). Standard cell connectivity information is provided in the form of a netlist,
which contains net names followed by the names of cells they are connected to.

The combinatorial nature of VLSI physical design problems lends itself nicely to formulations
involving graphs or matrices. Most often, a circuit is represented as a hypergraph where cells are
represented as weighted vertices. The weight is typically proportional to the number of pins or the
area of the cell. A hypergraph is the most natural representation of a circuit because, in a circuit,
more than two vertices may be connected by the same signal net. Circuit hypergraphs have certain
desirable properties as far as algorithm development is concerned. They are nearly planar because
chips are typically printed on seven to ten metal layers. The nets of the circuit hypergraph are also
of reasonably bounded degree—algorithms that deal with nets of high degree like power, ground,
or clock nets are not discussed here. In this chapter, a hypergraph comprises |V | vertices, |E| nets,
|P| pins, and k blocks, the set of vertices in the ith block is denoted by Ci, and a net consists of |e|
vertices. Although a hypergraph is the natural representation of a circuit, it is very difficult to work
with. Often, nets are modeled as cliques or stars as in Figure 7.2b.

Definition 1 A clique is a subgraph of graph G(V, E) in which every vertex is connected to every
other vertex.

a

b

h

d

i

g

f

e
c

1

2

3

4

5

6

7
j

Terminal

Net

Cell

Pin

FIGURE 7.1 Schematic diagram of a circuit illustrating terminals, cells, and nets.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 111 24-9-2008 #4

Partitioning and Clustering 111

(a) Hypergraph (b) Nets modeled as cliques

(c) Nets modeled as stars

b

a

c

d

e

g

f
i

j
h

2

1

3

4

6

72

5

2

5

1

3

4

6

7

1/3

3/2

1/2

1

1/2
1/2

1

1/2

1/3 4/3

1/3

1/3

1/2

1/2
1/2

1/2

1/2

1/2

1/2

1

1

6

3

4

1

7

5

2

a

b c

d

e
f

g

h

i

j

FIGURE 7.2 Net representations.

It follows that a net connected to |e| vertices will be represented by

(|e|
2

)
edges. Another way of

representing nets is a star graph model.

Definition 2 A star graph is a subgraph of graph G(V, E) in which every vertex except for one
is a leaf vertex. The nonleaf-vertex connects all leaf vertices as in Figure 7.2c.

In the star graph model, each vertex induces one edge, thus a net consisting of |e| vertices will be
represented by |e|−1 edges. Using this representation, the problem of edge weights is alleviated, but
the root vertex must be chosen sensibly. Some placers use an alternate star model where an auxiliary
root vertex connecting all of the net’s original vertices is inserted (described in Chapter 17).

7.1.1 NET MODELS

Many of the techniques described in this work require that nets be represented in terms of edges.
If a net on |e| vertices is represented as a complete graph on |e| vertices and if |e| is large, the |e|
vertices will likely be placed in the same block after bipartitioning. The result is that nets with small
numbers of vertices may be cut because of the predominance of large nets [SK72]. The solution to
this problem is to weight the graph edges of the net so that regardless of how vertices in the graph
are partitioned, the sum of the weights of the edges cut should be as close to 1 as possible. Generally,
it will not be possible for this sum to be exactly 1 as the theorem below states.

Theorem 1 There is no consistent edge weighting scheme such that when some edges are removed
(to split the hypergraph into several parts), their weight is exactly 1 for |e| vertices where |e| ≥ 4
[IWW93].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 112 24-9-2008 #5

112 Handbook of Algorithms for Physical Design Automation

For example, a net consisting of four vertices is represented by an equivalent six-edge complete
graph. To cut off one vertex from the rest requires cutting three edges, so the weight should be 1/3
(for a total edge weight of 1). However, to cut off two vertices from the rest requires cutting four
edges (each with weight 1/4). Because some of the edges assigned weights of 1/3 and 1/4 may be
the same, this weighting scheme is inconsistent.

Lengauer [Len90] proves that no matter what weighting scheme is selected, there will always
exist an exact graph bipartition with a deviation of �(

√|e|) from the cost of cutting a single net.
Additionally, Ihler et al. [IWW93] conjecture that a clique graph model is the best in terms of
deviation from the true cost of cutting one net.

In the generic clique model, a net on |e| vertices induces a complete graph where each edge has
weight

wi = 1

|e| − 1

This weighting scheme arises from linear placements into fixed slots separated by a unit distance.
The denominator indicates the minimum total wirelength used to connect the |e| vertices. Vannelli
and Hadley [VH90] propose the following metric that guarantees the weight of edges cut under a
k-way partitioning has an upper bound of 1.

wi = 1⌊ |e|
k

⌋⌈ |e|
k

⌉

Huang [HK97] proposes a weight of

wi = 4

|e|(|e| − 1)

that distributes the weight of one net evenly across two edges and gives an expected cut weight of 1.
The following weighting scheme distributes the edge weight evenly across |e| − 1 edges:

wi = 2

|e|
In Ref. [AY95], the authors use a variant of Huang’s metric:

wi = 4

|e|(|e| − 1)

2|e| − 2

2|e|

7.1.2 PARTITIONING AND CLUSTERING METRICS

In this section, we give some definitions relevant to hypergraphpartitioning and use them to describe
metrics used in hypergraph partitioning.

Definition 3 Given a hypergraph, G(V ,E), nets that have vertices in multiple blocks belong to
the cutset, Ec, of the hypergraph. Given k blocks, the cutset between the ith pair of blocks where

i = 1 · · ·
(
k
2

)
is denoted by Ec

i .

Definition 4 A partition, f (V , k), of the set of vertices, V , into k blocks, {C1, . . . ,Ck} is given by
C1 ∪ C2 ∪ · · · ∪ Ck = V where Ci ∩ Cj = ∅ and α|V | ≤ |Ci| ≤ β|V | for 1 ≤ i < j ≤ k and
0 ≤ α, β ≤ 1.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 113 24-9-2008 #6

Partitioning and Clustering 113

Definition 5 The weight of the ith block is denoted by w(Ci). Usually, it is equal to the number
of vertices in the ith block, |Ci|

Definition 6 Given a clustering solution {C1,C2, . . . ,Ck}, where Ci indicates a group of vertices,
construct a clustered hypergraph H ′(V ′,E ′) such that for every e ∈ E, there is a hyperedge e′ ∈ E ′

with e′ = {C|∃υ ∈ e ∩ C}.

Mincut partitioning: This metric counts the number of nets running between pairs of blocks

min f (V , k) = ∑k
i=1 |Ec

i |
s.t. α|V | ≤ w(Ci) ≤ β|V |

For example, if a net spans three blocks then it would be counted three times in the objective [Alp96].
A slightly different objective is one that counts the number of entire nets that are cut (this is formally
called the netcut). These objectives are identical if the number of blocks is two. Typically, α = 0.45
and β = 0.55 for bipartitioning. For k-way partitioning, some authors favor the following constraints:

|V |
αk

≤ w(Ci) ≤ α|V |
k

where α > 1 [KK99].

Min-ratiocut bipartitioning: The ratiocut metric, rc, is used in Refs. [WC91], [RDJ94] and others
as a way of incorporating balance constraints into the objective. The objective is

min f (V , 2) = rc = |Ec|
w(C1)w(C2)

where the numerator indicates the netcut. For a given netcut, this metric is minimized when the two
blocks are of equal size. However, as Alpert andKahng [AK95] point out, the weakness in this metric
is that rc is very sensitive to change in |Ec| and relatively unaffected by changes in w(C1) or w(C2).
Thus, given a small enough netcut, it is possible to obtain a minimal ratio cut even if the block sizes
are uneven.

In the analytic bipartitioning technique described in Ref. [RDJ94], vertices are assigned to
positions along the x-axis, simultaneously. Block assignments are then derived from the coordinates
in some fashion. Thus, it is not possible to move individual vertices from one block to another as
is the case with iterative-based partitioners. Consequently, vertices may be assigned positions along
the x-axis that do not satisfy even fairly loose balance constraints in which a block is allowed to have
between 45 and 55 percent of the cells (or total cell area).

Min-ratiocut k-way partitioning: Chan et al. [CSZ94] generalize the ratiocut metric for k blocks to

k∑
i=1

[|Ec
i |

w(Ci)

]
≤

k∑
i=1

λi

where λi is the ith smallest eigenvalue of the Laplacian matrix of G(V ,E).

Scaled cost: Another metric that combines the usual minimum cut objective with block size
constraints is

f (V , k) = 1

|V |(k − 1)

k∑
i=1

|Ec
i |

w(Ci)

This metric is used in Refs. [AK93,AK94,AK96,KK98,AKY99].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 114 24-9-2008 #7

114 Handbook of Algorithms for Physical Design Automation

C

e

FIGURE 7.3 Absorption metric.

Absorption: The absorption metric measures the sum of nets, as a fraction, that are absorbed by
blocks [SS95].

max
k∑
i=1

∑
{e∈E|e∩Ci
=∅}

|e ∩ Ci| − 1

|e| − 1

At the two extremes, nets that have one vertex in a block C add 0 to the absorption metric; nets that
have all vertices in a block C add 1 to the absorption metric. In Figure 7.3, |e ∩ C| = 2, |e∩C|−1

|e|−1
= 1

3
.

In addition to the usual balance constraints, partitioning formulationsmay include constraints for
vertices that are assigned to a specific block. The presence of fixed terminals adds some convexity
to this otherwise highly nonconvex problem, making it computationally less expensive [EAV99]. In
Ref. [ACKM00], the authors point out that the presence of fixed vertices makes the problem trivial
in the sense that only one or two passes of an iterative improvement engine are required to approach
a good solution.

7.2 MOVE-BASED PARTITIONING METHODS

In this section,wewill outline themost significant developments in the field of iterative improvement-
based partitioning. Iterative improvement forms the basis ofmultilevel partitioning,which represents
the state of the art as far as partitioning is concerned.

7.2.1 KERNIGHAN–LIN HEURISTIC

Kernighan and Lin’s work was the earliest attempt at moving away from exhaustive search in
determining the optimal netcut subject to balance constraints. In Ref. [KL70], they propose a
O(|V |2 log |V |) heuristic for graph bipartitioning based on exchanging pairs of vertices with the
highest gain between two blocks, C1 and C2. They define the gain of a pair of vertices as the number
of edges by which the netcut decreases if vertices x and y are exchanged between blocks. Assuming
aij are entries of a graph adjacency matrix, the gain is given by the formula

g(vx, vy) =
⎛
⎝∑

vj
∈C1
axj −

∑
vj∈C1

axj

⎞
⎠+

⎛
⎝∑

vj
∈C2
ayj −

∑
vj∈C2

ayj

⎞
⎠− 2axy

The terms in parentheses count the number of vertices that have edges entirely within one block
minus the number of vertices that have edges connecting vertices in the complementary block.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 115 24-9-2008 #8

Partitioning and Clustering 115

TABLE 7.1
Gain Computations

Previous State Next State Gain

A B |ABA| + |OABA| − |IA| − |OA|
B A |IABA| + |OABA| − |IA| − |OA|

The procedure works as follows: vertices are initially divided into two sets, C1 and C2. A gain is
computed for all pairs of vertices (vi, vj)with vi ∈ C1 and vj ∈ C2; the pair of vertices, (vx, vy), with the
highest gain is selected for exchange; vx and vy are then removed from the list of exchange candidates.
The gains for all pairs of vertices, vi ∈ (C1 − {vx}) and vj ∈ (C2 − {vy}), are recomputed and the
pairing of vertices with the highest gain are exchanged. The process continues until g(vx, vy) = 0,
at which point, the algorithm will have found a local minimum. The algorithm can be repeated to
improve upon the current local minimum. Kernighan and Lin observe that two to four passes are
necessary to obtain a locally optimal solution.

InRef. [SK72], Schweikert andKernighan introduce amodel that dealswith hypergraphs directly.
They point out that the major flaw of the (clique) graph model is that it exaggerates the importance
of nets with more than two connections. After bipartitioning, vertices connecting large nets tend to
end up in the same block, whereas vertices connected to two point nets end up in different blocks.
They combine their hypergraphmodel in the Kernighan–Lin partitioning heuristic and obtain much
better results on circuit partitioning problems.

7.2.2 FIDUCCIA–MATTHEYSES HEURISTIC

The Fiduccia–Mattheyses (FM) [FM82] method is a linear-time, [O(|P|)] per pass, hypergraph
bipartitioning heuristic. Its impressive runtime is due to a clever way of determining which vertex to
move based on its gain and to an efficient data structure called a bucket list.

Borrowing the terminology and notation from Ref. [KN91], a critical net is one that is connected
to a single vertex in one of the blocks (so that the removal of that vertex removes the net from that
block). A net state is a combination of subnetworks that contain a net as well as the subnetworks in
which the net is critical. Let A indicate that a net is entirely within block A; let AA indicate that a net
in block A is critical to block A. Let the prefix I or O indicate that the net is an input or output to the
vertex, thus IABA indicates the input net has vertices in blocks A and B but that is critical to block A.
The gain equations are computed with respect to vertices and are given in Table 7.1.

In Figure 7.4, if we move vertex u from A to B, the gain is computed in the following way.
|ABA| = 2 because nets 1 and 2 are critical to A, |OABA| = 2 refers to nets 1 and 2 as well, |IA| = 3

A B

Net 1

Net 2

v

u

FIGURE 7.4 Example of gain computations.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 116 24-9-2008 #9

116 Handbook of Algorithms for Physical Design Automation

because there are three inputs to u in A, and |OA| = 2 because there are two outputs to u in A. The
gain is given by |ABA| + |OABA|− |IA|− |OA| = 2+ 2− 3− 2 = −1, which implies moving vertex
u will result in the netcut increasing by 1. On the other hand, moving vertex v from B to A implies
|IABA| = 1 because v has one input that is critical to A, |OABA| = 0 because v has no outputs critical
to A, |IA| = 0 because v has no inputs in A, and |OA| = 0 because v has no outputs in A, for a total
gain of 1.

The gains are maintained in a [−|P|max · · · |P|max] bucket array whose ith entry contains a doubly
linked list of free vertices with gains currently equal to i. The maximum gain, |P|max, is obtained
when a vertex of degree |P|max (i.e., a vertex that is incident on |P|max nets) is moved across the block
boundary and all of its incident nets are removed from the cutset (Figure 7.5).

The free vertices in the bucket list are linked to vertices in the main vertex array so that during a
gain update, vertices are removed from the bucket list in constant time (per vertex). Superior results
are obtained if vertices are removed and inserted from the bucket list using a last-in-first-out (LIFO)
scheme (over first-in-first-out [FIFO] or random schemes) [HHK97]. The authors of Ref. [HHK97]
speculate that a LIFO implementation is better because vertices that naturally block together will
tend to be listed sequentially in the netlist. Care must be exercised to compute gains correctly for
situations where a cell has two inputs on the same net.

7.2.3 IMPROVEMENTS ON THE FIDUCCIA–MATTHEYSES HEURISTIC

This section discusses a few noteworthy improvements to the original FM implementation that have
helped the acceptance of FM as the most popular partitioning technique.

The first improvement to FM is Krishnamurthy’s look-ahead scheme [Kri84], in which a vertex
belonging to a multivertex net, which is in the cutset, is considered for a move. Moving this vertex
may not necessarily remove the net from the cutset in the current pass, but may do so in a future pass.
Kirshnamurthy’smethod calculates a gain vector consisting of a sequence of r gain values, which are
likely to result in r moves from the current move. The rth level gain counts the reduced netcut after r
moves. If there are ties in the current gain value, gain vectors are calculated for those configurations;
ties at the ith move are broken by looking at the possible gains at the (i + 1)st iteration.

Sanchis [San89] extends the FM concept to deal with multiway partitioning. Her method incor-
porates Fiduccia and Mattheyses’ gain bucket structure (modified for multiway partitioning) with
Krishnamurthy’s look-ahead scheme. One pass of the algorithm consists of examining moves that
result in the highest gain among all k(k−1) bucket lists. The vertexwith the highest gain that satisfies
the balance criterion is then moved. After a move, all k(k − 1) bucket lists are updated.

Cell

1 2 i N... ...

...Maximum gain

−Pmax

Pmax

Cell # Cell #

FIGURE 7.5 Bucket-list data structure used in FM iterative improvement partitioning algorithm.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 117 24-9-2008 #10

Partitioning and Clustering 117

Cell 1

Cell 2

Cell 1

Cell 2

Cutline Cutline

FIGURE 7.6 On the left side, the netcut is 2; on the right side, the inverter has been replicated so the netcut
is only 1.

An extension to the FM algorithmworks by replicating cells across blocks to reduce the netcut as
in Figure 7.6 [KN91]. Replication is useful in the context of field programmable gate array (FPGA)
partitioning where there are hard limits on the number of I/O resources. The concept of replication
is depicted in Figure 7.6.

The principal modification to the FM algorithm is the insertion of gain equations that model cell
replication. Again, using the notation fromRef. [KN91] and the previous section, the gains are given
in Table 7.2, where the last four lines are due to vertex replication or unreplication. Notice that there
is very little change to the algorithm, thus the asymptotic complexity is equivalent to that of FM.

Dutt and Deng [DD96] observe that iterative improvement engines such as FM or look-ahead do
not identify blocks adequately, and consequently, miss locally optimal solutions with respect to the
netcut. They point out that in FM, the total gain of a vertex is composed of the sum of an initial gain
component and an updated gain component. They propose to make the decision regarding which
subsequent vertices to move based on the updated gain component exclusively.

In Ref. [CL98], the authors propose a k-way FM-based partitioning method that does not rely
on recursive subdivision of the solution space. Up until that point, a k-way partitioning solution
meant partitioning into two blocks, then four, and so on in a recursive fashion. The problemwith this
approach is that vertices can only be moved between the two blocks within the current partitioning
level, so the partitioning solution is fairly localized, as is illustrated on the left in Figure 7.7. In their
approach, two blocks form a pair when the cutsize between them is maximum or minimum during
the last several passes. FM-type partitioning is then performed on vertices within the two selected
blocks as on the right in Figure 7.7.

7.2.4 SIMULATED ANNEALING

In the late 1980s, simulated annealing emerged as a viable means to solve difficult combinatorial
problems. The nomenclature comes from the process of crystal growth, called annealing. A material
is initially heated to molten state. If it is cooled slowly enough, the molecules gradually fall into a
state of minimal energy and the material assumes a beautiful crystalline shape. The mathematical
analogy is that state corresponds to a feasible solution, energy corresponds to solution cost, and

TABLE 7.2
More Detailed set of Gain Computations

Previous State Next State Gain Equation

A B |ABA| + |OABA| − |IA| − |OA|
B A |IABA| + |OABA| − |IA| − |OA|
A AB |OAB| + |OABA| − |IA|
B AB |OAB| + |OABB| − |IB|
AB A |IABB| − |OABA| − |OAB|
AB B |IABA| − |OABB| − |OAB|

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 118 24-9-2008 #11

118 Handbook of Algorithms for Physical Design Automation

FIGURE 7.7 Recursive versus pairwise k–way partitioning.

minimal energy corresponds to an optimal solution. The principal advantage of simulated annealing
over other methods is its ability to accept moves that will increase the cost function, initially with
a reasonably high probability, but with decreasing probability as the temperature decreases. In this
way, it is possible to climb out of local optima. The details of the simulated annealing algorithm are
given in Ref. [KGV83].

Simulated annealing is applied to the problem of graph partitioning in Ref. [JAMS89]. Any
partition of vertices into two sets, C1 and C2, is a valid solution, where C1 and C2 are not necessarily
the same size. The algorithm attempts to even out partition sizes by moving the vertex that results in
the least increase in cutsize from the larger set to the smaller set using the cost function

cost(C1,C2) = |{{u, v} ∈ E : u ∈ C1 and v ∈ C2}| + α(|C1| − |C2|)2

The temperature is embedded in the α parameter, thus at higher temperatures, imbalanced block
sizes are penalized according to the square of the difference in block sizes. As the temperature
decreases, block sizes becomemore balanced. Simulated annealing tends to produce smaller netcuts
than iterative methods, albeit with much greater runtimes [JAMS89].

7.3 MATHEMATICAL PARTITIONING FORMULATIONS

Analytical partitioning methods use equation solving techniques to assign vertices to one of the two
blocks so that the number of edges with endpoints in both blocks is minimized. In this section, we
use the notation C1 and C2 to denote the sets of vertices in each block. In Ref. [CGT95], the authors
use spectral bipartitioning to bipartition the vertices about the median of the entries in the second
eigenvector of the Laplacian matrix. In Ref. [AK94], the authors use a space-filling curve traversal
of the space spanned by a small set of eigenvectors to determine where to split the ordering induced
by the set of eigenvectors. This section discusses analytical approaches to partitioning in more detail.
The formulations in this section use the definitions given below.

Definition 7 Given a graph on |V | vertices and |E| edges where wij indicates the weight of the
edge connecting vertices i and j, the adjacency matrix, A, is defined as

aij =
{
wij > 0 if vertices i and j are adjacent i
= j

0 otherwise

Note that usually, wij is set to 1.

We denote the ith eigenvalue of A by αi

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 119 24-9-2008 #12

Partitioning and Clustering 119

Definition 8 Given an adjacency matrix of a graph on |V | vertices, the diagonal degree matrix,
D, is defined as

dii =
|V |∑
j=1

aij

Definition 9 Given a graph on |V | vertices, define the corresponding |V | × |V | Laplacian matrix,
L = D − A.

7.3.1 QUADRATIC PROGRAMMING FORMULATION

Given a graph G(V ,E), vertices u ∈ V and v ∈ V , let xv = 1 if vertex v belongs to block 1 and
xv = −1 if vertex v belongs to block 2. We wish to minimize the number of edges with endpoints
in both blocks. Because xv = ±1, this is equivalent to minimizing the one-dimensional (integer)
distance between all pairs of connected vertices [HK91].

min
∑

(u,v)∈E
(xu − xv)

2 (7.1)

The nonzero pattern in the summand results in the matrix formulation:

min
x

(PTx)T(PTx) = min xTPPTx = min xTLx (7.2)

where P is the |V | × |E| node-arc incidence matrix defined as [NW88]

pv,e =

⎧⎪⎨
⎪⎩

+1 if vertex v is the head of edge e

−1 if vertex v is the tail of edge e

0 otherwise

and where L is the Laplacian matrix of the graph. To accommodate nonunit weights on the edges,
one forms the product PWPT, where W is a diagonal matrix with the nonzero entries representing
the weights of edges [GM00]. We list the properties of L here.

Property 1 L is a symmetric, positive semi definite matrix.

Proof Using Equations 7.1 and 7.2, we have

xTLx = 1

2

|V |∑
i=1

|V |∑
j=1

(xi − xj)
2 ≥ 0, ∀ xi
= xj

By Property 1, the eigenvalues are all real and nonnegative.

Property 2 The sum of elements in each row of L equal 0

Proof Recall that L = D − A and that dii = ∑|V |
j=1 aij, thus

|V |∑
j=1

�ij = dii −
|V |∑
j=1

aij =
|V |∑
j=1

aij −
|V |∑
j=1

aij = 0

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 120 24-9-2008 #13

120 Handbook of Algorithms for Physical Design Automation

The graph partitioning formulation includes block assignment constraints on the vertices [Hal70,
PSL90]:

min
x

xTLx

s.t. xv = ±1

Because of its discrete nature, this problem is very difficult to solve exactly. The discrete constraints
can be modeled by n ith order constraints [TK91]. In practice, the integer constraints are approx-
imated by first- and second-order constraints only. The second-order constraints in Equation7.4
spread vertices about the median. The first-order constraints in Equation 7.5 dictate that there are an
approximately equal number of vertices on both sides of the median. For convenience, we define e
as the vector of all ones. Thus, the optimization problem is

min
x

xTLx (7.3)

s.t. xTx = 1 (7.4)

xTe = 0 (7.5)

This formulation essentially replaces the solution space consisting of the vertices of the ±1 unit
hypercube with the points on the surface of the Euclidian unit sphere.

Theorem 2 [PSL90] A globally optimal solution to Equations 7.3 through 7.5 is x = u2, where u2

is the eigenvector corresponding to the second smallest eigenvalue of L.

u2 is formally known as the Fiedler vector [Fie73]. The components of the Fiedler vector that are
negative valued represent the coordinates of vertices in the first block; components of the second
eigenvector that are greater than or equal to 0 represent the coordinates of vertices in the second
block. The effect is that the eigenvector components of strongly (weakly) connected vertices are
close (far away), thus strongly connected vertices are more likely to be assigned to the same block.
Because it minimizes the distance between pairs of vertices, the technique we have just described
can be used as a one-dimensional placement of vertices [TK91]. Unfortunately, there is no guarantee
that the optimal solution obtained by the continuous optimization problem closely approximates the
discrete optimum [CGT95].

7.3.1.1 Lower Bounds on the Cutset Size

The Laplacian matrix used in the bipartitioning quadratic programming formulation is, in fact, the
discretized version of the Laplace operator from partial differential equation (PDE) theory. If the
PDE is solved exactly, one can obtain theoretical bounds on the number of edges cut for a line graph
fixed at both ends. The canonical graph used to obtain lower bounds is a line graph of length L with
tethered endpoints, as in Figure 7.8. We represent the string by |V | = n weighted masses connected
by n + 1 pieces of string such that each piece is ∆x = L

n
units long.

u1

u3u2

u4 u5

FIGURE 7.8 Line graph.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 121 24-9-2008 #14

Partitioning and Clustering 121

The bipartitioning problem for the line graph has an exact solution, which is given by the second
eigenvalue of L, λ2 = 2aπ

L
and the second eigenvector of L is given by

u2 =
(
sin

[
2π(�x)

n + 1

]
sin

[
2π(2�x)

n + 1

]
· · · sin

{
2π[(n− 1)�x]

n+ 1

}
sin

[
2π(n�x)

n + 1

])

when n = 2 (i.e., the case with bipartitioning), the string vibrates such that the u-coordinate at the
midpoint is always 0. The area to the left of the midpoint (thus, half of the vertices) has u > 0 and
the area to the right of the midpoint has u < 0 (the other half of vertices).

Some of the earliest theoretical developments in eigenvector bipartitioning were concerned with
finding lower bounds on the size of the cutset. First, we give two definitions:

Definition 10 A block assignment matrix, X, is defined as

xis =
{
1 if vertex i is in block s

0 otherwise

A related matrix describes whether two vertices are in the same block.

Definition 11 A block adjacency matrix, B = XXT, is defined as

bij =
{
1 if vertex i is in the same block as vertex j

0 otherwise

The eigenvalues of B are {β1, β2, . . . , βk, 0, . . . , 0} where k indicates the desired number of blocks.
Donath and Hoffman [DH73] provide lower bounds on the number of edges cut:

|Ec| ≥ −1

2

k∑
j=1

λjβj

where λj is an eigenvalue of the adjacency matrix plus a diagonal matrix U, such that
∑|V |

i=1 uii =
−∑|V |

j=1

∑|V |
i=1 aij.

Barnes [Bar82] restated k-way graph partitioning in terms of finding a block assignment matrix,
B, so that the distance (in a two-norm sense) between B and the adjacency matrix, A, is as small as
possible. The rationale is that if vertices i and j are adjacent (i.e., aij = 1), then they should end up
in the same block (i.e., bij = 1). He shows that

min |Ec| ≡ min ‖A − B‖2

Hagen and Kahng [HK92] proved that

|Ec| ≥ |C1| · |C2|
|V | λ2

which agrees with Boppana’s [Bop87] bounds of

|Ec| ≥ |V |
4

λ2

when |V1| = |C2| = |V |
2
. Other bounds are found in Ref. [FRW92].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 122 24-9-2008 #15

122 Handbook of Algorithms for Physical Design Automation

2D placement 3D placement
X

Y
0.05

0

�0.05

�0.05

�0.1

�0.1

�0.15

0.1
0.05

0

�0.02
0 0.02

X
Y

N

0.04
0.06

0.08

0.15

(a) (b)

0.1

0.05

�0.05

�0.1

�0.15

�0.2
�0.04 �0.02 0 0.02 0.04 0.06 0.08 0.1

0

FIGURE 7.9 Placements of prim1 using (a) two eigenvectors and (b) three eigenvectors.

7.3.1.2 Partitioning Solutions from Multiple Eigenvectors

It is also possible to usemultiple eigenvectors to determine arrangements of vertices thatminimize the
number of cuts. Hall [Hal70] suggests that the location of the vertices in r-dimensional space can be
used to identify blocks (see Section7.3.1 for a description of hismethod). Two- and three-dimensional
placements of prim1 are shown in Figure 7.9. The three branches in the two-dimensional plot
indicate three blocks should be formed. On the other hand, it is not as obvious how to cluster vertices
in the three-dimensional plot.

Instead of minimizing the squared distance between two vertices as in Equations 7.3 and 7.4,
Frankle and Karp [FK86] transform the distance minimization problem to one of finding the point
emanating from the projection of x onto all eigenvectors that is furthest from the origin. The vector
induced by this point will give a good ordering with respect to the wirelength.

Chan et al. [CSZ94] use the cosine of the angle between two rows of the |V | × k eigenvector
matrix,V, to determine how close the vertices are to each other. If the cosine between two vectors is
close to 1, then the corresponding vertices must belong to the same block. Their k-way partitioning
heuristic constructs k prototype vectors with distinct directions (to represent blocks) and places
into the corresponding block the vertices that have corresponding vectors within π

8
radians of the

prototype vector.
This approach was the starting point for a method devised by Alpert et al. The idea behind

multiple eigenvector linear orderings (MELO) [AY95], [AKY99] is after removing the first column
(which corresponds to the zero eigenvalue) fromV (call this matrixV′), the partition that satisfies the
usual mincut objective and balance constraints is obtained by finding a permutation of the rows of
V′ that results in the maximum possible two-norm sum of the rows. Alpert and Yao [AKY99] prove
that when the number of eigenvectors selected is n, then maximizing the vector sum is equivalent to
minimizing netcut.

7.3.2 LINEAR PROGRAMMING FORMULATIONS

In paraboli, Riess et al. [RDJ94], [AK95] use the eigenvector technique of Section 7.3.1 to fix
the vertices corresponding to the ten smallest eigenvector components and ten largest eigenvector
components to locations 1.0 and 0.0, respectively. The center of gravity of the remaining vertices is
fixed at location 0.5. They use a mathematical programming technique to reposition the free vertices

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 123 24-9-2008 #16

Partitioning and Clustering 123

so the overall wirelength is reduced. The mathematical formulation is given by

min
|V |∑
i=1

|V |∑
j=1

aij
|xi − xj| (xi − xj)

2

s.t.
|V |∑
i=1

xi = f

In the next pass of the algorithm, the 5 percent of vertices with the largest (smallest) resulting
coordinate are moved so their center of gravity is at xi = 0.95 and xi = 0.05. After performing the
optimization and repositioning, the process is repeated at center of gravity of xi = 0.9 and xi = 0.1,
etc. The process is repeated ten times so there are ten different orderings. The best ordering is the
one among the ten orderings with the best ratiocut metric.

In Ref. [LLLC96], the authors point out that linear cost functions spread out dense blocks of
vertices, whereas quadratic cost functions naturally identify blocks of vertices, making it easier to
assign discrete locations to otherwise closely packed vertices. They incorporate the merits of both
linear and quadratic methods in a modified α-order cost function:

min
|V |∑
i>j

|V |∑
j=1

aij
|xi − xj|2−α

(xi − xj)
2

s.t.
|V |∑
i=1

xi = f

where 1 ≤ α ≤ 2. If α = 1, the cost function becomes the linear cost function; for α = 2, the
cost function becomes the quadratic cost function. They observe that α = 1.2 best incorporates the
benefits of linear and quadratic cost functions.

7.3.3 INTEGER PROGRAMMING FORMULATIONS

In Ref. [AK95], the authors formulate bipartitioning as an integer quadratic program. Let xis indicate
that vertex i belongs to block s. Let aij represent the cost of the edge connecting vertices i and j. Let
B be a matrix with bii = 0, ∀ i and bij = 1, ∀ i
= j. The optimization problem that minimizes the
number of edges that have endpoints in more than one block is given by

min
k∑

i,j=1

m∑
s,�=1

aijxisbs�xj� (7.6)

s.t.
k∑
s=1

xis = 1 ∀ i (7.7)

m∑
i=1

xis = us ∀ s (7.8)

xij = {0, 1} (7.9)

Constraint given in Equation7.7 indicates each vertex belongs to exactly one block and constraint
given in Equation 7.8 denotes block sizes. The rationale behind the objective function is that when
the edge (i, j) is cut, aij

∑k
s,�=1 xisbs�xj� = aij—in effect the cost of cutting the edge (i, j) appears only

once in the summation. On the other hand, if edge (i, j) is uncut, then s = � and bs� = 0, which
implies that aij

∑k
s,�=1 xisbs�xj� = 0.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 124 24-9-2008 #17

124 Handbook of Algorithms for Physical Design Automation

In Refs. [AV93], [Kuc05], the authors formulate the k-way partitioning problem as a 0–1 integer
linear program (INLP). Assume there are j = 1 · · · k blocks, i = 1 · · · |V | vertices, s = 1 · · · |E| nets,
and i′ = 1 . . . |e|s vertices per net s. Let s(i′) denote the index of the i′th vertex of edge s in the set of
vertices, V . Define xij to be an indicator variable such that

xij =
{
1 vertex i is in block j

0 otherwise

The crux of the model is in the way we represent uncut edges. If a specific net consists of vertices 1
through 4, then it will be uncut if

x1jx2jx3jx4j = 1 for some j

Introduce the indicator variable

ysj =
{
1 if net s has all of its vertices entirely in block j

0 otherwise

These constraints enable us to write the partitioning problem as an integer program. To understand
how these constraints work, consider a net consisting of vertices 1 and 5. Thus, for this net to be
uncut, xijx5j = 1. Because x1j, x5j ∈ {0, 1} then it is true that x1jx5j ≤ x1j and x1jx5j ≤ x5j.

The objective function maximizes the sum of uncut nets (hence, minimizing the sum of cutnets)

max
k∑
j=1

n∑
s=1

ysj (7.10)

s.t. ysj ≤ xs(i′)j ∀ i′, j, s (7.11)

n∑
j=1

xij = 1 ∀ i (7.12)

lj ≤
m∑
i=1

aixij ≤ uj ∀ j (7.13)

xpq = 1 p ∈ V , q ∈ B (7.14)

xij = {0, 1} (7.15)

ysj = {0, 1} (7.16)

Constraint given in Equation 7.11 is the net connectivity constraint. Constraint given in Equation 7.12
has each vertex assigned to exactly one block. Constraint given in Equation7.13 imposes block size
limits, given nonunit cell sizes ai. The bounds for bipartitioning are typically lj = [0.45∑m

i=1 ai] and
uj = [0.55∑m

i=1 ai]. Constraint given in Equation7.14 indicates that vertex p is in block q.

7.3.4 NETWORK FLOW

Given a directed graph G, each directed edge (or arc) (x, y) has an associated nonnegative number
c(x, y) called the capacity of the arc. The capacity can be viewed as the maximal amount of flow that

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 125 24-9-2008 #18

Partitioning and Clustering 125

s

t

x

4

2

1
1

2

1
1

1

1

1

FIGURE 7.10 Flownetwork. (FromFord, L. R. and Fulkerson, D. R.,Flows inNetworks, PrincetonUniversity
Press, Princeton, NJ, 1962.)

leaves x and ends at y per unit time [FF62]. Let s indicate a starting node and t a terminating node.
A flow from s to t is a function f that satisfies the equations

∑
from y

f (x, y) −
∑
to y

f (y, x) =
⎧⎨
⎩
k, x = s
0, x
= s, t
−k, x = t

(7.17)

f (x, y) ≤ c(x, y) ∀ (x, y) (7.18)

Equation7.17 implies the total flow k out of s is equal to −k out of t and there is no flow out of
intermediate nodes (as with Kirchoff’s law).
Equation7.18 implies the flow is not allowed to exceed the capacity value. Borrowing the example
from Ref. [FF62], in Figure 7.10, we see that the flow out of s is −1 − 1 + 1 + 4 = 3, the flow out
of intermediate node x is −4 + 2 + 1 + 1 = 0 and the flow out of t is −2 + 1 − 1 − 1 = −3.

The idea behind bipartitioning is to separate G into two blocks (not necessarily the same size)
such that s ∈ C1 and t ∈ C2 where the netcut is given by

∑
x∈C1,y∈C2 c(x, y). The following theorem

links computing the maximum flow to the netcut.

Theorem 3 MinFlow MaxCut: For any network, the maximum flow value from s to t is equal to
the minimum cut capacity for all cuts separating s and t

If we can find the maximum flow value from s to t, we will have found the partition with the
smallest cut. In Figure 7.10, the maximum flow is 3. In Ref. [FF62], the authors prove the maximum
flow computation can be solved in polynomial time. The problem is that partitions can be very
unbalanced.

In Ref. [YW94], the authors propose a maximum flow algorithm that finds balanced partitions
in polynomial time. Because nets are bidirectional, to apply network flow techniques, the net is
transformed into an equivalent flownetwork and the flow representation shown in Figure7.11 is used.

The idea is that all vertices in net 1 are connected toward vertex x and away from vertex y. The
next step is to solve the maxflow-mincut problem in O(|V‖E|) time, which obtains the minimal
cutset, Ec, for the unbalanced problem. Finally, if the balance criterion is not satisfied, vertices in
C1 (or C2) are collapsed into s (or t), a vertex v ∈ C1 (or in C2) incident on a net in Ec is collapsed
into s (or t) and the cutset, Ec, is recomputed. The procedure has the same time complexity as the
unbalanced mincut algorithm.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 126 24-9-2008 #19

126 Handbook of Algorithms for Physical Design Automation

Net 1

u

v

w

u

v

w

8

8
8

8
8

8 1
x y

FIGURE 7.11 Efficient flow representation.

7.3.5 DYNAMIC PROGRAMMING

In a series of two papers [AK94], [AK96], the authors discuss clustering methods that form blocks
by splitting a linear ordering of vertices using dynamic programming. It can be shown that dynamic
programming can be used to optimally split the ordering into blocks [AK94].

In Ref. [AK94], the authors embed a linear ordering obtained frommultiple eigenvectors in mul-
tidimensional space and use a traveling-salesman problem (TSP) heuristic to traverse the points. The
idea is that points that are close together in the embedding are in proximity to one another in the linear
ordering. A space-filling curve is then used as a good TSP heuristic because it traverses the points
that are near to each other before wandering off to explore other parts of the space. They construct
k blocks by splitting the tour into 2, 3, . . . , k − 1, up to k segments using dynamic programming.

7.4 CLUSTERING

Partitioning is implicitly a top-down process in which an entire netlist is scanned for the separation
of vertices into a few blocks. The complementary process to partitioning is clustering in which a few
vertices at a time are grouped into a number of blocks proportional to the number of vertices [Alp96].

A block can be defined in a number of ways. Intuitively, a block is a dense region in a hypergraph
[GPS90]. The clique is the densest possible subgraph of a graph. The density of a graph G(V ,E) is

|E|
(|V |

2)
and by this definition, clustering is the separation ofV into k dense subgraphs, {C1,C2, . . . ,Ck} in

which each ofCi have density equal to ε: 0 < ε ≤ 1. However, this problem is NP-complete [AK95].
A less formalway of defining a block is simply a regionwhere vertices havemultiple connections

with one another. This forms the basis of clustering techniques that use vertex matchings. Normally,
matchings apply to graphs, but here, we apply them to hypergraphs. A matching of G = (V ,E) is a
subset of hyperedges with the property that no two hyperedges share the same vertex. A heavy-edge
matching means edges with the heaviest weights are selected first. A maximum matching means as
many vertices as possible are matched [PS98], [Ten99]. For a hypergraph that consists of two-point
hyperedges only, a maximum matching consists of |V |

2
edges (Figure 7.12). In more general case, a

maximum matching contracts fewer than |V |
2
edges.

1

2

3

4

5

6

7

8

9

10

FIGURE 7.12 Maximum matching of two-point hyperedges.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 127 24-9-2008 #20

Partitioning and Clustering 127

The clustering process tends to decrease the sparsity of the netlist, which is fortunate because
FM-based algorithms performbest when the average vertex degree is larger than 5 [AK95].Walshaw
[Wal03] suggests clustering filters out irrelevant data from the partitioning solution space so that
subsequent iterative improvement steps look for a minimum in a more convex space.

We have divided clusteringmethods into three categories roughly in chronological order. Cluster-
ing techniques blockmanyvertices simultaneously in a hierarchical fashion [KK98,AK98]or one ver-
tex at a time in an agglomerative fashion, based on physical connectivity information [AK96,CL00,
HMS03,LMS05,AKN+05]. In cell placers, information such as cell names (i.e., indicating which
presynthesized objects cells belonged to) may be incorporated to speed up the clustering heuristic.

7.4.1 HIERARCHICAL CLUSTERING

Hierarchical techniques merge all vertices into clusters at the same time. Candidate vertices for hier-
archical clustering are based on the results of vertex matchings [BS93,HL95,AK98,KK98,Kar03];
matched vertices are then merged into clusters of vertices. Matchings are used extensively because
they tend to locate independent logical groupings of vertices, thus avoiding the buildup of vertices
of excessively large degree. Matchings may be selected randomly or by decreasing netsize, called
heavy-edge matching. After clustering, the average vertex weight increases, but the average net
degree decreases. Karypis and Kumar [Kar03] use the following clustering schemes, assuming unit
weights on nets:

1. Select pairs of vertices that are present in the same nets by finding a maximum matching
of vertices based on a clique-graph representation (edge clustering).

2. Find a heavy-edge matching of vertices by nonincreasing net size; after all nets have been
visited, merge matched vertices (net clustering).

3. After nets have been selected for matching, for each net that has not been contracted, its
(unmatched) vertices are contracted together (modified net clustering).

4. To preserve some of the natural clustering that may be destroyed by the independence
criterion of the previous three schemes, after an initial matching phase, for each vertex
υ ∈ V , consider vertices that belong to nets with the largest weight incident on υ, whether
they are matched or not (first choice clustering).

The clustering schemes are depicted in Figure 7.13.
Karypis [Kar03] points out that there is no consistently better clustering scheme for all netlists.

Examples can be constructed for any of the above clusteringmethods that fail to determine the correct
partitions [Kar03]. Karypis [Kar03] also suggests that a good stopping point for clustering is when
there are 30k vertices where k indicates the desired number of blocks.

After the clustering phase, an initial bipartition that satisfies the balance constraint is performed.
It is not necessary at this point to produce an optimal bipartition because that is ultimately the purpose
of the refinement phase. Recently, several new clustering algorithms have been devised.

7.4.2 AGGLOMERATIVE CLUSTERING

Agglomerative methods form clusters one at a time based on connectivity of nets adjacent to the
vertices being considered. Once a cluster is formed, its vertices are removed from the remaining
pool of vertices. The key to achieving a good clustering solution is in somehow capturing global
connectivity information.

7.4.2.1 Clustering Based on Vertex Ordering

InRef. [AK96], the authors introduce the concept of an attraction function and awindow to construct a
linear ordering of vertices. Given a starting vertex, υ∗

i , and an initially empty set of ordered vertices, S,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 128 24-9-2008 #21

128 Handbook of Algorithms for Physical Design Automation

(c) Modified net clustering

(b) Net clustering

(a) Edge clustering

FIGURE 7.13 Clustering schemes. (From Karypis, G., Multilevel Optimization in VLSICAD, Kluwer
Academic Publishers, Boston, MA, 2003.)

they compute the attraction function forυ∗
i at step i inV−S. Various attraction functions are described.

For example, one using the absorption objective is given by

Attract(i) =
∑

e∈E(i)|e∩S
=∅

1

|e| − 1

where E(i) indicates the set of edges at step i. They then select the vertex υ∗
i in V − S with optimal

attraction function and add it to S. Finally, they update the attraction function for every vertex in
V − S and repeat until V − S becomes empty. The order in which vertices are inserted into S defines
blocks, where vertices that were recently inserted into S have more attraction on υ∗

i than vertices
that were inserted many passes earlier (called windowing in Ref. [AK96]). Dynamic programming
is ultimately used to split S into blocks. The authors report that windowing produced superior results
with respect to the absorption metric over other ordering techniques.

7.4.2.2 Clustering Based on Connectivity

In Ref. [CL00], the authors use the concept of edge separability to guide the clustering process.
Given an edge e = (x, y), the edge separability, λ(e), is defined as the minimum cutsize among
cuts separating vertices x and y. To determine the set of nets to be clustered, Z(G), they solve a
maximum flow problem (because computing edge separability is equivalent to finding the maximum
flow between x and y). To assess in what order the nets in Z(G) should be contracted, the authors
use a specialized ranking function related to the separability metric. Nets are contracted until the
maximum cluster limit size of log2 |V | is reached.

In Refs. [HMS03], [HMS04], the authors use a clique representation of nets, the weight of a
connection is given by

w(c) = w(e)

(|e| − 1)|e|

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 129 24-9-2008 #22

Partitioning and Clustering 129

A

B

C

DD

C

B

A

1

1

1

1

½
½

½

FIGURE 7.14 Clique net model (with edge weights 1/(|e| − 1)) favors absorption better.

where w(c) is the weight of a cluster and w(e) is the weight of a net segment (determined by the net
model used). The rationale behind using a cliquemodel for nets is that it favors configurationswhere
the net is absorbed completely into a cluster. In Figure 7.14, net 1 consists of vertices {A,B,C} and
net 2 consists of vertices {C,D}. On the left side, using a star net model, the cost of cutting any edge
is 1 so clusters can be formed in three ways. On the right side, the cost of cutting the edge connecting
C and D is highest, so clusters like these are formed.

The cost of each of a fine cluster, f , is given by
∑

c∈f w(c) and the overall cost of a fine clustering
solution is given by

∑
f

∑
c∈f w(c), where the goal is tomaximize the overall cost of the fine clustering

solution.
In Ref. [LMS05], the authors propose clustering technique based on physical connectivity. They

define an internal force of a block C as a summation of weights of all internal block connections.

Fint(C) =
∑
i,j∈C

w(i, j)

As well, they define an external force of a block C as the summation of weights of nets with at least
one vertex located outside C and at least one vertex inside C.

Fext(C) =
∑
i∈C,j�C

w(i, j)

The measure that best reflects physical connectivity is the ratio of external to internal forces.

�(C) = Fext(C)

Fint(C)

Where the goal is to maximize �(C). Fext can be measured in other ways as well. In Ref. [LMS05],
the authors use a local Rent’s exponent of a block

p = logG

(
T

t

)

where
G is the number of nodes in the block
T is the number of nets that have connections inside the block and outside the block
t is the average node degree of the circuit

The seed growth algorithm works by constructing a block with strong physical connectivity starting
from a seed node with large net degree. The connectivity between neighbor node u and block
C is given by conn(u,C) = ∑

i∈C w(u, i). In subsequent passes, neighbor nodes with the largest
possible connectivity are added to the block while keeping the internal force as large as possible.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 130 24-9-2008 #23

130 Handbook of Algorithms for Physical Design Automation

When the block size exceeds some threshold value, an attempt is made to minimize the local Rent
exponent to reduce the external force. Experimental results indicate the seed growth algorithm
produces placements with improvedwirelength over placers that use clustering techniques described
in Section 7.4.1.

7.4.2.3 Clustering Based on Cell Area

In Ref. [AKN+05], the authors propose a clustering scheme tailored specifically to large-scale cell
placement. Their method is different from methods described in Section 7.4.1 in that those methods
block vertices indiscriminately, whereas best choice clustering considers only the best possible pair
of vertices among all vertex pairs. The main idea behind best choice clustering is to identify the best
possible pair of clustering candidates using a priority-queue data structure with pair-value key the
tuple (u, v, d(u, v))where u and v are the vertex pair and d(u, v) is the clustering score. The pair-value
keys are sorted, in descending order, by clustering score. The idea is to block the pair at the top of
the priority queue.

The clustering score is given by

d(u, v) =
∑
e

1

|e|
[

1

a(u) + a(v)

]

The first term is the weight of hyperedge e, which is inversely proportional to the number of vertices
incident on hyperedge e. The a(u) + a(v) term is the total area of cells u and v. Thus, this method
favors cells with small area, connected by nets of small degree. The above area function is necessary
to prevent the formation of overly large blocks. The authors propose using other score functions
including one that uses the total number of pins instead of cell area, because the total number of pins
is more indicative of block size (via Rent’s rule described in Section 7.4.2).

Once a (u, v) pair with the highest clustering score is merged into vertex u′, the clustering score
for all of u′s neighbors must be recalculated. This represents the most time-consuming stage of the
best choice clustering algorithm. For this reason, the authors introduce the concept of the lazy-update
clustering score technique, in which the recalculation of clustering scores is delayed until a vertex
pair reaches the top of the priority queue.

The best choice clustering algorithm is shown to produce better quality placement solutions
than edge coarsening and first-choice clustering. The lazy-update scheme is shown to be particularly
effective at reducing runtime, all with almost no change in half-perimeter wirelength. Studies are
underway as of thiswriting into incorporating fixed vertices (corresponding to input/output terminals)
into the best choice algorithm.

7.5 MULTILEVEL PARTITIONING

The gist of multilevel partitioning is to construct a sequence of successively coarser graphs, to
partition the coarsest graph (subject to balance constraints) and to project the partitions onto the next
level finer graph while performing numerical or FM-type iterative improvement to further improve
the partition [BJ93,BS93,HL95,Alp96,KAKS97] (Figure 7.15).

7.5.1 MULTILEVEL EIGENVECTOR PARTITIONING

The basis of multilevel partitioning with eigenvectors is described in Ref. [BS93] and consists
of clustering, interpolation, and refinement steps. Contraction consists of selecting a subgraph,
G′: V ′ ⊂ V , of the original graph such that V ′ is a maximum matching with respect to G. The
Lanczos algorithm [Dem97] is then applied to the reduced bipartitioning problem.

Interpolation consists of the following: given an |V |′ × 1 Fiedler vector, x′, of a contracted graph
G′, an interpolation step constructs a |V |×1 vectorx0 out of x′. This is accomplished by remembering

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 131 24-9-2008 #24

Partitioning and Clustering 131

Clustering Refinement

FIGURE 7.15 Essence of multilevel partitioning.

that the ith component of x′ was derived by contracting vertex m(i) of x and upon reconstructing a
new |V | × 1 vector, x0, inserting component xm(i) into the m(i)th slot of x0, initially filling all empty
slots in x0 with zeros. For example, if

x0 = [x1 0 0 x4 0 x6 0 0 0 x10]
then the zero components are then assigned the average values of their left and right nonzero neighbors

x0 =
[
x1
x1 + x4

2

x1 + x4
2

x4
x4 + x6

2
x6
x6 + x10

2

x6 + x10
2

x6 + x10
2

x10

]

Refinement consists of using x0 as a good starting solution for the Fiedler optimization problemEqua-
tions 7.3 through 7.5. The authors use a cubically converging numerical technique called Rayleigh
quotient iteration to solve for x [Wat91].

7.5.2 MULTILEVEL MOVE-BASED PARTITIONING

One of the originalworks onmultilevel partitioning in theVLSI domain [AHK96] applied techniques
that were previously employed on finite element meshes [HL95], [KK95]. The authors converted
circuit netlists to graphs, using a clique representation for individual nets, and ran the multilevel
graph partitioner, Metis [KK95], to obtain high-quality bipartitions. Using a graph representation,
however, has the pitfall that removing one edge from the cutset does not reflect the true objective
that is to remove an entire net from the cutset. Subsequent works [AHK97], [KAKS97] partitioned
hypergraphs directly using the two-stage approach of clustering and refinement. They obtained
optimal or near-optimal mincut results on the set of test cases listed. Multilevel partitioning, to this
day, remains the de facto partitioning technique.

Multilevel move-based partitioning consists of clustering and iterative improvement steps. The
power of multilevel partitioning becomes evident during the iterative improvement phase, where
moving one vertex across the block boundary corresponds to moving an entire group of clustered
vertices.

The refinement process consists of repeatedly applying an iterative improvement phase to suc-
cessively finer hypergraphs, while declustering after each pass of the interchange heuristic. Because
of the space complexity of Sanchis’ k-way FM algorithm and because vertices are clustered into the
proper blocks, Karypis et al. [KK99] use a downhill-only search variant of FM that does not require
the use of a bucket list. Their refinement method visits vertices in random order and moves them if
they result in a positive gain (and preserve the balance criterion). If a vertex v is internal to the block
being considered, then it is not moved; if v is a boundary vertex, it can be moved to a block that
houses v’s neighbors. The move that generates the highest gain is effectuated. In experiments, the
refinement method converges to a high-quality solution in only a few passes.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 132 24-9-2008 #25

132 Handbook of Algorithms for Physical Design Automation

7.5.3 NEW INNOVATIONS IN MULTILEVEL PARTITIONING

With increasing design sizes, it is becoming increasingly difficult to place an entire design flat using
one processor. A novel partitioning approach [Ma07] is applied to placement such that the computing
effort is spread across several processors. The approach consists of a rough initial flat placement,
a partitioning step, followed by detailed placement within the partition blocks where each block is
assigned to its own processor. The novelty of this technique lies in the way the blocks are determined.
Normally, an engineering change in one block will affect all other blocks. However, this is not the
case if the block boundary is determined by elements such as latches, flip-flops, or fixed objects.
Once these objects are identified, block boundaries thatminimize the number of nets running between
blocks are determined. Finally, detailed placement is applied to blocks, each block assigned to its
own processor.

7.6 CONCLUSION

This chapter has presented a historical survey of partitioning and clustering techniques ranging from
move-based methods to multilevel techniques to mathematical formulations including quadratic,
linear, and integer programming approaches. Multilevel methods have proven to be the partitioning
technique of choice in the VLSI community owing to the quality of results they produce with very
small runtimes. A consequence of which is that partitioning is currently viewed as a solved problem.
However, as problem sizes continue to increase, multilevel partitions may no longer be near optimal.
Recent works [Ma07] revisit the partitioning problem and offer new solutions for very large-scale
netlists.

ACKNOWLEDGMENTS

I would like to thank my colleagues, especially Ulrich Finkler and Chuck Alpert for giving their
comments and suggestions, and James Ma for helpful discussions regarding new innovations in
multilevel partitioning.

REFERENCES

[ACKM00] C. J. Alpert, A. E. Caldwell, A. B. Kahng, and I. L. Markov, Hypergraph partitioning with fixed
vertices, IEEE Transactions on Computer-Aided Design of Circuits and Systems 19(2): 267–272,
2000.

[AHK96] C. J. Alpert, L. W. Hagen, and A. B. Kahng, A hybrid multilevel/genetic approach for circuit
partitioning, Proceedings of the Physical Design Workshop, 1996, Reston, VA, pp. 100–105.

[AHK97] C. J. Alpert, J. -H. Huang, and A. B. Kahng, Multilevel circuit partitioning, Proceedings of the
ACM Design Automation Conference, Anaheim, CA, 1997, pp. 530–533.

[AK93] C. J. Alpert and A. B. Kahng, Geometric embeddings for faster and better multi-way netlist
partitioning, Proceedings of the ACM Design Automation Conference, Dallas, TX, 1993,
pp. 743–748.

[AK94] _____ , Multi-way partitioning via spacefilling curves and dynamic programming, Proceedings
of the ACM Design Automation Conference, San Diego, CA, 1994, pp. 652–657.

[AK95] _____ , Recent directions in netlist partitioning: A survey, Integration: The VLSI Journal 19:
1–813, 1995.

[AK96] _____ , A general framework for vertex orderings, with applications to circuit clustering, IEEE
Transactions on VLSI Systems 4(2): 240–246, 1996.

[AK98] _____ , Multilevel circuit partitioning, IEEE Transactions on Computer-Aided Design of Circuits
and Systems 17(8): 655–667, 1998.

[AKN+05] C. J. Alpert, A. B. Kahng, G. -J. Nam, S. Reda, and P. G. Villarrubia, A semi-persistent clustering
technique for VLSI circuit placement, Proceedings of the International Symposium on Physical
Design, San Francisco, CA, 2005, pp. 200–207.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 133 24-9-2008 #26

Partitioning and Clustering 133

[AKY99] C. J. Alpert, A. B. Kahng, and S. Z. Yao, Spectral partitioning with multiple eigenvectors,Discrete
Applied Mathematics 90(1–3): 3–26, 1999.

[Alp96] C. J. Alpert, Multi-way graph and hypergraph partitioning, PhD thesis, University of California,
Los Angeles, CA, 1996.

[AV93] S. Areibi and A. Vannelli, Advanced search techniques for circuit partitioning, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society,
Rutgers, NJ, 1993, 77–97.

[AY95] C. J. Alpert and S. -Z. Yao, Spectral partitioning: The more eigenvectors, the better, Proceedings
of the ACM Design Automation Conference, San Francisco, CA, 1995, pp. 195–200.

[Bar82] E. R. Barnes, An algorithm for partitioning the nodes of a graph, SIAM Journal of Algebraic and
Discrete Methods 3(4): 541–550, 1982.

[BJ93] T. N. Bui and C. Jones, A heuristic for reducing fill-in in sparse matrix factorization, Proceedings
of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, Portsmouth, VA,
Vol. 1, 1993, pp. 445–452.

[Bop87] R. B. Boppana, Eigenvalues and graph bisection: An average-case analysis, Proceedings of the
IEEE Symposium on Foundations of Computer Science, Los Angeles, CA, 1987, pp. 280–285.

[BS93] S. T. Barnard and H. D. Simon, A fast multilevel implementation of recursive spectral bisection
for partitioning unstructured problems, Proceedings of the Sixth SIAM Conference on Parallel
Processing for Scientific Computing, Portsmouth, VA, 1993, pp. 711–718.

[CGT95] T. F. Chan, J. R. Gilbert, and S. -H. Teng, Geometric Spectral Partitioning, Technical report, Xerox
PARC, 1995.

[CL98] J. Cong and S. K. Lim, Multiway partitioning with pairwise movement, Proceedings of the
International Conference on Computer-Aided Design, San Jose, CA, 1998, pp. 512–516.

[CL00] _____ , Edge separability based circuit clustering with application to circuit partitioning, Asia
South Pacific Design Automation Conference, Yokohama, Japan, 2000, pp. 429–434.

[CSZ94] P. K. Chan, M. Schlag, and J. Zien, Spectral k-way ratio-cut partitioning, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 13(9): 1088–1096, 1994.

[DD96] S. Dutt and W. Deng, VLSI circuit partitioning by cluster-removal using iterative improvement
techniques, Proceedings of the International Conference on Computer-Aided Design, San Jose,
CA, 1996, pp. 194–200.

[Dem97] J. W. Demmel, Applied Numerical Linear Algebra, Philadelphia, PA, SIAM, 1997.
[DH73] W. E. Donath and A. J. Hoffman, Lower bounds for the partitioning of graphs, IBM Journal of

Research and Development 17(9): 420–425, 1973.
[EAV99] H. Etawil, S. Areibi, and A. Vannelli, ARP: A convex optimization based method for global

placement, IEEE/ACM, International Conference on Computer Aided Design, San Jose, CA,
1999, pp. 20–24.

[FF62] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, NJ,
1962, p. 11.

[Fie73] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematics Journal, 23, 298–305,
1973.

[FK86] J. Frankle and R. M. Karp, Circuit placements and cost bounds by eigenvector decomposition,
Proceedings of the International Conference on Computer-Aided Design, Santa Clara, CA, 1986,
pp. 414–417.

[FM82] C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for improving network partitions,
Proceedings of the ACM Design Automation Conference, Washington D.C., 1982, pp. 175–181.

[FRW92] J. Falkner, F. Rendl, and H. Wolkowicz, A Computational Study of Graph Partitioning, Technical
Report CORR 92–95, Department of Combinatorics and Optimization, University of Waterloo,
August 1992, Waterloo, Ontario, Canada.

[GM00] S. Guattery and G. L. Miller, Graph embeddings and Laplacian eigenvectors, SIAM Journal on
Matrix Analysis and Applications 22(3): 703–723, 2000.

[GPS90] J. Garbers, J. Promel, and A. Steger, Finding clusters in VLSI circuits, Proceedings of the
International Conference on Computer-Aided Design, Santa Clara, CA, 1990, pp. 520–523.

[Hal70] K. M. Hall, An r-dimensional quadratic placement algorithm,Management Science 17(11): 219–
229, 1970.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 134 24-9-2008 #27

134 Handbook of Algorithms for Physical Design Automation

[HHK97] L. Hagen, D. J. -H.Huang, and A. B.Kahng, On implementation choices for iterative improvement
partitioning algorithms, IEEE Transactions on Computer-Aided Design of Circuits and Systems
16(10): 1199–1205, 1997.

[HK91] L. Hagen and A. B. Kahng, Fast spectral methods for ratio cut partitioning and clustering,
Proceedings of the International Conference on Computer-Aided Design, Santa Clara, CA, 1991,
pp. 10–13.

[HK92] _____ , New spectral methods for ratio cut partitioning and clustering, IEEE Transactions on
Computer-Aided Design 11(9): 1074–1085, 1992.

[HK97] D. J. -H. Huang and A. B. Kahng, Partitioning-based standard-cell global placement with an
exact objective function, Proceedings of the International Symposium on Physical Design, Napa
Valley, CA, 1997, pp. 18–25.

[HL95] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, Proceedings of
the 1995 Supercomputing Conference, Los Alamitos, CA, 1995, pp. 485–500.

[HMS03] B. Hu and M. Marek-Sadowska, Fine granularity clustering for large scale placement problems,
Proceedings of the International Symposium on Physical Design, SanDiego, CA, 2003, pp. 67–74.

[HMS04] _____ , Fine granularity clustering–based placement, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 23(4): 527–536, 2004.

[IWW93] E. Ihler, D. Wagner, and F. Wagner, Modelling hypergraphs by graphs with the same mincut
properties, Information Processing Letters 45(4): 171–175, 1993.

[JAMS89] D. S. Johnson, C. R. Aragon, L. A. Mcgeoch, and C. Schevon, Optimization by simulated
annealing: An experimental evaluation Part I, Graph partitioning, Operations Research 37,
865–892, 1989.

[KAKS97] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel hypergraph partitioning:
Application in VLSI domain, Proceedings of the IEEE/ACM Design Automation Conference,
Anaheim, CA, 1997, pp. 526–529.

[Kar03] G. Karypis, Multilevel hypergraph partitioning, Multilevel Optimization in VLSICAD, Kluwer
Academic Publishers, Boston, MA, 2003.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated Annealing, Science
220(4598): 671–680, 1983.

[KK95] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular
graphs, Proceedings of the International Conference on Parallel Processing, Urbana-Champaign,
IL, 1995, pp. 113–122.

[KK98] _____ , hMETIS: A Hypergraph Partitioning Package, Version 1.5.3, Department of Computer
Science/Army HPC Research Center University of Minnesota, Minneapolis, MN, 1998.

[KK99] _____ , Multilevel k-way hypergraph partitioning, Proceedings of the IEEE/ACM Design
Automation Conference, New Orleans, LA, 1999, pp. 343–348.

[KL70] B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell System
Technical Journal, 49, 291–307, 1970.

[KN91] C.Kring andR.Newton, A cell-replication approach tomincut-based circuit partitioning,Proceed-
ings of the International Conference on Computer-Aided Design, Santa Clara, CA, 1991, pp. 2–5.

[Kri84] B. Krishnamurty, An improved min-cut algorithm for partitioning VLSI networks, IEEE
Transactions on Computers C-33(5): 438–446, 1984.

[Kuc05] D. Kucar, New insights into hypergraph partitioning, PhD thesis, University of Waterloo,
Waterloo, Ontario, Canada, 2005.

[Len90] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley & Sons,
New York, 1990.

[LLLC96] J. Li, J. Lilis, L. -T. Liu, and C. -K. Cheng, New spectral linear placement and clustering approach,
Proceedings of the ACM Design Automation Conference, 1996, pp. 88–93.

[LMS05] Q. Liu and M. Marek-Sadowska, Pre-layout physical connectivity prediction with applications in
clustering, placement and logic synthesis, Proceedings of the IEEE International Conference on
Computer Design, San Jose, CA, 2005.

[Ma07] J. Ma, private communications, 2007.
[NW88] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, John Wiley &

Sons, New York, 1988.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 135 24-9-2008 #28

Partitioning and Clustering 135

[PS98] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization, Dover Publications, Mineola,
NY, 1998.

[PSL90] A. Pothen, H. D. Simon, and K. P. Liou, Partitioning sparse matrices with eigenvectors of graphs,
SIAM Journal on Matrix Analysis and Applications 11(3): 430–452, 1990.

[RDJ94] B. M. Riess, K. Doll, and F. M. Johannes, Partitioning very large circuits using analytical
placement techniques, Proceedings of the ACM Design Automation Conference, San Diego, CA,
1994, pp. 646–651.

[San89] L. A. Sanchis, Multi-way network partitioning, IEEE Transactions on Computers 38(1): 62–81,
1989.

[SK72] D. G. Schweikert and B. W. Kernighan, A proper model for the partitioning of electrical circuits,
Proceedings of the ACM Design Automation Conference, San Diego, CA, 1972, pp. 57–62.

[SS95] W. -J. Sun and C. Sechen, Efficient and effective placement for very large circuits, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 14(3): 349–359,
1995.

[Ten99] S. H. Teng, Coarsening, Sampling, and Smoothing: Elements of the Multilevel Method, Vol. 105,
Springer Verlag, New York, NY, 1999, pp. 247–276.

[TK91] R. -S. Tsay and E. S. Kuh, A unified approach to partitioning and placement, IEEE Transactions
on Circuits and Systems 38: 521–533, 1991.

[VH90] A. Vannelli and S. W. Hadley, A Gomory–Hu cut tree representation of a netlist partitioning
problem, IEEE Transactions on Circuits and Systems 37(9): 1133–1139, 1990.

[Wal03] C. Walshaw, An exploration of multilevel combinatorial optimisation, Multilevel Optimization in
VLSICAD, Kluwer Academic Publishers, Boston, MA, 2003.

[Wat91] D. S. Watkins, Fundamentals of Matrix Computations, John Wiley & Sons, New York, NY, 1991.
[WC91] Y. -C. Wei and C. -K. Cheng, Ratio cut partitioning for hierarchical designs, IEEE Transactions

on Computer-Aided Design 10(7): 911–921, 1991.
[YW94] X. Yang and D. F. Wong, Efficient network flow based min-cut balanced partitioning,

Proceedings of the International Conference on Computer-Aided Design, San Jose, CA,
Vol. 6–10, Nov. 1994, pp. 50–55.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C007 Finals Page 136 24-9-2008 #29

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S003 Finals Page 137 24-9-2008 #2

Part III

Floorplanning

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S003 Finals Page 138 24-9-2008 #3

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 139 29-9-2008 #2

8 Floorplanning: Early Research

Susmita Sur-Kolay

CONTENTS

8.1 Introduction.. 139
8.2 Floorplan Topology Generation . 140
8.3 Rectangular Duals . 141

8.3.1 Dualizability . 142
8.3.2 Slicibility of Rectangular Duals . 145

8.3.2.1 Four-Cycle Criterion for Slicibility of a Floorplan . 146
8.4 Nonslicibile Floorplan Topologies . 147

8.4.1 Maximal Rectangular Hierarchy.. 147
8.4.2 Inherent Nonslicibility . 148
8.4.3 Canonical Embedding of Rectangular Duals . 149
8.4.4 Dualization with Rectilinear Modules. 150

8.5 Hierarchical Floorplanning . 151
8.6 Floorplan Sizing Methods . 153
8.7 Analytic Sizing . 154
8.8 Branch-and-Bound Strategy for Sizing . 156
8.9 Knowledge-Based Floorplanning Approaches.. 157
8.10 Unified Method for Topology Generation and Sizing . 158
Acknowledgments . 158
References . 158

8.1 INTRODUCTION

In physical design, floorplanning determines the topology of the layout, i.e., the relative positions
of modules on the chip, based on the interconnection requirements of the circuit and estimates for
area. A floorplan can provide a guideline in the detailed design of functional modules or blocks
when the aspect ratios and pin positions of some of the modules on the chip are still unconstrained.
Thus, floorplanning is important not only for physical design, but even more for choosing design
alternatives in the early stages that are likely to produce optimal designs.

Placement was originally seen as a special case of floorplanning where the sizes and shapes
of all the modules are known. In the history of computer-aided design (CAD) for very large scale
integration (VLSI) circuits, the placement problem was addressed both for printed circuit boards
as well as large scale integration (LSI) circuits. With the rapid increase in the scale of integration,
the role of floorplanning came into the picture, particularly for the custom layout design style with
variable width and height of modules. Some of the major techniques that were originally proposed
for placement have subsequently been tailored for floorplanning.

139

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 140 29-9-2008 #3

140 Handbook of Algorithms for Physical Design Automation

The most significant difference between floorplanning and placement is in the modeling of the
cells or modules.∗ The extra degree of freedom in floorplanning, arising from the flexibililty of the
interface and shape ofmodules that constitute the design, enlarges the portion of the chip available for
placing the components. The floorplanning algorithmmay have to deal with three types of modules:
modules from a library with design and interface fixed, modules with known design but flexible
layout, and modules with designs not completely known or certain. With respect to the physical
design flow, area estimation also has to handle all these three types of modules.

Floorplan optimization has conventionallybeen achieved by two steps: (1) feasible topology gen-
eration and (2) sizing (determining the aspect ratios of the rectangular modules to optimize objective
functions such as chip area, total wirelength, etc.). Topology generation focuses on computing the
relative locations ofmodules based on their interconnectionswithout restriction on their exact shapes;
an estimate of the area of each module may however be known. The sizing step then determines the
shape, i.e., the aspect ratio of a module in tune with that of its neighbors to attain a globally optimal
floorplan solution.

This chapter concentrates on the early approaches to the floorplanning phase in the context of full-
custom design or semicustom design styles such as building blocks, standard cells, and gate arrays.
The early floorplanningmethodsmay be classified into constructive, iterative, and knowledge-based
techniques. Constructive algorithms are primarily used for topology generation and are discussed
in Sections 8.2 through 8.5. Iterative techniques, on the other hand, mainly tackle the second task
of floorplanning, namely sizing, and are discussed in Sections 8.6 through 8.8. Knowledge-based
approaches [1–4] are considered in Section 8.9 and algorithms for a unified approach to topology
generation and sizing are sketched in Section 8.10.

8.2 FLOORPLAN TOPOLOGY GENERATION

Some of the commonly used terms in floorplanning literature are defined first. For graph-theoretic
terminologies used without definition in this chapter, the reader is referred to an appropriate text
(e.g., Ref. [5]).

A floorplan is a rectangle dissection of an enveloping rectangle by horizontal (parallel to
x-axis) and vertical (parallel to y-axis) line segments, termed cuts, into a finite number of indivisible
nonoverlapping rectangles (Figure 8.1a and b), which correspond to the modules in the floorplan. If
the exact shape of themodules are not considered, then such a rectangle dissection depicts a floorplan
topology. A floorplan with n cuts has exactly n+1 modules. Conventionally, two perpendicular cuts
are allowed to meet to form T-junctions only, but not a cross (+).

(a) (b) (c)

a

b

c

d

e

f

g

h

a
b

c

d

e
f

g

ha
b

c

d

e
f

g

h

FIGURE 8.1 (a) Slicible floorplan Fs, (b) nonslicible floorplan Fn, and (c) both floorplans have the same
adjacency graph R.

∗ In the context of this handbook, placement is defined as the narrower problem of placing standard cells (each cell has the
same height) in rows.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 141 29-9-2008 #4

Floorplanning: Early Research 141

A floorplan is slicible if its rectangular dissection can be obtained by recursively divid-
ing rectangles into smaller rectangles until each nonoverlapping rectangle is indivisible. Slicible
floorplans (Figure 8.1a) are also termed slicing structures, or simply slicings. All floorplans
may not be slicible (Figure 8.1b). A summary of the major approaches to topology generation is
presented next.

1. Slicing embedding [6,7]: This is a constructivemethod generating a special type of floorplan
only. A point embedding is first determined by relying on the netlist information. The
relative positions of the modules are depicted in the form of a slicing tree or equivalently a
series-parallel polar graph [8]. Then a floorplan is obtained in polynomial time by cutting
the embedding into a slicing structure as the slicing tree is traversed appropriately. The
approach neglects the actual building block dimensions. Additional discussions on slicings
appear in Chapters 2 and 9.

2. Partitioning and slicing [9–11]: The divide-and-conquer approach is employed by adapting
a mincut approach (details appear in Chapter 15) for the placement of building blocks [9]
to the floorplanning problem. In the Mason system [10], mincut bipartitioning is combined
with the slicing tree representation in an effort to ensure routability. Global improvement
of a partition is obtained by in-place partitioning based on the slicing tree. A scheme for
global channel assignment and I/O pin assignment aids in floorplan evaluation. The system
provides an interactive environment and can act as a human designer's assistant.

3. Dual graph method [12–15]: Among the most important floorplanning paradigms, the dual
graph method of floorplanning deserves special mention. This is a constructive method
based on graph algorithms. The topology of the modules is extracted from the adjacency
relationswith respect to circuit interconnections, given as a neighborhood graph.At first, this
graph is planarized by deleting a minimum number of connections and adding crossover
vertices. Then the optimal rectangular dual is sought for the planar graph. Rectangular
dualization is of particular interest because of its algorithmic efficiency and the fact that
the components are guaranteed to have rectangular layout. It emphasizes the proximity
of heavily connected modules. A performance-driven version [15] was designed, where
a dual is first generated considering routing constraints and then compacted by a linear
programming-based heuristic method. A significant amount of research has been carried
out on the dual graph method, including extension to rectilinear modules. The next section
elaborates on many elegant results on rectangular dual floorplans.

4. Hierarchical enumeration [16]: This method falls into the group of connectivity clustering
methods; the basis is circuit connectivity. For clusters of cells, floorplan templates having
simplified topologies are used. Recursion is applied to obtain floorplan for large, com-
plex circuits. There is a limit on the number of rectangular, arbitrary-sized blocks at each
hierarchy level to enable simple pattern enumeration and exhaustive search later on. The
novelty of this approach is that information about global routing can be maintained during
floorplanning. The details of hierarchical floorplanning appear later in Section 8.5.

8.3 RECTANGULAR DUALS

A floorplan generated by rectangular dualization is often referred to as a rectangular dual. Given
such a floorplan F, a rectangular graph R = (V ,E) representing the adjacency of modules in F has
a vertex for each module and an edge (u, v) ∈ E if and only if the modules denoted by vertices u
and v are adjacent (i.e., share a common boundary). The graph R is also known as the adjacency or
neighborhood graph [12,17]. For a given floorplan, a unique rectangular graph always exists, but the
converse is not necessarily true as illustrated in Figure 8.1, where both the floorplans have the same
rectangular graph of Figure 8.1c. Although there may be exponentially many different rectangular

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 142 29-9-2008 #5

142 Handbook of Algorithms for Physical Design Automation

1

4

2

3

7

6
95

8
11 10

12
a

b

c

d i

e

f

g

h

7

6
95

1

4

2

3
8

11 10

12

7

6

9

5

8
11

1012
1 2

34

cd

i

e

f

g

h

7

1 2

34

6
9a b

5

8

11

1012

(a) (b) (c) (d)

FIGURE 8.2 (a) Rectangular graph N , (b) its geometric dual without the vertex for the exterior face, (c) its
inner dual, and (d) its rectangular dual. (Figure a, b, and c from Sur-Kolay, S. and Bhattacharya, B.B., Lecture
Notes in Computer Science, 338, 88, 1988.)

duals for a givenR, the strength of the dualizationmethod lies in the fact that a solution, if one exists,
can nevertheless be found in linear time [14].

A graph embedding is a particular drawing of a graph on a surface (which may often be a two-
dimensional plane) such that its edgesmay intersect only at their endpoints. A graph is planar if there
exists an embedding of it on a plane, whereas a plane graph is an embedding of a planar graph on
a plane [5]. By definition, a rectangular floorplan is embedded on a plane, which therefore implies
that its rectangular graph is a plane graph. As all intersections of cuts of F form T-junctions, all
the internal faces of R, the rectangular graph of F, are triangles bounded by three edges. Hence, a
rectangular graph is a plane triangulated graph [12,13].

Given an n-vertex plane triangulated graph G, its rectangular dual Rd, [12,13] consists of n
nonoverlapping rectangles, where a rectangle in Rd corresponds to a distinct vertex i ∈ G, and
rectangles i and j in Rd share at least a portion of a side if and only if there is an edge (i, j) in
G. The rectangular dual of G, if it exists, corresponds to a valid rectangular floorplan where the
rectangles represent the modules of the floorplan. Because all faces ofG are triangles, no more than
three rectangular faces in the rectangular dual of G meet at a vertex and thus the floorplan has only
T-junctions and no cross junctions.

A rectilinear embedding of a plane graph is an embedding in which all the edges of the graph are
either horizontal or vertical. Thus, a cycle in the plane graph is embedded as a rectilinear polygon.
Next, let G be a given plane triangulated graph and Gd be its geometric dual [5] whose vertices
correspond to the faces of G and there is an edge between two vertices in Gd if and only if the
corresponding faces in G share an edge. An inner dual D [16,33] of G is a rectilinear embedding
of Gd, excluding the vertex corresponding to the exterior face of G, such that each internal face
of D is bounded by four or more edges and embedded as a rectangle. All the internal vertices of
D have degree 3. Thus, we can obtain the rectangular dual of G (Figure 8.2) by placing the inner
dual of G within an enveloping rectangle, because the exterior face of G is not reflected in D, and
then projecting each degree 2 (respectively, degree 1) vertex of D onto the side (respectively, two
sides) of the enveloping rectangle nearest to it. A vertex in D has degree 1 if two of the edges of
the corresponding triangular face in G lie on its exterior face and only the third edge is shared with
another internal triangular face of G. But the key question is whether a rectangular dual exists and if
so, how it can be constructed efficiently.

8.3.1 DUALIZABILITY

A plane triangulated graph that is a rectangular graph has a rectangular dual, by definition. Every
plane triangulated graph however does not have a rectangular dual. A triangle (or cycle of length 3)
in a plane triangulated graph G, which is not the boundary of an internal face, is called a complex
triangle [13,18]. In the graph shown in Figure 8.3a, the triangles ABD, BDC, and CDA are internal

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 143 29-9-2008 #6

Floorplanning: Early Research 143

A

B
D C

A

B

D

C

(b)(a)

FIGURE 8.3 (a) Plane triangulated graphwith a complex triangle and (b) conflict in constructing its rectangular
dual.

faces, but triangle ABC is not and is therefore a complex triangle. So in the rectangular dual, if
rectangles A, B, and C have to share edges pairwise, then there is no room for rectangle D to share
edges with all the three rectangles A, B, and C and yet not overlap with any of these three rectangles
(Figure 8.3b).

One of the necessary conditions for G to have a rectangular dual is that G has no complex
triangles. Formally, a graph G is said to be a properly triangulated plane (PTP) graph, if it is a
connected plane graph and satisfies the following properties [12]:

P1: Every face (except the exterior) is a triangle (i.e., bounded by three edges).
P2: All internal vertices have degree ≥4.
P3: All cycles that are not faces and the exterior face have length ≥4.

Further, every planar graph that satisfies P1 and P3 also satisfies P2 [17]. The necessary and sufficient
conditions under which a PTP graph G has a rectangular dual were established in Refs. [12,13]. A
few definitions are needed for the statement of these conditions. A chord of a cycle in G is an edge
between two nonconsecutive vertices on the cycle (so it is not part of the cycle). A chord (u, v) of the
outermost cycle S of G is said to be critical if one of the two paths between u and v on the cycle has
no end vertices of any other chord of S. Such a path is called a corner implying path. For instance,
the edge (a, e) in Figure 8.1c is a chord, and a critical one as well where the path {a, h, e} is corner
implying. The implication of this is that in the rectangular dual of R, the rectangle corresponding to
vertex h has to be in a corner of the bounding rectangle of the dual.

A graphG is said to be biconnected if between any two vertices u and v inG there exist two paths
in G with no common vertices except u and v. Biconnected components of a graph are commonly
called blocks, and a vertex shared by two blocks is an articulation point. So, the block neighborhood
graph (BNG) of a graphG is a graph in which there is a distinct vertex for each block of G and there
is an edge between two vertices if and only if the two corresponding blocks share a vertex. A corner
implying path in a block of G is said to be critical if it contains no articulation points of G.

Corner implying path criteria [12]: A PTP graph G has a rectangular dual if and only if one of the
following is true:

1. G is biconnected and has no more than four corner implying paths.
2. G has k, k > 1, biconnected components; the BNG of G is a path itself; the biconnected

components that correspond to the ends of this path have atmost two critical corner implying
paths; and no other biconnected component contains a critical corner implying path.

Intuitively, a biconnected rectangular graph should have no more than four vertices having degree 2
and these, if at all present, should appear on the outermost cycle because a rectangular dual can have
at most four rectangles at the four corners of its bounding rectangle.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 144 29-9-2008 #7

144 Handbook of Algorithms for Physical Design Automation

It can be shown that biconnectivity and the properties P1 and P3 of a rectangular graph imply
that its embedding is unique. Kozminski and Kinnen gave an O(n2) time algorithm for constructing
such a dual.

Bipartite matching criteria: Another elegant characterization of rectangularity based on the
perfect matching problem in bipartite graphs was established in Ref. [13]. Each T-junction may be
uniquely associated with the module whose side (wholly or partially) forms the crosspiece (defined
later in Section 8.3.2.1) of the T-junction. As the T-junctions in the rectangular dual correspond to
the triangular faces in the PTP graph, each triangular face in the PTP graph is assigned to one of
its three vertices (indicated by arrows in Figure 8.4) for construction of a floorplan. Although there
may be more than one such assignment for a given R (Figure 8.4a and b), an arbitrary assignment
may not guarantee a feasible rectangular dual. Further, to take into account the T-junctions along
the boundary of the rectangular dual, the graph R is extended by adding four special vertices t, r,
b, and l to represent the four sides of the boundary and all vertices on the outermost cycle of R are
connected appropriately to these four sides to retain the PTP property. Each corner vertex has two
extra edges and each of the remaining vertices on the outermost cycle has one extra edge. A bipartite
graph B = (X ∪ Y ,E) is derived thus from the PTP graph R, where (1) each vertex in X corresponds
to a triangular face of R, (2) Y is a set of vertices associated with each vertex υ of R such that if
degree of υ is d(υ), then there are exactly d(υ) − 4 instances of υ, and (3) there is an edge between
a vertex x ∈ X and a vertex y ∈ Y if the PTP face corresponding to x is adjacent to the PTP vertex
represented by y. In the PTP of Figure 8.4, the outermost cycle has six vertices of which vertices h, b,
c, and d are chosen as corners. and therefore each of these has two extra edges in the extended graph
and vertices a and e have only one extra edge each. The dualizability criteria [13] are as follows:

1. PTP graph admits a rectangular dual if and only if each triangular face can be assigned to
one of its adjacent vertices such that each vertex y with degree d(υ) has d(υ)−4 triangular
faces assigned to it.

2. PTP graph admits a rectangular dual if and only if there is a perfect matching in the bipartite
graph associated with it.

(a)

(b)

a b c1 d fc2 e1 e2

t1 t2 t3 t4 t5 t6 t7 t8

a
b

c

d

e

f

g

t2

t3

t4

t5

t6 t7

h
t8 t1

a
b

c

d

e

f

g

h
t1

t2

t3

t4

t5

t6 t7

t8

a b c1 dc2 fe1 e2

t1 t2 t3 t4 t5 t6 t7 t8

FIGURE 8.4 (a) Rectangular graph R with a feasible assignment of triangular faces to vertices, and the
maximum matching in its bipartite graph B that corresponds to the floorplan in Figure 8.1a; (b) another feasible
assignment for R and the maximum matching in B that corresponds to the floorplan in Figure 8.1b. Matched
edges are indicated by thick lines.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 145 29-9-2008 #8

Floorplanning: Early Research 145

Steps of rectangular dualization

Input: A block-level circuit connectivity graph C.
Output: A floorplan F.

1. Planarization of C by edge deletion or dummy node addition
2. Triangulation of the planar graph
3. Elimination of complex triangles from the plane triangulated graph to obtain a PTP
graph

4. Construct and report a rectangular dual of the PTP graph

At this juncture, the steps of floorplanning by rectangular dualization [19] of a circuit are sum-
marized above as an analysis of its time complexity is in order. The first step of planarization of
the logical network of the circuit by deleting a minimum number of edges or a set of edges with
minimum total weight is known to be NP-complete [20]. The second step of triangulating a planar
graph can be done in linear time. But, there is neither a polynomial time optimum algorithm nor a
NP-completeness proof [18] for the third step of eliminating all complex triangles from the plane
triangulated graph. Efficient polynomial time algorithms for constructing a rectangular dual for a
given PTP graph have been proposed in Refs. [12,13,17]. This has been improved by Bhasker and
Sahni to a linear time algorithm [14] to check existence of a rectangular dual for a given planar trian-
gulated graph and construct it, if it exists. An outline of this algorithm appears below in Algorithm I
and the major steps are demonstrated in Figure 8.5. The limitation of rectangular dualization stems
from its requirement of a PTP graph, but this can be overcome as discussed in Section 8.4.4. The
algorithmic efficacy of rectangular dualization often leads to employing this method to generate a
good topology on which other iterative floorplanning methods can be applied to obtain very good
solutions quickly.

Algorithm 1 Linear time algorithm to find a rectangular dual [14]

Algorithm RD_Floorplan
begin
1. For each biconnected component of given PTP graph

Embed it on a plane such that
P1 and P3 are satisfied and all its articulation points are on the outermost cycle;
If no embedding exists, then report ‘NOT DUALIZABLE’ and halt;

2. Find the critical corner implying paths and assign four corners NW, NE, SE, SW
to vertices on the outermost cycle;

3. Add to the graph a special vertex Head-node and new directed edges from it
to all the vertices on the outermost cycle between NW and NE;

4. Starting from NW , traverse downward from Head-node;
5. For each directed path from Head-node starting with the leftmost one

for each vertex in the directed path order
place a new rectangle below its predecessor such that the adjacency
with rectangles for vertices on the path immediately to its left is maintained.

end.

8.3.2 SLICIBILITY OF RECTANGULAR DUALS

Several investigators have advocated that in top-down hierarchical circuit design, slicing structures
have advantages over general nonslicing ones. Slicible floorplans can be represented by elegant data
structures such as series-parallel polar graphs [6,8], slicing trees [7], and normalized Polish postfix

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 146 29-9-2008 #9

146 Handbook of Algorithms for Physical Design Automation

a

b

c

d

e

f

g

h

a
b

c

d

e
f

g

h

a b

c
d

e
f

g

h

Head-node

NW NE

SESW

(a) (b) (c)

FIGURE 8.5 (a) Rectangular graph R, (b) its path directed graph with a special head-node and the four corners
marked, and (c) rectangular dual construction by traversing each directed path from the special head-node in
left to right order as indicated by dashed lines.

expressions [21]. These types of floorplans are computationally easier to deal with because they allow
a natural partition of the design into partially independent subproblems, hence the divide-and-conquer
strategy succeeds.

The problem of optimal orientations of modules is solvable in polynomial time for a slicible
floorplan, but remains NP-complete in the strong sense for general floorplans [22]. Slicing facilitates
not only floorplanning but alsowiring.Optimalwiringof a single net in a slicing structure,minimizing
the overall area instead of wirelength, can be done in O(n log n) time [23]. This problem is far
more complicated in the general nonslicible case. In fact, the next chapter of this handbook dwells
exclusively on slicing floorplans.

Notwithstanding the fact that slicible floorplan topologies have enjoyed preference owing to their
divide-and-conqueralgorithms, nonslicible floorplans are better as far as optimal sizing is concerned,
and hence their intriguing properties are addressed later in this chapter.

The distinguishing criterion between slicibility and nonslicibility of a floorplan succinctly epito-
mized in Ref. [24] is presented next. The issue of representing nonslicible floorplans is addressed in
Section 8.4. The salient question whether a slicible floorplan exists for a given neighborhood graph
for modules of a circuit is also taken up thereafter.

8.3.2.1 Four-Cycle Criterion for Slicibility of a Floorplan

A graph-theoretic characterization of slicible floorplans [24] is based on the concept of a channel
graph,where a channel in a floorplan is a cutline. From the convention of T-junctions, no two channels
overlap. If two perpendicular channels a and b intersect at a point p, then p is an endpoint of either a
or b, but not both; the one of which p is an endpoint is called the base of the T-junction and the other
is called the crosspiece. The two parts of the crosspiece channel on either side of the junction are
called arms. The same cut may be the base of one T-junction and crosspiece of another T-junction.
A channel graph of a floorplan is a directed graph C = (V ,A) where there is a distinct vertex in
V for each channel and there is an arc (a, b) from a to b in A if and only if there is a T-junction of
which channel a is the base and channel b the crosspiece. Figure 8.6b and d shows the respective
channel graphs of the slicible and nonslicible floorplan in Figure 8.6a and c. The following two
crucial theorems about channel graphs of floorplans were proved in Ref. [24]:

1. Four-cycle theorem: A channel graph has a directed cycle if and only if it has a cycle of
length 4.

2. Slicing theorem: A channel graph of a floorplan is acyclic if and only if the floorplan is a
slicible floorplan.

Essentially, by detecting directed four-cycles in the channel graph of a given floorplan, its non-
slicibility can be decided and this is achievable in linear time. There are two possible arrangements

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 147 29-9-2008 #10

Floorplanning: Early Research 147

(a) (b) (c) (d)

a b

c

d

e

f

g

1
h 7 3

2

4
5

6

a b

c

d

e

f

g

1
h 7 3

2

4

5
6

1

2

3

4
5

6

7

1

2

3

6

4 5

7

FIGURE 8.6 (a) Slicible floorplan Fs and (b) its channel graph; (c) nonslicible floorplan Fn and (d) its channel
graph containing a directed four-cycle.

of channels in a floorplan that produce directed four-cycles in the channel graph. This property can
also be employed in a polynomial time heuristic for converting a nonslicible floorplan to a slicible
one with minimal alterations [25].

A few more properties of channel graphs have been observed [26,27]. A channel graph C is (1)
connected, (2) planar but not necessarily embeddable on a planar grid, (3) bipartite, (4) outdegree of
any vertex in C ≤ 2, (5) at least four vertices in C have outdegree 1, (6) every internal face of C is
bounded by exactly four arcs, (7) the number of arcs shared by two adjacent directed four-cycles is
less than or equal to 1, and (8)C has no bridges [5]. The channel graph of a given floorplan is unique,
but there may be more than one floorplan with the different neighborhood relations corresponding
to a given channel graph. The existence of a floorplan corresponding to a planar, bipartite digraph
with maximum outdegree of 2 and at least four vertices having outdegree 1 was raised in Ref. [27],
and the affirmative answer was proven in Ref. [28]. The next section addresses certain important
features of nonslicible floorplans.

8.4 NONSLICIBILE FLOORPLAN TOPOLOGIES

8.4.1 MAXIMAL RECTANGULAR HIERARCHY

The several efficient representation schemes that follow naturally from the recursive definition of
slicible floorplans are not directly applicable to nonslicible floorplans. Nevertheless, a general non-
slicible floorplan has a unique representation based on the concept of maximal rectangular hierarchy
(MRH) [25] and above all, this representation is supportive of divide-and-conquer algorithms. Simi-
lar representations have been proposed independently in Refs. [29–32], although theymostly assume
that at each level there can be a branchingof atmost five as is the case for the basic nonslicible pattern.
A close relation between the strongly connected components of the channel graph of a nonslicible
floorplan and its MRH was established [26], which leads to a simple depth-first search based O(n)
algorithm for extraction of MRH where the floorplan has n modules.

A maximal rectangle in a floorplan can be defined as one which is not contained in any rectangle
other than the envelope of the floorplan, or does not partially overlap with any other rectangle.
A nonslicible floorplan can be decomposed uniquely into a nonempty set of mutually exclusive
(nonoverlapping)and collectively exhaustivemaximal rectangles. This is demonstrated in Figure 8.7.
If the floorplan is slicible and has a single through cut at the top level of the slicing tree, then the two
rectangles on either side of the through cut are the only maximal rectangles. In the case of multiple
through cuts in the same direction at the top level, the boundary is the only maximal rectangle; all
indivisible blocks within it are its children in the MRH. The usual slicing tree may be utilized for
processing within this maximal rectangle.

Maximal rectangles can be defined recursively to produce a hierarchy of maximal rectangles,
called themaximal rectangular hierarchy.Amaximal rectanglemay contain a slicible or a nonslicible
pattern of rectangles. At the top level, we have just the bounding rectangle of the floorplan. Each

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 148 29-9-2008 #11

148 Handbook of Algorithms for Physical Design Automation

(a)

1

28

13

14

15

16

17
32

6

7
8 12

21

20

19
1811

4

5

9
10

23
24

2527
26

22

(b)

22

2425 2627

281

2 3 4 5 6 7 8 9 10 18

19 20

21

23

11 12 13 14 15 16 17

FIGURE 8.7 (a) Maximal rectangular hierarchy of a floorplan topology and (b) the corresponding hierarchy
tree. Each level of the hierarchy is marked by a different line thickness. (From Sur-Kolay, S., Studies on
nonslicible floorplans in VLSI layout design, Doctoral dissertation, Jadavpur University, 1991.)

level of the MRH has a rectangular boundary and a set of mutually exclusive and collectively
exhaustive maximal rectangles. This hierarchy can be represented by a tree. Because the set of
maximal rectangles at each level is unique, the MRH of a nonslicible floorplan is also unique.

8.4.2 INHERENT NONSLICIBILITY

The fact that a rectangular graph can have more than one nonisomorphic dual brings us to the
fundamental question about the existence of rectangular graphs that have no slicible duals. This is
equivalent to characterizing slicibility of rectangular graphs.

A rectangular graph is inherently nonslicible if there exists no slicible rectangular dual of it,
consequently no slicible floorplan. It turns out that [33] there exists an inherently nonslicible graph
N , having nine vertices.N is a minimum (in the number of vertices and edges) inherently nonslicible
rectangular graph.

The inherently nonslicible graph,N , is a maximal rectangular graph (MRG) (i.e., no edge can be
added without violating rectangularity) of 9 vertices and 20(=3∗9−7) edges. AnMRG of n vertices
is not unique. For all n ≥ 4, there exists an MRG with (3n − 7) edges that has a slicible dual. It
follows that any rectangular graph with 8 or fewer vertices has a slicible rectangular dual. Moreover,
the minimum rectangular graph that is inherently nonslicible is unique.

There exists a family of inherently nonslicible floorplans, named INS [25]. Besides the first
member N , (Figure 8.2a), few more are shown in Figure 8.8a through d, and in fact, there are an
infinite number of members in INS. The peculiarity of inherent nonslicibility can be demonstrated
by examining a few pairs of similar floorplans. Consider the one in Figure 8.8a. The cut β acts
like a lock and blocks slicibility. But addition of another vertical cut to divide the block below it
produces a slicible floorplan so this new cut acts like a handle aiding slicibility. With this insight,
pseudomaximality at any level of theMRH is defined so that if anymaximal rectangle has more than
four T-junctions around it externally, then the next level of the MRHwithin it cannot be ignored. The
intuition behind this is that the inner level may provide a handle and produce an equivalent slicing.
This idea is applicable for deciding membership in INS. Although nonslicibility of given floorplan
can be easily decided as mentioned earlier in Section 8.3.2.1, the necessary and sufficient conditions

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 149 29-9-2008 #12

Floorplanning: Early Research 149

(a) (c)

(b) (d)

b

FIGURE 8.8 Members of family INS: (a) second smallest having two 5-wheels, (b) third smallest having
three 5-wheels, (c) fourth smallest having four 5-wheels, and (d) template for a general member. (Figure a, c,
and d from Sur-Kolay, S. and Bhattacharya, B.B., in Proc. Inter. Symp. Circuits and Systems, Singapore, 1991,
pp. 2850–2853.)

for INS are still an open problem. But few sufficient conditions for slicibility of rectangular graphs
that have been proven [26,28] are listed next.

Slicibility and vertex degree pattern: In a floorplan F, an indivisible rectangular module has k ≥ 4
T-junctions (including corners) on it, which is called a facial k-cycle. First, F is pseudomaximally
reduced to F ′, then extracting the dual of F ′ gives a reduced rectangular graph R′. If R′ satisfies any
of these conditions that can be checked quickly, then we can guarantee the existence of a slicible
equivalent of F ′, hence F. A reduced rectangular graph is slicible if (1) all its internal vertices have
degree 5 or more, or (2) none of its internal vertices have degree 5. Hence, all facial cycles in F ′

have length 4 or more than 5, but not 5. In the members of INS discovered, there is always a vertex
of degree 4 with at least two adjacent vertices having degree 5.

Slicibility and three-chromaticity: A rectangular graph is slicible if it is (1) three-chromatic or (2)
outerplanar [5].

Checking whether a given rectangular graph is three-chromatic as well as determining a valid
vertex coloring with three colors can be done in linear time.

Tighter criterion of slicibility: A fairly recent result on slicibility [34] states that a rectangular graph
R with n vertices, n > 4, is slicible if it satisfies either of the following conditions:

1. Its outermost face is a four-cycle and not all four exterior vertices are required to be corners.
2. All the complex four-cycles in R are maximal (i.e., not contained in any other four-cycle).

8.4.3 CANONICAL EMBEDDING OF RECTANGULAR DUALS

Nonuniqueness of the rectangular dual of a neighborhood graph has associated with it the notion
of equivalence of two rectangular duals with isomorphic neighborhood graphs being isomorphic.
Equivalent floorplans are not isomorphic in terms of definition of the channels. Nonisomorphic
floorplans correspond to different rectangular dissections, so the associated cutlines are different.
Any floorplan with n modules has n − 1 channels and (2n − 2) T-junctions. Hence, the number of

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 150 29-9-2008 #13

150 Handbook of Algorithms for Physical Design Automation

(a)

(b)

1

28 13

14

15

16

17
3

2

6

7 8

12

23
24

2527

26

21

20

19
18

11
4

5

910 22

22

14

23

1 2 3 4 5 6 7 8 9 10 11 12 17 28 13 16 15 21 18 19 20

24 25 26 27

FIGURE 8.9 (a) Canonical embedding of the floorplan in Figure 8.7a and (b) its MRH tree. Each level is
marked with different line thickness. (From Sur-Kolay, S., Studies on nonslicible floorplans in VLSI layout
design, Doctoral dissertation, Jadavpur University, 1991.)

nodes and arcs in the two channel graphs are equal, but the difference lies in the set of arcs. This leads
to the concept of a canonical rectangular dual or a canonical embedding for a class of equivalent
floorplans.

A canonical embedding of a rectangular dual is a rectilinear embedding, which (1) is a valid
equivalent floorplan and (2) the corresponding channel graph has the minimum number of directed
four-cycles.

A maximal rectangle at any level of the MRH is said to be strongly maximal (smr) if it has
exactly four T-junctions around it externally. It has been shown that any level of the strong MRH
(i.e., MRH with smr’s) can have at most one smr in the canonical form [35] of the rectangular dual
(Figure 8.9).

The properties of nonslicible rectangular duals in this section are useful in producing desired
floorplan topologies, and are also relevant to the subsequent routing phase.

8.4.4 DUALIZATION WITH RECTILINEARMODULES

If a given adjacency graph is not dualizable, then one approach discussed earlier is to convert it to a
PTP graph by planarizing and eliminating all forbidden complex triangles [18]. But this very often
ends up in large wasted space because of the introduction of several dummymodules. An alternative
approach is to introduce L-shaped modules [36], or even two-concave rectilinear modules with
shapes like Z, T, W, or U [37] (Figure 8.10). The necessary and sufficient conditions under which a
plane triangulated graph admits a dual with such rectilinear modules appear in Ref. [37] and their
construction algorithm for a dual with n modules requires O(n) time.

The origin of L-shapedmodules is in the complex triangles in the adjacency graph.A floorplan, or
the dual of the graph, is now seen as a dissection of a bounding rectangle into L-shaped regionswhere
a rectangle is a special type of L-shaped region. A plane triangulated graph with a complex triangle
(Figure 8.3a) is no longer forbidden because one of the three vertices of the complex triangle, say C,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 151 29-9-2008 #14

Floorplanning: Early Research 151

Z T W U

FIGURE 8.10 Four possible two-concave rectilinear shapes of module and each can be decomposed into two
L-shaped modules as indicated by the dashed line. (From Yeap, G. and Sarrafzadeh, M., SIAM J. Comput., 22,
500, 1993.)

can be realized as an L-shaped module having a concave corner to satisfy all adjacency conditions.
As a matter of fact, for each complex triangle, at least one of its three vertices must have an L-shaped
module in the dual, i.e., the floorplan topology. An assignment of a complex triangle to a vertex
needs to be made to accommodate a concave corner in the corresponding module. A conflict is said
to occur if a vertex is simultaneously assigned to two complex triangles where one is not contained
in the other. An adjacency graph is said to be fully assigned if all its complex triangles can be
assigned without any conflicts. The set of vertices assigned is termed as the assignment set. The
characterization of graphs that admit L-shaped duals is given by the following criteria.

A plane triangulated adjacency graph G has an L-shaped dual De if and only if it satisfies the
following two properties [37]:

1. G has at least five vertices and the exterior face of G is a cycle of length greater than 4.
2. G can be fully assigned and the corresponding assignment set A does not include the four

vertices on the exterior face.

An algorithm to find a geometric dual containing both rectangular and L-shaped duals has been
designed based on finding an assignment set using maximum matching [36]. This has also been
generalized to the case where the input graph is not biconnected. The time complexity to test whether
a given G admits an L-shaped dual is O(n3/2) and to construct one, if it exists, is O(n2), where n is
the number of modules. Incidentally, given such a topology, a simulated annealing-based algorithm
for floorplan sizing with L-shaped modules was designed and implemented by Wong and Liu [38].

Further generalization to two-concave rectilinear modules with eight sides, six convex corners,
and two concave corners has also been proposed in Ref. [37]. The necessity for these arises from the
fact that conflictsmay arise during assignment of vertices to complex triangles. A perfect assignment
of a plane triangulated graph G is a set of assignments of all its complex triangles where (1) every
complex triangle is assigned to a vertex, (2) no vertex hasmore than two assignments, and (3) the four
vertices t, l, b, and r on the exterior face are unassigned. The necessary condition for the existence
of a dual, i.e., floorplan topology with two-concave rectilinear modules for a given G is finding a
perfect assignment. Such an assignment and thus a floorplan can be constructed in time linear in the
number of modules.

The key result is that every biconnected planar triangulated graph admits a floorplan with two-
concave rectilinear modules. Hence, these modules are the ultimate, i.e., necessary and sufficient for
floorplanning by graph dualization.

8.5 HIERARCHICAL FLOORPLANNING

As finding an optimal solution to the floorplanning problem is computationally expensive, hierar-
chical approach for handling larger instances is a natural choice. The fundamental idea is to divide
and conquer with a very small branching factor at each level. Although the number of possible
floorplans for a given problem is exponential, enumeration of all possible floorplans for only three

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 152 29-9-2008 #15

152 Handbook of Algorithms for Physical Design Automation

or four modules/rectangles at any level with their given connectivity and size specifications takes
constant time.

Another strong motivation for employing a hierarchical approach is that because floorplanning
decisions affect the subsequent phases of placement or global routing, it is desirable to integrate these
phases as much as possible. A hierarchical method makes this computationally feasible as designed
and implemented by Dai et al. [16,39] and Lengauer et al. [40].

As part of the macrocell based layout system called BEAR, the hierarchical floorplanner by
Dai et al. consists of three steps:

Step 1—Bottom-up clustering: A hierarchical tree is constructed in a bottom-up fashion
by clustering strongly connected modules greedily. Each cluster has a limited number of
modules, typically upto four. For each cluster, the shapes of the blocks are also considered
so that there is no mismatch within the cluster. Issues with size incompatibility at higher
levels between two neighboring clusters with fewer connections may arise, but these can
be resolved by limiting the sizes of the clusters at the higher levels so that the smaller sized
clusters are dealt with earlier, thereby reducing the percentage of wasted area.
Step 2—Top-down placement: The cluster tree is traversed from the root, which has its
desired shape and terminals specified. These requirements are propagated to the children
clusters and their respective shape and terminals are determined.The small number of possi-
ble floorplan templates (Figure 8.11) are enumerated and clusters are assigned to rectangles
or rooms in a template to obtain a floorplan topology. In most cases, the winning topology
is determined by computing the estimated routing space for each of the possible topologies.
This is continued till the orientations of the leaf modules are decided. It may be pointed
out that this method works well when the leaf level modules can be of flexible shape. A
certain amount of look ahead to the grandchild level is also added during top-down shape
determination. The system allows the user to monitor the trade-off among shape, area, and
connections costs.
Step 3—Floorplan optimization: This step improves the solution obtained above by iter-
atively selecting certain blocks and resizing them. The blocks selected usually lie on the
longest paths through the placement based on the routing estimates. Such paths are either
between the left and right sides of the chip or the top and bottom sides. The routing cost is
computed by adding the edgeweights (number of net connections) between pairs of clusters
multiplied by the distance between their centers in the current placement. The global routing
information is updated incrementally after each iteration. The stopping criterion is that the
longest paths contain fixed size blocks only or flexible blocks that belong to the longest
path in the perpendicular direction as well. Although this method is very efficient for small
circuits, it needs to be executed in a two-pass mode iteratively, one for each direction, to
achieve fast convergence for larger circuits.

In the hierarchical approach taken by Lengauer et al. [40], the hierarchy or cut-tree is generated in
a top-down manner by recursive mincut method initially and then the bottom levels of the tree are
obtained by bottom-up clustering. Once again the degree of the cut-tree is restricted to 4. Floorplan

FIGURE 8.11 Some templates used in hierarchical floorplanner BEAR with at most degree 4 branching at
any node of the hierarchy.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 153 29-9-2008 #16

Floorplanning: Early Research 153

sizing is done by bottom-up traversal of the cut-tree to compute the floorplan alternatives based
on the shape function for the children modules/rectangles. Finally, a particular floorplan alternative
and its corresponding global routing are constructed simultaneously. For a floorplan topology, there
exists a breadth-first top-down labeling of the nodes of the cut-tree with a particular pattern. The
pattern selection performed at each node is guided by the external wiring costs computed for the
previous cut-tree level without the need for penalty functions à la Dai et al. for assigning modules to
rectangular regions smaller than the requirement. Moreover, the number of patterns is bounded by a
small integer. The sizing algorithm employs shape function instead of the penalty-oriented method
by Dai et al. Thus, this method implemented in the system FRODO reports better results over BEAR.

8.6 FLOORPLAN SIZING METHODS

Given a floorplan topology, the second task is to obtain the aspect ratios of the modules so that the
overall area, total netlength, and maximum netlength is optimal. Some of the major techniques are
listed below and more details of two important ones appear in the subsequent sections.

1. Force-directed with slicing [41]: The PIONEER system is an iterative method. It pro-
vides two capabilities: extraction of initial layout from a user-specified data and interactive
graphics for improving the initial layout. The improvement of initial layout proceeds in
three steps. First, macrocenters are determined, then a slicing structure is generated, and
finally the layout is expanded.

2. Relaxation method [42,43]: This iterative floorplanningmethod is different from improve-
ment by interchange because relaxation implies an obvious next state. In Ref. [42],
dimensional relaxation is used to improve a floorplan. It consists of modifying the shapes
of cells as well as the topology of the horizontal and vertical line segments that define the
floorplan.

3. Simulated annealing: Timber Wolf [44] is one of the first floorplanning systems based on
simulated annealing technique. It produces not only the relative positions of the modules
but also their aspect ratios and pin positions. The algorithms for optimal floorplan design,
reported in Ref. [21,38], also use simulated annealing. The first algorithm can generate
slicing structures with rectangular modules only, whereas the second one can produce non-
slicing floorplans and even L-shaped modules. A new representation of floorplans using
normalized Polish expressions facilitates selection during iterative improvement by pair-
wise interchange (see Chapter 9 for details). The major disadvantages of these systems are
that they are computation intensive and may not be readily adapted to deal with various
constraints on floorplan.

4. Genetic algorithm [45]: This stochastic iterative method requires appropriate encoding of
a floorplan and its associated cost function along with the definition of effective crossover
and mutation operators for iterative moves. Each move has an activation probability. It
can handle large floorplans and the quality of the solutions are comparable with simulated
annealing-based methods.

5. Analytic force-directedmethodwith packing [46,47]: Iterative floorplanning by thismethod
consists of two subtasks. First, an initial placement is obtained either by potential energy
method, or by attractive and repulsive force method as in the CHAMP system. Then a
semiautomatic block packing process is undertaken by relocating and reshaping modules
as well as the chip boundary. Constraint-based analytic sizing methods have also been
proposed [48–50]; further details are elaborated in the following section.

6. Branch-and-bound [29]: Layouts occupyingminimum area can be obtained by this method
using graph-theoretic representation of floorplan and suitably formulating a network flow
optimization problem. Graph-theoretic representation can also yield optimal aspect ratios
of modules in any floorplan by a branch-and-bound heuristic.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 154 29-9-2008 #17

154 Handbook of Algorithms for Physical Design Automation

8.7 ANALYTIC SIZING

The floorplan sizing algorithms that adopt an analytical approach essentially model the problem as a
set of constraints on the dimensions and connectivities of the rectangular modules such that a certain
objective function is minimized. Among these, a method based on potential energy modeling of
overlap and separation was proposed by Ying et al. [48]. The shape constraints are met by bounding
penalty functions. An unconstrained minimization problem is then solved heuristically. As the time
complexity is high, the authorsmention incorporatinghierarchical floorplanningby using themethod
recursively.

Themost effective andwidely referred analytic floorplan sizing algorithmbased onmixed integer
programming formulationwas proposed by Sutanthavibul et al. [49]. The essence of this is described
next. The assumption is that the area of a rectangular module is known a priori, but its actual shape
may be either fixed or flexible within certain limits for the aspect ratios (width to height ratio).
The variables in the mixed integer programming are of two types, namely integer variables (xi, yi)
indicating the x- and y-coordinates of the lower left corner of module i, and certain 0–1 variables that
primarily take care of different constraints. The width and height of module i is denoted by (wi, hi).

Constraints for nonoverlap of modules i and j: If both modules are rigid, we have the four linear
inequalities (I.a). Typically, the bounds on the widthW and heightH of the chip may be specified. By
employing two 0–1 integer variables xij and yij, we can ensure that at least one of the four inequalities
(I.b) holds for any pair of modules i and j. Thus for any one of the four possible values of (xij, yij),
only one of the four inequalities is applicable, the other three being vacuously true. It is assumed
that for all i, the values of (xi, yi) are nonnegative and definitely less than the chip width or height as
the case may be.

Constraints for nonoverlap of two rigid modules i and j

xi + wi ≤ xj, i left of j xi + wi ≤ xj +W(xij + yij)
xi − wj ≥ xj, i right of j xi − wj ≥ xj −W(1 − xij + yij)
yi + hi ≤ yj, i below j yi + hi ≤ yj + H(1 + xij − yij)
yi − hj ≥ yj, i above j yi − hj ≥ yj − H(2 − xij − yij)

(I.a) Variable-size chip (I.b) Fixed-size chip

If rotation by 90◦ is to be permitted for the rigid modules, then an additional 0–1 integer variable
zi is introduced and the constraints are modified to the following whereM = max(W ,H):

xi + zihi + (1 − zi)wi ≤ xj +M(xij + yij)

xi − zjhj + (1 − zj)wj ≥ xj −M(1 − xij + yij)

yi + ziwi + (1 − zi)hi ≤ yj +M(1 + xij − yij)

yi − zjwj + (1 − zj)hj ≥ yj −M(2 − xij − yij)

Next, modules with flexible shapes but fixed area si are considered in the inequalities (I.c and I.d) by
converting the quadratic relation wihi = si to a linear one, i.e., by expressing hi as a linear function
ofwi based on the first two terms of the Taylor series expansion about the pointwimax as given below:

hi = si
wimax

+ (wimax − wi)
si

w2
imax

or, hi = hi0 + �wiλi

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 155 29-9-2008 #18

Floorplanning: Early Research 155

where hi0 = si
wimax

, λi = si
w2imax

, and �wi = wimax − wi

Constraints for nonoverlap of a flexible module i

xi + wimax − �wi ≤ xj xi + wimax − �wi ≤ xj
yi + hi0 + �wiλi ≤ yj yi + hi0 + �wiλi ≤ yj

xi − wj ≥ xj xj + wjmax − �wj ≤ xi
yi − hi ≥ yj yj + hj0 + �wjλj ≤ yi

(I.c) With rigid module j (I.d) With flexible module j

Constraints on interconnection length can alsobe thrown inwith fewcontinuouspositive variables
per net and the half-perimeter metric is used. The complexity of the entire mixed integer linear
programming problem may be reduced by considering the constraints for critical nets only as this
number is far smaller. Routability is modeled by linear constraints based on the rule that the total
net length is 0.5 times the length of the routing tracks in the chip. This ensures that enough empty
space around each module is reserved for routing. For each pair of modules, two continuous and one
integer variable is introduced.

The package LINDO is used to solve for the values of the variables and arrive at a floorplan
solution. If the topology is given, then all the 0–1 integer variables acquire specific values and the
problem of determining the shapes of the modules reduces to standard linear programming one and
is hence polynomially solvable. The number of continuous variables and the linear constraints are
respectively 2n and O(n) where the floorplan has n modules.

The major drawback of this approach is the huge solution time for mixed integer linear pro-
gramming. For example, a floorplan with 25 modules may need about 600 integer variables. The
technique devised to overcome this is to consider very few, typically 10–12, modules at a time and
then successively augment the floorplan in a locally optimal way by adding a new group of mod-
ules each time till all modules have been processed. The selection of the groups of modules can be
performed either by clustering based on connectivity or linear ordering depending on the I/O con-
nections. The key to reducing the complexity is to have fewer number of variables, thus the already
positioned modules in a partial floorplan are replaced by fewer number of covering rectangles. The
floorplanning algorithm by analytical method [49] is given in Algorithm 2.

Algorithm 2 Floorplanning algorithm by mixed integer linear programming [49]

AlgorithmMILP_Floorplan
begin

Select a group S of k modules as seed;
Formulate MILP for S;
Solve to generate partial floorplan for S;
while (k ≤ n)do/ ∗ n is total number of modules ∗/

Select a new group of e modules based on connections to already positioned modules;
Find a set of d covering rectangles for the present partial floorplan where d ≤ k;
Formulate MILP for d covering rectangles and e unpositioned modules;
Solve to obtain new partial floorplan;
k = k + e;

endwhile;
end.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 156 29-9-2008 #19

156 Handbook of Algorithms for Physical Design Automation

8.8 BRANCH-AND-BOUND STRATEGY FOR SIZING

One of the early algorithms for optimal sizing of general floorplans with rigid modules was devised
by Wimer et al. [29]. The input to this algorithm is a floorplan topology represented by a pair of
dual polar graphs, also known as the x-graph or horizontal constraint graph, and the y-graph or
vertical constraint graph. Each graph is planar, directed acyclic with a single source and a single sink
corresponding to the left (top) and right (bottom) edges of the bounding rectangle of the floorplan. A
vertex in the x-graph corresponds to a vertical side of a rectangular module in the floorplan. There is
a directed arc from a vertex i to a vertex j if there is a rectangular module in the floorplan whose left
and right edges correspond to i and j, respectively. In the y-graph, the vertices denote the horizontal
edges of the modules and the directed arc goes from the top edge i lying above the bottom edge j of a
module. Each moduleMk in the floorplan topology has a set of one or more specified dimensions, so
in the x-graph the directed edge from the left to the right vertical edge ofMk has an associated weight
denoting the width wk of Mk. Similarly, in the y-graph the weight of a directed edge corresponds to
the height of the module whose top and bottom edges form the endpoints of the edge.

In the floorplan sizing problem, the goal is to determine the positions of all the modules for a
given topology such that the total area of the bounding rectangle is minimized. For slicing topologies,
the two graphs belong to the special class called series parallel. If each leaf has finitelymany possible
shapes, then Stockmeyer’s bottom-up sizing algorithm [22] becomes applicable. However, for the
general case the problem is NP-hard so a branch and strategy is chosen. It proceeds as follows:

First, a module is chosen based on some criterion for a particular level. In other words, if there
are n modules, then there are n levels in the branch-and-bound tree and the degree of a node in the
ith level is equal to the number of possible shapes of module Mi. A linear order of the modules is
obtained so that along any directed path of x- or y-graph, the predecessors of a module appear in the
linear order before the module. At the root, each edge of the x- and y-graphs is assigned the smallest
possible value it may take among all given shapes for the first module in the linear order. While
going from the ith level to the (i+ 1)th, appropriate values are assigned to the edges corresponding
to the module Mi+1 in the two graphs. At each node of the tree, the width and height of the partial
floorplan is computed. When going down along a path in the tree from root to a leaf, the area is
nondecreasing in the number of already positioned modules. Let Amin denote the minimum value of
area achieved thus far. The forward processing is performed in level order from the root. If at a node
in ith level, the area A is greater than the current Amin of the (i + 1)th level processed thus far from
left, then this node is not expanded any further (Figure 8.12) and the process backtracks upward till
it finds a suitable node for branching downward.

The efficiency of the method is influenced by the following factors: (1) the value of Amin as
early backtracks are desirable; (2) the area of a partial floorplan obtained is a lower bound on the
area of the complete floorplan, hence if the lower bound is raised, early backtracks will occur; and
(3) the order in which the possible dimensions of module Mi are examined at the ith level of the
branch-and-bound tree.

Intuitively, a module whose size is likely to have greater effect on the area of the complete floor-
plan, such as onewith large size or onewhich lies on a critical (longest) path ormany directed paths in
the polar dual graphs, should be considered earlier. Along with a branching strategy that guarantees
attainment of globalminimum, a very effective bounding value for the area of the remainingmodules
is computed to guide the search.

Additional efficiency of the method is attained by decomposing the floorplan topology into
maximal slicible structures forwhich series-parallel algorithm is applied.Branch-and-boundstrategy
is used only for the maximal rectangles as discussed in Section 8.4.1.

Another constraint-based floorplanningalgorithmproposedbyVijayan et al. [50] also can handle
flexible, fixed (rigid), and preplaced modules. The input is specified as two sets of constraints in the
form of the two directed acyclic horizontal and vertical constraint graphs. A linear time algorithm
for topological sorting of directed acyclic graphs is used to find the critical (longest) paths in the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 157 29-9-2008 #20

Floorplanning: Early Research 157

(a) (b) (c)

0

(d)

4 4,1

5,2 2,5 5,2 2,5 5,2

1,42,2

2,5

4 4

18 30∗ 14 20 24 15

27 45 99

9,1 3,3 1,9 9,1 3,3 1,9 9,1 3,3 1,9 9,1 3,3 1,9 9,1 3,3 1,9 9,1 3,3 1,9

27 35 77 54 32 56 54 24 4245 42 78

B1

B2

B3

B1 B2

B3

FIGURE 8.12 (a) Example floorplan topology with three modules, (b) its x-graph, (c) its y-graph, and (d) its
branch-and-bound tree where shape lists are B1: (4,1),(2,2),(1,4), B2: (5,2),(2,5), and B3: (9,1),(3,3),(1,9). The
width–height pair appears inside the node and the area of the subfloorplan at that level, outside it. A nodemarked
“∗” has area greater than minimum bound at that stage and hence no further branching from it is required. (From
Wimer, S., Koren, I., and Cederbaum, I., IEEE Trans. Computer-Aided Design, 8, 139, 1989.)

two graphs. Redundant constraints are removed and flexible blocks on the more critical paths are
reshaped. Certain criteria to characterize two different notions of redundancy among constraints are
formulated and utilized to reduce the time complexity. This heuristic is iterated until a floorplan
solution of desired dimensions is obtained.

8.9 KNOWLEDGE-BASED FLOORPLANNING APPROACHES

Floorplanning is meaningful for very large designs tackled in a top-down fashion. There is generally
a vast amount of design data and the optimization problems are computatinally hard. Often more
than one objective has to be optimized. Thus, artificial intelligence techniques have been attempted
by a few researchers, especially when details of modules are not known.

FLOYD, one of the early rule-based expert systems for floorplanning, was designed and imple-
mented by Dickinson [1]. The key idea in another system FLUTE [2] is to produce a rectangular
topology by placing the modules on a rectangular grid graph using a set of rules that take shape and
connectivity constraints into account. Then sizing or geometric realization is achieved by a heuris-
tic method to solve a system of linear and quadratic inequalities. Like many artificial intelligence
systems, this is implemented in LISP.

Jabri and Skellern [4] adopt a combination of algorithmic and knowledge-based approach for
a top-down floorplanning system called PIAF. Rectangular dualization method is used to generate
topologies and then other constraints are introduced for knowledge-based estimation and prediction
of dimensions and areas of modules. The final phase consists of a greedy algorithm for determining
the exact shapes and locations of the modules. The system FLAIR developed by Brück et al. [3]
employs a band of expert systems for estimating a broad range of design parameters relevant to

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 158 29-9-2008 #21

158 Handbook of Algorithms for Physical Design Automation

transforming an architectural plan to a geometric one in two steps—first producing a rough or
postulative plan and then a final one.

In general, these systems are fairly complex to design, implement, and validate. Accurate def-
inition of the rule base and its fine tuning are required for attaining optimality. These have greater
potential in interactive design environments.

8.10 UNIFIED METHOD FOR TOPOLOGY GENERATION AND SIZING

With exponentially many feasible topologies for a given neighborhood graph, design space explo-
ration and optimality are limited if the sizing is performed on a particular feasible topology. Among
the very few methods that integrate the two subtasks of floorplanning, two are notable.

The first one is a dynamic programming based method [51] that can handle slicible floorplans
only. A set of slicing trees is enumerated by top-down partitioning of the adjacency graph and
represented by an enumeration tree model. Size optimization is carried out simultaneously by Stock-
meyer’s method [22] for each topology enumerated. The role of dynamic programming is to reduce
the time complexity to polynomial time by memoization of optimal solutions for subfloorplans.

The second method [52] is a two-phase technique applicable to nonslicible floorplans including
inherently nonslicible ones. Canonical embedding results of Section 8.4.3 are applied to establish
that a binary tree representation for general floorplans exists where the internal nodes correspond
to either straight cutlines or Z-cuts having two monotonic staircase bends. The possible topologies
are derived by top-down partitioning and kept in an AND–OR graph. A bottom-up sizing phase
finally reports the optimal floorplan. The slicibility criterion in Ref. [34] can provide additional
improvement in the speed of the floorplanner with negligible sacrifice of solution quality.

ACKNOWLEDGMENTS

The author would like to thank all her floorplanning research collaborators, especially Professors
Bhargab B. Bhattacharya of Indian Statistical Institute and Parthasarathi Dasgupta of Indian Insti-
tute of Management, Kolkata. Part of the Sections 8.3, 8.3.1, 8.4.2, and 8.7 has been published in
Sur-Kolay, S. andBhattacharya,B.B.,Foundations of SoftwareTechnology andTheoreticalComputer
Science, LCNS 338, 88, 1988; Bhasker, S. and Sahni, S., Algorithmica, 3, 274, 1988; Sur-Kolay, S.
and Bhattacharya, B.B., Proceedings of the ISCAS, pp. 2850–2853, 1991; Sutanthavibul, E.,
et al., IEEE Trans. Computer-Aided Design, 10, 761, 1991, respectively. With permission.

REFERENCES
1. A. Dickinson. Floyd: A knowledge-based floorplan designer. In Proceedings of the IEEE International
Conference on Computer Design (ICCD), San Jose, CA, October 1–4, pp. 176–179, 1986.

2. B. Ackland and H.Watanabe. Flute: An expert floorplanner for full-custom VLSI design. IEEEDesign and
Test of Computers, 4:32–41, 1987.

3. R. Brück, K.-H. Temme, and H. Wronn. FLAIR: A knowledge-based approach to integrated circuit floor-
planning. In Proceedings of the International Workshop on Artifical Intelligence for Industrial Applications,
Hitachi City, Japan, May 25–27, pp. 194–199, 1988.

4. M.A. Jabri and D.J. Skellern. PIAF: A knowledge-based/algorithmic top-down floorplanning system. In
Proceedings of the 26th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, June 25–29,
pp. 582–585, June 1989.

5. F. Harary. Graph Theory. Addison-Wesley Publishing Co., Reading, MA, 1969.
6. R.H.J.M. Otten. Automatic floorplan design. In Proceedings of the 19th ACM/IEEE Design Automation
Conference (DAC), Las Vegas, NV, June 14–16, pp. 261–267, June 1982.

7. R.H.J.M. Otten. Efficient floorplan optimization. In Proceedings of the IEEE International Conference on
Computer Design (ICCD), Port Chester, NY, pp. 499–502, October 1983.

8. R.L. Brooks, C.A.B. Smith, A.H. Stone, and W.T. Tutte. The dissection of rectangles into squares. Duke
Mathematical Journal, 7: 312–340, 1940.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 159 29-9-2008 #22

Floorplanning: Early Research 159

9. U. Lauther. A min-cut placement algorithm for general cell assemblies based on a graph representation. In
Proceedings of the 16th ACM/IEEE Design Automation Conference (DAC), San Diego, CA, June 25–27,
pp. 1–10, June 1979.

10. D.P. LaPotin and S.W. Director. MASON: A global floorplanning approach for VLSI design. IEEE
Transactions on Computer-Aided Design, CAD-5(4): 477–489, October 1986 (ICCAD 1985).

11. H. Modarres and A. Kelapure. An automatic floorplanner upto 100,000 gates. IEEE Transactions on
Computer-Aided Design, VLSI Systems Design, pp. 38–44, December 1987.

12. K. Kozminski and E. Kinnen. Rectangular duals of planar graphs. Networks, 15: 145–157, 1985.
13. S.M. Leinwand andY.T. Lai. Algorithms for floorplan design via rectangular dualization. IEEETransactions

on Computer-Aided Design, 7(12), December 1988. (DAC 1984).
14. J. Bhasker and S. Sahni. A linear time algorithm to find a rectangular dual of a planar triangulated graph.

Algorithmica, 3(2): 274–278, 1988 (DAC 1986).
15. B. Lokanathan and E.Kinnen. Performance optimized floorplanning by graph planarization. InProceedings

of the 26th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, June 25–29, pp. 116–121,
June 1989.

16. W.M. Dai and E.S. Kuh. Simultaneous floor planning and global routing for hierarchical building-block
layout. IEEE Transactions on Computer-Aided Design, 6: 828–837, September 1987 (DAC 1986).

17. J. Bhasker and S. Sahni. A linear time algorithm to check for the existence of rectangular dual of a planar
triangulated graph. Networks, 17: 307–317, 1987.

18. K. Koike, S. Tsukiyama, and I. Shirakawa. An algorithm to eliminate all complex triangles in a maximal
planar graph for usein VLSI floorplan. In Proceedings of the International Symposium on Circuits and
Systems (ISCAS), San Jose, CA, May 5–7, pp. 321–324, IEEE, 1986.

19. G. Sorkin, W.R. Heller, and K. Maling. The planar package planner for system designers. In Proceedings
of the 19th ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, June 14–16, pp. 253–260,
June 1982.

20. M.J. Garey and D.J. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman & Co., San Francisco, CA, 1979.

21. D.F. Wong and C.L. Liu. A new algorithm fir floorplan design. In Proceedings of the 23rd ACM/IEEE
Design Automation Conference (DAC), Las Vegas, NV, June 29–July 2, pp. 101–107, June 1986.

22. L.J. Stockmeyer. Optimal orientation of cells in slicing floorplan designs. Information and Control, 57:
187–192, 1983.

23. P. Sipala, W.K. Luk, and C.K. Wong. Minimum area wiring for slicing structures. IEEE Transactions on
Computer-Aided Design, C-36(6): 745–760, June 1987.

24. K.J. Supowit and E.F. Slutz. Placement algorithms for custom VLSI. In Proceedings of the 20th ACM/IEEE
Design Automation Conference (DAC), Miami Beach, FL, June 27–29, pp. 164–170, June 1983.

25. S. Sur-Kolay and B.B. Bhattacharya. On the family of inherently nonslicible floorplans in VLSI design. In
Proceedings of the International Symposium on Circuits and Systems (ISCAS), pp. 2850–2853, Singapore,
June 1991.

26. S. Sur-Kolay and B.B. Bhattacharya. The cycle structure of channel graphs for nonslicible floorplans and
a unified algorithm for feasible routing order. In Proceedings of the IEEE International Conference on
Computer Design (ICCD), pp. 524–527, Boston, October 1991.

27. Y. Cai and D.F. Wong. A channel/switchbox definition algorithm for building-block layout. In Proceedings
of the 27th ACM/IEEEDesign Automation Conference (DAC), Orlando, FL, June 24–28, pp. 638–641, June
1990.

28. S. Sur-Kolay. Studies on Nonslicible Floorplans in VLSI Layout Design, Doctoral dissertation, Jadavpur
University, Calcutta, 1991.

29. S.Wimer, I. Koren, and I. Cederbaum. Optimal aspect ratios of building blocks in VLSI. IEEE Transactions
on Computer-Aided Design, 8(2): 139–145, February 1989.

30. D.F.Wong and P.S. Sakhamuri. Efficient floorplan area optimization. In Proceedings of the 26th ACM/IEEE
Design Automation Conference (DAC), Las Vegas, NV, June 25–29, pp. 586–589, June 1989.

31. C.-H. Chen and I.G. Tollis. Area optimization of spiral floorplans. Journal of Circuits, Systems and
Computers, 3(4): 833–857, 1993 (ICCD 1991).

32. K. Chong and S.Sahni. Optimal realizations of floorplans. IEEE Transactions on Computer-Aided Design,
12(6): 793–804, June 1993.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C008 Finals Page 160 29-9-2008 #23

160 Handbook of Algorithms for Physical Design Automation

33. S. Sur-Kolay and B.B. Bhattacharya. Inherent nonslicibility of rectangular duals in VLSI floorplanning.
Foundations of Software Technology and Theoretical Computer Science, LCNS 338: 88–107, 1988.

34. P.S. Dasgupta and S. Sur-Kolay. Slicibility conditions of rectangular graphs and their applications to floor-
plan optimization. ACMTransactions on Design Automation of Electronic Systems, 6(4): 447–470, October
2001.

35. S. Sur-Kolay and B.B. Bhattacharya. Canonical embedding of rectangular duals. In Proceedings of the 29th
ACM/IEEE Design Automation Conference (DAC), Aneheim, CA, June 8–12, pp. 69–74, June 1992.

36. S. Sun and M. Sarrafzadeh. Floorplanning by graph dualization: L-shaped modules. Algorithmica, 10:
429–456, 1993.

37. G. Yeap and M. Sarrafzadeh. Floor-planning by graph dualization: 2-concave rectilinear modules. SIAM
Journal of Computing, 22(3): 500–526, June 1993.

38. D.F. Wong and C.L. Liu. Floorplan design for rectangular and L-shaped modules. In Digest of ACM/IEEE
International Conference on Computer Aided Design (ICCAD), Santa Clara, CA, November 9–12,
pp. 520–523, 1987.

39. W. Dai, B. Eschermann, E.S. Kuh, and M. Pedram. Hierarchical placement and floorplanning in BEAR.
IEEE Transactions on Computer-Aided Design, 8(12): 1335–1349, December 1989.

40. T. Lengauer and R. Muller. Robust and accurate hierachical floorplanning with integrated global wiring.
IEEE Transactions on Computer-Aided Design, 12(6): 802–809, June 1993.

41. L.S. Woo, C.K. Wong, and D.T. Tang. Pioneer: A macro-based floorplanning design system. VLSI System
Design, CAD-4: 32–43, August 1986.

42. E. Berkcan and E. Kinnen. Ic layout planning and placement by dimensional relaxation. In Proceedings of
the IEEE International Conference on Computer Design (ICCD), San Jose, CA, October 1–4, pp. 223–234,
1986.

43. M.J. Cieselski and E. Kinnen. Digraph relaxation for 2-dimensional placement of IC blocks. IEEE
Transactions on Computer-Aided Design, CAD-6(1): 55–66, January 1987.

44. C. Sechen and A.L. Sangiovani-Vincentelli. The timberwolf placement and routing package. IEEE Journal
of Solid-State Circuits, SC-20(2): 510–522, 1985.

45. M. Rebaudengo and M.S. Reorda. Gallo: A genetic algorithm for floorplan area optimization. IEEE
Transactions on Computer-Aided Design, 15(8): 943–951, August 1996.

46. Y.C. Hsu and W.J. Kubitz. A procedure for chip floorplanning. In Proceedings of the International
Symposium on Circuits and Systems (ISCAS), Philadelphia, PA, May 4–7, pp. 568–571, 1987.

47. K. Ueda, H. Kitazawa, and I. Harada. Champ: Chip floorplan for hierarchical VLSI layout design. IEEE
Transactions on Computer-Aided Design, CAD-4: 12–22, January 1985.

48. C. Ying and J.S. Wong. An analytical approach to floorplanning for hierarchical building blocks layout.
IEEE Transactions on Computer-Aided Design, 8(4): 403–412, April 1989.

49. S. Sutanthavibul, E. Shragowitz, and J.B. Rosen. An analytical approach to floorplan design and
optimization. IEEE Transactions on Computer-Aided Design, 10(6): 761–769, June 1991. (DAC 1990).

50. G. Vijayan and R.S. Tsay. A new method for floor planning using topological constraint reduction. IEEE
Transactions on Computer-Aided Design, 10(12): 1494–1501, December 1991.

51. G. Yeap and M. Sarrafzadeh. A unified approach to floorplan sizing and enumeration. IEEE Transactions
on Computer-Aided Design, 12(12): 1858–1867, December 1993.

52. P.S. Dasgupta, S. Sur-Kolay, and B.B. Bhattacharya. A unified approach to topology generation and optimal
sizing of floorplans. IEEE Transactions on Computer-Aided Design, 17(2): 126–135, February 1998.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 161 24-9-2008 #2

9 Slicing Floorplans

Ting-Chi Wang and Martin D.F. Wong

CONTENTS

9.1 Introduction.. 161
9.2 Preliminaries . 162
9.3 Slicing Floorplan Representations.. 163

9.3.1 Slicing Tree . 163
9.3.2 Polish Expression . 164

9.4 Optimizations on Slicing Floorplans . 164
9.4.1 Area Optimization . 164

9.4.1.1 Oriented Slicing Tree . 164
9.4.1.2 Unoriented Slicing Tree . 168

9.4.2 Area/Power Optimization .. 168
9.5 Classical Slicing Floorplan Design . 169

9.5.1 Mincut-Based Slicing Floorplan Design . 170
9.5.2 Point-Configuration Based Slicing Floorplan Design . 171
9.5.3 Simulated Annealing Based Slicing Floorplan Design . 171

9.6 Slicing Floorplan Design Considering Placement Constraints. 172
9.6.1 Boundary Constraints . 173
9.6.2 Range Constraints . 174
9.6.3 Abutment Constraints . 175
9.6.4 Clustering Constraints. 176

9.7 Other Advances in Slicing Floorplans . 177
9.7.1 Theoretical Results for Area-Optimal Slicing Floorplans . 177
9.7.2 Completeness of Slicing Tree Representation . 178
9.7.3 Heterogeneous FPGA Floorplanning.. 179
9.7.4 3D Floorplanning.. 181

9.8 Conclusion.. 182
References . 183

9.1 INTRODUCTION

A floorplan is a dissection of an enveloping rectangle R by horizontal and vertical line segments
into a set of nonoverlapping basic rectangles (or rooms) such that each room is large enough to
accommodate the module assigned to it. Note that in some situations, there may be some basic
rectangles without any modules assigned to them. We call them empty rooms.

An important class of floorplans is the set of all slicing floorplans [1,2]. A slicing floorplan is one
that can be obtained by recursively cutting a rectangle into two smaller rectangles by either a vertical
or horizontal line segment. Typically, a slicing floorplan for n modules has n rooms each of which

161

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 162 24-9-2008 #3

162 Handbook of Algorithms for Physical Design Automation

4
2

1
3

(a) (b) (c)

V4

V

H 3

1 2

V 3

V

H4

1 2

FIGURE 9.1 Slicing floorplan and its two slicing trees. (a) A slicing floorplan for four modules, (b) and (c)
two slicing trees for the floorplan in (a).

accommodates a different module. Figure 9.1a shows a slicing floorplan for four modules. There
are advantages of using slicing floorplans. For example, focusing on slicing floorplans significantly
reduces the search space and, thus, the runtime. Moreover, the shape flexibilities of modules can be
fully utilized to pack modules tightly [3–5]. Consequently, existing slicing floorplan algorithms in
general run very efficiently and yet can pack modules tightly.

In Section 9.2,wegive somenecessary preliminarieswith respect to the floorplan design problem.
In Section 9.3, we present two schemes for representing slicing floorplans. In Section 9.4, we study
several important optimization problems, including the well-known area optimization problem, and
their solutions for slicing floorplans. These optimization algorithms are typically embedded into a
slicing floorplanner. We then turn our attention to classical slicing floorplan design, and introduce
different solutions in Section 9.5. In Section 9.6, we focus on modern slicing floorplan design that
takes placement constraints into account. Several placement constraints are addressed, and their
solutions are described. Finally, we highlight more recent advances in slicing floorplan design for
field programmable gate arrays (FPGAs) and three-dimensional integrated circuits (3D ICs), in
addition to several interesting theoretical results, in Section 9.7, and draw a conclusion in Section 9.8.

9.2 PRELIMINARIES

In the floorplan design problem, we are given a set of n modules, named 1, 2, . . . , n, and a list of n
triplets of numbers, (a1, p1, q1), (a2, p2, q2), . . . , (an, pn, qn) with pi ≤ qi, 1 ≤ i ≤ n. For each module
i, (ai, pi, qi) specifies its area and shape constraint. That is, if module i has width wi and height hi,
the following conditions must hold:

1. wi × hi = ai
2. pi ≤ (hi/wi) ≤ qi, if i ∈ M1

3. pi ≤ (hi/wi) ≤ qi or (1/qi) ≤ (hi/wi) ≤ (1/pi), if i ∈ M2

We define (hi/wi) to be the aspect ratio of module i. Module i is said to be a hard module if pi = qi,
otherwise it is said to be a soft module. The two disjoint module sets M1 and M2 are given with
M1 ∪ M2 = {1, 2, . . . , n}, where M1 specifies the set of modules with fixed orientation, and M2

specifies the set of modules with free orientation (i.e., they can be rotated). Given a floorplan, if xi
and yi are the width and the height, respectively, of the basic rectangle that accommodates module
i, we must have xi ≥ wi and yi ≥ hi. The shape curves in Figure 9.2 specify different kinds of
shape constraints for a module where each shaded region (including the shape curve) is called the
bounded area. A point in the bounded area gives the dimensions of the basic rectangle that can
accommodate the module. (The x and y coordinates of the point give the width and the height of the
room.) Figure 9.2a and b correspond to the case where the module is rigid; in addition, the module in
Figure 9.2a has fixed orientation while the one in Figure 9.2b can be rotated. Figure 9.2c and d both
correspond to the case where the module is flexible (soft); similarly the module in Figure 9.2c has
fixed orientation while the one in Figure 9.2d has free orientation. Let H, L1, L2, L3, and L4 be the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 163 24-9-2008 #4

Slicing Floorplans 163

(a) (b) (c) (d)

d
c

b
b

a
aaa

d

y y y y

xxxx

FIGURE 9.2 Different shape curves. (a) The shape curve for a hard module with fixed orientation, (b) the
shape curve for a hard module with free orientation, (c) the shape curve for a soft module with fixed orientation,
and (d) the shape curve for a soft module with free orientation.

hyperbola xy = ai, the line y = qix, the line y = pix, the line y = (1/pi)x, and the line y = (1/qi)x,
respectively. In these figures, the intersections between H and L1, L2, L3, L4 are points a, b, c, d,
respectively.

To describe the wiring information between each pair of modules, an n × n matrix C can be
provided, where element cij, 1 ≤ i, j ≤ n, denotes the number of wires between modules i and
j. Given a floorplan, its quality is typically measured by the area of the enveloping rectangle, the
center-to-center total wirelength, or a weighted sum of the area and the wirelength. If dij denotes
the center-to-center Manhattan distance between basic rectangles (or modules) i and j, 1 ≤ i, j ≤ n,
the total wirelength can be defined to be

∑
1≤i,j≤n dijcij. Therefore, the floorplan design problem asks

to find a floorplan that minimizes a given cost measure subject to the area and shape constraints
imposed on each module. Moreover, a designer can also specify the range of the aspect ratio of the
chip to constrain the final floorplan to have a certain shape.

9.3 SLICING FLOORPLAN REPRESENTATIONS

In this section, we describe two well-known and frequently used representations, slicing tree [1,3]
and Polish expression [2], for slicing floorplans. Their details are given in Sections 9.3.1 and 9.3.2.

9.3.1 SLICING TREE

The hierarchical structure of a slicing floorplan can be described by an oriented rooted binary tree,
called slicing tree* [1,3]. Figure 9.1b shows a slicing tree for the slicing floorplangiven in Figure 9.1a.
Each internal node of a slicing tree is labeled with either V or H, denoting either a vertical or a
horizontal cut. Each leaf denotes a room (or module) and is labeled by a number between 1 and n.
A slicing tree is said to be skewed if no node and its right child have the same label [2]. Figure 9.1c is a
skewed slicing tree while Figure 9.1b is not, although both slicing trees represent the same floorplan.
From Figure 9.1, it is clear that a slicing floorplan may be represented by more than one slicing tree.
These slicing trees correspond to different orders in which consecutive horizontal and vertical cuts
are made. In fact, a skewed slicing tree is obtained by making consecutive horizontal cuts from top
to bottom, and consecutive vertical cuts from right to left. It can be proved that the skewed slicing
tree is unique for a given slicing floorplan.

It should be noted that a slicing tree is only a top-down description of the cut types (horizontal
or vertical) for a given slicing floorplan, and no dimensional information is associated with each
cut. Therefore, a slicing tree may represent more than one slicing floorplan. These floorplans differ
in the dimensions for the rooms. An equivalence relation can be defined on the set of all slicing
floorplans with n modules. Given two different floorplans, they are said to be equivalent iff they

* There are slicing floorplans that can be also represented by trees such that internal nodes in these trees have more than
two children. These trees can always be transformed into binary trees. Therefore, using a binary tree to represent a slicing
floorplan causes no loss of generality.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 164 24-9-2008 #5

164 Handbook of Algorithms for Physical Design Automation

are represented by the same skewed slicing tree. As a result, the set of slicing floorplans can be
partitioned into equivalence classes, where each equivalence class of slicing floorplans corresponds
to a different slicing structure. Therefore, we can use the set of skewed slicing trees with n leaves to
represent the set of slicing structures with nmodules without causing any redundancies. As we shall
see in Section 9.4, there are efficient algorithms for selecting a “best” floorplan (e.g., measured by
the floorplan area) among the floorplans with the same slicing structure.

9.3.2 POLISH EXPRESSION

Given a slicing tree, we can obtain the corresponding Polish expression by performing the postorder
traversal of the tree [2]. For example, the Polish expressions for the two slicing trees shown in
Figure 9.1b and c are 412H3VV and 412HV3V , respectively. Clearly, there may be more than one
Polish expression that represents the same slicing floorplan. This makes the Polish expression rep-
resentation (or equivalently the slicing tree representation) an undesirable choice for representing
solutions at least for the following reasons. First, the solution space is unnecessarily increased. Sec-
ond, the set of slicing structures is not evenly distributed over the set of Polish expressions, causing
undesirable biases toward some slicing structures. Because there is always only one skewed slic-
ing tree for representing a slicing structure, the corresponding normalized Polish expression is thus
defined and obtained by performing the postorder traversal of the skewed slicing tree [2]. Because
no internal node and its right child have the same cut type in a skewed slicing tree, there are no
consecutive V ’s or H’s in the corresponding normalized Polish expression. Besides, it can be also
proved that there is a one-to-one correspondence between the set of normalized Polish expressions
of length 2n− 1 and the set of slicing structures with n modules.

9.4 OPTIMIZATIONS ON SLICING FLOORPLANS

One approach to floorplan design is to first determine a floorplan topology (the slicing structure for a
slicing floorplan), that is, the relative positions of themodules by using thewiring information among
the modules. On the basis of the floorplan topology, various optimization problems are then solved
to minimize a given cost measure. Among them, the area optimization determines a shape for each
module such that the area of the resultant floorplan isminimized [3–6]. Besides, if eachmodule is also
given a power consumption value associated with each allowable shape, the area/power optimization
problem can be defined to select a shape as well as its associated power consumption value for each
module such that the power (obtained by summing up the power consumption values of all modules)
and the area of the resultant floorplan are optimized simultaneously [7]. In this section we address
several variants of the area optimization problemand the area/power optimization problem for slicing
floorplans, and introduce their efficient solutions.

9.4.1 AREA OPTIMIZATION

In this subsection, our focus is on slicing floorplan area optimization. We assume that the given
slicing structure is specified by a slicing tree. Two variants of slicing floorplan area optimization
are addressed. The first one assumes that the given slicing tree is oriented in the sense that the cut
type of each internal node is explicitly specified. Such an oriented tree complies exactly with the
definition of a slicing tree as given in Section 9.3. On the other hand, to increase the chance of further
minimizing flooplan area, the second variant assumes that the given tree is unoriented, which means
that the cut type of each internal node is not specified and thus needs to be determined as well.

9.4.1.1 Oriented Slicing Tree

For the case where an oriented slicing tree is given, we describe three algorithms by Stockmeyer [3],
Shi [4], and Otten [5].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 165 24-9-2008 #6

Slicing Floorplans 165

9.4.1.1.1 Stockmeyer’s Algorithm
InRef. [3], Stockmeyer considers themodule orientation problemwhere eachmodule is rigid butmay
be rotated. Therefore, each module has at most two possible shapes. The shape curve for each such
module looks like the one shown in Figure 9.2a or b. Given an oriented slicing tree and the possible
shapes of each module, Stockmeyer gives an efficient algorithm to select a shape for each module
such that the resulting floorplan has the smallest area among all equivalent floorplans represented
by the given slicing tree.

Let T be the given slicing tree, u be a node of T , and L(u) be the set of leaves in the subtree
rooted at u. Stockmeyer’s algorithm constructs a list of pairs, {(w1, h1), (w2, h2), . . . , (wk , hk)}, with
k ≤ |L(u)| + 1,w1 > w2 > · · · > wk and h1 < h2 < · · · < hk for u. The first and second numbers
in each pair denote the width and the height of a module (if u is a leaf) or a subfloorplan (if u is an
internal node), respectively. Besides, two pointers are kept for each pair in the list to facilitate the
determination of the shape for each module that achieves the minimum-area floorplan.

The construction is done in bottom-up manner. For a leaf of T , the algorithm constructs a list to
store the shapes of the corresponding module. If a module has dimensions w and h with w > h, the
list is {(w, h), (h,w)}. On the other hand, if w = h or the module has a fixed orientation, only one
pair (w, h) is stored in the list. The two pointers of each pair are null. For an internal node u of T
with children u1 and u2, let {(w1, h1), (w2, h2), . . . , (wm, hm)} and {(w′

1, h′
1), (w′

2, h′
2), . . . , (w′

k , h′
k)}

be the two lists of pairs which have been constructed for u1 and u2, respectively. Besides, we have
m ≤ |L(u1)| + 1 and k ≤ |L(u2)| + 1. Suppose u corresponds to a horizontal cut. Then a pair
(wi, hi) from u1 and a pair (w′

j, h′
j) from u2 can be combined to get a pair (max(wi,w′

j), hi + h′
j) in

the list for u. It is clear that that not all mk such new pairs need consideration if some of them are
redundant. For example, with wi > w′

j, there is no need to combine (wi, hi) and (w′
z, h′

z) for any
z > j because max(wi,w′

j) = max(wi,w′
z) = wi, and hi + h′

j < hi + h′
z. (Note that in this case

(max(wi,w′
z), hi + h′

z) is redundant.) Therefore, the following procedure, similar to merging two
sorted lists, is used for combining the two lists to obtain the list for u.

1. i ← 1, j ← 1.
2. If i > m or j > k then terminate.
3. Add (max(wi,w′

j), hi + h′
j) to the list for u with pointers to (wi, hi) and (w′

j, h′
j).

4. If wi > w′
j, then i ← i + 1 and goto (2).

5. If wi < w′
j, then j ← j + 1 and goto (2).

6. If wi = w′
j then i ← i + 1, j ← j + 1, and goto (2).

Clearly, the time complexity of the procedure is linear, that is, O(m + k), and the length of the list
produced for u is at most m + k − 1 ≤ |L(u1)| + 1 + |L(u2)| + 1 − 1 = |L(u)| + 1. The procedure
can be easily modified if u corresponds to a vertical cut.

After the list for the root of T is constructed, a pair producing the minimum area (and satisfying
the given chip aspect ratio constraint) is chosen and the corresponding pointers are used to determine
the shape of eachmodule in a top-downmanner. The time complexity of the whole algorithm isO(n2)
in the worst case, where n is the number of modules. It should be pointed out that the algorithm can
be naturally applied to handle the general case where modules may have more than two possible
shapes.

9.4.1.1.2 Shi’s Algorithm
In Ref. [4], Shi considers the same area optimization problem as in Ref. [3] and presents a faster
algorithm that runs inO(m logm) time, wherem is the total number of possible shapes of all modules.
This complexity does not depend on the number of modules, the depth of the slicing tree, or the
distribution of the m shapes among the modules. He also proves that O(m logm) is the lower bound
on the time complexity for any area minimization algorithm, which implies that his algorithm has
an optimal runtime.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 166 24-9-2008 #7

166 Handbook of Algorithms for Physical Design Automation

Instead of using a list to store the set of possible shapes for each node u of a slicing tree, Shi’s
algorithm uses a balanced binary tree (e.g., AVL tree [8] or red–black tree [9]), denoted by BBT(u).
We call BBT(u) the shape tree for u. For every irredundant shape s of u, there is a node v(s) in
BBT(u) having the following four major fields:

w[v(s)]: to be used for computing the width of s
h[v(s)]: to be used for computing the height of s
w+[v(s)]: to be added to the widths of all descendents of v(s)
h+[v(s)]: to be added to the heights of all descendents of v(s)

BBT(u) has the height and thewidth as two keys, and a search, insertion, or deletion can be performed
on either key. However, the width w(s) and the height h(s) of s are not explicitly stored in the
corresponding node v(s). Instead, they are stored in the path from the root of BBT(u) to v(s). Let
P(s) be the set of nodes on the path from the root of BBT(u) to v(s). The width and the height of s
are computed as follows:

w(s) = w[v(s)] +
∑
v′∈P(s)

w+[V ′]

h(s) = h[v(s)] +
∑
v′∈P(s)

h+[V ′]

For example, a balanced binary tree storing five shapes (5,5), (4,6), (3,7), (2,8), and (1,9) are shown
in Figure 9.3. The reason for introducing the two fields h+ and w+ is as follows. Suppose u is an
internal node of the slicing tree T , has two children u1 and u2, and corresponds to a horizontal cut.
Suppose that we want to combine k shapes s1, s2, . . . , sk of u1 with a shape t of u2 to get k shapes of u.
Let BBT(u1) denote the tree storing the list of shapes, s1, s2, . . . , sk of u1. Also assume that the widths
of s1, s2, . . . , sk are all greater than the width of t. To combine si’s and t, Stockmeyer’s algorithmwill
add the height of t to the heights of s1, s2, . . . , sk and take O(k) time. However, it takes only O(1)
time for Shi’s algorithm to add the height of t to the h+ field of the root of BBT(u1). Now BBT(u1)
becomes a shape tree for u. The h+ value will be propagated down and added to the height of a node
in BBT(u1) as soon as the corresponding shape is accessed in the future. As a result, repeated and
unnecessary updates can be avoided by postponing the propagation until future access happens.

We next explain how to construct the irredundant shapes for an internal node u of T with children
u1 and u2 and store them in a shape tree BBT(u). Assume the irredundant shapes of u1 and u2 have

(w ,h) = (2,6)
(w+,h+) = (0,2)

(w ,h) = (1,7)
(w+,h+) = (0,0)

(w ,h) = (3,4)
(w+,h+) = (1,0)

(w ,h) = (2,5)
(w+,h+) = (0,0)

(w ,h) = (4,2)
(w+,h+) = (0,1)

FIGURE 9.3 Balanced binary tree storing five shapes.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 167 24-9-2008 #8

Slicing Floorplans 167

been obtained and stored in the shape trees BBT(u1) and BBT(u2), respectively. Let the number
of shapes in BBT(u1) and BBT(u2) be m1 and m2. Without loss of generality, we assume m1 ≥ m2.
The shape tree BBT(u) is constructed in the following three steps. The first step is to find irredundant
shapes of u such that their widths are decided by u2, or by u1 and u2, and to store them in a list L for
later use. The second step is to find irredundant shapes of u such that their heights are decided by u1.
The last step is to insert the list L generated in the first step into the shape tree obtained in the second
step. The three steps are implemented by performing search, insertion, and deletion operations on
BBT(u1) in an efficient way such that BBT(u1) becomes the shape tree for u at the end.

9.4.1.1.3 Otten’s Algorithm
Recall from Section 9.2 that each point on the shape curve of a module denotes a possible shape
of the module. The shape curve of a module can be naturally generalized to a subfloorplan that
corresponds to an internal node of a slicing tree. Let u be an internal node of a given slicing tree
with children u1 and u2. Let C(u), C(u1), and C(u2) denote the shape curves of u, u1, and u2,
respectively. Let C(u1) + C(u2) be the shape curve obtained by adding C(u1) and C(u2) along the
y-direction; that is, C(u1) + C(u2) = {(x, y + y′)|(x, y) ∈ C(u1) and (x, y′) ∈ C(u2)} (Figure 9.4a).
Let C(u1)∗C(u2) be the shape curve obtained by adding C(u1) and C(u2) along the x-direction; that
is, C(u1)∗C(u2) = {(x + x′, y)|(x, y) ∈ C(u1) and (x′, y) ∈ C(u2)}. Otten in Ref. [5] observes that
if u corresponds to a horizontal cut, C(u) can be obtained from C(u1) + C(u2). On the other hand,
if u is a vertical cut, C(u) can be obtained from C(u1)∗C(u2). It is easy to see that C(u) produced
in either way is also a shape curve. Moreover, C(u) is piecewise linear if both C(u1) and C(u2) are
piecewise linear. The shape curves shown in Figure 9.2a and b (both are also called staircase shape
curves) and Figure 9.4b are all piecewise linear. Any piecewise linear shape curve can be completely
characterized by an ordered list of all its corners. (For example, {a}, {a, d} and {a, b, c, d, e} are the
ordered lists of corners of the curves shown in Figures 9.2a,b and 9.4b, respectively.) For piecewise
linear shape curves, Otten gives an efficient algorithm that computesC(u) by addingC(u1) andC(u2)
at the corners along a corresponding direction.

It should be pointed out although Stockmeyer’s algorithm originally only targets the set of
staircase shape curves (which is a subset of all piecewise linear curves), it is also directly applicable to
piecewise linear curves because it adopts the same idea as Otten’s algorithm (though both algorithms
were developed independently).

(b)(a)

X

Y

a

b

c

d
e

C(u1)

C (u2)

X

Y

C (u)

FIGURE 9.4 (a) Adding two shape curves along the y-direction. (b) Piecewise linear shape curve.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 168 24-9-2008 #9

168 Handbook of Algorithms for Physical Design Automation

9.4.1.2 Unoriented Slicing Tree

In Ref. [6], Zimmermann studies a variant of the area optimization problem in which no assumption
is made about the cut type of each internal node in a slicing tree. He presents an algorithm that
first computes the two shape curves for each internal node, one for a vertical cut and the other for
a horizontal cut. See Figure 9.5 for an illustration, where the shape curves in Figure 9.5c and d are
obtained by adding the two shape curves in Figure 9.5a and b along the y-direction (corresponding
to a horizontal cut) and the x-direction (corresponding to a vertical cut), respectively. Then the lower
bound of the two shape curves is chosen at each x coordinate to produce the final shape curve of this
internal node (see Figure 9.5e where the final shape curve is shown in boldface). In addition, each
segment of the final shape curve can be marked to represent the chosen cut type. This algorithm has
exponential-time complexity in the worst case even if the shape curve of each module is piecewise
linear, but has pseudopolynomial complexity when each module has integer dimensions.

9.4.2 AREA/POWER OPTIMIZATION

In Ref. [7], Chao and Wong study an optimization problem that considers both area and power.
For each possible shape of a module in the problem, a power consumption value is also given and
associated with the shape. Each possible shape together with its associated power consumption value
are called an implementation. Given a slicing tree, the problem asks to select an implementation for
each module based on the power and geometrical information such that both the area and the power
consumption of the resultant floorplan are optimized. The power consumption of a floorplan is
obtained by adding up the power consumption value of the selected implementation of each module.

(d) (e)

0 2 4 8 10 12 14 x6

y

0

2

4

6

8

10

0 2 4 8 10 12 14 x6

y

0

2

4

6

8

10

(a) (c)(b)

0
0 2 4 86 x

2

4

6

8

y

0 2 4 8 x6
0

2

4

6

8

y

0 2 4 8 10 x6

y

0

2

4

6

8

10

FIGURE 9.5 Illustration of Zimmerman’s algorithm. (a) and (b) are two shape curves, (c) the shape curve
obtained by adding the two shape curves in (a) and (b) along the y-direction, (d) the shape curve obtained by
adding the two shape curves in (a) and (b) along the x-direction, and (e) the shape curve (in boldface) obtained
by choosing the lower bound of the two shape curves in (c) and (d) at each x coordinate.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 169 24-9-2008 #10

Slicing Floorplans 169

Two versions of the optimization problem are considered. The first one is to minimize the floorplan
power consumption subject to a given upper bound on the floorplan area. Another one is to minimize
the floorplan area subject to a given upper bound on the floorplan power consumption. Both versions
can be solved by almost the same algorithm. The only difference is the criterion for selecting a best
implementation for the floorplan after the set of implementations is constructed for the floorplan.

Suppose each implementation of a module is denoted by a triple (w, h, e) where w, h, e repre-
sent the width, the height, and the power consumption value, respectively. Also assume that each
implementation is irredundant. (An implementation (w, h, e) is redundant if there is another imple-
mentation (w′, h′, e′) of the same module such that x ≥ x′, y ≥ y′, and e ≥ e′.) Let Q be the set of
possible implementations of a module, and {e1, e2, . . . , ek} be the set of distinct power consumption
values in Q. Q is first partitioned into k disjoint sets, Q1,Q2, . . . ,Qk such that each implementation
in Qi has the same power consumption value pi, 1 ≤ i ≤ k. The geometric information of the imple-
mentations in Qi is denoted by the set {(w, h)|(w, h, e) ∈ Qi}, which is assumed to be specified by
a piecewise linear shape curve Ci. The pair (pi,Ci) is called a power-indexed shape curve. Let C
and C′ denote two piecewise linear shape curves. Given two power-indexed shape curves (C, e) and
(C′, e′), (C, e)+ (C′, e′) ((C, e)∗(C′, e′), respectively) is defined to be the power-indexed shape curve
(C+C′, e+e′) ((C∗C′, e+e′), respectively). (Recall that bothC+C′ andC∗C′ can be efficiently com-
puted [3–5].) Let S = {(C1, e1), (C2, e2), . . . , (Cl, el)} and S′ = {(C′

1, e′
1), (C′

2, e′
2), . . . , (C′

k , e′
k)}

be two sets of power-indexed shape curves. We define S + S′ (S + S′, respectively) to be
{(Ci + C′

j, ei + e′
j)|1 ≤ i ≤ l, 1 ≤ j ≤ k} ({(Ci

∗C′
j, ei + e′

j)|1 ≤ i ≤ l, 1 ≤ j ≤ k}, respectively).
The algorithmconstructs a set of power-indexedshape curves for every internal node in a bottom-

up fashion. Let u be an internal node with children u1 and u2. Let S(u), S(u1), and S(u2) denote
the sets of power-indexed shape curves of u, u1, and u2, respectively. S(u) can be constructed by
S(u1)+S(u2) (if u is a horizontal cut) or S(u1)∗S(u2) (if u is a vertical cut). Besides, if there exist two
power-indexed shape curves in S(u) having the same power consumption value, they can be combined
into one by merging their shape curves. Once the set of power-indexed shape curves for the root,
say S = {(C1, e1), (C2, e2), . . . , (Cl, el)}, is computed, the area of every irredundant implementation
of the root can be calculated from a corner on each Ci. Among those implementations whose power
consumption (area, respectively) satisfies the given power (area, respectively) bound, the one with
minimum area (minimum power, respectively) is selected.

The algorithm has exponential-time complexity in the worst case, but if each implementa-
tion of any module has integer power consumption value and dimensions, the algorithm runs in
pseudopolynomial time.

9.5 CLASSICAL SLICING FLOORPLAN DESIGN

The slicing floorplan design problem in general can be solved by the following two typical
approaches. The first approach is to derive the final solution in two stages. It first determines a
slicing structure (or an initial floorplan) using wiring information amongmodules (and possibly area
informationofmodules), and then uses the geometric shape informationof themodules to solve some
optimization problems, for example, those introduced in the previous section, on the slicing structure
and to produce the final solution. The mincut-based methods [10,11] and the point-configuration
based methods [1,12] fall into this type of approach. Another approach to solve the floorplan design
problem is by simultaneously considering the interconnection information as well as the area and
shape information. This approach starts with an initial floorplan and iteratively improves solutions
by taking both interconnect and shape information into account until the convergence is reached or
the runtime exceeds. The simulated annealing based algorithm [2], which uses the set of normalized
Polish expressions as the solution space, belongs to this type of approach.

It will require more than a single chapter to review all existing methods for slicing floorplan
design. Therefore, our focus in this section is on introducing some classical methods, including
the mincut-based methods [10,11], the point-configuration based methods [1,12], and the simulated
annealing based method [2], which fall into the above-mentioned two types of approaches.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 170 24-9-2008 #11

170 Handbook of Algorithms for Physical Design Automation

9.5.1 MINCUT-BASED SLICING FLOORPLAN DESIGN

A typical mincut-based method is to first apply a mincut partitioning algorithm (e.g., [13–15]) to
generate a slicing structure (or an initial floorplan) and then use various optimization techniques
to generate the final solution. During the mincut partitioning process, the shape of each module is
ignored, and only its area is taken into account. This process is equivalent to a sequence of partitioning
steps each of which divides a set of modules into two subsets such that the number of nets connecting
modules from both subsets and the area difference between the two subsets are small. The partitioning
process terminates when each subset contains only one module. The algorithms in Refs. [10,11] are
classified as this type of approach, and are described below.

The mincut-based algorithm given in Ref. [10] assumes that the modules to be placed are all
hard modules, but can be rotated and reflected. Throughout the mincut partitioning process, the chip
layout is represented by a pair of dual graphs Gx = (Vx,Ex) and GY = (Vx,Ey). Each of Gx and Gy

is a planar, directed acyclic graph (DAG) containing one source and one sink, and may have parallel
edges. There is a one-to-onecorrespondencebetween the edges ofGx andGy, and each corresponding
pair of edges (ex, ey) represents a rectangle with width l(ex) and height l(ey), where l(e) denotes the
length associated with edge e. Besides, each pair of edges (ex, ey) also corresponds to a subset of
modules; the area l(ex) × l(ey) equals the total area of the modules in the subset. At the beginning,
both Gx and Gy contain one edge each, ex and ey, and this pair of edges corresponds to the set of all
modules. The chip layout covered by the modules is assumed to be square, and therefore both l(ex)
and l(ey) are set to be

√
A, where A is the total area of the modules. The set of all modules is then

partitioned into two subsets using a modified Kernighan–Lin algorithm [13,14] such that the number
of nets incident to modules in different subsets is as small as possible and the area difference in the
two subsets does not exceed a predefined value. This step also corresponds to a splitting of the edge
pair into two new edge pairs each of which represents one subset. The length of each edge in Gx is
adjusted according to the total module area of the corresponding subset. The partitioning procedure
is applied to both of the subsets, but the cut direction is changed and therefore the edge lengths in
Gy need adjusting afterward. The partitioning algorithm is applied recursively to the new subsets
until each subset contains one module. Now each edge pair of Gx and Gy corresponds to a module,
but the shape of the module is not correctly represented. To fix it, the lengths of each edge pair are
first replaced by the dimensions of the correspondingmodule, and then in both graphs a longest path
from the source to each node is calculated to get the position of the corresponding module.

It is clear that the mincut partitioning process induces a slicing floorplan due to the nature
of recursive mincut partitioning. To further reduce the area or wirelength of the floorplan, three
methods, rotation, squeezing, and reflecting, are applied. To rotate a module, the width and height
of the module are exchanged. The squeezing technique splits a node into two nodes and inserts
a zero-length edge pair. The reflection technique flips a module with respect to the x- or y-axis.
Reflection of a module only influences the wirelength. Note that squeezing causes local changes in
a graph, and therefore may destroy the slicing structure.

In contrast to the above-mentioned algorithm, another mincut partitioning based method, called
Mason [11] allows each module to have a number of possible shapes (i.e., soft module), and uses
a slicing tree (instead of a pair of dual graphs) to represent the partitioning hierarchy. At each
partitioning step, an in-place partitioning scheme is applied together with a combined exhaustive
and heuristic partitioning method. The idea behind in-place partitioning is to perform partitioning
by taking external connections into account, resulting in a better global positioning of modules.
The exhaustive partitioning procedure enumerates all possible solutions to find the optimal solution.
On the other hand, the heuristic partitioning method adopts the Fiduccia–Mattheyses method [15].
Whether the exhaustive or heuristic method is used for a partitioning step is based on the number of
modules to be partitioned. Once the slicing tree is constructed, the dimensions and position of each
module are determined by an area optimization method similar to those in Refs. [3–5].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 171 24-9-2008 #12

Slicing Floorplans 171

9.5.2 POINT-CONFIGURATION BASED SLICING FLOORPLAN DESIGN

The point-configuration based approach treats each module as a point by ignoring the area of the
module. It is based on using the interconnection information as the only measure of the mutual
proximity between modules, and uses a mathematical method involving matrix manipulation to
position the modules as points in the plane. From this point configuration, a slicing structure is
constructed by taking module areas and shapes into consideration. Finally, various optimization
procedures are applied to produce the positions and orientations (or dimensions) of the modules
realizing the final floorplan under a cost measure. The algorithms in Refs. [1,12] are classified as
this type of approach, and are introduced below.

The algorithm in Ref. [12] combines the advantages of force-directed placement and mincut
algorithm. A force-directed placement algorithm solves a system of differential equations that con-
siders interconnection information. It is fast in calculating a point configuration, but modules may
overlap in the solution because it ignores the size and shape information of the modules. On the other
hand, a mincut algorithm can effectively consider module areas during the partitioning process, but
due to its sequential nature, the partitioning result depends on the starting solution and the amount
of nets cut is minimized only locally. Therefore, the algorithm in Ref. [12] uses a modified Newton–
Raphson method [16] to calculate a point configuration, and a cut algorithm to calculate a slicing
floorplan based on the point configuration as well as the shapes of the modules. In fact, the cut
algorithm does not need a partitioning algorithm like the ones in Refs. [13–15]; instead it uses the
point configuration produced by the force-directed algorithm. Each cutline (which carries the posi-
tion information on the fixed-area chip and thus geometrically separates modules into two parts) is
determined with respect to the constraints such as the sizes and shapes of the modules, the number
of modules per subset, and the minimization of critical signal nets. The cut algorithm terminates
when each subset (corresponding to a basic rectangle on the chip plane) contains only one module.
A slicing structure is implied by the cut algorithm, but due to the shape mismatches between basic
rectangles and modules, modules may overlap. To eliminate module overlaps, modules are moved
and rotated by taking module shapes into consideration.

Another point-configuration based algorithm is given in Ref. [1]. To get a point configuration,
the algorithm in Ref. [1] first defines a dutchmetricDwhich is an n×nmatrixwith each off-diagonal
element dij being 1− cij, and each diagonal element being 0, where cij = �{wk |pik=1 and pjk=1}

�{wk |pik=1 or pjk=1} . Note that

wk is the weight given for net k (the higher the weight of a net, the closer the modules connected by
the net should be), and pik = 1 if module i is connected to net k, otherwise pik = 0. With the matrix
D, the Schoenberg matrix −(1/2)ZDZ is formed and the partial eigensolution containing the two
largest eigenvalues are obtained, where Z , I , J are n×nmatrices, Z = J− (1/n)I , I has all elements
being 1, and J has each diagonal element being 1 and the other elements being 0. The corresponding
two-dimensional point configuration of the modules is now specified by the two eigenvectors. Next,
using the informationonmodule areas and assuming that all modules are flexible, but their shapes are
close to square, a slicing structure is constructed based on deformation calculation. The consequence
of this construction is that modules with points relatively far from each other are separated after
a few cutlines while modules with points at a relatively short distance are together in many nested
cutlines. Moreover, the relative positions of the modules in the slicing structure will closely resemble
those of the corresponding points in the Schoenberg construction. Finally, the wiring space in the
structure can be estimated and translated into a set of constraints for an optimization procedure to
produce the position and orientation of each module that realizes the best final floorplan subject to
these constraints.

9.5.3 SIMULATED ANNEALING BASED SLICING FLOORPLAN DESIGN

Wong and Liu in Ref. [2] present a slicing floorplan design algorithm that simultaneously minimizes
the chip area and the total wirelength. Their algorithm is referred to as the Wong–Liu algorithm

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 172 24-9-2008 #13

172 Handbook of Algorithms for Physical Design Automation

1

2
3

45

54V3H2V1H
M1 M2M3

54V2H3V1H 54V23HV1H 54H23HV1H

1

3
2

45

1

2

3

1

2

3

4
4

5
5

FIGURE 9.6 Illustration of three types of moves.

in the rest of this chapter. It employs the technique of simulated annealing [17], and uses the set
of normalized Polish expressions as the solution space to avoid an unnecessarily large number
of states and thus enables the speedup of the search procedure significantly. The following three
types of moves, M1, M2, and M3, are used to modify a normalized Polish expression to get a
neighboring one.

M1: Swap two adjacent modules. (Two modules are adjacent iff there is no other module
between them in the expression.)
M2: Complement a chain of cuts. (A chain of cuts is a sequence of consecutive elements in
the expression such that each element is a cut [i.e., V or H]. V and H are complements of
each other.)
M3: Swap adjacent module and cut. (A module and a cut are adjacent iff they are consecutive
elements in the expression.)

It is clear that M1 andM2 each always produce a normalized Polish expression.M3, however, might
not produce a normalized Polish expression. To generate an M3 move, a pair of adjacent module
and cut is repeatedly chosen until swapping them will lead to a normalized Polish expression. It is
claimed that the three types of moves are sufficient to ensure that any normalized Polish expression
can be reached from any other via a finite number of moves. Figure 9.6 gives a demonstration of the
three types of moves.

Each normalized Polish expression generated in the annealing process will be evaluated as
follows. Let Tf denote the corresponding slicing structure for a normalized Polish expression f . The
areaA and the totalwirelengthW of f are defined to be the area and the totalwirelength of aminimum-
area floorplan of Tf . The cost function for measuring the quality of a normalized Polish expression
is A + λW , where λ is a user-specified constant to control the relative importance of A and W .
The minimum-area floorplan can be computed efficiently by the slicing floorplan area optimization
algorithms [3–5]. In fact, it is observed that the calculation of a minimum-area floorplan can be done
in an incremental manner because the calculation only needs to be performed on tree nodes that are
changed after a move of type M1, M2, or M3.

9.6 SLICING FLOORPLAN DESIGN CONSIDERING PLACEMENT
CONSTRAINTS

In floorplan design, it is useful if a designer is allowed to specify some placement constraints
to be satisfied in the final floorplan. Typical placement constraints that have been addressed for
slicing floorplans are boundary constraints [18–20], range constraints [21], abutment constraints [22],
and clustering constraints [23]. In this section, we describe each type of placement constraint, and
highlight existing techniques to handle it during floorplan design. As a matter of fact, most of the
techniques are extensions of the Wong–Liu algorithm [2].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 173 24-9-2008 #14

Slicing Floorplans 173

9.6.1 BOUNDARY CONSTRAINTS

Aboundary constraint forces somemodules to be positioned along one of the four sides of a floorplan.
It is particularly usefulwhen a designerwants to place somemodules along the boundaries for shorter
input–output connections. Besides, floorplan design is usually done in a hierarchicalmanner in which
modules are grouped into different units and the floorplan of each unit is independently determined.
For this case, it helps if some modules are constrained to be placed along a boundary of the unit so
that they are closer to other modules in neighboring units.

Boundary constraints can be specified as follows. The set of all modules is divided into five
disjoint module sets MF,ML,MR,MT,MB. Each module in MF is a free module that can be placed
anywhere in a floorplan. On the other hand, each module in ML (MR,MT,MB, respectively) is a
boundary-constrainedmodule with the left (right, top, bottom, respectively) boundary constraint and
has to be placed along the left (right, top, bottom, respectively) boundary of the floorplan. Note that
ML (MR,MT,MB, respectively)may be an empty set if no module must be placed along the left (right,
top, bottom, respectively) boundary. For example, for the two slicing floorplans shown in Figure 9.7a
and b, if module 2 is constrained to be placed along the left boundary, then the one in Figure 9.7a is
infeasible while the one in Figure 9.7b is feasible.

A result on the boundary-constrainedproblem is reported by Young andWong in Ref. [18]. They
enhance theWong–Liu algorithm [2] to handle boundary constraints. Their main idea is to check the
normalized Polish expression in each iteration of the simulated annealing process to see whether the
given boundary constraints are satisfied. Then their algorithm fixes the violated constraints (if any)
as much as possible, and includes a term in the cost function to penalize the remaining violations.

A linear-time method is used to find the boundary information for each module in a normalized
Polish expression. The boundary information of a module tells whether there are modules on the left
of, on the right of, above, and below the module. Because a Polish expression or a slicing tree has
the relative position information amongmodules (e.g., the Polish expression ijH means that module
i is below module j, while the expression ijV means that module i is on the left of module j), the
following facts can be observed. If module imust be placed on the right (left, respectively) boundary
of the final floorplan, i cannot be in the left (right, respectively) subtree of any internal node labeled
with V . On the other hand, if module i must be placed at the top (bottom, respectively) boundary of
the final floorplan, i cannot be in the left (right, respectively) subtree of any internal node labeled
with H. On the basis of these facts, the boundary information of each module can be obtained by
scanning the Polish expression once from right to left and by using a stack.

Once the boundary information is known, all the modules violating their boundary constraints
can be determined, and the algorithm fixes as many violations as possible by shuffling the modules.
If module i is not placed along the required boundary, it will be shuffled with another module j
which is closest to i in the Polish expression and is placed at a position satisfying the boundary
constraint of i. This fixing procedure takes O(mn) for each expression, where m is the number of
constrained modules and n is the total number of modules. If there are still some constraints that
cannot be satisfied after all possible shufflings, a penalty term is included in the cost function. The

(a) (b)

1

4
3

21
3 2

4

FIGURE 9.7 Illustration of infeasible and feasible floorplans with a boundary constraint. (a) An infeasible
floorplan where module 2 cannot be placed along the left boundary and (b) a feasible floorplan where module
2 can be placed along the left boundary.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 174 24-9-2008 #15

174 Handbook of Algorithms for Physical Design Automation

(a) (b) (c) (d)

A B

V
A

(R) (L)
B

A B

BH

(R)

(L)
A B A

B
(L) (R)

A
V A

(L)

(R)

BB A

H

FIGURE 9.8 Examples of feasible and infeasible topologies. (a) A floorplan having an infeasible topology,
(b) a floorplan having a feasible topology, obtained by performing an O1 operation on the root of the tree in (a),
(c) a floorplan having a feasible topology, obtained by performing an O2 operation on the root of the tree in (a),
and (d) a floorplan having a feasible topology, obtained by performing an O3 operation on the root of the tree
in (a).

penalty term is measured by the total distance of the modules from the boundaries of the floorplan
along which they are required to be placed.

Because the above-mentionedalgorithm [18] also adopts the same set of moves as theWong–Liu
algorithm (i.e., M1, M2, and M3 described in Section 9.5.3) to generate a neighboring normalized
Polish expression, it is very likely that only a subset ofmodules has changed the boundary information
in the new normalized Polish expression, and therefore only the boundary information for those
modules needs to be recomputed. On the basis of this observation, three speedup methods capable
of performing incremental calculation of boundary information are given in Ref. [19].

A drawback with the algorithm in Ref. [18] is that the shuffling method may not always resolve
all constraint violations even though a penalty term is added to the cost function to account for those
violations. This has been empirically confirmed in Ref. [20], implying that the algorithm in Ref. [18]
cannot guarantee that a floorplan satisfying all given boundary constraints is always obtainable unless
the annealing process is long enough. To cope with this difficulty, Liu et al. developed a quadratic-
time method that transforms a normalized Polish expression with constraint violations into another
one with all violations eliminated [20]. The main idea is to examine each internal node of a slicing
tree (constructed from a normalized Polish expression) in a bottom-up fashion and determine if the
node has a feasible topology or not. (An internal node has a feasible topology if it is feasible to place
each boundary-constrainedmodule along the required boundary in its corresponding subfloorplan.)
If the node has an infeasible topology, the tree will be modified such that the node ends up with
a feasible topology. Three operations, O1,O2, and O3, are given to perform modifications. An O1

operation changes the cut direction of a node, an O2 operation swaps the left and the right subtrees
of a node, and an O3 operation performs an O1 operation followed by an O2 operation. For example,
suppose subfloorplan A contains modules having the right boundary constraint (denoted by R),
subfloorplanB contains modules having the left boundary constraint (denoted by L), and both A and
B have feasible topologies. Figure 9.8a produces a floorplan having an infeasible topology, but the
floorplans in Figure 9.8b through d all have feasible topologies. It is clear that Figure 9.8b through d
can be transformed from Figure 9.8a by performing an O2, an O1, and an O3 operation on the root,
respectively. Although in most cases the three basic operations can transform nodes into ones having
feasible topologies, there are also some cases where they fail. Besides, even if an internal node has
a feasible topology, the tree needs to be modified as well for some cases to ensure that the root has a
feasible topology later on. To handle these difficult cases, additional transformation operations are
provided [20].

9.6.2 RANGE CONSTRAINTS

A range constraint forces a module to be placed within a given rectangular region in the final
floorplan. It is less restrictive than a preplaced constraint, which requires a module to be placed at a
fixed position in the final floorplan.* In fact, the range constraint problem is a more general problem
because any preplaced constraint for a module can be written as a range constraint by specifying

* Note that the problem of floorplan design with obstacles can be solved by treating the obstacles as preplaced modules.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 175 24-9-2008 #16

Slicing Floorplans 175

(a) (b)0 1

1

1

2
2

3

3

4

4

5
5 6

2 3 4 5 6

Y

X

0

Ah

Y

X

w

x1

y1

x1+ w

y1+ h

y2�h

y2

x2�w x2

right(A) = x1+ w

left(A) = x2�w

top(A) = y1+ h

bottom(A) = y2�h

FIGURE 9.9 (a) Preplaced and range constraints. (b) Range constraint representation.

the rectangular region whose dimensions are the same as those of the module. Figure 9.9a gives
an example where module 1 with a preplaced constraint must be placed with its lower left corner
at (3, 2) and module 2 with a range constraint must be placed within the dotted-line region. The
floorplan shown in Figure 9.9a satisfies both constraints.

The preplaced constraint problem for slicing floorplans is considered in Ref. [24] which extends
the Wong–Liu algorithm [2] by using the notion of reference point to construct shape curves in the
presence of preplaced constraints. Young and Wong also present a slicing floorplanner with range
constraints in Ref. [21], and empirically observe that when their floorplanner is specified to handle
preplaced constraints, it outperforms the one in Ref. [24]. Therefore in this subsection we only
introduce the algorithm in Ref. [21].

In the range constraint problem, two sets of modules, MF and MRange, are given, where each
module in MF does not have any placement constraint and each module in MRange is a hard module
and has a specified range constraint. The algorithm in Ref. [21] extends theWong–Liu algorithm [2]
to handle range constraints. The main contribution is a novel shape curve computation, which takes
range constraints into consideration. When vertically or horizontally combining two modules, if at
least one of them has a range constraint, the resultant subfloorplan will also have a range constraint.
Therefore, the range constraint information will be propagated upward from the leaves to the root
during the bottom-up shape curve construction process, and both the dimensional information, that
is, the height and the width, and the range constraint information, need to be kept.

Let A be a subfloorplan (containing one or more modules) with a range constraint, the following
four variables are used to represent the constraint:

• Top(A): Shortest distance of the upper boundary of A from the x-axis
• Bottom(A): Longest distance of the lower boundary of A from the x-axis
• Right(A): Shortest distance of the right boundary of A from the y-axis
• Left(A): Longest distance of the left boundary of A from the y-axis

We use Figure 9.9b to explain the four variables. In Figure 9.9b, A has width w and height h, and it
is constrained to be placed inside the rectangle {(x, y)|x1 ≤ x ≤ x2, y1 ≤ y ≤ y2}. Then top(A) =
y1 + h, bottom(A) = y2 − h, right(A) = x1 + w, and left(A) = x2 − w. With a range constraint
represented in such a manner, the traditional shape curve construction methods [3–5] are enhanced
to compute the range constraint and dimensional information of a subfloorplan X from those of its
two children subfloorplans A and B. In addition, if a normalized Polish expression does not satisfy
all range constraints, the algorithm adds into the cost function a penalty term, which is measured by
the total distance of the modules having range constraints from their desired regions.

9.6.3 ABUTMENT CONSTRAINTS

In foorplan design, a designer may want to have some modules abut one another to favor the trans-
mission of data among those modules. This abutment problem is common in practice, but few

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 176 24-9-2008 #17

176 Handbook of Algorithms for Physical Design Automation

hi i j

wi

wj

hj

FIGURE 9.10 Horizontal abutment.

floorplanning algorithms can handle it. In this subsection, we describe a solution [22] to this prob-
lem for slicing floorplans. Although the floorplanning algorithm given in Ref. [22] is capable of
handling L-shaped and T-shaped modules as well, a discussion of this is beyond the scope of this
chapter.

Twomodules i and j are said to abut horizontally (Figure9.10), denoted byHabut(i, j), iff a vertical
boundary Li of module i and a vertical boundary Lj of module j abut such that Li is immediately on
the left of Lj and the abutment length is min{l(Li), l(Lj)}, where l(Li) is the length of Li and l(Lj)
is the length of Lj. The vertical abutment constraint Vabut(i, j) can be defined similarly. Abutment
constraints can be also generalized to involve more than two modules.

The algorithm extends the Wong–Liu algorithm [2] to handle abutment constraints. In each step
of the simulated annealing process, through the use of a stack, a normalized Polish expression is
scanned once to find the top, bottom, left, and right neighbors of every module. These topological
relationships are independent of the dimensions of the modules, and can be derived based on the
following observation. Let L[X],R[X], T [X], and B[X] denote the set of modules lying along the left
boundary, right boundary, top boundary, and bottom boundary of a subfloorplanX . Consider putting
X to the left of Y to get a new subfloorplan. If both R[X] and L[Y] have more than one module, the
top module in R[X] will abut horizontally with the top module in L[Y] and the bottom module in
R[X] will abut horizontally with the bottom module in L[Y]. On the other hand, if either R[X] or
L[Y] has only one module, every module in R[X] will abut horizontally with every module in L[Y].
The vertical neighborhood relationship can be observed similarly.

Once the neighbors of each module are known, each abutment constraint can be checked. If
the normalized Polish expression does not satisfy all abutment constraints, the algorithm will swap
modules to satisfy the abutment constraints as much as possible.When a vertical abutment constraint
for modules i and j, Vabut(i, j), is violated, the algorithm will first try to move j to the top of i by
swapping j with the closest top neighbor of i in the Polish expression. If it fails, for example, all the
top neighbors of i are fixed in their positions, the algorithm will try to move i to the bottom of j by
swapping i with the closest bottom neighbor of j. The fixing procedure for a horizontal abutment
constraint is defined similarly. It is likely that some constraints are still violated after all the possible
swappings, and therefore a penalty term is added in the cost function to penalize those violations.

Scanning a Polish expression once to find the neighbors of every module takes O(n) time, and
swapping modules to fix violated abutment constraints takes O(mn) time, where n is total number
of modules and m is the total number of abutment constraints.

9.6.4 CLUSTERING CONSTRAINTS

A clustering constraint is to enforce some modules to be placed geometrically adjacent to each other
in the final floorplan. By imposing the clustering constraint on modules that are heavily connected,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 177 24-9-2008 #18

Slicing Floorplans 177

1

2 6

8 10

119

7

5

3
4

FIGURE 9.11 Feasible floorplan having three modules involved in a clustering constraint.

the routing cost among those modules can be reduced. In this subsection, we describe a recent work
on slicing floorplan design considering clustering constraints [23].

A clustering constraint can be specified by a subset of modules such that all the modules in this
subset are geometrically adjacent to each other in the final floorplan. Figure 9.11 shows an example
of the clustering constraint, where modules 4, 5, and 8 are the modules to be clustered and they
are placed adjacent to each other in the feasible floorplan as shown. In Ref. [23], an extension of
the Wong–Liu algorithm [2] is presented to handle the clustering constraint problem. The extension
includes a linear-time method to locate neighbors of a module from a normalized Polish expression
and a method to swap the modules to satisfy the given clustering constraint. In each iteration of
the annealing process, these two methods are used to transform a normalized Polish expression into
another one that satisfies the given cluster constraint. A term measured by the sum of the center-to-
center distances between the modules with the same cluster constraint is added to the cost function
such that those modules can be placed more closely.

9.7 OTHER ADVANCES IN SLICING FLOORPLANS

We next address two important advances, one in the theoretical study on area-optimal slicing
floorplans [25], and the other in the completeness of the slicing tree representation for general floor-
plans [26]. We then describe the respective algorithms [27,28] that make modern heterogeneous
FPGAs and 3D ICs realizable in slicing floorplans.

9.7.1 THEORETICAL RESULTS FOR AREA-OPTIMAL SLICING FLOORPLANS

One possible concern about slicing floorplans is that even the slicing floorplan with optimal area
may still be not good at packing modules tightly as a nonslicing one, and hence may introduce a
larger chip area. Although, there is empirical evidence showing that comparable slicing floorplan
results can be obtained using much less runtime [18], it is important to have a mathematical analysis
to guarantee their performance.

In Ref. [25], the following area-optimal slicing floorplan design problem is addressed. Given
n soft modules each with the same shape flexibility r(≥1), what is the minimum area among all
possible slicing floorplans? Note that a module is said to have shape flexibility r iff the module
can be represented by any rectangle with the same area as long as the aspect ratio of the rectangle
is between 1/r and r. It is proved that if r ≥ 2, then there exists a slicing floorplan F such that
area(F) ≤ min{1+ (1/	√r
), 5/4, (1+ θ)}Atotal, where Atotal is the total area of all the modules, Amax

is the maximummodule area, and θ = √
2Amax/(rAtotal). The shape of such a slicing floorplan closely

resembles a square. The first term in the upper bound, that is, (1 + (1/	√r
)Atotal, favors larger r;
for example, if r = 25, the first term is 1.2Atotal. The second term gives a better bound than the first
one if r ≤ 16. The third term considers the ratios of the module areas and gives a good bound when
all the module areas are small as compared with the total module area; for example, if r = 2 and

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 178 24-9-2008 #19

178 Handbook of Algorithms for Physical Design Automation

Amax = Atotal/100, the third term is 1.1Atotal. In fact, the experimental results reported in Ref. [25]
show that by applying theWong–Liu slicing floorplanner [2] to more than 20 test cases eachwith 100
soft modules of shape flexibility 2, slicing floorplans with areas smaller than the above-mentioned
mathematical bound can be produced.

To get each term in the upper bound, a slicing floorplan is constructed such that its area will
meet the bound. Each construction uses a different method to classify modules into groups based
on module areas, and modules in different groups are represented by rectangles of different widths
(while modules in the same group have the same width). Then modules are placed one at a time from
the one with largest area to the one with smallest area by putting a module on the lowest possible
level and moving it to the leftmost position on that level.

In addition, when r is slightly less than 2, that is, r = 2 − ε with ε being a small positive
number, it can be also proved that there exists a slicing floorplan whose area is upper bounded by
min{(5/4)[1+ (ε/2)], [1+ θ + (ε/2)]}Atotal.

9.7.2 COMPLETENESS OF SLICING TREE REPRESENTATION

Although it can bemathematically proved that a slicing floorplan capable of packingmodules closely
is achievable, there are constraints (e.g., the same shape flexibility for modules) that must be satisfied
beforehand. On the other hand, it is still commonly believed that an area-optimal slicing floorplan
may still suffer from a poor utilization of space when all modules are hard. For this reason, many
efforts have been devoted for creating nonslicing floorplan representations. These representations are
effective and efficient for handling hard modules, but many of them are still unable to fully exploit
the shape flexibility of soft modules.

InRef. [26], it is proved thatwhen augmentedwith a simple compaction procedure, the slicing tree
representation can generate all maximally compact placements of modules. (Note that no module
in a maximally compact placement (or called admissible placement in Ref. [29]) can be moved
horizontally to the left or vertically downward without moving any other modules.) As a result,
slicing tree is a complete representation of both slicing and nonslicing floorplans. We now describe
the idea behind the proof.

Given a slicing tree, its corresponding slicing placement is defined tobe the area-optimal floorplan
such that no vertical cutlines can bemoved to the left, no horizontal cutlines can bemoved downward,
and each module is placed in the lower left corner of a basic rectangle. For example, Figure 9.12f
shows a slicing placement of the slicing tree in Figure 9.12d.

A horizontal adjacency graphG = (V ,E) can be constructed from a placement of modules. The
set V of vertices corresponds to the set of modules. There is an edge (u, v) in the edge set E iff the
left boundary of v is immediately adjacent to the right boundary of u. It is clear that G is a DAG. A
vertex u in G is said to be a left-boundary vertex iff u is a module placed along the left boundary of
the placement. Clearly all left-boundary vertices have in-degree 0. In general the converse may not
be true, but it is true for maximally compact placements. Another key fact is that for a maximally
compact placement, all vertices in G are connected to the set of left-boundary vertices.

Given any maximally compact placement P, let GP be the horizontal adjacency graph of P, and
B = {b1, b2, . . . , bk} be the set of left-boundary vertices in G. Because every vertex in G is reachable
from at least one vertex in B, a spanning forest Q = {T1, T2, . . . , Tk} of G can be found, where Ti is
a tree rooted at bi, i = 1, 2, . . . , k. For example, Figure 9.12a gives a maximally compact placement
of nine modules and Figure 9.12b shows the horizontal adjacency graph, where vertices 7, 4, 1 are
left-boundary vertices. Figure 9.12c shows a spanning forest containing three trees rooted at 7, 4, 1,
respectively.

Now for the trees rooted at b1, b2, . . . , bk, k − 1 horizontal cutlines dividing a floorplan into k
parts are constructed. For each tree, the transformations shown in Figure 9.13 are then recursively
applied to its child subtrees to further expand the slicing structure. Figure 9.12d and e show the final
slicing tree and floorplan. From the slicing floorplan, the corresponding slicing placement P′ can

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 179 24-9-2008 #20

Slicing Floorplans 179

(a) (b) (c)

1 2
3

6
54

7 8
9

1
2 3

6

5
4

7

8

9

1

4

7

2 3

65

8
9

(d) (e) (f)

2

3

6

54

7

1

8 9

2
3

6

54

7

1

8
9

H

H

H

V

V V V

V

1

2 4 5 7

3 6 8 9

FIGURE 9.12 Generating a slicingplacement fromamaximally compact placement. (a)Amaximally compact
placement of 9 modules, (b) the horizontal adjacency graph of (a), (c) a spanning foust of (b), (d) the slicing
tree derived from (c), (e) the slicing floorplan derived from (c), and (f) the slicing placement derived from (d)
(or (e)).

be constructed (Figure 9.12f). Because the positions of the modules in the x-direction in P′ are the
same as those in P, performing a compaction along y-direction, which moves modules downward as
far as possible, transforms P′ into P. This concludes that slicing tree is a complete representation of
floorplans in the sense that by an augmenting compaction step, all maximally compact placements
can be produced as well.

9.7.3 HETEROGENEOUS FPGA FLOORPLANNING

Modern FPGAs can accommodate multimillion gates and their future generations will be even more
complex. As a result, a hierarchical approach based upon partitioning and floorplanning becomes
necessary to successfully realize a design on an FPGA. Owing to the heterogeneous logic and rout-
ing resources on a modern FPGA, FPGA floorplanning is very different from floorplanning for
application-specific integrated circuits (ASICs). Although there are also some previous works, for

Z

(a) (b) (c)

Z
Z

Z

Z

Z

TT

T2

T2

T1 T1

Tm
Tm

FIGURE 9.13 Three types of transformations for expanding a slicing structure. (a) Type 1 transformation,
applied when Z has no child, (b) Type 2 transformation, applied when Z has only one child, and (c) Type 3
transformation, applied when Z has two or more children.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 180 24-9-2008 #21

180 Handbook of Algorithms for Physical Design Automation

CLB RAM Multiplier
(a) (b) (c)

1 2
3

4 5

6
HH

V

VV

1 2

3

4 5

6

FIGURE 9.14 (a) Slicing floorplan. (b) Slicing tree. (c) Pattern.

example, Ref. [30], on FPGA floorplanning, they all target at older generations of FPGAs consisting
of configurable logic blocks (CLBs) only. In this subsection, we consider modern heterogeneous
FPGA chips that consist of columns of CLBs, with column pairs of RAMs and multipliers inter-
leaved between them (Figure 9.14a). The Xilinx Spartan3 family and Vertex-II family conform to
this architecture [31]. For such an FPGA architecture, the first slicing floorplan design algorithm
is given in Ref. [27]. The algorithm uses slicing trees to represent floorplans during a simulated
annealing process similar to Ref. [2], but it nontrivially extends the slicing floorplan area optimiza-
tion algorithms [3,5] to find the optimal realization for each slicing tree. The main idea behind this
extension is explained below.

Assume that a set of modules is given, where each module has an associated resource require-
ment vector ϕ = (m1,m2,m3), indicating that this module requires m1 CLBs, m2 RAMs, and m3

multipliers. The FPGA floorplanning problem is to place modules on the chip such that each region
assigned to a module satisfies the resource requirements of the module, regions for different mod-
ules do not overlap, and a given cost function is optimized. For example, if there are six modules,
and their resource requirement vectors are ϕ1 = (12, 2, 1), ϕ2 = (30, 4, 4), ϕ3 = (15, 1, 1), ϕ4 =
(24, 4, 4), ϕ5 = (18, 2, 2), and ϕ6 = (30, 2, 2), then Figure 9.14a is a feasible slicing floorplan for
these modules (see Figure 9.14b for the corresponding slicing tree). For easier illustration, a coordi-
nate system is adopted on the chip. In Figure 9.14a the horizontal unit is the width of a CLB, and the
vertical unit is the height of a CLB. The lower left CLB has coordinate (0, 0), the lower left RAM
occupies coordinates (1, 0) through (1, 2), and the lower left multiplier occupies coordinates (2, 0)
through (2, 2). Let H andW be the height and the width of the chip, respectively.

Any rectangular region r in the chip is denoted by a four-tuple (x, y,w, h), where (x, y), w, and
h are the lower left coordinate, the width, and the height of r, respectively. The x(r), y(r), w(r),
and h(r) each denote a corresponding field of r. Let Ri denote the set of rectangular regions in the
chip that satisfy the resource requirements of module i. Each region in Ri is said to be a realization
of module i because it is feasible to place module i in that region. A realization r1 in Ri is redundant
if there is another realization r2 in Ri such that both realizations have the same lower left coordinate
(i.e., r1(x) = r2(x), r1(y) = r2(y)) and r2 is not larger than r1 in both dimensions (i.e., r2(w) ≤ r1(w)

and r2(h) ≤ r1(h)). Clearly all redundant realizations can be discarded. Let L(i, x, y) denote the
irreducible realization list (IRL) for module i starting at coordinate (x, y) and it contains all the
irredundant realizations in Ri with (x, y) being their lower left coordinate. Therefore, all irredundant
realizations of a module are organized into different IRLs for different starting coordinates. Each
IRL is sorted in the decreasing height order, and hence it is also sorted in the increasing width order.

The definition of an IRL can be extended to the nodes in a slicing tree. Given two
rectangles r1 and r2, the bounding rectangle of r1 and r2 is a rectangle r with r(x)=
min{r1(x), r2(x)}, r(y)=min{r1(y), r2(y)}, r(w)=max{r1(w) + r1(x), r2(w) + r2(x)} − r(x), and

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 181 24-9-2008 #22

Slicing Floorplans 181

r(h)=max{r1(h)+r1(y), r2(h)+r2(y)}−r(y). Given a tree node u, if u represents module i, Ru = Ri.
On the other hand, if u is an internal node, let u1, u2 be the left and the right children of u. If u is a
vertical cut (a horizontal cut, respectively), Ru consists of all bounding rectangles of r1 in Ru1 and
r2 in Ru2 , where r1 is to the left side of (below, respectivly) r2. The IRL for a tree node u starting
at coordinate (x, y) is defined as L(u, x, y) = {r|r is irredundant in Ru, x(r) = x, and y(r) = y}.
Therefore, the set of all irredundant realizations of a tree node is also organized into different IRLs
for different starting coordinates.

Given a slicing tree, the IRLs of each node are calculated from leaves to the root. Obviously, the
IRLs of eachmodule only need to be calculated once, right at the beginning of the simulated annealing
process. Suppose u is the internal node under consideration, and is a vertical cut. Let u1, u2 be the left
and the right children of u. Assume L(u1, x, y) = {r1, r2, . . . , rk} is sorted as expected. It can be shown
that it is enough to combine every realization ri in L(u1, x, y) with realizations in L(u2, x + w(ri), y)
to generate L(u, x, y). Moreover, when combining ri with realizations in L(u2, x+ w(ri), y), we may
not need to consider all combinations. For those realizations in L(u2, x + w(ri), y) with heights not
larger than h(ri), we only need to consider the highest one to get a minimum width. We also do not
need to combine ri with a realization r′ in L(u2, x + w(ri), y) if h(r′) ≥ h(ri−1). The procedure to
construct L(u, x, y) can be derived similarly when u is a horizontal cut. It takes O(l log l) time to
construct L(u, x, y), where l = max{H,W}.

The above-mentionedmethod, however, should not be implemented directly on the chip, because
finding IRLs for every coordinate makes the space complexity formidable. Fortunately, a real FPGA
chip is very regular with repetitions of a basic pattern. Consider the example chip in Figure 9.14a
whose basic pattern is shown in Figure 9.14c. It turns out that this repetition property can be utilized
such that only computation on the pattern instead of the whole chip needs to be done. As a result,
evaluating a slicing tree takes O(nml log l) time and needs O(nlm) memory space, where n is the
number of modules and m is the number of points on the pattern.

9.7.4 3D FLOORPLANNING

Complementary metal oxide semiconductor (CMOS) technology has continuously scaled into
nanometer regime, and it has become more difficult to improve the chip performance by just size
shrinking in a planar wafer. 3D ICs is a promising technology to keep the speed of an IC advanc-
ing. 3D ICs provide significant performance benefits over two-dimensional integrated circuits (2D
ICs) mainly by reducing the interconnect lengths and introducing new geometrical arrangement of
modules [32]. To improve the performance, circuit modules will not be confined in only one layer in
3D ICs. This produces a problem for current 2D floorplanning tools. As a result, 3D floorplanning
algorithms are required for 3D IC design.

A 3D slicing floorplan design problem is addressed in Ref. [28]. This problem is formulated as
that of placing a given set of 3D rectangular moduleswithout overlappingwhile a given cost function
is optimized. Assuming each 3D module is a hard module but with free rotation, an algorithm for
solving the 3D slicing floorplan design problem is reported in Ref. [28], which generalizes slicing
trees to represent different 3D floorplans, and uses simulated annealing to search for a good slicing
floorplan. The main idea of the algorithm is highlighted below.

A 3D slicing floorplan can be obtained by cutting a 3D block by 2D planes (which are perpen-
dicular to the x-, y-, or z-axis) into a set of 3D subblocks such that each 3D subblock is large enough
to accommodate the 3D module assigned to it (Figure 9.15a). Slicing trees can be generalized to
represent 3D slicing floorplans such that each internal node of a slicing tree is now labeled by X , Y ,
or Z . The label X (Y , Z , respectively) means that the corresponding subfloorplan is cut by a plane
that is perpendicular to the x-axis (y-axis, z-axis, respectively). Figure 9.15b gives a slicing tree to
represent the 3D floorplan shown in Figure 9.15a.

Because a slicing tree is a full binary tree (due to the fact that each internal node of the tree has
two children), a static array with 2n − 1 elements can be used to represent all the nodes of the tree,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 182 24-9-2008 #23

182 Handbook of Algorithms for Physical Design Automation

w
d

h

(x ,y ,z)
(c)

12

3
4

5

X

XY

Z2 4 1

5 3

(a) (b)

(d)

XX Y Z 2

2

4

4

1

1

5

5

3

3 6 7 8 9

Parent links

Indices

FIGURE 9.15 (a) 3D slicing floorplan with five modules. (b) Corresponding slicing tree. (c) Dimensions of
a 3D block. (d) Static array.

where n is the number of modules. Each of the first n−1 elements in the array represents an internal
node, and the first element always represents the root of the tree. The last n elements represent the
leaves. Each element of the array is associated with a ten-tuple (t, p, l, r, x, y, z, w, d, h). The t
is the tag information and its value is X , Y , or Z for each internal node and a module name for a
leaf. p, I , and r denote the element indices in the array for the parent, the left child, and the right
child of a node, respectively. The x, y, z, w, d, h are the dimensional information of a module or a
subfloorplan, and (x, y, z) is called the base point (see Figure 9.15c). Figure 9.15d is the static array
for the slicing tree shown in Figure 9.15b, where only the parent link of each element is drawn for
simplicity. Given the static array of a slicing tree, the position of each module and the dimensions
of the corresponding floorplan can be calculated by a recursive procedure starting from the root.

Two kinds of moves, exchange and rotation, are used during the annealing process for generating
neighboring solutions.An exchangemove randomly chooses two subtrees and swaps them; as a result,
the two corresponding elements in the static array will be updated accordingly. On the other hand, a
rotation move randomly selects a subtree and rotates the corresponding subfloorplan along x-, y-, or
z-axis; as a result, the elements of the static array corresponding to the internal nodes contained in the
subtree will be updated accordingly. It can be proved that the two neighborhoodmoves are complete
in the sense that each slicing tree can be reached from another one via at most 10n− 6 moves.

This 3D floorplanner can be specialized to solve the 2D problem as well, and according to
Ref. [28], it is able to produce 2D slicing floorplanswith the smallest areas for the two largestMCNC
benchmarks, ami33 and ami49, among all 2D slicing and nonslicing floorplanning algorithms ever
reported in the literature. Besides, this 3D floorplanner can be extended to handle various types of
placement constraints and thermal distribution.

9.8 CONCLUSION

In this chapter,wehave introduced two slicing floorplan representations, that is, slicing tree andPolish
expression, on which many existing slicing floorplan design/optimization algorithms are based. We
have presented efficient/effective area and power optimization algorithms for slicing floorplans.
These optimization algorithms are typically embedded into a slicing floorplanner.We have discussed
the problem of slicing floorplan design with or without placement constraints, and highlighted
existing solutions. Finallywehave described somemore recent results in slicing floorplans forFPGAs

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 183 24-9-2008 #24

Slicing Floorplans 183

and 3D ICs, in addition to the mathematical analysis on area upper bound and the completeness of
slicing tree representation.

Before concluding this chapter, we would like to point out that since 1970s, slicing floorplans
have been an active research topic, and therefore it is very difficult to discuss all existing solutions
of this area in a single chapter. Instead, we have chosen to present the results, including the most
recent ones in the past ten years, which we think will interest readers the most.

REFERENCES
1. R. H. J.M. Otten. Automatic floorplan design. Proceedings of Design AutomationConference, pp. 261–267,

1982.
2. D. F. Wong and C. L. Liu. A new algorithm for floorplan design. Proceedings of Design Automation
Conference, Las Vegas, Nevada, pp. 101–107, 1986.

3. L. J. Stockmeyer. Optimal orientation of cells in slicing floorplan designs. Information and Control,
57(2):91–101, 1983.

4. W. Shi. An Optimal algorithm for area minimization of slicing floorplans. Proceedings of International
Conference on Computer-Aided Design, San Jose, California, pp. 480–484, 1995.

5. R. H. J. M. Otten. Efficient floorplan optimization. Proceedings of International Conference on Computer
Design, Las Vegas, Nevada, pp. 499–502, 1983.

6. G. Zimmermann. A new area and shape function estimation technique for VLSI layouts. Proceedings of
Design Automation Conference, Atlantic City, New Jersey, pp. 60–65, 1988.

7. K.-Y. Chao and D. FWong. Floorplanning for low power designs. Proceedings of International Symposium
on Circuits and Systems, Seattle, Washington, pp. 45–48, 1995.

8. R. E. Tarjan. Data Structures and Network Algorithms. SIAM Press, Philadelphia, Pennsylvania, 1983.
9. T. Corman, C. E. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press, Cambridge, Massachu-

setts, 1990.
10. U. Lauther. A min-cut placement algorithm for general cell assemblies based on a graph representation.

Proceedings of Design Automation Conference, San Diego, California, pp. 1–10, 1979.
11. D. P. La Potin and S. W. Director. Mason: A global floorplanning approach for VLSI design. IEEE

Transactions of Computer-Aided Design of Integrated Circuits and Systems, CAD-5(4):477–489, 1986.
12. G. J. Wipfler, M. Wiesel, and D. A. Mlynski. A combined force and cut algorithm for hierarchical VLSI

layout. Proceedings of Design Automation Conference, pp. 671–677, 1982.
13. B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System Technical

Journal, 49(2):291–307, 1970.
14. D.G. Schweikert andB.W.Kernighan.Apropermodel for the partitioning of electrical circuits.Proceedings

of Design Automation Workshop, pp. 56–62, 1972.
15. C.M. Fiduccia and R.M.Mattheyses. A linear-time heuristic for improving network partitions. Proceedings

of Design Automation Conference, pp. 175–181, 1982.
16. B. Quinn. A force directed component placement procedure for printed circuit boards. IEEE Transactions

on Circuits and Systems, CAS-26(6):377–388, 1979.
17. S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi. Optimization by simulated annealing. Science, 220, 671–680,

1983.
18. F. Y. Young and D. F. Wong. Slicing floorplans with boundary constraints. Proceedings of Asia and South

Pacific Design Automation Conference, Hong Kong, pp. 17–20, 1999.
19. E.-C. Liu, T.-H. Lin, and T.-C. Wang. On accelerating slicing floorplan design with boundary constraints.

Proceedings of International SymposiumonCircuits and Systems, Geneva, Switzerland, pp. III-339–III-402,
2000.

20. E.-C. Liu, M.-S. Lin, J. Lai, and T.-C. Wang. Slicing floorplan design with boundary-constrained modules.
Proceedings of International Symposium on Physical Design, Sonoma County, California, pp. 124–129,
2001.

21. F. Y. Young and D. F. Wong. Slicing floorplans with range constraints. Proceedings of International
Symposium on Physical Design, Monterey, California, pp. 97–102, 1999.

22. F. Y. Young, H. H. Yang, and D. F.Wong. On extending slicing foorplans to handle L/T-shaped modules and
abutment constraints. IEEE Transactions of Computer-Aided Design of Integrated Circuits and Systems,
20(6):800–807, 2001.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C009 Finals Page 184 24-9-2008 #25

184 Handbook of Algorithms for Physical Design Automation

23. W. S. Yuen and F. Y. Young. Slicing floorplan with clustering constraints. Proceedings of Asia and South
Pacific Design Automation Conference, Yokohama, Japan, pp. 503–508, 2001.

24. F. Y. Young and D. F. Wong. Slicing floorplans with pre-placed modules. Proceedings of International
Conference on Computer-Aided Design, San Jose, California, pp. 252–258, 1998.

25. F. Y. Young and D. F. Wong. How good are slicing floorplans? Proceedings of International Symposium on
Physical Design, Napa Valley, California, pp. 144–149, 1997.

26. M. Lai and D. F. Wong. Slicing tree is a complete floorplan representation. Proceedings of Design,
Automation, and Test in Europe, Munich, Germany, pp. 228–232, 2001.

27. L. Cheng and D. F. Wong. Floorplan design for multi-million gate FPGAs. Proceedings of International
Conference on Computer-Aided Design, San Jose, California, pp. 292–299, 2004.

28. L. Cheng, L. Deng, and D. F. Wong. Floorplanning for 3-D VLSI design. Proceedings of Asia and South
Pacific Design Automation Conference, Shanghai, China, pp. 405–411, 2005.

29. P. Guo, C.-K. Cheng, and T. Yoshimura. An O-Tree representation of non-slicing floorplan and its
applications. Proceedings of Design Automation Conference, New Orleans, Louisiana, pp. 268–273, 1999.

30. J. M. Emmert and D. Bhatia. A methodology for fast FPGA floorplanning. Proceedings of International
Symposium on Field Programmable Gate Arrays, Monterey, California, pp. 47–56, 1999.

31. Xilinx Inc. http://www.xilinx.com.
32. K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat. 3-D ICs: A novel chip design for improving

deep submicrometer interconnect performance and systems-on-chip integration. Proceedings of the IEEE,
89(5):602–633, 2001.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 185 24-9-2008 #2

10 Floorplan Representations

Evangeline F.Y. Young

CONTENTS

10.1 Introduction.. 185
10.2 Corner Block List . 187

10.2.1 Corner Block . 187
10.2.2 Definition of Corner Block List . 188
10.2.3 Transformation between Corner Block List and Floorplan . 189
10.2.4 Floorplanning Algorithm . 189
10.2.5 Extended Corner Block List Structure . 189

10.3 Q-Sequence .. 191
10.3.1 Extended Q-Sequence . 192

10.3.1.1 New Move Based on Parenthesis Constraint Tree . 192
10.4 Twin Binary Trees. 194
10.5 Twin Binary Sequences . 196
10.6 Placement Constraints in Floorplan Design. 199
10.7 Concluding Remarks . 201
References . 201

10.1 INTRODUCTION

A floorplan representation is a data structure that captures the relative positions of the rooms in
a dissection of a rectangular region. It differs from a packing representation, which captures the
relative positions of the blocks to be packed into a rectangular region. In this chapter, we will study
different rectangular dissection representations (with the exceptionof the slicing representationwhich
was discussed in the last chapter). There are several graph-based representations for rectangular
dissections in the early floorplanning literature, e.g., polar graph, neighborhood graphs, etc. In this
chapter, we will only focus on recent representations for floorplans, which are mainly string-based.
Unlike the slicing representation, these representations can characterize any dissection of a rectangle
into rooms. We begin by formally defining a floorplan (which is also often referred to as a mosaic
floorplan in the literature). A rectangular dissection is a floorplan if and only if it observes the
following three properties:

1. Each room is assigned exactly one block.
2. The internal line segments (segs) of the dissection are only permitted to form T-junctions

(Figure 10.1). “+”-shaped junctions, where two distinct T-junctionsmeet at the same point,
are considered to be degenerate. The representational power of floorplans is not impacted
by this because the two T-junctions can be separated by sliding the noncrossing segment of
one of the two T-junctions by a very small distance (Figure 10.2).

185

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 186 24-9-2008 #3

186 Handbook of Algorithms for Physical Design Automation

B

A

C

E

F

A

C

E F

G

D

Mosaic floorplan with
nonslicing structure

Mosaic floorplan with
 slicing structure

D

B

(a) (b)

FIGURE 10.1 Examples of floorplans, showing (a) a mosaic floorplan with slicing structure and (b) a mosaic
floorplan with nonslicing structure.

3. The topology is defined in terms of room–seg adjacency relationships rather than room–
room adjacency relationships. The distinction between the two is described below.

A floorplan can be defined in terms of relationships between adjacent rooms (i.e., rooms whose
boundaries share a line segment) or in terms of adjacency relationships between a room and a seg
(one of the boundaries of a room is the seg). In either case, it is necessary to specify the nature of
the adjacency relationship (e.g., room A is to the left of room B or room B is above segment s in
Figure 10.3). Two floorplans are equivalent with respect to the room–seg relation if and only if it is
possible to label the rooms and the segments in such a way that the two sets of room–seg relations are
identical. Similarly, two floorplans are equivalent with respect to the room–room relationship if and
only if there is a labeling of the rooms such that the two sets of room–room relations are identical.
Figure 10.3 shows two floorplans that are identical with respect to the room–seg relationship, but

Sliding slightly one
T-junction horizontally

Sliding slightly one
T-junction vertically

Two T-junctions meet
at the same point

Or

FIGURE 10.2 Degenerated case modeled by slightly moved T-junctions.

A

B

C

E

D

v

w

s

t

D

B

E

C

A

v

s
w

t

FIGURE 10.3 Room–seg relation and room–room relation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 187 24-9-2008 #4

Floorplan Representations 187

not with respect to the room–room relationship. In this chapter, floorplans are defined with respect
to the room–seg relation.

10.2 CORNER BLOCK LIST

The corner block list (CBL) [1] was one of the first representations proposed for the class of mosaic
floorplans. CBL is a topological representation and the topological relationship between two rooms
as described by a CBL is independent of the modules contained in those rooms. We will see later
in this section that the time complexity to transform a CBL to a placement is O(n) where n is the
number of rooms. It just takes n(3 + �lg n�) bits to describe a packing in CBL and the size of the
solution space is O(n!23n−3).

10.2.1 CORNER BLOCK

In a mosaic floorplan F, the room* in the top-right corner is called the corner block. The orientation
for a corner block B is defined according to the T-junction at the bottom-left corner of the room
containingB. There are only two kinds of T-junctions, a T rotated by 90◦ anticlockwise or a T rotated
by 180◦. In the first case, B is said to be vertically oriented and is denoted by a “0” bit. For the other
case, B is said to be horizontally oriented and is denoted by a “1” bit. The two possible orientations
of a corner block are illustrated in Figure 10.4. To obtain the CBL of a floorplan, or to construct the
floorplan from a CBL, the concepts of deleting and inserting a corner block are needed.

If the corner blockB of a givenmosaic floorplanF is vertically oriented,B is deleted by sliding the
bottom segment ofB up along its left segment until it reaches the upper boundary of F. Similarly, if B
is horizontally oriented, it is deleted by sliding its left segment along its bottom segment until reaching
the right boundary of F. An example to illustrate this deletion process is shown in Figure 10.5. It is

C C

Vertical Horizontal

FIGURE 10.4 Different orientations of a corner block.

C
F

G

H

D
H

FE
C

G

FE
C

G

Delete a
vertically oriented

corner block

Delete a
horizontally oriented

corner block

E

A BA B A B

FIGURE 10.5 Deletion of the corner block in a mosaic floorplan.

* The term “block” is a physical entity with a width and a height, whereas a “room” is a topological entity without specified
dimensions. We use the two terms interchangeably in this section to be consistent with the original CBL paper.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 188 24-9-2008 #5

188 Handbook of Algorithms for Physical Design Automation

D

B

CA

E

C

B

A

D

A

B

C
E

D

F

Insert a horizontally
oriented corner

block (covering one
 T-junction)

Insert a vertically
oriented corner

block (covering two
T-junctions)

FIGURE 10.6 Insertion of a corner block to a mosaic floorplan.

not difficult to see that a mosaic floorplan will remain mosaic after deleting the corner block. The
corner block insertion process is the reverse of the deletion process. To insert a new corner block B′

to a mosaic floorplan F horizontally, a vertical segment (covering a certain number of 270◦ rotated
T-junctions) at the right boundary of F is pushed to the left to create a room at the top-right corner
of F for B′. Similarly, to insert a new corner block B′ to a mosaic floorplan F vertically, a horizontal
segment (covering a certain number of 0◦ rotated T-junctions) at the upper boundary of F is pushed
downward to create a room at the top-right corner of F for B′. An example to illustrate this insertion
process is shown in Figure 10.6.

10.2.2 DEFINITION OF CORNER BLOCK LIST

TheCBL of amosaic floorplanF containing n blocks is a three-tuple (S, L, T)where S = s1 · · · sn is a
sequence of the block names, L = l1 · · · ln−1 is a bit string denoting the corner block orientations, and
T = t1t2 · · · tn−1 is a bit string denoting some T-junction information. The CBL of F is constructed
by recursively deleting corner blocks from F until only one block is left. We define a sequence of
mosaic floorplans Fi, i = 0, . . . , n − 1, where F0 = F and Fi+1 is obtained from Fi by deleting the
corner block in Fi. Then, si is the corner block of Fn−i; li is a bit denoting the orientation of si+1

(“0” [“1”] for a vertically [horizontally] oriented block); and ti is a sequence of ki “1”s followed by
a “0,” where ki is the number of T-junctions covered by the bottom (left) segment of the vertically
(horizontally) oriented corner block of si+1. Notice that Fn−1 has only one block and the orientation
of or the number of T-junctions covered by it is undefined, so the indices i of li and ti only run from
1 to n − 1. An example of the CBL of a mosaic floorplan is shown in Figure 10.7.

It takes no more than n(3 + �lg n�) bits to represent a floorplan by a CBL where n× �lg n� bits
are used to record the block names in the list S, n − 1 bits are used to record the orientations in the
list L and no more than 2n− 1 bits are used to record the T-junction information in the list T .

D

C

B

A S = (FEACDB)

L = (10110)

T = (01001010)
F E

FIGURE 10.7 Corner block list of a mosaic floorplan.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 189 24-9-2008 #6

Floorplan Representations 189

Transformation from floorplan to CBL

1. While there is a corner block B, repeat
2. Delete B.
3. If B is not the last block, record (B, orientation, T-subsequence).
4. Add the last block to the block name list and concatenate all records in a reversed order to

obtain the lists (S, L, T).

FIGURE 10.8 Transformation from floorplan to CBL.

Transformation from CBL to floorplan

1. Initialize the floorplan with block S[1].
2. For i = 2 to n do
3. Add block S[i] to the floorplan with orientation L[i− 1], covering a number of

T-junctions according to list T .
4. If the number of T-junctions required to be covered is more than the number of

T-junctions available, report error and exit.

FIGURE 10.9 Transformation from CBL to floorplan.

10.2.3 TRANSFORMATION BETWEEN CORNER BLOCK LIST AND FLOORPLAN

The linear-time transformations between CBL and floorplan are described in Figures 10.8 and 10.9.
A drawback of CBL is that an arbitrary three-tuple (S, L, T), where S is a permutation of n block
names, L is an n − 1-bit string, and T is a bit string starting and ending with “0”s and having n − 1
“0”s in total, may not correspond to a floorplan, because of the constraints on the composition of the
list T .

10.2.4 FLOORPLANNING ALGORITHM

This CBL representation can be used in search-based optimization technique like simulated
annealing. Neighboring solutions can be generated by the following moves:

1. Randomly exchange two blocks in S
2. Randomly toggle a bit in L
3. Randomly toggle a bit in T
4. Randomly pick a block and rotate it by 90◦, 180◦, or 270◦

5. Randomly pick a soft block and change its shape

Notice that the second and the third move may result in an infeasible CBL, i.e., one that does not
correspond to any floorplan. Therefore, checking and appropriate correction steps are needed.

10.2.5 EXTENDED CORNER BLOCK LIST STRUCTURE

The extended CBL, ECBLλ, was proposed by Zhou et al [2] to represent general floorplans that may
include empty rooms. Like the CBL, ECBLλ represents a rectangular dissection and assigns blocks

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 190 24-9-2008 #7

190 Handbook of Algorithms for Physical Design Automation

Transformation from floorplan to ECBL

1. Insert a false block to each empty room.
2. While there is a corner block B, repeat
3. Delete B.
4. If B is not a false block, record (B, orientation, T-subsequence),

else record (false block, orientation, T-subsequence).
5. Add the last block to the block name list and concatenate all records in a reversed

order to obtain the lists (S, L, T).

FIGURE 10.10 Transformation from floorplan to ECBL.

Transformation from ECBL to floorplan

1. Initialize the floorplan with block S[1].
2. For i = 2 to �λn� do
3. If all real blocks are added already, output the floorplan and exit,
4. else
5. Add block S[i] to the floorplan with orientation L[i − 1] covering a number of

T-junctions according to list T .
6. If the number of T-junctions required to be covered is more than the number of

T-junctions available, report error and exit.

FIGURE 10.11 Transformation from ECBL to floorplan.

to rooms, but it contains more rooms than there are blocks, leaving some of the rooms empty. In
block assignment, a false block of zero width and height is assigned to an empty room. An extended
CBL, ECBLλ, is defined as follows:

Definition 1 Given n blocks, an extended corner block list with an extending factor λ, denoted by
ECBLλ, is a corner block list (S, L, T) of a floorplan with �λn� rooms, of which �λn� − n rooms are
empty and occupied by false blocks and the remaining n rooms hold the n given blocks.

The transformation algorithms between floorplan and ECBL are updated to account for the intro-
duction of false blocks (Figures 10.10 and 10.11). Similar to the analysis of CBL, the complexities of
these algorithms are both O(�λn�), and the number of combinations of ECBLλ is O(Cn

�λn�n!23�λn�−4).
There is an additional factor of Cn

�λn� in the total number of combinations because there are Cn
�λn�

ways to select n rooms from �λn� rooms to accommodate the n real blocks.
The solution space of ECBLλ is guaranteed to contain the optimal solution when λ = n. It can

be shown that the bounded sliceline grid (a packing representation discussed in the next chapter)
BSGn×n can be represented by an ECBLn, i.e., λ is set to n. From the optimum solution theorem of
bounded sliceline grids, there exists a BSGn×n-based packing corresponding to the optimal solution,
so the solution space of ECBLn must also contain the optimal solution. However, setting λ to n
will significantly increase the size of the solution space and the complexities of the transformation
algorithms from linear to quadratic. Fortunately, it has been shown experimentally that fairly good
results can be obtained by setting λ to a real number constant in the range [1.5,3], which agrees with
a fact proven later that �(n− 2

√
n) empty rooms are enough to generate any packing.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 191 24-9-2008 #8

Floorplan Representations 191

10.3 Q-SEQUENCE

A new data structure called the Quarter-state sequence (abbreviated as Q-sequence) was proposed
by Sakanushi et al. [3,4] to represent a floorplan. A Q-sequence is a string of room labels and two
positional symbols with a total length of 3n where n is the number of rooms. Both encoding and
decoding of the Q-sequence representation can be done in linear time.

To construct the Q-sequence of a floorplan, the following terms are defined. A room is called
the tail room if it lies at the bottom-right corner of the floorplan. A room r that is not a tail room
has a bottom-right corner, which is either a 180◦ or a 270◦ rotated T-junction. In either case, the
noncrossing segment of the T-junction is called the prime seg of r. If the prime seg l of a room r is
vertical (horizontal), the rooms that touch l from the right (below) are called the associated rooms
of r, and the topmost (leftmost) associated room is called the next room of r. The Q-state of room r
is a string starting with the room label r followed by nr “R”s (“B”s) if the prime seg of r is vertical
(horizontal), where nr is the number of associated rooms of r. The subQ-sequence Y is constructed
by concatenating the Q-states of all the rooms in the order of r1, r2, . . . , rn, where r1 is the room at
the top-left corner of the packing, and ri+1 is the next room of ri, for i = 1, . . . , n − 1. We define
string X as consisting of p “R”s with q “B”s, where p and q are the numbers of rooms touching the
left-wall and the top-wall of the whole floorplan. The final Q-sequence is obtained by concatenating
X with the subQ-sequence Y . An example is shown in Figure 10.12. Henceforth, we assume that the
rooms are always labeled from 1 to n in the Q-sequence (i.e., ri = i).

Given a Q-sequence Q, we can obtain an RQ-sequence by deleting all the “B”s and replacing
every “R” by an open parenthesis and every room label by a close parenthesis. We can construct
a BQ-sequence similarly by interchanging the roles of “B” and “R”. There are two necessary and
sufficient properties:

1. Single: The subsequence of Q between any two rooms contains a string with at least one
“R” or at least one “B.”

2. Parenthesis: The RQ-sequence and BQ-sequence of Q are well formed.

It can be shown that the number F(n) of distinct Q-sequences for n blocks is upper bounded by
2(3n−1) ×n!. Given a Q-sequence, vertical and horizontal constraint graphs can be constructed directly
from the sequence and floorplan realization can be done in linear time. A decoding algorithm will
be given in the next section. Besides, boundary constraint can also be handled efficiently by using
the Q-sequence representation.

6

2

1

3

54

RRBB1RR2BB3BB4R5R6

FIGURE 10.12 Example of the Q-sequence representation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 192 24-9-2008 #9

192 Handbook of Algorithms for Physical Design Automation

Transformation from Q-sequence to floorplan

1. Initialize the floorplan with block n.
2. For i = n− 1 to 1 do /∗ Let I(i) be the Q-state of block i. ∗/
3. If I(i) contains ‘R’s,
4. Add block i from the left of the chip pushing aside top mi blocks, where mi is the

number of ‘R’s in I(i), that are adjacent to the left boundary of the chip.
5. If I(i) contains ‘B’s,
6. Add block i from the top of the chip pushing down leftmost mi blocks, where mi is

the number of ‘B’s in I(i), that are adjacent to the top boundary of the chip.

FIGURE 10.13 Transformation from Q-sequence to floorplan.

10.3.1 EXTENDED Q-SEQUENCE

The Q-sequence representation is extended [5] to allow empty room insertion to include the optimal
packing in the solution space. It is proven that at most n − �√4n− 1� empty rooms are needed to
represent any packing and the size of the solution space will become 26n(2n)!/n! if empty rooms are
included. A new move to perturb a floorplan by making use of a parenthesis tree pair is introduced
to improve the packing performance. A linear-time decoding algorithm to realize a floorplan from a
Q-sequence is given in Figure 10.13 and an example that illustrates the decoding steps is shown in
Figure 10.14.

10.3.1.1 New Move Based on Parenthesis Constraint Tree

The R parenthesis tree of a Q-sequence is obtained by representing the corresponding RQ-sequence
in the form of a tree such that each node represents a pair of parentheses corresponding to a room.
We label the “R” corresponding to the open parenthesis of room i by Ri for i = 1, . . . , n. An example
is shown in Figure 10.15. The B parenthesis tree can be constructed similarly from the BQ-sequence
and the “B”s are also labeled from 1 to n accordingly. Parenthesis trees have the following properties:

6
R

(f)

6

(e)

2

(d)

B
2

6

(c)(b)

6

(a)

3

6

2
1

3

54

1

R

R
33

B

54

BBR
4 5

4 5

4 5

5 6

FIGURE 10.14 Example of realizing a floorplan from its Q-sequence RRBB1RR2BB3BB4R5R6, showing
(a) the floorplan after adding block 5, (b) the floorplan after adding block 4, (c) the floorplan after adding block
3, (d) the floorplan after adding block 2, (e) the floorplan after adding block 1, and (f) the final floorplan.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 193 24-9-2008 #10

Floorplan Representations 193

() ()()

p4

p1 p2

p3

p6p5

)))

R4 B1B2 B3B6 B5 B4R1 R2R3 R5 R6

(((

1 2 3 4 5 6

FIGURE 10.15 Q-sequence and its R parenthesis system.

Property 1 Given two rooms i and j corresponding to node i and node j, respectively, in the R
parenthesis tree, if node i is an ancestor (the left sibling) of node j, room i is below (on the left of)
room j in the packing.

Property 2 Given two rooms i and j corresponding to node i and node j, respectively, in the B
parenthesis tree, if node i is an ancestor (the left sibling) of node j, room i is on the right of (above)
room j in the packing.

Property 3 The rooms corresponding to the nodes whose parent is the root in the R (B) parenthesis
tree are placed along the bottom (right) boundary of the packing.

The R and B parenthesis trees of the floorplan in Figure 10.14f are shown in Figure 10.16. The
Q-sequence can be perturbed bymoving the positional symbols “R”s and “B”s back and forth as long
as the correspondingRQ-sequence and BQ-sequence are still well formed. Parenthesis trees can help
to constrain the movement such that the resulting Q-sequence will remain feasible. For example,
when an Ri is moved to the left, some of node i’s siblings in the R parenthesis tree will become node
i’s children, but we cannot move Ri to the left of Rj where node j is the parent of node i. Similarly,
when Ri is moved to the right, some of node i’s children in the R parenthesis tree will become node
i’s left siblings, but we cannot move Ri to the right of the label of room i. If moving a positional
symbol “R” will result in a blank subsequence between two room labels i and j where j > i, one can
place the positional symbol Bj between the labels i and j to restore a feasible Q-sequence.

In the annealing process, four perturbation operations can be applied to change a Q-sequence:
(1) rotate a module, (2) swap the modules in two rooms, (3) move an “R” randomly and feasibly in

R parenthesis tree B parenthesis tree

P1 P1

P2

P2P5

P5

P6 P6P4

P4

P3 P3

FIGURE 10.16 Parenthesis trees of the packing in Figure 10.14f.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 194 24-9-2008 #11

194 Handbook of Algorithms for Physical Design Automation

the Q-sequence, and (4) move a “B” randomly and feasibly in the Q-sequence. It can be shown that
starting from any arbitrary initial floorplan, we can transform it to any other floorplan by applying
at most O(n) perturbation operations.

10.4 TWIN BINARY TREES

Yao et al. [6] proposed another representation for floorplans and derived the exact number of floorplan
configurations.LetM(n) be the number of floorplanswith n rooms. These floorplans can be analyzed
in terms of the numbers of T-junctions on the top and right boundaries of the floorplan. Let Fn(i, j)
denote the number of floorplanswith n rooms,with iT-junctions on the top boundary and jT-junctions
on the right boundary.M(n) where n ≥ 1 can be computed by the following equation:

M(n) =
∑
i,j>0

Fn(i, j)

When n = 1,Fn(0, 0) = 1, andwhen n > 1,Fn(0, 0) = 0, because there is at least one T-junction
on either the top or the right boundary when the floorplan has two or more rooms. Also, Fn(i, j) = 0
when i + j ≥ n, because there are at most n − 1 T-junctions on the top and right boundaries for a
floorplan with n rooms. A recurrence for Fn(i, j) can be obtained by deleting the top-right room in
the floorplan as described in the section on CBL.

Fn+1(i+ 1, j + 1) =
∞∑
k=1

[Fn(i + k, j) + Fn(i, j + k)], n ≥ 1

It turns out that the base cases and the recurrence for Fn(i, j) are identical to those used for
generating the Baxter numberB(n) [7]. The Baxter number B(n) has been shown by Chung et al. [8]
to have the form

B(n) =
(
n+ 1
1

)−1 (
n+ 1
2

)−1 n∑
k=1

(
n + 1
k − 1

) (
n + 1
k

) (
n + 1
k + 1

)
(10.1)

Therefore, the number of floorplans with n rooms is given by Equation10.1. By borrowing the
concept of the Baxter permutation, an efficient representation for floorplans is developed.A bijection
between Baxter permutations and twin binary trees (TBTs) was introduced in Ref. [9], where TBTs
are defined as follows:

Definition 2 The set of twin binary trees TBTn ⊂ Treen ×Treen is the set TBTn = {(b1, b2)|b1, b2 ∈
Treen ∩ �(b1) = �c(b2)} where Treen is the set of all binary trees with n nodes, and �(b) is the
labeling of a binary tree b obtained as follows. Beginning with an empty sequence, perform an
in-order traversal on the tree. Whenever encountering a node with no left (right) child, a bit “0”
(“1”) is appended to the sequence. The first “0” and the last “1” are omitted. �c is the complement
of � in which the bits “0” and “1” are interchanged.

Except for the four corners of a floorplan, all block corners are formed by T-junctions. There
are four possible orientations for the T-junctions: 0◦, 90◦, 180◦, and 270◦ as shown in Figure 10.17.
To construct the TBT representation of a mosaic floorplan, the following terminologies concerning
mosaic floorplan are defined:

Definition 3 If room A is not at the top-right corner of a floorplan, the T-junction at the top-right
corner of A is either a 0◦ T-junction or a 270◦ T-junction. Let B be the room adjacent to A by the
noncrossing segment of that T-junction, B is called the C+-neighbor of A.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 195 24-9-2008 #12

Floorplan Representations 195

(d) 270� T-junction

B

A

(c) 180� T-junction

B A

(b) 90� T-junction

B

A

(a) 0� T-junction

BA

FIGURE 10.17 Four different types of T-junctions, with (a) 0◦ rotaion, (b) 90◦ rotation, (c) 180◦ rotation, and
(d) 270◦ rotation.

Definition 4 If room A is not at the bottom-left corner of a floorplan, the T-junction at the bottom-
left corner of A is either a 90◦ T-junction or a 180◦ T-junction. Let B be the room adjacent to A by
the noncrossing segment of that T-junction, B is called the C−-neighbor of A.

Every room, except the top-right corner room, has exactly one C+-neighbor. Similarly, every
room, except the bottom-left corner room, has exactly one C−-neighbor. If we represent each room
by a node and connect each node to its C+-neighbor, we can construct a tree whose root is the
top-right corner room of the floorplan. Similarly, if we connect each node to its C−-neighbor, we can
construct a second tree whose root is the bottom-left corner block of the floorplan. The algorithm
for obtaining the TBT representation of a floorplan is shown in Figure 10.18 and an example of the
TBT representation of a floorplan is shown in Figure 10.19. The complexity of this algorithm isO(n)
where n is the total number of rooms and the pair of trees so generated is a pair of TBTs. Moreover,
there is a one-to-one mapping between TBTs (τ1, τ2) and all floorplans. This property makes the
TBT a nonredundant representation for floorplans.

Theorem 1 The pair of trees (τ1, τ2) generated by the algorithm in Figure 10.18 is a pair of twin
binary trees.

Theorem 2 Given a floorplan, there exists a unique twin binary tree representation for the
floorplan. Similarly, a twin binary tree represents a unique floorplan.

Transformation from floorplan F to TBT

1. E+ = E− = ∅.
2. Let V+ = V− = {i| block i ∈ F}.
3. For each block i:
4. If i is not the top-right corner block of F,
5. Get C+-neighbor j of i. Put E+ = E+ ∪ (j, i).
6. If block j is on the right of i, set i be the left child of j,
7. else set i be the right child of j.
8. If i is not the bottom-left corner block of F,
9. Get C−-neighbor j of i. Put E− = E− ∪ (j, i).
10. If block j is on the left of i, set i be the right child of j,
11. else set i be the left child of j.
12. τ+ = (V+,E+), τ− = (V−,E−).
13. Output (τ−, τ+).

FIGURE 10.18 Transformation from floorplan to TBT.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 196 24-9-2008 #13

196 Handbook of Algorithms for Physical Design Automation

E

FB

GD

CA

A

D

A
B

D

F

C

GE

τ+

E

F

G

B C

τ−

FIGURE 10.19 TBT representation of a mosaic floorplan.

10.5 TWIN BINARY SEQUENCES

Twin binary trees can represent floorplans uniquely, but it is not known how to use them effectively to
generate different floorplans. The Twin binary sequence (TBS) is proposed in Ref. [10] to effectively
encode TBT with four-tuples s = (π , α, β, β ′) such that necessary and sufficient conditions for the
feasibility of an encoding can be identified, and feasible encodings can be generated effectively
according to these conditions. Each four-tuple s= (π , α, β, β ′) represents a floorplanwith nmodules,
whereπ is a permutation of themodule names,α is a sequence of n−1 bits, andβ andβ ′ are sequences
of n bits. These four-tuples can be one-to-onemapped to pairs of binary trees t1 and t2 such that t1 and
t2 are twin binary to each other and can uniquely describe a floorplan. In addition, empty rooms can
be inserted to include the optimal solution in the solution space. Instead of including an excessive
number of dummy blocks in the set of modules, which will increase the size of the solution space
significantly, the TBS representation allows us to insert an exact number of irreducible empty rooms
in a floorplan such that every packing can be obtained uniquely from one and only one floorplan. The
size of the solution space isO(n!23n/n1.5), which is the size with no empty room insertions, but every
packing can be generated uniquely and efficiently from one floorplan in the solution space in linear
time without any redundancy. A lower bound of Ω(n − 2

√
n) empty rooms are needed to obtain

any packing. Together with the upper bound from Ref. [5], the number of empty rooms required is
exactly �(n− 2

√
n).

The definition of TBS is based on an observation that an arbitrary pair of binary trees t1 and
t2 is a TBT representation of a floorplan if and only if they are twin binary to each other and their
inorder traversals are the same. However, the labeling and the inorder traversal are not sufficient
to identify a unique pair of t1 and t2. Given a permutation of n module names π and a labeling α

of n − 1 bits, there can be more than one valid pairs of t1 and t2 such that their inorder traversals
are π and �(t1) = �c(t2) = α. To specify a pair of trees uniquely, two additional bit sequences β

and β ′ can be used for t1 and t2, respectively. In β(β ′), the ith bit is equal to “1” if the ith module
in the inorder traversal of t1(t2) is the right child of its parent and is “0” otherwise. These bits are
called directional bits. Notice that any n − 1 bit sequence α = α1α2 · · · αn−1 and n bit sequence
β = β1β2 · · · βn will correspond to the labeling and the directional bit sequence of a binary tree t
if and only if the sequence β1α1β2α2 · · · αn−1βn has one “0” more than “1,” and for any prefix of
this sequence, the number of “0”s is not less than the number of “1”s. Now we can use a four-tuple
(π , α, β, β ′) to represent a floorplan where π is a permutation of n module names, α is an n − 1
bit sequence, and β and β ′ are n bit sequences such that the pairs α and β, and αc and β ′ satisfy
the above conditions of representing the labeling and the directional bit sequence of a binary tree.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 197 24-9-2008 #14

Floorplan Representations 197

Transformation from TBS (π,α,β,β′) to floorplan

1. Initialize the floorplan with block πn.
2. For i = n− 1 to 1:
3. If αi is zero,
4. Find the smallest k where i < k ≤ n and βk is equal to one.
5. Add block πi to the floorplan from the left, pushing aside the set

S = {πj|i < j ≤ k and βjnot deleted yet} of blocks.
6. Delete βi+1,βi+2 · · · βk from β.
7. If αi is one,
8. Find the smallest k where i < k ≤ n and β′

k is equal to one.
9. Add block πi to the floorplan from the top, pushing down the set

S = {πj|i < j ≤ k and β′
j not deleted yet} of blocks.

10. Delete β′
i+1,β

′
i+2 · · · β′

k from β′.

FIGURE 10.20 Transformation from TBS to floorplan.

A

B

C

B

D

i = 1i = 2i = 3i = 4

D DC
C D

p A B C D
a 0 1 0
b 0 0 1 1
b�0 0 0 1

p A B C D p A B C D p A B C D
a 0 1 0
b 0 0 1 1
b�0 0 0 1

a 0 1 0
b 0 0 1
b�0 0 0

a 0 1 0
b 0 1
b�0 0 (a) (b) (c) (d)1

0

FIGURE 10.21 Example of constructing a floorplan from its TBS.

This four-tuple representation is called TBS and the mapping between TBS and floorplans is one-
to-one. Therefore, there is no redundancy in the TBS representation, and the size of the solution
space for n modules is equal to the Baxter number B(n) [6] and can be shown to be bounded by
O(n!23n/n1.5). An algorithm to realize a floorplan from a given TBS representation (π , α, β, β ′) in
linear time by scanning the sequences only once is given in Figure 10.20 with an example shown in
Figure 10.21.

To include the optimal solution in the solution space, empty rooms can be inserted. In TBS,
empty rooms can be inserted exactly into the representation such that every nonslicing structure
can be generated from one and only one mosaic floorplan nonredundantly. In a packing, there are
two kinds of empty rooms. One results because the room assigned to a module is too large. This
type of empty room is called reducible and is not considered because the topological relationship
is not affected. The other type is called irreducible and refers to rooms that cannot be removed
by merging with the neighboring rooms. Examples of reducible and irreducible empty rooms are
shown in Figure 10.22. The T-junctions at the four corners of an irreducible empty room must form
a wheel shape and the neighboring rooms at those T-junctions must not be irreducible empty rooms
themselves.

To construct a packing froma floorplan,weonlyneed to consider the insertionof those irreducible
empty rooms (called “X” in the following). Irreducible empty rooms can only be of the two forms
shown in Figure 10.23.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 198 24-9-2008 #15

198 Handbook of Algorithms for Physical Design Automation

Reducible
empty room

Irreducible
empty room

FIGURE 10.22 Examples of reducible and irreducible empty rooms.

D

A

X

B

C

X

D C

B
A

(a) (b)

B

A

X

C

D

X
D C

BA

t1 t2 t1 t2

FIGURE 10.23 Two types of irreducible empty rooms, with (a) an anticlockwise wheel and (b) a clockwise
wheel.

In the construction, a vertical sliceline with a T-junction on each side will be mapped to an
anticlockwise “X,” while a horizontal sliceline with a T-junction on each side will be mapped to a
clockwise “X.” This mapping and the corresponding changes needed to be made to the TBTs are
shown in Figure 10.24. This mapping is unique, i.e., every packing can be obtained by this mapping
from one and only one floorplan.

The empty room insertion process is based on two observations. First, it is known that the adjacent
rooms of an irreducible empty roommust be occupied by some blocks, so the “X”s must be inserted
between some module nodes as in Figure 10.25. Initially, as many “X”s as possible will be inserted
into the two TBTs (Figure 10.25b) according to the two possible forms of insertions (Figure 10.24).
The invalid ones will then be deleted. This deletion is based on the second observation that a pair of
TBT can represent a floorplan if and only if their inorder traversals are equivalent. By tracing the
inorder traversal of the two trees after inserting all the possible “X”s, we canmatch those “X”s easily
because there must be an equal number of “X”s between any two consecutive module names. There

B

B

C

D

A

(a)

B

C

X

D

C

A

D

A

A

t1 t2

D

C

X

B

A

X

(b)

B

X

A

D C

B

A B

CD

A B

CD

D

C

t1 t2

t1 t2
t1 t2

FIGURE 10.24 Mapping between mosaic floorplan and nonslicing floorplan, showing (a) mapping to an
anticlockwise wheel and (b) a mapping to a clockwise wheel.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 199 24-9-2008 #16

Floorplan Representations 199

(c)

X E A X D B C X

X E A X D X B X

Matched X Unmatched X is deleted

Leading and trailing “X”s are deleted

D

CE

(a)

A

D
E

B

BB

E

A

A

t2t1

D CC

A

X

E

X

B

D

(b)

E

B

X

C

XX

XXX

A

t �1 t �2

CD

CBA

(d)

D

CE

B

B

X

A

D

A

X

D

C

E E

t �1 t �2

FIGURE 10.25 Constructing a packing from a floorplan, showing (a) the original mosaic floorplan, (b) the
twin binary trees before and after inserting irreducible empty rooms, (c) the inorder traversals of the twin binary
trees, and (d) the final floorplan with its twin binary tree representation.

may be choices in the mapping but each different choice will correspond to a different nonslicing
floorplan. In this way, we can insert an exact number of irreducible empty rooms at the right places to
produce different nonslicing structures. This empty room insertion step can be implemented directly
on a TBS efficiently.

It is shown that at most n − 1 irreducible empty rooms are needed to construct any packing
structure from a floorplan. On the other hand, a lower bound of n − 2

√
n + 1 irreducible empty

rooms is provenwith an example. Together with the upper bound fromRef. [5], the number of empty
rooms required is �(n− 2

√
n).

10.6 PLACEMENT CONSTRAINTS IN FLOORPLAN DESIGN

TheCBL representation has been extended to handle boundary constraints, abutment constraints, and
rectilinear block packing. Boundary constraints are useful for satisfying I/O requirements and the
abutment requirements between neighboring units in modern designs. The necessary and sufficient
conditions for a module satisfying boundary constraints in a floorplan represented by a CBL have
been derived [11]. By making use of these conditions, the required boundary constraints can be
checked in linear time by scanning the CBL. The CBL can be fixed as much as possible in case
some constraints are violated. A penalty function is derived to measure the degree of violation of the
constraints. The conditions are based on the observation that in the process of transforming a CBL
to a floorplan, if a module is required to be placed on the left (bottom) boundary of the floorplan,
the module should be placed on top (the right hand side) of all the previously placed modules when
it is being processed. On the other hand, if a module is required to be placed along the right (top)
boundary, no modules processed afterward should be placed on its right (above it). These conditions
can be checked very efficiently for a given CBL = (S, L, T) by computing two lists of numbers, Rtn

i

and T tn
i for i = 1, . . . , n, associated with the n insertion steps in the transformation process from

CBL to floorplan as follows:

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 200 24-9-2008 #17

200 Handbook of Algorithms for Physical Design Automation

Rtn
1 = T tn

1 = 0

Li−1 = 1 ⇒
{
Rtn
i = Rtn

i−1 − TNi−1

T tn
i = T tn

i−1 + 1

Li−1 = 0 ⇒
{
Rtn
i = Rtn

i−1 + 1
T tn
i = T tn

i−1 − TNi−1

(10.2)

whereTNi is the number of “1”s before the ith “0” in the listT . The necessary and sufficient conditions
for a moduleMi to satisfy boundary constraint are stated in the following theorem:

Theorem 3 A module Mi in list S is along the left (bottom) boundary of the final chip if and only
if T tn

i = 0(Rtn
i = 0). A module Mi in list S is along the top (right) boundary of the final chip if and

only if T tn
k > Ttn

i (Rtn
k > Rtn

i) for all k = i + 1, . . . , n.

The algorithm for boundary constraint checking given a CBL is shown in Figure 10.26. In this
boundary checking algorithm, the CBL is scanned twice, one from left to right and once from
right to left, so the complexity of this algorithm is O(n). In case some constraints are violated,
the corresponding CBL can be fixed as much as possible by swapping the modules that violate

Scan a CBL (S, L, T) to find all the modules lying along the boundaries and compute the
penalty cost

1. penalty = 0,Ptn = Ttn
1 = 0 and BT = BB = BL = BR = ∅.

2. For i = 2 to n do:
3. Find Rtn

i and Ttn
i according to equation (2).

4. If Ttn
i = 0,BL = BL ∪ {Mi}.

5. If Rtn
i = 0, BB = BB ∪ {Mi}.

6. If Mi is constrained to the left boundary,
7. penalty = penalty+ Ttn

i .
8. If Mi is constrained to the bottom boundary,
9. penalty = penalty+ Rtn

i .
10. Find kt whereMkt is the last module whose Ttn equals 0.
11. Find kr whereMkr is the last module whose Rtn equals 0.
12. min_rtn = min_ttn = ∞.
13. For i = n to min{kt, kr} do:
14. If Mi is constrained to the top boundary,
15. penalty = penalty+ max{0, Ttn

i − min_ttn + 1}.
16. If Mi is constrained to the right boundary,
17. penalty = penalty+ max{0,Rtn

i − min_rtn + 1}.
18. If Rtn

i < min_rtn,
19. BR = BR ∪ {Mi}.
20. min_rtn = Rtn

i .
21. If Ttn

i < min_ttn,
22. BT = BT ∪ {Mi}.
23. min_ttn = Ttn

i .
24. penalty = penalty+ number of modules beforeMkt andMkr in S and limited by the top

or right boundary constraint.
25. Output penalty,BT ,BB,BL and BR.

FIGURE 10.26 Boundary check.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 201 24-9-2008 #18

Floorplan Representations 201

TABLE 10.1
Comparisons between Different Representations

Representation Solution Space Packing Time Flexibility

CBL O(n!23n−3) O(n) Mosaic
Q-sequence O(n!23n−1) O(n) Mosaic
TBT �(n!23n/n4) O(n) Mosaic
TBS �(n!23n/n4) O(n) Mosaic

the constraints with free modules in the sets BT, BL, BR, and BB. If there are still violations after this
swapping step, the corresponding floorplan does not have enough positions along the boundary to
satisfy all the requirements, and a penalty term will be included in the cost function of the annealing
process to penalize the remaining violated constraints. This penalty term will drop to zero as the
annealing process proceeds.

A similar approach can be used to handle abutment constraints [12]. Abutment constraints are
useful in practice as designers may want the logic blocks in a pipeline of a circuit to abut with
one another to favor the transmission of data between them. By scanning the CBL of a candidate
floorplan solution, the abutment information of all the blocks can be obtained efficiently in linear
time. The CBL can be fixed as much as possible in case some constraints are violated. Based on this
approach, L-shaped and T-shaped blocks can also be handled by partitioning a rectilinear block into
a few abutting rectangular subblocks. Besides abutment constraints and rectilinear blocks, rotation
and reflection of L-shaped and T-shaped blocks have also been considered [12].

10.7 CONCLUDING REMARKS

We have discussed four different types of representations for floorplans, includingCBL, Q-sequence,
TBT, and TBS. These representations are compared in Table 10.1. (A similar table compares packing
representations in the next chapter.) They exhibit some interesting relationships with each other [6].
For example, given a floorplan F, the inorder traversal of the trees in its TBT representation is
identical to the sequence S in the CBL representation (S, L, T) of the floorplan obtained by rotating
F by 90◦. All of these representations are practically useful because there are efficient linear-time
algorithms for floorplan realization and encoding. However, CBL and Q-sequence have redundancy
in their representations and the sizes of their solution space are both upper bounded by O(n!23n).
TBT and TBS are nonredundant representations and the size of their solution space is �(n!23n/n4)
according to the analysis in Ref. [13] on the exact number of floorplans with n modules. All these
representations can be extended to generate any general packing structure by including dummy empty
blocks. According to the results fromRefs. [5,10], the exact number of dummy empty blocks needed
to generate any general packing structure is �(n− 2

√
n). However, if these extra dummy blocks are

added, the size of the solution space will be increased significantly. For TBS, it is possible to identify
the exact locations in the representation where dummy empty blocks should be inserted such that
every packing structure can be generated from exactly one floorplan. By using this property, Zion
et al. [13] obtained a tighter upper bound for the total number of general packings of O(n!25n/n4.5)
by bounding the number of ways to insert dummy empty rooms into a TBS.

REFERENCES
1. X. Hong, S. Dong, G. Huang, Y. Cai, C. K. Cheng, and J. Gu. Corner block list representation and its

application to floorplan optimization. IEEE Transactions on Circuits and Systems II, 51(5): 228–233, 2004.
(ICCAD 2000).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C010 Finals Page 202 24-9-2008 #19

202 Handbook of Algorithms for Physical Design Automation

2. S. Zhou, S. Dong, C. K. Cheng, and J. Gu. ECBL: An extended corner block list with solution space
including optimum placement. International Symposium on Physical Design, Sonoma, California, 2001.

3. K. Sakanushi and Y. Kajitani. The quarter-state sequence (Q-sequence) to represent the floorplan and
applications to layout optimization. Proceedings of IEEE Asia Pacific Conference on Circuits and Systems,
Tianjin, China, pp. 829–832, 2000.

4. K. Sakanushi, Y. Kajitani, and D. P. Mehta. The quarter-state-sequence floorplan representation. IEEE
Transactions on Circuits and Systems I, 50(3): 376–386, 2003.

5. C. Zhuang, K. Sakanushi, L. Jin, and Y. Kajitani. An enhanced Q-sequence augmented with empty room
insertion and parenthesis trees. Design, Automation and Test in Europe Conference and Exhibition, Paris,
France, pp. 61–68, 2002.

6. B. Yao, H. Chen, and C. K. Cheng. Floorplan representations: Complexity and connections. ACM
Transactions on Design Automation of Electronic Systems, 8(1): 55–80, 2003. (ISPD 2001).

7. G. Baxter. On fixed points of the composite of commuting functions. Proceedings of AmericanMathematics
Society, 15: 851–855, 1964.

8. F. R. K. Chung, R. L. Graham, J. E. E. Hoggatt, and M. Kleiman. The number of Baxter permutations.
Journal of Combinatorial Theory, Series A, 24(3): 382–394, 1978.

9. S. Dulucq and O. Guibert. Baxter permutations. Discrete Mathematics, 180: 143–156, 1998.
10. E. F. Y. Young, C. C. N. Chu, and Z. C. Shen. Twin binary sequences: A non-redundant representation for

general non-slicing floorplan. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 22(4): 457–469, 2003. (ISPD 2002).

11. Y. Ma, S. Dong, X. Hong, Y. Cai, C. -K. Cheng, and J. Gu. VLSI floorplanning with boundary constraints
based on corner block list. IEEE Asia and South Pacific Design Automation Conference, Yokohama, Japan,
pp. 509–514, 2001.

12. Y. Ma, X. Hong, S. Dong, Y. Cai, C. K. Cheng, and J. Gu. Floorplanning with abutment constraints and
L-shaped/T-shapedblocks basedon corner block list.Proceedings of the 38thACM/IEEEDesignAutomation
Conference, Las Vegas, NV, pp. 770–775, 2001.

13. Z. C. Shen and C. C. N. Chu. Bounds on the number of slicing, mosaic and general floorplans. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(10): 1354–1361, 2003.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 203 29-9-2008 #2

11 Packing Floorplan
Representations

Tung-Chieh Chen and Yao-Wen Chang

CONTENTS

11.1 Introduction.. 204
11.1.1 Problem Definition . 204

11.2 O-Tree . 205
11.2.1 Relationship between a Placement and an O-Tree . 205
11.2.2 O-Tree Perturbations.. 206

11.3 B∗-Tree . 207
11.3.1 From a Placement to a B∗-Tree. 207
11.3.2 From a B∗-Tree to a Placement. 207
11.3.3 B∗-Tree Perturbations .. 208

11.4 Corner Sequence . 208
11.4.1 From a Placement to a CS . 209
11.4.2 From a CS to a Placement . 209
11.4.3 CS Perturbations . 211

11.5 Sequence Pair . 213
11.5.1 From a Placement to an SP . 213
11.5.2 From an SP to a Placement . 213
11.5.3 SP Perturbations.. 216

11.6 Bounded-Sliceline Grid . 216
11.6.1 From a BSG Assignment to a Placement . 217
11.6.2 BSG Perturbations . 218

11.7 Transitive Closure Graph . 218
11.7.1 From a Placement to a TCG .. 218
11.7.2 From a TCG to a Placement . 219
11.7.3 TCG Properties. 220
11.7.4 TCG Perturbations . 220

11.8 TCG-S . 221
11.8.1 From a Placement to TCG-S . 221
11.8.2 From TCG-S to a Placement . 223
11.8.3 TCG-S Perturbations.. 223

11.9 Adjacent Constraint Graph . 224
11.9.1 ACG Properties . 225
11.9.2 ACG Perturbations . 226

11.10 Discussions . 227
11.10.1 Comparisons between O-Trees and B∗-Trees . 227
11.10.2 Equivalence of SP and TCG . 228

203

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 204 29-9-2008 #3

204 Handbook of Algorithms for Physical Design Automation

11.11 3D Floorplan Representations . 229
11.11.1 T-Tree . 229
11.11.2 Sequence Triplet . 231
11.11.3 3D-SubTCG .. 231

11.12 Application in Handling other Constraints in Floorplan Design . 233
11.12.1 Boundary Constraints . 233
11.12.2 Rectilinear Modules. 234

11.13 Summary . 236
References . 237

11.1 INTRODUCTION

As technology advances, design complexity is increasing and the circuit size is getting larger. To
copewith the increasing design complexity, hierarchical design and IPmodules arewidely used. This
trend makes module floorplanning/placement much more critical to the quality of a VLSI design
than ever.

A fundamental problem to floorplanning/placement lies in the representation of geometric rela-
tionship among modules. The representation profoundly affects the operations of modules and the
complexity of a floorplan/placementdesign process. It is thus desired to develop an efficient, flexible,
and effective representation of geometric relationship for floorplan/placement designs.

Many floorplan representationshave been proposed in the literature.We can represent a floorplan
as a rectangular dissection of the floorplan region, and classify the representations based on the
floorplan structures that the representations can model. Preceding chapters have covered the slicing
structure [1,2],which can be obtained by repetitively subdividing rectangles horizontally or vertically
into smaller rectangles, and the mosaic structure [3] for which the floorplan region is dissected into
rooms so that each room contains exactly one module. The mosaic structure is more general than
the slicing structure in the sense that the former can model more floorplan structures.

This chapter focuses on the representations for the packing structure, the most general floorplan
representation that can model a floorplan with empty rooms. There is a special type of the packing
structure, the compacted structure, for which modules are compacted to some corner of the floorplan
region, say the bottom-left corner, and no module can further be shifted down or left. The compacted
structure induces much smaller solution spaces than the general one. Unlike the general packing
representation, which can fully model the topological relationship among modules [4–8], however,
the compacted packing representations [9–11] can model only partial topological information, and
thus the module dimensions are required to construct an exact floorplan.

In this chapter, we shall detail the modeling, properties, and operations of the popular pack-
ing floorplan representations in the literature: compacted floorplan representations such as O-tree,
B∗-tree, and corner sequence (CS), and general packing ones such as sequence pair (SP) [6], bounded-
sliceline grid (BSG), transitive closure graph (TCG), transitive closure graph with a sequence
(TCG-S), and adjacent constraint graph (ACG) [8].

11.1.1 PROBLEM DEFINITION

To make this chapter self-contained, we shall start with the definition of the floorplanning problem.
Let B = {b1, b2, . . . , bm} be a set ofm rectangular modules whose width, height, and area are denoted
by wi, hi, and ai, 1 ≤ i ≤ m. Each module is free to rotate. Let (xi, yi) denote the coordinate of the
bottom-left corner of module bi, 1 ≤ i ≤ m, on a chip. A placement P is an assignment of (xi, yi)
for each bi, 1 ≤ i ≤ m, such that no two modules overlap. The goal of floorplanning/placement is
to optimize a predefined cost metric such as a combination of the area (i.e., the minimum bounding
rectangle ofP) andwirelength (i.e., the summation of half bounding box of interconnections) induced
by a placement.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 205 29-9-2008 #4

Packing Floorplan Representations 205

In the following sections,we first introduce the compacted packing floorplanning representations,
O-tree [10], B∗-tree [9], and CS [11], and then the general ones, SP [6], BSG [7], TCG [4,12],
TCG-S [5,13], and ACG [8].

11.2 O-TREE

An O-tree is used to model an admissible placement defined in Ref. [10]. A placement is said to be
admissible if and only if all modules are compacted in both x- and y-directions; i.e., no module can
shift left or down with other modules being fixed. Figure 11.1a gives an example of an admissible
placement.

11.2.1 RELATIONSHIP BETWEEN A PLACEMENT AND ANO-TREE

An O-tree is a rooted ordered tree structure with an arbitrary number of branches (children) for each
node. There are two types of O-trees, horizontal O-trees and vertical O-trees. Given an admissible
placement, a horizontal O-tree T can be constructed as follows. The root represents the left boundary
of the placement. The children are adjacent to and on the right-hand side of their parent with zero
separation distance in the x-direction. See Figure 11.1b for a horizontal O-tree of the admissible
placement shown in Figure 11.1a. A vertical O-tree can similarly be defined by making the root
represent the bottom boundary of the placement and an edge represent the vertical geometrical rela-
tionship between two modules. An O-tree is encoded by the two-tuple (S,π), where the 2(n− 1)-bit
string S identifies the branching structure of the n-node tree, and the permutationπ denotes the mod-
ule sequence for the depth-first search (DFS) traversal of the tree. A “0” (“1”) represents a traversal
which descends (ascends) an edge in the tree. An example is shown in Figure 11.1b for the two-tuple
(S,π) = (001100011101, abcdef) that encodes the placement/floorplan shown in Figure 11.1a.

Because the root of a horizontal O-tree represents the left boundary of the placement/floorplan,
we set its coordinate (xroot, yroot) = (0, 0). Let node ni be the parent of node nj, we have xj = xi + wi.
For each module bi, let L(i) be the set of modules bk’s on the left of bi in π, and interval (xk , xk +wk)

overlaps interval (xi, xi + wi) by a nonzero length. If L(i) is nonempty, we have

yi =
{
maxk∈L(i){yk + hk}, L(i) �= ∅
0, otherwise

We can find a placement by visiting the tree in the DFS order from an horizontal O-tree.
To efficiently compute the y-coordinate from a horizontal O-tree, we can adopt the contour

data structure [10] to facilitate the operations on modules. The contour structure is a doubly linked
list for modules, describing the contour curve in the current compaction direction. A horizontal

0
1

1

Root

a
b

c d
e

f
0

0 0

0

0

1

1

1

1

(a) (b)

nc

ndnb

ne

nfna

FIGURE 11.1 (a) Admissible placement and (b) O-tree for the placement shown in (a).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 206 29-9-2008 #5

206 Handbook of Algorithms for Physical Design Automation

a
b

c d
e

fNewly added module Original contour

New contour

Horizontal contour

FIGURE 11.2 To add a new module on top, we search the horizontal contour from left to right and update it
with the top boundary of the new module.

contour (Figure 11.2) can be used to reduce the running time for finding the y-coordinate of a
newly inserted module. Without the contour, the running time for determining the y-coordinate of
a newly inserted module would be linear to the number of modules. However, the y-coordinate of a
module can be computed in amortized O(1) time by maintaining the contour structure [10], making
the overall packing time for a floorplan to be linear to the number of modules. Figure 11.2 illustrates
how to update the horizontal contour after inserting a new module.

11.2.2 O-TREE PERTURBATIONS

An O-tree can be perturbed by the following steps: (1) select a module bi in the original O-tree
(S,π), (2) delete a module bi from the O-tree (S,π), and (3) insert a module bi in the position with
the best value of the cost function among all possible external positions in (S,π). Figure 11.3 gives
the definition of the internal and external positions.

Given an O-tree with n nodes, there are 2n − 1 possible inserting positions as external nodes.
In Figure 11.3, there are 13 possible inserting positions in the 7-node tree. The operation of finding
these positions on (S,π) is simply adding a string 01 to any position in bit string S and adding the
label to its related position in π .

Root

nc nfna

nb

ne

nd

External node

Internal node

FIGURE 11.3 Internal and external insertion positions. To facilitate updating the encoding tuple, the O-tree
allows a node to be inserted only at the external positions.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 207 29-9-2008 #6

Packing Floorplan Representations 207

11.3 B∗-TREE

B∗-trees, proposed byChang et al. [9], are based on ordered binary trees and the admissible placement.
Inheriting from the nice properties of ordered binary trees, B∗-trees are very easy for implementation
and can perform the respective primitive tree operations search, insertion, and deletion in only
constant, constant, and linear times.

There exists a unique correspondence between an admissible placement and its induced B∗-tree.
Given an admissible placementP , in otherwords, we can construct a uniqueB∗-tree corresponding to
P , and the packing corresponding to the B∗-tree is the same asP . Therefore, an optimal placement (in
terms of packing area)—an admissible placement—always corresponds to some B∗-tree. The nice
property of the unique correspondence between an admissible placement and its induced B∗-tree
prevents the search space from being enlarged with redundant solutions and guarantees that an
optimal placement can be found by searching on B∗-trees.

11.3.1 FROM A PLACEMENT TO A B∗-TREE

Given an admissible placementP , we can represent it by a unique (horizontal)B∗-treeT . Figure 11.4b
gives an example of a B∗-tree representing the placement of Figure 11.4a. A B∗-tree is an ordered
binary tree whose root corresponds to the module on the bottom-left corner. Similar to the DFS
procedure, we construct the B∗-tree T for an admissible placement P in a recursive fashion: Starting
from the root, we first recursively construct the left subtree and then the right subtree. Let Ri

denote the set of modules located on the right-hand side and adjacent to bi. The left child of the
node ni corresponds to the lowest module in Ri that is unvisited. The right child of the node ni
represents the lowestmodule located above andwith its x-coordinate equal to that of bi. Following the
aforementioned DFS procedure and definitions, we can guarantee the One-to-one correspondence
between an admissible placement and its induced B∗-tree.

As shown in Figure 11.4, it makes the module a the root of T because a is on the bottom-left
corner. Constructing the left subtree of na recursively, it makes nb the left child of na. Because the left
child of nb does not exist, it then constructs the right subtree of nb. The construction is recursively
performed in the DFS order. After completing the left subtree of na, the same procedure applies to the
right subtree of na. The resulting B∗-tree for the placement of Figure 11.4a is shown in Figure 11.4b.
The construction takes only linear time.

11.3.2 FROM A B∗-TREE TO A PLACEMENT

Given a B∗-tree T , we shall compute the x- and y-coordinates for each module associated with a
node in the tree. The x- and y-coordinates of the module associated with the root (xroot, yroot) = (0, 0)

a
b

c d
e

f

nb nc

nd

ne

nf

na

(a) (b)

FIGURE 11.4 (a) Admissible placement and (b) the (horizontal) B∗-tree representing the placement.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 208 29-9-2008 #7

208 Handbook of Algorithms for Physical Design Automation

because the root of T represents the bottom-leftmodule. The B∗-tree keeps the geometric relationship
between two modules as follows. If node nj is the left child of node ni, module bj must be located
on the right-hand side and adjacent to module bi in the admissible placement; i.e., xj = xi + wi.
Besides, if node nj is the right child of ni, module bj must be located above, with the x-coordinate of
bj equal to that of bi; i.e., xj = xi. Therefore, given a B∗-tree, the x-coordinates of all modules can be
determined by traversing the tree once. Similar to the O-tree, the contour data structure is adopted
to efficiently compute the y-coordinate from a B∗-tree (Section 11.2.1). Overall, given a B∗-tree, we
can determine the corresponding packing (i.e., compute the x- and y-coordinates for all modules) in
linear time.

11.3.3 B∗-TREE PERTURBATIONS

Given an initial B∗-tree (a feasible solution), we perturb the B∗-tree to another using the following
three operations.

• Op1: rotate a module
• Op2: move a module to another place
• Op3: swap two modules

Op1 rotates a module, and the B∗-tree structure is not changed. Op2 deletes and inserts a node. Op2
and Op3 need to apply the deletion and insertion operations for deleting and inserting a node from
and to a B∗-tree. We explain the two operations in the following.

Deletion: There are three cases for the deletion operation.

• Case 1: a leaf node
• Case 2: a node with one child
• Case 3: a node with two children

In Case 1, we simply delete the target leaf node. In Case 2, we remove the target node and then place
its only child at the position of the removed node. The tree update can be performed in O(1) time.
In Case 3, we replace the target node nt by either its right child or its left child nc. Then we move
a child of nc to the original position of nc. The process proceeds until the corresponding leaf node
is handled. Such a deletion operation requires O(h) time, where h is the height of the B∗-tree. Note
that in Cases 2 and 3, the relative positions of the modules might be changed after the operation, and
thus we might need to reconstruct a corresponding placement for further processing.

Insertion: While adding a module, we can place it around some module. We define two types of
positions as follows.

• Internal position: a position between two nodes in a B∗-tree
• External position: a position pointed by a NULL pointer

We can insert a new node into either an internal or an external position.

11.4 CORNER SEQUENCE

Corner Sequence (CS) = 〈(S1,D1)(S2,D2) · · · (Sm,Dm)〉 uses a packing sequence S of themmodules
aswell as the correspondingbendsD formedby themodules to describe a compacted placement [11].
Each two-tuple (Si,Di), 1 ≤ i ≤ m, is referred to as a term of the CS. We first show how to derive a
CS representation from a compacted placement.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 209 29-9-2008 #8

Packing Floorplan Representations 209

11.4.1 FROM A PLACEMENT TO A CS

A module bi is said to cover another module bj if bi is higher than bj and their projections in the x
axis overlap, or bi is right to bj and their projections in the y axis overlap (i.e., y′

j ≤ yi, x′
j > xi and

xj < x′
i, or if x

′
j ≤ xi, y′

j > yi and yj < y′
i). Here, x

′
i = xi + wi and y′

i = yi + hi. Given an admissible
placement [10] (a left and bottom compacted placement), we first pick the dummy modules bs and
bt, and make R = 〈st〉 for the two chosen modules. The module bi on the bottom-left corner of
P is picked (i.e., S1 = bi and D1 = [s, t]) because it is the unique module at the bend of R, and
the new R becomes 〈sit〉. When there exists more than one module at bends, we pick the left-most
module that does not cover other unvisited modules at the bends. Therefore, the module bj at the
bend [s, i] is picked if bj exists and bj does not cover the other unvisited module bk at the bend
[i, t]; otherwise, bk is picked. This process continues until no module is available. On the basis of
above procedure, there exists at least one module at a bend of the current R before all modules are
chosen because the placement is compacted. Therefore, there exists a unique CS corresponding to a
compacted placement.

Figure 11.6a through h show the process to build a CS from the placement P of Figure 11.5a. R
initially consists of s and t. Module a at bottom-left corner is chosen first because it is the unique
module at the bend of R(S1 = a and D1 = [s, t]). Figure 11.6a shows the resulting R (denoted by
heavily shaded areas). Similarly, module b is chosen (S2 = b andD2 = [a, t]) and the newR is shown
in Figure 11.6b. After module bd in Figure 11.6b is chosen, a and b are removed from R because
the corner formed by a and b is already occupied (see Figure 11.6c for the new R). As shown in
Figure 11.6d, there exist two modules bf and bc at bends. Although bf is left to bc, we pick bc first
because bf covers bc. This process repeats until no module is available, and the resulting CS is shown
in Figure 11.6i.

11.4.2 FROM A CS TO A PLACEMENT

The dynamic sequence packing (DSP for short) scheme [11] is used to transform a CS into a
placement. For DSP, a contour structure is maintained to place a new module. Let L be a doubly
linked list that keeps modules in a contour. Given a CS, we can obtain the corresponding placement
in O(m) time by inserting a node into L for each term in the CS, where m is the number of modules.

L initially consists of ns and nt that denote dummy modules s and t, respectively. For each term
(i, [j, k]) in a CS, we insert a node ni between nj and nk in L for module bi, and assign the x(y)
coordinate of module bi as x′

j(y
′
k). This corresponds to placing module bi at the bend [j, k]. Then,

those modules that are dominated by bi in the x(y) direction should be removed from R. This can be
done by deleting the predecessor (successor) np’s of ni in L if y′

p’s (x
′
p’s) are smaller than y′

i(x
′
i). The

(a)

b

(b)

a c
d

e
f

g

h

a

b

e

d
c

f h

g

s

t

[s, e]

[e, h]

[s, t]

FIGURE 11.5 (a) Placement P in a chip. (b) Contour R of P . (From Lin, J.-M., Chang, Y.-W., and Lin, S.-P.,
IEEE Trans. VLSI Syst., 4, 679, 2003. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 210 29-9-2008 #9

210 Handbook of Algorithms for Physical Design Automation

(c)

(e) (f)

(a) (b)

(d)

bf

(g) (h) (i)

a
b

c
d

e
f

g

h

a
b

c
d

e
f

g

h

a
b

c
d

e
f

g

h

a
b

c
d

e
f

g

h

a
b

c
d

e
f

g

h

a
b

c
d

e
f

g

h

a
b

c
d

e
f

g

h

a
b

c
d

e
f

g

h

s

t

s

t

s

t

s

t

s

t

s

t

s

t

s

t

S1 = a, D1 = [s, t] S2 = b, D2 = [a, t] S3 = d, D3 = [a, b]

S4 = e, D4 = [s, b] S5 = c, D5 = [d, t]

S7 = g, D7 = [c, t] S8 = h, D8 = [f, c]

CS = < (a, [s, t])
(b, [a, t]) (d, [a, b])
(e, [s, b]) (c, [d, t])
(f, [e, c]) (g, [c, t])
(h [f, c])

S6 = f, D6 = [e, c]

FIGURE 11.6 (a–h) Process to build a CS from a placement. (Note that the heavily shaded modules denote
those in R and the lightly shaded ones denote the visited modules.) (i) Resulting CS. (From Lin, J.-M., Chang,
Y.-W., and Lin, S.-P., IEEE Trans. VLSI Syst., 11, 679, 2003. With permission.)

process repeats until no term in the CS is available. Let W(H) denote the width (height) of a chip.
W = x′

u(H = y′
v) if nu(nv) is the node right before (behind) nt(ns) in the final L.

Figure 11.7 gives an example of the packing scheme for the CS shown in Figure 11.7a. L initially
consists of ns and nt. We first insert a node na between ns and nt because S1 = a and D1 = [s, t].
The x(y) coordinate of ba is x′

s(y
′
t). Figure 11.7b shows the resulting placement and L. Similarly nb is

inserted between na and nt in L of Figure 11.7b because S2 = b and D2 = [a, t] (see Figure 11.7c for
the resulting placement and L). After we insert a node nd between the two nodes na and nb in L of
Figure 11.7c for the third term (d, [a, b]) in the CS, the predecessor na (successor nb) of nd is deleted
because y′

a ≤ y′
d(x

′
b ≤ x′

d) (see Figure 11.7d). The process repeats for all terms in the CS, and the
resulting placement and L are shown in Figure 11.7i. The width (height) of a chip isW = x′

h(H = y′
e)

because the node right before (behind) nt(ns) is nh(ne) in L. The DSP packing scheme packs modules
correctly in O(m) time, where m is the number of modules.

The solution space of CS is bounded by (m!)2, where m is the number of modules. It should
be noted that, in addition to the number of modules, the solution space of CS also depends on the
dimensions of the modules. The above theorem considers the worst case for CS—all modules appear

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 211 29-9-2008 #10

Packing Floorplan Representations 211

(a)

CS = < (a, [s, t])(b, [a, t])(d, [a, b])(e, [s, d])
(c, [d, t])(f, [e, c])(g, [c, t])(h, [f, c]) >

bf bf

L L

(h) (i)

b
a

e
f h

d
c

gb
a

e
f

d
c

g

s

t

s

t

ns ne nf nc ng nt ns ne nh nt

L L L

(b) (c) (d)

b
a

d

b
aa

s

t

s

t

s

t

ns na nt ns na nb nt ns nd nt

bf

L L L

(e) (f) (g)

b
a

e
f

d
c

b
a

e

d
c

b
a

e

d

s

t

s

t

s

t

ns ndne nt ns ncne nt ns nfne ntnc

FIGURE 11.7 (b–i) DSP packing scheme for the CS shown in (a), where CS = 〈(a, [s, t])(b, [a, t])
(d, [a, b])(e, [s, d])(c, [d, t])(f , [e, c])(g, [c, t])(h, [f , c])〉. (From Lin, J.-M., Chang, Y.-W., and Lin, S.-P., IEEE
Trans. VLSI Syst., 11, 679, 2003. With permission.)

in the contour all the time during packing. Obviously, it is quite often that only part of the modules
are in the contour. Therefore, the practical solution space of CS is significantly smaller than (m!)2.

11.4.3 CS PERTURBATIONS

A CS can be perturbed by the following four perturbations to obtain a new CS:

• Exchange: exchange two modules in Si and Sj.
• Insert: insert the ith term between the jth and (j + 1)th terms.
• Rotate: rotate a module in Si.
• Randomize: randomize a new Di for the module in Si by choosing arbitrary neighboring

nodes in L.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 212 29-9-2008 #11

212 Handbook of Algorithms for Physical Design Automation

For the exchange and insert (rotate and randomize) operations, the first l terms of the givenCSwill not
be changed during perturbation,where l = min{i, j}−1(l = i−1). Therefore, for each perturbation,
we only need to consider the modules after the lth term and perform incremental update on the
existing packing (solution). The coordinate of module bi in Si, i = l + 1, . . . ,m, can be obtained by
inserting a node ni into two neighboring nodes nj and nk in L ifDi = [j, k]. However, if the designated
nodes do not exist in L, we randomly insert the node ni into two arbitrary neighboring nodes nq and
nr in L, and thus Di = [q, r]. Note that we can guarantee a feasible solution after each perturbation
by applying this process.

Figure 11.8 illustrates the procedure to perturb the CS using the exchange operation. If two
modules f and h in S6 and S8 are exchanged,we have the newCS shown in Figure 11.8a. Figure 11.8b
shows the placement andL for the CS before perturbation.Modules a, b, c, d, and e are in the first five
terms of theCS, andwill not be changed for this perturbationbecause l = min{6, 8}−1 = 5 here. The
coordinates of themodules in the last three terms of CS can be obtained by their correspondingbends.
(We insert nodes between two designated neighboring nodes according to their bends). Figure 11.8c
shows the resulting placement and L after we insert the node nh between the nodes ne and nc in the
L of Figure 11.8b. Then, for module g, we cannot place it at the designated bend [c, t] because there
do not exist two adjacent nodes nc and nt in the L of Figure 11.8c. Therefore, we randomly insert
ng into two arbitrary neighboring nodes in L. There are three candidate bends for placing module
g: [s, e], [e, h], and [h, t] (see the L and the placement). If we insert ng between ne and nh (the new
bend of module g becomes [e, h]), the resulting placement and L is given in Figure 11.8d. Similarly,
we intend to insert nf between nodes nf and nc for the module f in the L of Figure 11.8d. However,

CS� = 〈..., (h, [e, c]) (g, [e, h]) (f, [g, h])〉
(f)

(a)

ns ne

Exchange f and h

CS = 〈..., (f, [e, c]) (g, [c, t]) (h, [f, c])〉

CS� = 〈..., (h, [e, c]) (g, [c, t]) (f, [f, c])〉

nc ntL

ns ne nh ntL
ns ng nh ntL

ns nf ntL

(b)

(d)(c) (e)

b
a

d
c

e
h

fg

b
a

d
c

e
h

g

b
a

d
c

e
h

b
a

d
c

e
hf

g

FIGURE 11.8 Example of exchanging two modules bf and bh in S6 and S8 for the CS. (a) CS after the modules
in S6 and S8 have been exchanged. (b) L for those modules a, b, c, d, and e whose coordinates remain the same.
(c)–(e) Resulting placement and L after the modules h, g, and f have been packed, respectively. (f) Resulting
CS after the operation. (From Lin, J.-M., Chang, Y.-W., and Lin, S.-P., IEEE Trans. VLSI Syst., 11, 679, 2003.
With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 213 29-9-2008 #12

Packing Floorplan Representations 213

there do not exist two neighboring nodes nf and nc in the L of Figure 11.8d, we thus randomly insert
it between the nodes ng and nh. See Figure 11.8e for the resulting placement and L. Finally, we have
the resulting CS shown in Figure 11.8f.

11.5 SEQUENCE PAIR

Sequence pair (SP) is proposed by Murata et al. [6]. An SP is an ordered pair of module name
sequences to model general floorplans.

11.5.1 FROM A PLACEMENT TO AN SP

Figure 11.9 gives an example placementP on a chip. The following procedure encodesP to an SP. For
each module bi, we draw two lines, up-right locus and down-left locus. The up-right locus of module
bi is initially located at the upper-right corner of bi and starts to move upward. It turns its direction
alternately right and up until it reaches the upper-right corner without crossing: (1) boundaries of
other modules, (2) previously drawn lines, and (3) the boundary of the chip. The down-left locus of
bi can be drawn in the similar method. The union of these two loci and the connecting diagonal line
of bi is called the positive locus of bi. They are referred to by the corresponding module names. An
example of resulting positive loci is shown in Figure 11.10a.

With the construction of positive loci, we have that no two positive loci cross each other. Thus,
these positive loci can be linearly ordered, as well as the corresponding modules. Here we order
the positive loci from left. Let �+ be the module name sequence in this order. In Figure 11.10a,
�+ = ecadfb is obtained.

Negative loci are drawn similarly as the positive loci. The difference is that a negative locus is
the union of the left-up locus and right-down locus. Let�− be the module name sequence in the order
of the negative loci from left. An example of negative loci is shown in Figure 11.10b. Observing it
from left, �− = fcbead is obtained. Finally, the SP (�+,�−) is obtained.

11.5.2 FROM AN SP TO A PLACEMENT

Given an SP (�+,�−), the geometric relation of modules can be derived from an SP as follows.
Module bi is left (right) to module bj if bi appears before (after) bj in both �+ and �−. Module bi is
below (above) module bj if bi appears after (before) bj in �+ and bi appears before (after) bj in �−.

e

c

f

a
d

b

H

W

FIGURE 11.9 Placement P on a chip. (From Murata, H., Fujiyoshi, K., Nakatake, S., and Kajitani, Y., IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 15, 1518, 1996. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 214 29-9-2008 #13

214 Handbook of Algorithms for Physical Design Automation

e
a

c

bf

e
a

c

bf

(a) (b)

dd

FIGURE 11.10 (a) Positive loci and (b) negative loci. (From Murata, H., Fujiyoshi, K., Nakatake, S., and
Kajitani, Y., IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 15, 1518, 1996. With permission.)

To obtain the placement from an SP, we construct an m×m grid. Label the horizontal grid lines
and vertical grid lines with module names along �+ and �− from top and from left, respectively. A
cross point of the horizontal grid line of label i and the vertical grid line of label j is referred to by
(i, j). Then, rotate the resulting grid by 45◦ counterclockwise to get an oblique grid. (Figure 11.11)
Put each module bi with its center being on (i, i). Expand the separation of grid lines enough to
eliminate overlapping of modules. The resulting packing trivially satisfies the constraint implied by
the given SP. An example is shown in Figure 11.11.

Given an SP (�+,�−), the optimal packing under the constraint can be obtained in O(m2) time,
where m is the number of modules, by applying the well-known longest path algorithm for node-
weighted directed acyclic graphs. The process is given below. We first construct the horizontal-
constraint graph, a directed and node-weighted graph GH(V ,E) (where V is the set of nodes, and E
is the set of edges), based on the “left of” constraint of (�+,�−).

e

c

f

a d

b

FIGURE 11.11 Packing on an oblique grid for (�+,�−) = (ecadfb, fcbead). (From Murata, H., Fujiyoshi,
K., Nakatake, S., and Kajitani, Y., IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 15, 1518, 1996. With
permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 215 29-9-2008 #14

Packing Floorplan Representations 215

1. V : source s, sink t, and m nodes labeled with module names
2. E: (s, i) and (i, t) for each module bi, and (i, j) if and only if bi appears before (after) bj in

both �+ and �− (the “left of” constraint)
3. Node-weight: zero for s and t, width of module bi for the remaining nodes

Similarly, the vertical-constraint graphGV(V ,E) is constructed using the “below” constraint and
the height of each module.

There should be no directed cycle in both graphs. We set the x-coordinate of bi to be the longest
path length from s to i in GH. The y-coordinate of bi is set independently using GV. If two modules
bi and bj are in horizontal relation, then there is an edge between i and j in GH, and thus they do not
overlap horizontally in the resulting placement. Similarly, if bi and bj are in vertical relation, they do
not overlap vertically. Because any pair of modules are either in horizontal or vertical relation, no
two modules overlap each other in the resulting placement.

The width (height) of the chip is determined by the longest path length between the source and
the sink in GH(GV). The longest path length calculation on each graph can be done in O(m2) time,
proportional to the number of edges in the graph. For theGH andGV shown in Figure 11.12, we have
(�+,�−) = (ecadfb, fcbead). The resulting placement after the longest path length calculation is
shown in Figure 11.13.

On the basis of the longest common subsequence (LCS), two faster packing algorithms with
respective time complexitiesO(lg n) and O(lg lg n) to transform a SP to its placement are proposed
by Tang, Tian, and Wong [14] and Tang and Wong [15]. Given an SP (�+,�−), let �R

+ denotes the
reverse of�+, and define lcs(X , Y) as the length of the LCS of X and Y . That is, if Z = 〈z1, z2, . . . , zn〉
is the LCS of two weighted sequences X and Y , lcs(X , Y) = ∑n

i=1 w(zi), and w(zi) is the weight
of zi. If an SP (�+,�−) = (X1bX2, Y1bY2), then lcs(X1, Y1) is the x coordinate of the block b,
where w(i) is the width of the block i, and lcs(�+,�−) is the width of the placement. For the y
coordinate, if an SP (�+,�−) = (X1bX2, Y1bY2), then (�R

+,�−) = (XR
2 bX

R
1 , Y1bY2) and lcs(XR

2 , Y1) is
the y coordinate of the block b, where w(i) is the height of the block i, and lcs(�+,�−) is the width
of the placement. Thus, given an SP, we can compute the LCS to determine the x and y coordinates
of all blocks and the width/height of the placement. The packing times are O(lg n) and O(lg lg n)
when the balanced search tree and host tree are used to compute the LCS [14], respectively.

e

c

f

a d

b

(a) (b)

e

c

f

a d

b

FIGURE 11.12 (a) Constraint graph GH and (b) constraint graph GV (transitive edges are not shown in both
graphs for simplicity). (From Murata, H., Fujiyoshi, K., Nakatake, S., and Kajitani, Y., IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., 15, 1518, 1996. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 216 29-9-2008 #15

216 Handbook of Algorithms for Physical Design Automation

e

c

f

a

d

b

FIGURE 11.13 Best packing with the minimum area induced by (�+,�−) = (ecadfb, fcbead). (From
Murata, H., Fujiyoshi, K., Nakatake, S., and Kajitani, Y., IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
15, 1518, 1996. With permission.)

11.5.3 SP PERTURBATIONS

There are three types of pair-interchanges: (1) two module names in �+, (2) two module names both
in �+ and �−, and (3) the width and the height of a module, where the last one is for orientation
optimization.

11.6 BOUNDED-SLICELINE GRID

A BSG structure [7] contains rooms, horizontal unit segments, and vertical unit segments.
Figure 11.14 shows an example of a BSG of dimension p× q, BSGp×q. When using a BSG structure
to represent a placement, p × q must be larger or equal to the number of modules. A rectangular
space surrounded by an adjacent pair of vertical and horizontal units is called the room. Vertical unit

(p,q)

x

y

(0,0)

FIGURE 11.14 BSG of dimension p × q, BSGp×q. (From Nakatake, S., Fujiyoshi, K., Murata, H., and
Kajitani, Y., Proceedings of International Conference on Computer-Aided Design, 1996. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 217 29-9-2008 #16

Packing Floorplan Representations 217

segments define the vertical relations, while horizontal unit segments define the horizontal ones. The
placement of m modules is formulated as the room assignment of m modules by placing m modules
into different rooms. The next section describes an algorithm to transform the BSG room assignment
to the corresponding placement.

11.6.1 FROM A BSG ASSIGNMENT TO A PLACEMENT

Given a set of modules M, where |M| = n. Assuming that p × q ≥ n, an assignment of M is a
one-to-one mapping of modules into the rooms of BSGp×q. A room to which no module is assigned
is called an empty room.

We use the example shown in Figure 11.15 to explain the process of transforming the BSG
to the corresponding placement. Given four modules (Figure 11.15a) and the assignment of four
modules in the BSG (Figure 11.15b), we construct a horizontal unit adjacency graphGh(Vh,Eh) and
a vertical unit adjacency graph Gv(Vv,Ev) according to the BSG, and assign the weight of the edges
in the unit adjacency graphs. If e ∈ Eh and e crosses a nonempty room,w(e) = height of the module
assigned there. If e ∈ Ev and e crosses a nonempty room, w(e) = width of the module assigned
there. Otherwise, if e crosses an empty room or is incident on the source or the sink, w(e) = 0.
The corresponding horizontal unit adjacency graph Gh(Vh,Eh) and the vertical unit adjacency graph
Gv(Vv,Ev) to the assignment are shown in Figure 11.15c and d, respectively.

Let Gh(Vh,Eh) be the horizontal unit adjacency graph. For each vertex u ∈ Vh, lh(u) denotes the
length of the longest path from the source sh to u. Similarly in Gv, lv(u) denotes the longest path
length from sv to u ∈ Vv. We use a longest-path algorithm to determine the positions of modules. The
longest-path algorithm works in linear time of the number of edges when the input G is a directed
acyclic graph. The total number of edges of the unit adjacency graphs is between 2(pq+ p+ q) and
2(pq+ p+ q) − 4. So, the time complexity to find the longest path is O(pq).

d
c

b

a

(8, 3) (6, 9) (11, 4)
(a)

(c) (d)

(b)
(9, 8)

a

b

c

d

0

9

11

6

0

0 0

0

0

0

00

0
0

0
0

0 0

4

9

3
8

00
0

8

sh

th

tv

sv

FIGURE 11.15 (a) Input modules, (b) BSG assignment, (c) horizontal unit adjacency graph Gh(Vh,Eh), and
(d) vertical unit adjacency graph Gv(Vv,Ev). (From Nakatake, S., Fujiyoshi, K., Murata, H., and Kajitani, Y.,
Proceedings of International Conference on Computer-Aided Design, 1996. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 218 29-9-2008 #17

218 Handbook of Algorithms for Physical Design Automation

c

a

b

d

x

y

(0,0) 6 8

4

9

12

17

FIGURE 11.16 Corresponding placement of the example in Figure 11.15. (From Nakatake, S., Fujiyoshi, K.,
Murata, H., and Kajitani, Y., Proceedings of International Conference on Computer-Aided Design, 1996. With
permission.)

The following BSG-PACK procedure transforms a BSG with a given assignment to the
corresponding placement [7]:

Given an assignment of M to BSGp×q, let m be a module assigned to a room whose left (vertical)
boundary unit is Vm and bottom (horizontal) boundary unit is Hm. Then, place m such that its left bottom
is at (lv(uVm), lh(uHm)) where uVm and uHm are the vertices corresponding to the units Vm and Hm in the
vertical unit and horizontal unit adjacency graphs, respectively. The area of the packing is (lv(tv)× lh(th)).

Figure 11.16 gives the resulting placement for the assignment of Figure 11.15.

11.6.2 BSG PERTURBATIONS

It is very simple to perturb one BSG assignment to get another BSG assignment. We can first choose
two different rooms, and then interchange (swap) the contents of them to generate a new BSG
assignment.

11.7 TRANSITIVE CLOSURE GRAPH

The transitive closure of a directed acyclic graph G is defined as the graph G′ = (V ,E ′), where
E ′ = {(ni, nj): there is a path from node ni to node nj in G}. The representation, proposed by Lin
and Chang in Refs. [4,12], describes the geometric relations among modules based on two graphs,
namely a horizontal TCG Ch and a vertical TCG Cv. In this section, we first introduce the procedure
for constructing Ch and Cv from a placement. Then, we describe how to pack modules from TCG.

11.7.1 FROM A PLACEMENT TO A TCG

For two nonoverlapped modules bi and bj, bi is said to be horizontally (vertically) related to bj,
denoted by bi � bj(bi ⊥ bj), if bi is on the left (bottom) side of bj and their projections on the y(x)
axis overlap. Note that two modules cannot have both horizontal and vertical relations unless they
overlap. For two nonoverlappedmodules bi and bj, bi is said to be diagonally related to bj if bi is on
the left side of bj and their projections on the x and the y axes do not overlap. In a placement, every
two modules must bear one of the three relations: horizontal relation, vertical relation, and diagonal
relation. To simplify the operations on geometric relations, we treat a diagonal relation for modules
bi and bj as a horizontal one, unless there exists a chain of vertical relations from bi(bj), followed by

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 219 29-9-2008 #18

Packing Floorplan Representations 219

e

c d

3

7

6

4

6

6

2 3

4

4
b

nc

ne

nd

ne

nc

nd

na Cv
nb

na
Ch

nba

(a) (b)

FIGURE 11.17 (a) Placement in a chip and (b) the corresponding TCG. (From Lin, J.-M., and Chang, Y.-W.,
IEEE Trans. VLSI Syst., 13, 288, 2005. With permission.)

the modules enclosed with the rectangle defined by the two closest corners of bi and bj, and finally
to bj(bi), for which we make bi ⊥ bj(bj ⊥ bi).

Figure 11.17a shows a placement with five modules ba, bb, bc, bd, and be whose widths and
heights are (6, 4), (4, 6), (7, 4), (6, 3) and (3, 2), respectively. In Figure 11.17a, ba � bb, ba ⊥ bc, and
module be is diagonally related to module bb. There exists a chain of vertical relations formed by
modules be, bc, and bb between the two modules be and bb (i.e., bb ⊥ bc and bc ⊥ be). Therefore, we
make bb ⊥ be. Also, module be is diagonally related to module bd. However, there does not exist a
chain of vertical relations between modules be and bd , and thus we make be � bd.

TCGcan be derived from a placement as follows. For eachmodule bi in a placement, we introduce
a node ni with the weight being the width (height) in Ch(Cv). If bi � bj, we construct a directed edge
from node ni to node nj (denoted by (ni, nj)) in Ch. Similarly, we construct a directed edge (ni, nj) in
Cv if bi ⊥ bj. Given a placement with mmodules, we need to perform the above processm(m− 1)/2
times to capture all the geometric relations among modules (i.e., Ch and Cv have m(m− 1)/2 edges
in total).

As shown in Figure 11.17b, for eachmodule bi, i ∈ {a, b, c, d, e},we introduce a node ni inCh and
also in Cv. For each node ni in Ch(Cv), i ∈ {a, b, c, d, e}, we associate the node with a weight equal
to the width (height) of the corresponding module bi. Because ba � bb, we construct a directed edge
(na, nb) in Ch. Similarly, we construct a directed edge (na, nc) in Cv because ba ⊥ bc. This process is
repeated until all geometric relations among modules are defined. As shown in Figure 11.17b, each
TCG has five nodes, and there are totally ten edges in Ch and Cv (four in Ch and six in Cv).

11.7.2 FROM A TCG TO A PLACEMENT

We now present the packing method for a TCG. Given a TCG, its corresponding placement can
be obtained in O(m2) time by performing a well-known longest path algorithm on the TCG, where
m is the number of modules. To facilitate the implementation of the longest path algorithm, we
augment the given two closure graphs as follows. We introduce two special nodes with zero weights
for each closure graph, the source ns and the sink nt, and construct an edge from ns to each node with
in-degree equal to zero, and also from each node with out-degree equal to zero to nt. (Note that the
TCG augmentation is performed only for packing. It will be clear later that such augmentation is not
needed for other operations such as solution perturbation.)

Let Lh(ni)(Lv(ni)) be the length of the longest path from ns to ni in the augmented Ch(Cv).
Lh(ni)(Lv(ni)) can be determined by performing the single source longest path algorithm on the
augmentedCh(Cv) inO(m2) time, wherem is number of modules. The coordinate (xi, yi) of a module
bi is given by (Lh(ni), Lv(ni)). Because the respective width and height of the placement for the given
TCG are Lh(nt) and Lv(nt), the area of the placement is given by Lh(nt)Lv(nt).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 220 29-9-2008 #19

220 Handbook of Algorithms for Physical Design Automation

11.7.3 TCG PROPERTIES

A feasible TCG has the following three properties: (1) Ch and Cv are acyclic (2) each pair of nodes
must be connected by exactly one edge either in Ch or in Cv and (3) the transitive closure of Ch(Cv)

is equal to Ch(Cv) itself.
Property 1 ensures that a module bi cannot be both left and right to (below and above) another

module bj in a placement. Property 2 guarantees that no two modules overlap because each pair
of modules have exactly one of the horizontal or vertical relation. Property 3 is used to eliminate
redundant solutions. It guarantees that if there exists a path from ni to nj in one closure graph, the
edge (ni, nj) must also appear in the same closure graph. For example, there exist two edges (ni, nj)
and (nj, nk) in Ch, which means that bi � bj and bj � bk, and thus bi � bk. If the edge (ni, nk) appears
inCv instead of inCh, bk is not only left to bi but also abovebi. The resulting area of the corresponding
placement must be larger than or equal to that when the edge (ni, nk) appears in Ch.

On the basis of the properties of TCG, there exists a unique placement corresponding to a TCG,
and the size of the solution space for TCG is (m!)2, where m is the number of modules [4].

11.7.4 TCG PERTURBATIONS

To ensure the correctness of the new TCG after perturbation, as described in the preceding section,
the new TCGmust satisfy the aforementioned three feasibility properties. To identify a feasible TCG
for perturbation, we introduce the concept of transitive reduction edges of TCG.

An edge (ni, nj) is said to be a reduction edge if there does not exist another path from ni to nj,
except the edge (ni, nj) itself; otherwise, it is a closure edge. Because TCG is formed by directed
acyclic TCGs, given an arbitrary node ni in one TCG, there exists at least one reduction edge (ni, nj),
where nj ∈ Fout(ni). Here, we define the fan-in (fan-out) of a node ni, denoted by Fin(ni)(Fout(ni)),
as the nodes nj’s with edges (nj, ni)(ni, nj). For nodes nk, nl ∈ Fout(ni), the edge (ni, nk) cannot be a
reduction edge if nk ∈ Fout(nl). Hence, we remove those nodes in Fout(ni) that are fan-outs of others.
The edges between ni and the remaining nodes in Fout(ni) are reduction edges. For the Cv shown
in Figure 11.17a, Fout(na) = {nc, ne}. Because ne belongs to Fout(nc), edge (na, ne) is a closure edge
while (na, nc) is a reduction one.

We apply the following four operations to perturb a TCG:

• Rotation: rotate a module
• Swap: swap two nodes in both of Ch and Cv

• Reverse: reverse a reduction edge in Ch or Cv

• Move: move a reduction edge from one TCG (Ch or Cv) to the other

Rotation and swap do not change the topology of a TCG while reverse and move do. To maintain
the properties of the TCG after performing the reverse and move operations, we may need to update
the resulting graphs.

Rotation. To rotate a module bi, we only need to exchange the weights of the corresponding node ni
in Ch and Cv. TCG is closed under the rotation operation, and such an operation takes O(1) time.

Swap. To swap two nodes ni and nj, we only need to exchange two nodes in both Ch and Cv. TCG is
closed under the swap operation, and such an operation takes O(1) time.

Reverse. The reverse operation reverses the direction of a reduction edge (ni, nj) in a TCG, which
corresponds to changing the geometric relation of the two modules bi and bj. For two modules bi
and bj, bi � bj(bi ⊥ bj) if there exists a reduction edge (ni, nj) in Ch(Cv); after reversing the edge
(ni, nj), we have the new geometric relation bj � bi(bj ⊥ bi). Therefore, the geometric relation among
modules is transparent not only to the TCG representation but also to the reverse operation (i.e., the
effect of such an operation on the change of the geometric relation is known before packing); this
property can facilitate the convergence to a desired solution.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 221 29-9-2008 #20

Packing Floorplan Representations 221

To reverse a reduction edge (ni, nj) in a TCG, we first delete the edge from the graph, and then
add the edge (nj, ni) to the graph. For each node nk ∈ Fin(nj) ∪ {nj} and nl ∈ Fout(ni) ∪ {ni} in the
new graph, we shall check whether the edge (nk, nl) exists in the new graph. If the graph contains the
edge, we do nothing; otherwise, we need to add the edge to the graph and delete the corresponding
edges (nk, nl) (or (nl, nk)) in the other TCG, if any, to maintain the properties of the TCG.

Tomaintain the properties of a TCG, we can only reverse a reduction edge. Further, for each edge
introduced in a TCG, we remove its corresponding edge from the other graph. Therefore, there is
always exactly one relation between each pair ofmodules. TCG is closed under the reverse operation,
and such an operation takes O(m2) time, where m is the number of modules in the placement.

Move. The move operation moves a reduction edge (ni, nj) in a TCG to the other, which corresponds
to switching the geometric relation of the two modules bi and bj between a horizontal relation and a
vertical one. For two modules bi and bj, bi � bj(bi ⊥ bj) if there exists a reduction edge (ni, nj) in
Ch(Cv); after moving the edge (ni, nj) toCv(Ch), we have the new geometric relation bi ⊥ bj(bi � bj).
Therefore, the geometric relation among modules is also transparent to the move operation.

To move a reduction edge (ni, nj) from a TCG G to the other G′ in a TCG, we first delete the
edge from G and add it to G′. Similar to the reverse operation, for each node nk ∈ Fin(ni) ∪ {ni} and
nl ∈ Fout(nj) ∪ {nj}, we shall check whether the edge (nk, nl) exists in G′. If G′ contains the edge, we
do nothing; otherwise, we need to add the edge to G′ and delete the corresponding edge (nk, nl) (or
(nl, nk)) in G, if any, to maintain the properties of the TCG.

To maintain the properties of a TCG, we can only move a reduction edge. If we move a closure
edge (ni, nk) associated with the two reduction edges (ni, nj) and (nj, nk) in one TCG to the other,
then there exist a path from ni to nk in the two graphs, implying that bi � bk and bi ⊥ bk, which gives
a redundant solution. Further, for each edge introduced in a TCG, we remove its corresponding edge
from the other graph. Therefore, there is always exactly one relation between each pair of modules.
TCG is closed under the move operation, and such an operation takes O(m2) time, where m is the
number of modules in the placement.

11.8 TCG-S

TCG-S representation, also proposed by Lin and Chang in Refs. [5,13], combines TCG = (Ch,Cv)

and SP = (�+,�−), which uses a horizontal and a vertical TCGs as well as the packing sequence
�− to represent a placement. TCG-S tries to combine the advantages of SP and TCG and at the same
time eliminate their disadvantages.With the property of SP, faster packing and perturbation schemes
are possible. Inheriting some nice properties from TCG, the geometric relations among modules are
transparent to TCG-S (implying faster convergence to a desired solution), placement with position
constraints becomes much easier, and incremental update for cost evaluation can be realized.

With the characteristics of TCG and SP, TCG-S has the following four feasibility properties:

1. Ch and Cv are acyclic.
2. Each pair of nodes must be connected by exactly one edge either in Ch or in Cv.
3. Transitive closure of Ch(Cv) is equal to Ch(Cv) itself.
4. Packing sequence �− is the topological order of both Ch and Cv.

11.8.1 FROM A PLACEMENT TO TCG-S

For two nonoverlapped modules bi and bj, they could bear one of the horizontal, vertical, and
diagonal relations as defined in Section 11.7. If bi is horizontally (vertically) related to bj, denoted
by bi � bj(bi ⊥ bj), then bi is left to (below) bj and their projections on the y(x) axis overlap. The
diagonal relation between two modules bi and bj is also defined in Section 11.7, and is treated as a
horizontal one unless there exists a chain of vertical relations from bi(bj), followed by the modules

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 222 29-9-2008 #21

222 Handbook of Algorithms for Physical Design Automation

overlapped with the rectangle defined by the two closest corners of bi and bj, and finally to bj(bi),
for which it is considered as bi ⊥ bj(bj ⊥ bi).

Given a placement,�− can be extracted as follows.We first extract the module on the bottom-left
corner. At each iteration, we extract the left-most unvisited module b with all the modules below b
having been extracted. The process repeats until no module is left. Figure 11.18a through f illustrate
the procedure to extract a �− from the placement of Figure 11.24a. We first extract the module ba on
the bottom-left corner (Figure 11.18a), and then bb because it is the left-module with all the modules
below bb having been extract (Figure 11.18b).This process continues until nomodule is left, resulting
in �− = 〈abcdegf 〉.

After extracting �−, we can construct Ch and Cv based on �−. For each module bi in �−, we
introduce a node ni with the weight being bi’s width (height) in Ch(Cv). Also, for each module bi
before bj in �−, we introduce an edge (ni, nj) inCh(Cv) if bi � bj(bi ⊥ bj). As shown in Figure 11.18b
and g, for the first twomodules ba, bb in�−, we introduce the nodes na and nb inCh(Cv) and assign the

(a)

a

b

c

d

f

g

e

a

b

c

d

f

g

e

a

b

c

d

f

g

e

a

b

c

d

f

g

e

a

b

c

d

f

g

e

a

b

c

d

f

g

e

(b) (c)

(d) (e) (f)

nc

nb

na

Ch Cv

ng

nd

ne

nd

ne

ng

nfnc

nb

na

nf

3.5

2

2

3
1.5

5

1

1.5

2.5

3.5

2

1.5

1.5

2

(g)

Γ_ : a b c d e g f

FIGURE 11.18 (a–f) Process to extract a �− from the placement and (g) resulting TCG-S. (From Lin, J.-M.
and Chang, Y.-W., IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 23, 968, 2004. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 223 29-9-2008 #22

Packing Floorplan Representations 223

weights as their widths (heights). Also, we construct a directed edge (na, nb) in Cv because module
ba is before bb and ba ⊥ bb. The process repeats for all modules in �−, resulting in the TCG-S shown
in Figure 11.18g. Each TCG has seven nodes and 21 edges in total (eleven in Ch and ten in Cv). Note
that there exists a unique TCG-S corresponding to a placement.

11.8.2 FROM TCG-S TO A PLACEMENT

Lin and Chang propose an O(m lg m)-time packing scheme for TCG-S based on �− as well as a
horizontal and a vertical contours Rh and Rv, where m is the number of modules. The basic idea is
to process the modules based on the sequence defined in �−, and then pack the current module to
a corner formed by two previously placed modules in Rh(Rv) according to the geometric relation
defined in Ch(Cv).

11.8.3 TCG-S PERTURBATIONS

Four operations rotation, swap, reverse, and move in TCG are extended to perturbCh andCv. During
each perturbation,wemust maintain the three feasibility properties forCh andCv. Unlike the rotation
operation, swap, reverse, and move may change the configurations of Ch and Cv and thus their
properties. Further, we also need to maintain �− to conform to the topological ordering for new Ch

and Cv.

Rotation. To rotate a module bi, we exchange the weights of the corresponding node ni in Ch and
Cv. Because the configurations of Ch and Cv do not change, so does �−. Figure 11.19b shows the
resulting TCG-S and placement after rotating the module g shown in Figure 11.19a. Notice that the
new �− is the same as that in Figure 11.19a. TCG-S is closed under the rotation operation, and such
an operation does not change the topology of the TCG and �−.

Swap. Swapping ni and nj does not change the topologies of Ch and Cv. Therefore, we only need to
exchange bi and bj in �−. Figure 11.19c shows the resulting TCG-S and placement after swapping
the nodes nc and ng shown in Figure 11.19b. Notice that the modules bc and bg in �− in Figure 11.19c
are exchanged. TCG-S is closed under the Swap operation, and such an operation takes O(1) time.

Reverse. To reverse a reduction edge (ni, nj) in one TCG, we first delete the edge (ni, nj) from
the graph, and then add the edge (nj, ni) to the graph. To keep Ch and Cv feasible, for each node
nk ∈ Fin(nj) ∪ {nj} and nl ∈ Fout(ni) ∪ {ni} in the new graph, we have to keep the edge (nk, nl) in
the new graph. If the edge does not exist in the graph, we add the edge to the graph and delete the
corresponding edge (nk, nl) (or (nl, nk)) in the other graph. To make �− conform to the topological
ordering of new Ch and Cv, we delete bi from �− and insert bi after bj. For each module bk between
bi and bj in �−, we shall check whether the edge (ni, nk) exists in the same graph. We do nothing
if the edge (ni, nk) does not exist in the same graph; otherwise, we delete bk from �− and insert it
after the most recently inserted module. Figure 11.19d shows the resulting TCG-S and placement
after reversing the reduction edge (nd, ne) of the Cv in Figure 11.19c. Because there exists no module
between bd and be in �−, we only need to delete bd from �− and insert it after be, and the resulting
�− is shown in Figure 11.19d. TCG-S is closed under the reverse operation, and such an operation
takes O(m) time, where m is the number of modules.

Move. To move a reduction edge (ni, nj) from a TCG G to the other G′, we delete the edge from G
and then add it toG′. Similar to reverse, for each node nk ∈ Fin(ni)∪{ni} and nl ∈ Fout(nj)∪{nj} inG′,
we must move the edge (nk, nl) to G′ if the corresponding edge (nk, nl) (or (nl, nk)) is in G. Because
the operation changes only the edges in Ch or Cv but not the topological ordering among nodes,
�− remains unchanged. Figure 11.19e shows the resulting TCG-S and placement after moving the
reduction edge (na, ne) from Cv to Ch in Figure 11.19d. Notice that the resulting �− is the same as
that in Figure 11.19d. TCG-S is closed under the move operation, and such an operation takes O(m)

time, where m is the number of modules. In particular, �− remains the same after the operation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 224 29-9-2008 #23

224 Handbook of Algorithms for Physical Design Automation

a

b

f
g

ce

d

5 1.5

2.5

2

2

2
3

1.5

3.5

2

1

3.5
1.5

1.5

nf

nd

ng

ne

nc
nancCh

nd

ng

nb

ne

na

nb

nf

CV

(d)

Γ_: abgedcf

a

b

c

d

e
f

g

(b)

3.5

2

2

3

5
3.5

1.5

2

2 1
1.5

nf

ne

nc

nd

ngna
ngCh

nc

nb

nd

na

nb

nf

CV

Γ_: abcdegf

b
fg

c
e

d

a

2

2

3

2

5
2

1.5

1.53.5 1.5

1 nf

nd

ng

ne nc
nan

cCh

nd

ng

nb ne

na

nb

nf

CV

Γ_: abgedcf

(e)

a

b d

e
f

g

c3.5

2

2

5

3

1.5

2

1.5
1

3.5
2

nf

ne

ng

nd

nc
nancCh

ng

nb

nd

na

nb

nf

CV

(c)

Γ_: abgdecf

a

b

c

d

e
f

g

(a)

3.5

2

2

3

1

5

1.5

3.5

2

1.5

2

nf

ne

nc

nd

ngna
ngCh

nc

nb

nd

na

nb

nf

CV

Γ_: abcdegf

2.5 1.5

2.5
1.5

1.5
ne

1.52.5
1.5

ne

1.5
ne

1.5

2.5

3.5

FIGURE 11.19 Four types of perturbation. (a) The initial TCG-S and placement, (b) resulting TCG-S and
placement after rotating the module bg shown in (a), (c) resulting TCG-S and placement after swapping the
nodes nc and ng shown in (b), (d) resulting TCG-S and placement after reversing the reduction edge (nd , ne)
shown in (c), and (e) resulting TCG-S and placement after moving the reduction edge (na, ne) from the Cv of
(d) to Ch. (From J.-M. Lin and Y.-W. Chang, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 23, 968,
2004. With permission.)

11.9 ADJACENT CONSTRAINT GRAPH

The ACG is proposed by Zhou and Wang [8] to model general floorplans. It tries to incorporate the
advantages of both the adjacency graph and the constraint graph of a floorplan: edges in an ACG are
between modules close to each other, thus the physical distance of two modules can be measured
directly in the graph; the floorplan area and module positions can be simply found by longest path
computations because an ACG is a constraint graph.

The idea behind the constraint graph is simple: a node represents a module and an edge in the
horizontal graph represents the “left to” relation and an edge in the vertical graph represents the
“below” one. The adjacency graph, on the other hand, is an undirected graph and has one edge
between each pair of adjacent modules. As an illustration, for a floorplan given in Figure 11.20a, its
constraint graphs are shown in Figure 11.20b, and its adjacency graph in Figure 11.20c.

ACG is defined as a constraint graph that has exactly one relation (horizontal or vertical) between
every pair of nodes and has no transitive edge or cross to prevent redundancy.Here, a cross is defined
as a subgraph on four nodes a, b, c, d such that edges (a, b), (c, d) are of one type (e.g., vertical edges)
while (a, c), (b, c), (a, d), (b, d) are of the other type (e.g., horizontal edges). The edges in an ACG
can be grouped according to the relations they represent, called groupsH and V . From the definition,
there are paths between any two modules within exact one group. Figure 11.20d shows the ACG of
the placement in Figure 11.20a.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 225 29-9-2008 #24

Packing Floorplan Representations 225

a

b
d

e

c
H

V

(a) (b) (c) (d)

na

ne

ne
ne

ne

nc

ndnb

na nc

ndnb

na

na

nc

nc

nd

nd
nb

nb

FIGURE 11.20 (a) Floorplan, (b) constraint graph, (c) adjacency graph, and (d) ACG. (From Zhou, H. and
Wang, J., Proceedings of International Conference on Computer Design, 2004. With permission.)

11.9.1 ACG PROPERTIES

The directed edges in an ACG form a total order on the nodes. In other words, the nodes can be
arranged in a line such that all the edges are from left to right. The nodes can be doubly linked in
a linear order (the total order). Edges are all directed from left to right. Each edge keeps its two
end nodes and is kept in one edge list at each end node. Each node maintains four linked lists of
edges: one for incomingH edges, one for outgoingH edges, one for incoming V edges, and one for
outgoing V edges. The edges in each list are ordered according to the distances between end nodes:
shorter edges come first. The structure is illustrated by an example in Figure 11.21a, where edges
are shown in arcs: the edges above the node line are in group H and those below are in group V .
Notice that node nd has one incoming H edge from na, one outgoing H edge to ne, two incoming
V edges from nb and nc, and no outgoing V edge. These four lists of edges have direct geometrical
meanings, each connects to constrainingmodules in one direction: left, right, top, or bottom. And the
edge orders in the lists will be either clockwise or counterclockwise, based on how H and V edges
are interpreted. For example, if the H edges are interpreted as “left to” and the V edges as “below,”
the geometrical interpretation of Figure 11.21a is illustrated in Figure 11.21b, where H edges are
ordered counterclockwise and V edges are ordered clockwise.

On the basis of the ACG data structure, it is simple and efficient to check and eliminate crosses.
The patterns of a cross in the data structure are shown in Figure 11.22. Note that any node has edges
to the three other nodes.

If the cross formed on na, nb, nc, nd is minimal, that is, no other cross exists on nodes between
na and nd , the nodes nb, nc, nd are consecutive among the neighbors of na; that is, except nc, no node
between nb and nd is connecting to na. Thus, if we follow the edges of the node na in consecutive
order, an edge type pattern VHH or HVV implies a cross. We can verify that no cross exists by
running the checking process on edges starting from every node. Verifying that no cross exists can
be done in linear time in terms of the number of edges.

Total symmetry is another property of ACG. Given an ACG data structure, it is still a valid
ACG when the node order is reversed or the edge groups H and V are swapped. This symmetry
comes directly from the symmetry in the geometrical relations represented. The four geometrical

(a) (b)

a b c d e a
b c

d

e

FIGURE 11.21 (a) ACG structure and (b) geometrical relations. (From Zhou, H. and Wang, J., Proceedings
of International Conference on Computer Design, 2004. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 226 29-9-2008 #25

226 Handbook of Algorithms for Physical Design Automation

b c da b c da

FIGURE 11.22 Patterns of a cross in an ACG. (From Zhou, H. and Wang, J., Proceedings of International
Conference on Computer Design, 2004. With permission.)

relations, left, right, up, and down, are symmetrical with each other. On the basis of symmetry, every
provable result concerning edges in an ACG also implies the other three dual results. It simplifies our
presentation in the sequel. If a result concerning edges in an ACG is correct, the result by exchanging
left and right (and forward and backward) or H and V is also correct. Given the order on nodes, the
information represented by V edges is redundant to that represented by H edges. For example, in
Figure 11.21a, with the node order, one group of edges can be constructed from the other group to
satisfy the ACG definition. However, keeping both groups of edges facilitates the maintenance and
operations on ACG. For example, without one group of edges, it is very hard to check whether the
other group belongs to a valid ACG. In an ACG, any two consecutive V neighbors from a given node
are connected by an H edge.

11.9.2 ACG PERTURBATIONS

There are two types of perturbations for ACG, appending and swap.

Appending. Appending is an operation to add a new node to the left or the right of a given ACG.
We only discuss appending a node to the left of an ACG, and appending a node to the right of an
ACG can be done in a similar method. This operation takes constant time for adding one edge and
works as follows. First, the new node is added to the left of the node linked list. Then edges from
the new node to some other nodes are added iteratively. In each iteration, the closest node that does
not have a relation with the new node is identified and a suitable type of edge is then added between
them. Because the type pattern VHH or HVV gives a cross, once the edge type changes, it needs
to keep changing. The key operation in each iteration, that is, identifying the closest node not yet
having a relation with the new node, can be done in constant time. At the beginning, when no edge
is on the new node, it has no relation with its right node. During the iterations, when the new node
has already some edges, a relation may be implied by a path from the new node to another node.

When the new node has only V edges, the firstH neighbor of its furthestV neighbor is the closest
node not having a relation with it. When the new node has last two edges of types V , H, there must
be an H edge from the V neighbor to theH neighbor, and the closest node not having a relation with
the new node is connected to the V neighbor next to thatH edge. The appending process costs linear
time and storage complexity is the number of added edges.

Swap. Swap is an operation that exchanges the positions of two adjacent nodes in the node list.
Because an ACG requires edges directed from left to right, the original edge must be removed and
a new edge is added to the other group. Because edges in one group represent horizontal relations
and those in the other group represent vertical relations, swap will change the geometrical relation
of two modules from horizontal to vertical, or vice versa. Suppose a swap is done on nodes na, nb
and the original edge (na, nb) is of type H. After the swap, edge (na, nb) is deleted from groupH and
a new edge (nb, na) is added to group V . All H paths through (na, nb) are then broken, which may
leave some node pairs without any relation. On the other hand, with the new edge (nb, na) is added,
new V paths may formed, which may make some V edges become transitive. The swap operation
will repair these damages and make the ACG valid again. First, consider the transitive edges formed

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 227 29-9-2008 #26

Packing Floorplan Representations 227

in V group. Based on the way the swap operation is defined, the transitive edges only appear locally.
When edge (nb, na) is swapped into group V , transitive edges may only be formed from nb’s left V
neighbors to na or from nb to na’s right V neighbors.

On the basis of the result, we only need to check nb’s V left neighbors to see whether they have
V edges to na. If so, these edges need to be deleted. Similarly, we will also check na’s V neighbors
to see whether they have V edges from nb, and if so, delete them. Then, the effects of deleting edge
(na, nb) from group H are considered. Two nodes will lose their relation if originally there is only
one H path that goes through edge (na, nb). The repair can also be done locally. It is easy to see that
a path broken by deleting (na, nb) can be restored by connecting ba with the node after nb or nb with
the node before na. Furthermore, the path is the only one between the two nodes if and only if the
path between na and the node after nb and the path between nb and the node before na are the only
paths. Therefore, we need only to consider na with nb’s right H neighbors and nb with na’s left H
neighbors. However, before adding an H edge between two nodes, we must make sure that there is
no other H path between them. For each left H neighbor of na, we will find its right H neighbor
before na and check whether that node has nb as its V neighbor. If so, we will add an H edge from
the current left neighbor of na to nb. Similar thing can be done with nb’s right H neighbors. It should
be noted that a swap may introduce crosses in the graph.

11.10 DISCUSSIONS

Like the NPE (normalized polished expression) to the skewed slicing tree [2], B∗-tree is equivalent
to O-tree, and TCG is equivalent to SP. Nevertheless, their neighborhood structures and operations
distinguish them from each other in floorplan design.

11.10.1 COMPARISONS BETWEEN O-TREES AND B∗-TREES

B∗-tree is equivalent to O-tree, yet with faster operations, simpler data structures, and greater flexi-
bility in handling various placement constraints (and higher scalability for very large-scale designs;
see Refs. [16–18].

To transform an O-tree into the correspondingB∗-tree, we first represent the O-tree using the left-
child, right-sibling binary tree [19]. Figure 11.23b shows an example of the left-child, right-sibling
tree representing the O-tree in Figure 11.23a. Then, we delete the root and make the left child of
the root as the root of the B∗-tree, and the resulting B∗-tree is obtained as shown in Figure 11.23c.
Similarly, given a B∗-tree, we can add a root and transform the B∗-tree (left-child, right-sibling tree)
to the corresponding O-tree.

Despite the equivalence, there is an intrinsic difference between these two representations. A
B∗-tree can directly model a two-dimensional packing in a single binary tree while an O-tree only

Root Root

na nb nf

ngnc

nd

ne

nknjni

nl

nh

na nb nf nh

na

nb

nfncni

nl nj nd ng

ne

(a) (b) (c)
nk

ngnc

nd

ne

nknjni

nl

nh

FIGURE 11.23 (a) O-tree modeled, (b) O-tree, by using the left-child, right-sibling binary tree, and (c)
corresponding B∗-tree.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 228 29-9-2008 #27

228 Handbook of Algorithms for Physical Design Automation

explicitly represents a one-dimensional packing. Therefore, as mentioned earlier, only one B∗-tree
is sufficient for floorplan design while the O-tree operates on both a horizontal and a vertical trees.
Further, the operation on an O-tree is not as efficient as that on a B∗-tree because the O-tree is not a
binary tree and needs to keep the encoded tuple (S,π).

The floorplan design algorithm presented in Ref. [10] is deterministic by perturbing an O-tree
systematically. The perturbation procedure is to delete a module from the O-tree, and then insert it
into the best position based on its evaluation.Owing to the irregular structure, the candidate positions
for inserting a node are limited to the external nodes (see Figure 11.3) to facilitate the updations of
the encoding tuple. Inserting a node to a position other than external positions makes the update
of the encoding tuple more difficult and time consuming. The inflexibility might cause the O-tree
to deviate from the optimal during solution perturbations, and thus inevitably limit the quality of a
floorplan design. This inflexibility might be a major drawback of the O-tree representation, yet it
can be fixed in B∗-trees.

Further, searching and updating the encoding tuple, which are basic operations for the primitive
search, insertion, and deletion in an O-tree, all takes linear time. In contrast, the search and insertion
operations in an B∗-tree take only constant time.

11.10.2 EQUIVALENCE OF SP AND TCG

SP and TCG are equivalent, too. We can transform between TCG and SP as follows: Let the fan-in
(fan-out) of a node ni, denoted by Fin(ni)(Fout(ni)), be the nodes nj’s with edges (nj, ni)((ni, nj)).
Given a TCG, we can obtain a sequence �+ by repeatedly extracting a node ni with Fin(ni) = ∅
in Ch and Fout(ni) = ∅ in Cv, and then deleting the edges (ni, nj)’s ((nj, ni)’s) from Ch(Cv) until no
node is left in Ch(Cv). Similarly, we can transform a TCG into another sequence �− by repeatedly
extracting the node ni with Fin(ni) = ∅ both in Cv and Ch, and then deleting the edges (ni, nj)’s
from both Ch and Cv until no node is left in Ch and Cv. Given an SP = (�+,�−), we can obtain a
unique TCG = (Ch,Cv) from the two constraint graphs of the SP by removing the source, sink, and
associated edges. For example, the SP of Figure 11.24b is equivalent to the TCG of Figure 11.24c.
It is proved in Ref. [4] that there exists a one-to-one correspondence between TCG and SP.

Although TCG and SP are equivalent, their properties and induced operations are significantly
different. Both SP and TCG are considered very flexible representations and construct constraint
graphs to evaluate their packing cost. �− of an SP corresponds to the ordering for packing modules
to the bottom-left direction and thus can be used for guiding module packing. However, like most
existing representations, the geometric relations amongmodules are not transparent to the operations
of SP (i.e., the effect of an operation on the change of module relation is not clear before packing),

(c)

nc

nb

na
ng

ne

nf
nc

nf

nd

ne

ng
Cv

na

nb

nd

Ch

3.5

2

2

3
1.5

5

1

1.5

2.5

3.5

2

1.5

1.5

2(a)

(b)

a

b

c

d

f

g

e

(cbfedag, abcdegf)

FIGURE 11.24 (a) Placement, (b) corresponding SP of (a), and (c) corresponding TCG of (b).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 229 29-9-2008 #28

Packing Floorplan Representations 229

and thus we need to construct constraint graphs from scratch after each perturbation to evaluate
the packing cost; this deficiency makes SP harder to converge to a desired solution and to handle
placement with constraints (e.g., boundary modules, preplaced modules, etc).

In contrast to SP, the geometric relations among modules are transparent to TCG as well as its
operations, facilitating the convergence to a desired solution. Further, TCG supports incremental
update during operations and keeps the information of boundary modules as well as the shapes and
the relative positions of modules in the representation. Unlike SP, nevertheless, we need to perform
extra operations to obtain the module packing sequence and an additional O(m2) time to find the
reduction edges in the constraint graph for some operations.

For both SP andTCG, the packing scheme by applying the longest path algorithm is time consum-
ing because all edges in the constraint graphs are processed, even though they are not on the longest
path. As shown in Ch of Figure 11.24c, if we add a source with zero weight and connect it to those
nodes with zero in-degree, the x coordinate of each module can be obtained by applying the longest
path algorithmon the resulting directed acyclic graph. Therefore,we have xg = max{x′

a, x
′
b, x

′
c, x

′
d, x

′
e}.

To reduce the number of modules considered for placing a module, the concept of a horizontal (ver-
tical) contour, denoted by Rh(Rv), is proposed by-Lin and Chang in Refs. [5,13]. Rh(Rv) is a list of
modules bi’s for which there exists no module bj with yj ≥ y′

i(xj ≥ x′
i) and x

′
j ≥ x′

i(y
′
j ≥ y′

i); that is,
Rh(Rv) is a list of modules in the horizontal (vertical) contour. For the placement of Figure 11.24a, for
example, Rh = 〈bc, bf 〉 and Rv = 〈bg, bd, be, bf , bc〉. To place a new module, we only need to consider
the bends (and thus the modules) in the contour, and thus the packing time can be improved.

Suppose we have packed the modules ba, bb, bc, bd, and be based on the sequence �−. Then, the
resulting horizontal contour Rh = 〈bc, be, bd〉. Keeping Rh, we only need to traverse the contour from
be, the successor of be (in terms of in-order search tree traversal), to the last module bd , which have a
horizontal relation with bg (because there is an edge (nd, ng) in Ch). Thus, we have xg = x′

d . Packing
modules in this way, we only need to consider xe and xd , and can get rid of the computation for a
maximum value, leading to a faster packing scheme.

11.11 3D FLOORPLAN REPRESENTATIONS

Recently, dynamically reconfigurable FPGAs are developed to improve logic capacity by time-
sharing mechanism. We may use 3D-space (x, y, t) to model a dynamically reconfigurable system.
The x and y coordinates represent the 2D-plane of FPGA resources (spatial dimension), while the
t coordinate represents the time axis (temporal dimension). Each reconfigurable unit operations
(RFUOP) (or task) (the execution unit in a reconfigurable FPGA) is modeled by a rectangular box
(module).We may denote each module as a 3D box with spatial dimensions x and y and the temporal
dimension t.

Figure 11.25a shows a program with four parts of codes mapped into RFUOPs. Because of the
placement constraint, we may not load all the modules into the device at the same time. Therefore,
how to place these modules into the reconfigurable unit (RFU) becomes a 3D placement problem
as shown in Figure 11.25b. The objective is to allocate modules to optimize the area and execution
time and to satisfy specified constraints.

To deal with the 3D floorplanning problem, a few 3D floorplan representations extending the
2D floorplan ones are proposed. For example, sequence triple [20] and sequence quintuple [20]
are extensions of sequence pair for 2D-packing. K-tree [21], T-tree [22], and 3D-sub TCG [23] are
extensions of O-tree, B∗-tree, and TCG for 2D-packing, respectively. In the following sections, we
briefly introduce T-tree, sequence triplet, and 3D-subTCG for 3D-packing.

11.11.1 T-TREE

T-trees are inspired by B∗-trees, allowing each node with at most three children that represent the
dimensional relationship among modules, as shown in Figure 11.26a. The key insight why it uses a

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 230 29-9-2008 #29

230 Handbook of Algorithms for Physical Design Automation

RFUOP 1

RFUOP 2

RFUOP 3

RFUOP 4

(a) (b)

4
3.5

3
2.5

2
1.5

1
0.5

0
6

5
4

3
2

1
0 0

1
2

3
4

5

WidthHeight

RFUOP 4

RFUOP 3

RFUOP 2

RFUOP 1

D
ur

at
io

n

FIGURE 11.25 (a) Running program and (b) 3D-placement of the running program. (From Yuh, P.-H., Yang,
C.-L., Chang, Y.-W., and Chen, H.-L., Proceedings of Asia and South Pacific Design Automation Conference,
2004. With permission.)

ternary tree is that for a 3D space, a task vi may have at most three tasks, one in each dimension, that
are adjacent to vi. That is, task vj in the X+ direction of vi, task vk in the Y+ direction of vi, and task
vl in the T+ direction of vi, as shown in Figure 11.26b. Thus, to model the relationship among these
tasks, we treat vi as the root and vj, vk, and vl are the children of vi. Because we have at most three
relations in the 3D space, each parent has at most three children.

The T-tree represents the geometric relationships between two modules as follows. If node nj is
the left child of node ni, module vj must be placed adjacent to module vi on the T+ direction, i.e.,
tj = ti + Ti. If node nk is the middle child of node ni, module vk must be placed in the Y+ direction
of module vi, with the t-coordinate of vk equal to that of vi, i.e., tk = ti and yk ≥ yi +Hi. If node nl is
the right child of node ni, module vl must be placed on the X+ direction of module vi, with the t- and
y-coordinates equal to those of vi, i.e., tl = ti and yl = yi.

j

i

lk

t j = t i + Ti tk = t i, yk ≥ yi + Hi t l = t i, y l = yi

Left child Right childMiddle child

(a) (b)

20

15

10

T
im

e

5

HeightWidth

0
0

5
10

15
20

25 0 5 10 15 20 25

vI

vj

vk

vi

FIGURE 11.26 (a) Structure of a T-tree and (b) three direct relations in a 3D space. (From Yuh, P.-H., Yang,
C.-L., and Chang, Y.-W., Proceedings of International Conference on Computer-Aided Design, 2004. With
permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 231 29-9-2008 #30

Packing Floorplan Representations 231

11.11.2 SEQUENCE TRIPLET

Sequence triplet ST = (�1,�2,�3) is an extension of sequence pair. In sequence triplet, every pair of
modules is assigned with a unique topology. Let the function �−1

i (n) denote the position of module
n in sequence �i. The topology of modules a and b is assigned by the following rules:

RL-topology:
�−1

1 (a) < �−1
1 (b) and �−1

2 (a) > �−1
2 (b) and �−1

3 (a) < �−1
3 (b) → b is right of a

�−1
1 (a) > �−1

1 (b) and �−1
2 (a) > �−1

2 (b) and �−1
3 (a) < �−1

3 (b) → b is right of a

FR-topology:
�−1

1 (a) < �−1
1 (b) and �−1

2 (a) < �−1
2 (b) and �−1

3 (a) < �−1
3 (b) → b is rear of a

AB-topology:
�−1

1 (a) < �−1
1 (b) and �−1

2 (a) > �−1
2 (b) and �−1

3 (a) > �−1
3 (b) → b is below of a

To find the corresponding3D placement for a sequence triplet, we first decode it to RL-, FR-, and
AB-topology according to the above rules. Similar to the packing of sequence pair, then, three con-
straint graphsGRL,GFR, andGAB are constructed. Then, all module locations can be determined by the
longest path length to corresponding nodes. As an example, Figure 11.27 illustrates the 3D-packing
with the topology decoded from the sequence triplet (bac, acb, abc).

11.11.3 3D-SUBTCG

3D-subTCG contains three transitive graphs, Ch, Cv, and Ct . For each module vi, it introduces one
node ni in each graph. If vi � vj(vi ⊥ nj), it constructs one edge (ni, nj) in Ch(Cv). If vi must be
executed before vj, it introduces an edge (ni, nj) in Ct .

Figure 11.28 shows a placement with six modules ba, bb, bc, bd, be, and bf whose widths, heights,
and durations are (5, 1, 4), (3, 5, 4), (3, 2, 3), (3, 2, 1), (2, 2, 1), and (2, 2, 3), respectively. Figure 11.29
shows the 3D-subTCG corresponding to the placement of Figure 11.28. The value associated with
a node in Ch (Cv or Ct) gives the width (height or duration) of the corresponding module, and the
edge (ni, nj) in Ch (Cv or Ct) denotes the horizontal (vertical or temporal) relation of vi and vj. In
Figure 11.29, because module vc(va) is left to (below) vb(vf), there exists an edge (nc, nb)(na, nf) in
Ch(Cv). Similarly, because module va must be executed before task vd , there exists an edge (na, nd) in
Ct . To obtain the coordinate of each module, we apply the longest path algorithm to the three graphs
in a 3D-subTCG.

a

b

c

FIGURE 11.27 3D packing of the sequence triplet (bac, acb, abc).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 232 29-9-2008 #31

232 Handbook of Algorithms for Physical Design Automation

5

4

3

2

1

0

6

4
2

0 0
2

4
6

8
10

a

b

c

e

f
d

12

WidthHeight

D
ur

at
io

n

FIGURE 11.28 3D placement. The corresponding 3D-subTCG is given in the Figure 11.29. (FromYuh, P.-H.,
Yang, C.-L., Chang, Y.-W., and Chen, H.-L., Proceedings of Asia and South Pacific Design Automation
Conference, 2004. With permission.)

3

3

2

2
22

2

2

4 34
1

1
35

1
3

5

nd

nc nb

ne

na nb

nb

nc

nc

nf

nf

na nand

nd

ne
nenf

Ch Cv C t

FIGURE 11.29 Corresponding 3D-subTCG of Figure 11.28. (From Yuh, P.-H., Yang, C.-L., Chang, Y.-W.,
andChen, H.-L.,Proceedings of Asia and SouthPacificDesignAutomationConference, 2004.With permission.)

On the basis of previous works [22,23], the T-tree and 3D-subTCG outperform sequence triplet.
Further, the T-tree outperforms the 3D-subTCG in terms of packing efficiency and volume optimiza-
tion, due to its relatively simpler tree representation and good neighborhood structure. Nevertheless,
the 3D-subTCG has the following three advantages over the T-tree:

• 3D-subTCG is a fully topological representation that can represent the general topological
modeling of tasks, and thus contains a complete solution structure for searching the optimal
floorplan/placement solution. In contrast, T-tree is a partially topological representation and
can only represent part of the compacted 3D floorplanswhere each task must be compacted
to the origin.

• Because the relation between each pair of tasks is defined in the representation, thegeometric
relation of each pair of tasks is transparent to both the 3D-subTCG representation and its
induced operations. Thus, we can perform the feasibility detection before perturbation
to guarantee the satisfaction of precedence constraints. In contrast, T-tree is a partially
topological representationwhere some geometric relations among tasks cannot be obtained
directly from representation. Thus, it is harder to detect the violations of the precedence
constraints before packing and a postprocessing is required to guarantee the feasibility of
the solutions after packing.

• Because the geometric relations among tasks can be directly obtained from the representa-
tion, 3D-subTCGmay bemore suitable for handling various practical placement constraints.
For example, because the input/output blocks are on the boundary of the reconfigurable
devices, such as the Xilinx Virtex, some tasks are desired to be placed on the boundary

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 233 29-9-2008 #32

Packing Floorplan Representations 233

of a device. We can easily detect if a task is on the boundary of the device by observing
the in-degree/out-degree of its corresponding node in Ch or Cv. We can also detect if a task
starts at time step zero on anRFUby observing the in-degree/out-degree of its corresponding
node in Ct.

11.12 APPLICATION IN HANDLING OTHER CONSTRAINTS
IN FLOORPLAN DESIGN

A few floorplan constraints have been studied in the literature, and the B∗-tree representation has
been shown to be successful for handling these constraints. As it is not our intension here to exhaust
all floorplan constraints, we shall in the following subsections give the handling of two example
popular floorplan constraints: boundary constraints [24] and rectilinear modules [25] based on the
B∗-tree representation.

11.12.1 BOUNDARY CONSTRAINTS

The boundary-constrained modules are modules that must be placed along boundaries in the final
placement. A module can be placed along the bottom (left) boundary if there exists no module
below (left to) the module in the final placement. Similarly, a module can be placed along the top
(right) boundary if there exists no module above (right to) the module in the final placement. By
the definition of a B∗-tree, the left child nj of a node ni represents the lowest adjacent module bj to
the right of bi (i.e., xj = xi + wi). The right child nk of ni represents the lowest visible module bk
above bi and with the same x coordinate as bi (i.e., xk = xi). Therefore, we have the following four
properties [24] to guarantee that there exists no module below, left to, right to, and above the module
along the bottom, left, right, and top boundaries, respectively.

1. Node corresponding to a bottom boundary module cannot be the right child of others
2. Node corresponding to a left boundary module cannot be the left child of others
3. Node corresponding to a right boundary module cannot have a left child
4. Node corresponding to a top boundary module cannot have a right child

The aforementioned properties must be satisfied to guarantee a feasible B∗-tree with boundary-
constrained modules. However, they only describe the necessary conditions for a B∗-tree with the
boundary constraints, that is, a module may not be placed along the designated boundary if the
corresponding property is satisfied. To guarantee that modules are placed at designated boundaries,
sufficient conditions are studied in Ref. [25] for a B∗-tree with boundary constraints. The following
conditions show the feasibility conditions of a B∗-tree with the bottom, left, top, and right constraints
(Figure 11.30):

Leftmost branch Rightmost branchn0

b1

b1b0

b3

b4

b8

b9b6

b5

b2

b2

b9
b7 b8

b4
b5

b3

b6
b7

Bottom-left branch Bottom-right branch

FIGURE 11.30 Boundary modules and their corresponding B∗-tree branches.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 234 29-9-2008 #33

234 Handbook of Algorithms for Physical Design Automation

• Bottom-boundary condition: The nodes corresponding to the bottom boundary modules
must be in the leftmost branch of a B∗-tree.

• Left-boundary condition: The nodes corresponding to the left boundary modules must be
in the rightmost branch of a B∗-tree.

• Right-boundary condition: For the right boundary modules, their corresponding nodes are
in the bottom-left branch of a B∗-tree with the left child for each node in the path being
deleted.

• Top-boundary condition: For the top boundary modules, their corresponding nodes are in
the bottom-right branch of a B∗-tree with the right child for each node in the path being
deleted.

Given an initial B∗-tree, the simulated annealing algorithm perturbs the B∗-tree to get a new
one. Then, the four feasibility conditions of B∗-trees are checked. If any condition is violated, it
transforms an infeasible B∗-tree into a feasible one. As a result, a placement satisfying the boundary
constraints can be obtained.

11.12.2 RECTILINEARMODULES

First, we show how to apply B∗-tree to find a feasible placement with L-shaped modules. Let bL
denote an L-shaped module. bL can be partitioned into two rectangular submodules by slicing bL
along its middle vertical boundary. As shown in Figure 11.31a, b1 and b2 are the submodules of bL,
and we say b1, b2 ∈ bL.

To ensure that the left submodule b1 and the right submodule b2 of an L-shaped module bL abut,
Wu, Chang, and Chang impose the following location constraint (LC for short) for b1 and b2 in
Ref. [26]:

LC: Keep b2 as b1’s left child in the B∗-tree.

The LC relation ensures that the x-coordinate of the left boundary of b2 is equal to that of the right
boundary of b1.

The contour data structure is kept carefully to solve the misalignment problem. When
transforming a B∗-tree to its corresponding placement, it updates the contour to maintain its top
profile sequence as follows. Assume that b1 and b2 are the respective left and right submodules of an
L-shaped module bL, and they are misaligned. When processing b2, b1 must have been placed. We
can classify the misalignment into two categories and adjust them as follows:

(a) (c) (d)(b)

(e) (g) (h)(f)

b2

b2

b2

b2

b2

b2

b2
b2

b1 b1

b1

b1

b1
b1

b1

b1

FIGURE 11.31 Eight situations of an L-shaped module. Each is partitioned into two parts by slicing it along
the middle vertical boundary.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 235 29-9-2008 #34

Packing Floorplan Representations 235

Top profile

Contour

(a) (b)

Top profile

Contour

b2

b2

b1 b1

FIGURE 11.32 Placing two submodules b1 and b2 of an L-shaped module. (a) If the contour is lower than the
top profile sequence at b2, then we pull b2 up to meet the top profile sequence. (b) If the contour is higher than
the top profile sequence at b2, then we pull b1 up to meet the top profile sequence.

1. Basin: The contour is lower than the top profile sequence at the position of the current
submodule b2 (Figure 11.32a). In this case, we pull b2 up to conform to the top profile
sequence of the L-shaped module bL.

2. Plateau: The contour is higher than the top profile sequence at the position of the current
submodule b2 (Figure 11.32b). In this case, we pull b1 up to conform to the top profile
sequence of bL. (Note that b2 cannot be moved down because the compaction operation
makes b2 be placed right above another module.)

It is clear that each of the adjustment can be performed in constant time with the contour data
structure.

For each L-shaped module bi, there are eight orientations by rotation and flip, as shown in
Figure 11.31. To preserve the LC relation and keep it in the B∗-tree, we repartition bi into two
submodules after it is rotated or flipped and keep the LC relation between them. Figure 11.31 shows
the submodules after repartitioning.As shown in the figure, an L-shapedmodule is always partitioned
by slicing it along themiddle vertical boundary.After repartitioning,we should update the top profile
sequence for the module.

To handle general rectilinear module blocks, a rectilinear module can be partitioned into a set of
rectangular submodules. Let bi denote an arbitrarily shaped rectilinear module. bi can be partitioned
into a set of rectangular submodules by slicing bi from left to right along every vertical boundary
of bi, as shown in Figure 11.33a. Figure 11.33b shows the module of Figure 11.33a after rotating by
90◦ clockwise; there are six submodules in it after the repartition.

There are two types of rectilinear modules: convex and concavemodules. A rectilinear module is
convex if any two points within themodule can be connected by a shortestManhattan path,which also

(a) (b)

b5b5

b4

b4

b3
b3

b2

b2

b1

b1

FIGURE 11.33 (a) Partition a convex module along every vertical boundary from left to right. (b) Repartition
the module of (a) after it rotates.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 236 29-9-2008 #35

236 Handbook of Algorithms for Physical Design Automation

Filled area b2

b1

FIGURE 11.34 Filling approximation for a rectilinear module.

lies within the module; the module is concave, otherwise. Figures 11.33 and 11.34 show two convex
and a concavemodules, respectively.A convexmodule bC can be partitioned into a set of submodules
b1, b2, . . . , bn ordered from left to right. Considering the LC relation, we keep the submodule bi+1 as
bi’s left child in the B∗-tree to ensure that they are placed side by side along the x-direction, where
1 ≤ i ≤ (n− 1). To ensure that b1, b2, . . . , bn are not misaligned, we modify the processing for basin
and plateau as follows:

• Basin: The contour is lower than the top profile sequence at the position of a submodule.
We pull the submodule up to conform to the top profile sequence.

• Plateau: The top boundary of a submodule bi(1 ≤ i ≤ n) in the contour is higher than the
top profile sequence at the position of bi. Assume that bi has the largest top boundary. We
pull all submodules, except bi, up to conform to the top profile sequence.

For a concave module, there might be empty space between two submodules. As shown in
Figure 11.34, the submodule b1 is placed above the submodule b2, which cannot be characterized by
an LC relation in the B∗-tree. Nevertheless, we can fill the concave holes of a concave module and
make it a convexmodule. This operation is called a filling approximation for the rectilinear module.
For any concave module, we treat it as a convex module after applying appropriate filling.

11.13 SUMMARY

Table 11.1 summarizes the sizes of the solution spaces, packing times, perturbation properties, and
flexibility of the floorplan representations discussed in this chapter. Among the representations,
SP, TCG, TCG-S, and ACG are fully topological representations and can represent the general
floorplans; in contrast, O-tree, B∗-tree, and CS are partially topological representations and can
model only compacted floorplans. Therefore, SP, TCG, TCG-S, and ACG are intrinsically more
flexible than O-tree, B∗-tree, and CS because they keep more information in their representations
(i.e., data structures). On the other hand, because SP, TCG, TCG-S, and ACG keepmore information
in their representations, they are typically less efficient than O-tree, B∗-tree, and CS. As a result, SP,
TCG, TCG-S, ACG have larger solution spaces than O-tree, B∗-tree, and CS.

Further, for the compacted floorplan representations, O-tree, B∗-tree, and CS, their representation
might change after packing, which will not occur for the general floorplan representations. For
example, given a B∗-tree, the resulting placement might not correspond to the original B∗-tree due to
the compaction operation during packing. We thus denote this situation by ⊗ to distinguish it from
the purely feasible cases (denoted by ©) for the general floorplan representations.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 237 29-9-2008 #36

Packing Floorplan Representations 237

TABLE 11.1
Comparisons between Various Packing Floorplan Representations

Represent. Solution Space Size Packing Time Generate Feasible Perturbations Flexibility

O-tree O(n!22n/n1.5) O(n) ⊗ Compacted
B∗-tree O(n!22n/n1.5) O(n) ⊗ Compacted
CS ≤ (n!)2 O(n) ⊗ Compacted
SP (n!)2 O(n2)a © General
BSG O(n!C(n2 , n)) O(n2) © General
TCG (n!)2 O(n2) © General
TCG-S (n!)2 O(n lg n) © General
ACG O((n!)2) O(n2) © General

a Note that O(n lg lg n) packing time for SP is known in Ref. [15]. Also, given a TCG, a TCG-S, or an ACG, it can first be
transformed into an SP in linear time, and then performs the packing with the corresponding SP in O(n lg lg n) time by
using the method in Ref. [15].

For the packing time, SP and TCG require O(n2) time to generate a floorplan, where n is the
number of modules. (Note that SP can reduce its packing time to O(n lg lg n) time based on the
longest common subsequence technique, as mentioned in Section 11.5.) With an additional packing
sequence, TCG-S can reduce its packing time toO(n lg n). For the partial topological representations
(the tree-based representations—O-tree and B∗-tree—and CS), the packing time is only linear time
because they keep relatively simpler information in their data structures. (It should also be noted
that, given a TCG, a TCG-S, or an ACG, it can first be transformed into an SP in linear time, and
then performs the packing with the corresponding SP in O(n lg lg n) time by using the method in
Ref. [15].)

As a final remark for floorplan representation, the evaluation of a floorplan representation should
be made from at least the following three aspects: (1) the definition/properties of the representation,
(2) its induced solution structure (not merely its solution space), and (3) its induced operations. We
shall avoid the pitfall that judges a floorplan representation by only one of the aforementioned three
aspects alone; for example, claiming a floorplan representation A is superior to another floorplan
representation B simply because A has a smaller solution space and a faster packing time. Here is an
analogy: the representation itself is like the body of an automobilewhile the induced operations is like
the wheels of the automobile and the solution structure is like the highway network. An automobile
with its body alone can go nowhere. For a comprehensive study of floorplan representations, similarly,
we shall evaluate them from at least all the aforementioned three aspects.

REFERENCES
1. R.H.J.M. Otten. Automatic floorplan design. InProceedings of ACM/IEEEDesign Automation Conference,

pp. 261–267, 1982.
2. D.F. Wong and C.L. Liu. A new algorithm for floorplan design. In Proceedings of ACM/IEEE Design
Automation Conference, Las Vegas, NV, pp. 101–107, 1986.

3. X. Hong, G. Huang, T. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu. Corner block list: An effective
and efficient topological representation of non-slicing floorplan. In Proceedings of ACM/IEEE Design
Automation Conference, Los Angeles, CA, pp. 8–12, 2000.

4. J.-M. Lin andY.-W.Chang. TCG:A transitive closure graph-based representation for non-slicing floorplans.
In Proceedings of ACM/IEEE Design Automation Conference, Las Vegas, NV, pp. 764–769, 2001.

5. J.-M. Lin and Y.-W. Chang. TCG-S: Orthogonal coupling of P∗-admissible representations for general
floorplans. In Proceedings of ACM/IEEE Design Automation Conference, New Orleans, LA, pp. 842–847,
2002.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C011 Finals Page 238 29-9-2008 #37

238 Handbook of Algorithms for Physical Design Automation

6. H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajatani. Rectangle-packing based module placement. In
Proceedings of IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, pp. 472–
479, 1995.

7. S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani. Module placement on BSG-structure and IC layout
applications. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, San Jose,
CA, pp. 484–491, 1996.

8. H. Zhou and J. Wang. ACG-adjacent constraint graph for general floorplans. In Proceedings of IEEE
International Conference on Computer Design, San Jose, CA, pp. 572–575, 2004.

9. Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W. Wu. B∗-trees: A new representation for non-slicing
floorplans. In Proceedings of ACM/IEEE Design Automation Conference, Los Angeles, CA, pp. 458–463,
2000.

10. P.-N. Guo, C.-K. Cheng, and T. Yoshimura. An O-tree representation of non-slicing floorplan and its
applications. InProceedings of ACM/IEEEDesign AutomationConference, NewOrleans, LA, pp. 268–273,
1999.

11. J.-M. Lin, Y.-W. Chang, and S.-P. Lin. Corner sequence: A P-admissible floorplan representation with a
worst case linear-time packing scheme. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
11(4):679–686, August 2003.

12. J.-M. Lin and Y.-W. Chang. TCG: A transitive closure graph based representation for general floorplans.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(2):288–292, February 2005.

13. J.-M. Lin and Y.-W. Chang. TCG-S: Orthogonal coupling of P∗-admissible representations for general
floorplans. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(6):968–
980, June 2004.

14. X. Tang, R. Tian, and D. F. Wong. Fast evaluation of sequence pair in block placement by longest com-
mon subsequence computation. In Proceedings of IEEE/ACM Design, Automation and Test in Europe
Conference, Paris, France, pp. 106–111, 2000.

15. X. Tang and D. F. Wong. FAST-SP: A fast algorithm for block placement based on sequence pair. In
Proceedings of IEEE/ACMAsia South Pacific Design Automation Conference, Yokohama, Japan, pp. 521–
526, 2001.

16. T.-C. Chen, Y.-W. Chang, and S.-C. Lin. IMF: Interconnect-driven multilevel floorplanning for large-
scale building-module designs. In Proceedings of IEEE/ACM International Conference on Computer-Aided
Design, San Jose, CA, pp. 159–164, 2005.

17. H.-C. Lee, Y.-W. Chang, and H. Yang. MB∗-tree: A multilevel floorplanner for large-scale building-module
design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(8):1430–
1444, 2007.

18. H.-C. Lee, J.-M. Hsu, Y.-W. Chang, and H. Yang. Multilevel floorplanning/placement for large-scale
modules using B∗-trees. In Proceedings of ACM/IEEE Design Automation Conference, Anaheim, CA,
pp. 812–817, 2003.

19. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms, 2nd edn. The MIT
Press/McGraw-Hill Book Company, Cambridge, MA, 2001.

20. H. Yamazaki, K. Sakanushi, S. Nakatake, and Y. Kajitani. The 3D-packing by meta data structure and
packing heuristics. IEICE Transcations on Fundamentals, E82-A(4):639–645, 2003.

21. H. Kawai and K. Fujiyoshi. 3D-block packing using a tree representation. In Proceedings of the 18th
Workshop on Circuits and Systems in Karuizawa, pp. 199–204, 2005.

22. P.-H. Yuh, C.-L. Yang, and Y.-W. Chang. Temporal floorplanning using the T-tree representation. In Pro-
ceedings of IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, pp. 300–305,
2004.

23. P.-H. Yuh, C.-L. Yang, Y.-W. Chang, and H.-L. Chen. Temporal floorplanning using 3D-subTCG. In Pro-
ceedings of IEEE Asia-Pacific Conference on Circuits and Systems, Yokohama, Japan, pp. 725–730, 2004.

24. J.-M. Lin, H.-E. Yi, and Y.-W. Chang. Module placement with boundary constraints using B∗-trees. IEE
Proceedings–Circuits, Devices and Systems, 149(4):251–256, 2002.

25. M.-C. Wu and Y.-W. Chang. Placement with alignment and performance constraints using the B∗-tree
representation. In Proceedings of IEEE International Conference on Computer Design, San Jose, CA,
pp. 300–305, 2004.

26. G.-M. Wu, Y.-C. Chang, and Y.-W. Chang. Rectilinear block placement using B∗-trees. ACM Transactions
on Design Automation of Electronics Systems, 8(2):188–202, 2003.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 239 24-9-2008 #2

12 Recent Advances
in Floorplanning

Dinesh P. Mehta and Yan Feng

CONTENTS

12.1 Introduction.. 239
12.2 Reformulating Floorplanning .. 240

12.2.1 Outline-Free versus Fixed-Outline Floorplanning . 240
12.2.2 Module Shape and Flexibility . 240
12.2.3 Whitespace: To Minimize or Not to Minimize? . 241
12.2.4 Interconnect . 241
12.2.5 Module Locations: Known or Unknown? . 242
12.2.6 Human Intervention.. 242

12.3 Fixed-Outline Floorplanning . 242
12.3.1 Automated Floorplanning with Rectangular Modules . 242
12.3.2 Incremental/Interactive Floorplanning with Rectilinear Modules 243

12.4 Floorplanning and Interconnect Planning .. 245
12.4.1 Congestion Considerations during Floorplanning .. 245
12.4.2 Integrated Buffer Planning and Floorplanning . 246
12.4.3 Bus-Driven Floorplanning .. 247
12.4.4 Floorplan/Microarchitecture Interactions .. 247
12.4.5 Floorplan and Power/Ground Cosynthesis . 249

12.5 Floorplanning for Specialized Architectures. 249
12.5.1 FPGA Floorplanning . 249
12.5.2 3D Floorplanning . 250
12.5.3 Analog Floorplanning . 250

12.6 Statistical Floorplanning .. 251
12.7 Floorplanning for Manufacturability .. 252
12.8 Concluding Remarks . 253
Acknowledgments .. 253
References . 253
Bibliography . 256

12.1 INTRODUCTION

Conversations with industry practitioners suggest that there is currently a disconnect between the
practice of floorplanning in industry and classical academic floorplanning focused on areaminimiza-
tion. There is, however, a significant and growing body of literature in floorplanning that attempts
to bridge this divide. The goal of this chapter is to collect and present some of these efforts in a
unified manner. Much of this work builds on one or more of the representations discussed in the
three preceding chapters. We refer the reader to these chapters for a comprehensive review of these
representations and to the original papers for a more detailed study. The chapter is organized as

239

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 240 24-9-2008 #3

240 Handbook of Algorithms for Physical Design Automation

follows. Section 12.2 presents the latest trends in floorplanning problem formulations. Fixed-outline
floorplanning is discussed in Section 12.3. Several approaches for considering interconnect plan-
ning during floorplanning are described in Section 12.4. Floorplanning for specialized architectures
such as field programmable gate arrays (FPGAs) and analog integrated circuits (ICs) are discussed
in Section 12.5. Statistical floorplanning and floorplanning for manufacturability are described in
Sections 12.6 and 12.7, respectively. Section 12.8 concludes this chapter.

12.2 REFORMULATING FLOORPLANNING

Recall that in classical floorplanning, the input consists of a set of modules and module connectivity
information. The objective is to minimize the area and the estimated wirelength. Kahng [1] was the
first to explicitly question the assumptions made in classical floorplanning in 2000 and argued that
several of these are not relevant to industrial floorplanning.We begin this chapter by examining these
and other issues below.

12.2.1 OUTLINE-FREE VERSUS FIXED-OUTLINE FLOORPLANNING

This first issue pertains to the floorplan or chip boundary. Classical floorplanning operates under the
outline-free model wherein no bounding rectangle is specified. Instead, the floorplanning algorithm
typically based on simulated annealing (SA) attempts to minimize chip area subject to (usually fairly
generous) aspect ratio constraints. In contrast, in the fixed-outline version, the dimensions of the
bounding chip rectangle are fixed before floorplanning; in other words, the chip boundary is an input
constraint rather than an optimization criterion. The fixed-outline model is considered to be more
realistic because floorplanning is only carried out after the die size and the package have been chosen
in most design methodologies.

How does this change in formulation impact floorplanning technology? Because the dimensions
of the bounding rectangle are now part of the input, the modules have to be organized so that they
fit inside this rectangle. Does this make the problem easier or harder? It depends on the bounding
rectangle. If this is much larger than necessary, it makes the problem easier. If the bounding rectangle
is tight, it makes the problem harder.

Anotherway to look at the two formulations is that the outline-free formulation is an optimization
problem (we are trying to minimize area) and the fixed-outline formulation is a decision problem
(we are trying to meet area constraints). This relationship between an optimization and the deci-
sion versions of a problem arises in the study of NP-completeness in theoretical computer science.
NP-completeness theory is based on decision problems, whereas real-world problems are usually
optimization problems. The argument that is made in this context is that the two versions are essen-
tially equivalent; specifically, one can solve the constrained version of the problem by running an
optimizer and returning a “yes” or a “no” depending on whether the value returned by the optimizer
(e.g., the chip area) is respectively less or greater than the constraint (e.g., the available area in the
fixed-outline). This argument does not work here because of the two-dimensional (2D) nature of the
constraint. Fixed-outline floorplanning does not merely require the floorplan to meet a single (area)
constraint; rather, it requires the floorplan to meet both width and height criteria. It is precisely the
trade-off between height andwidth that makes the problem challengingwhen the bounding rectangle
is tight. We make this more concrete with an example. Suppose the desired outline is 10 × 10 and
a classical floorplannning optimizer obtains a solution with area 90< 100. If the resulting floorplan
dimensions are (say) 15×6, this is still a failure because a 15×6 rectangle cannot fit inside a 10×10
rectangle.

12.2.2 MODULE SHAPE AND FLEXIBILITY

Classical floorplanning has mostly used rectangular modules and sometimes other simple shapes
such as L- and T-shapes. We are not aware of a technical reason for shapes to be restricted to

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 241 24-9-2008 #4

Recent Advances in Floorplanning 241

rectangles and believe that this arose because rectangles are easier to work with than other rectilinear
shapes. (Imagine how much easier it would be to play Tetris if all shapes were rectangles.) Classical
floorplanning does allow flexible modules (modules whose dimensions are not fixed); however, in
the context of rectangular modules, this is limited to allowing a module to have any aspect ratio
in a range. Current designs consist of a mixture of blocks and cells. Blocks are components that
have typically already been designed and therefore have fixed shapes and dimensions. Cells can be
grouped together to form flexible blocks that can take on arbitrary rectilinear shapes.

How does this impact floorplanning? Clearly, having fixed nonrectangular shapes complicates
the problem. For example, writing a program thatmerely figures out whether two arbitrary rectilinear
polygons intersect or not is more complex than asking the same question for a pair of rectangles.
Literature that considers the graph dualization approach to floorplanning with simple rectilinear
shapes confirms this as does work on extending corner stitching to simple rectilinear shapes. The
use of arbitrary rectilinear polygons also clearly increases the solution space relative to solely using
rectangles (the latter is a special case of the former). On the other hand, having malleable rectilinear
shapes increases the opportunity for obtaining better solutions: intuitively, this is because flexible
rectilinear shapes can be massaged and squeezed in between fixed-shape blocks. However, if this
flexibility is taken too far, it could result in long stringy shapes that may not be suitable for routing
(assuming that interconnections connecting cellswithin a blockmust staywithin the block boundary).
In short, the use of flexible, arbitrary rectilinear shapes is a bit of a double-edged sword.

12.2.3 WHITESPACE: TOMINIMIZE OR NOT TOMINIMIZE?

Whitespace is defined as the fraction of chip area that does not contain silicon devices. Minimizing
area (or whitespace) has traditionally been a key objective of floorplanning. Hennessy and Patterson
point out in their classic computer architecture text that die cost is proportional to the square of die
area [2, p. 24].

Although area minimization is still an important cost-metric, it alone is no longer sufficient in
modern floorplan design.One reason is that true chip area depends on both the area used for logic and
the area used for interconnect.Module areas represent area used for logic and short interconnects, but
do not account for area needed by power and ground lines, nor for longer and wider interconnects,
nor space between interconnects, etc. Thus, area minimization should also take into account sources
of area that have traditionally been ignored. A second reason is the realities of deep-submicron
design: timing requirements and routing congestion are becoming more problematic, both of these
are exacerbated by insufficient area. Therefore, the floorplan must contain some whitespace by
design to alleviate these problems so that feasible solutions can be obtained. We also need to reserve
whitespace for buffer insertion for high-performancedesigns. (Buffer insertion is discussed separately
in Chapters 26 through 28.)

Finally, we note that in the fixed-outline formulation, the provided outline essentially determines
the amount of whitespace available, transformingwhitespaceminimization to a constraint. However,
the floorplanning algorithm’s strategy may depend on how much whitespace is provided. If the
bounds are tight, the algorithm can declare victory if it manages to fit the blocks in the outline.
If the bounds are loose and there is plenty of whitespace, the floorplanning algorithm can reasonably
be expected to do more (e.g., optimize other criteria such as wirelength).

12.2.4 INTERCONNECT

Classical floorplanning algorithms focus on minimizing wirelength estimates (in addition to area).
This does not take into account the actual routes of long-distance connections and therefore (some-
what) ignores timing and congestion. More recent floorplanning algorithms attempt to rectify this
by using more relevant criteria to judge the quality of the solution from an interconnect standpoint.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 242 24-9-2008 #5

242 Handbook of Algorithms for Physical Design Automation

12.2.5 MODULE LOCATIONS: KNOWN OR UNKNOWN?

The whole point of floorplanning is to find suitable locations for modules and so it would seem that
this information would be unknown at the start of the process. However, there are scenarios when
locationsmay be approximately known. For example, if a chip is based off of an earlier generation of
the same chip, a floorplan architect who was familiar with the design of the original chip may wish
to place modules in the same approximate locations (manual or interactive floorplanning). Or, if the
floorplan is the result of engineering change order modifications (i.e., incremental floorplanning),
the floorplan architect may not want to radically change the locations of the modules. Alternatively,
the approximate locations may be the result of a preceding step such as dualization or force directed
placement (Chapter 8), or a quick rough placement as described in the next chapter. There is a
substantial body of research related to the addition of location constraints such as range and boundary
constraints (discussed in Chapters 9 through 11), and symmetry constraints (discussed later in this
chapter) to SA-based algorithms that address situations where there is some insight into module
locations.

12.2.6 HUMAN INTERVENTION

The preceding section brings up another question. Should floorplanning be completely automated?
This is the ideal scenario, but may be unrealistic because of the number of issues involved. Therefore,
it may be necessary to build tools that enable an interactive type of floorplanning paradigm that
involves interaction between the architect and the tool.

12.3 FIXED-OUTLINE FLOORPLANNING

12.3.1 AUTOMATED FLOORPLANNING WITH RECTANGULAR MODULES

Adya and Markov [3] present a fixed-outline floorplanning algorithm based on SA using sequence
pairs. (We refer to this as automated fixed-outline floorplanning to differentiate it from the
incremental/interactive formulation described in the next section.)

An enabling idea in this work is the use of slack-based moves. The concept of slack is illustrated
in Figure 12.1. Consider the horizontal and vertical constraint graphs corresponding to a sequence
pair. The longest path from source to sink in these graphs gives the width and height of the chip,
respectively. The (x, y) location of each module is obtained from the constraint graph by compacting
modules toward the left and the bottom. A module’s (x, y) location may also be obtained by com-
pacting modules to the right and the top. The difference in the two x (y) values of a module is its
slack in the x (y) dimension. The slack is an indicator of the flexibility available to place the module

A B
Slack

E
D

C

FIGURE 12.1 Slacks shown in the X direction: Module B has a significant amount of slack, the width of the
chip will not be impacted if a block is placed to its right. In contrast, modules D and E have zero slack and
belong to a critical path. One of these will have to be moved out of the critical path to reduce the chip’s width.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 243 24-9-2008 #6

Recent Advances in Floorplanning 243

without violating the sequence pair and without increasing chip size. The strategy is to move blocks
with zero slack (in one or both dimensions) and place them next to blocks with large slack. The
rationale is that a dimension of the chip can only be reduced by removing a zero-slack block from
its critical path in the constraint graph. Blocks are placed next to blocks with large slack as there is
more likely to be room there. The cost function includes a penalty for violations of the fixed-outline
constraint in the horizontal and vertical directions. The experiments in this chapter show that the use
of slack-based moves results in substantially higher success rates relative to approaches that only
penalize fixed-outline violations.

The resulting floorplanning tool called Parquet (http://vlsicad.eecs.umich.edu/BK/parquet/) has
beenwidely used in several research projects involving fixed-outline floorplanning.The authors have
released several improvements to the software. The following quotation from the website describes
the major algorithmic improvements (as of July 2007).

The main difference between Parquet-2 and Parquet-3 is that Parquet-3 has an alternative floorplan
representation (B∗-Trees) … Parquet-4.5 also introduces the “Best” floorplanning representation which
chooses between “SeqPair” and “BTree” depending upon the input instance and optimization objectives.
It has been found empirically that B∗-Trees are better at packing than Sequence Pairs, so if wirelength is
not beingoptimizedor availablewhitespace is lower than10%, “Best” chooses theB∗ -Tree representation.
We have also found empirically that B∗-Trees are faster than Sequence Pairs on instances with 100 or
more blocks, so “Best” chooses B∗-Tree over Sequence Pair in these cases as well.

Lin et al. present a fixed-outline algorithm based on evolutionary search [4]. Chen and Chang [5]
present a fixed-outline algorithm based on B∗ trees that uses an alternative annealing schedule called
fast SA that consists of three stages (high-temperature random search, pseudogreedy local-search,
and hill-climbing search). The goal is to arrive at a solution faster than traditional annealing schedules.
The authors report better experimental results than Ref. [4] and Parquet-4.5 (both sequence pair and
B∗-tree versions).

12.3.2 INCREMENTAL/INTERACTIVE FLOORPLANNING WITH RECTILINEAR MODULES

The research described in this section differs from that in the previous section in two respects:
(1) flexible blocks are allowed, at least in theory, to take embarrassingly rectilinear shapes and
(2) approximate locations for blocks are known. This permits the algorithm to ignore interconnect-
related issues because it assumes that interconnect was considered when the locations were decided.

Mehta and Sherwani [6] considered a formulation where the approximate centers of flexible
modules and the exact location of fixedmodules are given.A zerowhitespace formulation is assumed
(i.e., the fixed-outline includes exactly asmuch area as necessary to contain the blocks). The objective
is to compute exact shapes and locations for each flexible block such that the number of sides in the
corresponding rectilinear polygons is minimized as is the displacement from the center specified for
each module. The algorithm discretizes the floorplan area into a grid; grid squares are assigned to
each flexible block by using variations of breadth-first traversal (Figure 12.2).

However, such a traversal may disconnect available grid squares making it impossible for blocks
to remain connected. This was overcome by splitting each grid square into four smaller subsquares
and traversing a subgrid in a twice-around-the-tree traversal. This guarantees that flexible blocks
can be made to fit within the fixed-outlinewithout being disconnected. Experimental results confirm
this and also examine trade-offs between various grid square assignment methods. This algorithm
processes blocks iteratively and consequently the quality of the shapes and locations assigned to
them depends on the order in which they are processed. This approach is also computationally
expensive in that its time complexity is a function of the number of grid squares created during the
discretization step.

Feng et al. [7] considered an improvement to this that overcomes the two problems cited above;
namely, the sequential processing of blocks and the expensive discretization step in an approach

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 244 24-9-2008 #7

244 Handbook of Algorithms for Physical Design Automation

(a) (b)

20
10
3
0
1

19
9
2
6

29 21 16 14 15 20 29
18 7 3 6 13 28
17 4 0 2 11 26
19 8 1
22 10 9
25 24 23

5 12 27

18
8

15

28
17 27
26

5
13

21
11
4
7

14

22
12S
16

25
24

23

(c)

FIGURE 12.2 (a) Floorplan grid and the location in the center square S for a flexible block, (b) allocation of
30 grid squares to the flexible block using a strict breadth-first traversal, and (c) allocation of 30 grid squares
using a modified breadth-first traversal.

called interactive floorplanning. Once again, the outline is fixed, approximate locations for modules
are known, modules may be fixed or flexible and can have arbitrary rectilinear shapes. However,
the formulation differs in that each module is constrained; i.e., a constraining rectangle is specified
for each module so that the module cannot be assigned area outside the constraining rectangle
(Figure 12.3). This is a very constrained formulation, making it likely that there is no solution for
a given input. The idea is that if a solution does not exist, the algorithm should indicate this to
the user, and the user should then accordingly adjust the constraints (hence the term “interactive
floorplanning”). A zero or near-zero whitespace formulation is addressed in Ref. [7]. A max-flow
network flow algorithm is used to determine feasibility. If the input is feasible, a min-cost max-flow
algorithm is used to actually assign area to each module. A postprocessing step is needed to clean up
the output. Feng and Mehta [8] also consider the situation where white space is relatively plentiful.
In this case, the problem objectives are made more stringent by assigning shapes to modules so that
the extents and number of sides of modules are minimized. The postprocessing step of Ref. [7] is
not needed, making the solution cleaner. Instead, an iterative refinement step is used to make the
modules provably more compact. Finally, Feng and Mehta provide automated mechanisms to adjust
constraining rectangles based on minimizing the standard deviation of density over the floorplan
area [9].

In Ref. [10], Liao et al. explicitly consider the incremental floorplanning problem:Given an initial
floorplan with precise locations and shapes for its modules specified. Suppose the area requirements

A

B

A

B

Block C

Block B

Block A

C

(a) (b)

C

FIGURE 12.3 (a) Constraining rectangles for modules A, B, and C. Each constraining rectangle contains
enough area for the corresponding module. Note that constraining rectangles may overlap. (b) Actual area
allocation to modules A, B and, C. Each module is allocated area within its constraining rectangle.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 245 24-9-2008 #8

Recent Advances in Floorplanning 245

of some of the blocks change. How can the floorplan be reconstituted so that all modules have their
updated areas without disrupting their locations in the floorplan (and preferably without increasing
the overall area of the floorplan). The available whitespace must be distributed among the competing
modules in the vicinity. Geometric algorithms based on planesweep were used to simultaneously
expand each module’s boundary until it encounters another module or the floorplan boundary. These
algorithms take polynomial time and were designed to work with arbitrary rectilinear shapes.

12.4 FLOORPLANNING AND INTERCONNECT PLANNING

This section is concerned with interconnect planning, an activity that goes hand in hand with floor-
planning. We further classify the research activity in this area based on the type of interconnect
planning. Congestion-based methods primarily impact routability, while buffer-based methods pri-
marily impact timing and performance. We also discuss bus-driven methods and close this section
with a description of relatively recent research on constructing floorplans with a view to improving
microarchitecture performance.

12.4.1 CONGESTION CONSIDERATIONS DURING FLOORPLANNING

Traditional floorplanning considers interconnect by including a wirelength term in the cost function
used to guide SA. However, this does not provide the accuracy needed to ensure that the floorplan is
routable. Routability is related to congestion. If more nets must pass through a region in the chip than
there is room for, the design will be unroutable. Here we discuss strategies for congestion evaluation
during floorplanning. One extreme is to use a global router to evaluate routability. Although this is
accurate, it is computationally expensive because it has to be run within the SA loop.

Most congestion evaluation metrics use a grid-based approach. The idea here is to divide the
floorplan area into rectangular tiles and then estimate the number of nets that cross tile boundaries.
An issue with the grid-based approach is to select how coarse it is. A coarse grid will result in more
efficient, but less accurate, computation. Another concern is how to determine precisely which tile
boundaries a net will cross. Because there are typically several possible routes for a net, we do not
know a priori which ones it will cross. One approach is to perform coarse global routing. Another
approach is to compute a probabilistic map (Figure 12.4): First compute the probability (under some
assumptions) that a net will cross a tile boundary. Next, for each tile boundary, add up the probabilities
over all the nets.

Chen et al. [11] propose two techniques for interconnect analysis during SA-based floorplanning
using a slicing tree representation. The first only allows a single bend (L-shaped route), while the
second allows two bends (Z-shaped route). The floorplan is subdivided into grids. Given the two

(a)

1

4

3

5

6

2

(b)

6/6 3/6 1/6

1/6 3/6 6/6

3/6 4/6 3/6

FIGURE 12.4 A two-pin net is to be routed from the upper left grid square to the bottom right grid square. Six
possible routes are shown in (a). If each of these routes is equally likely, we are able to compute the probability
that the net passes through a given grid square. For example, four out of six routes (2, 3, 4, and 5) pass through
the middle square, resulting in a probability of 4/6.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 246 24-9-2008 #9

246 Handbook of Algorithms for Physical Design Automation

endpoints of a net, the L-shaped routing scheme only permits two types of routes. Each is considered
to be equally likely with 0.5 probability. This probability is associated with the grid boundaries
crossed by the route. Each net is routed one at a time using a routing path that minimizes a cost term
that contains a penalty term for congestion, a prevention term that discourages the router from using
bin boundaries that are nearing saturation, and a term that rewards a route if it reuses existing routes
for the same net. The overflow (excess congestion) is added to the SA cost term. Using Z-shapes (two
bends) results in a greater choice of routing paths, resulting in a more accurate, but computationally
expensive, estimate. Because this computation takes place within the SA loop, the L-shape routes
are used at medium temperature, while Z-shapes routes are used at low temperatures.

Lai et al. [12] argue that grid-based approaches (as described above) to computing congestion are
expensive, given that this computation is carried out repeatedly inside the floorplaningSA loop. They
propose evaluating the congestion on the half-perimeter boundary of several regions in the floorplan.
One of the novelties of this work is that region definitions are naturally tied to the twin binary
tree (TBT) representation (the floorplan representation used in this work), making their definition
of congestion easier to compute. Although the definition of regions is, in some sense, arbitrary,
it provides statistical samples of wire density in different areas of the floorplan. The chapter also
considers a mirror TBT representation that increases the number of regions considered (and therefore
increases the number of samples considered). Experimental results show improved routability when
congestion is considered relative to when it is not. Shen and Chu [13] observe that although the
approach in Ref. [12] is efficient, it also only provides a coarse evaluation of congestion. They also
observe that a probability map-based approach to evaluating congestion could differ significantly
from that of a global router. (Once a route has been chosen for a net, its associated tile boundaries are
less available than the probability map suggests, while the other possible routes and the associated
tile boundaries are more available than the probability map suggests.) Instead, they propose an
approach based on the maximum concurrent flow problem. (This is a multicommodity flow problem
in which every pair of entities can send and receive flow concurrently. The objective is to maximize
throughput, subject to capacity constraints, where throughput is the actual flow between the pair
of entities divided by the predefined demand for that pair. A concurrent flow is one in which the
throughput is identical for all entity pairs [14].) For a given floorplan, the goal is to estimate the
best maximum congestion over all possible global routing solutions. This approach uses twin binary
sequences.

Sham and Young [15] develop a floorplanner that simultaneously incorporates routability and
buffer planning. They observe that congestion depends on the routes chosen for the wires, which in
turn depends on the availability of buffer resources. Accordingly, their congestion model based on
probability maps takes into account where buffers will be needed along the length of the wire and
wherewhite space is available in the floorplan to accommodate buffers. A two-phase SA algorithm is
used. The cost function used in the first phase is the traditional combination of area and wirelength.
The second phase incorporates a congestion metric (the average number of wires in the top ten
percent most congested grids) in addition to area and wirelength. Ma et al. [16] also simultaneously
consider buffer planning and routability during floorplanning. Their algorithm uses the corner block
list (CBL) representation.

12.4.2 INTEGRATED BUFFER PLANNING AND FLOORPLANNING

The insertion of buffers reduces delay along the interconnect. One can only determine whether and
where to insert buffers after the modules have been placed and the interconnect lengths have been
somewhat established. On the other hand, buffers can only be inserted where white space is available
in the floorplan. This points to a need to integrate floorplanning and buffer planning, a research area
that has been addressed in the literature [16–19]. However, we omit discussing this important area
here because it is covered in considerable detail in Chapter 33.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 247 24-9-2008 #10

Recent Advances in Floorplanning 247

B

CA

FIGURE 12.5 The shaded rectangle is a bus that must pass through modules A, B, and C. For this to work,
they must be positioned so that the intersection of their y-intervals is wider than the bus’s y-interval.

12.4.3 BUS-DRIVEN FLOORPLANNING

A bus is a group of wires that is required to pass through a set of specified modules. It is specified
by the set of macroblocks through which it must go and a width. The width is determined by the
number of wires it contains. In Ref. [20], each bus is realized by a rectangular strip. For a bus to
be feasible, the macroblocks must be located such that it is indeed possible for a horizontal/vertical
rectangular strip of the required width to pass through the blocks (Figure 12.5). The sequence pair
representation is used. This result was extended by Law and Young [21] to allow buses with one
or two bends. Chen and Chang [5] also explore bus-driven floorplan using B∗ trees and a fast SA
schedule and report better results than Ref. [20].

12.4.4 FLOORPLAN/MICROARCHITECTURE INTERACTIONS

The execution time of a program is the product of the number of (machine) instructions executed (the
dynamic instruction count), the average number of clock cycles required per instruction (CPI), and
the clock cycle time. Reducing instruction count and CPI has traditionally been within the purview
of compiler technology and architecture, while reducing the clock cycle time (the reciprocal of the
clock frequency) has been the responsibility of logic and physical design. This separation existed
because any block-to-block communication on a chip took less than a cycle, an assumption that is
no longer true. Consequently, there is a growing body of work that explores the interaction between
microarchitecture and physical design. This interaction specifically focuses on floorplanning, because
floorplanning is the first high-level physical design step that determines the locations of blocks on
the chip, which is needed to determine interconnection lengths.

A key strategy used here is interconnect or wire pipelining, which introduces latches (flip-
flops) on interconnects to break them into smaller segments so that signal propagation time on
these segments takes less than one clock cycle. However, although wire pipelining keeps clock
cycle time low, it increases block-to-block latency, which could result in an increase in CPI. A
metric that simultaneously captures both of these entities is throughput, which is the number of
instructions executed per second = clock frequency/CPI. Several of the papers described below
develop algorithms to obtain floorplans that optimize throughput.A key challenge here is to measure
the CPI. The traditional method for doing this is to use a cycle-accurate simulator on a large number
of benchmarks. However, cycle-accurate simulators are extremely time consuming making them
impossible to include in the inner loop of a floorplanoptimization algorithm.They are also sufficiently
time consuming that they can only be used sparingly offline (i.e., outside the floorplanning loop). All
of the methods below work by plugging in a term into the Parquet floorplanner SA cost function that
in oneway or the other approximates throughput.What distinguishes themethods is the accuracywith
which throughput is approximated and the effort (in terms of number of cycle accurate simulations)
required to generate the throughput approximation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 248 24-9-2008 #11

248 Handbook of Algorithms for Physical Design Automation

Cong et al. [22] developed an SA algorithm that is integrated with Parquet that seeks to
minimize the sum of weighted netlengths divided by the IPC (IPC = instructions executed per
cycle = 1/CPI). This quantity approximates maximizing the throughput. Netweights are based on
the slacks of their pins (computed by performing a static timing analysis). The algorithm evaluates
alternative block implementations and uses an interconnect performance estimator.

Long et al. [23] consider a version that minimizes CPI. Their contribution is to use a trajectory
piecewise-linear model to estimate CPI. This estimate, based on table lookup, is much faster than a
cycle-accurate simulation, and has an error of about 3 percent. When this estimate is incorporated in
Parquet’s SA objective function, it results in a significant reduction in CPI with a modest increase
in floorplan area.

Casu and Macchiarulo [24] focus on the impact of loops in the logic netlist on throughput. The
throughput is not explicitly included in the cost function, but is approximated as follows: Each net is
assigned a weight that is the inverse of the shortest loop the net belongs to. The Manhattan distance
between pins is divided by themaximum length admissible between clocked elements. The weighted
sum over all nets is included as the throughput term in the Parquet SA objective function.

Casu and Macchiarulo [25] extended their earlier work by taking into account the fact that
a channel will contribute to the overall throughput degradation of the system at most up to its
activation time. They introduce an additional channel activation ratio, which is defined as the time
fraction in which a block communication channel is active. The weighting factor is used to multiply
the throughput term so that the channel communication properties are taken into account.

Ekpanyapong et al. [26] profiled architectural behavior on several applications and obtained
frequencies on global interconnect usage; this is used to determine the weight of each wire (the
greater the frequency, the greater the weight). These weights are incorporated into a mixed integer
nonlinear program (MINP) floorplanner whose goal is to minimize weighted global wirelength. The
MINP formulation is relaxed to a more tractable linear programming (LP) formulation. The final
results are fed back into a cycle-accurate simulator, which shows a 40 percent improvement in CPI
relative to a floorplanner that does not take architectural behavior into account.

Jagannathan et al. [27] cite limitations in Ref. [22] in that the cycle time for interconnectmay not
match the cycle time for blocks because the latter did not considerwire pipelining. It also differs from
previous work in that it only considers systemwide critical paths and loops rather than all two-pin
nets. They also argue that it is sufficient to use relative changes to the IPC (as opposed to an exact
computation of IPC) to guide floorplanning. To this end, they develop an IPC sensitivity model to
track changes in IPC because of different layouts. IPC sensitivity is computed as follows: the latency
of one critical path is varied while keeping the others fixed and the degradation of IPC with each
additional cycle of latency on that path computed. Parquet is used with a weighted combination of
area and 1/IPC. The approach used here is to fix a target frequency, and then floorplan to optimize
IPC (as opposed to simultaneously optimizing IPC and frequency).

Nookala et al. [28] focus specifically on the throughput objective and identify throughput-
critical wires based on the theory of multifactorial design (a statistical design technique). They
argue that if each of n buses in a design can have k different latencies, the number of simulations
that would normally be needed to sample the search space is O(kn). Whereas, with multifactorial
design theory, the number of simulations needed is O(n). The throughput-critical wires so obtained
are emphasized during floorplanning, by replacing the total wirelength objective in Parquet with a
weighted sumof factor latencies. These are input to the floorplanner alongwith a target frequency. The
performance of the obtained layout is validated using cycle-accurate simulations. They subsequently
[29] refine this work to significantly speed up cycle-accurate simulations that preserve the quality
of the solution.

Wu et al. [30] propose a thermal-aware architectural floorplanning framework. By adopting
adaptive cost function and heuristic-guided pertubation in their SA algorithm, their floorplanner is
able to obtain a high-performance chip layout with significant thermal gains compared to the layout
obtained by the traditional performance-driven floorplanner.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 249 24-9-2008 #12

Recent Advances in Floorplanning 249

12.4.5 FLOORPLAN AND POWER/GROUND COSYNTHESIS

Voltage (IR) drop in power/ground networks is an important problem in IC design. The resistance in
power wires is increasing substantially. As a result, the reference supply voltage in chip components
may be less than it should be. This can weaken the driving capability in logic gates, reduce circuit
performance, reduce the noise margin, etc. Yim et al. [31] show that it is advantageous to consider
power network and clock distribution issues at the early floorplanning stage rather than after detailed
layout.

How does this relate to floorplanning? Power-hungry modules draw larger currents. If these
modules are placed far away from the power pad (on the boundary of the chip), then the combination
of the larger current and greater resistance because of increased wirelength exacerbates the IR drop
for that module. Such modules should be placed nearer the power pad. Liu and Chang [32] propose
a methodology to simultaneously carry out floorplanning and synthesize the power network. They
use SA with the B∗-tree representation. The SA cost function is modified to include penalties for
violating power integrity constraints and the power/ground mesh density cost function. In addition,
the B∗-tree representation is constrained so that the most power-hungrymodules (the ones that draw
themost current) are on the boundary near the power pads. (In experiments, this reduction in solution
space caused a factor of three improvement in runtime.) The proposedmethodologywas successfully
integrated into a commercial design flow.

12.5 FLOORPLANNING FOR SPECIALIZED ARCHITECTURES

This section considers variants of the floorplanning problem for specialized architectures such as
FPGAs, three-dimensional (3D) ICs, and analog circuits.

12.5.1 FPGA FLOORPLANNING

Cheng andWong [33] introduced FPGA floorplanning. The floorplanning problem inmodernFPGAs
is heterogeneous because it consists of different types of components that are arranged in columns
at specified locations on the chips. These consist of configurable logic blocks (CLBs), multipliers,
RAMs, etc. (Figure 12.6). In application specific integrated circuit (ASIC) floorplanning, a module
is simply specified by its area or by its height and width. (ASIC floorplanning may be viewed as
homogeneous floorplanning because the area throughout the chip is of the same type and an ASIC

CLB

RAM block

Multiplier

FIGURE 12.6 Illustration of the heterogeneous resources on an FPGA. The vector corresponding to the
resources contained in the highlighted block is (48,2,2).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 250 24-9-2008 #13

250 Handbook of Algorithms for Physical Design Automation

module can be placed anywhere on the chip.) In FPGA floorplanning, a module is specified by
the number of resources of each type that it requires. Cheng and Wong introduced the notion of
a resource requirement vector (n1, n2, n3) to characterize each module, where n1, n2, and n3 are the
number of CLBs, RAMs, and multipliers, respectively. They then define FPGA floorplanning to
be the placement of modules on the chip so that (1) each region assigned to a module satisfies its
resource requirements, (2) regions for differentmodules do not overlap, and (3) a given cost function
is optimized. The problem is solved by a two-step strategy. In the first step, the authors use an
approach based on slicing trees and SA. This involves computing irreducible realization lists, which
specify all of the locations that a module can be placed in so that it meets its resource requirements.
An irreducible list is computed for each node in the floorplan tree in a bottom-up manner. At this
stage, each node in the tree corresponds to a rectangle. Once these lists are computed, it is possible
to evaluate the given floorplanning tree. This evaluation is used in the SA algorithm. The second
step consists of compaction followed by postprocessing.

Another two-step solution to the FPGA floorplanning problem is presented in Ref. [34]. The
first step is a resource-aware floorplanning step based on Parquet. An FPGA is a bounded rectangle
making it more natural to use a fixed-outline algorithm than area-minimization. In addition, the
SA cost function contains a resource term that penalizes each module by the amount of mismatch
between its resource requirements and the resources available in its current location. This step is
expected to place modules at locations that are close to their resources. Even so, it is unlikely that
each module meets its resource requirements. This is addressed by deploying a second step based on
constrained floorplanning. The purpose of this step is to ensure that each module meets its resource
requirements without substantially changing the location and shape that were obtained as a result
of the first step. The underlying algorithm is based on a min-cost max-flow network formulation.
Thus, it results in a solution that takes a global view of resource demand and supply across the chip.
The constrained floorplanning techniques, originally designed for homogeneous floorplans, were
modified to account for heterogeneity in FPGAs. In addition, this algorithm can incorporate trade-
off between resources. For example, each CLB in a Xilinx Vertex-II FPGA can implement 32 bits. If
a module needsmemory, it can acquire this resource from the RAM on the FPGA or fromCLBs. The
flow network in the constrained floorplanner can incorporate this modification to the formulation.

12.5.2 3D FLOORPLANNING

Three-dimensional floorplanning [35–37] has become an active area of research because of the
possibility of 3D integrated circuits. We refrain from discussing this area here because it is covered
elsewhere: Chapter 9 on slicing floorplans andChapter 11 on packing representations contain detailed
discussions on 3D floorplan representations, while Chapter 47 discusses the state of the art with
respect to 3D IC technologies.

12.5.3 ANALOG FLOORPLANNING

High-performance analog circuits require layouts where groups of devices are placed symmetrically
with respect to one or more axes. This is done to match layout-related parasitics in both halves of a
group of devices.

A symmetry pair consists of two modules with the same dimensions. Without loss of generality,
we define symmetry with respect to a vertical axis x = XA. Let (xL, yL,w, h) and (xR, yR,w, h) denote
the left and right modules, respectively. Then, yL = yR and (xL + w + xR)/2 = xA must be true for
modules L and R to be symmetric. A self-symmetric module is one which is symmetric with respect
to itself; i.e., xL = xR and yL = yR. This means that the module must be bisected by the axis of
symmetry. A symmetry group may consist of several symmetry pairs and self-symmetric modules.
All of these must share the same axis of symmetry (Figure 12.7).

The challenge that arises during floorplanning based on SA is how to search the state space
efficiently. One approach is to search the state space as before, ignoring states that do not meet the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 251 24-9-2008 #14

Recent Advances in Floorplanning 251

B �

A �A

B
D C

E

FIGURE 12.7 Symmetry group in an analog floorplan consisting of (A,A′) and (B,B′). C is self-symmetric.
D and E have no symmetry constraints.

symmetry requirement. However, the majority of states are of this type. This means that the SA
process wastes a lot of time on infeasible solutions. The research [38–44] in this area explores how
to improve on floorplan representations such as sequence pairs, O trees, and B∗ trees, so that they are
symmetric feasible; i.e., each state visited and evaluated by SA does indeed correspond to a floorplan
that satisfies symmetry. The original work mainly considers a single axis of symmetry. More recent
research explicitly considers several axes of symmetry simultaneously and involves converting the
sequence-pair constraint graphs into a set of linear expressions, which are then solved using linear
programming. Most recently, Lin and Lin [45] propose automatically symmetric-feasible B∗ trees
(ASF-B∗ trees), which can handle not only 1D but also 2D symmetry constraints. A hierarchical
B∗ tree (HB∗ tree) is constructed by incorporating ASF-B∗ trees into traditional B∗ trees to handle
the simultaneous placement of modules in symmetry group and nonsymmetry modules for analog
placement.

12.6 STATISTICAL FLOORPLANNING

The basis for this line of research is that precise module dimensions may not be known during
floorplanning, because floorplanning can be used very early in the design process by an architect
as an estimation tool. At this stage, the modules have not yet been created and therefore their
dimensions are unavailable. Suppose that, instead, the architect is able to supply an input consisting
of module height and width distribution lists. For example, a module’s width may be represented as
{(4, .2), (5, .5), (6, .3)}, meaning that the module has widths of 4, 5, and 6 with probabilities .2, .5,
and .3, respectively.

Bazargan et al. [46] approach this problem by using SA with the slicing-tree representation. The
main novelty of their work is the way in which floorplan area is evaluated. Recall that in slicing
floorplans, the area of a larger rectangle is obtained from its two slice rectangles by adding widths
and computing the max of their heights (assuming the two rectangles are separated by a vertical cut).
In the statistical version, this computation takes the height and width distribution lists of the two
modules as input and produces height and width distribution lists of the resulting rectangle as the
output. We describe this using an example.

M1 : W = {(3, .2), (5, .5), (6, .3)},H = {(5, .5), (6, .5)}
M2 : W = {(2, .3), (3, .6), (4, .1)},H = {(4, .4), (5, .6)}

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 252 24-9-2008 #15

252 Handbook of Algorithms for Physical Design Automation

Suppose these modules are separated by a horizontal cut (i.e., heights must be added and widths
must be maxed). The width distribution list of the new rectangle is {(3, .18), (4, .02), (5, .5), (6, .3)}
and its height list is {(9, .2), (10, .5), (11, .3)}.

Repeating this process as the area evaluation algorithm traverses the slicing tree in a bottom-up
fashion finally results in distribution lists for chip height and width. The authors use these quantities
to compute a cost function that is the combination of expected area and standard deviation of area.
Including standard deviation in the cost function makes it more likely that the area of the floorplan
obtained by statistical floorplanning is close to the area of the final solution (i.e., after module
dimensions have all been finalized) relative to minimizing expected area alone. The paper also
considers a combined height/width distribution list (e.g., {(4, 5, .3), (6, 3, .7)} means that a module
has height 4 and width 5 with a probability of .3 and a height of 6 and a width of 3 with probability
of .7). This is a more realistic formulation, but experimental results have been more promising with
the separate distribution lists.

12.7 FLOORPLANNING FOR MANUFACTURABILITY

Floorplanning, as we have defined it so far, is concerned with the arrangement of components
within a single chip. In this section, we discuss a floorplanning-like problem that arises because of
the economics associated with manufacturing a chip. Recall that several chips can be manufactured
froma single wafer. To do this, amask set has to be prepared for thewafer. The cost of creating amask
set is substantial. For high-volume manufacturing (i.e., when many chips of the same type are to be
produced), this one-time cost (X) is amortized over the number of chips (c) produced. For low-volume
manufacturing (few chips have to be produced), the cost per chip X/c becomes prohibitive. The
multiple project reticle concept addresses this problem for low-volume manufacturing by departing
from the assumption that all of the chips on a wafer have to be of the same type. Instead, different
chips (possibly sent to the fabrication facility by different companies) are placed in a reticle. Several
copies of the reticle are arranged in rows and columns on a single wafer. The mask cost X can now
be spread out among the different companies. Suppose there are ten different chips from different
companies on a wafer, then the mask cost for each company is X/10. This is amortized over the
number of chips resulting in a cost per chip of X/10c.

However, this approach presents some new challenges. These different chips have to be extracted
from the wafer by cutting (dicing) the wafer. Existing wafer dicing technologies are somewhat
restrictive, making chip locations on the reticle vital to optimizing the chip yield. For example, the
side-to-sidewafer dicing technology cuts thewafer using horizontal and vertical cutlines that traverse
the entire length of the wafer (Figure 12.8). Within a given reticle, these lines may either cut through
dies rendering them useless or might leave large margins making the dies unacceptably large.

There are several associated algorithmic problems. The reticle floorplanning formulation pro-
poses that we compute a floorplan and positions of the cutlines assuming a side-to-side wafer dicing
technology. In Ref. [47], both reticle area and wafer yield were optimized using SA. In Ref. [48],
the yield was treated as a constraint and the reticle area was optimized. This strategy, coupled with
a branch-and-bound algorithm, resulted in better solutions than those in Ref. [47]. To further reduce
fabrication cost, projects requiring different numbers of metal layers can be put on the same shuttle.
In Ref. [49], Chen et al. proposed an integer linear programming (ILP)-based floorplanner shuttle
runs consisting of projects of different desired processes.

Another problem associated with reticle floorplanning was considered by Xu et al. [50]. In this
variation, the objective is to compute a floorplan that optimizes area and a quantity called postCMP
oxide topography variation. Minimizing this quantity provides the process with a larger margin.
PostCMP oxide topography variation is closely related to the feature density. One technique for
reducing the variation in feature density is to insert dummy features into the design. The floorplanning
algorithm uses SA on slicing floorplans with a cost function that approximates the topography
variation. (Topography variation minimization can be formulated as a linear programming problem,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 253 24-9-2008 #16

Recent Advances in Floorplanning 253

Reticle

Wafer

Cutting line

Die

FIGURE 12.8 Illustration of reticle floorplanning. A wafer contains many reticles, each of which contains
several dies in an identical configuration. The reticle floorplanning problem asks how these dies should be
configured in the reticle, given that the wafer will be diced using horizontal and vertical lines that cut through
the entire wafer.

but this is too time consuming to include in the SA loop.) SA is followed by a step that slides or
rotates the chip and by a third step that inserts a dummy feature.

12.8 CONCLUDING REMARKS

This chapter has been an effort to try and capture as much floorplanning research as possible with a
bias toward newer and interesting problem formulations that are likely to be significant in practice.
We apologize in advance for any omissions.

ACKNOWLEDGMENTS

The authors thank Yao-Wen Chang, Tung-Chi Chen, Igor Markov, and Sachin Sapatnekar for
carefully reviewing the manuscript and suggesting improvements.

REFERENCES
1. A.B. Kahng, Classical floorplanning harmful? Proceedings of the 2000 International Symposium on
Physical Design, April 9–12, San Diego, CA, pp. 207–213, 2000.

2. J.L. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, Fourth edn. Morgan
Kaufman, 2007.

3. S.N. Adya and I.L. Markov, Fixed-outline floorplanning: Enabling hierarchical design, IEEE Transactions
on Very Large Scale Integration Systems, Vol. 11, No. 6, pp. 1120–1135, 2003. (ICCD 2001).

4. C.-T. Lin, D.-S. Chen, and Y.-W. Wang, Modern floorplanning with boundary and fixed-outline constraints
via genetic clustering algorithm, Journal of Circuits, Systems, and Computers, Vol. 15, pp. 107–128, Feb.
2006. (ASPDAC 2004).

5. T.-C. Chen and Y.-W. Chang, Modern floorplanning based on B∗-tree and fast simulated annealing, IEEE
Transactions on Computer-AidedDesign of ICs and Systems, Vol. 25, pp. 637–650, Apr. 2006. (ISPD2005).

6. D. Mehta and N. Sherwani, On the use of flexible, rectilinear blocks to obtain minimum-area floorplans
in mixed block and cell designs, ACM Transactions on Design Automation of Electronic Systems, Vol. 5,
pp. 82–97, Jan. 2000.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 254 24-9-2008 #17

254 Handbook of Algorithms for Physical Design Automation

7. Y. Feng, D. Mehta, and H. Yang, Constrained floorplanning using network flows, IEEE Transactions on
Computer-Aided Design of ICs and Systems, Vol. 23, No. 4, pp. 572–580, 2004. (ISPD 2003).

8. Y. Feng and D. Mehta, Constrained floorplanning with whitespace, in VLSI India, 17th International
Conference on VLSI Design, Mumbai, India, 2004.

9. Y. Feng and D. Mehta, Module relocation to obtain feasible constrained floorplans, IEEE Transactions on
Computer-Aided Design of ICs and Systems, Vol. 25, pp. 856–866, 2006.

10. S. Liao, M. Lopez, and D. Mehta, Constrained polygon transformations for incremental floorplanning,
ACM Transactions on Design Automation of Electronic Systems, Vol. 6, Jul. 2001.

11. H.-M. Chen, H. Zhou, D.F. Wong, H.H. Yang, and N. Sherwani, Integrated floorplanning and interconnect
planning, in International Conference on Computer-Aided Design, San Jose, CA, pp. 54–57, 1999.

12. S.T.W. Lai, E.F.Y. Young, and C.C.N. Chu, A new and efficient congestion evaluation model in floorplan-
ning: Wire density control with twin binary trees, in Design Automation and Test in Europe, in Europe
Conference and Exposition, 3–7 March, Munich, Germany, pp. 856–861, 2003.

13. C. Shen and C. Chu, Accurate and efficient flow based congestion estimation in floorplanning, in Asian
and South Pacific Design Automation Conference, pp. 671–676, 2004.

14. F. Shahrokhi and D.W. Matula, The maximum concurrent flow problem, Journal of the ACM, 37(2),
318–334, 1990.

15. C.W. Sham and F.Y. Young, Routability-driven floorplanner with buffer block planning, IEEE Transactions
on Computer-Aided Design of ICs and Systems, Vol. 22, pp. 470–480, Apr. 2003. (ISPD 2002).

16. Y. Ma, X. Hong, S. Dong, S. Chen, C.-K. Cheng, and J. Gu, Buffer planning as an integral part of floor-
planning with consideration of routing congestion, IEEE Transactions on Computer-Aided Design of ICs
and Systems, Vol. 24, pp. 609–621, Apr. 2005. (ISPD 2003).

17. J. Cong, T. Kong, and Z. Pan, Buffer block planning for interconnect planning and prediction, IEEE
Transactions on Very Large Scale Integration Systems, Vol. 9, pp. 929–937, Dec. 2001. (ICCAD 1999).

18. X. Tang and D.F. Wong, Network flow based buffer planning, Integration, Vol. 30, No. 2, pp. 143–155,
2002. (ISPD 2000).

19. P. Sarkar, V. Sundararaman, and C.-K. Koh, Routability-driven repeater block planning for interconnect-
centric floorplanning, IEEE Transactions on Computer-Aided Design of ICs and Systems, Vol. 20,
pp. 660–671, May 2001. (ISPD 2000).

20. H. Xiang, X. Tang, and M.D.F. Wong, Bus-driven floorplanning, IEEE Transactions on Computer-Aided
Design of ICs and Systems, Vol. 23, No. 11, pp. 1522–1530, 2004. (ICCAD 2003).

21. J.H.Y. Law and E.F.Y.Young, Multi-bend bus driven floorplanning, in International Symposium on Physical
Design, San Francisco, CA, pp. 113–120, 2005.

22. J. Cong,A. Jagannathan,G.Reinman, andM.Romesis,Microarchitecture evaluationwith physical planning,
in Proceedings of the 40th Design Automation Conference, Anaheim, CA, June 2–6, 2003.

23. C. Long, L.J. Simonson, W. Liao, and L. He, Floorplanning optimization with trajectory piecewise-
linear model for pipelined interconnects, in Design Automation Conference, San Diego, CA, June 7–11,
pp. 640–645, 2004.

24. M.R. Casu and L. Macchiarulo, Throughput-driven floorplanning with wire pipelining, IEEE Transactions
on Computer-Aided Design of ICs and Systems, Vol. 24, pp. 663–675, May 2005. (ISPD 2004).

25. M.R. Casu and L. Macchiarulo, Floorplan assisted data rate enhancement through wire pipelining: A real
assessment, in International Symposium on Physical Design, pp. 121–128, 2005.

26. M. Ekpanyapong, J.R. Minz, T. Watewai, H.-H. Lee, and S.K. Lim, Profile-guided microarchitectural
floorplanning for deep submicron processor design, IEEE Transactions on Computer-Aided Design of ICs
and Systems, Vol. 25, No. 7, pp. 1289–1300, 2006. (DAC 2004).

27. A. Jagannathan, H. Yang, K. Konigsfeld, D. Milliron, M. Mohan, M. Romesis, G. Reinman, and J. Cong,
Microarchitecture evaluation with floorplanning and interconnect pipelining, in Asian and South Pacific
Design Automation Conference, Shanghai, China, January 18–21, 2005.

28. V. Nookala, Y. Chen, D.J. Lilja, and S.S. Sapatnekar, Microarchitecture-aware floorplanning using a sta-
tistical design of experiments approach, in Design Automation Conference, San Diego, CA, June 13–17,
2005.

29. V. Nookala, Y. Chen, D.J. Lilja, and S.S. Sapatnekar, Comparing simulation techniques for
microarchitecture-aware floorplanning, in IEEE International Symposium on Performance Analysis of
Systems and Software, Austin, TX, March 20–22, 2006.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 255 24-9-2008 #18

Recent Advances in Floorplanning 255

30. Y.-W. Wu, C.-L. Yang, P.-H. Yuh, and Y.-W. Chang, Joint exploration of architectural and physical design
spaces with thermal consideration, in International Symposium on Low Power Electronics and Design, San
Diego, CA, August 8–10, pp. 123–126, 2005.

31. J.-S. Yim, S.-O. Bae, and C.-M. Kyung, A floorplan-based planning methodology for power and clock
distribution in ASICs, in Proceedings of Design Automation Conference, New Orleans, LA, June 21–25,
pp. 766–771, 1999.

32. C.-W. Liu and Y.-W. Chang, Power/ground network and floorplan cosynthesis for fast design convergence,
IEEE Transactions on Computer-Aided Design of ICs and Systems, Vol. 26, pp. 693–704, Apr. 2007.
(ISPD 2006).

33. L. Cheng and M.D.F. Wong, Floorplan design for multimillion gate FPGAs, IEEE Transactions on
Computer-Aided Design of ICs and Systems, Vol. 25, pp. 2795–2805, Dec. 2006. (ICCAD 2004).

34. Y. Feng and D. Mehta, Heterogeneous floorplanning for FPGAs, in VLSI India, Hyderabad, India, 3–7
January 2006.

35. K. Bazargan, R. Kastner, and M. Sarrafzadeh, 3-D floorplanning: Simulated annealing and greedy place-
ment methods for reconfigurable computing systems, in Design Automation for Embedded Systems,
2000. (RSP 99).

36. L. Cheng, L. Deng, and M.D.F. Wong, Floorplanning for 3D VLSI design, in Asian and South Pacific
Design Automation Conference, Shanghai, China, January 18–21, 2005.

37. J. Cong, J. Wei, and Y. Zhang, A thermal-driven floorplanning algorithm for 3D ICs, in International
Conference on Computer-Aided Design, San Jose, CA, November 7–11, 2004.

38. F. Balasa and K. Lampaert, Symmetry within the sequence-pair representation in the context of placement
for analog design, IEEE Transactions on Computer-Aided Design of ICs and Systems, Vol. 19, pp. 721–731,
July. 2000. (DAC 1999).

39. F. Balasa and S.C. Maruvada, Using non-slicing topological representations for analog placement, IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E84-A,
pp. 2785–2792, Nov. 2001. (ASPDAC 2001).

40. S.C. Maruvada, K. Krishnamoorthy, F. Balasa, and L.M. Ionescu, Red-black interval trees in device-level
analog placement, IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, Vol. E86-A, pp. 3127–3135, Dec. 2003. (ASPDAC 2003).

41. F. Balasa, S.C. Maruvada, and K. Krishnamoorthy, On the exploration of the solution space in analog
placement with symmetry constraints, IEEE Transactions on Computer-Aided Design of ICs and Systems,
Vol. 23, pp. 177–191, Feb. 2004. (ICCAD 2002).

42. J.-M. Lin, G.-M.Wu,Y.-W.Chang, and J.-H. Chang, Placementwith symmetry constraints for analog layout
design using TCG-S, in Proceedings of ACM/IEEE Asia South Pacific Design Automation Conference,
Shanghai, China, January 18–21, pp. 1135–1138, 2005.

43. S. Kouda, C. Kodama, and K. Fujiyoshi, Improved method of cell placement with symmetry constraints for
analog IC layout design, in Proceedings of ACM International Symposium on Physical Design, San Jose,
CA, April 9–12, 2006.

44. Y.-C. Tam, E.F.-Y. Young, and C. Chu, Analog placement with symmetry and other placement constraints,
in International Conference On Computer Design, Las Vegas, NV, June 26–29, pp. 349–354, 2006.

45. P.-H. Lin and S.-C. Lin, Analog placement based on novel symmetry-island formulation, in Design
Automation Conference, San Diego, CA, June 4–8, 2007.

46. K. Bazargan, S. Kim, and M. Sarrafzadeh, Nostradamus: A floorplanner of uncertain design, IEEE
Transactions on Computer-AidedDesign of ICs and Systems, Vol. 18, pp. 389–397, Apr. 1999. (ISPD 1998).

47. A.B. Kahng, I.I. Mandoiu, Q.Wang, X. Xu, and A. Zelikovsky, Multiproject reticle floorplanning and wafer
dicing, in International Symposium on Physical Design, Phoenix, AZ, pp. 70–77, 2004.

48. A.B. Kahng and S. Reda, Reticle floorplanning with guaranteed yield for multi-project wafers, in
International Conference On Computer Design, San Jose, CA, October 11–13, pp. 106–110, 2004.

49. C.-C. Chen and W.-K. Mak, A multi-technology-process reticle floorplanner and wafer dicing planner for
multi-project wafers, inAsian and South PacificDesign Automation Conference, Yokohama, Japan, January
24–27, pp. 777–782, 2006.

50. G. Xu, R. Tian, D.Z. Pan, and M.D.F. Wong, CMP aware shuttle mask floorplanning, in Asian and South
Pacific Design Automation Conference, Shanghai, China, January 18–21, pp. 1111–1115, 2005.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C012 Finals Page 256 24-9-2008 #19

256 Handbook of Algorithms for Physical Design Automation

BIBLIOGRAPHY
1. S.N. Adya and I.L. Markov, Consistent placement of macro-blocks using floorplanning and standard-cell

placement, ACM Transactions on Design Automation of Electronic Systems, Vol. 10, Jan. 2005. (ISPD
2002).

2. J. Cong, M. Romesis, and J. Shinnerl, Fast floorplanning by look-ahead enabled recursive bipartitioning,
IEEE Transactions on Computer-Aided Design of ICs and Systems, Vol. 25, pp. 1719–1732, Sept. 2006.
(ASPDAC 2005).

3. J. Crenshaw, M. Sarrafzadeh, P. Bannerjee, and P. Prabhakaran, An incremental floorplanner, in GLSVLSI,
Ann Arbor, MI, pp. 248–251, 1999.

4. A. Ranjan, K. Bazargan, and M. Sarrafzadeh, Fast hierarchical floorplanning with congestion and timing
control, IEEE Transactions on Very Large Scale Integration Systems, Vol. 9, No. 2, pp. 341–351, 2001.
(ICCD 2000).

5. F. Rafiq, M. Chrzanowska-Jeske, H.H. Yang, and N. Sherwani, Bus-based integrated floorplanning, in
Proceedings of the IEEE Symposium on Circuits and Systems, Scottsdale, AZ, pp. 875–878, 2002.

6. F. Rafiq, M. Chrzanowska-Jeske, H.H. Yang, M. Jeske, and N. Sherwani, Integrated floorplanning with
buffer/channel insertion for bus-based designs, IEEE Transactions on Computer-Aided Design of ICs and
Systems, Vol. 22, No. 6, pp. 730–741, 2003. (ISPD 2002).

7. Y.M. Fang and D.F. Wong, Simultaneous functional-unit binding and floorplanning, in International
Conference on Computer-Aided Design, San Jose, CA, pp. 317–321, 1994.

8. M. Moe and H. Schmit, Floorplanning of pipelined array modules using sequence pairs, in International
Symposium on Physical Design, Monterey, CA, April 6–9, 2003.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 257 24-9-2008 #2

13 Industrial Floorplanning
and Prototyping

Louis K. Scheffer

CONTENTS

13.1 Introduction . 257
13.1.1 Floorplanning in the Design Flow . 258
13.1.2 Evolution of Block-Based Designs [4] . 259

13.2 History. 259
13.2.1 History of Pin Assignment . 261
13.2.2 History of Timing Budgets . 261
13.2.3 Academic versus Industrial Floorplanning .. 261

13.3 Use of Hierarchy .. 261
13.3.1 Is Hierarchical Design Less Efficient? . 262
13.3.2 Logical versus Physical Hierarchy.. 262

13.4 Pin Assignment and Timing Budgeting.. 263
13.5 Routability Analysis . 264
13.6 Buffer and Flip-Flop Insertion . 265
13.7 Estimating Parasitics and Timing . 265
13.8 Power Supply Design . 266
13.9 ECOs and Accounting for Changes . 267
13.10 Working with Incomplete and Inconsistent Designs . 268
13.11 Conclusions and Future Work . 268
Acknowledgments . 270
References . 270

13.1 INTRODUCTION

Industrial floorplanning and prototyping consist of the steps needed after the chip logic is defined,
but before the final detailed implementation of a production chip. Several of the steps, such as pure
block placement and mixed block and cell placement (also called the boulders and dust problem),
have received considerable academic interest and are covered in other sections. This chapter instead
concentrateson thepracticalproblems thatmustbesolved in thefloorplanningof large industrial chips.

In this chapter we assume the chips to be designed consist of predefined blocks and standard cells.
Predefined blocks (commonly called IP blocks, where IP stands for intellectual property) commonly
includememories, processors and analog functions, and are presented to the designer as givens. Their
placement and orientation must be decided, but their contents cannot be changed. IP blocks come in
a wide variety of shapes and sizes, but are typically relatively large, perhaps the equivalent of a few
thousand to a fewmillion gates. Standard cells, by contrast, are very small, usually incorporating just
one to a few logic gates. Usually they are of a uniform height (hence standard) and designed to be
abutted into rows. A crucial distinction in a typical design flow is that the IP blocks are selected by
the designer, and cannot be changed by the automatic tools, whereas the standard cells, are normally

257

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 258 24-9-2008 #3

258 Handbook of Algorithms for Physical Design Automation

generatedby logic synthesis [1], and can be freelymodified by the tools as long as the logical function
specified by the RTL is preserved.

A floorplan and a prototype are two different approximate versions of a chip, at different levels of
abstraction. The floorplan is the more abstract of the two, consisting of just a chip outline, placement
and orientation of the hard blocks, an IO placement, sites where the standard cells can go, and an
approximate power grid design. The blocks may be hard, or fully defined, or may be blocks that
are still under construction. These are commonly called soft if their size or aspect ratio is not fully
decided, or black or gray boxes if their size is fixed but their contents unknown. (In the terminology
of floorplanning, a black box is a cell where only the inputs, outputs, and function are known. By
analogy, white and gray boxes have contents fully and partially defined, respectively. Note that the
color of a box may vary according to purpose—the same block may be a black box for placement, a
gray box for timing, but a white box for logic verification.)

A prototype consists of everything from the floorplan, plus a detailed placement and at least a
rough route (normally including at least layer and track assignment). The goal is to enable reasonably
accurate extraction and timing verification, and hence show a design is feasible and ready for the
more time-consuming steps of final placement and routing. The final detailed implementation may
or may not follow the prototype.

Like placement, a good floorplan or prototype is not unique. Typically, there are many different
possible floorplans for the same design, of comparable quality. One of the major questions, as in
placement, is how do you know you have got a good floorplan, compared with what might be
possible? This situation is even worse than the situation in placement, where there are at least a few
examples where the optimum solution is known [2].

13.1.1 FLOORPLANNING IN THE DESIGN FLOW

Design of a modern chip involves many steps. First, the exact function of the chip must be defined,
and shown to be correct. The formal definition of the function is usually specified in RTL, and
proving it correct is done by simulation, formal verification, and a host of other techniques. These
steps are collectively referred to as front-end design.

The RTL from the front-end process then goes to the back end where it is turned into a detailed
implementation. Normally, this involves mapping the function into an interconnected set of logic
gates (by logic synthesis), followed by placement, routing, extraction, timing analysis, and design
rule checking, and ultimately the fabrication of the masks, and then ICs.

In cases where engineeringmargins of performance, power, and cost are large, the front and back
ends can be largely independent. In many cases, however, they interact fairly strongly, particularly
when some feature of the RTL is difficult or impossible to implement in the back end. This interaction
is madeworse by the differing expertises involved.Most front-end designers are not familiar with the
back-end tools, and do not have time to run them in any case. Most back-end designers do not have
the expertise to change the RTL, even if they were allowed to do so. Floorplanners are an attempt to
bridge this gap with a tool accessible to both sides.

Floorplanning decides the overall layout of the chip, and is used early in the chip design flow [3],
when the design is malleable and all fixes are possible. Normally it is used by a front-end user, or a
back-end expert working in close cooperation with a front-end group. One of the main objectives of
floorplanning is helping both the front- and back-end users understand the design.Which constraints
are easy, and which hard? Does it meet timing? Routability? Has enough routing resource been
allocated to the power supplies?Will the RTL work as is, or are changes needed to make it feasible to
meet the design constraints using the specified process and library? Because one of the main tasks of
a floorplanner is diagnostics (where is the routing hard, and why? Why is the timing hard to meet?),
easy-to-use graphical user interfaces (GUIs) and easy-to-understand feedback are critical.

Because one of the main points of floorplanning is to understand the design as early as possible,
a crucial feature of a floorplanner is the ability to work with incomplete designs. Missing blocks,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 259 24-9-2008 #4

Industrial Floorplanning and Prototyping 259

incomplete constraints, and evenmissing technology informationmust be handled, often by allowing
designers to enter estimates for the missing data.

Once theRTLisdeemedcomplete,ornearly so, thenext step isprototyping.This isa fast (andoften
rough) pass through the entire physical design process of synthesis, placement, routing, extraction,
and timing analysis. This quick pass is meant to verify feasibility and completeness before starting on
the lengthy production-quality physical design steps. The prototype design producedmay or may not
form the basis of the final implementation.Normally prototyping is done bya back-end user, or at least
someone with experience in placement and routing. Because one of the main reasons for prototyping
is to ensure that everything is ready, it is much less tolerant of missing data than a floorplanner. The
prototyper will perform at least a rough version of the final implementation steps, including place
and route, extraction and timing analysis, so all required inputs must be present and consistent. This
includes libraries, the input hardware description language (or HDL), constraints, IP blocks, and so
on. Completion of a successful prototype shows the RTL should no longer need major changes.

Prototyping is also part of a business model for ASIC handoff. In this business model, respon-
sibility for a chip is split among the end customer, who wishes to logically design and sell a chip,
and the ASIC house, who does the detailed implementation and manufacturing. Several costs and
responsibilities are contractually obligated in such a relationship:

• The designer, usually working at the end customer, must supply an RTL that can be practi-
cally implemented in the specified process (even though they do not do this implementation
themselves).

• The ASIC house must quote a price for the detailed implementation. There are normally
additional charges if the RTL changes after implementation starts.

• The ASIC house must quote a price for each chip produced.

Prototyping (and to a lesser extent, floorplanning) helps a great deal with this interface between
companies. The designer uses prototyping tomake sure their RTL can be implemented in the specified
process with the needed performance, and to ensure that all is ready for implementation, to avoid
additional charges for later changes. Also, a prototype serves as a concrete example of at least one
way to meet the design goals, though the ASIC house is not normally constrained to follow it. On the
other side, the ASIC house uses prototyping for QA on incoming designs, to make sure all required
information is there, and for cost estimates for both the detailed implementation process and the final
chip cost. A prototype, as a physically accurate model, also helps ensure that the chip will fit in the
specified package and can be bonded successfully.

Finally, a floorplanner or prototyper also serves as a central repository for data, especially in the
hierarchical design style. The input is the RTL for all groups, libraries, IO files, SDC constraints, and
so on. The output is a similar set of files for each physical block. This implies the use and reading of
many languages: LEF/DEF, IO specifications, Verilog or VHDL, delay constraints, and so on.

13.1.2 EVOLUTION OF BLOCK-BASED DESIGNS [4]

Floorplanners were originally built for designs with relatively few blocks, with the chip area dom-
inated by standard cells, as shown in Figure 13.1a. However, as chips have gotten larger, designers
have incorporated larger and larger fractions of blocks. The remaining standard cells, increasing in
number but decreasing in terms of percentage, must be placed into the spaces between the blocks.
An example of such a floorplan is shown in Figure 13.1b. This change in design style has several
implications for the algorithms and methods used in today’s floorplanners.

13.2 HISTORY

When chips were small, and tools primitive, what we currently call a floorplan could be drawn by
hand on a piece of paper. Place and route tools, when used, were only run after the netlist was

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 260 24-9-2008 #5

260 Handbook of Algorithms for Physical Design Automation

(a) (b)

FIGURE 13.1 (a) Standard cell-dominated design on the left and (b) block-dominated design on the right.
(From Wein, E. and Benkoski, J., Electronics Engineering Times, August 20, 2004. With permission.)

finalized. Performance was verified by taking the final placed and routed results, running extraction,
then delay calculation, then timing analysis. Any performance optimizations, or corrections of errors
and omissions, were done using the place or route tool directly.

As chips grew past a few thousand gates, an additional tool began to make sense. Some of tasks
that were not well addressed by the old flow include:

• Designers wished to know if a design was feasible before (or without) doing the final layout
tasks such as a fully detailed power grid.

• Designers wanted to examine the feasibility of a design before all parts were complete.
• Designers wanted to divide a design up into two or more sections, each of which could be

treated separately.
• Designers wanted to understand where there design was easily implemented, and where

there were problems, early in the design cycle when RTL changes are still relatively
easy.

Floorplanners were invented to address these needs. Many of the initial uses of floorplanning envi-
sioned it as part of a suite of integrated tools, such as VIVID [5,6], or the internal tools of DEC [7],
or CHEOPS [8]. By 1986, standalone floorplanners such as Mason were available [9].

In the late 1990s, as designs became bigger yet, they often ran into problems in detailed imple-
mentation even though they had what appeared to be a good floorplan. In particular, problems often
only showed up after detailed routing, extraction, and timing were complete, because many charac-
teristics of the final design are heavily influenced by the details of the routing. However, detailed
placement, routing, extraction, and verification often took a week or more—not unreasonable for the
final implementation, but too long for effective feedback to the earlier stages of the design process.
The technical solution was to do a very fast but fully detailed placement, followed by a very fast
(but rough) detailed route, and a fast approximate RC extract. If timing analysis on this indicated
all was well, then the relatively lengthy detailed implementation process could begin. A floorplan
that was verified through these additional steps was sometimes called a virtual silicon prototype,
and the process called prototyping. See Goering for an early reference [10], Chao and Lev [11] for
an informal explanation of the importance of detailed wiring, and Dai et al. [12] for a more formal
description of the process.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 261 24-9-2008 #6

Industrial Floorplanning and Prototyping 261

13.2.1 HISTORY OF PIN ASSIGNMENT

Early on, printed wiring boards (PWBs) served as modules. Assigning pins on these modules was
the equivalent of pin assignment in IC floorplanners. This was does as early as 1972 [13]. For ICs,
this problem was only seriously addressed in the 1980s.

By 1984, the pin assignment problemwas explicitly addressed [14].By 1989, pin assignmentwas
being combined with global routing [15,16]. By 1990, it was combined with floorplanning [17,18],
and by 2002 with buffer planning [19]. See Section 13.4 for more details.

13.2.2 HISTORY OF TIMING BUDGETS

Time budgeting was first addressed in the context of breaking a path delay into individual net
delays, as in Ref. [20]. Many other approaches to this have been developed [21]. Then budgeting
was extended to hierarchical design, for example, by Venkatesh [22] or Kuo and Wu [23]. In a
floorplanner, it makes sense to use the hierarchy information as well [24].

13.2.3 ACADEMIC VERSUS INDUSTRIAL FLOORPLANNING

Although they both have activities called floorplanning, industry and academia mean very different
things by this term. In academia, floorplanning refers primarily to automatic placement of pure block
designs, or designs including large fractions of blocks, with objectives of good packing andminimum
wirelength.A related term, floorplacement, refers to the automatic simultaneous placement of blocks
and standard cells [25,26].

In contrast, in industrial floorplanning, manual input is allowed if not encouraged, and the main
goals are timing and routability, with area and wirelength treated as means to an end, and not an
objective by themselves. Industrial floorplanning includes, and is often dominated by, practical con-
cerns such as power grid design, dealing with partially specified or contradictory data, multivoltage
support for power reduction, buffer insertion, ease of clock tree design, and so on.

13.3 USE OF HIERARCHY

Floorplanning and prototyping may be flat or hierarchical. In a flat floorplan, the entire design is
treated as a single problem, and any cell or block can be placed at any location in the design. There
is no need to assign cells and pins to the blocks, or create block budgets for timing or power. This
flat design style is conceptually straightforward and provides maximum implementation flexibility.
However, it has several disadvantages, especially for large designs. It may stress the limits of tools
(which often cannot handle a large design flat) as well as humans, who may not be able to easily
understand such a design. Because every detail of the design interacts, there may be no easy way to
divide the work among teams. Flat design may well make changes more difficult, because they are
less localized, which can also impact design closure [27]. For these and other reasons, many chips
are designed hierarchically. In this case, the chip surface is divided into areas, commonly called
blocks. Each block represents an independent design problem—all cells assigned to the block must
be placed inside it, and all wires purely internal to the block must be routed within its boundary.
Signals that connect to the rest of the design are brought to pins, where the routing from the rest of
the design will connect. These pins must be assigned locations and layers for each block, and each
block must be assigned a definite size and location within the chip. All design constraints must be
budgeted among the blocks. Foremost among these constraints are timing and power. The budgeting
process is crucial, in particular, one infeasible budget (among tens of thousands of pins) can make
the whole design infeasible, where it might be easily completed using a flat flow.

There are also intermediate design styles, intended to combine the advantages of flat and hier-
archical design. For example, placement might be hierarchical, to limit the scope of changes, but
routing done flat, to avoid the need for pin assignment. A similar approach is a flat floorplan with
regions. In this particular case, the cells are confined to specific regions as in a hierarchical design,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 262 24-9-2008 #7

262 Handbook of Algorithms for Physical Design Automation

but again the routing is done flat. In the same spirit, many floorplanners support operations such as
edit in context to enable the user to treat a hierarchical design as flat where this is beneficial, without
actually flattening the design.

13.3.1 IS HIERARCHICAL DESIGN LESS EFFICIENT?

It is sometimes argued that a hierarchical design is intrinsically less efficient than a flat design, in
terms of area or performance.While this has some basis in practice, it is not true in theory, if arbitrary
rearrangement of the hierarchy is allowed. This can be shown as follows [28]: take the result of the
hypothetically more efficient flat tool or procedure. Then divide this flat design, cookie cutter style,
to create a hierarchical design. This design, if fabricated,would be exactly the same as the flat design,
and have exactly the same size and performance.

This exact procedure is only useful as an existence proof, because there is no point in building a
hierarchical design that is exactly the same as an existing flat design. Furthermore, the cookie cutter
approach will almost surely result in a completely incomprehensible hierarchy. There may be no
easy way to express high-level constraints on the block pins; indeed even the pins may be split into
subpieces. But this procedure does show that the problem is the limitations of hierarchical tools, not
the use of hierarchy itself.

A very similar procedure has been used to limit the scope of changes during ECOs [29]. This
showed empirically that this procedure not only generate hierarchical designswith the same efficiency
as the corresponding flat designs, but also that under normal conditions (no huge cells) this can be
done even when restricted to slicing floorplans.

13.3.2 LOGICAL VERSUS PHYSICAL HIERARCHY

Normally, the input to an industrial floorplanner is a netlist defined in structural Verilog or VHDL.
Usually, any hierarchy present in the original Verilog or VHDL files was developed for ease of
proving logical correctness. Often, it not appropriate for physical design.

One typical difference is that the input logical hierarchy is deep, whereas the preferred physical
hierarchy is shallow, with as few levels as practical. Physical design is typically most efficient when
gates are combined into blocks that are relatively large (a million gates or so is typical as of 2006).

The usual solution is tomatch the top level of hierarchy exactly, with further hierarchy underneath
on the logical side but a flat structure on the physical side. Generating this hierarchy automati-
cally does not usually work because partitioning the top level design constraints normally requires
knowledge of design intent. It is almost always better for the designer to specify the high-level
hierarchy decomposition, with the help of the floorplanner

One of the most common ways for the floorplanner to assign the designer in finding a good
physical hierarchy is based on the relationship between a truly flat design and a corresponding
hierarchical design, as discussed above. A floorplanner will typically perform a full flat placement,
see where the cells “want” to be, and use this to help define the partitioning into blocks. Visually, this
is often done by displaying the results of a flat placement, coloring each cell according to its source
block in the hierarchy, as shown in Figure 13.2. Blobs of similar color cells then define a potential
partitioning—whichcells should be grouped together, andwhere the resulting block should be placed
on the chip. Because a good partitioning also needs to take many other factors into account, such as
the ease of dividing constraints, divisions into work groups, and so on, the partitioning is normally
an interactive operation, using the color map as a guide.

In practice, many variations of this idea are used:

• Use of an earlier version of the design to decide the partitioning. Assuming the differences
are small, this may give a good partitioning for the final design.

• Use of a faster, but lower quality, algorithm for the flat design. This may include placement,
routing, and extraction. The hope is that if the quickly produced flat design is feasible, and

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 263 24-9-2008 #8

Industrial Floorplanning and Prototyping 263

FIGURE 13.2 These figures show flat placements of a design, with each cell color coded to show what portion
of the input hierarchy it came from. All have similar quality, but are quite different. Note also that cells from
the same logical hierarchy are often, but not always, grouped together. (Courtesy of David Shen, Cadence.)

then used to generate the hierarchy, then each piece, when fully implemented by the final
tool, will be at least as good as the result of the quick tool. This is not guaranteed, but is a
reasonable guess, especially when the fast tool is tuned to mimic the behavior of the final
production-quality tool.

• Use the same principle with routing to decide pin positions. Route it once flat, then use
where the routes cross the block boundaries as pin positions.

• Use the same principle for timing budgeting. Route the chip (flat or with assigned pins),
then look at when the signals propagate through the pin locations, and assign timing budgets
based on those times.

13.4 PIN ASSIGNMENT AND TIMING BUDGETING

Once the gates have been assigned to blocks, designers often wish to develop the blocks in parallel.
This implies making the block into a self-contained unit. Each pin must be assigned a position (often
but not always on the periphery), and a layer. This is called the pin assignment problem. This is
closely related to the problem of terminal propagation [30], which is an internal decision made by
the placer when dividing a large problem into two or more subproblems. Another closely related
problem is the assignment of the entire chip’s external IO pins. This is a particularly hard problem
because it not only involves the chip physical design but also the package parasitics and logical
design (the possibility of simultaneous switching). This chip-package codesign problem, and the
pin assignments that result from it, are beyond the scope of this chapter, but many discussions and
considerable research are available [31–38].

Pin assignment interacts strongly with routing. By definition, a feasible pin position assignment
allows both the top level and the block routing to complete, so routabilitymust be taken into account.
Pin placement also interacts with the router to determine the timing of the global interconnects,
the ease of the implementation of the blocks, and wirelength. Many approaches to combine pin
assignment and routing have been tried. Pin assignment was combined with global routing by Cong
in Ref. [15], and updated in Ref. [16]. The basic idea is to construct a redundant graph of needed
connections and then iteratively remove the worst edges, until only a tree remains for each net.
Wang et al. [39] approach the same problem by searching for steiner trees among the graph of
possible connections, with capacities on each edge. Pin assignment can also be attacked as part
of the even more general problems of floorplanning—deciding the placements and shapes of each
block. This approach, studied by Pedram, et al. [17] and Koide et al. [40], has not been followed up
in industrial floorplanning, because the scale of the individual problems makes it hard to consider

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 264 24-9-2008 #9

264 Handbook of Algorithms for Physical Design Automation

them all in combination. An additional complication became evident during the late 1990s—long
lines, such as those considered in global routing and pin assignment, almost always require buffer
insertion. Albrecht et al. [19] and Xiang et al. [41,42] have combined pin assignment and buffer
planning, both by casting the assignment as a flow problem (multicommodity flow and min-cost
flow, respectively).

However, industrial floorplanners do not typically use any of these methods. More typical is to
create a flat instance of the hierarchical design, then place it and (roughly) route it. Then pins are
assigned where routes cross the block boundaries. This approach has some practical advantages.
Routability and timing are taken into account, provided the flat placement and routing tools do so.
The resulting pin assignment is guaranteed to be feasible, because the design was routed at least once
with those positions. The main drawback is that often the pin positions cannot be assigned until a
complete block design is available, meaning that in practice they are often determined with an early
version of the design. The hope is that later changes will not upset the pin assignment too much.

Next, the timing constraints for each pin must be specified. Normally this is an arrival time for
each input, and a required time for each output. The process of assigning a sufficient and feasible
timing constraint to each pin, given the overall constraints on the chip, is called time budgeting.Most
of the work is based on the zero slack algorithm (ZSA) as described by Hauge at al. [43,44] and in
Ref. [20].

In practice, assigning the timing constraints must be done very carefully. A typical design, as of
2006, many have hundreds blocks, each with thousands of pins. If a single one of these hundreds
of thousands of pins is assigned an infeasible objective, the entire design process may fail. Thus,
ensuring that all timing constraints are feasible is critically important.

If the whole design exists, at least in preliminary form, a procedure very similar to the pin
assignment described above is often used. A complete prototype of the design is constructed, with
a full placement and at least a rough routing. Then extraction, delay calculation, and static timing
will result in, for each signal, a time when the signal is available, and a time when it is required. The
difference between these is the slack, and as long as the timing objective is within this interval, the
assignment should be feasible.

13.5 ROUTABILITY ANALYSIS

A placement is not useful if a design cannot be routed, and a timing budget computed from a
placement can be wildly off if the routing is not as expected. Hence floorplanners must have a fairly
accurate picture of how the routing will turn out, even though they do not do the routing themselves.
Such an understanding is obtained through routability analysis.

Commercial detailed routers typically have certain characteristics that need to be taken into
account by floorplanners. If the design is un-congested, they can usually route every route in very
nearly the theoretical minimum length. As the design becomes congested, the routes increase in
length compared with the theoretical minimums, as nets must detour to complete their wiring.
Finally, if the congestion is too great, the design becomes infeasible and cannot be routed at all.
Importantly, the exact point where a design becomes unroutable is hard to predict. The router can
often compensate for a few over-full regions by rerouting other nets. In this case, the wirelength
will grow slightly, and the execution time may increase considerably, as many passes of rip-up and
reroute are required to complete the routing. Eventually, as the density increases still more, the router
will fail and the routes cannot be completed.

Estimates of routing congestion may be based on a global route [45], or a trial route [46]. In
a global route, all routes are mapped to a coarse grid defined over the chip. Each net is assigned a
path through this grid, either by explicit routing or probabilistically (see Chapter 23 or Ref. [45], for
more details). After all nets are routed, if all the global cells are under capacity, then the design can
almost surely be detail routed. If at most a few percent of the global routing cells are just slightly over

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 265 24-9-2008 #10

Industrial Floorplanning and Prototyping 265

capacity, the design is still likely to route. If any cells are far over capacity, or if there are clusters of
over-capacity cells, then detailed routing will most likely fail.

Because themarginal cases are hard to resolve, one common technique is to have the floorplanner
produce a color map of congestion. Then the user can apply their domain-specific knowledge or
experience to decide if the final design is likely to route successfully. Often the decision to accept
or try again is determined by the available time to market.

13.6 BUFFER AND FLIP-FLOP INSERTION

In modern IC processes, a long wire (or a large wiring tree) cannot simply be driven from the source.
As a wire gets longer, both the resistance and capacitance scale linearly with the length. Therefore,
the delay in a wire of length L scales as O(L2), and quickly dominates all other sources of delay.
Furthermore, the output of such a wire will have a very poor slew rate, leading to noise and power
problems.

To avoid these problems, buffers are inserted into long wires, dividing them into shorter
segments. If done properly, this makes the total delay a linear function of length, and fixes the
slew rate problems. The questions of where to place these buffers, how they interact with routing
tree construction, and how big the buffers should be, have received a great deal of attention (see
Refs. [47–53] for just a few examples). On the basis of the original Van Ginneken algorithm [54],
most of these algorithms work from the leaves to the root, keeping some combination of the
arrival time required, driving point capacitance, slew rate, or power. Each step closer to the root
creates new combinations, which are pruned by dynamic programming, heuristics, or both.

Even if the desired locations for buffers are known, many purely practical problems remain.
Do the buffers go into each block, or are they grouped into buffer banks between the blocks? In a
multivoltage chip, are there sites of the right voltage available? If blocks are power-switched, is the
domain of a proposed buffer site compatible with the power domain of the source and destination?
How do you account for the congestion (especially on lower metal and vias) caused by the buffers
that are inserted later? How do you back-annotate delays on components the front-end design does
not know about? Industrial floorplanners spend a lot of time and effort trying to make buffer insertion
as painless as possible.

One saving grace of buffer insertion is that by and large it does not affect logic function, and
therefore does not much affect the front-end design (except for the incorporation of delays, which
is needed for all signals in any case). However, a long wire on a fast chip may take more than one
cycle to traverse the die, and then it becomes advantageous to pipeline the wire. This is a much
more difficult problem, as the insertion of a clocked element requires significant changes to both
the logical and physical designs. Although automatic methods have been proposed [55–58], they
are seldom if ever used. In practice, the floorplan is used to identify the long wires, extra clocked
elements are added to those wires in the RTL, and then mapped into available locations in the layout.
This manual process is tedious and assumes the existence of a fairly static floorplan, and hence is
applied only to the highest performance chips such as microprocessors [59].

13.7 ESTIMATING PARASITICS AND TIMING

One of the most important jobs of a floorplanner is estimating the timing of an implementation. The
timing is composed of inherent gate delays and delays induced by parasitics, including incremental
gate delay due to loading and delays through the interconnect itself. The gate delay portion of the
total delay is normally well characterized, expressed as functions of output load and input slope,
and included as part of a standard cell library or IP block. Therefore, almost all of the uncertainty
to be resolved during the implementation revolves around the interconnect parasitics. The process
normally proceeds in three steps: estimate the route, then estimate the electrical parasitics of the
route, then estimate the delay from the parasitics.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 266 24-9-2008 #11

266 Handbook of Algorithms for Physical Design Automation

Because the level of physical details known varies throughout the process of floorplanning
and prototyping, there are many different ways to calculate estimate the parasitics, and hence the
timing.

• During the first synthesis runs, when no physical design yet exists, parasitics are estimated
by wire load models. These are estimates of parasitics based only on features from the
logical design—fanout, hierarchy crossings, and so on. Lacking physical data, wire load
models are at most statistically correct. They can accurately predict characteristics that are
the sum or average over many nets, such as total wirelength or power. They are not very
good at predicting the length or delays of individual nets or paths [60].

• Once a placement is available, the accuracy goes up dramatically. The exact pin positions
can be determined from the placement, then the parasitic estimator can construct a Steiner
tree for each net. Although creating an optimal steiner tree is NP-complete [61], there are
many fast approximations available [62,63]. Then the horizontal and vertical connections of
the Steiner tree can be assigned parasitic values, normally based on the average properties
of horizontal and vertical layers. Missing in this formulation is any interaction between
nets, and any effects due to layer assignment.

• The next level of detail is global routing. Here the surface of the chip is divided into
regions, typically 10–20 tracks on a side and one layer thick. Connections are routed on this
course grid, trying to respect the capacity of each edge between regions. The estimates are
much better, because layer assignment and net–net interaction are now taken into account.
However, effects due to adjacency cannot be estimated, because this is not known at this
time.

• The next level is a trial route, where each net on the global routing grid is assigned a track,
but the portions of each route within a global routing grid cell remain estimated. Now
much better capacitance estimates are possible, in particular, the effects of adjacent track
occupancyare now accounted for. This may seemminor, but today’s relatively smart routers
often count on these effects when optimizing designs, using such tricks are distributing
empty tracks adjacent to critical signals. Unless these tendencies are included in the analysis,
the timing may be off considerably.

• Next, an actual router may be used to connect the pins. This gives the most accurate
estimates, at the expense of longer runtimes. Even here, however, there are speed/accuracy
trade-offs. Often a fast, incremental, but less accurate extractor is used in optimization and
ECO loops, even if a real router is used to rewire any changes. Then a slower but sign-off
quality extractor may be used once the design is believed to be in a near-final state.

Driven by the same speed versus accuracy trade-off, many floorplanners also calculate intercon-
nect delay differently at different stages of the flow. Early on, a simple lumped-C approximation
may be sufficient. When higher quality estimates are available, Elmore delay can be used. As the
design approaches timing closure, accuracy is crucial, and the full arsenal of multimoment methods,
detailed consideration of cross coupling, slope propagation, and all the other intricacies of sign-off
timing analysis must be employed.

13.8 POWER SUPPLY DESIGN

Because of constant changes during the early stages of floorplanning, power supplywiring is usually
specified as a power supply plan, which is used to generate an actual power supply network. The
plan can be executed (or reexecuted) after changes to regenerate the power supply wires and vias.

Power supply wires are normally pushed down from the top, with possible cutouts for memory
and other IP cells. A typical sequence includes

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 267 24-9-2008 #12

Industrial Floorplanning and Prototyping 267

1. Define amain power supply grid. This will include the layers, spacing of wires, andwidth of
wires. Inmodern (less than 100 nm processes) the maximumwidth of wiresmay be severely
restricted. Therefore, wide wires must be implemented as a parallel bundle of smaller wires.

2. Define cutouts in the main grid for IP blocks, and build rings around them. This is needed
because most IP blocks have their own power supply defined.

3. Perform stub routing. This routes all IP block power supply pins, and all standard cell rows,
to the closest point on the power supply network. This is often done with a specialized line
probe or maze router.

The advent of chips with multiple different supply voltages has led to new problems, and hence
new features, in industrial floorplanners. See, for example, voltage islands in Ref. [64].

A prototyper must also include power supply network analysis, as well as power supply design.
Power supply wiring changes are more disruptive than almost any other types of changes—they
always involve making the power supply wires larger, which requires rerouting signal lines, which
normally causes overcongestion and hence problemswith routing, timing, and design closure. Fixing
these problems certainly requires extensive routing changes, often placement changes, and maybe
even RTL changes if the problem is serious enough. Combined with sign-off tools for IR-drop and
electromigration that can only be run at the very end of the design cycle, after all detailed routing is
complete, there is the potential for fatal errors, discoveredvery late and requiring extensive fixes. This
is exactly the type of problem prototyping is designed to prevent, so it is crucial that a prototyper
construct a power supply network that will survive the scrutiny of the final sign-off tools. This
involves doing the same types of analysis as the sign-off tools [65]: estimate the power consumption
of the cells/blocks, create an electrical model of the power supply network, and evaluate the voltage
drops and branch currents. Because a high-priority goal is quick turnaround, the analysis algorithms
often make (conservative) approximations to gain analysis speed.

13.9 ECOs AND ACCOUNTING FOR CHANGES

A major constraint on the design and capabilities of industrial floorplanners is that the design is
constantly changing as the floorplan is finalized. Every step must be designed with this in mind.
The input netlist changes, blocks change size and shape, pins come and go, and timing constraints
prove easy or infeasible. Each of these must be accommodated without losing any previous manual
work, where possible. This problem is not unique to floorplanning, it also occurs in other steps of the
design flow as well, such as synthesis and detailed routing. See Refs. [66,67] for general discussions
of the problems of incremental CAD, and Ref. [27] for a discussion of design closure.

Some of the more common changes, and their implications, are

• Netlist changes: This can range from trivial to extremely difficult, depending on howmuch
work has been done on the original netlist. If the changes are minor, and the synthesis tool
cooperates by keeping instance and signal names consistent, then finding the gates to be
deleted and added is easy, basically just a text compare. For minor changes, a good location
for the new gates can often be determined from the gate’s connections. The placement must
then be modified, either using techniques specifically developed for placement ECOs [29],
or perhaps using techniques that have been developedby the placement community to create
a legal layout from an approximate solution [68–74].

On the other hand, if buffers and inverters have been inserted and removed, and the
clock restructured, or if logic paths have been restructured, then the process of mapping
the changes into the existing design is very hard. This problem, trying to determine the
smallest set of changes that will turn an existing design A into something with the function
of new design B, is a difficult superset of formal equivalence checking [75]. As a result,
a more common approach is to try to make all operations replayable. Then the designers

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 268 24-9-2008 #13

268 Handbook of Algorithms for Physical Design Automation

can start with the new netlist, and reperform all the same optimizations they performed
the first time. If the circuit is suitably similar, with luck similar optimizations will yield
similar results.

• Block size changes: Block size changes almost always result in the block getting bigger
(if the block gets smaller, it is much less of a problem). In this case, the design will surely
require new routing (or new estimated routing for a floorplan), almost surely require a new
placement, and maybe a new floorplan. Again the ability replay previous optimizations and
operations is helpful.

• Pin changes: Removal of a pin presents no particular problem. Addition of a pin requires
finding a location for it and wiring to it.

• Constraint changes: These may require anywhere between no changes andmassive changes
to implement. If the constraint is on a block pin, both the block and the top level must be
checked, and if necessary modified.

Note that replay options should not depend, in general, on physical coordinates, because these
may change if a block size changes. Instance names can often be used, if the proceeding software is
careful, but netlist comparison functionality may be needed in the floorplanner if it is not.

13.10 WORKING WITH INCOMPLETE AND INCONSISTENT DESIGNS

Because one of themain goals of a floorplanner is to find problems early, it is crucial that floorplanners
work with early versions of a design. These designs may be incomplete, or in an inconsistent state,
but designers still expect to find problems in the portions that are complete, where possible. This
strongly implies all operations should be as forgiving as practical, performing as much analysis as
they can even in the presence of obvious errors and omissions. Input reading and parsing should
continue wherever possible even when errors are found. Analysis of a placed design should continue
even though overlapping cells are discovered, though with a warning to the user. Estimated routing
parasitics should be available if the net is unrouted, partially routed, completely routed, or even
shorted to an adjoining net. This accommodating spirit, though hard to quantify, is crucial in making
a floorplanner a useful tool.

One of the most common problems in an incomplete design is inclusion of a block that does not
yet exist. This may be an IP block that has not yet been acquired, or a block that has not yet been
designed. Such a missing block must have at least an area specified, and perhaps pin locations, layer
usage, timing constraints, and other properties. Floorplanners allow the block to be specified as hard
(specific dimensions) or soft, where the area is fixed but the floorplanner can determine the aspect
ratio. Pin locations and timing constraints, if needed, can be specified through graphic interfaces,
spreadsheets, text files, or scripts. Once the real data is available, the floorplanner will replace the
estimated cell characteristics with the real ones.

Any estimated cell model is facedwith strongly conflicting constraints. Because it will be thrown
away, it should be simple and quick to create. However, because it will factor into the size and cost
of the chip, and help determine the implementation of the rest of the design, it should be reasonably
accurate. Clearly this a tall order, and experience with similar designs is the only realistic hope
for reasonable estimates. However, when coupled with experienced designers, this feature is very
helpful, and all industrial floorplanners include this ability.

13.11 CONCLUSIONS AND FUTURE WORK

Floorplanning and prototyping have evolved from “nice to have” to crucial parts of today’s (as
of 2006) design flows. The gap between RTL and working silicon is quite large, and it is almost
impossible to predict the performance or cost of a design expressed in RTL alone without a floorplan

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 269 24-9-2008 #14

Industrial Floorplanning and Prototyping 269

or prototype. Probably every large chip today, with the possible exception of purely memory or
analog chips, goes through a floorplanner on its way to production.

In the future, we can expect that designs will become even more block dominated. In 2006, for
example, a chip can hold 100 million gates, but typical schedules only permit designers to design
perhaps 1 million gates from scratch. There are two ways designers can still take advantage of the
larger chip capacity. First, they can include many copies of a single subdesign, the path taken by
multicore processors and graphics chips. However, only parallelizable designs can easily use this
strategy, so more common is to use a large percentage of prebuilt IP blocks. Memories, processors,
and analog blocks are most common.

This shift from area dominated by standard cells to area dominated by blocks has several implica-
tions for floorplanners.Some of these implications are shown in Figure 13.3. Placement now includes
a packing component, not just wirelength and timing. A rigorous treatment of obstacles is required
for estimated routes, global routing, buffer insertion, and congestion analysis. If a grid power supply
is used, it must be on the layers not used by the blocks. A good placement and partitioning, from a
user point of view, may now need rectilinear blocks, not just rectangles. Floorplanning, partitioning,
and placement are now strongly interacting problems and may need to be combined. These, and
many other points, are discussed in Refs. [25,26,76].

Power is also becoming a much larger issue for many designs. A floorplan does not much
influence the total amount of power used by a design (the RTL and the semiconductor processing
have much larger impacts), but it does affect issues such as thermal gradients and hot spots. Also,
floorplanning must be aware of techniques used to reduce power, such as multiple supplies and
voltage islands.

A third trend is that as chips get larger, many more chip schedules are dominated by logic
verification and not physical design. Because time to market is, if anything, becoming even more
important, the goal is then to produce the final physical design as soon as possible after the logic
is declared correct. This has two implication for floorplanners. Clearly, the programs must execute
quickly—within a day is strongly preferred so little time is lost in case of problems. The next
implication is that each operation must be automatic, or can be copied from a similar operation done
on a previous version of the design.

7000

6000

5000

4000

3000

2000

1000

0
0 1000 2000 3000 4000 5000 6000 7000

FIGURE 13.3 Block-dominated design, including a few very large blocks that make placement and
partitioning very challenging. (Courtesy of Jarrod Roy and the authors of Ref. [26].)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 270 24-9-2008 #15

270 Handbook of Algorithms for Physical Design Automation

Finally, floorplanners and prototypers are large and complex programs, working on large and
complex designs. Better user-interfaces, able to work at higher levels of abstraction, are always
needed, as are better software engineering techniques.

ACKNOWLEDGMENTS

The author would like to thank Dave Noice of Cadence and Raymond Nijssen of Tabula for helpful
conversations.

REFERENCES
1. S. Khatri and N. Shenoy. Logic synthesis. Electronic Design Automation for Integrated Circuits Handbook,

volume II, CRC Press, Boca Raton, FL, 2006.
2. J. Cong, M. Romesis, and M. Xie. Optimality, scalability and stability study of partitioning and placement

algorithms. In ISPD’03, Proceedings of the International Symposium on Physical Design 2003, pp. 88–94.
ACM Press, NY, 2003.

3. L. Stok, D. Hathaway, K. Keutzer, and D. Chinnery. Design flows. Electronic Design Automation for
Integrated Circuits Handbook, volume II, CRC Press, Boca Raton, FL, 2006.

4. E. Wein and J. Benkoski. Hard macros will revolutionize SoC design. Electronics, Engineering Times,
August 20, 2004.

5. J. Rosenberg. Vertically integratedVLSI circuit design.DissertationAbstracts International Part B: Science
and Engineering, 44(5), 1983.

6. J. Rosenberg, D. Boyer, J. Dallen, S. Daniel, C. Poirier, J. Poulton, D. Rogers, and N. Weste. A verti-
cally integrated VLSI design environment. In DAC ’83, Proceedings of the 20th Conference on Design
Automation, pp. 31–38. IEEE Press, Piscataway, NJ, 1983.

7. A. Hutchings, R. Bonneau, andW. Fisher. Integrated VLSICAD systems at Digital Equipment Corporation.
In Proceedings of the Design Automation Conference 1985, pp. 543–548. ACM Press, NY, 1985.

8. C. Masson, D. Barbier, R. Escassut, D.Winer, G. Chevallier, P. F. Zeegers, B. SA, and L. Clayes-sous Bous.
CHEOPS: An integrated VLSI floor planning and chip assembly system implemented in object oriented
Lisp. In Proceedings of the 1990 European Design Automation Conference (EDAC), pp. 250–256. IEEE
Press, Piscataway, NJ, 1990.

9. D. La Potin and S. Director. Mason: A global floorplanning approach for VLSI design. IEEE Transactions
on CAD, 5(4):477–489, 1986.

10. R. Goering. EDA vendors redraw chip-design process. EE Times, 10:49, 1999.
11. P. Chao and L. Lev. Down to the wire-requirements for nanometer design implementation. EE Design,

August 15, 2002.
12. W. Dai, D. Huang, C. Chang, and M. Courtoy. Silicon virtual prototyping: The new cockpit for nanometer

chip design [SoC]. In ASP-DAC 2003, pp. 635–639. ACM Press, NY, 2003.
13. N. L. Koren. Pin assignment in automated printed circuit board design. In DAC ’72, Proceedings of the

1972 Design Automation Conference, pp. 72–79. ACM Press, NY, 1972.
14. H. Brady. An approach to topological pin assignment. IEEE Transactions on CAD, 3(3):250–255, 1984.
15. J. Cong. Pin assignment with global routing. In ICCAD ’89, Proceedings of the International Conference

on Computer-Aided Design 1989, pp. 302–305. ACM Press, NY, 1989.
16. J. Cong. Pin assignment with global routing for general cell designs. IEEE Transactions on CAD,

10(11):1401–1412, 1991.
17. M. Pedram, M. Marek-Sadowska, and E. Kuh. Floorplanning with pin assignment. In ICCAD ’90, Pro-

ceedings of the International Conference on Computer Aided Design 1990, pp. 98–101, NY, 1990.
ACM Press.

18. M. Pedram and B. Preas. A hierarchical floorplanning approach. In ICCD ’90, Proceedings of the 1990
IEEE International Conference on Computer Design: VLSI in Computers and Processors, pp. 332–338.
IEEE Press, Piscataway, NJ, 1990.

19. C. Albrecht, A. B. Kahng, I. Mandoiu, and A. Zelikovsky. Floorplan evaluation with timing-driven global
wireplanning, pin assignment, and buffer/wire sizing. In ASP-DAC ’02, Proceedings of Asia and South
Pacific Design Automation Conference 2002, pp. 580–587, NY, 2002. ACM Press.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 271 24-9-2008 #16

Industrial Floorplanning and Prototyping 271

20. R. Nair, C. Berman, P. Hauge, and E. Yoffa. Generation of performance constraints for layout. IEEE
Transactions on CAD, 8(8):860–874, 1989.

21. M. Sarrafzadeh, D. Knol, and G. Tellez. A delay budgeting algorithm ensuring maximum flexibility in
placement. IEEE Transactions on CAD, 16(11):1332–1341, 1997.

22. S. Venkatesh. Hierarchical timing-driven floorplanning and place and route using a timing budgeter. In
CICC ’95, Proceedings of the Custom Integrated Circuits Conference 1995, pp. 469–472. IEEE Press,
Piscataway, NJ, 1995.

23. C. Kuo and A.Wu. Delay budgeting for a timing-closure-driven design method. In ICCAD ’00, Proceedings
of the International Conference on Computer-Aided Design 2000, pp. 202–207. IEEE Press, Piscataway,
NJ, 2000.

24. X.Yang, B.K. Choi, andM. Sarrafzadeh. Timing-driven placement using design hierarchy guided constraint
generation. In ICCAD ’02, Proceedings of the International Conference on Computer-Aided Design 2002,
p. 42. ACM Press, NY, 2002.

25. J. Roy, S. Adya, D. Papa, and I.Markov. Min-cut Floorplacement. IEEE Transactions on CAD, 25(7):1313–
1326, 2006.

26. A. Ng, I. Markov, R. Aggarwal, and V. Ramachandran. Solving hard instances of floorplacement. In
ISPD’06, Proceedings of the International Symposium on Physical Design 2006, pp. 170–177. ACM Press,
NY, 2006.

27. P. Osler and J. Cohn. Design closure. Electronic Design Automation for Integrated Circuits Handbook,
volume II, CRC Press, Boca Raton, FL, 2006.

28. L. Scheffer. A methodology for improved verification of VLSI designs without loss of area. In Proceedings
of the Caltech Conference on Very Large Scale Integration, Caltech Pasadena, CA, 1981.

29. J. Roy and I. Markov. ECO-system: Embracing the change in placement. Technical Report CSE-TR-
519-06, University of Michigan, Ann Arbor, Michigan, June 20, 2006.

30. A. Dunlop and B. Kernighan. A procedure for placement of standard-cell VLSI circuits. IEEE Transactions
on CAD, 4(1):92–98, 1985.

31. U. Shrivastava andB.Bui. Inductance calculation andoptimal pin assignment for the design of pin-grid-array
and chip carrier packages. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,
13(1):147–153, 1990.

32. T. Pförtner, S.Kiefl, andR.Dachauer. Embeddedpin assignment for top down systemdesign. InProceedings
of the Conference on European Design Automation, pp. 209–214. IEEE Computer Society Press, Los
Alamitos, CA, 1992.

33. N.Hirano,M.Miura, Y.Hiruta, andT. Sudo. Characterization and reduction of simultaneous switching noise
for a multilayer package. In Proceedings of the 44th Electronic Components and Technology Conference
1994, pp. 949–956. IEEE Press, Piscataway, NJ, 1994.

34. N. Sugiura. Effect of power and ground pin assignment and inner layer structure on switching noise. IEICE
Transactions on Electronics E Series C, 78:574–574, 1995.

35. X. Aragones, J.L. Gonzalez, and A. Rubio. Analysis and Solutions for Switching Noise Coupling in Mixed-
Signal ICs. Kluwer Academic Publishers, Dordrecht, the Netherlands, 1999.

36. R. Ravichandran, J. Minz, M. Pathak, and S. Easwar. Physical layout automation for system-on-packages.
In ECTC’04, Proceedings of the Electronic Components and Technology 2004, volume 1, pp. 41–48. IEEE
Press, Piscataway, NJ, 2004.

37. M. Shen, J. Liu, L. R. Zheng, and H. Tenhunen. Chip-package co-design for high performance and reli-
ability off-chip communications. In HDP’04, Proceedings of the 6th IEEE CPMT Conference on High
Density Microsystem Design and Packaging and Component Failure Analysis 2004. pp. 31–36. IEEE
Press, Piscataway, NJ, 2004.

38. P. Franzon. Tools for chip-package codedesign. Electronic Design Automation for Integrated Circuits
Handbook, volume II, CRC Press, Boca Raton, FL, 2006.

39. L. Wang, Y. Lai, and B. Liu. Simultaneous pin assignment and global wiring for custom VLSI design. In
IEEE International Symposium on Circuits and Systems 1991, pp. 2128–2131. IEEE Press, Piscataway,
NJ, 1991.

40. T. Koide, S. Wakabayashi, and N. Yoshida. Pin assignment with global routing for VLSI building block
layout. IEEE Transactions on CAD, 15(12):1575–1583, 1996.

41. H. Xiang, X. Tang, and M.D.F. Wong. Min-cost flow-based algorithm for simultaneous pin assignment and
routing. IEEE Transactions on CAD, 22(7), 2003.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 272 24-9-2008 #17

272 Handbook of Algorithms for Physical Design Automation

42. H. Xiang, X. Tang, and M.D.F. Wong. An algorithm for integrated pin assignment and buffer planning.
ACM Transactions on Design Automation of Electronic Systems (TODAES), 10(3):561–572, 2005.

43. P. Hauge, R. Nair, and E. Yoffa. Circuit placement for predictable performance. In ICCAD ’87, Proceedings
of the International Conference on Computer-Aided Design 1987, pp. 88–91. ACM Press, NY, 1987.

44. P. Hauge, R. Nair, and E. Yoffa. Circuit Placement for Predictable Performance. IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, 1987.

45. J. Hu and S. Sapatnekar. A survey on multi-net global routing for integrated circuits. Integration: The VLSI
Journal, 31(1):1–49, November 2001.

46. C. Lee. An algorithm for path connections and its applications. IRE Transactions on Electronic Computers,
EC-10:346–365, September 1961.

47. L. John, C. Cheng, and T. Lin. Simultaneous routing and buffer insertion for high performance interconnect.
In GLSVLSI ’96, Proceedings of the 6th Great Lakes Symposium on VLSI, p. 148. Washington, DC, IEEE
Computer Society, 1996.

48. M. Kang, W. Dai, T. Dillinger, and D. LaPotin. Delay bounded buffered tree construction for timing
driven floorplanning. In ICCAD ’97, Proceedings of the 1997 IEEE/ACM International Conference on
Computer-Aided Design, pp. 707–712. IEEE Press, Piscataway, NJ, 1997.

49. J. Cong and X. Yuan. Routing tree construction under fixed buffer locations. In DAC ’00, Proceedings of
the 37th Conference on Design Automation, pp. 379–384. ACM Press, New York, 2000.

50. F. Dragan, A. Kahng, I. Mandoiu, S. Muddu, and A. Zelikovsky. Provably good global buffering by multi-
terminal multicommodity flow approximation. In ASP-DAC ’01, Proceedings of the 2001 Conference on
Asia South Pacific Design Automation, pp. 120–125. ACM Press, New York, 2001.

51. C. Alpert, M. Hrkic, J. Hu, A. Kahng, J. Lillis, B. Liu, S. Quay, S. Sapatnekar, A. Sullivan, and P.Villarrubia.
Buffered Steiner trees for difficult instances. In ISPD ’01, Proceedings of the 2001 International Symposium
on Physical Design, pp. 4–9. ACM Press, New York, 2001.

52. W. Chen, M. Pedram, and P. Buch. Buffered routing tree construction under buffer placement blockages. In
ASP-DAC ’02, Proceedings of the 2002 Conference on Asia South Pacific Design Automation/VLSI Design,
p. 381. IEEE Computer Society Washington, DC, 2002.

53. C. J. Alpert, G. Gandham, M. Hrkic, J. Hu, and S. T. Quay. Porosity aware buffered steiner tree construction.
In ISPD ’03, Proceedings of the 2003 International Symposium on Physical Design, pp. 158–165. ACM
Press, New York, 2003.

54. L. van Ginneken. Buffer placement in distributed RC-tree networks for minimal Elmore delay. In Proceed-
ings of IEEE International Symposium on Circuits and Systems, pp. 865–868. IEEE Press, Piscataway,
NJ, 1990.

55. R. Lu, G. Zhong, C. Koh, and K. Chao. Flip-flop and repeater insertion for early interconnect planning.
In DATE’02, Proceedings of the Conference on Design, Automation and Test in Europe, p. 690, IEEE
Computer Society, Washington, DC, 2002.

56. L. Scheffer. Methodologies and tools for pipelined on-chip interconnect. In Proceedings of the 2002 IEEE
International Conference on Computer Design: VLSI in Computers and Processors, pp. 152–157. IEEE
Press, Piscataway, NJ, 2002.

57. V. Chandra, A. Xu, and H. Schmit. A low power approach to system level pipelined interconnect design.
In SLIP’04, Proceedings of the 2004 International Workshop on System Level Interconnect Prediction,
pp. 45–52. ACM Press, New York, 2004.

58. J. Cong, Y. Fan, and Z. Zhang. Architecture-level synthesis for automatic interconnect pipelining. In DAC
’04, Proceedings of the Design Automation Conference, pp. 602–607. ACM Press, New York, 2004.

59. R.McInerney, K. Leeper, T. Hill, H. Chan, B. Basaran, andL.McQuiddy.Methodology for repeater insertion
management in the RTL, layout, floorplan and fullchip timing databases of the Itanium microprocessor. In
ISPD’00, Proceedings of the International Symposium on Physical Design 2000, pp. 99–104. ACM Press,
New York, 2000.

60. L. Scheffer and E. Nequist. Why interconnect prediction doesn’t work. In SLIP’00, Proceedings of
the 2000 International Workshop on System-Level Interconnect Prediction, pp. 139–144. ACM Press,
New York, 2000.

61. M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP complete. SIAM Journal of
Applied Math, 32:826–834, 1977.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 273 24-9-2008 #18

Industrial Floorplanning and Prototyping 273

62. H. Chen, C. Qiao, F. Zhou, and C. Cheng. Refined single trunk tree: a rectilinear steiner tree generator
for interconnect prediction. In SLIP’02, Proceedings of the 2002 International Workshop on System-Level
Interconnect Prediction, pp. 85–89. ACM Press, New York, 2002.

63. C. Chu. Fast and accurate rectilinear Steiner minimal tree algorithm for VLSI design. In ISPD’05,
Proceedings of the International Symposium on Physical Design 2005, pp. 28–35. ACM Press,
NY, 2005.

64. J. Hu, Y. Shin, N. Dhanwada, and R. Marculescu. Architecting voltage islands in core-based system-on-a-
chip designs. In ISLPED’04, Proceedings of the 2004 International Symposium on Low Power Electronics
and Design 2004, pp. 180–185. ACM Press, NY, 2004.

65. D. Blaauw, S. Pant, R. Chanda, and R. Panda. Design and analysis of power supply networks. Electronic
Design Automation for Integrated Circuits Handbook, volume II, CRC Press, Boca Raton, FL, 2006.

66. O. Coudert, J. Cong, S. Malik, and M. Sarrafzadeh. Incremental CAD. In ICCAD’00, Proceedings of the
International Conference on Computer-Aided Design 2000, pp. 236–243. ACM Press, NY, 2000.

67. J. Cong and M. Sarrafzadeh. Incremental physical design. In ISPD’00, Proceedings of the International
Symposium on Physical Design 2000, pp. 84–92. ACM Press, NY, 2000.

68. Z. Li, W. Wu, X. Hong, and J. Gu. Incremental placement algorithm for standard-cell layout. In ISCAS
2002, IEEE International Symposium on Circuits and Systems 2002, volume 2. IEEE Press, Piscataway,
NJ, 2002.

69. W. Choi and K. Bazargan. Incremental placement for timing optimization. In ICCAD ’03, Proceedings of
the International Conference on Computer-Aided Design 2003, pp. 463–466. ACM Press, NY, 2003.

70. U. Brenner and J. Vygen. Legalizing a placement with minimum total movement. IEEE Transactions on
CAD, 23(12):1597–1613, 2004.

71. U. Brenner, A. Pauli, and J. Vygen. Almost optimum placement legalization by minimum cost flow and
dynamic programming. In ISPD’04, Proceedings of the International Symposium on Physical Design 2004,
pp. 2–9. ACM Press, NY, 2004.

72. A.B. Kahng, I.L. Markov, and S. Reda. On legalization of row-based placements. In Proceedings of the
14th ACM Great Lakes Symposium on VLSI, pp. 214–219. ACM Press, NY, 2004.

73. T. Luo, H. Ren, C. Alpert, and D. Pan. Computational geometry based placement migration. In ICCAD
’05, Proceedings of the International Conference on Computer-Aided Design 2005, pp. 41–47. ACMPress,
NY, 2005.

74. H. Ren, D. Z. Pan, C. J. Alpert, and P. Villarrubia. Diffusion-based placement migration. In DAC ’05,
Proceedings of the Design Automation Conference, pp. 515–520. ACM Press, NY, 2005.

75. A. Kuehlmann and F. Somenzi. Equivalence checking. Electronic Design Automation for Integrated
Circuits Handbook, volume II, CRC Press, Boca Raton, FL, 2006.

76. S. Adya, S. Chaturvedi, J. Roy, D. Papa, and I. Markov. Unification of partitioning, placement and floor-
planning. In ICCAD ’04, Proceedings of the International Conference on Computer-Aided Design 2004,
pp. 550–557. ACM Press, NY, 2004.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C013 Finals Page 274 24-9-2008 #19

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S004 Finals Page 275 24-9-2008 #2

Part IV

Placement

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S004 Finals Page 276 24-9-2008 #3

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C014 Finals Page 277 24-9-2008 #2

14 Placement: Introduction/
Problem Formulation
Gi-Joon Nam and Paul G. Villarrubia

CONTENTS

14.1 Introduction.. 277
14.2 Problem Formulation . 278
14.3 Modern Issues in Placement . 281
14.4 General Approaches to Placement . 285
References . 286

14.1 INTRODUCTION

Placement is a physical synthesis task that transforms a block/gate/transistor-level netlist into an
actual layout for timing convergence. It is a crucial step that assembles the basic building blocks of
logic netlist and establishes the overall timing characteristic of a designbydetermining exact locations
of circuit elements within a given region. In modern VLSI designs, the size of chip becomes larger
and the required clock frequency keeps increasing due to higher performance and more complex
functional requirements on a single chip.Moreover,with aggressive technology scaling into the deep
submicron (DSM) era, interconnect delays become the dominant factor for overall chip performance.
Because the locations of circuit elements and corresponding interconnect delays are determined
during the placement stage, it has significant impact on the final performance of the design.Moreover,
if a design is placed poorly, it is virtually impossible to close timing, no matter how much other
physical synthesis and routing optimizations are applied to it. Hence, placement is regarded as one
of the most important and effective optimization techniques in the physical synthesis flow. Today,
placement is no longer a point tool in modern timing closure flow [1]. Significant portions of logic
and physical optimization algorithms have to interact with placement to improve timing of a design
and to guarantee a legal placement solution after optimizations. Consequently, most industrial and
academic physical synthesis tools are developed around a placement infrastructure.

The typical objective function of placement is to minimize total wirelength of a design. This
is because wirelength can be easily modeled and serve as a good first-order approximation of real
objective functions such as timing, power, and routability of a design. There also exist various
forms of wirelength. For example, quadratic wirelength, linear wirelength, or some approximation
of linear wirelength are popularmodels that are employed in many placement tools. Recently, Steiner
wirelength, which is considered as the most accurate estimator of the routed wirelength, was also
used as the placement objective function in some academic placement tools. Whatever wirelength
form is used, producing a good placement wirelength is critical for timing closure of modern designs
because the wirelength directly affects the interconnect delays of electrical signals. The wirelength
also affects the routability of a design, which is another important aspect of physical synthesis. The
routing is performed right after the placement and there is no point in producing an unroutable
placement solution.

277

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C014 Finals Page 278 24-9-2008 #3

278 Handbook of Algorithms for Physical Design Automation

14.2 PROBLEM FORMULATION

Because the primary task of placement is to determine the locations of circuit elements in a design, the
placement region P needs to be defined first. Usually, a placement region is a rectangle area defined
by coordinates (xlow, ylow, xhigh, yhigh). This is not a necessity for modern placement and actually
a wider variety of placement regions such as L-shapes or T-shapes have been observed recently in
special problem instances such as region constraint∗ (movebound) placement. However, for global
placement, a rectangular placement region is still the norm. The circuit netlist is represented as a
graphG = (V ,E), where V is a set of circuit elements in a design and E is a set of connections (nets)
among them. The vertex set V consists of two disjoint subsets, MV and FVwhereMV/FV represents
a set of movable/fixed circuit elements respectively. For each v ∈ FV, the location (x, y) of v is
already determined and the placement should not change them. The location of each v ∈ MV needs
to be determined by placement and their locations must fall within the given placement region P.

Each net ei ∈ E is a hyper-edge and conveniently represented as a subset of circuit elements,
which are electrically connected each other, i.e., ei = {vi1, vi2, . . ., vim}, ∀vij ∈ V . Hence, |e|, the
cardinality of net e, denotes the number of pins on the net. Figure 14.1 shows a simple example of
a placement problem. The big rectangle in Figure 14.1a represents a placement region P and each
circle represents a movable circuit element to be placed within P. Small rectangles on the boundary
of the placement region are I/O pins that are considered as fixed circuit elements. These movable
and fixed circuit elements are connected to each other by nets. The goal of placement is to find a
legal location for each movable circuit element while minimizing the given objective function. In
this example, only one movable circuit element (circle) is assumed to be placed within a placement
grid (slot) that is defined by dotted lines.

Some class of global placement algorithms, such as a partitioning-based algorithms or simulated
annealing, is effective in directly handling hyper-edge nets. Others, particularly analytical placement
algorithms, require a hyper-edge to be transformed into a set of clique edges. For example, quadratic
optimization-based analytic placement needs a clique-edge model to solve a symmetric positive
definite linear system equation. A net usually has a source-pin (driver) and multiple sink pins, which
make it a directed hyper-edge.† The current state-of-the-art global placement algorithms still ignore
the directions of the hyper-edges and treat a netlist graph G as a undirected graph. However, the
directions of hyper-edges can be utilized to better handle certain types of nets. A high fan-out clock

(b)(a)

FIGURE 14.1 Simple placement instance. (a) Before placement and (b) after placement.

∗ More discussion of region constraints and movebounds are provided in Section 14.3.
† There exists a bidirectional net such as a bus signal. In this case, one pin can be considered as a source pin while the others
are regarded as sink pins.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C014 Finals Page 279 24-9-2008 #4

Placement: Introduction/Problem Formulation 279

(b)(a)

(c)

S1

S2

D

S3

S4

S1

S2

D

S3

S4

S1

S2

D

S3

S4

S1

S2

D

S3

S4S

(d)

FIGURE 14.2 Net model: hyper-edge model, clique-edge model, and star. (a) Original net with a driver and
four sinks, (b) hyper-edge, (c) clique edge, and (d) star.

net, for example, can be better placed by representing it as a star model with a source pin in the
center. Figure 14.2 shows a hyper-edge net and corresponding clique/star models. A more detailed
circuit netlist representation discussion can be found in Chapter 7.

The typical objective function of a placement is the sum of netwirelengths, i.e.,�WL(e), ∀e ∈ E.
For a given net, different types of wirelength WL(e) can be measured. A net half-perimeter (NHP)
wirelength model (Figure 14.3b) measures the smallest bounding box, which surrounds all sinks of
the net. A minimum spanning tree (MST) model (Figure 14.3c) calculates a minimum tree length,
which connects all pins of the net. However, only a direct connection of a pair of pins on the net is
considered to build a tree. A Steiner tree (ST) model (Figure 14.3d) is also a tree connecting all pins
of the net, but any arbitrary point (not pin) in a tree segment is also considered to branch off other
tree segments to reduce the tree length. Therefore Steiner tree length is always equal to or better than
that of MST. Because the routes of nets are implemented with horizontal and vertical metal layers,∗

a rectilinear minimum spanning tree or rectilinear Steiner tree is a more accurate estimation of real
net wirelengths and these rectilinear versions of MST and ST are popularly used in physical design
research (see Chapter 24 for more detailed discussion on MST and ST). Simple NHP bounding box
is the most popular model used in placement today simply because it is efficient to compute and
also it is a good approximation of routed wirelength for the majority of nets. For some difficult nets,
Steiner tree wirelength might be necessary to optimize for better routability, but the number of these
nets is marginal in most cases.

A net e can have a weight w(e) associated with it. In a timing-driven placement (Chapter 21), a
net is assigned a weight based on its timing criticality. The more critical a net is for timing closure,
the higher the weight assigned to the net so that a placement algorithm can try harder to reduce its
wirelength leading to less signal delay.When a net weight is present, the common objective function
of a placement is the weighted sum of wirelengths, i.e., �w(e)∗WL(e), ∀e ∈ E.

∗ X-route with 45◦ angle metal layer is available in advanced technology. However, horizontal and vertical metal layers are
still more common as of today.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C014 Finals Page 280 24-9-2008 #5

280 Handbook of Algorithms for Physical Design Automation

(b)(a)

(c)

S1

S2

D

S3

S4

S1

S2

D

S3

S4

S1

S2

D

S3

S4

S1

S2

D

S3

S4

(d)

FIGURE 14.3 Net wirelength model: NHP, MST, and ST. Net model is drawn in dotted line. (a) Routed net
with a driver and four sinks, (b) NHP model, (c) rectilinear MST model, and (d) rectilinear ST model.

Suppose that there are n movable circuit elements [v1, v2, . . . , vn] and m nets [e1, e2, . . . , em] in
a given netlist graph G = (V ,E), i.e., |V | = n and |E| = m. Let each movable circuit element
vi’s location be (xi, yi). Then, the placement problem can be formulated as follows [2–4]: Given a
placement region P with width W and height H, a netlist graph G = (V ,E), and objective function
f (V ,E), find the location (xi, yi) of each vi ∈ MV such that (1) each vi ∈ MV is placed completely
within P, (2) no overlap exists between any pair of (vi, vj), ∀vi, vj ∈ V , and (3) the objective function
f (V ,E) is minimized. In the case of the standard cell placement problem, an additional circuit row
constraint must be honored and each standard cell must be placed within a circuit row boundary.

The intuition of the wirelength based placement objective function is to reduce signal delays of
the design and enhance routability simply by minimizing the total (weighted) wirelength. With the
aggressive advance of technology, placement starts to model other important aspects of the design
directly, such as power, signal integrity, thermal distribution, clocking, placement congestion, or even
optical proximity correction effects for better design manufacturability. However, the fundamental
formulation of the placement problem tends to stay the same, even in these new variants of placement
algorithms.New issues can be addressed by factoring in the correspondingmodeling component into
the wirelength based objective function. For example, those additional factors are modeled into net
weights and theweightedwirelength objective function can beminimized during placement. Chapter
22 elaborates on how these modern issues are addressed in placement algorithms.

Placement is an NP-complete problem [5]. Consequently, the placement problem is usually
divided into subproblems—global placement, legalization, and detailed placement—and each sub-
problem is attacked separately. Global placement determines the approximate distributions of circuit
elementswhile optimizing a given objective function, typicallywirelength.Usually global placement
allows some degree of overlapping among circuit elements leading to an illegal placement solution.
The legalization step then transforms an illegal global placement solution into a legal one (i.e.,
no overlap is allowed) while minimizing the perturbation to the original global placement solution.
Figure 14.4 shows a placement example before and after the legalization process. Detailed placement
finally improves the objective function further by performing local refinements. It is also important to

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C014 Finals Page 281 24-9-2008 #6

Placement: Introduction/Problem Formulation 281

(a) (b)

FIGURE 14.4 Before and after legalization of placement. (a) Before legalization, i.e., illegal solution and
(b) after legalization, i.e., legal solution.

keep a legal, nonoverlapping placement state during detailed placement. Sometimes, the legalization
process is viewed as part of the detailed placement process. A variety of global placement algo-
rithms are further described in Chapters 15 through 19, and Chapter 20 presents detailed placement
algorithms.

14.3 MODERN ISSUES IN PLACEMENT

In this section, we review several important issues in modern placement problem.

1. Fixed layout region placement: Placement has been actively researched for a long time
as a fundamental problem in design automation. The classical placement problem typi-
cally focused on minimizing the overall placement area by packing circuit elements more
compactly. This packing-driven area optimization is still a dominant theme in the floor-
planning domain. In a modern chip synthesis flow for timing closure, however, placement
optimization is executed almost always after the die size and package have been chosen.
Thus, placement should be formulated as an (wirelength) optimization problemwith a fixed
layout region, rather than a packing-driven area minimization problem [6]. In fixed region
placement, the layout area is already determined and the circuit elements and its netlist are
also determined. Thus, the amount of white space is a constant. This implies that the man-
agement ofwhite space during placement becomesmore important than before, tominimize
placement objective functions such as wirelength and routing congestion.

2. White space management for congestion control: One thing noticeably different in modern
IC designs is the increasing amount of white space available in a design [7]. As design
complexity continues to increase while time-to-market decreases, IP reuse and semihier-
archical or full-hierarchical designs are becoming increasingly pervasive leading to more
chunky design footprints with memory arrays, IP blocks, etc., as opposed to pure standard
cell designs. Consequently, today’s placement instances resemble the problem of arranging
“dust” logic (standard cells) around these large blocks. Because the large blocks tend to
dictate the design footprint, one can no longer assume that the placeable area in some way
matches the total cell area of the design; one must recognize the trend of the increasing
percentage of free space available on the chip. One might think increased free space, or
design sparsity, might make placement easier. However, even though the dust logic is a
small percentage of the chip area, there can still be millions of cells in the dust logic that
have profound effects on timing and routability. In other words, packing all the cells in a
design can yield the minimum wirelength solution, but create enough congestion to make

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C014 Finals Page 282 24-9-2008 #7

282 Handbook of Algorithms for Physical Design Automation

the design unroutable. A strategy of simple uniform spreading of the design may work
well for dense designs, but can unnecessarily hurt timing for sparse designs. Thus, white
space management is absolutely required in modern placement algorithms to achieve better
timing and routability.

3. Mixed-size placement: For the past few decades, standard cell placement is considered as
the norm. A standard cell based design consists of circuit elements called standard cells
whose heights remain the same, and the placement problem is to place these circuit ele-
ments within regular circuit row boundaries (Figure 14.5a). In today’s design methodology,
designers are encouraged to take hierarchical or semihierarchical design approaches with
reusable internal/third-party IPs to reduce design turnaround time. As a result, a wider dis-
tribution of circuit element sizes is observed during placement. In some sense, mixed-size
placement (Figure 14.5b), as opposed to uniform-height placement of standard cells, is a
more complicated problem because these large macro blocks can cause a serious chal-
lenge during placement legalization. Also, these chunky blocks play an important role in
determining final timing performance. Hence, the early placement of large macros (during
floorplanning or flat placement) is an important problem in amodern timing closure flow. To
provide further flexibility in floorplanning and placement, sometimes all the standard cells
as well as large macros are considered as movable objects and are placed simultaneously.
This new problem is called floorplacement [8]. In general, today’s placement algorithms
must be able to handle a wide range of object sizes, because the trend indicates that more
IP blocks are included in a design.

4. Region constraints (movebounds): In a hierarchical design methodology, the functionality
of a design is logically partitioned first and floorplanning is executed on the set of logically
partitioned blocks to determine the approximate locations of those logical blocks. Circuit
elements belonging to the same logical partition are grouped together and need to be placed
in the vicinity of the layout region. This is in contrast to the top-down flat physical design
process where logical partitioning is flattened and circuit elements are freely placed and
routed at the leaf level of the logical hierarchy. In flat physical synthesis, physical partitions
do not necessarily correlate with logical partitions. Although flat physical synthesis usually
produces a better quality of result, the tight turnaround time requirementmakes hierarchical
synthesis a more viable solution in today’s environment. In a hierarchical synthesis flow,

(a) (b)

FIGURE 14.5 Standard cell placement versus mixed-size placement. (a) Standard cell placement and
(b) mixed-size placement.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C014 Finals Page 283 24-9-2008 #8

Placement: Introduction/Problem Formulation 283

a region constraint (also known as a movebound) is usually employed to force circuit ele-
ments belonging to the same logic partition to be placedwithin a predetermined layout area.
Essentially, a region constraint is a predetermined boundary where a set of circuit elements
has to be placed and routed. Multiple region constraints may exist in a design, but not all
the circuit elements are constrained by a region constraint either. Some circuit elements can
be placed anywhere in layout area while others must be placed within the corresponding
boundary defined by region constraints. Another motivation for region constraints is multi-
ple clock/voltage domains in a design. In modern circuit design, multiple clock domains or
voltage domains are frequently used due to performance and power dissipation trade-offs.
For example, computationally unimportant parts in a chip can be slowed down to lower
clock frequency while critical path computations have to be executed at the highest clock
frequency. The lowered clock frequency results in the saving of unnecessary power con-
sumption. The clock network typically consumes a significant portion of the overall chip
power [9] and the size of the clock network can serve as a first-order approximation of the
clock network power consumption.Hence, a smaller clock domain area is always preferred,
if possible, to reduce clock network power dissipation. These clock domains are similar to
logical partitions and region constraints can facilitate to define and reduce the size of clock
domain. However, region constraints can make the placement algorithm complicated and
modern placement algorithms must be capable of handling these unforeseen constraints
without affecting the quality of results.

5. Clock-aware placement: Clock nets typically havemuchmore sink pins to drive than normal
data signal nets. This is because any sequential circuit elements (latches or flip-flops) require
global clock signals to synchronize with each other. Sometimes, there are multiple clock
domains in a design due to performance and power consumption trade-offs. Because of the
high fan-out nature of clock nets, in a typical placement process, clock nets are ignored
during the optimization as they tend to degrade the quality of placement solution.Moreover,
the higher frequency design constraint forces a design to include more sequential circuit
elements resulting in larger clock domain and higher clock power consumption. Recent
studies show that the power budget of clock nets and networks amounts to more than 40
percent of overall chip power [9]. Evenworse, each sink of a clock net needs to have the same
signal propagation delay from the clock source. In reality, each sink has different clock signal
propagation delay and themaximumdelay difference of pairs of two sink pins is called clock
skew. One of the objectives of clock network construction is to minimize the clock skew.
Because clock nets are sensitive to technology variations due to their large network size
and high frequency constraint, the placement of sequential circuit elements affects the clock
network performance significantly. Postplacement clock network construction tends to fail
more frequently due to the tighter skew, latency, and power constraints. Recent research [10]
also shows that by considering these clock network constraints during quadratic placement,
higher clock network performance (less skew, clock latency, and power consumption) can
be achieved without almost any loss of data signal performance. Essentially, they tried to
reduce clock network wirelengths by navigating potential locations of sequential circuit
element during placement via register contraction techniques. More advanced technology
andcorrespondingdesignparadigmswill requirehigherclockfrequencyandmorerobustness
to technology variations. Thus, the combined placement and clock network construction
optimization has great promises for better layout solutions.

6. Scalability: As the complexity of a design grows exponentially, the corresponding number
of gates in a design is expected to grow at a steep rate. Hierarchical design and the design
reuse paradigm can help to manage the size of a design. Yet, a multimillion gate count is
considered a norm in modern IC design [11,12]. Owing to large design sizes, placement
runtime tends to be the bottleneck of the overall timing closure flow and the reduction
of placement runtime, i.e., scalable placement algorithms, arises as a critical problem.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C014 Finals Page 284 24-9-2008 #9

284 Handbook of Algorithms for Physical Design Automation

Recently, the multilevel paradigm shows great promise to make placement algorithmsmore
scalable with design size [13]. Themultilevelmethod consists of three processes: coarsened
abstract structure generation (coarsening or aggregation), optimization on the coarsened
structure (relaxation), and transforming optimized solutions to an uncoarsened structure
(interpolation). The simplest method of applying multilevel optimization in placement is a
so-called “V-cycle” [13] approachwhere consecutive coarsenings are executed to obtain the
most reduced design, then iterative relaxation, interpolation, and uncoarsening are applied
to convert it to an optimized, flattened level. Combined with netlist clustering algorithms,
multilevel optimizationwas demonstrated to provide a significant runtime reductionwithout
almost any degradation of (sometimes even improved) quality of solutions [12]. Chapter 19
addresses multilevel techniques and their application in placement.

7. Stability: To achieve timing closure and design convergence, typically several instances
of placement have to be run. Placement can help to identify needed changes in the logic,
required buffering, gate sizing, routing congestion, etc. Once these problems are fixed,
placement may have to be run again. Ideally, after each subsequent placement run, the
problems that were fixed during the last iteration stay fixed and new problems do not crop
up. However, if a placement algorithm returns a dramatically different solution from the
last solution, entirely new problems could emerge. In other words, a placement algorithm
needs to produce similar solutions when almost the same input instance (albeit with a
slightly different netlist or constraints) is given. This stability is a particularly important
issue in a timing closure flow where multiple invocations of placement are necessary. The
quantification of the degree of stability of placement algorithms is also an important topic
for further research [14,15].

8. Macroblock (random logic module) placement versus ASIC placement: In microprocessor
design, blocks with tight timing constraints such as data-paths, floating point units, etc. are
still custom designed and layouts are produced by a human being. However, significant
portion of macroblocks, for example, control logic modules, consist of random logic. These
random logicmodules are typically designed inHDL (high-level description language), syn-
thesized and laid out via design automation tools. The characteristics of these random logic
modules are quite different from those of ASIC designs. Owing to the high-performance
nature of microprocessor design, the target timing constraint is extremely tight compared
with that ofASICdesign. The latches and leaf level clock distribution buffers aremuch larger
than standard cells and the locations of these objects tend to affect final timing performance
considerably. The number of circuit elements to be placed is order of magnitude smaller
than ASIC placement problems. Thus, scalability is not an issue in macroblock placement.
Rather more accurate modeling of timing with enhanced optimization techniques (at the
cost of runtime, of course) is more important in this placement problem domain.

9. Three-dimensional placement: Traditionally, placement is formulated as a two-dimensional
problem that places circuit elements in a 2D plane. Recent advances in package technology,
however, enable chips to be piled up and interconnected together so that more functional
blocks and logics can be inserted to chip designs [16]. Including more logics is not only
a predominant advantage of 3D chip integration but also introduces new technical prob-
lems. The primary concern of 3D integration is a thermal issue. Because multiple circuit
planes are stacked up tightly, it is more difficult to dissipate heat, particularly in the middle
planes. Hot spots of integrated circuits inmodern technology have adverse impacts on circuit
performance because temperature directly affects the subthreshold voltage of transistors,
resulting in slower responses and signal propagations. Heat dissipation can be addressed
via thermal gradient consideration during floorplanning/placement[17] or inserting thermal
vias to facilitate heat flow [18]. Another principal concern of 3D integration is the signal
propagation among different circuit planes. The signal delay from one plane to another is
an order-of-magnitude higher than that of the same plane. Because the circuit performance,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C014 Finals Page 285 24-9-2008 #10

Placement: Introduction/Problem Formulation 285

i.e., maximum frequency of a design, is limited by the maximum delay of timing critical
paths in a design, reducing plane-to-plane signal delay is an important issue in 3D place-
ment. Therefore, partitioning and placement of logics for planes have consequential effects
on the final performance of design and plane-to-plane interconnect needs to be considered
during placement. These unforeseen concerns of 3D integration require a new formulation
of 3D placement and open new opportunities for placement research.

In addition to these issues, more and more technology constraints are being considered during
placement, such as power/thermal constraints, power/ground network, IR drop constraints, etc. [17,
19–21]. This is because a placement solution can directly affect the final quality of solution of
design closure. This trend will carry on as long as technology scaling continues, and it confirms that
placement remains the most important problem in design closure.

14.4 GENERAL APPROACHES TO PLACEMENT

Placement algorithms are typically based on a simulated annealing, top-down cut-based partitioning,
or analytical paradigm (or some combination thereof). Simulated annealing is an iterative optimiza-
tion method that mimics the physical metal cooling process. With the given objective function, the
process tries to achieve a better solution via a set of predefined moves. If a move improves the
objective function, it is always accepted. If a move produces a worse solution, it is accepted based on
some probability function. At early stages (with high temperature), a bad move has higher chance to
get accepted while at later stages of placement (with lower temperature), the probability goes down
exponentially. These worse-yet-accepted moves are essential for a simulated annealing placement
algorithm to overcome a local optimum solution in which a placement might be stuck. A greedy
move-based placement tool cannot escape from this local optimum once it steps into one. The typical
set of moves in a simulated annealing placement algorithm are (1) relocation of a circuit element
into new position, (2) exchanges of two circuit elements’ locations or (3) mirroring/rotation of a
circuit element at the same location, etc. As mentioned earlier, the typical objective function is total
wirelength. Recently, other factors such as routability, power, area, and even signal integrity metrics
are directly modeled in the objective function of simulated annealing placement tools, because an
iterative optimization approach is very flexible to model these nonconventional multidimensional
objective functions. However, simulated annealing placement is regarded as a rather slow method
compared with other placement algorithms as the design size grows. Chapter 16 provides more
detailed discussion of simulated annealing placement algorithms.

The advent of flat/multilevel partitioning as a fast and effective algorithm formin-cut partitioning
has helped to spawn off a new generation of top-down cut-based placement tools. A placer in this
class partitions circuit elements into either two (bisection) or four (quadrisection) regions of the
chip, then recursively (following breadth-first search order) partitions each region until a good coarse
placement solution is achieved [22]. When each region is partitioned, circuit elements outside the
region are assumed to be fixed at the current locations and pseudopins are created around the region
under consideration. This is called a terminal propagation [23]. Because the basic algorithm is
based on partitioning, the typical objective function is the number of netcuts between subregions.
Finding a good partitioning indicates that good logical clustering of circuit elements are found
with less communications among them that can lead to a better total wirelength. To speed up the
algorithm, multilevel clustering can be combined with a partitioning-based placement. In general,
cut-based multilevel partitioning placement can be performed quite well particularly when designs
are dense. Also, partitioning-based placement is a relatively fast placement algorithm. Partitioning-
based placement algorithms are discussed in Chapter 15, and the fundamental partitioning concept
and algorithm itself can be found in Chapter 7.

Analytical placement algorithms typically solve a relaxed placement formulation (e.g.,minimum
total squared wirelength) optimally, allowing cells to temporarily overlap. Legalization is achieved

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C014 Finals Page 286 24-9-2008 #11

286 Handbook of Algorithms for Physical Design Automation

by removing overlaps via either partitioning or by introducing additional forces or constraints to gen-
erate a new optimization problem. The formulation of these methods models the mechanical spring
network. Each net represents a spring that attracts circuit elements connected to the net. The optimum
solution represents the equilibrium state of the given spring network. Analytic placers can perform
poorly when the data is naturally degenerate (which occurs when no fixed object exists) because it
becomes difficult to legalize a placement where thousands of circuit elements are placed virtually at
the same location.Also, analyticalmethodsmay have difficulties in dense designswhere legalization
is forced to significantly alter the analytic solution. The new breed of analytic placement algorithm,
dubbed as forced-based placement showed great promise recently. Force-based placement adds addi-
tional forces to the formulation that pull circuit elements from high-density regions to low ones. The
key point is to achieve a better distributed placement solution by integrating these spreading forces
into a formulation, instead of relying on explicit partitioning or other techniques. There are a variety
of techniques for cell spreading in force-based analytic placement techniques. During placement,
some form of density analysis is performed to calculate spreading forces. Once the spreading forces
are determined, these forces can be applied to each circuit element via constant forces, or explicit
fixed-point methods. Sometimes, a density (overlapping) penalty function is included in the place-
ment objective function explicitly so that nonlinear optimization can minimize total wirelengths and
overlapping simultaneously. In this nonlinear optimization framework, linear wirelength approxima-
tion can also be included to minimize half-perimeter bounding box wirelength directly. To speed up
the convergence of optimization, circuit clustering techniques can be combined with these analytic
placement algorithms. These clustering techniques can not only reduce the runtime of placement
but also improve the quality of placement solutions. The general analytical placement algorithm is
presented in Chapter 17 and the new force-directed methods are discussed in Chapter 18.

Recently, the ISPD (International Symposiumon Physical Design) Conference hosted two place-
ment contests in 2005 and 2006 for the academic placement research community. The contests
provided a common platform where various placement algorithms can be evaluated on the same set
of realistic large-scale ASIC designs. Particularly, the new placement benchmark circuits that were
released during the contests have set a new bar for requirements of modern placement capability. By
providing a common basis for quantitative measurements of contemporary placement algorithms,
researchers were able to publicize their placement tools and results and discuss the pros and cons of
different breeds of placement algorithms. For more serious placement researchers, ISPD placement
contests can serve as a good starting point for further in-depth discussions of placement algorithms
and implementations [11,24].

REFERENCES
1. P. G. Villarrubia, Important placement considerations for modern VLSI chips, invited talk at International

Symposium on Physical Design, San Diego, CA, 2000.
2. S. M. Sait and H. Youssef, VLSI Physical Design Automation: Theory and Practice, World Scientific, River

Edge, NJ, 1999.
3. M. Sarrafzadeh and C. K. Wong, An Introduction to VLSI Physical Design, McGraw-Hill, NY, 1996.
4. N. A. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer Academic Publishers, Norwell,

MA, 1999.
5. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,

W. H. Freeman and Company, NY, 1979.
6. A. B. Kahng, Classical floorplanning harmful? in Proceedings of International Symposium on Physical
Design, 2000, San Diego, CA, pp. 207–213.

7. C. Alpert, G. -J. Nam, and P. G. Villarrubia, Effective free space management for cut-based placement via
analytical constraint generation, IEEE Transactions on Computer-Aided Design, 22(10): 1343–1353, 2003
(ICCAD 2002).

8. S. N. Adya and I. L. Markov, Combinatorial techniques for mixed-size placement, ACM Transactions on
Design Automation of Electronic Systems, 10(5): 2005.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C014 Finals Page 287 24-9-2008 #12

Placement: Introduction/Problem Formulation 287

9. D. E. Duate, N. Vijaykrishnan, and M. J. Irwin, A clock power model to evaluate impact of architectural
and technology optimization, IEEE Transactions on VLSI, 10(6): 844–855, December 2002.

10. Y. Lu, C. -N. Sze, X. Hong, Q. Zhou, Y. Cai, L. Huang, and J. Hu, Navigating registers in placement
for clock network minimization, in Proceedings of Design Automation Conference, Anaheim, CA, 2005,
pp. 176–181.

11. G. -J. Nam and J. Cong (Eds.), Modern Circuit Placement: Best Practices and Results, Springer Verlag,
NY, 2007.

12. G.-J. Nam, S. Reda, C. J. Alpert, P. G. Villarrubia, and A. B. Kahng, A fast hierarchical quadratic placement
algorithm, IEEE Transactions on Computer-Aided Design of Circuits and Systems, 25(4): 678–691, April,
2006 (ISPD 2005).

13. J. Cong and J. Shinnerl (Eds.), Multilevel Optimization in VLSI CAD, Kluwer Academic Publishers, AA
Dordrecht, the Netherlands, 2003.

14. S.N.Adya, I. L.Markov, andP.G.Villarrubia,Onwhitespace and stability in physical synthesis, Integration:
The VLSI Journal, 39(4): 340–362, 2006 (ICCAD 2003).

15. C. Alpert, G. -J. Nam, P. G. Villarrubia, and M. Yildiz, Placement stability metrics, in Proceedings of Asia
South Pacific Design Automation Conference, Shanghai, China, 2005, pp. 1144–1147.

16. R. Montoye, The four degrees of 3D, invited talk at International Symposium on Physical Design, Phoenix,
AZ, 2004.

17. B. Goplen and S. Sapatnekar, Efficient thermal placement of standard cells in 3D ICs using a force directed
approach, in Proceedings of International Conference on Computer-Aided Design, 2003, pp. 86–90.

18. J. Cong and Y. Zhang, Thermal via planning for 3-D ICs, in Proceedings of International Conference on
Computer-Aided Design, San Jose, CA, 2005, pp. 745–752.

19. Y. Cheon, P. -H. Ho, A. B. Kahng, S. Reda, and Q.Wang, Power-aware placement, in Proceedings of Design
Automation Conference, Anaheim, CA, 2005, pp. 795–800.

20. A. B. Kahng, B. Liu, and Q. Wang, Supply voltage degradation aware analytical placement, in Proceedings
of International Conference on Computer Design, San Jose, CA, 2005, pp. 437–443.

21. J. Lou and W. Chen, Crosstalk-aware placement, IEEE Design and Test of Computers, 21(1): 24–32, 2004.
22. A. E. Caldwell, A. B. Kahng, and I. L. Markov, Can recursive bisection alone produce routable placement?

in Proceedings of Design Automation Conference, Los Angeles, CA, 2000, pp. 477–482.
23. A. E. Dunlop and B. W. Kernighan, A procedure for placement of standard cell VLSI circuits, IEEE

Transactions on Computer-Aided Design of Integrated Circuits, 4(1): 92–98, 1985.
24. Available at http://www.ispd.cc/contests.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C014 Finals Page 288 24-9-2008 #13

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 289 29-9-2008 #2

15 Partitioning-Based Methods

Jarrod A. Roy and Igor L. Markov

CONTENTS

15.1 Top-Down Partitioning-Based Placement Framework . 290
15.1.1 Terminal Propagation and Inessential Nets . 291
15.1.2 Bipartitioning versus Multiway Partitioning .. 291
15.1.3 Cutline Selection and Shifting .. 291
15.1.4 Whitespace Allocation . 292

15.1.4.1 Free Cell Addition . 292
15.2 Enhancements to the Mincut Framework . 293

15.2.1 Better Results through Additional Partitioning .. 293
15.2.2 Fractional Cut . 294
15.2.3 Analytical Constraint Generation . 294
15.2.4 Better Modeling of HPWL by Partitioning . 295

15.3 Mixed-Size Placement . 296
15.3.1 Floorplacement . 296
15.3.2 PATOMA and PolarBear . 298
15.3.3 Fractional Cut for Mixed-Size Placement. 298
15.3.4 Mixed-Size Placement in Dragon2006 .. 299

15.4 Advantages of Mincut Placement . 299
15.4.1 Flexible Whitespace Allocation . 299
15.4.2 Solving Difficult Instances of Floorplacement . 300

15.4.2.1 Selective Floorplanning with Macro Clustering . 301
15.4.2.2 Ad Hoc Look-Ahead Floorplanning . 303

15.4.3 Optimizing Steiner Wirelength . 303
15.4.3.1 Pointsets with Multiplicities . 304
15.4.3.2 Performance .. 305

15.4.4 Incremental Placement . 305
15.4.4.1 General Framework .. 305
15.4.4.2 Handling Macros and Obstacles . 307

15.5 State-of-the-Art Mincut Placers . 307
15.5.1 Dragon . 307
15.5.2 FengShui. 307
15.5.3 NTUPlace2 . 307
15.5.4 Capo . 308

References . 308

Over the years, partitioning-based placement has seen many revisions and enhancements, but
the underlying framework illustrated in Figures 15.1 and 15.2 remains much the same. Top-down
partitioning-based placement algorithms seek to decompose a given placement instance into smaller
instances by subdividing the placement region, assigning modules to subregions, and cutting the

289

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 290 29-9-2008 #3

290 Handbook of Algorithms for Physical Design Automation

Variables: queue of placement bins
Initialize queue with top-level placement bin
1 While (queue not empty)
2 Dequeue a bin
3 If (bin small enough)
4 Process bin with end-case placer
5 Else
6 Choose a cut-line for the bin
7 Build partitioning hypergraph from netlist and cells

contained in the bin
8 Partition the bin into smaller bins (generally via min-cut

bisection or quadrisection)
9 Enqueue each child bin

FIGURE 15.1 Top-down partitioning-based placement.

netlist hypergraph [7,19]. The top-down placement process can be viewed as a sequence of passes
where each pass examines all bins and divides some of them into smaller bins. The division step is
commonly accomplished with balanced mincut partitioning, which minimizes the number of signal
nets connecting modules in multiple regions [7]. These techniques leverage well-understood and
scalable algorithms for hypergraph partitioning and typically lead to routable placements [9]. Recent
work offers extensions to block placement, large-scale mixed-size placement [15,18,31] and robust
incremental placement [33].

15.1 TOP-DOWN PARTITIONING-BASED PLACEMENT FRAMEWORK

Using mincut partitioning in placement was presented by Breuer in 1977 [7]. The underlying frame-
work remains mostly the same and is illustrated in Figures 15.1 and 15.2. The core area is comprised
of a series of placement bins which represent (1) a placement region with allowed module locations
(sites), (2) a collection of circuit modules to be placed in this region, (3) all signal nets incident to the
modules in the region, and (4) fixed cells and pins outside the region that are connected to modules
in the region (terminals).

End-case
placement

Placement
bin

43

21

etc.

FIGURE 15.2 The overall process of top-down placement is shown on the left. The placement area and
netlist are successively divided into placement bins until the bins are small enough for end-case placement.
One important enhancement to top-down placement is terminal propagation, shown on the right. The net in
question has five fixed terminals: four above and one below the cutline. It also has movable cells, which are
represented by the cell with a dashed outline. The four fixed terminals above the cutline are propagated to the
black circle at the top of the bin while the one fixed terminal below the cutline is propagated to the black circle
below the cutline. The movable cells remain unpropagated. Note that the net is inessential because terminals are
propagated to both sides of the cutline. (From Roy, J. A. and Markov, I. L., IEEE Trans. CAD, 26, 632, 2007.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 291 29-9-2008 #4

Partitioning-BasedMethods 291

Mincut partitioning-basedplacers proceed by dividing the netlist and placement area into succes-
sively smaller pieces until the pieces are small enough to be handled efficiently by optimal end-case
placers [11]. State-of-the-art placers generally use awide range of hypergraph partitioning techniques
to best fit partitioning problem size—optimal (branch-and-bound [11]), middle-range (Fiduccia–
Mattheyses [20]), and large-scale (multilevel Fiduccia–Mattheyses [10,26]). Mincut placement is
highly scalable (due in large part to algorithmic advances in mincut partitioning [10,20,26]) and
typically produces routable placements.

In this section, we introduce topics relevant to top-down partitioning-based placement that
must be addressed by all modern mincut placers. Specifically these include terminal propaga-
tion, bipartitioning versus multiway partitioning, cutline selection, and whitespace (or free space)
allocation.

15.1.1 TERMINAL PROPAGATION AND INESSENTIAL NETS

Proper handling of terminals is essential to the success of top-down placement approaches [11,19,
21,37]. When a placement bin is split into multiple subregions, some of the cells inside may be
tightly connected to cells outside of the bin. Ignoring such connections can adversely affect the
quality of a placement because they can account for significant amounts of wirelength. On the other
hand, these terminals are irrelevant to the classic partitioning formulation as they cannot be freely
assigned to partitions. A compromise is possible by using an extended formulation of partitioning
with fixed terminals, where the terminals are considered to be fixed in (propagated to) one or more
partitions, and assigned zero areas (original areas are ignored). Nets propagated to both partitions in
bipartitioning are considered inessential because they will always be cut and can be safely removed
from the partitioning instance to improve runtime [11]. Terminal propagation is typically driven
by geometric proximity of terminals to subregions/partitions. Figure 15.2 (right) depicts terminal
propagation for a net with several fixed terminals. This particular net is inessential for bipartitioning
as it has terminals propagated to both sides of the cutline.

15.1.2 BIPARTITIONING VERSUS MULTIWAY PARTITIONING

In his seminal work on mincut placement, Breuer introduced two forms of recursive mincut place-
ment: slice/bisection and quadrature [7]. The style of mincut placement most commonly used
today has grown from the quadrature technique, which advocated the use of horizontal and ver-
tical cuts; the slice/bisection technique used only horizontal cuts and exhibited worse performance
than quadrature [7].

Since that time, horizontal and vertical cutlines have been standard in all placement techniques,
but there has been debate as to whether there should be an ordering to the cuts (i.e., horizontally
bisect a bin then vertically bisect its children as in quadrature [7]) or both cuts should be done
simultaneously as in quadrisection [37]. Quadrisection has been shown to allow for the optimization
of techniques other thanmincut (such asminimal spanning tree length [21]), but terminal propagation
is more complexwhen splitting a bin into four child bins instead of two. Also, bisection can simulate
quadrisection with added flexibility in cutline selection and shifting (see Section 15.1.3) [31]. There
are currently no known implementations that use greater than four-way partitioning and the majority
of partitioning-based placement techniques involve mincut bipartitioning.

15.1.3 CUTLINE SELECTION AND SHIFTING

Breuer studied two types of cutline direction selection techniques and found that alternating cutline
directions from layer to layer produced better half-perimeter wirelength (HPWL) than using only
horizontal cuts [7]. The authors of Ref. [40] studied this phenomenon further by testing 64 cutline
direction sequences. Their experiments did not find that the two cut-sequences that alternate at each
layer were the best, but did find that long sequences of cuts in the same direction during placement

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 292 29-9-2008 #5

292 Handbook of Algorithms for Physical Design Automation

were detrimental to performance [40]. The authors of Ref. [43] not only developed a dynamic
programming technique to choose optimal cut sequences for partitioning-based placement but also
found that nearly optimal cut sequences could be determined from the aspect ratio of the bin to be
split. This technique has been independently used in the Capo placer [30–35].

After the cutline direction is chosen, partitioning-based placers generally choose the cut-line that
best splits a placement bin in half in the desired direction. Usually cutlines are aligned to placement
row and site boundaries to ease the assignment of standard-cells to rows near the end of global
placement [9]. After a bin is partitioned, the initial cutline may be shifted to satisfy objectives such
as whitespace allocation or congestion reduction.

15.1.4 WHITESPACE ALLOCATION

Management of whitespace (also known as free space) is a key issue in physical design as it has a
profound effect on the quality of a placement. The amount of whitespace in a design is the difference
between the total placeable area in a design and the total movable cell area in the design. A natural
scheme for managing whitespace in top-down placement, uniform whitespace allocation, was intro-
duced and analyzed in Ref. [12]. Let a placement bin to be partitioned have site area S, cell area
C, absolute whitespace W = max{S − C, 0}, and relative whitespace w = W/S. A bipartitioning
divides the bin into two child bins with site areas S0 and S1 such that S0 + S1 = S and cell areas C0

andC1 such that C0 +C1 = C. A partitioner is given cell area targets T0 and T1 as well as a tolerance
τ for a bipartitioning instance. τ defines the maximum percentage by which C0 and C1 are allowed
to differ from T0 and T1, respectively. In many cases of bipartitioning, T0 = T1 = C

2
, but this is not

always true [5].
The work in Ref. [12] bases its whitespace allocation techniques on whitespace deterioration:

the phenomenon that discreteness in partitioning and placement does not allow for exact uniform
whitespace distribution. The whitespace deterioration for a bipartitioning is the largest α, such that
each child bin has at least αw relative whitespace. Assuming nonzero relative whitespace in the
placement bin, α should be restricted such that 0 ≤ α ≤ 1 [12]. The authors note that α = 1 may be
overly restrictive in practice because it induces zero tolerance on the partitioning instance but α = 0
may not be restrictive enough as it allows for child bins with zero whitespace, which can improve
wirelength but impair routability [12].

For a given block, feasible ranges for partition capacities are uniquely determined by α. The
partitioning tolerance τ for splitting a block with relative whitespace w is (1−α)w

1−w [12]. The challenge
is to determine a proper value for α. First assume that a bin is to be partitioned horizontally n times
more during the placement process. n can be calculated as �log2 R�where R is the number of rows in
the placement bin [12]. Assuming end-case bins have α = 0 because they are not further partitioned,
the relative whitespace of an end-case bin, w, is determined to be τ

τ+1
where τ is the tolerance of

partitioning in the end-case bin [12].
Assuming thatα remains the same during all partitioning of the given bin gives a simple derivation

of α = n
√

w
w
[12]. A more practical calculation assumes instead that τ remains the same over all

partitionings. This leads to τ = n
√

1−w
1−w − 1 [12]. w can be eliminated from the equation for τ and a

closed form for α based only w and n is derived to be α = n+1√1−w−(1−w)

w(n+1√1−w)
[12].

15.1.4.1 Free Cell Addition

One relatively simple method of nonuniform whitespace allocation in placement was presented in
Ref. [3]. To achieve a nonuniform allocation of whitespace, free cells (standard cells that have no
connections in the netlist) are added to the design that is placed using uniformwhitespace allocation.
Care must be taken not to add too many cells to the design that can complicate the work of many
placement algorithms, increasing interconnect length or leading to overlapping circuit modules [18].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 293 29-9-2008 #6

Partitioning-BasedMethods 293

Several other whitespace allocation techniques have been published in the literature, many
of which have the objective of congestion reduction [28,32,38,39,42]. These techniques that deal
specifically with congestion reduction are covered in Chapter 22.

15.2 ENHANCEMENTS TO THE MINCUT FRAMEWORK

This section describes several techniques that are recent improvements to the to the mincut
partitioning-based framework presented in Section 15.1. These techniques range from fairly simple
yet effective techniques such as repartitioning and placement feedback to changes in the optimization
goals of mincut placement as in weighted netcut.

15.2.1 BETTER RESULTS THROUGH ADDITIONAL PARTITIONING

Huang and Kahng introduced two techniques for improving the results of quadrisection-based place-
ment known as cycling and overlapping [21]. Cycling is a technique whereby results are improved
by partitioning every placement bin multiple times each layer [21]. After all bins are split for the first
time in a layer of placement, a new round of partitioning on the same bins is done using the results
of the previous round for terminal propagation. These additional rounds of partitioning are repeated
until there is no further improvement of a cost function [21]. A similar type of technique was pre-
sented for mincut bisection called placement feedback. In placement feedback, bins are partitioned
multiple times, without requiring steady improvement in wirelength, to achieve more consistent
terminal propagation [25].

Placement feedback serves to reduce the number of ambiguously propagated terminals. Ambi-
guity in terminal propagation arises when a terminal is nearly equidistant to the centers of the child
bins of the bin being partitioned. In such cases it is unclear as to what side of the cutline the terminal
should be propagated. Traditional choices for such terminals are to propagate them to both sides or
neither side of the cutline in fear of making a poor decision [25]. Ambiguously propagated terminals
introduce indeterminism into mincut placement as they may be propagated differently based on the
order in which placement bins are processed [25].

To reduce the number of ambiguously propagated terminals, placement feedback repeats each
layer of partitioning n times. Each successive round of partitioning uses the resulting locations from
the previous partitioning for terminal propagation. The first round of partitioning for a particular
layer may have ambiguous terminals, but the second and later rounds will have reduced numbers
of ambiguous terminals making terminal propagation more robust [25]. Empirical results show that
placement feedback is effective in reducing HPWL, routed wirelength and via count [25].

The technique of overlapping also involves additional partitioning calls during placement [21].
While doing cycling in quadrisection, pieces of neighboring bins can be coalesced into a new
bin and split to improve solution quality [21]. Brenner and Rohe introduced a similar technique
that they called repartitioning which was designed to reduce congestion [6]. After partitioning,
congestion was estimated in the placement bins of the design. Using this congestion data, new
partitioning problems were formulated with all neighbors of a congested area. Solving these
new partitioning problems would spread congestion to neighboring areas of the placement while
possibly incurring an increase in net length [6].

Capo [30–35] repartitions bins similarly for the improvement of HPWL. After the initial solution
of a partitioning problem is returned from a mincut partitioner, Capo has the option of shifting the
cutline to fulfill whatever whitespace requirements may be asked of it. A shift of the cutline, though,
represents a change in the partitioning problem formulation: the initial partitioning problem was
built assuming a different cutline that can have a significant effect on terminal propagation. Thus,
the partitioning problem is rebuilt with the new cutline and solved again to improve wirelength.
The repartitioning does not come with a significant run time penalty because the initial partitioning
solution is reused and modified by flat passes of a Fiduccia–Mattheyses [20] partitioner.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 294 29-9-2008 #7

294 Handbook of Algorithms for Physical Design Automation

15.2.2 FRACTIONAL CUT

When a placement bin is split with a vertical cutline, there can bemany possible cutlines that split the
bin roughly equally because the size of sites in row-based placement is generally small. Conversely,
row heights are generally nontrivial as compared to the height of the core placement area. Because
standard cells are ultimately placed in rows, most mincut placers choose to align cutlines to row
boundaries [9]. The authors of Ref. [4] argue that this causes the “narrow region” problem, which
leads to instability in mincut placement. The narrow region problem becomes an issue when bins
become tall and narrow. In such cases, total cell area may be able to fit into a given narrow bin, but it
may not be possible to assign cells into these rows legally due to row area constraints or the number
of legal solutions is so small that netcut is artificially increased as a result [4]. A simple example of
this phenomenon is shown in Figure 15.3.

To remedy this situation, the authors of Ref. [4]propose using a fractional cut: a horizontal cutline
that is allowed to pass through a fraction of a row. As horizontal cutlines do not necessarily align
with rows, cells must be assigned to rows before optimal end-case (typically single row) placers can
be used [4]. To legalize the placement, one proceeds on a row-by-row basis. Each cell is tentatively
assigned to a preferred height in the placement: the center of its placement bin. Starting with the
topmost row, cells are greedily assigned to rows so as to minimize the cost of assigning cells. If
a cell is assigned to the current row, its cost is the squared distance from its preferred position to
the current row. If a cell is not assigned to the current row, its cost is the squared distance from its
preferred position to the next lower row [4]. The assignment of cells to rows is achieved efficiently by
a dynamic programming formulation [4]. After all cells are assigned to rows, they are sorted by their
x coordinates and packed in rows to remove any overlaps. Experimental results show considerable
improvements in terms of HPWL reduction in placement, but packing of cells in rows does not
generally produce routable placements [32].

15.2.3 ANALYTICAL CONSTRAINT GENERATION

The authors of Ref. [5] note that mincut placement techniques are effective at reducing HPWL of
designs that are heavily constrained in terms of whitespace, but do not perform nearly as well as
analytical techniques when there are large amounts of whitespace. They suggest that one reason for
the discrepancy is that mincut placers try to divide placement bins exactly in half with a relatively
small tolerance. This tends to spread cell area roughly uniformly across the core area. Increasing the

Placement
rows

Standard
cells to
partition

FIGURE 15.3 Even though capacity constraints are satisfied, no legal vertical cutline exists to partition the
standard cells into the placement rows.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 295 29-9-2008 #8

Partitioning-BasedMethods 295

RW

RH

Center
of mass

Wleft Wright

FIGURE 15.4 Analytical constraint generation in a placement bin. Movable objects are placed with an
analytical technique. Their placements and areas are used to determine the center of mass of the placement.
A rectangle with the same aspect ratio of the placement bin and same area as the total movable objects is
superimposed on the bin, and is centered at the center of mass. In this case, movable object area will be
allocated in the ratioWleft :Wright.

tolerance for partitioning a bin can allow for less uniformity in placement and lower HPWL due to
tighter packing, but still does not reproduce the performance of analytical techniques [5].

To improve the HPWL performance of mincut placement techniques on designs with large
amounts of whitespace (which are becoming increasingly popular in real-world designs), while still
retaining the good performance of mincut techniques when there is limited whitespace, the authors
of Ref. [5] suggest integrating analytical techniques and mincut techniques. Before constructing
a partitioning instance for a given placement bin, an analytical placement technique is run on the
objects in the bin tominimize their quadraticwirelength [5].Next, the center ofmass of the placement
of the objects of the bin is calculated. This points to roughly where the objects should go to reduce
their wirelength. One then constructs a rectangle having the same aspect ratio as the placement bin
and the same area as the total movable object area in the bin. This is illustrated in Figure 15.4. Let
A be the total movable object area in the bin, H be the height of the bin, and W the width of the

bin. The height and width of such a rectangle are calculated as: rectangle height RH =
√

AH
W

and

rectangle width RW =
√

AW
H

[5]. One centers this rectangle at the center of mass of the analytical
placement and intersects the rectangle with the proposed cutline of the bin. The amount of area of
the rectangle that falls on either side of the cutline is used as a target for mincut partitioning [5]. In
Figure 15.4, the target area for the left-hand side of the partitioning is RH ·Wleft ; similarly, the target
for the right-hand side of the partitioning is RH ·Wright. As most mincut partitioners choose to split
cell area equally, this is a significant departure from traditional mincut placement.

Empirical results suggest that analytical constraint generation (ACG) is effective at improving
the performance of mincut placement on designs with large amounts of whitespace while retaining
the good performance and routability of mincut placers on constrained designs. This performance
comes at the cost of approximately 28 percent more runtime [5].

15.2.4 BETTER MODELING OF HPWL BY PARTITIONING

It is well known that the mincut objective in partitioning does not accurately represent the wirelength
objective of placement [21,36]. Optimizing HPWL and other objectives directly through partitioning

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 296 29-9-2008 #9

296 Handbook of Algorithms for Physical Design Automation

can provide improvements overmincut. Huang and Kahng showed that net weighting and quadrisec-
tion can be used tominimize awide range of objectives such asminimal spanning tree cost [21]. Their
technique consists of computing vectors of weights for each net (called net vectors) and using these
weights in quadrisection [21]. Although this technique can represent a wide range of cost functions
to minimize, it requires the discretization of pin locations into the centers of bins and requires that
16 weights must be calculated per net for partitioning [21].

The authors of Ref. [36] introduce a new terminal propagation technique in their placer THETO

that allows the partitioner to better map netcut to HPWL. Terminal propagation in THETO differs from
traditional terminal propagation in that each original net may be represented by one or two nets in the
partitioned netlist, depending on the configuration of the net’s terminals. This technique is simplified
inRef. [15] and reduced to the calculation of costswirelengths per net per partitioning instance,which
completely determine the connectivity and weights of all nets in the derived partitioning hypergraph.
For each net in each partitioning instance, one must calculate the cost of all nodes on the net being
placed in partition 1(w1), the cost of all nodes on the net being placed in partition 2(w2), and the cost
of all nodes on the net being split between partitions 1 and 2 (w12). Up to two nets can be created in the
partitioning instance, onewithweight |w1−w2| and the otherwithweightw12−max(w1,w2). The only
assumption made in Ref. [15] is that w12 ≥ max(w1,w2). Using these costs and proper connectivity
in the derived hypergraph, minimizing weighted netcut directly corresponds to minimizing HPWL.

15.3 MIXED-SIZE PLACEMENT

Mixed-size placement, the placement of large macros in addition to standard cells, has become a
relevant challenge in physical design and is poised to dominate physical design in the near future as
we move from traditional “sea of cells” ICs to “sea of hard macros” SoCs [41]. To keep up with this
shift in physical design, several techniques for partitioning-based mixed-size placement have been
proposed and are described in this section. These techniques include floorplacement, PATOMA, and
mixed-size placement with fractional cut.

15.3.1 FLOORPLACEMENT

Fromanoptimization point of view, floorplanning andplacement are very similar problems–both seek
nonoverlapping placements to minimize wirelength. They are distinguished by scale and the need
to account for shapes in floorplanning, which calls for different optimization techniques. Netlist
partitioning is often used in placement algorithms, where geometric shapes of partitions can be
adjusted. This considerably blurs the separation between partitioning, placement, and floorplanning,
raising the possibility that these three steps can be performed by one CAD tool. The authors of
Ref. [31] develop such a tool and term the unified layout optimization floorplacement following
Steve Teig’s keynote speech at ISPD 2002.

The traditional mincut placement scheme breaks down when modules are comparable in size to
their bins. When such a module appears in a bin, recursive bisection cannot continue, or else will
likely produce a placementwith overlappingmodules. In floorplacement, one switches from recursive
bisection to local floorplanning where the fixed outline is determined by the bin. This is done for
two main reasons: (1) to preserve wirelength [8], congestion [6], and delay [23] estimates that may
have been performed early during top-down placement and (2) to avoid legalizing a placement with
overlapping macros.

Although deferring to fixed-outline floorplanning is a natural step, successful fixed-outline floor-
planners have appeared only recently [1]. Additionally, the floorplannermay fail to pack all modules
within the bin without overlaps. As with any constraint-satisfaction problem, this can be for two
reasons: either (1) the instance is unsatisfiable or (2) the solver is unable to find any of existing
solutions. In this case, the technique undoes the previous partitioning step and merges the failed bin
with its sibling bin, then discards the two bins. The merged bin includes all modules contained in

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 297 29-9-2008 #10

Partitioning-BasedMethods 297

Variables: queue of placement bins
Initialize queue with top-level placement bin
1 While (queue not empty)
2 Dequeue a bin
3 If (bin has large/many macros or is marked as merged)
4 Cluster std-cells into soft macros
5 Use fixed-outline floorplanner to pack all macros (soft+hard)
6 If fixed-outline floorplanning succeeds
7 Fix macros and remove sites underneath the macros
8 Else
9 Undo one partition decision. Merge bin with sibling
10 Mark new bin as merged and enqueue
11 Else if (bin small enough)
12 Process end case
13 Else
14 Bipartition the bin into smaller bins
15 Enqueue each child bin

FIGURE 15.5 Mincut floorplacement. Boldfaced lines 3–10 are different from traditional mincut placement.
(From Roy, J. A., Adya, S. N., Papa, D. A., and Markov, I. L., IEEE Trans. CAD, 25, 1313, 2006.)

the two smaller bins, and its rectangular outline is the union of the two rectangular outlines. This
bin is floorplanned, and in case of failure can be merged with its sibling again. The overall process
is summarized in Figure 15.5 and an example is depicted in Figure 15.6.

It is typically easier to satisfy the outline of a merged bin because circuit modules become
relatively smaller. However, simulated annealing takes longer on larger bins and is less successful in
minimizingwirelength. Therefore, it is important to floorplan at just the right time, and the algorithm
determines this point by backtracking. Backtracking incurs some overhead in failed floorplan runs,
but this overhead is tolerable becausemerged bins take considerably longer to floorplan. Furthermore,
this overhead can be moderated somewhat by careful prediction.

For a given bin, a floorplanning instance is constructed as follows. All connections between
modules in the bin and other modules are propagated to fixed terminals at the periphery of the

2000

2000

2000

2000

1500

1500 1500

1500

500

500

500

500
0

0 0
0

1000

1000

1000

1000

IBM01 HPWL=2.574e+06,
#cells=12752, #nets=14111

IBM01 HPWL=2.574e+06,
#cells=12752, #nets=14111

FIGURE 15.6 Progress of mixed-size floorplacement on the IBM01 benchmark from IBM-MSwPins. The
picture on the left shows how the cutlines are chosen during the first six layers of mincut bisection. On the right
is the same placement but with the floorplanning instances highlighted by “rounded” rectangles. Floorplanning
failures can be detected by observing nested rectangles. (From Roy, J. A., Adya, S. N., Papa, D. A., and Markov,
I. L., IEEE Trans. CAD, 25, 1313, 2006.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 298 29-9-2008 #11

298 Handbook of Algorithms for Physical Design Automation

bin. As the bin may contain numerous standard cells, the number of movable objects is reduced by
conglomerating standard cells into soft placeable blocks. This is accomplished by a simple bottom-
up connectivity-based clustering [26]. Large modules in the bin are kept out of this clustering. To
further simplify floorplanning, soft blocks consisting of standard cells are artificially downsized, as
in Ref. [3]. The clustered netlist is given to the fixed-outline floorplanner Parquet [1], which sizes
soft blocks and optimizes block orientations. After suitable locations are found, the locations of large
modules are returned to the top-down placer and are considered fixed, and the rows below them are
fractured. At this point, mincut placement resumes with a bin that has no large modules in it, but
has somewhat nonuniform row structure. When mincut placement is finished, large modules do not
overlap by construction, but small cells sometimes overlap (typically below 0.01 percent by area).
Those overlaps are quickly detected and removed with local changes.

Because the floorplacer includes a state-of-the-art floorplanner, it can natively handle pure block-
based designs. Unlike most algorithms designed for mixed-size placement, it can pack blocks into
a tight outline, optimize block orientations, and tune aspect ratios of soft blocks. When the number
of blocks is very small, the algorithm applies floorplanning quickly. However, when given a larger
design, it may start with partitioning and then call fixed-outline floorplanning for separate bins. As
recursive bisection scales well and is more successful at minimizingwirelength than annealing-based
floorplanning, the proposed approach is scalable and effective at minimizing wirelength.

15.3.2 PATOMA AND POLARBEAR

PATOMA 1.0 [17] pioneered a top-down floorplanning framework that utilizes fast block-packing
algorithms (ROB or ZDS [16]) and hypergraph partitioningwith hMETIS [26]. This approach is fast
and scalable, and provides good solutions for many input configurations. Fast block-packing is used
in PATOMA to guarantee that a legal packing solution exists, at which point the burden of wirelength
minimization is shifted to the hypergraph partitioner. This idea is applied recursively to each of the
newly created partitions. In end-cases, when a partitioning step leads to unsatisfiable block-packing,
the quality of the result is determined by the quality of its fast block-packing algorithms. The placer
PolarBear [18] integrates algorithms fromPATOMA to increase the robustness of a top-downmincut
placement flow. Similar to PATOMA, the floorplanner IMF [15] utilizes top-down partitioning, but
allows overlaps in the initial top-down partitioning phase. A bottom-up merging and refinement
phase fixes overlaps and further optimizes the solution quality.

15.3.3 FRACTIONAL CUT FOR MIXED-SIZE PLACEMENT

The work in Ref. [27] advocates a two-stage approach to mixed-size placement. First, the mincut
placer FengShui [4] generates an initial placement for themixed-size netlist without trying to prevent
overlaps between modules. The placer only tracks the global distribution of area during partitioning
and uses the fractional cut technique (see Section 15.2.2), which further relaxes book keeping by not
requiring placement bins to align to cell rows.While giving mincut partitioners more freedom, these
relaxations prevent cells from being placed in rows easily and require additional repair during detail
placement. This may particularly complicate the optimization ofmodule orientations, not considered
in Ref. [27].

The second stage consists of removing overlaps by a fast legalizer designed to handle large
modules along with standard cells. The legalizer is greedy and attempts to shift all modules toward
the left or right edge of the chip. The implementation reported in Ref. [27] can lead to horizontal
stacking of modules and sometimes yields out-of-core placements, especially when several very
large modules are present (the benchmarks used in Ref. [27] contain numerous modules of medium
size). See Figure 15.10 in Ref. [31] and Figure 15.6 in Ref. [30] for examples of this behavior.
Another concern about packed placements is the harmful effect of such a strategy on routability [42].
Overall, the work in Ref. [27] demonstrates very good legal placements for common benchmarks,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 299 29-9-2008 #12

Partitioning-BasedMethods 299

2000

2000

2000

2000

1500

1500 1500

1500

500

500

500

500
0

0 0
0

1000

1000

1000

1000

ibm01 HPWL=2.376e+06,
#cells=12752, #nets=14111

ibm01 HPWL=2.457e+06,
#cells=12752, #nets=14111

FIGURE 15.7 A placement of the IBM01 benchmark from IBM-MSwPins by FengShui before (left) and
after (right) legalization and detail placement.

but questions remain about the robustness and generality of the proposed approach to mixed-size
placement. Example FengShui placements before and after legalization are shown in Figure 15.7.

15.3.4 MIXED-SIZE PLACEMENT IN DRAGON2006

The traditional Dragon flow does not take macros into consideration during placement. To account
for macros, partitioning, bin-based annealing and legalization must be modified. Dragon2006makes
two passes on a design with obstacles; the first pass finds locations for macros and the second treats
macros as fixed obstacles [39] (similar to Ref. [2]).

In the first pass, partitioning is modified to handle large movablemacros. The traditional Dragon
flow alternates cut directions at each layer and chooses the cutline to split a bin exactly in half in order
to maintain a regular grid structure. In the presence of large macros, the requirement of a regular bin
structure is relaxed. The cutline of the bin is shifted to allow the largest macro to fit into a child bin
after partitioning. If macros can only fit in one bin, they are preassigned to the child bin in which
they can fit and not involved in partitioning [38,39].

Bin-based simulated annealing after partitioning is also modified as bins may not all have
the same dimensions. Horizontal swaps between adjacent bins are only allowed if they are of the
same height. Similarly, vertical swaps between adjacent bins are only allowed if they are of the same
width. Lastly, diagonal bin swaps are only legal if the bins have the same height and width. After all
bins have fewer than a threshold of cells, partitioning stops, and macro locations are legalized. Once
legal, macros are considered fixed and partitioning begins again at the top level to place the standard
cells of the design [38,39].

15.4 ADVANTAGES OF MINCUT PLACEMENT

This section presents recent techniques that givemincut placement a significant advantage over other
placement algorithms in whitespace allocation, floorplacement, routed wirelength, and incremental
placement.

15.4.1 FLEXIBLEWHITESPACE ALLOCATION

The mincut bisection based placement framework offers much flexibility in whitespace allocation.
Section 15.1.4 describes uniformallocation ofwhitespace formincut bisection placement and a trivial
preprocessing step to allow for nonuniform allocation. This section outlines two more sophisticated

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 300 29-9-2008 #13

300 Handbook of Algorithms for Physical Design Automation

whitespace allocation techniques, minimum local whitespace and safe whitespace, that can be used
for nonuniform whitespace allocation and satisfying whitespace constraints [35].

Minimum local whitespace. If a placement bin has more than a user-defined minimum local white-
space (minLocalWS), partitioning will define a tentative cutline that divides the bin’s placement
area in half. Partitioning targets an equal division of cell area, but is given more freedom to deviate
from its target. Tolerance is computed so that with whitespace deterioration, each descendant bin of
the current bin will have at least minLocalWS [35].

The assumption that the whitespace deterioration, α, in end-case bins is 0 presented in
Section 15.1.4 no longer applies, so the calculation of α must change. Because we want all child
bins of the current bin to have minLocalWS relative whitespace, end-case bins, in particular, must
have at least minLocalWS and thus we may set w = minLocalWS, instead of a function of τ .
Using the assumption that α remains constant during partitioning, α can be calculated directly as

α = n
√

�w
w
[12]. With the more realistic assumption that τ remains constant, τ can be calculated

as τ = n
√

1−�w
1−w − 1 [12]. Knowing τ , α can be computed as α = (τ + 1) + τ

w
[12].

After a partitioning is calculated, the cutline is shifted to ensure that minLocalWS is preserved
on both sides of the cutline. If the minimum local whitespace is chosen to be small, one can produce
tightly packed placements, which greatly improve wirelength.

Safe whitespace. This whitespace allocation mode is designed for bins with large quantities of
whitespace. In safe whitespace allocation, as with minimum local whitespace allocation, a tentative
geometric cutline of the bin is chosen, and the target of partitioning is an equal bisection of the cell
area. The difference in safe whitespace allocation mode is that the partitioning tolerance is much
higher. Essentially, any partitioning solution that leaves at leastsafeWSon either side of the cutline is
considered legal. This allows for very tight packing and reduces wirelength, but is not recommended
for congestion-driven placement [35].

Figure 15.8 illustrates uniformand nonuniformwhitespace allocation. Figure 15.8a shows global
placements with uniform (top) and nonuniform (bottom) whitespace allocation on the ISPD 2005
contest benchmark adaptec1 (57.34 percent utlization) [29]. In the nonuniformplacement shown, the
minimum local whitespace is 12 percent and safe whitespace is 14 percent Figure 15.8b and c shows
intensity maps of the local utilization of each placement. Lighter areas of the intensity maps signify
violations of a given target placement density; darker areas have utilization below the target. Regions
completely occupied by fixed obstacles are shaded as if they exactly meet the target density. The
target densities for columns in Figure 15.8b and c are 90 percent and 60 percent. Note that uniform
whitespace produces almost no violations when the target is 90 percent and relatively few when the
target is 60 percent. The nonuniform placement has more violations as compared to the uniform
placement especially when the target is 60 percent, but remains largely legal with the 90 percent
target density.

15.4.2 SOLVING DIFFICULT INSTANCES OF FLOORPLACEMENT

Floorplacement (see Section 15.3.1) appears promising for SoC layout because of its high capacity
and the ability to pack blocks. However, as experiments in Ref. [30] demonstrate, existing tools for
floorplacement are fragile—on many instances they fail, or produce remarkably poor placements.

To improve the performance ofmincut placement onmixed-size instances, the authors ofRef. [30]
propose three synergistic techniques for floorplacement that in particular succeed on hard instances:
(1) selective floorplanning with macro clustering, (2) improved obstacle evasion for B∗-tree, and
(3) ad hoc look-ahead in top-down floorplacement. Obstacle evasion is especially important for top-
down floorplacement, even for designs that initially have no obstacles. The techniques are called
SCAMPI, an acronym for scalable advancedmacro placement improvements. Empirically, SCAMPI
shows significant improvements in floorplacement success rate (68percent improvement as compared

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 301 29-9-2008 #14

Partitioning-BasedMethods 301

10000

10000

8000

8000

6000

60004000

4000

2000

2000

0
0

10000

8000

6000

4000

2000

0
0

100008000600040002000
(a) (b) (c)

FIGURE 15.8 Columns in (a) show global placements of the ISPD 2005 placement contest bench mark
adaptecl (57.34 percent utilization) with uniform white space allocation (top) and nonuniform whitespace
allocation (bottom). Fixed obstacles are drawn with double lines. To indicate orientation, north west corners of
blocks are truncated. Columns in (b) and (c) depict the local utilization of the placements. Lighter areas of the
placement signify placement regions with density above a given target (90 percent for columns in (b) and 60
percent for columns in (c)) whereas darker areas have utilization below the target. (From Ng, A. N., Markov,
I. L., Aggarwal, R., and Ramachandran, V., ISPD, pp. 170–177, April 2006. With permission.)

to the floorplacement technique presented in Section 15.3.1) and HPWL (3.5 percent reduction
compared to floorplacement in Section 15.3.1).

15.4.2.1 Selective Floorplanning with Macro Clustering

In top-down correct-by-construction frame works like Capo (Section 15.3.1 and PATOMA [17]
(Section 15.3.2), a key bottleneck is in ensuring ongoing progress—partitioning, floorplanning, or
end-case processing must succeed at any given step. Both frameworks experience problems when
floorplanning is invoked too early to produce reasonable solutions—PATOMA resorts to solutions
with very high wirelength, and Capo times out because it runs the annealer on too many modules.
To scale better, the annealer clusters small standard cells into soft blocks before starting simulated
annealing. When a solution is available, all hard blocks are considered placed and fixed—they are
treated as obstacles when the remaining standard cells are placed. Compared to other multilevel
frameworks, this one does not include refinement, which makes it relatively fast. Speed is achieved
at the cost of not being able to cluster modules other than standard cells because the floorplanner
does not produce locations for clusteredmodules. Unfortunately, this limitation significantly restricts
scalability of designs with many macros [30].

The proposed technique of selective floorplanningwith macro clustering allows to cluster blocks
before annealing, and does not require additional refinement or cluster-packing steps (which are

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 302 29-9-2008 #15

302 Handbook of Algorithms for Physical Design Automation

among the obvious facilitators)—instead, certain existing steps in floorplacement are skipped. This
improvement is based on two observations: (1) blocks that are much smaller than their bin can be
treated like standard cells and (2) the number of blocks that are large relative to the bin size is
necessarily limited. For example, there cannot be more than nine blocks with area in excess of 10
percent of a bin’s area [30].

In selective floorplanning, each block is marked as small or large based on a size threshold.
Standard cells and small blocks can be clustered, except that clusters containing hard blocks have
additional restrictions on their aspect ratios. After successful annealing, only the large blocks are
placed, fixed, and considered obstacles. Normal top-down partitioning resumes, and each remaining
block will qualify as large at some later point. This way, specific locations are determined when the
right level of detail is considered (Figure 15.10). If floorplanning fails during hierarchical placement,
the failed bin is merged with its sibling and the merged bin is floorplanned (Figure 15.9). The blocks
marked as large in the merged bin include those that exceed the size threshold and also those marked
as large in the failed bin (because the failure suggests that those blocks were difficult to pack). After
the largest macros are placed, the flow resumes [30].

Variables: queue of placement partitions
Initialize queue with top-level partition

1 While (queue not empty)
2 Dequeue a partition
3 If (partition is not marked as merged)
4 Perform look-ahead floorplanning on partition
5 If look-ahead floorplanning fails
6 Undo one partition decision
7 Merge partition with sibling
8 Mark new partition as merged and enqueue
9 Else if (partition has large macros or

is marked as merged)
10 Mark large macros for placement after floorplanning
11 Cluster remaining macros into soft macros
12 Cluster std-cells into soft macros
13 Use fixed-outline floorplanner to pack

all macros (soft+hard)
14 If fixed-outline floorplanning succeeds
15 Fix large macros and remove sites beneath
16 Else
17 Undo one partition decision
18 Merge partition with sibling
19 Mark new partition as merged and enqueue
20 Else if (partition is small enough and

mostly comprised of macros)
21 Process floorplanning on all macros
22 Else if (partition small enough)
23 Process end case std cell placement
24 Else
25 Bipartition netlist of the partition
26 Divide the partition by placing a cut-line
27 Enqueue each child partition

FIGURE 15.9 Modified mincut floorplacement flow. Boldfaced lines are new. (From Ng, A. N., Markov,
I. L., Aggarwal, R., and Ramachandran, V., ISPD, 2006.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 303 29-9-2008 #16

Partitioning-BasedMethods 303

TimeTime

S
iz

e

S
iz

e

Macros
Std cells
Bin size/time

FIGURE 15.10 The plot on the left illustrates traditional floorplacement. Whenever a floorplanning threshold
is reached, all macros in the bin are designated for floorplanning. Then, the floorplacement flow continues down
until detailed placement, where the standard cells will be placed. The plot on the right illustrates the SCAMPI
flow. Macros are selectively placed at the appropriate levels of hierarchy. (From Ng, A. N., Markov, I. L.,
Aggarwal, R., and Ramachandran, V., ISPD, 2006.)

The proposed technique limits the size of floorplanning instances given to the annealer by a
constant and does not require much extra work. However, it introduces an unexpected complexity.
The floorplacement framework does not handle fixed obstacles in the core region, and none of the
public benchmarks have them.WhenCapo fixes blocks in a particular bin, it fixes all of themandnever
needs to floorplan around obstacles. Another complication due to newly introduced fixed obstacles
is in cutline selection. Reliable obstacle-evasion and intelligent cutline selection may be required by
practical designs, evenwithout selective floorplanning (e.g., to handle prediffusedmemories, built-in
multipliers in FPGAs, etc.). Therefore, they areviewedas independent but synergistic techniques [30].
When satisfying area constraints is difficult, it is very important to increase the priority of area
optimization so as to achieve legality [14]. Because of this, the authors of Ref. [30] select the
B∗-tree [13] floorplan representation for its amenability to packed configurations and add obstacle
evasion into B∗-tree evaluation.

15.4.2.2 Ad Hoc Look-Ahead Floorplanning

The sum of block areas may significantly underestimate the area required for large blocks. Bet-
ter estimates are required to improve the robustness of floorplacement and look-ahead area-driven
floorplanning appears as a viable approach [30].

SCAMPI performs look-ahead floorplanning to validate solutions produced by the hypergraph
partitioner, and check that a resulting partition is packable, within a certain tolerance for failure. Look-
ahead floorplanning must be fast, so that the amortized runtime overhead of the look-ahead calls
is less than the total time saved from discovering bad partitioning solutions. Therefore, look-ahead
floorplanning is performed with blocks whose area is larger than 10 percent of the total module area
in the bin, and soft blocks containing remaining modules. For speed, the floorplanner is configured
to perform area-only packing, and the placer is configured to only perform look-ahead floorplanning
on bins with large blocks. Dealing with only the largest blocks is sufficient because floorplanning
failures are most often caused by such blocks [30].

15.4.3 OPTIMIZING STEINERWIRELENGTH

Weighted terminal propagation as described in Ref. [15], and summarized in Section 15.2.4, is suffi-
ciently general to account for objectives other than HPWL such as Steiner wirelength (StWL) [32].
StWL is known to correlate with final routed wirelength (rWL) more accurately than HPWL and the
authors of Ref. [32] hypothesize that if StWL could be directly optimized during global placement,
one may be able to enhance routability and reduce routed wirelength.

The points required to calculate w1 for a given net are the terminals on the net plus the center
of partition 1. Similarly, the points required to calculate w2 are the terminals plus the center of

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 304 29-9-2008 #17

304 Handbook of Algorithms for Physical Design Automation

FIGURE 15.11 Calculating the three costs for weighted terminal propagation with StWL: w1 (left), w2

(middle), and w12 (right). The net has five fixed terminals: four above and one below the proposed cutline. For
the traditional HPWL objective, this net would be considered inessential. Note that the structure of the three
Steiner trees may be entirely different, which is why w1,w2, and w12 are evaluated independently. (From Roy,
J. A. and Markov, I. L., IEEE Trans. CAD, 26, 632, 2007.)

partition 2. Lastly, the points to calculate w12 are the terminals on the net plus the centers of both
partitions. See Figure 15.11 for an example of calculating these three costs. Clearly, the HPWL of
the set of points necessary to calculate w12 is at least as large as that of w1 and w2 because it contains
an additional point. By the same logic, StWL also satisfies this relationship because RSMT length
can only increase with additional points. Because StWL is a valid cost function for these weighted
partitioning problems, this is a framework whereby it can be minimized [32].

The simplicity of this framework forminimizingStWL is deceiving. In particular, the propagation
of terminal locations to the current placement bin and the removal of inessential nets [11]—standard
techniques for HPWL minimization—cannot be used when minimizing StWL. Moving terminal
locations drastically changes Steiner-tree construction and can make StWL estimates extremely
inaccurate. Nets that are considered inessential in HPWL minimization (where the x- or y-span of
terminals, if the cut is vertical or horizontal respectively, contains the x- or y-span of the centers of
child bins) are not necessarily inessential when considering StWL because there are many Steiner
trees of different lengths that have the same bounding box. Figure 15.11 illustrates a net that is
inessential forHPWLminimization but essential for StWLminimization.Not only computingSteiner
trees but also traversing all relevant nets to collect all relevant point locations can be very time
consuming. Therefore, the main challenge in supporting StWL minimization is to develop efficient
data structures and limit additional runtime during placement [32].

15.4.3.1 Pointsets with Multiplicities

Building Steiner trees for each net during partitioning is a computationally expensive task. To keep
runtime reasonable when building Steiner trees for partitioning, the authors of Ref. [32] introduce a
simple yet highly effective data structure—pointsets with multiplicities. For each net in the hyper-
graph, two lists are maintained. The first list contains all the unique pin locations on the net that are
fixed. A fixed pin can come from sources such as terminals or fixed objects in the core area. The
second list contains all the unique pin locations on the net that are movable, that is, all other pins
that are not on the fixed list. All points on each list are unique so that redundant points are not given
to Steiner evaluators. To do so efficiently, the lists are kept in sorted order. For both lists, in addition
to the location of the pin, the number of pins that correspond to a given point is also saved [32].

Maintaining the number of actual pins that correspond to a point in a pointset (the multiplicity
of that point) is necessary for efficient update of pin locations during placement. If a pin changes
position during placement, the pointsets for the net connected to the pin must be updated. First, the
original position of the pin must be removed from the movable point set. As multiple pins can have
the same position, especially early in placement, the entire net would need to be traversed to see
if any other pins share the same position as the pin that is moving. Multiplicities allow to know

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 305 29-9-2008 #18

Partitioning-BasedMethods 305

this information in constant time. To remove the pin, one performs a binary search on the pointset
and decreases the multiplicity of the pin’s position by 1. If this results in the position having a
multiplicity of 0, the position can be removed entirely. Insertion of the pin’s new position is similar:
first, a binary search is performed on the pointset. If the pin’s position is already present in the
pointset, the multiplicity is increased by 1. Otherwise, the position is added in sorted order with a
multiplicity of 1. Empirically, building and maintaining the pointset data structures takes less than 1
percent of the runtime of global placement [32].

15.4.3.2 Performance

The authors of Ref. [32] compared three Steiner evaluators in terms of runtime impact and solution
quality. They chose the FastSteiner [24] evaluator for global placement based on its reasonable
runtime and consistent performance on large nets. Empirical results show the use of FastSteiner leads
to a reduction of StWL by 3 percent on average on the IBMv2 benchmarks [42] (with a reduction of
routed wirelength up to 7 percent) while using less than 30 percent additional runtime [32].

15.4.4 INCREMENTAL PLACEMENT

To develop a strong incremental placement tool, ECO-system, the authors of Ref. [33] build upon an
existing global placement framework and must choose between analytical and top-down. The main
considerations include robustness, the handling of movable macros, and fixed obstacles, as well as
consistent routability of placements and the handling of density constraints. On the basis of recent
empirical evidence [30,32,35], the top-down framework appears a somewhat better choice. However,
analytical algorithms can also be integrated into ECO-system when particularly extensive changes
are required. ECO-system favorably compares to recent detail placers in runtime and solution quality
and fares well in high-level and physical synthesis.

15.4.4.1 General Framework

ECO-system can be likened to reverse engineering the mincut placement process. The goal is to
reconstruct the internal state of a mincut placer that could have produced the given initial placement.
Given this state, one can choose to accept or reject its previous decisions based on their own criteria
and build a new placement for the design. If many of the decisions of the placer were good, one
can achieve a considerable runtime savings as compared to placement from scratch. If many of the
decisions are determined to be bad, one can do no worse in terms of solution quality than placement
from scratch. The overall algorithm in the framework of mincut placement is shown in Figure 15.12.
An overview of the application of ECO-system to an illegal placement is depicted in Figure 15.13.

To rebuild the state of a mincut placer, one must reconstruct a series of cutlines and partitioning
solutions efficiently. Onemust also determine criteria for the acceptability of the derived partitioning
and cutline. To extract a cutline and partitioning solution from a given placement bin, all possible
cutlines of the bin as well as the partitions they induce must be examined. Starting at one edge of the
placement bin (left edge for a vertical cut and bottom edge for a horizontal cut) and moving toward
the opposite edge, for each potential cutline encountered, one maintains the cell area on either side
of the cutline, the partition induced by the cutline and its netcut.

Once a cutline and partitioning have been chosen, they must be evaluated. To evaluate the
partitioning, the authors of Ref. [33] use it as input to a Fiduccia–Mattheyses partitioner and see how
much it can be improvedby a single pass (if the bin is large enough, a multilevel Fiduccia–Mattheyses
partitioner can be used). The intuition is that if the constructed partitioning is not worthy of reuse, a
single Fiduccia–Mattheyses pass could improve its cut nontrivially. If the Fiduccia–Mattheyses pass
improves the cut beyond a certain threshold, the solution is discarded and the entire bin is bisected
from scratch. If a partition is accepted by this criterion, one performs a legality test: if the partitioning
overfills a child bin, the cutline is discarded and the bin is bisected from scratch.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 306 29-9-2008 #19

306 Handbook of Algorithms for Physical Design Automation

Variables: queue of placement bins
Initialize queue with top-level placement bin
1 While (queue not empty)
2 Dequeue a bin
3 If (bin not marked to place from scratch)
4 If(bin overfull)
5 Mark bin to place from scratch, break
6 Quickly choose the cut-line which has the smallest

net-cut considering cell area balance constraints
7 If(cut-line causes overfull child bin)
8 Mark bin to place from scratch, break
9 Induce partitioning of bin’s cells from cut-line
10 Improve net-cut of partitioning with

single pass of Fiduccia-Mattheyses
11 If(% of improvement > threshold)
12 Mark bin to place from scratch, break
13 Create child bins using cut-line and partitioning
14 Enqueue each child bin
15 If(bin marked to place from scratch)
16 If (bin small enough)
17 Process end case
18 Else
19 Bipartition the bin into child bins
20 Mark child bins to place from scratch
21 Enqueue each child bin

FIGURE 15.12 Incremental mincut placement. Boldfaced lines 3–15 and 20 are different from traditional
mincut placement. (From Roy, J. A. and Markov, I. L., IEEE Trans. CAD, 20, 2173, 2007.)

1 2 3

4 5 6

Original placement
Replaced from scratch

Overlap
Untouched by legalizer

FIGURE 15.13 Legalization during mincut placement. Placement bins are subdivided until (i) a bin contains
no overlap and is ignored for the remainder of the legalization process or, (ii) the placement contained in the
bin is considered too poor to be kept (too many overlaps or does not meet the solution quality requirements)
and is replaced from scratch using mincut or analytical techniques. (From Roy, I. A. and Markov, I. L., IEEE
Trans. CAD, 20, 2173, 2007.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 307 29-9-2008 #20

Partitioning-BasedMethods 307

Empirically, the runtime of the cutline selection procedure (which includes a single pass of a
Fiduccia–Mattheyses partitioner) is much smaller than partitioning from scratch. On large bench-
marks, the cutline selection process requires 5 percent of ECO-system runtime time whereas mincut
partitioners generally require 50 percent or more of ECO-system runtime. ECO-system as a whole
requires approximately 15 percent of original placement runtime.

15.4.4.2 Handling Macros and Obstacles

With the addition of macros, the flow of top-down placement usually becomes more complex. The
authors of Ref. [33] adopt the style of floorplacement from Refs. [30,31] (see Sections 15.3.1 and
15.4.2). For legalization with macros, a new criterion for floorplanning is added: if a placement bin
has nonoverlappingpositions for macros (i.e., no macros in the placement bin overlap each other) the
macros are placed in exactly their initial positions; if some of the macros overlap, other floorplanning
criteria are used to decide. If any of the macros are moved, the placement of all cells and macros in
the bin must be discarded and placement and proceeds as described in Ref. [31].

15.5 STATE-OF-THE-ART MINCUT PLACERS

In this section, we present partitioning-based placement techniques that are used in cutting-edge
placers. For each placer, we describe its overall flow, how this differs from the generic mincut
flow, and how it handles challenges in placement such as fixed obstacles and mixed-size instances.
In particular, we describe the techniques used by the placers Dragon [38,39,42], FengShui [4,27],
NTUPlace2 [22], and Capo [30–35].

15.5.1 DRAGON

The most recent version of Dragon, Dragon2006 [39], combines mincut bisection with simulated
annealing for placement. In its most basic flow, Dragon2006 utilizes recursive bisection with the
hMETIS partitioner [26]. Each bin is partitionedmultiple times with a feedbackmechanism to allow
for more accurate terminal propagation (see Section 15.2.1 for more details on placement feedback).
Partitioning is followed by simulated annealing on the placement bins where whole bins are swapped
with one another to improveHPWL [38,39]. After a number of layers of interleaved partitioning and
simulated annealing, each bin contains only a few cells and the partitioning phase terminates. Next,
bins are aligned to row structures and cell-based simulated annealing is performed wherein cells are
swapped between bins to improve HPWL [38,39]. Lastly, cell overlaps are removed and local detail
placement improvements are made.

15.5.2 FENGSHUI

FengShui [4,27] is a recursive bisection mincut placer that uses the hMETIS partitioner [26]. Feng-
Shui implements the fractional cut technique (see Section 15.2.2) and packs its placements to either
side of the placement region, which has a serious affect on the routability of its placements [32].
FengShui also supports mixed-size placement (see Section 15.3.3)

15.5.3 NTUPLACE2

NTUPlace2 [22] is a hybrid placer that uses both mincut partitioning and analytical techniques for
standard-cell and mixed-size designs. NTUPlace2 uses repartitioning (see Section 15.2.1), cutline
shifting (see Section 15.1.3), and weighted netcut (see Section 15.2.4) [22].

NTUPlace2 uses analytical techniques to aid partitioning,which are different from those in ACG
(see Section 15.2.3). Before partitioning calls to the hMETIS partitioner [26], objects in a placement

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 308 29-9-2008 #21

308 Handbook of Algorithms for Physical Design Automation

bin are placed by an analytical technique to reduce quadratic wirelength [22]. These objects that are
placed far from the proposed cutline are considered fixed in their current locations for the partitioning
process. This technique helps tomake terminal propagationmore exact, and,with theweighted netcut
technique, has resulted in very good solution quality [22].

To handle mixed-size placement, macro locations are legalized at each layer. Macros become
fixed at different layers of placement according to their size relative to placement bin size. Thus,
larger macros are placed earlier in placement [22]. Macros are legalized using a linear programming
technique that attempts to minimize the movement of macros during legalization [22].

15.5.4 CAPO

Capo [30–35] is a mincut floorplacer. As such, it implements the floorplacement flow as described in
Section 15.3.1 and further improved by SCAMPI (Section 15.4.2) rather than the traditional mincut
flow and implicitly handles mixed-size placement and fixed obstacles in the placement area. Capo
can use either MLPart [10] or hMETIS [26] for hypergraph partitioning. Whitespace allocation
in Capo is done per placement bin: either uniform (see Section 15.1.4), minimum local or safe
whitespace allocation (see Section 15.4.1) is chosen based on the bin’s whitespace and user-
configurable options. To improve the quality of results, Capo also implements repartitioning (see
Section 15.2.1), placement feedback (see Section 15.2.1), weighted net-cut (see Section 15.2.4), and
several whitespace allocation techniques. Capo has also been used to optimize Steiner wirelength in
placement (see Section 15.4.3) and can be used for incremental placement (see Section 15.4.4).

REFERENCES
1. S. N. Adya and I. L. Markov, Fixed-outline floorplanning: Enabling hierarchical design, IEEE Transactions
on VLSI, 11(6) 1120–1135, December 2003 (ICCD 2001, pp. 328–334).

2. S. N. Adya and I. L. Markov, Combinatorial techniques for mixed-size placement, ACM Transactions on
Design Automation of Electronic Systems, 10(5), 58–90, January 2005 (ISPD 2002, pp. 12–17).

3. S.N.Adya, I. L.Markov, andP.G.Villarrubia,Onwhitespace and stability in physical synthesis, Integration:
The VLSI Journal, 25(4), 340–362, 2006 (ICCAD 2003, pp. 311–318).

4. A. Agnihotri et al., Fractional cut: Improved recursive bisection placement, ICCAD, San Jose, CA, pp.
307–310, 2003.

5. C. J. Alpert, G. -J. Nam, and P. G. Villarrubia, Effective free space management for cut-based placement
via analytical constraint generation, IEEE Transactions on CAD, 22(10), 1343–1353, 2003 (ICCAD 2002,
pp. 746–751).

6. U. Brenner and A. Rohe, An effective congestion driven placement framework, IEEE Transactions on CAD,
22(4), pp. 387–394, 2003 (ISPD 2002, pp. 6–11).

7. M. Breuer,Min-cut placement, Journal of DesignAutomation andFault Tolerant Computing, 1(4), 343–362,
October 1977 (DAC 1977, pp. 284–290).

8. A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov, and A. Zelikovsky, On wirelength estimations for
row-based placement, IEEE Transactions on CAD, 18(9), 1265–1278, 1999.

9. A. E. Caldwell, A. B. Kahng, and I. L. Markov, Can recursive bisection alone produce routable placements?
DAC, pp. 477–482, Los Angeles, June 2000.

10. A. E. Caldwell, A. B. Kahng, and I. L. Markov, Design and implementation of move-based heuristics for
VLSI hypergraph partitioning, ACM Journal of Experimental Algorithms, 5, 2000.

11. A. E. Caldwell, A. B. Kahng, and I. L. Markov, Optimal partitioners and end-case placers for standard-cell
layout, IEEE Transactions on CAD, 19(11), 1304–314, 2000 (ISPD 1999, pp. 90–96).

12. A. E. Caldwell, A. B. Kahng, and I. L. Markov, Hierarchical whitespace allocation in top-down placement,
IEEE Transactions on CAD, 22(11), 716–724, November 2003.

13. Y. C. Chang et al., B∗-trees: A new representation for non-slicing floorplans, DAC, Los Angeles, CA,
pp. 458–463, 2000.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 309 29-9-2008 #22

Partitioning-BasedMethods 309

14. T. C. Chen and Y.W. Chang, Modern floorplanning based on fast simulated annealing, ISPD, San Francisco,
CA, pp. 104–112, 2005.

15. T. C. Chen, Y. W. Chang, and S. C. Lin, IMF: Interconnect-driven multilevel floorplanning for large-scale
building-module designs, ICCAD, San Jose, CA, pp. 159–164, November 2005.

16. J. Cong, G. Nataneli, M. Romesis, and J. Shinnerl, An area-optimality study of floorplanning, ISPD,
Phoenix, AZ, pp. 78–83, 2004.

17. J. Cong, M. Romesis, and J. Shinnerl, Fast floorplanning by look-ahead enabled recursive bipartitioning,
IEE Transactions on CAD, 25(9), 1719–1732, 2006 (ASPDAC, 2005 pp. 1119–1122).

18. J. Cong, M. Romesis, and J. Shinnerl, Robust mixed-size placement under tight white-space constraints,
ICCAD, San Jose, CA, pp. 165–172, 2005.

19. A. E. Dunlop and B. W. Kernighan, A procedure for placement of standard cell VLSI circuits, IEEE
Transactions on CAD, 4(1), 92–98, 1985.

20. C. M. Fiduccia and R. M. Mattheyses, A linear time heuristic for improving network partitions, DAC,
Washington, D.C., pp. 175–181, 1982.

21. D. J. -H.Huang, andA. B.Kahng, Partitioning-based standard-cell global placementwith an exact objective,
ISPD, Napa Valley, CA, pp. 18–25, 1997.

22. Z. -W. Jiang et al., NTUPlace2: A hybrid placer using partitioning and analytical techniques, ISPD,
San Jose, CA, pp. 215–217, 2006.

23. A. B. Kahng, S. Mantik, and I. L. Markov, Min-max placement for large-scale timing optimization, ISPD,
San Diego, CA, pp. 143–148, April 2002.

24. A. B. Kahng, I. I. Mandoiu, and A. Zelikovsky, Highly scalable algorithms for rectilinear and octilinear
Steiner trees, ASPDAC, Kitakyushu, Japan, pp. 827–833, 2003.

25. A. B. Kahng and S. Reda, Placement feedback: A concept and method for better min-cut placement, DAC,
San Diego, CA, pp. 357–362, 2004.

26. G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel hypergraph partitioning: applications in
VLSI domain, DAC, Anaheim, CA, pp. 526–629, 1997.

27. A. Khatkhate, C. Li, A. R. Agnihotri, M. C. Yildiz, S. Ono, C. -K. Koh, and P. H. Madden, Recursive
bisection based mixed block placement, ISPD, Phoenix, AZ, pp. 84–89, 2004.

28. C. Li, M. Xie, C. K. Koh, J. Cong, and P. H. Madden, Routability-driven placement and white space
allocation, ICCAD, San Jose, CA, pp. 394–401, 2004.

29. G. -J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz, The ISPD2005 placement contest and
benchmark suite, ISPD, San Francisco, CA, pp. 216–220, 2005.

30. A. N. Ng, I. L. Markov, R. Aggarwal, and V. Ramachandran, Solving hard instances of floorplacement,
ISPD, San Jose, CA, pp. 170–177, April 2006.

31. J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov, Min-cut floorplacement, IEEE Transactions on CAD,
25(7), 1313–1326, 2006 (ICCAD 2004, pp. 550–557).

32. J. A. Roy and I. L. Markov, Seeing the forest and the trees: Steiner wirelength optimization in placement,
IEEE Transactions on CAD 26(4), 632–644, 2007 (ISPD 2006, pp. 78–85).

33. J. A. Roy and I. L. Markov, ECO-system: Embracing the change in placement, IEEE Transactions on CAD,
26(12), 2173–2185, 2000 (ASP-DAC 2007, pp. 147–152).

34. J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, J. F. Lu, A. N. Ng, and I. L. Markov, Capo: Robust and
scalable open-source min-cut floorplacer, ISPD, San Francisco, CA, pp. 224–227, April 2005.

35. J. A. Roy, D. A. Papa, A. N. Ng, and I. L Markov, Satisfying whitespace requirements in top-down
placement, ISPD, San Jose, CA, pp. 206–208, April 2006.

36. N. Selvakkumaran and G. Karypis, Theto—A fast, scalable and high-quality partitioning driven placement
tool, Technical report, University of Minnesota, 2004.

37. P. R. Suaris and G. Kedem, An algorithm for quadrisection and its application to standard cell placement,
IEEE Transactions on Circuits and Systems, 35(3), 294–303, 1988 (ICCAD 1987, pp. 474–477).

38. T. Taghavi, X. Yang, B. -K. Choi, M. Wang, and M. Sarrafzadeh, Dragon2005: Large-scale mixed-size
placement tool, ISPD, San Francisco, CA, pp. 245–247, April 2005.

39. T. Taghavi, X. Yang, B. -K. Choi, M.Wang, andM. Sarrafzadeh, Dragon2006: Blockage-aware congestion-
controlling mixed-size placer, ISPD, San Jose, CA, pp. 209–211, April 2006.

40. K. Takahashi, K. Nakajima, M. Terai, and K. Sato, Min-cut placement with global objective functions for
large scale sea-of-gates arrays, IEEE Transactions on CAD, 14(4), 434–446, 1995.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C015 Finals Page 310 29-9-2008 #23

310 Handbook of Algorithms for Physical Design Automation

41. E. Wein and J. Benkoski, Hard macros will revolutionize SoC design, EE Times, August 20, 2004.
http://www.eetimes.com/news/design/showArticle.jhtml?articleID=26807055.

42. X. Yang, B. K. Choi, and M. Sarrafzadeh, Routability driven white space allocation for fixed-die standard-
cell placement, IEEE Transactions on CAD, 22(4), 410–419, April 2003 (ISPD 2002, pp. 42–49).

43. M. C. Yildiz and P. H. Madden, Improved cut sequences for partitioning based placement, DAC, Las Vegas,
NV, pp. 776–779, 2001.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 311 23-9-2008 #2

16 Placement Using
Simulated Annealing

William Swartz

CONTENTS

16.1 Introduction . 311
16.2 Annealing Schedules . 312
16.3 Simulated Annealing and Placement . 313
16.4 Simulated Annealing Cooling Schedules . 313
16.5 Cost Functions . 318
16.6 Move Strategies . 320
16.7 Multilevel Methods . 321
16.8 Partition-Based Methods . 322
16.9 Genetic Programming . 322
16.10 Parallel Algorithms . 323
16.11 Machine Learning . 323
16.12 Future. 324
References . 324

16.1 INTRODUCTION

Simulated annealing is a technique for finding an optimal or near-optimal solution for combinatorial
optimization problems, or problems that have discrete variables. This technique was proposed by
Kirkpatrick, Gelatt, and Vecchi in 1983 [1] and has been successfully applied to circuit partitioning,
placement, and routing in the physical design of integrated circuits.

The goal of a combinatorial optimization algorithm is to find the state of lowest cost (or energy)
from a discrete space of admissible configurations S. For each problem, a cost function must be
defined that maps each state to a real number denoting its cost. For many problems, the number of
possible states grows exponentially with the size of the input. Optimizing becomes the process of
searching for the state of lowest cost in a hyper-dimensional space. With a large number of possible
states to visit, the brute force method of visiting all configurations becomes impractical. Clearly, we
need a search strategy to uncover the lowest cost solution in the jungle of states.

For many problems, the states of the configuration space are related. A problem exhibits optimal
substructure if an optimal solution to the problem containswithin it optimal solutions to subproblems.
These cases may be solved by either a greedy or a dynamic programming algorithm. In a greedy-
choice problem, a globally optimal solution can be found by making a locally optimal (greedy)
decision. The best choice is made at each moment; at each step, we solve the ramifications of the
previous choice. The choice made by a greedy algorithm cannot depend on future decisions or
solutions to subproblems. In dynamic programming, a choice is made at each step that may depend
on the solutions to the subproblems.

311

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 312 23-9-2008 #3

312 Handbook of Algorithms for Physical Design Automation

Algorithm simulated_annealing(void)
1 T ← T0 /* Initial Temperature */
2 do
3 do
4 j = generate(i) /* Move Strategies */
5 if accept (�C,T) then /* Metropolis function */
6 i = j
7 until cost is in equilibrium /* Temperature equilibrium */
8 update(T) /* Temperature decrement */
9 until cost cannot be reduced

any further /* Stopping criteria */

FIGURE 16.1 Basic simulated annealing algorithm.

Unfortunately, the placement problem described here does not exhibit optimal substructure. If
we apply the greedy algorithm search strategy, we will usually get stuck in a local minimum. This
means that

c(i) ≥ c(jmin), ∀ j ∈ S(jmin) (16.1)

where jmin is the local minimum state, and S(jmin) is the set of states reachable from the state jmin.
In many cases, there is a large disparity between the local minimum and the global minimum

cost. We need a search strategy that avoids local minima and finds the global minimum. Simulated
annealing is such a search strategy.

At the heart of the simulated annealing algorithm is the Metropolis Monte Carlo procedure that
was introduced to provide an efficient simulation of a collection of atoms in equilibrium at a given
temperature [2]. The Metropolis procedure is the inner loop of the simulated annealing algorithm as
shown in Figure 16.1. Although the greedy algorithm forbids changes of state that increase the cost
function, theMetropolis procedure allowsmoves to states that increase the cost function. Kirkpatrick
et al. suggested that theMetropolisMonteCarlomethodcanbeused to simulate thephysical annealing
process and to solve combinatorial optimization problems [1]. They suggested adding an outer loop
that lowers the temperature from a high melting temperature in slow stages until the system freezes,
and no further changes occur. At each temperature, the simulation must proceed long enough for the
system to reach a steady state. The sequence of temperatures and the method to reach equilibrium
at each temperature is known as annealing schedule. They showed that this same technique can be
applied to combinatorial optimization problems if a cost function is used in place of energy, and the
temperature is used as a control parameter.

16.2 ANNEALING SCHEDULES

It has been shown that the simulated annealing algorithm, when started in an arbitrary state and given
an appropriate annealing schedule, will eventually converge to a global optimum [3]. Although these
results required an infinite amount of computation time for the convergence guarantee, in practice,
simulated annealing has been extremely successfulwhen applied to circuit partitioning and placement
problems. It has outperformed all other known algorithms if given sufficient time resources.

The essential elements of the simulated annealing algorithm are summarized below in
Figure 16.1. The algorithm consists of two loops. Each execution of the inner loop generates new
configurations to be evaluated at constant temperature. The acceptance of a new configuration j
depends on the current temperature T and the change in cost between the current configuration i
and the proposed configuration j as presented in Figure 16.2. All configuration changes that do not
increase the cost are accepted as in any-iterative improvement algorithm, but moves with �C > 0

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 313 23-9-2008 #4

Placement Using Simulated Annealing 313

Algorithm accept(�C,T)

1 if �C ≤ 0 then /*new cost is less than or equal to the old cost */
2 return(ACCEPT) /*accept the new configuration */
3 else
4 randomly generate a number r between 0 and 1
5 if r < e−�C/T then return(ACCEPT)
6 else return (REJECT)

FIGURE 16.2 Acceptance function for the simulated annealing algorithm.

are accepted depending on the value of �C and the value of T. The Boltzmann distribution
(
e

−�C
T
)

that governs physical annealing is used as the criteria for determining acceptance of states with
increased cost.

In this simple formulation of simulated annealing, we designate that the inner loop is repeated
until the average value of the cost appears to have converged.As T is lowered from a high value, large
uphill moves are mostly rejected. As T is lowered further, moves with yet lower values of �C > 0
become largely rejected. In some sense, critical decisions aremade for those values of�C > 0 which
are on the order of the value of T.Hence, simulated annealing operates in a pseudohierarchical fashion
with respect to �C > 0 values as T is decreased.

16.3 SIMULATED ANNEALING AND PLACEMENT

The critical ingredients for a implementing a successful placer based on simulated annealing are the
simulated annealing cooling schedule, the cost function to be evaluated, and the generation of new
state configurations or move strategies. Although simulated annealing placers are quite straightfor-
ward to implement, the best results in terms of quality and execution time have been obtained with
careful attention to these details. We discuss each of these aspects of simulated annealing in turn.

16.4 SIMULATED ANNEALING COOLING SCHEDULES

A simulated annealing cooling schedule is differentiated by the implementation of four lines of
the basic annealing schedule presented in Figure 16.1: initial temperature selection, temperature
equilibrium criteria, temperature update, and stopping criteria. A common implementation is easily
coded as shown in Figure 16.3. Here, iterations is a variable which counts the number of Metropolis
cycles or inner loop executions, numberOfMoves is a variable which counts the number of generated
new configurations in an iteration, Imax is the predetermined maximum number of iterations, Nmax

is the predetermined maximum number of moves generated per iteration, and ∝ is the temperature
multiplier.

Although the previous implementation is simple, effective, and easily programmed, it has a
major drawback: at low temperatures, the running time is very long because many candidates for
moves are rejected before eachmove to a different configuration.To remedy this inefficiency, various
approaches have been proposed to speed the algorithm including parallel implementations [4–6] as
well as rejectionless hill climbing [7]. Lam studied the problem and proposed a statistical annealing
schedule [8]. Lam’s schedule is based on the observation that annealing is successful if the system
is kept close to thermal equilibrium as the temperature is lowered. However, to keep the system in
equilibrium at all times requires that the temperature decrements be infinitesimal; a long time would
have passed before the system is frozen, and annealing is stopped. From a practical standpoint, a
good annealing schedule must, therefore, achieve a compromise between the quality of the final
solution and the computation time. To determine when the system is in equilibrium so that the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 314 23-9-2008 #5

314 Handbook of Algorithms for Physical Design Automation

1 T ← largeNumber /* Initial Temperature */
1b iterations ← 0
2 do
2b numberOfMoves ← 0
3 do
4 j = generate(i) /* Move Strategies */
4b increment numberOfMoves
5 ifaccept(�C,T) then /* Metropolis function */
6 i = j
7 whilenumberOfMoves ≤ Nmax /* Temperature equilibrium */
8 T ← αT,0.8 ≤ α ≤ 0.99 /* Temperature decrement */
8b increment iterations
9 while iterations ≤ Imax /* Stopping criteria */

FIGURE 16.3 Simple simulated annealing algorithm.

temperature could be lowered, we need an equilibrium criterion [9]. A system is close to equilibrium
at temperature T if the following condition is satisfied

µ(s) − λσ(s) ≤ c̄ ≤ µ(s) + λσ(s) (16.2)

where
c̄ is the average cost of the system
s = 1/T is the inverse temperature
µ(s) and σ(s) are the mean and standard deviation of the cost if the system were in thermal
equilibrium at temperature T

The parameter λ, which can be made as small as desired to ensure a good approximation of
equilibrium, realizes the compromise between the quality of the final solution and the computa-
tion time: the smaller the λ, the better is the quality of the final solution and the longer is the
computation time.

Simulated annealing has been applied to the placement problem in the TimberWolf system. Com-
plete accounts of the implementations of simulated annealing for earlier versions of the TimberWolf
placement programs have been published [10–18]. The inclusion of the results of a theoretically
derived statistical annealing schedule have been responsible for the very significant reduction in the
CPU time required by TimberWolf.

We nowpresent the adapation of Lam’s statistical annealing schedule [8] found in TimberWolf. In
hiswork, Lam showed theoretically that the optimumacceptance rate of proposed new configurations
is approximately44 percent. In Lam’s algorithm, a range limiter window (first described in Ref. [10])
is used to keep the acceptance rate (denoted as ρ) as close as possible to 44 percent. (The range
limiter window bounds the magnitude of the perturbation (or move distance) from the current state.
The range limiter window size is designed to increase the acceptance rate at a given temperature.
Changes in cost are on the order of the move distance. Therefore, reducing the move distance yields
smaller values and hence an elevated acceptance rate.) In the beginning of the execution of this
algorithm, the temperature T is set to a very high value (effectively infinity). Even with the range
limiter dimensions encompassing the entire chip, the acceptance rate ρ approaches 100 percent.
Because a further increase in range limiter dimensions cannot decrease ρ, there clearly must be a
region of operation for the algorithm in which ρ is above the ideal value of 44 percent. Also, as
T gets sufficiently low, the range limiter dimensions reduce to their minimum values. Then, as ρ

drops below 44 percent, there is no way for it to return to a higher level. It is therefore apparent

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 315 23-9-2008 #6

Placement Using Simulated Annealing 315

Acceptance rate r

1.0

0.44

Region 1
Region 2

Region 3

Generated new configurations

FIGURE 16.4 Anticipated plot of the acceptance rate versus generated new configurations.

that there is a region of operation in which ρ falls from 44 percent toward zero as T approaches
zero. The anticipated three regions of operation (ρ above 0.44, ρ equals 0.44, and ρ below 0.44)
are illustrated in Figure 16.4. One disadvantage of the schedule developed by Lam is its inability
to accurately predict when the execution of the algorithm will end from the beginning of the run.
That is, it is not known how many new configurations will be generated during the course of the
execution of the algorithm. In an effort to gain a different perspective on Lam’s theory, the authors
of TimberWolf measured ρ versus generated new configurations for executions on several industrial
circuits. One objective was to determine the percentage of the run (i.e., the percentage of the total
new configurations generated) devoted to each of the three regions of operation.

These percentages were remarkably similar for the very wide range of circuit sizes which were
tested. A typical plot is shown in Figure 16.5.

Acceptance rate r

15 percent 50 percent 35 percent

Generated new configurations

1.0

0.44

FIGURE 16.5 Typical measured acceptance rate versus generated new configurations as obtained from exper-
iments conducted on several industrial circuits, showing the percentage of the run spent in each region of
operation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 316 23-9-2008 #7

316 Handbook of Algorithms for Physical Design Automation

They discovered that for region 1 (which encompasses approximately 15 percent of the run), ρ
versus generated new configurations could be modeled by an exponential function. This function
has a peak value of 1.0, and passes through the point where ρ first reduces to 0.44. Furthermore,
they found that region 3 could also be modeled by an exponential function with peak value 0.44 and
minimumvalue 0.0. In region 2, the acceptance rate is flat, but they discovered that the decrease in the
range limiter window dimensions as a function of generated new configurations can also be modeled
by exponential functional form. That all three regions can bemodeled by exponential functions is not
surprising in light of the use of the (exponential) Boltzmann-like factor used to govern acceptance or
rejection of new configurations. Here they define an iteration (represented by I where 1 ≤ I ≤ Imax)
to correspond to an interval along the horizontal axis in Figure 16.6. That is, Nmax new configurations
are generated during iteration I . An iteration defines a set of Nmax moves during which the range
limiter window dimensions remain constant.

In simulated annealing, the more new configurations generated during the course of a run, the
higher the probability of achieving a better solution. However, extensive experimentation suggested
the existence of a diminishing return on the number of new configurations generated. Therefore, a
default number of moves can be determined for which the best results can be obtained with high
probability. The default total number of moves during a run is set to

totalmoves = 1500N4/3
c (16.3)

whereNc is the number of cells. In TimberWolf implementations, they set Imax equal to 150 iterations.
Therefore:

Nmax = 10N4/3
c (16.4)

Note that the range limiter dimensions are actually changed 50 percent of 150 times, or 75 times
during the course of a run (i.e., its dimensions only change during region 2 of the operation of the
annealing algorithm).

Becauseweknow that the acceptance rate behavior described in Figure16.5 alongwith the default
values of Imax and Nmax yield close to the best possible results for simulated annealing, the algorithm

Acceptance rate r

0.15Imax 0.65Imax 1.0Imax

Generated new configurations

1.0

0.44

FIGURE 16.6 Target acceptance rate versus iteration.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 317 23-9-2008 #8

Placement Using Simulated Annealing 317

is forced to strictly obey that acceptance rate behavior through the use of a feedback mechanism.
That is, for each iteration I (I varies from 1 to Imax), one can compute the target acceptance rate (ρT

I)

as shown in Figure 16.6. To ensure that significant further reductions in the cost are not possible, the
target acceptance rate is set to be below 1 percent at the last iteration (Imax).

One can force the actual acceptance rate to track the target acceptance rate by using negative
feedback control on the temperature T :

T =
[
1 − ρI − ρT

I

K

]
T (16.5)

where K is a damping constant used to stabilize the control of the value of T (in TimberWolf
implementations, a very suitable value ofK is 40). T is updated every update_limitmoves (as defined
in the description of our simulated annealing algorithm in Figure 16.7). Note that T can increase as
well as decrease as the execution of the algorithmproceeds, and the range limiter windowdimensions
decrease exponentially as a function of the number of iterations. In Lam’s schedule by contrast, T
decreases monotonically but the range limiter window dimensions fluctuate up or down. Clearly
these two parameters are closely related. It is sufficient to dictate the functional form for either one,
and let the other parameter adapt to monitored conditions.

Algorithm simulated_annealing(X0)

1 X ← X0 /* set current configuration equal
to initial configuration */

2 T ← set_initial_T() /* sufficientlysample configuration
space to ascertain value of T yielding
an initial acceptance rate slightly
below 100 percent */

3 I ← 1
4 while I ≤ Imaxdo
5 N ← 0 /* N is the number of moves attempted

so far during iteration I */
6 set_range_limiter_size(I) /* sets range limiter window dimensions */
7 up ← 0 /* update counter */
8 while N ≤ Nmaxdo
9 N ← N + 1
10 up ← up + 1
11 if up = update_limit then /* we need to update the temperature T */
12 up ← 0 /* reset the counter */
13 ifρI < ρT

I then
14 raise_temp(T)
15 else if ρI > ρT

I then
16 lower_temp(T)
17 Y = generate(X) /* propose a new configuration */
18 �C = C(Y)− C(X) /* compute the cost change */
19 if accept(�C,T)then
20 X ← Y /* accept the new configuration to be

the current config. */
21 I ← I + 1

FIGURE 16.7 Advanced simulated annealing algorithm.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 318 23-9-2008 #9

318 Handbook of Algorithms for Physical Design Automation

The heuristic adaptation of Lam’s schedule shown in Figure 16.7 did not show a difference in
placement quality for a given execution time as compared to Lam’s original version and was adopted
as the annealing schedule in TimberWolf. The TimberWolf approach generates a fixed number of
moves for a circuit of a given size, and therefore, the number of iterations is known a priori.

16.5 COST FUNCTIONS

One of the advantages of the simulated annealing algorithm is its ability to accommodate any cost
function. In fact, there are no constraints on the form of the cost function. However, recent research
has shown that the best results are linear or logarithmically related terms or variables. Siarry et al. have
“noticed improved convergence toward the correct results when using normalized variables instead
of unnormalized real variables range explorationwith the same simulated annealing algorithm” [19].

Traditionally, a common cost function for simulated annealing row-based placers is the weighted
summation of total half-perimeter wirelength, timing penalty, overlap penalty, row length control
penalty, and congestion penalty:

C = βwW + βtPt + βoPo + βrPr + βcPc (16.6)

where

W =
NN∑
n=1

max
vi ,vj∈n

|xi − xj| + max
vi ,vj∈n

|yi − yj| (16.7)

Pt =
NP∑
p=1

Dp (16.8)

Dp = f (R,C, l, tg) (16.9)

Po =
∑
k �=l

Ox(k, l)
2 (16.10)

Pr =
NR∑
r=1

|L(r) − Ld(r)| (16.11)

Pc =
Nx∑
m=1

Ny∑
n=1

Cg(m, n) (16.12)

Cg(m, n) =
{

0, (dmn ≤ smn)
dmn − smn, (dmn > smn)

(16.13)

Thewirelength termW is the summation over all nets where each net consists of a set of terminals
vi, and (xi, yi) is the coordinate of vi. The constant NN represents the total number of nets present in
the design.

The timing penalty Pt is the summation of allNP path delays in the circuit. The generalized delay
functionDp is shown as a complex function of resistance R, capacitance C, wirelength l of path, and
propagation delay tg through the circuit. The timing model may utilize lookup tables, Elmore delay
calculations, or simple lumped capacitance calculations.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 319 23-9-2008 #10

Placement Using Simulated Annealing 319

The overlap penalty function Ox(k, l) returns the amount of overlap of cells k and l in the x
direction of the row (as we assume horizontal rows). The overlap term is used to insure a legal
placement at the end of annealing, that is, no two cells overlap in a row or area.

The row length penalty function is present to ensure that each row in a standard cell placement is
filled to a desire length. The function L(r) returns the length of row r and the function Ld(r) returns
the desired length of row r.

The congestion cost PC is calculated by overlaying a two-dimensional global bin structure over
the design. Global routing is performed on each net by mapping each terminal vertex vi to its
corresponding bin (m, n), collapsing the terminals within a bin, and interconnecting the terminals
spanning the bins. Each time a net crosses a bin, the demand for an bin edge is incremented. The
total demand for a bin is the sum of all bin edges. The geometry of the design determines the routing
supply smn available for the bin. An overflow occurs if the demand of a bin dmn exceeds its supply
sdm. The congestion is the sum overflows over all global routing bins.

Each of the terms of the cost function are multiplied by a scaling factor βi to balance the relative
importance of the term. To achieve good results over many different circuits and conditions, a
feedback mechanism was proposed to control the individual βi [12]:

βiI+1 = max

{
0, βiI + Pi − PT

i

PT
i

}
(16.14)

where the scaling factor at the next iteration βiI+1 is calculated from the current scaling factor βiI

(at the I th iteration) and an error term representing the deviation of penalty Pi from the ideal target
penalty PT

i . While this does help improve the final result and drive the penalty terms to zero, this
method does not adequately determine the initial scaling factor βi0 and may require a damping factor
similar to Equation 16.5 to prevent numerical large oscillations of the scaling factor. Furthermore, to
achieve satisfactory results, this method requires a significant tuning effort.

Nevertheless, many simulated annealing placers used cost functions of this general form. In fact,
the early versions of TimberWolfSC, the row-based simulated annealing placer used the following
cost function [12]:

C = W + βoPo + βrPr (16.15)

For floorplanning or macrocell placement problems, the overlap penalty becomes two dimensional
and an additional term is sometimes added to minimize wasted area between cells known as
white space:

PS = AC(s)

AT

(16.16)

where Ac(s) is the total area of the chip including white space and AT is the sum of all of the cell
areas. In this case, the scaling factor has been defined as [4]:

βs =
{

K0 Ps < 1
K1er Ps ≥ 1

(16.17)

where K0 and K1 are two constants such that K0 � K1er to ensure feasibility.
However, these straightforward functions suffer in that they fail dimensional analysis as the

individual terms are not unit compatible. This makes the cost function unfit for general use and
susceptible to problems tuning the weight factors. While one can attempt to optimize the weight
factors using a set of benchmark circuits, constant weighting factors precludes optimal solutions
over a sufficiently large dynamic range. In addition, the feedback control of these weighting factors
becomes more unstable as the dynamic range increases; it will become increasingly difficult to

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 320 23-9-2008 #11

320 Handbook of Algorithms for Physical Design Automation

balance the linear terms again quadratic terms. Clearly, as problems change in size and topology,
the relative attention paid to individual terms of the cost function will vary enormously. Yet most
publishedworks on placement have cost functions of the mixed form of Equation 16.6. This is due to
an over reliance on benchmarks as a performancemeasure. Benchmarks offered at given technology
node are similar in terms of scale and mask the mixed unit cost function problem.

One can avoid the problematic mixed unit cost function by rewriting the cost function in terms
of a single dimension, length, making all terms unit compatible. The timing penalty can be rewritten
in terms of a path length penalty where the bounds are given or derived from timing analysis [17]:

Pp =
⎧⎨
⎩
length(p) − upperBound(p) length(p) > upperBound(p)
lowerBound(p) − length(p) length(p) < lowerBound(p)

0 otherwise
(16.18)

length(p) =
∑
∀n∈p

Wn (16.19)

The cell overlap penalty may be completely eliminated through the use of cell shifting and the
row length control penalty may be eliminated by careful attention to row bounds during new state
generation [15]. The floorplanning area term can be rewritten as the square root of its area and this
was utilized in TimberWolfMC [18].

The congestion penalty is more challenging but it can be rewritten in terms of detour length or
the additional length needed by a net to avoid a congested area. Kahng and Xu have shown how to
effectively calculate the detour length from a congestion map [20]. Sun and Sechen [15] proposed
just two terms in their cost function for Timberwolf version 7 whereas the commercial version of
TimberWolf (aka InternetCAD itools) uses the following strict length-based cost function which
utilizes half-perimeter, timing, and detour costs:

C = W + βtPt + βdPd (16.20)

16.6 MOVE STRATEGIES

Most simulated annealing placement algorithms predominately use two new configuration strategies
or moves: a relocation of a single cell to a new position and a pairwise exchange of cells. Sechen
and Lee [12] proposed a bin structure to automatically control the ratio of single cell relocations to
pairwise exchanges. Each standard cell row is divided into bins. The center of each cell is assigned
to a bin. A new move is proposed as follows: A cell a is randomly chosen. A new position is chosen
which resides within the range limiter window and its corresponding bin is calculated. If the bin is
empty, a single cell move to this position is performed. Otherwise, randomly pick cell b from the
cells in the bin. Cells a and b are exchanged as shown in Figure 16.8

Although the primary new state strategy is the single and pairwise exchange of cells, other new
state generators have been proposed and adopted. In row-based standard cell placement algorithms,
cell orientation and exchange of adjacent cells are common moves at low temperatures. Floor-
planning or macrocell placers are augmented with aspect ratio modification, and pin optimization
moves. Simulated annealing device placement algorithms are further enhanced with transistor fold-
ing, diffusionmerging, cell grouping, and symmetry operations. Hustin and Sangiovanni-Vincentelli
proposed a dynamic and adaptivemove strategy that optimizes the amount of work performed at each
temperature. They compute a quality factor for each type of movem for a given temperature T [21]:

QT
m =

∑
j∈Am

|�Cj|
‖Gm‖ (16.21)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 321 23-9-2008 #12

Placement Using Simulated Annealing 321

Range limiter window

Single cell move

Cell c

Pairwise exchange

Cell bCell a

Now divided into bins

FIGURE 16.8 Automatic move strategy.

where
‖Gm‖ is the number of generated moves
Am is subset of accepted moves of type m, that is, Am ⊆ Gm

|�Cj| is absolute value of the change in cost due to the accepted move m

The probability of proposing the move m at a given temperature is then given by

pTm = QT
m∑

m

QT
m

(16.22)

As you can see, the quality factor and hence probability of selecting a move m will be high when
moves of this type are frequently accepted or when the average change in cost is large at the current
temperature. This method discourages small delta cost moves at high temperatureswhere they would
have little impact on the progress of exploring the state space and discourages large delta cost moves
at low temperatures where such moves would drastically perturb the current state and have little
chance of acceptance.

Sechen and Lee’s work describes many of the details of implementing a simulated annealing
placer. It is the basis for many of the advanced works in the field. It is available in source code in the
SPEC CPU2000 benchmark set [22].

16.7 MULTILEVEL METHODS

To reduce the execution time of simulated annealing placement,multilevelmethodswere introduced.
Mallela and Grover were the first to introduce a two-step annealing process to standard cell place-
ment to reduce runtime [23]. The execution time is reduced by effectively reducing the size of the
problem through clustering of the standard cells. First they form clusters of cells based on their inter-
connections. Cells that are highly interconnected will be placed into the same cluster. The execution
time of the clustering algorithm is only a small fraction of simulated annealing placement time. The
clustered netlist is then placed using simulated annealing placement. Because the number of total
cells has been reduced, the execution time of the simulated annealing problem is reduced. Next, the
clusters are broken up and the original netlist is restored. Then a final low temperature simulated

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 322 23-9-2008 #13

322 Handbook of Algorithms for Physical Design Automation

annealing is performed where the range of cell movement is limited and the number of moves per
cell is greatly reduced; thereby the overall execution time is reduced. This resulted in a factor of 2–3
speedup in execution time and a 6–17 percent improvement in half-perimeter wirelength.

Sun and Sechen increased the number of levels of clustering to three [15]. They were able
to achieve up to 7.5× speedup on designs containing 25,000 placeable objects. They also saw an
improvement in half-perimeter wirelength due to clustering although some of the improvementmay
be due to their new cost function and wire estimation model. In this work, the cost function used only
contained the sum of the half-perimeter wirelengths and timing constraints. All penalty functions
were removed so that there would be no need for the sophisticated negative feedback controller used
to weigh the penalty terms. Instead only moves that generated no overlap were allowed.

16.8 PARTITION-BASED METHODS

Simulated annealing placers have also incorporated partitioning techniques to achieve better quality
and speed. NRG [24] and Tomus [25] convert the placement problem to a partitioning problem that
is solved using simulated annealing. The placement problem is reduced by dividing the row topology
into uniform grids or bins. Each standard cell or field programmable gate array lookup table (FPGA
LUT) is assigned to a bin. A penalty term is introduced to maintain uniform cell density among
the bins. Standard cells are exchanged by picking two cells in different bins and swapping them.
Because the number of bins is much smaller than the possible standard cell positions, the search space
is reduced resulting in a speedup. A second or detailed placement phase ensues, which removes any
residual overlap and legalizes the placement of the cells. Both of these algorithms worked on a flat
netlist and did not scale well for larger netlists. The NRG work was enhanced to overcome these
shortcomings in the Dragon 2000 placer and derivatives and is the subject of Chapter 15.

16.9 GENETIC PROGRAMMING

Genetic programming is a related stochastic algorithm. Genetic programming is an attempt to mimic
the known processes of evolution to solve problems [26,27]. A solution to the problem is represented
by a string of symbols. Each solution has an associated cost or score. New solutions known as
offspring are generated by combining parts of the solutions from two parent solutions in what is
known as a crossover operation. In addition, a new solution may be formed by mutating a string by
randomly changing one or more symbols in the string. Initially, a large number of solutions known
as the population are constructed. This population is evolved by creating new offspring solutions and
maintaining only the fittest solutions. The final solution is the best solution found at a fixed number
of generations. A genetic placement algorithm was proposed by Cohoon and Paris [26] and results
were furnished for small examples.

The advantage of genetic approach is that large number of possible solutions are maintained
increasing the likeliness of a good final solution. It is often stated that simulated annealing is a special
case of genetic programming where the population is one. This is not true. In genetic programming,
there is not a stationary Boltzmann distribution to manipulate, which would allow the algorithm to
converge. This lack of convergence guarantee is the biggest disadvantage of genetic programming.

Several works [28,29] were proposed to overcome this weakness. SAGA [28] attempted to
rectify the problem by starting with a genetic algorithm and then slowly convert to a simulated
annealing algorithm by pruning the population. Mahfoud and Goldberg [29] sought a parallel simu-
lated annealing algorithm. They proposed an algorithm that manipulates a population of simulated
annealing solutions rather than a single solution. It employs crossover and mutation operators like
standard genetic programming but holds Boltzmann trials between children and parents to determine
the fittest members. It slowly lowers the temperature to achieve convergence. Unfortunately, this
work has not been applied to standard cell placement.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 323 23-9-2008 #14

Placement Using Simulated Annealing 323

16.10 PARALLEL ALGORITHMS

To further reduce the execution time of the simulated annealing placement algorithm, severalmultiple
processor algorithms were proposed. A parallel algorithm may be characterized by the computer
organization for which it is designed (multiple instruction, multiple data architecture [MIMD] or
single instruction, multiple data architecture [SIMD]) and its granularity (fine or coarse). There
have been four general strategies utilized in parallel simulated annealing programs: single move
acceleration, parallel moves, multiple Markov chains, and speculative computation [30]. The single
move acceleration strategy attempts to break up an individualmove into subtasks, which are evaluated
on separate processors. Such strategies require shared memory and do no scale well. In the parallel
move strategy, each processor generates and evaluates moves independent of any other processor.
Unfortunately, care must be taken so that the moves do not interact and give erroneous results. The
multiple Markov chain approach uses concurrent but separate simulated annealing chains, which are
periodically exchanged. Finally, the speculative computation strategy attempts to predict the future
behavior of simulated annealing moves.

Kravitz and Rutenbar [6] proposed an adaptive parallel simulated annealing placement algorithm
where in the high-temperature regime, a move is decomposed into subtasks and distributed across
different processors and in the low-temperature regime, multiple complete moves are performed in
parallel. The authors introduced the concept of “serializable subset” of moves to prevent interaction
between processors. A serializable subset is an ordered subset of moves that, if evaluated serially,
would produce the same accept and reject decisions as a parallel evaluation of moves. Unfortunately,
it is prohibitively expensive to maintain a large serializable set and the authors seek a simple set of
one acceptedmove and the remainder rejectedmoves.Although this guarantees that no conflict arises
between the processors, it is only applicable at low temperatures where the acceptance rate is low.

Cassotto et al. used clustering on a 8 processsor shared memory computer to achieve six times
improvement in speed without loss of quality [4]. Sun and Sechen achieve near linear speedup for
on a network of workstations using the parallel move approach [16].

Other algorithms [5] have been proposed on hypercube multiprocessors. The lack of access to
such specialize hardware has made this work less practical. Chandy et al. attempted to overcome
these problems by proposing a framework for implementing parallel simulate annealing placement
on a wide range of parallel architectures [30].

16.11 MACHINE LEARNING

Over time there have been many advancements in the evolution of the simulated annealing placer.
These include clustering, hierarchy, annealing schedules, range limiters, andmove sets. Each of these
improvementswas introduced on a trial-and-error basis using empirical tests. Su et al. [31] proposed
statistical learning techniques to learn and discover strategies to improve and speed the execution
of simulated annealing placers. The researchers created a response model that comprised of seven
normalized parameters for each of ten temperature regions:

y = B0 +
r∑
i=1

q∑
j=1

Bi
jp

i
j (16.23)

where
r = 10
q = 7

The parameters were drawn from placement literature and included force-directed placement and
quadratic placement features. The linear regression algorithm was trained using a set of examples
to correlate the model with the final solution quality measured with the half-perimeter wirelength

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 324 23-9-2008 #15

324 Handbook of Algorithms for Physical Design Automation

metric. After training, the 70 parameter value coefficients were examined and those close to zero
were eliminated. The trained annealing algorithmwas then run on a set of new examples to determine
the efficiency of the new placement algorithm. Remarkably, the trained algorithm had discovered
the range window limiter algorithm automatically. The trained algorithm outperformed the base
algorithm in both speed and quality. Although the regression analysis is limited by the quality of
input parameters, this technique is unique in its ability to tune simulated annealing algorithms to
their proper values. When new parameters or techniques are discovered, this methodology allows
these parameters to be incorporated easily into the simulated annealing framework.

16.12 FUTURE

Although other placement methods have supplanted simulated annealing in the computed-aided
design community, these new methods do not compare favorably with simulated annealing on small
designs, that is, designs under 25,000 placeable objects. The state-of-the-art placement algorithms
are foremost focused on capacity so much that the placement problem was redefined to encompass
two stages: global and detailed placement. In the global placement phase, cell positions are not
necessarily legal and may overlap. This phase serves only to minimize wirelength, timing, and
congestion constraints. A second phase known as detail placement is performed to legalize the
placement such that cell overlaps are removed and each cell is mapped to a valid position in the row.
Traditional simulated annealing placers do not make this distinction. Simulated annealing placement
has not scaled well as design sizes have increased comparedwith the latest state-of-the-art placement
algorithms. Simulated annealing placers dominate results at small design sizes. Perhaps applying
newer multilevel clustering techniquesmay further improve the performance of simulated annealing
placers.

REFERENCES
1. Kirkpatrick S, Gelatt C., and Vecchi M., Optimization by simulated annealing, Science, 220(4598), 671,

1983.
2. Metropolis N., Rosenbluth A., Rosenbluth M., Teller A., and Teller E., Equations of state calculations by

fast computing machines, Journal of Chemical Physics, 21, 1087, 1953.
3. Mitra D., Romeo F., and Sangiovanni-Vincentelli A., Convergence and finite-time behaviour of simulated

annealing, Electronics Research Laboratory, College of Engineering, University of CA, Berkeley, 1985.
4. Casotto A., Romeo F., and Sangiovanni-Vincentelli A., A parallel simulated annealing algorithm for the

placement of macro-cells, IEEE Transactions on CAD, 6(5), 838, 1987.
5. Banerjee P., Jones H. M., and Sargent J. S., Parallel simulated annealing algorithms for cell placement on

hypercube multiprocessors, IEEE Transactions of Parallel and Distributed Systems, 1(1), 91, 1990.
6. Kravitz S. A. and Rutenbar R. A., Placement by simulated annealing on a multiprocessor, IEEE
Transactions on CAD 6(4), 534, 1987.

7. Green J. W. and Supowit K. J. Simulated annealing without rejected moves, IEEE Transactions on CAD,
5(1), 221, 1986.

8. Lam J. and Delosme J. M., Performance of a new annealing schedule, Proceedings of the 25th Design
Automation Conference, Anaheim, CA, 306, 1988.

9. Rose J., Klebsch W., and Wolf J., Temperature measurement and equilibrium dynamics of simulated
annealing placements, IEEE Transactions on CAD, 9(3), 253, 1990.

10. Sechen C. and Sangiovanni-Vincentilli A., The TimberWolf placement and routing package, IEEE Journal
of Solid-State Circuits, 20(2), 432, 1985.

11. Sechen C. and Sangiovanni-Vincentelli A., TimberWolf3.2: A new standard cell placement and global
routing package, Proceedings of the Design Automation Conference, Las Vegas, NV, 432, 1986.

12. Sechen C. and Lee K. L., An improved simulated annealing algorithm for row-based placement,
Proceedings of ICCAD, Las Vegas, NV, 478, 1987.

13. Sechen C., Chip-planning, placement, and global routing of macro/custom intergrated circuits using
simulated annealing, Proceedings of the Design Automation Conference, Atlantic City, NJ, 73, 1988.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 325 23-9-2008 #16

Placement Using Simulated Annealing 325

14. Sechen C., VLSI Placement and Global Routing Using Simulated Annealing, Kluwer Academic Publishers,
Boston, MA, 1988.

15. Sun W. J. and Sechen C., Efficient and effective placement for very large circuits, Proceedings of ICCAD,
Santa Clara, MA, 170, 1993.

16. Sun W. and Sechen C., A loosely coupled parallel algorithm for standard cell placement, Proceedings of
ICCAD, San Jose, CA, 137, 1994.

17. Swartz W. and Sechen C., Timing driven placement for large standard cell circuits, Proceedings of Design
Automation Conference, San Francisco, CA, 211, 1995.

18. Swartz W. and Sechen C., New algorithms for the placement and routing of macro cells, Proceedings of
ICCAD, Santa Clara, CA, 336, 1990.

19. Siarry P., Berthiau P. G., Durbin F., and Haussy J., Enhanced simulated annealing for globally minimizing
functions of many-continuous variables, ACM Transactions on Mathematical Software, 23, 209, 1997.

20. Kahng A. B. and Xu X., Accurate pseudo-constructive wirelength and congestion estimation, International
Workshop on System-Level Interconnect Prediction, Monterey, CA, 61, 2003.

21. Hustin S. and Sangiovanni-Vincentelli A., TIM, a new standard cell placement program based on the
simulated annealing algorithm, paper 4.2, International Workshop on Placement and Routing, Research
Triangle Park, NC, May 10–13, 1988.

22. Available at http://www.spec.org/benchmarks.html.
23. Mallela S. and Grover L., Clustering based simulated annealing for standard cell placement, Proceedings

of 25th Design Automation Conference, Atlantic City, NJ, 312, 1988.
24. Sarrafzadeh M. andWangM., NRG: Global and detailed placement, Proceedings of ICCAD, San Jose, CA,

532, 1997.
25. Roy K. and Sechen C., A timing driven n-way chip and multi-chip partitioner, Proceedings of ICCAD, Santa

Clara, CA, 240, 1993.
26. Cohoon J. P. and Paris W. D., Genetic placement, Proceedings of ICCAD, Santa Clara, CA, 422, 1986.
27. Kling R. M. and Banerjee P., ESP: A new standard cell placement package using simulated evolution,

Proceedings of the IEEE Design Automation Conference, Miami Beach, FL, 60, 1987.
28. Esbensen H. and Mazumder P., SAGA: A unification of the genetic algorithm with simulated annealing and

its application to macro-cell placements, Proceedings of the 7th International Conference on VLSI Design,
Calcutta, India, 211, 1994.

29. Mahfoud S. and Goldberg D., Parallel recombinative simulated annealing: A genetic algorithm, Parallel
Computing, 21(1), 1, 1995.

30. Chandy J. A., Kim S., Ramkumar B., Parkes S., and Banerjee P., An evaluation of parallel simulated
annealing strategies with application to standard cell placement, IEEE Transactions on CAD, 16(4), 398,
1997.

31. Su L., Buntine W., Newton A. R., and Peters B.S., Learning as applied to stochastic optimization for
standard cell placement, IEEE Transactions on CAD, 20(4), 516, 2001.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C016 Finals Page 326 23-9-2008 #17

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 327 24-9-2008 #2

17 Analytical Methods
in Placement
Ulrich Brenner and Jens Vygen

CONTENTS

17.1 Introduction.. 327
17.2 How to Minimize Netlength . 328

17.2.1 What Is Netlength? .. 328
17.2.2 Minimizing Netlength . 331
17.2.3 How to Minimize Linear Netlength . 331
17.2.4 How to Minimize Quadratic Netlength . 332
17.2.5 Examples . 334
17.2.6 Other Objective Functions . 334

17.3 Properties of Quadratic Placement . 335
17.3.1 Relation to Electrical Networks and RandomWalks . 335
17.3.2 Stability . 336

17.4 Geometric Partitioning . 337
17.4.1 Objectives . 337
17.4.2 Bipartitioning. 338
17.4.3 Quadrisection. 339
17.4.4 Grid Warping . 339
17.4.5 Multisection . 340

17.5 How to Use the Partitioning Information . 341
17.5.1 Center-of-Gravity Constraints . 341
17.5.2 Splitting Nets . 342

17.6 Further Techniques .. 343
17.6.1 Repartitioning . 343
17.6.2 Parallelization . 344
17.6.3 Dealing with Macros . 344

17.7 Conclusion.. 344
References . 345

17.1 INTRODUCTION

The basic idea of analytical placement consists of first placing the cells optimally in terms of an
appropriate netlength estimation (but without considering disjointness constraints) and then working
toward disjointnesss. For the second step, we can distinguish two main approaches. One method
consists of modifying the objective function in small steps to force cells to move away from each
other. Such force-directed approaches will be described in Chapter 18. In this chapter, we consider
methods that reduce overlaps by recursive partitioning of the chip area and the set of cells to be placed.
This partitioning is done in such a way that no subregion of the chip area contains more cells than fit
into it. Consequently, when the regions are small enough, the cells will be spread over the chip area.

327

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 328 24-9-2008 #3

328 Handbook of Algorithms for Physical Design Automation

FIGURE 17.1 First six steps of an analytical placer.

Such an analytical placer is illustrated in Figure 17.1. The large objects are preplaced macros.
The first picture shows a placement of the movable cells with minimum squared netlength (with
many overlaps). Then, in each partitioning step, the regions and the sets of cells are divided into four
parts, indicated by different gray scales. We will explain the details later in this chapter.

Analytical placement is based on the ability to minimize netlength efficiently. Therefore, we first
discuss this in Section 17.2. We define various measures for netlength and show how to minimize
linear and quadratic netlengths. For reasons thatwewill discuss, most analytical placers use quadratic
netlength. Important properties of placements with minimum quadratic netlength are summarized in
Section 17.3.

Minimizing quadratic netlength goes back to Tutte (1963) who used it for finding straight-line
embeddings of planar graphs. Then, this technique has been applied to placement by Fisk, et al.
(1967), Quinn (1975), and Quinn and Breuer (1979). They tried to reduce overlaps between cells by
computing iteratively repulsing forces (see Chapter 18).

Probably, the first approach to combine algorithms for minimizing netlength with recursive
partitioning has been presented by Wipfler et al. (1982). They adapt the approach by Quinn and
Breuer (1979) and used the result as a guideline for recursive bisection steps. We explain bisection
and the more sophisticated approaches used today in Section 17.4.

In Section 17.5, we describe methods how the partitioning results can be incorporated in the
ensuing netlength optimization steps. Section17.6 dealswith practical aspects of analytical placement
implementations.

17.2 HOW TO MINIMIZE NETLENGTH

17.2.1 WHAT IS NETLENGTH?

As discussed in Chapter 14, it is not easy to say what a good placement is. Themain design objectives
timing, power consumption, and manufacturing cost can be influenced only indirectly by placement,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 329 24-9-2008 #4

Analytical Methods in Placement 329

as later design steps such as timing optimization or routing follow. Nevertheless, there is a need for
objective functions that can be evaluated fast.

Themost widely adopted qualitymeasure is netlength. Netlength can be defined in variousways,
but the idea is always to estimate the wirelength after routing a given placement. Timing is typically
taken into account by giving critical nets a higher weight (see Chapter 21).

To allow for fast estimation (and possibly optimization) of wirelength, one considers each net
individually. This assumes that each net can be wired optimally, disregarding other nets. Of course,
this is not the case, but it is a reasonable approximation, at least for the majority of the nets and in
particular for the most critical ones, unless there is serious routing congestion (which one should
avoid anyway; cf. Chapter 22).

For each net we can consider a shortest rectilinear Steiner tree connecting the pins (see
Chapter 24), but we shall also consider other estimates. Formally, we define

Definition 1 Given a setN of disjoint nets, each of which is a set of pins, netweights w : N → R≥0,
pin positions (x, y) :

⋃N → R
2, and a function M : {V ⊆ R

2|2 ≤ |V | < ∞} → R≥0 (a net
model), the (weighted) netlength with respect toM is

∑
N∈N

w(N)M({(x, y)(p) : p ∈ N}).

Typically, a pin shape consists of several rectangles, but this is largely ignored during placement,
and a representative point is chosen for each pin. As pin shapes are relatively small, the error
resulting from this simplification is also rather small, at least in global placement.Detailed placement
(legalization; cf. Chapter 20) can improve by considering the actual pin shapes.

Themost natural net model, which is closest to the actual wirelength to be expected after routing,
is the minimum length of a rectilinear Steiner tree.

However, computing a shortest rectilinear Steiner tree for a given set of points in the plane is
NP-hard (Garey and Johnson, 1977). This is one reason why other net models are useful. The
following net models have been considered in placement (see also Chapters 7 and 14). Let V ⊆ R

2

be a finite set of points in the plane.

• Steiner(V) is the length of a shortest rectilinear Steiner tree for V .
• BB(V) is half the perimeter of the bounding box of V , that is,

max
(x,y)∈V

x − min
(x,y)∈V

x + max
(x,y)∈V

y− min
(x,y)∈V

y.

• Clique(V) is 1
|V |−1

times the sum of rectilinear distances over all pairs of points in V , that is,

1

|V | − 1

∑
(x,y),(x′,y′)∈V

(|x − x′| + |y− y′|).

• Star(V) is the minimum total rectilinear distance of an auxiliary point to all elements of V ,
that is,

min
(x′,y′)∈R2

∑
(x,y)∈V

(|x − x′| + |y− y′|).

The factor 1
|V |−1

in the clique estimate is standard to avoid that nets with many pins dominate the
netlength, but other factors (like 2

|V |) have also been used (see, e.g., Alpert et al., 1999).
The bounding box and the star estimate can both be determined in linear time: the auxiliary

point for a star can be found by two median searches (Blum et al., 1973). The clique estimate can be
computed in O(|V | log |V |) time by scanning the points after sorting in each coordinate.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 330 24-9-2008 #5

330 Handbook of Algorithms for Physical Design Automation

TABLE 17.1
Bounds on the Ratios of Different Net Models

BB(V) Steiner(V) Clique(V) Star(V)
BB(V) 1 1 1 1

Steiner(V)

⌈√
n− 2

⌉
2

+ 3

4
1

⎧⎨
⎩
9

8
for n = 4

1 for n 	= 4
1

Clique(V)

⌈n
2

⌉⌊n
2

⌋
n− 1

⌈n
2

⌉⌊n
2

⌋
n− 1

1 1

Star(V)
⌊n
2

⌋ ⌊n
2

⌋ n− 1⌈n
2

⌉ 1

The following result tells how well the other three net models approximate the length of an
optimum rectilinear Steiner tree. For two-terminal nets, all the net models are identical.

Theorem 1 Let V be a finite set of points in R
2 and n := |V | ≥ 3. Then Table 17.1 shows an upper

bound on M1(V)

M2(V)
for net modelsM1 (row) andM2 (column) from BB, Steiner, Clique, and Star.

As an example how to read Table 17.1, the entry in the second row and third column says that
Steiner(V) ≤ 9

8
Clique(V) for all V and Steiner(V) ≤ Clique(V) if n 	= 4. All inequalities are

essentially tight for all n. This result is due to Brenner and Vygen (2001).
In particular, Theorem 1 yields Steiner(V) ≤ Clique(V) ≤ Star(V) for n 	= 4. Hence, the clique

model is superior to the star model as it estimates the length of an optimum rectilinear Steiner tree
more accurately. Indeed, a clique is an optimum graph with fixed topology in this respect:

Theorem 2 Let n ∈ N, n ≥ 2. Let G be a connected undirected graph with V (G) ⊇ {1, . . . , n},
and with edge weights w : E(G) → R>0. For x, y : {1, . . . , n} → R let

M(G,w)(x, y) := min

{ ∑
e={u,v}∈E(G)

w(e)(|x(u) − x(v)| + |y(u) − y(v)|)|

x, y : V (G) \ {1, . . . , n} → R

}
.

Now define r(G,w) to be the ratio of supremum over infimum of the set

{M(G,w)(x, y) | x, y : {1, . . . , n} → R, Steiner({[x(1), y(1)], . . . , [x(n), y(n)]}) = 1
}
.

Then this ratio is minimum for the complete graph on {1, . . . , n} with uniform weights; it equals 3
2

for n = 4 and
� n
2
� n

2
�

n− 1
for n 	= 4. In this sense, the clique model is optimal for all n.

This is also a result of Brenner and Vygen (2001). A special case that is interesting in the context
of net models for mincut approaches was considered before by Chaudhuri et al. (2000).

How fast a net model can be computed and how good it approximates the shortest rectilinear
Steiner tree are not the only criteria for net models. Another important issue is how well we can
optimize netlength with respect to a given net model, assuming that we do not care about overlaps.
This is discussed in the following sections.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 331 24-9-2008 #6

Analytical Methods in Placement 331

17.2.2 MINIMIZING NETLENGTH

A key step in analytical placement is to find a placement that minimizes netlength (with respect
to a certain net model), disregarding overlaps. This step assumes that there are some fixed pins,
because otherwise one can achieve netlength close to zero by placing everything on the same
position.

The netlength depends on the pin positions. Each pin either belongs to a movable cell or has
a fixed position. We write γ (p) to denote the cell that p belongs to, and γ (p) := � if p is fixed.
We denote by [xoffs(p), yoffs(p)] the offset of p with respect to γ (p), or the absolute position of p if p
is fixed.

A placement is a pair of coordinates [x(c), y(c)] for each c ∈ C := {γ (p)|p ∈ P}\{�}. It implies
pin positions [x(p), y(p)] = {x[γ (p)] + xoffs(p), y[γ (p)] + yoffs(p)} for all p ∈ P, where x(�) := 0
and y(�) := 0.

Thus, for a given net modelM, and given netweightsw : N → R>0, minimizing netlength is the
problem of finding a placement minimizing

∑
N∈N w(N)M({(x(γ (p))+xoffs(p), y(γ (p))+yoffs(p)) :

p ∈ N}). Let us stress once more that we do not care about overlaps here.
Many net models are the sum of two independent parts, one depending on x-coordinates only,

and the other one depending on y-coordinates only. Examples are BB, Clique, and Star, but also
common quadratic models (see Section 17.2.4). For such net models, x- and y-coordinates can be
optimized separately. This results in two independent one-dimensional problems.

17.2.3 HOW TOMINIMIZE LINEAR NETLENGTH

Netlength with respect to any of the net models BB, Clique, or Star can be minimized efficiently (if
we do not care about overlaps). As discussed above, the coordinates can be considered separately,
and we use only x-coordinates in our exposition.

The problem of minimizing weighted bounding box netlength can be written as a linear program
(LP) by introducing two variables lN and rN for the leftmost and rightmost coordinate of a pin of
each net N (i.e., the edges of the bounding box), and writing

min
∑
N∈N

w(N)(rN − lN)

subject to

lN ≤ x(γ (p)) + xoffs(p) ≤ rN for all p ∈ N ∈ N .

This is an LP with 2|N |+ |C| variables and 2|P|+ |C| linear inequality constraints. Fortunately,
one does not have to use generic LP solvers but can exploit the special structure of this LP. As
noted first by Cabot et al. (1970), this LP is the dual of a transshipment problem (uncapacitated
minimum cost flow problem), with a vertex for each variable and two arcs for each pin. More
precisely, let G be the digraph with vertex set V (G) := {lN , rN | N ∈ N } ∪ C ∪ {�} and arc set
E(G) := {[lN , γ (p)], [γ (p), rN] | p ∈ N ∈ N }. The cost of an arc [lN , γ (p)] is xoffs(p), and the cost
of [γ (p), rN] is −xoffs(p). Then we look for a minimum cost flow carrying one unit out of lN and one
unit into rN for each N ∈ N .

Given a minimum cost flow, it is easy to obtain an optimum dual solution (a feasible potential
in the residual graph) by a shortest path computation.

The theoretically fastest known algorithm for transshipment problems, because of Orlin (1993),
has a running time of O[n log n(m+ n log n)], where n is the number of vertices andm is the number
of arcs. In our case, we have n = |C|+2|N | andm = 2|P|. With the realistic assumption |N | ≥ |C|,
we get a running time of O[|N | log |N |(|P| + |N | log |N |)]. See Korte and Vygen (2008) for more
details on minimum cost flows.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 332 24-9-2008 #7

332 Handbook of Algorithms for Physical Design Automation

The star and the clique model (and any other linear model with fixed topology in the sense of
Theorem 2) can be reduced to the bounding box model by adding a cell with a single pin for each
auxiliary point and replacing each net equivalently by an appropriate set of two-terminal nets. Of
course, this may increase the number of nets substantially.

The converse is also true: optimizing the bounding box netlength as above is equivalent to
minimizing netlength in a certain netlist containing two-terminal nets only, computable as follows.
Introduce fixed pins at the leftmost possible position L and at the rightmost possible position R.
Moreover, introduce cells lN and rN , each with a single pin, for each net N , and replace the net N
by 2|P| + 2 two-terminal nets, one connecting L and lN with weight w(N)(|N| − 1), another one
connecting rN and Rwith weightw(N)(|N|−1), and for each pin p ∈ N a net connecting lN and p and
a net connecting p and rN , each of weightw(N). For any placement of the pins, theweighted netlength
of the new netlist is

∑
N∈N w(N)((|N| − 1)(|R− x(rN)| + |x(lN) − L|) + ∑

P∈N(|x(p) − x(lN)| +
|x(rN)−x(p)|)). For a solutionminimizing this expression,we have x(lN) = minp∈N x(p) and x(rN) =
maxp∈N x(p), and the above expression reduces to

∑
N∈N w(N)((|N| − 1)(R− L) + (x(rN) − x(lN))).

Except for a constant additive term this is the weighted bounding box netlength.
For netlists with two-terminal nets only and zero pin offsets, an instance is essentially an undi-

rected graph G with edge weights w, a subset C ⊂ V (G) of movable vertices and coordinates x(v)
for v ∈ V (G) \ C. Minimizing bounding box netlength then means finding coordinates x(c) for
c ∈ C such that

∑
e=(v,w)∈E(G)

w(e)|x(v)− x(w)| is minimized. For this special case, Picard and Ratliff
(1978) and later also Cheung (1980) proposed an alternative solution, which may be faster than the
minimum cost flow approach described above. Their algorithms solve |V (G) \ C| − 1 minimum
s–t-cut problems in an auxiliary digraph with at most |C|+2 vertices (including s and t) and at most
|E(G)|+|C| arcs. Finding aminimum s–t-cut can be accomplished by anymaximum flow algorithm.
In a digraph with n vertices and m edges, the theoretically fastest one, because of King et al. (1994),
runs in O[nm log2+m/(n log n) n] time. This approach may be faster than any transshipment algorithm in
some cases, in particular if there are only few fixed pin positions and significantly more two-terminal
nets than cells. However, it is unclear whether nonzero pin offsets can be incorporated.

17.2.4 HOW TOMINIMIZE QUADRATIC NETLENGTH

Quadratic netlength is a widely used objective function in analytical placement (see Kleinhans et al.,
1991 (Gordian); Alpert et al., 1997; Vygen, 1997; Brenner et al. 2008 (BonnPlace)). It is also in use
as a starting point for many force-directed approaches (see Chapter 18).

For quadratic optimization, any net model that replaces each net by a graph with fixed topology
may be applied. We will describe quadratic netlength optimization for Clique, the generalization
to other graphs is straightforward. Because x- and y-coordinates can be computed independently,
we again restrict our description to x-coordinates. We ask for x-coordinates x(c) for each c ∈ C
minimizing

∑
N∈N

w(N)

|N| − 1

∑
p,q∈N

(
(x(γ (p)) + xoffs(p)) − (x(γ (q)) + xoffs(q))

)2
.

Thus, up to constant terms the objective function is

∑
N∈N

w(N)

|N| − 1

∑
p,q∈N

(
x(γ (p))

(
x(γ (p)) + 2xoffs(p) − x(γ (q)) − 2xoffs(q)

)

+ x(γ (q))
(
x(γ (q)) + 2xoffs(q) − x(γ (p)) − 2xoffs(p)

))
.

Minimizing this function is equivalent to solving the quadratic program (QP)

min
x
xTAx − 2bTx (17.1)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 333 24-9-2008 #8

Analytical Methods in Placement 333

where A = (ac1,c2)c1,c2∈C and b = (bc)c∈C with

ac1,c2 :=

⎧⎪⎪⎨
⎪⎪⎩

∑
N∈N

∑
p,q∈N:

γ (p)=c1,γ (q) 	=c1

w(N)

|N|−1
: c1 = c2

∑
N∈N

∑
p,q∈N:

γ (p)=c1,γ (q)=c2

− w(N)

|N|−1
: c1 	= c2

and

bc :=
∑
N∈N

∑
p,q∈N:

γ (p)=c,γ (q) 	=c

w(N)

|N| − 1
(xoffs(q) − xoffs(p)).

Here, the notation xT denotes transposition of x.
If the netlist is connected, then thematrixA is positive definite, and the function x �→ xTAx−2bTx

is convex and has a unique minimum x, namely the solution of the linear equation system Ax = b.
Moreover, the matrix A is sparse because the number of nonzero entries is linear in the number of
pins. With these additional properties, Equation 17.1 can be solved efficiently, for example, by the
conjugate gradient method (Hestenes and Stiefel, 1952).

We describe its idea for minimizing f (x) = xTAx − 2bTx. The algorithm starts with an initial
vector x0. In each iteration i(i = 1, 2, . . .) we choose a direction di and a number ti ∈ R≥0 such
that f (xi−1 + tidi) = min{f (xi−1 + tdi)|t ∈ R}, so we have to solve a one-dimensional quadratic
optimization problem to compute ti. Then, we set xi := xi−1 + tidi. For iteration 1, we just set
d1 := −∇f (x0) = −2Ax0 + 2b, that is, we search for a minimum in the direction of the gradient.
Obviously, we have dT

1 ∇f (x0 + t1d1) = dT
1 ∇f (x1) = 0. The idea of the conjugate gradient method

is to choose the directions di in such a way that we have in each iteration i : dT
j ∇f (xi) = 0 for

all j ∈ {1, . . . , i}. This will be the case if all directions are A-conjugate, that is, if they are nonzero
and if for all pairs of directions dj, di we have dT

j Adi = 0. Then, because the search directions are
linearly independent, the gradient ∇f (xi) will be 0 after at most n iterations because it is orthogonal
to n linearly independent vectors in R

n. The A-conjugacy of the search vectors can be achieved by
setting di := −∇f (xi) + αidi−1 for an appropriate value of αi ∈ R.

In each iteration of the conjugate gradient method, one multiplication of the n× n-matrix A and
an n-dimensional vector are necessary. The number of iterations is bounded by n, but in practice
much less iterations are necessary. Generally, if x∗ is the optimum solution of Equation17.1, we have
for i ∈ N:

‖xi+1 − x∗‖A ≤ cond2(A) − 1

cond2(A) + 1
‖xi − x∗‖A

where ‖x‖A = √
xT Ax and cond2(A) := ‖A‖2 · ‖A−1‖2

(
with ‖A‖2 :=

(∑
c1∈C

∑
c2∈C a

2
c1,c2

) 1
2
)
.

In other words, the difference between the vectors xi and the optimum solution decreases exponen-
tially, and the smaller the condition cond2(A) of matrixA is, the faster the algorithm converges. Thus,
often preconditioning methods are applied to matrix A that reduce the condition. Note that such a
preconditioning only makes sense for our problems if the resulting matrix is still sparse.

According to Theorem 2, Clique is the most accurate approximation of a rectilinear Steiner tree
among the net models with fixed topology, and it seems to be reasonable to use this model even
when minimizing quadratic netlength. However, for quadratic netlength, Clique may be replaced
equivalently by Star. Indeed one can easily show that replacing a clique of n pins with uniform edge
weights w by a star with uniformweights nw does not change the optimum; this will reduce memory
consumption and running time when applied to cliques exceeding a certain cardinality.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 334 24-9-2008 #9

334 Handbook of Algorithms for Physical Design Automation

FIGURE 17.2 Placements minimizing linear netlength (upper pictures) and quadratic netlength (lower
pictures).

17.2.5 EXAMPLES

For analytical placers, the existence of some preplaced pins is mandatory. Without preplaced pins
all cells would be placed at almost the same position in the global optimization (with any reasonable
objective function), so we would not get any useful information. Input/output (I/O) pins of the chip
will usually be preplaced, and often some of the larger macros will be placed and fixed before
placement.

The connections to preplaced pins help to pull cells away from each other but their effect is
different for quadratic and linear netlengths. This is illustrated for three chips in Figure 17.2. The
first two chips contain some preplaced macros while in the third one, only the I/O pins are fixed
and all cells are movable. For each chip, we present two optimum placements for the movable cells
minimizing either linear or quadratic netlength. Obviously, in quadratic placement, the connections
to the preplaced pins are able to pull the movable cells away from each other, while with the linear
objective function, the cells are concentrated at only a very small number of different locations.

17.2.6 OTHER OBJECTIVE FUNCTIONS

Though most analytical placement algorithms optimize quadratic netlength, there are some
approaches that use different objective functions. Most of them try to approximate linear netlength
by smooth differentiable functions.

The objective functions that we consider in this section consist again of a part for the x-coordinate
and a part for the y-coordinate that can be computed independently. We will present again only the
part for the x-coordinate.

Sigl et al. (1991) (GordianL) try to combine advantages of linear and quadratic netlength
optimizations. Applying the star model, they minimize quadratic netlength but approximate lin-
ear netlength by setting netweights that are reciprocally proportional to an estimation of the linear

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 335 24-9-2008 #10

Analytical Methods in Placement 335

netlength.More precisely, they iteratively compute sequences of locations [xi(p), yi(p)](i = 0, 1, . . .)
for all pins p, and in iteration i + 1 they estimate the length of a net N by

∑
p∈N

[
xi+1(p) − 1

|N|
∑
q∈N

xi+1(q)

]2

∑
p∈N

∣∣∣∣xi(p) − 1
|N|
∑
q∈N

xi(q)

∣∣∣∣
They stop as soon as the locations of the pins do not change significantly anymore. However, there
is no proof of convergence.

The single iterations can be performed quite efficiently but because the computations have to be
repeated several times, thismethod ismore time consuming than justminimizing quadratic netlength.
In the experiments presented by Sigl et al. (1991), the running time of GordianL is about a factor of
five larger than the running time of Gordian (but GordianL produces better results).

Alpert et al. (1998) approximate the linear netlength
∑

p,q∈N |x(p) − x(q)| of a net N by the
so-called β-regularization (for β > 0):

Cliquexβ(N) =
∑
p,q∈N

√
(x(p) − x(q))2 + β.

Cliquexβ(N) is obviously differentiable and an upper bound of
∑

p,q∈N |x(p) − x(q)|. Moreover, we
have Cliquexβ(N) → ∑

p,q∈N |x(p) − x(q)| for β → 0. Of course, net models using other graphs with
fixed topology than cliques can be handled analogously. Alpert et al. (1998) apply the primal-dual
Newton method that converges to the optimum of this convex objective function.

Kennings and Markov (2002) present a differentiable approximation of the bounding-box
netlength. For a net N and parameters β > 0 and η > 0, they use

BBx
β,η(N) =

(∑
p,q∈N

|x(p) − x(q)|η + β

)1
η

.

We have BBx
β,η(N) + BBy

β,η(N) ≥ BB(N) and limη→∞ limβ→0[BBx
β,η(N) + BBy

β,η(N)] = BB(N).
This function if strictly convex (if each connected component of the netlist contains a preplaced

pin) and hence can be optimized by the Newton method.
Kahng and Wang (2004) (APlace) and Chan et al. (2005) (mPL) propose to minimize a

differentiable approximation to the bounding-box netlength. For a parameter α, they define

BBx
α(V) := α

(
ln

(∑
p∈V

e
x(p)
α

)
+ ln

(∑
p∈V

e
−x(p)

α

))
.

It is easy to see that BBx
α
(V)+BBy

α
(V) → BB(V) for α → 0. Kahng andWang (2004) combine this

functionwith a smooth potential function that penalizes placement overlaps to a differentiable objec-
tive function that they try to optimizeby a conjugate gradientmethod.However, the resultingobjective
function is not convex anymore. Moreover, the authors do not show if this method converges to any
local minimum. For a more detailed description of the approach, we refer to Chapter 18.

17.3 PROPERTIES OF QUADRATIC PLACEMENT

17.3.1 RELATION TO ELECTRICAL NETWORKS AND RANDOMWALKS

Quadratic placement has a very nice interpretation in terms of randomwalks. For our exposition, we
assume the simplest case that all pin offsets are zero.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 336 24-9-2008 #11

336 Handbook of Algorithms for Physical Design Automation

Proposition 1 Given a netlist with zero pin offsets, we define a weighted graph as follows: The
vertices are the movable objects (cells) and the fixed pins. For each net N and each pair of pins
p, q ∈ N belonging to different cells c, c′ we have an edge with endpoints {c, c′} and weight w(N)

|N|−1
.

For each net N and each pair of pins p, q ∈ N, where p belongs to cell c and q is fixed, we have an
edge with endpoints {c, q} and weight w(N)

|N|−1
. We assume that some fixed pin is reachable from each

cell in this graph.
We consider random walks in this graph. We always start at a cell, and we stop as soon as we

reach a fixed pin. Each step consists ofmoving to a randomly chosen neighbor, where the probabilities
are proportional to the edge weights.

For each cell c, let xc be the expectation of the x-coordinate of the fixed pin where a randomwalk
started in c ends. Then xc is precisely the position of c in the quadratic placement.

Proof It is easy to see that the numbers xc satisfy the linear equation system Ax = b defined in
Section 17.2.4. As it has a unique solution, it is equal to the quadratic placement.

This has been generalized to arbitrary pin offsets by Vygen (2007).
Another interpretation of quadratic placement is in the context of electrical networks. Interpret

the graph defined above as an electrical network, where edges correspond to connections whose
resistance is inversely proportional to the weight, and where a potential of x(q) is applied to each
fixed pin q, where x(q) is its x-coordinate. By Ohm’s law, a current of x(c) − x(c′) is flowing from
c to c′, where x(c) is the resulting potential of c in this network. By Kirchhoff’s law, the numbers x
also satisfy the above linear equation system.

17.3.2 STABILITY

In practice, the final netlist of a chip is not available until very late in the design process. Of course,
results obtained with preliminary netlists should allow conclusions on results for the final netlist.
Therefore, stability is an essential feature of placement algorithms—it is much more important than
obtaining results that are close to optimum. When stable placement algorithms are unavailable, one
has to enforce stability, for example, by employing a hierarchical design style, dividing the chip
into parts and fixing the position of each part quite early. Clearly, such an unflexible hierarchical
approach entails a great loss in quality.

For precise statements, we have to formalize the term stability. This requires answers to two
questions: When are two placements similar? And what elementary netlist changes should lead to a
similar placement?

We first consider the first question. We are not interested in the relative position of two cells
unless they are connected. Moreover, if all pins of a net move by the same distance into the same
direction, this does not change anything for this net. Therefore, the following discrepancy measure
was proposed by Vygen (2007). Again we restrict to zero pin offsets for a simpler notation.

Definition 2 Let a netlist be given, whereN is the set of its nets and w:N → R≥0 are netweights.
Let two placements be given, and let [x(p), y(p)]and [x′(p), y′(q)] be the position of pin p with respect
to the first and second placement, respectively.

Then the discrepancy of these two placements is defined to be

∑
N∈N

w(N)

|N| − 1

∑
p,q∈N

(
(x(p) − x′(p) − x(q) + x′(q))2 + (y(p) − y′(p) − y(q) + y′(q))2

)
.

We apply this measure to estimate the effect of small netlist changes on the quadratic placement.
The most elementary operation is increasing the weight of a net. As discrepancy is symmetric, this
covers also reducing theweight of a net, and deleting or inserting a net. Thus, arbitrary netlist changes
can be composed of this operation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 337 24-9-2008 #12

Analytical Methods in Placement 337

Theorem 3 Let a netlist be given. We assume that each connected component of the netlist graph
contains a fixed pin. Let [x(p), y(p)] be the position of pin p in the quadratic placement of this netlist,
and let [x′(p), y′(p)] be its position in the quadratic placement after increasing the weight of a single
netN by δ. Then the discrepancy of the twoplacements is atmost δ

�n2 � n2 �
2(n−1)

(X2
N+Y 2

N), where n := |N|and

XN := max{x(p) | p ∈ N} − min{x(p) | p ∈ N},
YN := max{y(p) | p ∈ N} − min{y(p) | p ∈ N}.

This and similar results are proved in Vygen (2007). Roughly speaking, they say that small local
changes to a netlist do not change the quadratic placement significantly. In this sense, quadratic
placement is stable.

We now argue that other approaches are instable. Even for identical input we can obtain
placements with large discrepancy.

Theorem 4 There exists a constant α > 0 such that for each even n ≥ 4 there is a netlist with n
cells and the following properties: Each cell has width 1

n
and height 1. The chip area in which the

cells must be placed is the unit square. Each cell has three, four, or five pins. All pin offsets are zero.
All nets have two terminals. There are two optimum placements (with respect to netlength), which
have discrepancy at least αn.

As each optimum placement is a possible result of any local search algorithm, such algorithms
are instable. Similarly, Vygen (2007) shows the instability ofmincut approaches: there are netlists for
which a mincut approach, depending on a tie-breaking rule at the first cut, can produce placements
whose discrepancy is proportional to the number of nets (and thus only a constant factor better than
the maximum possible discrepancy). Hence, these approaches lack any stability.

This is a reason to favor quadratic placement approaches. Of course, quadratic placements
usually contain many overlapping cells, and further steps have to be applied to remove overlaps
(cf. Figure 17.2). So far, nobody has succeeded to prove stability of an overall algorithm that pro-
duces a feasible placement for any netlist. But at least the basic ingredient, quadratic placement, is
stable. Analytical placement algorithms like the ones described in the following, as well as force-
directed placement approaches like Eisenmann and Johannes (1998) (cf. Chapter 18) try to modify
this placement as little as possible while removing overlaps.

17.4 GEOMETRIC PARTITIONING

17.4.1 OBJECTIVES

After minimizing quadratic (or linear) netlength without considering any disjointness constraints,
analytical placers start to remove overlaps by partitioning the chip area into regions and by assigning
cells to regions such that no region contains more cells than fit into it. As we have a well-optimized
placement (but with overlaps), it seems to be reasonable to change it as little as possible, that is, to
minimize the total distance that cells move.

More formally, the following problems has to be solved.We are given a setC ofmovable cells and
a setR of regions. Each cell c ∈ C has a size, denoted by size(c), and each region r ∈ R has a capacity,
denoted by cap(r). Moreover, for each pair (c, r) ∈ C×R we know the cost d((c, r)) of moving cell
c to region r. The task is to find a mapping g : C → R such that

∑
c∈C:g(c)=r size(c) ≤ cap(r) for all

r ∈ R, minimizing
∑

c∈C d((c, g(c))).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 338 24-9-2008 #13

338 Handbook of Algorithms for Physical Design Automation

Unfortunately, to decide if this problem has any feasible solution is NP-complete even if |R| = 2
(Karp, 1972). Hence, it is natural to relax the problem by allowing cells to be distributed to different
regions. Then we arrive at the following problem:

Fractional assignment problem

Instance: • Finite sets C and R
• size: C → R>0

• cap: R → R>0

• d : C × R → R≥0

Task: Find a mapping h : C × R → [0, 1] with∑r∈R h((c, r)) = 1 for all c ∈ C and∑
c∈C h((c, r)) · size(c) ≤ cap(r) for all r ∈ R, minimizing

∑
c∈C
∑

r∈R h((c, r)) · d((c, r)).

Considering this fractional version is sufficient because of the following theorem.

Theorem 5 There is always an optimum solution h of the fractional assignment problem where
the set {c ∈ C|∃r ∈ R : h((c, r)) 	= {0, 1}} has at most |R| − 1 elements.

For a proof, we refer to Vygen (2005). If any optimum solution is given, such an almost integral
optimum solution can be computed efficiently.

17.4.2 BIPARTITIONING

If |R| = 2, then the fractional assignment problem is equivalent to the fractional knapsack problem
(cf. Korte and Vygen, 2008). The unweighted version of this problem (i.e., size(c) = 1 for all c ∈ C)
can be solved in linear time by using the linear-time algorithm for the median problem described by
Blum et al. (1973). Adolphson and Thomas (1977), Johnson and Mizoguchi (1978), and Balas and
Zemel (1980) show how the algorithm for the unweighted version can be used as a subroutine for a
linear time algorithm of the fractional knapsack problem with weights (cf. Vygen 2005; Korte and
Vygen 2008).

Given a nondisjoint placement with minimum (quadratic) netlength, a straightforward partition-
ing approach consist of bipartitioning the cells set alternately according to the x- and y-coordinates.
Indeed, early analytical placement algorithms that have been presented by Wipfler et al. (1982),
Cheng and Kuh (1984), Tsay et al. (1988) (Proud), and Jackson and Kuh (1989) apply such a
method.

Another analytical placement algorithm based on bipartitioning is Gordian (Kleinhans et al.,
1991). The authors try to improve the result of a partitioning step by reducing the number of nets that
are cut without increasing the cell movement too much. To this end, they vary the capacities of the
subregions (within a certain range), compute cell assignments for the different capacity values, and
keep the one with the smallest cut. Moreover, cells may be interchanged between the two subsets
after bipartitioning if this reduces the number of nets that are cut.

Sigl et al. (1991) (GordianL) describe an iterative method for bipartitioning. They cope with the
problem that if many cells have very similar locations before a partitioning step, the decision to which
subset they are assigned is more or less arbitrary. Their heuristic works in two phases, as illustrated
in Figure 17.3. Assume that a set of cells (Figure 17.3a) has to be divided into two parts and that we
ask for a vertical cut. First, cells with very small or very big x-coordinates are assigned to the left or
to the right subset of the partition. In Figure 17.3b, the cells that reach out to the left of coordinate
x1 are assigned to the left part, and the cells that reach out to the right of coordinate x2 are assigned
to the right part. The idea is that the assignment of these cells can hardly be wrong and that the
connectivity to them should be used when assigning the remaining cells. The preassigned cells are
forced to move further to the left or to the right depending on their assignment.With these additional
constraints, new positions for all cells to be partitioned are computed (in GordianL minimizing an

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 339 24-9-2008 #14

Analytical Methods in Placement 339

(a) (b)
x1 x2

(c) (d)

FIGURE 17.3 Iterative partitioning as described by Sigl et al. (1991).

approximation of linear netlength, cf. Section 17.2.6), as shown in Figure 17.3c. Finally, these new
positions are used to compute the assignment of the cells (Figure 17.3d).

17.4.3 QUADRISECTION

BonnPlace, an analytical placer proposed by Vygen (1997), makes use of a linear-time algorithm
for a special case of the fractional assignment problem. If R consist of four elements r1, r2, r3, and r4
such that d((c, r1)) + d((c, r3)) = d((c, r2)) + d((c, r4)) for all c ∈ C, then the fractional assignment
problem can be solved in time O(|C|) (see Vygen [2005] for a proof). This condition is met if R is
the set of the four quadrants of the plane and d((c, r)) is the L1 distance between c and r. Such a
partitioning is shown in Figure 17.4 where the gray scales of the cells reflect the region that they are
assigned to (e.g., the darkest cells will go to the lower left quadrant). The borderlines between the
cell subsets are horizontal, vertical, and diagonal lines that form a geometric structure that is called
Americanmap.Vygen (2005) proves that anAmericanmap corresponding to anoptimumpartitioning
can be computed in linear time. The algorithm can be seen as a two-dimensional generalization of
the median algorithm by Blum et al. (1973).

17.4.4 GRIDWARPING

Xiu et al. (2004) (see also Xiu and Rutenbar, 2005) start with a placement that minimizes quadratic
netlength but partition the set of cells by borderlines that do not have to be horizontal or vertical.

Assume, for example, that we want to partition the set of cells (and the chip area) into four
parts. The chip area is partitioned by a horizontal and a vertical cut running through the whole chip
area, thus forming four rectangular regions. To partition the set of cells, Xiu et al. (2004) compute a
borderline l1 connecting the upper edge of the chip area to the lower edge and two borderlines l2 and
l3 connecting the left (right) edge of the chip area to l1 (Figure 17.5).

These three borderlines partition the set of cells into four subsets C1,C2,C3, and C4, and each
subset is assigned in the obvious way to a subregion.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 340 24-9-2008 #15

340 Handbook of Algorithms for Physical Design Automation

FIGURE 17.4 Set of cells partitioned by quadrisection (according to an American map).

The borderlines used to partition the set of cells shall be chosen such that capacity constraints
are met for the subregions and such that routing congestion and netlength are minimized when the
cells are moved to their regions. Because it seems to be hard to find optimal cutlines with these
optimization goals, the authors apply local search to compute the borderlines. They argue that this is
good enough as the number of variables is small (two variables for each cutline). As the algorithm
does not only use vertical and horizontal cutlines for the partitioning of the cells and warps the
placement in a partitioning step, the authors call it grid-warping partitioning.

17.4.5 MULTISECTION

The fractional assignment problem is solvable in polynomial time because it can be seen as a
Hitchcock transportation problem, as special version of a minimum-cost flow problem.

An efficient algorithm for the unbalanced instances that occur in placement (where often |C| is
much larger than |R|) has been proposed by Brenner (2005) who proved the following theorem:

I1

C3

I3
→

C4

C1 C2

I2

FIGURE 17.5 Grid-warping partitioning step.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 341 24-9-2008 #16

Analytical Methods in Placement 341

FIGURE 17.6 Set of cells partitioned by multisection.

Theorem 6 The fractional assignment problem can be solved in time O[nk2(log n+k log k)]where
n := |C| and k := |R|.

Thus, for fixed k, the fractional assignment problem can be solved in time O(n log n). This
multisection is slower than the linear-time algorithm for quadrisection proposed byVygen (2005), but
the algorithm is more flexible because it can handle an arbitrary number of regions and an arbitrary
costs function. This flexibility can be used, for example, for reducing the number of partitioning
steps, and for a more intensive local optimization in repartitioning (see Section 17.6.1; Brenner and
Struzyna, 2005). Moreover, movement costs are not restricted to L1-distances. For example, they
could take blocked areas (e.g., used by preplaced macros) into consideration.

An example for multisection with nine regions and L1-distances as movement costs is shown
in Figure 17.6. Again, the gray scales of the cells indicate the region that they are assigned to. As
expected, American map structures reappear.

17.5 HOW TO USE THE PARTITIONING INFORMATION

After a partitioning step, each cell is assigned to a region of the chip area. Before the regions
(and the corresponding sets of cells) are partitioned further, we have to ensure that the cells are
placed (approximately) within their regions. For linear netlength, it is quite obvious how upper and
lower bounds on the coordinates of single cells may be added to the LP formulation described in
Section 17.2.3. The LP with such additional constraints is still the dual of a minimum-cost flow
problem.

If we want to add linear upper and lower bounds for cell positions to the QP (Equation17.1), this
leads to a quadratic objective function that has to be minimized over a convex set. This problem is
solvable in polynomial time, but not efficient enough for large instances. Hence, different approaches
are used to take the partitioning information into account.We discuss the two main techniques in the
following sections.

17.5.1 CENTER-OF-GRAVITY CONSTRAINTS

To move each group of cells toward the region that it has been assigned to, Kleinhans et al. (1991)
prescribe the center of gravity of each group as the center of the region that this group is assigned

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 342 24-9-2008 #17

342 Handbook of Algorithms for Physical Design Automation

to. For each region, this introduces an equation as an additional constraint on the solution of the
QP (Equation 17.1). Kleinhans et al. (1991) show how this constrained quadratic program can be
reduced elegantly to an unconstrained QP with the following transformation. For n movable cells
and k additional constraints, the constrained QP may be written in the form

min xTAx − 2bTx
s.t. (I S)x = t

where the k× n-matrix (I S) consists of the k× k-identity matrix I and a k× (n− k)-matrix S. With
x = (

x1
x2

)
(where x1 ∈ R

k and x2 ∈ R
n−k), the linear constraints can be written as x1 = t − Sx2. Hence,

we only have to compute the entries of x2 by solving the following unconstrained problem on n− k
variables:

min

(
t − Sx2
x2

)T

A

(
t − Sx2
x2

)
− 2bT

(
t − Sx2
x2

)
.

By ignoring all constant summands in the objective function, we get the equivalent problem

min xT2U
TAUx2 − 2vTx2 (17.2)

where U := (−S
I

)
and v := UT

[
b− A

(
t
0

)]
. The matrix UTAU is positive definite if A is positive

definite, but usually UTAU will not be sparse. Therefore, for an efficient solution, an explicit com-
putation of UTAU must be avoided. Fortunately, the conjugate gradient method (see Section 17.2.4)
only requires to multiplyUTAU with a vector, which can be done by three single multiplications of a
sparse matrix and a vector. Hence, provided that the number of constraints is small compared to the
number of cells, the conjugate gradient method will efficiently solve the problem (Equation17.2).

Prescribing the centers of gravity of the cell groups is an efficient way to spread the cells over
the chip area. However, we cannot be sure that all cells are placed inside their region, which can be
a problem for ensuing partitioning steps. Moreover, the constraints may be too strong if we do not
demand an even distribution of the cells. If we allow a higher area utilization in some regions, it will
often be reasonable to place cells in their region in such a way that their center of gravity is far away
from the center of the region.

17.5.2 SPLITTING NETS

A second way to reflect the result of partitioning in the QP, proposed by Vygen (1997), consists of
splitting nets at the borders of regions. In this approach, we assume that the chip area is partitioned
in a grid-like manner by vertical and horizontal cutlines that cross the whole chip.

Suppose that we have bounds µ ≤ x(c) ≤ ν for the x-coordinate of a cell c. For each cell c′

that is connected to c but is placed in a window to the right of b (i.e., ν is a lower bound on the
x-coordinate of c′), we replace the connection to c′ by an artificial connection between c and a fixed
pin with x-coordinate ν. Analogously, connections to cells c′ that will be placed to the left of µ are
replaced by connections to a fixed pin with x-coordinate µ. Connections to fixed pins outside the
bounds of a cell are also split.

Note that this splitting is done for x- and y-coordinate independently, so for x-coordinates only
the vertical boderlines and for the y-coordinates only the horizontal borderlines between the windows
are considered. In particular, in contrast to standard terminal propagation, it is possible (and in fact
will happen quite often) that a connection has to be split for the computation of the x-coordinates but
not the y-coordinates, and vice versa. This splitting of the nets forces each cell to be placed inside
the region that it is assigned to.

However, a problem that has to be addressed in this approach is the following: it may happen
that in a region all cells (or most of them) have their external connection to only one direction. In

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 343 24-9-2008 #18

Analytical Methods in Placement 343

FIGURE 17.7 Effect of the constrained QP before the partitioning step.

that case, a QP solution will place all of them at one border or even in one corner of the region. Such
a placement is obviously useless for the next partitioning step based on cell positions. Vygen (1997)
proposes to make use of center-of-gravity constraints (see Section 17.5.1) to modify the placements
in these cases. Figure 17.7 illustrates how this works. The left picture shows the placement with
minimum quadratic netlength (splitting connections at the borderlines as described above) without
any additional center-of-gravity constraints.

Based on this we compute a new center of gravity for each region in which the current center
of gravity of the cells in the region is closer to the border than it would be possible in any disjoint
placement. The new center of gravity is (approximately) the closest possible position in a disjoint
placement. Then, a new global QP is solved forcing the centers of gravity of the cell groups in
these regions to the new prescribed positions. The right-hand side of Figure 17.7 shows the result. It
demonstrates that in particular in the outer regions of the chip area this step changes the placement
significantly.

17.6 FURTHER TECHNIQUES

17.6.1 REPARTITIONING

In a pure recursive partitioning approach, cellsmay never leave their regions. However, especially cell
assignments in the first paritioning steps may be suboptimal because they are based on placements
in which the cell positions may not differ enough. Therefore, there is need for techniques that are
able to correct bad decisions in partitioning.Most analytical placers contain some local optimization
methods that are executed between the partitioning steps and that allow cells to leave the regions
they are assigned to.

In Gordian (see Kleinhans et al., 1991), cells are moved toward their regions by solving a
constrained QP (see Section 17.5.1). As this constrained QP does not force the cells to be placed
inside their window, groups of cells that are assigned to different windows may be mixed with each
other. In such situations, Kleinhans et al. (1991) reassign cells locally. Let us consider the case when
a window is partitioned by a vertical cutline (the case of a horizontal cutline is handled analogously).
If after the constrained QP one of the cells assigned to the left window is placed to the right of a cell
assigned to the right window, then the two cell subsets are merged and are partitioned once again
(using this time the positions of the constrained QP). The old assignment is always replaced by the
new assignment. Note that only pairs of cell groups are considered that belong to the same window
before the previous partitioning, so this reassignment is the last chance for a cell to leave its window.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 344 24-9-2008 #19

344 Handbook of Algorithms for Physical Design Automation

After all these new assignments have been computed, a new constrained QP is solved. According to
the description by Kleinhans et al. (1991), it is not necessary to iterate this method.

To allow cells to leave their windows even at a late stage, Vygen (1997) proposes a repartitioning
technique that tries to find local improvements of the placement. It considers arrays of 2× 2 regions
(i.e., sets of four regions intersecting in one point) and tries to find a better placement in them. In
each such region, the cells are placed with minimum quadratic netlength and are then assigned to the
four subregionswith a quadrisection step. Finally, a local QP is solved where nets are split according
to the new assignment. The new placement is accepted if the total netlength has decreased.

This step is done for all 2 × 2 arrays of regions. This loop is called repeatedly (with different
orders of the arrays of regions) as long as it yields a considerable improvement of the weighted
netlength.

Repartitioning enables the cells to leave the region in which they are currently placed. It has also
been used by Huang and Kahng (1997) in a minimum-cut-based placer and by Xiu and Rutenbar
(2005) in their warping approach.

17.6.2 PARALLELIZATION

Analytical placement methods that use recursive partitioning allow a parallel implementation of
most parts of the algorithm. Sometimes, placement and partitioning in one region does not depend
on another region, so both regions can be handled in parallel. However, it should be mentioned
that many analytical placers apply a global optimization before a partitioning step where all cells
are placed simultaneously. For example, in Gordian (Kleinhans et al., 1991), the placements with
minimumquadratic netlength (with different center-of-gravity constraints) can hardly be parallelized.

Nevertheless, even some parts of these global optimization steps allow a parallel computation if
the assignment of the cells to their windows is used as hard constraints. Assume, for example, that
we want to compute the x-coordinate of a cell c for which we have the constraints µ ≤ x(c) ≤ ν for
some numbersµ and ν. Then, if we minimize linear netlength, the x-coordinate of c can be computed
without knowing the x-coordinates of the cell that have to be placed to the left of µ or to the right
of ν. Thus, the x-coordinates in different columns given by the regions can be computed in parallel
(and analogously for the y-coordinates).

Such a parallel computation is possible as well if quadratic netlength is minimized and
connections are split at the borderlines of regions (see Section 17.5.2).

Also multisection can be done in parallel for separate regions.Moreover, local optimization steps
like repartitioning that are often quite time consuming can be performed efficiently in parallel (see
Brenner and Struzyna, 2005).

17.6.3 DEALING WITH MACROS

Analytical placers can handle cells of different sizes and shapes. However, recursive partitioning
has to stop when cells are too big compared to the region size. Hence, for larger macros only a few
partitioning steps can be made. Then, macros have to stay more or less at their position.

In Gordian (Kleinhans et al., 1991), a region is only partitioned if it contains a sufficient number
of cells, so in the presence of macros the region sizes may differ over a large range at the end of
global placement. Finally, macros are legalized together with the standard cells.

Other analytical placers such as BonnPlace (Vygen, 1997;Brenner and Struzyna, 2005) place the
macros legally as soon as they are too big compared to the region size and fix them before continuing
with the recursive partitioning.

17.7 CONCLUSION

Analytical placement is the dominant strategy for placement today. Decomposing the task into
minimizing netlength and partitioning with respect to area constraints is natural. Using quadratic

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 345 24-9-2008 #20

Analytical Methods in Placement 345

placement and multisection as the two main components has the advantage that both subproblems
can be solved almost optimally very efficiently even for the largest netlists. Moreover, this approach
has nice stability features and works well in a timing-closure framework. Therefore, this approach
is widely used in industry for many of the hardest placement problems.

REFERENCES

Adolphson, D.L. and Thomas, G.N. A linear time algorithm for a 2 × n transportation problem. SIAM Journal
on Computing 6: 481–486, 1977.

Alpert, C.J., Chan, T., Huang, D.J.-H., Markov, I., and Yan, K. Quadratic placement revisited. Proceedings of
the 34th IEEE/ACM Design Automation Conference, Anaheim, CA, 1997, pp. 752–757.

Alpert, C.J., Chan, T.F., Kahng, A.B., Markov, I.L., and Mulet, P. Faster minimization of linear wirelength
for global placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
17: 3–13, 1998.

Alpert, C.J., Kahng, A.B., and Yao, S.-Z. Spectral partitioning: The more eigenvectors, the better. Discrete
Applied Mathematics 90: 3–26, 1999. (DAC 1995).

Balas, E. and Zemel, E. An algorithm for large zero-one knapsack problems. Operations Research 28: 1130–
1154, 1980.

Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., and Tarjan, R.E. Time bounds for selection. Journal of Computer
and System Sciences 7: 448–461, 1973.

Brenner, U. A faster polynomial algorithm for the unbalanced Hitchcock transportation problem. Operations
Research Letters 36: 408–413, 2008.

Brenner, U. and Struzyna, M. Faster and better global placement by a new transportation algorithm.Proceedings
of the 42nd IEEE/ACM Design Automation Conference, Anaheim, CA, 2005, pp. 591–596.

Brenner, U. and Vygen, J. Worst-case ratios of networks in the rectilinear plane. Networks 38: 126–139, 2001.
Brenner,U., Struzyna,M., andVygen, J.BonnPlace:Placement of leading-edgechipsby advancedcombinatorial

algorithms. To appear in: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2008.

Cabot, A.V., Francis, R.L., and Stary, A.M. A network flow solution to a rectilinear distance facility location
problem. AIIE Transactions 2: 132–141, 1970.

Chan, T.F., Cong, J., andSze,K.Multilevel generalized force-directedmethod for circuit placement.Proceedings
of the IEEE/ACM International Symposium on Physical Design, San Francisco, CA, 2005, pp. 227–229.

Chaudhuri, S., Subrahmanyam, K.V., Wagner, F., and Zaroliagis, C.D. Computing mimicking networks.
Algorithmica 26: 31–49, 2000.

Cheng, C.-K. and Kuh, E.S. Module placement based on resistive network optimization. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 3: 218–225, 1984.

Cheung, T.-Y. Multifacility location problem with rectilinear distance by the minimum-cut approach. ACM
Transactions on Mathematical Software 6: 387–390, 1980.

Eisenmann, H. and Johannes, F.M. Generic global placement and floorplanning. Proceedings of the 35th
IEEE/ACM Design Automation Conference, San Francisco, CA, 1998, pp. 269–274.

Fisk, C.J., Caskey, D.L., and West, L.E. ACCEL: Automated circuit card etching layout. Proceedings of the
IEEE 55: 1971–1982, 1967.

Garey, M.R. and Johnson, D.S. The rectilinear Steiner tree problem is NP-complete. SIAM Journal on Applied
Mathematics 32: 826–834, 1977.

Hestenes, M.R. and Stiefel, E. Methods of conjugate gradients for solving linear systems, Journal of Research
of the National Bureau of Standards 49: 409–439, 1952.

Huang, D.J.-H. and Kahng, A.B. Partitioning based standard cell global placement with an exact objective.
Proceedings of the IEEE/ACM International Symposium on Physical Design, Napa Valley, CA, 1997,
pp. 18–25.

Jackson, M.B. and Kuh, E.S. Performance-driven placement of cell-based ICs. Proceedings of the 26th
IEEE/ACM Design Automation Conference, Las Vegas, NV, 1989, pp. 370–375.

Johnson, D.B. and Mizoguchi, T. Selecting the Kth element in X + Y and X1 + X2 + · · · + Xm. SIAM Journal
on Computing 7: 147–153, 1978.

Kahng,A.B. andWang,Q. Implementation and extensibility of an analytic placer.Proceedings of the IEEE/ACM
International Symposium on Physical Design, Phoenix, AZ, 2004, pp. 18–25.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C017 Finals Page 346 24-9-2008 #21

346 Handbook of Algorithms for Physical Design Automation

Karp, R.M. Reducibility among combinatorial problems. In: Miller, R.E. and Thatcher, J.W. (editors),
Complexity of Computer Computations. Plenum Press, New York, 1972, pp. 85–103.

Kennings, A. andMarkov, I. Smoothening max-terms and analytical minimization of half-perimeter wirelength.
VLSI Design 14: 229–237, 2002.

King, V., Rao, S., and Tarjan, R.E. A faster deterministic maximum flow algorithm. Journal of Algorithms
17: 447–474, 1994.

Kleinhans, J.M., Sigl, G., Johannes, F.M., and Antreich, K.J. GORDIAN: VLSI placement by quadratic pro-
gramming and slicing optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 10: 356–365, 1991. (ICCAD 1988).

Korte, B. and Vygen, J. Combinatorial Optimization: Theory and Algorithms, Fourth edition. Springer, Berlin,
Germany, 2008.

Orlin, J.B. A faster strongly polynomial minimum cost flow algorithm. Operations Research 41: 338–350,
1993. (STOC 1988).

Picard, J.C. and Ratliff, H.D. A cut approach to the rectilinear distance facility location problem. Operations
Research 26: 422–433, 1978.

Quinn, N.R. The placement problem as viewed from the physics of classical mechanics. Proceedings of the
12th IEEE/ACM Design Automation Conference, Minneapolis, MN, 1975, pp. 173–178.

Quinn, N.R. and Breuer, M.A. A force directed component placement procedure for printed circuit boards.
IEEE Transactions on Circuits and Systems CAS-26, 1979, pp. 377–388.

Sigl, G., Doll, K., and Johannes, F.M. Analytical placement: A linear or quadratic objective function? Proceed-
ings of the 28th IEEE/ACM Design Automation Conference, San Francisco, CA, 1991, pp. 427–432.

Tsay, R.-S., Kuh, E., and Hsu, C.-P. Proud: A sea-of-gate placement algorithm. IEEE Design and Test of
Computers 5: 44–56, 1988.

Tutte, W.T. How to draw a graph. Proceedings of the London Mathematical Society 13: 743–767, 1963.
Vygen, J. Algorithms for large-scale flat placement. Proceedings of the 34th IEEE/ACM Design Automation

Conference, Anaheim, CA, 1997, pp. 746–751.
Vygen, J. Geometric quadrisection in linear time, with application to VLSI placement. Discrete Optimization

2: 362–390, 2005.
Vygen, J. New theoretical results on quadratic placement. Integration, the VLSI Journal 40: 305–314, 2007.
Wipfler, G.J., Wiesel, M., and Mlynski, D.A. A combined force and cut algorithm for hierarchical VLSI layout.

Proceedings of the 19th IEEE/ACMDesign Automation Conference, Las Vegas, NV, 1982, pp. 671–677.
Xiu, Z. and Rutenbar, R.A. Timing-driven placement by gridwarping. Proceedings of the 42nd IEEE/ACM

Design Automation Conference, Anaheim, CA, 2005, pp. 585–590.
Xiu, Z., Ma, J.D., Fowler, S.M., and Rutenbar, R.A. Large-scale placement by grid-warping. Proceedings of

the 41st IEEE/ACM Design Automation Conference, San Diego, CA, 2004, pp. 351–356.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 347 23-9-2008 #2

18 Force-Directed and Other
Continuous Placement
Methods
Andrew Kennings and Kristofer Vorwerk

CONTENTS

18.1 Introduction.. 347
18.2 Basic Elements of Force-Directed Placement . 349

18.2.1 Quadratic Optimization Preliminaries . 349
18.2.2 Force-Based Spreading . 351

18.3 Alternative Techniques for Spreading Cells . 352
18.3.1 Fixed Points and Bin Shifting . 352

18.3.1.1 Fixed Points in mFAR . 353
18.3.1.2 Fixed Points in FastPlace . 357

18.3.2 Frequency-Based Methods . 359
18.4 Enhancements . 361

18.4.1 Interleaved Optimizations . 361
18.4.2 Multilevel Optimization . 364

18.5 Nonquadratic, Continuous Methods.. 365
18.5.1 Placement via Line Search . 365
18.5.2 APlace and the Log-Sum-Exp Approximation . 366
18.5.3 mPL and Its Generalization of Force-Directed Placement . 369

18.6 Other Issues . 371
18.7 Conclusions. 373
References . 374

18.1 INTRODUCTION

Force-directed methods have been studied over the past four decades as a means of placing cells.
These methods employ forces to move cells into positions of shorter wirelength or smaller delay. The
use of forceswas borne out of the physical analogywithHooke’s law inwhich cells connected by nets
can be viewed as exerting attractive spring forces on one another. If the cells in such a system could
move freely, they would move in the direction of their forces until the system achieved equilibrium at
a minimum energy state. Unfortunately, a minimum energy placement is most often not valid as cells
have physical dimensions that are ignored in the spring analogy. Consequently, additional repulsive
forces are applied to perturb the cell positions and removeoverlap.Force-directedmethods, in general,
purge cell overlap over many placement iterations, while trading off attractive and repulsive forces
to achieve a placement in which cells are placed with little overlap. For example, the progress made
by a force-directed placer on circuit IBM04 from the ICCAD04 mixed-size placement benchmark
suite [1] is illustrated in Figure 18.1.

347

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 348 23-9-2008 #3

348 Handbook of Algorithms for Physical Design Automation

(a) (b)

(d)(c)

FIGURE 18.1 Typical progression of a force-directed placement method for the circuit IBM04 from the
ICCAD04mixed-size placement benchmark suite: (a) initial placement, (b) after roughly 1/3 through placement,
(c) after roughly 2/3 through placement, and (d) before legalization and detailed improvement. The fairly
nonoverlapping placement before legalization is obtained without the use of partitioning.

Force-directed methods differ from other placement methods, including simulated annealing,
minimum-cut, and analytic methods. Simulated annealing typically begins with an initial feasible
(or nearly feasible) placement and applies iterative improvement. Conversely, force-directedmethods
typically begin with no initial placement and construct the placement as they progress. Minimum-
cut and analytic methods are also constructive, but rely on partitioning of the placement area to
remove cell overlap. Force-directed methods, however, do not use partitioning, but rather eliminate
cell overlap through the introduction of repulsive forces.

The earliest implementations of force-directed methods were examined in the 1960s [2], and
many adaptations of these methods remain in use today. Although many variations exist, it is a
proper understanding of the similarities and differences between the methods that can lead to either
a successful or unsuccessful implementation.

In this chapter, we examine force-directed methods by considering how some of these work. We
do notmake comparisons between themethods, but rather attempt to illustrate the issues, similarities,
and differences between the various implementations described in the literature. We also examine
other continuous placement methods (i.e., methods that do not rely on partitioning to remove cell
overlap) that, although not seemingly force-directed, still share characteristics with force-directed
methods. This chapter is organized as follows. In Section 18.2, we describe the traditional force-
directedmethod that employs quadratic optimization to minimize wirelength and additional constant
forces to remove cell overlap. We describe methods that use techniques other than constant forces

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 349 23-9-2008 #4

Force-Directed and Other Continuous Placement Methods 349

to eliminate cell overlap in Section 18.3. This includes fixed-point and frequency-based methods.
Quadratic optimization is not the best choice for high-quality placements. Many force-directed
methods are used in combinationwith other optimization strategies—we touch upon these interleaved
optimizations in Section 18.4. In Section 18.5, we describe other continuous placement techniques
and describe their relationships with force-directed methods. Section 18.6 describes several issues
facing force-directed methods, and Section 18.7 offers concluding remarks.

18.2 BASIC ELEMENTS OF FORCE-DIRECTED PLACEMENT

Placement typically begins with a circuit netlist modeled as a hypergraph Gh(Vh,Eh) with vertices
Vh = {v1, v2, . . . , vn, vn+1, . . . , vn+p} representing circuit cells and hyperedges Eh = {e1, e2, . . . , em}
representing circuit nets. The set {v1, v2, . . . , vn} represents movable cells and the set {vn+1, . . . , vn+p}
represents preplaced cells and I/O pads. Each vertex vi has dimensions wi and hi that represent the
width and height of its corresponding circuit cell, respectively. Let (xi, yi) denote the coordinates
of the center of vertex vi. Placement information is then captured in the x- and y-directions by two
placement vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

Placement seeks to optimize objectives, including the minimization of total interconnect length,
routing congestion, power consumption, and timing requirements, subject to the constraint that cells
cannot overlap. Of course, the simultaneous optimization of these different objectives is difficult.
Wirelength is one of the most commonly employed measures of quality—the minimization of wire-
length tends to be simpler and also aids in the minimization of other objectives. The most commonly
used measurement of wirelength in modern placement is the half-perimeter wirelength (HPWL),
which, for any given net e ∈ EH, is the minimum rectangle that encloses all cells on net e and can be
written as

HPWL(e) = max
i,j∈e,i<j

|xi − xj| + max
i,j∈e,i<j

|yi − yj| (18.1)

The totalwirelength of the circuit is given by
∑

e∈EH HPWL(e). AlthoughHPWL is a convex function,
it is neither strictly convex nor differentiable because of the absolute distances |xi−xj| and |yi−yj|—
its direct and efficient minimization is difficult. Placement focuses on minimizing an approximation
of HPWL subject to the constraint that no cells may overlap. In practice, HPWL is a reasonably close
approximation to the final, routed wirelength [3].

18.2.1 QUADRATIC OPTIMIZATION PRELIMINARIES

Kraftwerk [4], perhaps the best-known force-directed placer, introduced a quadratic approxima-
tion [5] to HPWL and many other placers have since followed its lead. In quadratic placement, the
circuit hypergraph is transformed into a weighted graph. Such a transformation necessitates that each
hyperedge be modeled as a set of two-pin nets using a suitable net model. Typical net models include
clique or star models, as shown in Figure 18.2 for a five-pin net. In the clique model, each k-pin net
is replaced by k(k − 1)/2 two-pin nets. In the star model, a star node is added for each net to which
all pins of the nets are connected. If the weight of a k-pin hyperedge is W , it is common to weight
the set of two-pin nets using a weight such asW/(k − 1) [6].

The selection of the net model is an implementation decision. It is typical to use a clique model
for small nets with few pins, but to switch to the star model for nets with a large number of pins.
The clique model results in a denser quadratic optimization problem, whereas the star model tends
to improve the sparsity of the problem, but requires additional dummy cells to represent the star
nodes. At first glance, it might appear that the choice of net model can influence the solution to the
placement problem and this observation is generally true. However, it has been demonstrated [7–9]
that weights for the clique and star models can be selected such that the placement solutions are

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 350 23-9-2008 #5

350 Handbook of Algorithms for Physical Design Automation

(a) (b)

Star node

FIGURE 18.2 Models for a five-pin net in which the net is modeled as a (a) clique or as a (b) star. In both
cases, the edges in the net model can be weighted. (From Viswanathan, N. and Chu, C.C.-N., IEEE Trans. CAD
24, 5, 722, 2005. Copyright IEEE 2005. With permission.)

identical regardless of the model used.Without any loss of generality, we will assume a clique model
for all nets in the remainder of our discussion.∗

A quadratic placement can be obtained by minimizing the unconstrained objective function
given by

�(x, y) =
∑
i,j

wi,j[(xi − xj)
2 + (yi − yj)

2] (18.2)

wherewij represents the weight on the two-pin edge connecting cells i and j in the circuit’s weighted
graph representation. This objective function is separable into �(x, y) = �(x) + �(y) and can be
written in matrix notation (x-direction only) given by

�(x) = 1

2
xTQxx + cTx x + const (18.3)

The nx × nx Hessian matrix Qx encapsulates the connections between pairs of movable cells and is
symmetric positive definite.† Vector cx encapsulates connections between movable cells and fixed
cells. Finally, the constant is a result of connections to and between fixed cells. Equation 18.3 is
minimized by solving the positive definite system of linear equations given by

Qxx + cx = 0 (18.4)

and is typically solved using any number of iterative solvers including CG, SYMMLQ, GMRES,
BICGSTAB, and so forth [10]. Matrix preconditioning is also used to improve the overall efficiency
of the iterative solver, including ILU, drop tolerance, and random walk preconditioners [10,11].

Quadratic optimization is often referred to as force-directedplacement. Suchananalogy follows if
theweighted two-pin nets in the circuit’s graph approximation are viewed as springs.We can consider
the netlist as a system of objects connected by springs with different spring constants (weights).
Minimizing the quadratic objective is equivalent to putting the system into a force-equilibrium state
in which the resultant force on each movable cell owing to all of the connected spring forces is
zero. This result stems from Equation18.4, in which the ith row of the system of linear equations
represents the resultant force on cell i being set to zero.

∗ We note that models based on Steiner trees [12], multipin net decomposition [13], and bounding box [14] have also been
suggested in the literature; we refer interested readers to these sources for more information.

† Positive definiteness requires the presence of fixed cells [5,15]. Further, fixed cells are required for a unique solution to the
optimization problem.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 351 23-9-2008 #6

Force-Directed and Other Continuous Placement Methods 351

Unfortunately, solving Equation 18.4 results in a cell placement with significant cell overlap.
For example, Figure 18.1a shows the placement for circuit IBM04 from the ICCAD04 mixed-size
placement benchmark suite [1] after the solution of an unconstrainedquadratic program—significant
cell overlap clearly exists.

18.2.2 FORCE-BASED SPREADING

Both Kraftwerk and FDP [16] apply additional constant forces to reduce cell overlap. The force
Equation18.4 is extended with an additional constant force vector fx yielding

Qxx + cx + fx = 0 (18.5)

The vector fx is used to perturb the placement such that cell overlap is reduced. It is easy to show
that the additional forces do not restrict the solution space and that any given placement can satisfy
Equation18.5 by proper selection of fx [4].

Cell overlap is not removed just by solving a single perturbation of Equation 18.4 by Equa-
tion 18.5. Instead, the cell overlap is removed over numerous iterations with the additional constant
forces being updated at each iteration to reflect the changing distribution of cells throughout the
placement area. Hence, the additional constant forces are accumulated over iterations and the force
equation at any given iteration i can be written as

Qxxi + cx +
i−1∑
k=1

f kx + f ix = 0 (18.6)

The additional constant force is divided into twoparts, namely those forces accumulatedover previous
placement iterations 1 through i−1 and a current constant force computed at iteration i. Equivalently,
the additional constant force computed at any given iteration is broken into two specific components,
namely (1) a stabilizing force that holds the current placement in equilibrium (represented by the
accumulation of forces from previous iterations) and (2) a perturbing force computed for a given
placement to further reduce cell overlap.

In addition to the requirement that the additional forces be used to distribute cells evenly
throughout the placement area,Ref. [4]specifies additional requirements that the forcesmust satisfy:

1. Force on a cell depends only on its position.
2. Overutilized regions of the placement area are sources of forces.
3. Under-utilized regions of the placement area are sinks of forces.
4. Forces should not form circles.
5. Forces should be zero at infinity.

Given these requirements, the force f (x, y) acting on a cell at position (x, y) within the placement
region is computed using Poisson’s equation given by

∂2φ(x, y)

∂x2
+ ∂2φ(x, y)

∂y2
= κd(x, y) (18.7)

where
d(x, y) is a measure of density at position (x, y)
κ is a constant of proportionality
φ(x, y) is a scalar function such that ∇φ(x, y) = f (x, y)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 352 23-9-2008 #7

352 Handbook of Algorithms for Physical Design Automation

Given that forces tend to zero at infinity, a closed form solution for f (x, y) exists and is given by

f (x, y) = κ

∞�
−∞

∞�
−∞

d(x′, y′)
�r(x, y) − �r(x′, y′)

|�r(x, y) − �r(x′, y′)|2 dx
′dy′ (18.8)

where �r(x, y) is the vector representation of position (x, y). Clearly, there is an analogy to electrostas-
tics where cell area is interpreted as electric charge,φ(x, y) is electric potential, and f (x, y) represents
an electric force field. In practice, the force computation is accomplished using a set of discrete bins
superimposed over the placement region. The Poisson equation is solved using discretization and
finite differences to determine the values of φ(x, y) at the centers of bins in the grid. Finally, forces
are computed approximately using the difference of φ(x, y) between adjacent bins.

An alternative approach for force computation was proposed in Ref. [16], where the force com-
putation was based on an analogy with the n-body problem. In this method, the continuous integral
in Equation18.8 is replaced with a bin structure based on a Barnes–Hut quad-tree [17] and the forces
are computed using a particle–mesh–particle approach.

The magnitudes (or strength) of the constant forces at each iteration must be determined in rela-
tionship to the spring forces representing the quadratic wirelength. The spreading of cells should
not be too fast, otherwise the quality of the placement will be compromised. Conversely, the forces
should not be weighted too small, otherwise their impact will be negligible and many placement
iterations will be required for convergence.Hence, proper force weighting is a significant implemen-
tation decision. In Kraftwerk, it is advocated that the maximum strength of all constant forces
should be equivalent (normalized) to the force of a net with wirelength K(W + H) whereW and H
are the width and height of the placement region, respectively. The constant K is a user parameter
that can be used to trade-off speed of convergence and the quality of results. However, in Ref. [16],
a dynamic weighting is advocated to obtain better placements. Empirically, it was observed that
weighting should be (1) small in the early iterations of placement; (2) gradually increased as place-
ment proceeds, but reduced if too much reduction in overlap occurs in any given placement iteration;
and (3) large near the end of placement when the final cell positions are effectively determined. In
Ref. [16], it was discovered that, at least in the context of mixed-size placement, a further weighting
of forces on cells was useful and required due to a large distribution of force weights that depended
on the area of the cell. This particular observation is interesting, and also a consequence of how
forces were computed Ref. [16].

18.3 ALTERNATIVE TECHNIQUES FOR SPREADING CELLS

Kraftwerk and FDP are examples of force-directed placers that use additional constant forces
at each placement iteration to reduce cell overlap. The forces are constant because their calculated
magnitudes and directions remain unchanged during a placement iteration, while cell positions are
updated through the solution of Equation18.5. Notwithstanding, constant forces are not the only
means by which cells can be spread evenly throughout the placement area. In this section, we
consider several proposed alternatives to the use of constant forces.

18.3.1 FIXED POINTS AND BIN SHIFTING

Fixed points are an alternative approach to remove cell overlap and can be used both to stabilize
and to perturb a placement. To understand fixed points and their similarities and differences with
constant forces, we begin by defining a pseudocell and a pseudonet in terms of a circuit netlist.

Definition 1 A pseudocell f is a dimensionless cell fixed at a position (xf , yf) that does not exist in
the circuit netlist.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 353 23-9-2008 #8

Force-Directed and Other Continuous Placement Methods 353

Definition 2 A pseudonet c(f,i) is a weighted two-pin connection between a pseudocell f and a
cell i in the circuit netlist. The pseudonet has a weight equal to wf ,i and does not exist in the circuit
netlist.

A fixed point f is defined as a pseudocell connected to exactly one cell H(f) in the netlist through
the use of a pseudonet c(f ,H(f)). The connection is weighted by wf ,H(f). Fixed points are used by
the placers ARP [18], mFAR [19] and FastPlace [8,9].

18.3.1.1 Fixed Points in mFAR

The relationship between fixed points and constant forces was best explained in mFAR [19], where
two fixed points are introduced for each cell in the netlist at each placement iteration. The first fixed
point for each cell is used to stabilize the position of each cell in force equilibrium, while the second
fixed point is used to perturb the cell toward a specific direction aimed at reducing cell overlap.

Any placement with fixed and movable cells (including I/Os) can be transformed into a force-
equilibrium state by adding one fixed point to each movable cell. Figure 18.3 illustrates the use of a
fixed point versus a constant force to stabilize one cell in a placement. The cell positioned at (0, 0) is
connected to two other cells in the netlist. These two connections exert quadratic spring forces on the

cell positioned at (0, 0) resulting in a net force of
−−−−→
(−3, 0). To stabilize the placement, a constant force

of
−−→
(3, 0) is added in Figure 18.3a to the cell to achieve a resultant net force of zero. Figure 18.3b and

c shows two alternatives for achieving force equilibrium using a single fixed point with a weighted
connection. Through a combination of the selection for the position of each fixed point f and the
weight of the pseudonet connecting the fixed point to its associated cell H(f), the fixed point in
Figure 18.3 can be placed anywhere along the x-axis. Any placement can be transformed into force
equilibrium in an infinite number of ways using one fixed point for each cell [18].

One additional fixed point per cell can be used to perturb a placement. Figure 18.4 illustrates
the use of a fixed point to perturb a placement; in Figure 18.4a, the cell at position (0, 0) is in force
equilibrium because of the addition of one fixed point positioned at (3, 0). A perturbing fixed point is
added at position (2, 2) as shown in Figure 18.4b and serves to pull the cell in the direction of (2, 2).
Finally, Figure 18.4c shows the resulting position of the cell because of the perturbing fixed point.
This particular perturbation assumes that the other cells are fixed.

With the addition of fixed points, the objective function for quadratic placement becomes

�(x) =
∑
i,j

wi,j(xi − xj)
2 +

∑
f

wf ,H(f)[xH(f) − xf]2 (18.9)

where each fixed point f introduces an additional quadratic term, namelywf,H(f)[xH(f)−xf]2. (A similar
term is introduced in the y-direction). Each fixed point f is indistinguishable from fixed cells and
I/Os in the original netlist and there remains a trade-off in quadratic wirelength versus the spreading
of cells throughout the placement area—the selection of the positions of fixed points and the weight
of the pseudonets requires careful consideration.

It is clear that fixed points serve the same purpose as constant forces. However, fixed points
stabilize and perturb the placement using spring forces. In Ref. [19], it is claimed that fixed points
are a generalization of constant forces, which follows from the observation that a fixed point f is
able to mimic a constant force applied to cell H(f) by using a combination of an infinitely large
distance between the fixed point f and the cell H(f) and an infinitely small weight on the pseudonet
wf ,H(f). Specifically, we can let the spring force introduced by the fixed point—wf ,H(f)[xH(f) − xf]—be
equal to some constant force applied to the cell. As the fixed point moves to a distance of infinity, we
simply adjust the weight of the pseudonet. As the fixed point approaches infinity, the angle between
the fixed point f and the cell H(f) becomes negligible and any movement of cell H(f) has no effect
on the spring force. Hence, the spring force remains constant in both its magnitude and direction.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 354 23-9-2008 #9

354 Handbook of Algorithms for Physical Design Automation

(−2, 2)

1

(0, 0)

2

(−0.5, −1)

(a)

(0, 0)

1

f

(3, 0)1
H (f)

(−0.5, −1)

2

(−2, 2)

(c)

(−2, 2)

(0, 0) f

(1.5, 0)

(−0.5, −1)

H (f)
2

2

1

(b)

FIGURE 18.3 Illustration of a stabilizing constant force versus stabilizing fixed points. In (a), a constant
force is calculated to stabilize the shown cell by countering the spring forces. In (b) and (c), two alternatives
for stabilizing the cell with a fixed point are shown. In fact, a fixed point can be positioned anywhere along the
x-axis to stabilize the placement given an appropriate choice for the weight of the pseudonet. The direction of
the spring force exerted by the fixed point on the cell is not constant, but varies as the cell changes position.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 355 23-9-2008 #10

Force-Directed and Other Continuous Placement Methods 355

(−2, 2)

(0, 0)

1

2

(−0.5, −1)

(3, 0)1

(a)

(−2, 2)

1 1

(2, 2)

f

1 (3, 0)

(−0.5, −1)

(0, 0)

2

H (f)

(b)

(−2, 2)

1

1

2

(−0.5, −1)

(3, 0)

(2, 2)

(0.4, 0.4)

f1

(c)

FIGURE 18.4 Illustration of how a placement can be perturbed by the introduction of a perturbing fixed
point. The placement in (a) is in equilibrium through the use of a fixed point. In (b), a perturbing fixed point is
added at position (2, 2) to pull the cell in this direction. Finally, (c) shows the resulting placement because of
the perturbing fixed point.

Fixed points offer other potential benefits compared to constant forces if consideration is given
to the overall controllability and stability of each placement iteration. Specifically, using only fixed
points, the position of cells at each placement iteration are guaranteed to be within the convex hull
of the fixed points, fixed cells, and I/O pads. Hence, it is guaranteed that cells will remain within the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 356 23-9-2008 #11

356 Handbook of Algorithms for Physical Design Automation

placement area if the position of the fixed points are placed within the placement area. This same
controllability does not exist for constant forces that can push cells outside the placement region.
Finally, the linear system of equations used to determine cell positions becomes better conditioned
and the stability problems observed in Ref. [16] are less likely to be observed.

The means by which the position and weighting of the fixed points is determined is key to
the success of mFAR. The direction of the stabilizing fixed point is easily determined according to
the quadratic spring forces. Perturbing fixed points must be positioned in locations that reduce cell
overlap and are computed as follows.

Given a placement, mFAR imposes a Hg × Wg grid bin structure on the placement area such
that each grid bin contains a small number of cells. Here, Hg andWg are the number of grid bins in
the vertical and horizontal directions, respectively. Cells are inserted into bins in the grid based on
their current positions. A grid bin is indexed as br,c where r and c are its row and column indices,
respectively. LetC(b) denote the capacity of a grid bin b and letA(b) denote the total cell area assigned
to bin b. Any bin b has an overflow if its utilization U(b) = A(b)/C(b) is > 1. A well-distributed
placement requires that no bins overflow.Hence, perturbing fixed points should be selected such that
cells are pulled away from those bins with overflow to those bins without.

Let us consider the vertical boundary between two adjacent grid bins br,c and br,c+1. Further, let
Cr(0,c) and Cr(x+1,Wg) be the total row capacity on the left and right sides of the vertical boundary in
row r, respectively. Finally, let Ar(0,c) and Ar(x+1,Wg) be the total cell area assigned to the bins to the left
and right of the vertical boundary in row r, respectively. The amount of cell area xr,(c,c+1) that must
migrate across the vertical boundary between the grid bins br,c and br,c+1 can be computed by

Ar(0,c) − xr,(c,c+1)

Cr(0,c)

= Ar(c+1,Wg) + xr,(c,c+1)

Cr(c+1,Wg)

(18.10)

where xr,(c,c+1) > 0 indicates that cells should migrate from left to right across the boundary, while a
negative value indicates the reverse. Cells are not shifted across boundaries, but rather the position
of the vertical boundary is shifted and the distance moved by the boundary is decided upon by the
magnitude of xr(c,c+1) as

sr,(c,c+1) = xr,(c,c+1)

h(br,c)
(18.11)

where
sr,(c,c+1) indicates the amount of the shift
h(br,c) is the height of the grid bin br,c

After the shifts for all grid boundaries are calculated, the new position of any cell i is given by
the linear mapping

xnewi = xnewmin + xoldi − xoldmin

xoldmax − xoldmin

× (
xnewmax − xnewmin

)
(18.12)

A similar operation is performed in the y-direction. The values xoldmin and x
old
max are the left and right

coordinates of the grid bin before boundary shifting, while values xnewmin and x
new
max are the left and right

boundaries after the shifting.
The perturbing fixed points should be positioned such that cells are pulled toward their new

target positions meaning that the perturbing fixed point f for a cell H(f) is in the direction of αd

where d is the vector
−−−−−−−−−−−−−−−−−→
(xnewH(f) − xoldH(f), y

new
H(f) − yoldH(f)) and α is a design-specific parameter used to control

the overall strength of the perturbation. Note that only the direction of the perturbing force and its
strength are determined. The actual position of the fixed point f and the weight of the pseudonet

such that αd = wi,j(
−→
f − −−→

H(f)) are not yet determined.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 357 23-9-2008 #12

Force-Directed and Other Continuous Placement Methods 357

Fixed points and perturbing points may either be placed on-chip (located within the placement
area) or off-chip (located outside the placement area) [20]. As previously mentioned, when the
quadratic program is solved, cells will always remain within the convex hull defined by the fixed
points. Thus, as long as the fixed points are placedwithin the placement area, the cells will not escape
from the placement area. Numerical studies presented in Ref. [20] demonstrated that stabilizing fixed
points should be kept off-chip to minimize their impact on wirelength, while perturbing fixed points
should be kept along the boundary of the placement area with their edge weights wij kept as small
as possible. Hence, initially all fixed points are positioned along the boundary of the placement area
and, as placement progresses, the strength of the stabilizing fixed points are reduced, while their
lengths (and positions) are increases such that they are placed off-chip.

18.3.1.2 Fixed Points in FastPlace

The description of fixed points thus far has focused on the implementation used by mFAR.
FastPlace also uses fixed points and a bin shifting strategy to reduce cell overlap. However,
unlike mFAR that used two fixed points per cell to stabilize and perturb a placement at any given
iteration, FastPlace uses only one fixed point per cell.

In any placement iteration, FastPlace skips the calculation of stabilizing fixed points and
immediately imposes aHg ×Wg regular grid structure on the placement area. For each grid bin b, the
bin utilization U(b) is calculated. Subsequently, cells are shifted first in the x-direction and then in
the y-direction. Similar to mFAR, the shifting in each direction is a two-step process. Grid boundaries
are first shifted based on the current utilization of the bins, which yields an uneven bin structure.
Subsequently, cells are linearly mapped from their positions in the regular bin structure to a target
position in the uneven bin structure thereby yielding a target position for each cell. The shifting of
bin boundaries in FastPlace is illustrated in Figure 18.5. The positions of the bin boundaries in

Utilization

Bini Bini+1

NBi

OBi−1 OBi OBi+1

FIGURE 18.5 Illustration of the shifting of bin boundaries used in FastPlace in either the x- or y-direction.
The utilization of each bin is calculated based on the current placement and is then used to shift bound-
aries converting a regular bin structure into an uneven bin structure in which cell overlap is removed. (From
Viswanathan, N. and Chu, C.C.-N., IEEETrans. CAD24, 5, 722, 2005. Copyright IEEE 2005.With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 358 23-9-2008 #13

358 Handbook of Algorithms for Physical Design Automation

the x-direction (a similar operation can occur in the y-direction) are computed as follows. Let OBi

be the x-position of the boundary for bin i in the original regular bin structure. Similarly, let NBi be
the x-position of the boundary for bin i in the uneven bin structure. The position of NBi is calculated
via the equation

NBi = OBi−1[U(i + 1) + δ] + OBi+1[U(i) + δ]
U(i) + U(i + 1) + 2δ

(18.13)

The idea is that the bin shifting should average out the utilization of adjacent bins. Hence, the intuition
behindEquation18.13 is that it averages the utilization of bins i and i+1. The parameter δ is required
for the following reasons. Let δ = 0 and U(i + 1) = 0. From Equation 18.13, it can be seen that
NBi = OBi+1 and NBi+1 = OBi and is a crossover of adjacent bin boundaries that results in an
improper mapping of cell positions from the regular to the uneven grid structure. The inclusion of
δ = 1.5 prevents this crossover from occurring.

The bin shifting yields a target position for each cell, but it is possible that the displacement
of each cell is too large—the cell should not be positioned exactly at its target position, although it
should move toward its target position. FastPlace attempts to pull each cell H(f) in the direction

of d = −−−−−−−−−−−−−−−−−→(
xnewH(f) − xoldH(f), y

new
H(f) − yoldH(f)

)
, which is similar to mFAR. However, in FastPlace, movement

in this direction is controlled separately in the x- and y-directions usingmovement control parameters
αx andαy(<1), respectively.To control the actual distancemoved by any cell, αx and αy are increasing
functions that are inversely proportional to the maximum bin utilization. Consequently, during early
placement iterations where there is a large amount of cell overlap (and the maximum bin utilization
is large), the movement control parameters are small and cells are shifted very small distances toward
their target positions. In later iterations, as cells are well distributed throughout the placement area,
αx and αy take on larger values to accelerate convergence. In Refs. [8,9], the values for the movement
control parameters are given by

αy = 0.02 + 0.5

maxb U(b)

αx = 0.02 + 0.5

maxb U(b)

(
Average cell width

Cell height

) (18.14)

which, once again, represent a trade-off in the spreading of cells and the wirelength as measured by
the quadratic objective. Finally, the target position for a cell H(f) is taken to be a displacement of
αx|xnewH(f) − xoldH(f)| and αy|ynewH(f) − yoldH(f)| in the x- and y-directions from its original position, respectively.

The bin shifting, linear mapping, and scaling according to the movement control parameters
yields a target position for each cell H(f). It is necessary to calculate a position for each fixed point
f and weight the pseudonet c(f ,H(f)) such that cell H(f) is pulled toward its target position. The
approach taken by FastPlace is illustrated in Figure 18.6. Each fixed point f is placed on the
boundary of the placement area with its position calculated as follows. Each cell H(f) is moved to
its target position as calculated above, while other movable cells are considered fixed. Spring forces
will be exerted on cell H(f) because of connections to other cells and will result in a nonzero spring
force, because cellH(f) is out of force equilibrium. The constant force that would put cellH(f) back
into force equilibrium is calculated, and its ray is intersected with the boundary of the placement
area. Fixed point f for cell H(f) is then placed at the intersection of the ray and the boundary of the
placement area. By combining bin shifting and force calculations, FastPlace uses a single fixed
point per cell placed on the boundary of the placement area to both stabilize and perturb the current
placement.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 359 23-9-2008 #14

Force-Directed and Other Continuous Placement Methods 359

Pseudonet
Fixed point

position

Spreading force

Placement area
boundary

Resultant
spring force

Target cell
position

pFy

pFx

FIGURE 18.6 Illustration of fixed points in FastPlace. Given a target location for each cell after the bin
stretching, the spring force because of other cells (which are assumed to be fixed) is computed. The perturbing
force is in the opposite direction and serves to pull the cell toward its target location. The fixed point is positioned
on the boundary of the chip and the weight of the pseudonet is computed according to Equation 18.15.

Finally, the weight of the pseudonet connecting the fixed point f to cellH(f) must be computed.
The weight of the pseudonet is computed from the following equation:

wf ,H(f) =
√
pF2

x + pF2
y√

pD2
x + pD2

y

(18.15)

where
pFx(pFy) is the x-component (y-component) of the stabilizing constant force
pDx(pdy) is the x-component (y-component) of the distance between the fixed point f and the
target position for cell H(f)

18.3.2 FREQUENCY-BASEDMETHODS

An alternative frequency-based approach to spreading cells was described in Ref. [21] and employed
in UPlace [13]. In this method, the spreading forces are computed by minimizing the uneven
density distribution of cells in the placement area. A regular N × N grid structure is imposed on the
placement area. The density of each bin bi,j in the grid is associatedwith amatrix element dij = D(i, j)
computed as

dij = U(bi,j) = A(bi,j)

C(bi,j)
(18.16)

where
A(bi,j) is the cell area in the bin bi,j
C(bi,j) is the capacity of bin bi,j

Thus, matrix D represents the density distribution of cell area. The frequency domain represen-
tation of this matrix allows the cell distribution to be viewed as the rate at which the magnitudes of
the densities change.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 360 23-9-2008 #15

360 Handbook of Algorithms for Physical Design Automation

The matrix D can be converted into its frequency-domain representation F for all elements i, j
using a discrete cosine transform, DCT [22], whose formula is given by

fij = 2

N
e(i)e(j)

N−1∑
x=0

N−1∑
y=0

dxy cos

[
(2x + 1)iπ

2N

]
cos

[
(2y+ 1)jπ

2N

]
(18.17)

where
x and y are coordinates in the spatial domain
i and j are coordinates in the frequency domain

and

e(i) =
{

1√
2
, i = 0

1, 1 ≤ i ≤ N − 1
(18.18)

The distribution of all frequencies can then be defined as

Dist =
∑
i,j

uij · f 2ij (18.19)

where uij is the weight of the distribution at the frequency (i, j).∗ When the placement of cells is
totally even, all frequencies fij become 0, and Dist is minimized.

In UPlace, the quadratic objective �(x) is used to minimize wirelength during placement.
Because Dist is complicated and difficult to minimize directly, it is approximated by a quadratic form
taken as a function of the cell positions such that Dist = ∑

i Disti, where for each cell i, we have

Disti = 1

2
aix

2
i + bixi + const (18.20)

To determine the coefficients ai and bi, the current solution of the placement is disturbed one cell at a
time, and the changes in the values of Dist are observed. For a given cell i (considering the x-direction
only), the value of Dist is computed for the current placement. The cell i is then shifted left by a
distance δ, and Disti−δ is recomputed. The cell i is then shifted right by δ, and Disti+δ is computed.
This testing yields three sampled tuple values {(i, Disti), (i− δ, Disti−δ), (i+ δ, Disti+δ} for each cell,
which allows the values of ai, bi in Equation 18.20 to be interpolated for each i. The coefficients
from the quadratic approximation to Dist can be reexpressed in matrix form, added together with the
quadratic wirelength �(x), differentiated and set to zero to yield the system of equations given by

(Qx + Ax)x = −cx − bx (18.21)

Here, Ax is a diagonal matrix defined as Ax = diag(a1, a2, . . . , an), and bx = [b1, b2, . . . , bn]T. Note
that the constant term in Equation18.20 disappears as a result of the differentiation.NeitherQx nor cx
are affected by changes to the distribution function Dist; only matrix Ax and vector bx are modified.
A similar equation is established for the y-direction.

Equation 18.21 can be likened to the force equation used inKraftwerk in the followingmanner.
By determining the distribution function Dist, the technique finds an additional force formulation
fx = Axx + bx, which equals the first-order derivative of the quadratic approximation to the cell
distribution, Dist. Thus, the equilibrium state of the system corresponds to the optimum solution to
the combined objective function of both wirelength and cell distribution components [13].

∗ In Ref. [13], uij = 1
i+j+1

so that lower-frequency distributions are given higher weights because they are more expensive to
eliminate.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 361 23-9-2008 #16

Force-Directed and Other Continuous Placement Methods 361

18.4 ENHANCEMENTS

Quadratic force-directed placers are generally not as competitive with methods based on simulated
annealing or minimum-cut partitioning. This is a consequence of the use of a quadratic wirelength
objective. In particular, quadratic wirelength does a poor job of approximating routed wirelength,
which is better approximated by a linear objective such as HPWL. Consequently, it is common to
interleave the placement iterations with other heuristic strategies to improve the overall quality of
the placements. In this section, we review the strategies used in several tools, including FDP, mFAR,
and FastPlace.

18.4.1 INTERLEAVED OPTIMIZATIONS

In Ref. [23], Goto proposed an algorithm that can be used to move a cell at (or near) the position that
minimizes the wirelength of its connected nets, while assuming other cells are fixed. The algorithm
can be applied iteratively to each cell to obtain an improved placement. Central to Goto’s idea is the
concept of the median of a cell. Goto defines the median of a cell as the position of the cell at which
the HPWL of its connected nets is minimum.

The median of cell C is computed as follows. Let EC denote the set of nets connected to cell C.
For each e ∈ EC, compute the enclosing rectangle of all pins on e, while excluding those connections
to cell C; the dimensions of this rectangle can be denoted by coordinates (xmin

e , ymin
e) and (xmax

e , ymax
e),

where xmin
e and xmax

e are the minimum and maximum values in the x-direction, respectively. The same
definitions hold for ymin

e and ymax
e in the y-direction. Given these definitions, the total wirelength for

all nets connected to cell C at position (x, y) is given by

fC =
∑
e∈EC

[fe(x) + fe(y)] (18.22)

where

fe(x) =
⎧⎨
⎩

xmin
e − x, x < xmin

e

0, xmin
e ≤ x ≤ xmax

e

x − xmax
e , x > xmin

e

(18.23)

fe(y) =
⎧⎨
⎩

ymin
e − y, y < ymin

e

0, ymin
e ≤ y ≤ ymax

e

y − ymax
e , y > ymin

e

(18.24)

The optimal position (x, y) for cell C can be calculated separately in both the x- and y-directions.
Goto showed that Equation 18.22 can be written (x-direction only) as

fC =
∑
e∈EC

(|x − xmin
e | + |x − xmax

e |) (18.25)

with the optimal solution given by a median computation. In practice, medians are computed simply
by inserting xmin

e and xmax
e for all e ∈ EC into a vector and sorting the entries of the vector. For a vector

of length n indexed 1 to n, a suitable minimizing value for x is any value within the range of values
stored at the indices
n/2� and
n/2�+ 1 of the sorted vector. Figure 18.7 shows the computation of
the median rectangle for a cell connected to three nets.

Goto observed that the total cost of placing cell C in any position outside of the median is
piecewise strictly convex. This fact helps to identify alternative positions for cell C that are perhaps
outside of the optimal positions. Goto encapsulates these alternative positions through the use of the
ε-neighborhood,which is defined as the set of ε positions for the cell where the wirelength is one of
the ε smallest values.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 362 23-9-2008 #17

362 Handbook of Algorithms for Physical Design Automation

(a)

2

3

4, 5

6

1

1 2 3 4 5, 6

(b)

FIGURE 18.7 Illustration of median calculation for a cell C connected to three nets. In (a), the original
placement of cells is shown. In (b), the median or optimal range of (x, y) values for cell C is shown. Six
x- and y-positions are used for the median computation because three nets are involved. Note that two-pin nets
degenerate to a single point. A larger set of position for cell C can be computed and is best done by expanding
the median rectangle outward according to the points used in the median computation and corresponds to the
concept of ε-neighborhoods described by Goto in Ref. [23].

Median improvementwas implementedwithin the force-directed placer,FDP. Specifically, mul-
tiple passes of median improvement are performed as cell overlap is reduced. Because median
improvement attempts to reposition each cell within its median rectangle, the use ofmedian improve-
ment can reintroduce cell overlap into the placement. To alleviate the cell overlap, FDP attempts to
carefully monitor the distribution of cell area when placing a cell inside its median rectangle, it
is positioned such that a minimum of overlap is reintroduced. Further, if at any point during the
algorithm too much cell overlap is reintroduced, the algorithm is terminated.

InRef. [16], itwas empirically observed that the use ofmedian improvement ismost effective near
the beginning of placement when a large amount of cell overlap is prevalent and less effective toward
the end of placement. To this end, the median rectangle used in FDP is enlargedwhen it is discovered

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 363 23-9-2008 #18

Force-Directed and Other Continuous Placement Methods 363

Median rectangle

5, 64321

4, 5

3

2

1

6

(a)

Extended
rectangle
for HPWL

and overlap
minimization

Median rectangle

5, 64321

1

2

3

4, 5

6

(b)

FIGURE 18.8 Rectangles used in FDP based on Goto’s idea to improve wirelength. In (a) the median or
optimal range for replacing a cell. In (b) the extended range for replacing the cell that improves wirelength
while providing more placement flexibility in order to avoid the reintroduction of overlap.

that the algorithm is reintroducing too much cell overlap—this extension of the search rectangle for
repositioning a cell is similar to the notion of an ε-neighborhood described by Goto. The rectangles
considered by the median improvement algorithm used in FDP are illustrated in Figure 18.8. Finally,
the median improvement heuristic is used in yet another way in FDP. Specifically, at each iteration,
median improvement is applied to determine a new position for each cell. However, the cell positions
are not updated. Rather, the cell positions obtained by calling median improvement are used to
compute an additional force on each cell. It was found, in FDP, that this additional force can be used
to deflect the constant forces and lead to an improved overall quality of placement. In Ref. [16],
the use of interleaved median improvement during quadratic force-directed placement was shown to
improve wirelength by 10–15 percent when measured in terms of HPWL.

Another interleaved optimization is the iterative local refinement used in FastPlace. In this
approach, a regular bin structure is imposed over the placement area to estimate the current utilization
of a placement region. The netlist is traversed and the source bin for each cell is determined. Cells
are then moved from source to target bins based on both the amount of wirelength improvement and
the target bin’s utilization. For every cell present in a bin, four scores are computed corresponding to

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 364 23-9-2008 #19

364 Handbook of Algorithms for Physical Design Automation

Score

Score

Score

Score

N

EW

S

321

1

2

3

FIGURE 18.9 Illustration of iterative local refinement used inFastPlace. A regular bin structure is imposed
over the placement area. Cells in source bins are tentatively moved from source bins in the north, east, south, and
west directions into adjacent target bins. Scores for each of the four moves are calculated based on reduction in
wirelength and change in bin utilization. The best movement is chosen unless all scores are negative, in which
case the cell is left in its source bin. (From Viswanathan, N. and Chu, C.C.-N., IEEE Trans. CAD 24, 5, 722,
2005. Copyright IEEE 2005. With permission.)

the four possible movements of a cell. For computing scores, it is assumed that a cell moves from its
current position in the source bin to the same position in each target bin that is adjacent to the source
bin. That is, cells are tentatively moved by one bin width (or bin height). Each score is a weighted
summation of two components, namely the resulting wirelength reduction and resulting utilization
of the source and target bins. Because this refinement scheme is used primarily to reduce wirelength,
the first term of the scoring function is more heavily weighted. If, for any cell, the four computed
scores are all negative, the cell is kept in its source bin. This refinement strategy is illustrated in
Figure 18.9. Several iterations of iterative local refinement are performed until there is no significant
improvement in wirelength. By not using iterative local refinement in Ref. [24], a reduction of 32.2
percent in total runtime was observed, but final wirelengths were 15.1 percent worse. Further, the
wirelength increasewas more prominent as circuit size increased. Thus, the iterative local refinement
is significant in improving the final quality of result.

18.4.2 MULTILEVEL OPTIMIZATION

Netlist clustering is an attractive means of improving the runtime and quality of placements pro-
duced by force-directed methods. Clustering coarsens a netlist by merging cells together to form
larger groups of cells, or clusters, with the hyperedges adjusted to reflect the possible absorption
of circuit connections into clusters. Placement is performed on the coarsened netlist and, as the
algorithm progresses, netlists are repeatedly uncoarsened and placed. Unclustering and reclustering
is sometimes performed at intermediate steps during placement to allow the placer to escape from
earlier bad clustering decisions [16,25].After placement, detailed improvement is usually performed
on the flat netlist to improve final results.

Clustering methods have been used successfully in a number of force-based methods [20,24,
26–29], including many of those methods described in this chapter. Clustering has been shown to
significantly improve the runtime and quality of placement results. Much of this improvement stems
from the fact that clustering helps to keep tightly connected cells together and prevents placement
algorithms from being trapped in local minima. For additional information on clustering, we refer
the reader to the cited works and Chapter 7. For additional information on the use of clustering to
improve placement, we refer the reader to Chapter 19.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 365 23-9-2008 #20

Force-Directed and Other Continuous Placement Methods 365

18.5 NONQUADRATIC, CONTINUOUS METHODS

As previously mentioned, force-directed placers tend to rely on quadratic optimization and inter-
leaved improvement heuristics that directly minimize an approximation of wirelength. Although the
quadratic wirelength can be linearized using, for example, reweighting [30] and function regular-
ization [31], these schemes require more computational effort when compared to simple quadratic
optimization with interleaved improvement. Further, the linearization of quadratic wirelength still
requires the conversion of the circuit hypergraph to its weighted graph representation, which serves
to further abstract the wirelength model.

Rather than using a quadratic wirelength objective and a hypergraph-to-graph transformation,
several placers including APlace [32], mPL [28], and LSD [24] work directly with the circuit
hypergraph and attempt to simultaneously minimize a linear wirelength estimate and distribute cells
throughout the placement area. These methods implement an objective function that consists, in part,
of minimizing a metric of quality such as wirelength and a measure of infeasibility such as overlap.
This can be encapsulated in the generic form given by

� = β × fquality + (1 − β) × foverlap (18.26)

where β is an adjustable parameter that represents a trade-off between the quality of result and the
amount of cell overlap during any point of the placement method. Typically, the trade-off con-
stant, β, is set close to 1 early in placement (where the focus is on placement quality), and is
reduced throughout the placement method to encourage the distribution of cells throughout the
placement area.

Placement methods that work directly with the circuit hypergraph, upon first glance, do not
appear to be force-directed methods. At a minimum, however, they are similar in that these methods
reduce cell overlap without partitioning. We shall see that there are additional similarities.

18.5.1 PLACEMENT VIA LINE SEARCH

LSD [24] performs placement with an objective function similar to Equation18.26 and works with
the circuit netlist directly to minimize HPWL. However, it still relies on force-directed methods that
use constant additional forces such as Kraftwerk and FDP.

Specifically, each placement iteration of LSD works as follows: Given a placement, additional
constant forces are computed to both stabilize and perturb the given placement that is identical to
Kraftwerk and FDP. The particular weights for the perturbing forces are less significant in LSD
and the forces are normalized to unity. Subsequently, a QP identical to Equation 18.5 is solved and
yields a new placement of cells. However, unlike Kraftwerk and FDP—which consider this to
be the new placement—LSD considers this placement as only a suggested placement of cells. Cells
are not actually moved to these new positions. Rather, the new cell positions are subtracted from
their original positions to yield a suggested search direction. Movement in this suggested direction
reduces cell overlap while accounting for quadratic wirelength.

Within a placement iteration, LSD employs a median improvement heuristic. The initial place-
ment provided to the heuristic is the original placement and not that obtained from the QP. Similar
to the QP, the median improvement heuristic returns a new placement of cells. However, this new
placement is aimed at reducing theHPWL of the circuit netlist directly, and does not take into account
quadratic wirelength or cell overlap. This new placement, however, is not used as a placement—
similar to the placement from the QP, the new cell positions frommedian improvement are subtracted
from their original positions to yield another suggested search direction. This search direction aims
to minimize HPWL.

Finally, in each placement iteration, LSD performs a two-dimensional line search within the
cone produced by the two search directions computed from the QP and application of median
improvement. This search cone is illustrated in Figure 18.10. For each position sampled by the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 366 23-9-2008 #21

366 Handbook of Algorithms for Physical Design Automation

Suggested position from
a median improvement

iteration

Cell i

Suggested position
from a Kraftwerk

iteration

Search region to trade off overlap
and wirelength reductions for cell i

FIGURE 18.10 Illustration of the search cone used in LSD. For each cell, a new placement is computed along
the lines of Kraftwerk, which yields a search direction that tends to reduce cell overlap. Similarly, for each
cell, a call to median improvement yields a new placement that tends to reduce HPWL directly. LSD uses a line
search to explore the region between these two search directions to find the placement of cells that best serves
to trade off HPWL and cell overlap according to Equation 18.26.

two-dimensional search, the placement quality and placement overlap are assessed according to the
normalized function given by

score = β × New_HPWL

Orig_HPWL
+ (1 − β) × New_Overlap

Orig_Overlap
(18.27)

where β controls the preference between HPWL and cell overlap. The values New_HPWL and
Old_HPWL represent the HPWL of the current placement being considered by the line search and
the original placement, respectively. Similarly, New_Overlap and Old_Overlap represent a
measure of the amount of cell overlap for the current placement being considered by the line search
and the original placement, respectively. Once all placements have been tested by the line search,
the placement with the best normalized score is selected and cell positions are updated. The value of
β is a control parameter, which is initially set close to unity to encourage wirelength improvement
and is slowly lowered as cells are spread to accelerate convergence. Placement terminates once there
exists relatively little cell overlap, as in Ref. [16].

The line search offers a significant advantage overKraftwerk-likemethods [4,16,24], because
it implements an easily tunable objective function that can be geared toward speed (by encouraging
faster spreading) or toward quality (by preferring lower HPWL). The line search can be also be
extended to account for additional objectives simply by computing new forces and modifying the
objective function and line search accordingly. Nevertheless, the similarities between LSD and more
traditional force-directed placers are clear.

18.5.2 APLACE AND THE LOG-SUM-EXP APPROXIMATION

In the patent by Naylor et al. [33], the HPWL of a hyperedge is approximated using a log-sum-exp
formula, given by

HPWLλ(e) = α

⎡
⎣ln

⎛
⎝∑

vj∈ei
e
xj
α

⎞
⎠+ ln

⎛
⎝∑

vj∈ei
e

−xj
α

⎞
⎠+ ln

⎛
⎝∑

vj∈ei
e
yj
α

⎞
⎠+ ln

⎛
⎝∑

vj∈ei
e

−yj
α

⎞
⎠
⎤
⎦ (18.28)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 367 23-9-2008 #22

Force-Directed and Other Continuous Placement Methods 367

where α is defined as a smoothing parameter. The smaller the value of α, the more accurate the
approximation to Equation 18.1. However, α cannot be chosen to be too small because of machine
precision and numerical stability. In effect, the use of the log-sum-exp formula picks the dominant
cell positions to approximate the exact HPWL for each edge as specified in Equation 18.1. Despite
its use of transcendental functions, the approximation in Equation18.28 is both differentiable and
strictly convex, which makes it fairly simple to minimize.

To spread cells, it is desirable to augment the log-sum-exp form with a penalty function that
penalizes the uneven distribution of cells. To this end, based on the patent in Ref. [33], APlace
[32,34,35] imposes a grid on the placement area and attempts to equalize the total cell area in every
grid bin. The straightforward penalty for an uneven cell distribution is given by

ρ =
∑
b

[A(b) − Average cell area]2 (18.29)

where A(b) is the cell area in bin b. This penalty is neither smooth nor differentiable and is difficult
to optimize. APlace approximates the total cell area in each grid bin by area potentials for each
cell. The area potential uses a bell-shaped function, as shown in Figure 18.11, to model the effect of
a cell’s area on nearby grid bins. It is described by the equation given by

Potential(c, b) = α(c) · f (|cx − bx|) · f (|cy − by|) (18.30)

for grid bin b with center (xb, yb), cell c with center (xc, yc), and f (·) representing the bell-shaped
function. Here, α(c) is a proportionality factor used to ensure that the sum of the potentials for a cell
equals the cell’s area. That is,

∑
b

Potential(c, b) = Area(c) ∀ c ∈ V

In Equation18.30 and illustrated in Figure 18.11, the bell-shaped function is given by

p(d) =
{

1 − 2d2

r2
, 0 ≤ d ≤ r

2
2(d−r)2

r2
, r

2
≤ d ≤ r

(18.31)

p (d)

1−2d 2/r 2

2(r−d)2/r 2

rr r /2r /2

FIGURE 18.11 Bell-shaped penalty function that is used to remove overlap between cells. r controls the
range of interaction (the radius) of any given cell’s potential. In standard cell placement, the value of r can be
set constant, but in mixed-size placement, it is typically adjusted on a per-cell basis (with larger values of r
employed for larger cells). (From Kaling, A.B. and Wang, Q., IEEE Trans. CAD 24, 5, 734, 2005. Copyright
2005. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 368 23-9-2008 #23

368 Handbook of Algorithms for Physical Design Automation

where r represents the radius of the cells’ potentials. The use of piecewise quadratic functionsmakes
the potential function simple to differentiate.Given the notion of cell potential, the expected potential
of a grid bin b is one in which the total cell area is evenly distributed over all grid bins. That is,

Expected potential(b) = Total cell area

Num grid bins
(18.32)

Thus, to minimize cell overlap, it suffices to minimize the difference of the potential of cells within
each bin and the corresponding expected potential of each bin using a penalty function given by

Penalty =
∑
b

[∑
cell c

Potential(c, b) − Expected potential(b)

]2

(18.33)

which is smooth and differentiable because of the selection of the bell-shaped potential function.
InAPlace, the penalty term in Equation 18.33 is combinedwith the log-sum-expapproximation

to wirelength in Equation 18.28 to arrive at a linearly weighted objective function that represents a
trade-off in linear wirelengthminimization and the quadratic overlap penalty. This objective function
is given by

min�sc = ζ · HPWLλ + ω · Penalty (18.34)

In Equation 18.34, the constant ζ controls the weight associated with wirelengthminimization,while
ω is used to weight the overlap removal. Too large a value of ω can cause cells to spread hastily and
lead to poor wirelength; too large a value of ζ can contract cells together and prevent them from
spreading out. To counteract these effects, APlace keeps the value of ω fixed, and sets ζ to be
large in the beginning; as the solver slows down (or as a solution appears), ζ is divided by two. The
equation is solved repeatedly (and the balance of the weight tipped toward the penalty objective)
until cells are spread evenly across the placement area. Because of its smooth and differentiable
nature, this objective function can be solved efficiently using the Polak–Ribierre method [10]. To
address runtime performance, the placement grid is initially made very coarse, which leads to cells
spreading more quickly early on. A progressively finer grid is used as cells spread to ensure a more
even distribution of area.

The bell-shaped function previously described is most applicable to standard cells, which are
roughly the same size. A modification to the bell-shaped penalty term is described in Ref. [34]
to allow for the placement of larger macrocells like those found in mixed-size circuits. In this
modification, the scope of the area potential is extended according to the block size so that a larger
block has a nonzero potential with respect to nearby grid bins. Given a module v with width wv,
located in bin b, the scope of the module’s x-potential is given by wv

2
+ 2wb. That is to say, every

grid bin within a horizontal distance of wv
2

+ 2wb from the module’s center has a nonzero x-potential
contribution from the module. Consequently, the bell-shaped potential of a cell v and grid bin b
become (x-direction only)

pvx (d) =
⎧⎨
⎩
1 − α · d2, 0 ≤ d ≤ wv

2
+ wb

β(d − wv

2
− 2wb),

wv

2
+ wb ≤ d ≤ wv

2
+ 2wb

(18.35)

where α = 4(wv+4wb)

wv+2wb
and β = 2(wv+4wb)

wb
. The function is formulated in this fashion so that it is smooth

when dx = wv
2

+ wb. (A similar formula is employed in the y-direction.)
One of the benefits of the formulation employed in APlace is its extensibility. In Ref. [32],

geometric constraints are considered as additional penalty terms. For example, to handle alignment
constraints (in the x-dimension), a penalty function such as

∑
i∈|VH |(xi − x̄)2 can be added.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 369 23-9-2008 #24

Force-Directed and Other Continuous Placement Methods 369

Numerous additional details are presented in Ref. [29] to improve the overall quality and per-
formance of APlace. One improvement to quality stems from the use of multilevel clustering. An
adaptive grid size is also described in which the coarseness of the grid is modified based on average
cluster size, as this was found to lead to better wirelengths with reduced runtime. Several other
implementation-specific details are mentioned therein, and we refer interested readers to Ref. [29]
for more information.

APlace does not share a direct analogy with the concept of a force—its relationship to other
force-directed methods is limited to the removal of cell overlap without the need to partition the
placement area and, perhaps, its use of the conjugate gradient method for minimization. It is rea-
sonable to interpret the gradient of the objective function used in APlace as a force that specifies
a direction for cell movements.

18.5.3 MPL AND ITS GENERALIZATION OF FORCE-DIRECTED PLACEMENT

Like APlace, mPL [28] works directly with the circuit hypergraph and minimizes wirelength
through the use of the log-sum-exp form in Equation 18.28. The log-sum-exp form was chosen
from among two other objective function candidates: the first was the quadratic approximation to
wirelength given in Equation 18.2 and the second was the Lp-norm approximation [15] given by

HPWLLp =
∑
e∈EH

⎡
⎢⎣
⎛
⎝∑

vk∈e
x pk

⎞
⎠

1
p

−
⎛
⎝∑

vk∈e
x−p
k

⎞
⎠

− 1
p

+
⎛
⎝∑

vk∈e
y pk

⎞
⎠

1
p

−
⎛
⎝∑

vk∈e
y−p
k

⎞
⎠

− 1
p
⎤
⎥⎦ (18.36)

In the Lp-norm, the first and second terms tend to max xk and min xk as p tends to infinity [28], which
results in a tight approximation of theHPWLsimilar to the log-sum-exp form.However, experimental
evidence presented in Ref. [28] suggests that the log-sum-exp form offers HPWL results, which are 3
and 61 percent better than the Lp(p = 32) and quadratic approximations, respectively.Moreover, the
log-sum-exp approximation was solvable 67 percent faster than the Lp-norm but 23 percent slower
than the quadratic model, and was therefore deemed to offer the best balance of runtime and quality.

Unlike APlace, which uses the bell-shaped function to spread cells evenly in localized regions,
mPL spreads cells globally via the Helmoltz equation (which is similar to the Poisson equation used
in Kraftwerk and other placers). mPL imposes a grid structure over top of the placement region.
For every bin bi,j in the grid, its density di,j is computed at each placement iteration. New positions
for cells are determined by solving the optimization problem given by

min

⎧⎨
⎩W =

∑
e∈EH

HPWLλ(e)|di,j = K ∀ bins bi,j

⎫⎬
⎭ (18.37)

whereK is a target density. (K can be specified differently for each bi,j in situationswhen a nonuniform
distribution of cells is desired [28].) This optimization problem is difficult to solve because of
the nondifferentiability of the constraints. Thus, mPL uses the Helmholtz equation to arrive at a
continuous density representation of D = (di,j).

The solution to theHelmholtz equation (with boundary conditions) can be used tomodel diffusion
processes, and thusmakes an ideal candidate formodeling the spreading of cells in a two-dimensional
grid. (The Poisson equation can be considered a special case of the Helmholtz equation.) Applied to
the density distribution, the Helmholtz equation can be rewritten as

∂2φ(x, y)

∂x2
+ ∂2φ(x, y)

∂y2
− εφ(x, y) = d(x, y), (x, y) ∈ R

∂φ

∂v
= 0, (x, y) on the boundary of R

(18.38)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 370 23-9-2008 #25

370 Handbook of Algorithms for Physical Design Automation

where
ε > 0
v is an outer unit normal
R represents the placement region, and d(x, y) represents the continuous density function

The boundary conditions, encapsulated in the term ∂φ

∂v
= 0, specify that forces pointing outside

of the placement region be set to zero (i.e., Neumann boundary conditions)—this is a key difference
with the Poisson method used in Kraftwerk, which assumes that forces become zero at infinity.

Because the solution of Equation 18.38 gains two more derivatives than d(x, y), φ is a smoothed
version of the density function [28]. To solve this problem using the densities di,j, the problem is
first discretized using the finite difference method [36] (while employing the Neumann boundary
conditions). If φi,j represents the value of φ at the center of bin bi,j, and hx, hy represent the width and
height of a bin, the discrete approximation to Equation18.38 can be expressed as

φi+1,j − 2φi,j + φi−1,j

h2y
+ φi,j+1 − 2φi,j + φi,j−1

h2x
− εφi,j = di,j (18.39)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, subject to

φ0,j = φ1,j, ∀1 ≤ j ≤ n
φm+1,j = φm,j, ∀1 ≤ j ≤ n
φi,0 = φi,1, ∀1 ≤ i ≤ m
φi,n+1 = φi,n, ∀1 ≤ i ≤ m

(18.40)

Once this linear system of equations is solved for φ, the optimization problem Equation 18.37 can
be reexpressed in terms of φ yielding the problem given by

min

⎧⎨
⎩W =

∑
e∈EH

HPWLλ(e) | φi,j = K̂ ∀ bins bi,j

⎫⎬
⎭ (18.41)

where K̂ is a scaled constant representation ofK . This optimization problem is solved using Uzawa’s
algorithm [37]. One iteration of Uzawa’s algorithm is given by

�Wk+1 +
∑
i,j

λki,j�φi,j = 0

λk+1
i,j = λki,j + α(φi,j − K̂)

(18.42)

where
λk is the Lagrange multiplier at the kth iteration
α is a parameter to control convergence

Recall that the wirelength portion of the objective W is a function of the cell positions in each
iteration. Thus, the termWk+1 is a function of the positions of cells in x and y in iteration k+ 1. The
gradient of φi,j can be approximated using the difference scheme

�xkφi,j = φi,j+1 − φi,j

hx
(18.43)

�ykφi,j = φi+1,j − φi,j

hy
(18.44)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 371 23-9-2008 #26

Force-Directed and Other Continuous Placement Methods 371

In Ref. [23], one iteration of a Kraftwerk placement iteration is shown to be related to an
iteration of Uzawa’s algorithm. Given the force equation used by Kraftwerk in Equation18.5, a
change of variable names shows that the incremental change in cell positions for a quadratic system
can be reexpressed as (

C 0
0 C

)(
xk+1

yk+1

)
+
(
px
py

)
+ τk

(
f kx
f ky

)
= 0 (18.45)

In this equation, the quadratic wirelength approximation is used in place of the log-sum-exp
model for W in Equations 18.37 and 18.41. The values of C, px, and py are derived from �W .
The scalar τk controls the weighting in each iteration, while the forces fx and fy are computed
based on the placement in the kth iteration. In Kraftwerk, this equation is iteratively solved
until cells are well spread across the placement area. This equation is a special case of the
Uzawa iteration in Equation 18.42, achieved by fixing λkij = τk. The λk values are known to be
the Lagrange multipliers of Equation 18.41, and must be large enough to spread cells but small
enough to achieve convergence. Whereas force weighting is an issue in Kraftwerk, mPL offers
the possibility of dynamically adjusting the weights for all forces individually at each iteration
by updating the Lagrangian multipliers. Consequently, mPL does not require the ad hoc force
scaling typically employed in methods based on Ref. [4] and represents a generalization of
Kraftwerk.

18.6 OTHER ISSUES

Several important issues have not been addressed in the previous description of force-directed place-
mentmethods andwe touch upon some of these issues here, including I/O placement, fixed obstacles,
and heterogeneous resource placement.

Force-directed methods, including Kraftwerk, FDP, mFAR, and FastPlace, require I/Os
to be preplaced before force-directed placement because of the need for �(x) to be positive definite.
However, in some circumstances, the placement of I/Os can be another degree of freedom, as their
placement can impact overall quality. Despite some efforts in the literature (c.f., [24,38]), it is
possible that placeable I/Os can be handled more effectively within the context of force-directed and
continuous placement methods.

Another difficulty for force-directed methods potentially lies in the handling of fixed obstacles
within the placement area. Figure 18.12a shows theadaptec2 circuit from theISPD05 benchmark
suite [39]. This circuit contains a large number of preplaced macrocells. In particular, there is a very
large preplaced macrocell in the middle of the placement area. Several heuristic strategies (c.f., [19])
have been presented for positioning fixed points on the boundaries of fixed obstacles to encourage
cells to be pulled through fixed obstacles and to prevent other cells from remaining inside of fixed
obstacles. Figure 18.12b shows the positions of movable cells immediately after the solution to an
unperturbed quadratic objective—the cells are highly overlapping, and many are located to the right
of the large macro. In practice, it may be difficult for the movable cells in this example to push
through or “move around” the obstacles. If one considers the various incarnations of force-directed
methods, there is nothing explicit, which indicates that the methods would fail to properly handle
fixed obstacles. In fact, placers including APlace, mPL, mFAR, FastPlace, and Kraftwerk
successfully placed the circuits in the ISPD05 benchmark suite, all of which contain a number of
fixed obstacles. However, it is possible that the handling of fixed obstacles can be improved.

Another issue for force-directed methods pertains to the proper handling of heterogeneous
resources that commonly appear in the context structured ASIC placement. Such resources cor-
respond to specialized macroblocks (like RAM blocks, multiplier blocks, and IP cores) [40], which
are generally much fewer in number than the remaining core (standard) cells. Such blocks require
placement at discrete positions inside of the structured ASIC and their placement imposes discrete

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 372 23-9-2008 #27

372 Handbook of Algorithms for Physical Design Automation

(a)

(b)

FIGURE 18.12 Illustration of the adaptec2 circuit from the ISPD05 benchmark suite [39] where (a)
shows the circuit’s fixed obstacles and I/O pads before placement and (b) shows that after the placement of cells
after a single QP, many cells may become trapped (or blocked) by fixed obstacles.

slot constraints on the placement problem.An illustration of heterogeneous resourceswithin Altera’s
HC230 structured ASIC is shown in Figure 18.13.

Although APlace [32] handles geometric constraints, slot constraints represent another type of
constraint not properly handled geometrically. So, the question arises as to what is the best method to
handle discrete slot constraints during force-directed placement. Traditional force-directed placers
cannot compel heterogeneous cells to be placed at discrete slots—in the best case, these methods can
coerce heterogeneous cells toward discrete slots. In Ref. [41], an extension to a force-directed placer
to handle heterogeneous resources is presented. In effect, the cell distributions for different types of
cells are maintained in separate layers—spreading forces for different types of cells are computed
in the appropriate layer. This enhancement was shown to yield placements where cells are placed
reasonably closely to the appropriate type of resource. Once again, however, it is worthwhile to ask if

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 373 23-9-2008 #28

Force-Directed and Other Continuous Placement Methods 373

M4K RAM blocks

IOE
Array

of HCells Fast
PLL

IOE IOEs Array
of HCells

Array
of HCells

M-RAM block

Array
of HCells

Array
of HCells

Array
of HCells

Enhanced
PLL

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

IOE

M4K RAM blocks

FIGURE 18.13 Partial floorplan of an HC230 structured ASIC [42]. Heterogeneous resources including I/Os,
M4K RAMs, PLLs, and mega-RAMs must be placed into disjoint slots. (From Altera corporation, Hard Copy
Series Handbook, Altera, 2005. With permission.)

even more effective techniques for dealing with heterogeneous resources can be developed because
the placement of these resources can have a large impact on the overall quality of the placement.

18.7 CONCLUSIONS

With the advent of Kraftwerk in the late 1990s, force-directed placement methods have received
a great deal of attention from academia and industry. These methods have been used successfully to
place multimillion gate designs, and have continually improved in quality, scalability, and robustness
each year.

In this chapter, we have examined force-directed methods by highlighting the similarities and
differences between the various implementations described in the literature. We have also examined
continuous methods that, like force-directed methods, do not rely on partitioning to remove cell
overlap and share similarities with the more traditional force-directed methods. Many of the meth-
ods presented in this chapter have been extended to accommodate other practical VLSI placement
objectives, which were beyond the scope of the discussion in this chapter. These objectives include
timing-, congestion-, and thermal-driven placements. For the interested reader, force-directed plac-
ers incorporating timing constraints through netweighting are described in Refs. [32,43,44], while

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 374 23-9-2008 #29

374 Handbook of Algorithms for Physical Design Automation

a timing-oriented hypergraph model based on Steiner trees is described in Ref. [45]. Congestion
minimization within force-directed methods have also been examined in the context of cell bloat-
ing [32]. Force-directedmethods for thermal placement in three-dimensional architectures have been
examined [46].

The future of force-directed methods is a promising area of research in the field of VLSI CAD.
The ease with which the placement problem can be analogized to spreading forces continues to spur
research and advancement—new approaches that raise the bar in terms of performance and quality
are being conceived at a tremendous pace. Continued improvements in force-directed methods will
no doubt serve to strengthen the prominence of these methods.

REFERENCES
1. Adya, S. N., Chaturvedi, S., Roy, J. A., Papa, D. A., andMarkov, I. L. Unification of partitioning, placement

and floorplanning. In Proc. ICCAD, November 2004, pp. 550–557, San Jose, CA.
2. Fisk, C., Caskey, D., and West, L. Automated circuit card etching layout. In Proc. IEEE, 55: 1971–1982,

1967.
3. Kahng, A. B. and Reda, S. A tale of two nets: Studies of wirelength progression in physical design. In Proc.
System-Level Interconnect Prediction, March 2006, pp. 17–24, Munich, Germany.

4. Eisenmann, H. and Johannes, F. M. Generic global placement and floorplanning. In Proc. DAC, June 1998,
pp. 269–274, San Francisco, CA.

5. Hall, K.M. An r-dimensional quadratic placement algorithm.Manage. Sci. 17 (November): 219–229, 1970.
6. Vygen, J. Algorithms for large-scale flat placement. In Proc. DAC, June 1997, pp. 746–751, Anaheim, CA.
7. Kennings, A. and Markov, I. L. Smoothing max-terms and analytical minimization of half-perimeter wire

length. VLSI Design 14, 3: 229–237, 2002.
8. Viswanathan, N. and Chu, C. C. -N. Fastplace: Efficient analytical placement using cell shifting, iterative

local refinement and a hybrid net model. IEEE Trans. CAD 24, 5 (May): 722–733, 2005. (ISPD 2004).
9. Viswanathan, N., Pan, M., and Chu, C. C. -N. Fastplace: An analytical placer for mixed-mode designs. In
Proc. ISPD, April 2005, pp. 221–223, San Francisco, CA.

10. Saad, Y. Iterative Methods for Sparse Linear Systems. SIAM, 2003.
11. Qian, H. and Sapatnekar, S. S. A hybrid linear equation solver and its application in quadratic placement.

In Proc. ICCAD, November 2005, pp. 905–909, San Jose, CA.
12. Obermeier, B. and Johannes, F. M. Quadratic placement using an improved timing model. In Proc. DAC,

June 2004, pp. 705–710, San Diego, CA.
13. Yao, B., Chen, H., Cheng, C. -K., Chou, N. -C., Liu, L. -T., and Suaris, P. Unified quadratic programming

approach for mixed mode placement. In Proc. ISPD, April 2005, pp. 193–199, San Francisco, CA.
14. Spindler, P. and Johannes, F. M. Fast and robust quadratic placement combined with an exact linear net

model. In Proc. ICCAD, November, 2006, pp. 179–186, San Jose, CA.
15. Kennings, A. and Markov, I. L. Analytical minimization of half-perimeter wire-length. In Proc. ASPDAC,

January 2000, pp. 179–184, Yokohama, Japan.
16. Vorwerk, K., Kennings, A., and Vannelli, A. Engineering details of a stable analytic placer. In Proc. ICCAD,

November 2004, pp. 573–580, San Jose, CA.
17. Barnes, J. and Hut, P. A hierarchical O(n log n) force calculation algorithm. Nature 324, 4: 446–449, 1986.
18. Etawil, H., Areibi, S., and Vannelli, A. Attractor-repeller approach for global placement. In Proc. ICCAD,

November 1999, pp. 20–24, San Jose, CA.
19. Hu, B. and Marek-Sadowska, M. Multilevel expansion-based VLSI placement with blockages. In Proc.

ICCAD, November 2004, pp. 558–564, San Jose, CA.
20. Hu, B. and Marek-Sadowska, M.Multilevel fixed-point-addition-based VLSI placement. IEEE Trans. CAD

24, 8 (August): 1188–1203, 2005.
21. Chaudhary, K. andNag, S. K.Method for analytical placement of cells using density surface representations.

United States Patent 6,415,425, July 2002.
22. Nussbaumer, H. J. Fast Fourier Transform and Convolution Algorithms. Springer-Verlag, New York, 1982.
23. Goto, S. An efficient algorithm for the two-dimensional placement problem in electrical circuit layout.

IEEE Trans. Circuits Syst. CAS-28, 1: 12–18, 1981.
24. Vorwerk, K. and Kennings, A. An improved multi-level framework for force-directed placement. In Proc.

DATE, March 2005, pp. 902–907, Munich, Germany.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 375 23-9-2008 #30

Force-Directed and Other Continuous Placement Methods 375

25. Karypis, G.Multilevel Optimization andVLSICAD. KluwerAcademic Publishers, Boston,MA, 2002, ch. 3.
26. Alpert, C., Kahng, A. B., Nam, G. -J., Reda, S., and Villarubia, P. A semi-persistent clustering technique

for VLSI circuit placement. In Proc. ISPD, April 2005, pp. 200–207, San Francisco, CA.
27. Chan, T. F., Cong, J., Kong, T., Shinnerl, J. R., and Sze, K. An enhanced multilevel algorithm for circuit

placement. In Proc. ICCAD, November 2003, pp. 299–306, San Jose, CA.
28. Chan, T., Cong, J., and Sze, K. Multilevel generalized force-directed method for circuit placement. In Proc.

ISPD, April 2005, pp. 185–192, San Francisco, CA.
29. Kahng, A. B., Reda, S., andWang, Q.Architecture and details of a high quality, large-scale analytical placer.

In Proc. ICCAD, November 2005, pp. 891–898, San Jose, CA.
30. Sigl, G., Doll, K., and Johannes, F. M. Analytical placement: A linear or a quadratic objective function? In

Proc. DAC, June 1991, pp. 427–432, San Francisco, CA.
31. Alpert, C. J., Chan, T., Huang, D. J. -H., Markov, I. L., and Yan, K. Quadratic placement revisited. In Proc.

DAC, June 1997, pp. 752–757, Anaheim, CA.
32. Kahng, A. B. and Wang, Q. Implementation and extensibility of an analytic placer. IEEE Trans. CAD 24,

5 (May): 734–747, 2005. (ISPD 2004).
33. Naylor, W., Donelly, R., and Sha, L. Non-linear optimization system and method for wire length and density

within an automatic electronic circuit placer. United States Patent 6,662,348, July 2001.
34. Kahng, A. B. and Wang, Q. An analytic placer for mixed-size placement and timing-driven placement. In

Proc. ICCAD, November 2004, pp. 565–572, San Jose, CA.
35. Kahng, A. B., Reda, S., and Wang, Q. Aplace: A general analytic placement framework. In Proc. ISPD,

April 2005, pp. 233–235, San Francisco, CA.
36. Ames,W. F. (ed.).Numerical Methods for Partial Differential Equations. Academic Press, NewYork, 1977.
37. Arrow, K. J., Hurwicz, L., and Uzawa, H. (eds.). Studies in Nonlinear Programming. University Press,

Stanford, CA, 1958.
38. Westra, J. and Groeneveld, P. Towards integration of quadratic placemnt and pin assignment. In Proc. IEEE

Symp. VLSI, May 2005, pp. 284–286, Tampa, FL.
39. Nam, G. -J., Alpert, C. J., Villarrubia, P., Winter, B., and Yildiz, M. The ISPD2005 placement contest and

benchmark suite. In Proc. ISPD, April 2005, pp. 216–220, San Francisco, CA.
40. Selvakkumaran, N., Ranjan, A., Raje, S., and Karypis, G. Multi-resource aware partitioning algorithms for

FPGAS with heterogeneous resources. In Proc. DAC, June 2004, pp. 741–746, San Diego, CA.
41. Hu, B. Timing-driven placement for heterogeneous field programmable gate array. In Proc. ICCAD,

November 2006, pp. 383–388, San Jose, CA.
42. Altera Corporation. HardCopy Series Handbook, Volume 1—Section 1: HardCopy II Device Family Data

Sheet. Altera, 2005.
43. Mo, F., Tabbara, A., and Brayton, R. K. A timing-driven macro-cell placement algorithm. In Proc. ICCAD,

November 2001, pp. 322–327, San Jose, CA.
44. Hur, S. -W., Cao, T., Rajagopal, K., Parasuram, Y., Chowdhary, A., Tiourin, V., and Halpin, B. Force directed

Mongrel with physical net constraints. In Proc. DAC, June 2003, pp. 214–219, Anaheim, CA.
45. Obermeier, B., Ranke, H., and Johannes, F. M. Kraftwerk: A versatile placement approach. In Proc. ISPD,

April 2005, pp. 242–244, San Francisco, CA.
46. Goplen, B. and Sapatnekar, S. S. Efficient thermal placement of standard cells in 3D ICs using a force

directed approach. In Proc. ICCAD, November 2003, pp. 86–89, San Jose, CA.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C018 Finals Page 376 23-9-2008 #31

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 377 10-10-2008 #2

19 Enhancing Placement with
Multilevel Techniques

Jason Cong and Joseph R. Shinnerl

CONTENTS

19.1 Introduction to Placement by Multiscale Optimization . 378
19.1.1 Characterization of Multiscale Algorithms . 378

19.2 Basic Principles of Multiscale Optimization.. 380
19.2.1 Multiscale Model Problem for Quadratic Placement . 380
19.2.2 Simple Examples of Interpolation .. 382
19.2.3 Strict Aggregation versus Weighted Aggregation . 383
19.2.4 Scalability . 383
19.2.5 Convergence Properties . 384

19.2.5.1 Error-Correcting Algorithm MG/Opt . 384
19.3 Multiscale Placement in Practice . 385

19.3.1 Clustering-Based Precursors. 385
19.3.2 Coarsening.. 386

19.3.2.1 Best-Choice Clustering .. 387
19.3.2.2 Location-Based Clustering . 388
19.3.2.3 Mutual Contraction and Fine-Granularity Clustering. 389
19.3.2.4 Net Cluster . 389
19.3.2.5 Coarsest Level . 391
19.3.2.6 Numbers of Levels . 391

19.3.3 Iteration Flow . 391
19.3.4 Relaxation . 392

19.3.4.1 mPL6 . 392
19.3.4.2 APlace. 392
19.3.4.3 FDP/LSD . 393
19.3.4.4 Dragon . 393

19.3.5 Interpolation .. 393
19.3.6 Multiscale Legalization and Detailed Placement . 394

19.4 Conclusion.. 394
Acknowledgment . 395
References . 395

The increased importance of interconnect delay on VLSI circuit performance has spurred rapid
progress in algorithms for large-scale global placement. The new algorithms often generalize previ-
ously studied heuristics or embed them within a hierarchical framework, either top-down recursive
partitioning ormultilevel (a.k.a. multiscale) optimization. This chapter presents a brief tutorial on the

377

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 378 10-10-2008 #3

378 Handbook of Algorithms for Physical Design Automation

multilevel approach and describes some leading contemporary multiscale algorithms for large-scale
global placement.

Multiscale methods have emerged as a means of generating scalable solutions to many diverse
mathematical problems in the gigascale range. However, multiscale methods for partial differential
equations (PDEs) [1,2] are not readily transferred to large-scale combinatorial optimizationproblems
like placement. Lack of continuity presents one obstacle; myriad local extrema present another. Lack
of a natural grid structure presents a challenge as well. Although there has been progress in the
so-called algebraic multigrid (AMG) PDE solvers over general, unstructured graphs, extensions of
these methods to hypergraphs are not generally available.

Hierarchical levels of abstraction are indispensable in the design of gigascale complex systems,
but hierarchiesmust properly represent physical relationships, viz., interconnects, among constituent
parts. The flexibility of the multiscale heuristic provides the opportunity both to merge previously
distinct phases in the design flow and to simultaneously model very diverse, heterogeneous kinds
of objectives and constraints. Adaptability to complex formulations of standard objectives and con-
straints such as timing (Chapter 21) [3,4], routability (Chapter 22) [5–7], and power (Chapter 22) [8]
is a demonstrated core attribute of the multilevel approach. For simplicity, however, attention in
this chapter is restricted to the standard model problem in which weighted half-perimeter wire-
length (HPWL) is minimized subject to upper-bounds on the module area density in every bin of a
superimposed rectangular grid (Chapter 14).

This chapter has the following aims:

1. Introduce basic ideas and vocabulary.
2. Summarize known basic principles of generalmultiscale algorithms for global optimization.
3. Summarize properties of leading contemporary multiscale placement algorithms.
4. Compare current practice to the known theory and identify likely areas of research

opportunity.

Each of these aims is addressed below in its own section.

19.1 INTRODUCTION TO PLACEMENT BY MULTISCALE OPTIMIZATION

By multiscale optimization [9], we mean (1) the use of optimization at every level of a hierarchy
of problem formulations, wherein (2) each variable at any given coarser level represents a subset
of variables at the adjacent finer level. In particular, each coarse-level formulation can be viewed
directly as a coarse representation of the original problem.Therefore, coarse-level solutions implicitly
provide approximate solutions at the finest level as well.

19.1.1 CHARACTERIZATION OFMULTISCALE ALGORITHMS

Ageneric schematic of the classic V-cyclemultiscale-optimizationparadigm is shown in Figure 19.1.
A generic example of multiscale placement is illustrated in Figures 19.2 and 19.6.

Multiscale algorithms share the following common components. Each is discussed in more
detail below.

1. Hierarchy construction (coarsening, aggregation). Although the construction is usually from
the bottom-up by recursive aggregation, top-down constructions based on recursive netlist
partitioning are sometimes used. On hypergraphs or graphs, aggregation typically amounts
to some form of clustering. On graphs, less restrictive forms have been successful, in which
a finer-level variable is directly associated with multiple coarse-level variables (see the
discussion of weighted aggregation below).

2. Relaxation. In placement, the purpose of intralevel optimization is efficient, iterative explo-
ration of the solution space at that level. Continuous, discrete, local, global, stochastic, and

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 379 10-10-2008 #4

Enhancing Placement with Multilevel Techniques 379

(... etc. ...)

Aggregation

Aggregation

Aggregation

Aggregation

(... etc. ...)

Coarsest-level problem
and solution

Solution at finest
granularity

Interpolation

Interpolation

Interpolation

Interpolation

Given problem at finest
granularity

Intermediate-level problem

Intermediate-level problem Intermediate-level solution

Intermediate-level solution

FIGURE 19.1 Multiscale formulation of global optimization.

deterministic formulations may be used in various combinations. The critical requirement
is that the iterations make rapid progress by changing variables in amounts proportionate
to the modeling scale at the given level. The starting configuration is the solution obtained
at an adjacent level, either coarser or finer.

3. Interpolation. A coarse-level solution can be transferred to and represented at its adjacent
finer level in a variety of ways. The simplest and most common is simply the placement
of all components of a cluster concentrically at the cluster’s center. More sophisticated
approaches are discussed in Section 19.3.5 below. In the placement literature, interpolation
is variously referred to as declustering, disaggregation, or uncoarsening. See Figure 19.5
for an illustration.

4. Iteration flow. The levels of the hierarchy may be traversed in different ways. A single
pass of successive top-down refinement from the coarsest to the finest level is still the

(a) Initial placement at level 2 (b) Optimization at level 2 (c) Interpolation to adjacent
 level 1

(d) Optimization at level 1 (e) Interpolation to adjacent
 level 0

(f) Optimization at level 0

FIGURE 19.2 Multiscale placement by successive top-down refinement.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 380 10-10-2008 #5

380 Handbook of Algorithms for Physical Design Automation

Coarse

Fine Fine

Coarse CoarseCoarse
(d) W-cycle

Fine

Coarse

Fine FineFine

CoarseCoarseCoarseCoarse

(c) FMG(a) Successive
 refinement

(b) Classic V-cycle

FIGURE 19.3 Some iteration flows for multiscale optimization. Points nearer the bottom of each diagram
represent coarser levels of approximation.

most common. It is illustrated schematically in Figure 19.3a and graphically in Figure 19.2.
Alternatives include standard flows such as a single V-cycle, multiple V-cycles, W-cycles,
and the full multigrid (FMG) F-cycle (see Figure 19.3). In these more general flows, the
outcome of relaxation at finer levels is often used to construct the next set of coarser levels.
That is hierarchies may be constructed dynamically and adaptively rather than a priori.

The forms taken by these components are usually tightly coupled with the diverse objective and
constraint models used by different algorithms.

When the hierarchy is defined by recursive bottom-up clustering, the combined flow of recursive
clustering followed by recursive top-down optimization and interpolation is traditionally referred
to as a V-cycle (Figure 19.3; the bottom of the V corresponds to the coarsest or top level of the
hierarchy). While the usual iteration flow in VLSICAD proceeds top down, from coarsest to finest
level, in the elementary theory of convergence of multigrid PDE solvers [1,2], the use of relaxation
in the coarsening phase plays a vital role. In placement, such usage translates to location-based or
physical clustering, an active area of placement research discussed in Sections 19.2 and 19.3.

19.2 BASIC PRINCIPLES OF MULTISCALE OPTIMIZATION

Multiscalemethods originated as geometricmultigridmethods in the context of uniformly discretized
PDEs, where the resolution and regularity of the discretization make the notion of modeling scale
obvious. Although at first glance it might appear that multiscale methods are limited to explicitly
discretized problems, subsequent research on algebraic multigrid for general problems lacking any
obvious, geometrically regular discretization has borne out the generality and applicability of the
multiscale metaheuristic. The important requirement is not the geometric regularity, but the locality
of the coupling among the variables. (The locality assumption can also be weakened [9].)

In this section, we define a simple model problem for quadratic placement and use it to draw
connections to elementary general properties of multiscale optimization.

19.2.1 MULTISCALE MODEL PROBLEM FOR QUADRATIC PLACEMENT

General formulations of placement are described inChapter 14. The following simplified form is used
here only for exposition of basic principles and techniques. As illustrated in Section 19.3, multiscale
algorithms for placement are not limited to this form.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 381 10-10-2008 #6

Enhancing Placement with Multilevel Techniques 381

Let vector s = (x, y) ∈ Rn denote the 2D coordinates of all movable modules to be placed (n is
twice the number of movable modules). Let matrixQ ∈ Rn×n denote the (weighted) graph Laplacian
satisfying, e.g.,

q(s) = 1

2
sTQs − bTs = 1

2

∑
netse

∑
i,j∈e

wij[(xi − xj)
2 + (yi − yj)

2] (19.1)

where vector b ∈ Rn captures connections between fixed terminals and movable objects. (The
simplified notation above suggests but need not be limited to a clique model of each net.) Matrix Q
is symmetric positive semidefinite.

The quadratic model problem is simply to find an unconstrained minimizer s∗ of q(s). As
described in Chapter 18, this problem forms a template for one iteration to many force-directed
algorithms [10–14].† In the presence of fixed terminals, Q is positive definite, and the quadratic
function q(s) has a unique minimizer s∗ satisfying

Qs∗ = b (19.2)

That is, the simplified quadratic model reduces placement to a linear system of linear equations. In
this form, multiscale algorithms for placement are more readily examined in the context of general
multiscale algorithms for global optimization or PDEs.

Iterative relaxation on the linear-system model problem (Equation19.2) may proceed, e.g., by
the Gauss–Seidel iterations, i.e., one variable at a time,

si = 1

qii

(
bi −

∑
j �=i

qijsj

)
(19.3)

for each i = 1, . . . , n. Such iterations are known to converge on symmetric positive-definite linear
systems [15]. Because real netlists for placement are dominated by low-degree nets, placement
exhibits local structure; i.e., for most i, qij = 0 for all but a small subset of j �= i. Hence, an entire
sweep of Gauss–Seidel relaxation proceeds in runtime essentially linear in the number of movable
components.

Next, consider the representation of formulation (Equation19.2) at an adjacent coarser level in
a multiscale flow. Mathematically, it is convenient to proceed as follows:

1. Formulate the coarse-level problem in terms of the error e = s∗ − s̃ in a given approximate
solution s̃ at the finer level.

2. Define interpolation before defining coarsening (see examples in Section 19.2.2).

First, following step 1 above, rewrite Equation 19.2 in terms of the desired perturbation e to the given
approximate solution s̃ as Q(s̃+ e) = b, or, equivalently, as the residual equation

Qe = r (19.4)

where the r = b− Qs̃ = r(s̃) is the residual of Equation 19.2 associated with s̃.
Second, following step 2 above, suppose the finer-level variables e ∈ Rn are interpolated from

coarse-level variables ec ∈ Rm by the linear map P: Rm → Rn as follows (m < n):

e = Pec (19.5)

† Iteratively computed, artificial, fixed, target terminals defined by spreading forces are typically used to produce a sequence
of such models whose solutions converge to a sufficiently uniform density profile.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 382 10-10-2008 #7

382 Handbook of Algorithms for Physical Design Automation

Finally, consider minimization of q(s) in Equation19.1 at the coarser level under these assumptions
1 and 2, i.e.,

min
ec∈Rm

q̃(ec) ≡ q(s̃+ Pec) = 1

2
(s̃ + Pec)

TQ(s̃+ Pec) − bT(s̃+ Pec)

It is easily shown that ec minimizes q̃(ec) if and only if it satisfies

PTQPec = PTr (19.6)

Galerkin coarsening thus defines the linear coarsening operator PT: Rn → Rm as the transpose of
the linear interpolation operator P, as simple substitution of Equation 19.5 into Equation19.4 yields
Equation19.6 on premultiplication by PT.

By confining coarse-level iterative improvement to the perturbation e = Pec to s̃, relaxation
at the coarse-level is in effect decoupled from relaxation at the adjacent finer level. The combined
approximation s̃+ e is thus not restricted to the range of P and can represent a broader set of solution
candidates for fixed P than is possible if relaxation at the coarser level and subsequent interpolation
are applied to the entire coarse-level solution sc rather than just its perturbation ec.

In both theory and practice, coarsening and interpolation are so closely related that defining one
essentially characterizes the other, even if nonlinear or discrete methods are used.

19.2.2 SIMPLE EXAMPLES OF INTERPOLATION

To give the simplified model concreteness for placement, consider the sample netlist H illustrated
in Figure 19.4. The coarsening of H on the right-hand side of the figure shows modules 1, 2, and 3
mapped to cluster 0, module 4 mapped to cluster 1, and modules 0 and 5 mapped to cluster 2. For the
moment we ignore the algorithm used to define the coarsening and concentrate just on the question
of how to place the modules, once a placement of their parent clusters has been computed.∗ Because
in this example there are six modules at the finer level and three modules at the adjacent coarse
level, linear interpolation operators for this example are represented as constant 6 × 3 matrices. Let
Pconst denote the matrix for piecewise-constant linear interpolation, in which each module simply
inherits its parent cluster’s position. Alternatively, let Pavg denote the matrix for linear interpolation
in which each module is placed at some linear combination of its parent’s position and the positions
of other clusters containing modules with which it shares nets; let wij denote the weight that module

 5

4

21

3

0

Coarsened H

2

1,2,3 4

0,5

10

Netlist H

e1

e5

e4

e4

e3

e3

e2

e2

FIGURE 19.4 Simple six module netlist H with five nets and its coarsened approximation.

∗ For concreteness in this example, we describe finer-level objects as modules and coarser-level objects as clusters, but the
example applies to any two adjacent levels of hierarchy—the finer-level objects might also be clusters of still finer-level
objects, etc.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 383 10-10-2008 #8

Enhancing Placement with Multilevel Techniques 383

Piecewise-constant interpolation(a)

(b) Nonpiecewise-constant interpolation

A
B

C

FIGURE 19.5 Piecewise constant versus nonpiecewise-constant interpolation (declustering). Each component
within a cluster is placed at a weighted average of the locations of all clusters containing other components to
which it is connected.

i assigns to the position of cluster j, and assume weights are normalized such that wij = 1 if module
i is contained by cluster j. With modules indexed 0, 1, 2, …, 5 and clusters indexed 0, 1, 2, as shown
in the figure, Pconst and Pavg take the following forms.

Pconst =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1
1 0 0
1 0 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and Pavg =

⎛
⎜⎜⎜⎜⎜⎜⎝

w0,0 0 1
1 0 0
1 w2,1 0
1 0 w3,2

0 1 w4,2

0 w5,4 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Each is applied separately to the xc and yc coordinate vectors of the coarse placement to obtain
corresponding x and y coordinate vectors of the fine placement, e.g., x = Pavgxc and y = Pavgyc∗ (see
also Figure 19.5).

19.2.3 STRICT AGGREGATION VERSUS WEIGHTED AGGREGATION

A common objection to clustering is that its associations may be incorrect and therefore lead subse-
quent iterations to the wrong part of the solution space. To reduce the likelihood of poorly chosen
clusters, the notion of a cluster can be generalized by weighted aggregation. Rather than assign each
cell to just one cluster, we can break it into a small number of weighted fragments and assign the
fragments to different coarse-level vertices; these are no longer simple clusters and are instead called
aggregates. During interpolation, a cell’s initial, inherited position is then typically determined by
that of several aggregates as a weighted average [16]. Clustering, also called strict aggregation, is a
special case of weighted aggregation. To our knowledge, weighted aggregation is not currently used
by any published placement algorithm.

19.2.4 SCALABILITY

The scalability of the multilevel approach is straightforward to obtain and understand. Provided
relaxation at each level has order linear in the number Na of aggregates at that level, and the number

∗ Formally, the matrix for the interpolation operator on s = (x, y) ∈ Rn is P = diag(Px,Py), where Px is the interpolation
matrix for the x coordinates, and Py for y. In these examples, Px = Py.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 384 10-10-2008 #9

384 Handbook of Algorithms for Physical Design Automation

of aggregates per level decreases by factor r < 1 at each level of coarsening, say Na(i) = riN at
level i, the total order of a multilevel method is at most cN(1+ r+ r2 + · · ·) = cN/(1− r). Higher-
order (nonlinear) relaxations can still be used, as long as at least one of the following restrictions is
enforced.

1. Their use is limited to subsets of bounded size, e.g., by sweeps over overlapping windows
of contiguous clusters at the current aggregation level.

2. Starting placement for iterations at each level is good enough that the termination criteria
for relaxation at that level can be satisfied after a strictly controlled number of iterations.

In general, unstructured global optimization problems, these restrictions might sharply limit an
algorithm’s ability to explore the solution space in any scalable way. Placement, however, exhibits
sparse local structure, where most variables are related through the objectives and constraints to
only a small constant number of other variables. In the presence of such structure, both analysis and
results obtained in practice have confirmed that these restrictions need not impair final quality of
results [9].

19.2.5 CONVERGENCE PROPERTIES

Consider a Fourier decomposition of the error e = x̂ − x∗ in a system of equations N(x) = 0
(x∗ denotes an exact solution, x̂ is a computed approximation to x∗). By localized relaxation, we
mean iterative optimization over a small subset of coupled variables, assuming all other variables
are held fixed; e.g., Gauss Seidel (Equation 19.3). The fundamental observation is as follows [2]:

Observation 1 Localized relaxation tends to rapidly reduce high-frequency components of the
error in the system of equations. Lower-frequency components of the error are reduced much more
slowly.

There are two key consequences of the observation, both of which stem from the fact that the very
notion of high-frequency comes from the modeling scale. First, different frequency-range Fourier
components of the error are most efficiently targeted by relaxation at different scales. By coarsening
the modeling scale, we can target a coarser scale of the error in the system—simply apply the same
relaxation algorithm at the coarser scale. Recursion over all scales of relevance produces highly
accurate solutions in extremely fast and scalable runtime. Second, both the outcome of relaxation and
the convergence rates of individual variables during relaxation can be used to guide the construction of
interpolation or aggregation operators. This connection underlies the basic principles of successful
multiscale algorithms for systems of linear and nonlinear differential equations, where a robust
convergence analysis has been obtained [2].

In this way, analysis and practice in both linear and nonlinear systems of equations have
established a link between relaxation and interpolation for problems with local structure [9].

19.2.5.1 Error-Correcting Algorithm MG/Opt

Elementary local convergence properties of a general error-correcting multiscale optimization algo-
rithmhave been established byLewis andNash [17]. For simplicity, their consideration of constraints
is omitted here. The error being corrected (to first-order) is introduced by transferring approximations
from finer level to coarser levels.

Consider the unconstrained minimization of a smooth nonlinear function F(s) over variables
s ∈ Rn within a modeling system which generates multiple resolutions of F and s as specified by
subscripts h (finer scale) and H (coarser scale). In placement, a resolution is primarily a selection of
bin-grid dimensions used to enforce density constraints.

A convergent, continuous nonlinear relaxation algorithm R is assumed given, along with
continuous interpolation operator IhH and continuous coarsening operator IHh = (

IhH
)T
.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 385 10-10-2008 #10

Enhancing Placement with Multilevel Techniques 385

The following steps comprise on single iteration (at levelh) of amultiscale optimization algorithm
called MG/Opt [17]. The algorithm makes explicit use of first-order coarse-grid corrections. Given
a resolution

min
sh

Fh(sh) (19.7)

with initial estimate s(0)h . If this (h) is the coarsest resolution level, solve Equation 19.7 to the fullest
possibly accuracy by means of relaxation R. Otherwise, apply the following steps.

1. Apply N1 > 0 iterations of R directly to Equation 19.7, obtaining improved estimate s(1)h .
Compute corresponding coarse-level estimate s(1)H ≡ IHh s

(1)
h .

2. Compute coarse-level gradient correction vH = ∇FH(sH ,1) − IHh ∇Fh(sh,1).
3. Using initial point sH ,1, recursively apply this algorithm to the corrected coarse-level problem

minsH FH(sH) − vTHsH to obtain next iterate sH ,2.
4. Interpolate the coarse-grid step sH ,2−sH ,1 back to a finer-level search direction eh = IhH(sH ,2−
sH ,1).

5. Perform line search (for scalar α) at level h to obtain next iterate sh,2 = sh,1 + αeh.
6. Apply N2 > 0 iterations of relaxation R to Equation19.7 with initial point sh,2 to obtain sh,3.
7. Finally, discrete (noncontinuous) refinement steps may be used to transform sh,3 to next

iterate s(1)h .

At least one of N1, N2 must be strictly positive; the other may be positive or zero.
The algorithm is designed to be easy to implement from a given flat nonlinear relaxation and

the ability to (a) model the problem at multiple resolutions and (b) transfer approximations between
those resolutions.

It is shown by Lewis and Nash [17] that MG/Opt converges under the given assumptions. In
particular, they establish the following facts rigorously.

1. Corrected coarse-level model approximates the fine-level model to first order in ‖eh‖.
2. Multiscale search direction eh is a descent direction at the fine level: eTh∇Fh(s

(1)
h) < 0.

3. limk→∞ ‖∇Fh(s
(k)
h)‖ = 0, i.e., algorithm MG/Opt converges.

4. Search directions eh is well scaled; i.e., the natural step α = 1 is likely to be accepted close
to a solution s∗. The latter property is necessary for fast convergence.

19.3 MULTISCALE PLACEMENT IN PRACTICE

To design and implement a multiscale algorithm, one would like to know what requirements should
be imposed on its coarsening and interpolation, relaxation, and iteration flow, and what trade-offs
among them can be reasonably expected. In this section, we summarize characteristics of some
leading multiscale algorithms and attempt to illustrate the trade-offs they create and the ways they
manage them.

19.3.1 CLUSTERING-BASED PRECURSORS

Placement by multilevel optimization can be viewed as the natural recursive extension of clustering-
based approaches considered in earlier work. Schuler and Ulrich [18] compared top-down and
bottom-up approaches to clustering for linear placement. They observed large speedups compared
to flat algorithms. They also observed that balancing cluster sizes (size incorporating both area and
connectivity) was important. Mallela and Grover [19] studied clustering as a means of accelerat-
ing placement by simulated annealing. They maintained a priority-queue-like structure for cluster
candidates. Sechen and Sun [20] employed three levels of clustering in an annealing-based flow.
Hur and Lillis [21] used three levels of clustering in linear placement. Cong and Xu [22] studied

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 386 10-10-2008 #11

386 Handbook of Algorithms for Physical Design Automation

clustering-based placement, where clustering is first performed based onMFFCs (maximum fanout-
free cones) that consider signal directions and logic dependency. These clusters are then placed for
timing optimization using TimberWolf6.0 [23], a well-known simulated-annealing-based placement
package at that time.

To our knowledge, Ultrafast VPR [24] is the first published work to recursively cluster a circuit
model into a hierarchy of models for placement by multiscale optimization. Ultrafast VPR is used
to accelerate the annealing-based VPR algorithm (versatile packing, placement and routing [25])
to reduce design times on field-programmable gate arrays (FPGAs) at some expense in placement
quality. (FPGA placement quality in Ultrafast VPR is measured by the area used.)

19.3.2 COARSENING

An aggregation strategy defines a recursive transformation of the data functions (objectives and con-
straints) from finer-level to coarser-level representations. These transformations reduce the numbers
of variables and constraints but sometimes increase their complexity as information is compressed.
Although some results exist for the accuracy of these transformations as approximations to the orig-
inal problem in the graph context [2], formal results are, to our knowledge, not yet known in the
hypergraph setting. For this reason, contemporary convergence criteria in practice rely on heuristics
and empirical observations.

General clustering algorithms are described in Chapter 7. Typically, clustering algorithms for
placementmerge tightly connected cells in a way that eliminates as many nets at the adjacent coarser
level as possible while satisfying some constraint on variation in cluster areas. A class of coarsening
algorithms more general than clustering is described briefly in Section 19.2.3.

Important questions for coarsening in practice include the following:

1. How accurately do coarsened objectives and constraints approximate their corresponding
finer-level counterparts? What error is incurred?

2. How much coarser than its finer-level source should a coarsened problem be?
3. How much variation in cluster areas should be allowed?
4. How coarse is too coarse? That is, when should recursive coarsening stop?
5. What trade-offs exist between (a) coarsening and relaxation and (b) coarsening and iteration

flow? For example, how often can an algorithm afford to revise or completely reconstruct
its coarsening hierarchy, and by what means?

6. Should the coarsening model the solution at the finer level, or the change in a given
approximation to that solution? Why?

The questions are interdependent, and precise answers for placement are not yet known. Leading
academicmultiscale placersmodel the full placement problem at coarser levels rather than the change
in a given placement as described in Sections 19.2.1 and 19.2.5. Only force directed placement
(FDP)/line search directed placement (LSD) changes its coarsening/interpolation operators over its
flow (Section 19.3.3).

The following classifications of coarsening algorithms for multiscale placement are
sometimes used.

1. Connectivity-based versus location-based: Although netlist connectivity is always used to
some extent, location-based algorithms also require a given current placement as input and
attempt to keep neighboring modules together (see Section 19.3.2.2).

2. Transient versus persistent [26]: Transient clusters appear as part of the inner steps of
an algorithm but are not associated with coarse-level variables. For example, clusters are
formed in multiscale partitioning algorithms used in top-down bisection-based placement,
but they are not separately placed. Persistent clusters, on the other hand, are computed
a-priori and are actually placed.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 387 10-10-2008 #12

Enhancing Placement with Multilevel Techniques 387

3. Score-based versus scoreless [27]: In scoreless algorithms, clusters are committed as soon
as they are formed. Examples described in Chapter 7 include edge coarsening, heavy-edge
matching, and first choice. In score-based algorithms, alternative candidates are assigned
scores and iteratively refined. As the refinement proceeds, the clustering scores are updated,
eventually only candidates with sufficiently high scores are selected to serve as clus-
ters. Examples described below include Best choice [26], Fine-granularity [28], and Net
cluster [27].

Leading multiscale algorithms limit variation of cluster areas at each level of hierarchy. APlace
[29] and NTUPlace3 [30] limit cluster areas to at most 1.5 times the target cluster area. FastPlace3
limits its cluster areas to at most 5 times the target.

Among connectivity-based algorithms, experiments to date suggest that local-connectivity-
driven greedy strategies like first-choice vertex matching [31,32] and best choice [26] may be
more effective than global-connectivity-driven approaches like edge-separability clustering (ESC)
[33]. How best to define coarse-level netlists without explosive growth in the number and degree
of coarsened hyperedges relative to coarsened vertices is particularly challenging [27,28,32];
Sections 19.3.2.3 and 19.3.2.4 describe recently proposed solutions.

Although various forms of clustering dominate the recent multiscale placement literature, Rent’s
rule and the importance of limiting cutsize also make recursive partitioning an attractive means
of generating the multiscale hierarchy [7]. Hybrid algorithms for floorplanning or placement that
combine clustering with netlist partioning in some form continue to be developed [7,12,34–38].

19.3.2.1 Best-Choice Clustering

As described in Chapter 7 and briefly summarized here, best-choice clustering [26] is the method
used by the leading multiscale tools APlace [29], mPL [39], FastPlace 3.0 [40], and RQL [14].
Best choice is a netlist-based, score-based algorithm typically used in placement for persistent or
semipersistent clustering.

A graph is defined on the netlist vertices (modules)with each edgeweighted by the affinity of the
given two vertices. The affinity may represent some weighted combination of complex objectives,
such as hypergraph connectivity, spatial proximity, timing delay, area balance, coarse-level hyperedge
elimination, etc. The affinities s(i, j) between vertices i and j used byAPlace, mPL, FastPlace3, RQL,
andNTUPlace3∗ for connectivity-based clustering are all equal to or slightlymodified from the basic
affinity formula

s(i, j) =

∑
e∈Nij

w(e)

ai + aj
(19.8)

where
Nij is the set of nets containing both module i and module j
ai and aj are the respective areas of modules i and j
w(e) denotes the weight of hyperedge e, typically taken proportional to 1/(|e| − 1)

An affinity-ordered priority queue (heap) of the vertices (including clusters and partial clusters)
is formed; each vertex in the heap is associated with its nearest neighbor under the given affinity
metric. At each step, the pair of vertices (u, v)with the highest affinity is removed from the heap and
clustered, if its total area does not violate the maximum-area constraint. For efficiency, a lazy-update
strategy is then employed: the affinities of the netlist neighbor vertices of u and v are marked as
invalid rather than being immediately updated. Affinities of invalid vertices are updated only when
they arrive at the top of the heap.

∗ NTUPlace3 uses first choice rather than best choice.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 388 10-10-2008 #13

388 Handbook of Algorithms for Physical Design Automation

Compared with earlier pass-based algorithms lacking a heap-order organization, the priority-
queue formulation consistently improves HPWL of final placements. In experiments reported by the
authors [26], final HPWL obtained by the multiscale placer hATP using best choice improves by 4.3
percent over edge coarsening and by 3.2 percent over first choice. Similar improvements have been
reported for APlace [41] and mPL [39].

19.3.2.2 Location-Based Clustering

Location-basedclustering is also called layout-based clustering or physical clustering.After an initial
placement has been obtained as a starting configuration, spatial proximity can be incorporated into
the vertex-affinity metric used for clustering [12,16]. A simple three-level illustration is given in
Figure 19.6.

Earlier versions of mPL [16] incorporated distance as a reciprocal factor in a second V-cycle.∗

FDP [12] uses an (additive) convex combination of connectivity and spatial proximity for its ver-
tex affinity function in hybrid first-choice clustering. Specifically, the affinity score s(i, j) between
vertices i and j is defined for a given placement as

sFDP(i, j) = λ

⎛
⎝∑

e∈Nij

1

1 + |xi − xj| + |yi − yj| − ζ

⎞
⎠+ (1 − λ)

∑
e∈Nij

1

|e| − 1

where
Nij is the set of nets containing both vertex i and vertex j
|e| is the number of vertices in e
ζ specifies the minimum displacement possible between nonoverlapping modules i and j

Proximity-based
aggregation

Proximity-based
aggregation

Defines level 1

Optimization
at level 1

Defines level 2

Initial placement
at level 0

(a) (b) (c)

(f)(e)(d)

FIGURE 19.6 Location-based clustering in a three-levelmultiscale-placement flow.Given an initial placement
at the finest level, clusters at each subsequent coarser level are determined from a combination of netlist
connectivity and spatial proximity.

∗ Later versions of mPL, however, abandoned the location-based approach in favor of a single V-cycle derived by purely
connectivity-driven best-choice clustering [42].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 389 10-10-2008 #14

Enhancing Placement with Multilevel Techniques 389

The authors report best results for λ ≈ 0.25. The effect stabilizes iterations and supportsmultiple
V-cycles.

Location-constrained clustering is used in a somewhat different way to define the coarsest level
of a three-level formulation used in FastPlace 3.0 [40]. While the first level of fine-grain clustering
(cf. Section 19.3.2.3) relies solely on netlist affinities (Equation19.8) and best choice, the second
coarse-grain clustering imposes the added restriction that vertices must be closer than a certain
parametrized limit in order to be clustered. In FastPlace 3.0, that limit is set to 10 percent of the
maximum chip dimension.

A similar hybrid approach to clustering, using only netlist-connectivity at finer levels but both
connectivity and proximity at the coarsest level, is used by mFar [11,43].

The work of Chen et al. [44] describes a more radical approach.∗ A cluster hierarchy is derived
from four separate preliminaryplacements. Several iterations of the successive-overrelaxation(SOR)
variant of coordinate-wise relaxation [15] are applied to the linear equations for the optimality of
flat, unconstrained quadratic HPWL perturbed by density-balancing forces computed by a Poisson
solver [10]. In each of four separate trials, the cells are initially placed all at the same point: one
of the four corners of the placement region. Clusters are selected according to cells’ average final
proximity over the results of all four trials. Although this iterative, empirical approach to clustering
requires significant runtime, it is a fixed initial cost that can be amortized over the cost of subsequent
iterations. Numerical results confirm the scalability of this approach.

19.3.2.3 Mutual Contraction and Fine-Granularity Clustering

A central obstacle to multilevel placement of netlists is that, in the course of recursive clustering,
modules tend to be eliminated far more rapidly than nets. The result is often extremely densely
interconnected coarse-level netlists with very different structure from the original finest-level netlists
they are intended to approximate. The problemhas been partly addressed in the literature by clustering
schemes that strive to eliminate asmany nets as possible [32], in particular, nets of low degree. To this
end, the mutual contraction formulation [28] models the relative strength of a connection between
modules u and v relative to u’s total connectivity as

wr(u, v) = w′(u, v)∑
x

w′(u, x)

where the weight w′(e) = 2/{[d(e) − 1]d(e)} comes from clique-model (graph-based) approxima-
tions of hyperedges in the netlist. The contraction of two modules is defined as the symmetrized
product cp(x, y) = wr(x, y)wr(y, x); a pair of modules with a large contraction relative to other pairs
is a good candidate for clustering. The notion is readily extended to arbitrary subsets of modules.

In fine-granularity clustering [28], the contraction metric is used to order connections between
modules in a priority queue. The modules at the front of the queue are grouped together if their
grouping does not violate area-balance or other constraints. A target cluster limit is set a priori;
clustering typically stops with most clusters containing two or three modules of average area.

19.3.2.4 Net Cluster

The above strategies share a dependence on metrics derived from pairs of vertices but are largely
oblivious to netlist structure involving more than two vertices. The net–cluster study [27] shows
that aggregation criteria defined over local subsets broader than simple pairs of vertices can be used
to improve quality and runtime of existing multiscale placers. In particular, clustering the vertices
of a single multipin net is shown in many instances to improve quality of results over what can be

∗ The hierarchy is used by Chen et al. to solve the linear system of equations for a flat, Poisson-based analytical placement
formulation rather than to directly support multilevel placement.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 390 10-10-2008 #15

390 Handbook of Algorithms for Physical Design Automation

1

3

2

4 5

6

7

FIGURE 19.7 Netlist with a natural clustering the vertex-pair-based algorithms typically fail to find. The
natural clustering most appropriate for placement (or netlist partitioning) groups vertices 1–4 in one cluster
and vertices 5–7 in another. Vertex-pair-based algorithms overwhelmingly prefer to cluster vertices 4 and 5,
precluding the natural clustering.

obtained with pairwise strategy; cf. Figure 19.7. Another advantage of net cluster is that it reduces
the number of nets at approximately the same rate as the number of vertices.

The net cluster algorithm consists of five distinct steps partitioned into two phases.

Phase 1. Candidate cluster (a) identification, (b) refinement, and (c) scoring
Phase 2. Net-cluster (a) scoring and (b) final formation

Initial cluster candidates for phase 1 are simply the nets in the netlist; note that these are not disjoint.
Refinement of the candidates proceeds one by one on each of them. For each one, several iterations
of FM bipartitioning (Chapter 7) are performed, the cluster candidate used as one subset of the netlist
and the rest of the netlist as the other. That is, this step attempts to determine whether each vertex
in a cluster candidate is more strongly connected to other vertices in the cluster or to the vertices
external to it. After this refinement step, each candidate cluster Ci is scored by

sc(Ci) = #nets inside the cluster

#modules inside the cluster
× 1

cluster area

That is, the score prefers candidate clusters that (1) absorb many nets, (2) aggregate many modules,
and (3) have low area. At the end of phase 1, candidate clusters still are not disjoint.

In phase 2, each net Ni is then also assigned a score equal to the sum of the scores of the candidate
clusters containing it minus the sum of the scores of the candidate clusters cutting it (see Ref. [27]
for the precise form). Nets are then visited in descending score order, with one of the four following
possible cases applied to each net.

1. If clustering the cells violates cluster-area constraints, then this net is ignored, and the next
net is considered.

2. Otherwise, the cells in the net are clustered if none of them have already been clustered.
3. Otherwise, if just one cell in the net has already been clustered, the net can be merged with

an existing cluster, if doing so does not violate cluster-area constraints.
4. Otherwise, if at least two cells in the net have already been assigned to different clusters, a

merge of all these overlapping clusters and the cells in the current net is made, if doing so
does not violate cluster-area constraints.

The net cluster study supports the view that considerable improvement in both runtime and QoR
of existing multilevel algorithmsmay be attainable through a more accurate modeling of local netlist
structure during aggregation. On ICCAD2004 test cases of up to approximately 200,000 objects,
a single pass of net cluster improves final HPWL of leading multiscale placers mPL6 [39] and
NTUPlace3 [30] by 2–5 percent on average.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 391 10-10-2008 #16

Enhancing Placement with Multilevel Techniques 391

TABLE 19.1
Approximate Numbers of Clusters Ncoarsest at Coarsest Levels
of Leading Academic Multiscale Placers

Placer APlace Dragon FastPlace3 FDP/LSD mPL NTUPlace3

Ncoarsest 2000 4 Nfinest/4 1000 500 6000

Note: The finest-level netlist has Nfinest modules.

19.3.2.5 Coarsest Level

Because the initial placement at the coarsest levelmay have a large influence at subsequent iterations,
and because the coarsest-level problem is relatively small, the placement at this level is typically
performed with great care, to the highest quality possible. For example, mPL [39] uses nonlinear
programming while mPG [5] uses simulated annealing. How to judge the coarse-level placement
quality is not necesssarily obvious, however, as the coarse-level objective may not correlate strictly
with the ultimate fine-level objectives. Under such circumstances, multiple iterations over the entire
hierarchical flow may sometimes be important [6,16], evaluation of objectives and constraints at the
finest level providing feedback to the representation and optimization at all coarser levels.

Coarsest-level problem sizes of some leading multiscale algorithms are shown in Table 19.1.
From the table it is evident that an enormous range of coarsest-level problem sizes exists, from
just four movable objects in Dragon [7] to N/4 in FastPlace3, where N is the number of modules
in the original netlist. The observation that flat (non-multiscale) algorithms, e.g., [13,45] remain
competitive suggests that there is no inherent upper limit to best coarsest-level problem size. Similarly,
Dragon’s results [7] and results from other problem domains [46,47] strongly suggest the absence
of any hard lower bound. The complexity of integer nonconvex nonlinear programming, to which
placement belongs, is high enough that multiscaling can sometimes produce superior solutions to
flat algorithms even when fewer than 100 variables are present.

19.3.2.6 Numbers of Levels

Netlist-driven clustering by variations of best choice or first choice seems to allow a rapid reduction
in the number of modeling levels, by allowing a large cluster-size target, without loss of final place-
ment quality. In APlace, each coarse cluster level has about 1/10 the number of movable objects
of its adjacent finer level; from Section 19.3.2.5, this rule produces just four levels of hierarchy for
APlace on a 1M-module test case. In NTUPlace3, this ratio is approximately 1/5, and in mPL6 it is
approximately 1/4.

In contrast, in the location-based clustering used by FDP/LSD [12,48], at most 35 percent of
modules are aggregated in one pass of clustering, leaving a much larger number of levels. From
Section 19.3.2.5, this rule produces 20 levels of hierarchy for FDP/LSD on a 1M-module test case.

19.3.3 ITERATION FLOW

Of all the leadingmultiscale placers cited in this chapter, FDP/LSD [48] is the only one known to rely
on more than a single pass of successive refinement from coarsest to finest level (cf. Figure 19.3).
After each such pass of successive refinement in FDP/LSD, the entire hierarchy is reconstructed,
using location-based clustering (Section 19.3.2.2), with one less level of clustering than used in the
preceding pass. On a 1M-module test case, this flow constructs a total of 20 + 19 + · · · + 1 ≈ 200
distinct problem formulations over its history.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 392 10-10-2008 #17

392 Handbook of Algorithms for Physical Design Automation

19.3.4 RELAXATION

Iterative improvement at each level may employ various techniques—network flows, simu-
lated annealing, nonlinear programming, force-directed models—provided that it can support
incorporation of complex constraints appropriate to the modeling scale at the current level.

Important considerations for relaxation include the following:

1. Should it be local (e.g., annealing-based) or global (e.g., force-directed)?
2. How should net models (objectives) and density models be adapted to different modeling

scales?
3. To what extent should relaxation be expected to change the starting configuration it inherits

from an adjacent level?
4. What termination criteria should be used?
5. How scalable must the relaxation be?
6. How easily can it be implemented?
7. How readily can it be adapted to accomodate additional complex constraints?

For example, in bothmPL andAPlace, the density grid sizes, and log-sum-expHPWL smoothing
parameter, and bin-grid density smoothing parameters are chosen to match the scale of resolution
implied by the average cluster size. For this reason, both these engines carefully control the variation
in cluster sizes during coarsening.

19.3.4.1 mPL6

In mPL5 [49] and mPL6 [39], fast numerical PDE solvers are used in a generalization of the
Eisenmann–Johannes force-directed model [10,13] at each level of hierarchy (Chapter 18). The
global NLP relaxations in mPL6 are observed to dramatically improve quality over the earlier
implementations [50] relying more on localized iterations. In mPL6 [39], iterations at each level
terminate when the average area–density overflow over all bins is sufficiently small. Convergence to
nonuniform area–density distributions is enabled by the introduction of filler cells [51] unconnected
to modules in the netlist. These are introduced hierarchically from the top-down in proportion to
the white space available in each rectangular subregion region following the initial unconstrained
placement. In addition, these filler cells are periodically redistributed from scratch from the top-down.

Adjustment of relative weights assigned to the log-sum-exp HPWL objective and the density
constraints in mPL6 is intriguing. Modules do not simply spread monotonically toward their final
positions. Instead, at every level of hierarchy, the HPWL term is given a large enough weight at early
iterations to allow modules to contract together tightly enough to alter relative positions before sub-
sequent increase of the density weight and re-expansion of the modules toward a more area-uniform
configuration. These alternating contracting and expanding motions seem to confer additional hill-
climbing ability to mPL6 and improve its final solution quality significantly compared with simpler
and faster monotonic spreading.

19.3.4.2 APlace

In APlace [29,41], nonlinear conjugate gradients is used to iteratively improve a penalty function
obtained for analytical approximations of a HPWL objective and bell-shaped bin-based area–density
constraints (Chapter 18).

Relaxation at each level of APlace proceeds by the Polak–Ribiere variant of nonlinear conjugate
gradients [52] with golden-section linesearch [53]. A hard iteration limit of 100 is imposed. The grid
size |G|, objectiveweight, wirelength smoothing parameterα, and area–density potential radius r are
selected and adjusted at each level to guide the convergence. Bin size and α are taken proportional
to the average cluster size at the current level. The density-potential radius r is set to 2 on most grids

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 393 10-10-2008 #18

Enhancing Placement with Multilevel Techniques 393

but is increased to 4 at the finest grid to prevent oscillations in the maximum cell-area density of
any bin. The density-potential weight is fixed at one. The wirelength weight is initially set rather
large and is subsequently decreased by 0.5 to escape from local minima with too much overlap. As
iterations proceed, the relative weight of the area–density penalty increases, and a relatively uniform
cell-area distribution is obtained.

Termination inAPlace is based on discrepancy, defined for a givenwindowsizeA as themaximum
ratio of module area in any circumscribing rectangle of area A. Compared with other tools, this
measure of density control is quite strict and may account in part for APlace’s relatively long
runtimes [54].

19.3.4.3 FDP/LSD

In the FDP/LSD [12,48] placer, a multilevel formulation is seen as a way of improving the relative
positions ofmodules following an analytic, unconstrained quadratic HPWL-minimizing initial place-
ment. In particular, clustering of tightly connected modules forces them to remain spatially close,
even as other modules less strongly connected to those in the cluster are allowed to migrate away.
After the initial analytical placement, netlist partitioning is also incorporated as a means of further
separating modules in congested regions before subsequent quadratic placement steps. In contrast
to most earlier work, the FDP authors specifically cite large quality improvements due solely to the
multilevel formulation.

Termination in FDP is controlled by normalized Klee measure [55], in which the total amount of
core area occupied by overlappingmodules is accurately computed by a segment-tree technique and
then divided by the sum of all module areas. This spread-metric fraction is strictly less than 1 when
overlap exists and approaches 1 as overlap is removed. The FDP multiscale flow terminates, and
legalization commences, when approximately 30 percent overlap remains according to this metric;
i.e., when the spread-metric fraction is approximately 0.7.

19.3.4.4 Dragon

In Dragon [7,37], an initial cutsize-minimizing quadrisection is followed by a bin-swapping-based
refinement, in which entire partition blocks at the given level are interchanged in an effort to reduce
total wirelength. Recursive quadrisection and bin-swapping proceeds to the finest level. At all levels
except the last, low-temperature simulated annealing is used to swap partition blocks. At the finest
level, a more detailed and greedy strategy is employed. Dragon has been successfully adapted to
incorporate complex constraints such as timing and routability.

19.3.5 INTERPOLATION

Interpolation (a.k.a declustering, uncoarsening)maps a placement at a given coarser level to a place-
ment at the adjacent finer level. The most common interpolation functions used in placement are
piecewise constant, wherein each module at the finer level simply inherits the current position of its
parent cluster at the coarser level.

Simple declustering and linear assignment can be effective, particularly in contexts with uni-
formly sized modules [56]. With this approach, each component cluster is initially placed at the
center of its parent’s location. If an overlap-free configuration is needed, a uniform bin grid can be
laid down, and clusters can be assigned to nearby bins or sets of bins. The complexity of this assign-
ment can be reduced by first partitioning clusters into smaller windows, e.g., of 500 clusters each.
If clusters can be assumed to have uniform size, then fast linear assignment can be used. Otherwise,
approximation heuristics are needed.

Under AMG-style weighted disaggregation, interpolation proceeds by weighted averaging: each
finer-level cluster is initially placed at the weighted average of the positions of all coarser-level
clusters with which its connection is sufficiently strong [16,57]. Finer-level connections can also

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 394 10-10-2008 #19

394 Handbook of Algorithms for Physical Design Automation

be used: once a finer-level cluster is placed, it can be treated as a fixed, coarser-level cluster for
the purpose of placing subsequent finer-level clusters. Weighted aggregation is described further in
Section 19.2.3.

A constructive approach, as in Ultrafast VPR [24], can also lead to extremely fast and scalable
algorithms. At each level, clusters are initially placed in the following sequence: (i) clusters directly
connected to output pads, (ii) clusters directly connected to input pads, and (iii) other clusters.

19.3.6 MULTISCALE LEGALIZATION AND DETAILED PLACEMENT

Multiscale algorithms and ideas are featured in recent studies of legalization of mixed-size place-
ments, where the largest objectsmay be several orders ofmagnitude larger than the smallest modules.
In this setting, the transition fromGP to legalization takes on increased importance, as final legaliza-
tion at the finest level may be difficult or impossible without massive disruption of the given global
placement, unless the global placer’s estimates of constraint satisfiability are sufficiently precise.

In mPL6 [42], the largest modules at each cluster level are legalized before interpolation to
the adjacent finer level. In this way, the multiscale framework is used to smooth the transition
between levels and increase the predictability at coarse levels of the final quality of results at the
finest level. The multiscale flow essentially decomposes mixed-size legalization into a sequence of
legalizations of clusters sizes balanced to within the tolerance prescribed during coarsening. In this
way, it efficiently supports look-ahead legalization [36,58] of difficult-to-legalize test cases [30],
which can improve QoR on high-utilization designs.

Multiscale ideas are also used in detailed placement [21,59,60]; cf. Chapter 20.

19.4 CONCLUSION

In practice, there is no single, simple, generic prescription for transforming a flat algorithm for
placement into a multilevel algorithm. Consistent improvement from one level to the next depends
on close coordination of coarsening, relaxation, and interpolation; this coordination depends in turn
on the specific ways in which aggregates are defined and a given placement is improved. Intralevel
stopping criteria, limits on variation in cluster size, the ratio of problem sizes at adjacent levels,
and the number of variables and constraints at the coarsest level may vary across different imple-
mentations. Ultimately, the precise settings of these parameters are generally derived empirically.
In practice, intralevel termination criteria are designed so that relaxation ends soon after reduction
in objectives and relaxed constraint violations slows. Intralevel and outer-flow convergence criteria
must complement each other to enable iterative identification of the best solutions.

Nevertheless, in recent years some trends have emerged following the 2005 and 2006 ISPD place-
ment contests [61,62].Although clustering has long been viewed as a straightforwardmeans to speed
and scalablility [18–20,24], recent results demonstrate clearly that leading multilevel optimization
implementations also produce superior quality [4,12,37,49]. Improved priority-queue-based greedy
clustering [26] increases the accuracy of coarse-level representations.Monotonic decrease at coarser
levels generally amounts to hill climbing at the finest level, the corresponding large-scale moves
of aggregates bypassing local variations en route to globally improved configurations. Clustering
errors must be reversible by sufficiently powerful forms of relaxation, interpolation, and iteration
flow (e.g., multiple or recursive V-cycles). However, relaxation at finer levels must be scalable, and
it must both respect its starting solution inherited from coarser levels and also be able to improve it
rapidly.

Netlist-driven priority-queue-based greedy clustering [26] enables rapid reduction in problem
size, up to 10 times per level, at no apparent cost in solution quality. Vertex-affinity heuristics such as
fine-granularity clustering and net cluster, designed to aggressively reduce net counts at coarser levels,
are widely used. Location-based or physical clustering can be used to support multiple traversals
over multiple hierarchies. However, best results published to date are still attained by algorithms

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 395 10-10-2008 #20

Enhancing Placement with Multilevel Techniques 395

using just one pass of succesive refinement, from coarsest to finest level, with relatively powerful
global relaxation at each level.

Improved formulations of flat analytical placement [10,63,64] have served as superior forms of
relaxation in several recent leading multilevel placement implementations [4,49,65], possibly in part
because the global view in iterative improvement complements the locality of clustering.

Finally, we note that variants of multiscale placement have also played a significant role in
recent advances in hybrid methods for partitioning-based placement (Chapter 15) and floorplanning
(Chapter 12).

ACKNOWLEDGMENT

Partial support for this work has been provided by Semiconductor Research Consortium Contract
2003-TJ-1091 and National Science Foundation Contracts CCF 0430077 and CCF-0528583. This
chapter is derived from the article in Ref. [50].

REFERENCES
1. A. Brandt. Multi-level adaptive solutions to boundary value problems. Mathematics of Computation,

31(138):333–390, 1977.
2. W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia,

2000.
3. J. Cong and X. Yuan. Multilevel global placement with retiming. In Proceedings of Design Automation
Conference, pp. 208–213, New York, 2003. ACM Press.

4. A. B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. IEEE Transactions
on Computer-Aided Design of Integrated and Systems, 24(5):734–747, 2005. ISPD 2004–2006, ICCAD
2004–2005.

5. C. -C. Chang, J. Cong, D. Pan, and X. Yuan. Multilevel global placement with congestion control. IEEE
Transactions on Computer-Aided Design of Integrated and Systems, 22(4):395–409, Apr 2003.

6. C. Li,M. Xie, C. K. Koh, J. Cong, and P. Madden. Routability-driven placement and white space allocation.
In Proceedings of International Conference on Computer-Aided Design, San Jose, CA, pp. 394–401, Nov
2004.

7. T. Taghavi, X. Yang, B. -K. Choi, M. Wang, and M. Sarrafzadeh. Congestion minimization in modern
placement circuits. In G. -J. Nam and J. Cong (editors), Modern Circuit Placement: Best Practices and
Results, pp. 135–165. Springer, New York, 2007.

8. Y. Cheon, P. -H. Ho, A. B. Kahng, S. Reda, and Q.Wang. Power-aware placement. In Proceedings of Design
Automation Conference, Anaheim, CA, pp. 795–800, 2005.

9. A. Brandt and D. Ron. Multigrid solvers and multilevel optimization strategies. In J. Cong and J. R. Shinnerl
(editors), Multilevel Optimization and VLSICAD. Kluwer Academic Publishers, Boston, 2003, pp.1–69.

10. H. Eisenmann and F. M. Johannes. Generic global placement and floorplanning. In Proceedings of 35th
ACM/IEEE Design Automation Conference, San Franscisco, CA, pp. 269–274, 1998.

11. B. Hu and M. Marek-Sadowska. mFar: Multilevel fixed-points addition-based VLSI placement. In G. -J.
Nam and J. Cong (editors),Modern Circuit Placement: Best Practices and Results, pp. 229–246. Springer,
New York, 2007.

12. K. Vorwerk and A. A. Kennings. An improved multi-level framework for force-directed placement. In
DATE, Munich, Germany, pp. 902–907, 2005.

13. P. Spindler and F.M. Johannes. Kraftwerk:A fast and robust quadratic placer using an exact linear netmodel.
In G. -J. Nam and J. Cong (editors), Modern Circuit Placement: Best Practices and Results, pp. 59–95.
Springer, NY, 2007.

14. N. Viswanathan, G. -J. Nam, C. J. Alpert, P. Villarrubia, H. Ren, and C. Chu. RQL: Global placement
via relaxed quadratic spreading and linearization. In Proceedings of Design Automation Conference,
San Diego, CA, pp. 453–458, 2007.

15. G. H. Golub and C. F. Van Loan. Matrix Computations, 3rd edn. The Johns Hopkins University Press,
Baltimore, Maryland, 1996.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 396 10-10-2008 #21

396 Handbook of Algorithms for Physical Design Automation

16. T. F. Chan, J. Cong, T. Kong, J. Shinnerl, andK. Sze. An enhancedmultilevel algorithm for circuit placement.
In Proceedings of International Conference on Computer-Aided Design, San Jose, CA, pp. 299–306, Nov
2003.

17. R. M. Lewis and S. Nash. Practical aspects of multiscale optimization methods for VLSICAD. In J. Cong
and J. R. Shinnerl (editors),Multilevel Optimization and VLSICAD. Kluwer Academic Publishers, Boston,
2003, pp. 265–291.

18. D. M. Schuler and E. G. Ulrich. Clustering and linear placement. In Proceedings Design Automation
Conference, pp. 50–56, New York, 1972. ACM Press.

19. S. Mallela and L. K. Grover. Clustering based simulated annealing for standard cell placement. In Pro-
ceedings of Design Automation Conference, Atlantic City, NJ, pp. 312–317. IEEE Computer Society Press,
1988.

20. W. -J. Sun and C. Sechen. Efficient and effective placement for very large circuits. IEEE Transactions on
Computer-Aided Design, 14(3):349–359, 1995.

21. S. -W. Hur and J. Lillis. Relaxation and clustering in a local search framework: Application to linear
placement. In Proceedings of ACM/IEEE Design Automation Conference, pp. 360–366, New Orleans,
1999.

22. J. Cong and D. Xu. Exploiting signal flow and logic dependency in standard cell placement. In Proceedings
of Asia South Pacific Design Automation Conference, p. 63, New York, 1995. ACM Press.

23. C. Sechen and K. W. Lee. An improved simulated annealing algorithm for row-based placement. In
Proceedings of International Conference on Computer-Aided Design, San Jose, CA, pp. 478–481, 1987.

24. Y. Sankar and J. Rose. Trading quality for compile time: Ultra-fast placement for FPGAs. In FPGA ‘99,
ACM Symposium on FPGAs, Monterey, CA, pp. 157–166, 1999.

25. V. Betz and J. Rose. VPR: A new packing, placement, and routing tool for FPGA research. In Proceedings
of International Workshop on FPL, London, U.K., pp. 213–222, 1997.

26. G. J. Nam, S. Reda, C. J. Alpert, P. Villarrubia, and A. B. Kahng. A fast hierarchical quadratic placement
algorithm. IEEE Transactions on Computer-Aided Design of Integrated and Systems, 25(4):678–691, 2006
(ISPD 2005).

27. J. Li, L. Behjat, and J. Huang. An effective clustering algorithm for mixed-size placement. In Proceedings
International Symposium on Physical Design, Austin, TX, pp. 111–118, 2007.

28. B. HuMarek-Sadowska, M. Fine granularity clustering based placement. IEEE Transactions on Computer-
Aided Design of Integrated and Systems, 23(4): 527–536, 2004 (ISPD 2003: pp. 67–74, San Diego, CA and
DAC 2003: pp. 800–805, Anaheim, CA).

29. A. Kahng, S. Reda, and Q. Wang. APlace: A high quality, large-scale analytical placer. In G. -J. Nam and
J. Cong (editors),Modern Circuit Placement: Best Practices and Results, pp. 163–187. Springer, NY, 2007.

30. T. -C. Chen, Z. -W. Jiang, T. -C. Hsu, H. -C. Chen, and Y. -W. Chang. NTUPlace3: An analytical placer
for large-scale mixed-size designs. In J. Cong and G. -J. Nam (editors), Modern Circuit Placement: Best
Practices and Results, pp. 289–310. Springer, New York, 2007.

31. G. Karypis. Multilevel algorithms for multi-constraint hypergraph partitioning. Technical Report 99-034,
Department of Computer Science, University of Minnesota, Minneapolis, 1999.

32. G. Karypis. Multilevel hypergraph partitioning. In J. Cong and J. R. Shinnerl (editors), Multilevel
Optimization and VLSICAD. Kluwer Academic Publishers, Boston, 2003, pp. 125–154.

33. J. Cong and S. K. Lim. Edge separability based circuit clustering with application to circuit partitioning. In
Asia South Pacific Design Automation Conference, Yokohama, Japan, pp. 429–434, 2000.

34. S. N. Adya, S. Chaturvedi, J. A. Roy, D. A. Papa, and I. L. Markov. Unification of partitioning, placement
and floorplanning. In Proceedings of International Conference on Computer-Aided Design, San Jose, CA,
pp. 12–17, 2004.

35. T. -C. Chen, Y. -W. Chang, and S. -C. Lin. Imf: Interconnect-driven multilevel floorplanning for large-
scale building-module designs. In Proceedings of International Conference on Computer-Aided Design,
pp. 159–164, Washington, DC, 2005. IEEE Computer Society.

36. A. N. Ng, I. L. Markov, R. Aggarwal, and V. Ramachandran. Solving hard instances of floorplacement. In
Proceedings of International Symposium on Physical Design, pp. 170–177, New York, 2006. ACM Press.

37. M. Sarrafzadeh, M. Wang, and X. Yang. Modern Placement Techiques. Kluwer, Boston, 2002.
38. J. A. Roy, D. A. Papa, and I. L. Markov. Capo: Congestion-driven placement for standard-cell and RTL

netlists with incremental capability. In G. -J. Nam and J. Cong (editors), Modern Circuit Placement: Best
Practices and Results, pp. 97–134. Springer, New York, 2007.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 397 10-10-2008 #22

Enhancing Placement with Multilevel Techniques 397

39. T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie. mPL6: Enhanced multilevel mixed-size placement
with congestion control. In G. -J. Nam and J. Cong (editors), Modern Circuit Placement: Best Practices
and Results, pp. 247–288. Springer, NY, 2007.

40. N. Viswanathan, M. Pan, and C. Chu. FastPlace 3.0: A fast multilevel quadratic placement algorithm
with placement congestion control. In Proceedings of Asia South Pacific Design Automation Conference,
Yokohama, Japan, pp. 135–140, 2007.

41. A. B. Kahng, S. Reda, and Q.Wang. Architecture and details of a high quality, large-scale analytical placer.
In Proceedings of International Conference on Computer-Aided Design, San Jose, CA, pp. 891–898, Nov
2005.

42. T. F. Chan, J. Cong, M. Romesis, J. R. Shinnerl, K. Sze, andM. Xie. mPL6: Enhanced multilevel mixed-size
placement. In Proceedings of International Symposium on Physical Design, San Jose, CA, pp. 212–214,
Apr 2006.

43. B. Hu andM.Marek-Sadowska. Multilevel fixed-point-addition-based VLSI placement. IEEETransactions
on Computer-Aided Design of Integrated and Systems, 24(8):1188–1203, 2005.

44. H. Chen, C. -K. Cheng, N. -C. Chou, A. B. Kahng, J. F. MacDonald, P. Suaris, B. Yao, and Z. Zhu.
An algebraic multigrid solver for analytical placement with layout-based clustering. In Proceedings of
IEEE/ACM Design Automation Conference, Anaheim, CA, pp. 794–799, 2003.

45. T. Luo and D. Z. Pan. DPlace: Anchor-cell-based quadratic placement with linear objective. In G. -J.
Nam and J. Cong (editors), Modern Circuit Placement: Best Practices and Results, pp. 39–58. Springer,
New York, 2007.

46. A. Brandt. Multiscale scientific computation: Review 2001. In T. Barth, R. Haimes, and T. Chan (editors),
Multiscale and Multiresolution Methods. Springer Verlag, NY, 2001, pp. 3–95.

47. J. Cong and J. R. Shinnerl (editors). Multilevel Optimization in VLSICAD. Kluwer Academic Publishers,
Boston, 2003.

48. K. Vorwerk and A. Kennings. Mixed-size placement via line search. In Proceedings of International
Conference on Computer-Aided Design, San Jose, CA, pp. 899–904, 2005.

49. T. F. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit placement. In
Proceedings of International Symposium on Physical Design, San Francisco, CA, pp. 185–192, 2005.

50. J. Cong, J. R. Shinnerl, M. Xie, T. Kong, and X. Yuan. Large-scale circuit placement. ACM Transactions
on Design Automation of Electronic Systems, 10(2):389–430, 2005.

51. S. N. Adya, I. L. Markov, and P. Villarrubia. On whitespace and stability in mixed-size placement and
physical synthesis. In Proceedings of International Conference on Computer-Aided Design, San Jose, CA,
pp. 311–319, 2003.

52. S. G. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw Hill, New York, 1996.
53. P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London and New York,

1981. ISBN 0-12-283952-8.
54. http://www.sigda.org/ispd2006/contest.html.
55. K. Vorwerk, A. Kennings, and A. Vannelli. Engineering details of a stable force-directed placer. In

Proceedings of International Conference on Computer-Aided Design, San Jose, CA, pp. 573–580, Nov
2004.

56. T. F. Chan, J. Cong, T. Kong, and J. Shinnerl. Multilevel optimization for large-scale circuit placement.
In Proceedings of International Conference on Computer-Aided Design, pp. 171–176, San Jose, CA,
Nov 2000.

57. I. Safro, D. Ron, and A. Brandt. Graph minimum linear arrangement by multilevel weighted edge
contractions. Journal of Algorithms, 60(1): 24–41, 2006.

58. J. Cong, M. Romesis, and J. Shinnerl. Robust mixed-size placement under tight white-space constraints.
In Proceedings of International Conference on Computer-Aided Design, San Jose, CA, pp. 165–172, Nov
2005.

59. A. B. Kahng, P. Tucker, and A. Zelikovsky. Optimization of linear placements for wirelength minimization
with free sites. In Proceedings Asia South Pacific Design Automation Conference, Wanchai, Hong Kong,
pp. 241–244, 1999.

60. M. Pan, N. Viswanathan, and C. Chu. An efficient and effective detailed placement algorithm.
In Proceedings of International Conference on Computer-Aided Design, San Jose, CA, pp. 48–55, 2005.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C019 Finals Page 398 10-10-2008 #23

398 Handbook of Algorithms for Physical Design Automation

61. G. -J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz. The ISPD2005 placement contest and
benchmark suite. In Proceedings of International Symposium on Physical Design, San Francisco, CA,
pp. 216–220, Apr 2005.

62. G. -J. Nam. ISPD 2006 placement contest: Benchmark suite and results. In Proceedings of International
Symposium on Physical Design, pp. 167–167, New York, 2006. ACM Press.

63. B. Hu and M. Marek-Sadowska. FAR: Fixed-points addition & relaxation based placement. In Proceedings
of International Symposium on Physical Design, pp. 161–166, New York, 2002. ACM Press.

64. W. C. Naylor, D. Ross, and S. Lu. Nonlinear optimization system and method for wire length and delay
optimization for an automatic electric circuit placer, Oct 2001.

65. B. Hu, Y. Zeng, and M. Marek-Sadowska. mFAR: Fixed-points-addition-based VLSI placement algorithm.
In Proceedings of International Symposium on Physical Design, San Francisco, CA, pp. 239–241, Apr
2005.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 399 23-9-2008 #2

20 Legalization and Detailed
Placement
Ameya R. Agnihotri and Patrick H. Madden

CONTENTS

20.1 Introduction.. 399
20.1.1 Notation . 402
20.1.2 Routing Models . 402

20.2 Space Management . 403
20.2.1 Flow-Based Overlap Removal . 404

20.2.1.1 Setting Up and Solving the Transportation Problem. 405
20.2.1.2 Calculation of Transportation Cost . 406

20.2.2 Diffusion-Based Placement Migration .. 408
20.2.3 White Space Allocation .. 408
20.2.4 Computational Geometry-Based Placement Migration . 409
20.2.5 Cell Shifting . 410
20.2.6 Grid Warping .. 410
20.2.7 Space Management Summary .. 411

20.3 Legalization Techniques . 411
20.3.1 Flow and Diffusion-Based Legalization . 411
20.3.2 Tetris-Based Legalization.. 412
20.3.3 Single-Row Dynamic Programming-Based Legalization . 412

20.4 Local Improvements . 414
20.4.1 Cell Mirroring and Pin Assignment . 414
20.4.2 Reordering of Cells . 415
20.4.3 Optimal Interleaving . 417
20.4.4 Linear Placement with Fixed Orderings . 418

20.4.4.1 Notations and Assumptions .. 419
20.4.4.2 Analysis of the Cost Function . 419
20.4.4.3 Dynamic Programming Algorithm . 419

20.5 Limits of Legalization and Detailed Placement. 420
References . 421

20.1 INTRODUCTION

In this chapter, we survey work on space management, legalization, and detailed placement, the
design flow steps normally falling between global placement and the start of routing. Over the past
few years, the traditional physical design flow has evolved. Where there was once a sequence of
discrete steps, one now sees a blurring of activities and a great deal of iterative improvement. The
methods described here should not be viewed as standalone optimizations; rather, they should be
considered as components in a more complex multifaceted approach.

399

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 400 23-9-2008 #3

400 Handbook of Algorithms for Physical Design Automation

Logic synthesis
Global

placement

Congestion,
timing, and

thermal analysis Legalization

Detailed placement
(reordering, linear

placement, mirroring) Routing

Space
management

Severe problems
may require a return
to global placement,

or even logic synthesis

Small-scale timing and
congestion problems may
be resolved by stretching
or shifting a placement to

insert additional space

FIGURE 20.1 Traditional linear design flow has been replaced by a more iterative process. Legalization and
detailed placement may reveal problems with routing or timing performance, necessitating changes to the place-
ment, and repeated steps. To enable design convergence, it is desirable to have these changes incremental, with
each new placement being similar to the prior one. This chapter focuses on the topics indicated in boldface text.

In early design flows, the transition from global placement to detailed placement was relatively
simple. The logic elements were aligned to cell rows, and then small local optimizations were
performed. With changes to routing models, and the dominance of interconnect delay, space man-
agement has fundamentally changed the design flow, and has emerged as a key element of successful
strategies.

Figure 20.1 illustrates a current approach; following global placement, a number of methods
can be used to analyze a placement. Congestion estimation [1] can identify regions where routing
demandwill likely exceed the available resources; an effective technique is to insert additional white
space between logic elements, spreading out the circuit and gainingmore room for wiring. Similarly,
timing analysis may find slow paths that can be improved through buffer insertion or gate sizing;
again, spreading out of the circuit may be required to provide room for the new logic elements.
Thermal hot spots are also a major concern on high-performance devices, and additional space is yet
again needed.

A primarymotivation for using a spacemanagement-based approach is that it provides a measure
of stability [2] in the design flow. If one were to return to global placement each time a routing or
timing problem was encountered, it would be difficult to achieve design closure; a new placement
might eliminate previous problems, but new problems are likely to arise. By shifting and adjusting
an existing placement, it is easier to achieve design closure.

Formost of the discussion,we focus on the simple objectiveof half-perimeterwirelength (HPWL)
minimization. It should be noted, however, that HPWL is only an estimate of routing demand, and
in many cases, this can be far off. For nets with up to three pins, HPWL is the best possible length
that could be achieved; for higher degree nets, both minimum spanning trees and Steiner trees can
have higher lengths.

The actual length of the interconnect wiring can be increased greatly by the insertion of detours;
for dense, congested designs, it may not be possible to avoid detours. The routability of a circuit
can be enhanced considerably by adding additional space into a placement; while this can increase
HPWL, it may be necessary for successful routing, and can actually improve routed wirelength by
reducing the number of detours.

Even if one were to be able to accurately estimate routing lengths, this is not in itself a meaning-
ful metric. Far more important is the delay of the circuitry, which impacts the maximum operating
frequency. Similarly, the length of the interconnect impacts switching capacitance and power con-
sumption, but the actual switching behavior must be considered to have an accurate estimate.
Although low HPWL correlates with good performance, it should not be viewed as the sole metric
for evaluating a placement.

We attempt to highlight how various optimization techniques interact with each other. Although
the mixing of techniques results in better overall circuit designs, it also becomes more difficult to
quantify the effect of each component.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 401 23-9-2008 #4

Legalization and Detailed Placement 401

Our discussion begins with a brief summary of routing models, and how they have changed
over the years. With modern designs, space management is essential for achieving routability; the
semiconductor industry has switched from a variable-die design style to a fixed-die model, resulting
in the distinct possibility that a dense design will fail to route successfully (Figure 20.2). Some
optimization methods performed during detail placement may seem counterintuitive unless one
considers the routing constraints. After discussing the routing models, we then focus on methods to
distribute space within a global placement; this has been an active area over the past few years, and
a great deal of progress has been made.

Successful routing is not the only reason that space insertion is of interest. High-performance
designs commonly face problems with power delivery and heat removal, spacing out active devices
spreads heating, resulting in lower peak temperatures. Yet another application of space insertion
methods is as a way to reserve area for timing optimization. As part of an iterative improvement
process, individual logic gates may be resized, and buffers can be inserted into long wires. Designs
that are not densely packed can accomodate these changes without a great deal of disruption in the
overall structure.

After space insertion, a placement must be legalized. Standard cells must align into rows, and
may also need to follow a column grid. Overlaps between both standard cells andmacroblocksmacro
must be removed. For legalization, some problems are easy, allowing a remarkably simple method
to be used; one objective of space management methods can be to make legalization problems easy.

Fixed-die routing model.
No additional space is available
between cell rows. This model

allows greater device density, but
poses more difficult routing problems.

Channel-based variable
die with some over-the-cell

routing
Variable-die model

In variable-die designs, standard cell row
spacing can be adjusted to match the routing
demand. An entire routing channel must be

expanded to match the peak demand,
potentially wasting resources in some areas.

With modern fixed-die designs, standard cell
row do not have any spacing between them,
allowing sharing of power and ground wiring.
All routing occurs over the cell rows, and there

is no simple way to gain additional routing space.
Modern designs may include macroblocks,
which can further disrupt routing, and make

space management more difficult.

FIGURE 20.2 Increasing routing resources have caused routing to shift from a channel-based approach to
over-the-cell. In the fixed-die, over-the-cell model, it may not be possible to shift logic elements apart to gain
additional routing resources.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 402 23-9-2008 #5

402 Handbook of Algorithms for Physical Design Automation

For designs that are dense, legalization is difficult, and more robust methods are necessary if one is
to obtain good results.

For legalization of designs that contain both macroblocks and standard cells, there are two
distinct approaches. One method first first fixes the positions of macroblocks, and then fills the space
between them with standard cells. A second approach is to legalize macroblocks and standard cells
simultaneously.

Once a placement is legal, with all overlaps removed and logic elements properly aligned,
optimizations that are traditionally classified as detailed placement can be applied. Small groups of
standard cells can be shifted or reordered—these local optimizations can have a dramatic impact
on wirelength. To maximize the size of an optimization window with acceptable runtimes, dynamic
programming is frequently used.

20.1.1 NOTATION

When presenting specific algorithms, we utilize the following notation. For an integrated circuit,
the netlist will contain a set of cells C = {c1, c2, c3, . . . , cn}, connected by a set of signal nets
N = {n1, n2, n3, . . . , nm}. Each net connects a subset of the cells.

A placement P of a netlist consists of precise x and y positionings for each cell ci. We focus
on transformations of P to another similar placement P′ such that the placement has lower overlap,
becomes legal, has better wirelength, and so on.

For simplicity, in most cases we assume that the nets connect to the centers of the cells, and we
treat macroblocks and standard cells in the same way. Extending the methods described to use exact
pin positions is trivial.

20.1.2 ROUTINGMODELS

Over the years, the increasing numbers of interconnect layers has driven changes in routing models.
This has impacted detail placement in interesting ways.

In earlier variable-die designs, routing success could almost always be assured (given sufficient
space). In standard cell designs, the spacing between rows can be adjusted as needed. In earlier
fabrication technologies, there were relatively few layers of interconnectmetal, and thusmost routing
occurred in channels between rows. For a congested design,wheremore routing resources are needed,
one would simply need to expand the space between a pair of rows, thereby gaining the necessary
resources. If more routing resource was required between rows, a “feedthrough” could be inserted
into the row.

With the growth in the number of available metal interconnect layers came the ability to route
some connections over cells. For a period, there were T-shaped channels. Some connections were
made between rows, but a portion was made directly above. As with variable-die designs, there was
flexibility to adjust row spacing.

As the number of interconnect layers further increased, progressively more routing was done
above the cells, with cell row spacing decreasing until the traditional channelwas eliminated entirely.
This is known as the fixed-die routing model. The fixed-die model brings cells closer together,
lowering overall wirelengths.

Fixed-die routing now dominates the industry, but faces the problem of routing failure. If a
portion of the design has excessive routing demand, there is no simple way to provide additional
routing space; space management methods described later in this chapter are gaining popularity as
a means to combat routing failure.

Although adding space to a fixed-die design is not trivial, one can in fact leverage a number of
techniques found in analytic placement. Figure20.3 shows an intermediate step in analytic placement,
and the congestionmap asmight be produced by Liu’smodel [1]. Spreadingmethods that are applied
to an analytic placement can also be applied to gain routing space.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 403 23-9-2008 #6

Legalization and Detailed Placement 403

In an analytic placement method, it is
common for intermediate steps to have

a high degree of cell overlap. Methods to
spread apart dense regions are well studied.

Routing congestion is a significant problem;
spreading logic elements apart is a common
solution. There are many parallels between
analytic spreading methods, and modern

congestion reduction methods.

Spreading needed to
remove overlap

Spreading
needed to
remove

congestion

FIGURE 20.3 Analytic placement tools face a problem similar to those faced in routing; some portions of
a design are excessively dense, and the logic elements need to be separated to obtain a feasible or routable
solution.

20.2 SPACE MANAGEMENT

Global placement tools perform a rough positioning of logic elements across the core region.
Frequently, this rough placement contains a considerable amount of overlap between logic elements,
and there are regions that are excessively dense. This is particularly commonwith analytic placement
methods, but some forms of recursive bisection also exhibit this behavior.

To evaluate a global placement, one common measure is the utilization of different regions of
the placement. If the total area of the logic elements assigned to a region is greater than the area of
the region itself, it is overutilized or dense. To obtain a legal solution, logic elements must be moved
away from dense areas; ideally, this movement should be done with minimum change to the overall
structure of the placement.

Figure 20.4 illustrates the issue; initially, a portion of the placement has more circuit elements
assigned than there is physical space.Through a variety of spacemanagement or placementmigration

(a) Initial placement (b) Direction of cell movement (c) Placement after movement

FIGURE 20.4 Global placement techniques may produce solutions with a significant amount of overlap, or
regionswith highutilization. Spreading logic elements apart is neccessary for placement legalization.Algorithms
that remove overlap can also be effective for adding in additional space for routing.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 404 23-9-2008 #7

404 Handbook of Algorithms for Physical Design Automation

techniques, new locations for some of the logic elements can be found, resulting in a new placement
with better utilization.

Although the most obvious application of space management is in the removal of overlaps and
density reduction (making legalization possible), there are othermotivations aswell. Circuit routing is
difficult; additional space makes routing easier, and it is common for large designs to have maximum
density constraints on portions of the layout. Space management is also an effectiveway of adjusting
to changes resulting from gate sizing or buffer insertion. Rather than running the placement tool
again (possibly obtaining a completely different result), an existing placement can be stretched to
accomodate resynthesis. Yet annother use for space management algorithms is in spreading apart
devices with high activity—the power dissipated during switching can create thermal hot spots, and
spreading can reduce peak on-chip temperatures.

In this section, we discuss a variety of space management techniques; which is best depends
a great deal on the initial placement, and on the objectives of designer. We begin with a classic
approach based on minimum cost flow, and then consider more recent geometric methods. We also
include in the discussion some methods in use in analytic placement tools; in particular, the methods
used by FastPlace [3] and Warp [4] can achieve deisred results.

20.2.1 FLOW-BASED OVERLAP REMOVAL

An early approach to placement spreading, which can be used directly on standard cell designs, is
a technique that iteratively improves the quality of a placement using network flow optimization.
This technique is used by the placement tool Domino [5] and can not only optimize but also remove
overlaps in the placement. Vygen [6] also discusses related ideas.

The approach is relatively intuitive. The placement region can be divided into a set of regions;
these are normally arranged in a rectangular grid. Each region corresponds to a vertex vi in a graph.
Figure 20.5 illustrates a simple example.

If a region contains more circuit area than physical space, the corresponding vertex forms a
supply for a maximum flow problem. Similarly, if a region is not excessively dense, it is a sink.
Edges between each pair of vertices can be created, with the cost of the edge being related to the
distance between the regions.

(a) Placement with some overly
dense regions

(b) Maximum flow graph, with
supply vertices in black

Subset of the edges
considered in maximum flow;
the cost of any edge is related

to the physical distance traveled

(c)

FIGURE 20.5 If a placement contains regions that are excessively dense, one can determine an appropriate
way to move some logic elements using a minimum cost flow algorithm. Regions of the placement can be
modeled as vertices in a graph; edges are placed between regions, with a cost relative to the distance between
regions. A flow in the graph corresponds to a ripple of logic elements from one region to another.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 405 23-9-2008 #8

Legalization and Detailed Placement 405

Solving theminimumcost flow problem results in a strategy to move circuit elements fromdense
regions to sparse regions. By keeping the cost of the flow small, the physical displacement of logic
elements is also kept small. A flow of x along an edge from vertex vi to vj indicates that x units of
logic should be moved from the region i to region j; normally, the logic elements closest to region j
are selected.

Flow-based improvements are sometimes referred to as ripple moves; one can see chains of
regions, where logic elements move in sequence through, from dense regions to sparse. It is common
for flow-basedmethods to be used on only a portion of the placement region at a time; the algorithms
used can be computationally expensive.

Algorithm 1 gives a high-level description of this approach. The input to the algorithm is any
placement with or without overlaps. The output is an optimized placement with reduced overlaps,
and sometimes reduced wirelength.

The first step is to partition the placement area into several small rectangular subregions. This
is done to create small subproblems that can be solved efficiently. In Ref. [5], the subregions are
allowed to overlapwith each other, allowingmovementbetween regions.The subproblems are solved
iteratively until the solution quality converges.

Once partitioned, the rest of the algorithm works on individual subregions. Cells are assigned to
the subregions that contain their geometric coordinates. For each subregion, a transportation problem
is set up and solved to get the improved subplacement.

Algorithm 1 Outline of flow-based space management tool such
as Domino [5]
Partition the placement region into smaller rectangular
subregions;
while there is an improvement do

for each subregion ρ do
Assign cells to ρ depending on their initial locations;
Set up and solve a transportation problem;
Move cells to new locations;

end for
end while

20.2.1.1 Setting Up and Solving the Transportation Problem

A transportation problem can be represented in the form of a bipartite graph, as shown in Figure 20.6.
The graph has two disjoint sets of nodes known as the supply nodes and the demand nodes. There
are edges between the nodes in the two sets with a certain cost w and capacity u associated with each
such edge. In our case, the supply nodes are the cells in a subregion, say Cρ , and demand nodes are
placement locations within a subregion, say Lρ . We need to transport cells in Cρ to unique locations
in Lρ minimizing the transportation cost. One problem here is that standard cells have fixed heights
but variable widths. To account for this, each cell c is broken down into multiple subcells (say sc).
In Ref. [5], width of a subcell is chosen as the the greatest common divisor of the width of all cells
within a subregion.

The transportation problem can be converted into a minimum cost maximum flow problem,
which can be solved using a variety of techniques. This conversion is done as follows:

• We add two extra nodes in the graph; a super-source node S and a super-sink node T .
• We add |Cρ| edges between S and each cell node ci (∈ Cρ). The cost of each such edge is 0

and the capacity is sci , that is, the total number of subcells of ci.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 406 23-9-2008 #9

406 Handbook of Algorithms for Physical Design Automation

Edges used to find a flow of logic elements from dense to sparse regions.
 The cost of each edge is dependent on physical displacement

and approximations of net cost.

Demand nodes (regions with
excess area demand)

Supply nodes (regions
with available space)

Super
sink

Super
source

FIGURE 20.6 Flow-based methods normally construct a bipartite graph for a portion of the placement region.
Edges indicate the possibility of shifting logic elements (or portions thereof) from one area to another; the cost
of each edge is based on an estimate of wirelength.

• We add |Lρ| edges between each location node lj (∈ Lρ) and T . The cost of each such node
is 0 and the capacity is 1 (which indicates that each location can hold at most one subcell).

• Capacity of each edge (ci, lj) (where ci ∈ Cρ and lj ∈ Lρ) is ∞. The cost calculation of each
such edge is complex and is described in detail in the next subsection.

Once the transportation problem is solved, one must then deduce each cell location from the
subcell locations. One method is to assign each cell to the row that contains the majority of its
subcells. Ties are broken in favor of the row that contains a subcell with the least transportation cost.
X-coordinates of cells are determined by calculating the center of gravity of the X-coordinates of
corresponding subcells.

20.2.1.2 Calculation of Transportation Cost

In this section, we discuss how to calculate the cost of transporting a cell c (∈ Cρ) to a location
l (∈ Lρ) with coordinates (xl, yl). This is given by

wcl =
∑
v∈Nc

�clv

where
Nc is the set of nets of cell c
�clv is the contribution of net v to wcl when cell c is placed at location l

Our objective is the following:

minimize
∑
c∈Cρ

wcl

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 407 23-9-2008 #10

Legalization and Detailed Placement 407

For a net v, let CI
v and C

E
v denote the cells in v that are, respectively, internal and external to the

region under consideration. The locations of cells in CE
v are fixed, where as, the locations of cells in

CI
v are unpredictable during solving the problem. Note that the half-perimeter netlength model can

not be directly used in this case to calculate the transportation costs, as cells within the region might
be connected to each other; the cost for each cell is dependent on the locations of other cells. Three
cases could occur for net v:

1. Case 1: |CI
v| = 1

2. Case 2: 1 < |CI
v| < |Cv|

3. Case 3: |CI
v| = |Cv|

For Case 1, the half-perimetermodel can be applied directly. For Cases 2 and 3, Ref. [5] suggests
two net models to approximate the half-perimeter net model. Let,

xEmax = max |c∈CEv (xc)
xEmin = min |c∈CEv (xc)

yEmax, y
E
min are defined similarly.

1. Net model I:
For Case 2, the connectivity between the cells in CI

v is ignored. We have

�clv = max(xEmax, xl) − min(xEmin, xl) + max(yEmax, yl) − min(yEmin, yl)

For Case 3, a dummy cell δ is created at the center of mass of the locations of cells in CI
v.

We have

�clv = max(xδ , xl) − min(xδ, xl) + max(yδ , yl) − min(yδ, yl)

2. Net model II:
Let,

xI
′
max = max |c∈I′(xc)
xI

′
min = min |c∈I′(xc)

where, I′ = CI
ν \{c} and (xc, yc) is the initial location of cell c. yI

′
max

and yI
′
min

are defined
similarly.
For Case 2,

�clv = max
(
xEmax, xl, x

I′
max

)
− min

(
xEmin, xl, x

I′
min

)
+ max

(
yEmax, yl, y

I′
max

)
− min

(
yEmin, yl, y

I′
min

)

For Case 3, dummy cell δ is again created as above.

�clv = max
(
xδ , xl, xI

′
max

)
− min

(
xδ, xl, xI

′
min

)
+ max

(
yδ , yl, yI

′
max

)
− min

(
yδ , yl, yI

′
min

)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 408 23-9-2008 #11

408 Handbook of Algorithms for Physical Design Automation

A detailed analyis of the two net models described above can be found in Ref. [5]. The flow-
based approach of Domino is a classic technique, and one can find the basic elements showing up in
a variety of other places (e.g., a legalization method described later in this chapter).

20.2.2 DIFFUSION-BASED PLACEMENT MIGRATION

Conceptually related to flow-based methods is a recent diffusion-based placement migration tech-
nique by Ren [7]. The placement area is again decomposed into a set of bins; areas with high
utilization are considered high pressure.

A physics-based model can be used to compute particle velocities between bins with different
pressures. The approach in Ref. [7] is to calculate pressure differentials between adjacent bins, and
then to use this to compute velocities for elements in each region. Through a series of time steps,
logic elements move from dense bins to sparse, and achieve a more uniform distribution across the
placement area. The approach is illustrated at a high level in Algorithm 2.

The approach requires less computation than flow-basedmethods, and is perhapsmore intuitive.
In terms of solution quality, however, it is difficult to draw conclusions: to our knowledge, there has
been no direct comparison of the two methods.

An apparent shortcoming of the diffusion approach is that it may spread logic elements
apart, even when this is not required. For designs that have a great deal more available space than
logic area, this spreading can result in higher wirelength. Methods to insert dummy space are being
investigated, but these are heuristic in nature.

Algorithm 2 Diffusion-based placement migration
Map cells onto bins and compute initial bin densities
repeat

Compute horizontal and vertical velocities for each bin
Compute new positions and velocities for each cell
Update bin densities using the new cell positions

until Density constraints are met

20.2.3 WHITE SPACE ALLOCATION

Although flow-based methods are effective, they can be computationally expensive and may also
be difficult to implement. Recently, a number of methods that are geometric in nature have been
developed. One such technique, white space allocation (WSA), has been used to improve routability
[8,9], and also to remove overlap created by gate sizing [10]. WSA in some sense reverses the
approach of recursive bisection-based placement tools.

Given an input placement, cutlines in alternating directions can be inserted; this is shown in
Figure 20.7a. The method used to generate the initial placement is irrelevant.

The placement is then modified by shifting the cutlines to meet area constraints of each side.
In the first column of Figure 20.7a, the vertical cutline is positioned halfway across the placement
region. If the distribution of area demand is unbalanced, with a greater portion of the area being on
the right, the WSA approach shifts the vertical cutline to the left. Positions of all logic elements are
scaled linearly, and the process recurses.

The method is extremely fast, and is also easy to implement. Excessively dense regions are
spread out easily, and the relative positions of most logic elements are preserved. Pseudocode for
the approach is shown in Algorithm 3.

In Ref. [8], the WSA method was used in conjunction with an estimate of routing congestion.
Areas where routing was expected to be difficult were spread out, while areas with low routing
demand were contracted. By applying WSA as a postprocessing step to the placements of a variety
of tools, experiments showed vast improvement in almost all cases.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 409 23-9-2008 #12

Legalization and Detailed Placement 409

(c) Placement warping

(a) White space allocation

(b) Cell shifting

FIGURE 20.7 Geometric methods for space management; each involves the physical stretching or shifting of
a portion of the design. By utilizing simple geometry (rather than a flow computation), overlap can be removed
quickly and easily, although with a potential increase in wirelength.

Algorithm 3 Outline of the WSA algorithm; recursion continues until
each region contains only a single element
Given a rectangular region r that is h high and w wide
if h ≥w then

Insert a horizontal cut line
Compute the area of cells above and below the cut line
Shift the cut line vertically to match the relative areas
Scale the y positions of all cells to match the cut line position

else
Insert a vertical cut line
Compute the area of cells to the left and right of the cut line
Shift the cut line horizontally to match the relative areas
Scale the x positions of all cells to match the cut line
position

end if
Recursively process each half

The method was used again in Ref. [10], as a means to adjust a placement to changes from
gate sizing and buffer insertion. The simplicity of the approach has resulted in its adoption in other
placement tools [9].

20.2.4 COMPUTATIONAL GEOMETRY-BASED PLACEMENT MIGRATION

A shortcoming of the WSA approach is that there may be significant sheer along the cutlines; logic
elements on either side of a boundary may shift in opposite directions. The effect of this shift is

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 410 23-9-2008 #13

410 Handbook of Algorithms for Physical Design Automation

An initial placement of
logic elements;

netlengths are low

For routability or timing
optimization, the size of

logic elements may
be increased

Cutline-based methods for
transforming a placement may
introduce sheer; connections
along a cutline may become
significantly longer. This may

introduce new timing and
routability problems

FIGURE 20.8 In geometric space allocation methods that use cutlines of some sort, it is possible that logic
elements on opposite sides of a cutline have a significant relative displacement after shifting. The optimization
objectives of global placement are not preserved, and this can negatively impact both routability and operating
frequencies.

that some interconnectionsmay become significantly longer, degrading the overall performance and
potentially introducing routing congestion. The sheer problem is illustrated in Figure 20.8.

An alternative method by Luo [11] uses computational geometry-based methods to stretch the
placement more uniformly. In one method, a rectilinear grid of bins are adjusted, such that each bin
becomes an arbitrary quadrilateral; cell positions are then interpolated. A second approach performs
a Delaunay triangulation of the placement area, with cell positions being interpolated within each
region.

20.2.5 CELL SHIFTING

Although not initially envisioned in this manner, the cell shifting technique used in the analytic
placement tool FastPlace [3] can be also used for space management.

In cell shifting, the placement region is divided into either horizontal or vertical stripes; this is
illustrated in Figure 20.7b. Each stripe is divided into a set of bins, and these bins can expand or
contract tomeet area constraints. In the figure, the first column corresponds to the initial bin structure.
On the basis of the area of logic elements within the bin and the total area of all bins in a row or
column, the size of each bin can expand or contract.

When a dense bin expands, the coordinates of any contained logic element are scaled accordingly.
The total height or width of a stripe is constrained by the placement area; it is trivial to adjust the
sizes of bins such that they equally share the available space.

By iterating alternating horizontally and vertically, new positions can be found for the logic
elements, distributing themmore uniformly across the chip. The placement tool FastPlace uses these
locations as added forces to the analytic formulation, it is by this means that an analytic solution
with low overlap can be found. In principle, however, there is nothing that would prevent one from
using the approach in the same manner as WSA.

20.2.6 GRIDWARPING

Yet another geometric technique found in analytic placement is grid warping [4]. This is illustrated
in Figure 20.7c. Starting from an initial rectilinear quadrisection, the boundaries of the four regions
can be adjusted such that they meet the area demands.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 411 23-9-2008 #14

Legalization and Detailed Placement 411

As with the computational geometry approach of Luo [11], the division lines are not restricted to
be rectilinear. Rather, the placement area is stretched like a rubber sheet, with positions of the logic
elements being scaled.

As with WSA, the grid warping method is applied recursively; each subregion is divided by a
rectilinear quadrisection, and then the boundries of these subregions are adjusted.

20.2.7 SPACEMANAGEMENT SUMMARY

Driven primarily by the complications of routing in a fixed-die environment, there has been an explo-
sion of interest in space management techniques. Additionally, advanced fabrication technologies
are providing more silicon real estate to work with, and designers are rarely under pressure to pack
circuitry as tightly as was once done.

Balancing space is a difficult task. If a design becomes spread too far apart, wires become longer
than necessary; this increases power consumption, and lowers the achievable clock rates. A design
that is too dense suffers from routing failures, excessive routing detours, and may not be amenable
to buffer insertion or gate sizing. At this point, there is no simple method to determine how much
space is “enough.”

The methods used are frequently reminiscent of overlap removal methods in analytic placement,
and one can expect continued cross-fertilization of ideas.

When adjusting a placement to meet eliminate overlap, or to improve routability, cutline-
based methods such as WSA may encounter a sheer problem. When evaluating space management
approaches, one should consider the magnitude of changes required. For small changes, simple geo-
metric techniques may be sufficient; for larger changes, more robust flow-based methods may be a
superior choice.

20.3 LEGALIZATION TECHNIQUES

Placement legalization is a key step in a successful analytic placement flow, and has become important
in recursive bisection as well. In a legal placement, all cells must be aligned with row boundaries
(and potentially column grids), and no cells may overlap.

Our discussion begins with a flow-basedmethod, leveraging off of the space management meth-
ods described in Section 20.2.1. If a design has been spread out effectively, so that no area has demand
higher than the available space, legalization is trivial.

The discussion continues, with a relatively recent method by Hill [12], and extensions to it by
Agnihotri [13]. This method, known as Tetris, is remarkably simple and easy to implement; it should
provide good intuition for the problem. While the method works well for some problems, it can
fail dramatically in others; this gives intuition to why more robust methods such as those based on
minimum cost flow are necessary.

20.3.1 FLOW AND DIFFUSION-BASED LEGALIZATION

Using either a minimum cost flow formulation [14], or diffusion [7], a placement that has small
localized areas of overlap can be obtained. For designs that contain only standard cells (or in which
macroblocks are fixed), placement legalization can be easily accomplished.

By creating zones, bins, or regions that are a single cell row tall, and then ensuring that each
zone meets a density constraint, a legal placement can be found by packing cells into each zone.
A legal solution is guaranteed to exist; distributing cells within a zone can further improve results.

Although we have discussed flow and diffusion-basedmethods within the context of space man-
agement, it is also appropriate to think of them as legalization techniques. Good space management
makes placement legalization trivial.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 412 23-9-2008 #15

412 Handbook of Algorithms for Physical Design Automation

20.3.2 TETRIS-BASED LEGALIZATION

Rather than distributing logic elements with flow-like methods, an alternate approach based on
packing is possible. The Tetris legalization method by Hill [12] is remarkably simple, and trivial to
implement. We first discuss the approach in the context of standard cell design, and then show how
it extends to handle a mix of standard cells and macroblocks. For each cell ci, we have a desired
position (xi, yi); the cells must be legalized into standard cell rows R = {r1, r2, . . . , rk}, and assume
that the left-most open position in each row is known.

The legalization method first sorts the cells C by their x position, and then inserts them into the
left side of a row in a greedy manner, such that the displacement of each cell is minimized.

Algorithm 4 The Tetris legalizer by Hill
{C}=All cells to be legalized;
Sort the cells in C by their X-coordiates to get Ls;
lj = left-most position of each row rj;
for i= 1 to the number of cells do

best= lim sup;
for j= 1 to the number of rows do

cost= displacement of moving cell i in Ls to lj;
if cost≤best then

best=cost;
best_row =j;

end if
end for
Move cell i in Ls to the row best_row;
lbest_row=lbest_row +widthi;

end for

Pseudocode for the approach is shown in Algorithm 4. If one were to rotate the placement region
counterclockwise, the legalization process might look very much like a game of Tetris, for which
the algorithm is named.

Our example code can be made to run more quickly by only considering rows close to the
desired position of a cell; in practice, runtimes are linear with the number of cells to be legalized.
Our example also packs cells to the left, but this is not in general necessary; if space has been reserved
for routability, it may be perferable to legalize into a position that is not to the left.

Other obvious variants are to legalize from both the left and right sides, and to sort the cells
by their leftmost boundary, rather than their center. The method can also be adapted to designs that
contain macroblocks; [13] simply added a check for each row spanned by a macroblock, to find the
leftmost position that did not result in an overlap.

Although the Tetris method works well in practice for global placements that have the logic
elements distributed evenly, even small areaswith overlap can cause significant trouble.When a block
must be displaced during legalization, it may cause a ripple effect, resulting in the displacements of
many other blocks. In some cases, wirelengths can jump by 30 percent or more; the method is fast
and effective for easy legalization problems, but performs poorly on more difficult cases.

20.3.3 SINGLE-ROWDYNAMIC PROGRAMMING-BASED LEGALIZATION

Contrast to the simple Tetris legalization method is one which operates on a row-by-row basis [15],
single-row dynamic programming-based legalization was developed for standard cell placements,
and selects a subset of cells to place in a row using dynamic programming.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 413 23-9-2008 #16

Legalization and Detailed Placement 413

The outline of the technique is given in Algorithm 5. Legalization is done from the bottom row to
the top row (although the reverse is also possible). Cells are first sorted by their initial Y -coordinates
in nondecreasing order. Let Ls denote this sorted list of cells. A set of candidate cells Ci

cand are then
selected for assignment to a particular row, say Ri. The total width of cells in Ci

cand is greater than the
capacity of Ri and satisfies the following relation:

�k1 ∗ width(Ri)� ≤ width(cicand) =
m∑
j=1

width(cj) ≤ �k2 ∗ width(Ri)�

where
k1, k2 ∈ 	 and are constants such that 1 < k1 ≤ k2
width(Ri) is the width of row Ri

width(Ci
cand) is the total width of cells in C

i
cand

width(cj) is the width of cell cj ∈ Ci
cand

m = |Ci
cand|

Note that cells in Ci
cand are always the lowermost m cells in Ls that satisfy the above relation.

The Tetris algorithm packs a single cell at a time onto one side of the placement region, whereas
this approach finds a set of cells to fill an entire standard cell row. The method used to find this
set of cells is similar to the dynamic programming technique of solving the classic 0–1 knapsack
problem [16].

In the knapsack problem, there is a limit on the weight of the knapsack; the analogue of this
constraint is the limit on total cell width in the row. Similarly, the value of an item in the knapsack
problem is modeled by the physical displacement of each cell.

After identifying the set of candidate cells Ci
cand, they are sorted by their X-coordinates in

nondecreasing order. These cells are considered for assignment to Ri in this sorted order. The
knapsack-like problem is solved using dynamic programming, with the selected cells being packed
in, and the remaining cells being considered for legalization in the next row. This process is repeated
until all cells have been legalized. Algorithm 5 illustrates the approach.

Algorithm 5 Row-by-row dynamic programming based legalization.
(The overall approach is a variation of the classic method for
the 0–1 knapsack problem)
{C} =All cells to be legalized;
Sort the cells in C by their Y-coordinates to get Ls;
for i= 1 to Nr-1 do

Select a set of candidate cells (Ci
cand) from Ls;

Assign a subset of cells Ci
assign from C

i
cand to row Ri;

Ls =Ls \ Ci
assign;

end for
Assign the remaining cells in Ls to row RNr;

Every cell cj has two factors associated with it: (1) the cost of assigning cj to row Ri, denoted by
wi
j and (2) the penalty of not assigning cj to Ri, denoted by pij. Obviously, if cj is assigned to Ri then,

pij = 0 and if it is not assigned to Ri, then wi
j = 0.

If cell cj is to be assigned to rowRi, then the cost of assignment is given by the following equation:

wi
j = (xij − xj)

2 + (yij − yj)
2

where
(xji, yji) is the location in Ri where cj is going to be placed
(xj, yj) is c′

j s initial location

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 414 23-9-2008 #17

414 Handbook of Algorithms for Physical Design Automation

On the other hand, the penalty of not assigning cj to Ri is given by

pij = (yi+1
j − yj)

2

where
yi+1
j is the y-coordinate of the center of row Ri+1

yj is c′
j s initial y-coordinate

20.4 LOCAL IMPROVEMENTS

Following legalization, a large number of well-studied techniques can be used to optimize a circuit
placement. The computational complexity of many useful algorithms is exponential;O(2n) or O(n!)
are common, where n is the number of logic elements being optimized. Even on the fastest available
computer, the practical values of n are small—far smaller than the number of elements in a placement
problem.

For this reason, only a small number of elements are processed in any given step: those under
the sliding window. If the size of the sliding window can accomodate six cells, one might optimize
the first six cells in a single row, and then move on to the third through ninth cell. With only six
elements, a O(n!) algorithm is practical. Overlaps between optimization windows help minimize the
impact of the local nature of this step. Sliding window optimization is shown in Figure 20.9.

20.4.1 CELL MIRRORING AND PIN ASSIGNMENT

The first class of local improvements we consider is cell mirroring; this technique is easy to under-
stand. Each cell in a design contains a set of input and output pins, and these are not usually
symmetrically placed. By mirroring a cell around its X axis, interconnect lengths can be improved
in many cases. An illustration of this is shown in Figure 20.10.

An early study of the problem by Cheng [17] showed that finding optimal orientations is in fact
NP-complete; as such,we cannot hope to find an optimal solution to the problem. In practice, however,
relatively simple heuristic methods can be quite effective. One approach is to simply evaluate each
orientation on a cell-by-cell basis, selecting the better choice in a greedymanner.Within a fewpasses,
solution quality converges.

Detailed placement techniques normally operate
on a small window into the circuit, making

local improvements. Most techniques assume
macroblocks are fixed, and optimize around them.

Sliding window optimization is common; windows
typically overlap slightly. Optimization windows
may be single- or multirow. Multiple passes of

optimization are also commonplace.

Fixed
macroblock

Fixed
macroblock

FIGURE 20.9 Detailed placement techniques are normally applied on a subset of the design, moving from
one area to another with a sliding window approach.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 415 23-9-2008 #18

Legalization and Detailed Placement 415

A

A

B

B
C2

C1
Out Out

Out

Out

Default orientation for C1 Mirrored orientation

A

A

B

BOutA B

OutA B

FIGURE 20.10 Standard cells can normally be mirrored along the Y axis. This can reduce the length of some
interconnect segments, and may be used to slightly shift routing demand from one area to another. Macroblocks
frequently allow mirroring along both axis, as well as rotation.

For typical standard cell design, mirroring is only possible along the X axis; power and ground
lines are integrated into the cell design, and mirroring along the Y axis might not be possible. When
implementing a detailed placement approach, one should consider the nature of the standard cells;
similarly, the detailed placement tool should be considered in cell design.

Formacroblocks, mirroring around both theX and Y axesmay be possible; it may also be possible
to rotate a block.

Related to cell mirroring is the technique of pin assignment. For many logic elements, there may
be functionally equivalent pins, for example, the inputs of a NAND gate are equivalent. A circuit
designer may specify that signal net ni is connected to input pin a, while signal net nj is connected to
input pin b; some detailed placement tools support optimization of the assignment. Individual pins
may have differing delay characteristics (due to the internal layout of transistors), so optimization of
a pin assignment may benefit wirelength, delay, or both.

Finally, cell mirroring and pin assignment may be beneficial in improving the routability of a
design. In channel routing tools, an internal data structure known as a vertical constraint graph is
frequently used; the data structure reveals an ordering of interconnect segments that will allow easy
routing. Depending on precise locations of individual pins, there may be cycles in the constraint
graph—significantly complicating routing. Slight changes to pin locations, which can be achieved
with mirroring or pin assignment, may eliminate cycles and simplify routing greatly.

Early works by Her [18] and Swartz [19] illustrate a tight coupling between detailed placement
and routing. Slight adjustments at a local level can improve routing, and these adjustments are difficult
to make without actually performing the detail routing step.

20.4.2 REORDERING OF CELLS

Asecond commondetailedplacementmethod, sometimes integratedwith cellmirroring, is improving
a design through the reorderingof small groups of cells using a slidingwindowapproach. Figure20.11
shows two cases; in the first, wirelength can be improved by swapping the positions of a pair of a
cells. In the second, the optimization window size required to find a better placement is three cells.

For standard cell design, it is common to see optimization window sizes ranging from three to
eight. Much larger windows carry a heavy runtime cost, while windows of size two have relatively
small wirelength benefit.

Brute force enumeration is easy to implement; some speed improvements can be obtained using
branch-and-bound techniques. Caldwell [20] presented an extensive study of the topic, considering
different ways to to enumerate permutations, and to bound the solution space. Pseudocode for a
simple branch-and-bound approach to cell reordering is shown in Algorithm 6.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 416 23-9-2008 #19

416 Handbook of Algorithms for Physical Design Automation

A A A AB B B BC C C CD D D D

A B CDA B C D

An optimization window of
size 2 can improve the

initial placement (swapping
the cells B and C).

A slightly different initial
placement cannot be

improved with an optimization
window of size 2. To obtain a

better placement, a larger
optimization window is required.

FIGURE 20.11 Order of cells in a row (or group of rows) can be refined using small optimization windows;
the size of the window limits the improvement possible, and also impacts runtime considerably.

With designs that are densely packed, evaluating any given permutation is relatively simple; cells
of different sizes are simply placed in the order, with the position of cell ci being immediately after
cell ci−1. When there is open space, however, the problem is slightly more difficult.

Algorithm 6 A recursive implementation of cell reordering; by computing
partial wirelengths, the number of solutions explored can be reduced
{C}= cells in the optimization window;
{F} = empty set;
left= left side of optimization window;
reorder(C,F,left) {
if C is empty then

Evaluate current configuration;
Store configuration if improved;

else
for each ci in C do

place ci at left;
reorder(C−ci,F +ci,left+width(ci));

end for
end if
}

Consider a simple case with cells ci and cj, and a small open space. There are two different
possible permutations of the cells (cicj and cjci), but a potentially infinite number of ways to divide
the available space between the cells. The optimal amount of space to be inserted before the first cell,
between the first and second cell, and after the second cell can be determined (see Section 20.4.4),
but this complicates the reordering process.

Reordering of cells across multiple rows is also fairly common.When cells are of different sizes,
not all permutations may be valid.

One method of implementing a multiple row reordering function is to first divide the available
space on a row-by-row basis. For any given permutation, each cell is inserted into the top-most open
row; when a row is filled, processing moves to the next row. If the permutation does not fit, this will
be discovered along the way, and the potential solution can be discarded.

When implementing a reordering technique, a number of performance trade-offs must be
considered.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 417 23-9-2008 #20

Legalization and Detailed Placement 417

• If the size of the optimization window is small, brute force enumeration may be the best
approach. Branch-and-bound methods require incremental wirelength computations, and
this has a runtime overhead that may outweigh the benefits of solution space pruning.

• If the size of the optimization window is large, branch-and-boundmethod can have signifi-
cant benefit. Many permutations can be eliminated easily, with the savings outweighing the
extra cost for incremental wirelength computation.

• If the design contains space between cells, one must decide how to handle it. Optimal space
allocation can be done, but with a runtime cost; for large optimization windows, this is
unlikely to be practical. Space can be treated as a single monolithic unit, or divided equally
between cells; what is best may depend on the design itself.

• For optimization across multiple rows, many permutations may be eliminated if cells are
of different sizes. This can increase the size of a practical optimization window in some
cases. When the design contains space, this may make more permutations possible, thereby
lowering the practical optimization window size.

20.4.3 OPTIMAL INTERLEAVING

Another method of altering the order of a group of cells is optimal interleaving by Hur [21]. The
approach utilizes dynamic programming to allow for large window sizes with low runtimes. We
suggest the text by Cormen [16] as a good reference for dynamic programming (Figure 20.12).

To begin with, let us assume the following:

• C is a given set of cells.
• Ainitial is an overlap free initial linear arrangement of cells in C. By linear arrangement, we

mean the placement of cells within a single row. Here we use the terms arrangement and
placement synonymously.

• C1 = c11, c12, . . . , c1n and C2 = c21, c22, . . . , c2m are two proper subsets of C of size |C1| = n
and |C2| = m such that, C1 ∪ C2 = C and C1 ∩ C2 = ∅.

• pij denotes the position of cell cij.
• pij < pkl means that cij precedes ckl in some arragement. Note that cklmay not be immediately

next to cij.

A B C X Y Z

A B X

A X B

X A B

X

Y

Z

A B C

Optimal arrangement
for (AB)(X)

FIGURE 20.12 Interleaving of two groups of standard cells can be done in an efficient manner with dynamic
programming. In this figure, we have two sets of cells that are to be interleaved; optimal partial solutions are
stored in a matrix.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 418 23-9-2008 #21

418 Handbook of Algorithms for Physical Design Automation

We are now ready to define interleaving. An interleaving In,m of C1 and C2 is an arrangement of
cells in C1 and C2 satisfying the following conditions:

If p1i < p1j in Ainitial, then p1i < p1j in In,m

If p2k < p2l in Ainitial, then p2k < p2l in In,m

where,

i = j and 1 ≤ i, j ≤ n

k = l and 1 ≤ k, l ≤ m

Note that there are

(
n+ m
n

)
different ways of interleaving C1 and C2. An optimal interleaving

is the one with minimum cost. The cost of an interleaving Ii,j denoted by w(Ii,j)(1 ≤ i ≤ n and
1 ≤ j ≤ m) is its total linear wirelength, ignoring the cells in {C\Ii,j}. Because placement rows are
typically horizontal, by linear wirelength we mean the wirelength in X-dimension.

Hur and Lillis [21] proposed a polynomial time algorithm for solving the optimal interleaving
problem that utilizes dynamic programming. The recurrence equation is stated as follows:

I0,0 = ∅,w(I0,0) = 0

Ii,j =
{
Ii−1,jc1i if w(Ii−1,jc1i) < w(Ii,j−1c2j)

Ii,j−1c2j otherwise

Note that a dynamic programming formulation is only possible because for any subsequence
Ii,j,w(Ii,j) is independent of the ordering of cells in {C \ Ii,j}. The runtime of the algorithm is O(nm+
np(n + m)) where np is the number of pins belonging to the nets of cells in C, which is typically
proportional to the number of cells.

Optimal interleaving can be applied to the entire legalized placement using the sliding window
technique described above. In Ref. [21], the subsets C1 and C2 are chosen arbitrarily.

20.4.4 LINEAR PLACEMENT WITH FIXED ORDERINGS

The placement problem is NP-complete, even for the one-dimensional case [22]. The one-
dimensional problem is commonly known as linear placement. In this problem, candidate cells
belonging to a single placement row are given and we need to find a placement that minimizes the
wirelength. Note that we are only allowed to change the X-locations of cells; hence the name linear
placement. A restricted variant of this problem, in which we cannot alter the cell ordering, can be
solved optimally in polynomial time. One solution method was proposed by Kahng [23], and later
on improved on by Brenner [24].

First, to formally state the problem, we assume that we are given the following:

• Set of cells {c1, c2, . . . , cn} with the width of cell ci denoted by width(ci)
• Placement row of widthW : W ≥ ∑n

i=1 width(ci)
• Legal initial placement P = {p

1
, p

2
, . . . , p

n
}, where p

i
+ width(ci) ≤ p

i+1
for i = 1, . . . ,

n− 1, 0 ≤ p
1
and p

n
≤ [W − width(cn)]

The optimization objective is to find a legal placement P = {p1, p2, . . . , pn} with the minimum
possible bounding box wirelength such that if p

i
< p

j
in P then pi < pj in P.

It should be obvious that to impact wirelength, white space must be present. If the cells are
densely packed, there is only a single possible placement, and no improvement is possible.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 419 23-9-2008 #22

Legalization and Detailed Placement 419

20.4.4.1 Notations and Assumptions

• We are only concerned with nets with at least one movable cell. Let m be the total number
of such nets.

• Let cNL and cNR be the leftmost and rightmost movable cells of net N with locations denoted
by pNL and pNR (recall that we are only dealing with X-location here). Note that cNL and cNR are
known beforehand and do not change during the course of solving the problem as we are
not allowed to change the ordering of cells.

• Let f NL and f NR stand for the locations of the leftmost and rightmost fixed pins of net N
(A net without a fixed pin can be broken down into two nets; one that connects cNL with a
dummycell at locationW and another one that connects cNR with a dummycell at location 0).

• For the sake of simplicity, let us assume that all pins are located at the left edge of their
cells.

Our objective is the following:

minimize
∑
N

(
max

{
f NR , p

N
R

} − min
{
f NL , p

N
L

})

or equivalently,

minimize
∑
N

(
f NR − f NL

) +
n∑
i=1

wi

where wi is the contribution of cell ci to the objective function and is given by:

wi =
∑

N:ci=cNL

max
{
f NL − pi, 0

} +
∑

N:ci=cNR

max
{
pi − f NR , 0

}

A careful observation of the function wi indicates that cells that are neither cNL nor cNR for any net
N can be placed arbitrarily, as they do not contribute anything to our objective function. These cells
can be merged with their predecessors. The remainder of our discussion is valid only for cells that
do not fall in this category.

Because every net under consideration has a unique cNL and cNR and it is possible to have cNL = cNR
for a net (a net that has a single movable cell), we have the relation n ≤ 2m.

20.4.4.2 Analysis of the Cost Function

One can observe that the function wi is convex piecewise linear. This can be deduced as follows:
take a cell ci and create a sorted list of the f NL and f NR values of all nets for which ci = cNL or ci = cNR ,
respectively, and mark them on a number line. For any location x, let a (b) denote the number of
f NR (f NL) locations to the right (left) of x. Three possibilities occur

• a < b: wi is linear and decreasing in this interval as x increases
• a = b: wi is constant and minimum
• a > b: wi is linear and increasing as x increases

20.4.4.3 Dynamic Programming Algorithm

Solutions to the linear placement with fixed ordering problem are based on dynamic programming.
We use the following notations for this section:

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 420 23-9-2008 #23

420 Handbook of Algorithms for Physical Design Automation

• Let Si denote the set of sites where cell ci can be placed without overlapping with any of its
neighboring cells.

• Let Pj
i be an optimal prefix placement for cell ci where all cells to the left of ci have been

placed optimally and pi ≤ sj(∈ Si).
• LetWj

i be the total cost of P
j
i and w

j
i denote the cost of placing ci at sj(∈ Si).

Our goal is to find PW−width(cn)
n .

The dynamic programming formulation can be stated as follows:

Pj
0 = ∅, Wj

0 = 0

Pj
i =

{
P
j−width(ci−1)

i−1 ∪ {pi = sj} if W
j−width(ci−1)

i−1 + wj
i < Wj−1

i

Pj−1
i otherwise

20.5 LIMITS OF LEGALIZATION AND DETAILED PLACEMENT

All of the operations performed in legalization and detailed placement are in some sense local,
and thus fail to address global optimization objectives. These algorithms are typically applied in
an interative manner, in ad hoc mixtures. Many groups have experimented with different legalizers,
window sizes for reordering, methods to perform space allocation, and so forth.

There is no simple method to obtain the right strategy. Fortunately, most placement tools from
academic groups can be run in a legalization or detailed placement mode, making it easy to test out
different techniques. When compared with the runtimes for global placement, detailed placement
times are usually low; it is worthwhile to explore different combinations.

The first optimization normally applied would be space insertion to reduce routing congestion.
As a rule of thumb, onemight wish to keep the routing demand in any area less than about 70 percent
of the available routing resource. Dense routing frequently results in the failure to complete all nets,
or in large net detours. The achievable routing density depends on the specific routing tool used. The
wirelength increase due to space insertion may be less than what one might anticipate. If the logic
elements are spread apart, with the placement area increasing by 10 percent, the actual spreading
performed is less than 5 percent in horizontal directions. For this case, the worst one should expect
would be a 5 percent increase in total wirelength.

Going from an abstract global placement to a legal one typically incurs a small wirelength
increase (perhaps a few percent); abstract placements with relatively little overlap generally have
smaller increases. If there is excess space for routing, it is quite possible that the legalized placement
could actually reduce wirelengths. If there is an increase, reordering, cell mirroring, and optimized
linear placement can normally recover some of the wirelength loss.

Within a few iterations, however, the improvements of any technique become asymptotically
small. The first few percent of wirelength improvements come easily; afterward, the progress is
slow. In many respects, it is a decision of the circuit designer as to how long to carry out detailed
placement. For some, aminor improvement inwirelengthmight have a great deal of value,warranting
the extra compute time. For others, a quick-and-dirty solution may be sufficient.

It should be stressed that one of the most crucial considerations is to minimize the amount
of overlap during global placement, and ensure that there are no large sections of the design that
have area demands that exceed the space available. Legalization methods handle space distribution
imperfectly; if the problems can be solved in global placement, the results will almost certainly be
better. Comparing the locations of placements before and after legalization can provide a great deal of
insight. There are a number of visualization tools for placements; any area that changes significantly
during legalization should be examined carefully.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 421 23-9-2008 #24

Legalization and Detailed Placement 421

By mapping a graphic image to the cells in a design, it is possible to compare two different placements.
The original image on the left is mapped to placements from Capo and Feng Shui for the benchmark

Peko01 (which has a known optimal solution). Both placements are clearly suboptimal; as the benchmark
lacks pads, the images are rotated.

It is frequently useful to compare images before and after legalization, and at various stages of detailed
placement. Large distortions can identify problems with legalization, or areas where global placement

has performed poorly.

Placement

Placement

Detailed placement

FIGURE 20.13 Detailed placement techniques can resolve local problems, but placement suboptimality
is both a local and global phenomena. In experiments with synthetic designs, one can compare an optimal
configuration with the output of a placement tool by mapping an image. The distortions of the image reveal
how the placement deviates from the desired result.

Although there have been significant advances in placement, the solutions obtained are far from
optimal. Recently, Chang presented a set of benchmark circuits with known optimal configura-
tions [25]. These placement examples with known optimal (PEKO) circuits attracted a great deal of
attention, and the results ofmany placement tools on the benchmarkswas surprising. In Figure 20.13,
we illustrate the results by mapping an image onto the optimal placement of a synthetic PEKO
benchmark, and then rearranging the placements to match results of a number of academic tools.

The PEKO benchmarks contain no pads; thus, there are multiple optimal configurations, cor-
responding to mirroring or flipping of the design. From the distortions of the images, it should be
clear that many placement tools are globally correct; at a very high level, the placements resemble
the optimal result. At a local level, however, there is a great deal of suboptimality; sections of each
placement are stretched or warped, resulting in higher interconnect lengths.

While there is some question as to how closely the synthetic PEKO benchmarks resemble real
circuitry, it is obvious that placement results could be improved, and that this improvement must
span both the local and global levels.

REFERENCES
1. J. Lou, S. Krishanmoorthy, and H. S. Sheng. Estimating routing congestion using probabilistic analysis. In
Proceedings of International Symposium on Physical Design, pp. 112–117, 2001.

2. C. J. Alpert, G. -J. Nam, P. G. Villarrubia, and M. C. Yildiz. Placement stability metrics. In Proceedings of
Asia South Pacific Design Automation Conference, pp. 1144–1147, 2005.

3. N. Viswanathan and C. C. -N. Chu. Fastplace: Efficient analytical placement using cell shifting, iterative
local refinement and a hybrid net model. In Proceedings of International Symposium on Physical Design,
pp. 26–33, 2004.

4. Z. Xiu and R. A. Rutenbar. Timing-driven placement by grid-warping. In Proceedings of Design
Automation Conference, pp. 585–591, 2005.

5. K. Doll, F. M. Johannes, and K. J. Antreich. Iterative placement improvement by network flow methods.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13(10):1189–1200,
1994.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C020 Finals Page 422 23-9-2008 #25

422 Handbook of Algorithms for Physical Design Automation

6. J. Vygen. Algorithms for detailed placement of standard cells. In Proceedings of Design, Automation and
Test in Europe Conference, pp. 321–324, 1998.

7. H. Ren, D. Z. Pan, C. J. Alpert, and P. Villarrubia. Diffusion-based placement migration. In Proceedings of
Design Automation Conference, pp. 515–520, 2005.

8. C. Li, M. Xie, C. -K. Koh, J. Cong, and P. H. Madden. Routability-driven placement and white space
allocation. In Proceedings of International Conference on Computer Aided Design, pp. 394–401, 2004.

9. J. A. Roy, J. F. Lu, and I. L. Markov. Seeing the forest and the trees: Steiner wirelength optimization in
placement. In Proceedings of International Symposium on Physical Design, pp. 78–85, 2006.

10. C. Li, C. -K. Koh, and P. H. Madden. Floorplan management: Incremental placement for gate sizing and
buffer insertion. In Proceedings of Asia South Pacific Design Automation Conference, pp. 349–354, 2005.

11. T. Lou, H. Ren, C. J. Alpert, and D. Z. Pan. Computational geometry based placement migration. In
Proceedings of International Conference on Computer Aided Design, pp. 41–47, 2005.

12. D. Hill. US Patent 6,370,673: Method and system for high speed detailed placement of cells within an
integrated circuit design, 2002.

13. A. R. Agnihotri, S. Ono, C. Li, M. C. Yildiz, A. Khatkhate, C. -K. Koh, and P. H. Madden. Mixed
block placement via fractional cut recursive bisection. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 24(5):748–761, 2005.

14. U. Brenner, A. Pauli, and J. Vygen. Almost optimum placement legalization by minimum cost flow and
dynamic programming. In Proceedings of International Symposium on Physical Design, pp. 2–9, 2004.

15. A. R. Agnihotri, M. C. Yildiz, A. Khatkhate, A. Mathur, S. Ono, and P.H.Madden. Fractional cut: Improved
recursive bisection placement. In Proceedings of International Conference on Computer Aided Design,
pp. 307–310, 2003.

16. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, Cambridge, MA,
1990.

17. C. K. Cheng, S. Z. Yao, and T. C. Hu. The orientation of modules based on graph decomposition. IEEE
Transactions on Computers, 40(6):774–780, 1991.

18. T. W. Her and D. F. Wong. On over-the-cell channel routing with cell orientations consideration. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14(6):766–772, 1995.

19. W. Swartz and C. Sechen. A new generalized row-based global router. InProceedings of Design Automation
Conference, pp. 491–498, 1993.

20. A. E. Caldwell, A. B. Kahng, and I. L. Markov. Optimal partitioners and end-case placers for standard-
cell layout. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(11):
1304–1313, 2000.

21. S. -W. Hur and J. Lillis. Mongrel: Hybrid techniques for standard cell placement. In Proceedings of
International Conference on Computer Aided Design, pp. 165–170, 2000.

22. M. R. Garey and D. S. Johnson. Computers and Intractibility: A Guide to the Theory of NP-Completeness.
W. H. Freeman and Co., San Francisco, CA, 1979. p. 209.

23. A. B. Kahng, P. Tucker, and A. Zelikovsky. Optimization of linear placements for wirelength minimization
with free sites. In Proceedings of Asia South Pacific Design Automation Conference, pp. 241–244, 1999.

24. U. Brenner and J. Vygen. Faster optimal single-row placement with fixed ordering. In Proceedings of
Design, Automation and Test in Europe Conference, pp. 117–122, 2000.

25. C. C. Chang, J. Cong, and M. Xie. Optimality and scalability study of existing placement algorithms. In
Proceedings of Asia South Pacific Design Automation Conference, pp. 621–627, 2003.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 423 24-9-2008 #2

21 Timing-Driven Placement

David Z. Pan, Bill Halpin, and Haoxing Ren

CONTENTS

21.1 Introduction.. 424
21.2 Building Blocks and Classification. 424

21.2.1 Net Modeling .. 424
21.2.2 Timing Analysis and Metrics . 425
21.2.3 Overview of Timing-Driven Placement . 426

21.3 Netweighting-Based Approach .. 427
21.3.1 Static Netweighting . 427

21.3.1.1 Slack-Based Netweighting .. 428
21.3.1.2 Sensitivity-Based Netweighting . 429

21.3.2 Dynamic Netweighting . 432
21.3.2.1 Incremental Timing Analysis . 432
21.3.2.2 Incremental Net Weighting . 433
21.3.2.3 Placement Implementation.. 433

21.4 Net-Constraint-Based Approach . 434
21.4.1 Net-Constraint Generation .. 434

21.4.1.1 Generating Effective NLCs . 434
21.4.1.2 Single-Shot NLC Generation . 434
21.4.1.3 Incremental NLC Generation .. 435

21.4.2 Net-Constraint Placement . 436
21.4.2.1 Partition-Based Net-Constraint Placement . 436
21.4.2.2 Force-Directed Net-Constraint Placement . 437
21.4.2.3 Net-Constraint-Based Detailed Placement . 437

21.5 Path (or Timing Graph)-Based Approach .. 437
21.5.1 LP-Based Formulation .. 438

21.5.1.1 Physical Constraints. 438
21.5.1.2 Electrical/Timing Constraints. 438
21.5.1.3 Objective Functions . 439

21.5.2 Partitioning-Based Overlap Removal . 440
21.5.3 Lagrangian Relaxation Method.. 440
21.5.4 Simulated Annealing .. 441
21.5.5 Graph-Based Differential Timing . 441

21.6 Additional Techniques . 441
21.6.1 Hybrid Net and Path-Based Approach . 442
21.6.2 Hippocrates: A Detailed Placer without Degrading Timing . 442
21.6.3 Accurate Net-Modeling Issue . 442

21.7 Conclusions. 443
References . 443

423

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 424 24-9-2008 #3

424 Handbook of Algorithms for Physical Design Automation

21.1 INTRODUCTION

The placement algorithms presented in the previous chapters mostly focus on minimizing the total
wirelength (TWL). Timing-driven placement (TDP) is designed specifically targetingwires on timing
critical paths. It shall be noted that a cell is usually connected with two or more cells. Making some
targeted nets shorter during placement may sacrifice the wirelengths of other nets that are connected
through common cells. While the delay on critical paths decreases, other paths may become critical.
Therefore, TDP has to be performed in a very careful and balanced manner.

Timing-driven placement has been studied extensively over the last two decades. The drive
for new methods in TDP to maximize circuit performance is from multiple facets because of the
technology scaling and integration: (1) growing interconnect versus gate delay ratios; (2) higher levels
of on-die functional integration, which makes global interconnects even longer; (3) increasing chip
operating frequencies, which make timing closure tough; and (4) increasing number of macros and
standard cells for modern system-on-chip (SOC) designs. These factors create continuing challenges
to better TDP.

Timing-driven placement can be performed at both global and detailed placement stages (see
previous chapters on placement). Historically, TDP algorithms can be roughly grouped into two
classes: net-based and path-based. The net-based approach deals with nets only, with the hope that if
we handle the nets on the critical paths well, the entire critical path delay may be optimized implic-
itly. The two basic techniques for net-based optimization are through netweighting [1–4] and net
constraints [5–10]. The path-based approach directly works on all or a subset of paths [11–14]. The
majority path-based approaches formulate the problem into a mathematical programming frame-
work (e.g., linear programming [LP]). There are pros and cons for both net-based and path-based
approaches in terms of runtime/scalability, ease of implementation, controllability, etc. Modern TDP
techniques tend to use some hybrid manner of both net-based and path-based approaches [15].

In this chapter, we discuss fundamental algorithms as well as recent trends of TDP. Because of
the large amount of works in TDP, it is not possible to exhaust all of them in this chapter. Instead, we
describe the basic ideas and fundamental techniques, and point out recent researches and possible
future directions. We first cover the basic building blocks for TDP. Then the next two sections
discuss net-based approaches, i.e., through netweighting and net constraints. Then we survey the
basic formulations and algorithms behind the path (or timing graph)-based approach. Additional
techniques and issues in the context of TDP are discussed, followed by conclusions.

21.2 BUILDING BLOCKS AND CLASSIFICATION

21.2.1 NET MODELING

Given a placement, net modeling answers a fundamental question how the net is modeled for its
routing topology and wirelength computation/estimation. Figure 21.1 shows different net modeling
strategies for a multiple-pin net.

Bounding box model Clique model Star model Steiner model

FIGURE 21.1 Different net models that can be used for placement.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 425 24-9-2008 #4

Timing-Driven Placement 425

The simplest and most widely used method to compute wirelength is the half-perimeter wire-
length (HPWL) of its bounding box. For a net i, let li, ri, ui, and bi represent the left, right, top, and
bottom locations of its bounding box. Then the HPWL of net i is

HPWLi = ri − li + ui − bi (21.1)

HPWL is the lower bound for wirelength estimation, and it is accurate for two- and three-pin nets,
which account for the majority nets.

In analytical placement engines,wirelength is oftenmodeled as a quadratic term (or pseudolinear
term as in recent literature [16,17]). In those engines, clique and star models are often used. In the
clique model, an edge is introduced between every pin pair of the net. In the star model, an extra star
point located at the geometric center is created and each pin is connected to the star point. In general,
small nets (e.g., less than five pins) can use the clique model, but for large nets with a lot of pins,
clique model is not friendly to the matrix solvers because it creates dense matrices. Star models are
preferred for large nets. For the cliquemodel, because it is a complete graphwith far more edges than
necessary to connect the net, each edge is usually assigned a weight of 2/n (where n is the number
of pins of the net) [18].

The bounding box, clique, and star models are three most popular net models. There are other
net models, such as Steiner trees, which are more accurate for nets with four or more pins. However,
in most designs two- and three-pin nets are the majority of the entire netlist. For example, in the
industry circuit suite from Ref. [19], two- and three-pin nets constitute 64 and 20 percent of the
total nets, respectively [20]. With exception of very few placers [21], Steiner-tree-based models are
seldom used because they are computationally expensive. There are some recent works trying to
link Steiner tree with placement, e.g., in a partition-based placer [22]. More research is needed to
evaluate or make Steiner-based placement mainstream.

21.2.2 TIMING ANALYSIS AND METRICS

As its name implies, TDP has to be guided by some timingmetrics, which in turn need delaymodeling
and timing analysis. TDP algorithms can use different levels of timing models to trade off accuracy
and runtime. In general, the switch level resistance-capacitance (RC) model for gates and Elmore
delay model for interconnects are fairly sufficient. There are more accurate models [23], but they are
not extensively used in placement. One main reason is the higher runtime. The other reason is that
during placement, routing is not done yet. It is not very meaningful to use more accurate models if
errors from those uncertainties are even greater.

Based on the gate and interconnect delay models, static timing analysis (STA) or even path-
based∗ timing analysis can be performed. STA [24] computes circuit path delays using the critical
path method [25]. From the set of arrival times (Arr) asserted on timing starting points and required
arrival times (Req) asserted on timing endpoints, STA propagates (latest) arrival time forward and
(earliest) required arrival time backward, in the topological order. Then the slack at any timing point
t is the difference of its required arrival time minus its arrival time.

Slk(t) = Req(t) − Arr(t) (21.2)

Static timing analysis can be performed incrementally if small changes in the netlist are made. For
more details on delay modeling and timing analysis, the reader is referred to Chapter 3.

Timing convergence metrics measure the extent to which a placement satisfies timing
constraints. They also give an indication of how difficult it would be for a design engineer to

∗ In most cases, STA is sufficient for TDP. The path-based timing analysis is more accurate, e.g., to capture false paths.
But it is very time consuming, and one may do it only if necessary, e.g., on a set of critical paths.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 426 24-9-2008 #5

426 Handbook of Algorithms for Physical Design Automation

manually fix timing problems. The most commonly used timing closure metric is the worst negative
slack (WNS)

WNS = min
t∈Po

Slk(t) (21.3)

where Po is the set of timing endpoints, i.e., primary outputs (POs) and data inputs of memory
elements. To achieve timing closure, WNS should be nonnegative. For nanometer designs with
growing variability, one may set the slack target to be a positive value to safe guard variations from
process, voltage, or thermal issues. TheWNS, however, only gives information about the worst path.
It is possible that two placement solutions have similar WNS values, but one has only a single critical
path while the other has thousands of critical and near critical paths. The figure of merit (FOM) is
another very important timing closure metric [4]. It can be defined as follows:

FOM =
∑

t∈Po ,Slk(t)<Slkt

[Slk(t) − Slkt] (21.4)

where Slkt is the slack target for the entire design. If Slkt = 0, the FOM is reduced to the total
negative slack (TNS) [8].

21.2.3 OVERVIEW OF TIMING-DRIVEN PLACEMENT

The overview of TDP is shown in Figure 21.2. It has three basic components: timing analysis, core
placement algorithms, and interfaces between themby translating timing analysis/metrics into certain
weights or constraints for core placement engines to drive and guide TDP.

The previous section discusses the basics of timing analysis and metrics from a given netlist.
However, which netlist to start with so that we can have a meaningful timing analysis to guide
TDP is a very important yet open question. For example, shall we start from an unplaced netlist or
some initial placement? For modern timing closure, many buffers also need to be inserted for high-
fanout nets and long interconnects to get a reasonable timing picture (otherwise, there may be many
loading/slew violations that make timing reports meaningless). On the other hand, those buffers will
change the netlist structure for TDP. Shall they be kept or stripped out during TDP? There is very little
literature covering this netlist preparation step. A reasonable strategy can be as follows: First, we
start with some initial placement (e.g., wirelength driven), then perform some rough buffering/fanout
optimization to get a reasonable timing estimation for the entire chip to guide TDP engine. Whether
to keep those buffers during TDP may vary among different physical synthesis systems.

Placement has been one of the most heavily studied physical design topics. Some of the most
popular placement algorithms include analytical/force-directed placement, partition-based place-
ment, simulated-annealing (SA) based placement, and LP-based placement. The reader is referred
to Chapters 15 through 18 for detailed discussions.

Themost interesting aspect of the TDP is themechanism to translate timingmetrics into actions to
drive the core placement engines. The focus of the rest of this chapter is on this aspect. Based on that,
the TDPcan be roughly classified into net-based and path-based approaches. The net-based approach,

Timing analysis/metrics

• Gate
• Interconnect
• Static timing analysis
• Path-based timing analysis

Interface to placer

• Netweights
• Net constraints
• Path constraints, etc.

Core placement algorithms

• Force-directed
• Partitioning-based
• Simulated annealing
• LP-based, etc.

FIGURE 21.2 Basic building blocks and overview of TDP.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 427 24-9-2008 #6

Timing-Driven Placement 427

as its name implies, deals with individual nets. Because timing analysis inherently deals with paths
(with timing propagation), the timing information is then translated into either net constraints or
netweights [1–4] to guide TDP engines. The main idea of net constraint generation (or delay bud-
geting) is to distribute slack for each path to its constituent nets such that a zero-slack solution
is obtained. The delay budget for each net is then translated into its wirelength constraint during
placement. The main idea of netweighting is to assign higher netweights to more timing-critical nets
while minimizing the total weighted wirelength objective. Netweighting gives direction for timing
optimization through shortening critical nets, but it does not have exact control because the objective
is the total weighted wirelength; the net constraint approach specifies that, but it may be too much
constrained in terms of global optimization. Net weighting and net constraint processes can be iter-
atively refined as more accurate timing information is obtained during placement. A systematic way
of explicit perturbation control is important for net-based algorithms.

The path-based approach directly works on all or a subset of paths. Themajority of this approach
formulate the problem into mathematical programming framework (e.g., LP). It usually maintains
an accurate timing view during the placement optimization [26]. However, its drawback is its poor
scalability and complexity because of possible exponential number of paths to be simultaneously
optimized [26]. An effective technique is to embed timing graph/constraint through auxiliary vari-
ables [11]. The mathematical programming-based approach needs to deal with cell overlapping
issues, e.g., through partitioning. The path-based timingcan also be evaluated in a simulated annealing
framework [13].

Both net-based and path-based approaches have pros and cons. Path-based in general has more
accurate timing view and control, but it suffers from poor scalability. The net-based approaches,
in particular netweighting, have low computational complexity and high flexibility. Thus, they are
suitable for large application specific integrated circuits/system-on-chip (ASIC/SOC) designs with
millions of placeable objects. Recent research shows that hybrid of these two basic approaches are
promising [15].

21.3 NETWEIGHTING-BASED APPROACH

Classic placement algorithms optimize the TWL. They can be easily modified to be timing-driven
using the netweighting technique, which assigns different weights to different nets such that the
placer minimizes the total weighted wirelength (if all the weights are the same, it degenerates into
the classic wirelength-driven placement). Intuitively, a proper netweighting should assign higher
weights on more timing-critical nets, with the hope that the placement engine will reduce the lengths
of these critical nets and thus their delays to achieve better overall timing.

Netweighting-basedTDP is very simple to implement and less computational intensive. Asmod-
ern very large scale integration (VLSI) designs have millions placeable objects (gates/cells/macros),
netweighting is attractive because of its simplicity. Almost all placement algorithms support
netweighting. Quadratic placement can optimize the weighted quadratic wirelength, partition-
based placement can optimize the weighted cutsize (see Chapter 8), and simulated-annealing-based
placement can optimize the weighted linear wirelength, etc.

Although netweighting appears to be straightforward, it is not easy to generate a good netweight-
ing. Higher netweights on a set of critical nets in general shall reduce their wirelengths and delays,
but other nets may become longer and more critical. In this section, we will review two basic sets of
netweighting algorithms: static netweighting and dynamic netweighting. Static netweighting assigns
weights once before TDP and the weights do not change during TDP. Dynamic netweighting updates
weights during the TDP process.

21.3.1 STATIC NETWEIGHTING

Static netweighting computes the netweights once before TDP. It can be divided into two cate-
gories: empirical netweighting and sensitivity-based netweighting. Empirical netweighting methods

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 428 24-9-2008 #7

428 Handbook of Algorithms for Physical Design Automation

compute weights based on certain criticality factors, such as slack, cycle time, and fanout. Critical
nets are assigned higher netweights. Sensitivity-based netweighting computes weights based on the
sensitivity analysis of netweights to factors such as WNS and FOM. The key difference of these two
netweighting schemes is that sensitivity-based approach has some look-ahead mechanism that can
estimate the impact of netweighting on key factors. Therefore, it assigns higher netweights on those
nets that have bigger impacts on the overall timing closure goal.

21.3.1.1 Slack-Based Netweighting

Empirical netweighting assigns netweight based on the critically of the net, which indicates how
much the placer should reduce the wirelength on this net. The criticality computation can be com-
puted based on the static timing analysis (STA). Assuming there is only one clock period, the net
criticality can often bemeasured by slack. Nets with negative slacks are critical nets and are assigned
higher netweights than those nets with positive slacks.

w =
{
W1, slack < 0

W2, slack ≥ 0
(21.5)

where W1 and W2 are positive constants and W1 > W2. Among the critical nets that have negative
slacks, higher weights can also be given to those which are more negative. One can either use a
continuous model [1] or a step-wise model [2] to compute weights based on the slack distribution,
as shown in Figure 21.3.

It shall be noted that netweights shall not continue to increase when slack is less than certain
threshold. This is because slack can be very negative because of invalid timing assertions. Usually,
placers do not need very high netweights to pull nets together.

For some placers, one might add an exponential component into netweighting [27] to further
emphasize critical nets.

w =
(
1 − slack

T

)α

(21.6)

where
T is the longest path delay
α is the criticality exponent

If there are multiple clocks in the design, the clock cycle time can be considered during
netweighting. Nets on paths of shorter cycle time should have higher weights than those of longer
cycle time with the same slack. For example, we can use T in Equation 21.6 to represent different
cycle times. Nets of long cycle clocks get a larger T than those of short cycle clocks.

(a) Continuous (b) Step

0 0 SlackSlack

W
ei

gh
t

W
ei

gh
t

FIGURE 21.3 Netweight assignment based on slack using continuous or step model.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 429 24-9-2008 #8

Timing-Driven Placement 429

w =
(
1 − slack

Tclk

)α

(21.7)

where Tclk is the clock cycle time for a particular net.
There are other empirical factors that can be considered for netweighting, e.g., path depth and

driver strength [28]. A deep path, which has many stages of logic, is more likely to have longer
wirelength. The endpoints of this path could be placed far away from each other, therefore worse
timing is expected than a path with less number of stages. A net with a weak driverwould have longer
delay than a strong driver with the same wirelength. Therefore, netweight should be proportional to
the longest path depth (which can be computed by running breadth first search twice: once from PIs
and second time from POs), and inversely to slack and driver strength, i.e.,

w ≈ Dl × Rd (21.8)

where
Dl is the longest path depth
Rd is the driver resistance

A weaker driver has a larger effective driving resistance, thus the net it drives will have a bigger
netweight.

One could also consider path sharing during netweighting. Intuitively, a net on many critical
paths should be assigned a higher weight because reducing the length of such net can reduce the
delay on many critical paths.

w ≈ slack × GP (21.9)

where GP is the number of critical paths passing this net. Suppose we assign two variables for each
net p on the timing graph: F(p) the number of different critical paths starting from timing beginning
point (PI) to net p; and B(p) the number of different critical paths from net p to timing endpoints
(PO). The total number of critical paths passing through net p is then GP(p) = F(p) × B(p). This
netweighting assignment only considers the sharing effect of critical paths, and each path has the
same impact of the netweight. Kong proposed an accurate, all path counting algorithm PATH [3],
which considers both noncritical and critical paths during path counting. It can properly scale the
impact of all paths by their relative timing criticalities.

To perform netweighting for unplaced designs, STA can use the wire load model, e.g., based
on fanout, to estimate the delay (compared to placed designs, STA can use the actual wire load
to compute delay). Normally, it is not accurate with wire load models. Therefore, for an unplaced
design, an alternative way of generating weights is to use fanout and delay bound [29] instead of
slack. Fanout is used to estimate wirelength and wire delay [30], and delay bound is the estimated
allowable wire delay, i.e., any wire delay above this boundwould result in negative slack. The weight
can be computed as the ratio of fanout and delay bound.

w ≈ fanout

net delay bound
(21.10)

In general, as the impact of netweight assignment is not very predictable, extensive parameter
tuning may be needed to make it work on specific design styles.

21.3.1.2 Sensitivity-Based Netweighting

Netweighting can help improve timing on critical paths. However, it may have negative effects
on TWL. Assigning higher netweights on too many nets may result in significant degradation of

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 430 24-9-2008 #9

430 Handbook of Algorithms for Physical Design Automation

wirelength, thus may introduce routing congestion and new critical paths. To apply high netweights
only on those nets that will result in large gain in timing, we can reduce wirelength degradation and
other side effects of netweighting.

Sensitivity-based netweighting tries to predict the netweighting impact on timing and use that
sensitivity to guide netweighting [4,31]. The question that sensitivity analysis tries to address is as
follows: Given an initial placement from an initial netweighting scheme, if we increase the weight
for a net i by certain nominal amount, howmuch improvementnet iwill get for its worst slack (WNS)
and the overall FOM (or in a more familiar term, TNS when the slack threshold for FOM is 0). With
detailed sensitivity analysis, larger weights could be assigned to a net whose weight change can have
a larger impact to delay. In this section, we will explain how to estimate both slack sensitivity and
TNS sensitivity to netweights and how to use those sensitivities to compute netweights.

First, one needs to estimate the impact of netweight change to wirelength, i.e. the wirelength
sensitivity to netweight. This sensitivity depends on the characteristics of a placer. It is not easy
to estimate such sensitivity for mincut or simulated-annealing-based algorithms. But for quadratic
placement, one can come up with an analytical model to estimate it. Based on Tsay’s analytical
model [6], the wirelength sensitivity to netweight can be derived [4] as

SLW (i) = �L(i)

�W(i)
= −L(i) · Wsrc(i) +Wsink(i) − 2W(i)

Wsrc(i)Wsink(i)
(21.11)

where
L(i) is the initial wirelength of net i
W(i) is the initial weight of net i
Wsrc(i) is the total initial weight on the driver/source of net i (simply the summation of all nets

that intersect with the driver)
Wsink(i) is the total initial weight on the receiver/sink of net i

Intuitively, Equation 21.11 implies that if the initial wirelength L(i) is longer, for the same
amount of nominal weight change, it expects to see bigger wirelength change. Meanwhile, if the
initial weight W(i) is relatively small, its expected wirelength change will be bigger. The negative
sign means that increasing netweight will reduce wirelength.

The next step is to estimate the wirelength impact on delay. Using the switch level RC device
model and the Elmore delay model [32], the delay sensitivity to wirelength can be estimated as

STL (i) = �T(i)

�L(i)
= rcL(i) + cRd + rCl (21.12)

where
r and c are the unit length wire resistance and capacitance, respectively
Rd is the output resistance of the net driver
Cl is the load capacitance

It implies that for a given technology (fixed r and c), the delay of a long wire with a weak driver
and large load will be more sensitive to the same amount of wirelength change.

With wirelength sensitivity and delay sensitivity, one can compute the slack sensitivity to
netweight as

SSlk
W (i) = �Slk(i)

�W(i)
= −�T(i)

�L(i)
· �L(i)

�W(i)
= −STL (i)SLW (i) (21.13)

Total negative slack is an important timing closure objective. The TNS sensitivity to netweight
is defined as follows:

STNS
W (i) = �TNS/�W(i) (21.14)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 431 24-9-2008 #10

Timing-Driven Placement 431

Note that TNS improvement comes from the delay improvement of this net, Equation 21.14 can be
decomposed into

STNS
W (i) = �TNS

�T(i)
· �T(i)

�W(i)
= −K(i)SSlk

W (i) (21.15)

whereK(i) = �TNS
�T(i)

, which means howmuch TNS improvement it can achieve by reducing net delay
T(i). It has been shown in Ref. [4] that K(i) is equal to the negative of the number of critical timing
endpointswhose slacks are influenced by net iwith a nominal�T(i) and can be computed efficiently
as shown in the following algorithm:

Algorithm 1 Counting the number of influenced timing critical
endpoints for each net
1. decompose nets with multiple sink pins into sets

of driver-to-sink nets
2. initialize K(i) = 0 for all nets and timing points
3. sort all nets in topological order from timing end points

to timing start points
4. for all Po pin t do
5. set K(t) to be 1 if t is timing critical (i.e., Slk(t)<Slkt;

otherwise set K(t) to be 0
6. for all net i in the above topologically sorted order do
7. for all sink pin j of net i do
8. K(i)=K(i)+K(j)
9. propagate K(i) of net i to its driver input pins: only the most

critical input pin gets K(i); other pins will have K = 0 because
they are not on the critical path of net i, thus cannot
influence the timing end points from net i

As an example, Figure 21.4 shows two paths from a timing begin point Pi to timing endpoints
Po1 and Po2. Net n3.1 and n3.2 are the decomposed driver-to-sink nets from the original net n3. The
pairs in the figure such as (−3, 1) have the following meaning: the first number is the slack, and the
second number is the K value. Because the slacks at Po1 and Po2 are −3ns and −2ns, respectively
(worse than the slack target of 0), the K values for Po1 and Po2 are both 1. We can see how the K
values are propagated from PO to PI. Note that for gate C, the upper input pin has slack of −2ns
while the lower input pin has slack of −1ns, thus the upper pin is the most timing critical pin to gate
C and it will influence the slack of Po2. The lower pin of C does not influence Po2.

The sensitivity-based netweighting scheme starts from a set of initial netweights (e.g., uniform
netweighting at the beginning), and computes a new set of netweights that would maximize the slack

Pi
(-3, 2)

n5
A

n3.2

(-2, 1)
(-2, 1)

B

n3.1

(-3, 1)(-3, 1)

n1
Po1

Po2
n4 (-1, 0)

C

n2

D

FIGURE 21.4 Counting the number of influenced timing endpoints.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 432 24-9-2008 #11

432 Handbook of Algorithms for Physical Design Automation

and TNS gain. Because the sensitivity analysis works best when the netweights are updated in small
steps from their initial values, it also adds a constant of total change to bound the netweights. The
netweight can be computed as

W(i) =
{
Worg(i), Slk(i) > 0

Worg(i) + α [Slkt − Slk(i)] SSlk
W (i) + βSTNS

W (i), Slk(i) ≤ 0
(21.16)

where
Worg(i) is the original netweight
α and β set the bound of netweight changes, and control the balance between WNS and TNS

21.3.2 DYNAMIC NETWEIGHTING

Static netweighting computes netweights once and does not update them during TDP. However,
wirelengths change during and after placement, and the original timing analysis may not be valid.
To overcome this problem, dynamic netweighting methods were proposed to adjust weights during
placement based on timing information available at the current placement stage.

A simple dynamic netweighting scheme is to run multiple placement and netweighting iter-
ations. This scheme can be applied on any placement and netweighting algorithms. This simple
scheme, however, is often hard to converge without careful netweighting assignment. This is the
so-called oscillation problem [33]. Weights are assigned by performing timing analysis for some
given placement solution at the nth iteration [28]. Critical nets receive higher weights. At next itera-
tion, the lengths of those critical nets are reduced, while the lengths of some noncritical nets may be
increased, resulting in a different set of critical and noncritical nets. If a net alternates between critical
and noncritical nets, we have an oscillation problem. To mitigate this problem, one needs to either
periodically recompute timing during the placement process [13,27] or use historical netweighting
information to achieve stability [34,35].

21.3.2.1 Incremental Timing Analysis

To periodically update weights during placement, one needs to recompute timing during placement.
One could incrementally update timing like Ref. [2], which only computes the incremental slack
caused by wirelength increments using delay sensitivity to wirelength.

sk(n) = sk−1(n) − �dk(n) = sk−1(n) − STL (n)�l (n) (21.17)

where
sk(n) is the estimated slack for net n at the k step
sk−1(n) is the slack at k − 1 step
�dk(n) is the delay change on net n
STL is the delay to wirelength sensitivity
�l(n) is the wirelength increment

Using sensitivity analysis can provide a fast estimation for incremental timing analysis. One can
also perform a more accurate incremental timing analysis. For example, Ref. [34] uses a star net
model for placement and netlist changes. The main advantage of this model is that it can calculate
individual delay between the source pin and every sink pin of star net more accurately. From given
gate coordinates, the star net node is computed as the center of gravity of all pins of the net, and
the lengths of all arcs in x and y directions can be obtained. These lengths are used to compute the
equivalent lumped elements as used in the derived electrical model. Note that one normally does not
perform a full-blown static timing analysis during placement, which would do false path detection,
early–late mode analysis, etc.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 433 24-9-2008 #12

Timing-Driven Placement 433

21.3.2.2 Incremental Net Weighting

To make placement stable with updated weights, we can make use of the historical weights,
the so-called incremental netweighting. Different from static netweighting, this method relies on
iterations to get the appropriate weights and drives the placement engine along that way.

There are two such algorithms in published literature. One only makes use of the history data of
the previous step, the other uses the previous two steps.

In Ref. [35], at each step, it first computes the criticality for a net i as

cki =
{(
ck−1
j + 1

)
/2 if net i is among the 3 percent most critical nets

ck−1
j /2 otherwise

(21.18)

The criticality describes how critical a net tends to be in general. For example, if a net was never
critical, its criticality is 0 whereas an always critical net has a criticality of 1. This scheme effectively
reduces oscillations of weights.

Once the criticality is computed, the netweight then can be updated as

wk
i = wk−1

i × (1 + cki) (21.19)

Therefore, the net with criticality 1 will have its weight doubled at every iteration, while noncritical
netweights will stay the same.

The other netweighting scheme uses the criticality information from the previous two steps [34].
In this approach, the criticality number is simplified to either 1 or 0. Nets on critical paths get 1,
while nets on noncritical paths get 0. The netweight is updated as follows:

wk
i =

⎧⎪⎪⎨
⎪⎪⎩

wk−1
i +W if cki = 1

1 if cki = 0 ∧ ck−1
i = 0 ∧ ck−2

i = 0
�wk−1

i /2� if cki = 0 ∧ ck−1
i = 0 ∧ ck−2

i = 1
wk−1
i if cki = 0 ∧ ck−1

i = 1

(21.20)

In this case, the minimum netweight is 1. If the current criticality is 1, its netweight will be increased
by W (>1), which determines how fast the weight would increase because of criticality. Using the
number of pins of a net to setW is a reasonable choice because delays of nets with high fanouts are
usually larger and more likely to be critical. If the current step net criticality is 0, the netweight may
change depending on the criticalities of the previous two steps.

21.3.2.3 Placement Implementation

Dynamic netweighting algorithms can be applied to most placement algorithms, e.g., partition-based
placement [2,36,37], quadratic placement [34], and force-directed placement [35].

The implementation of dynamic netweighting on quadratic and force-directed placements can
be straightforward. Because both placement algorithms provide intermediate gate coordinates at
each step, it is easy to estimate wire loads and timing based on those gate coordinates. It is
also effective to use the incremental netweighting methods such as Equations 21.19 and 21.20 to
drive those placement engines because the matrix solvers for those placers usually respond well to
weight changes.

For pure partitioning-based placement, one can also use similar method, i.e. update weights
between each partitioning step [2,36]. However, the timing analysis in general is not as accurate
because partitioning-based placement does not assign exact gate coordinates inside a partition. Thus,
theweightsmay not effectively control the partitioning process, which aims atminimizing the number
of weighted crossings, but not wirelength directly.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 434 24-9-2008 #13

434 Handbook of Algorithms for Physical Design Automation

One can enforce somecutting constraints to the partitioning algorithm, e.g., themaximumnumber
of times a path can be cut during the iterative partitioning steps [38]. For partitioning-based placement,
controlling the cut number on paths in addition to weights helps reduce the wirelength on critical nets
more efficiently. It is also a dynamic netweighting approach in that it updates the timing criticality
during partitioning process and recomputesweight as well. Unlike previous timing analysis methods
that recalculate timing based on gate coordinates, it estimates the critical path by the number of cuts
a path has been cut during partitioning. Starting from an initial set of most critical nets, it adds some
number of critical nets that has been cut to this set. All the critical nets will be limited to be cut only
a maximumnumber of times by setting a higher weight that is equal to the summation of the weights
of noncritical nets in a partition.

In Ref. [39], the minimization of the maximal path delay problem is formulated in the min–max,
top-down partition-based placement for timing optimization. The main technique is the iterative
net reweighting. In another work [40], the concept of boosting factors is introduced, which adjusts
netweights according to net spans, so that the quadratic wirelength can be reduced. The method
skews the netlength distribution produced by a mincut placer so as to decrease the number of long
nets, with minimal impact on the overall wirelength.

21.4 NET-CONSTRAINT-BASED APPROACH

21.4.1 NET-CONSTRAINT GENERATION

Because interconnect delay is predominately determined by its netlength, a natural choice for con-
trolling delay is through netlength constraint (NLC), which limits the maximum length of a net. The
net-constraint-based approach is another popular net-based interface between timing analysis and
placement to drive the TDP. The net-constraint approach has several attractive qualities compared
to the common netweighting approach. It is not possible to predict the exact timing response to a
netweight. Because many nets may have weight changes, there may be conflicts with each other.
Sometimes, it is not even certain that the length of a net will be reduced if it is given a higher
netweight. Net-constraint approach has more accurate control. The problem then is how to generate
a good set of net constraints that are not overly constrained to limit solution space. A common com-
bined flow may be combining netweighting and net constraints, e.g., having netweighting to guide
global TDP and net-constraint generation for incremental/iterative improvement.

The two main steps of net-constraint-driven placement are

1. To generate an effective set of NLC bounds
2. To create placers that meet, or nearly meet, these bounds

The following sections will explore these two net-constraint-driven goals.

21.4.1.1 Generating Effective NLCs

Many techniques have been proposed for generatingNLCs andmany are similar with the approaches
for creating netweights. Many of the original methods attempted to create, in a single shot, a set of
NLCs, which when met would result in a design that meets timing requirements. More recently,
several works have suggested that NLCs should be generated so that the design’s target frequency
is incrementally improved. The single-shot approaches are described first.

21.4.1.2 Single-Shot NLC Generation

The goal of single-shot NLC generation is to perform a slack budgeting giving timing constraint for
each net, which when realized will meet the timing frequency goal. These timing budgets are then
used to generate a physical bound for the NLC using silicon process parasitic parameters.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 435 24-9-2008 #14

Timing-Driven Placement 435

In Ref. [41], the zero-slack algorithm (ZSA) is proposed. This algorithm computes delay bounds
for each net based on a tentative set of connection delays chosen so that all timing requirements
are met. ZSA chooses maximal delays bounds so that a delay increase on any net connection would
produce a timing violation. Based on the delay upper bounds, the wirelength constraints can be
generated. Net-constraint generation is formulated as a LP problem, which maximizes the range
of permissible length for each net, subject to the LP constraints that timing requirements are met.
Intuitively, ZSA will distribute extra slacks uniformly among connections on that path. After that,
slacks are updated on other paths that are affected, and the process is repeated until every connection
has zero slack. An improvement is suggested in Ref. [42], where a weighted slack budgeting is
performed based on the delay per unit load function. A larger weight is assigned to nets that are more
sensitive and the slack distribution is allocated proportionally to the weight.

Runtime improvement to slack budgeting using the nonzero slack allocation in intermediate steps
is suggested in Ref. [30]. It omits recomputing slacks on connections whose slacks are altered by
delay increase on theminimum-slack segment, and thus it converges faster than Ref. [41]. In practice,
all slacks converge to near zero in a few iterations. In Ref. [43], the iterative-minmax-PERT [42]
procedure is generalized to guarantee the slacks go monotonically to 0.

In Refs. [7,44] the delay budgeting problem is formulated as a convex-programming problem
with a special structure, thus efficient graph-based algorithm is proposed. It showed an average
of 50 percent reduction in NLC violations over the well-known ZSA [41]. In addition, different
delay budgeting objective functions are studied and showed that performance improvements can
be made without loss of solution quality. In a recent work [45], a new theoretical framework is
presented, which unifies several previous timing budget problems including timing budgeting for
maximizing total weighted delay relaxation, minimizing maximum relaxation, and min-skew time
budget distribution. Dragon [46] uses design hierarchy information to compute NLCs and it is
evaluated using an industrial place and route flow.

21.4.1.3 Incremental NLC Generation

Some NLC generation heuristics have taken an incremental approach to create NLCs [5,47]. These
heuristics are used with incremental or iterative placement techniques. Initially, a loose set of NLC
on a subset of nets is created, which may not yield a placement that meets timing requirements.
Further iterations refine NLCs, tightening the bounds on nets critical at each iteration, so the slack
is incrementally improved. Proponents of this approach argue that it is better than deriving a single-
shot NLC set. During an industry design flow, timing constraints are often unmeetable, even if every
interconnect length is 0. Furthermore, a set of NLCs that guarantee performance requirements may
not be achievable by any placement.

An incremental transfer function that uses a LP-based net-constraint generation technique is
proposed in Ref. [47]. The technique incrementally generates net constraints and iteratively reduces
the length of critical nets by small increments. The goal of this LP-based technique is to derive
a set of net constraints that will improve critical path delay dinitial by a small amount, �t. The k
longest paths, pi with delay di > dgoal are selected, where dgoal = dinitial − �t. For each path, pi
with delay di, the delay must be reduced by di − dgoal. Because the algorithm begins with an initial
placement, the current horizontal and vertical lengths, Bxi and Byi, of bounding box wirelength of
each net ni are known. In each iteration, the horizontal and vertical reduction goals, �xi and �yi,
are computed. The objective function is to minimize the total horizontal and vertical wirelength
reductions.

min :
∑
i∈Nets

(�xi + �yi) (21.21)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 436 24-9-2008 #15

436 Handbook of Algorithms for Physical Design Automation

For each path, a constraint is created in the LP. For example, if path p1 is composed of nets n1, n2,
and n3, the constraint would be

(
c1x · �x1 + c1y · �y1

)+ (
c2x · �x2 + c2y · �y2

)+ (
c3x · �x3 + c3y · �y3

)
< d1 − dgoal (21.22)

where c1x and c1y estimate the delay change per unit horizontal and vertical length of net n1, etc.
Additional constraints are imposed on each �xi and �yi reduction goal

�xi < p · Bxi
�yi < p · Byi

where p is a parameter (0 < p < 1), usually chosen to start with small value and increased if no
solution is found to the LP. Because a net may be shared by more than one path, these constraints
may limit the reduction goal of a shared net and force larger improvement goals in other nets.

A convex-programming approach to net-constraint generation is employed by Ref. [5]. Similar
to the previous approach [47], it enumerates a set of critical paths to be considered and forms a set
of linear constraints on the net delay of these paths. Unlike Ref. [47], each path must have an arrival
time that is less than the required time. The result is a set of constraints that, if met, will result in
zero slack for the paths considered.

21.4.2 NET-CONSTRAINT PLACEMENT

Oncenet constraints are generated, placersmust efficientlymeet the constraintswhile generating legal
placements and optimizing wirelength. Net-constraint placement algorithms have been proposed for
many global and detail placement algorithms. This section explores twoglobal placement approaches:
partitioning and force-directed, a several detailed placement approaches.

21.4.2.1 Partition-Based Net-Constraint Placement

Several adaptations of the popular partitioning approach to global placement have been made for
net-constraint placement [5,6,9,48]. This section examines a mincut-based approach [5] and two
analytical partitioning-based approaches [6,9].

A modified mincut partitioning-based net-constraint global placer is presented in Ref. [5]. The
placer modifies the commonmincut partitioner using cut weights on constrained nets to change their
cut cost. The weights are computed at each partitioning iteration based on the estimated netlengths.
For each constrained net, the maximum and minimum estimated lengths, maxi and mini, are com-
puted, which are the half perimeter of the smallest bounding box enclosing all the cells in ni in
their worst and best assignments to their partition choices. A netweight, wi, is assigned based on a
comparison of these estimates to the bound of the net, bi. If bi < mini, thenwi = maxcrit is assigned
to the net because any increase in the netlength is undesirable. If bi > maxi, wi = 0 because
regardless of assignment choices, the net will not exceed its bound. For nets with maxi ≥ bi ≥ mini,
the weight is computed as

	 (maxi −bi)
(maxi −mini)

· maxcrit + 0.5
 (21.23)

The Fiduccia–Mattheyses algorithm [49] is used to make the partition assignments. The algorithm
does not guarantee that the net constraints will be met.

One of the first net-constraint-based global placers was published in Ref. [6]. Its general flow
follows Proud [50], a partitioning placer that uses mathematical programming to determine partition
assignments. Net constraints are created using the ZSA [41] discussed in Section 21.4.1.2. To meet
the NLCs, an iterative-solving approach is used. At each iteration, a Lagrangemultiplier is computed

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 437 24-9-2008 #16

Timing-Driven Placement 437

for each net. For each pin of a net, the multiplier is based on the length constraint, the nets current
length, the previous pin weight, and the sum of the weights of the other pins of its cell. It should be
noted that the other connectivity of a cell is important in computing pin weight.

Although most net-constraint partitioning placers model the NLCs directly in the partition-
ing assignment, a different approach is taken in Ref. [9]. This placer assumes that a preliminary
wirelength-driven partitioning assignment has been made already and it uses a LP formulation to
make minimal reassignment to meet NLCs. Each net is modeled using a bounding-box formulation.
The location of each cell is restricted to lie within the boundaries of its parent partition and a reas-
signment variable is used to indicate if the cell is moved from its currently assigned partition or the
other child partition of its parent. If the reassignment causes area violation, unconstrained cells are
reassigned from the over capacity partition to the other child partition of its parent. The placer uses
the analytical partitioning flow from Gordian [51].

21.4.2.2 Force-Directed Net-Constraint Placement

A force-directedplacer that optimizes for net constraints is presented in Ref. [8]. Aswith the other net
constraint placers, this too builds on a strong wirelength-driven placer, Kraftwerk [35]. Kraftwerk
uses a quadratic programming (QP) model to generate cell locations. Net constraints are met by
generating a higher netweight for nets that are not meeting their NLCs. The increased weights are
allocated to the pins that determine the current boundary of the net. The outer pins, in both the X
and Y dimensions, are given higher weights to reduce its length as long as it does not meet its NLC.
Another idea presented in this chapter is to constrain the net segment connecting the nets driver to
its critical receiver.

21.4.2.3 Net-Constraint-Based Detailed Placement

Several net-constraint detailed placement algorithms have been proposed [10,47,52]. In Ref. [10],
the ripple-move algorithm fromMongrel [53] is adapted to include the cost of nets that are violating
their constraints. In Ref. [52], net-constraint-driven versions of simulated annealing [13,54–56]
and Domino [57] are proposed. The change to simulated annealing is a very simple addition to
the simulated annealing (SA) cost function which reflects the cost of nets not meeting their NLC.
The Domino-transportation cost function is changed and several new techniques to recombine the
fractured subcells are proposed.

A local-movement approach that employs LP to reduce nets with constraints while minimizing
the movement of unconstrained nets is presented in Ref. [47]. The objective function minimizes the
squared movement of the center of a net’s bounding box. This approach will create overlaps that
must be resolved through a legalization phase that is not net constraint aware.

21.5 PATH (OR TIMING GRAPH)-BASED APPROACH

Historically, path-based TDP refers to those algorithms that directly model the timing constraints
(which are inherently path-based) during placement. It ensures that all the paths under consideration
will meet their timing requirements after placement. The benefit of path-based approach is that it is
explicitly timing driven, unlike net-based approacheswhich are implicitly timingdriven by converting
timing constraints into netweights or wirelength constraints. The downside of this approach is the
complexity of directlymodeling timing in placement, as the number of pathsmay be prohibitive [26].
Except some early works such as simulated annealing [13], enumerating all paths are not widely
adopted. To make the problem size small, one can select only the near-critical paths, but even that
could still be huge. The potential problem of only selecting a set of critical paths is that some
noncritical paths may become critical.

A more powerful technique is to embed timing graph (through a built-in simplified version
of static timing analyzer) into the TDP formulation. It implicitly considers all topological paths

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 438 24-9-2008 #17

438 Handbook of Algorithms for Physical Design Automation

and formulates them into some mathematical programming framework by introducing intermediate
auxiliary variables (such as arrival times). It eliminates the need to enumerate/optimize a limited
set of paths. The LP-based formulation is popular as the HPWL model can be formulated exactly
into an LP framework. To explicitly write down the delay modeling and timing propagation with
respect to the cell locations (x,y), simple/linearized models are often used. In this section, we first
review the general LP-based formulation (which can easily be extended to handle nonlinear math-
ematical programming). Then we discuss various techniques such as partitioning-based overlap
removal and Lagrangian relaxation to complement the general LP-based formulation. We also dis-
cuss the simulated annealing technique for path-based TDP and a recent technique using differential
timing analysis.

21.5.1 LP-BASED FORMULATION

The general LP-based formulation consists of two sets of variables and constraints: physical
and electrical. The physical variables/constraints deal with variables and equations representing
cell locations and netlengths (e.g., computed through the HPWL model). The electrical vari-
ables/constraints deal with gate and net delay models, arrival time propagation through the critical
path method, and constraints that all required arrival times at timing endpoints are met. The objective
function may be maximizing either WNS or TNS, or weighted wirelength, etc.

21.5.1.1 Physical Constraints

For cell i, its center coordinates (xi, yi) are the variables of the LP program. For a net ej, let lj, rj, tj,
and bj represent its left, right, top, and bottom locations of its bounding box. Let Nj denote the set of
cells connected to net ej, then we have

lj ≤ xi + pinx(i, j)

rj ≥ xi + pinx(i, j)

tj ≤ yi + piny(i, j)

bj ≥ yi + piny(i, j), ∀ i ∈ Nj

(21.24)

where pinx(i, j) and piny(i, j) are the pin offsets of cell i for its pin connecting to net ej in horizontal
and vertical directions, respectively. The HPWL of net ej is represented by Lj

Lj = rj − lj + tj − bj (21.25)

21.5.1.2 Electrical/Timing Constraints

Let the gate delay GDelayi(k, o) represent the pin delay from an input pin k to output pin o of cell i. It
can be modeled as a linear function of the load capacitance at the output pin and the slope (transition
time) at the input pin with a reasonably high degree of accuracy. Similarly, the slope at the output
pin of cell i can be described by a linear function.

GDelayi(k, o) = a0 + a1 · CLoadi(o) + a2 · Slopei(k)
Slopei(o) = b0 + b1 · CLoadi(o) + b2 · Slopei(k)

where
Slopei(k) is the slope at the input pin k of cell i
Slopei(o) is the slope at the output pin o of cell i
CLoadi(o) is the capacitance load seen by the output pin o

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 439 24-9-2008 #18

Timing-Driven Placement 439

The constants a0, a1, a2, b0, b1, and b2 are determined by standard cell library characterizations.
These delay and output slope equations can be defined for every feasible signal transition for the cell.

The delay for net ej, NDelayj(i1, o, i2, k) from output pin o of cell i1 to the input pin k of cell
i2 is modeled in the LP using a simplified Elmore model [58] by the following equation:

NDelayj(i1, o, i2, k) = KD · r · Lj ·
[
c · Lj
2

+ CLoadi2(k)

]
(21.26)

where
r is the unit resistance of the interconnect
c is the unit capacitance constant
KD is a constant, 0.69 [14]

If the resistance and capacitance in the horizontal and vertical directions are not equal, an alternate
model can be used that replaces Lj with individual variables for the horizontal and vertical lengths.

The arrival time at each pin is modeled through timing propagation and critical path method.
Two types of equations are used, the first for input pins and the second for output pins. For input pin
k of cell i2, its arrival time is

Arri2(k) = Arri1(o) + NDelayj(i1, o, i2, k) (21.27)

The arrive time at an output pin o of cell i is represented by the LP variable Arri(i, o) and a set
constraints, one for each input pin of cell i. Assuming two input pins k1 and k2 for cell i, the equations
would be

Arri(k1) + GDelayi(k1, o) ≤ Arri(o) (21.28)

Arri(k2) + GDelayi(k2, o) ≤ Arri(o) (21.29)

Most implementations assume the arrival time at the output of a sequential cell to be 0.
Each library cell has a maximum drive strength, limiting the total capacitance the cell can drive.

This drive strength limit is incorporated in the LP through length limits on the driven net. This limit
is a precomputed constant to the LP formulation.

Lj < CMax(ej) (21.30)

21.5.1.3 Objective Functions

The required time at input pin k of sequential cell vi, Reqi(k), is a constant input. The negative slack
at these timing endpoints is represented by variable Slki(k) and equations

Slki(k) <= Reqi(k) − Arri(k) (21.31)

Slki(k) ≤ 0 (21.32)

The second constraint is needed so that paths are not optimized beyond what is required to meet
timing. This constraint can be adapted so that a slight positive margin is created for each path.

The path-based TDP can optimize the TNS, i.e.,

max:
∑

i∈sequential
Slki(k) (21.33)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 440 24-9-2008 #19

440 Handbook of Algorithms for Physical Design Automation

To optimize the WNS, a variable representing the WNS is introduced, WNS, i.e.,

WNS < Slki(k) (21.34)

And the objective function is simply

max: WNS (21.35)

The LP-based objective function can also be a combination of wirelength and slack [11], e.g.,

min:
∑

Lj − α · WNS (21.36)

where α is the weight to trade off wirelength and WNS.
To summarize, the complete LP formulation for TDP can bewritten in the following generic term:

minimize f (X)

subject to AX ≤ D
(21.37)

where
X is the set of variables including gate coordinates and auxiliary variables
f (X) is the objective function which can be Equation 21.33, 21.35, or 21.36
AX ≤ D includes all the physical and electrical constraints such as net bounding-box

constraints, delay constraints, slack constraints, and other possible additional constraints
(such as the center of gravity constraints as in Ref. [11])

21.5.2 PARTITIONING-BASED OVERLAP REMOVAL

The LP-based formulation may create a lot of overlaps. Partitioning-based approach can be used
together with LP-based formulation to remove the cell overlaps, as proposed in the original timing
graph-based placer Allegro [11]. At each partitioning step, it formulates a LP problem to determine
locations of cells. Each partition is divided into two subpartitions, and its cells are sorted based on the
LP locations to determine the newpartition assignment.TheLPmodel is similar to Section 21.5.1. The
objective function is similar to Equation 21.36. The factor α is used to trade off timing optimization
versuswirelength.Additional physical constraints includes center-of-gravity constraint and partition-
boundary constraint. The center-of-gravity constraint, as shown in Equation 21.38, tries to place the
center of gravity of all the gates in the same partition to be in the center of the partition, while the
boundary constraints prevent gates being placed outside the partition boundaries.

x =
∑
mixi
mi

(21.38)

where
x represents the center of the partition in x direction
xi is the position of gate i
mi is the equivalent mass of gate i, approximated by the gate width

21.5.3 LAGRANGIAN RELAXATIONMETHOD

The number of constraints in the general LP-based formulation in Equation 21.37 can be enormous,
even for moderate size circuits. Lagrangian relaxation is a very effective technique to transform the
original constrained LP-formulation into a set of unconstrained problems in an iterative manner, e.g.,
as in Ref. [12]. Although the objective function used in Ref. [12] is the quadratic wirelength, the
principle of Lagrangian relaxation method is the same. For the general mathematical programming

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 441 24-9-2008 #20

Timing-Driven Placement 441

formulation in Equation 21.37, suppose A hasm constraint equations. We can define a size-m vector
Lagrange multipliers λ and add the nonnegative term λ · (D− AX) to the objective function:

maxλ minX f (X) + λ · (D− AX) (21.39)

When λ is fixed, minimizing f (X) + λ(D − AX) is an unconstrained mathematical programming
problem, which can be solved efficiently. Then the Lagrange multiplier λ will be updated to solve a
new unconstrained optimization problem. This process is iterated to obtain the constrained optimal
solution.

21.5.4 SIMULATED ANNEALING

The simulated annealing is a generic probabilistic algorithm for global optimization. It randomly
moves gates, and accepts or rejects the move based on certain cost function. It is very flexible, i.e.,
it can take any objective function and consider accurate timing models, if needed. In Ref. [13], the
simulated annealing algorithm is used for TDP by augmenting the cost function to include path-based
timing information. Because efficient runtime of the cost evaluation step is critical in SA, great care
has to be taken in implementing the timing cost function.Rather than updating the static timing graph
whenever a cell is moved, the approach in Ref. [13] uses an enumerated set of critical paths, Pcritical.
During a move cost evaluation, the paths impacted can be directly updated by adding the change in
delay for the nets connected moved cells. The SA engine has two loops. The outer loop identifies
Pcritical, and the inner loop runs a number of annealing iterations. In each outer loop of the annealing
process, Pcritical is chosen as the K most critical paths using Dreyfus method [59]. In the inner loop,
the nets impacted by a move will update the slack of paths, and the total timing cost is the sum of the
path slacks in Pcritical. When the inner loop finishes, the outer loop updates the critical paths with new
gate locations, and continues the inner loop. The simulated annealing cost function is a combination
of wirelength cost and timing cost function.

21.5.5 GRAPH-BASED DIFFERENTIAL TIMING

A recent work by Chowdary et al. [14] addresses the correlation problemof graph-based placers with
final sign-off timers. Rather than modeling and computing delays and arrival times as was presented
above, this approach optimizes an initial global placement based on the differences in delays, arrival,
and required times at all pins of a circuit, relative to a reference static timing analysis. It terms this
approach differential timing analysis [14]. This differential timing analyzer is almost exact in the
neighborhoodof the reference static timing, includingmodeling of setup time and latch transparency.
It also introduces another improvement to graph timing-based placement. The constants used in the
delay and slopeEquation 21.26 are only accurate for a range of values of output loads and input slopes.
To maintain the validity of the differential timing model, placement changes are limited to a local
neighborhood. It then solves several iterations of the LP adjusting model constants and the neighbor-
hood limits in each iteration.Differential timing is optimized using LP. A set of LP equations that par-
allel the static timing graph equations are used. For example, the delta wirelength can be obtained by

�Lj = rj − lj + tj − bj − Lold
j (21.40)

where Lold
j is the wirelength of net j in the current placement. The equations for �delay,

�slope, �arrival, and �slack can be formed similarly [14].

21.6 ADDITIONAL TECHNIQUES

There are many additional TDP algorithms in the literature that do not fall exactly into the pre-
vious classifications. As mentioned earlier, net-based and path-based algorithms all have pros and

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 442 24-9-2008 #21

442 Handbook of Algorithms for Physical Design Automation

cons. A hybrid approach is proposed recently [15] to combine the netweighting and net constraints
together with LP-based formulations. Furthermore, because of the complexity of modern placement
problems and the iterative refinement nature from global placement to detailed/legal placement, it
is very important to have stability between placement iterations. In this section, we present several
representative and recent techniques for TDP and timing-aware placement.

21.6.1 HYBRID NET AND PATH-BASED APPROACH

In Ref. [15], a hybrid approach is proposed to combine the netweighting and net constraints together
with LP-based formulations. The net-based approaches, especially the netweighting, have low com-
putational complexity and high flexibility/scalability. Therefore, net-based approaches have more
advantages as the circuit complexity continues to increase. However, netweighting often completely
ignores slew propagation. Because timing is inherently path based, an effective netweighting algo-
rithm should be based on path analysis and consider timing propagation. Furthermore, net-based
approaches are often done in an ad hoc manner and may have problems with convergence. For
instance, while the delay on critical paths decrease, other paths become critical, and this leads
to a convergence problem. A systematic way of explicit perturbation control is important for
netweighting-based algorithms. The hybrid approach in Ref. [15] uses a hybrid net and path-based
delay sensitivity with limited-stage slew propagation as basis for netweighting. The objective func-
tion is the weighted wirelength for a set of critical paths. The LP formulation considers not only
cells on the timing-critical paths, but also cells that are logically adjacent to the critical paths in a
unified manner, through weighted LP objective function and net-bound constraints. This approach
is suitable for incremental timing improvement.

21.6.2 HIPPOCRATES: A DETAILED PLACER WITHOUT DEGRADING TIMING

Another timing-driven incremental placement algorithm [60] helps to reduce TWL and improve
timing at the same time. It specifically maintains the timing constraints while reducing wirelength
during detailed placement. The detailed placement algorithms it uses can be any commonly used
move-based transforms, i.e., cell swapping, cell moving, etc. Instead of modeling path constraints, it
models the timing constraints at each input pin. The advantage of this is that it reduces the computation
complexity, which allows it to model timing constraints on every timing path. Therefore, the output
of this algorithm guarantees no timing degradation. The timing constraint on each pin is called delta
arrival time constraint, which is defined as the difference of arrival time at this pin to the arrival time
of the most critical input pin on this gate. By constraining the delta delay changed by moving cells
to be less than the delta arrival time on each pin, it guarantees that the final arrival time at timing
endpoints would not degrade. It also models slew and load capacitance constraints. Experimental
results [60] show that Hippocrates helps improve wirelength and timing significantly, in particular
on TNS, while conventional detailed placement algorithms fail to maintain the original timing.

21.6.3 ACCURATE NET-MODELING ISSUE

While most timing driven placers assume simple net models, some use specialized net models for
timing critical nets, e.g., during global placement [61] or detailed placement [21]. The first, [61],
based on force-directed global placement [35], proposes a more accurate tree net model to replace
the ubiquitous clique/star net models normally used in quadratic placers. A Steiner tree net model is
constructed and the length of each tree segment is controlled by weighting the individual segments
to improve timing. This new model does not increase numerical complexity. This net model is not
specific to the force-directed formulation and could be used in other QP-based placers. To determine
the weight of each Steiner segment, the segment sensitivity is computed by determining the net delay
derivative with respect to the segment length. In this way, the segments that produce the most slack
improvement are shortened the most.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 443 24-9-2008 #22

Timing-Driven Placement 443

Another work [21] proposes simultaneous detailed placement and routing to optimize timing.
The algorithm is stable and incremental, and it reducesWNS by 9–14 percent, although the runtime
is quite high. It begins with a placed and global-routed netlist and optimizes the k most critical
paths using a nonconvexmathematical programmingmodel that optimizes slack while capturing the
timing impact of cell movements and Steiner point changes of the global route. In this approach, cell
movements may change the Steiner tree topology. Within the solving steps, each net is analyzed to
ensure that its Steiner tree is correct, otherwise a new topology is generated. Because routing changes
are modeled, this is a more accurate net model than those commonly used net models discussed in
previous sections.

21.7 CONCLUSIONS

Although TDP has been studied extensively in the past two decades, the problem is still far away
from being solved [62]. Many challenges still remain due to the ever-growing problem size and
complexity. On the one hand, modern system-on-chip designs have millions of placeable cells and
hundreds/thousands of macros [63]; on the other hand, stringent timing requirements and physical
effects pose increasing challenges to the timing closure where TDP plays a key role.

It shall be noted that to achieve the overall timing closure, TDP needs to work closely with
synthesis/optimization tools (such as buffer insertion and gate sizing) and routing (in particular global
routing). The entire physical design/synthesis closure is an extremely complex task. Furthermore,
modern complex SOC designs usually have multiple clock domains, or even multiple cycle paths,
which make the TDP problem even more complicated. Because of the infrastructure limitation, the
academia has not been able to fully push the state of the art and limits of TDP. With the availability
of OpenAccess [64] and the OpenAccess gear timer [65,66], it is possible to push the frontier of
the very successful International Symposium on Physical Design (ISPD) placement contest [63] for
university researchers to work on more realistic timing objectives. As technology scales into sub100
nm regimes, new physical and manufacturing effects, in particular leakage/power and variations,
have to be considered together with timing closure during TDP [67,68], which requires continuous
innovations for better quality and productivity.

REFERENCES
1. A.E. Dunlop, V.D. Agrawal, D.N. Deutsch, M.F. Jukl, P. Kozak, and M. Wiesel. Chip layout optimiza-

tion using critical path weighting. In Proceedings of the Design Automation Conference, Las Vegas, NV,
pp. 133–136, 1985.

2. M. Burstein and M.N. Youssef. Timing influenced layout design. In Proceedings of the Design Automation
Conference, Albuquerque, NM, pp. 124–130, 1984.

3. T. Kong. A novel net weighting algorithm for timing-driven placement. In Proceedings of the International
Conference on Computer Aided Design, San Jose, CA, pp. 172–176, 2002.

4. H. Ren, D.Z. Pan, and D. Kung. Sensitivity guided net weighting for placement driven synthesis. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Phoenix, AZ, pp. 711–721,
May 2005. (ISPD 2004).

5. T. Gao, P.M. Vaidya, and C.L. Liu. A performance driven macro-cell placement algorithm. In Proceedings
of the Design Automation Conference, Anaheim, CA, pp. 147–152, 1992.

6. R.S. Tsay and J. Koehl. An analytic net weighting approach for performance optimization in circuit
placement. In Proceedings of the Design Automation Conference, San Francisco, CA, pp. 636–639, 1991.

7. M. Sarrafzadeh, D. Knol, and G. Tellez. Unification of budgeting and placement. In Proceedings of the
Design Automation Conference, Anaheim, CA, pp. 758–761, 1997.

8. K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao, A. Chowdhary, and B. Halpin. Timing driven force directed
placementwith physical net constraints. InProceedings of the International SymposiumonPhysical Design,
San Diego, CA, pp. 60–66, 2003.

9. B.Halpin, C.R.Chen, andN. Sehgal. Timingdrivenplacement usingphysical net constraints. InProceedings
of the Design Automation Conference, Las Vegas, NV, pp. 780–783, 2001.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 444 24-9-2008 #23

444 Handbook of Algorithms for Physical Design Automation

10. S. Hur, T. Cao, K. Rajagopal, Y. Parasuram, A. Chowdhary, V. Tiourin, and B. Halpin. Force directed
mongrel with physical net constraints. In Proceedings of the Design Automation Conference, Anaheim,
CA, pp. 214–219, 2003.

11. M.A.B. Jackson and E.S. Kuh. Performance-driven placement of cell based ic’s. In Proceedings of the
Design Automation Conference, Las Vegas, NV, pp. 370–375, 1989.

12. A. Srinivasan, K. Chaudhary, and E.S. Kuh. Ritual: A performance driven placement algorithm for small
cell ics. In Proceedings of the International Conference on Computer Aided Design, Santa Clara, CA,
pp. 48–51, 1991.

13. W. Swartz and C. Sechen. Timing driven placement for large standard cell circuits. In Proceedings of the
Design Automation Conference, San Francisco, CA, pp. 211–215, 1995.

14. A.Chowdhary,K.Rajagopal, S.Venkatesan, T.Cao,V. Tiourin,Y. Parasuram, andB.Halpin.Howaccurately
canwemodel timing in a placement engine. InProceedings of theDesignAutomationConference, Anaheim,
CA, pp. 801–806, 2005.

15. T. Luo, D. Newmark, and D.Z. Pan. A new LP based incremental timing driven placement for high perfor-
mance designs. In Proceedings of the Design Automation Conference, San Francisco, CA, pp. 1115–1120,
2006.

16. A.B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. Proceedings of the
International Symposium on Physical Design, Phoenix, AZ, pp. 18–25, April 2004.

17. T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit placement. In
Proceedings of the International SymposiumonPhysicalDesign, pp. 185–192.ACMPress,NewYork, 2005.

18. M.A. Breuer, M. Sarrafzadeh, and F. Somenzi. Fundamental CAD algorithms. IEEE Transactions on
Computer-Aided Design, 19(12): 1449–1475, 2000.

19. K.D. Boese, A.B. Kahng, and S. Mantik. On the relevance of wire load models. In Proceedings of the 2001
International Workshop on System-Level Interconnect Prediction, Rohnert Park, CA, pp. 91–98. ACM
Press, 2001.

20. P. Saxena and S. Gupta. Shield count minimization in congested regions. In Proceedings of 2002
International Symposium on Physical Design, Del Mar, CA, pp. 78–83. ACM Press, 2002.

21. A.H. Ajami and M. Pedram. Post-layout timing-driven cell placement using an accurate net length model
with movable steiner points. In Proceedings of the Asia and South Pacific Design Automation Conference,
Yokohama, Japan, pp. 595–600, 2001.

22. J.A. Roy, J.F. Lu, and I.L. Markov. Seeing the forest and the trees: Steiner wirelength optimization in
placemen. In ISPD ’06: Proceedings of the 2006 International Symposium on Physical Design, pp. 78–85.
ACM Press, New York, 2006.

23. L.T. Pillage and R.A. Rohrer. Asymptotic waveform evaluation for timing analysis. IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems, 9: 352–366, April 1990.

24. N. Maheshwari and S. Sapatnekar. Timing Analysis and Optimization of Sequential Circuits. Kluwer
Academic Publishers, 1999.

25. Sr. R.B. Hitchcock. Timing verification and the timing analysis program. In Proceedings of the Design
Automation Conference, pp. 594–604, 1982.

26. C.C. Chang, J. Lee, M. Stabenfeldt, and R.S. Tsay. A practical all-path timing-driven place and route design
system. In Asia-Pacific Conference on Circuits and Systems, pp. 560–563. IEEE/ACM, 1994.

27. A. Marquardt, V. Betz, and J. Rose. Timing driven placement for FPGA. In ACM Symposium on FPGA,
Monterey, CA, pp. 203–213, 2000.

28. M.Marek-Sadowska and S.P. Lin. Timing driven placement. InProceedings of the International Conference
on Computer Aided Design, San Jose, CA, pp. 94–97, 1989.

29. H. Chang, E. Shragowitz, J. Liu, H. Youssef, B. Lu, and S. Sutanthavibul. Net criticality revisited: An
effective method to improve timing in physical design. In Proceedings of the International Symposium on
Physical Design, Del Mar, CA, pp. 155–160, April 2002.

30. W.K. Luk. A fast physical constraint generator for timing driven placement. In Proceedings of the Design
Automation Conference, pp. 626–631, 1991.

31. B. Halpin, C.Y.R. Chen, and N. Sehgal. A sensitivity based placer for standard cells. In Proceedings of the
10th Great Lakes Symposium on VLSI, Chicago, IL, pp. 193–196, 2000.

32. J. Cong, L. He, C.-K. Koh, and P.H. Madden. Performance optimization of VLSI interconnect layout.
Integration, the VLSI Journal, 21: 1–94, 1996.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 445 24-9-2008 #24

Timing-Driven Placement 445

33. J. Cong, J.R. Shinnerl, M. Xie, T. Kong, and X. Yuan. Large-scale circuit placement. In ACM Transactions
on Design Automation of Electronic Systems, pp. 389–430, 2005.

34. B.M. Riess and G.G. Ettelt. SPEED: Fast and efficient timing driven placement. In Proceedings of the IEEE
International Symposium on Circuits and Systems, Seattle, WA, pp. 377–380, 1995.

35. H. Eisenmann and F.M. Johannes. Generic global placement and floorplanning. In Proceedings of the
Design Automation Conference, San Francisco, CA, pp. 269–274, 1998.

36. D.J.H. Huang and A.B. Kahng. Partition-based standard-cell global placement with an exact objective.
In Proceedings of the International Symposium on Physical Design, Napa Valley, CA, pp. 18–25, 1997.

37. S. Ou and M. Pedram. Timing-driven placement based on partitioning with dynamic cut-net control.
In Proceedings of the Design Automation Conference, Los Angeles, CA, pp. 472–476, 2000.

38. S. Ou and M. Pedram. Timing-driven bipartitioning with replication using iterative quadratic program-
ming. In Proceedings of the Asia and South Pacific Design Automation Conference, Wanchai, Hong Kong,
pp. 105–108, 1999.

39. A.B. Kahng, S. Mantik, and I.L. Markov. Min–max placement for large-scale timing optimization.
In Proceedings of the International Symposium on Physical Design, Del Mar, CA, pp. 143–148, 2002.

40. A.B. Kahng, I.L. Markov, and S. Reda. Boosting: Min-cut placement with improved signal delay.
In Proceedings of the Design, Automation and Test in Europe, Paris, France, pp. 1098–1103, 2004.

41. R. Nair, L. Berman, P.S. Hauge, and E.J. Yoffa. Generation of performance constraints for layout.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 8(8): 860–874, 1989.
(ICCAD 1987).

42. H. Youssef and E. Shragowitz. Timing constraints for correct peformance. In Proceedings of the
International Conference on Computer Aided Design, Santa Clara, CA, pp. 24–27, 1990.

43. J. Frankle. Iterative and adaptive slack allocation for performance-driven layout and FPGA routing.
In Proceedings of the Design Automation Conference, Anaheim, CA, pp. 539–532, 1992.

44. M. Sarrafzadeh, D. Knol, and G. Tellez. A delay budgeting algorithm ensuring maximum flexibility
inplacement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 16(11):
1332–1341, November 1997.

45. S. Ghiasi, E. Bozorgzadeh, S. Choudhuri, and M. Sarrafzadeh. A unified theory of timing budget man-
agement. In Proceedings of the International Conference on Computer Aided Design, San Jose, CA,
pp. 653–659, 2004.

46. X. Yang, B. Choi, and M. Sarrafzadeh. Timing-driven placement using design hierarchy guided constraint
generation. In Proceedings of the International Conference on Computer Aided Design, San Jose, CA,
pp. 177–180, 2002.

47. W. Choi and K. Bazargan. Incremental placement for timing optimization. In Proceedings of the
International Conference on Computer Aided Design, San Jose, CA, pp. 463–466, 2003.

48. M. Terai, K. Takahashi, and K. Sato. A new min-cut placement algorithm for timing assurance layout
design meeting net length constraint. In DAC ’90: Proceedings of the 27th ACM/IEEE Conference on
Design Automation, pp. 96–102. ACM Press, New York, 1990.

49. C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving network partitions. In
Proceedings of the Design Automation Conference, pp. 175–181, 1982.

50. R.-S. Tsay, E.S. Kuh, and C.-P. Hsu. Proud: A fast sea-of-gates placement algorithm. In Proceedings of the
Design Automation Conference, Atlantic City, NJ, pp. 318–323. IEEE Computer Society Press, 1988.

51. J.M. Kleinhans, G. Sigl, F.M. Johannes, and K.J. Antreich. Gordian: VLSI placement by quadratic pro-
gramming and slicing optimization. IEEE Transactions on Computer-Aided Design, 10(3): 356–365, 1991.

52. B. Halpin, C.Y.R. Chen, and N. Sehgal. Detailed placement with net length constraints. In Proceedings of
the 3rd International Workshop System on Chip, Alberta, Canada, p. 22, 2003.

53. S. Hur and J. Lillis. Mongrel: Hybrid techniques for standard cell placement. In Proceedings of the
International Conference on Computer-Aided Design, San Jose, CA, pp. 165–170. IEEE, 2000.

54. C. Sechen. VLSI Placement and Global Routing Using Simulated Annealing. Kluwer, B.V., 1988.
55. C. Sechen and A.S. Vincentelli. The Timberwolf placement and routing package. In IEEE Custom

Integrated Circuits Conference, pp. 522–527, 1984.
56. W.J. Sun and C. Sechen. A loosely coupled parallel algorithm for standard cell placement. In Proceedings

of the International Conference on Computer-Aided Design, San Jose, CA, pp. 137–144. IEEE, 1994.
57. K. Doll, F.M. Johannes, and K.J. Antreich. Iterative placement improvement by network flow methods.

IEEE Transactions on Computer-Aided Design, 13: 1190–1200, 1994.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C021 Finals Page 446 24-9-2008 #25

446 Handbook of Algorithms for Physical Design Automation

58. W.C. Elmore. The transient response of damped linear networks with particular regard to wide-band
amplifiers. Journal of Applied Physics, 19(1): 55–63, January 1948.

59. S.E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research, 17: 395–412, 1969.
60. H. Ren, D.Z. Pan, C. Alpert, G.-J. Nam, and P. Villarrubia. Hippocrates: First-do-no-harm detailed place-

ment. In Proceedings of the Asia and South Pacific Design Automation Conference, Yokohama, Japan,
January 2007.

61. B. Obermeier and F.M. Johannes. Quadratic placement using an improved timing model. In Proceedings
of the Design Automation Conference, San Diego, CA, pp. 705–710, 2004.

62. J. Cong, M. Romesis, and M. Xie. Optimality and stability study of timing-driven placement algorithms.
InProceedings of the International Conference onComputer Aided Design, p. 472. IEEEComputer Society,
Washington DC, 2003.

63. G.-J. Nam. ISPD 2006 placement contest: Benchmark suite and results. In Proceedings of the International
Symposium on Physical Design, pp. 167–167. ACM Press, New York, 2006.

64. http://openeda.si2.org/.
65. Z. Xiu and R.A. Rutenbar. Timing-driven placement by grid-warping. In Proceedings of the Design

Automation Conference, Anaheim, CA, pp. 585–590, 2005.
66. Z. Xiu, D.A. Papa, P. Chong, C. Albrecht, A. Kuehlmann, R.A. Rutenbar, and I.L. Markov. Early research

experience with openaccess gear: An open source development environment for physical design. In
Proceedings of the International Symposium on Physical Design, pp. 94–100. ACMPress, NewYork, 2005.

67. Y. Cheon, P.-H. Ho, A.B. Kahng, S. Reda, and Q. Wang. Power-aware placement. In Proceedings of the
Design Automation Conference, pp. 795–800. ACM Press, New York, 2005.

68. A.B. Kahng, C.-H. Park, P. Sharma, and Q. Wang. Lens aberration aware timing-driven placement.
In Proceedings of the Design, Automation and Test in Europe, pp. 890–895, 3001. European Design and
Automation Association, Leuven, Belgium, 2006.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 447 24-9-2008 #2

22 Congestion-Driven
Physical Design

Saurabh N. Adya and Xiaojian Yang

CONTENTS

22.1 Introduction.. 447
22.2 Netlist-Connectivity-Based Approaches . 448

22.2.1 Metrics for Structural Logic Synthesis. 448
22.2.2 Congestion-Aware Logic Synthesis . 449
22.2.3 Perimeter-Degree: A Priori Interconnection Complexity Metric 450

22.3 Global-Placement Congestion Improvement . 452
22.3.1 Incorporating Congestion Estimation during Global Placement. 452
22.3.2 Steiner Wirelength Optimization during Global Placement . 454
22.3.3 Free Space Management during Global Placement . 455

22.4 Detailed Placement Congestion Improvement .. 456
22.4.1 Router Integration .. 458
22.4.2 Whitespace Management . 458

22.5 Simulated Annealing for Congestion Improvement . 461
22.5.1 RISA. 461
22.5.2 Overflow with Look-Ahead . 462
22.5.3 A-Tree Router . 463
22.5.4 Sparse Parameter . 463

22.6 Conclusion.. 464
References . 464

22.1 INTRODUCTION

This chapter discusses the impact and optimization of placement on the routing stage. This is com-
monly referred as congestion-driven placement. Although a placer that produces unroutable designs
will be of little use, historically optimization to directly reduce routing congestion has received less
attention than wirelength and timing optimization. Often placement papers fail to report any infor-
mation on congestion and routability. Over the last decade, with design sizes increasing dramatically
and limited number of metal layers available for routing of signals and power, routability has become
a paramount issue. This has driven the recent research interest in placement techniques to mitigate
congestion while optimizing other placement objectives.

Congestion-driven placement techniques can be classified into the following groups: netlist-
connectivity-based methods, pin-density-based methods, and routing-estimation-based methods.
Netlist-connectivity-basedmethods use a priori information about the netlist characteristics to influ-
ence the placement process. Pin-density-based methods seek to limit the average pin density in
local regions to indirectly address the routability concerns. Routing-estimation-based methods are
frequently used during and after the placement process when sufficient routing congestion informa-
tion is available. Global routers or probabilistic route estimators are often used to drive the various

447

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 448 24-9-2008 #3

448 Handbook of Algorithms for Physical Design Automation

congestion mitigation techniques. Other notable techniques for addressing congestion in the design
process include congestion-driven logic synthesis and global-placement density control. Several of
these techniques are applied separately during global placement and detail placement, the details
of each approach change according to the specific context. Often a placement flow will employ one
or several of these methods.

22.2 NETLIST-CONNECTIVITY-BASED APPROACHES

Recent advances in placement technology have attempted to alleviate the problem of wiring con-
gestion during very large scale integration (VLSI) chip design. Classically, placement algorithms
find the optimal location of the logic without attempting to change the structure of the logic netlist
itself. However, the inherent structure of the logic netlist has a significant impact on the routabil-
ity, irrespective of the placement algorithm used. With the advent of physical synthesis techniques,
there have been several attempts to combine placement transformations of the netlist in conjunction
with logic synthesis transforms. Such efforts [14,15,31] have concentrated mainly in improving the
delay or area characteristics of the final implementation of the design. Significant decisions regard-
ing the circuit structure are made early in the synthesis stages such as register transfer level (RTL)
decomposition, technology-independent logic optimization, technologymapping, etc. For deep sub-
micron (DSM) technologies, the wiring capacitance dominates the gate capacitance and the delay
estimation based on fanout, and design legacy statistics (wireload tables) can be highly inaccurate.
In addition, logic block size is no longer dictated solely by total cell area, and is often limited by
routing resources. For these reasons, wiring congestion is an extremely important design metric and
should be taken into consideration at the earliest possible stage of the design flow. In physical design,
the required routing resources are captured in terms of routing congestion. Placement or routing can
sometimes fix, or avoid, potential congestion problems. However, the netlist structure determined
during logic synthesis may mean that it is too late in the flow to target congestion problems. In the
following subsections, we detail several recent approaches to target placement congestion by netlist
transformations during the logic synthesis stage or by using inherent netlist properties to influence
congestion-driven placement.

22.2.1 METRICS FOR STRUCTURAL LOGIC SYNTHESIS

The work in Ref. [26] motivates that a property of the network structure called adhesion can
make a significant contribution to routing congestion. The work targets the technology-independent
logic optimization stage. Classically, in this stage, literal count is used as a metric for optimiza-
tion. However, this does not adequately capture the intrinsic entanglement of the netlist. Two
circuits with identical literal counts may have significantly different congestion characteristics post-
placement. It is shown that by optimizing the adhesion metric in addition to literal count during
technology-independent optimization, postrouting congestion can be improved.

The adhesion metric of a logic network is defined as follows:

Definition 1 The adhesion of a logic network represented by an undirected graph G(V,E) can be
measured by the minimum number of edges between all pairs s, t ∈ V that if removed from the graph
would disconnect the graph.

For measuring connectivity in a technology-independent netlist, the authors propose use of the
all-pairs minimum-cut problem to determine the minimum cutsize of all pairs of nodes of a graph.
The metric used to describe adhesion of a graph is sum of all-pairs mincut (SAPMC). The following
lemma is hence proposed.

Lemma 1 The adhesion in an undirected graph representing a logic network as given by
Definition 1, can be measured by the SAPMC for the graph.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 449 24-9-2008 #4

Congestion-Driven Physical Design 449

The authors propose the following conjectures to apply the property of adhesion during logic
synthesis optimization. This conjecture is then evaluated empirically.

Conjecture 1 Networks with lower adhesion value will on the average have better routability
postplacement.

Conjecture 2 Using adhesion during logic synthesis transformations will result on the average in
better routability postplacement.

As an example of adhesion, the authors give the example in Figure 22.1. Figure 22.1a is an
unoptimized network. Two possible optimizations are applied to the original unoptimized network
to obtain two implementations, opt 1 in Figure 22.1b and opt 2 in Figure 22.1c. The opt1 circuit
has a SAPMC cost of 173, while the opt2 optimized circuit has a SAPMC cost of 152. According
to Conjecture 2, opt 2 is a better optimization for the same connection cost of 18 for the two
implementations.

The authors perform extensive experiments to validate their conjecture that optimizing the adhe-
sion metric during logic synthesis does indeed reduce congestion postplacement of the mapped
netlist. First, they show a strong corelation between SAPMC metric and postplacement congestion
by changing the fast extraction, fx, logic synthesis transform to randomly select an improvement
rather than operate in a greedy fashion. Such choices to optimize adhesion as a metric could also be
made during other logic synthesis optimizations like cloning, buffer insertion, rewiring, and factor-
ization. The results show a correlation of adhesion asmeasured by SAPMC to average, andmaximum
wirelength.Adhesion can be used in conjunctionwith traditional properties like literal count, number
of cells, and cell count as logic synthesis metrics.

22.2.2 CONGESTION-AWARE LOGIC SYNTHESIS

The work by Pandini et al. [31] proposes several techniques to incorporate congestion minimiza-
tion within logic synthesis. Modern logic synthesis systems are typically divided into two phases:
technology-independent optimization and technology mapping. The first phase is concerned with
finding a representation of the Boolean equationswith theminimumnumber of literals in the factored
form. Technology mapping is the task of transforming a technology-independent logic network into
a technology-dependent gate-level netlist. A popular approach to technology mapping implemented
in DAGON [12] and MIS [24] is to reduce the problem to directed acyclic graph (DAG) covering
problem. The DAG covering problem was approximated by a sequence of tree coverings, which
can be solved optimally using dynamic programming. The technology mapping is usually divided
into three stages: DAG partitioning, matching, and covering. During DAG partitioning, the network
DAG is partitioned into a forest of trees. Subsequently, for each tree, a matching algorithm identifies

(a) Original circuit (b) Optimized circuit 1: opt1 (c) Optimized circuit 2: opt2

h
g

+

c * b
f e

~b ~d

~c

h
g

+

*
b e

~b ~c
c f c f

h

g

+

*

*

**

b
e

~b ~c

FIGURE 22.1 Example of adhesion in a logic network. (From Kudva, P. and Dougherty, A., ICCAD, 2002.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 450 24-9-2008 #5

450 Handbook of Algorithms for Physical Design Automation

Technology
independent
optimization

Logic synthesis

Technology
mapping

Global placement
and congestion map

Initial
placement

Technology
independent

netlist

High level
description

RoutingPlacement

YES

NO

Is congestion OK?

FIGURE 22.2 Application specific integrated circuit (ASIC) design flow to account for congestion in logic
synthesis. (From Pandini, D., Pileggi, L. T., and Strojwas, A. J., DATE, 2002.)

all possible matches, corresponding to instances of a cell library, for each subnetwork. Finally, an
optimal choice according to a cost factor is selected among thematches. Thework in Ref. [31] targets
the DAG partitioning and covers steps to improve congestion of the final implementation.

The proposed approach in Ref. [31] for congestion-aware technologymapping can be integrated
into traditional ASIC design flow, as shown in Figure 22.2. A technology-independent netlist and
its initial placement is obtained. If congestion is deemed as a problem for the netlist, technology
mapping is carried out in a congestion-aware manner as explained below.

Placement-driven DAG partitioning algorithm proposed in Ref. [31] is shown in Figure 22.3
and is based on depth-first search (DFS) traversal from the circuit primary outputs to the primary
inputs. The difference from classical DAG partitioning is that partitioning at multifanout vertices is
carried out by taking into account the physical location of the correspondingbase gates obtained from
placement of the technology-independentnetlist. The partitioning is based on the following property:
the father of every internal vertex is always the nearest vertex on the chip layout image according
to some distance metric. The function distance() uses the placement information to compute the
geometric distance between two adjacent vertices. The performance of the partitioning algorithm
is not dependent on the order the DAG roots are processed, but it depends only on the physical
locations of the technology-independent gates. Also, subject trees that cluster vertices placed in the
same neighborhood are obtained by means of this DAG partitioning algorithm.

For the tree-covering stage of the DAG covering problem, the authors propose only a change
in the cost function to the original tree-covering algorithm proposed in Ref. [24]. The optimization
objective is expanded by including the wirelength contribution into the cost function.

22.2.3 PERIMETER-DEGREE: A PRIORI INTERCONNECTION COMPLEXITY METRIC

Several of the popular congestion mitigation techniques can be classified as a priori congestion tech-
niques (preplacement), online methods (during placement), and posteriori methods (postplacement).
Most of existing congestion minimization techniques are posteriori. The work in Ref. [34] present
several techniques for a priori congestion minimization using the concept of perimeter-degree. They
show that the number of external nets is not a desirable candidate for identifying potential regions
of high-interconnect density. Alternatively, they propose perimeter-degree as an effective metric for

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 451 24-9-2008 #6

Congestion-Driven Physical Design 451

procedure DAG_Partitioning (graph DAG, array COORD)
for_each v inDAG do

v.father= nil;
od;
for_each v in DAG.roots() do

PDP (DAG, v, COORD);
od;

procedure PDP (graph DAG, vertex v, array COORD)
v.visited = true;
for_each e in DAG. outedges(v) do

w = DAG.target(e);
if (not w.visited) then

dist = INFINITY;
for_each f in DAG. inedges(w) do
u = DAG.source(f);
this_dist= distance(COORD[u], COORD[w]);
if (this_dist< dist) then
dist = this_dist;
w.father= u;

fi;
od;
PDP (DAG, w, COORD);

fi;
od;

FIGURE 22.3 Placement-driven DAG partitioning algorithm. PDP stands for placement-driven partitioning.
(From Pandini, D., Pileggi, L. T., and Strojwas, A. J., DATE, 2002.)

identifying congested regions on a chip. perimeter-degree (Pperi) is defined as follows. A region
represents a placement bin on the die or a cluster of cells. The degree of a region is the number of
nets exposed from the region. The perimeter-degree of the region is the region degree divided by the
region perimeter. The bin degree and pin density are two commonmetrics used for simple congestion
control [44]. However, it is misleading to compare just degrees of two regions with dissimilar area.
The degree needs to be normalized. Because the degree of a region represents the routing demand
at the edges of a region, it is natural to use the perimeter of the region as the normalizing factor.
Figure 22.4 shows how two regions with the same degree can have different perimeter degrees.
Naturally, region A would have a higher routing supply demand compared to region B.

The authors of Ref. [34] detail simple ways to incorporate the perimeter-degree objective in a
multilevel partitioning-based placement tool. The first is to use the perimeter-degree at every cell to
compute the cell inflation before placement starts. The rational is to inflate cells with higher perime-
ter degree before the clustering phase of multilevel placement. This has the effect of diluting the
inherently high-density portions of the netlist. There are different thresholds for higher utilization
designs compared to lower utilization designs. The second technique is to inflate the clusters formed
during the clustering stage with respect to their perimeter-degree. This is done to prevent dense

A B

FIGURE 22.4 Equal degree but different perimeter-degree. (From Selvakkumaran, N., Parakh, P., and,
Karypis, G., SLIP, 2003.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 452 24-9-2008 #7

452 Handbook of Algorithms for Physical Design Automation

interconnect regions as a result of clustering. The third approach is to balance the perimeter-degree
of the partitions during the partitioning phase of the multilevel placement. One could use a multi-
constraint partitioner to solve this problem of balancing area and perimeter-degree simultaneously.
Alternatively, one could satisfy both the constraints in a sequential manner by first balancing the
perimeter-degree and then balancing the areas of the partitions.

The authors present extensive empirical data to validate their claims about fidelity of perimeter-
degree as a simple and effective metric to homogenize interconnection complexity.

22.3 GLOBAL-PLACEMENT CONGESTION IMPROVEMENT

There have been several studies on incorporating the congestionmetric during global-placement stage
of the physical implementation flow. Localwiring has a big impact on final congestion characteristics
of a design. Hence historically, it has been difficult to robustly address congestion during the global-
placement stage. There have been major advances in addressing congestion during global placement
over the past decade. In this section, we detail some of these approaches.

22.3.1 INCORPORATING CONGESTION ESTIMATION DURING GLOBAL PLACEMENT

The placement algorithms need to have a good and fast estimation of wiring requirements if they
intend to target congestion as a metric during the placement process. Other chapters in this book
detail several of these wiring density estimation approaches [10,19,27,39]. Works [6,29] have pro-
posed to incorporate congestion estimation techniques within partitioning-driven quadratic placers
in interesting ways.

The authors of Ref. [29] base their work on quadratic placement engine that solves an uncon-
strained minimization problem, the objective function of which is the squared wirelength of the
netlist. Because the quadratic solution in general has many overlapping cells, the overlap is resolved
by partitioning the solution and iterating over the partitioned solutions [23]. The quadraticwirelength
minimum solution serves to guide a mincut partitioning routine. After each round of partitioning, the
cells in a region are constrained to the particular region by introducing a center of gravity constraint
for each region for subsequent quadratic minimization formulations. Figure 22.5a illustrates the pro-
posed congestion-driven placement methodology. Before each successive placement, internal route
estimation and a region-based global route are performed on each region to estimate routing supply-
demand ratios. These ratios are used to influence the placer into growing or shrinking the partitioned
regions based on resource demand and supply. The region router estimates the routing demand of
wires spanning multiple regions. The region router is implemented using a A∗ algorithm [5] on the
region-based graph. Once routing demand is computed, this information is used to grow or shrink
the regions of the current placement. Regions with higher routing demand are allocated more white
space by growing them. For q regions in a placement stage, a growth matrix G is defined as an
(n− q× n− q) diagonal matrix with entry gii equal to the region weight of the independent cell xi.
The growthmatrix is computed as follows. After a round of quadratic minimization and partitioning,
a set of new regions is generated. Congestion analysis based on the router is performed on this new
set of regions. The routing cost is divided into two parts: (1) external cost computed using the region

Quadratic solver

Congestion
estimator

Partition

Region router

Expansion
Compression

(a) (b)

FIGURE 22.5 (a) Congestion-driven placement methodology and (b) example of region growth relieving
congestion. (From Parakh, P. N., Brown, R. B., and Sakallah, K. A., DAC, 1998.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 453 24-9-2008 #8

Congestion-Driven Physical Design 453

router for nets spanning multiple regions and (2) internal cost computed using a line-probe router
for intraregion routes. The difference between routing supply and demand of a region determine the
extra routing tracks required and hence, the growth required by the region. The reader is referred to
the original publication [29] for details on how the growth matrix is embedded in the quadratic for-
mulation of the center-of-gravity constraints. The effect of the growth matrix terms in the quadratic
formulation is to effectively grow and shrink the regions based on the growth matrix. Reduction in
congestion occurs due to the ability to transform horizontal routes into vertical and vice versa. This
is shown in Figure 22.5b, where for a vertically congested region vertical expansion is produced.

The work in Ref. [6] also targets a flow to avoid routing congestion during the global placement.
The main contribution is to use a fast but reliable way to detect routing criticalities and then use
the information effectively in a partitioning-driven placer. The techniques are tested on real-world
large industrial design with very good results. The framework for their studies is based on a four-way
partitioning (quadrisection)-basedquadratic placer,BonnPlace [37].Theplacement begins by solving
a quadratic wirelength minimum solution as describe in the previous paragraph. This overlapping
placement is then used by a quadrisection routine to generate four partitions of the netlist. The
objective of the quadrisection is to divide the area of the die into approximately equal regions and
assign cells to each region such that density requirements for each region are not violated and the
displacement of the cells from their initial quadratic wirelength minimum locations is minimized.
Center-of-gravity constraints are then imposed on the cells assigned to their particular regions for
subsequent quadratic wirelength minimization. This process is iterated till the number of cells in a
region is small enough for detail placement techniques to place. Like thework inRef. [29], the authors
of Ref. [6] also try to relieve congestion during global-placement iterations by allocating more white
space to perceived congested areas. However, the mechanism is very different. First, we describe the
measurement of congestion of a placement as it appears during the placement algorithm as proposed
in Ref. [6]. Given a chip that is partitioned into k× k regions (forming a (k+ 1)× (k+ 1) placement
grid), pin density for each region (for local congestion cost) and a congestion estimation for each
edge in the dual graph of the placement grid (for the intraregion congestion cost) is computed. For
a fast estimation of a global route, probabilistic global router is used to route the intraregion nets.
During a placement level (iteration), the current status of the placement grid is used as the global
routing partition. Figure 22.6b shows the routing grid as a dual of the placement grid. Multiterminal
nets are split into sets of two-terminal nets using Steiner tree decomposition of the net. For each
two point connection in the Steiner tree of a net, probabilistic routing similar to the algorithms
proposed in Refs. [27,39] is used. These probabilities are then added over all nets for each routing
grid box to give the expected usage p(e). Figure 22.6c shows how probabilities are calculated for two

(c)(b) Steiner tree and routing grid(a) Placement grid

0.20.20.2
0.2 0.2 0.2 0.4

1
1

1

1

0.2, 0.4, 0.6
vertical edges

0.2, 0.4, 0.6
horizontal edges

0.6

0.6 0.4 0.2
0.20.20.20.4

0.40.2

Probabilistic weights

FIGURE 22.6 Calculation of routing congestion using probabilistic routing analysis. Given a placement of a
chip partitioned into k × k grid shown in (a), the nets are decomposed into two pin connections using Steiner
tree decomposition as shown in (b). Each two pin connection is then routed probabilistically as shown in (c).
(From Brenner, U. and Rohe, A., ISPD, 2002.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 454 24-9-2008 #9

454 Handbook of Algorithms for Physical Design Automation

connections and then added for each grid box. The fraction cong(e) = p(e)
cap(e)

(cap(e) is the routing
capacity) is defined as the estimated congestion for an edge e ∈ E(G) in the dual of the placement
grid as shown in Figure 22.6b. To account for routability problems inside a routing grid, the pin
density pin – dens(R) inside a region R is used as a second metric. To use the computed congestion
data, the authors rely on the popular technique of inflating groups of cells that are deemed to be
in a congested region. The size of a congested cell is increased from the normal geometric area of
s(c) = x(c) · y(c) to an increased value of s′(c) = [1 + b(c)] · s(c), with b(c) ≥ 0. During the
partitioning stage, the new sizes of cells are used to satisfy the density requirements such that for set
C(R) being partitioned in subsets C(R1), . . . ,C(R4), the condition �c∈C(Ri)s

′(c) ≤ s(Ri) is satisfied
for i = 1, . . . , 4. The numbers b(c) depend upon an input parameter τ ≥ 0, which is an upper
bound on the total increment of b(c) for each placement level. The initial value b(c) for each cell
is proportional to pin density of the cell. During placement, if a cell is deemed to be in a congested
region R, then b(c) is increased by min{1, 2[cong(ei) − 1]}. Once the cells in congested regions are
inflated, they are spread around using a repartitioning method in the placer, which respects the new
inflated sizes of the cells and moves cells out of regions that are too full. Repartitioning is called
after normal partitioning stage. It considers 2× 2 windows of adjacent regions R1, . . . ,R4 and forms
a larger region R = R1∪, . . . ,∪,R4. The larger region is then repartitioned to obey new density limits
and improve wirelength. This is done for all 2 × 2 windows repeatedly over all the regions till it
yields reasonable improvement in wirelength. Because the windows are overlapping, it allows the
inflated cells to move away from congested regions, in effect reducing the demand for routing in
these regions.

The work in Ref. [30] also proposes a white-space allocation (WSA) technique based on conges-
tion estimates during mincut global placement. The techniques are based on the (WSA) technique
proposed in Ref. [28] and discussed in Section 22.4.2. The difference is that Ref. [28] proposes to
apply the technique after placement as a detail placement optimization, while Ref. [30] uses it during
partitioning-based global placement. The framework used for the studies in Ref. [30] is a top-down
mincut bipartitioning-based placer. Unlike Ref. [6], which uses a quadrisection-based fixed grid
placer, Ref. [30] use a bisection-based variable grid placer in which the cutline is allowed to shift
after each round of partitioning. The objective for postpartitioning cutline shifting can be based on
equalizing densities or congestion estimates. In Ref. [30], before each round of partitioning, the entire
placement region is overlayed on a grid. Congestion maps [39] are built using last updated locations
of all pins. When cells are partitioned and their positions are changed, the congestion value for their
nets are updated. The routing demands and supplies for either side of the cutline are estimated using
the congestion map. Using these estimates, cutline is shifted after partitioning to equalize the ratio
of demand to supply on either side of the cutline. This effectively allocates more white space to
potentially congested areas without having to artificially change the sizes of individual cells.

22.3.2 STEINERWIRELENGTH OPTIMIZATION DURING GLOBAL PLACEMENT

Taking an orthogonal approach to traditional works on congestion-driven placement, the work in
Ref. [30] shows that congestion characteristics of a placement can be improved by modifying the
objective of the placer to optimize Steiner tree wirelength (StWL) and not the traditional half-
perimeter wirelength (HPWL). The contention is that StWL correlates much better with routed
wirelength in comparison to HPWL. The placement framework for the study is based on the top-
down mincut partitioning algorithm implemented in the well-known Capo placer [1] and is called
rooster. Mincut placers generally use either bisection or quadrisection to divide the placement area
and the netlist. The objective of the partitioning is to minimize the number of connections between
the partitions and also to obey area constraints in the partitions. This is done iteratively till the number
of cells in a region is small. When bipartitioning is used, the careful choice of vertical or horizontal
cut direction influence wirelength, wirelength ratio between horizontal and vertical components,
and also routing congestion in resulting placement solution [36]. Proper handling of terminals [13]
is essential to the success of top-down placement approaches. When partitioning a placement bin

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 455 24-9-2008 #10

Congestion-Driven Physical Design 455

(region) cells inside the bin may connect to cells and fixed points outside the particular bin. These
connections need to be properly accounted for by formulating the problem as partitioning cells in a
bin with fixed terminals. The terminals are propagated to boundaries of the bin being partitioned and
are considered fixed in one ormore partitions. Traditionalmincut objective during placement does not
accurately represent the wirelength objective [35]. The authors of Ref. [35] introduce a new terminal
propagation technique that allows the partitioner to better map netcut to HPWL. Each original net
can be represented by one or two weighted nets for the partitioning problem, depending upon the
configuration of the net’s terminals relative to bin’s center. The weighted netcut formulation better
represents the HPWL objective. This formulation is later simplified in Ref. [9]. Thework in Ref. [30]
extends this formulation to facilitate minimization of wirelength estimates other than HPWL, in
particular, StWL minimization. The authors of Ref. [30] show that StWL is a valid cost function
for the weighted partitioning problems. However, several assumptions for minimizing traditional
HPWL objective do not hold anymore. Moving terminal locations changes Steiner tree construction
making StWL estimates inaccurate. Additionally, nets that were considered inessential in HPWL
minimization cannot be considered so during StWL minimization because there are many Steiner
trees of different lengths having same boundingbox unlike the HPWL objective. To limit the addition
runtime during placement, an efficient data structure called pointset with multiplicities is proposed
to aid fast building and maintaining of Steiner trees for partitioning. At the beginning of the mincut
placement, all movable cells are placed at the center of the first placement bin that represents the full
core placeable area. When constructing the partitioning instance for a bin, a Steiner tree evaluator
is called for each essential net of the bin. The weighted partitioning problem is formed based on the
Steiner tree segments. The weighted mincut partitioner runs and produces a solution. A cutline is
selected based on the partitioning result, new bins are created and cells are placed at the center of
their respective bins. Three different Steiner tree evaluators, batched iterated 1-Steiner (BI1ST) [20],
FastSteiner [21] and fast lookup table based wirelength estimation technique (FLUTE) [11] are
tested in the flow. In addition, Ref. [30] also suggests using the StWL objective in detail placement
techniques. Two types of sliding window optimizers targeting StWL are proposed. The first one
exhaustively checks all possible linear orderings of a group of cells in row and the second one uses
dynamic programming algorithm for an interleaving optimization like the one proposed in Ref. [17].

22.3.3 FREE SPACEMANAGEMENT DURING GLOBAL PLACEMENT

Traditional works on congestion-driven placement in the context of high-utilization designs have
focused on redistributing the available limited white space toward the congested areas. However, for
modern system on chip (SoC) design styles with several big intellectual property (IP) blocks, large
macrocells, the available free space has increased for dust logic. For such low-utilization designs,
in addition to solving the problem of local high-congestion spots, it is also important to ensure that
the design is not overspread over the die and also that it has a good natural distribution of cells in
the layout. Addressing these concerns improves the overall quality of the physical design in terms
of performance of the circuit, wirelength, power consumed, congestion owing to global nets, etc.
However, even for low-utilization designs, care must be taken to ensure that every local region of
the die has enough routing resources to accomodate routing demand created by cells in that region.
Hence, the free space management techniques during global placement need to be cognizant of
maintaining enough white space in the local regions while ensuring that the design is not overspread
for other placement objectives.

Hierarchical WSA during top-down partitioning-based placement flows is discussed in Ref. [7]
and implemented in the placer Capo. The available white space is uniformly spread throughout
the core region. This ensures that every local region of the die has enough available white space
and helps routing. At every level of partitioning during the top-down flow, the tolerances during
the partitioning of an individual bin are determined by the white space deterioration factor α. α is
determined by the available white space in the bin and the number of partitioning levels away to
leaf level in the partitioning tree (approximated by log2 N , where N is the number of cells in the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 456 24-9-2008 #11

456 Handbook of Algorithms for Physical Design Automation

bin). Hierachical WSA allows higher tolerances during partitioning and shifting cutlines after each
partitioning to equalize the relative white space in the child bins and to ensure a uniformwhite space
distribution. This simple strategy is very good for high-utilization designs but produces circuits with
high wirelength and worse performance for sparse designs.

Thework in Ref. [4] argues that top-downplacement based on recursive bisectionwithmultilevel
partitioning does poorly on low-utilization designs and tends to produce excessive wirelength when
large amounts of white space are present. On the other hand, analytical placement algorithms have
a global view of the placement problem and can better manage large amounts of white space. To
address this, analytical constraint generation (ACG) [4] proposes to combine a mincut-based placer
with a quadratic placement engine. In ACG, during top-down recursive bisection-based mincut
placement flow, the partitioning capacities for each placement bin to be partitioned are generated
based on quadratic wirelength minimum placement at that level. At each level during the top-down
flow, the quadratic wirelength minimization engine produces a placement subject to the respective
placement bin constraints for each cell. For each placement bin to be partitioned, the capacities of
each child bin are determined by the center of mass of the quadratic wirelength minimum solution.
The tolerances for the partitioning problem are kept fairly rigid. Care is taken to ensure that none
of the child partitioning bins overflow their target utilizations. ACG gets the hint from a quadratic
wirelength minimum solution on the natural placement of the design and uses powerful multilevel
mincut partitioning techniques to produce lower wirelength solutions that are not overspread.

The techniques proposed in Refs. [2,3], to handle the issue of sparse designs take a different
approach. Their techniques are not dependent on the type of the placer. A black-box placer that
uniformly distributes the available white space across the core area is assumed. By preprocessing
the netlist, it can be ensured that (1) there is minimum local white space through the core area and
(2) better allocation of the remaining white space. The constraint of minimum local white space
is required to ensure that local regions in the die do not become highly congested. The technique
consists of adding small disconnected free cells to the design in an amount not exceeding the white
space that remains after the local white space requirement is satisfied. Because the free cells are
disconnected and small, the black-box placer is free to place the cells so as to improve the relevant
design objectives. After the placement process is complete, the free cells are removed from the
design and the underlying cell sites are empty. This causes high cell density (which respects the
minimum local white space requirement) in certain areas, with empty sites occupying the vacant
areas of the chip. In addition, the work in Ref. [3] describes a low-overhead implementation of filler
cells in a mincut placer, because explicit modeling of free cells in the placement problem impacts
the runtime and memory footprint of the placer. In contrast to the ACG work where partitioning
capacities for each partitioning problem are determined by quadratic wirelength minimum solution
and the partitioning tolerances are kept fairly strict, in Ref. [3], the partitioning tolerances for a
low-utilization placement bins are increased sufficiently so that the partitioner can find the optimum
mincut solution subject to the capacity and tolerance constraints. The increase in tolerances is done
keeping in mind the minimum local white space requirements. Figure 22.7 shows the placement of
the same design by different mincut placement approaches as discussed above.

22.4 DETAILED PLACEMENT CONGESTION IMPROVEMENT

Congestion-driven detailed placement approaches have been studied extensively in literature. In
general, these approaches tend to bemore effective compared to congestion-drivenglobal placement,
because a relatively more accurate congestion information can be achieved at the detailed placement
level. The global-placement step determines rough locations of the majority of the cells, as well
as the local area density and pin density. After global placement completes, a pass of congestion
estimation can be applied. The congestion distribution of the entire design, or congestion map, is
usually the guide of the postglobal-placement congestion-reduction algorithms.

The goal of congestion-reduction algorithms is to reduce the congestion in the peak congestion
spots, at the cost of increasing the routing demand in noncongested area, thus averaging out the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 457 24-9-2008 #12

Congestion-Driven Physical Design 457

(a) (b) (c) (d)

FIGURE 22.7 Ckt4 design from IBM has 74 percent white space. (a) Placement produced by Capo with
uniform white space distribution. (b) Another placement produced by Capo free filler cells (not shown in the
picture) was added to reduce the placer white space from 74 to 15 percent. This reduces the wirelength from
15.32e6 to 8.77e6. (c) Placement obtained from a mincut placer from IBM with 70 percent target density.
(d) Placement obtained by the ACG technique with 70 percent target density. (From Adya, S. N. and
Markov, I. L., International Conference on Computer Aided Design (ICCAD), San Jose, CA, 2003; Alpert,
C. J., Nam, G. -J., and Villarrubia, P. G., Proceedings of the 2002 IEEE/ACM International Conference on
Computer-Aided Design, San Jose, CA, 2002.)

routing demand over the die. For the detailed placement stage, there are typically following three
ways to reduce the routing demands in congested area.

First, traditional HPWL improvement, either globally or locally, can reduce the routing demand
in the congested area by having smaller wires in the design. In this sense, the conventionalwirelength
minimization is of value for congestion control. This is particularly true for high-utilization designs,
where little room can be used for manipulating the available white space of congestion control.Wang
et al. [38] illustrate the relationship between total wirelength and congestion, based on the edge
overflow congestion model. They observe a strong correlation between wirelength and congestion
in experiments. Recent work on mincut placement [22] or analytical placement [28] also suggests
that reducing total HPWL helps producing routable placements.

Second, in congested regions, replacing cells with accurate routing topology information can
yield significant congestion reduction. This type of approaches include cell swapping integratedwith
Steiner tree routing update in the simulated annealing algorithm [38], cell replacement with an exact
congestion objective obtained by global routing or routing estimator [28,30], optimal interleaving
with trunk tree decomposition [17], and sliding window optimization with StWL objective [30]. The
incremental routing approach in Ref. [38] can be runtime prohibitive because both incremental rout-
ing and annealing are computationally expensive. A good control of the working area is paramount
for the approach. Usually, the working area grows from a highly congested spot and is subject to
somemaximum area constraints. If the congestion is mainly caused by entangled routing topologies,
the cell replacement approach in Ref. [28] can be very effective for moderate congest reduction.
The exploration space, however, is rather limited because fewer cells are touched comparing to other
methods. Both approaches failed to address the congestion from global interconnects, nets that pass
through the congested area. Accounting for global interconnects in routing congestion reduction is
fundamentally a very hard problem for detailed placement. The approach in Ref. [30] uses a fast
Steiner tree estimator in mincut placement. It is a promising technique as it improves the StWL at
almost no cost on runtime.

Third, low-design utilization, or the abundance of whitespace, for many modern ASIC designs
allows cell spreading, the most effective way to reduce the routing congestion. By spreading the
cells in the core placeable area, the routing resources can be significantly increased. In other words,
the average routing demand in the congested area can be reduced to meet the routing resource
constraints. Theoretically, if the utilization continues to decrease, the routability goalwill be achieved
for any given design. In reality, however, spreading the placement inevitably deteriorates the circuit
performance and increases the power consumption, because of increased average interconnect length.

We will go through the details of several techniques in the following sections:

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 458 24-9-2008 #13

458 Handbook of Algorithms for Physical Design Automation

22.4.1 ROUTER INTEGRATION

An early approach on cell replacing with routing information was proposed in Ref. [38]. In this
work, the detailed placement step is based on low-temperature simulated annealing. Traditionally,
the cost function in simulated annealing is total HPWL, or some form of weighted total HPWL.
Here the congestion cost is incorporated into the objective function. To obtain congestion cost, a
fast Steiner tree router is called for every single move in simulated annealing algorithm. The routing
supply/demand information for all the region edges need to be incrementally updated. This approach
is computationally expensive because incremental routing and congestion update aremuchmore time
consuming than simple bounding-box computation. The advantage is on the fidelity side—congestion
improvement achieved in placement can be mostly carried on to the routing. Several techniques can
be used to speed up this approach and make it practically feasible, such as routing estimation or lazy
update on nets with large fanouts. Using appropriate sizes of the congested regions in optimization
is another key step for this approach. The idea is to avoid applying the expensive computation on
noncongested areas. The modeling of congestion cost greatly affects the final placement quality.
One basic question is should we penalize the moves only when the routing demand is higher than
the supply, or we start giving some cost once the demand is close to the supply, i.e., look-ahead
approach. The authors tried many different congestion modeling functions and suggest that look-
ahead congestion cost combined with total wirelength is most effective.

A typical problem in congestion minimization is that reducing the peak congestion of one region
is often at the cost of increasing the congestion of its surrounding area. Classic congestion removal
approaches work in expanded area, which is the peak congestion region plus the surrounding less
congested area. Furthermore, these approaches work on one expanded area at a time. This results in
conflicting congested areas. The authors in Refs. [42,43] suggest conflict resolving techniques before
starting congestion optimization. The basic idea is to exploit the flexibility when growing the peak
congestion spot to an expanded area, and obtain the best combined expanded areas for multiple peak
congestion spots. The problem can be formulated as a linear program or an integer linear program.
A simpler heuristic is to start from greedy expansion and gradually adjust the expanded area to avoid
conflicts.

Jariwala and Lillis [17] proposed a detailed placement method to integrate trunk decomposition-
based routing into optimal interleaving algorithm.Optimal interleaving is a detailed placement wire-
lengthminimization technique proposed inRef. [17]. It is a powerful intrarowoptimization technique.
The basic idea is to collect a group of cells in a single-row window, partition them into two groups,
and optimally interleave two groupswith the same cell order of each group.A dynamic programming
algorithm ensures the optimal wirelength can be found in O(n2) time complexity. In Ref. [17], the
routing information is considered in the interleaving process. The routes associated with cells are
also interleaved and the number of nets crossing a channel is taken into account. The algorithm is suc-
cessful on field programmable gate array (FPGA) benchmarks. It reduces the number of congested
routing channels (defined as the channels with maximum routing density) by 45 percent on average.

22.4.2 WHITESPACE MANAGEMENT

Because modern cell-based designs usually have utilizations lower than their precedences, recent
research work has been focused on congestion improvement in the context of whitespace. Early
research on whitespace handling techniques include Ref. [7], in which the whitespace control is
used primarily for improving the quality of mincut partitioning, and Ref. [29], which implicitly uses
whitespace for area expansion.

Yang et al. [40,41] proposed a WSA approach for the purpose of reducing congestion. The
experiment flow in this chapter is complete, including global/detailed routing with a widely used
commercial router, on a set of benchmarks based on a 0.18µm library. After global-placement stage,
the chip area is divided into rectangular areas (bins) and the congestion estimation is conducted to
obtain a congestion degree for each bin.At this point, all the bins have the same amount ofwhitespace.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 459 24-9-2008 #14

Congestion-Driven Physical Design 459

Next, a two-step whitespace reallocation is performed to adjust the amount of whitespace, or cell
utilization in each bin. This is accomplished by first computing the desired whitespace distribution
based on the current congestionmap, and thenmoving cells between adjacent bins to meet the white-
space requirement. Moving cells for meeting the target whitespace distribution inevitably degrades
the quality of the placement. A wirelength improvement stage is introduced to recover the loss. Dur-
ing this low-temperature annealing stage, the latest WSA map is maintained. Cell moving/swapping
are allowed only if they do not violate the whitespace requirements by a certain amount. The key
factor that determines the performance of this approach is the conversion from congestion map to
target whitespacemap. Because of the lack of detailed congestion information and uncertainty in cell
movement, it is extremely hard to accurately estimate howmuchwhitespace needs to be injected into
a bin to make a congested bin routable. What this approach is able to do is to relieve the congestion
hot spot to some extent. In reality, because congestion often conflicts with other placement objec-
tives (timing, wirelength, etc.), neither underdoing nor overdoing of congestion removal is desired.
Multiple runs with different scaling factor will help to achieve the best trade-off. Another uncertainty
of this approach lies in the convergence issue. The target whitespace map is derived from the initial
congestion map. However, after cell movement the congestion map will be changed and the target
WSA is out of sync, i.e., a previous noncongested spot may pop up with less whitespace allocated.
Performing iterations of this approachmultiple timesmay help, but it could cause oscillation problem
or considerable loss of quality of the input placement.

An enhancement of the above approach was proposed in Ref. [16]. In this work, the congestion
estimation and WSA are similar to that of Ref. [40,41]. A flow-based algorithm called placement
migration is devised to guide the cell movement for achieving the whitespace map. This algorithm
can minimize the amount of movement (total moving distance of all the moved cells), given an
original whitespace map (uniform distribution) and a target whitespace map. Less cell movement
means smaller perturbation from the input placement and usually lower wirelength loss.

Another interesting approach named whitespace allocation is proposed by Li et al. [28]. The
algorithm starts with a global placement and the derived congestion map. The placement is then
modified using a recursive bipartitioning,or slicing treemethod. In a preprocessing step, a congestion
degree number is computed for every cell in the design, based on current placement congestion map.
In the first step, the placement is recursively partitioned until every region contains a small number
of cells. For each partitioning step, the cut direction is determined by the aspect ratio of the region
to be partitioned. Each cutline geometrically bisects a region evenly and tries to maintain a square
shape of the regions. A slicing tree is constructed completely at the end of recursive bipartitioning.
Each node of the slicing tree corresponds to a region that is bipartitioned. The left child and right
child of the node corresponds to the two subregions after partitioning. A list of cells is saved in
each node, representing all the cells placed inside the region. Next, the slicing tree is evaluated in
a bottom-up fashion. A congestion level is given to each node of the tree. The congestion level
of a node is simply the summation of the congestion level of its two children. For a leaf node, the
congestion level is the summation of the congestion degree of all the cells in the end region. A cutline
adjustment step is then performed. The cutlines in the nodes are shifted by traversing the tree in a
top-down fashion. For each node, the amounts of whitespace allocated to the two child nodes are
linearly proportional to their congestion levels. Consider a region r with lower-left corner (x0, y0),
upper-right corner (x1, y1), and the original vertical cut direction at xcut = (x0 + x1)/2. The area of
this region is Ar = (x1 −x0)(y1−y0). Assume that the total area of cells for left subregion r0 and right
subregion r1 are S0 and S1, and corresponding congestion levels are OVL0 and OVL1, respectively.
The total amount of whitespace, (Ar − S0 − S1), is to be allocated into two subregions such that
the amounts of whitespace in the two subregions are linearly proportional to their congestion levels
(Figure 22.8). Thus, the amount of whitespace allocated to subregion r0 is

r0 = (Ar − S0 − S1)
OVL0

OVL0 + OVL1

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 460 24-9-2008 #15

460 Handbook of Algorithms for Physical Design Automation

Ar Ar

X0 X0 X1X1

r0 r0� r1�r1
Xcut X �cut

S0 S1 S0 S1

FIGURE 22.8 Subregion r0 is more congested than subregion r1. Cutline is shifted from xcut to x′
cut , resulting

more whitespace in subregion r ′
0.

Then the new cutline location x′
cut can be derived as follows:

γ =
S0 + (Ar − S0 − S1)

OVL0
OVL0+OVL1

Ar

x′
cut = γ x1 + (1 − γ) x0

where γ is the ratio of the left subregion area to Ar after the cutline adjustment.
This step is similar to a top-down partitioning-based global placement except that the cut direc-

tion, the cut location, and subnetlists are all known. The cells stay at the center of the region to
which they belong during the top-down flow. The placement is then legalized with minimum per-
turbation and a cell-swapping-based detailed placement is performed. Li et al. showed that this step
alone can considerably reduce the postrouting congestion (measured by percentage of overflowed
bins) by 72 percent on average. Furthermore, the similar approach was adopted in Ref. [30] for
improving congestion by improving the routed total wirelength. The difference is that in Ref. [30]
the congestion-estimate-based cutline adjustment is performed during the global-placement stage,
which is a top-down partitioning framework.

The limitation of these whitespace adjustment approaches is they can do little on the part of
congestion that is originated from global interconnects. If we consider a congested region on the
globally routed layout, the congestion of the area can be classified into three types: local nets, the
interconnects within the region; semiglobal nets, the interconnects coming in/out the region; and the
global nets, the interconnects passing through the region.WSA can relieve the congestion for local or
semiglobal nets. However, it cannot reduce the routing demands coming from global nets. Therefore,
the effectiveness of the WSA approaches is greatly dependent on the composition of these different
types of congestion sources. Generally, the proportions of the congestion sources are determined by
two factors: the netlist structure and the global-placement quality. It is thus desirable to make the
netlist structure more congestion friendly (reducing global nets at no cost of increasing local nets)
or improve the global-placement quality (reducing the total wirelength).

In summary, congestion reduction in detailed placement can be very effective because the con-
gestion spots have been detected with high fidelity after global placement. If enough whitespace
is given, most congestion can be relieved by intelligently spreading the cells to achieve a routable
design. However, other objectives in placement, such as timing and power, are likely to be degraded
during the spreading. Also, more whitespace means less density and more silicon area. In that
sense, congestion reduction should not be addressed only in detailed placement. It is an objec-
tive throughout the entire placement flow and should be considered as early as possible, even in
floorplanning stage.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 461 24-9-2008 #16

Congestion-Driven Physical Design 461

22.5 SIMULATED ANNEALING FOR CONGESTION IMPROVEMENT

Simulated annealing as an effective placement algorithm has been studied for over two decades
[25,32,33]. As circuit sizes increase, simulated annealing is no longer a good choice as an global-
placement algorithm because of its weak scalability. However, during detailed placement stage,
annealing is still an attractive approach in many cases. For instance, simulated annealing can be
applied on a particular region to further optimize the local placement. One flexibility of annealing
approach is that it can incorporate virtually any cost into its objective function, as long as the cost
can be modeled and incrementally updated. It is then natural to extend simulated annealing from
optimizing classic HPWL to optimizing congestion.

A number of publications have presented methods to apply simulated annealing for congestion
alleviation. They vary in congestion modeling and objective cost function. In this section, we review
several cost functions to represent congestion. Once the right cost function is selected, both low
temperature or greedy algorithm can be used as the optimization framework.

22.5.1 RISA

Cheng proposed a routabilitymodel named RISA [10] and for the first time integrated the routability
model in simulated annealing algorithm. The basic idea of RISA can be explained using Figure 22.9.

The entire chip is divided intoM × N rectangular regions. R represents one such region. There
are two nets whose bounding boxes overlap with region R. Let WR (HR) be the width (height) of
region R, W1 (H1) be the width (height) of net N1s bounding box, w1 (h1) be the width (height)
of overlapping box between R and net N1s bounding box. For region R, the horizontal and vertical
congestion contributed by net N1 are

Ch = q
w1h1
H1WR

Cv = q
w1h1
W1HR

where q is the netweight that is a function of net pin count. q is obtained by randomly building
optimal Steiner tree within net’s bounding box and statistically deriving the probability of net
crossings. Table 22.1 shows the precomputed value for q.

Congestion cost computed by RISA model is integrated into simulated annealing algorithm.
Experiments show that with RISA model, routing congestion as measured by number of overcon-
gested grids is considerably reduced. The runtime cost is about 2X comparing to the original simulated
annealing algorithm.

W1

H1

w1

WR

N1 N2

HR
h1

R

FIGURE 22.9 RISA routability model.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 462 24-9-2008 #17

462 Handbook of Algorithms for Physical Design Automation

TABLE 22.1
Netweighting for RISA Routability Model

Pin Count Netweight q Pin Count Netweight q

1–3 1.0000 15 1.6899
4 1.0828 20 1.8924
5 1.1536 25 2.0743
6 1.2206 30 2.2334
7 1.2823 35 2.3895
8 1.3385 40 2.5356
9 1.3991 45 2.6625
10 1.4493 50 2.7933

22.5.2 OVERFLOW WITH LOOK-AHEAD

Wang et al. tried a number of cost functions that cover both congestion andwirelength objectives [38].
Let WL be the total wirelength and OF be the total overflow of the current placement. The total
overflow is the sum of overflow for all the placement bins. The overflow is the difference between
routing demand and routing supply of the bin, if demand is larger. The following seven cost functions
are proposed (Figure 22.10):

1. WL: total HPWL (Figure 22.10a)
2. OF: total overflow (Figure 22.10b)
3. Hybrid: (1 − α)WL + αOF, 0 ≤ α ≤ 1 (Figure 22.10c)
4. TimeHybrid: (1 − αT)WL + αTOF, α is changing during the placement process

(Figure 22.10d)
5. QL: quadratic function when demand is smaller than supply; linear function when demand

is greater than supply (Figure 22.10e)

S

S S S

WL

(a) (b)

Number of
nets crossing

Number of
nets crossing

Number of
nets crossing

Number of
nets crossing

Number of
nets crossing

S Number of
nets crossing

S

(c)

d

(d)

Cost Cost Cost

LQ

(e)

QL

(f)

(1−a)WL + aOF

CostCostCost
OF

LkAhd

S-

FIGURE 22.10 Cost function versus number of crossing nets on each global bin.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 463 24-9-2008 #18

Congestion-Driven Physical Design 463

6. LQ: linear function when demand is smaller than supply; quadratic function when demand
is greater than supply (Figure 22.10f)

7. Look-Ahead: start considering congestion cost when demand is close enough to supply

All these cost functions are experimented in both global placement and detailed placement
stages. The authors found that during global placement, none of the objectives works well except
total wirelength. However, in detailed placement stage, several cost functions are reasonably good
and LookAhead gives the best result in terms of congestion.

22.5.3 A-TREE ROUTER

Chang et al. integrate a fast A-tree router into a multilevel simulated-annealing global-placement
engine called mPG [8]. mPG is inspired by the recent success of the multilevel methods in efficiently
handling bipartitioning problem [18]. It consists of three stages: coarsening by clustering, initial
placement on the top level, and uncoarsening with refinement. The A-tree router is based on a
fast, congestion avoidance two-bend router (LZ-router). The rational behind that is the dominance of
LZ-shaped routes in the actual layout.Multipin nets are decomposed to two-pin nets. An incremental
A-tree algorithm is developed to efficiently update the routing topology for any pin location change.
This A-tree router can be used in conjunction with HPWL at any level of refinement. In practice,
the authors find that it is most effective to consider routing cost at the finest level. This is consistent
with the conclusion in Ref. [38] that minimizing congestion cost early in the placement flow may
have negative effect.

The cost function for congestion-driven mPG is the quadratic sum of the wire usages of all the
bins. The wire usage for each bin is the sum of the routed wirelength of the nets that pass through,
start from, or end at this bin. Unlike the overflowmethod, there is no threshold for routing supply in
the cost function. This cost function encourages the simulated annealing moves that can lead shorter
routed length and less congestion. If thewire usage of a bin increases fromW toW+d, the congestion
cost change is d2 + 2Wd. For a long wire-segment crossing multiple bins, the delta congestion cost
can be quickly computed using the sum of the current wire usages of the involved bins.

22.5.4 SPARSE PARAMETER

Hu and Marek-Sadowska [16] proposed a congestion cost function named sparse parameter. With
this cost function, the congestion-driven placement does not follow the traditional estimate-and-
eliminate strategy. Instead, it tries to reduce the excessive usage of routing resources caused by local
nets so that more routing resources are available for the uncertain global nets.

The idea of sparse-parameter cost function originates from two facts. First, the local nets that
coming in/out a region vastly determine the congestion situation of the region. This is verified with
empirical data. Second, minimizing the number of local nets alone could be wrong, because the
cost is often the longer wirelength and the congestion caused by global nets. The authors derive the
following function as the wire cost WS(b) for a placement bin b:

WS(b) =
∑
i∈LC(b)

wiBB(i)

d(i)

where
LC(b) is all the nets that enter or leave the region b
wi is the weights to translate half-perimeter length to estimated routed length for net i
BB(i) is the HPWL for net i
d(i) is the degree of net i

Once WS(b) is computed for all the bins, a mapping function is used to convertWS(b) to the sparse
parameter P(b):

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 464 24-9-2008 #19

464 Handbook of Algorithms for Physical Design Automation

P(b)

WS(b)
WSmaxWSaveWSmin

Pmin

Pave

Pmax

I

II

FIGURE 22.11 Sparse function WS(b) to P(b).

P(b) = aWS(b) + b

where a and b are constants obtained from three points: (WSmin,Pmin), (WSave,Pave), and
(WSmax,Pmax). WSmin,WSave, and WSmax are minimum, average, and maximum WS(b) over all the
bins, respectively. Pmin,Pave, and Pmin are user defined values. The curve of this conversion indicates
a sharper slope fromWSave to WSmax, meaning higher cost when the congestion of a region is above
the average (Figure 22.11).

The above function works well when integrated in simulated annealing algorithm. Particularly,
thewirelength increase is negligible compared to pure half-perimeter optimization. The runtimewith
the sparse parameter is about 2.5 or 3 times slower.

Because of lack of access to real industry router, there is no detailed routing step in the experi-
mental flow. Consequently, the internal routes within the bin are not modeled in the cost function,
because they do not contribute to the global routing results (the global router used in Ref. [19] works
on bin level and ignore the internal nets). The authors suggest to use some sort of pin-density metric
to adjust the sparse parameter.

22.6 CONCLUSION

In this chapter, we reviewed various techniques for reducing congestion and achieving routable
designs. Placement-independent techniques use information from netlist connectivity to guide logic
synthesis or placement.Addressing congestion in the early design has deep impact on the final design
routability. In global-placement stage, congestionmodeling is paramount for achieving the appropri-
ate distribution. Pin density and fast routing estimation can be used to guide the placement engine.
Detailed placement stage has more accurate routing information. Cell spreading, cell moving, or
swapping should consider routing congestion and are very effective for allieviating local congestion.

In summary, placement is the most important stage to achieve routable design. Many studies
have shown that congestion problem can be and should be solved in placement stage by applying
the right techniques at the right place.

REFERENCES
1. S. N. Adya, S. Chaturvedi, J. A. Roy, D. Papa, and I. L. Markov, Unification of partitioning, floorplanning

and placement, International Conference of Computer Aided Design (ICCAD), San Jose, CA, 2004,
pp. 550–557.

2. S. N. Adya and I. L. Markov, On whitespace and stability in mixed-size placement and physical synthesis,
International Conference on Computer Aided Design (ICCAD), San Jose, CA, 2003, pp. 311–318.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 465 24-9-2008 #20

Congestion-Driven Physical Design 465

3. S.N.Adya, I. L.Markov, andP.G.Villarrubia,Onwhitespace and stability in physical synthesis, Integration:
The VLSI Journal, 39(4): 340–362, 2006.

4. C. J. Alpert, G. -J. Nam, and P. G. Villarrubia, Free space management for cut-based placement, Proceed-
ings of the 2002 IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, 2002,
pp. 746–751.

5. K.D. Boese, A.B. Kahng, and G. Robins, High-performance routing trees with identified critical sinks,
DAC, Proceedings of the 30th International Conference on Design Automation Conference (DAC), Dallas,
TX, pp. 182–187, 1993.

6. U. Brenner and A. Rohe, An effective congestion driven placement framework, Proceedings of the 2002
International Symposium on Physical Design (ISPD), San Diego, CA, pp. 6–11, 2002.

7. A. E. Caldwell, A. B. Kahng, and I. L. Markov, Can recursive bisection alone produce routable placements?
Proceedings of the 37th Conference on Design Automation Conference (DAC) Los Angeles, CA, pp. 477–
482, 2000.

8. C. -C. Chang, J. Cong, Z. Pan, and X. Yuan, Multi-level global placement with congestion control, IEEE
Transactions on Computer-AidedDesign of Integrated Circuits and Systems (TCAD), 22(4):395–409, 2003.

9. T. -C. Chen, Y. -W. Chang, and S. -C. Lin, IMF: Interconnect-driven multilevel floorplanning for large-scale
building-module designs,Proceedings of the 2005 IEEE/ACMInternationalConference onComputer-Aided
Design (ICCAD), San Jose, CA, pp. 159–164, 2005.

10. C. L. Cheng, RISA: Accurate and efficient placement routability modeling, Proceedings of the
1994 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, California,
pp. 690–695, 1994.

11. C. C. N. Chu. FLUTE: Fast lookup table based wirelength estimation technique, Proceedings of the 2004
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, pp. 696–701,
2004.

12. E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, Technology mapping in MIS,
ICCAD, 1987, pp. 116–119.

13. A. E. Dunlop and B. W. Kernighan, A procedure for placement of standard cell VLSI circuits, IEEE
Transactions on Computer-Aided Design of Integrated Circuits, 4(1): pp. 92–98, January 1985.

14. P. Gopalkrishnan, A. Odabasioglu, L. T. Pilleggi, and S. Raje, Overcoming wireleoad model uncertainity
during physical design, Proceedings of the 2001 International Symposium of Physical Design (ISPD)
Sonoma, CA, pp. 182–189, 2001.

15. S. Hojat and P. Villarrubbia, An integrated placement and synthesis approach for timing closure of power
PC microprocessors, ICCD, 1997, pp. 206–210.

16. B. Hu and M. Marek-Sadowska, Congestion minimization during placement without estimation, Proceed-
ings of the 2002 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA,
pp. 739–745, 2002.

17. D. Jariwala and J. Lillis, On interactions between routing and detailed placement, Proceedings of the 2004
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, pp. 387–393,
2004.

18. G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel hypergraph partitioning: Applications in
VLSI domain, Proceedings of the 34th Annual Conference on Design Automation (DAC) Anaheim, CA,
pp. 526–529, 1997. Available at http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview.

19. R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, Predictable routing, Proceedings of the 2000 IEEE/ACM
InternationalConference onComputer-AidedDesign (ICCAD), San Jose,CA, pp. 110–114, 2000.Available
at http://www.ece.ucsb.edu/kastner/labyrinth/.

20. A. B. Kahng and G. Robins, A new class of iterative Steiner tree heuristics with good performance, IEEE
Transactions on Computer-Aided Design, 11(7): 893–902, 1992.

21. A. B. Kahng, I. I. Mandoiu, and A. Zelikovsky. Highly scalable algorithms for rectilinear and octilinear
Steiner trees, Proceedings of the 2003 Conference on Asia South Pacific Design Automation Conference
(ASPDAC), Kitakyushu, Japan, pp. 827–833, 2003.

22. A.KahngandS.Reda, Placement feedback:Aconcept andmethod for bettermin-cut placement,Proceedings
of the 41st Annual Conference on Design Automation (DAC) San Diego, CA, pp. 357–362, 2004.

23. J. M. Kleinhans, G. Sigl, F.M. Johannes, and K.J. Antreich, VLSI placement by quadratic programming and
slicing optimization, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
10(3): 356–361, 1991.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C022 Finals Page 466 24-9-2008 #21

466 Handbook of Algorithms for Physical Design Automation

24. K. Keutzer, DAGON: Technology binding and local optimization by DAG matching, Proceedings of the
24th ACM/IEEE Conference on Design Automation Conference (DAC) Miami Beach, FL, pp. 341–347,
1987.

25. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science, 220 (4598):
671–680, May 1983.

26. P. Kudva and A. Dougherty, Metrics for structural logic synthesis, Proceedings of the 2002 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD) San Jose, CA, pp. 551–556, 2002.

27. J. Lou, S. Krishnamoorthy, and H. S. Sheng, Estimating routing congestion using probabilistic analysis,
Proceedings of the 2001 International Symposium on Physical Design (ISPD) Sonoma, CA, pp. 112–117,
2001.

28. C. Li, M. Xie, C. -K. Koh, J. Cong, and P. H. Madden, Routability-driven placement and white space alloca-
tion, Proceedings of the 2004 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 394–401, 2004.

29. P. N. Parakh, R. B. Brown, and K. A. Sakallah, Congestion driven quadratic placement, Proceedings of the
35th Annual Conference on Design Automation Conference (DAC) San Francisco, CA, pp. 275–278, 1998.

30. J. A. Roy, J. F. Lu, and I. L. Markov, Seeing the forest and the trees: Steiner wire-length optimization
in placement, Proceedings of the 2006 International Symposium on Physical Design (ISPD), San Jose, CA,
pp. 78–85, 2006.

31. D. Pandini, L. T. Pileggi, and A. J. Strojwas, Congestion-aware logic synthesis, Proceedings of the
Conference on Design, Automation and Test in Europe (DATE), p. 664, 2002.

32. C. Sechen, The TimberWolf3.2 standard cell placement and global routing program, User’s Guide for
Version 3.2, Release 2.

33. C. Sechen, Chip-planning, placement, and global routing macro/custom cell integrated circuits using simu-
lated annealing, Proceedings of the 25th ACM/IEEE Conference on Design Automation Conference (DAC),
Atlantic City, NJ, pp. 73–80, 1998.

34. N. Selvakkumaran, P. Parakh, and G. Karypis, Perimeter-degree: A priori metric for directly measuring and
homogenizing interconnection complexity in multilevel placement, Proceedings of the 2003 International
Workshop on System-Level Interconnect Prediction (SLIP), Monterey, CA, pp. 53–59, 2003.

35. N. Selvakkumaran and G. Karypis, Theto-A fast, scalable and high quality partitioning driven placement
tool, Technical report, University of Minnesota, 2004.

36. K. Takahashi, K. Terai, M. Nakajima, and K. Sato, Min-cut placement with global objective functions for
large scale sea-of-gates arrays, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 14(4): 434–446, 1995.

37. J. Vygen, Algorithms for large-scale flat placement, Proceedings of the 34th Annual Conference on Design
Automation Conference (DAC), Anaheim, CA, pp. 746–751, 1997.

38. M. Wang, X. Yang, and M. Sarrafzadeh, Congestion minimization during placement, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 19(10): 1140–1148, 2000.

39. J. Westra, C. Bartels, and P. Groeneveld, Probabilistic congestion prediction, Proceedings of the 2004
International Symposium Physical Design (ISPD), Phoenix, A2, pp. 204–209, 2004.

40. X. Yang, B. -K. Choi, and M. Sarrafzadeh, Routability driven white space allocation for fixed-die standard-
cell placement, Proceedings of the 2002 International Symposium on Physical Design (ISPD) San Diego,
CA, pp. 42–47, 2002.

41. X. Yang, B. -K. Choi, and M. Sarrafzadeh, Routability driven white space allocation for fixed-die standard-
cell placement, IEEE Transactions on CAD, 22(4): 410–419, April 2003.

42. X. Yang, R. Kastner, and M. Sarrafzadeh, Congestion reduction during placement based on integer
programming, Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided Design
(ISPD), San Jose, CA pp. 573–576, 2001.

43. X. Yang, M. Wang, R. Kastner, S. Ghiasi, and M. Sarrafzadeh, Congestion reduction during placement
with provably good approximation bound, ACM Transactions on Design Automation of Electronic Systems
(TODAES), 8(3): 316–333, 2003.

44. K. Zhong and S. Dutt, Algorithms for simultaneous satisfaction of multiple constraints and objective opti-
mization in a placement flow with application to congestion control, Proceedings of the 39th Conference
on Design Automation Conference (DAC), New Orleans, Louisiana, pp. 854–859, 2002.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S005 Finals Page 467 24-9-2008 #2

Part V

Net Layout and Optimization

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S005 Finals Page 468 24-9-2008 #3

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 469 23-9-2008 #2

23 Global Routing Formulation
and Maze Routing

Muhammet Mustafa Ozdal and Martin D. F. Wong

CONTENTS

23.1 Introduction.. 469
23.2 Grid Model . 470

23.2.1 Channel-Based Graph Model. 470
23.2.2 Tile-Based Graph Model . 471

23.3 Capacity Computation . 472
23.4 Routing Metrics . 473

23.4.1 Congestion . 473
23.4.2 Bend Count . 474
23.4.3 Wirelength. 474
23.4.4 Timing . 475
23.4.5 Coupling . 475

23.5 Single Net Routing .. 475
23.5.1 Lee’s Maze Routing Algorithm . 476
23.5.2 Maze-Routing Enhancements . 477
23.5.3 Line-Search Algorithms . 479
23.5.4 Pattern Routing. 481
23.5.5 Routing Nets with Multiple Terminals. 481

23.6 Routing Multiple Nets . 482
23.6.1 Sequential Routing . 482
23.6.2 Concurrent Routing . 484

23.7 Conclusions. 484
References . 484

23.1 INTRODUCTION

Global routing is an important step in the physical design process. Because of the complexity of the
overall routing problem, it is typically solved in two steps: global routing and detailed routing.During
global routing, nets are routed on a coarse-grain grid structure with the objective of determining the
regions within which each net will be routed. After an approximate routing solution is determined
for each net, the second step is to performdetailed routing to find the exact routes of all nets. Because
detailed routing is performedbased on the global routes, the quality of the final interconnectsdepends
largely on the quality of the global routing solutions.

Typically, detailed routing grids are much larger than the coarse-grain grids of global routing,
and the solution space for individual nets is much larger because of the fine-grain modeling of
routing resources. On the other hand, the resource model used in global routing is simplified, and the
complexity of global routing one net is typically much smaller than the corresponding complexity of

469

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 470 23-9-2008 #3

470 Handbook of Algorithms for Physical Design Automation

detailed routing. Hence, global routing helps detailed routing in two ways. First, the complexity of
detailed routing can be reduced by confining its search space to the regions identified by the global
routes. Second, it is usually prohibitive to use expensive sophisticated algorithms during detailed
routing because of the high problem complexity. Furthermore, the order in which nets are routed can
significantly impact the routing quality. Hence, it is the objective of global routing to find a solution
such that several metrics (such as routability, wirelength, timing) can be optimized for all nets.

In this chapter, we discuss the basics of global routing formulation, and a high-level overview
of global routing algorithms. The rest of the chapter is organized as follows. Section 23.2 presents a
global routing grid model, and Section 23.3 describes how to set the edge capacities in such a model.
The common objectives of global routing algorithms are discussed in Section 23.4. Section 23.5
describes algorithms to route a single net, with a particular focus on maze routing and its extensions.
Finally, Section 23.6 provides a high-level overview of algorithms to route multiple nets.

23.2 GRID MODEL

Global routing is typically represented as a graph problem to capture the adjacencies and capacities of
the routing region. A channel-based global routing model has been used for many years. This model
is appropriate for circuits with limited number of routing layers, where standard cells or macroblocks
occupymost of the routing space. However, as the number of routing layers is increasing, aggressive
over-the-cell routing has become more popular in the recent years. In this model, the global routing
problem is represented as a grid graph. In the following subsections, we describe these models in
more detail.

23.2.1 CHANNEL-BASED GRAPHMODEL

A typical layout contains a set of cells or macroblocks of which terminals need to be routed to
each other. If the number of routing layers is small, the routing space is limited to the channels
between these cells or macroblocks. Figure 23.1a illustrates a set of macroblocks and the available
routing resources between them. The most natural representation of this routing model is a channel
intersection graph,G, where there exists a vertex vi inG corresponding to each channel intersection i,
and an edge exists between vertices vi and vj if and only if there exists a channel between intersections
i and j. In otherwords, each edge in graphG corresponds to a channel in the routing area. Figure 23.1b
illustrates the graph model corresponding to the macroblocks given in Figure 23.1a.

In this model, each channel c is defined to have channel capacity and channel length. The
channel capacity indicates the number of nets that can use this channel without overflow, and the
channel length indicates the amount of wirelength necessary to pass through this channel. The global
routers using this graph model include Refs. [1–4]. A related problem here is the assignment of
feedthrough space between channels of standard cell rows with the objective of wirelength and

(a) (b)

FIGURE 23.1 (a) Set of macroblocks and the channels between them and (b) its corresponding channel
intersection graph.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 471 23-9-2008 #4

Global Routing Formulation and Maze Routing 471

(a) (b)

FIGURE 23.2 Net with terminals on three standard cell rows. The best topology of this net is illustrated
(a) without feedthroughs and (b) with feedthroughs. The dark circles represent the net terminals, and the
hollow circles represent the feedthrough terminals created.

congestion minimization [5,6]. This concept is illustrated in Figure 23.2. After the global routing is
completed, detailed routing within each channel is done using a channel routing algorithm [7–12]
or a river routing algorithm [13–17].

23.2.2 TILE-BASED GRAPHMODEL

As the number of available routing layers is increasing in the current technology, over-the-cell routing
model is becoming more and more popular. In this model, the lower layers that contain the cells or
macroblocks are used as escape-only layers, and routing between terminals is accomplished mainly
on the upper layers. Because the routing resources in the upper layers are not restricted to channels,
the layout is partitioned into rectangular regions, and a grid graph G is created as illustrated in
Figure 23.3. Here, there exists a vertex in G corresponding to each rectangular tie, and edges exist

FIGURE 23.3 Circuit is partitioned into rectangular tiles (solid lines), and a grid graph is created. The dark
circles and dashed lines represent the vertices and the edges of the grid graph, respectively.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 472 23-9-2008 #5

472 Handbook of Algorithms for Physical Design Automation

(a) (b)

FIGURE 23.4 (a) Three-dimensional grid model for a three-layer circuit and (b) its corresponding grid graph,
where solid lines represent intralayer connections and dashed lines represent interlayer connections.

in G between vertices that correspond to neighboring ties. Here, each terminal is assumed to lie at
the center of the grid cell that contains the terminal.

In this model, edge capacities are set based on the number of routing tracks available passing
through the tile boundaries, aswill be discussedwithmore detail in Section 23.3. If a two-dimensional
gridmodel is used (as in Figure 23.3), the routing tracks on every layer are lumped together to compute
edge capacities. On the other hand, a three-dimensional grid graph can capture the characteristics
of different layersmore accurately. For example, there canbe routingblockages on specific layers, and
different layers can have differentwirewidth and spacing requirements based on the technology being
used. Although the three-dimensional grid model can capture the capacity differences in different
layers, it requires layer assignment to be performed during global routing. Figure 23.4 illustrates a
three-dimensional grid graph,where each layer has either horizontal or vertical preferred orientation.
Observe here that there are only horizontal edges on a horizontal layer, and only vertical edges on a
vertical layer. The global routing algorithms using tile-based graph model include Refs. [18–25].

23.3 CAPACITY COMPUTATION

As discussed earlier, a graph model G is used for global routing to capture the adjacencies and the
capacities of the routing regions. Let u and v represent two vertices in G, corresponding to two
adjacent routing regions. The capacity of the edge e ∈ G between u and v is set so as to reflect the
available routing resources between the corresponding routing regions. A common capacity metric
for edge e is the number of available routing tracks between the routing regions corresponding to u
and v. In other words, capacity of e reflects the number of nets that can be routed between u and v.

It is also possible to extend this simple track-based capacity metric to consider specific locations
of blockages, pins, and preroutes. Furthermore, for the three-dimensional graph model described
in Section 23.2.2, the routing resources consumed by the utilized vias can be modeled as well.
For example, in Refs. [26,27], three types of edge capacities are defined: wiring capacity, through
capacity, and interlayer capacity. The wiring capacity is computed by dividing the routing tile into
slices based on the available routing resources, as shown in Figure 23.5. Then, the width (Wi) and
the depth (Di) of each slice i is computed. Based on these, the wiring capacity is simply defined
as �i(Wi × Di)/D, where D is the depth of the tile. Similarly, the through capacity is based on the
number of nets that can pass straight through the tile. It is computed as the sum of (Wi ×Di) values
for each slice i that spans the entire tile (i.e., Di = D). Finally, interlayer capacitance corresponds to

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 473 23-9-2008 #6

Global Routing Formulation and Maze Routing 473

D2

D1

D3

D4

D5

D

W1

W2

W3

W4

W5

FIGURE 23.5 Capacity estimation model. Here, Wi and Di represent the width and depth of slice i in the
given tile. (From Cong, J., Fang, J., and Khoo, K. -Y., IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
20, 633, 2001; Cong, J., Fang, J., Xie, M., and Zhang, J., IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., 24, 382, 2005.)

the number of vias that can be created within the tile, and is computed as the sum of empty spaces
in the tile.

In practice, high-precision capacity estimation can be complex, especially in the presence of
arbitrary preroutes, varying wire pitches, and complex design rules. Furthermore, it can also be
necessary to model the effect of interlayer connections (i.e., vias) on the horizontal/vertical wire
capacities during global routing. In general, considering different factors during capacity estimation
can lead to better correlation between global routing and detailed routing in the expense of increased
algorithmic complexity.

23.4 ROUTING METRICS

The key objective of global routing is to maximize routability in the consequent detailed routing step,
while satisfying various routability constraints. In this section, we give an overviewof the commonly
used global routing metrics.

23.4.1 CONGESTION

As described in Section 23.3, each global routing tile has a specific capacity. If the total resource
usage of the nets assigned to a tile is more than its capacity, then the tile is defined to be congested.
Clearly, the detailed router will not be able to route all the nets assigned to a congested tile because
of lack of routing resources. However, in practice, detailed routers typically can tolerate some degree
of congestion by spreading the wires to nearby not congested tiles, if any.

A good congestion metric needs to consider not only the edge capacities, but also through
capacities, as described in Section 23.3. Furthermore, an even spread of congestion throughout the
routing region usually leads to better detailed routing solutions.

Typically, global routers assign higher costs for congested-routing resources to discourage nets
using these resources. For an even spreading of congestion throughout the routing region, some

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 474 23-9-2008 #7

474 Handbook of Algorithms for Physical Design Automation

Demand
Capacity

1

Cost

(a) (b)

Demand
Capacity

1

Cost

FIGURE 23.6 (a) Congestion cost function that penalizes congested resources only and (b) congestion cost
function that promotes an even spreading of congestion.

routers use cost functions that are linear functions of resource usage [20,28,29]. These cost functions
are reported [20] to give better results than step functions, which only penalize congested resources.
Figure 23.6 illustrates sample cost functions corresponding to these two types.

23.4.2 BEND COUNT

As described in Section 23.2, each interconnect layer is used for either horizontal or vertical
connections. If a routing path makes a change in its direction (e.g., from horizontal to vertical), this
necessitates a layer change, as illustrated in Figure 23.7. So, each bend in a routing path indicates the
need for the usage of a via, which connects adjacent interconnect layers. Typically, vias are unde-
sirable because of their negative effects on signal integrity, delay, routing area, and manufacturing
yields. Hence, a good global router needs to minimize the number of bends in the routing paths.

23.4.3 WIRELENGTH

Another important metric for global routing is wirelength minimization. Increased wirelengths typ-
ically imply larger power consumption and larger delays. Although routing nets with the minimum
wirelengths are desirable, a global router may need to introduce detours to avoid blockages or
congested regions.

Inherently, congestion minimization metrics can conflict with the wirelength and bend-count
minimization metrics, as illustrated in Figure 23.8. So, the trade-off between these metrics should
be carefully tuned based on the requirements of the global router.

(a) (b)

FIGURE 23.7 (a) Bend in a routing path is illustrated in the two-dimensional grid model and (b) the via
corresponding to the bend is illustrated in the three-dimensional grid model.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 475 23-9-2008 #8

Global Routing Formulation and Maze Routing 475

(a) (b)

Low-congestion area

High-congestion area

FIGURE 23.8 Two possible configurations for a routing segment: (a) minimum wirelength, increased con-
gestion and (b) increased wirelength, minimum congestion.

23.4.4 TIMING

Timing optimization can be another important metric for high-speed designs. Typically, the critical
nets are identified, and certain timing bounds are imposed on critical connections. These connections
are then prioritized so that they can use faster resources, and scarce resources in the congested areas.
Furthermore, some restrictions can be imposed on the maximum detours introduced while routing
the critical connections.

23.4.5 COUPLING

Because of the scaling downof device geometry and increasing clock frequencies, detrimental effects
of coupling capacitances are becoming more significant. Coupling capacitance between two wires
is proportional to the amount of parallel overlap between them, and inversely proportional to the
distance between them. Avoiding coupling during global routing can be important for coupling
management in general. Figure 23.9 [22] illustrates two configurations of a set of connections with
and without coupling. Zhou and Wong [30] propose a Lagrangian relaxation-based methodology to
minimize coupling during global routing.

23.5 SINGLE NET ROUTING

In this section, we focus on the problem of global routing of a single net. Given a global routing grid
with possible blockages, the objective is to find the best routing solution for one net. In Section 23.5.1,

(b)(a)

FIGURE 23.9 (a) Layout with coupling owing to long parallel wires and (b) layout with no coupling.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 476 23-9-2008 #9

476 Handbook of Algorithms for Physical Design Automation

we start with a description of the classical maze routing algorithm [31], which is one of the earliest
algorithmson automatedwire-routingproblem.Because this algorithmcan be too expensive for large
designs, several enhancements have been proposed in the literature, as discussed in Section 23.5.2.
Inherently, maze routing algorithms are based on searching a path as a sequence of grid points.
Another class of routing algorithms represent the paths as a sequence of line segments for the purpose
of efficient execution. These line-search algorithms are described in Section 23.5.3. Another class of
algorithms simplify the routing solution space to certain patterns such as I-, L-, and Z-shaped routes
for the purpose of further speedup, as discussed in Section 23.5.4. For simplicity of the presentation,
these algorithms are described in the context of nets with two terminals. In Section 23.5.5, we outline
typical approaches to handle nets with multiple terminals.

23.5.1 LEE’S MAZE ROUTING ALGORITHM

Lee’s algorithm [31] is one of the earliest routing algorithms proposed for automated wire routing.
It is basically an extension of Moore’s shortest path algorithm [32] to a uniform grid structure. The
basic algorithm operates on a single two-terminal net n, and a uniform grid G, which can have some
of its cells specified as blockages. It is guaranteed to find a path between the terminals of the nets,
and this path is guaranteed to be the shortest possible.

The algorithm consists of two main phases. In the first phase, a wavefront is expanded from one
of the terminals, as illustrated in Figure 23.10a. As the first step, the immediate neighboring cells
of the terminal are marked with label 1. Then, at every step i(i > 1), the unmarked neighbors of the
cells that were marked with label L at step i− 1 are marked with label L+ 1. This process continues
until the wavefront reaches the target terminal. Once the target terminal is found, the shortest path
is constructed by backtracking in the second phase of the algorithm, as shown in Figure 23.10b.
The backtracking operation starts with the target cell, and continues iteratively until the source cell

(a)

S

T

1

1

1

1

2

2

2

2

2

2

2

23

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

7

7

7

77

7

7

7

8

8

8

8

8

8

8

8

8

8

8

88

8

8

8

8

99

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

10

10

1010

10

10

10

10

10

10

10

10

10

10

10

10

10

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

12

12

12

12

12

12

12

12

12

12

12

1212

12

12

12

13

13

13

13

13

13

13

13

13

13

13

13

13

13

14

14

14

14

14

14

14

14

14

14

1414

15

15

15

15

15

15

15

15

15

1

1

1

1

2

2

2

2

2

2

2

23

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

7

7

7

77

7

7

7

8

8

8

8

8

8

8

8

8

8

8

88

8

8

8

8

99

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

10

10

1010

10

10

10

10

10

10

10

10

10

10

10

10

10

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

12

12

12

12

12

12

12

12

12

12

12

1212

12

12

12

13

13

13

13

13

13

13

13

13

13

13

13

13

13

14

14

14

14

14

14

14

14

14

14

1414

15

15

15

15

15

15

15

1515

S

T

(b)

FIGURE 23.10 Twophases ofmaze routing algorithmare illustrated: (a)wave expansion and (b) backtracking.
The source and target terminals are marked as S and T , respectively.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 477 23-9-2008 #10

Global Routing Formulation and Maze Routing 477

is reached. At one step, if the current cell c has label L, then backtracking continues with one of
the neighbors of c that has label L − 1. If there are multiple neighbors with the same label, then a
practical guideline for tie-breaking is to select the neighbor that will cause no change in the direction
of the path (if any). This heuristic tends to choose the shortest paths with reduced bend counts.

23.5.2 MAZE-ROUTING ENHANCEMENTS

The worst-case time complexity of the original maze routing algorithm is O(N ×M), where N and
M are the height and width of the grid, respectively. Several enhancements have been proposed in the
literature to reduce the practical runtime and memory requirements of this algorithm. Furthermore,
some generalizations of the problem formulation have been proposed to extend its application areas.

Some straightforward speedup techniques have been proposed [33] to reduce the runtime of the
original algorithm with only small modifications. One of them is the selection of the starting point
of the wave propagation. If we start expanding the wavefront from the terminal that is closer to the
circuit boundary, then the area of wave propagation will tend to be smaller. Another technique is
to expand the wavefront from both terminals simultaneously until two wavefronts meet each other.
This also reduces the number of grid points visited during wave propagation. Another heuristic is to
define an artificial bounding box on the search region, and to allow wavefront expansion only within
this bounding box.

For the purpose of reducing the memory requirements of maze routing, Akers [34] proposed
some coding schemes for cell labeling. In the original algorithm, k bits are necessary to represent a
cell label, where k = lg(N ×M), because the maximum label can be as large as N ×M. However,
it is possible to make the following observation. During backtracking, path computation is done
by iteratively visiting the predecessor of each cell, starting from the target cell. Hence, it is only
necessary to distinguish two types of neighbors for each cell C: the predecessors and the successors
of C. As long as the predecessors of C can be distinguished from the successors of C, we do not
need to store the labels of the cells. In the coding scheme proposed by Akers, the following sequence
is used to label the cells during wavefront expansion phase: 1, 1, 2, 2, 1, 1, 2, 2, . . . , as illustrated in
Figure 23.11a. Observe that the predecessor of each cell C is labeled different from the successor of
cell C. During backtracking, the same sequence is used to construct the path from target to source,
as illustrated in Figure 23.11b. In this coding scheme, only two bits need to be stored for each cell,
representing four states: empty, blocked, 1, and 2. This can reduce the memory requirements of the
algorithm significantly especially for large circuits.

Some other heuristics involve manipulation of the direction of the wavefront propagation.
Hadlock’s minimum detour algorithm [35] uses a variant of A∗ search algorithm [36] to reduce
the size of the search space. It is straightforward to show that the length of path P between nodes
A and B is equal to M(A,B) + 2d(P), where M(A,B) is the Manhattan distance between A and B,
and d(P) is the detour number for path P (i.e., the number of cells directed away from target B).

S

T1

1

11

1

1

1

2

2

2 2

2

21

1 1

1

1

1

1

1

1

1

S

T1

1

11

1

1

1

2

2

2 2

2

21

1 1

1

1

1

1

1

1

1

(b)(a)

FIGURE 23.11 Coding schemeproposedbyAkers is illustrated: (a)wavefront expansion and (b) backtracking.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 478 23-9-2008 #11

478 Handbook of Algorithms for Physical Design Automation

Because the Manhattan distance between A and B is fixed for a given source–target pair, finding
the path with the shortest path is equivalent to finding the path with the minimum detour number.
Based on this observation, Hadlock’s minimum detour algorithm uses the detour numbers as the
cell labels, and the cells with smaller detour numbers are expanded before the cells with higher
detour numbers. Wavefront expansion phase of this algorithm is illustrated in Figure 23.12a with an
example. The worst-case time complexity of this algorithm is the same as the original maze-routing
algorithm; however, it is significantly faster in practice. Also, it is guaranteed to find the shortest
path if one exists.

Another algorithm that improves the runtime of the original maze-routing algorithm is Soukup’s
fast maze algorithm [37]. In this algorithm, search is conducted iteratively in two different phases.
In the first phase, wavefront expansion is done toward the target without changing direction until an
obstacle is reached. Once an obstacle is reached, the second phase begins. In this phase, the same
wavefront expansion methodology as the original maze-routing algorithm is used to search around
the obstacle. Once a cell in the direction of the target is found, the first phase begins again for a
directed search toward the target. Basically, this algorithm combines depth-first search (first phase)
and breadth-first search (second phase) as an effective heuristic forwavefront propagation.Wavefront
expansion phase of this algorithm is illustrated in Figure 23.12b with an example, where the edges
expanded in the first phase are highlighted. This algorithm is guaranteed to find a path from source
to target if one exists; however, the path found is not guaranteed to be the shortest one. Although
the worst-case running time of this algorithm is still the same as the original algorithm, significant
reduction of runtimes can be obtained in practice. The reason can be observed by comparing the
sizes of the search spaces in Figures 23.10 and 23.12.

Maze routing algorithms can also be generalized tomultilayer problems in a straightforwardway.
The basic idea is to model the routing resources as a three-dimensional grid (as in Section 23.2.2),

(a)

S

T

0

0

0

0

0

0 0 0 0 0

00000

0 0 0 0

0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

11

1

1

1

1

1

1 1 1 1 1 1 1 1

1

1

1

1

2 2 2 2 2 2 2 2

2

2

2

2

22

2

2

2

2

2

2

2

2

2 2

2

2 2 2

2

2

2

2

2

2

2

2

2

(b)

S

T

FIGURE 23.12 Wavefront expansion phases of (a) Hadlock’s minimum detour algorithm and (b) Soukup’s
fast maze algorithm are illustrated from source S to target T .

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 479 23-9-2008 #12

Global Routing Formulation and Maze Routing 479

S

T

1 1 1 1 1 1

1 1 1 1 1 1

2 2 2 2 2 2

1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1

2 4 62 8 10

5 6

12 10 1111

7

01 9 10

4 73

3 112

6

45 5 6 7

0

1

1

2 4 62

2

3

8

4

4

9

10

5

5

5

10

6

6

11

7

10

73

2 8 9

6

7

8

8

8

12

9

9

9

(a) (b) (c)

FIGURE 23.13 (a) Routing grid with different weights assigned to each cell, (b) wave expansion from source
S reaches target T the first time with cost 11, and (c) further expansion of the wavefront reduces the cost of the
target cell T from 11 to 9.

and to perform wave expansion in all three dimensions at each step. Note here that an edge in the
third dimension corresponds to layer change, and can be assigned a higher cost to discourage via
usage. As mentioned in Section 23.2.2, typically each layer is assigned one of the horizontal or
vertical orientations for routing. For such designs, wave expansion on each layer can be limited to
either horizontal or vertical orientations at each step.

It is also possible to perform weighted path computations using maze routing algorithms. As
discussed in Section 23.4, some paths can be more preferable than others because of various rout-
ing metrics, such as congestion minimization. For the purpose of incorporating different routing
objectives into path computations, different edges in the routing graph can be assigned different
costs. For instance, an edge passing through a congested region can be assigned a higher cost. In
its original form, the maze routing algorithm does not guarantee to find the path with the minimum
cost, because it is possible that a longer path can have smaller total cost. An example is illustrated
in Figure 23.13. In Figure 23.13a, different weights are assigned to each grid cell based on a given
metric. In Figure 23.13b, the wave expanded from the source reaches the target cell the first time.
Note here that, if wave expansion is stopped as soon as the target is reached, then the path found will
have a total cost of 11. However, if wave expansion is allowed to continue as in Figure 23.13c, then
the path found will have a total cost of 9. In the original maze-routing algorithm, each cell is labeled
at most once during wave expansion. In case of weighted routing edges, cells can be labeled multiple
times, and the original worst time complexity ofO(N ×M) is not guaranteed anymore for an N ×M
grid. An efficient methodology to handle this issue is to prioritize cells during wave expansion based
on their labels. Typically, a priority queue is used to expand the cells with the smallest labels at
each step. This approach is actually a special case of Dijsktra’s shortest path algorithm [38], and
its worst-case time complexity is O[N × M log(N × M)]. In practice, the well-known A∗ heuristic
methodology [36] can further reduce the average runtime requirements of this algorithm.

23.5.3 LINE-SEARCH ALGORITHMS

The main idea behind the line-search algorithms is to represent the routing search space as a set of
line segments instead of grid points. This feature makes it possible to reduce memory and runtime
requirements, compared to themaze routing algorithms,which typically need to allocatememory for
each grid point. The first line-search algorithms were independently proposed by Mikami–Tabuchi
[39] and Hightower [40] with small variations.

An example illustrating Mikami–Tabuchi algorithm is given in Figure 23.14a. The algorithm
starts with expanding one horizontal and one vertical line segment from each of the source and target
points. After that, line expansion continues iteratively until one of the line segments originating from

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 480 23-9-2008 #13

480 Handbook of Algorithms for Physical Design Automation

(a)

S

T

S

T

(b)

FIGURE 23.14 Illustration of the line-search algorithms proposed by (a)Mikami–Tabuchi and (b) Hightower.
The dark circles represent the originating points of the line segments created. The path computed between source
S and target T is highlighted.

the source point intersects with one of the line segments originating from the target point. In each
iteration, potential expansion points (represented as dark circles in Figure 23.14a) are identified on
the most recently expanded line segments; then perpendicular line segments are created originating
from these points. Once a line segment originating from the source intersects with a line segment
originating from the target, the path is constructed by backtracking from the intersection point to the
source and the target points. It is shown that this algorithm is guaranteed to find a path if one exists,
and the path found is guaranteed to have the minimum possible number of bends.

Observe that each grid point on a line segment created inMikami–Tabuchi algorithm is a potential
expansion point for new line segments. Hightower algorithm [40] differs from Mikami–Tabuchi
algorithm in theway it chooses potential expansion points for the line segments. Instead of expanding
a new line segment on each candidate point, Hightower algorithm identifies escape lines on the most
recently created line segments based on the positions of the blockages. This algorithm is illustrated
in Figure 23.14b. Observe that only the line segments that are extendable beyond the obstacle that
blocked the previous line segment are considered as candidates in this algorithm. Compared to
Mikami–Tabuchi algorithm, fewer line segments are generated. However, Hightower algorithm does
not guarantee to find a path even if it exists, because the solution space is not explored completely.

Typically, line-search algorithms are effective in minimizing the number of bends, and they do
not guarantee shortest paths. The main assumption behind these algorithms is that routing can be
accomplished with relatively few bends (hence few line segments) so that memory and runtime
requirements are small. This is especially true for problems with low congestion and few number of
blockages. However, if the routing problem is complicated, line-search algorithms run slower, and
typically require more memory and runtime than maze routing algorithms. Furthermore, some class
of line-search algorithms (e.g., Hightower algorithm [40]) do not guarantee to find a feasible path
even if one exists. Because of their nature, line-search algorithms are more preferable early in the
routing process when there are relatively fewer blockages in the design.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 481 23-9-2008 #14

Global Routing Formulation and Maze Routing 481

FIGURE 23.15 Some routing patterns with 0, 1, and 2 bends are illustrated.

23.5.4 PATTERN ROUTING

As discussed in Section 23.5.3, representing the routing solution space as a set of line segments can
potentially reduce memory and runtime requirements. A more aggressive approach is to restrict the
solution space to routeswith predefined patterns, such as I-, L-, Z-, andU-shaped patterns. In general,
routing patterns can be defined based on the number of bends on them. Figure 23.15 illustrates some
patterns with 0, 1, and 2 bends.

Because the objective of global routing is to generate rough routing solutions for the nets, pattern
routing can be effectively used in global routing to reduce the runtime requirements. For example,
in the experiments of Ref. [24], it is reported that on average about 2 percent of the nets are routed
with maze routing, while the rest of the nets are routed with pattern routing. Yet, about 48 percent
of the total runtime is spent on maze routing. In general, it is an effective heuristic to use pattern
routing for the nets that have feasible few-bend solutions, and maze routing for the nets that require
larger number of bends.

23.5.5 ROUTING NETS WITH MULTIPLE TERMINALS

In the previous subsections,wemainly focused on routing algorithms for two terminal nets. However,
it is possible to use these algorithms in the context of routing nets with multiple terminals. Note that
the problem of finding the optimal route for amultiterminal net is anNP-complete problem.However,
there are several heuristic-based algorithms that are used frequently in practice, as will be described
in more detail in Chapter 24. A typical approach to route a multiterminal net N consists of two main
steps: (1) generate a Steiner topology T for the terminals of net N and (2) perform point-to-point
routing between the terminals and Steiner points of topology T . This two-step approach is illustrated
in Figure 23.16 with an example.

Another practical approach is to apply maze routing algorithm iteratively between terminal pairs
of the net. Typically, wave expansion starts from the driver terminal Td until a receiver terminal Tr

is reached. Then, the route between Td and Tr is implemented by backtracking, as in the original
maze-routing algorithm. After that, the route between Td and Tr is regarded as the new source of

C

A

C

A

S

B B

S

(a) (b)

FIGURE 23.16 (a) Steiner topology is generated for a net with three terminals: A, B, and C, where S is a
Steiner point and (b) final routing solution is obtained by point-to-point routing between A–S, S–B, and S–C.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 482 23-9-2008 #15

482 Handbook of Algorithms for Physical Design Automation

1
1
1
1
1
1
1

2
2
2
2
2
2

C

A

C

A

C

B B B

A

2
1

1
1

2

22

2
2
3

3
3 3

3

3

3
321

4
4

4
4

4
4

4
4

5
5

5
5

5
5

5

5
5

6
6

6
6

6
6

6
6

6
6
7

7
7

7

7
7

7
7

7

7

7

8
8

8
8

8
8

8
8

8
8

8
8

9
9

9
99

9

9
9

9
9

9
9

1 1 1 1
1 1

1

1
111

1
1
1
1
1

2
2

2
2

2
2
2
2
2
2
2
2
2

22

3
3

33

3
3
3
3
3
3

3

3
3

3
3
3
3
3

3

4
4

4
4
4
4
4
4
4

44
4
4
4
4
4

4

(a) (b) (c)

FIGURE 23.17 Maze routing is applied repeatedly to find the routing solution of a net with three terminals.
(a) Wave expansion starts from terminal A, and it reaches terminal B; (b) the route between A and B is
implemented, and the new wavefront is expanded from the partial route; and (c) the final routing solution
obtained.

the wave expansion. In other words, the next wavefront is expanded starting from the partial route
implemented. This process continues until all the terminals of the net are routed. Figure 23.17
illustrates this process with an example. Here, wave expansion starts from terminal A, and it reaches
terminal B (Figure 23.17a). Then, the route between A and B is implemented by backtracking. The
next wavefront is started to be expanded from this partial route (Figure 23.17b). Finally, the new
wavefront reaches C, and the final solution is obtained. Note here that this approach can easily lead
to suboptimal solutions because of its greedy nature. For example, if the lower L route was selected
in Figure 23.17b as the route betweenA and B, then the wirelength of the final routing solution would
be significantly larger. To avoid this problem, a biasing technique is proposed in Ref. [41] to direct
the maze search toward regions where overlap with future connections of the net is more likely.

23.6 ROUTING MULTIPLE NETS

In this section, we focus on the problem of routing multiple nets together. The main difficulty here
is that routing solution for one net potentially impacts the routing of other nets, because common
routing resources are being used by multiple nets. We can divide the routing methodologies that deal
with multiple nets into two broad categories: sequential and concurrent routing methodologies. In
the following subsections, we give a brief overview of these techniques.

23.6.1 SEQUENTIAL ROUTING

Themost straightforwardway of routingmultiple nets is to route them sequentially in a specific order.
Once a net is routed, the congestion values of the global routing resources being used are updated.As
a result, some of the nets to be routed in the later iterationsmay be forced to use overcongested routing
resources. So, this approach is very sensitive to the order of nets that are being routed. Figure 23.18
illustrates an example where net ordering has an impact on the final solution. In Figure 23.18a, net
C is routed after nets A and B, and its path is blocked by the other routing segments. This leads to an
overcongested solution. In Figure 23.18b, net A is routed after nets C and B, and all its shortest paths
are blocked by the other routing segments. This leads to a solution with suboptimal wirelength for
net A. In Figure 23.18c, the best net ordering is illustrated, which leads to a congestion-free routing
solution with optimal routing for each net.

Several practical considerations are taken into account while making the net ordering decision.
The nets that have higher criticalities are typically routed first so that they have higher priorities
while using contentious routing resources. The criticality of a net is determined by the importance of
the net and the timing requirements imposed on it. For example, if a net is on the critical path of the
circuit, it can be prioritized so that it uses the fastest routing resources before they are acquired by

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 483 23-9-2008 #16

Global Routing Formulation and Maze Routing 483

A

C

C

B

B

A

A

C

C

B

B

A

A

C

C

B

B

A

(a) (b) (c)

FIGURE 23.18 Net ordering problem is illustrated for three nets. The capacity of each tile is assumed to
be one vertical and one horizontal track. Routing nets in the order (a) A–B–C leads to a solution with two
overcongested tiles (shown as shaded rectangles), (b) C–B–A leads to a solution where A is detoured to avoid
congestion, and (c) C–A–B leads to the congestion-free solution with optimal routing for each net.

other nets. Another practical consideration is routing nets with less routing alternatives before other
nets. Typically, routing choices are limited for the nets of which terminals are close to each other.
Similarly, if all the terminals of a net align with each other on one row or column of the routing grid
(e.g., net C in Figure 23.18), then routing choices will be limited for such a net. So, it is a commonly
used heuristic to determine net ordering based on increasing Manhattan distances of the terminals.

Themain disadvantage of sequential routingmethodologies is that the nets that are routed earlier
affect the routing of the latter nets. To alleviate this problem, rip-up and reroute techniques [42,43]
are used so that the nets that are routed in the earlier iterations can be rerouted based on the routing
requirements of the latter nets. Typically, nets are first routed allowing congestion, and then the
nets in the overcongested regions are ripped up and rerouted in the later iterations. For example in
Figure 23.18a, nets are routed in the order A–B–C. Here, if net A is ripped up and rerouted, it will
prefer the uncongested region, and the solution in Figure 23.18b will be obtained.

A problem with the rip-up- and reroute-based algorithms is solution oscillations. It is possible
that the congestion will oscillate between two regions during the routing iterations as nets are being
ripped up and rerouted. To avoid this problem, some algorithms incorporate the congestion history
into the routing objective function. Pathfinder is a negotiated-congestion-based algorithm, which
was proposed for FPGA routing [44–46], and extended to different aplication areas such as PCB
routing [47]. Recently, global routing algorithms have been proposed that utilize congestion histories
[23,25,48], and outperform other algorithms on recently released public benchmarks [49]. The main
idea of congestion negotiation can be summarized as follows. First, every net is routed individually,
regardless of any overuse (i.e., congestion) of routing grid edges. Then the nets are ripped up and
rerouted one by one iteratively. In each iteration, the congestion cost of each edge is updated based
on the current and past overuse of it. By increasing the congestion cost of an overused edge gradually,
the nets with alternative routes are forced not to use this edge. Eventually, only the net that needs
to use this edge most ends up using it. For example, Archer [23] uses the following cost function to
compute the congestion history of edge e:

cost(e) = (1 + α.hke) × overflow(e) (23.1)

Here, hke represents the history cost for edge e in iteration k, and it reflects for how long edge e has
been congested. It is computed as follows:

hke =
{
hk−1
e if edge e is congestion free in iteration k

hk−1
e + k if edge e has nonzero overflow in iteration k

(23.2)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 484 23-9-2008 #17

484 Handbook of Algorithms for Physical Design Automation

Based on this formulation, if edge e is congested repeatedly for several iterations, its cost will
increase significantly to discourage its usage. Aging effect is also captured by this formulation. The
edges that are congested only in the earlier iterations will have less costs than the ones that are
congested in the later iterations.

In Chapter 31, a more thorough survey of rip-up and reroute algorithms is provided.

23.6.2 CONCURRENT ROUTING

The sequential routing algorithms are commonly used mainly because of their simplicity and low-
runtime requirements. However, they are heuristics-based, and they typically do not have any
theoretical guarantee about solution quality. As discussed in the previous section, the order in which
nets are routed typically affects the routing results of sequential algorithms significantly. For the pur-
pose of avoiding this problem, another class of algorithms try to find the routing solutions of all nets
concurrently. In this subsection, a brief overview of routing formulations based on multicommodity
flow and integer linear programming will be given.

Global routing problem can be formulated as a multicommodity flow problem as follows. Let
G = (V ,E) be the global routing graph with verticesV and edges E. A flow network can be modeled
based on this graph G. Each edge e ∈ E in this network will have flow capacity cap(e) (which can
be set based on the techniques presented in Section 23.3), and cost cost(e) (which can be set based
on the cost metrics discussed in Section 23.4). A commodity must be transported over this network
corresponding to each net between the vertices corresponding to its terminals. The multicommodity
flow problem is defined as finding a flow for each commodity between specified vertices while
satisfying all flow capacity constraints of the edges in the network. There are two variations of
this problem depending on whether fractional flow values on edges are allowed or not. While the
fractional multicommodity flow problem is polynomial-time solvable, integer multicommodity flow
problem is NP-complete.

Shragowitz et al. [50] present one of the earlier global routing algorithms that uses multicom-
modity flow formulation for two-terminal nets. Raghavan et al. [51] present an improved network
flow formulation that can also handle three-terminal nets. A more recent algorithm proposed by
Albrecht [18] operates on a set of given Steiner trees Ti for each net i with the objective of choosing
exactly one T ∈ Ti such that the maximum relative congestion in the circuit is minimized. The
readers can refer to Chapter 32 for a more detailed survey of concurrent routing algorithms.

23.7 CONCLUSIONS

In this chapter, we have discussed the basics of global routing. As discussed before, global routing
is an important step in the physical design process, and it impacts the final interconnect qualities
considerably. As the circuit densities have been significantly increasing in the past several years,
the routing problem for integrated circuits is becoming a more and more challenging problem.
A recent global routing competition in ISPD 2007 [49] attracted renewed interest in global rout-
ing, and the results of the recently proposed algorithms [23,25,48] demonstrated that there is still
significant room for routing quality improvements.

The next two chapters provide detailed discussions on net-topology optimization techniques for
multiterminal nets. Although these chapters focus on single-net optimization, they can be utilized
within a global routing framework to determine net topologies, as discussed in Section 23.5.5.

REFERENCES
1. G. W. Clow. A global routing algorithm for general cells. In 21st Design Automation Conference, IEEE

Press, Piscataway, NJ, pp. 45–51, 1984.
2. J. Cong and P. Madden. Performance driven global routing for standard cell design. In International
Symposium on Physical Design, ACM, NY, pp. 73–80, 1997.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 485 23-9-2008 #18

Global Routing Formulation and Maze Routing 485

3. J. T. Mowchenko and C. S. R. Ma. A new global routing algorithm for standard cell ICs. In International
Symposium on Circuits and Systems, pp. 27–30, 1987.

4. C. Sechen and A. Sangiovanni-Vincentelli. Timberwolf 3.2: A new standard cell placement and global
routing package. In 23rd Design Automation Conference, IEEE Computer Society Press, Los Alamitos,
CA, pp. 432–439, 1986.

5. J. Cong and B. Preas. A new algorithm for standard cell global routing. Integration: The VLSI Journal,
14(1): 49–65, 1992. (ICCAD 1988.)

6. W. Swartz and C. Sechen. A new generalized row-based global router. International Conference on
Computer Aided Design, IEEE Computer Society Press, Los Alamitos, CA, pp. 491–498, 1993.

7. M. Burstein and R. Pelavin. Hierarchical channel router. In Proceedings of 20th Design Automation
Conference, ACM, NY, pp. 591–597, 1983.

8. S. C. Fang, W. S. Feng, and S. L. Lee. A new efficient approach to multilayer channel routing problem. In
Proceedings of the 29th Design Automation Conference, IEEE Computer Society Press, Los Alamitos, CA,
pp. 579–584, 1992.

9. A. Hashimoto and J. Stevens. Wire routing by optimizing channel assignment within large apertures. In
Proceedings of the 8th Design Automation Workshop, ACM, NY, pp. 214–224, 1971.

10. M. M. Ozdal and M. D. F. Wong. Two layer bus routing for high-speed printed circuit boards. ACM
Transactions on Design Automation of Electronic Systems, 11(1): 213–227, 2006. (ICCAD 2004.)

11. R. L. Rivest and C. M. Fiduccia. A greedy channel router. In Proceedings of 19th Design Automation
Conference, IEEE Press, Piscataway, NJ, pp. 418–424, 1982.

12. T. Yoshimura. Efficient algorithms for channel routing. IEEE Transactions on Computer-Aided Design,
CAD-1(1): 25–35, 1982.

13. C. Hsu. General river routing algorithm. In Proceedings of 20th Design Automation Conference, IEEE
Press, Piscataway, NJ, pp. 578–582, 1983.

14. M. M. Ozdal and M. D. F. Wong. Algorithmic study of single-layer bus routing for high-speed boards.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(3): 490–503, 2006.
(ICCAD 2004.)

15. R. Y. Pinter. On routing two-point nets across a channel. In Proceedings of 19th Design Automation
Conference, IEEE Press, Piscataway, NJ, pp. 894–902, 1982.

16. R. Y. Pinter. River routing: Methodology and analysis. In Proceedings of 3rd Caltech Conference on VLSI,
Computer Science Press, pp. 141–163, 1983.

17. H. Zhou and M. D. F. Wong. Optimal river routing with crosstalk constraints. ACM Transactions on Design
Automation of Electronic Systems, 3(3): 496–514, 1998.

18. C. Albrecht. Provably good global routing by a new approximation algorithm for multicommodity flow.
In International Symposium on Physical Design, ACM, NY, pp. 19–25, 2000.

19. M. Cho and D. Z. Pan. Boxrouter: A new global router based on box expansion and progressive ilp.
In Proceedings of Design Automation Conference, ACM, NY, pp. 373–378, 2006.

20. R. T. Hadsell and P. H. Madden. Improved global routing through congestion estimation. In Proceedings
of Design Automation Conference, ACM, NY, pp. 28–31, 2003.

21. R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh. Predictable routing. In Proceedings of International
Conference on Computer Aided Design, IEEE Press, Piscataway, NJ, pp. 110–114, 2000.

22. R.Kastner, E.Bozorgzadeh, andM.Sarrafzadeh. Pattern routing:Use and theory for increasingpredictability
and avoiding coupling. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
21(7): 777–791, 2002.

23. M. M. Ozdal and M. D. F. Wong. Archer: A history-driven global routing algorithm. In Proceedings of
International Conference on Computer Aided Design, IEEE Press, Piscataway, NJ, pp. 488–495, 2007.

24. M. Pan and C. Chu. Fastroute: A step to integrate global routing into placement. In Proceedings of
International Conference on Computer Aided Design, IEEE Press, Piscataway, NJ, pp. 464–471, 2006.

25. J.A.Royand I. L.Markov.High-performance routing at the nanometer scale. InProceedings of International
Conference on Computer Aided Design, IEEE Press, Piscataway, NJ, pp. 496–502, 2007.

26. J. Cong, J. Fang, and K. -Y. Khoo. DUNE: A multi-layer gridless routing system. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 20(5): 633–647, 2001. (ISPD 2000).

27. J. Cong, J. Fang, M. Xie, and Y. Zhang. MARS: A multilevel full-chip gridless routing system. IEEE
Transactions onComputer-AidedDesignof IntegratedCircuits and Systems, 24(3): 382–394, 2005. (ICCAD
2002.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C023 Finals Page 486 23-9-2008 #19

486 Handbook of Algorithms for Physical Design Automation

28. J. Cong and P. H. Madden. Performance driven multi-layer general area routing for PCB/MCM designs. In
Proceedings of Design Automation Conference, ACM, NY, pp. 356–361, 1998.

29. R. Linsker.An iterative-improvement penalty-function-drivenwire routing system. IBMJournal of Research
and Development, 28(5): 613–624, 1984.

30. H. Zhou andM.D. F.Wong. Global routing with crosstalk constraints. InProceedings of Design Automation
Conference, ACM, NY, pp. 374–377, 1998.

31. C.Y. Lee. An algorithm for path connection and its applications. IRETransactions on ElectronicComputers,
EC-10: 346–365, 1961.

32. E. F. Moore. The shortest path through a maze. In Proceedings of the International Symposium on the
Theory of Switching, pp. 285–292. Harvard University Press, Cambridge, 1959.

33. S. Akers. Routing, Vol. 1. Prentice-Hall, Englewood Cliffs, NJ, 1972.
34. S. Akers. A modification of lee’s path connection algorithm. IEEE Transactions on Electronic Computers,

EC-16(2): 97–98, 1967.
35. F. O. Hadlock. A shortest path algorithm for grid graphs. Networks, 7(4): 323–334, 1977.
36. P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost

paths in graphs. IEEE Transactions on Systems Science and Cybernetics, SSC-4(2): 100–107, 1968.
37. J. Soukup. Fast maze router. In Proceedings of the 15th Design Automation Conference, IEEE Press,

Piscataway, NJ, pp. 100–102, 1978.
38. E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Mathematik, 1: 269–

271, 1959.
39. K. Mikami and K. Tabuchi. A computer program for optimal routing of printed circuit connectors. In IFIPS

Proceedings, H47: 1475–1478, 1968.
40. D. W. Hightower. A solution to line-routing problems on the continuous plane. In Proceedings of the 6th

Annual Conference on Design Automation, ACM, NY, pp. 1–24, 1969.
41. R. F. Hentschke, J. Narasimham, M. O. Johann, and R. L. Reis. Maze routing steiner trees with effective

critical sink optimization. In Proceedings of International Symposium on Physical Design, ACM, NY,
pp. 135–142, 2007.

42. H. Bollinger. A mature DA system for PC layout. In Proceedings of 1st International Printed Circuit
Conference, IEEE Computer Society Press, Los Alamitos, CA, pp. 85–99, 1979.

43. W.A.Dees andP.G.Karger.Automated rip-up and reroute techniques. InProceedings ofDesignAutomation
Conference, IEEE Press, Piscataway, NJ, pp. 432–439, 1982.

44. V. Betz and J. Rose. Directional bias and non-uniformity in FPGA global routing architectures.
In International Conference on Computer Aided Design, IEEE Computer Society, Washington, DC,
pp. 652–659, 1996.

45. V.Betz and J.Rose.VPR:Anewpacking, placement and routing tool for FPGAresearch. In7th International
Workshop on Field-Programmable Logic, pp. 213–222, 1997.

46. C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns. Placement and routing tools for the triptych FPGA.
IEEE Transactions on VLSI Systems, IEEE Press, Piscataway, NJ, pp. 473–482, 1995.

47. M. M. Ozdal andM. D. F.Wong. A length-matching routing algorithm for high-performance printed circuit
boards. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 25:
2784–2794, 2006. (ICCAD 2003).

48. M. Cho, K. Lu, and D. Z. Pan. Boxrouter 2.0: Architecture and implementation of a hybrid and robust
global router. In Proceedings of International Conference on Computer Aided Design, Press, Piscataway,
NJ, pp. 503–508, 2007.

49. G. -J. Nam. ISPD 2007 Global Routing Contest, 2007. Available at: http://www.sigda.org/ispd2007/
contest.html

50. E. Shragowitz and S. Keel. A global router based on a multicommodity flow model. Integration: The VLSI
Journal, 5(1): 3–16, 1987.

51. P. Raghavan and C. D. Thompson. Multiterminal global routing: A deterministic approximation scheme.
Algorithmica, 6: 73–82, 1991.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 487 9-10-2008 #2

24 Minimum Steiner Tree
Construction*
Gabriel Robins and Alexander Zelikovsky

CONTENTS

24.1 Introduction.. 487
24.2 Historical Perspectives . 489
24.3 Iterated 1-Steiner Approach . 490

24.3.1 Batched 1-Steiner Variant . 492
24.3.2 Empirical Performance of Iterated 1-Steiner . 493
24.3.3 Generalization of I1S to Steiner Arborescences .. 494

24.4 Steiner Trees in Graphs . 494
24.4.1 Graph Generalization of Iterated 1-Steiner . 494
24.4.2 Loss-Contracting Approach . 495

24.5 Group Steiner Trees . 496
24.5.1 Applications of Group Steiner Trees . 497
24.5.2 Depth-Bounded Group Steiner Tree Approach . 498
24.5.3 Time Complexity of the DBS Group Steiner Algorithm .. 499
24.5.4 Degenerate Group Steiner Instances . 500
24.5.5 Bounded-Radius Group Steiner Trees . 501
24.5.6 Empirical Performance of the Group Steiner Heuristic . 502

24.6 Other Steiner Tree Methods . 502
24.7 Improving the Theoretical Bounds . 502
24.8 Steiner Tree Heuristics in Practice . 503
24.9 Future Directions for the Steiner Problem . 503
References . 504

24.1 INTRODUCTION

In optimizing the area of very large scale integrated (VLSI) layouts, circuit interconnections should
generally be realized with minimum total interconnect. This chapter addresses several variations
of the corresponding fundamental Steiner minimal tree (SMT) problem, where a given set of pins
is to be connected using minimum total wirelength. Steiner trees are important in global routing
and wirelength estimation [1], as well as in various nonVLSI applications such as phylogenetic
tree reconstruction in biology [2], network routing [3], and civil engineering, among many other
areas [4–9].

In modern deep-submicron VLSI layout other criteria often dominate the routing objectives,
such as pathlengths, skew, density, inductance,manufacturability, electromigration, reliability, noise,

∗ This work was supported by a Packard Foundation Fellowship, by National Science Foundation Young Investigator Award
MIP-9457412, by a GSU Research Initiation Grant, by NSF grants CCR-9988331, CCF-0429737, CCF-0429735, and
CNS-0716635, and by U.S. Civilian Research and Development Foundation grant MOM2-3049-CS-03.

487

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 488 9-10-2008 #3

488 Handbook of Algorithms for Physical Design Automation

power, non-Hanan topologies, signal integrity, three-dimensionality, alternate models, and vari-
ous combinations and trade-offs of these Refs. [10–22]. However, large noncritical nets are still
common in modern designs, and this chapter focuses on the corresponding classical objective of
wirelength/area minimization (which also minimizes the total capacitance). This exposition is not
an exhaustive survey on the Steiner problem, about which hundreds of papers and several entire
books were written [2,4–9]. Rather, it focuses on a few selected results and approaches to Steiner
tree construction. A broader overview of the field of computer-aided design of VLSI is given by
several textbooks on this subject [23–27].

Given a setP of n pins (i.e., terminals of a signal net), we seek to interconnect these points using a
minimual total amount of wire. This objective arises in VLSI minimum-area global routing, because
VLSI minimum-spacing design rules induce an essentially linear relationship between wirelength
and wiring area. When all wires are point-to-point, with no intermediate junctions other than points
ofP, the optimum solution is a minimum spanning tree (MST) overP, denoted asMST(P). However,
we can usually introduce intermediate junctions, called Steiner points, in connecting the points of P.
The SMT problem can be formulated as follows.

Steiner minimal tree problem: Given a set P of n points, determine a set S of Steiner points such that
the MST cost over P ∪ S is minimized.

An optimal solution to this problem is referred to as a SMT (or simply Steiner tree) over P,
denoted SMT(P). An edge in a tree T has cost equal to the distance between its endpoints, and the
cost of T itself is the sum of its edge costs, denoted cost(T). The wiring cost between a pair of pins
(x1, y1) and (x2, y2) in a VLSI layout is typically modeled by the Manhattan or rectilinear distance:∗

dist
[
(x1, y1), (x2, y2)

] = (�x) + (�y) = |x1 − x2| + |y1 − y2|

We will focus on the rectilinear SMT problem, where every edge is embedded in the plane
using a path of one or more alternating horizontal and vertical segments between its endpoints.
Figure 24.1 depicts anMST and an SMT for the same pointset in theManhattan plane. The bounding
box of a pointset P denotes the smallest rectangle,† which contains all points of P and whose
sides are oriented parallel to the coordinate axes. If an edge between two points is embedded with
minimum possible wirelength, its routing segments will remain within the bounding box induced by
its endpoints.

(a) (b)

FIGURE 24.1 (a) MST and (b) SMT in the rectilinear plane. Hollow dots represent the original pointset P,
and solid dots represent Steiner points.

∗ More recently, non-Manhattan interconnect architectures such as preferred direction routing and λ-geometries, have been
gaining popularity [4,28–36]. However, most of the methods described in this chapter can be generalized to these other
geometries and metrics, as well as to higher dimensions.

† Bounding boxes in non-Manhattanmetrics/geometries have corresponding nonrectangular shapes, induced by the underlying
metric/geometry [4].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 489 9-10-2008 #4

Minimum Steiner Tree Construction 489

24.2 HISTORICAL PERSPECTIVES

The Steiner problem is named after the Swiss mathematician Jacob Steiner (1796–1863),who solved
and popularized the problem of joining three villages by a system of roads having minimum total
length [37] (he also addressed the general case of this problem, andmademany fundamental contribu-
tions to projective geometry). However, while Jacob Steiner’s work on this problemwas independent
of its predecessors, about two centuries earlier Pierre de Fermat (1601–1665) proposed this problem
to Evangelista Torricelli (1608–1647), who solved it and passed it along to his student Vincenzo
Viviani (1622–1703), who in turn published his own solution as well as Torricelli’s in 1659 [38].
An even earlier (and presumably independent) published discussion of this problem is found in a
1647 book by the Italian mathematician Bonaventura Francesco Cavalieri (1598–1647) [39]. Luck-
ily, today we refer to this problem simply as the Steiner problem, instead of the more accurate but
considerably less wieldy title the Fermat–Torricelli–Viviani–Cavalieri–Steiner problem.

More recent research progress on the SMT problem has been historically driven by several
main results.

1. In 1966,Hanan [40] showed that for a pointsetP there exists an SMTwhose Steiner points S
are all chosen from theHanan grid, namely the intersections of all the horizontal and vertical
lines passing through every point of P (Figure 24.2). Snyder [41] generalized Hanan’s
theorem to all higher dimensional Manhattan geometries; on the other hand, extensions of
Hanan’s theorem to λ-geometries are less straightforward [42].

2. In 1977, Garey and Johnson showed that despite restricting the Steiner points to lie on the
Hanan grid, the rectilinear SMT problem is NP-complete [43]. Only a very few special
cases have been solved optimally (e.g., a linear-time solution exists when all points of P lie
on the boundary of a rectangle [44]). Many heuristics have been proposed for the general
problem, as surveyed in Refs. [2,5–8].

3. In 1976, Hwang [45] showed that the MST over P is a good approximation to the SMT,
having performance ratio∗ cost[MST(P)]

cost[SMT(P)] ≤ 3
2
for any pointset P in the rectilinear plane. In

attacking intractable problems, a standard goal is to achieve a provably good heuristic
having a constant-factor performance ratio (i.e., asymptotic worst-case error bounded with
respect to the optimal solution). In light of the intractability of the rectilinear SMT problem,
Hwang’s result implies that any Steiner approximation approach that improves upon an
initial MST solution will have performance ratio at most 3

2
. Thus, many SMT heuristics in

the literature areMST-improvement strategies, i.e., they resemble classicMSTconstructions
(e.g., Refs. [46,47]).

For over 15 years after the publication of Ref. [45], the fundamental open problem was
to find a heuristic with (worst-case) performance ratio strictly less than 3

2
. A complementary

FIGURE 24.2 Hanan’s theorem: There exists an SMT with Steiner points chosen from the Hanan grid, i.e.,
intersection points of all horizontal and vertical lines drawn through the points.

∗ The performance ratio of a heuristic is an upper bound on the heuristic solution cost divided by the optimal solution cost,

over all possible problem instances
(
i.e., the worst-case of cost(APPROX)

cost(OPT)

)
.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 490 9-10-2008 #5

490 Handbook of Algorithms for Physical Design Automation

research goal has been to find new practical heuristics with improved average-case solu-
tion quality. In practice, most SMT heuristics, including MST-based strategies, exhibited
very similar average performance. On uniformly distributed random instances (the typical
benchmark), heuristic Steiner tree costs averaged between 7 and 9 percent improvement
over the corresponding MST costs [2].

4. In 1990, Kahng and Robins have shown [19,48–50] that any Steiner tree heuristic in a
general class of greedy MST-based methods has worst-case performance ratio arbitrarily
close to 3

2
, i.e., the MST for certain classes of pointsets is unimprovable. Thus, the 3

2

bound is tight for a wide range of MST-based strategies in the rectilinear plane [49], which
resolved the performance ratios for a number of heuristics in the literature with previously
unknownworst-case behavior.Moreover, this established that in general,MST-basedSteiner
heuristics (e.g., where MST edges are flipped within their bounding boxes) are unlikely to
achieve performance ratio better than 3

2
. Analogous constructions in higher d-dimensional

Manhattan geometry showed that all of these heuristics have performance ratio of at least
2d−1
d
, which is bounded from above by 2 as the dimension grows [19,49].

5. In 1992, Zelikovsky developed a rectilinear Steiner tree algorithmwith a performance ratio
of 11

8
times optimal [51], the first heuristic provably better than the MST. His techniques

yield a general graph Steiner tree algorithm with a 11
6
performance ratio [52], the first

graph Steiner approximation proven to beat the MST-based graph Steiner heuristic of Kou
et al. [53]. This settled in the affirmative longstanding open question of whether there exists
a polynomial-time rectilinear Steiner tree heuristic with performance ratio <3

2
, and whether

there exists a polynomial-time graph Steiner tree heuristic with performance ratio <2.

In light of this sequence of developments, research on Steiner tree approximation has turned away
fromMST-improvement heuristics. One of the earliest andmost effective Steiner tree approximation
schemes to break away from the herd of MST-improvement shemes is the iterated 1-Steiner (I1S)
approach of Kahng and Robins [19,48,50,54]. The I1S heuristic is simple, easy to implement,
generalizes naturally to any dimension and metric (including arbitrary weighted graphs), and
significantlyoutperformspreviousapproaches, asdetailedbelow.The I1Salgorithmwassubsequently
proven to be the earliest published Steiner approximation method to have a nontrivial performance
ratio (of 1.5 times optimal) in quasi-bipartite graphs [55,56].

24.3 ITERATED 1-STEINER APPROACH

This section outlines the I1S heuristic [19,54], which repeatedly finds optimum single Steiner points
for inclusion into the pointset. Given two pointsets A and B, we define the MST savings of B with
respect to A as

�MST(A,B) = cost [MST(A)] − cost [MST(A ∪ B)]

LetH(P) denote the Steiner candidate set, i.e., the intersection points of all horizontal and vertical
lines passing through points of P (as defined by Hanan’s theorem [40], see Figure 24.2). For any
pointsetP, a 1-Steiner pointwith respect toP is a point x ∈ H(P) thatmaximizes�MST(P, {x}) > 0.
Startingwith a pointsetPand a set S = ∅ of Steiner points, the I1Smethod repeatedly finds a 1-Steiner
point x for P∪S and sets S ← S∪{x}. The cost of MST(P∪S) will decrease with each added point,
and the construction terminates when there no longer exists any point x with�MST(P∪S, {x}) > 0.

An optimal Steiner tree over n points has at most n − 2 Steiner points of degree at least 3 (this
follows from simple degree arguments [57]). However, the I1S method can (on rare occasions) add
more than n − 2 Steiner points. Therefore, at each iteration we eliminate any extraneous Steiner
points that have degree ≤2 in the MST over P ∪ S (because such points cannot contribute to the
tree cost savings). Figure 24.3 formally describes the algorithm, and Figure 24.4 illustrates a sample
execution.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 491 9-10-2008 #6

Minimum Steiner Tree Construction 491

Iterated 1-Steiner (I1S) heuristic
Input: Set P of n points
Output: Rectilinear Steiner tree spanning P
S = ∅
While Candidate _ Set ={x∈H(P ∪S)|�MST(P ∪S,{x}) > 0}�= ∅ Do

Find x∈ Candidate_Set which maximizes�MST(P ∪S,{x})
S =S ∪ {x}
Remove points in S which have degree ≤2 in MST(P ∪S)

Output MST(P ∪S)

FIGURE 24.3 I1S method. (From Kahng, A. B. and Robins, G., On Optimal Interconnections for VLSI,
Kluwer Academic Publishers, Boston, MA, 1995; Kahng, A. B. and Robins, G., IEEE Trans. Computer-Aided
Design, 11, 893, 1992; Griffith, J. Robins, G., Salowe, J. S., and Zhang, T., IEEE Trans. Computer-Aided Design
13, 1351, 1994.)

To find a 1-Steiner point in theManhattan plane, it suffices to construct anMST over |P ∪ S| + 1
points for each of the O(n2) members of the Steiner candidate set (i.e., Hanan grid points), and
then pick a candidate that minimizes the overall MST cost. Each MST computation can be per-
formed in O(n logn) time [59], yielding an O(n3 log n) time method to find a single 1-Steiner
point. A more efficient algorithm based on Ref. [60] can find a new 1-Steiner point within O(n2)
time [19]. A linear number of Steiner points can therefore be found in O(n3) time, and trees with a
bounded number of k Steiner points requireO(kn2) time. Because theMSTs between trying one can-
didate Steiner point and the next change very little (by only a constant number of tree edges),
incremental/dynamic MST updating schemes can be employed, resulting in further asymptotic
time-complexity improvements [19,58].

In practice, the number of iterations performed by I1S averages less than n
2
for uniformly dis-

tributed random pointsets [19]. Furthermore, the I1S heuristic is provably optimal for four or less
points [19]; this is not a trivial observation, because many earlier heuristics were not optimal even
for four points. On the other hand, the worst-case performance ratio of I1S over small pointsets is
at least 7

6
and 13

11
for five and nine points, respectively [19,54], and is at least 1.3 in general [61]. The

(a)

(d) (e)

(b) (c)

FIGURE 24.4 Execution of I1S on a four-pin net. Note that in step (d) a superfluous degree-2 Steiner point
forms, and is then eliminated from the topology in step (e).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 492 9-10-2008 #7

492 Handbook of Algorithms for Physical Design Automation

next subsection discusses a batched variant of the I1S approach, which offers runtime improvements
in practice.

24.3.1 BATCHED 1-STEINER VARIANT

Although a single 1-Steiner point may be found in O(n2) time, the required computational geometry
techniques are complicated and not easy to implement. To address these issues, a batched variant of
I1S was developed [19,54], which amortizes the computational expense of finding 1-Steiner points
by adding as many independent 1-Steiner points as possible in every round.

The batched 1-Steiner (B1S) variant computes �MST(P, {x}) for each candidate Steiner
point x ∈ H(P) (i.e., the Hanan grid candidate points). Two candidate Steiner points x and y are
independent if

�MST(P, {x}) + �MST(P, {y}) ≤ �MST(P, {x, y})
that is, introducing each of the two 1-Steiner points does not reduce the potential gain in MST cost
relative of the other 1-Steiner point. Given pointsetP and a set of Steiner points S, each round of B1S
greedily adds into S a maximal set of independent 1-Steiner points. Termination occurs when a round
fails to add any newSteiner points (Figure 24.5). The total time required for each round isO(n2 log n).

In three dimensions, I1S exploits a generalization of Hanan’s theorem to higher dimensions [41],
namely that there always exists an optimal Steiner tree whose Steiner points are selected from the
O(n3) intersections of all axis-orthogonal planes passing through points of P. The three-dimensional
analog of Hwang’s result suggests that the Steiner ratio, i.e., the maximum cost(MST)

cost(SMT)
ratio for three

dimensions is at most 5
3
; however, this is only a conjecture and generalizing Hwang’s theorem to

dimensions three and higher is still an open problem. An example consisting of six points located in
the middle of the faces of a rectilinear cube establishes that 5

3
is a lower bound for the Steiner ratio

in three dimensions.
The I1S and B1S algorithms are highly parallelizable because each processor can independently

compute the MST savings of different candidate Steiner points. The iterated Steiner approach is
therefore very amenable to parallel implementation on grid computers [19,58]. As with I1S, the time
complexity and practical runtime of B1S can be further improved using incremental/dynamic MST
update techniques [62]. Moreover, by exploiting tighter bounds on the maximumMST degree in the
rectilinear metric,∗ further runtime improvements can be obtained [19,58,63].

Batched 1-Steiner (B1S) heuristic
Input: Set P of n points
Output: Rectilinear Steiner tree spanning P
While T = {x∈H(P)|�MST(P,{x})> 0} �= ∅ Do

S= ∅
For x∈ {T in order of non-increasing�MST} Do

If �MST(P ∪S,{x}) ≥ �MST(P,{x}) Then S =S ∪ {x}
P=P ∪S
Remove from P Steiner points with degree ≤2 in MST(P)

Output MST(P)

FIGURE 24.5 TheB1S algorithm. (FromKahng, A. B. andRobins, G.,OnOptimal Interconnections for VLSI,
KluwerAcademicPublishers, Boston,MA, 1995 andKahng,A.B. andRobins,G., IEEETrans.Computer-Aided
Design, 11, 893, 1992.)

∗ In Refs. [58,63] it was proven that the maximum rectilinear MST degree in two dimensions does not have to exceed 4, and
that the maximum rectilinear MST degree in three dimensions does not have to exceed 14, settling these long-standing open
questions.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 493 9-10-2008 #8

Minimum Steiner Tree Construction 493

24.3.2 EMPIRICAL PERFORMANCE OF ITERATED 1-STEINER

In benchmark tests, I1S and B1S compare very favorably with optimal Steiner tree algorithms,
such as those of Salowe and Warme [64,65] on random uniformly distributed pointsets (i.e., the
standard testbed for Steiner tree heuristics [2]). Both I1S and B1S exhibit very similar average
performance in terms of solution quality, approaching 11 percent average improvement over MST
cost, which is on average less than half a percent from optimal. Moreover, I1S and B1S produce
optimal solutions on 90 percent of all random eight-point instances (and on more than half of all
random 15-point instances). For n = 30 points, I1S and B1S are on average only about 0.3 percent
away from optimal, and yield optimal solutions in about one quarter of the cases [19,58]. I1S and
B1S also perform similarly well in three dimensions and in other Lk norms [19,58].

Empirical experiments also indicate that the number of rounds required by B1S grows very
slowly (i.e., apparently logarithmically) with the number of points [19,58]. For example, on sets of
300 points the average number of B1S rounds is only 2.5, and was never observed to be more than 5
on any instance. As expected, over 95 percent of the total tree-cost improvement occurs in the first
B1S round, and over 99 percent of the total improvement occurs in the first two rounds [19,58].
The average number of Steiner points generated by B1S grows linearly with the number of points
(and is typically less than half the number of input points) [19,58]. An example of the output of
B1S on a random set of 300 points is shown in Figure 24.6.

Experimental data also indicates that only a small fraction of the Hanan candidates yield pos-
itive MST savings in a given B1S round, and that such positive-gain candidates are more likely to
produce positive MST savings in subsequent rounds [19,54]. Therefore, rather than examining the

FIGURE 24.6 Example of the output of B1S on a random set of 300 points (hollow dots). The Steiner points
produced by B1S are denoted by solid dots.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 494 9-10-2008 #9

494 Handbook of Algorithms for Physical Design Automation

MST savings of all Hanan candidates in a given round, subsequent rounds may consider only the
candidates that produced positive savings in the previous round. In practice, this strategy significantly
contributes to reduction in the time spent during each round, without affecting the solution quality.

24.3.3 GENERALIZATION OF I1S TO STEINER ARBORESCENCES

The I1S algorithmic template also generalizes to produce Steiner arborescences, i.e., shortest path
treeswithminimumwirelength,which are known to yield high-performance critical net routings [15].
The iterated dominance (IDOM) graph arborescence heuristic of Ref. [66] recapitulates the I1S strat-
egy, by greedily iterating over a given spanning arborescence construction. To construct a Steiner
arborescence, the IDOM heuristic repeatedly finds Steiner candidates that reduce the overall span-
ning arborescence cost by the greatest amount, and includes them into the growing set of Steiner
nodes. The reason that a spanning arborescence criterion is used to drive the Steiner arborescence con-
struction is that the former is easy to compute [66], while the latter isNP-complete [67]. Arborescence
constructions are described in greater detail in Chapter 25.

24.4 STEINER TREES IN GRAPHS

A more general version of the Steiner problem arises when interpoint distances can be arbitrary,
rather than induced by an underlying metric or a particular geometry. This topological, or graph-
based version of the Steiner problem, occurs in practice when we wish to route a signal net in the
presence of obstacles, congestion, or variable-cost routing resources, such as in field-programmable
gate arrays [66].More formally, given an arbitraryweighted graphwith a distinguished vertex subset,
the graph Steiner tree problem seeks a minimum-cost subtree spanning the distinguished vertices.

Graph Steiner minimal tree (GSMT) problem: Given a weighted graph G = (V ,E), and a distin-
guished set of nodes N ⊆ V , find a minimum-cost spanning tree T = (V ′,E ′) with N ⊆ V ′ ⊆ V and
E ′ ⊆ E.

In particular, any node in V −N can serve as a potential Steiner point. As usual, each graph edge
eij ∈ E has a real-valued weightwij, and the cost of a tree (or any subgraph) is the sum of the weights
of its edges. The GSMT problem is NP-complete, even in the Euclidean or rectilinear metrics [43],
because the geometric SMT problems are special cases of the general graph SMT problem. The
method of Kou, Markowsky, and Berman (KMB) [53] was the first provably-good heuristic to solve
the GSMT problem in polynomial time with approximation ratio of twice the optimal.

24.4.1 GRAPH GENERALIZATION OF ITERATED 1-STEINER

The I1S approach generalizes to solve the Steiner problem in arbitraryweighted graphs, by combining
the geometric I1S heuristic with the KMB [53] graph Steiner algorithm [19,66]. The resulting hybrid
method inherits the good average-case performance of the I1Smethod,while also enjoying the error-
bounded performance of the KMB algorithm. We refer to this hybrid method as the graph iterated
1-Steiner (GI1S) algorithm. The GI1S method is essentially an adaptation of I1S to graphs, where
the MST in the inner loop is replaced with the KMB construction. That is, instead of using an MST
subroutine to determine the savings of a candidate Steiner point/node,we use the KMB (or any other)
approximation algorithm for this purpose. Thus, given a graph G = (V ,E), a set N ⊆ V , and a set
S of potential Steiner points, we define the following:

�KMB(N , S) = cost[KMB(N)] − cost[KMB(N ∪ S)]
Thus, the GI1S template (Figure 24.7) repeatedly finds Steiner node candidates that reduce the

overall KMB cost and includes them into the growing set of Steiner nodes S. The cost of the KMB
tree over N ∪ S will decrease with each added Steiner node, and the construction terminates when
there is no x ∈ V with �KMB(N ∪ S, {x}) > 0.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 495 9-10-2008 #10

Minimum Steiner Tree Construction 495

Graph iterated 1-Steiner (GI1S) heuristic
Input: Weighted graph G = (V,E) and a set N ⊆V
Output: Low-cost tree T ′ = (V ′,E ′) spanning N (i.e., N ⊆V ′ ⊆V and E ′ ⊆E)
S = ∅
While T = {x ∈V−N | �KMB(N ∪S,{x})> 0} �= ∅ Do

Find x ∈T with maximum �KMB(N ∪S,{x})
S =S ∪ {x}

Return KMB(N ∪S)

FIGURE 24.7 GI1S algorithm. (From Kahng, A. B. and Robins, G., On Optimal Interconnections for VLSI,
Kluwer Academic Publishers, Boston, MA, 1995 and Alexander, M. J. and Robins, G., IEEE Trans. Computer-
Aided Design, 15, 1505, 1996.)

The approximation ratio for GI1S is 2 · (
1 − 1

L

) ≤ 2 times optimal, where L is the number
of leaves in the resulting tree. This follows from the KMB bound and from the fact that the cost
of the GI1S construction cannot exceed that of the KMB construction [19,66]. If |N| ≤ 3 (e.g., a
VLSI signal net with three or fewer terminals—a very common occurrence in VLSI layouts), GI1S
is guaranteed to find an optimal solution. Although the worst-case performance ratio of GI1S is
the same as that of KMB, in practice GI1S significantly outperforms KMB in terms of solution
quality [66]. Given a faster implementation of the KMB method [68], the GI1S algorithm can be
implemented within time O(|N| · |G| + |N|4 log |N|), where |N| ≤ |V | is the number of nodes to be
spanned and |G| = |V |+ |E| is the size of the graph.Moreover, like with I1S, the GI1S approach can
be batched, and incremental/dynamic MST computations [62] can be exploited, resulting in further
runtime improvements.

Note that the GI1S template above can be viewed as an iterated KMB (IKMB) construction, and
thatKMB inside the inner loopmay be replacedwith any other graphSteiner approximation heuristic,
such as that of Zelikovsky (ZEL) [52], yielding an iterated Zelikovsky (IZEL) heuristic. IZEL has
the same theoretical performance bound as ZEL, namely 11

6
, but provides improved solutions in

practice. Experiments have shown that these heuristics of increasing average solution quality are
KMB < ZEL < IKMB < IZEL [66]. In general, iterating a given Steiner approximation heuristic
greedily is an effective general mechanism to improve empirical performancewithout sacrificing the
theoretical performance bounds.

24.4.2 LOSS-CONTRACTING APPROACH

For arbitrary weighted graphs, the best Steiner approximation ratio achievable within polynomial
time was steadily improved from 2 down to 1.5493 in a series of papers [52,53,55,69–73]. On the
negative side, it is known that unless P = NP, the Steiner tree problem in general graphs cannot be
approximated within a factor of 1+ ε for sufficiently small ε > 0 [74]. More recently, an improved
nonapproximability lower bound of 96

95
for the graph Steiner problem was proved in Ref. [75].

The graph Steiner tree heuristic with the best-known performance ratio, approaching 1+ ln 3
2

≈
1.5493, was given by Robins and Zelikovsky [55,56]. This approach, called the loss-contracting
algorithm (LCA), proceeds by adding full components to a growing solution, based on their relative
cost savings. A full component is a Steiner tree over a terminal subset in which all of the terminals
are leaves (Figure 24.8a). Any Steiner tree can be decomposed into full components by splitting all
the nonleaf terminals (we assume that any full component has its own copy of each Steiner point,
so that full components chosen by the algorithm do not share Steiner points). A Steiner tree that
does not contain any Steiner points (i.e., where each full component consists of a single edge) is
called a terminal-spanning tree. The LCA algorithm computes relative cost savings with respect to
a shrinking terminal-spanning tree.

All previous graph Steiner heuristics (except Ref. [70]) with provably good approximation ratios
repeatedly choose appropriate full components and then contract them to form the overall solution.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 496 9-10-2008 #11

496 Handbook of Algorithms for Physical Design Automation

a

d

b
d

(a) (b) (c)

b c

a
c

FIGURE 24.8 LCA idea: (a) full component K , where filled circles denote terminals and hollow circles denote
Steiner points; (b) connected components of Loss(K) to be collapsed, with dashed edges belong to Loss(K);
and (c) the corresponding terminal-spanning tree with the contracted Loss(K).

However, this strategy does not allow the discarding of an already-accepted full component, even if
it turns out later that a better full component conflicts with a previously accepted component (two
components conflict if they share at least two terminals).

The intuition behind the LCA method is to contract as little as possible so that a chosen full
component may still participate in the overall solution, but not many other full components would
be rejected. The LCA approach iteratively modifies a terminal-spanning tree T , which is initially
MST(GS), by incorporating into T loss-contracted full components greedily chosen from G. Each
such component has positive gain, and therefore contains at least three terminals and has nonzero
loss (see Refs. [55,56] for more details).

The loss-contracting approach also solves the Steiner tree problem in quasi-bipartite graphs (i.e.,
where no two nonterminals are adjacent), achieving an approximation ratio of ≈1.28 times optimal
within time O(mn2), where m and n are the numbers of terminals and nonterminals in the graph,
respectively. This improves a previous primal-dual algorithm for Steiner trees in quasi-bipartite
graphs [76] whose bound exceeds 1.5 times optimal.

Similar techniques were also used to show that the graph version of the I1S heuristic described
above [19,49] achieves an approximation ratio of 1.5 in quasi-bipartite graphs [55,56]. Along similar
lines, the approximation ratio achievable for the Steiner tree problem in complete graphs with edge
weights 1 and 2was recently improved from the best previously knownbound of 4

3
times optimal [74]

to less than 1.28 times optimal [55,56].

24.5 GROUP STEINER TREES

Most papers on VLSI routing assume either implicitly or explicitly that each terminal consists of
a single port. However, in actual layouts (e.g., in a gridded routing regime), a terminal to which a
wire is to be routed can consist of a large collection of distinct, electrically equivalent ports [77–79].
Even though a wire may connect to any one of these ports, this degree of freedom is often not fully
exploited in routing or in wiring estimation. This section addresses the general problemof minimum-
cost Steiner tree construction in the presence of multiport terminals, where rather than spanning a
set of nodes, the objective is to connect groups of nodes. This is also known as the group Steiner
problem (Figure 24.9), formulated as follows.

Group Steiner problem [2,80]: Given a weighted graph G = (V , E) and a family N = {N1, . . . ,Nk}
of k disjoint groups of nodes Ni ⊆ V , find a minimum-cost spanning tree in G containing at least
one node from each group Ni.

As in the classical Steiner problem,we are allowed to include optional Steiner nodes to reduce the
cost of the tree interconnecting the groups ofN . The problem of interconnecting a net with multiport
terminals is a direct generalization of the NP-complete Steiner problem (i.e., in the classical Steiner
problem each terminal contains exactly one port), and is therefore itself NP-complete.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 497 9-10-2008 #12

Minimum Steiner Tree Construction 497

N2 N2

N3 N3

N4

N1

N4
(a) (b)

N1

FIGURE 24.9 (a) Solution to the same group Steiner problem instance under the weak-connectivity assump-
tion and (b) a feasible solution for the strong-connectivity version of the group Steiner problem. Ovals represent
multiport terminals (i.e., groups), hollow dots represent ports within a terminal, and solid dots represent
Steiner nodes.

One version of the group Steiner problem, known as the strong-connectivity version, allows
multiple connections to attach to different nodes in the same group (i.e., all the nodes of a group are
implicitly connected to each other, which allows the solution to the group Steiner problem to be a
forest—see Figure 24.9b). The version of the group Steiner problem described below involves weak
connectivity: the solution must be strictly a tree, and intragroup edges must be represented explicitly
in the solution (see Figure 24.9a).

24.5.1 APPLICATIONS OF GROUP STEINER TREES

The group Steiner problem models several practical scenarios in VLSI layout design [78]:

• Rotating and flipping a module can induce multiple locations for the given port, even in
single-port-per-terminal instances. For a general module, there are up to eight possible
orientations [80] (Figure 24.10a), and a given terminal can induce a group of up to eight
nodes in the group Steiner problem (Figure 24.10b). The weak-connectivity model applies
here, because the use of virtual ports is mutually exclusive.

(b)

Rotate

Flip

(a)

FIGURE 24.10 (a) Module is rotated and flipped to induce a group of eight terminal positions, as shown
in (b).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 498 9-10-2008 #13

498 Handbook of Algorithms for Physical Design Automation

• Complicated terminal geometry can easily have many ports located on multiple fabrication
layers in grid-basedmaze routing regimes. These ports form a group in a strong-connectivity
version of the group Steiner problem, because the ports are electrically equivalent, and a
routing tree may connect to multiple ports of a given terminal.

• Pin assignment problem [81] seeks to optimally determine pin locations on module bound-
aries. This can be modeled by the weak-connectivity version of the group Steiner problem,
where exactly one pin is assigned to each module [78].

• Multiple ports on a block boundary may be connected inside the block and thus be elec-
trically equivalent. These sets of ports form groups in the weak-connectivity group Steiner
problem.

• Instances of the group Steiner problem can also occur in hierarchical designmethodologies,
where some global nets are partially prerouted. Here, each connected component of a
partially routed net can be modeled as a multiport terminal in a weak-connectivity version
of the group Steiner problem.

Despitethesenumerousapplications,surprisinglyfewroutingpapersaddressorexploitthefreedom
to connect to any of multiple port locations. The first provably good approximation algorithms for the
weak-groupSteiner problemproduced solutionsk−1 timesworse thanoptimal,where k is thenumber
of groups [82]. In contrast, the strong-connectivity version, though also NP-hard, is somewhat more
tractable than the weak-connectivity version: by converting an instance of the strong-connectivity
version intoan instanceof thegraphSteinerproblem, thensetting tozero theweightofevery intragroup
edge, we can efficiently solve the strong-group Steiner problem to within a factor of 2 times optimal
or better, using any of the existing graph Steiner tree algorithms such as Refs. [52,53,56,83].

The following section describes a group Steiner heuristic with an improved sublinear approxima-
tion ratio of 2·(2+ln k

2
)· √k times optimal, where k is the number of groups [77,78]. This algorithm is

general and applies to arbitrarilyweighted graphs. On the negative side, it is also known that the group
Steiner problem is NP-hard to approximate to a sublogarithmic performance bound [77–79,84].

24.5.2 DEPTH-BOUNDED GROUP STEINER TREE APPROACH

The groupSteiner algorithm relies on depth-bounded∗ trees. Themotivation for using depth-bounded
trees is twofold: (1) optimal depth-2-boundedtrees can be used to approximate optimal group Steiner
trees to within a factor of 2 ·√k, and (2) optimal depth-2-bounded trees in turn can be approximated
efficiently, as discussed below. The overall Depth-Bounded Star (DBS) group Steiner algorithm
[78,79] composes these two approximations, and therefore enjoys a performance bound that is the
product of the two corresponding bounds.

A given graphGmay in general violate the triangle inequality, i.e., there may be edges (u, v) in
G whose cost is greater than the cost of the minimum u–v path in G. An optimal group Steiner tree
contains no such edges, because replacing such an edge with the corresponding shortest path will
decrease the total tree cost, a contradiction to minimality. Therefore, without loss of generality, we
replace G by its metric closure, defined as a complete graph where the cost of each edge (u, v) is
equal to the cost of the minimum u–v path in G.

Let a d-star be a rooted tree of depth of at most d (Figure 24.11a and b). It can be shown that for
any arbitrary rooted tree T , there exists a low-cost 2-star spanning the leaves of T . This will imply
that an optimal group Steiner tree can be approximated by a low-cost group Steiner 2-star (defined as
a 2-star that spans all of the groups), which is exactly how the DBS group Steiner algorithm operates
(Figures 24.12 and 24.13).

The overall strategy in deriving a performance bound for the DBS group Steiner algorithm is
based on bounding the total cost of 2-stars. Analyzing the edge reuse with respect to an appropriately

∗ The depth of a rooted tree is defined as the maximum number of edges in any root-to-leaf path.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 499 9-10-2008 #14

Minimum Steiner Tree Construction 499

e

(a) (b)

Root Root Root r r

(c)

eer

FIGURE 24.11 DBS group Steiner algorithm: (a) tree T rooted at r may have an arbitrary depth; (b) 1-star
and (c) 2-star are represented by dashed lines, which connect the root r to all leaves. To derive the performance
bound of the DBS algorithm we sum the edge reuse; e.g., here the edge e is reused three times by edges of the
1-star in (b) and twice by edges of the 2-star in (c).

selected set of intermediate nodes yields an upper bound of 2 · √
k times optimal on the cost of

2-stars, where k is the number of groups (similarly, the cost of an optimal Steiner 1-star is at most
k
2
times optimal) [77,78]. However, while an optimal Steiner 2-star is a reasonable approximation

of an optimal group Steiner tree, it is known that the problem of even approximating an optimal
Steiner d-star is as difficult as approximating a minimum set cover. In particular, unless NP ⊆
DTIME[nlog log n], a depth-2 group Steiner tree cannot be approximated to a factor of better than
[1 − o(1)]. ln k times optimal, where k is the number of groups [84].

Nevertheless, it is possible to approximate a Steiner 2-star within a factor of 2 + ln k
2

≈ 1.307 +
ln k times optimal [77–79]. Therefore, the overall performance bound for the DBS group Steiner
heuristic will be the product of these two factors, namely the approximation bound of 2-stars with
respect to optimal, times the bound with which 2-stars can themselves be approximated. The DBS
group Steiner heuristic (Figures 24.12 and 24.13) therefore solves the group Steiner minimal tree
problem with performance ratio 2 · (2 + ln k

2
) · √

k, where k is the number of groups.

24.5.3 TIME COMPLEXITY OF THE DBS GROUP STEINER ALGORITHM

The time complexity of computing minimum-norm partial stars (a subroutine in the DBS algorithm)
isO(|V |·k ·log k), where k is the number of groups.Approximating rooted 2-stars requiresO(|V |·k2 ·
log k) time. The total runtime of the overall DBS group Steiner heuristic (Figures 24.12 and 24.13)
is therefore O(τ + |V |2 · k2 · log k), where k is the number of groups, and τ is the time complexity
of computing all-pairs graph shortest paths.

Depth-bounded star (DBS) group Steiner algorithm
Input: Weighted graph G= (V,E), a family N

of k disjoint groups N 1,. . .,Nk ⊆V
Output: A low-cost tree Approx spanning

at least one vertex from each group Ni

For each node r ∈V do
Find a low-Cost 2-star Approx2(r) rooted at r

intersecting each group Ni, i= 1,. . .,k
Output the least-cost 2-star Approx,

i.e., cost(Approx) =minr ∈V cost(Approx2(r))

FIGURE 24.12 DBS approximation algorithm for the group Steiner problem on arbitrary weighted graphs
produces a low-cost Steiner 2-star. (From Bateman, C. D., Helvig, C. S., Robins, G., and Zelikovasky, A.,
Proceedings of the International Symposium on Physical Design, pp. 96–102, Napa Valley, CA, 1997 and
Helvig, C. S., Robins, G. and Zelikovsky, A., Networks, 37, 8, 2001.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 500 9-10-2008 #15

500 Handbook of Algorithms for Physical Design Automation

(c)

(b)

(a)

(e)

(f)

(d)

r

r

r

r

r

r

FIGURE 24.13 Given an instance of the group Steiner problem, for each possible root r, the DBS heuristic:
(a) finds the optimal 1-star, (b) finds the minimum-norm partial star (shaded region), (c) stores this star in the
solution and removes its groups from future consideration, (d) finds the next minimum-norm partial star (shaded
region), (e) repeats step (c) for the new partial star, and finally (f) finds the last minimum-norm partial star and
outputs the union of all stored partial stars.

A practical enhancement to the runtime of the DBS algorithm entails computing a group MST
instead of a group SMT (i.e., computing a MST for a set of nodes containing exactly one port from
each group). It can be shown that the optimal groupMST is at most twice as long as the optimal group
SMT. Thus, in approximating the group SMT by a group MST, only a factor of 2 is lost, which does
not asymptotically increase the overall solution quality bound of 2 · (2 + ln k

2
) · √

k times optimal,
yet yields substantial savings in runtime.

24.5.4 DEGENERATE GROUP STEINER INSTANCES

While solving the group Steiner problem, optimizing degenerate groups (i.e., groups of size 1) as
a special case can yield substantial improvements in solution quality as well as in runtime. The
degenerate groups by themselves induce an instance of the classic Steiner problem, and such an

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 501 9-10-2008 #16

Minimum Steiner Tree Construction 501

M1

M2

FIGURE 24.14 Group degeneracy can be exploited in solving the groupSteiner problem. The set of degenerate
groups (M1) is spanned with a classical approximate Steiner tree (left). Then, all the nondegenerate groups (M2)

are spanned, together with an arbitrary degenerate group, using a group Steiner tree algorithm such as DBS
(right). The combination of these two resulting trees spans the original instance of the group Steiner quite
effectively, with an overall performance ratio equal to the sum of the two individual bounds.

instance can be approximated efficiently with a constant performance ratio. Thus, to solve the SMT
problem for degenerate groups, we may choose a provably good heuristic from among the numerous
existing ones [19,52–56,58,85]. For example, in timeO(|V |3)wemay find a Steiner tree that is atmost
11
6
times optimal [83]. All that remains now is connecting the SMT over the degenerate groups with

a tree spanning the other, nondegenerate groups, without degrading the overall performance ratio.
Toachieve thisgoal,wepartition the set of all groupsN = M1∪M2 into two subsets: thedegenerate

groups containing one terminal (M1) and the nondegenerategroups containing two ormore terminals
(M2). The combined DBS group Steiner heuristic is modified to work as follows: first, it computes
the usual Steiner tree Approx1 for the terminals M1 using the algorithm from say Ref. [83]. Next,
using the group Steiner heuristic (Figure 24.12), it finds the group Steiner tree Approx2 for the family
of groups that includes all of M2 as well as a single arbitrary degenerate group from M1. Finally, it
outputs a minimum spanning tree over the union Approx1 ∪ Approx2 (Figure 24.14).

If the number of degenerate groups is large, then the combined group Steiner heuristic will enjoy
considerable runtime savings as compared to the basic DBS group Steiner heuristic (of Figures 24.12
and 24.13). Moreover, the heuristic also enjoys an improved overall performance bound of at most

11

6
+ 2 ·

(
2 + ln

|M2| + 1

2

)
.
√|M2| + 1

whereM2 is the set of degenerate groupsof size 2ormore. In particular, if the numberof nondegenerate
groups is bounded by a constant independently of the total number of nodes in the graph (i.e.,
|M2| = O(1)), then the above hybrid DBS algorithm will solve such instances of the group Steiner
problem within a constant factor of optimal.

24.5.5 BOUNDED-RADIUS GROUP STEINER TREES

The objective of delay minimization can induce wiring geometries that are substantially different
from those dictated by an optimal-area objective, particularly in deep submicron regimes. This has
motivated a number of bounded-radius∗ routing constructions [19,86,87]. The basic group Steiner
tree approach can be easily extended to a bounded-radius construction, thereby yielding routing trees
with source-to-sink pathlengths bounded by a user-specified parameter.

∗ The radius of a graph is defined as the maximum pathlength of any shortest source–sink path. Note that 2-stars implicitly
have a radius bound of 2 · OPT, although an MST postprocessing step does not preserve this bound.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 502 9-10-2008 #17

502 Handbook of Algorithms for Physical Design Automation

For example, the tree produced by the DBS group Steiner algorithm above (Figures 24.12
and 24.13) can be utilized as the starting point in the bounded-radius bounded-cost construction
of Ref. [87]. For an arbitrary instance of the group Steiner problem (with k groups), this combination
yields a routing tree with simultaneous provably good bounds for both tree radius and tree cost. In
particular, the tree resulting from this merger will have radius (1 + ε) times the optimal radius, and
total cost (1+ 2

ε
) ·2 ·(2+ ln k

2
) ·√k times the optimal cost, for any user-specified radius-cost trade-off

parameter ε > 0.

24.5.6 EMPIRICAL PERFORMANCE OF THE GROUP STEINER HEURISTIC

The group Steiner heuristic above compares favorably with the RW heuristic proposed by Reich and
Widmayer [80]. The RW group Steiner heuristic begins by first finding the MST T for the entire set
of nodes of all the groups. If a leaf node is not the last member of its group in the tree T , then it may
be removed. The RW heuristic then repeatedly deletes such a leaf node that is incident to the longest
edge among all such nodes. On random uniformly distributed pointsets with varying predetermined
group areas, the DBS group Steiner algorithm described above significantly outperforms the RW
algorithm, especially as the group sizes and the group areas increase [78,79].

24.6 OTHER STEINER TREE METHODS

Once it became known [48,49] that MST-improvement-based Steiner heuristics having worst-case
performance bounds no better than the MST itself (i.e., 3

2
in the rectilinear plane), other rectilinear

Steiner heuristics with average performance approaching that of I1S were subsequently proposed
[88–94]. While it is generally difficult to analytically quantify the solution quality of heuristics, the
I1S method was later proven to be the earliest Steiner approximation with a nontrivial performance
ratio in quasi-bipartite graphs [55,56].

In 2003, Kahng et al. developed a highly scalable heuristic for computing near-optimal Steiner
trees, based on the B1S approach [95]. This batched greedy algorithm (BGA) achieves its speed
by combining greedy triple contraction [52,95] with a new linear size data structure for finding
bottleneck edges [97]. The BGA can route in graph-based uniform orientation geometries, in the
presence of obstacles, and under varying via costs, requiring onlyO(n) space andO(n log2 n) time for
n terminals. BGA can route noncritical nets with thousands of terminals within seconds of CPU time
while maintaining high-solution quality (i.e., on par with that of B1S, about 11 percent improvement
over MST cost for random instances). More recently, Ref. [98] developed an O(n log n)-time
octilinear Steiner tree heuristic based on spanning graphs, with performance and runtime similar to
that of BGA.

On another front, exact Steiner tree algorithms have also evolved rapidly in recent years [32,65],
enabling exact solutions of large instances (up to several thousand points)within reasonable runtimes.
However, the faster exact methods typically work only in two-dimensional geometric versions of the
Steiner problem, where the underlying geometry can be carefully analyzed and heavily exploited
to reduce the size of the search space. Nevertheless, exact Steiner algorithms for the rectilinear
plane have been optimized to the point of actually becoming practical for use on small pointsets in
commercial applications.

24.7 IMPROVING THE THEORETICAL BOUNDS

Berman and Ramaiyer [70] and Zelikovsky et al. [51,61,96] have developed several SMT heuristics
similar to I1S, with approximation ratios substantially less than 3

2
. These methods were derived

from the pioneering technique developed by Zelikovsky for the Steiner problem in graphs [52].
In particular, an algorithm with an approximation ratio of 11

8
in the rectilinear plane was given in

Ref. [51]. These series of results have settled in the affirmative the longstanding open question of

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 503 9-10-2008 #18

Minimum Steiner Tree Construction 503

whether there exists a polynomial-time rectilinear Steiner heuristic with approximation ratio better
than 3

2
.

Subsequent work by Fößmeier et al. [96] has improved on the O(n3.5) time complexity and 11
8

approximation bound of Ref. [51], with an O(n1.5) implementation, where only a linear number of
triples needs to be considered. The authors of Ref. [61] have shown that Zelikovsky’s algorithm
has performance ratio between 1.3 and 1.3125, and that Berman and Ramaiyer’s algorithm has
performance ratio at most 1.271; the latter algorithm can also be implemented to run in O(n log2 n)
time. A subsequent algorithm achieved a rectilinear performance ratio of 1.267 time optimal within
O(n log2 n) time [72].

In a 1996 landmark result, Arora has established that Euclidean and rectilinear minimum-cost
Steiner trees can be approximated arbitrarily close to optimal within polynomial time [99], set-
tling the longstanding open question whether this is indeed possible. Arora’s methods also yield
polynomial-time approximation schemes arbitrarily close to optimal for other combinatorial opti-
mization problems, such as the Euclidean traveling salesman problem. Arora’s techniques were also
used to achieve a polynomial-time approximation scheme for the rectilinear arborescence problem,
with a performance bound arbitrarily close to optimal [100].

The performance bound of the group Steiner algorithm described above [78] was significantly
improved in Ref. [79]. This was achieved by using d-stars rather than 2-stars, which improves the√
k factors in all the bounds of Section 24.5 to d · d

√
k. Thus, the performance ratio of the DBS

group Steiner algorithm (Figures 24.12 and 24.13) improved to O(kε) for arbitrarily small ε > 0. In
particular, a group Steiner tree with cost at most 2d · [2+ ln(2k)]d−1 · d

√
k time optimal is computed

by this more general d-star-based group Steiner algorithm within O[τ + (|V | · k)d] time, where τ is
the time complexity of computing all-pairs shortest paths [79], k is the number of groups, and d is a
user-selectable parameter that trades-off runtime against solution quality. A group Steiner heuristic
with a polylogarithmic performance bound was more recently given in Ref. [101].

24.8 STEINER TREE HEURISTICS IN PRACTICE

While Steiner heuristics such as the I1S approach [19,58] yield highly accurate (i.e., near-optimal)
solutions, industrial CAD applications sometime demand high runtime speed over solution quality.
This is especially true, e.g., inside the inner loop of modern placement tools, where fast wirelength
estimators are repeatedly invoked during the construction of timing-driven placements. In such sce-
narios therefore, more accurate heuristics (e.g., the I1S approach) may be useful when the number
of pins in a net is small (say, less than ten). On the other hand, when the number of pins grows
into dozens or hundreds, more efficient heuristics such as those of Ref. [11] or [89] are more likely
to deliver faster execution speeds. This motivated the recent development of progressively faster
wirelength estimators such as the FLUTE algorithm of Ref. [102], whose speed derives from pre-
computed table lookup. However, faster execution speeds typically come at a price, such as degraded
solution quality, limitations on net sizes, restriction to specific metrics, etc. Careful empirical testing
can determine which Steiner heuristics best suit a particular practical scenario and design regime.

24.9 FUTURE DIRECTIONS FOR THE STEINER PROBLEM

Chief among future research directions for the Steiner problem is finding general graph Steiner
heuristics with improved performance bounds, i.e., smaller than the currently best-known bound of
1 + ln 3

2
≈ 1.5493 times optimal of the loss-contracting algorithm (LCA) [55,56]. Steady improve-

ments in this upper bound over the last 25 years progressed at an average rate of about 2 percent
per year. Other special cases of the Steiner problem for special metrics, specific cost functions, and
particular graph typesmay be explored separately, where it may be possible to exploit the underlying
geometry to further improve the performance bounds.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 504 9-10-2008 #19

504 Handbook of Algorithms for Physical Design Automation

Interestingly, the LCA algorithm is the first (and so far only) heuristic that works provably well
for all of the special graph types discussed above. It would also be of interest to find a minimum α,
such that for any β > α, there exists polynomial-time β-approximation of the general graph Steiner
problem, as well as to improve the nonapproximability lower bounds, the best of which is currently
96
95
for general weighted graphs [75]. Group Steiner heuristics with improved approximation ratio are

also of significant interest.
It would be interesting to generalize Hwang’s theorem to higher rectilinear dimensions [6]. It

is known that Hwang’s ratio in any rectilinear dimension d is bounded from below by 2 − 1
d
[49],

and is also bounded from above by 2 for arbitrary metrics (including all rectilinear d dimensions).
This leaves an open gap of size 1

d
for Hwang’s spanning-to-Steiner ratio in rectilinear d dimensions.

Generalizing Hanan’s theorem to λ-geometries seems to be more difficult than for the rectilinear
metric [42]. Moreover, relatively little is known regarding generalizations of Hwang’s theorem to
arbitrary λ-geometries (one unusual result along these lines is that the Steiner ratio in λ-geometries
is not monotonic in the parameter λ [6]). More research is also needed to tighten both the upper
and lower bounds for minimum-cost arborescences in graphs. Similarly, almost nothing is known
about arborescences in three-dimensional rectilinear space (or in any higher dimensions or alternative
geometries).

From a practical perspective, for any given fixed performance bound it would be useful to
minimize the running times of the associated heuristics, and to quantify and explore various trade-
offs between runtimes and solution quality. That a heuristic has a provably good performance bound
does not automatically imply that its solutions are necessarily superior to those of a heuristic with
a worse (or no) bound (because in practice, actual solutions of the various heuristics are rarely as
bad as the theoretical bound would suggest; in fact, solutions produced by most reasonable Steiner
heuristics are on average within a few percent of optimal for most random instances). Thus, it would
be very useful to undertake research that would bring theory into closer alignment with practice.

Along similar lines, additional research is needed to implement various heuristics (e.g., Arora’s
algorithm [99]) and benchmark their practical runtime and empirical solution quality. The fast-
Steiner code for the BGA scalable implementation of the provably good heuristic of Ref. [61] is
freely available from the authors of Refs. [95,97]; it would be interesting to see how future heuristics
fare against this method. Various Steiner heuristics should be compared side-by-side on numerous
realistic classes and sizes of inputs, including benchmarking on actual commercial VLSI designs,
whenever possible. Creating more realistic and robust standard benchmarks for testing the various
kinds of Steiner heuristics would also be highly beneficial.

Finally, modern VLSI layout seeks to optimize not only wirelength, but must also take into
consideration many other technological issues and criteria, such as timing, skew, density, manufac-
turability, yield, reliability, power, noise, and various combinations of these. While recent routing
formulations strive to achieve some of these objectives [11–13,15,17–20], much interesting research
remains to be done in these areas.

REFERENCES
1. A. Caldwell, A. B. Kahng, S. Mantik, I. Markov, and A. Zelikovsky. On wirelength estimations for row-

based placement. In Proceedings of the International Symposium on Physical Design, pp. 4–11, Monterey,
CA, April 1998.

2. F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. Annals of Discrete Mathematics,
Vol. 53, North-Holland, The Netherlands, 1992.

3. B. Korte, H. J. Promel, and A. Steger. Steiner Trees in VLSI-Layouts, in Paths, Flows and VLSI-Layout.
Springer-Verlag, New York, 1990.

4. X. Cheng and D. -Z. Du. Steiner Trees in Industry. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2001.

5. D. Cieslik. Steiner Minimal Trees. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.
6. D. Cieslik. The Steiner Ratio. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 505 9-10-2008 #20

Minimum Steiner Tree Construction 505

7. D. -Z. Du, J. M. Smith, and J. H. Rubinstein. Advances in Steiner Trees. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2000.

8. A. O. Ivanov and A. A. Tuzhilin. Minimal Networks: The Steiner Problem and Its Generalizations. CRC
Press, Boca Raton, FL, 1994.

9. H. J. Promel andA. Steger.TheSteiner TreeProblem:ATourThroughGraphs, Algorithms, andComplexity.
Friedrich Vieweg and Son, Braunschweig, Germany, 2002.

10. C. J. Alpert, G. Gandham, M. Hrkic, J. Hu, A. B. Kahng, J. Lillis, B. Liu, S. T. Quay, S. S. Sapatnekar, and
A. J. Sullivan. Buffered steiner trees for difficult instances. IEEE Transactions Computer-Aided Design,
21(1): 3–14, January 2002.

11. C. J. Alpert, A. B. Kahng, C. N. Sze, and Q. Wang. Timing-driven steiner trees are (practically) free. In
Proceedings of the ACM/IEEE Design Automation Conference, pp. 389–392, San Francisco, CA, 2006.

12. K. D. Boese, A. B. Kahng, B. A. McCoy, and G. Robins. Near-optimal critical sink routing tree
constructions. IEEE Transactions Computer-Aided Design, 14(12): 1417–1436, December 1995.

13. J. Cong, A. B. Kahng, C. K. Koh, and C. -W. A. Tsao. Bounded-skew clock and steiner routing. ACM
Transactions on Design Automation of Electronic Systems, 3: 341–388, October 1999.

14. J. Hu and S. S. Sapatnekar. Algorithms for non-hanan-based optimization for VLSI interconnect under a
higher order awe model. IEEE Transactions Computer-Aided Design, 19(4): 446–458, April 2000.

15. J. Hu and S. S. Sapatnekar. A survey on multi-net global routing for integrated circuits. Integration: The
VLSI Journal, 11: 1–49, 2001.

16. J.HuandS. S. Sapatnekar.A timing-constrained simultaneous global routing algorithm. IEEETransactions
Computer-Aided Design, 21(9): 1025–1036, September 2002.

17. Y. I. Ismail and E. G. Friedman.On-Chip Inductance in High-Speed Integrated Circuits. Kluwer Academic
Publishers, Boston, MA, 2001.

18. A. B. Kahng, S. Mantik, and D. Stroobandt. Towards accurate models of achievable routing. IEEE
Transactions Computer-Aided Design, 20: 648–659, May 2001.

19. A. B. Kahng and G. Robins.OnOptimal Interconnections for VLSI. Kluwer Academic Publishers, Boston,
MA, 1995.

20. B. A. McCoy and G. Robins. Non-tree routing. IEEE Transactions Computer-Aided Design, 14(6):
790–784, June 1995.

21. S. Peyer, M. Zachariasen, and D. J. Grove. Delay-related secondary objectives for rectilinear steiner
minimum trees. Discrete and Applied Mathematics, 136(2): 271–298, February 2004.

22. N. Sherwani, S. Bhingarde, and A. Panyam. Routing in the Third Dimension. IEEE Press, NewYork, 1995.
23. S. H. Gerez. Algorithms for VLSI Design Automation. John Wiley and Sons, Chichester, United

Kingdom, 1998.
24. B. T. Preas and M. J. Lorenzetti. Physical Design Automation of VLSI Systems. Benjamin/Cummings,

Menlo Park, CA, 1988.
25. S. M. Sait and N. Youssef. VLSI Physical Design Automation—Theory and Practice. World Scientific

Publishing Company, Singapore, 1999.
26. M. Sarrafzadeh and C. K.Wong. An Introduction to VLSI Physical Design. McGrawHill, NewYork, 1996.
27. N. Sherwani. Algorithms for VLSI Physical Design Automation, Third Edition. Kluwer Academic

Publishers, Boston, MA, 1998.
28. H. Chen, C. -K. Cheng, A. B. Kahng, I. Măndoiu, and Q. Wang. Estimation of wirelength reduction for

λ-geometry vs. manhattan placement and routing. In Proceedings of the ACM International Workshop on
System-Level Interconnect Prediction, Monterey, CA, pp. 71–76, 2003.

29. H. Chen, C. -K. Cheng, A. B. Kahng, I. I. Măndoiu, Q. Wang, and B. Yao. The y-architecture for on-chip
interconnect: Analysis and methodology. IEEE Transactions Computer-Aided Design, 24(4): 588–599,
April 2005.

30. C. -K. Koh and P. H. Madden. Manhattan or non-Manhattan?: A study of alternative VLSI routing
architectures. In Proceedings of the Great Lakes Symposium VLSI, pp. 47–52, Chicago, IL, 2000.

31. Y. Y. Li, S. K. Cheung, K. S. Leung, and C. K. Wong. Steiner tree construction in λ3-metric. IEEE
Transactions Circuits and Systems-II: Analog and Digital Signal Processing, 45(5): 563–574, May 1998.

32. B. K. Nielsen, P. Winter, and M. Zachariasen. An exact algorithm for the uniformly-oriented steiner tree
problem. In Proceedings of the European Symposium on Algorithms, Springer Verlag Lecture Notes in
Computer Science, Vol. 2461. Springer-Verlag, Rome, Italy, 2002 pp. 760–771.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 506 9-10-2008 #21

506 Handbook of Algorithms for Physical Design Automation

33. M. Sarrafzadeh and C. K. Wong. Hierarchical Steiner tree construction in uniform orientations. IEEE
Transactions Computer-Aided Design, 11(9): 1095–1103, September 1992.

34. S. Teig. The x architecture: Not your father’s diagonal wiring. In Proceedings of the ACM International
Workshop on System-Level Interconnect Prediction, San Diego, CA, pp. 33–37, 2002.

35. The X Initiative, 2006. Available at http://www.xinitiative.org.
36. M. C. Yildiz and P. H. Madden. Preferred direction steiner trees. In Proceedings of the Great Lakes

Symposium VLSI, pp. 56–61, West Lafayette, IN, 2001.
37. S. Gueron and R. Tessler. The Fermat–Steiner problem. The American Mathemtical Monthly, 109(5):

443–451, 2002.
38. V. Viviani. Treatise De Maximis et Minimis. Appendix, pp. 144–150, Italy, 1659.
39. B. Cavalieri. Exercitationes Geometriae Sex. Bologna, Italy, 1647.
40. M. Hanan. On Steiner’s problem with rectilinear distance. SIAM Journal of Applied Mathematics, 14:

255–265, 1966.
41. T. L. Snyder. On the exact location of Steiner points in general dimension. SIAM Journal on Computing,

21(1): 163–180, 1992.
42. G. Y. Yan, A. A. Albrecht, G. H. F. Young, and C. -K. Wong. The Steiner tree problem in orientation

metrics. Journal of Computer and System Sciences, 55(3): 529–546, 1997.
43. M. Garey and D. S. Johnson. The rectilinear Steiner problem is NP-complete. SIAM Journal of Applied

Mathematics, 32(4): 826–834, 1977.
44. P. K. Agarwal and M. T. Shing. Algorithms for special cases of rectilinear Steiner trees: Points on the

boundary of a rectilinear rectangle. Networks, 20(4): 453–485, 1990.
45. F. K. Hwang. On Steiner minimal trees with rectilinear distance. SIAM Journal of Applied Mathematics,

30(1): 104–114, 1976.
46. N. Hasan, G. Vijayan, and C. K. Wong. A neighborhood improvement algorithm for rectilinear Steiner

trees. In Proceedings of the IEEE International Symposium Circuits and Systems, New Orleans, LA,
pp. 2869–2872, 1990.

47. J. M. Ho, G. Vijayan, and C. K. Wong. New algorithms for the rectilinear Steiner tree problem. IEEE
Transactions Computer-Aided Design, 9(2): 185–193, 1990.

48. A. B. Kahng and G. Robins. A new family of Steiner tree heuristics with good performance: The iter-
ated 1-steiner approach. In Proceedings of the IEEE International Conference Computer-Aided Design,
pp. 428–431, Santa Clara, CA, November 1990.

49. A. B. Kahng and G. Robins. On performance bounds for a class of rectilinear Steiner tree heuristics in
arbitrary dimension. IEEE Transactions Computer-Aided Design, 11(11): 1462–1465, November 1992.

50. G. Robins. On Optimal Interconnections. PhD thesis, Department of Computer Science, UCLA, Los
Angeles, CA, CSD-TR-920024, 1992.

51. A. Z. Zelikovsky. An 11/8-approximation algorithm for the steiner problem on networks with rectilinear
distance. In Janos Bolyai Mathematica Societatis Conference: Sets, Graphs, and Numbers, Amsterdam,
The Netherlands, pp. 733–745, January 1992.

52. A. Z. Zelikovsky. An 11/6 approximation algorithm for the network steiner problem. Algorithmica, 9:
463–470, 1993.

53. L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner trees. Acta Informatica, 15:
141–145, 1981.

54. A. B. Kahng and G. Robins. A new class of iterative steiner tree heuristics with good performance. IEEE
Transactions Computer-Aided Design, 11(7): 893–902, July 1992.

55. G. Robins and A. Zelikovsky. Improved steiner tree approximation in graphs. In Proceedings of the
ACM/SIAM Symposium Discrete Algorithms, pp. 770–779, San Francisco, CA, January 2000.

56. G. Robins and A. Zelikovsky. Tighter bounds for graph steiner tree approximation. SIAM Journal on
Discrete Mathematics, 19(1): 122–134, 2005.

57. E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal of Applied Mathematics, 16:
1–29, 1968.

58. J. Griffith, G. Robins, J. S. Salowe, and T. Zhang. Closing the gap: Near-optimal steiner trees in
polynomial time. IEEE Transactions Computer-Aided Design, 13(11): 1351–1365, November 1994.

59. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New
York, 1985.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 507 9-10-2008 #22

Minimum Steiner Tree Construction 507

60. G. Georgakopoulos and C. H. Papadimitriou. The 1-Steiner tree problem. Journal of Algorithms, 8:
122–130, 1987.

61. P. Berman, U. Fößmeier, M. Karpinski, M. Kaufmann, and A. Z. Zelikovsky. Approaching the 5/4—
approximation for rectilinear Steiner trees. In Proceedings of the European Symposium on Algorithms,
Utrecht, The Netherlands, pp. 533–542, 1994.

62. G. Cattaneo, P. Faruolo, U. F. Petrillo, and G. F. Italiano. Maintaining dynamic minimum spanning trees:
An experimental study. In Proceedings of the International Workshop on Algorithm Engineering and
Experiments (ALENEX), Lecture Notes in Computer Science, Vol. 2409, D. M. Mount and C. Stein (Eds.).
Springer Verlag, Utrecht, The Netherlands, 2002, pp. 111–125.

63. G. Robins and J. S. Salowe. Low-degree minimum spanning trees.Discrete and Computational Geometry,
14: 151–165, September 1995.

64. J. S. Salowe and D. M. Warme. An exact rectilinear Steiner tree algorithm. In Proceedings of the IEEE
International Conference Computer Design, pp. 472–475, Cambridge, MA, October 1993.

65. D. M. Warme, P. Winter, and M. Zachariasen. Exact algorithms for plane Steiner tree problems: A com-
putational study. In Advances in Steiner Trees, D. Z. Du, J. M. Smith, and J. H. Rubinstein (Eds.). Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2000.

66. M. J. Alexander and G. Robins. New performance-driven FPGA routing algorithms. IEEE Transactions
Computer-Aided Design, 15(12): 1505–1517, December 1996.

67. W. Shi and C. Su. The rectilinear Steiner arborescence problem is NP-complete. SIAM Journal on
Computing, 35(3): 729–740, 2006.

68. Y. F. Wu, P. Widmayer, and C. K. Wong. A faster approximation algorithm for the Steiner problem in
graphs. Acta Informatica, 23(2): 223–229, 1986.

69. H. Takahashi and A.Matsuyama. An approximate solution for the Steiner problem in graphs.Mathematica
Japonica, 24(6): 573–577, 1980.

70. P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree problem. Journal of Algorithms,
17: 381–408, 1994.

71. H. J. Promel and A. Steger. Rnc-approximation algorithms for the Steiner problem. In Proceedings of the
ACM Symposium the Theory of Computing, pp. 559–570, 1997.

72. M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner tree problems. Journal
of Combinatorial Optimization, 1(1): 47–65, March 1997.

73. S. Hougardy and H. J. Promel. A 1.598 approximation algorithm for the Steiner problem in graphs.
In Proceedings of the ACM/SIAM Symposium Discrete Algorithms, Baltimore, Maryland, pp. 448–453,
January 1999.

74. M. Bern and P. Plassmann. The Steiner tree problem with edge lengths 1 and 2. Information Processing
Letters, 32(4): 171–176, September 1989.

75. M. Chlebik and J. Chlebikova. Approximation hardness of the Steiner tree problem on graphs. In Scandi-
navian Workshop on Algorithm Theory, Lecture Notes in Computer Science, Vol. 2368. Springer-Verlag,
Turku, Finland, 2002, pp. 170–179.

76. S. Rajagopalan and V. V. Vazirani. On the bidirected cut relaxation for the metric Steiner tree problem.
In Proceedings of the ACM/SIAM Symposium Discrete Algorithms, Baltimore, Maryland, pp. 742–751,
January 1999.

77. C. D. Bateman, C. S. Helvig, G. Robins, and A. Zelikovsky. Provably-good routing tree construction with
multi-port terminals. In Proceedings of the International Symposium on Physical Design, pp. 96–102,
Napa Valley, CA, April 1997.

78. C. S. Helvig, G. Robins, and A. Zelikovsky. New approximation algorithms for routing with multi-port
terminals. IEEE Transactions Computer-Aided Design, 19(10): 1118–1128, 2000.

79. C. S. Helvig, G. Robins, and A. Zelikovsky. An improved approximation scheme for the group Steiner
problem. Networks, 37(1): 8–20, January 2001.

80. G. Reich and P. Widmayer. Beyond Steiner’s problem: A VLSI oriented generalization. In Proceedings
of the 15th International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in
Computer Science, Vol. 411, Castle Rolduc, The Netherlands, pp. 196–211, 1989.

81. N. L. Koren. Pin assignment in automated printed circuit board design. In Proceedings of the Design
Automation Workshop, Dallas, TX, pp. 72–79, June 1972.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C024 Finals Page 508 9-10-2008 #23

508 Handbook of Algorithms for Physical Design Automation

82. E. Ihler. Bounds on the quality of approximate solutions to the group Steiner problem. In Proceedings
of the 16th International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in
Computer Science, Vol. 484, Berlin, Germany, 1991, pp. 109–118.

83. A. Z. Zelikovsky. A faster approximation algorithm for the Steiner tree problem in graphs. Information
Processing Letters, 46(2): 79–83, May 1993.

84. U. Feige. A threshold of ln n for approximating set cover. In Proceedings of the ACM Symposium the
Theory of Computing, Philadelphia, Pennsylvania, pp. 314–318, May 1996.

85. P. Berman and V. Ramaiyer. Improved approximations for the Steiner tree problem. In Proceedings of the
ACM/SIAM Symposium Discrete Algorithms, pp. 325–334, San Francisco, CA, January 1992.

86. C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger. Prim–Dijkstra tradeoffs for
improved performance-driven routing tree design. IEEE Transactions Computer-Aided Design, 14(7):
890–896, 1995.

87. J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong. Provably good performance-driven
global routing. IEEE Transactions Computer-Aided Design, 11(6): 739–752, 1992.

88. M. Borah, R. M. Owens, and M. J. Irwin. An edge-based heuristic for Steiner routing. IEEE Transactions
Computer-Aided Design, 13: 1563–1568, 1994.

89. M. Borah, R. M. Owens, and M. J. Irwin. A fast and simple Steiner routing heuristic. Discrete and Applied
Mathematics, 90(1–3): 51–67, 1999.

90. T. H. Chao and Y. C. Hsu. Rectilinear Steiner tree construction by local and global refinement. IEEE
Transactions Computer-Aided Design, 13(3): 303–309, March 1994.

91. C. Chu and Y. -C. Wong. Fast and accurate rectilinear Steiner minimal tree algorithm for VLSI design. In
Proceedings of the International Symposium on Physical Design, pp. 28–25, San Francisco, CA, 2005.

92. F. D. Lewis, W. C. Pong, and N. VanCleave. Local improvement in Steiner trees. In Proceedings of the
Great Lakes Symposium VLSI, pp. 105–106, Kalamazoo, MI, March 1993.

93. I. I. Mandoiu, V. V. Vazirani, and J. L. Ganley. A new heuristic for rectilinear Steiner trees. IEEE
Transactions Computer-Aided Design, 19: 1129–1139, October 2000.

94. H. Zhou. Efficient Steiner tree construction based on spanning graphs. IEEETransactions Computer-Aided
Design, 23: 704–710, May 2004.

95. A. B. Kahng, I. I. Măndoiu, and A. Z. Zelikovsky. Highly scalable algorithms for rectilinear and octilinear
Steiner trees. In Proceedings of the Asia and South Pacific Design Automation Conference, Yokohama,
Japan, pp. 827–833, 2000.

96. U. Fößmeier,M. Kaufmann, and A. Zelikovsky. Faster approximation algorithms for the rectilinear Steiner
tree problem. Discrete and Computational Geometry, 18: 93–109, 1997.

97. A. B. Kahng, I. I. Măndoiu, and A. Z. Zelikovsky. Practical approximations of Steiner trees in uniform
orientation metrics. InHandbook of Approximation Algorithms and Metaheuristics, T. E. Gonzalez, (Ed.).
CRC Press, Boca Raton, FL, 2006.

98. Q. Zhu, H. Zhou, T. Jing, X. -L. Hong, and Y. Yang. Spanning graph based non-rectilinear Steiner tree
algorithms. IEEE Transactions Computer-Aided Design, 24(7): 1066–1075, July 2005.

99. S. Arora. Polynomial time approximation schemes for Euclidean tsp and other geometric problems. Journal
of the Association for Computing Machinery, 45(5): 753–782, September 1998.

100. B. Lu and L. Ruan. Polynomial time approximation scheme for the rectilinear Steiner arborescence
problem. Journal of Combinatorial Optimization, 4(3): 357–363, September 2000.

101. L. Zosin and S. Khuller. On directed Steiner trees. In Proceedings of the ACM/SIAM Symposium Discrete
Algorithms, San Francisco, CA, pp. 59–63, 2002.

102. C. Chu and Y. -C. Wong. Fast and accurate rectilinear Steiner minimal tree algorithm for VLSI design. In
Proceedings of the International Symposium on Physical Design. ACMPress, New York, 2005, pp. 28–35.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 509 29-9-2008 #2

25 Timing-Driven
Interconnect Synthesis

Jiang Hu, Gabriel Robins, and Cliff C. N. Sze

CONTENTS

25.1 Introduction.. 509
25.2 Wirelength-Radius Trade-Offs . 510
25.3 Steiner Arborescences . 513
25.4 Elmore Delay-Based Routing Constructions . 520
25.5 Non-Hanan Interconnect Synthesis . 522
25.6 Wire sizing . 529
25.7 Nontree Routing . 529
25.8 Discussion and Future Research Directions . 530
Acknowledgment .. 530
References . 530

25.1 INTRODUCTION

In this chapter, we address performance-driven interconnect synthesis, which seeks to optimize
circuit performance by minimizing signal delays to critical sinks. Timing-driven wiring geometries
are in general quite different from optimal-area (i.e., Steiner) interconnect trees, especially as die
sizes continue to grow while feature dimensions steadily shrink.∗ The exposition below focuses on
selected approaches to performance-driven routing, and details key historical research developments
that helped usher in the era of high-performance interconnect synthesis. For extensive surveys on
this subject, see Refs. [19,20]. For a general overview of computer-aided design (CAD) of very large
scale integrated (VLSI) circuits, see some of the classical textbooks [21–25].

As transistor sizes continued to dramatically shrink while their switching speeds have increased
into the multigigahertz range, the circuit performance bottlenecks migrated from the devices them-
selves to the wires that interconnect them. Indeed, it was observed in the late 1980s that given the
VLSI scaling trends at that time, interconnection delay was already contributing up to 70 percent of
the clock cycle in circuits [26–28]. Performance-driven layout design thus started to receive much
research attention, especially timing-driven placement, which has a particularly significant effect
on signal delays [27–32]. However, during that early era in the evolution of VLSI CAD, routing
solutions were typically not available during the placement phase. Performance-driven methods of

This work was supported by a Packard Foundation Fellowship, by National Science Foundation Young Investigator Award
MIP-9457412, and by NSF grants CCR-9988331, CCF-0429737, and CNS-0716635.
∗ In routing noncritical nets (or sinks), rather than optimize delay we instead seek to minimize overall wirelength, an objective
that gives rise to variants of the classical Steiner problem [1–10]. On the other hand, modern ultra-deep-submicron VLSI
CAD seeks to optimize and trade-off various combinations of objectives and criteria, such as delay, skew, area, density,
manufacturability, reliability, power, electromigration, parasitics, noise, and signal integrity [11–18].

509

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 510 29-9-2008 #3

510 Handbook of Algorithms for Physical Design Automation

the early 1990s therefore used simple (e.g., geometric or linear) estimates of interconnection delay
to drive the placement process, sacrificing modeling accuracy in favor of computational tractability.

For a given timing-driven placement, a corresponding timing-driven routing seeks to minimize
source-to-sink signal delays. To optimize circuit performance, early timing-driven routing methods
relied on, e.g., net priorities [22], static timing analysis [33], hierarchical approaches [34], and A∗

search [35]. Since the early 1990s, there has been a steady shift from technology-independent rout-
ing methodologies to technology-dependent interconnect synthesis. Analyses of the Elmore delay
formula [36] for distributed RC trees [37–39] motivated cost-radius trade-offs that depended on the
underlying technology [40–44]. Thus, routing tree constructions that were based on various tech-
nology parameters, net criticalities, and other timing or performance issues provided improvements
over the previous static, technology-obliviousmethods [16].

Several early works abandoned the algorithmic convenience and analytic simplicity of classical
geometric objectives, and began to address the less tractable but more realistic actual delay. For
example, an early sequence of papers by Boese et al. [12,45–47] proposed new classes of delay
objectives, along with improved-performance routing algorithms that directly optimized, e.g., the
Elmore delay. These works also established the fidelity of Elmore-based constructions relative to
accurate delay simulators (e.g., SPICE) [16]. That is, it was observed that optimizing the Elmore
delay tends to also minimize real delay.

In parallel with these advances, sink-dependent delay objectiveswere recognized asmore critical
than net-dependent delayminimization.Because the timing-driven placement and routingdesign loop
usually iterated tightly with static timing estimation, critical-path information was often available
during routing. Thus, formulations that optimized delays with respect to a set of critical sinks proved
more effective than formulations that optimized delays in individual nets while ignoring the critical
sinks [16]. The near-optimality ofminimum-delay routing heuristicswas also quantified empirically,
showing, e.g., that certain simple heuristics achieved almost optimal critical sink delays [12,16,
47,48]. Other advances in timing-driven interconnect synthesis for improving circuit performance
included various approaches to wire sizing, non-Hanan routing, nontree topologies, and arborescence
trees. The remainder of this chapter discusses some of these topics and techniques in greater detail.

25.2 WIRELENGTH-RADIUS TRADE-OFFS

Researchers in interconnect synthesis observed that while low-wirelength routing trees have smaller
capacitance-related delays, low-radius interconnects have shorter pathlength-related signal propa-
gation delays [16].∗ However, there exists an inherent conflict between these two objectives (i.e.,
minimizing overall tree cost versus minimizing source-to-sink pathlengths), and when one of these
two objectives is optimized, the other objective typically suffers (Figure 25.1). Indeed, shortest paths
trees (i.e., those producedbyDijkstra’s classical algorithm [57]) have the best possible source-to-sink
pathlengths but usually induce high overall tree cost (Figure 25.1a). On the other hand, minimum
spanning trees (i.e., those produced by Prim’s classical algorithm [58]) have optimal tree cost but
produce potentially high source-to-sink pathlengths (Figure 25.1b).

To simultaneously optimize both the routing tree radius as well as its cost, the following
formulation was proposed [59]:

The Bounded-RadiusMinimum Routing Tree Problem: Given a parameter ε ≥ 0 and a signal net
with radius R, find a minimum-cost routing tree T with radius(T) ≤ (1 + ε) · R.

∗ We define the radius of a routing tree/topology to be its maximum source-to-sink pathlength, and its cost to be its total
wirelength. Similarly, the radius of a net is defined as its farthest source-to-sink distance. Distances and wirelengths
are usually measured using the Manhattan/Rectilinear norm, although alternative interconnect architectures with more
complicated underlying metrics have recently become popular, such as preferred direction routing and λ-geometries
[2,49–56].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 511 29-9-2008 #4

Timing-Driven Interconnect Synthesis 511

(a) (b) (c)

FIGURE 25.1 Candidate interconnection trees for the same net, where the signal source pin is located at the
center and the sinks are located on the circumference of a circle: (a) shortest paths tree, (b) minimum spanning
tree, and (c) low-cost low-radius trade-off hybrid tree.

The user-specified parameter ε controls the trade-off between the competing minimum-radius
and minimum-cost objectives. Setting ε = 0 induces a minimum-radius (i.e., shortest paths) tree,
while increasing ε loosens the radius restriction, thus allowing further tree cost optimization. At the
other extreme, setting ε = ∞ results in a minimum-cost spanning tree. Note that these definitions
and formulations easily generalize from spanning trees to Steiner trees (i.e., where new points/vias
may be added to further optimize total wirelength). However, in performance-driven layout, where
a fast delay estimator is employed in a tight iterative design loop, spanning trees are typically easier
to compute than Steiner trees. Moreover, a spanning tree can usually be easily converted into a
corresponding Steiner solution (e.g., by edge-overlapping),without disimproving its original radius.

The earliest heuristic to solve the Bounded-Radius Minimum Routing Tree (BRMRT) problem
was the bounded-Prim (BPRIM) approach of Refs. [43,59], which follows the general structure of
Prim’sminimumspanning tree (MST) algorithm [58]. Although simple to implement and effective in
practice over typical inputs, this approach can produce trees with cost arbitrarily larger than optimal
in theworst case. Shallow-light tree constructions avoid suchworst-case scenarios by simultaneously
bounding both the worst-case radius and the worst-case cost of the resulting routing tree [41–44].

The basic approach of algorithms such as the bounded-radius bounded-cost (BRBC) method
[43] is as follows: (1) traverse a minimum spanning tree in depth-first order, (2) insert additional
edges whenever the prescribed radius bound is violated, and (3) return the shortest paths tree over
the resulting graph (Figure 25.2). The BRBC algorithm produces a tree with radius at most (1 + ε)

times optimal, and cost at most (1 + 2
ε
) times optimal [16,43].

The BRMRT problem formulation and the BRBC algorithm generalize to regimes where we
seek a low-radius tree that spans a vertex subset in an underlying graph, while using the remaining
graph vertices as potential Steiner points to minimize the overall interconnection cost. Note that
when ε = ∞, the classical graph Steiner problem is a special case of this generalization. A BRBC
Steiner analogue first constructs an approximate minimum-cost Steiner tree T that spans the target
vertex subset, and then proceeds with the remaining radius-minimization optimization as before.
This will yield a routing tree with radius bounded by (1 + ε) times optimal, and cost bounded by
(1 + 2

ε
) times the cost of T .

Note that the cost of the heuristic Steiner tree T can itself be bounded by a constant times
optimal. For example, if we use the best-known general graph Steiner heuristic of Robins and
Zelikovsky [10,60] that has an approximation bound of 1+ ln 3

2
≈ 1.5493 times optimal for arbitrary

weighted graphs, then the resulting Steiner-BRBC tree cost bound will be (1 + ln 3
2

) · (1 + 2
ε
) times

optimal for general graphs. The underlying geometry can be exploited to further improve the cost
bound of Steiner-BRBC to 2 · (1+ 1

ε
) times optimal for any metric. In particular, for the Manhattan

and Euclidean geometries, this general bound can be further improved to 3
2
· (1 + 1

ε
) times optimal

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 512 29-9-2008 #5

512 Handbook of Algorithms for Physical Design Automation

BRBC algorithm
Input: Graph G = (V,E) (with radius R, source s0 ∈V), ε ≥ 0
Output: Spanning tree TBRBC with r(TBRBC) ≤ (1+ ε) · R

and cost(TBRBC) ≤ (1+ 2
ε
) · cost(TM)

Q=TM

L= depth-first tour of TM

Sum=0
For i= 1 to |L|−1
Sum=Sum+dist(Li,Li+1)

If Sum≥ ε · distG(s0,Li+1) Then
Q=Q ∪ {edges in minpathG(s0, Li+1)}
Sum=0

Output TBRBC = shortest paths tree of Q

FIGURE 25.2 BRBC spanning tree algorithm produces a tree TBRBC with radius at most (1 + ε) · R and cost
at most (1+ 2

ε
) · cost(TM). (From Cong, J., Kahng, A. B., Robins, G., Sarrafzadeh, M., and Wong, C. K., IEEE

Trans. Comput. Aided Des., 11, 739, 1992; Kahng, A. B. and Robins, G.,OnOptimal Interconnections for VLSI,
Kluwer Academic Publishers, Boston, MA, 1995.)

and 2√
3
· (1+ 1

ε
) times optimal, respectively. For λ-geometries (which allowwiring angles of iπ

λ
[54]),

a cost bound of (2√
3
cos π

λ
) · (1 + 1

ε
) times optimal can be shown for BRBC [16].

Experimental benchmarks indicate that both the BPRIM and BRBC algorithms run quickly and
indeed yield a smooth trade-off between tree cost and tree radius [16,43]. In fact, on typical nets,
the cost-radius trade-off is on average significantly more favorable than suggested by the theoretical
bounds. For example, for ten pins and ε = 1, BRBC offers an average of 21 percent savings in tree
radius over optimal, at the expense of only 13 percent average rise in tree cost over optimal.Moreover,
the interconnects produced by BPRIM and BRBC have significantly better delay characteristics than
classical Steiner trees, as verified by accurate timing simulators (e.g., SPICE) [16,43].

An alternative approach to the wirelength-radius trade-offs is the AHHK algorithm [40], which
integrates Prim’s minimum spanning tree algorithm [58] and Dijkstra’s shortest path tree algorithm
[57]. Prim’s algorithm minimizes the total wirelength, while Dijkstra’s algorithm minimizes the
tree radius (i.e., the source-to-sink pathlengths). Thus, these two classic algorithms address, albeit
separately, two major concerns in performance-driven interconnect synthesis. On the other hand,
these two algorithms can be implemented similarly, by starting from the source node and adding one
edge at a time until all the specified vertices in V are spanned.

The main difference between these two algorithms is the criterion for selecting which edge to be
added at each iteration. Prim’s algorithm [58] selects the edgewith theminimum length. In particular,
Prim’s algorithm iteratively adds to the growing tree T a new node vj and edge eij, where vi ∈ T
and vj ∈ V − T are chosen to minimize the edge length |eij|. In contrast, Dijkstra’s algorithm [57]
attempts to minimize the pathlength from the source node when selecting an edge. Specifically,
Dijkstra’s algorithm iteratively adds to the growing tree T a new node vj and edge eij, where vi ∈ T
and vj ∈ V −T are chosen to minimize the the sum of the edge length |eij| and the pathlength li from
the source node to vertex vi in T .

Generalizing this similarity between the two traditionalmethods of Prim andDijkstra, theAHHK
algorithm iteratively adds to the growing treeT a newnode vj and edge eij, where vi ∈ T and vj ∈ V−T
are chosen to minimize the sum of the edge length |eij| and the pathlength li from the source node
to vertex vi in T times a fixed constant c. In this hybrid scheme, the chosen constant 0 ≤ c ≤ 1
serves to smoothly trade-off total wirelength againt tree radius (i.e., source-to-sink pathlengths). In
particular, when c = 0, the resulting AHHK tree is identical to Prim’s minimum spanning tree, and
when c = 1, the resulting AHHK tree is the same as Dijkstra’s shortest paths tree. Varying the value

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 513 29-9-2008 #6

Timing-Driven Interconnect Synthesis 513

(a) (b)

61

3

4

5

78

1

3

4

5

7
8

2 2

6

FIGURE 25.3 Examples of AHHK tree in the Euclidean plane, with (a) c = 1
3
(radius 15.9 and cost 26.4) and

(b) c = 2
3
(radius 10.3 and cost 29.7). The edge labels indicate the order of adding the edges in the algorithm.

(From Alpert, C. J., Hu, T. C., Huang, J. H., Kahng, A. B., and Karger, D., IEEE Trans. Comput. Aided Des.
Integrated Circuits Syst., 14, 890, 1995. With permission.)

Steiner node

FIGURE 25.4 Examples of converting a spanning tree into a rectilinear Steiner tree through edge overlapping.

of c between 0 and 1 results in intermediate trade-off trees between the two extremes of Prim’s
and Dijkstra’s constructions. Figure 25.3 gives examples of AHHK trees for different values of the
trade-off parameter c.

Once an AHHK spanning tree is obtained, it can be converted to a rectilinear Steiner tree using
edge overlapping. That is, if the bounding boxes of two tree edges overlap, the overlapping portions
can form a new edge with one end being a Steiner node, as illustrated in Figure 25.4. Such edge
overlappings can usually reduce wirelength with respect to the original spanning tree.∗ If there
are multiple options for edge overlapping at a given step, we can break ties by giving priority to
overlapping edges that yield the greatest wirelength reduction.

25.3 STEINER ARBORESCENCES

Historically, the primary application of rectilinear Steiner minimum trees in VLSI CAD has been in
global routing, because older physical design paradigms did not require the modeling of wires in the
placement and floorplanning stages. However, the last several generations of technology have made
it necessary to model the impact of wiring much earlier in the design process. For example, during
placement, physical synthesis, and even floorplanning, we commonly wish to perform static timing

∗ While edge overlapping is a practical technique that reduces wirelength in typical scenarios, there are known pathological
pointset instanceswhere edgeoverlapping over anyminimumspanning tree does not yield anywirelength savingswhatsoever
[61], whereas other Steiner-point inducing methods can still yield substantial savings [62,63].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 514 29-9-2008 #7

514 Handbook of Algorithms for Physical Design Automation

s0

FIGURE 25.5 Minimum-cost RSA.

analysis to evaluate the performance of the current design iteration. To predict this with reasonable
accuracy, a model of the wiring of each net must be available. Because blocks and cells may move
quite often during these earlier phases of the physical design process, it is imperative to be able to
efficiently and accurately estimate wiring delays.

Such interconnect estimationwas traditionally formulated as theSteiner problem.However, given
the scaling trends in VLSI technology, a Steiner tree often results in inaccurate timing estimates,
which may in turn misguide the floorplanning, placement, and physical synthesis design phases. On
the other hand, Elmore delay analyses and cost-radius trade-offs havemotivated research into routing
constructions that simultaneously optimize interconnect length, source–sink paths, and a quadratic
objective that optimizes the sum of source–sink pathlengths [16]. In particular, it was discovered that
aminimum-cost rectilinear Steiner arborescence (RSA) heuristically addresses all of these objectives
reasonably well [64], and thus provides highly accurate (as well as efficient) timing estimates.

The Rectilinear Steiner Arborescence Problem: Given a signal net S in the Manhattan plane with
source pin s0, find a minimum-cost Steiner tree T that spans S, where the pathlengths in the tree T
from s0 to every sink are equal to the correspondingManhattan distances.

The RSA problem seeks a minimum-cost shortest paths Steiner tree (Figure 25.5), and is thus a
special case of the Steiner version of the BRMRT problem discussed above (where ε = 0). The RSA
problem originated with early works such as Refs. [65,66]. Efforts were made to find a polynomial-
time optimal arborescence algorithm, resulting in a proliferation of RSA heuristics [64,67–70], until
it was finally proven that the RSA problem is NP-complete [71].

The first well-known effective RSA heuristic was proposed in Ref. [69]. Given a signal net in the
Manhattan plane, the heuristic of Ref. [69] maintains a set of points, originally being all of the pins
of the net, and repeatedly merges (i.e., connects) in this set a pair of points/pins whose bounding box
is farthest from the source pin. This process terminates when the resulting arborescence spans the
entire net. Choosing a new merge point that is dominated by two existing points allows the greatest
flexibility for subsequent merges to optimize wirelength while always maintaining the shortest paths
property of partial solutions. Figure 25.6 describes this heuristic more formally, while Figure 25.7
gives an illustrative execution example. The running time of this method is O(n log n).

Empirical studies indicate that for typical nets, the RSA heuristic of Ref. [69] as well as the
A-tree construction of Ref. [64], both yield solutions with average cost within 4 percent of the
optimal RSA cost. On the theoretical side, both of these approaches have been proven to produce
rectilinear arborescence trees that are never worse than twice the optimal [69], and pathological
examples were found where both methods meet this twice-optimal worst-case bound [16]. Whereas,
previous approaches typically handle cases where the sinks lie in the first quadrant (with respect to

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 515 29-9-2008 #8

Timing-Driven Interconnect Synthesis 515

Algorithm: Rectilinear Steiner arborescence (RSA)
Input: A set of sink vertices {v1,v2,. . .,vn} in the first quadrant
Output: A rectilinear Steiner arborescence rooted at (0, 0)
Let � be the set of subtrees (Initially � = ∅)
For each sink vi at location (xi,yi)

Insert into � a subtree Ti rooted at (xi,yi) which contains only vi

While |�| > 1 Do
Find two subtrees Tj and Tk in � such that xr +yr is maximum,
where xr =min(xj,xk) and yr =min(yj,yk)

Create a new subtree Tr by creating a new root at (xr,yr)

Connect the new root to (xj,yj) and (xk,yk) by a horizontal and/or
a vertical edge
Remove Tj and Tk from �

Insert Tr into �

Construct a tree T by connecting (0, 0) to (xr,yr) by a horizontal
and/or a vertical edge
Return T

FIGURE 25.6 The RSA algorithm of Ref [69].

a net’s source pin), an extension to all four quadrants, with running time O(n log n), was given in
Ref. [72].

The RSA problemwas generalized to arbitrary graphs as follows [73]. For an arbitrary weighted
graph G = (V ,E) and two nodes u, v ∈ V , let minpathG(u, v) denote the cost of a shortest path
between u and v in G. The graph Steiner arborescence (GSA) problem can now be defined.

The Graph Steiner Arborescence Problem: Given a weighted graphG = (V ,E), and a specified
net N ⊆ V with source pin/node n0 ∈ N to be interconnected in G, construct a least-cost spanning
tree T = (V ′,E ′) with N ⊆ V ′ ⊆ V and E ′ ⊆ E such that minpathT (n0, ni) = minpathG(n0, ni) for
all ni ∈ N .

As with the rectilinear arborescence problem, the GSA problem is NP-complete [73]. Construct-
ing an arborescence can be viewed as folding or overlapping paths within a shortest paths tree, so
as to induce the maximum wirelength savings while maintaining shortest paths. Indeed, this is the
operational principle of the RSA heuristic of Ref. [69], among others. To generalize this strategy to
arbitrary graphs, we define dominance in weighted graphs as follows [73].

Definition1 Given aweighted graphG= (V ,E), and nodes {n0, p, s} ⊆ V,we say that p dominates
s if minpathG(n0, p) = minpathG(n0, s) + minpathG(s, p).

Thus, a node p dominates a node s if there exists a shortest path from the source n0 to p that also
passes through s (Figure 25.8a). Keeping in mind that the shortest path between a pair of nodes in
a graph may not be unique, MaxDom(p, q) is defined as a node in V dominated by both p and q,
which maximizes the distance minpathG[n0,MaxDom(p, q)] to the source node n0 (Figure 25.8b).
The dominated vertexMaxDom is chosen to be as far from the source node as possible, so as to yield
the greatest possible wirelength overlap between the two paths, while still maintaining the shortest
paths property with respect to the two target nodes.

The above definitions enable the following path-folding arborescence (PFA) heuristic [73], as
follows. Starting with the set of nodes N that initially contains the net (i.e., the source and all the
sinks), we find a pair of nodes p and q in N such that m = MaxDom(p, q) in G is farthest away
from the source node n0 among all such pairs. We then replace p and q in N with m, and iterate
until only the source remains in N . The overall GSA solution is formed by using shortest paths

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 516 29-9-2008 #9

516 Handbook of Algorithms for Physical Design Automation

Source

Source

(a) (b) (c)

(d) (e) (f)

Source

x + y = c1

x + y = c3

Source

x + y = c4

Source

x + y = c2

Source

FIGURE 25.7 The RSA algorithm of Ref [69]. The solid circle in (a) is the source and the hollow circles are
sinks. The first four iterations are shown in (b–e). At the beginning (a), there are seven (one node) subtrees,
one per sink, plus the source itself. In (b) a pair of (distant-from-the-source) subtrees is merged to form a new
subtree, resulting in five remaining subtrees. Trees continue to merge during subsequent iterations, resulting in
the final RSA shown in (f).

p

s

minpathG(s, p)

minpathG(n0, s)

minpathG(n0, p)
n0

minpathG(n0, m)

m = MaxDom(p, q)

p

q

n0

(a) (b)

FIGURE 25.8 Defining dominance in graphs: (a) Graph node p dominates node s when minpathG(n0, p) =
minpathG(n0, s) + minpathG(s, p) and (b) shows MaxDom(p, q) with respect to p and q. To maximize the
wirelength savings, we seek the farthest point m = MaxDom(p, q) from the source n0, where p and q both
dominate m.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 517 29-9-2008 #10

Timing-Driven Interconnect Synthesis 517

Path-folding arborescence (PFA) algorithm
Input: Weighted graph G = (V, E) and net N ⊆V with source n0 ∈N
Output: A low-cost shortest-paths tree spanning N in G
M =N
While N �= {n0} Do
Find a pair {p,q} ⊆N such that m=MaxDom(p,q)

has maximum minpath(n0,m) over all {p,q} ⊆N
N = {N−{p,q}} ∪ {m}
M =M ∪ {m}

Output the tree formed by connecting each node p ∈M
(using a shortest path in G) to the nearest node in M that p
dominates

FIGURE 25.9 The graph-based PFA heuristic. M initially holds all the nodes to be spanned, and is then
augmented with theMaxDom Steiner points found during each iteration. (FromAlexander, M. J. and Robins, G.,
IEEE Trans. Comput. Aided Des., 15, 1505, 1996.)

in G to connect each MaxDom(p, q) to p and to q (Figure 25.9). Empirical experiments indicate
that the PFA method is effective in producing shortest paths trees with low wirelength (i.e., PFA’s
averagewirelength is close to that of the best existing graph Steiner heuristics) [73]. This observation
was reconfirmed in Ref. [11], where it was demonstrated that using rectilinear arborescences during
physical synthesis only induces an average of 2–4 percent wirelength penalty over rectilinear Steiner
trees, while offering substantial accuracy gains in performance estimation.

A different approach to the GSA problem generalizes the Iterated 1-Steiner (I1S) approach
of Kahng andRobins [16,63] to yield an effective iterated-dominance (IDOM) arborescencemethod-
ology for arbitraryweighted graphs [73]. The IDOMheuristic iteratively selects a single Steiner point
that minimizes the cost of the spanning arborescence over all the sinks and Steiner points selected
thus far. The reason thatwe iterate a spanning arborescence construction to producea Steiner arbores-
cence tree is that the former is easy to compute,∗ while the latter is NP-complete. The IDOMheuristic
thus repeatedly (and greedily) finds Steiner candidates that reduce the overall spanning arborescence
cost, and includes them into the growing set of Steiner nodes (Figure 25.10).

To achieve an improved runtime for the IDOM approach, Alexander and Robins [73] defined
the DOM heuristic, which is a restricted version of the PFA heuristic (Figure 25.9), except where
MaxDom(p, q) is selected only fromN instead of allowed to be an arbitrary node in V . This substan-
tially speeds up the search for MaxDom(p, q) at each iteration, because N is typically much smaller
than V . The DOM subroutine constructs an arborescence by using a shortest path to connect each
sink in N to the closest sink/source in N that it dominates, and then computes a shortest paths tree
over the graph formed by the union of these paths.

Given a set of Steiner candidate node S ⊆ V − N , the cost savings of S with respect to DOM is
defined as �DOM(G, N , S) = cost[DOM(G, N)] − cost[DOM(G, N ∪ S)]. The IDOM approach
starts with an initially empty set of Steiner candidates S = ∅. It then finds a node t ∈ V − N that
maximizes�DOM(G, N , S∪{t}) > 0, and repeats this procedurewith S ← S∪{t}. The wirelength
required by DOM to span N ∪ S will decrease with each added node t, and the overall construction
terminates when there is no t ∈ V − (N ∪ S) such that �DOM(G, N , S∪ {t}) > 0. The final overall
solution is DOM(G, N ∪ S). This method is described in Figure 25.11, and a sample execution is
given in Figure 25.12.

∗ Recall that a node p dominates a node s if there exists a shortest path from the root to p passing through s. An optimal
spanning arborescences can be computed efficiently by using a shortest path to connect each sink to the closest sink/source
that it dominates, and then computing Dijkstra’s [57] shortest paths tree over the graph formed by the union of these paths.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 518 29-9-2008 #11

518 Handbook of Algorithms for Physical Design Automation

(a) (b)KMB (cost = 16, maxpath = 16) IGMST (cost = 14, maxpath = 12)

(c) (d)DJKA (cost = 19, maxpath = 8) IDOM (cost = 14, maxpath = 8)

FIGURE 25.10 Four routing solutions for the same four-pin net (the signal source is the gray-shaded square
and the solid squares are sinks): (a) the solution produced by the KMB graph Steiner heuristic of Ref. [74];
(b) the optimal Steiner tree, which is also the solution produced by the graph I1S algorithm of Refs. [16,62];
(c) Dijkstra’s shortest paths tree of Ref. [57]; and (d) the optimal Steiner arborescence, which is also the solution
produced by the IDOM algorithm of Ref. [73]. Note that the IDOM solution in (d) is optimal in terms of both
total wirelength as well as maximum pathlength (although this double-optimal outcome is unusual).

The IDOM approach is a general template for producing arborescences for designated subgraphs
(i.e., nets) in arbitrary weighted graphs (i.e., underlying routing grids) [73]. Moreover, the IDOM
heuristic escapes the known twice-optimal worst-case examples of previous arborescence heuristics,
both in the rectilinear plane as well as in arbitrary weighted graphs.∗ The IDOM approach outper-
forms the previous heuristics on empirical benchmarks [73], including in field-programmable gate

∗ There exist very rare worst-case graphs that force IDOM to produce a tree with cost logarithmic factor times optimal,
matching the best-known nonapproximability results for the GSA problem [73].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 519 29-9-2008 #12

Timing-Driven Interconnect Synthesis 519

Iterated dominance (IDOM) algorithm
Input: A weighted graph G= (V, E) , a net N ⊆V with n0 ∈N
Output: A low-cost arborescence T ′ = (V ′,E ′) spanning N,

where N ⊆V ′ ⊆V and E ′ ⊆E
S = ∅
Do Forever
T = {t∈V−N |�DOM(G, N, S ∪ {t}) > 0}
If T = ∅ Then Return DOM(G, N ∪S)

Find t∈T with maximum �DOM(G, N, S ∪ {t})
S =S ∪ {t}

FIGURE 25.11 IDOMalgorithm for producing arborescences in arbitraryweighted graphs. (FromAlexander,
M. J. and Robins, G., IEEE Trans. Comput. Aided Des., 15, 1505, 1996.)

array (FPGA) routing, which is inherently a graph-based regime. Subsequent graph arborescence
algorithms, including fast polynomial-timeheuristics as well as exponential-timeoptimal algorithms
were introduced in Ref. [75].

1

1

1

1

1

1

1

11

(a) (b)

2 2

22

A

B

C

D

S1

S2 S3

S4

B C

A D

3

3

3

3

2 2

(c) (d) (e)

A D

B C

S3

3

3

3

3

2 2

1
1

2

2
A D

B C

S2

S3

A

B

C

D

S1

S2 S3

S4

FIGURE 25.12 Execution example for the IDOM algorithm: (a) GSA problem instance with source node A
(gray), sink nodes {B, C, D} (solid), and graph edge weights shown; (b) initial DOMsolution over the contracted
pathlengths distance graph (over the netN = {A, B, C, D}) having cost = 8; (c) Steiner candidate S3 produces a
savings of �DOM = 2, which reduces the overall tree cost from 8 to 6; thus S3 is retained as a Steiner point; (d)
Steiner candidate S2 is the final Steiner point with positive�DOM, and further reduces the solution cost from6 to
5; and (e) the final IDOM solution (having cost = 5), with paths reexpanded relative to the original input graph.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 520 29-9-2008 #13

520 Handbook of Algorithms for Physical Design Automation

25.4 ELMORE DELAY-BASED ROUTING CONSTRUCTIONS

Objectives such asminimum tree cost, bounded radius, cost-radius trade-offs, and even arborescences
were allmotivated by analyses of the Elmore delay approximation [36–39]. However, these objectives
are merely abstractions that do not directly optimize delay. This section describes approaches that
optimize Elmore delay directly while synthesizing a routing tree.

The earliest Elmore-based routing approach is the Elmore routing tree (ERT) spanning con-
struction of Boese et al. [16,47,76] (Figure 25.13). Similar to Prim’s MST algorithm [58], the ERT
heuristic starts with a tree T = (V , E) initially containing only the source s0, and then repeatedly
finds a terminal si ∈ V and a sink sj ∈ S−V so that adding edge (si, sj) to T minimizes the maximum
Elmore delay to any sink in the growing tree. The greedy approach implicit in the ERT algorithm
easily generalizes to any delay model by using the corresponding delay estimator in the inner loop
of Figure 25.13. For example, Ref. [77] proposed the use of a two-pole simulator within a similar
greedy construction, and Ref. [78] used this strategy for multi-chip module (MCM) routing under a
second-order delay model.

The ERT algorithm template can produce a timing-driven Steiner Elmore routing tree (SERT)
when new sinks are allowed to connect anywhere along an edge in the growing tree, inducing a
Steiner node at that connection point [12]. Following the ERT approach, the SERT variant greedily
minimizes the maximum source-to-sink Elmore delay at each tree-growing step. To allow additional
optimization leeway, embeddings of L-shaped edges can remain indeterminate (within their bounding
boxes) for as long as possible during the execution. The SERT variant produces a Steiner topology
with low source-to-sink Elmore delays. Figure 25.14 depicts the execution of the SERT heuristic on
a sample eight-sink net.

In performance-driven layout, timing-critical paths are determined using timing analysis, and
then cells along these paths are placed closer together [27–32]. Timing analysis thus iteratively drives
changes within the placement as well as global routing phases. To avoid the “placement-routing
mismatch” where inherently net-dependent methods fail to exploit the critical-path information
available during iterative performance-driven layout, Boese et al. [47] proposed formulations that
extend the basic (S)ERT scheme to accommodate critical sinks. They proved the NP-completeness
of the critical-sink routing tree problem (CSRT) [46], and provided efficient heuristics that combine
Steiner construction, delay estimation, and global slack removal [47].

To address the CSRT formulation, Boese et al. generalized their SERT method to produce a
Steiner Elmore Routing Tree with identified critical sink (SERT-C) [47]. The SERT-C heuristic
begins with a tree containing a direct connection (s0, sc) between the source and the specified
critical sink, and then grows the routing tree around it while minimizing the Elmore delay (or an
alternate delay model) from the source to the critical sink (Figure 25.15). Figure 25.16 illustrates the

Elmore routing tree (ERT) algorithm
Input: Signal net S with source s0 ∈S
Output: Routing tree T over S
1. T = (V, E) = ({s0},∅)

2. While |V | < |S| do
3. Find si ∈V and sj ∈S−V that minimize the maximum Elmore

delay from s0 to any sink in the tree (V ∪ {sj}, E ∪ {(si,sj)})
4. V =V ∪ {sj}
5. E =E ∪ {(si, sj)}
6. Output resulting spanning tree T = (V, E)

FIGURE 25.13 ERT algorithm directly uses the Elmore delay formula in a greedy routing tree construction.
(From Boese, K. D., Kahng, A. B., and Robins, G., Proc. ACM/IEEE Design Automation Conference, Dallas,
TX, 1993. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 521 29-9-2008 #14

Timing-Driven Interconnect Synthesis 521

8

7 6

5

4
3

1

s0

(a)

2

6

8

7 6

5

4
3

1

s0

2

8

7 6

5

4
3

1

s0

2

8

7 6

5

4
3

1

s0

2

8

7 6

5

4
3

1

s0

2

(b)

(c) (d)

(e) (f)

8

7

5

4
3

1

s0

2

FIGURE 25.14 Execution of the SERT Steiner tree construction for an eight-sink net. The source terminal is
labeled 1, and the remaining sinks are numbered in the order of their distance from the source. (FromBoes, K. D.,
Kahng, A. B., McCoy, B. A., and Robins, G., IEEE Transactions Computer-Aided Design, 14, 1417, 1995. With
permission.)

execution of SERT-C for various choices of the critical sink (using the same eight-sink signal net as
in Figure 25.14). The SERT-C algorithm can be implemented to runwithin timeO(n2 log n) for n-pin
nets. Similar to the ERT and SERT approaches, SERT-C’s direct optimization of the Elmore delay
allows considerable flexibility with respect to the underlying technology parameters, delay model,
and specific input instance.

The methods described above easily extend to higher dimensions and alternate metrics and
geometries, including to non-Manhattan interconnect architectures such as preferred-direction
routing and λ-geometries [49–56]. The Elmore-based routing tree construction methods of [12]
influenced followup works on performance-driven routing trees, addressing additional issues such
as buffer insertion, wirelength estimation, alternative delay models, timing constraints, and antenna
effects [79–85].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 522 29-9-2008 #15

522 Handbook of Algorithms for Physical Design Automation

SERT-C algorithm
Input: A signal net S with source s0 ∈S and critical sink sc ∈S
Output: A critical-sink routing tree T over S
1. T = (V, E) = ({s0, sc}, {(s0, sc)})
2. While |V | < |S| do
3. Find sj ∈S-V and (v, v ′) ∈ E such that connecting sj

to a point x on (v, v ′) minimizes the Elmore delay to sc

in the tree (V ∪ {sj, x}, E ∪ {(v, x), (v ′,x), (x,sj)} − {(v,v ′)})
4. V =V ∪ {sj, x}
5. E =E ∪ {(v, x), (v ′, x), (x, sj)} − {(v, v ′)}
6. Output resulting Steiner tree T = (V, E)

FIGURE 25.15 The SERT-C algorithm directly incorporates the Elmore delay formula into a greedy critical-
sink routing tree construction. (FromBoese, K. D., Kahng, A. B., and Robins, G., Proceedings of the ACM/IEEE
Design Automation Conference, Dallas, 1993.)

25.5 NON-HANAN INTERCONNECT SYNTHESIS

In older (pre-1990s) VLSI regimes, where interconnect delay was mostly capacitive, resistance-
related delay componentswere negligible, and the objective of delay optimization therefore coincided
with minimizing the total interconnect length. However, as discussed above, in more modern VLSI
technologies, interconnect resistance began to dominate circuit performance, causing optimized
performance-driven interconnect to resemble minimumwirelength topologies less and less. Another
modern deviation from classical constructions involves the Hanan grid, which is obtained by draw-
ing horizontal and vertical lines through all the pins of a given net [86] (Figure 25.17). Hanan’s
theorem states that there always exists a rectilinear minimum Steiner tree embedded in the Hanan
grid [86,87].

Boese et al. [12] proved that only points from the Hanan grid need be considered in minimizing
the weighted sum of critical-sink delays. On the other hand, for the minmax objective of minimizing
the maximum sink delay, better routing solutions are possible when considering points that lie
off the Hanan grid [12]. For example, in Figure 25.18 a non-Hanan point is required to minimize
the maximum source–sink delay during tree construction. Such examples illustrate that the timing
requirements at different sinks are often mutually competing, and therefore good approaches must
consider all the sinks simultaneously, and utilize every available degree of optimization to produce
improved timing-driven interconnect solutions. In particular, the observation that restricting Steiner
nodes to be Hanan grid points is suboptimal motivates the problem of non-Hanan interconnect
synthesis.

Below we outline a general interconnect synthesis methodology that uses non-Hanan optimiza-
tion to yield better-performing interconnect topologies [82]. In particular, we address two problem
variants: (1) the minmax problem of minimizing the maximum source-to-sink delay and (2) the
critical-sink problem that seeks a specified delay at each sink. The later problem can be transformed
into a variant of the former problem, and optimal solutions may lie off the Hanan grid in either
variant. We next describe a procedure for constructing low-cost routing trees that satisfy prescribed
delay constraints at each sink.

The delay violation at each sink is defined as its delay minus its required arrival time (RAT).
A positive delay violation value therefore implies that the corresponding delay constraint was not
met. On the other hand, a negative delay violation value indicates timing slack, and enables the
possibility of further optimizing the routing tree cost by reducing the timing slacks. This trade-off
motivates the maximum delay-violation Elmore routing tree (MVERT) problem formulation, as
follows.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 523 29-9-2008 #16

Timing-Driven Interconnect Synthesis 523

(a)

(f)(e)

(b) Sink 2 (or 6) critical (also I1S tree)

6

8

7

5

4
3

1

s0

2

8

7 6

5

4
3

1

s0

2

68

7 6

5
4

3

1

2

(d)

6

8

7

5

4
3

1

2

8

7 6

5
4

3

1

2

(c)

8

7 6

5
4

3

1
s0

s0

s0

s0

2

Sink 8 criticalSink 7 critical

Sink 5 criticalSink 4 critical

Sink 1 (or 3) critical

FIGURE 25.16 The SERT-C critical-sink routing tree construction for an eight-sink net, showing solutions
for different choices of critical sink. The tree constructed when the source sc is node 2 or node 6 is also the I1S
solution, and the tree constructed when sc is node 7 is also the generic SERT result.

Sink Sink

(b)(a)

Sink Sink

Source Source

FIGURE 25.17 Example of (a) a Hanan grid induced by a net and (b) a minimum Steiner tree embedded in
the Hanan grid.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 524 29-9-2008 #17

524 Handbook of Algorithms for Physical Design Automation

(x, 0) (3, 0)

(1, 4)

(0, 0)

b

a

Sink a

98.5

98.0

99.0

1.00.0 y0.33

Sink b

x

Delay

FIGURE 25.18 Example illustrating the efficacy of non-Hanan routing. We assume unit resistance and unit
capacitance per unit wirelength. The driver has a source resistance of 6, and the sinks a and b have load
capacitances of 1 and 4.5 units, respectively. The variation in the Elmore delay at each sink as the Steiner point
x is moved from (0, 0) to (1, 0) is plotted on the right. The maximum sink delay for the tree is minimized at the
non-Hanan point x = 0.33. The analyses of Ref. [12] can be used to show that a Steiner point to the right of
(1, 0) is suboptimal. Even more dramatic discrepancies between Hanan and non-Hanan routings are achievable
in larger examples.

The Maximum Delay Violation Elmore Routing Tree Problem: Given a signal net N with source
v0 and a set of sinks Vsink = {v1, v2, . . . , vn}, construct a Steiner routing tree with minimum total
wirelength, so that the delay violation at each sink is nonpositive (i.e., meets the corresponding
timing constraints).

Because the routing-tree topology is no longer restricted to the Hanan grid, the set of can-
didate Steiner points is unbounded (as opposed to corresponding to the set of Hanan points as
in classical formulations). We must therefore find an efficient method for identifying the best
(non-Hanan) Steiner points that produce a good routing tree. We now describe a framework that
utilizes properties of the delay function to develop a simple and efficient algorithm to address this
challenge.

Following Ref. [12], define a maximal segment to be a set of contiguous edges, being either all
vertical or all horizontal. The work of Ref. [12] shows that the Elmore delay at each sink is a concave
functionwith respect to the location of a Steiner nodemoving along amaximal segment. This property
also holds for a soft edge that is an edge connecting two nodes vi, vj ∈ V , vi = (xi, yi), vj = (xj, yj),
such that (1) xi �= xj and yi �= yj and (2) the precise edge route between vi and vj is not yet determined.
The length lij of edge (vi, vj) is the Manhattan distance |xi − xj| + |yi − yj|. The use of soft edges
avoids premature commitment to a specific geometric embeddingof awire in rectilinear space,which
enables further wirelength optimization later on [82].

For a general routing-tree topology (Figure 25.19), consider the process of determining an opti-
mal connection between a new node vk to be attached to an existing edge eij. The dashed lines in
Figure 25.19 denote other nodes and edges of the existing routing tree, and CC represents the closest
connection point between node vk and edge eij. It can be shown that any connection downstream of
CC cannot yield an optimal solution [12]. Specifically, we seek an optimal connection point within
the bounding box defined by vi and CC. Suppose we connect vk to eij at point v′ = (x′, y′). Let
z = |x′ − xi| + |y′ − yi| be the Manhattan distance from v′ to vi. For convenience, we overload the
term CC to also denote its Manhattan distance to vi.

Following the work of Ref. [12], a delay function with respect to the connection locations for
soft edges under the Elmore delay model can be derived as follows. If a node is not downstream
from node vi, its Elmore delay from the source is

f1 = Rd(Ct − cz) + λ0 + λ1(lik − z) (25.1)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 525 29-9-2008 #18

Timing-Driven Interconnect Synthesis 525

v0

vj

vk

CC

vi

v �

FIGURE 25.19 General routing topology where a new node vk is to be connected to an existing edge eij.

where
λ0 and λ1 are constants
Ct denotes the total capacitive load that would be seen from the last stage of the driver if vk was

connected to vi

The Elmore delay from vi to v′ is given by

f ′ = rcz
(z
2

+ lij − z + lik − z
)

+ rz
(
Cj + Ck

)
(25.2)

The delay from v′ to any node in the subtree Tj rooted at vj can be calculated as

f2 = r
(
lij − z

) [
c
(
lij − z

)
2

+ Cj

]
+ λ2 (25.3)

Similarly, the delay from v′ to any node in subtree Tk is

f3 = r (lik − z)

[
c (lik − z)

2
+ Ck

]
+ λ3 (25.4)

where λ2 and λ3 are constants. The Elmore delay of a sink in Tj is given by the sum of f1, f ′, and
f2. The Elmore delay of a sink in Tk is the sum of f1, f ′, and f3. The Elmore delay of a sink, not
downstream of vi, is simply f1. In all these cases, the delay is either a linear or a quadratic function
of the Manhattan distance z with nonpositive coefficient for the second-order term.We can therefore
conclude that the delay for any sink is a concave function with respect to z, as follows.

Theorem 1 Under the Elmore delay model, the delay at any sink in the routing tree is a concave
function with respect to the Manhattan distance [82].

Rewriting the constraints on the routing tree into the form t(vi)−q(vi) ≤ 0 for all sinks vi ∈ Vsink,
we see that the maximum delay violation must always be nonpositive. As per Theorem 1, each of the
t(vi)’s is a concave function of the connection point z, and because any concave function shifted by
a constant is a concave function, this implies that we must find a reconnection point z such that the
maximumof the set of concave functions is nonpositive. This is pictorially shown in Figure 25.20 for
a net with four sinks u, v, w, and y, all of which have the same timing specification q. The maximum

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 526 29-9-2008 #19

526 Handbook of Algorithms for Physical Design Automation

q

Sink u

Sink v

Sink y

Sink w

CC0 p z∗b

Delay violation

z

FIGURE 25.20 Finding the optimal value of z that satisfies all the timing constraints.

violation function (depicted by a thicker line) is a piecewise concave function composed of three
concave pieces. Note that the graph shows that sink u is never critical in this case, for any value of z.
The delay violation at each sink as a function of z is a concave function and the objective is to find a
value of z closest to CC (corresponding to a minimal increase in the netlength) that satisfies all the
timing constraints. In Figure 25.20, this point is found to be z∗, and in general this point will be a
non-Hanan point.

In searching for the point z∗, we observe that it is possible to perform a search on the value of z
from 0 to CC, while taking advantage of the fact that the value on each concave piece is minimized at
its intersection with the concave piece on either side (if such a piece exists), or at 0 or CC otherwise.
In Figure 25.20, this translates to the fact that for the minmax problem, the only candidate solutions
are 0, p, b, and CC. This permits a dramatic reduction of the search space from the infinity of possible
intermediate points between 0 and CC.

For the problem of meeting the timing constraints at each sink, several pruning strategies are
possible during the search. Consider a binary search on a concave segment with endpoints x1 and
x2 (x1 < x2) where the function values are f (x1) and f (x2), respectively. If f (x1) < Tspec < f (x2) and
Tspec < f (x1+x2

2
), as illustrated in Figure 25.21, then the search can completely eliminate the interval[x1+x2

2
, x2

]
. This follows from the fact that any concave function over an interval is concave over any

continuous subinterval. By a symmetric argument, if Tspec ≥ f (x1+x2
2

), then the search can be confined
to the interval

[x1+x2
2

, x2
]
.

The pseudocode corresponding to this search is shown in Figure 25.22. The routing tree without
subtree Tk is denoted by T\Tk . The efficiency of the search can be greatly enhanced by taking
advantage of the piecewise-concave nature of the delay function. The search for z∗ occurs between
0 and CC in a binary search fashion, and begins at CC. If the value of the delay violation at CC is
negative, then we are done; otherwise, we need to test the delay violation at 0. We use CS to represent
the critical sink that has the maximum delay violation �max = max{t(vi) − q(vi), ∀ vi ∈ Vsink}. If
�max is positive at both 0 and CC, and the critical sink at 0 is the same as at CC, then there is no
solution satisfying the timing constraints. In this case, we choose the solution that yields the least
delay violation between 0 and CC.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 527 29-9-2008 #20

Timing-Driven Interconnect Synthesis 527

(x1 + x2)/2x1 x2

Tspec

Delay

x

FIGURE 25.21 Using piecewise concavity to speed up the optimization procedure.

A more complicated situation occurs when �max at 0 is negative, or �max is positive at 0, but the
corresponding critical sink is different from that at CC. Then, the search proceeds as a quasi-binary
search, as encoded in the function Search(Slft, Srit) in Figure 25.22. The variable S denotes a solution
that is triple of the form (connection node, �max, critical sink), and Slft and Srit denote the solutions

Optimal connection algorithm
Input: Subtree Tk rooted at sink vk,

Partial routing tree T\Tk, edge eij ∈ T\Tk

Output: Optimal connection between vk and eij

1. Tentatively join vk to CC, �rit ← �max,
CSrit ← sink with �max, Srit ← (CC,�rit, CSrit)

2. If �rit ≤ 0, Return CC
3. Tentatively join vk to vi

CSlft ← sink with �max, Slft ← (vi, �max, CSlft)

4. Return Search(Slft, Srit)

Function: Search(Slft, Srit)

5. If �rit ≤ 0, Return Srit

6. If (�lft > 0 and CSlft ==CSrit) or dist(vlft, vrit) < resolution
7. If �lft < �rit, Return Slft

8. Else Return Srit

9. vmid ← ((xlft + xrit)/2,(ylft + yrit)/2)

10. Join vk to eij at vmid,�mid ← �max

CSmid ← sink with �max,Smid ← (vmid, �mid, CSmid)

11. If �mid ≤ 0, Return Search(Smid, Srit)

12. Sr ← Search(Smid, Srit)

13. If �r ≤ 0, Return Sr

14. Sl ← Search(Slft, Smid)

15. If �l < �r, Return Sl

16. Else Return Sr

FIGURE 25.22 Algorithm for finding an optimal connection point between a sink and an edge. (From Hu, J.
and Sapatnekar, S. S., IEEE Trans. Comput. Aided Des., 19, 446, 2000.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 528 29-9-2008 #21

528 Handbook of Algorithms for Physical Design Automation

at the left and right end of the search interval, respectively. If the size of the interval is less than
a user-specified resolution, then the search terminates (lines 6–10 in Figure 25.22). On the other
hand, if the connection at the middle point of the interval yields a nonnegative�max, then the search
continues only on the right half of the interval (line 11 in Figure 25.22); otherwise, the left half of
the interval may be searched as well (lines 12–16 in Figure 25.22).

The MVERT algorithm [82] operates in two phases: (1) initial tree construction phase, where an
initial tree is heuristically built to minimize delay and (2) cost-improvement phase, where the tree
is iteratively refined to reduce its cost while ensuring that it still meets all the timing constraints.
The tree construction in Phase 1 is similar to the SERT construction procedure proposed in Ref. [12]
(described above). Recall that the essential idea of the SERT method is based on greedily building a
Steiner tree using a Prim-like method. Starting with a trivial tree T consisting of only the source v0,
the tree is iteratively built by joining a sink vk outside the tree to an edge (or the source) already in
the tree, so as to yield a resulting new tree with minimum Elmore delay. This process iterates until
all the sinks are included in the tree.

The initial tree construction procedure above considers only Hanan grid points as candidate
Steiner points. It therefore attempts to connect each point to either the closest connection (CC),
the upstream end of a tree edge, or directly to the source node. If the delay associated with a CC
connection is larger than the delay associated with a connection to the upstream edge endpoint, then
the algorithm will not choose the connection at CC. However, because of the interactions between
paths, MVERT solutions may lie at different (and possibly non-Hanan) points, and a connection to
the upstream end of an edge may result in a larger net length than is necessary.We therefore examine
the tree constructed in Phase 1 and move node connections from the upstream end of an edge toward
CC to reduce the tree length while still satisfying all the timing constraints. The idea is illustrated in
the example of Figure 25.18 for the constraint of 98.8 units, where a connection to (y, 0) is preferable
over a connection to (0.33, 0).

This non-Hanan interconnect synthesis algorithm (shown in Figure 25.23) can be implemented
as follows [82]. We first sort all the sinks in descending order of distance from the source. We then
disconnect each sink vk (along with its downstream subtree Tk) and reconnect it back to the tree at a
better reconnection point, if possible (as determined by the subroutine of Figure 25.22). Thus, at each
iteration, we choose an edge that provides the largest wirelength improvement while still respecting
the timing constraints. The computational complexity of the MVERT algorithm is O(n4), where n
is the number of sinks. The experimental results in Ref. [88] show that non-Hanan optimization can
in some instances provide considerable wirelength reduction as compared to other timing-driven
routing methods.

Non-Hanan optimization algorithm
Input: Routing tree T(V, E)

Output: Optimized routing tree T ′

1. T ′ =T
2. Sort all the sinks in descending order of distance to source
3. For each vk ∈ Vsink

4. Disjoin vk and its subtree Tk from T
5. For each edge eij ∈ T\Tk

6. Reconnect vk to eij at FindOptimalConnection(Tk,T\Tk,eij)

7. If ∃ improvement compared to T ′, Then T ′ =T
8. Return T ′

FIGURE 25.23 Non-Hanan optimization algorithm. (FromHu, J. and Sapatnekar, S. S., IEEE Trans. Comput.
Aided Des., 19, 446, 2000.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 529 29-9-2008 #22

Timing-Driven Interconnect Synthesis 529

25.6 WIRE SIZING

The fundamental trade-offs between interconnect capacitance and resistance in modern VLSI
technology suggests that to maximize performance, some wire segments should be made wider
than others. This motivates the technique of wire sizing, where every wire segment may have
a different width, independently of all the other wires. This degree of freedom afforded by
wire sizing can be leveraged throughout every phase of the performance-driven physical lay-
out process. Historically, although early works wire sized mainly clock trees [89–92] and power
distribution networks [93], the wire sizing of general interconnect became viable in the early
1990s [64,94–96] because of the confluence of VLSI scaling trends and algorithmic advances.
Wire sizing considerations can be easily incorporated into all the routing constructions discussed
above [16], and can even drive the routing process itself [95], as well as other layout phases higher
in the design hierarchy. A more detailed discussion of wire sizing techniques can be found in
Chapter 29.

25.7 NONTREE ROUTING

Historically, routing methodologies implicitly assumed that interconnections must have tree
topologies. In retrospect, this was a natural constraint because a tree achieves electrical connec-
tivity using minimum wire, and the VLSI technology trends of the 1980s were heavily skewed
toward wirelength and area minimization as the primary objective. However, as feature sizes
shrank dramatically and interconnect delays began to dominate circuit performance, researchers
began to investigate nontree (i.e., general graphs) routing topologies. Aside from improving
performance, nontree routing topologies offer other advantages, including the management of
signal reflections, increased reliability, and reduced skew in sink delays. Thus, nontree topolo-
gies were used for power/ground distribution, where general graph topologies enhance reliability
by lowering current densities and electromigration damage [93,97,98], as well as for clock dis-
tribution, where nontree topologies can reduce skew and minimize the impact of manufacturing
variation [99].

Adding extra wires to an existing routing tree can improve certain source–sink delays. Although
additional wires will always increase the total tree capacitance, the creation of multiple source–sink
paths can substantially lower certain internode resistance. Thus, as VLSI interconnect becomes thin-
ner andmore resistive, nontree routing topologies become increasingly attractive.McCoy andRobins
[17] have studied the following optimal routing graph (ORG) problem, which is a generalization of
some of the routing problems discussed above.

The Optimal Routing Graph Problem: Given a signal net S = {s0, s1, . . . , sn} with source s0,
find a set N of Steiner points and routing graphG = (S ∪ N , E) such that G spans S and minimizes
t(G) = n

max
i=1

t(si).

The ORG problem extends to critical-sink formulations as well as lumped RC and Elmore
delay models, which can be computed efficiently for general RC graph topologies [100,101].
The ORG problem is addressed algorithmically in Ref. [17] by starting with a reasonable ini-
tial topology (e.g., a heuristic Steiner or spanning tree), and greedily adding new edges to this
topology so as to keep improving the specified delay objectives in the growing routing graph.
Steiner points may also be introduced during this process to further optimize both delay and
wirelength. Using a fast delay estimator to drive this process yields an efficient technique for
synthesizing nontree routing topologies with significantly improved performance characteristics
(in terms of skew as well as delay), as compared with the corresponding initial trees [16,17].
Nontree routing topologies can also be combinedwith wire sizing optimizations, as discussed above.
More recently, nontree routings were used for manufacturing yield improvement [102] and robust
performance [103].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 530 29-9-2008 #23

530 Handbook of Algorithms for Physical Design Automation

25.8 DISCUSSION AND FUTURE RESEARCH DIRECTIONS

Given the numerous existing algorithms for performance-drivenSteiner tree construction,CADprac-
titioners are often faced with the question of which algorithm to choose for particular applications. In
Ref. [11], a comparative study is performed for several Steiner tree algorithms [12,40,75,104,105].
One important result from Ref. [11] is that the wirelength of (minimum rectilinear Steiner arbores-
cence (MRSA)) is not prohibitively large, even though MRSA constructions provide shortest paths
from the source to all sinks. Experiments with several industrial designs show that the average wire-
lengths of heuristicRSAsare only around2–4percent larger than those of rectilinearSteinerminimum
trees. Arborescence constructions (e.g., AHHK-based Steiner trees with c = 1) are therefore a good
option for acheiving minimum tree radii with relatively small wirelength overhead.

As ultra-deep-submicron VLSI technology continues to evolve, new efficiently computable
models are needed to accurately capture the relationships and trade-offs between high-performance
routing and actual delays, parasitics, noise, signal integrity, reliability, power, manufacturability,
and yield. The techniques described in this chapter can be generalized to alternate metrics, geome-
tries, and novel interconnect architectures such as preferred-direction routing and λ-geometries.
As VLSI engineering tolerances shrink, issues such as buffer insertion, wirelength estimation, and
antenna effects will have to be revisited. In particular, extensive application of buffers [106] for per-
formance improvement may drastically alter the landscape for interconnect topology construction.
When buffers are inserted, the fanout size of subtrees between buffers are usually smaller than that
of unbuffered nets. Moreover, the construction of global topology connecting the subtrees should be
aware of the concerns in buffering algorithms [79,107]. As always, tighter and more effective inte-
gration between timing-driven routing and other design phases will enable additional optimizations
of various combinations of objectives and criteria. Finally, when feature sizes become small enough,
entirely new issues such as quantum effects will have to be considered during interconnect synthesis,
as well as elsewhere in the design process.

ACKNOWLEDGMENT

Part of Section 25.2 has been published in IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, by Alpert, C. J., Hu, T. C., Huang, J. H., Kahng, A. B., and Karger, D.,
Vol 14, pages 890–896, 1995 and all of Section 25.5 has been published in Layout Optimization in
VLSI Design, authored by Hu, J. and Sapatnekar, S. (edited by Lu, B., Du, D.-Zu, and Sapatnekar
S.), Kluwer Academic Publisher, 2001, pp. 95–104. Used with kind permission.

REFERENCES
1. Caldwell, A., Kahng, A. B., Mantik, S., Markov, I., and Zelikovsky, A. On wirelength estimations for

row-based placement. In Proceedings of the International Symposium on Physical Design, Monterey, CA,
April 1998, pp. 4–11.

2. Cheng, X. and Du, D. -Z. Steiner Trees in Industry. Kluwer Academic Publishers, the Netherlands,
Dordrecht 2001.

3. Cieslik, D. Steiner Minimal Trees. Kluwer Academic Publishers, the Netherlands, Dordrecht 1998.
4. Cieslik, D. The Steiner Ratio. Kluwer Academic Publishers, the Netherlands, Dordrecht 2001.
5. Du, D. -Z., Smith, J. M., and Rubinstein, J. H. Advances in Steiner Trees. Kluwer Academic Publishers,

the Netherlands, Dordrecht 2000.
6. Hwang, F. K., Richards, D. S., and Winter, P. The Steiner tree problem. Annals of Discrete Mathematics

53, North-Holland, the Netherlands, 1992.
7. Ivanov, A. O. and Tuzhilin, A. A.Minimal Networks: The Steiner Problem and Its Generalizations. CRC

Press, Boca Raton, FL, 1994.
8. Korte, B., Promel, H. J., and Steger, A. Steiner Trees in VLSI-Layouts, in Paths, Flows and VLSI-Layout.

Springer-Verlag, New York, 1990.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 531 29-9-2008 #24

Timing-Driven Interconnect Synthesis 531

9. Promel, H. J. and Steger, A. The Steiner Tree Problem: A Tour Through Graphs, Algorithms, and
Complexity. Friedrich Vieweg and Son, Braunschweig, Germany, 2002.

10. Robins, G. and Zelikovsky, A. Tighter bounds for graph Steiner tree approximation. SIAM Journal on
Discrete Mathematics 19(1): 122–134, 2005.

11. Alpert, C. J., Kahng, A. B., Sze, C. N., and Wang, Q. Timing-driven Steiner trees are (practically) free. In
Proceedings of the ACM/IEEE Design Automation Conference, San Francisco, CA, 2006, pp. 389–392.

12. Boese, K. D., Kahng, A. B., McCoy, B. A., and Robins, G. Near-optimal critical sink routing tree
constructions. IEEE Transactions Computer-Aided Design 14(12): 1417–1436, December 1995.

13. Cong, J., Kahng, A. B., Koh, C. K., and Tsao, C. -W. A. Bounded-skew clock and Steiner routing. ACM
Transactions on Design Automation of Electronic Systems 3: 341–388, October 1999.

14. Ismail, Y. I. and Friedman, E. G.On-Chip Inductance inHigh-Speed IntegratedCircuits. KluwerAcademic
Publishers, Boston, MA, 2001.

15. Kahng, A. B., Mantik, S., and Stroobandt, D. Towards accurate models of achievable routing. IEEE
Transactions Computer-Aided Design 20: 648–659, May 2001.

16. Kahng, A. B. andRobins, G.OnOptimal Interconnections for VLSI. KluwerAcademic Publishers, Boston,
MA, 1995.

17. McCoy, B. A. and Robins, G. Non-tree routing. IEEE Transactions Computer-Aided Design 14(14):
790–784, June 1995.

18. Sherwani,N., Bhingarde, S., andPanyam,A.Routing in theThirdDimension. IEEEPress,NewYork, 1995.
19. Cong, J., He, L., Koh, C. -K., and Madden, P. H. Performance optimization of VLSI interconnect layout.

Integration: The VLSI Journal 21: 1–94, November 1996.
20. Hu, J. and Sapatnekar, S. S. A survey on multi-net global routing for integrated circuits. Integration: The

VLSI Journal 11: 1–49, 2001.
21. Gerez, S. H. Algorithms for VLSI Design Automation. John Wiley and Sons, Chichester, United

Kingdom, 1998.
22. Preas, B. T. and Lorenzetti, M. J. Physical Design Automation of VLSI Systems. Benjamin/Cummings,

Menlo Park, CA, 1988.
23. Sait, S. M. and Youssef, N. VLSI Physical Design Automation—Theory and Practice. World Scientific

Publishing Company, Singapore, 1999.
24. Sarrafzadeh,M. andWong, C.K.An Introduction toVLSI Physical Design.McGrawHill, NewYork, 1996.
25. Sherwani, N. Algorithms for VLSI Physical Design Automation, Third edition. Kluwer Academic

Publishers, Boston, MA, 1998.
26. Bakoglu, H. Circuits, Interconnections and Packaging for VLSI. Addison-Wesley, Reading, MA, 1990.
27. Donath, W. E., Norman, R. J., Agrawal, B. K., Bello, S. E., Han, S. Y., Kurtzberg, J. M., Lowy, P., and

McMillan, R. I. Timing driven placement using complete path delays. In Proceedings of the ACM/IEEE
Design Automation Conference, Orlando, FL, 1990, pp. 84–89.

28. Sutanthavibul, S. andShragowitz, E.Anadaptive timing-driven layout for high speedVLSI. InProceedings
of the ACM/IEEE Design Automation Conference, Orlando, FL, 1990, pp. 90–95.

29. Hauge, P. S., Nair, R., and Yoffa, E. J. Circuit placement for predictable performance. In Proceedings of the
IEEE International Conference Computer-Aided Design, Santa Clara, CA, November 1987, pp. 88–91.

30. Jackson, M. A. B. and Kuh, E. S. Performance-driven placement of cell-based ICs. In Proceedings of the
ACM/IEEE Design Automation Conference, Las Vegas, NV, 1989, pp. 370–375.

31. Lin, I. and Du, D. H. C. Performance-driven constructive placement. In Proceedings of the ACM/IEEE
Design Automation Conference, Orlando, FL, 1990, pp. 103–106.

32. Marek-Sadowska, M. and Lin, S. P. Timing driven placement. In Proceedings of the IEEE International
Conference Computer-Aided Design, Santa Clara, CA, November 1989, pp. 94–97.

33. Dunlop, A. E., Agrawal, V. D., Deutsch, D., Jukl,M. F., Kozak, P., andWiesel,M. Chip layout optimization
using critical path weighting. In Proceedings of the ACM/IEEE Design Automation Conference, 1984,
pp. 133–136.

34. Jackson, M. A. B., Kuh, E. S., and Marek-Sadowska, M. Timing-driven routing for building block layout.
In Proceedings of the IEEE International Symposium Circuits and Systems, Miami Beach, FL, 1987,
pp. 518–519.

35. Prasitjutrakul, S. and Kubitz, W. J. A timing-driven global router for custom chip design. InProceedings of
the IEEE International Conference Computer-Aided Design, Santa Clara, CA,November 1990, pp. 48–51.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 532 29-9-2008 #25

532 Handbook of Algorithms for Physical Design Automation

36. Elmore, W. C. The transient response of damped linear networks with particular regard to wide-band
amplifiers. Journal of Applied Physics 19(1): 55–63, 1948.

37. Lin, T. M. and Mead, C. A. Signal delay in general RC-networks. IEEE Transactions Computer-Aided
Design CAD-3(4): 331–349, October 1984.

38. Rubinstein, J., Penfield, P., and Horowitz, M. A. Signal delay in RC tree networks. IEEE Transactions
Computer-Aided Design 2(3): 202–211, 1983.

39. Tsay, R. S. Exact zero skew. InProceedings of the IEEE International ConferenceComputer-AidedDesign,
Santa Clara, CA, November 1991, pp. 336–339.

40. Alpert, C. J., Hu, T. C., Huang, J. H., Kahng, A. B., and Karger, D. Prim-Dijkstra tradeoffs for improved
performance-driven routing tree design. IEEE Transactions Computer-Aided Design 14(7): 890–896, July
1995. (ISCAS 1993).

41. Awerbuch, B., Baratz, A., and Peleg, D. Cost-sensitive analysis of communication protocols. In Proceed-
ings of the ACM Symposium Principles of Distributed Computing, Quebec City, Quebec, Canada, 1990,
pp. 177–187.

42. Cong, J., Kahng, A. B., Robins, G., Sarrafzadeh, M., and Wong, C. K. Provably good algorithms for
performance-driven global routing. In Proceedings of the IEEE International Symposium Circuits and
Systems, San Diego, CA, May 1992, pp. 2240–2243.

43. Cong, J., Kahng, A. B., Robins, G., Sarrafzadeh, M., and Wong, C. K. Provably good performance-driven
global routing. IEEE Transactions Computer-Aided Design 11(6): 739–752, 1992.

44. Khuller, S., Raghavachari, B., and Young, N. Balancing minimum spanning and shortest path trees. In
Proceedings of the ACM/SIAM Symposium Discrete Algorithms, Austin, TX, January 1993, pp. 243–250.

45. Boese, K. D., Kahng, A. B., McCoy, B. A., and Robins, G. Fidelity and near-optimality of Elmore-based
routing constructions. InProceedings of the IEEE International ConferenceComputerDesign, Cambridge,
MA, October 1993, pp. 81–84.

46. Boese, K. D., Kahng, A. B., McCoy, B. A., and Robins, G. Rectilinear Steiner trees with minimum
Elmore delay. In Proceedings of the ACM/IEEE Design Automation Conference, San Diego, CA, June
1994, pp. 381–386.

47. Boese, K. D., Kahng, A. B., and Robins, G. High-performance routing trees with identified critical sinks.
In Proceedings of the ACM/IEEE Design Automation Conference, Dallas, TX, June 1993, pp. 182–187.

48. Lillis, J., Cheng, C. K., Lin, T. -T. Y., and Ho, C. -Y. New performance driven routing techniques
with explicit area/delay tradeoff and simultaneous wire sizing. In Proceedings of the ACM/IEEE Design
Automation Conference, Las Vegas, NV, 1996, pp. 395–400.

49. Chen, H., Cheng, C. -K., Kahng, A., Măndoiu, I. I., Wang, Q., and Yao., B. The y-architecture for on-chip
interconnect: Analysis and methodology. IEEE Transactions Computer-Aided Design 24(4): 588–599,
April 2005.

50. Chen, H., Cheng, C. -K., Kahng, A. B., Măndoiu, I., and Wang, Q. Estimation of wirelength reduction for
λ-geometry vs. Manhattan placement and routing. In Proceedings of the ACM International Workshop on
System-Level Interconnect Prediction, Monterey, CA, 2003, pp. 71–76.

51. Koh, C. -K. and Madden, P. H. Manhattan or non-Manhattan?: A study of alternative VLSI routing
architectures. In Proceedings of the Great Lakes Symposium VLSI, Chicago, IL, 2000, pp. 47–52.

52. Li, Y. Y., Cheung, S. K., Leung, K. S., and Wong, C. K. Steiner tree construction in λ3-metric. IEEE
Transactions Circuits and Systems-II: Analog and Digital Signal Processing 45(5): 563–574, May 1998.

53. Nielsen, B. K., Winter, P., and Zachariasen, M. An exact algorithm for the uniformly-oriented Steiner tree
problem. In Proceedings of the European Symposium on Algorithms, Lecture Notes in Computer Science
2461. Springer-Verlag, Rome, Italy, 2002, pp. 760–771.

54. Sarrafzadeh, M. and Wong, C. K. Hierarchical Steiner tree construction in uniform orientations. IEEE
Transactions Computer-Aided Design 11(9): 1095–1103, September 1992.

55. Teig, S. The x architecture: Not your father’s diagonal wiring. In Proceedings of the ACM International
Workshop on System-Level Interconnect Prediction, San Diego, CA, 2002, pp. 33–37.

56. Yildiz, M. C. and Madden, P. H. Preferred direction Steiner trees. In Proceedings of the Great Lakes
Symposium VLSI, West Lafayette, IN, 2001, pp. 56–61.

57. Dijkstra, E. W. A note on two problems in connection with graphs. Numerische Mathematik 1:
269–271, 1959.

58. Prim, A. Shortest connecting networks and some generalizations. Bell System Technical Journal 36:
1389–1401, 1957.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 533 29-9-2008 #26

Timing-Driven Interconnect Synthesis 533

59. Cong, J., Kahng, A. B., Robins, G., Sarrafzadeh, M., and Wong, C. K. Performance-driven global routing
for cell based ICs. In Proceedings of the IEEE International Conference Computer Design, Cambridge,
MA, October 1991, pp. 170–173.

60. Robins, G. and Zelikovsky, A. Improved Steiner tree approximation in graphs. In Proceedings of the
ACM/SIAM Symposium Discrete Algorithms, San Francisco, CA, January 2000, pp. 770–779.

61. Kahng, A. B. and Robins, G. On performance bounds for a class of rectilinear Steiner tree heuristics in
arbitrary dimension. IEEE Transactions Computer-Aided Design 11(11): 1462–1465, November 1992.

62. Griffith, J., Robins, G., Salowe, J. S., and Zhang, T. Closing the gap: Near-optimal Steiner trees in
polynomial time. IEEE Transactions Computer-Aided Design 13(11): 1351–1365, November 1994.

63. Kahng, A. B. and Robins, G. A new class of iterative Steiner tree heuristics with good performance. IEEE
Transactions Computer-Aided Design 11(7): 893–902, July 1992.

64. Cong, J., Leung, K. S., andZhou, D. Performance-driven interconnect design based on distributedRCdelay
model. In Proceedings of the ACM/IEEEDesign Automation Conference, Dallas, June 1993, pp. 606–611.

65. Nastansky, L., Selkow, S. M., and Stewart, N. F. Cost-minima trees in directed acyclic graphs. Zeitschrift
for Operations Research 18: 59–67, 1974.

66. de Matos, R. R. L. A Rectilinear Arborescence Problem. PhD thesis, University of Alabama, Tuscaloosa,
Alabama, 1979.

67. Ho, J. M., Ko, M. T., Ma, T. H., and Sung, T. Y. Algorithms for rectilinear optimal multicast tree problem.
In Proceedings of the International Symposium on Algorithms and Computation, Nagoya, Japan, June
1992, pp. 106–15.

68. Leung, K. -S. and Cong, J. Fast optimal algorithms for the minimum rectilinear Steiner arborescence
problem. In Proceedings of the IEEE International Symposium Circuits and Systems, Vol. 3, Hong Kong,
1997, pp. 1568–1571.

69. Rao, S. K., Sadayappan, P., Hwang, F. K., and Shor, P. W. The rectilinear Steiner arborescence problem.
Algorithmica 7(1): 277–288, 1992.

70. Trubin, V. A. Subclass of the Steiner problems on a plane with rectilinear metric. Cybernetics and Systems
Analysis 21(3): 320–322, 1985.

71. Shi, W. and Su, C. The rectilinear Steiner arborescence problem is np-complete. SIAM Journal of
Computation 35(3): 729–740, 2006.

72. Cordova, J. andLee, Y.H.A heuristic algorithm for the rectilinear Steiner arborescence problem. Technical
Report TR-94-025, University of Florida, Gainesville, FL, 1994.

73. Alexander, M. J. and Robins, G. New performance-driven FPGA routing algorithms. IEEE Transactions
Computer-Aided Design 15(12): 1505–1517, December 1996.

74. Kou, L., Markowsky, G., and Berman, L. A fast algorithm for Steiner trees. Acta Informatica 15: 141–
145, 1981.

75. Cong, J., Kahng, A. B., and Leung, K. -S. Efficient algorithms for the minimum shortest path Steiner
arborescence problem with applications to VLSI physical design. IEEE Transactions Computer-Aided
Design 17(1): 24–39, January 1998.

76. Robins, G. On Optimal Interconnections. PhD thesis, Department of Computer Science, UCLA, CSD-
TR-920024, Los Angeles, CA, 1992.

77. Zhou, D., Tsui, F., and Gao, D. S. High performance multichip interconnection design. In Proceedings of
the ACM/SIGDA Physical Design Workshop, Lake Arrowhead, CA, April 1993, pp. 32–43.

78. Sriram, M. and Kang, S. M. Performance driven MCM routing using a second order RLC tree delay
model. In IEEE International Conference on Wafer Scale Integration, San Francisco, CA, January 1993,
pp. 262–267.

79. Alpert, C. J., Gandham, G., Hrkic,M., Hu, J., Kahng, A. B., Lillis, J., Liu, B., Quay, S. T., Sapatnekar, S. S.,
andSullivan,A. J. BufferedSteiner trees for difficult instances. IEEETransactionsComputer-AidedDesign
21(1): 3–14, January 2002.

80. Ganley, J. L. Accuracy and fidelity of fast net length estimates. Integration: The VLSI Journal 23(2):
151–155, 1997.

81. Hong, X., Xue, T., Kuh, E. S., Cheng, C. K., and Huang, J. Performance-driven Steiner tree algorithms for
global routing. In Proceedings of the ACM/IEEE Design Automation Conference, Dallas, TX, June 1993,
pp. 177–181.

82. Hu, J. and Sapatnekar, S. S. Algorithms for non-Hanan-based optimization for VLSI interconnect under
a higher order awe model. IEEE Transactions Computer-Aided Design 19(4): 446–458, April 2000.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C025 Finals Page 534 29-9-2008 #27

534 Handbook of Algorithms for Physical Design Automation

83. Hu, J. and Sapatnekar, S. S. A timing-constrained simultaneous global routing algorithm. IEEE
Transactions Computer-Aided Design 21(9): 1025–1036, September 2002.

84. Peyer, S., Zachariasen, M., and Grove, D. J. Delay-related secondary objectives for rectilinear Steiner
minimum trees. Discrete and Applied Mathematics 136(2): 271–298, February 2004.

85. Wu, D., Hu, J., and Mahapatra, R. Coupling aware timing optimization and antenna avoidance in layer
assignment. In Proceedings of the International Symposium on Physical Design. ACM Press, New York,
2005, pp. 20–27.

86. Hanan, M. On Steiner’s problem with rectilinear distance. SIAM Journal of AppliedMathematics 14: 255–
265, 1966.

87. Zachariasen, M. A catalog of Hanan grid problems. Networks—An International Journal 38(2): 76–
83, 2001.

88. Hou, H., Hu, J., and Sapatnekar, S. S. Non-Hanan routing. IEEE Transactions Computer-Aided Design
18(4): 436–444, April 1999.

89. Fisher, A. L. and Kung, H. T. Synchronizing large systolic arrays. In Proceedings of SPIE, Arlington, VA,
May 1982, pp. 44–52.

90. Friedman, E. G. Clock distribution design in VLSI circuits—an overview. In Proceedings of the IEEE
International Symposium Circuits and Systems, Chicago, IL, May 1993, pp. 1475–1478.

91. Pullela, S., Menezes, N., and Pillage, L. T. Reliable non-zero skew clock trees using wire width optimiza-
tion. InProceedings of the ACM/IEEEDesignAutomationConference, SanDiego, CA, 1993, pp. 165–170.

92. Zhu, Q., Dai,W.W.M., and Xi, J. G. Optimal sizing of high-speed clock networks based on distributed RC
and lossy transmission linemodels. InProceedings of the IEEE International Conference Computer-Aided
Design, 1993, pp. 628–633.

93. Dutta, R. and Marek-Sadowska, M. Algorithm for wire sizing of power and ground networks in VLSI
designs. Journal of Circuits, Systems and Computers 2: 141–157, June 1992.

94. Cong, J., and Leung, K. S. Optimal wiresizing under the distributed Elmore delay model. In Proceedings
of the IEEE International Conference Computer-Aided Design, 1993, pp. 634–639.

95. Hodes, T. D., McCoy, B. A., and Robins, G. Dynamically-wiresized Elmore-based routing constructions.
In Proceedings of the IEEE International Symposium Circuits and Systems, Vol. I, London, United
Kingdom, May 1994, pp. 463–466.

96. Sapetnekar, S. RC interconnect optimization under the Elmore delay model. In Proceedings of the
ACM/IEEE Design Automation Conference, San Diego, CA, June 1994, pp. 387–391.

97. Erhard, K. H. and Johannes, F. M. Power/ground networks in VLSI: Are general graphs better than trees?
Integration: The VLSI Journal 14(1): 91–109, November 1992.

98. Erhard, K. H., Johannes, F. M., and Dachauer, R. Topology optimization techniques for power/ground
networks in VLSI. In Proceedings of the European Design Automation Conference, Hamburg, Germany,
September 1992, pp. 362–367.

99. Lin, S. and Wong, C. K. Process-variation-tolerant clock skew minimization. In Proceedings of the IEEE
International Conference Computer-Aided Design, San Jose, CA, November 1994, pp. 284–288.

100. Chan, P. K. and Karplus, K. Computing signal delay in general RC networks by tree/link partitioning.
IEEE Transactions Computer-Aided Design 9(8): 898–902, August 1990.

101. Martin, D. and Rumin, N. C. Delay prediction from resistance-capacitance models of general MOS
circuits. IEEE Transactions Computer-Aided Design 12(7): 997–1003, July 1993.

102. Kahng, A. B., Liu, B., and Mandoiu, I. I. Non-tree routing for reliability and yield improvement. IEEE
Transactions Computer-Aided Design 23(1): 148–156, 2004.

103. Hu, S., Li, Q., Hu, J., and Li, P. Steiner network construction for timing critical nets. In Proceedings of
the ACM/IEEE Design Automation Conference, 2006, pp. 379–384.

104. Borah, M., Owens, R. M., and Irwin, M. J. An edge-based heuristic for Steiner routing. IEEE Transactions
Computer-Aided Design 13: 1563–1568, 1994.

105. Qiu, W. and Shi, W. Minimum moment Steiner trees. In Proceedings of the ACM/SIAM Symposium
Discrete Algorithms, 2004, pp. 488–495.

106. Saxena, P., Menezes, N., Cocchini, P., and Kirkpatrick, D. A. Repeater scaling and its impact on CAD.
IEEE Transactions Computer-Aided Design 23(4): 451–463, April 2004.

107. Hrkic, M. and Lillis, J. Buffer tree synthesis with consideration of temporal locality, sink polarity
requirements, solution cost, congestion and blockages. IEEE Transactions Computer-Aided Design
22(4): 481–491, April 2003.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 535 29-9-2008 #2

26 Buffer Insertion Basics

Jiang Hu, Zhuo Li, and Shiyan Hu

CONTENTS

26.1 Motivation . 535
26.2 Optimization of Two-Pin Nets . 536
26.3 van Ginneken’s Algorithm.. 538

26.3.1 Concept of Candidate Solution . 538
26.3.2 Generating Candidate Solutions .. 539

26.3.2.1 Wire Insertion . 539
26.3.2.2 Buffer Insertion.. 539
26.3.2.3 Branch Merging . 539

26.3.3 Inferiority and Pruning Identification . 540
26.3.4 Pseudocode .. 540
26.3.5 Example . 540

26.4 van Ginneken Extensions . 542
26.4.1 Handling Library with Multiple Buffers . 542
26.4.2 Library with Inverters .. 542
26.4.3 Polarity Constraints . 542
26.4.4 Slew and Capacitance Constraints . 543
26.4.5 Integration with Wire Sizing . 543
26.4.6 Noise Constraints with Devgan Metric . 544

26.4.6.1 Devgan’s Coupling Noise Metric. 544
26.4.6.2 Algorithm of Buffer Insertion with Noise Avoidance 546

26.4.7 Higher Order Delay Modeling.. 546
26.4.7.1 Higher Order Point Admittance Model . 547
26.4.7.2 Higher Order Wire Delay Model . 548
26.4.7.3 Accurate Gate Delay . 549

26.4.8 Flip-Flop Insertion . 549
26.5 Speedup Techniques . 550

26.5.1 Recent Speedup Results . 550
26.5.2 Predictive Pruning.. 551
26.5.3 Convex Pruning . 552
26.5.4 Efficient Way to Find Best Candidates . 553
26.5.5 Implicit Representation . 554

References . 555

26.1 MOTIVATION

When the VLSI technology scales, gate delay and wire delay change in opposite directions. Smaller
devices imply less gate-switching delay. In contrast, thinner wire size leads to increased wire resi-
stance and greater signal propagation delay along wires. As a result, wire delay has become

535

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 536 29-9-2008 #3

536 Handbook of Algorithms for Physical Design Automation

a dominating factor for VLSI circuit performance. Further, it is becoming a limiting factor to the
progress of VLSI technology. This is the well-known interconnect challenge [1–3]. Among many
techniques addressing this challenge [4,5], buffer (or repeater) insertion is such an effective technique
that it is an indispensable necessity for timing closure in submicron technology and beyond. Buffers
can reduce wire delay by restoring signal strength, in particular, for long wires. Moreover, buffers
can be applied to shield capacitive load from timing-critical paths such that the interconnect delay
along critical paths are reduced.

As the ratio of wire delay to gate delay increases from one technology to the next, more andmore
buffers are required to achieve performance goals. The buffer scaling is studied by Intel and the results
are reported in Ref. [6]. One metric that reveals the scaling is critical buffer length, the minimum
distance beyond which inserting an optimally placed and sized buffer makes the interconnect delay
less than that of the corresponding unbuffered wire. When wire delay increases because of the
technology scaling, the critical buffer length becomes shorter, i.e., the distance that a buffer can
comfortably drive shrinks. According to Ref. [6], the critical buffer length decreases by 68 percent
when the VLSI technology migrates from 90 to 45 nm (for two generations). Please note that the
critical buffer-length scaling significantly outpaces the VLSI technology scaling, which is roughly
0.5× for every two generations. If we look at the percentage of block level nets requiring buffers, it
grows from 5.8 percent in 90-nm technology to 19.6 percent in 45-nm technology [6]. Perhaps the
most alarming result is the scaling of buffer count [6], which predicts that 35 percent of cells will be
buffers in 45-nm technology as opposed to only 6 percent in 90-nm technology.

The dramatic buffer scaling undoubtedly generates large and profound impact to VLSI circuit
design.Withmillions of buffers required per chip, almost nobody can afford to neglect the importance
of buffer insertion as compared to a decade ago when only a few thousands of buffers are needed
for a chip [7]. Because of this importance, buffer insertion algorithms and methodologies need to
be deeply studied on various aspects. First, a buffer insertion algorithm should deliver solutions of
high quality because interconnect and circuit performance largely depend on the way that buffers are
placed. Second, a buffer insertion algorithm needs to be sufficiently fast so that millions of nets can
be optimized in reasonable time. Third, accurate delay models are necessary to ensure that buffer
insertion solutions are reliable. Fourth, buffer insertion techniques are expected to simultaneously
handle multiple objectives, such as timing, power, and signal integrity, and their trade-offs. Last but
not the least, buffer insertion should interact with other layout steps, such as placement and routing,
as the sheer number of buffers has already altered the landscape of circuit layout design. Many of
these issues will be discussed in subsequent sections and other chapters.

26.2 OPTIMIZATION OF TWO-PIN NETS

For buffer insertion, perhaps the most simple case is a two-pin net, which is a wire segment with a
driver (source) at one end and a sink at the other end. The simplicity allows closed form solutions to
buffer insertion in two-pin nets.

If the delay of a two-pin net is to be minimized by using a single buffer type b, one needs to
decide the number of buffers k and the spacing between the buffers, the source and the sink. First,
let us look at a very simple case to attain an intuitive understanding of the problem. In this case,
the length of the two-pin net is l and the wire resistance and capacitance per unit length are r and
c, respectively. The number of buffers k has been given and is fixed. The driver resistance is the
same as the buffer output resistance Rb. The load capacitance of the sink is identical to buffer input
capacitance Cb. The buffer has an intrinsic delay of tb. The k buffers separates the net into k + 1
segments, with length of �l = (l0, l1, . . . , lk)T (Figure 26.1). Then, the Elmore delay of this net can be
expressed as

t(�l) =
k∑
i=0

(
αl2i + βli + γ

)
(26.1)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 537 29-9-2008 #4

Buffer Insertion Basics 537

Driver Sinkk1

l0 l1 l2 lk

2 3

FIGURE 26.1 Buffer insertion in a two-pin net.

where α = 1
2
rc, β = Rbc+ rCb, and γ = RbCb + tb. A formal problem formulation is

minimize t(�l) (26.2)

subject to g(�l) = l −
k∑
i=0

li = 0 (26.3)

According to the Kuhn–Tucker condition [8], the following equation is the necessary condition for
the optimal solution.

�∇t(�l) + λ �∇g(�l) = 0 (26.4)

where λ is the Lagrangian multiplier. According to the above condition, it can be easily derived that

li = β

λ − 2α
, i = 0, 1, . . . , k (26.5)

Because α, β, and λ are all constants, it can be seen that the buffers need to be equally spaced to
minimize the delay. This is an important conclusion that can be treated as a rule of thumb. The value
of the Lagrangian multiplier λ can be found by plugging Equation 26.5 into Equation 26.3.

In more general cases, the driver resistance Rd may be different from that of buffer output resis-
tance and so is the sink capacitance CL. For such cases, the optimum number of buffers minimizing
the delay is given by Ref. [9]

k =
⌊

−1

2
+

√
1 + 2[rcl + r(Cb − CL) − c(Rb − Rd)]2

rc (RbCb + tb)

⌋
(26.6)

The length of each segment can be obtained through [9]

l0 = 1

k + 1

[
l + k (Rb − Rd)

r
+ CL − Cb

c

]

l1 = . . . = lk−1 = 1

k + 1

[
l − Rb − Rd

r
+ CL − Cb

c

]
(26.7)

lk = 1

k + 1

[
l − Rb − Rd

r
− k (CL − Cb)

c

]

A closed form solution to simultaneous buffer insertion/sizing and wire sizing is reported in
Ref. [10]. Figure 26.2 shows an example of this simultaneous optimization. The wire is segmented
into m pieces. The length li and width hi of each wire piece i are the variables to be optimized.
There are k buffers inserted between these pieces. The size bi of each buffer i is also a decision
variable. A buffer location is indicated by its surrounding wire pieces. For example, if the set of
wire pieces between buffer i − 1 and i is Pi−1, the distance between the two buffers is equal to∑

j∈Pi−1
lj. There are two important conclusions [10] for the optimal solution that minimizes the

delay. First, all wire pieces have the same length, i.e., li = l
m
, i = 1, 2, . . . ,m. Second, for wire pieces

Pi−1 = {pi−1,1, pi−1,2, . . . , pi−1,mi−1} between buffer i − 1 and i, their widths satisfy hi−1,1 > hi−1,2

> . . . > hi−1,mi−1 and form a geometric progression.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 538 29-9-2008 #5

538 Handbook of Algorithms for Physical Design Automation

h1 h2

l2l1

b1 bk

lm

hm

segments segmentsm0 mk

FIGURE 26.2 Example of simultaneous buffer insertion/sizing and wire sizing.

26.3 VAN GINNEKEN’S ALGORITHM

For a general case of signal nets, which may have multiple sinks, van Ginneken’s algorithm [11] is
perhaps the first systematic approach on buffer insertion. For a fixed signal routing tree and given
candidate buffer locations, van Ginneken’s algorithm can find the optimal buffering solution that
maximizes timing slack according to the Elmore delaymodel. If there are n candidate buffer locations,
its computation complexity isO(n2). Based on van Ginneken’s algorithm, numerous extensions have
beenmade, such as handling of multiple buffer types, trade-off with power and cost, addressing slew
rate and crosstalk noise, and using accurate delay models and speedup techniques. These extensions
will be covered in subsequent sections.

At a high level, vanGinneken’s algorithm [11]proceeds bottom-up from the leaf nodes toward the
driver along a given routing tree. A set of candidate solutions keep updated during the process, where
three operations adding wire, inserting buffers, and branch merging may be performed. Meanwhile,
the inferior solutions are pruned to accelerate the algorithm. After a set of candidate solutions are
propagated to the source, the solution with the maximum required arrival time is selected as the final
solution. For a routing tree with n buffer positions, the algorithm computes the optimal buffering
solution in O(n2) time.

A net is given as a binary routing tree T = (V , E), where V = {s0} ∪ Vs ∪ Vn, and E ⊆ V × V .
Vertex s0 is the source vertex and also the root of T , Vs is the set of sink vertices, and Vn is the set of
internal vertices. In the existing literatures, s0 is also referred as driver. Denote by T(v) the subtree of
T rooted at v. Each sink vertex s ∈ Vs is associatedwith a sink capacitanceC(s) and a required arrival
time (RAT). Each edge e ∈ E is associated with lumped resistance R(e) and capacitance C(e). A
buffer libraryB containing all the possible buffer types that can be assigned to a buffer position is also
given. In this section, B contains only one buffer type. Delay estimation is obtained using the Elmore
delay model, which is described in Chapter 3. A buffer assignment γ is a mapping γ : Vn → B∪{b̄}
where b̄ denotes that no buffer is inserted. The timing buffering problem is defined as follows.

Timing-driven buffer insertion problem: Given a binary routing tree T = (V ,E), possible buffer
positions, and a buffer library B, compute a buffer assignment γ such that the RAT at driver is
maximized.

26.3.1 CONCEPT OF CANDIDATE SOLUTION

A buffer assignment γ is also called a candidate solution for the timing buffering problem. A partial
solution, denoted by γv, refers to an incomplete solution where the buffer assignment in T(v) has
been determined.

The Elmore delay from v to any sink s in T(v) under γv is computed by

D (s, γv) =
∑

e=(vi ,vj)

[D (vi) + D (e)]

where the sum is taken over all edges along the path from v to s. The slack of vertex v under γv is
defined as

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 539 29-9-2008 #6

Buffer Insertion Basics 539

Q(γv) = min
s∈T(v)

{RAT(s) − D(s, γv)}
At any vertex v, the effect of a partial solution γv to its upstream part is characterized by a
(Q(γv),C(γv)) pair, where Q is the slack at v under γv and C is the downstream capacitance viewing
at v under γv.

26.3.2 GENERATING CANDIDATE SOLUTIONS

van Ginneken’s algorithm proceeds bottom-up from the leaf nodes toward the driver along T . A
set of candidate solutions, denoted by �, are kept updated during this process. There are three
operations through solution propagation, namely,wire insertion, buffer insertion, and branchmerging
(Figure 26.3). We are to describe them in turn.

26.3.2.1 Wire Insertion

Suppose that a partial solution γv at position v propagates to an upstream position u and there is no
branching point in between. If no buffer is placed at u, then only wire delay needs to be considered.
Therefore, the new solution γu can be computed as

Q(γu) = Q(γv) − D(e)

C(γu) = C(γv) + C(e)
(26.8)

where e = (u, v) and D(e) = R(e)
[
C(e)
2

+ C(γv)
]
.

26.3.2.2 Buffer Insertion

Suppose that we add a buffer b at u. Denote by R(b), K(b) the driving resistance and the intrinsic
delay of buffer b, respectively. γu is then updated to γ ′

u where

Q(γ ′
u) = Q(γu) − [

R(b) · C(γu) + K(b)
]

C(γ ′
u) = C(b)

(26.9)

26.3.2.3 Branch Merging

When two branches Tl and Tr meet at a branching point v, �l and �r , which correspond to Tl and
Tr, respectively, are to be merged. The merging process is performed as follows. For each solution
γl ∈ �l and each solution γr ∈ �r , generate a new solution γ ′ according to

C(γ ′) = C(γl) + C(γr)

Q(γ ′) = min {Q(γl),Q(γr)}
(26.10)

The smaller Q is picked since the worst-case circuit performance needs to be considered.

u

(a) Wire insertion (b) Buffer insertion

v
T(v)

u

T(u)

(c) Branch merging

v1

v2

T(v2)

T(v1)
v

FIGURE 26.3 Operations in van Ginneken’s algorithm.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 540 29-9-2008 #7

540 Handbook of Algorithms for Physical Design Automation

26.3.3 INFERIORITY AND PRUNING IDENTIFICATION

Simply propagating all solutions by the above three operations makes the solution set grow expo-
nentially in the number of buffer positions processed. An effective and efficient pruning technique
is necessary to reduce the size of the solution set. This motivates an important concept—inferior
solution—in van Ginneken’s algorithm. For any two partial solutions γ1 and γ2 at the same vertex v,
γ2 is inferior to γ1 if C(γ1) ≤ C(γ2) and Q(γ1) ≥ Q(γ2). Whenever a solution becomes inferior, it is
pruned from the solution set. Therefore, only solutions that excel in at least one aspect of downstream
capacitance and slack can survive.

For an efficient pruning implementation and thus an efficient buffering algorithm, a sorted list is
used to maintain the solution set. The solution set � is increasingly sorted according to C, and thus
Q is also increasingly sorted if � does not contain any inferior solutions.

By a straightforward implementation, when adding a wire, the number of candidate solutions
will not change; when inserting a buffer, only one new candidate solution will be introduced. More
efforts are needed to merge two branches Tl and Tr at v. For each partial solution in �l, find the first
solution with larger Q value in �r . If such a solution does not exist, the last solution in �r will be
taken. Because �l and �r are sorted, we only need to traverse them once. Partial solutions in �r are
similarly treated. It is easy to see that after merging, the number of solutions is at most |�l| + |�r|.
As such, given n buffer positions, at most n solutions can be generated at any time. Consequently,
the pruning procedure at any vertex in T runs in O(n) time.

26.3.4 PSEUDOCODE

In van Ginneken’s algorithm, a set of candidate solutions are propagated from sinks to driver. Along
a branch, after a candidate buffer location v is processed, all solutions are propagated to its upstream
buffer location u through wire insertion. A buffer is then inserted to each solution to obtain a new
solution. Meanwhile, inferior solutions are pruned. At a branching point, solution sets from all
branches are merged by merging process. In this way, the algorithm proceeds in the bottom-up
fashion and the solution with maximum required arrival time at driver is returned. Given n buffer
positions in T , van Ginneken’s algorithm can compute a buffer assignment with maximum slack at
driver in O(n2) time, because any operation at any node can be performed in O(n) time. Refer to
Figure 26.4 for the pseudocode of van Ginneken’s algorithm.

26.3.5 EXAMPLE

Let us look at a simple example to illustrate the work flow of van Ginneken’s algorithm. Refer to
Figure 26.5. Assume that there are three nondominated solutions at v3 whose (Q,C) pairs are

(200, 10), (300, 30), and (500, 50)

and there are two nondominated solutions at v2 whose (Q,C) pairs are

(290, 5) and (350, 20)

We first propagate them to v1 throughwire insertion. Assume thatR(v1, v3)=3 andC(v1, v3)=2.
Solution (200, 10) at v3 becomes (200 − 3 · (2/2 + 10), 10 + 2) = (167, 12) at v1. Similarly, the
other two solutions become (207, 32) and (347, 52). Assume that R(v2, v3) = 2 and C(v2, v3) = 2,
solutions at v2 become (278, 7) and (308, 22) at v1.

We are now to merge these solutions at v1. Denote by �l the solutions propagated from v3 and
by �r the solutions propagated from v2. Before merging, partial solutions in �l are

(167, 12) , (207, 32) , and (347, 52)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 541 29-9-2008 #8

Buffer Insertion Basics 541

Algorithm: van Ginneken’s algorithm
Input: T: routing tree, B: buffer library
Output: γ which maximizes slack at driver
1. for each sink s, build a solution set {γs}, where Q(γs) =RAT(s)

and C(γs) =C(s)

2. for each branching point/driver vt in the order given by a
postorder traversal of T, let T ′ be each of the branches T1, T2 of vt

and �′ be the solution set corresponding to T ′, do
3. for each wire e in T ′, in a bottom-up order, do
4. for each γ ∈ �′, do
5. C(γ) =C(γ) + C(e)

6. Q(γ) =Q(γ) − D(e)

7. prune inferior solutions in �′

8. if the current position allows buffer insertion, then
9. for each γ ∈ �′, generate a new solution γ ′

10. set C(γ ′) =C(b)

11. set Q(γ ′) =Q(γ) − R(b) · C(γ) − K(b)

12. �′ = �′ ⋃{γ ′} and prune inferior solutions
13. // merge �1 and �2 to �vt

14. set �vt =∅
15. for each γ1 ∈ �1 and γ2 ∈ �2, generate a new solution γ ′

16. set C(γ ′) = C(γ1) + C(γ2)

17. set Q(γ ′) = min{Q(γ1),Q(γ2)}
18. �vt = �vt

⋃{γ ′} and prune inferior solutions
19. return γ with the largest slack

FIGURE 26.4 van Ginneken’s algorithm.

and partial solutions in �r are

(278, 7) and (308, 22)

After branchmerging, the new candidate partial solutions whoseQ are dictated by solutions in �l are

(167, 19) , (207, 39) , and (308, 74)

and those dictated by solutions in �r are

(278, 59) and (308, 74)

V2

S1

S3

S4
V1 V3

S2

S0

FIGURE 26.5 Example for performing van Ginneken’s algorithm.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 542 29-9-2008 #9

542 Handbook of Algorithms for Physical Design Automation

After pruning inferior solutions, the solution set at v1 is

{(167, 19) , (207, 39) , (278, 59) , (308, 74)}

26.4 VAN GINNEKEN EXTENSIONS

26.4.1 HANDLING LIBRARY WITH MULTIPLE BUFFERS

We extend the standard van Ginneken’s algorithm to handle multiple buffers and buffer cost [12].
The buffer library B now contains various types of buffers. Each buffer b in the buffer library has
a cost W(b), which can be measured by area or any other metric, depending on the optimization
objective. A function f : Vn → 2B specifies the types of buffers allowed at each internal vertex in T .
The cost of a solution γ , denoted byW(γ), is defined asW(γ) = �b∈γ Wb. With the above notations,
our new problem can be formulated as follows.

Minimum-cost timing-constrained buffer insertion problem: Given a binary routing tree T = (V , E),
possible buffer positions defined using f , and a buffer library B, compute a minimal-cost buffer
assignment γ such that the RAT at driver is smaller than a timing constraint α.

In contrast to the single buffer type case, W is introduced into the (Q, C) pair to handle buffer
cost, i.e., each solution is now associated with a (Q, C, W) triple. As such, during the process of
bottom-up computation, additional efforts need to be made in updating W : if γ ′ is generated by
inserting a wire into γ , then W(γ ′) = W(γ); if γ ′ is generated by inserting a buffer b into γ , then
W(γ ′) = W(γ) +W(b); if γ ′ is generated by merging γl with γr, thenW(γ ′) = W(γl) +W(γr).

The definition of inferior solutions needs to be revised as well. For any two solutions γ1 and γ2 at
the same node, γ1 dominates γ2 if C(γ1) ≤ C(γ2), W(γ1) ≤ W(γ2), andQ(γ1) ≥ Q(γ2). Whenever a
solution becomes dominated, it is pruned from the solution set. Therefore, only solutions that excel
in at least one aspect of downstream capacitance, buffer cost, and RAT can survive.

With the above modification, van Ginneken’s algorithm can easily adapt to the new problem
setup. However, because the domination is defined on a (Q, C, W) triple rather than a (Q, C) pair,
more efficient pruning technique is necessary to maintain the efficiency of the algorithm. As such,
range search tree technique is incorporated [12]. It can be simply implemented as follows. A list of
binary search trees are maintained where a tree corresponds to aW. Each binary search tree is keyed
by C and each node in the tree also stores the largest Q at the node or in its left subtree [12].

26.4.2 LIBRARY WITH INVERTERS

So far, all buffers in the buffer library are noninvertingbuffers. There can also have inverting buffers, or
simply inverters. In terms of buffer cost and delay, inverter would provide cheaper buffer assignment
and better delay over noninverting buffers. As regard to algorithmic design, it is worth noting that
introducing inverters into the buffer library brings the polarity issue to the problem, as the output
polarity of a buffer will be negated after inserting an inverter.

26.4.3 POLARITY CONSTRAINTS

When output polarity for driver is required to be positive or negative, we impose a polarity constraint
to the buffering problem. To handle polarity constraints, during the bottom-up computation, the
algorithm maintains two solution sets, one for positive and one for negative buffer input polarity.
After choosing the best solution at driver, the buffer assignment can be then determined by a top-down
traversal. The details of the new algorithm are elaborated as follows.

Denote the two solution sets at vertex v by �+
v and �−

v corresponding to positive polarity and
negative polarity, respectively. Supposed that an inverter b− is inserted to a solution γ +

v ∈ �+
v , a new

solution γ ′
v is generated in the same way as before except that it will be placed into �−

v . Similarly, the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 543 29-9-2008 #10

Buffer Insertion Basics 543

new solution generated by inserting b− to a solution γ −
v ∈ �−

v will be placed into �+
v . For inserting

a noninverting buffer, the new solution is placed in the same set as its origin.
The other operations are easier to handle. The wire insertion goes the same as before and two

solution sets are handled separately. Merging is carried out only among the solutions with the same
polarity, e.g., the positive-polarity solution set of left branch is merged with that of the right branch.
For inferiority check and solution pruning, only the solutions in the same set can be compared.

26.4.4 SLEW AND CAPACITANCE CONSTRAINTS

The slew rate of a signal refers to the rising or falling time of a signal switching. Sometimes, the slew
rate is referred as signal transition time. The slew rate of almost every signal has to be sufficiently
small because a large slew rate implies large delay, large short-circuit power dissipation, and large
vunlerability to crosstalk noise. In practice, a maximal slew rate constraint is required at the input of
each gate/buffer. Therefore, this constraint needs to be obeyed in a buffering algorithm [12–15].

A simple slew model is essentially equivalent to the Elmore model for delay. It can be explained
using a generic example, which is a path p from node vi (upstream) to vj (downstream) in a buffered
tree. There is a buffer (or the driver) bu at vi, and there is no buffer between vi and vj. The slew rate
S(vj) at vj depends on both the output slew Sbu ,out(vi) at buffer bu and the slew degradation Sw(p)
along path p (or wire slew), and is given by [16]

S(vj) = √
Sbu,out(vi)2 + Sw(p)2 (26.11)

The slew degradation Sw(p) can be computed with Bakoglu’s metric [17] as

Sw(p) = ln 9 ·D(p) (26.12)

where D(p) is the Elmore delay from vi to vj.
The output slew of a buffer, such as bu at vi, depends on the input slew at this buffer and

the load capacitance seen from the output of the buffer. Usually, the dependence is described as a
two-dimensional lookup table. As a simplified alternative, one can assume a fixed input slew at each
gate/buffer. This fixed slew is equal to the maximum slew constraint and therefore is always satisfied,
but is a conservative estimation. For fixed input slew, the output slew of buffer b at vertex v is then
given by

Sb,out(v) = Rb · C(v) + Kb (26.13)

where
C(v) is the downstream capacitance at v
Rb and Kb are empirical fitting parameters

This is similar to empirically derived K-factor equations [18]. We call Rb the slew resistance and Kb

the intrinsic slew of buffer b.
In a van Ginneken style buffering algorithm, if a candidate solution has a slew rate greater than

given slew constraint, it is pruned out and will not be propagated any more. Similar as the slew
constraint, circuit designs also limit the maximum capacitive load a gate/buffer can drive [15]. For
timing noncritical nets, buffer insertion is still necessary for the sake of satisfying the slew and
capacitance constraints. For this case, fast slew buffering techniques are introduced in Ref. [19].

26.4.5 INTEGRATION WITHWIRE SIZING

In addition to buffer insertion, wire sizing is an effective technique for improving interconnect
performance [20–24]. If wire size can take only discrete options, which is often the case in practice,
wire sizing can be directly integrated with van Ginneken style buffer insertion algorithm [12]. In

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 544 29-9-2008 #11

544 Handbook of Algorithms for Physical Design Automation

Tapered wire sizing

Uniform wire sizing

FIGURE 26.6 Wire sizing with tapering and uniform wire sizing.

the bottom-up dynamic programming procedure, multiple wire width options need to be considered
when a wire is added (see Section 26.3.2.1). If there are k options of wire size, then k new candidate
solutions are generated, one corresponding each wire size. However, including the wire sizing in van
Ginneken’s algorithm makes the complexity pseudopolynomial [12].

In Ref. [25], layer assignment and wire spacing are considered in conjunction with wire sizing.
A combination of layer, width, and spacing is called a wire code. All wires in a net have to use
an identical wire code. If each wire code is treated as a polarity, the wire code assignment can be
integrated with buffer insertion in the same way as handling polarity constraint (see Section 26.4.3).
In contrast to simultaneous wire sizing and buffer insertion [12], the algorithm complexity stays
polynomial after integrating wire-code assignment [25] with van Ginneken’s algorithm.

Another important conclusion in Ref. [25] is about wire tapering. Wire tapering means that a
wire segment is divided into multiple pieces and each piece can be sized individually. In contrast,
uniform wire sizing does not make such division and maintain the same wire width for the entire
segment. These two cases are illustrated in Figure 26.6. It is shown in Ref. [25] that the benefit of
wire tapering versus uniform wire sizing is very limited when combined with buffer insertion. It is
theoretically proved [25] that the signal velocity from simultaneous buffering with wire tapering is
at most 1.0354 times of that from buffering and uniformwire sizing. In short, wire tapering improves
signal speed by at most 3.54 percent over uniform wire sizing.

26.4.6 NOISE CONSTRAINTS WITH DEVGANMETRIC

The shrinking of minimum distance between adjacent wires has caused an increase in the coupling
capacitance of a net to its neighbors.A large coupling capacitance can cause a switching net to induce
significant noise onto a neighboringnet, resulting in an incorrect functional response. Therefore, noise
avoidance techniques must become an integral part of the performance optimization environment.

The amount of coupling capacitance from one net to another is proportional to the distance
that the two nets run parallel to each other. The coupling capacitance may cause an input signal on
the aggressor net to induce a noise pulse on the victim net. If the resulting noise is greater than the
tolerable noise margin (NM) of the sink, then an electrical fault results. Inserting buffers in the victim
net can separate the capacitive coupling into several independent and smaller portions, resulting in
smaller noise pulse on the sink and on the input of the inserted buffers.

Before describing the noise-aware buffering algorithms, we first introduce the coupling noise
metric as follows.

26.4.6.1 Devgan’s Coupling Noise Metric

Amongmany coupling noise models, Devgan’s metric [26] is particularly amenable for noise avoid-
ance in buffer insertion, because its computational complexity, structure, and incremental nature is
the same as the famous Elmore delay metric. Further, like the Elmore delay model, the noise metric

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 545 29-9-2008 #12

Buffer Insertion Basics 545

(b)(a)

FIGURE 26.7 Illustration of noise model. (a) A net is a victim of the crosstalk noise induced by its neigh-
boring nets. (b) The crosstalk noise can be modeled as current sources. (Modified at http://dropzone.tamu.edu/
∼jhu/noise.eps)

is a provable upper bound on coupled noise. Other advantages of the noise metric include the ability
to incorporate multiple aggressor nets and handle general victim and aggressor net topologies. A
disadvantage of the Devgan metric is that it becomes more pessimistic as the ratio of the aggressor
net’s transition time (at the output of the driver) to its delay decreases. However, cases in which this
ratio becomes very small are rare because a long net delay generally corresponds to a large load on
the driver, which in turn causes a slower transition time. The metric does not consider the duration
of the noise pulse either. In general, the NM of a gate is dependent on both the peak noise amplitude
and the noise pulse width. However, when considering failure at a gate, peak amplitude dominates
pulse width.

If a wire segment e in the victim net is adjacent with t aggressor nets, let λ1, . . . , λt be the ratios
of coupling to wire capacitance from each aggressor net to e, and let µ1, . . . ,µt be the slopes of
the aggressor signals. The impact of a coupling from aggressor j can be treated as a current source
Ie,j = Ce ·λj ·µj whereCe is the wire capacitance of wire segment e. This is illustrated in Figure 26.7.
The total current induced by the aggressors on e is

Ie = Ce

t∑
j=1

(
λj · µj

)
(26.14)

Often, information about neighboring aggressor nets is unavailable, especially if buffer insertion
is performed before routing. In this case, a designer may wish to perform buffer insertion to improve
performance while also avoiding future potential noise problems.When performing buffer insertion
in estimation mode, one might assume that (1) there is a single aggressor net that couples with each
wire in the routing tree, (2) the slope of all aggressors is µ, and (3) some fixed ratio λ of the total
capacitance of each wire is due to coupling capacitance.

Let IT(v) be defined as the total downstream current see at node v, i.e.,

IT(v) =
∑

e∈ET(v)

Ie

where ET(v) is the set of wire edges downstream of node v. Each wire adds to the noise induced on
the victim net. The amount of additional noise induced from a wire e = (u, v) is given by

Noise(e) = Re

[
Ie
2

+ IT(v)

]
(26.15)

where Re is the wire resistance. The total noise seen at sink si starting at some upstream node v is

Noise(v− si) = RvIT(v) +
∑

e∈path(v−si)

Noise(e) (26.16)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 546 29-9-2008 #13

546 Handbook of Algorithms for Physical Design Automation

where gate driving resistance Rv = 0 if there is no gate at node v. The path from v to si has no
intermediate buffers.

Each node v has a predetermined noise marginNM(v). If the circuit is to have no electrical faults,
the total noise propagated from each driver/buffer to each its sink si must be less than the NM for si.
We define the noise slack for every node v as

NS(v) = min
si∈SIT(v)

NM(si) − Noise(v − si) (26.17)

where SIT(v) is the set of sink nodes for the subtree rooted at node v. Observe that NS(si) = NM(si)
for each sink si.

26.4.6.2 Algorithm of Buffer Insertion with Noise Avoidance

We begin with the simplest case of a single wire with uniform width and neighboring coupling
capacitance. Let us consider a wire e = (u, v). First, we need to ensure NS(v) ≥ RbIT(v) where Rb is
the buffer output resistance. If this condition is not satisfied, inserting a buffer even at node v cannot
satisfy the constraint of NM, i.e., buffer insertion is needed within subtree T(v). If NS(v) ≥ RbIT(v),
we next search for the maximumwirelength le,max of e such that inserting a buffer at u always satisfies
noise constraints. The value of le,max tells us the maximum unbuffered length or the minimum buffer
usage for satisfying noise constraints. Let R = Re/le be the wire resistance per unit length and
I = Ie/le be the current per unit length. According to Ref. [27], this value can be determined by

le,max = −Rb

R
− IT(v)

I
+

√(
Rb

R

)2

+
(
IT(v)

I

)2

+ 2NS(v)

I · R (26.18)

Depending on the timing criticality of the net, the noise-aware buffer insertion problem can be
formulated in two different ways: (1) minimize total buffer cost subject to noise constraints and
(2) maximize timing slack subject to noise constraints.

The algorithm for the former is a bottom-up dynamic programming procedure, which inserts
buffers greedily as far apart as possible [27]. Each partial solution at node v is characterized by a
three-tuple of downstream noise current IT(v), noise slack NS(v), and buffer assignment M. In the
solution propagation, the noise current is accumulated in the sameway as the downstreamcapacitance
in van Ginneken’s algorithm. Likewise, noise slack is treated like the timing slack (or RAT). This
algorithm can return an optimal solution for a multisink tree T = (V ,E) in O(|V |2) time.

The core algorithm of noise-constrained timing slack maximization is similar as van Ginneken’s
algorithm except that the noise constraint is considered. Each candidate solution at node v is rep-
resented by a five-tuple of downstream capacitance Cv, RAT q(v), downstream noise current IT(v),
noise slack NS(v), and buffer assignment M. In addition to pruning inferior solutions according to
the (C, q) pair, the algorithm eliminates candidate solutions that violate the noise constraint. At the
source, the buffering solution not only has optimized timing performance but also satisfies the noise
constraint.

26.4.7 HIGHER ORDER DELAY MODELING

Many buffer insertionmethods [11,12,28] are based on the Elmorewire delaymodel [29] and a linear
gate delay model for the sake of simplicity. However, the Elmore delay model often overestimates
interconnect delay. It is observed in Ref. [30] that Elmore delay sometimes has over 100 percent
overestimation error when compared to SPICE. A critical reason of the overestimation is due to the
neglection of the resistive shielding effect. In the example of Figure 26.8, the Elmore delay from
node A to B is equal to R1(C1 + C2) assuming that R1 can see the entire capacitance of C2 despite
the fact that C2 is somewhat shielded by R2. Consider an extreme scenario where R2 = ∞ or there

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 547 29-9-2008 #14

Buffer Insertion Basics 547

R1 R2

C2C1

A B C

FIGURE 26.8 Example of resistive shielding effect.

is open circuit between node B and C. Obviously, the delay from A to B should be R1C1 instead of
the Elmore delay R1(C1 + C2). The linear gate delay model is inaccurate owing to its neglection of
nonlinear behavior of gate delay in addition to resistive shielding effect. In other words, a gate delay
is not a strictly linear function of load capacitance.

The simple and relatively inaccurate delay models are suitable only for early design stages such
as buffer planning. In postplacement stages, more accurate models are needed because (1) optimal
buffering solutions based on simple models may be inferior, because actual delay is not being
optimized and (2) simplified delay modeling can cause a poor evaluation of the trade-off between
total buffer cost and timing improvement. Inmore accurate delaymodels, the resistive shielding effect
is considered by replacing lumped load capacitance with higher order load admittance estimation.
The accuracy of wire delay can be improved by including higher order moments of transfer function.
An accurate and popular gate delay model is usually a lookup table employed together with effective
capacitance [31,32], which is obtained based on the higher order load admittance. These techniques
will be described in more details as follows.

26.4.7.1 Higher Order Point Admittance Model

For an RC tree, which is a typical circuit topology in buffer insertion, the frequency-domain point
admittance at a node v is denoted as Yv(s). It can be approximated by the third-orderTaylor expansion

Yv(s) = yv,0 + yv,1s+ yv,2s
2 + yv,3s

3 + O(s4)

where yv,0, yv,1, yv,2, and yv,3 are expansion coefficients. The third-order approximation usually pro-
vides satisfactory accuracy in practice. Its computation is a bottom-up procedure starting from the
leaf nodes of an RC tree, or the ground capacitors. For a capacitance C connected to ground, the
admittance at its upstream end is simply Cs. Please note that the zeroth order coefficient is equal
to 0 in an RC tree because there is no DC path connected to ground. Therefore, we only need to
propagate y1, y2, and y3 in the bottom-up computation. There are two cases we need to consider:

• Case 1: For a resistance R, given the admittance Yd(s) of its downstream node, compute the
admittance Yu(s) of its upstream node (Figure 26.9a).

(a) (b)

RYu(s)

Yu(s)

Yd1(s)

Yd2(s)Yd(s)

FIGURE 26.9 Two scenarios of admittance propagation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 548 29-9-2008 #15

548 Handbook of Algorithms for Physical Design Automation

Y (s)

Cu Cd

Rπ

FIGURE 26.10 Illustration of π-model.

yu,1 = yd,1 yu,2 = yd,2 − Ry2d,1 yu,3 = yd,3 − 2Ryd,1yd,2 + R2y3d,1 (26.19)

• Case 2: Given admittance Yd1(s) and Yd2(s) corresponding to two branches, compute the
admittance Yu(s) after merging them (Figure 26.9b).

yu,1 = yd1,1 + yd2,1 yu,2 = yd1,2 + yd2,2 yu,3 = yd1,3 + yd2,3 (26.20)

The third-order approximation (y1, y2, y3) of an admittance can be realized as an RC π-model
(Cu, Rπ , Cd) (Figure 26.10) where

Cu = y1 − y22
y3

Rπ = −y23
y32

Cd = y22
y3

(26.21)

26.4.7.2 Higher Order Wire Delay Model

While the Elmore delay is equal to the first-order moment of transfer function, the accuracy of delay
estimation can be remarkably improved by including higher order moments. For example, the wire
delay model [33] based on the first three moments and the closed-form model [34] using the first
two moments.

Because van Ginneken style buffering algorithms proceed in a bottom-up manner, bottom-up
moment computations are required. Figure 26.11a shows a wire e connected to a subtree rooted at
node B. Assume that the first k moments m(1)

BC , m
(2)
BC , . . . , m

(k)
BC have already been computed for the

path from B to C. We wish to compute the moments m(1)
AC , m

(2)
AC , . . . , m

(k)
AC so that the A � C delay

can be derived.
The techniques in Section 26.4.7.1 are used to reduce the subtree at B to a π-model (Cj, Rπ , Cf)

(Figure 26.11b). Node D just denotes the point on the far side of the resistor connected to B and
is not an actual physical location. The RC tree can be further simplified to the network shown in
Figure 26.11c. The capacitance Cj and Ce/2 at B are merged to form a capacitor with value Cn. The
moments from A to B can be recursively computed by the equation

m(i)
AB = −Re

[
m(i−1)
AB + m(i−1)

AD Cf

]
(26.22)

Wire e
Re, Ce Ce /2 Ce / 2 Ce /2 Cn Cf

DBAA D
Re Re RπRπ

Cj Cf

B
A B C

(a) (b) (c)

FIGURE 26.11 Illustration of bottom-up moment computation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 549 29-9-2008 #16

Buffer Insertion Basics 549

where the moments from A to D are given by

m(i)
AD = m(i)

AB − m(i−1)
AD RπCf (26.23)

and m(0)
AB = m(0)

AD = 1. Now the moments from A to C can be computed via moment multiplication as
follows:

m(i)
AC =

i∑
j=0

[
m(j)
AB ·m(i−j)

BC

]
(26.24)

One property of Elmore delay that makes it attractive for timing optimization is that the delays
are additive. This property does not hold for higher order delay models. Consequently, a noncritical
sink in a subtree may become a critical sink depending on the value of upstream resistance [35].
Therefore, one must store the moments for all the paths to downstream sinks during the bottom-up
candidate solution propagation.

26.4.7.3 Accurate Gate Delay

A popular gate-delay model with decent accuracy consists of the following three steps:

1. Compute a π-model of the driving point admittance for the RC interconnect using the
techniques introduced in Section 26.4.7.1.

2. Given the π-model and the characteristics of the driver, compute an effective capacitance
Ceff [31,32].

3. Based on Ceff , compute the gate delay using k-factor equations or lookup table [36].

26.4.8 FLIP-FLOP INSERTION

The technology scaling leads to decreasing clock period, increasingwire delay, and growing chip size.
Consequently, it often takes multiple clock cycles for signals to reach their destinations along global
wires. Traditional interconnect optimization techniques such as buffer insertion are inadequate in
handling this scenario and flip-flop/latch insertion (or interconnect pipelining) becomes a necessity.

In pipelined interconnect design, flip-flops and buffers are inserted simultaneously in a given
Steiner tree T = (V ,E) [37,38]. The simultaneous insertion algorithm is similar to van Ginneken’s
dynamic programming method except that a new criterion, latency, needs to be considered. The
latency from the signal source to a sink is the number of flip-flops in-between. Therefore, a candidate
solution at node v ∈ V is characterized by a 4-tuple (cv, qv, λv, av), where cv is the downstream
capacitance, qv is the required arrival time, λv is the latency and av is the buffer assignment at v.
Obviously, a small latency is preferred.

The inclusion of flip-flop and latency also requests other changes in a van Ginneken style
algorithm.When a flip-flop is inserted in the bottom-up candidate propagation, the RAT at the input
of this flip-flop is reset to clock period time Tφ . The latency of corresponding candidate solution
is also increased by 1. For the ease of presentation, clock skew and setup/hold time are neglected
without loss of generality. Then, the delay between two adjacent flip-flops cannot be greater than the
clock period time Tφ , i.e., the RAT cannot be negative. During the candidate solution propagation, if
a candidate solution has negative RAT, it should be pruned without further propagation. When two
candidate solutions from two child branches are merged, the latency of the merged solution is the
maximum of the two branch solutions.

There are two formulations for the simultaneous flip-flop and buffer insertion problem: MiLa,
which finds the minimum latency that can be obtained, and GiLa, which finds a flip-flop/buffer
insertion implementation that satisfies given latency constraint.MiLa can be used for the estimation of
interconnect latency at the microarchitectural level. After the microarchitecture design is completed,
all interconnect must be designed so as to abide to given latency requirements by using GiLa.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 550 29-9-2008 #17

550 Handbook of Algorithms for Physical Design Automation

Algorithm: MiLa(Tu)/MiLa(Tu,v)

Input: Subtree rooted at node u or edge (u,v)

Output: A set of candidate solutions �u

Global: Routing tree T and buffer library B
1. if u is a leaf, �u = (Cu,qu,0,0) // q is required arrival time
2. else if u has one child node v or the input is Tu,v

2.1 �v = MiLa(v)

2.2 �u = ∪γ∈�v (addWire((u,v),γ))

2.3 �b = ∅
2.4 for each b in B
2.4.1 � = ∪γ∈�u(addBuffer(γ,b))

2.4.2 prune �

2.4.3 �b = �b ∪ �

2.5 �u = �u ∪ �b

3. else if u has two child edges (u,v) and (u,z)

3.1 �u,v = MiLa(Tu,v), �u,z = MiLa(Tu,z)

3.2 �u = �u ∪ merge(�u,v,�u,z)

4. prune �u

5. return �u

FIGURE 26.12 MiLa algorithm.

The algorithm ofMiLa [38] and GiLa [38] are shown in Figures 26.12 and 26.13, respectively. In
GiLa, the λu for a leaf node u is the latency constraint at that node.Usually, λu at a leaf is a nonpositive
number. For example, λu = −3 requires that the latency from the source to node u is 3. During the
bottom-up solution propagation, λ is increased by 1 if a flip-flop is inserted. Therefore, λ = 0 at
the source implies that the latency constraint is satisfied. If the latency at the source is greater than
zero, then the corresponding solution is not feasible (line 2.6.1 of Figure 26.13). If the latency at
the source is less than zero, the latency constraint can be satisfied by padding extra flip-flops in the
corresponding solution (line 2.6.2.1 of Figure 26.13). The padding procedure is called ReFlop(Tu, k),
which inserts k flip-flops in the root path of Tu. The root path is from u to either a leaf node or a
branch node v and there is no other branch node in-between. The flip-flops previously inserted on the
root path and the newly inserted k flip-flops are redistributed evenly along the path. When solutions
from two branches in GiLa are merged, ReFlop is performed (line 3.3–3.4.1 of Figure 26.13) for
the solutions with smaller latency to ensure that there is at least one merged solution matching the
latency of both branches.

26.5 SPEEDUP TECHNIQUES

Because of dramatically increasing number of buffers inserted in the circuits, algorithms that can
efficiently insert buffers are essential for the design automation tools. In this chapter, several recent
proposed speedup results are introduced and the key techniques are described.

26.5.1 RECENT SPEEDUP RESULTS

This chapter studies buffer insertion in interconnect with a set of possible buffer positions and a
discrete buffer library. In 1990, van Ginneken [11] proposed an O(n2) time dynamic programming
algorithm for buffer insertionwith one buffer type,where n is the number of possible buffer positions.
His algorithm finds a buffer insertion solution that maximizes the slack at the source. In 1996, Lillis
et al. [12] extended van Ginneken’s algorithm to allow b buffer types in time O(b2n2).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 551 29-9-2008 #18

Buffer Insertion Basics 551

Algorithm: GiLa(Tu)/GiLa(Tu,v)

Input: Subtree Tu rooted at node u or edge (u,v)

Output: A set of candidate solutions �u

Global: Routing tree T and buffer library B
1. if u is a leaf, �u = (Cu,qu,λu,0)

2. else if node u has one child node v or the input is Tu,v

2.1 �v = GiLa(Tv)

2.2 �u = ∪γ∈�v (addWire((u,v),γ))

2.3 �b = ∅
2.4 for each b in B
2.4.1 � = ∪γ∈�u(addBuffer(γ,b))

2.4.2 prune �

2.4.3 �b = �b ∪ �

2.5 �u = �u ∪ �b

// �u ≡ {�x,. . .,�y},x,y indicate latency
2.6 if u is source
2.6.1 if x > 0, exit: the net is not feasible
2.6.2 if y < 0, // insert −y more flops in �u

2.6.2.1 �u = ReFlop(Tu,− y)

3. else if u has two child edges (u,v) and (u,z)

3.1 �u,v = GiLa(Tu,v),�u,z = GiLa(Tu,z)

3.2 //�u,v ≡ {�x,. . .,�y}, �u,z ≡ {�m,. . .,�n}
3.3 if y < m // insert m − y more flops in �u,v

3.3.1 �u,v = ReFlop(Tu,v,m − y)

3.4 if n < x // insert x − n more flops in �u,z

3.4.1 �u,z = ReFlop(Tu,z,x − n)

3.5 �u = �u ∪ merge(�u,v,�u,z)

4. prune �u

5. return �u

FIGURE 26.13 GiLa algorithm.

Recently, many efforts are taken to speedup the van Ginneken’s algorithm and its extensions. Shi
and Li [39] improved the time complexity of van Ginneken’s algorithm to O(b2n log n) for two-pin
nets, andO(b2n log2n) formultipin nets. The speedup is achievedby four novel techniques: predictive
pruning, candidate tree, fast redundancy check, and fast merging. To reduce the quadratic effect of
b, Li and Shi [40] proposed an algorithm with time complexity O(bn2). The speedup is achieved by
the observation that the best candidate to be associated with any buffer must lie on the convex hull
of the (Q,C) plane and convex pruning. To utilize the fact that in real applications most nets have
small number of pins and large number of buffer positions, Li and Shi [41] proposed a simpleO(mn)
algorithms for m-pin nets. The speedup is achieved by the property explored in Ref. [40], convex
pruning, a clever bookkeepingmethod, and an innovative linked list that allowO(1) time update for
adding a wire or a candidate.

In the following subsections, new pruning techniques, an efficient way to find the best candidates
when adding a buffer, and implicit data representations are presented. They are the basic components
of many recent speedup algorithms.

26.5.2 PREDICTIVE PRUNING

During the vanGinneken’s algorithm, a candidate is pruned out only if there is another candidate that
is superior in terms of capacitance and slack. This pruning is based on the information at the current

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 552 29-9-2008 #19

552 Handbook of Algorithms for Physical Design Automation

v1
T (V1)

v

v2 v3 … vk

Rmin

FIGURE 26.14 If α1 and α2 satisfy the condition in Definition 1 at v1, α2 is redundant. (From Shi, W. and
Li, Z., IEEE Trans Computer-Aided Design, 24, 879, 2005. With permission.)

node being processed. However, all candidates at this node must be propagated further upstream
toward the source. This means the load seen at this node must be driven by some minimal amount of
upstreamwire or gate resistance. By anticipating the upstream resistance ahead of time, one can prune
out more potentially inferior candidates earlier rather than later, which reduces the total number of
candidates generated. More specifically, assume that each candidate must be driven by an upstream
resistance of at least Rmin. The pruning based on anticipated upstream resistance is called predictive
pruning.

Definition 1 Predictive Pruning. Let α1 and α2 be two nonredundant candidates of T(v) such that
C(α1)<C(α2) and Q(α1)<Q(α2). If Q(α2)−Rmin ·C(α2) ≤ Q(α1)−Rmin ·C(α1), then α2 is pruned.

Predictive pruning preserves optimality. The general situation is shown in Figure 26.14. Let α1

and α2 be candidates of T(v1) that satisfy the condition in Definition 1. Using α1 instead of α2 will
not increase delay from v to sinks in v2, . . . , vk. It is easy to see C(v, α1) < C(v, α2). If Q at v is
determined by T(v1), we have

Q(v, α1) − Q(v, α2) = Q(v1, α1) − Q(v1, α2) − Rmin · [C(v1, α1) − C(v1, α2)] ≥ 0

Therefore, α2 is redundant.
Predictive pruning technique prunes more redundant solutions while guarantees optimality. It is

one of four key techniques of fast algorithms proposed in Ref. [39]. In Ref. [42], significant speedup
is achieved by simply extending predictive pruning technique to buffer cost. Aggressive predictive
pruning technique, which uses a resistance larger than Rmin to prune candidates, is proposed in
Ref. [43] to achieve further speedup with a little degradation of solution quality.

26.5.3 CONVEX PRUNING

The basic data structure of van Ginneken’s algorithms is a sorted list of nondominated candidates.
Both the pruning in vanGinneken’s algorithm and the predictive pruning are performed by comparing
two neighboring candidates a time. However, more potentially inferior candidates can be pruned out
by comparing three neighboring candidate solutions simultaneously. For three solutions in the sorted
list, the middle one may be pruned according to convex pruning.

Definition 2 Convex Pruning. Let α1, α2 and, α3 be three nonredundant candidates of T(v) such
that C(α1) < C(α2) < C(α3) and Q(α1) < Q(α2) < Q(α3). If

Q(α2) − Q(α1)

C(α2) − C(α1)
<
Q(α3) − Q(α2)

C(α3) − C(α2)
(26.25)

then we call α2 nonconvex, and prune it.

Convex pruning can be explained by Figure 26.15. ConsiderQ as the Y -axis andC as the X-axis.
Then candidates are points in the two-dimensional plane. It is easy to see that the set of nonredundant

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 553 29-9-2008 #20

Buffer Insertion Basics 553

c

q

c1 c2 c3

q1

q2

q3

Pruned

(a)
c

q

c1 c3 c4

q1

q3

q4

(b)c4

q4

FIGURE 26.15 (a) Nonredundant candidates N(v) and (b) nonredundant candidates M(v) after convex
pruning. (From Li, Z. and Shi, W., IEEE Trans Computer-Aided Design, 25, 484, 2006. With permission.)

candidates N(v) is a monotonically increasing sequence. Candidate α2 = (Q2,C2) in the above
definition is shown in Figure 26.15a, and is pruned in Figure 26.15b. The set of nonredundant
candidates after convex pruningM(v) is a convex hull.

For two-pin nets, convex pruning preserves optimality. Let α1, α2, and α3 be candidates of
T(v) that satisfy the condition in Definition 2. In Figure 26.15, let the slope between α1 and α2 (α2

and α3) be ρ1,2 (ρ2,3). If candidate α2 is not on the convex hull of the solution set, then ρ1,2 < ρ2,3.
These candidatesmust have certain upstream resistanceR includingwire resistance and buffer/driver
resistance. If R < ρ2,3, α2 must become inferior to α3 when both candidates are propagated to the
upstream node. Otherwise, R > ρ2,3 which implies R > ρ1,2, and therefore α2 must become inferior
to α1. In other words, if a candidate is not on the convex hull, it will be pruned either by the solution
ahead of it or the solution behind it. Please note that this conclusion only applies to two-pin nets.
For multipin nets, when the upstream could be a merging vertex, nonredundant candidates that are
pruned by convex pruning could still be useful.

Convex pruning of a list of nonredundant candidates sorted in increasing (Q,C) order can be
performed in linear time by Graham’s scan. Furthermore, when a new candidate is inserted to the
list, we only need to check its neighbors to decide if any candidate should be pruned under convex
pruning. The time is O(1), amortized over all candidates.

In Refs. [40,41], the convex pruning is used to form the convex hull of nonredundant candidates,
which is the key component of the O(bn2) algorithm and O(mn) algorithm. In Ref. [43], convex
pruning (called squeeze pruning) is performed on both two-pin and multipin nets to prune more
solutions with a little degradation of solution quality.

26.5.4 EFFICIENTWAY TO FIND BEST CANDIDATES

Assume v is a buffer position, and we have computed the set of nonredundant candidates N ′(v) for
T(v), where N ′(v) does not include candidates with buffers inserted at v. Now we want to insert
buffers at v and compute N(v). Define Pi(v, α) as the slack at v if we add a buffer of type Bi for any
candidate α:

Pi(v, α) = Q(v, α) − R(Bi) · C(v, α) − K(Bi) (26.26)

If we do not insert any buffer, then every candidate in N ′(v) is a candidate in N(v). If we insert
a buffer, then for every buffer type Bi, i = 1, 2, . . . , b, there will be a new candidate βi:

Q(v,βi) = max
α∈N′(v)

{Pi(v, α)}
C(v,βi) = C(Bi)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 554 29-9-2008 #21

554 Handbook of Algorithms for Physical Design Automation

Define the best candidate for Bi as the candidate α ∈ N ′(v) such that α maximizes Pi(v, α)

among all candidates in N ′(v). If there are multiple α’s that maximize Pi(v, α), choose the one with
minimum C. In van Ginneken’s algorithm, it takes O(bn) to find one best candidate at each buffer
position.

According to convex pruning, it is easy to see that all best candidates are on the convex hull. The
following lemma says that if we sort candidates in increasing Q and C order from left to right, then
as we add wires to the candidates, we always move to the left to find the best candidates.

Lemma 1 For any T(v), let nonredundant candidates after convex pruning be α1, α2, . . . , αk , in
increasing Q and C order. Now add wire e to each candidate αj and denote it as αj + e. For any
buffer type Bi, if αj gives the maximum Pi(αj) and αk gives the maximum Pi(αk + e), then k ≤ j.

The following lemma says the best candidate can be found by local search, if all candidates are
convex.

Lemma 2 For any T(v), let nonredundant candidates after convex pruning be α1, α2, . . . , αk , in
increasing Q and C order. If Pi(αj−1) ≤ Pi(αj), Pi(αj) ≥ Pi(αj+1), then αj is the best candidate for
buffer type Bi and

Pi(α1) ≤ · · · ≤ Pi(αj−1) ≤ Pi(αj)

Pi(αj) ≥ Pi(αj+1) ≥ · · · ≥ Pi(αk)

With the above two lemmas and convex pruning, one best candidate is found in amortized O(n)
time in Ref. [40] andO(b) time in Ref. [41],∗which aremore efficient than vanGinneken’s algorithm.

26.5.5 IMPLICIT REPRESENTATION

Van Ginnken’s algorithm uses explicit representation to store slack and capacitance values, and
therefore it takesO(bn) time when adding a wire. It is possible to use implicit representation to avoid
explicit updating of candidates.

In the implicit representation, C(v, α) and Q(v, α) are not explicitly stored for each candidate.
Instead, each candidate contains five fields: q, c, qa, ca, and ra.† When qa, ca and, ra are all 0, q
and c give Q(v, α) and C(v, α), respectively. When a wire is added, only qa, ca, and ra in the root of
the tree [39] or as global variables themselves [41] are updated. Intuitively, qa represents extra wire
delay, ca represents extra wire capacitance, and ra represents extra wire resistance.

It takes only O(1) time to add a wire with the implicit representation [39,41]. For example, in
Ref. [41], when we reach an edge e with resistance R(e) and C(e), qa, ra, and ca are updated to
reflect new values ofQ and C of all previous candidates in O(1) time, without actually touching any
candidate:

qa = qa + R(e) · C(e)/2 + R(e) · ca
ca = ca + C(e)

ra = ra + R(e)

∗ In Ref. [40], Lemma 1 is presented differently. It says if all buffers are sorted decreasingly according to driving resistance,
then the best candidates for each buffer type in such order is from left to right.

† In Ref. [41], only two fields, q and c, are necessary for each candidate. qa, ca, and ra are global variables for each two-pin
segment.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 555 29-9-2008 #22

Buffer Insertion Basics 555

The actual value of Q and C of each candidate α are decided as follows:

Q(α) = q − qa − ra · c
C(α) = c+ ca

(26.27)

Implicit representation is applied on balance tree in Ref. [39], where the operation of adding a
wire takes O(b log n) time. It is applied on a sorted linked list in Ref. [41], where the operation of
adding a wire takes O(1) time.

REFERENCES
1. J. Cong. An interconnect-centric design flow for nanometer technologies. Proceedings of IEEE, 89(4):

505–528, April 2001.
2. J.A.Davis, R.Venkatesan,A.Kaloyeros,M.Beylansky, S. J. Souri,K.Banerjee,K.C. Saraswat,A.Rahman,

R. Reif, and J. D.Meindl. Interconnect limits on gigascale integration (GSI) in the 21st century. Proceedings
of IEEE, 89(3): 305–324, March 2001.

3. R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires. Proceedings of IEEE, 89(4): 490–504,
April 2001.

4. A. B. Kahng and G. Robins. On Optimal Interconnections for VLSI. Kluwer Academic Publishers, Boston,
MA, 1995.

5. J. Cong, L. He, C. -K. Koh, and P. H. Madden. Performance optimization of VLSI interconnect layout.
Integration: The VLSI Journal, 21: 1–94, 1996.

6. P. Saxena, N. Menezes, P. Cocchini, and D. A. Kirkpatrick. Repeater scaling and its impact on CAD. IEEE
Transactions on Computer-Aided Design, 23(4): 451–463, April 2004.

7. J. Cong. Challenges and opportunities for design innovations in nanometer technologies. SRC Design
Sciences Concept Paper, 1997.

8. M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and Algorithms. John
Wiley & Sons, NY, 1993.

9. C. J. Alpert andA.Devgan.Wire segmenting for improved buffer insertion. InProceedings of the ACM/IEEE
Design Automation Conference, Anaheim, CA, pp. 588–593, 1997.

10. C. C. N. Chu and D. F. Wong. Closed form solution to simultaneous buffer insertion/sizing and wire sizing.
ACM Transactions on Design Automation of Electronic Systems, 6(3): 343–371, July 2001.

11. L. P. P. P. van Ginneken. Buffer placement in distributed RC-tree networks for minimal Elmore delay.
In Proceedings of the IEEE International Symposium on Circuits and Systems, New Orleans, LA,
pp. 865–868, 1990.

12. J. Lillis, C. K. Cheng, and T. Y. Lin. Optimal wire sizing and buffer insertion for low power and a generalized
delay model. IEEE Journal of Solid-State Circuits, 31(3): 437–447, March 1996.

13. N. Menezes and C. -P. Chen. Spec-based repeater insertion and wire sizing for on-chip interconnect. In
Proceedings of the International Conference on VLSI Design, Goa, India, pp. 476–483, 1999.

14. L. -D. Huang, M. Lai, D. F. Wong, and Y. Gao. Maze routing with buffer insertion under transition time
constraints. IEEE Transactions on Computer-Aided Design, 22(1): 91–95, January 2003.

15. C. J. Alpert, A. B. Kahng, B. Liu, I. I. Mandoiu, and A. Z. Zelikovsky. Minimum buffered routing with
bounded capacitive load for slew rate and reliability control. IEEETransactions on Computer-AidedDesign,
22(3): 241–253, March 2003.

16. C. Kashyap, C. J. Alpert, F. Liu, and A. Devgan. Closed form expressions for extending step delay and slew
metrics to ramp inputs. In Proceedings of the ACM International Symposium on Physical Design, Monterey,
CA, pp. 24–31, 2003.

17. H. B. Bakoglu. Circuits, Interconnections and Packaging for VLSI. Addison-Wesley, Reading, MA, 1990.
18. N.H. E.Weste andK. Eshraghian.Principles of CMOSVLSIDesign: A SystemPerspective. Addison-Wesley

Publishing Company, Reading, MA, 1993.
19. S. Hu, C. J. Alpert, J. Hu, S. Karandikar, Z. Li, W. Shi, and C. -N. Sze. Fast algorithms for slew constrained

minimum cost buffering. In Proceedings of the ACM/IEEE Design Automation Conference, San Francisco,
CA, pp. 308–313, 2006.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C026 Finals Page 556 29-9-2008 #23

556 Handbook of Algorithms for Physical Design Automation

20. J. Cong and C. K. Koh. Simultaneous driver and wire sizing for performance and power optimization. IEEE
Transactions on VLSI Systems, 2(4): 408–425, December 1994.

21. S. S. Sapatnekar. RC interconnect optimization under the Elmore delay model. In Proceedings of the
ACM/IEEE Design Automation Conference, San Diego, CA, pp. 392–396, 1994.

22. J. Cong and K. -S. Leung. Optimal wiresizing under the distributed Elmore delay model. IEEE Transactions
on Computer-Aided Design, 14(3): 321–336, March 1995.

23. J. P. Fishburn andC.A. Schevon. Shaping a distributedRC line tominimizeElmore delay. IEEETransactions
on Circuits and Systems, 42(12): 1020–1022, December 1995.

24. C. P. Chen, Y. P. Chen, and D. F. Wong. Optimal wire-sizing formula under the Elmore delay model. In
Proceedings of the ACM/IEEE Design Automation Conference, Las Vegas, NV, pp. 487–490, 1996.

25. C. J. Alpert, A. Devgan, J. P. Fishburn, and S. T. Quay. Interconnect synthesis without wire tapering. IEEE
Transactions on Computer-Aided Design, 20(1): 90–104, January 2001.

26. A. Devgan. Efficient coupled noise estimation for on-chip interconnects. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, San Jose, CA, pp. 147–151, 1997.

27. C. J. Alpert, A.Devgan, and S. T. Quay. Buffer insertion for noise and delay optimization. IEEETransactions
on Computer-Aided Design, 18(11): 1633–1645, November 1999.

28. C. C. N. Chu and D. F. Wong. A new approach to simultaneous buffer insertion and wire sizing. In
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA,
pp. 614–621, 1997.

29. W. C. Elmore. The transient response of damped linear networks with particular regard to wideband
amplifiers. Journal of Applied Physics, 19: 55–63, January 1948.

30. F. J. Liu, J. Lillis, and C. K. Cheng. Design and implementation of a global router based on a new layout-
driven timing model with three poles. In Proceedings of the IEEE International Symposium on Circuits and
Systems, Hong Kong, China, pp. 1548–1551, 1997.

31. J. Qian, S. Pullela, and L. T. Pillage. Modeling the effective capacitance for the RC interconnect of CMOS
gates. IEEE Transactions on Computer-Aided Design, 13(12): 1526–1535, December 1994.

32. S. R. Nassif and Z. Li. A more effective Ceff . In Proceedings of the IEEE International Symposium on
Quality Electronic Design, San Jose, CA, pp. 648–653, 2005.

33. B. Tutuianu, F. Dartu, and L. Pileggi. Explicit RC-circuit delay approximation based on the first three
moments of the impulse response. In Proceedings of the ACM/IEEE Design Automation Conference, Las
Vegas, NV, pp. 611–616, 1996.

34. C. J. Alpert, F. Liu, C. V. Kashyap, and A. Devgan. Closed-form delay and slew metrics made easy. IEEE
Transactions on Computer-Aided Design, 23(12): 1661–1669, December 2004.

35. C. J. Alpert, A. Devgan, and S. T. Quay. Buffer insertion with accurate gate and interconnect delay
computation. In Proceedings of the ACM/IEEE Design Automation Conference, New Orleans, LA,
pp. 479–484, 1999.

36. C. -K. Cheng, J. Lillis, S. Lin, and N. Chang. Interconnect Analysis and Synthesis. Wiley Interscience, New
York, 2000.

37. S. Hassoun, C. J. Alpert, and M. Thiagarajan. Optimal buffered routing path constructions for single and
multiple clock domain systems. In Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, San Jose, CA, pp. 247–253, 2002.

38. P. Cocchini. A methodology for optimal repeater insertion in pipelined interconnects. IEEE Transactions
on Computer-Aided Design, 22(12): 1613–1624, December 2003.

39. W. Shi and Z. Li. A fast algorithm for optimal buffer insertion. IEEE Transactions on Computer-Aided
Design, 24(6): 879–891, June 2005.

40. Z. Li and W. Shi. An O(bn2) time algorithm for buffer insertion with b buffer types. IEEE Transactions on
Computer-Aided Design, 25(3): 484–489, March 2006.

41. Z. Li andW. Shi. AnO(mn) time algorithm for optimal buffer insertion of nets withm sinks. In Proceedings
of Asia and South Pacific Design Automation Conference, Yokohama, Japan, pp. 320–325, 2006.

42. W. Shi, Z. Li, and C. J. Alpert. Complexity analysis and speedup techniques for optimal buffer insertion
with minimum cost. In Proceedings of Asia and South Pacific Design Automation Conference, Yokohama,
Japan, pp. 609–614, 2004.

43. Z. Li, C. N. Sze, C. J. Alpert, J. Hu, and W. Shi. Making fast buffer insertion even faster via approximation
techniques. In Proceedings of Asia and South Pacific Design Automation Conference, Shanghai, China,
pp. 13–18, 2005.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C027 Finals Page 557 23-9-2008 #2

27 Generalized Buffer Insertion

Miloš Hrkić and John Lillis

CONTENTS

27.1 Introduction.. 557
27.2 Two-Phase Approach and Buffer-Aware Tree Construction . 560

27.2.1 C-Tree Algorithm .. 560
27.2.2 Buffer Tree Topology Generation.. 561

27.3 Simultaneous Tree Construction and Buffer Insertion . 562
27.3.1 P-Tree Algorithm . 562
27.3.2 S-Tree Algorithm . 564
27.3.3 SP-Tree Algorithm.. 566
27.3.4 Complete Tree Topology Exploration . 566

References . 566

27.1 INTRODUCTION

It has been widely recognized that interconnect is a dominating factor in modern very large scale
integration (VLSI) circuit designs. Chapter 26 gave an overviewof challenges that interconnect faces
and introduced a technique called repeater insertion that has proven to be very efficient in addressing
emerging interconnect issues.

Early work on repeater insertion focusedmainly on improving interconnect timing performance.
The most influential work is van Ginneken’s dynamic programming algorithm [1]. The algorithm
performs buffer insertion on a fixed and embedded tree (e.g., as given by a global router) and produces
an optimal timing solution under Elmore delaymodel [2]. Various generalizations of van Ginneken’s
algorithm have appeared in the literature taking into account issues of practical importance such as
buffer libraries with inverting and noninverting buffers, simultaneous wire sizing, and slew-based
delay models. Additionally, generalizations that address natural constrained optimization variants of
the problem (e.g.,minimization of area or power consumption subject to timing constraints) have also
appeared. Progress has also been made in improving computational complexity as well as practical
runtime. Many of these results are presented in Chapter 26.

A significant limitation of van Ginneken’s approach is that it requires a fixed and embedded
tree that has to be provided in advance. This constraint forces the final buffered solution quality to
depend on the input tree. Even though the algorithm provides an optimal timing solution for a given
tree, it will produce a poor solution when given a poor tree. A few example scenarios that are very
common in practice can be used to illustrate this limitation.

As noted earlier, one of the basic interconnect optimization tasks is delay minimization. Given
that sinks may have very different required signal arrival time constraints, a routing solution that
focuses only on, for example, minimizing wirelength may not be good enough. In Figure 27.1,
sinks F and G are timing critical while the others are not. Configuration in Figure 27.1a has better
wirelength, but the buffering cost is very high. On the other hand, configuration in Figure 27.1b can
achieve better timing results with slightly more wirelength but many fewer buffers.

557

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C027 Finals Page 558 23-9-2008 #3

558 Handbook of Algorithms for Physical Design Automation

(a) (b)

G
E

F

D

CBA

E
FG

D

CBA

FIGURE 27.1 Buffering example: Sinks F and G are assumed to be critical; tree (a) has slightly smaller
wirelength but requires more buffers (and may prevent timing constraints on F and G from being met) than the
tree (b).

+ − + − + − + − + − + −

(a) (b)

FIGURE 27.2 Buffering example: Tomeet signal polarity requirements, the number of buffers that is required
varies significantly from one topology to another.

In some cases, certain sinks of a net require input signals of inverted polarity. Choices made
during route construction can have a large impact on the cost of buffering solutions, as we can see
in Figure 27.2. The two solutions Figure 27.2 have very different buffer and wiring costs.

Figure 27.3 shows a simple example illustrating the issues raised during buffering and routing
in the presence of blockages. In configuration of Figure 27.3a, the route goes over the blockage
and cannot be buffered (thus, possibly violating timing, load, or slew constraints). If the route
completely avoids the blockage, the resulting solution is expensive in terms of wire and buffer costs
(Figure 27.3b). Finally, by being aware of different types of blockages, configuration in Figure 27.3c
dominates both in delay and resource usages/costs.

Recently, some designs have reserved internal areas of macroobjects for buffering of external
nets (e.g., thewhitespace inmacros as in Figure 27.4).Any buffer insertion algorithm that has towork
on a route that is not aware of the layout specifics will have limited chances of success. Referring to
Figure 27.4, assuming that sink A is critical and the others are not, the two solutions in Figure 27.4
can have significant quality difference (e.g., cost or timing characteristics).

In other practical formulations, routing or buffering feasibility is not considered a zero or one
property (blocked or free). Instead, a complex cost function based on the local and global design
densities and congestions should drive routing and buffering algorithms; such formulations can
prevent overconstraining the design space, but require incremental interaction with placers and
routers. Even more, the overall design closure can suffer because irresponsible use of buffering
resources on nets (or portions of nets) that are not critical can prevent other critical nets from
meeting their constraints.∗

Given the examples above, routing and buffering algorithms should be able to account for the
cost/performance trade-off of the solutions that they produce.Generating the fastest buffering solution

∗ Some of the approaches that are specifically designed to target blockages (routing or placement) as well as design density
and congestion are presented in more detail in Chapter 28. However, some of the ideas will be reviewed in this chapter
because they are among the core components of some tree synthesis and buffering algorithms.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C027 Finals Page 559 23-9-2008 #4

Generalized Buffer Insertion 559

(b)(a) (c)

FIGURE 27.3 Buffering example: Depending on the interaction between routes and blockages, buffered
solution can be (a) infeasible, (b) expensive, (c) or not bad at all.

(a)
A A

(b)

1

2

31

2

3

D

C C

D
BB

FIGURE 27.4 Buffering example: With increasing complexity of constraints, ability of buffering algorithms
to handle such constraints is becoming more important. Assuming that sink A in critical, solutions (a) and
(b) can have significant quality difference.

may be necessary for some nets, but if applied to all nets, the design would quickly become too
expensive (e.g., in area and power usage), or even become impossible to manufacture. In addition,
algorithmcomplexity and runtime is avery important practical factor given that hundreds of thousands
of nets may need to be buffered within a given CPU time budget.

In the following sections, we give an overview of recent research that addresses one or more of
the problems mentioned above. This area of research is still very active and our summary presents
only a snapshot of the past and current research.

The majority of techniques that address problems mentioned above can be placed in one of the
two categories. Several works propose a two-stage sequential method where a buffer-aware tree is
constructed first, followed by van Ginneken style buffer insertion as in Refs. [3–6]. These techniques
have small execution time with some sacrifice in solution quality and predictability. In Section 27.2,
we describe techniques from Refs. [3,6] in more detail.

A more robust and predictable approach proposes simultaneous route construction while per-
forming buffer insertion. An example is the buffered P-Tree class of algorithms [7], which integrates
buffer insertion into the P-Tree Steiner tree construction algorithm [8]. The P-Tree algorithm intro-
duced a paradigm of finding an optimal solution in a constrained, but very large, space including
topological, embedding, and buffering degrees of freedom, as opposed to applying ad hoc heuristics.
Section 27.3 presents methods for simultaneous routing tree construction and buffer insertion from
Refs. [7–12].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C027 Finals Page 560 23-9-2008 #5

560 Handbook of Algorithms for Physical Design Automation

27.2 TWO-PHASE APPROACH AND BUFFER-AWARE TREE CONSTRUCTION

27.2.1 C-TREE ALGORITHM

Thework inRef. [3] addresses the problemof buffering under timing and polarity constraints. Given a
net with placed pins, timing and polarity requirements at sinks, driver properties, a buffer library, and
the technology’s interconnect parasitics, the goal is to find a Steiner tree that, after buffer insertion,
meets timing constraints while minimizing solution cost (i.e., wire and buffer usage).

A two-phase flow is proposed: a buffer-aware Steiner tree construction called C-Tree is followed
by a van Ginneken style buffer insertion. It is argued that an optimal buffer insertion on a fixed and
routed tree can produce good/optimal results as long as it is given the right Steiner tree. However,
in practice, instead of finding the right tree (which is very difficult because the tree construction
algorithm is not optimizing the true objective) one can construct a buffer-aware Steiner tree, which
tries to anticipate potential buffer locations.

The main idea in C-Tree (clustered tree) is to construct a tree in two stages. First, sinks are
clustered based on a distance metrics (timing criticality, polarity requirements, physical distance).
Then, lower level trees are constructed on each cluster. After determining tapping points for each
cluster, the top-level timing-driven tree is constructed, connecting the driver with cluster tapping
points. Merging the top-level tree with cluster trees yields a final tree for the entire net.

Sink properties used for clustering are spatial (physical location coordinates), temporal (required
arrival times), and polarity. The distance metrics incorporate all three elements. They are defined
separately and then combined using scaling factors into a single distancemetric. The spatial distance
is given by sDist(si, sj) = |x(si)−x(sj)|+|y(si)−y(sj)|. Polarity distance is defined as pDist(si, sj) =
|pol(si) − pol(sj)|. As for the temporal distance, Ref. [3] argues that required arrival time is not the
only indicator of sink criticality. For example, if two sinks s1 and s2 have the same required arrival
time, and s1 is further away from the driver, then s1 is more critical because it is harder to achieve the
same required arrival time over the longer distance. Thus, an estimate of the achievable delay is used
to adjust required arrival time and obtain achievable slack. It is further argued that the difference in
achievable slacks (AS)may not yet be good enough.For example, if AS(s1) = −1 ns, AS(s2) = 1 ns,
andAS(s3) = 10 ns, sinks s1 and s2 seem closer although in practice s1 is the only critical sink because
s2 and s3 have high-positiveAS. Thus, the sink criticality is defined as crit(si) = eα[mAS−AS(si)]/(aAS−mAS),
where mAS and aAS are the minimum and average AS values over all sinks and α > 0 is a user
parameter. The criticality is a value between 0 and 1, where 1 is the most critical (the average
sink criticality by this formula is closer to noncritical). The temporal distance tDist(si, sj) is now
defined as the difference in sink criticality. Finally, the distance metric is a linear combination of
spatial, temporal, and polarity distances (noting that spatial distance is normalized by spatial diameter
sDiam(N) defined as the maximum distance between the sinks):

β[sDist(si, sj)/sDiam(N)] + (1 − β)t Dist(si, sj) + pDist(si, sj).

The clustering itself is done using K-center heuristics. It is an iterative approach, which identifies
sinks that are furthest away and labels them as cluster seeds. The remaining sinks are then clustered
around the closest seed. More details can be found in Ref. [3].

Once the clusters are determined, timing-driven Steiner trees are constructed on each cluster and
one on the top level using the Prim–Dijkstra algorithm from Ref. [13].

The experimental results show that this technique often exhibits a good trade-off between runtime
and the quality of results (i.e., providing good solutions on the average in terms of both the cost and
the delay while keeping low runtime). In addition, this method is not very complicated to implement.
One should be aware of the fact that this algorithm is not designed to handle obstacles and design
congestion in general, so results may not be very predictable in those scenarios.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C027 Finals Page 561 23-9-2008 #6

Generalized Buffer Insertion 561

27.2.2 BUFFER TREE TOPOLOGY GENERATION

Amore recentwork [6]also recognizes the problemof buffering fixed trees, togetherwith the growing
problem of design size, where millions of nets have to be optimized in a reasonable amount of time.
This work presents a new algorithm for generation of tree topologies that are buffer-friendly. The
algorithm balances achieving the signal required arrival time constraints andminimizing wirelength.

Let us first explain the notion of the tree topology in this work (we will refer to it as a partially
embedded tree topology). Figure 27.5a shows a partially embedded tree topology. It is a directed
tree structure where each node except the root has only one input edge, each internal node has
exactly two output edges, while the root has only one output edge. In addition, each node has an
assigned placement location (placement overlap is allowed). However, the embeddings of the edges
(i.e., routes) as well as the number of buffers and buffer placements are not specified. An example
of a completely embedded and buffered tree topology is given in Figure 27.5b.

Once the partially embedded topology tree is constructed, many of the known techniques can
be used to perform two-pin routing and buffer insertion between the tree nodes (i.e., Refs. [14–16]).
As opposed to the approach in Ref. [3], subtree parities (i.e., signal polarities) are resolved locally
because inverters are being used for buffering.

The algorithm proceeds in the followingmanner. First, sinks are ordered based on criticality (the
most critical first). In a manner similar to Ref. [3], criticality estimation is based on estimated slack
rather than only relying on sink required arrival time. To estimate the delay from the driver to sinks,
a linear delay model is used (similar to Ref. [5]) augmented by estimated buffer intrinsic delays
and loads. The assumption is that these paths are going to be buffered eventually so the algorithm
accounts for the delay that the path is going to have after buffering. In Ref. [6], some additional
experiments are performed to justify this assumption and results show good correlation between
estimates and final results.

When the ordering is complete, sinks are added to the topology one at a time (the initial topology
consists of the driver and the most critical sink only). A single sink insertion is performed by
examining all edges in the current topology and finding the closest tapping point within the bounding
box of the edge terminals (note that the topology is partially embedded and all nodes have fixed
placement locations). The edge for which the overall slack has the best value is chosen and sink
insertion is performed by breaking that edge and inserting a new internal node to the tree. The parent
of the new node is the source of the chosen edge and the children are the newly inserted sink and
the destination node of the chosen edge. By keeping the arrival times at each topology node, a single
sink insertion can be performed in linear time, giving the overall quadratic algorithm complexity
(note that each operation is fairly simple, which leads to a very small execution time).

In addition, Ref. [6] proves theoretical lower bounds on slack and wirelength in two extreme
cases: sinks close to the driver and sinks having large noncritical required arrival times. Among the

(a) (b)

A

B

C

D

A

B

C

D

FIGURE 27.5 (a) Partially embedded routing tree topology and (b) completely embedded and buffered tree.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C027 Finals Page 562 23-9-2008 #7

562 Handbook of Algorithms for Physical Design Automation

algorithmenhancements, it is shown how to choose technologyconstants, how to trade offwirelength
and slack, and how to deal with blockages, congestion, and high fanout nets. Experimental results
demonstrate that generated trees are of good quality and that the algorithm execution time is extremely
small (one million trees are computed in less than a minute; note that if a robust buffer insertion is
needed, additional CPU time may be required for postprocess buffering).

27.3 SIMULTANEOUS TREE CONSTRUCTION AND BUFFER INSERTION

In this section, some of the methods that combine buffer insertion and topology construction are
presented. Most of them belong to the P-Tree class of algorithms. The work started with the first
version of the P-Tree algorithm [8] that was designed to construct timing-driven routing tree and
it has seen a decade long evolution of various improvements and extensions that were building on
the original ideas. These algorithms are designed to handle a variety of challenges seen in modern
designs. Simultaneous tree construction and repeater insertion (with multiple buffers and inverters
in the library) while being able to optimize multiple objectives, again, simultaneously (delay, cost,
congestion, wirelength) are achieved through the core optimization engine. Practical issues such as
obstacles (i.e., placement and routing blockages), multilayer routing and vias, and nonorthogonal
routing are handled by the capability of the algorithms to work on general graph models as rout-
ing targets. Spatial, temporal, and polarity localities (all of them independently) are captured and
exploited by implicit specification of the set of tree topologies that will be searched. In the following
subsections, we give an overview of the mentioned contributions in chronological order.

27.3.1 P-TREE ALGORITHM

The work in Ref. [8] presents an algorithm that constructs rectilinear Steiner trees while explicitly
optimizing both delay and wire area. Contrary to the methods presented in the previous section, it
introduces the paradigm of finding an optimal solution in the constrained solution space; in other
words, the solution search space is defined in advance, and then the algorithm finds an optimal
solution in this constrained space.

The P-Tree algorithm simultaneously optimizes over topologies and their embeddings. To illus-
trate the degrees of freedom in embedding a particular topology consider Figure 27.6. The driver is the
root, leaves represent sinks, and internal nodes represent Steiner or branching points. However, the
branching points do not have defined placement locations. As an example, topology in Figure 27.6a
can yield very different embedded solutions as shown in Figure 27.6b and c. Notice that sinks A and
B when the topology is embedded (Figure 27.6b and c) are always in the same subtree, as specified
by the topology (Figure 27.6a).

Thus, how one embeds a particular topology can be of great importance. But what about the
topology itself? The P-Tree algorithm does not limit itself to a single topology. Instead, it optimizes

(a) (b) (c)

C

D

A

A B B

C

D

A

B

C

D

FIGURE 27.6 Routing tree topology (a) can have different embedded solutions (b) and (c).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C027 Finals Page 563 23-9-2008 #8

Generalized Buffer Insertion 563

(a) (b) (c)

C

C
A

A

B

B

D B D

D
C

A

FIGURE 27.7 Topologies (a) and (b) satisfy permutation BDAC while topology (c) does not.

over all topologies induced by a sink permutation (a set exponential in size). These topology trees
are simultaneously explored and embedded to the routing domain.

The routing topologies that are producedare permutation-constrainedrouting trees (giving rise to
the name P-Tree). Given an ordering of sinks (i.e., permutation) a topology satisfies the permutation
constraint if some depth-first traversal of the topology tree produces the same sink ordering. As an
example, given the permutation BDAC, trees in Figure 27.7a and b satisfy the permutation while the
one in Figure 27.7c does not.

The method proposed to find a high-quality permutation consists of three steps. The first step
constructs a minimum spanning tree (MST) on all pins (both driver and sinks). The next step converts
theMST into topologyby reorientingMST such that the driver is at the root and binarizing it such that
each internal node has exactly two outgoing edges. The last step is to apply the dynamic programming
algorithm to optimize the induced permutation further. The proposed approach is to optimize the
tour length of the permutation (in the sense of a traveling salesman problem (TSP)). The intuition
is that TSP provides good clustering information (i.e., sinks that are close in the placement should
be close in the topology as well). In addition, because the permutation is consistent with the MST,
it guarantees that the minimum area solution induced by this permutation can be at most 50 percent
larger than the optimal Steiner tree. A more detailed description of the algorithm can be also found
in Ref. [17].

Once the permutation is obtained, thus defining all topologies to be explored, the algorithm
proceeds to topology embedding. The routing target is specified by a Hanan grid (note that in
Ref. [10] this step of the flow is redesigned to handle general graph model, giving the capability to
account for blockages and congestion). Instead of embedding topologies one at a time, algorithm
exploits the structure of permutation constrained topologies and achieves polynomial computational
complexity while exploring an exponential search space. For example, topologies in Figure 27.7a
and b have identical subtree containing sinks B and D, and there is no need to compute solution for
this subtree more than once.

The dynamic programming approach proceeds in a bottom-up fashion computing the following
solution sets: S(v, i, j) contains signatures∗ of the solutions over all permutation-induced topologies
driving sinks from i to j in the permutation that are rooted at the vertex v in the target routing graph.
Set Sb(v, i, j) contains signatures of the solutions over all permutation-induced topologies driving
sinks from i to j in the permutation that are rooted at the vertex v with a constraint that vertex v is
also a branching point. The top-level view of the P-Tree algorithm is given in Figure 27.8.

Depending on the solution signature, the algorithmcan optimizemanyobjectives. In the P– TreeA
mode, solution signature contains only one parameter: total wire capacitance c. This mode is used
to optimize wire area. In the P – TreeAT mode, both timing and area are optimized simultaneously.

∗ Solution signature is described in the following paragraph.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C027 Finals Page 564 23-9-2008 #9

564 Handbook of Algorithms for Physical Design Automation

P-Tree Algorithm
a1 Compute S(v, i, i)

a2 for I = 1 to n− 2 do
a3 for i = 1 to n− 1− I do
a4 j = i+ I
a5 Compute Sb(v, i, j)

a6 Compute S(v, i, j)

a7 endfor
a8 endfor
a9 return S(vd, 1, n− 1)

FIGURE 27.8 P-Tree algorithmic framework.

Instead of one single final solution, algorithm produces a family of nondominated solutions with
area/delay trade-off. In this mode, solution signature is specified by an ordered pair (c, q), where c
represents total downstream capacitance, while q represents signal required arrival time. Under the
Elmore delay model [2], managing these primitives is done in a way similar to Ref. [1], as explained
in Chapter 26. Just as a reminder the primitives include joining, augmenting, merging, and pruning
solutions. In the followup work, P – TreeA and P – TreeAT modes are referred to as one-dimensional
(1D) and two-dimensional (2D) modes because the algorithm optimizes only one parameter in the
1D mode, and simultaneously optimizes two parameters in the 2D mode. Details about computing
S and Sb sets can be found in Ref. [8]. As a side note, computation of the set S is done by performing
four sweeps of the routing grid (once in each direction). This step is very efficient under assumption
that the routing target is a Hanan grid, but it cannot handle obstacles.

Once the set S is computed at the top level S(vd, 1, n− 1), the actual topology embeddings can
be obtained by backtracking through the data structure containing these solution signatures.

In Ref. [7], the original algorithm is extended to perform simultaneous route construction and
buffer insertion. The general flow of the algorithm is almost identical to Ref. [8], except that each
internal vertex in the topology is also considered as a buffer insertion candidate location. However,
some adjustments had to be made to the solution signature and, because of that, to all primitives
that operate on them as well. Because inserting a buffer decouples downstream load, and effectively
resets the load visible from the parent vertex to the input capacitance of the inserted buffer, the load
value cannot be used for cost estimation (but remains necessary for delay estimation). Thus, a third
parameter that represents solution cost (e.g., area, power, congestion, or any composite function of
those) is added to the solutions signature. The solution signature now becomes a triple (p, c, q). More
details about the three-dimensional (3D) (simultaneously optimizing three parameters) version of
the primitives can be found in Ref. [12]. Also, methods from Ref. [12] can be applied here to extend
the algorithm to support multiple buffers and inverters in the library.

Although the algorithm’s computational complexity is O(n5) in the 1D mode, and pseudopoly-
nomially bounded in the 2D mode, it produces solutions of very high quality in terms of both cost
and delay. The algorithmmay not be suitable for optimizing every single net in the design, but using
this approach to optimize a smaller number of highly critical nets can be very beneficial, especially
when one considers that the algorithm produces a family of solutions with delay/cost trade-off giving
more choices in the overall design optimization process. Experimental results support these claims.
A detailed description of the algorithm and its extensions that were summarized above can be also
found in Ref. [17].

27.3.2 S-TREE ALGORITHM

Thework in Ref. [11] adopts the overall philosophy of P-Tree while improving runtime and scalabil-
ity, introducing a general strategy (stitching) for incorporatingmultiple measures of locality between

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C027 Finals Page 565 23-9-2008 #10

Generalized Buffer Insertion 565

sinks and subtrees (e.g., temporal, polarity), and finally adopting a general graphmodel as the routing
target enabling natural solutions for obstacles, multilayer routing, etc.

Although the P-Tree topology space is very large and has a very good ability to capture spatial
sink locality, it may create solutions of higher cost in certain scenarios that include, for example,
highly critical sinks physically located among noncritical sinks. To address this issue, the S-Tree
defines its topology search set using a topology tree and a sink partition. Sink partition specifies
which sinks can break the original topology tree and be stitched to any other part of the topology
while maintaining the order within its own partition set. The topology set is then composed of all
valid stitching trees (thus, giving the name S-Tree). In Figure 27.9, given the topology on the left and
a sink partition {{A, C, D, F}, {B, E}}, one can find all possible topologies that satisfy the stitching
requirement. Assuming that sinks B and E are critical, note how they are allowed to break away from
noncritical sinks and climb toward the root. The fact that these topologies are in the solution space
guarantees only that they will be explored but whether they will be chosen at the end depends on the
cost and quality of the embedded trees.

In the extreme cases, if all sinks belong to a single partition, S-Tree is equivalent to a single
topology tree embedding. The other extreme case is if each sink belongs to its own partition, which
explores all possible tree topologies in a way similar to Ref. [9].

The initial topology is obtained as in P-Tree, using the first two steps only: construct anMST and
convert it to a topology tree by reorientation and binarization. The sink partitions can be determined
based on estimated timing criticality, input signal polarity requirements, or any other criteria. Once
the topology set is defined, the algorithm proceeds with the dynamic programming algorithm that
performs topology set embedding. In the embedding process, no sink (nor a group of sinks) receives
any special treatment.

Modifications to the topology embedding algorithm include support of a general graph model
for a routing target. Propagation of candidate solutions through the routing graph is performed using
timing-driven maze routing approach with simultaneous buffer insertion as in Ref. [14]. Note that
solution quality depends a lot on the routing target graph. Careful graph construction is a key to

A

S

C D F

EB

A

C

D

S

E

F

B

S

E

F

AA DC

C

D F

S

B

S

B E

B

CA D F

E

FIGURE 27.9 S-Tree topology space example. The initial topology tree on the left and a sink partition
{{A, C, D, F}, {B, E}} define a set of five different topologies that will be explored simultaneously.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C027 Finals Page 566 23-9-2008 #11

566 Handbook of Algorithms for Physical Design Automation

the high-quality solution, but one should have in mind that the size of the graph has a large impact
on the execution time. Some suggestions how to construct the routing target graph can be found in
Refs. [9–11,14]; however, the algorithm itself is designed to work on general graph model, thus, the
routing target graph may be constructed by any other means.

Optimization modes include all three modes seen in the P-Tree algorithm (1D, 2D, and 3D).
Experimental results demonstrate the effectiveness of the approach in identifying solutions with
very good timing and low cost. Also, the algorithm has very good predictability characteristics.

27.3.3 SP-TREE ALGORITHM

The SP-Tree algorithm [10], as the name suggests (the stitching permutation constrained trees),
combines the topology tree spaces of P-Tree and S-Tree. After obtaining the sink permutation and
constructing a set of topology trees, sink partitions are specified and the entire set of topology trees
is expanded by the stitching operation, producing a new larger set of tree topologies. The SP-Tree
topology set contains both the P-Tree and the S-Tree topologies in addition to some new topologies
that are not contained in either P-Tree or S-Tree.

The topology set embedding algorithm is identical to that of the S-Tree with the main difference
in the construction of the topology tree set that is provided as an input to the embedder. More details
about both algorithms can be found in Ref. [18], while executable solvers and examples can be found
at Ref. [19].

Algorithms like buffered P-Tree, S-Tree, and SP-Tree, based on a general graph model as a
routing target, provide high-quality solutions and have large flexibility with different optimization
objectives. As expected, experimental results demonstrate that SP-Tree flow produces solutions that
are always better or equal to those of both S-Tree and P-Tree, usually with a smaller cost, but at a
runtime penalty.

27.3.4 COMPLETE TREE TOPOLOGY EXPLORATION

For the experimental purposes, one can construct a tree topology set that contains all possible tree
topologies. This is similar to topology decomposition from Ref. [20]. One can achieve that either
by using the S-Tree and requesting that each sink belongs to its own partition, or by using a specific
approach as in Ref. [9]. Embedded routing trees obtained in this fashion are indeed optimal, but
the computational complexity prevents any practical applications, although they are valuable for
research purposes and evaluation of other heuristic approaches.

REFERENCES
1. L. P. P. P. van Ginneken, Buffer placement in distributed RC-Tree networks for minimal elmore delay, in
Proceedings of the IEEE International Symposium on Circuits and Systems, New Orleans, LA, May 1990,
pp. 865–868.

2. W. C. Elmore, The transient response of damped linear networks with particular regard to wideband
amplifiers, Journal of Applied Physics, 19: 55–63, Jan. 1948.

3. C. J. Alpert, G. Gandham, M. Hrkić, J. Hu, A. B. Kahng, J. Lillis, B. Liu, S. T. Quay, S. S. Sapatnekar, and
A. J. Sullivan, Buffered Steiner trees for difficult instances, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 21(1): 3–14, Jan. 2002.

4. C. J. Alpert, G. Gandham, M. Hrkić, J. Hu, and S. T. Quay, Porosity aware buffered Steiner tree
construction, in Proceedings of the ACM International Symposium on Physical Design, Monterey, CA,
Apr. 2003, pp. 158–165.

5. C. J. Alpert, M. Hrkić, J. Hu, and S. T. Quay, Fast and flexible buffer trees that navigate the physical
layout environment, in Proceedings of the 41st Design Automation Conference, San Diego, CA, Jun. 2004,
pp. 24–29.

6. C. Bartoschek, S. Held, D. Rautenbach, and J. Vygen, Efficient generation of short and fast repeater tree
topologies, in Proceedings of the ACM International Symposium on Physical Design, San Jose, CA, Apr.
2006, pp. 120–127.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C027 Finals Page 567 23-9-2008 #12

Generalized Buffer Insertion 567

7. J. Lillis, C. K. Cheng, and T. T. Y. Lin, Simultaneous routing and buffer insertion for high performance
interconnect, in Proceedings of the 6th IEEE Great Lakes Symposium on VLSI, Ames, IA, Mar. 1996,
pp. 148–153.

8. J. Lillis, C. K. Cheng, T. T. Y. Lin, and C. Y. Ho, New performance driven routing techniques with
explicit area/delay tradeoff and simultaneous wire sizing, in Proceedings of the 33rd Design Automation
Conference, Las Vegas, NV, Jun. 1996, pp. 395–400.

9. J. Cong and X. Yuan, Routing tree construction under fixed buffer locations, in Proceedings of the 37th
Design Automation Conference, Los Angeles, CA, Jun. 2000, pp. 379–384.

10. M. Hrkić and J. Lillis, Buffer tree synthesis with consideration of temporal locality, sink polarity require-
ments, solution cost and blockages, in Proceedings of the ACM International Symposium on Physical
Design, Del Mar, CA, Apr. 2002, pp. 98–103.

11. M. Hrkić and J. Lillis, S-Tree: A technique for buffered routing tree synthesis, in Proceedings of the 39th
Design Automation Conference, New Orleans, LA, Jun. 2002, pp. 578–583.

12. J. Lillis, C. K. Cheng, and T. T. Y. Lin, Optimal wire sizing and buffer insertion for low power and a
generalized delay model, IEEE Journal of Solid-State Circuits, 31(3): 437–447, Mar. 1996.

13. C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger, Prim-Dijkstra tradeoffs for improved
performance-driven routing tree design, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 14(7): 890–898, Jul. 1995.

14. S. W. Hur, A. Jagannathan, and J. Lillis, Timing-driven maze routing, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 19(2): 234–241, Feb. 2000.

15. A. Jagannathan, S. -W. Hur, and J. Lillis, A fast algorithm for context-aware buffer insertion, in Proceedings
of the 37th Design Automation Conference, Los Angeles, CA, Jun. 2000, pp. 368–373.

16. H. Zhou, D. F. Wong, I. M. Liu, and A. Aziz, Simultaneous routing and buffer insertion with restrictions on
buffer locations, in Proceedings of the 36th Design Automation Conference, New Orleans, LA, Jun. 1999,
pp. 96–99.

17. J. Lillis, Algorithms for Performance Driven Design of Integrated Circuits, 1996. Available at
http://www.cs.uic.edu/ ˜jlillis/papers/thesis.ps.

18. M. Hrkić and J. Lillis, Buffer tree synthesis with consideration of temporal locality, sink polarity require-
ments, solution cost, congestion and blockages, IEEETransactions onComputer-AidedDesign of Integrated
Circuits and Systems, 22(4): 481–491, Apr. 2003.

19. M. Hrkić and J. Lillis, GSRC Single Interconnect Tree Synthesis Web Page. Available at http://eda.cs.
uic.edu/software/interconnect/gsrc.html.

20. S. E. Dreyfus and R. A. Wagner, The Steiner problem in graphs, Networks, 1: 195–208, 1972.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C027 Finals Page 568 23-9-2008 #13

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 569 30-9-2008 #2

28 Buffering in the Layout
Environment
Jiang Hu and Cliff C. N. Sze

CONTENTS

28.1 Introduction.. 569
28.2 Placement and Routing Blockages . 569
28.3 Buffered Path with Blockage Avoidance .. 571

28.3.1 Dynamic Programming-Based Method . 571
28.3.2 Graph-Based Approach .. 572

28.4 Buffered Tree with Blockage Avoidance.. 574
28.4.1 Tree Adjustment Technique . 574
28.4.2 Simultaneous Tree Construction and Buffer Insertion . 574

28.4.2.1 Dynamic Programming-Based Method . 575
28.4.2.2 Graph-Based Technique . 575

28.5 Layout Environment Aware Buffered Steiner Tree . 577
28.5.1 Measurement of Placement and Routing Congestion . 577
28.5.2 Plate-Based Tree Adjustment. 578

28.5.2.1 Dynamic Programming-Based Adjustment . 578
28.5.2.2 Hybrid Approach for Tree Adjustment. 579

28.5.3 Layout Navigation . 581
28.5.4 Relating Buffering Candidate Locations to Layout Environment 582

References . 583

28.1 INTRODUCTION

Chapters 26 and 27 presented buffering algorithms where the buffering problem was isolated from
the general problem of timing closure. The main problem with this extraction is that there are no
necessarily resources available to put the buffers or wires in their desired locations. One way to
manage this flow is to put the buffers in their ideal locations and allow a legalization procedure to
move them to actual locations. The problem with this approach is that buffers may be moved quite
far from their ideal locations, which could completely corrupt the quality of the solution. It is much
better to place the buffers in regions where there appear to be sufficient space, so that legalization
would move the buffers by at most 10–20 routing tracks, which would preserve the original solution.
To do this, one must certainly take into account the blockages and preferably local placement and
routing congestion. In this chapter, we explore techniques that consider these factors.

28.2 PLACEMENT AND ROUTING BLOCKAGES

In realistic chip designs, some regions may be occupied by IP blocks, memory arrays, and macros.
Such regions allow wires to pass through but have no room for buffer insertion. Therefore, buffer
insertion has to be performed with consideration of these buffer blockages. If a wire path has large

569

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 570 30-9-2008 #3

570 Handbook of Algorithms for Physical Design Automation

(a) (b) (c)

FIGURE 28.1 (a) The wire path has large overlap with the buffer blockage, which is the shaded region, and
there is no feasible buffering solution. (b) Rerouting the wire to completely avoid the blockage may result in
large wire detour. (c) Ideally, the wire path should largely avoid the blockage with limited detour.

overlap with blockages as in Figure 28.1a, no feasible buffering solution can be found. However,
avoiding buffer blockages completely as Figure 28.1b may cause unnecessary wire detour as well
as delay degradation. Hence, it is important to have algorithmic techniques that can find a proper
routing topology (as Figure 28.1c) together with the buffer insertion solution. Another more intuitive
example was previously described in Figure 27.4. To find the best buffered interconnect solution,
the routing must consider feasible buffer insertion locations.

A similar problem is buffer insertion consideringplacement and routing congestions. If a buffer is
inserted in a crowded place as in Figure 28.2a, it might bemoved far away later during cell placement
legalization. Thus, such insertion is not favorable although it is feasible, i.e., buffers are preferred
to be inserted in relatively sparse regions like Figure 28.2b. Similarly, buffer insertion in a routing
congested regionmay intensify the wire routability problem.Hence, buffer insertion algorithms need
to be aware of layout environment and be able to handle the trade off between timing performance
and congestion avoidance.

Section 28.3 introduces algorithms on blockage avoidance for two-pin nets, i.e., buffered
paths. Blockage buffered Steiner tree methods for multipin nets are described in Section 28.4. In
Section 28.5, techniques for handling congestions are discussed.

(a) (b)

FIGURE 28.2 (a) If a buffer is placed in a crowded region, it may be moved by placement legalizer far away
from its preferred location. (b) If the buffer is placed in a sparse region, its location will not be significantly
changed by placement legalization.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 571 30-9-2008 #4

Buffering in the Layout Environment 571

28.3 BUFFERED PATH WITH BLOCKAGE AVOIDANCE

For two-pin nets, the problem is to find a buffered path with the minimum delay under the blockage
constraints. In the literature, there exists two major approaches: (1) dynamic programming and
(2) graph-based algorithm. Both are based on the Elmore delay model. It has not been showed that
these approaches are fast enough to be practical for general optimization cases, but they can be very
useful to a handful of the most critical nets.

28.3.1 DYNAMIC PROGRAMMING-BASEDMETHOD

The dynamic programming-based method [1,2] propagates partial solutions from the sink node t
through a routing graphG = (V , E) and picks the optimal solution at the source node s. The routing
graph can be either a uniform grid reflecting routing tracks (Figure 28.3a) or an extended Hanan
grid, which is obtained by drawing vertical and horizontal lines through the given pins and blockage
boundaries (Figure 28.3b). For each edge (u, v) ∈ E, R(u, v) and C(u, v) are the edge resistance
and capacitance, respectively. For each node v ∈ V , there is a label p(v) ∈ {0, 1} which is equal to 0
if it overlaps with a buffer blockage and equal to 1, otherwise. Besides the routing graph, the driver
resistance Rd, sink capacitance Ct , and a buffer library B are assumed to be given. Each buffer type
b ∈ B is modeled by its input capacitance C(b), intrinsic delay K(b), and output resistance R(b).

A partial solution at a node v is characterized by a quadruple α = (c, d, m, v), where c is the
current input capacitance seen at v, d is the delay from v to the sink t, and m is a labeling for the
buffered path from v to t. The label of m(v) = b indicates that buffer b ∈ B is inserted at node v
and m(v) = 0 implies that no buffer is inserted there. The solution α1 = (c1, d1, m1, v) is inferior to
solution α2 = (c2, d2, m2, v) if c1 ≥ c2 and d1 ≥ d2.

The partial solutions are maintained in a priority queue Q initialized with the solution
(Ct , 0, 0, t) at the sink t. Each time, the top solution in Q, which has the minimum delay, is
extracted for expansion. A solution (c, d, m, u) is expanded to its neighbor node v if there is an
edge (u, v) ∈ E. The expanded solution is (c+C(u, v), d+R(u, v) · (c+C(u, v)/2), m, v) where
the delay increase is based on the Elmore delay model. If a solution (c, d, m, v) is at node v where
m(v) = 0 and p(v) = 1, buffers of each type are inserted there to generate new partial solutions. If
the buffer type is b ∈ B, its corresponding buffered solution is (C(b), d + R(b) · c+ K(b), m, v)

s

t

(a) (b)

FIGURE 28.3 Routing graph.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 572 30-9-2008 #5

572 Handbook of Algorithms for Physical Design Automation

Algorithm: Buffered_Path(G, B, s, t)
Input: Routing graph G = (V, E), Buffer library B

Source node s ∈ V and sink node t ∈ V
Output: Buffered path labeling m
1. Q ← {(C, 0, 0, t)}
2. while Q �= ∅ do
3. (c, d, m, u) ← extract_min(Q)
4. if c = 0, return m
5. if u = s,

push (0, d + Rd · c, m, s) into Q and prune continue
6. for each (u, v) ∈ E do

d ′ ← d + R(u, v) · (c + C(u, v)/2)

push (c + C(u, v), d ′, m, v) into Q and prune
7. if p(u) = 1 and m(u) = 0
8. for each b ∈ B do

d ′ ← d + R(b) · c + K(b)

m(u) = b
push (C(b), d ′, m, u) into Q and prune

FIGURE 28.4 Pseudocode of the dynamic programming-based buffered path algorithm.

with m(v) = b. If a solution reaches the source node as (c, d, m, s), the driver is added by updating
the solution as (0, d + Rd · c, m, s). When a solution with the driver is at the top of the Q, it is the
minimum delay solution.

The pseudocode of this algorithm is given in Figure 28.4. Please note that pruning is performed
in many steps to remove inferior solutions so that the runtime can be improved. The complexity of
this algorithm is O(|B‖V |(|E| + |B‖V |) log |B‖V |) [1].

28.3.2 GRAPH-BASED APPROACH

The graph-based approaches [3,4] first transform the routing graph G = (V , E) into a buffer graph
GB = (VB, EB) and then obtain the minimum delay buffered path by the Dijkstra’s shortest path
algorithm.

The node setVB of the buffer graph is composed of the source node, sink nodes, and a set of buffer
nodes. A buffer node always has a buffer inserted and therefore it has to be out of any buffer blockage.
An edge e ∈ EB is usually directed from the source or a buffer node to a buffer node or the sink node
(Figure 28.5a). There is a delay associated with each edge. If the Elmore delay model is employed,
the delay d(u, v) for edge (u, v) is equal toR(u)·(C(u, v)+C(v))+R(u, v)·(C(u, v)/2+C(v))where

Source

Buffer

Buffer Buffer

Buffer

Sink

(a) (b) (c)

u v
b1 b1

b2 b2

FIGURE 28.5 Buffer graph.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 573 30-9-2008 #6

Buffering in the Layout Environment 573

R(u) is the driving resistance at u, R(u, v) is the edge resistance, C(u, v) is the edge capacitance,
and C(v) is the input capacitance at v. Unlike the routing graph introduced in Section 28.3.1, the
two end nodes of an edge in the buffer graph do not have to be geometrical neighbors. An example
of buffer graph is shown in Figure 28.5b. If the edge delay is treated as edge weight, the minimum
buffered path is equivalent to the shortest path on this buffer graph. Thus, the optimal solution can
be found easily by applying Dijkstra’s shortest path algorithm on the buffer graph.

The graph-based approach can be easily extended to handlemultiple buffer types andwire sizing.
If there are k buffer types, each buffer node is split into k copies each of which corresponds to one
type. Edges are inserted among these copies of nodes. In Figure 28.5c, an example of two buffer types
is shown. Similarly, if there are multiple wire widths, the edge weight is chosen as the minimum
edge delay among all options of wire widths [4]. Then, discrete wire sizing is naturally handled in
the same framework.

Besides minimizing the path delay, the problem can be formulated [3] as maximizing delay
reduction to cost ratio Dref−d(p)

g(p)
whereDref is a reference delay, d(p) is the path delay of path p, and g(p)

is the path cost. The path cost is simply the total edge cost along the path. The edge cost can be defined
in many different ways. For example, it can be the summation of wire capacitance and buffer/sink
capacitance of its downstream end. Let Rmax represent the maximum ratio can be obtained. Then

Rmax =
Dref − ∑

e∈p
d(e)

∑
e∈p
g(e)

or equivalently

Rmax

∑
e∈p

g(e) +
∑
e∈p

d(e) = Dref

If the weight of each edge e is set to Rmaxg(e) + d(e), the total path weight is equal to Dref . The
value of Rmax can be obtained by probing different values in a binary search manner. For a guess I of
Rmax, the shortest path weight is obtained when each edge weight is labeled as I · g(e) + d(e). If the
result is greater (smaller) than Dref , the value of I is increased (decreased). When the path weight is
sufficiently close to Dref , its corresponding value of I can be treated as Rmax.

As the value of Dref decreases, the cost of the corresponding maximum ratio path increases [3].
There exists a Dref for which a (g, d) path is optimal if and only if (g, d) lies on the lower convex
hull of the trade-off curve between cost g and delay d [3]. The solutions on a lower convex hull is
illustrated in Figure 28.6.

D
el

ay

Cost

FIGURE 28.6 All circles represent the set of noninferior solutions. The dark circles lie on the lower convexhull.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 574 30-9-2008 #7

574 Handbook of Algorithms for Physical Design Automation

28.4 BUFFERED TREE WITH BLOCKAGE AVOIDANCE

The situation of multipin nets is much more difficult than that of two-pin nets as Steiner tree
construction itself is a hard problem. There are two categories of approaches: (1) constructing a
Steiner tree regardless of buffer blockages and then adjusting the tree to avoid blockages and (2)
simultaneous Steiner tree construction and buffer insertion with awareness of blockages.

28.4.1 TREE ADJUSTMENT TECHNIQUE

As a relatively easy method, one can start with a Steiner tree regardless of blockages and modify
the tree to avoid blockages [5]. This can be performed in a fashion similar to the rip-up and reroute
in congestion avoidance of global routing. In other words, if a path in the tree has large overlap
with blockages, it is ripped up and reconnected back to the tree with a path having less overlap with
blockages. This is illustrated in Figure 28.7.

In each iteration, the path with the largest overlap with blockages is chosen for rerouting. The
reconnection procedure is done by running Dijkstra’s algorithm on the extended Hanan grid graph
indicated by the dashed lines in Figure 28.7. In this graph, the weight of an edge is its length if it does
not overlap with any blockage. If an edge overlaps with a blockage, its weight is its length times α,
whereα > 1 is a penalty coefficient. The value ofαdecides the trade-off between blockage avoidance
andwire increase due to detour. After the tree modification, the chance of feasible buffering solutions
is increased. Because the rerouting has no knowledge if buffers are needed on a path, it may cause
some unnecessary wire detours.

Another technique is to integrate the tree adjustment with buffer insertion [6] so that wire detour
is incurred only when it is necessary for buffer insertion. The classic van Ginneken’s buffer insertion
algorithm [7] propagates a set of candidate solutions from the sink nodes toward the source and picks
the optimal one at the source. The adaptive tree adjustment technique generates a candidate solution
with an alternative Steiner node if the original Steiner node is inside a blockage. This adjustment is
a part of a candidate solution, which is propagated toward the source. This adjustment is adopted
only when its corresponding candidate solution is selected at the source. In other words, the tree
adjustment is made according to the need of buffer insertion. In Figure 28.8, an example is depicted
to demonstrate this technique.

28.4.2 SIMULTANEOUS TREE CONSTRUCTION AND BUFFER INSERTION

The problemof whether or not to avoid a blockage and how to avoid can be solved by simultaneously
constructing Steiner tree and inserting buffers [8–10]. Compared to the tree adjustment techniques,
the simultaneous approach can lead to improved solution quality with increased computation cost.
There are two major methods of the simultaneous approach: dynamic programming [8] and graph
based [9].

a

b

c

(c)(b)(a)
b

d

a

ss s
d

b

a

FIGURE 28.7 Rip-up and reroute to avoid blockages.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 575 30-9-2008 #8

Buffering in the Layout Environment 575

Subtree

Subtree
(a) (b)

Buffer blockage

Source

Alternative Steiner point

vrvr

vp
vp

vl v
vl v

v �

FIGURE 28.8 For a Steiner node v within a buffer blockage as in (a), an alternative Steiner node v′

is generated as another candidate solution allowing buffer insertion as in (b). (From Figure 2 of Hu, J.,
Alpert, C. J., Quay, S. T., and Gandham, G., IEEE Trans. Comput. Aided Des. Integrated Circuits Syst., 22, 494,
2003. With permission.)

28.4.2.1 Dynamic Programming-Based Method

The dynamic programming-basedmethod, called RMP (recursivemerging and pruning) is performed
on a routing graph like Figure 28.3. Similar to the fast path algorithm [1], it propagates candidate
solutions over the graph. The difference is that RMP considers merging solutions to form subtrees.
Each candidate solution is characterized by (c, q, RE, buf, v)where c is the downstream load capac-
itance, q is the required arrival time, RE is the reachable sink set in the subtree, and v is the root of
the subtree. The label buf = 1 if a buffer is inserted at the node, buf = 0 otherwise. The candidate
solutions are maintained in a priority queue with the maximum-q solution on the top.

When merging two solutions at a node, one need to ensure that the reachable sink sets of the
two solutions are disjoint. If a sink appears in both of the solutions, then the merging implies
nontree topology. If solution (c1, q1, RE1, buf1, v) and (c2, q2, RE2, buf2, v) aremerged, themerged
solution is (c1 + c2, min(q1, q2), RE1 ∪ RE2, 0, v). For solutions at the same node of the routing
graph, a pruning can be performed among them if they all have the same reachable sink set. The
pruning is same as that described in Section 28.3.1. The RMP algorithm can reach the optimal
solution in exponential time. To reduce runtime, one can perform an aggressive pruning that keeps
only the minimum-c solution for each reachable sink set [8]. This technique can improve runtime
significantly with very limited sacrifice on solution quality.

28.4.2.2 Graph-Based Technique

The graph-based method [9] starts with constructing a look-up table storing precomputed tree com-
ponents. Then, an abstraction graph is generated with each edge corresponding a tree component
that can be obtained from the look-up table. The buffered tree with minimized maximum sink delay
is obtained by applying Dijkstra’s shortest path algorithm on the abstraction graph.

The tree components include

• Wire path: a path connecting two nodes in the routing graph by properly sized wires but no
buffers are between them

• Buffered path: a path connecting two nodes in the routing graph with buffers inserted
between

• Buffer combination: a tree component connecting three or more nodes in the routing graph
without internal buffers

• BC-subtree: a subtree rooted with a buffer combination

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 576 30-9-2008 #9

576 Handbook of Algorithms for Physical Design Automation

BC-subtree

Wire path

Buffer
combination

Buffered path

FIGURE 28.9 Notations for graph-based simultaneous tree construction and buffer insertion. (From
Figure 4 of Tang, X., Tian, R., Xiang, H., and Wong, D. F., Proc. IEEE/ACM Inter. Con. Comput. Aided
Des., pages 51 and 52, 2001. With permission.)

These components are illustrated in Figure 28.9. Theminimumdelay buffered path can be obtained by
the method in Refs. [3,4], which is introduced in Section 28.3.2. A buffer combination can be treated
as an unbuffered Steiner tree. Its delay is specified as the maximum root-leaf delay. If the number
of nodes is restricted, the minimum delay buffer combination can be obtained by enumeration. Both
the minimum delay buffered paths and the minimum delay buffer combinations are saved in look-up
tables for future query.

On the basis of buffer combinations, BC-subtrees, which are subtrees rooted at a buffer com-
bination, can be constructed to drive a set of sinks. A few examples of BC-subtrees are shown in
Figure 28.10.

A buffered Steiner tree (or subtree) is composed of a set of buffered paths and BC-subtrees in
general. Therefore, a general problem is how to construct a buffered tree (or subtree) that drives a
certain set of sinks � = {s1, s2, . . .}. This is achieved by using an abstraction graphG� illustrated in
Figure 28.11. This graph consists of a source node, which is the set of sinks �, and a set of possible
buffer nodes. An edge (�, v) represents the optimal BC-subtree rooted at v, and its weight is the
maximum delay of the BC-tree. The edge (u, v), where u, v �∈ �, represents the optimal buffered
path between u and v, which can be found in the look-up table. Then, the shortest path from � to
each other node v corresponds to the optimal subtree connecting to the sink set �. The algorithm
proceeds to creates subtrees by increasingly considering more sinks.

This algorithm can minimize the maximum source–sink delay, but not the timing slack. In fact,
it can reach the optimal solution in exponential time.

s1 s2s1 s2s1s2s1 s2

v v v v

FIGURE 28.10 Example of different BC-subtrees. (From Figure 8 of Tang, X., Tian, R., Xiang, H., and
Wong, D. F., Proc. IEEE/ACM Inter. Con. Comput. Aided Des., pages 51 and 52, 2001. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 577 30-9-2008 #10

Buffering in the Layout Environment 577

s1s2s1
s2

FIGURE 28.11 Graph for generating optimal subtree. (From Figure 9 of Tang, X., Tian, R., Xiang, H., and
Wong, D. F., Proc. IEEE/ACM Inter. Con. Comput. Aided Des., pages 51 and 52, 2001. With permission.)

28.5 LAYOUT ENVIRONMENT AWARE BUFFERED STEINER TREE

The previous sections presented different algorithms for buffer insertion and buffered tree construc-
tion avoiding buffer placement blockages. Practically, it is essential that buffer insertion algorithms
consider layout environment such as the placement and routing congestion, which obviously leads
to a more complicated problem. In this section, we start with the congestion assessment and then
introduce several related algorithms.

28.5.1 MEASUREMENT OF PLACEMENT AND ROUTING CONGESTION

To evaluate the placement and routing congestion of a buffered net, a tile graph is usually used to
capture the congestion information and at the same time reduce the problem complexity. The tile
graph is represented as G = (VG, EG) such that VG = {g1, g2, . . .} is a set of tiles and EG is a set of
boundaries each (gi, gj) of which is between two adjacent tiles gi and gj. An example of the tile graph
is shown in Figure 28.12. If a tile gi ∈ VG has an area of A(gi) and its area occupied by placed cells

gjgi

FIGURE 28.12 Example of tile graph.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 578 30-9-2008 #11

578 Handbook of Algorithms for Physical Design Automation

are a(gi), the placement density is defined as d(gi) = a(gi)

A(gi)
. Let W(gi, gj) be the maximum number

of wire tracks that can be routed across the tile boundary (gi, gj) and w(gi, gj) be the number of used

tracks crossing (gi, gj). Similarly, the boundary density is d(gi, gj) = w(gi ,gj)

W(gi ,gj)
. To increase the penalty

of using a congested tile (similarly for a tile boundary), using square cost (i.e., d(gi)2) ensures that
the cost increases more rapidly as a tile is closer to becoming full. For example, the cost of using two
tiles with densities of 0.1 and 0.9 is 0.82, while the cost of using two tiles with densities of 0.5 is 0.5.
When considering both the placement and routing congestion cost for a net, the total cost incurred
can be a linear expression of squares of both the tile densities and boundary densities.

28.5.2 PLATE-BASED TREE ADJUSTMENT

When we consider both placement and routing congestions at the same time, applying simultaneous
Steiner tree construction and buffer insertion seems to be computationally prohibitive for practical
circuit designs. In the following, sequential approaches [11,12] are introduced to solve the problems.
A good way to handle the placement and routing congestion is through the following four stages:
(1) timing-driven Steiner tree construction, (2) plate-based adjustment for congestion mitigation,
(3) local blockage avoidance (refer to Section 28.2.1), and (4) van Ginneken style buffer insertion.
Because stages 1, 3, and 4 have been described in previous sections, the rest of the discussion focuses
on the stage of plate-based tree adjustment.

28.5.2.1 Dynamic Programming-Based Adjustment

The basic idea for the plate-based adjustment [13] is to perform a simplified simultaneous buffer
insertion and local tree adjustment so that the Steiner nodes and wiring paths can be moved to less
congested regionswithout significant disturbance on the timing performanceobtained in stage 1. The
plate-based adjustment traverses the given Steiner topology in a bottom-up fashion by the dynamic
programming algorithm.During this process, Steiner nodes andwiring pathsmaybeadjusted together
with buffer insertion to generatemultiple candidate solutions.We only use buffer insertion to estimate
the placement congestion of the buffered tree and to guide the tree adjustment. Hence, the output of
this stage is still an unbuffered net, only with changes in the Steiner tree routing. Besides, because
buffer insertion is merely a mean of placement congestion estimation, a single typical buffer type
can be used to simplify the calculation, while the Elmore delay model can be used for interconnect
and a switch level RC gate delay model is adopted.

For a Steiner node vi which is located in a tile gk, a plate P(vi) for vi is a set of tiles in the
neighborhood of gk including gk itself. During the plate-based adjustment, we confine the location
change for each Steiner node within its corresponding plate. If vi is a sink or the source node we
set P(vi) = {gk}. The shaded box in Figure 28.13a gives an example of the plate corresponding to
Steiner node v4. The plate indicates any of the possible locations which the Steiner node may be
moved to.

The search for alternative wiring paths is limited to the minimum bounding box covering the
plates of two end nodes. In Figure 28.13, such bounding boxes are indicated by the thickened dashed
lines. Therefore, the size of plates define the search range for both Steiner nodes and wiring paths.
As a result, the size of the plate controls the quality of solution/runtime trade-off desired by the
user. With different plate sizes, we can obtain the ability to modify the topology to move Steiner
points into low-congestion regionswhile also capping the runtime penalty. An example of how a new
Steiner topology might be constructed from an existing topology is demonstrated in Figure 28.13a
through c.

It is suggested in Ref. [14] that buffer insertion can be performed in a simple nontiming-driven
way by following a rule of thumb: themaximal interval between two neighboringbuffers is no greater
than certain upper bound. Similarly, we restrict the maximum load capacitanceU a buffer/drivermay

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 579 30-9-2008 #12

Buffering in the Layout Environment 579

(a) (b) (c)

v1

v2 v2

v5v1

v3 v3

v4 v3

v2

v1

v4

v5 v5

v4

SourceSource

FIGURE 28.13 (a) Candidate solutions are generated from v2 and v3 and propagated to every tile, which is
shaded, in the plate for v4. Solution search is limited to the bounding boxes indicated by the thickened dashed
lines. (b) Solutions from v1 and every tile in the plate for v4 are propagated to the plate for v5. (c) Solutions from
plate of v5 are propagated to the source and the thin solid lines indicate one of the alternative trees that may
result from this process. (From figure 3 of Alpert, C. J., Gandham, G., Mrkic, M., Hu, J., Quay, S. T., and Sze,
C. -N., IEEE Trans. Comput. Aided Des. Integrated Circuits Syst., 23, 519, 2004. With permission.)

drive, so that sink/buffer capacitance can be incorporated. To keep the succinctness of the tile-based
interval metric in Ref. [14], we discretize the load capacitance in units equivalent to the capacitance
of wire with average tile size. Thus, we can prune out all intermediate solutionswith load capacitance
greater than U.

During the bottom-upprocess, each intermediate solution is characterized by a 3-tuple s(vi, c, w)

in which vi is the root of the subtree, c is the discretized load capacitance seen from vi, and w is the
accumulated congestion cost. A solution can be pruned if both its c and w are no better than another
one in the solution set associated with the same node vi.

Starting from the leaf nodes, candidate solutions are generated and propagated toward the source
in a bottom-up manner. Before we propagate candidate solutions from node vi to its parent node vj,
we first find both plate P(vi) and plate P(vj) and define a bounding box that is the minimum-sized
array of tiles covering both P(vi) and P(vj). Then we propagate all the candidate solutions from
each tile of P(vi) to each tile of P(vj) within this bounding box. Because the Steiner nodes are more
likely to be buffer sites due to the demand on decoupling noncritical branch load from the critical
path, allowing Steiner nodes to be moved to less congested area is especially important. Moreover,
such move is a part of a candidate solution, and therefore the move will be committed only when
its corresponding candidate solution is finally selected at the driver. Thus, the tree adjustment is
dynamically generated and selected according to the request of the final minimal congestion cost
solution.

28.5.2.2 Hybrid Approach for Tree Adjustment

Although the stage of plate-based tree adjustment effectively improve the layout congestion issue,
there are several techniques [12] to improve the computational efficiency. Actually, the runtime
bottleneck is due to the fact that buffering solution has to be searched along with node-to-node∗

paths in a two-dimensional plane because low congestion paths have to be found at where the buffers
are needed.

If we can predict where buffers are needed in advance, then we can merely focus on searching
low congestion paths and the number of factors to be considered can be further reduced to one. If we

∗ The node may be the source node, a sink node, or a Steiner node of degree greater than two. Thus, degree-2 Steiner nodes
are not included here.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 580 30-9-2008 #13

580 Handbook of Algorithms for Physical Design Automation

diagnose the mechanism on how buffer insertion improves interconnect timing performance, it can
be broken down into two parts: (1) regenerating signal level to increase driving capability for long
wires and (2) shielding capacitive load at noncritical branches from the timing critical path. In a
Steiner tree, buffers that play the first role are along a node-to-node path while buffers for the second
purpose are normally close to a branching Steiner node. The majority of buffer insertion algorithms
such as van Ginneken’s algorithm are dynamic programming based and have been proved to be very
effective for both purposes. However, optimal buffer solutions along a node-to-node path can be
found analytically [15,16]. This fact suggests that we may have a hybrid approach in which buffers
along paths are placed according to the closed form solutions while the buffers at Steiner nodes are
still solved by dynamic programming, i.e., analytical buffered path solutions replace both the wire
segmenting [15] and candidate solution generations at segmenting points in the bottom-up dynamic
programming framework. Computing candidate buffered paths analytically is faster than applying
dynamic programming, which makes this hybrid approach more efficient than the purely dynamic
programming scheme.

It is also suggested in Ref. [12] that the plate should be selected as a set of nearby tiles with
the least congestion because only the nearby tiles with relatively low buffer placement or routing
congestion cost worth considering to be the alternative Steiner node. In fact, if there exists a tile with
high congestion cost in the plate, it will never be used as the new Steiner node.

Instead of using a length-based buffer insertion, the algorithm uses analytical formula for buffer
insertion, which is separated from the minimum congestion cost path search process. If given the
driver resistance, sink loading capacitance, and buffer resistance/capacitance/intrinsic delay, the opti-
mal number of buffers and corresponding placement locations can be found with the equations [15],
which are previously described in Section 26.2.1.

We explain our buffered path routing technique by an example. For the thickened path in
Figure 28.14a, if we know the driving resistance at v1 and load capacitance at v4, we may obtain the
optimal buffer positions at v2 and v3. However, if we connect v1 and v4 in a two-dimensional plane,
there are many alternative paths between them and the optimal buffer locations form rows along
diagonal directions. The tiles for the optimal buffer locations are shaded in Figure 28.14a. Therefore,
if we connect v1 and v4 with anymonotone path and insert a buffer whenever this path passes through
a shaded tile, the resulting buffered path should have the same minimum delay. The thin solid curve
in Figure 28.14a is an example of an alternative minimum delay buffered path. Certainly, different
buffer paths may have different congestion costs. Then the minimum congestion cost buffered path
can be found by performing the Dijkstra’s algorithm on the tile graph, which is demonstrated in
Figure 28.14b. In Figure 28.14b, each solid edge corresponds to a tile boundary and its edge cost
is the corresponding wiring congestion cost. There are two types of nodes, the empty circle nodes
that have zero cost and filled circle nodes that have cost equal to the placement congestion cost in

v5

v4v3

v1

(a) (b)

v2

v1

v6

v4

FIGURE 28.14 Find low congestion path with known buffer positions indicated by the shaded tiles. (From
figure 5 of Sze, C. -N., Hu, J., and Alpert, C. J., Proc. IEEE/ACM Asia and South Pacific Design Automation
Conference, 358, 2004. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 581 30-9-2008 #14

Buffering in the Layout Environment 581

corresponding tile. In conclusion, the shortest path obtained in this way produces a buffered path
with both good timing and low congestion cost.

One of the issue related to the use of analytical formula is that the upstream resistance is unknown
in the bottom-up solution propagation process. However, the lower bound on the upstream resistance
is R = min(Rd , Rb) and the upper bound R is max(Rd , Rb) plus the upstream wire resistance.∗ Rd is
the driver resistance andRb is the buffer output resistance. Then,we can sample a few values between
R and R, and find the minimum cost buffered path for each value. Because the timing result is not
sensitive to the upstream resistance, normally the sampling size is very limited.

28.5.3 LAYOUT NAVIGATION

To estimate the congestion efficiently, the solution quality of plate-based tree adjustment algorithms
is restricted by the size of tile graph and the plate size. Because the complexity of the algorithm in
Ref. [13] (described in Section 28.5.2.1) increases quadratically with plate size, using a fine tiling
and a large plate size would be computationally prohibitive.More importantly, distinctions between
critical and noncritical nets aremissing in the algorithm. Practically,wemayneed to generate different
solutions for critical and noncritical nets.

To speed up the tree adjustment process, at most one candidate per tile is allowed, which results
in a maze routing based algorithm [17]. The right cost function is paramount so as to maintain the
quality.Moreover, instead of performing plate-to-plate routing of a sequence of tile-to-tile routes, the
entire optimization is performed in a single pass. This allows one to use as large a plate as necessary,
for almost no runtime penalty. During the maze routing-like process, an immediate solution only
contains the cost information of the subtree.

By parameterizing the cost function to trade off critical and noncritical nets, which leads to
the algorithm in Ref. [18], we construct the cost function as follows, according to the criticality of
the nets.

For noncritical nets, some nets require buffering to fix electrical violations (such as slew, capaci-
tance, or noise). Some other want the net to avoid highly dense areas or routing congestion.However,
one still wants to minimize wirelength to some degree. So we set the cost to be 1+ e(gi) and assume
that the total tile congestion cost† e(gi) is between 0 and 1, i.e., 0 ≤ e(gi) ≤ 1. This implies that a
tile blocked for routing or density has cost twice that of a tile that uses no resources. The constant
of one can be viewed as a delay component. A tile that corresponds to a Steiner point must merge
the costs of the children into a single cost, by simply adding up the cost functions of all the children.
Because these are noncritical nets, all sinks are treated equally by having initial cost zero.

For critical nets, the cost impact of the environment is immaterial. We seek the absolutely best
possible slack.When a net is optimally buffered (assuming no obstacles), its delay is a linear function
of its length [19]. Hence, to minimize delay, we simply minimize the number of tiles to the most
critical sink, which results in a unit cost defined for each tile. When merging the branches, we pick
the branch with worst slack, so the merged cost is the maximum of both costs. The costs at sinks are
initialized based on the sink criticality. The more critical a sink, the higher its initial cost. Finally,
the objective is to minimize cost at the source.

The algorithm is able to the trade off between the critical and noncritical cost functions during
the maze routing procedure. Let 0 ≤ K ≤ 1 be the trade-off parameter, where K = 1 corresponds
to a noncritical net and K = 0 corresponds to a critical net. On the basis of the previously defined
cost functions for noncritical and critical nets, the cost function for a tile gi is then 1 + K · e(gi).
For critical nets, merging branches is a maximization function, while it is an additive function for
noncritical nets. These ideas can be combined while the merging cost of two children gi and gj
becomes max[cost(gi), cost(gj)] + K · min[cost(gi), cost(gj)].
∗ The maximum upstream wire resistance can be derived from the length of maximum buffer-to-buffer interval. This is also
mentioned in Ref. [14].

† The total congestion cost of a tile can be a linear expression of the squares of tile density and all its boundary densities.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 582 30-9-2008 #15

582 Handbook of Algorithms for Physical Design Automation

It has been demonstrated thatK can be used to trade off the cost function, the merging operation,
and even sink initialization. In practice, we can first optimize all nets that need bufferingwithK = 1,
which limits the use of scarce resources. After performing a timing analysis, those nets that still have
negative slack can be reoptimized with a smaller value of K , e.g., 0.7. This process of reoptimizing
and gradually reducing can continue until, say, K = 0.1.

28.5.4 RELATING BUFFERING CANDIDATE LOCATIONS TO LAYOUT ENVIRONMENT

While the previous algorithms are considering the routing tree adjustment, the following algorithm
focuses on buffer insertion candidate selection for congestion reduction.

Van Ginneken style algorithm assumes that a set of buffer insertion candidate locations are
predetermined for the given topology. The most common method for selecting insertion points is to
choose them at regular intervals. Alpert and Devgan [15] show how the quality of results is affected
by the degree of wire segmenting that is performed on the topology. For example, Figure 28.15a
shows uniform segmenting for a Steiner tree with three sinks and a single blockage. For these regions
for which buffer insertion is forbidden, one simply avoids inserting buffer candidate locations on
top of the blockage. In Figure 28.15b, one can find the same uniform segmenting scheme, but with
finer spacing. The additional buffer insertion locations could potentially improve the timing for the
buffered net, for additional runtime cost. In Figure 28.15c, one can use roughly the same number of
buffer insertion candidates as in uniform segmenting, but spacing them asymmetrically. The purpose
is not to improve timing performance but rather to bias van Ginneken style algorithm to insert buffers
in regions of the design that are more favorable, such as areas with lower congestion cost.

To accomplish this buffer candidate selection, Ref. [18] applies a linear time and linear mem-
ory shortest path algorithm. The algorithm constructs a directed acyclic graph (DAG) over the
set of potential candidate locations and chooses a subset by constructing a shortest path via a
topological sort.

Let L be the maximum allowable tiles in the tile graph (described in Section 28.4.1) between
consecutive buffers, which could be determined by a maximum allowable slew constraint. If buffers
are placed at a distance greater than L tiles away, then an electrical violation results or performance
is significantly sacrificed. On the basis of L, edges are created by connecting the tiles which are no
greater than L tiles away from each other. The edge represents a pair of consecutive buffer candidates
on the fixed routing tree.

Moreover, we define S to be the desired number of tiles between consecutive buffer insertion
candidates, which is chosen by the user to obtain the desired timing performance/CPU trade-off.
For example, Figure 28.15a has a value that is twice that of Figure 28.15b. For asymmetric spacing,
a penalty is associated for spacing tiles either closer to or further from the desired spacing S. We
define a function pen(x, S, L) = (x−S)2

(L−S)2 that assigns a penalty cost on an edge when the distance x

(a) (c)(b)

FIGURE 28.15 Given a fixed topology, one can segment wires uniformly via either (a) coarse or (b) finer
spacing. Reference [18] uses asymmetric segmenting (c) based on the design characteristics.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 583 30-9-2008 #16

Buffering in the Layout Environment 583

between tiles is not equal to S. Together with the congestion consideration, the total cost of a path
is the summation over the penalty cost of all edges and the congestion cost of all tiles on the path.
Hence, the problem can be solved by a topological sort, which finds the minimum cost path from
the source to all sinks. By the application of this preprocessing technique, buffers finally inserted
significantly improve the overall design congestion with virtually no impact on either computation
time or buffered net delays. In fact, because the preprocessing is more selective of the potential buffer
insertion candidates, the final buffer insertion process can be speed up dramatically.

REFERENCES
1. H. Zhou, D. F.Wong, I. -M. Liu, and A. Aziz. Simultaneous routing and buffer insertion with restrictions on

buffer locations. IEEE Transactions on Computer-Aided Design, 19(7):819–824, July 2000 (ICCD 2001).
2. S. -W. Hur, A. Jagannathan, and J. Lillis. Timing driven maze routing. In Proceedings of the ACM
International Symposium on Physical Design, Monterey, CA, pp. 208–213, 1999.

3. A. Jagannathan, S. -W. Hur, and J. Lillis. A fast algorithm for context-aware buffer insertion. InProceedings
of the ACM/IEEE Design Automation Conference, Los Angeles, CA, pp. 368–373, 2000.

4. M. Lai and D. F.Wong. Maze routing with buffer insertion and wiresizing. In Proceedings of the ACM/IEEE
Design Automation Conference, Los Angeles, CA, pp. 374–378, 2000.

5. C. J. Alpert, G. Gandham, J. Hu, J. L. Neves, S. T. Quay, and S. S. Sapatnekar. A Steiner tree construction for
buffers, blockages, and bays. IEEE Transactions on Computer-Aided Design, 20(4):556–562, April 2001.

6. J. Hu, C. J. Alpert, S. T. Quay, and G. Gandham. Buffer insertion with adaptive blockage avoidance. IEEE
Transactions on Computer-Aided Design, 22(4):492–498, April 2003.

7. L. P. P. P. van Ginneken. Buffer placement in distributed RC-tree networks for minimal Elmore delay.
In Proceedings of the IEEE International Symposium on Circuits and Systems, New Orleans, LA,
pp. 865–868, 1990.

8. J. Cong andX.Yuan.Routing tree constructionunder fixedbuffer locations. InProceedings of theACM/IEEE
Design Automation Conference, Los Angeles, CA, pp. 379–384, 2000.

9. X. Tang, R. Tian, H. Xiang, and D. F.Wong. A new algorithm for routing tree construction with buffer inser-
tion and wire sizing under obstacle constraints. In Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, San Jose, CA, pp. 49–56, 2001.

10. S. Dechu, Z. C. Shen, andC. C.N. Chu. An efficient routing tree construction algorithmwith buffer insertion,
wire sizing and obstacle considerations. IEEE Transactions on Computer-Aided Design, 24(4):600–608,
April 2005.

11. C. J. Alpert, G. Gandham, M. Hrkic, J. Hu, S. T. Quay, and C. N. Sze. Porosity-aware buffered Steiner
tree construction. IEEE Transactions on CAD of Integrated Circuits and Systems, 23(4):517–526, 2004
(ISPD 2003).

12. C. N. Sze, J. Hu, and C. J. Alpert. A place and route aware buffered Steiner tree construction. In Proceedings
of Asia and South Pacific Design Automation Conference, Yokohama, Japan, pp. 355–360, 2004.

13. C. J. Alpert, C. Chu, G. Gandham, M. Hrkic, J. Hu, C. Kashyap, and S. T. Quay. Simultaneous driver sizing
and buffer insertion using delay penalty estimation technique. IEEE Transactions on Computer-Aided
Design, 23(1):136–141, January 2004.

14. C. J. Alpert, J. Hu, S. S. Sapatnekar, and P. G. Villarrubia. A practical methodology for early buffer and
wire resource allocation. In Proceedings of the ACM/IEEEDesign Automation Conference, Las Vegas, NV,
pp. 189–194, 2001.

15. C. J. Alpert andA.Devgan.Wire segmenting for improved buffer insertion. InProceedings of the ACM/IEEE
Design Automation Conference, Anaheim, CA, pp. 588–593, 1997.

16. C. C. N. Chu and D. F. Wong. Closed form solution to simultaneous buffer insertion/sizing and wire
sizing. In Proceedings of the ACM International Symposium on Physical Design, Napa Valley, CA,
pp. 192–197, 1997.

17. C. J. Alpert, M. Hrkic, J. Hu, and S. T. Quay. Fast and flexible buffer trees that navigate the physical
layout environment. In Proceedings of the ACM/IEEE Design Automation Conference, San Diego, CA,
pp. 24–29, 2004.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C028 Finals Page 584 30-9-2008 #17

584 Handbook of Algorithms for Physical Design Automation

18. C. J. Alpert, M. Hrkic, and S. T. Quay. A fast algorithm for identifying good buffer insertion candi-
date locations. In Proceedings of the ACM International Symposium on Physical Design, Phoenix, AZ,
pp. 47–51, 2004.

19. C. J. Alpert, J. Hu, S. S. Sapatnekar, and C. -N. Sze. Accurate estimation of global buffer delay within
a floorplan. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, San
Jose, CA, pp. 706–711, 2004.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C029 Finals Page 585 29-9-2008 #2

29 Wire Sizing

Sanghamitra Roy and Charlie Chung-Ping Chen

CONTENTS

29.1 Wire-Sizing Basics . 585
29.1.1 Delay and Cross-Talk Modeling . 586
29.1.2 Parasitics Modeling: Resistance, Capacitance, and Inductance 587

29.2 Wire-Sizing Optimization: Problem Formulation . 588
29.2.1 Weighted Delay, Timing Constraints, and Power Consideration 588
29.2.2 Discrete versus Continuous, Uniform versus Nonuniform . 588

29.3 Optimization Algorithms . 588
29.3.1 Discrete Optimization Algorithm . 588
29.3.2 Convex Programming Algorithm . 590
29.3.3 Lagrangian Relaxation-Based Algorithm.. 590
29.3.4 Ensuring the Convexity of Gate Delay Models by Semidefinite Programming . . 591
29.3.5 Sequential Quadratic Programming Algorithm . 592
29.3.6 Variational Calculus-Based Nonuniform Sizing Algorithm .. 592
29.3.7 Optimal Propagation Speed with Wires . 593
29.3.8 High-Order Moment-Based Algorithm .. 593

29.4 Signal Integrity Optimization Algorithm . 594
29.4.1 Noise Aware Optimization . 594

References . 595

With the rapid shrinking of technology feature size, the interconnect delay occupies a significant
portion of the circuit delay. The improvement of interconnect delay has become an important task.
Without increasing chip transistors, wire sizing has been shown as an effective way to reduce
interconnect delay. In this chapter, we introduce several effective techniques of wire sizing.

29.1 WIRE-SIZING BASICS

With technology scaling and decrease in feature size, interconnect delay has become a dominant
factor in determining system performance. With higher level of integration, the interconnect mod-
eling becomes more complicated as the total on-chip interconnect length increases and there are
multilayered interconnect structures embedded in multiple dielectrics. The resistance per unit length
of the interconnect increases with scaling; supply voltages are also scaled down resulting in slower
global interconnects.Gate delay decreases with the shrink in feature size, whereas interconnect delay
increases. It has been predicted that the interconnect delay can account for over 50 percent of the total
path delay in a circuit. For large high-performance designs, numerous buffers are inserted resulting
in smaller distance between buffers. Buffer insertion in large numbers increases power consumption
dramatically. Because the interconnect delay depends on the wire width, length, and the buffer sizes
and placement, optimally sizing the wires and buffers can help in minimizing the interconnect delay
as well as power consumption.

585

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C029 Finals Page 586 29-9-2008 #3

586 Handbook of Algorithms for Physical Design Automation

1000 µm

500 µm
500 µm

0.5 µm2 µm

1 µm

10 fF

10 fF

(b)

(a)

Wire assignment 2

Wire assignment 1

FIGURE 29.1 Wire-sizing result comparison.

Now we use an example to explain the effectiveness of wire sizing. As shown in Figure 29.1,
the first wire with length 1000µm, and width 1µm with 10 fF load while the second wire with
same wirelength and width 2µm in the first 500µm and 0.5µm in the second half. We assume
the unit resistance, unit capacitance, and thickness of the wires are 0.008 �, 0.06 fF/µ2, and 1µm,
respectively. The Elmore delay of the two wires are 0.56 ps and 0.42 ps, respectively. A 25 percent
delay reduction can be immediately obtained.

Hence modeling and optimization of interconnects is a critical component of the design of deep
submicron very-large-scale integration (VLSI) circuits. Nowwe present an overview of interconnect
and parasitics modeling.

29.1.1 DELAY AND CROSS-TALK MODELING

The Elmore delay model is easy to use and captures the distributed nature of the circuit. However, as
technology scales down to deep submicron levels, the Elmore model becomes inaccurate in signal
modeling, as it cannot incorporate the effects of cross talk and inductance in the circuit. The Elmore
delay only uses the first moment of h(t) to approximate the circuit response to a step input. For further
accuracy, higher moments of h(t) are used, and these are called moment matching techniques.

The asymptotic waveform evaluation [Pillage 1990] technique uses explicit moment matching
for approximation of the transient response waveform of RLC (consisting of resistor R, an inductor
L, and a capacitor C) circuits with nonequilibrium initial conditions. It approximates the transfer
function H(s) by a transfer function with q poles of the form

Ĥ(s) =
q∑
i=1

ki
s− pi

where pi are poles and ki are residues to be determined. The time domain impulse response is

ĥ(t) =
q∑
i=1

kiepit

The 2q− 1 moments of H(s) can be matched with those of Ĥ(s) to determine the poles and residues
in Ĥ(s).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C029 Finals Page 587 29-9-2008 #4

Wire Sizing 587

L

H

W

Dielectric

Substrate

tdi

FIGURE 29.2 Interconnects.

Passive reduced–order interconnect macromodeling algorithm (PRIMA) [Odabasioglu 1998] is
a moment matching technique for RLC circuits that also preserves the passivity of the system to
maintain stability. The moment-based models have a higher degree of accuracy than the Elmore
delay model, but their computation is more difficult and expensive.

29.1.2 PARASITICS MODELING: RESISTANCE, CAPACITANCE, AND INDUCTANCE

The resistance of a wire can be estimated using the formula

R = ρL

A
= ρL

HW

where as shown in Figure 29.2
ρ is the resistivity
L is the length
W is the width
H is the thickness of the wire

The wire over the substrate can be modeled as a conductor over the ground plane. The parallel plate
capacitance can hence be calculated as

Cpp = εdi

tdi
WL

where
tdi is the distance to the substrate
εdi is the dielectric constant

The other component of the capacitance is the fringing capacitancewhich ismore difficult to compute.
The total capacitance is the sum of a parallel plate capacitor of width W − H

2
and a cylindrical

capacitor of radiusH/2. The interconnect inductance can be estimated using the definition v = L di
dt
.

The inductance Lin of a conductor can be approximately given by

Lin = L
µ0

2π
ln

(
8tdi
W

+ W

4tdi

)

where µ0 is the permeability of free space. Inductive effects in interconnects can be ignored if the
resistance is substantial or if the rise and fall times of the applied signals are slow.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C029 Finals Page 588 29-9-2008 #5

588 Handbook of Algorithms for Physical Design Automation

29.2 WIRE-SIZING OPTIMIZATION: PROBLEM FORMULATION

Wire-sizing optimization tries to determine the optimal wire widths for each wire segment in an
interconnect tree to minimize an objective function, which may be the interconnect delay, power, or
a combination of both [Lillis 1995, Chu 1999a, Gao 1999, Tsai 2004, Zhang 2004]. We now discuss
various different types of objectives in the wire-sizing problem and the different kinds of wire-sizing
problems.

29.2.1 WEIGHTED DELAY, TIMING CONSTRAINTS, AND POWER CONSIDERATION

The delay in an interconnect tree consisting of multiple sinks and a single source can be minimized
by using a weighted sum of delays from the source to each sink, as an objective function. In case
of multiple source nets, we can minimize the weighted sum of delays between multiple source–sink
pairs. Another option is to minimize the maximum delay of the tree. Also with technology scaling,
power consumption has become a major design constraint in current designs. Thus an objective
function consisting of the weighted sum of power and delay can also be minimized in the wire-sizing
problem [Cong 1994, Cong 1996b]. Alternately, instead of minimizing the delay, the wire sizes can
be minimized under maximum delay constraints. Later in the chapter, several approaches illustrate
these different objectives in wire sizing.

29.2.2 DISCRETE VERSUS CONTINUOUS, UNIFORM VERSUS NONUNIFORM

Wire-sizing optimization may be continuous or discrete. In continuous wire sizing, the wire width
h can take any values between the upper and lower bounds as shown in Figure 29.3a. In discrete
wire sizing on the other hand, the wire width must be taken from a discrete set of values as shown
in Figure 29.3b.

In uniform wire sizing, the wire segment is supposed to have a constant width throughout its
length as in Figure 29.3, while in nonuniformwire sizing [Chen 1996], the width of the wire segment
varies along its length as shown in Figure 29.4. Nonuniform wire sizing is discussed later in this
chapter.

29.3 OPTIMIZATION ALGORITHMS

We now describe the different optimization algorithms used in solving the wire-sizing problem.

29.3.1 DISCRETE OPTIMIZATION ALGORITHM

Figure 29.5 shows a routing tree T for a signal net with source N+ and sinks {N1, N2, N3}. The tree
consists of segments {E1, E2, E3, E4, E5}. sink(T) denotes the set of sinks in T , W is a wire sizing
solution (consisting of wire widths for every segment of T), and ti(W) is the delay from source to sink
si under width assignmentW . Tv denotes a subtree rooted at v. For a given edge E, Des(E) denotes
the set of edges in the subtree rooted at E and Ans(E) denotes the set of edges {E ′|E ∈ Des(E ′)},

(a) Continuous wire sizing (b) Discrete wire sizing

h
h1

h4
Upper bound

Lower bound
h

FIGURE 29.3 Continuous versus discrete sizing.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C029 Finals Page 589 29-9-2008 #6

Wire Sizing 589

Wire

f (x)

x0 L

FIGURE 29.4 Nonuniform wire.

both excluding E. We now describe three important properties [Cong 1993] of optimal wire-sizing
solutions that are used in designing wire-sizing algorithms.

• Monotone property: Given a routing tree T , a wire sizing solution W on T is a monotone
assignment if WE ≥ WE′ for any pair of segments E, E ′ such that E ∈ Ans(E ′).

• Separability: If the width assignment of the path from the source to a segment E is
given, the optimal width assignment of each subtree branching from E can be carried
out independently.

• Dominance property: A wire size assignment W dominates a wire-size assignment W ′ if
every segment width in W is greater than or equal to the corresponding segment width in
W ′. For a given wire-sizing solution W for the routing tree, and one particular segment
E ∈ T , the local refinement on E is the operation to optimize the width of E while keeping
the widths of the other segments constant. If W ∗ is an optimal wire-sizing solution, and if
W dominatesW ∗, then any local refinement ofW will also dominateW ∗.

The discrete wire-sizing problem [Cong 1993] can be formulated as follows:

Given A set of discrete wire widths {W1,W2, . . . ,Wr}
Find An optimal wire width assignmentW
To minimize t(W) = ∑

Ni∈ sink(T)
λi · ti(W)

where λi is a weight. This algorithm minimizes a weighted sum of sink delays. The dominance
property can be used to eliminate suboptimal solutions and hence solve this wire-sizing problem.

WE3

WE4

WE5

N3

N1

N2

N+

WE2

WE1

FIGURE 29.5 Interconnect tree.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C029 Finals Page 590 29-9-2008 #7

590 Handbook of Algorithms for Physical Design Automation

29.3.2 CONVEX PROGRAMMING ALGORITHM

TheElmore delay of anRC tree is a posynomial function of the sizes ofwires in the tree. A posynomial
is a function almost like a polynomial but with positive coefficients and real exponents. It can be
described by the general expression t(W) = ∑k

j=1 cj�
n
i=1W

αij
i , where cj, j = 1 . . . k are positive real

numbers, and αij are real numbers. The transformation exi = Wi transforms any posynomial function
ofWi’s to a convex function of xi’s.

The continuous wire-sizing problem for minimizing delay under maximum width constraints
can be formulated as given below:

minimize maxNi ∈ sink(T) ti(W)

subject to WEj < WEj,spec ∀ j ∈ T

Also, the problem for minimizing the segment widths subject to maximum delay (Dspec) constraints
can be formulated as

minimize
∑
i∈T
WEi

subject to ti (W) < Dspec and WEj < WEj,spec∀Ni ∈ sink(T) ∀ j ∈ T

Under the Elmore delay model, the objective function as well as constraints in both of the above
problems can be transformed to convex functions [Sapatnekar 1996]. Hence both the problems are
unimodal, or in other words any local minimum of these optimization problems is also a global
minimum. Such a problem can be solved by using convex optimization techniques, some of which
are discussed in the following sections. Note that no comments can be made about the discrete wire-
sizing problem. However, the solution to the continuous sizing problem gives a lower bound to the
solution to the discrete problem.

29.3.3 LAGRANGIAN RELAXATION-BASED ALGORITHM

Similar to the wire-sizing problem, the simultaneous gate and wire-sizing problem can also be
formulated as a convex optimization problem as the gate delay can be modeled as a posynomial
function as well. Lagrangian relaxation is a technique for optimally solving these problems.We now
illustrate the Lagrangian relaxation technique in the context of the gate and wire-sizing problem for
combinational circuits. Figure 29.6 shows a combinational circuit with n gates or wire segments.
Two virtual components, the input component (index m) and the output component (index 0) are
introduced in the circuit as shown in the figure. Input(i) refers to the set of indices of components
directly connected to the inputs of component i, andoutput(i) refers to the set of indices of components

Input
component

Output
component

11 8
8 6

6

5
5

4

3

3 1
1

2
2

0
0

9
9

101212m =13

13

13

7
7

11

10

4

FIGURE 29.6 Combinational circuit.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C029 Finals Page 591 29-9-2008 #8

Wire Sizing 591

directly connected to the outputs of component i. G, WS, and ID represent the set of component
indices of gates, wire segments and input drivers in the circuit. Let Wi, i ∈ G ∪ WS be the gate or
wire sizes. Also let Li and Ui be the lower and upper bounds of Wi. ti represents the arrival time or
delay at node i and Dj represents the internal delay of the jth gate. Thus the problem of minimizing
the total area of a combinational circuit subject to maximum delay bound T0 can be formulated as
given below [Chen 1998]. We call this formulation the primal problem PP.

PP minimize
n∑
i=1

αiWi

subject to tj ≤ T0 j ∈ input(0)
tj + Di ≤ ti i ∈ G ∪ WS ∧ ∀j ∈ input(i)
Di ≤ ti i ∈ ID

Li ≤ Wi ≤ Ui i ∈ G ∪ WS

where αi are constants used to represent the total area in terms of the gate and wire sizes. Now we
introduce nonnegative Lagrangemultipliers for each constraint on arrival time. Thus the Lagrangian
Lλ(W , t) can be written as:

Lλ =
n∑
i=1

αiWi

+
∑

j∈input(0)
λj0(tj − T0)

+
∑

i∈G∪WS

∑
j∈input(i)

λji(tj + Di − ti)

+
∑
i∈ID

λmi (Di − ti)

The troublesome constraints are relaxed and incorporated into the objective function aftermultiplying
them with nonnegative Lagrange multipliers. Thus, the Lagrangian relaxation subproblem LRS/λ

associated with the multipliers λ will be

LRS/λ : minimize Lλ(W , t)

subject to Li ≤ Wi ≤ Ui i ∈ G ∪ WS

It can be shown that there exists a vector λ such that the optimal solution of LRS/λ is also the optimal
solution of the original problem PP.

29.3.4 ENSURING THE CONVEXITY OF GATE DELAY MODELS BY SEMIDEFINITE PROGRAMMING

To formulate the simultaneous gate andwire-sizingproblemas a convexoptimization,weneed convex
models for both gate and wire delays. However, as technology scales down to deep submicron levels,
the Elmoremodel becomes inaccurate in delay modeling, as it cannot incorporate the effects of cross
talk and inductance in the circuit. Thus, we need techniques to model the delay accurately and also
in convex form. The gate delays for standard cell libraries are available in the form of look-up tables.
One option is to perform curve fitting on the table data to fit it to a general posynomial form and
then use the fitted posynomials in the simultaneous gate and wire-sizing problems. But fitting the
tables into posynomials may suffer from large fitting errors as the fitting problem is nonconvexwith
no known optimal solution.

Another method to generate convex gate delay models is to directly adjust the look-up table
values into a numerically convex look-up table without any explicit analytical form. Numerically

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C029 Finals Page 592 29-9-2008 #9

592 Handbook of Algorithms for Physical Design Automation

convexifying the look-up table data with minimum perturbation can be formulated as a convex
semidefinite optimization [Roy 2005] problem and hence optimality can be reached in polynomial
time. Thus, given a numerical function g(x) for the original delay, let f (x) = g(x) + δ(x). δ(x) is
the perturbation of g(x), and f (x) is the transformed function. Any function φ(x) is convex if and
only if the Hessian matrix ∇2φ(x)
 0 for all x ∈ DOMφ. (∇2φ(x)
 0 means the Hessian of φ(x)
is positive semidefinite, i.e., all the eigenvalues of the Hessian are greater than or equal to zero.)
Thus, the fitting problem is to minimize δ(x) to make the Hessian of f (x) positive semidefinite. The
problem is defined as follows:

minimize
∑

x∈DOMg

|δ (x)|
subject to ∇2(g (x + δ(x))) ≥ 0,

x ∈ DOMg

29.3.5 SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

The convex optimization problem of concurrent gate and wire sizing can also be solved using
the sequential quadratic programming (SQP) method [Menezes 1997, Chu 1999b]. SQP reduces a
nonlinear optimization to a sequence of quadratic programming (QP) subproblems.A general convex
quadratic program can be represented as

minimize 1
2
XTQX + XTC

subject to AT
i X ≤ bi, i ∈ I

where
Q is a symmetric positive semidefinite matrix
I is the set of inequalities

Now if we want to minimize a function F(X) subject to the constraints hi(X) ≤ 0, i = 1 . . .m, then
we can express the Lagrangian of F(x) as

L(X , λ) = F(X) +
m∑
i=1

λihi(X) (29.1)

where λi is the Lagrange multiplier associated with the ith constraint. Now, if G(X) = ∇F(x) be
the gradient of the objective function, the original optimization problem can be solved by solving a
sequence of QP subproblems as shown below:

minimize 1
2
(X − X0)

TB(X0) (X − X0) + (X − X0)
T G(X0)

subject to (X − X0)
T∇hi(X0) + hi(X0) ≤ 0, i = 1 . . .m

where
X0 is the solution of the previous QP iteration
B(X0) is the approximation of the Hessian of the Lagrangian

29.3.6 VARIATIONAL CALCULUS-BASED NONUNIFORM SIZING ALGORITHM

All the wire-sizing techniques presented so far are uniformwire-sizing techniques. Nowwe illustrate
a case of nonuniformwire sizing. Figure 29.7 shows a nonuniformwire segmentW of length L, with
source driver resistance Rd, and sink load capacitance CL.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C029 Finals Page 593 29-9-2008 #10

Wire Sizing 593

WireDriver

Rd x0

f(x)

CL

Load

L

FIGURE 29.7 Nonuniform wire sizing function.

For each x ∈ [0, L], let f (x) be the wire width of W at position x. Let the wire resistance and
capacitance per unit square be r0 and c0, respectively. Let t be the Elmore delay from the source to
the sink of W . Then the optimal wire-sizing function f that minimizes t is given by f (x) = ae−bx.

a > 0 and b > 0 are constants given by a = r0
bRd

, b
√

RdCL
r0c0

− e(−bL)/2 = 0. This can be proved by

using variational calculus [Lee 2002]. In case of constrained wire sizing, where the wire widths are
bounded by L ≤ f (x) ≤ U, 0 ≤ x ≤ L, the wire sizing solution will be a truncated version of ae−bx

as shown in Figure 29.8. This formula can be iteratively applied to optimally size the wire segments
in a routing tree.

29.3.7 OPTIMAL PROPAGATION SPEED WITHWIRES

Nonuniform wire sizing is not used widely because routing such wires is nontrivial, and it can also
lead to poor track utilization. If we get a reasonably good solution by uniform wire sizing, buffer
insertion, and gate sizing, it may not be worthwhile to spend a high effort in routing nonuniform
wires if the delay improvement is marginal. Figure 29.9 shows twowire-sizing solutions Figure 29.9a
showing optimal uniform wire sizing with buffering and Figure 29.9b showing optimal nonuniform
wire-sizing solution with buffering. It has been shown that the ratio of maximum attainable signal
velocities of the optimal nonuniform wire-sizing configuration to the optimal uniform wire-sizing
configuration is 1.0354 with full buffering [Alpert 2001]. This means that theoretically, tapering in
the best case only gives an improvement of 3.54 percent over uniform wire sizing, and this ratio is
independent of technology parameters. Hence tapering only gives a small performance gain in the
best case.

29.3.8 HIGH-ORDER MOMENT-BASED ALGORITHM

EWA [Kay 1998] or efficient wire-sizing algorithm is an example of an algorithm heuristic for
minimizing the total wiring area of an interconnect tree, subject to hard constraints on the Elmore
delay. This algorithm can use the Elmore delay model or can be extended to use higher order delay
models.

WireDriver Load

Rd x0

U
L

f (x) = ae−bx

CLL

FIGURE 29.8 Optimal wire sizing.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C029 Finals Page 594 29-9-2008 #11

594 Handbook of Algorithms for Physical Design Automation

L t

Lu Lu Lu Lu

w w w w

(b)

(a)

FIGURE 29.9 Optimal propagation speed.

29.4 SIGNAL INTEGRITY OPTIMIZATION ALGORITHM

Some other advances in interconnect optimization include noise-aware repeater insertion and wire
sizing. In the following section we describe an algorithm for noise-aware optimization.

29.4.1 NOISE AWARE OPTIMIZATION

Noise aware optimization is a hierarchical and accurate noise estimation algorithm [Chen 1999]
which can handle arbitrarily shifted attacking noise waveforms. Moment-matching techniques are
used for accurate RC delay estimation. The transfer functions between nodes i and j, and nodes j
and k in Figure 29.10 are computed hierarchically. The delay tik is computed by convolution of the
input signal with the composite transfer function up to node k.

During backward propagation of a pair at node j, the transfer function Hik(s) is computed. The
electrical models for computation ofHjk(s) and Yi(s) are shown in Figure 29.10b. They are calculated
as follows:

Hij(s) = 1

R(Cs+ Yj(s)) + 1

Yi(s) = Cs + Cs+ Yj(s)

R(Cs+ Yj(s)) + 1

where R = Ri and C = Ci/2. The RC delay is computed by the convolution of the waveform at i
and Hik(s). The moments are then stored in the pair at node i.

Hik(s) = f (Hjk(s), Yj (s), Ri, Ci) Hjk(s) = m0 + m1s + m1s2 + …

(a)

(b)

i Ri

Yj (s)

Hjk (s)
kj

Ci

2
Ci

2

Yi (s)

ei j k

tij

i

Yj(s)

FIGURE 29.10 Hierarchical moment computation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C029 Finals Page 595 29-9-2008 #12

Wire Sizing 595

The hierarchical moment generation for the transfer function and input admittance always starts
from either a receiver or a repeater. For this base case, if c represents the receiver/repeater input
capacitance, the moment representation of the transfer function and admittance is given byH(s) = 1,
and Y(s) = cs. Wire sizing can be handled during this step by backward propagation of the pairs
fromnode j to node i for differentwire widths of segment ei. Ri andCi are functions of the wire width.

REFERENCES

[Alpert 2001] C.J. Alpert, A. Devgan, J.P. Fishburn, and S.T. Quay, Interconnect synthesis without
wire tapering, IEEE Transactions on Computer Aided Design of Intergrated Circuits and
Systems, 20(1), 90–104, January 2001.

[Chen 1998] C.P. Chen, C.C.N. Chu, and D.F. Wong, Fast and exact simultaneous gate and wire sizing
by Lagrangian relaxation, in IEEE/ACM International Conference on Computer-Aided
Design, San Jose, CA, November 1998, pp. 617–624.

[Chen 1999] C.P. Chen and N. Menezes, Noise-aware repeater insertion and wire sizing for on-chip
interconnect using hierarchical moment-matching, in Proceedings of the 36th Design
Automation Conference, New Orleans, LA, June 1999, pp. 502–506.

[Chen 1997] C.P. Chen and D.F. Wong, Optimal wire-sizing function with fringing capacitance con-
sideration, in Proceedings of the 34th Design Automation Conference, Anaheim, CA,
June 1997, pp. 604–607.

[Chen 1996] C.P. Chen, H. Zhou, and D.F. Wong, Optimal non-uniform wire-sizing under the Elmore
delay model, in IEEE/ACM International Conference on Computer-Aided Design, San
Jose, CA, November 1996, pp. 38–43.

[Chu 1999a] C.C.N. Chu and M.D.F Wong, Greedy wire-sizing is linear time, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 18(4), 398–405, April 1999.

[Chu 1999b] C.C.N. Chu and D.F. Wong, A quadratic programming approach to simultaneous buffer
insertion/sizing and wire sizing, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 18(6), 787–798, June 1999.

[Cong 1996a] J. Cong, L. He, C.K. Koh, and P.H. Madden, Performance optimization of VLSI
interconnect layout, Integration, the VLSI Journal, 21(1–2), 1–94, November 1996.

[Cong 1994] J. Cong and C.K. Koh, Simultaneous driver and wire sizing for performance and power
optimization, in Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design, San Jose, CA, November 1994, pp. 206–212.

[Cong 1996b] J. Cong, C.K. Koh, and K.S. Leung, Simultaneous buffer and wire sizing for perfor-
mance and power optimization, in International Symposium on Low Power Electronics
and Design, Monterey, CA, August 1996, pp. 271–276.

[Cong 1993] J. Cong and K.S. Leung, Optimal wiresizing under the distributed Elmore delay model,
in Proceedings of the IEEE/ACM International Conference on Computer Aided Design,
Santa Clara, CA, 1993, pp. 634–639.

[Gao 1999] Y. Gao and D.F. Wong, Wire-sizing optimization with inductance consideration using
transmission-line model, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 18(12), 1759–1767, December 1999.

[Kay 1998] R. Kay and L.T. Pileggi, EWA: Efficient wiring-sizing algorithm for signal nets and clock
nets, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
17(1), 40–49, January 1998.

[Lee 2002] Y. Lee, C.C.P.Chen, and D.F.Wong, Optimal wire-sizing function under the Elmore delay
model with bounded wire sizes, in IEEE Transactions on Circuits and Systems-I, 49(11),
1671–1677, November 2002.

[Lillis 1995] J. Lillis, C.K. Cheng, and T.T.Y. Lin, Optimal and efficient buffer insertion and wire
sizing, in Proceedings of the IEEE Custom Integrated Circuits Conference, Santa Clara,
CA, May 1995, pp. 259–262.

[Menezes 1997] N. Menezes, R. Baldick, and L.T. Pileggi, A sequential quadratic programming approach
to concurrent gate and wire sizing, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 16(8), 867–881, August 1997.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C029 Finals Page 596 29-9-2008 #13

596 Handbook of Algorithms for Physical Design Automation

[Odabasioglu 1998] A. Odabasioglu, M. Celik, and L.T. Pileggi, PRIMA: Passive reduced-order interconnect
macromodeling algorithm, IEEE Transactions on Computer Aided Design of Intergrated
Circuits and Systems, 17(8), 645–654, August 1998.

[Pillage 1990] L.T. Pillage and R.A. Rohrer, Asymptotic waveform evaluation for timing analysis, IEEE
Transactions on Computer Aided Design, 9(4), 352–366, April 1990.

[Roy 2005] S. Roy, W. Chen, and C.C.P. Chen, ConvexFit: An optimal minimum-error convex fit-
ting and smoothing algorithm with application to gate sizing, in Proceedings of the
International Conference on Computer Aided Design, San Jose, CA, November 2005
pp. 196–203.

[Sapatnekar 1996] S.S. Sapatnekar, Wire sizing as a convex optimization problem: Exploring the area-
delay tradeoff, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 15(8), 1001–1011, August 1996.

[Tsai 2004] J.L. Tsai, T.H. Chen, and C.C.P. Chen, Zero skew clock-tree optimization with buffer
insertion/sizing and wire sizing, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 23(4), 565–572, April 2004.

[Zhang 2004] L. Zhang, Z. Luo, X.Hong, Y. Cai, S.X.DTan, and J. Fu, Optimalwire sizing in early-stage
design of on-chip power/ground (P/G) networks, in Proceedings of the 7th International
Conference on Solid-State and Integrated Circuits Technology, 3, 1936–1939, October
2004.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S006 Finals Page 597 24-9-2008 #2

Part VI

Routing Multiple Signal Nets

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S006 Finals Page 598 24-9-2008 #3

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 599 19-9-2008 #2

30 Estimation of Routing
Congestion

Rupesh S. Shelar and Prashant Saxena

CONTENTS

30.1 Introduction.. 599
30.2 Postrouting Congestion Metrics . 600
30.3 Placement-Level Congestion Estimation.. 601

30.3.1 Fast Metrics for Routing Congestion. 601
30.3.2 Probabilistic Estimation Methods . 602
30.3.3 Estimation Based on Fast Global Routing . 606

30.3.3.1 Comparison of Fast Global Routing with Probabilistic Methods 607
30.4 Congestion Metrics for Technology Mapping . 608
30.5 Congestion Metrics for Logic Synthesis . 610
30.6 Final Remarks . 611
References . 612

30.1 INTRODUCTION

A design is said to exhibit routing congestion if the demand for the routing resources in some
region within its layout exceeds their supply. Congestion is undesirable because it can degrade the
performance and the yield of a design, and can add uncertainty to its convergence.With wire delays
no longer being insignificant in modern process technologies, an unexpected increase in the delay
of a net that lies on a critical path can cause a design to miss its frequency target. The routing of
a net passing through a congested region may be detoured significantly, or forced to use the more
resistive metal layers. Consequently, the delay estimates for nets that pass through congested regions
are often erroneous. These estimates may mislead the design optimization trajectory by failing to
correctly identify the truly critical paths, thus aggravating the design convergenceproblem.A densely
congested design is also likely to result in a lower manufacturing yield than a similar uncongested
design. Congestion typically results in an increased number of vias in the routes, which can affect
the yield. Additionally, congested layouts tend to have larger critical areas for the creation of shorts
and opens because of random defects.

Furthermore, it can be shown using first-order scaling models that the congestion problem is
likely to worsen in the future, as design sizes increase and process geometries shrink [SSS07]. As
a result, it is desirable to minimize the routing congestion in a design. Congestion can be measured
accurately only after the routing has been completed. However, if the design exhibits congestion
problems at that stage, mere rerouting of the nets may not be able to resolve these problems. This
may necessitate a new design iteration with changes being made to the placement or to the netlist.
However, one has to be able to measure routing congestion before one can optimize it. This chapter
describes the measurement of congestion at all levels of abstraction, from a routed layout up to a
multilevel Boolean network.

599

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 600 19-9-2008 #3

600 Handbook of Algorithms for Physical Design Automation

The rest of this chapter is organized as follows. Section 30.2 describes the postroutingmetrics for
congestion, and Section 30.3 discusses placement-level congestion estimation. Congestion metrics
at the technology mapping level are covered in Section 30.4, whereas those that serve as proxies for
congestion during logic synthesis are presented in Section 30.5. Finally, some closing remarks are
presented in Section 30.6.

30.2 POSTROUTING CONGESTION METRICS

Before discussing the metrics used to measure postrouting congestion, it is useful to describe the
underlying routing model. As was discussed in Section 23.2.2, the entire routing space is usually
tessellated into a grid array. The small subregions created by this tessellation of the routing region
have variously been referred to as grid cells, global routing cells, or bins. The bins are usually gridded
employing horizontal and vertical gridlines, referred to as routing tracks, along which wires can be
created. The dual graph of the tessellation is the routing graph. In this graph, each vertex represents
a bin and each edge denotes the boundary between the bins corresponding to its vertices. Routing
graphs used for congestion estimation may bundle the horizontal (vertical) routing tracks on all the
layers, or they may distinguish individual metal layers to identify the congestion on each layer. The
number of tracks available in a bin denotes the supply of routing resources for that bin; this number
is also known as the capacity of the bin. Similarly, the number of tracks crossing a bin boundary is
referred to as the supply or the capacity of the routing graph edge corresponding to that boundary. A
route passing through a bin (or crossing a bin boundary) requires a track in either the horizontal or
the vertical direction. Thus, each such route contributes to the routing demand for that bin (or edge).
Further details on capacity computation may be obtained in Section 23.3.

One of the metrics commonly used to gauge the severity of routing congestion is the track
overflow that measures the number of extra tracks required to route the wires in a bin. It can be
defined formally∗ as follows:

Definition 1 The horizontal (vertical) track overflow Tv
x (T

v
y) for a given bin v is defined as the

difference between the number of horizontal (vertical) tracks required to route the nets through the
bin and the available number of horizontal (vertical) tracks when this difference is positive, and zero
otherwise.

In other words, Tv = max{[demand(v) − supply(v)], 0}.
The formal definition of the congestion metric is as follows:

Definition 2 The horizontal (vertical) congestion Cv
x (C

v
y) for a given bin v is the ratio of the

number of horizontal (vertical) tracks required to route the nets assigned to that bin to the number
of horizontal (vertical) tracks available.

Thus, the congestion in a given bin is simply the ratio of the demand of the tracks to their supply in
that bin, and can be written as Cv = demand(v)

supply(v)
. The overflow and congestion metrics can be defined

similarly for the bin boundaries (or equivalently, for the routing graph edges). These definitions can
also be extended to consider each routing layer individually.

The notion of a congestionmap is often used to obtain the complete picture of routing congestion
over the entire routing area. The congestion map is a three-dimensional array of congestion two-
tuples indexed by bin locations and can be visualized by plotting congestion on the z-axis while

∗ Throughout this chapter, whenever the routing direction is left unspecified in some equation or discussion, it is implied that
the equation or discussion is equally applicable to both the horizontal and the vertical directions. Thus, for instance, the
notation Tv in a statement implies that the statement is equally applicable to both Tv

x and T
v
y . Similarly, if the bin to which

a congestion metric pertains is clear from the context, it may be dropped from the notation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 601 19-9-2008 #4

Estimation of Routing Congestion 601

denoting bins on the xy-plane. Such a visualization helps designers easily identify densely congested
areas (that correspond to peaks in the congestion map).

Some other commonly usedmetrics that capture the overall routability of the design rely on scalar
values (in contrast to three-dimensional congestionmapvectors). Thesemetrics include the total track
overflow,maximumcongestion, and the number of congested bins. The total track overflow is defined
as the sum of the individual track overflows in all the bins. The maximum congestion is defined as
the maximum of the congestion values over all the bins. The number of congested bins is defined
as the number of bins whose congestion is greater than some specified threshold Cth .

30.3 PLACEMENT-LEVEL CONGESTION ESTIMATION

Most industrial congestion-aware physical synthesis flows rely on improving the routability of a
design during the placement stage itself. However, for a placement algorithm to be congestion
aware, it must first be able to evaluate whether a given placement configuration is likely to be
congested after routing, as well as discriminate between any two placement configurations based
on their expected congestion. Different congestion metrics involve different trade-offs between the
computational overhead required for their estimation and the accuracy that they can provide. They
range from quick-and-dirty proxies for congestion, such as the total wirelength, to expensive but
accurate congestion prediction techniques such as probabilistic estimation or fast global routing.
The quick-and-dirty metrics are often employed during the early stages of placement, whereas
the expensive but accurate ones are better suited to the later stages, when the the placement is
relatively stable.

30.3.1 FAST METRICS FOR ROUTING CONGESTION

The fast placement-level metrics for congestion include the total wirelength, the pin density, and the
perimeter degree. They are best used by fast congestion analyzers embeddedwithin optimizers during
the early stages of global placement. During these applications, their fidelity to the actual congestion
can help choose between alternative optimization moves based on their expected congestion impact,
without incurring a significant runtime overhead.

Traditionally, placers have targeted the minimization of cost functions involving wirelength in
the belief that the optimization of the wirelength also leads to a reduction in the average congestion.
The length of a net can be estimated using metrics such as the half-rectangle perimeter (HRPM)
of its bounding box or the length of a minimum spanning tree (MST) for the net. However, this
metric does not capture the spatial aspects (i.e., the locality) of the congested regions. A design can
easily have low average congestion and yet have a few densely congested bins that may be very
difficult to route successfully. Moreover, the predicted netlength of a given net can be quite erro-
neous because it ignores congestion-caused detours and uses simplistic topology generation, and
because the placement itself may change during the remainder of the physical synthesis flow. Conse-
quently, the HRPM metric is often preferred to the slightly more accurate but slower MST scheme.
Indeed, the accuracy of the HRPM metric can be improved by the use of an empirical multiplicative
factor depending on the pin count for the net, to compensate for its tendency to underestimate the
netlength for multipin nets [Che94].

Two other fast metrics that have been used for congestion optimization during placement are the
pin density and the perimeter degree. Unlike the total wirelength, which is a scalar that characterizes
the entire design, thesemetrics are good at identifying the specific bins that are likely to be congested.
The pin density metric is defined for a bin as the ratio of the number of pins in the bin to the area of
the bin [HM02]. This metric captures the contributions of the intrabin nets and those interbin nets
that have at least one pin within the bin. It, however, ignores the global wires that are routed through
the bin but do not connect to any pins inside the bin, even though they consume routing resources
within the bin. The perimeter degree of a bin is defined as the ratio of the number of interbin nets that

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 602 19-9-2008 #5

602 Handbook of Algorithms for Physical Design Automation

have at least one pin inside a bin, to the perimeter of the bin [SPK03]. This metric ignores the routing
demand for all intrabin nets as well as the global wires routed through the bin that do not connect to
any pin inside the bin. It captures the expected congestion at the boundary of the bin rather than that
within the bin, in contrast to the pin density metric. However, this metric lends itself to very efficient
approximation using Rent’s rule [LR71].

30.3.2 PROBABILISTIC ESTIMATIONMETHODS

Probabilistic estimation methods (also referred to as stochastic methods) have been developed as a
fast way to approximate the behavior of global routers. Instead of attempting to find a unique route
for each net, probabilistic estimation methods assume that all reasonable routes for a net are equally
likely, and consider all these routes while computing the congestion contribution of a net to the bins
that it may be routed through.Different flavors of probabilistic congestionmaps use different notions
for what constitutes a reasonable route.

Because probabilistic estimation techniques avoid choosing between the different routes possible
for a given net or even enumerating these routes, they also avoid the combinatorial optimization
problem that a global router attempts to solve while routing the nets. In particular, probabilistic
estimation is independent of the order in which the nets are considered. As a result, these techniques
are considerably faster than global routing. However, this computational efficiency is obtained at
the cost of accuracy; real-world global routers can diverge significantly from the simple routing
behavior that these techniques model. Yet, in spite of all the inaccuracies in probabilistic congestion
map estimation, these techniques are good candidates for use during the later stages of placement.

To model the behavior of routers, probabilistic estimation techniques consider shortest path
routes, because routers typically try to minimize netlengths. Furthermore, these techniques simplify
topology generation by decomposing eachmultipin net into two-pin segments using simple heuristic
models such as cliques or MSTs. In the same vein, the layer assignment of the routes can be ignored
or approximated by a length-layer table, which specifies the layer for a net based on its length.
For any given net, a probabilistic estimation technique considers all its valid routes that satisfy the
modeling assumptions for that technique. The congestion contribution of each such route to every
bin that it passes through is then weighted by the probability of that route being selected, based on
some specified probability distribution (e.g., a uniform distribution).

Although several probabilistic estimation models have been explored, the two that have received
themost attention are distinguished by the number of bends that they allow in their routings. Themore
general model of the two permits an arbitrary number of bends [LTK+02], in contrast to the other
model that considers only those routes that have at most two bends [CZY+99,WBG04]. Routes that
involve just a singlebendare said tobeL-shaped,whereas thosewith twobendsare said tobeZ-shaped.
Given a choice of two routes having the same wirelength but different numbers of vias, most routers
will select the one with the fewer vias (and consequently, fewer bends). Therefore, the probabilistic
estimation model that restricts its routes to those with at most two bends usually does a better job of
modeling actual router behavior than the one that considers routes with arbitrarily many bends.

Given a two-pin net and a bin, the general procedure for probabilistic congestionmap generation
attempts to obtain an expression for the expected routing demand (also called the utilization) of the
net in that bin. This is achieved by weighting the track usage for each valid route of the net that
passes through the bin by the probability of the route being selected. All the weighted track usages
are then summed up over all the routes of the net to obtain the routing demand of the net in the bin.
We illustrate this computation for an interbin net considering only L-shaped and Z-shaped routes
as follows.

For the computation of the routing demand, let the bins created by the tessellation of the layout
area be indexed by their column and row indices, with the bin (1, 1) lying in the lower left corner of
the layout. Without loss of generality, assume that the net whose routing demand is being computed
has its pins in the bins (1, 1) and (m, k). Let the utilization of the net in some bin (i, j) (which lies in

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 603 19-9-2008 #6

Estimation of Routing Congestion 603

the ith column and the jth row) be denoted byU (i,j) (withU (i,j)
x andU (i,j)

y referring to routing demands
in the horizontal and vertical directions, respectively). Moreover, let Up(i,j) denote the utilization
owing to only the p-bend routes for the net. For the sake of simplicity, assume that all bins have the
same width and height, denoted byW and H, respectively. Furthermore, assume that the two pins of
the net are denoted by a and b, with coordinates (xa, ya) and (xb, yb), respectively. Let the horizontal
(vertical) distance of pin a from the right (upper) boundary of the bin (1, 1) that contains it be denoted
by dax (day), and the horizontal (vertical) distance of pin b from the left (lower) boundary of the bin
(m, k) that contains it be denoted by dbx (dby), as illustrated in Figure 30.1.

For this net with pins a(xa, ya) in bin (1, 1) and b(xb, yb) in bin (m, k), there are two possible
single bend routes, whereas the number of double bend routes is (m+ k − 4) (assuming m, k > 1).
These routes lead to different routing demands in different bins lying within the bounding box of the
net. The computation of the routing demand in all these bins can be covered by the analysis of nine
different cases, based on the location of the bin relative to the pins of the net. These cases include
the four bins located at the corners of the bounding box, bins located along the four sides of the
bounding box but not at its corners, and the bins located in the interior of the bounding box.

Let us first consider the bin (1, 1), located at the lower left corner of the bounding box of the net.
In this case, all the routes to the destination bin (m, k) leave either horizontally or vertically from

(1, k)

(a) (b)

dy
b

dy
a

dx
b

dx
a

(xb, yb)

k − 1

(m, k)

m − 1

(m, 1)

(xa, ya)

(1, 1)

m − 1

k − 1

(d)(c)

FIGURE 30.1 Routing demand analysis for the bins located at the corners of the bounding box of a net: (a) bin
(1, k) at the upper left corner, (b) bin (m, k) at the upper right corner, (c) bin (1, 1) at the lower left corner, and
(d) bin (m, 1) at the lower right corner. (From Shelar, R., Saxena, P., and Sapatnekar, S., IEEE Trans. Comput.
Aided Des. Integrated Circuits Syst., 25, 625, 2006. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 604 19-9-2008 #7

604 Handbook of Algorithms for Physical Design Automation

this bin. The numbers of routes leaving this bin horizontally and vertically are (m− 1) and (k − 1),
respectively, as shown in Figure 30.1c. Of these routes, one route in either direction is L-shaped;
these two single bend routes pass through the bins lying along the edge of the bounding box. The
remaining (m + k − 4) routes are Z-shaped and pass through the interior of the bounding box.
One can observe that the routes leaving the bin horizontally require a horizontal track of length dax ,
whereas routes departing vertically use a vertical track of length day . Therefore, the contribution to the

routing utilization owing to the L-shaped paths is given by U1,(1,1)
x = dax

2W
and U1,(1,1)

y = day
2H
. Similarly,

the contribution owing to Z-shaped paths is given by U2,(1,1)
x = m−2

m+k−4
× dax

W
, andU2,(1,1)

y = k−2
m+k−4

× day
H
.

These expressions can be combined to yield the overall routing demand in bin (1, 1), given by
U (1,1)
x = α1U1,(1,1)

x +α2U2,(1,1)
x andU (1,1)

y = α1U1,(1,1)
y +α2U2,(1,1)

y , whereα1 andα2 are empirically chosen
weights indicating the relative preferences for single and double bend routes, respectively. Typically,
α1 ≥ α2, α1 + α2 = 1, and α1, α2 ≥ 0. This allows α1 and α2 to be interpreted as probabilities, with
L-shaped routes preferred over Z-shaped ones. The analysis of the routing demand for bin (m, k),
located in the top right corner of the bounding box and illustrated in Figure 30.1b, is similar.

The only routes that pass through the bins located in the upper left and lower right corners of the
bounding box (illustrated in Figure 30.1a and d) are the single bend routes. Therefore, the utilization

for the bin in the upper left corner can easily be shown to be U (1,k)
x = α1

dax
2W

and U (1,k)
y = α1

dby
2H
.

Similarly, the utilization for bin (m, 1), in the lower right corner, can be derived as U (m,1)
x = α1

dbx
2W

and U (m,1)
y = α1

day
2H
.

Next, let us analyze the utilization in a bin (i, j) (with 1 < i < m and 1 < j < k) that
lies in the interior of the bounding box of the net. Two Z-shaped routes pass through the bin, one
entering horizontally and the other vertically. These two routes leave without any bends, using up
one horizontal and one vertical track in the process. Therefore, the horizontal and vertical routing
demand in the bin is given by U (i,j)

x = α2
m+k−4

and U (i,j)
y = α2

m+k−4
.

Now, consider the noncorner bins located in the leftmost column of the bounding box of the
net, that is, a bin (1, j) with 1 < j < k, as shown in Figure 30.2a. One of the two L-shaped
routes passes through this bin, entering and exiting vertically. Of the (k− 2) Z-shaped routes whose
middle segments are horizontal, (k− j) routes enter this bin, across its lower boundary. One of these
Z-shaped routes turns right and exits the bin horizontally, whereas the remaining (k − j − 1) routes
continue vertically (to turn right at some bin (1, j′) with j < j′ < k). The Z-shaped route that leaves
the bin horizontally requires half of a vertical track and a horizontal track of length dax . The remaining
routes passing through this bin use up one full vertical track each. Therefore, the horizontal routing
demand is given by U (1,j)

x = α2
dax

(m+k−4)W
. The vertical routing demand because of the L-shaped route

passing through the bin is given by U1,(1,j)
y = 1

2
, whereas that because of the Z-shaped routes is

given by U2,(1,j)
y = 1

2(m+k−4)
+ k−j−1

m+k−4
. Therefore, the total vertical routing utilization in the bin is given

by U (1,j)
y = α1

2
+ α2

2(k−j−1)+1
2(m+k−4)

. The analysis of the utilization in the noncorner bins located along the
remaining three edges of the bounding box of the net is analogous.

The method discussed in the previous section for single and double bend routes can be extended
to consider all minimum length multibend routes also [LTK+02]. Because the routing model that
considers multibend routes explores a larger space than one that considers single and double bend
routes only, it leads to a different distribution of the routing demands.

The modeling of routing blockages is one of the most challenging issues faced by probabilistic
estimation methods. Because a router cannot use any tracks in a blocked bin, any probabilistic
utilizationwithin such a bin should also be zero. For nets some of whoseminimum length routes pass
through blocked bins, it is reasonable to assume that a router will try to find a minimum length route
through neighboring unblocked bins if such a path exists. Therefore, for a net whose bounding box
includes blocked bins but that also has some minimum length route passing only through unblocked
bins, the routing demand in the blocked bins can be distributed to their neighboring bins to reflect the
expected behavior of the router. However, this simple heuristic can often result in significant errors.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 605 19-9-2008 #8

Estimation of Routing Congestion 605

(i, k)

dy
b

1

ii − 1

(a)

(1, j)

dx
a

k − j

1

(m, j)
1

j

(c)

dx
b

j − 1

(b)

(i, 1)

dy
a

m − i + 1

k − j + 1

1

(d)

m − i

FIGURE 30.2 Routing demand analysis for the noncorner bins along the edges of the bounding box: (a) bin
(1, j) in the leftmost column, (b) bin (i, 1) in the bottom row, (c) bin (m, j) in the rightmost column, and
(d) bin (i, k) in the top row.

Furthermore, if no minimum length route for a net can avoid blocked bins, the router will usually try
to complete the routing of the net with the shortest possible detour. Depending on the complexity of
the blockage, the detour can bemodeled duringprobabilistic estimation either by creating pseudopins
on the net or by performing explicit routing. In general, heuristics for modeling routing blockages
allow reasonably accurate congestion estimates without excessive computation overhead only when
the blockages are simple. However, in the presence of a large number of complicated blockages,
probabilistic estimation methods are highly inaccurate. Partial wiring blockages are somewhat easier
to handle, an example being a recentwork [LAQ+07] that extends the probabilistic estimation scheme
of Ref. [WBG04] to handle partial blockages.

The price that probabilistic methods pay for efficiency when compared to routing-based conges-
tion estimation methods is an inability to capture the behavior of routers on nets that are difficult to
route. This includes approximations in the handling of blockages, limited or nonexistentmodeling of
detours, layer assignment, and via stack blockages, as well as approximations in topology generation
for multipin nets.

Another significant source of error is the failure of these schemes to model the response of
a router to existing congestion. As a result, probabilistic estimates can be pessimistic in densely

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 606 19-9-2008 #9

606 Handbook of Algorithms for Physical Design Automation

congested regions. This pessimism in the probabilistic congestion maps can be reduced to some
extent by applying postprocessing techniques that redistribute the routing demand from the densely
congested bins to sparsely congested bins [KX03,SY05].

If the maximum number of pins in a net is assumed to be a constant (as is often the case because
of fanout constraints during circuit optimization), and b and n are the number of bins in layout and
the number of nets in the design, respectively, then the overall complexity of probabilistic congestion
estimation isO(nb) (because thesemethods requireO(b) time for a two-pin net). Thus, in the presence
of a few, relatively simple blockages, this complexity is linear in the number of nets. However, if
many complicated blockages are present and many nets require routing to compute the utilization,
the overall time complexity for probabilistic estimation may trend toward that for global routing.

30.3.3 ESTIMATION BASED ON FAST GLOBAL ROUTING

As discussed above, probabilistic congestion estimation suffers from several significant sources of
errors. For instance, the only viable alternative to deal with complicated blockages is to carry out
routing in their vicinity. It is natural to investigate whether even more extensive use of routing can
help improve the accuracy of the predicted congestionmaps. Of course, runtime considerationsmake
it impractical to invoke a full-fledged global router inside a placement optimization loop. However,
if the global routing can be carried out in a low-effort mode, it may yield a congestionmap prediction
that is more accurate than one generated employing probabilistic estimation. This has motivated the
recent development of fast global routing techniques such as Refs. [WBG05,PC06] that are targeted
primarily toward congestion estimation. When global routing is used for congestion estimation,
some inaccuracy in the predicted routes for the nets (as compared to their actual routes) can be
tolerated, especially if it improves the runtime significantly. Therefore, efforts to use global routing
for congestion estimation have focused primarily on two strategies: (1) the reduction of the search
space through coarsening of the routing graph and (2) the extensive use of fast search algorithms.

The availability of a growing number of routing layers causes the routing graph to be large. Its
size can be reduced significantly by collapsing all the horizontal layers and all the vertical layers
into two orthogonal layers. The horizontal (vertical) track supplies for a bin in this collapsed routing
graph are obtained by adding the respective contributions because of each horizontal (vertical) layer.
Another technique for reducing the size of the routing graph is to impose a coarser tessellation on
the layout area than the one employed to generate the bins for the actual global routing. Although
this reduces the spatial resolution of the congestion map, the loss of resolution may be a small price
to pay for a significant speedup in the global routing when used for congestion estimation.

Given a routing graph, the routing of a net involves the generation of a topology for it, followed
by the embedding of each of the two-pin segments in that topology into the routing graph. Unlike
the actual global routing process, the congestion estimation mode can use simple and fast topology
generation algorithms, even if it results in topologies with poor wirelengths. Furthermore, there are
at least three basic techniques that have been used to speed up the routing of the two-pin segments
during congestion estimation: (1) a significantly reduced application of rip-up and reroute heuristics,
(2) the use of fast routers that do not guarantee shortest routes, and (3) the application of fast search
algorithms that guarantee shortest routes.

Most industrial global routers rely heavily on finely tuned rip-up and reroute heuristics for route
completion. However, the repeated rip-up and rerouting of a net can add significantly to the runtime
of the router. When used for congestion estimation, these heuristics are used much more sparingly
in a low-effort mode of the router. As a consequence, although the runtime of the router is improved
significantly, the quality of the routing, as measured by the minimization of routing overflows in the
bins, degrades significantly, becoming much more dependent on the order in which the nets have
been routed.

Unlike global routing that relies heavily on search algorithms that guarantee shortest paths, one
can also use the faster but often suboptimal line probe search [Hig69] to route the nets during the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 607 19-9-2008 #10

Estimation of Routing Congestion 607

2

2

2

2

2

2

2

2

2

2 1

1

1

1

1

3

3 3

34

4

7

7

7

5

5

5

5

sss

ttt

(a) (b) (c)

FIGURE 30.3 Wavefront expansion using (a) breadth-first, (b) best-first, and (c) A∗ search, where s and t
denote the source and destination bins, respectively. The numbers in the bins indicate the distance traversed
from s in (a), the remaining distance to t in (b), and the sum of the cost traversed from s and the remaining
distance to t in (c).

congestion estimation mode. Although these algorithms are much faster than the usual breadth-first
search used for routing and are often close to optimal in sparsely congested regions that have at most
a few blockages, they can perform poorly in congested regions or regions that are fragmented by
numerous complicated blockages. In such regions, they may fail to find a route even if it exists, or
find one with a poor wirelength, requiring a fallback to a maze routing mode.

The standard breadth-first search used in global routers is based on Dijkstra’s shortest path
algorithm. This algorithm can be sped up significantly during the congestion estimation mode by
applying fast search techniques such as best-first search and A∗ search [HNR68]. These techniques
rely on being able to estimate the distance to the destination, and are therefore not always easily
applicable during the regular global routing process (because it may be difficult to estimate the cost
of the unexploredportion of a route if the cost function includes components for delay or congestion).
In contrast, the cost function used for routing during the congestion estimationmode is almost always
the wirelength, which can be approximated at any arbitrary bin by the Manhattan distance between
that bin and the destination bin. The difference between theA∗ search and best-first search techniques
is that A∗ considers the cost from the source as well as distance to the destination while expanding
the search wavefront, in contrast to best-first search, which expands at a bin that is closest to the
destination. Although the asymptotic time complexity of both best-first search and A∗ search is same
as that of breadth-first search, they offer significant speed-up in practice, because they usually visit
fewer nodes while finding a route. For example, as shown in Figure 30.3, breadth-first search visits
twelve nodes while finding a route from bin s to bin t, whereas best-first search and A∗ search can
do so by visiting only seven and nine bins, respectively.

Of course, the consequence of all these approximations is that the predicted route for a net as
obtained during the congestion estimationmodemay be quite different from its actual route generated
during the routing stage.

30.3.3.1 Comparison of Fast Global Routing with Probabilistic Methods

Fast global routing techniques can predict the congestionmore accurately than probabilisticmethods,
but tend to be somewhat slower [WBG05]. Typically, the probabilistic congestion estimation method
based on the assumption of single and double bend routes is two to three times faster than the fast
global routing technique. In addition to being faster, the use of only single and double bend routes is
also a better approximation of the behavior of real routers than multibend routes, at least on designs
that are not very congested.

Probabilistic congestion estimation is known to be pessimistic, especially when it does not
include postprocessing to consider detours or to model rip-up and reroute, as it is not congestion
aware. As a result, the maximum congestion, total track overflows, or the number of congested bins
predicted by probabilistic estimation overestimate the corresponding postrouting metrics, and may

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 608 19-9-2008 #11

608 Handbook of Algorithms for Physical Design Automation

cause a circuit to be deemed unroutable, even if it can be routed successfully. On the other hand, fast
global routing tends to overestimate the congestion to a much lesser degree, because it finds routes
that avoid congested bins. Consequently, it distributes the congestion evenly in a manner similar to
the behavior of real routers. Although probabilistic congestion maps can be postprocessed to reduce
the pessimism in their prediction, this reduction comes at the cost of additional runtime. Design
blockages too are handled more naturally in fast global routing techniques than in probabilistic
methods, because fast routers simply try to find a route around them just like real routers. In the same
vein, fast global-routing-based methods automatically handle detoured routes in congested regions
in the process of routing the nets, whereas probabilistic methods usually do not model detours and
require postprocessing for the same.

30.4 CONGESTION METRICS FOR TECHNOLOGY MAPPING

Even with the best possible placement, it may not be always possible to route the area- or delay-
optimized mapped netlist successfully. This observation has motivated research on congestion
optimization during the preplacement stages of typical design flows. The technologymapping stage
maps a subject graph, which is a network comprising only of primitive gates such as two-input
NANDs, on to cells in some library. This stage has a large impact on routing congestion, because
it decides the wires in the netlist. Several congestion estimation metrics have been proposed for
use during this stage. They include metrics that rely on some placement information, such as the
netlength and predictive and constructive congestion maps, as well as structural metrics such as
mutual contraction.

The netlength for a mapping solution is computed based on the placement of the subject
graph. It can then be linearly combined with traditional cost functions such as area or delay, so
that the solution is biased toward wirelength reduction (and consequently, reduced average conges-
tion) [PPS03,SK01]. The netlength metric when used at the mapping stage suffers from the same
limitations (for instance, an insensitivity to the spatial aspects of congestion) as when used at the
placement stage. Although its use does not impact the time complexity of the mapping algorithm
(because the netlength for a two-pin net can be computed as a Manhattan distance in constant time),
the placement of the subject graph affects the overall runtime of the flow, because this graph is
considerably larger than the mapped netlist. However, the subject graph placement need not be legal-
ized, thus reducing the runtime overhead.Moreover, many modern physical synthesis flows anyway
place either the subject graph or early versions of the mapped netlist, to estimate the net delays
accurately during technology mapping [Dai01,SK01]. Alternatively, this placement can be derived
from a previous iteration of mapping and mapped netlist placement [LJC03].

The predictive congestion map [SSS+05] is a probabilistic congestion map based on the con-
nectivity and placement of the subject graph. Because it can differentiate between regions of high
and low routing demand, this metric has been employed during technology mapping to select area-
or delay-optimal matches in sparsely congested portions of the circuit and to choose congestion-
optimal matches in densely congested, noncritical regions. This allows the mapper to avoid the large
area and delay penalties that are likely with metrics such as the netlength that weight the routing
demand uniformly across the entire design. The runtime for technology mapping using a predictive
congestion map is higher than that with netlength, because the computations of the predictive map
and of the congestion cost during the mapping require O(bn) and O(b) time, respectively, where
b is the number of bins in the layout and n is the number of nets in the subject graph.

Constructive congestion maps [SSS06] are created dynamically, employing either probabilistic
estimation or fast global routing, during the technology mapping process. These maps can be
explained using the example shown in Figure 30.4 (which depicts only the horizontal routing demands
for the sake of simplicity). Figure 30.4a shows a subject graph in which a matchM1 (namely, a two-
input NAND gate) is being considered for a nodeN1. The matching phase of the technologymapping
algorithm, which creates solution candidates at each node, proceeds in topological order, whereas

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 609 19-9-2008 #12

Estimation of Routing Congestion 609

(d)

1.25

1.00

1.00

0.75

0.75

0.25

0.50

0.25

(e)

0.00

0.00

0.00 0.25 0.25

0.500.50

0.250.25

0.75

N2

N3

N1

M1

(b) (c)

0.00 0.00

0.00

0.00

0.00

0.25

0.00

0.00

0.00

0.00

0.000.00

0.00

1.00 0.50

(a)

0.751.25

0.75
11 12 13

21 22

31 32 33

FIGURE 30.4 Constructive congestion map generation: (a) subject graph during matching process in
technology mapping with match M1 at node N1, (b) horizontal track demand because of the solution at N2,
(c) horizontal track demand because of the solution at N3, (d) horizontal track demand because of the fanin nets
to the match M1, (e) overall horizontal track demand owing to the mapping solution because of M1. (Reprinted
from Shelar, R., Saxena, P., and Sapatnekar, S., IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 25,
625, 2006.)

the subsequent covering phase, which selects among the solutions generated during the matching
phase, is carried out in reverse topological order. Therefore, when the matching phase is evaluating
the solution for N1 using match M1, the (partial) congestion maps because of the best solutions at
nodes N2 and N3 are already known. Let these maps be as shown in Figure 30.4b and c, respectively.
Figure 30.4d shows the congestion map associated with the circled matchM1 at nodeN1, accounting
for the nets at the two fanins of the match. Finally, Figure 30.4e shows the congestion map repre-
senting the mapping solution because of the match M1 at N1. It is obtained by the binwise addition
of the congestion maps in Figure 30.4b through d.

The congestion map for the mapping solution because of a match is propagated across a
multifanout point by distributing the congestion equally among all the fanouts. Thematching process
continues in topological order, so that the congestion maps because of all the wires in the mapping
solutions are available at the primary outputs when the process finishes.

As with predictive congestion maps, the constructive maps also require the subject graph to be
placed before the technology mapping. Note that different mapping solutions represent different
set of wires in the design, and result in different constructive congestion maps. Unlike predictive
congestion maps that are static regardless of the chosen matches, constructive maps capture the
congestion impact of different matches dynamically. As with predictive maps, the time complexity
for the computation of the constructive congestion map for a two-pin net is O(b), where b is the total
number of bins. However, constructive maps require more memory than predictive maps, because
different (partial) congestion maps owing to selected matches at different primary outputs may be
required to create the map for the final mapping solution. There are several heuristics suggested in
Ref. [SSS06] that can help reduce this memory overhead substantially.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 610 19-9-2008 #13

610 Handbook of Algorithms for Physical Design Automation

The mutual contraction metric was previously discussed in Chapter 7. Unlike the metrics dis-
cussed so far, this metric does not depend on placement information, capturing congestion using
structural properties of the netlist instead. It is defined for nets, and measures the tendency of the
endpoints of a net to resist being pulled apart because of their connectivity to other cells. For the
purpose of this metric,multipin nets aremodeled as cliques. Thus, a net connectingn cells is modeled
using n(n−1)/2 edges corresponding to all possible pairs among the n pins of the net. The weight of
a net is distributed equally among all the edges that are used to model that net. Thus, the contribution
of an edge e(u, v) from a clique denoting a unit weight net connecting n vertices that includes u and
v to the weightw(u, v) is given by 2/[n(n−1)]. Note that an edge e(u, v) can simultaneously belong
to several different cliques (corresponding to different multipin nets that share two or more pins).
In such a case, the total weight of an edge is the sum of the contributions from each of the cliques
that contain that edge. The relative weight wr(u, v) of the edge e(u, v) is defined as the ratio of
the weight w(u, v) to the sum of the weights of all the edges incident on u. Observe that although
w(u, v) = w(v, u) for any edge e(u, v) ∈ E, the relative weights wr(u, v) and wr(v, u) may not be
the same. The mutual contraction of an edge e(u, v) is defined as the product of relative weights
wr(u, v) andwr(v, u). In other words, the mutual contraction mc[e(u, v)] for edge e(u, v) is given by

mc[e(u, v)] = [w(u, v)]2∑
z:e(z,u)∈E w(z, u)

∑
z:e(z,v)∈E w(z, v)

As with all metrics that ignore placement information, mutual contraction is not very effective at
predicting the netlengths for individual nets accurately. However, Ref. [HM02] empirically demon-
strates a good negative correlation between the mutual contraction and the average netlength for
nets at the placement level, with large mutual contraction values corresponding to short netlengths.
Because the total netlength is a measure of the average congestion, the selection of mapping choices
with higher mutual contraction is likely to lead to a netlist that has a shorter total netlength. The use
of this metric suffers from the same problems as the use of the total netlength to measure congestion,
in addition to the inaccuracies inherent in the use of any placement-oblivious structural netlength
prediction metric. Furthermore, the mutual contraction metric is not very effective at predicting the
netlength for multipin nets. Therefore, technology mapping based on mutual contraction [LM05]
also uses additional metrics such as the net range (discussed in Section 30.5). The computation of
the mutual contraction of an edge e(u, v) requiresO[deg(u)+deg(v)] time, where deg(x) represents
the degree of node x. However, although mutual contraction is asymptotically more expensive than
netlength computations, it is usually faster in practice because its use in technology mapping does
not require the runtime intensive step of subject graph placement.

30.5 CONGESTION METRICS FOR LOGIC SYNTHESIS

Transformations carried out during (technology independent) logic synthesis have a large impact on
the structure of a Boolean network and, therefore, on the eventual routing congestion. However, the
perturbation because of the subsequent mapping and placement stages is often too large to maintain
consistency with a congestion map obtained using a placement of the nodes of the Boolean network
during logic synthesis. As a result, the congestion metrics at this level of abstraction often rely on
structural properties. These metrics include the literal count, adhesion, fanout range and net range,
and neighborhood population.

The literal count has been traditionally used as an area metric during logic synthesis. It has
recently also been shown to correlate with the peak congestion when a Boolean network is mapped
on to a trivial library containing two-input NANDs and inverters [KSD03]; however, the correlation
in the case of realistic libraries containing complex gates is unknown. Intuitively, the literal count
correlates to congestion because it represents the number of nets in the Boolean network. However,
many of these nets are subsumed during the subsequent technologymapping.Moreover, the number

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 611 19-9-2008 #14

Estimation of Routing Congestion 611

of nets is a weak proxy for the total netlength, which in turn is merely an approximation for the
average congestion.

Congestion is impacted not only by the number of nets, but also by the complexity of their
connectivity. Entangled, nonplanar circuit graphs typically lead tomore congestion than planar circuit
graphs. The adhesionmetric, defined as the sumof themincuts between all pairs of nodes in a network
[KSD03], tries to capture this interconnection complexity. Adhesion has been shown to correlate
well with peak congestion for networks mapped on to the trivial library. The correlation improves
further when adhesion is combined with additional metrics such as the literal count. However, the
computation of adhesion is expensive, being cubic in the number of nodes in the network. Even
approximation algorithms for adhesion require time that is linear in the size of the network.

The fanout range and net range metrics attempt to capture the length of a net in a graph theoretic
sense. The fanout range of a node is defined as the range of topological levels spanned by all fanout
pins of the node, whereas the net range is defined as the range of topological levels spanned by all the
pins of the net. Thus, the net range is more discriminatory than the fanout range; as an example, the
fanout range of a two-pin net is always zero, whereas the net range for such a net can vary. Although
a longer fanout range or net range is likely to result in a larger wirelength, this correlation may not
always hold after the actual placement. The fanout range has been used to guide fast extraction during
logic synthesis [VP95], whereas the net range has been employed during fanout optimization [LM05].
Neither of these metrics is too expensive to compute, requiring time linear in the net degree.

The neighborhood population metric [PP89] tries to measure the local congestion caused by
the cells that are topologically close to a given cell. It employs a notion of distance that is defined
as the number of nodes on a shortest path between two nodes in the undirected graph underlying
a given Boolean network. The neighborhood population at a specified distance for a given node is
the number of nodes lying at that distance from the node; the definition can be extended to total
(average) neighborhood populations by summing (averaging) the populations over all the nodes in
the network. Intuitively, a high-neighborhood population for a given node at short distances implies
strong local connectivity, and therefore a possible local congestion hot spot. Several conventional
logic synthesis transformations such as substitution, fast extraction, and speed-up have been extended
to consider neighborhood populations, so that the routing demand is spread uniformly, avoiding
locally congested hot spots [KK03]. However, the subsequent technologymapping stage also affects
the neighborhood population significantly, potentially causing much of the predicted congestion
gains to be lost. The neighborhood population metric is more expensive than the fanout range or net
range, as its computation requires visiting all the nodes within a specified distance (and not just the
fanout nodes).

Several other graph theoretic metrics have been proposed in the context of placement or parti-
tioning, in an effort to capture the tendency of the tightly connected nodes to be placed together.
These include edge separability [CL00], connectivity [HB97], closeness [SK93], and the intrinsic
shortest path length [KR05]. Although they have not yet been employed to guide logic synthesis
transformations, they are candidates for such an application.

30.6 FINAL REMARKS

Although routing congestionmanifests itself only at the very end of the typical design flow, it is often
too late to resolve all such problems at that stage. However, any congestion mitigation during earlier
stages of the design flow requires metrics that can be used for the prediction of postrouting conges-
tion. In this chapter, we reviewed several such metrics applicable at different stages of the design
flow. These metrics differ in their accuracy, fidelity, computation time, and scope of application.
Congestionmaps allow the identification of routing hot spots, whereas scalar metrics such as the total
netlength can serve as fast discriminants between different implementation choices. Somemetrics are
derived from the placement of the preliminary or final versions of the netlist, whereas others such as
mutual contraction and adhesion rely on the structural, graph theoretic properties of the circuit graph.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 612 19-9-2008 #15

612 Handbook of Algorithms for Physical Design Automation

In general, the accuracy of placement-basedmetrics decreases as the level of abstraction of the netlist
increases. Indeed, almost all the metrics proposed for use during logic synthesis to date are graph
theoretic in nature. With the problem of routing congestion getting worse because of the scaling
of design sizes and process technologies, a comprehensive congestion management strategy must
target congestion through the entire design flow, relying on the appropriate congestion estimators at
each stage.

The interested reader can find further details on all the metrics discussed in this chapter in the
corresponding papers, or in Ref. [SSS07].

REFERENCES

[CZY+99] Chen, H. -M., Zhou, H., Young, F. Y., Wong, D. F., Yang, H. H., and Sherwani, N., Inte-
grated floorplanning and interconnect planning, Proceedings of the International Conference on
Computer-Aided Design, San Jose, CA, pp. 354–357, 1999.

[Che94] Cheng, C. -L. E., RISA: Accurate and efficient placement routability modeling, Proceedings of the
International Conference on Computer-Aided Design, San Jose, CA, pp. 690–695, 1994.

[CL00] Cong J. and Lim, S., Edge separability based circuit clustering with application to circuit partition-
ing, Proceedings of the Asia and South Pacific Design Automation Conference, Yokohama, Japan,
pp. 429–434, 2000.

[Dai01] Dai, W., Hierarchial physical design methodology for multi-million gate chips, Proceedings of the
International Symposium on Physical Design, Sonoma, CA, pp. 179–181, 2001.

[HNR68] Hart, P.E.,Nilsson,N. J., andRaphael,B.,A formal basis for theheuristic determinationofminimum
cost paths, IEEE Transactions on System Science and Cybernetics SSC-4, pp. 100–107, 1968.

[HB97] Hauck, S. and Borriello, G., An evaluation of bipartitioning techniques, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 16(8): 849–866, August 1997.
(ARVLSI 1995).

[Hig69] Hightower, D. W., A solution to line routing problems on the continuous plane, Proceedings of the
Design Automation Workshop, NY, pp. 1–24, 1969.

[HM02] Hu, B. and Marek-Sadowska, M., Congestion minimization during placement without estimation,
Proceedings of the International Conference on Computer-Aided Design, San Jose, CA, pp. 739–
745, 2002.

[KR05] Kahng, A. B. and Reda, S., Intrinsic shortest path length: A new, accurate a priori wirelength
estimator, Proceedings of the International Conference on Computer-Aided Design, San Jose, CA,
pp. 173–180, 2005.

[KX03] Kahng, A. B. and Xu, X., Accurate pseudo-constructive wirelength and congestion estimation,
Proceedings of the International Workshop on System-Level Interconnect Prediction, Monterey,
CA, pp. 61–68, 2003.

[KK03] Kravets, V. and Kudva, P., Understanding metrics in logic synthesis for routability enhancement,
Proceedings of the International Workshop on System-Level Interconnect Prediction, Monterey,
CA, pp. 3–5, 2003.

[KSD03] Kudva, P., Sullivan, A., and Dougherty, W., Measurements for structural logic synthesis optimiza-
tions, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(6):
665–674, June 2003. (ICCAD 2002).

[LR71] Landman, B. S. and Russo, R. L., On a pin versus block relationship for partitions of logic graphs,
IEEE Transactions on Computers C-20(12): 1469–1479, December 1971.

[LAQ+07] Li, Z., Alpert, C. J., Quay, S. T., Sapatnekar, S., and Shi, W., Probabilistic congestion prediction
with partial blockages, Proceedings of the International Symposium on Quality Electronic Design,
San Jose, CA, pp. 841–846, 2007.

[LJC03] Lin, J., Jagannathan, A., and Cong, J., Placement-driven technology mapping for LUT-based
FPGAs, Proceedings of the International Symposium on Field Programmable Gate Arrays,
Monterey, CA, pp. 121–126, 2003.

[LM05] Liu, Q. and Marek-Sadowska, M., Wire length prediction-based technology mapping and fanout
optimization, Proceedings of the International Symposium on Physical Design, San Francisco, CA,
pp. 145–151, 2005.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 613 19-9-2008 #16

Estimation of Routing Congestion 613

[LTK+02] Lou, J., Thakur, S., Krishnamoorthy, S., and Sheng, H. S., Estimating routing congestion using
probabilistic analysis, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 21(1): pp. 32–41, January 2002. (ISPD 2001).

[PC06] Pan, M. and Chu, C., FastRoute: A step to integrate global routing into placement, Proceedings of
the International Conference on Computer-Aided Design, San Jose, CA, pp. 464–471, 2006.

[PPS03] Pandini, D., Pileggi, L. T., and Strojwas, A. J., Global and local congestion optimization in
technology mapping, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 22(4): 498–505, April 2003. (ISPD 2002).

[PP89] Pedram, M. and Preas, B., Interconnection length estimation for optimized standard cell lay-
outs, Proceedings of the International Conference on Computer-Aided Design, Santa Clara, CA,
pp. 390–393, 1989.

[SSS07] Saxena, P., Shelar, R. S., and Sapatnekar, S. S., Routing Congestion in VLSI Circuits: Estimation
and Optimization, New York: Springer, 2007.

[SPK03] Selvakkumaran, N., Parakh, P. N., and Karypis, G., Perimeter-degree: A priori metric for directly
measuring and homogenizing interconnection complexity in multi-level placement, Proceedings
of the International Workshop on System-level Interconnect Prediction, Monterey, CA, pp. 53–59,
2003.

[SY05] Sham, C. and Young, E. F. Y., Congestion prediction in early stages, Proceedings of the Interna-
tional Workshop on System-level Interconnect Prediction, San Francisco, CA, pp. 91–98, 2005.

[SSS+05] Shelar, R., Sapatnekar, S., Saxena, P., and Wang, X., A predictive distributed congestion metric
with application to technology mapping, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 24(5): 696–710, May 2005. (ISPD 2004).

[SSS06] Shelar, R., Saxena, P., and Sapatnekar, S., Technology mapping algorithm targeting routing
congestion under delay constraints, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 25(4): 625–636, April 2006. (ISPD 2005).

[SK93] Shin, H. and Kim, C., A simple yet effective technique for partitioning, IEEE Transactions on Very
Large Scale Integration Systems 1(3): 380–386, September 1993.

[SK01] Stok, L. and Kutzschebauch, T., Congestion aware layout driven logic synthesis, Proceedings of
the International Conference on Computer-Aided Design, San Jose, CA, pp. 216–223, 2001.

[VP95] Vaishnav, H. and Pedram, M., Minimizing the routing cost during logic extraction, Proceedings of
the Design Automation Conference, San Francisco, CA, pp. 70–75, 1995.

[WBG04] Westra, J., Bartels, C., and Groeneveld, P., Probabilistic congestion prediction, Proceedings of the
International Symposium on Physical Design, Phoenix, AZ, pp. 204–209, 2004.

[WBG05] Westra, J., Bartels, C., and Groeneveld, P., Is probabilistic congestion estimation worthwhile?,
Proceedings of the InternationalWorkshoponSystem-Level Interconnect Prediction, SanFrancisco,
CA, pp. 99–106, 2005.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C030 Finals Page 614 19-9-2008 #17

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C031 Finals Page 615 29-9-2008 #2

31 Rip-Up and Reroute

Jeffrey S. Salowe

CONTENTS

31.1 Overview . 615
31.1.1 Definition .. 615

31.2 Routing Formulation .. 616
31.2.1 Lagrangian Relaxation . 616
31.2.2 Steiner Tree Construction.. 617
31.2.3 A∗ Maze Search . 617
31.2.4 Cost Functions and Constraints . 618

31.3 Rip-Up-and-Reroute Schemas .. 618
31.3.1 Progressive Rerouting Schema . 619

31.3.1.1 Issues. 620
31.3.2 Iterative Improvement Schema . 621

31.3.2.1 Issues. 622
31.4 Rip-Up-and-Reroute Strategies . 624
31.5 History . 624
31.6 Engineering Practicality . 625
References . 625

31.1 OVERVIEW

In this chapter, we explain some of the intricacies of rip-up and reroute by focusing on one common
routing formulation. With respect to this routing formulation, we examine two rip-up-and-reroute
schemas, which are basic techniques. After examining the schemas and assessing their strengths
and weaknesses, we show how strategies that combine the different schemas can be constructed.
The strategies attempt to counter the weaknesses of the schemas themselves. These concepts are
illustrated with some of the seminal papers in the field. Rip-up and reroute has been successfully
applied during all phases of routing, including global routing, detailed routing, track assignment,
and layer assignment.

31.1.1 DEFINITION

Rip-up and reroute is an iterative technique whose basic step is to remove one or more connections
and replace themwith new connections. This idea can be applied inmanyways. For instance, suppose
as depicted in Figure 31.1a that connection r1 has been added, but connection r2 cannot be added
without a violation because connection r1 uses a resource that r2 needs. One can remove all or part
of r1, add connection r2, and then make a new connection for r1 as depicted in Figure 31.1b through
d, respectively. Another possibility is to shift connection r1 away from the critical resource, and
then to add r2. Yet another possibility is to place a tax, or congestion cost, on the common resource,
hoping that connection r1 or connection r2 will avoid the taxed region.

615

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C031 Finals Page 616 29-9-2008 #3

616 Handbook of Algorithms for Physical Design Automation

(a) (b)

(d)(c)

A

A

r1 r1

A
r1

r 2 r 2

A
r1

FIGURE 31.1 (a)Wire r1 blocks pin access toA. A is onmetal 1, A is surrounded by blockages (not depicted),
and r1 is on metal 2. (b) A portion of wire r1 is removed to allow access to A. (c) Wire r2 on metal 3 can access
pin A using a via stack from metal 3 to metal 1. (d) Wire r1 is rerouted on metal 2.

31.2 ROUTING FORMULATION

To illustrate rip-up and reroute, we simplify the routing problem using Lagrangian relaxation, ulti-
mately transforming the problem into successive shortest-path problems. This basic framework was
outlined by Linsker (1984). Once the basic framework is established, we examine different rerouting
strategies, pointing out their strengths and weaknesses.

31.2.1 LAGRANGIAN RELAXATION

A routing problem is an optimization problem of the form

minimize f (X)

subject to gi(X) ≤ 0, 1 ≤ i ≤ n

We separate the constraints into two classes, network constraints ni(X) ≤ 0, 1 ≤ i ≤ N , and design
constraints di(X) ≤ 0, 1 ≤ i ≤ D.

minimize f (X)

subject to ni(X) ≤ 0, 1 ≤ i ≤ N
di(X) ≤ 0, 1 ≤ i ≤ D

Network constraints state that the network topologymust satisfy certain requirements, such as the net-
workmust connect all the pinswithout forming loops. Except for special nets, the network constraints
state that a Steiner tree implements each net. Design constraints state that the network is designed
in a legal way, such as no two routes occupy the same spot, or no two shapes are too close together.

The global routing design constraints state that no area contains too many routing shapes. If an
area contains too many global routing shapes, it may not be possible to detail route the area without
violating the detail routing design constraints.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C031 Finals Page 617 29-9-2008 #4

Rip-Up and Reroute 617

A routing problem is feasible if there is any solution that satisfies the constraints. For any
interesting routing problem, it is NP-hard to determine if there is a feasible solution.

Chip designers, however, are not interested in abstract complexity issues: they typically try to
make chips that have feasible routing (based on earlier experience) and then adjust the constraints to
achieve their objectives. The typical input is therefore likely to have a feasible solution. Furthermore,
some design constraints are soft, such as those given to a global router. It may be possible to
overcongest a few areas and still solve the resulting detailed routing problem. This means that
even if the result is infeasible for the original problem, it may still be useful.

A general and powerful technique to solve hard optimizations problems is to apply Lagrangian
relaxation (Ahuja et al. 1993). In Lagrangian relaxation, one or more constraints are added to the
objective function using Lagrangian multipliers λi. Under appropriate conditions, Lagrangian relax-
ation can be used to solve optimization problems exactly; conditions for convergenceare discussed in
Ahuja et al. (1993). In other cases, however, Lagrangian relaxation is used to simplify complicating
constraints. Routing falls into the second category: one applies Lagrangian multipliers to the design
constraints, resulting in an optimization problem:

minimize f (X) + λ∗
i di(X)

subject to ni(X) ≤ 0
λi ≥ 0

In the Lagrangian relaxation of a routing problem, only the network constraints need to be satisfied.
This means that any set of Steiner trees is a feasible solution, which is a considerable simplification.
The design constraints are “taxed” by the Lagrangian multiplier. The penalty for violating a design
constraint is proportional to the Lagrangian tax.

Global routing problems have some soft constraints, so the Lagrangian relaxation technique is
natural. Detailed routing problems can be phrased in exactly the same way, but the Lagrangian taxes
are high because a violated design constraint may cause a chip to fail. Sometimes, though, there are
soft constraints in detailed routing, where a violation is unwelcome but not prohibited. An example
is a wide spacing rule to minimize cross talk that can be violated in a congested region.

31.2.2 STEINER TREE CONSTRUCTION

A Steiner minimal tree is a shortest connection of a set of points. Finding a Steiner minimal tree in
the plane or in a graph is NP-hard, even if there are no obstructions. To make matters even more
complicated, there are usually several routing layers, routing obstructions, and congestion.

Lagrangian relaxation simplifies the routing problem into simultaneous Steiner tree construction
of a set of nets. Although the Steiner tree problem is itself hard, one may not need the absolutely
shortest tree, and there are special cases that are solvable in polynomial time. For instance, a Steiner
minimal tree for a two-pin net is a shortest-path problem,which can be found efficiently. Furthermore,
a properly embedded minimum spanning tree is an excellent heuristic for a Steiner minimal tree
(Hwang et al. 1992). The basic step in Prim’s minimum spanning tree is to find a vertex that is
closest to the tree. It is therefore reasonable to assume that the shortest-path problem is an important
component in a routing problem.

31.2.3 A∗ MAZE SEARCH

The Lee–Moore algorithm is described in Section 23.5. There are one or more sources and one or
more targets; initially, the weight of a source is zero and the weight of a target is infinite. Vertices
are considered in order of weight from the source; when a vertex u is visited, the graph edges (u, v)
incident to u are examined to see if they improve the smallest weight to v. The search stops when a
target is to be considered.

One can decrease the number of vertices visited in the search if one has a conservative estimate
of the distance from each node to the targets. This value, the lower bound, reflects how close each

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C031 Finals Page 618 29-9-2008 #5

618 Handbook of Algorithms for Physical Design Automation

(a) (b)

FIGURE 31.2 (a) Blockages on a routing grid graph and (b) pruned routing grid graph.

vertex is to a target. In the A∗ technique, invented by Nilsson (Hart et al. 1968), the weight of the
path to u plus the estimated distance to a closest target form a new measure, the estimated weight of
a shortest path using the vertex u. Instead of considering vertices in order of weight from the source,
A∗ considers them in order of estimated shortest-path weight.

The A∗ technique can speed up the path search enormously if the estimated path length is close
to the actual path length. Unfortunately, A∗ becomes less effective when the lower bound is overly
conservative. This happenswhenobstructions are not accounted for in the lower bound, and it happens
when congestion is present but not reflected in the lower bound. Nevertheless, A∗ has proven to be
of great practical use. In our formulation, the general routing problem is transformed into a set of
path problems in a weighted graph that are solved using A∗ maze search.

31.2.4 COST FUNCTIONS AND CONSTRAINTS

Using Lagrangian relaxation, the routing problem becomes a problem of finding shortest paths in
a weighted graph because the Lagrangian taxes are a cost function on the vertices and edges. An
alternative to a very high cost function on a vertex or edge is to remove that vertex or edge from the
graph. For instance, spacing rules in a gridded detailed routing problem can be handled by removing
grid points that are in violation with existing objects. This places a constraint on the graph, and it
ensures that the vertex or edge is not used; it may speed up a graph search because the expensive
edges or vertices need not be visited. (Figure 31.2) The main factor in deciding how to represent
the constraint is the complexity of the resulting subproblem. If one uses A∗ in a weighted graph, the
removal of a graph vertex or edge does not substantially alter the strategy, though it may affect the
running time.

It is also possible to further constrain the path; for instance, one can prune paths that do not
satisfy certain criteria, such as the number of bends in the path (this is done, for instance, in Shin
and Sangiovanni-Vincentelli [1987]). Note that some pruning options are not compatible with an
A∗ search.

31.3 RIP-UP-AND-REROUTE SCHEMAS

Now that the general formulation is in place, we can examine different rip-up-and-reroute schemas.
A schema reflects a basic methodology, though the actual implementation details may differ from
one author to another. Schemas can be separated based on

1. Identification of rip-up-and-reroute subproblems
2. Selection of routes that are removed when a subproblem is considered
3. Method used to solve these subproblems

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C031 Finals Page 619 29-9-2008 #6

Rip-Up and Reroute 619

We describe two important schemas, the progressive rerouting schema and the iterative improvement
schema. They appear in two key papers in the field, and their concepts have interesting parallels in
network optimization. They form a foundation for powerful routing strategies.

31.3.1 PROGRESSIVE REROUTING SCHEMA

An important rip-up-and-rerouteschema can be illustratedwith the global routing algorithm invented
by R. Nair (1987). In Nair’s schema, each net forms a subproblem, and only that net is removed
when the subproblem is considered.

1. For pass = 1 to k
2. For each net n
3. For each connection r in n

a. Remove r
b. Reroute r

Nair tessellated the chip using vertical and horizontal lines into a two-dimensional “gcell grid” as
described in Section 23.2.2. A gcell is defined as a smallest rectangle formed by the horizontal and
vertical lines. Nair’s routing graph is the dual of the grid graph: each gcell is a vertex, and an edge
is present between each pair of adjacent gcells.

Nair placed a constraint on each line segment in the grid graph that reflected the number of
wires that could cross that line segment. These represent the design constraints in that area. Using
Lagrangian relaxation, the constraints became costs on the routing graph edges.

Two-pin nets are routed using an A∗ search. Multipin nets are routed by successive A∗ searches,
where the source consists of all gcells that intersect the partially constructed net, and the targets are
all pins that are not yet connected in the net.

Nair’s key contribution was the overall routing strategy. In the first pass, each net is routed
subject to the congestion costs incurred from the nets already visited. In each subsequent pass, a net
is removed and completely rerouted. Note that after the first pass, each net will see the congestion
from all the other nets.

Nair justified his method, progressive rerouting, with the intuition that the second pass is better
informed about congestion than the first pass because the second pass sees all the congestion, while
the first pass only sees what was routed so far. He discovered that the overall solution cost generated
by the rerouting process converged to equilibrium after several passes; in his case, he stated that
fewer than five passes sufficed.

Although it was not suggested in Nair’s paper, his algorithm can be understood in the context
of noncooperative games. In a noncooperative game, each “agent” acts selfishly on its own behalf,
without regard to the effect on the other agents. An important notion in the theory of noncooperative
games is the concept of a Nash equilibrium. In a Nash equilibrium, no agent can change its behavior
to improve its own state. In time, noncooperative games converge to a Nash equilibrium. It is known,
however, that a Nash equilibrium may not be a global optimum.

Progressive routing can be seen to be a noncooperative game among the different nets. Each net
is routed in a greedy fashion to minimize its own latency. Progressive rerouting bears a remarkable
similarity to the problem of making traffic assignments. Recent results in traffic assignment theory
shed some light on the efficacy of Nair’s technique. The ratio of the cost of a Nash equilibrium to
the overall minimum cost is called the price of anarchy. Roughgarden and Tardos (2002) showed
that for single commodity flows where the latency function is a linear function of the congestion,
any Nash equilibrium has latency at most 4/3 times the minimum possible total latency. Global
routing, on the other hand, is a multicommodity flow where the commodity cannot be split; for
general multicommodity flows, the price of anarchy can be exponential in the polynomial degree of
the latency function (Lin et al. 2005).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C031 Finals Page 620 29-9-2008 #7

620 Handbook of Algorithms for Physical Design Automation

It is not clear that these negative results are immediately applicable to global routing. Global
routing problems are often well behaved; designers are interested in making chips, not confounding
routers. Perhaps one can show a positive result on the price of anarchy of a well-behaved global
routing problem.

Nair’s algorithm also has an interesting parallel to the multicommodity flow approximation tech-
nique described in Chapter 32 (Albrecht 2001). The multicommodity flow approximation technique
proceeds in a series of passes. In each pass, a Steiner minimal tree is found for each net with respect
to a weighted graph. The graph weights are successively modified due to the placement of the trees.
At the end, a rounding technique is used to select the actual implementation of the net. This can
be seen as identical to the structure of Nair’s algorithm; the main difference is in the choice of the
graph weights and in the selection of the Steiner tree implementation. In Nair’s approach, there is
exactly one Steiner tree representation. Steiner trees from prior passes are forgotten, except by how
they affect the graph weights.

31.3.1.1 Issues

The strength of progressive rerouting is simplicity of design. The basic component is A∗ search; it is
repeated over several passes. The schema converges rapidly to a reasonable equilibrium state (Nair
1987). However, it has several weaknesses, some of which are given below.

31.3.1.1.1 Detouring
The key problem with successive rerouting is detouring. This is where the length of the routed
connection is much longer than the length of a connection if congestion is not considered. The price
of anarchy refers to the total path length; a single connection, however, can have an arbitrarily long
detour. This is particularly undesirable when timing issues are considered. A net with a weak driver
cannot be detoured, so nets on timing-critical paths must be carefully constructed.

31.3.1.1.2 Initialization
A second issue is establishing a good starting point. At the time of the first pass, no nets are routed,
so these initial nets receive preferential treatment. The nets routed at the end of the first pass will
see the congestion of the preceding nets, and they may detour unnecessarily as a result. Hadsell and
Madden (2003) suggest that this initial routing phase can be seeded with a congestion estimation.
The congestion estimation affects the cost function by applying a tax to high-demand areas.

31.3.1.1.3 Net Ordering
Refer to Figure 31.3. Assume that two wires each need to pass through one of two bottlenecks. Wire
a is wide, and wire b is narrow; gap A can accommodate either wire a and wire b but not both, but
gap B can only accommodate wire b. If wire b is assigned to gap A, it has no incentive to relinquish
its position unless wire a is also assigned to gap A. If the cost of putting wire a in gap A is less than
the cost of putting wire a in gap B, wire b prevents an optimal assignment of wires to gaps.

This issue is typically dealt with using net ordering. If the connection containing wire a is
routed first, wire a will be placed in gap A rather than gap B because it does not fit in gap B. The
connection containing wire b will then be assigned to gap B. Net ordering is an imperfect attempt to
add centralized control to the progressive rerouting process. The task of assigningwires to bottleneck
gaps is a packing problem; such a problem is NP-complete, and heuristics with good performance
can be sophisticated.

31.3.1.1.4 Determining Good Lagrangian Multipliers
Though there are some general techniques to find Lagrangian multipliers (Ahuja et al. 1993), ad hoc
techniques are often used in practice. Users want fast convergence and few detours. Also note that A∗

performs better when lower bounds and upper bounds match, so the use of a Lagrangian multiplier
when the design is uncongested may slow down the algorithm, even if it is the theoretically correct

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C031 Finals Page 621 29-9-2008 #8

Rip-Up and Reroute 621

(a) (b)

(c)

A AB B

A B

FIGURE 31.3 (a) Bottleneck gaps A and B. Thin wire b can fit through either. Thick wire a can only fit
through gap A. (b) If wire b is routed first, it may take gap A or gap B. If thin wire b takes a resource A that thick
wire a needs, a cannot fit through. (c) If wire a is routed first, it takes gap A. Wire b can make it through gap b.

thing to do. Several authors have investigated this issue. Note that the multipliers may be affected
by how congestion is modeled and by the routing objectives.

31.3.1.1.5 Divergence
Worse than detouring is divergence, where the designmay be so congested that almost all connections
detour. In each successive pass, rerouted connections detour even more to avoid congestion, thereby
increasing wirelength dramatically and inducing more congestion. Although successive rerouting
will converge to a Nash equilibrium, there is neither a statement that it must converge in a small
number of passes (it divergesduring these passes) nor is there a bound on the totalwirelength increase
per pass. Divergence commonly happens when a design is infeasible.

31.3.2 ITERATIVE IMPROVEMENT SCHEMA

This is the second major schema illustrated. Suppose we have a routing solution that satisfies the
network constraints but not the design constraints. Suppose we select one violated design constraint
and then attempt to resolve it by rip-up and reroute. If no additional design constraints are violated,
the resulting routing solution is deemed to be superior to the original one and therefore closer to the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C031 Finals Page 622 29-9-2008 #9

622 Handbook of Algorithms for Physical Design Automation

overall solution. This schema represents an iterative optimization technique; i.e., a pivot is made by
tightening some violated constraint and then solving the resulting problem.

1. Route nets
2. Identify areas where the design constraints are violated
3. Identify nets/connections r to

a. Remove r
b. Reroute r

This schema was proposed in the earliest papers on rip-up and reroute. An early, sophisticated
discussion is in Ting and Tien (1983). They define a loop as a closed, nonintersecting sequence of
boundaries in the grid graph. The loop constraint states that the number of times that connections
cross a loopmust be no greater than the maximumnumber of crossings allowed on the loop. For each
connection, define its crossing count to be the number of times the connection intersects the loop.
The crossing count of a net is the sum of the crossing counts of its connections. A net is said to violate
the loop constraint if there exists a Steiner tree that can decrease the crossing count. As a specific
example, suppose a net contains two pins that are outside the loop, but the routed connection for
these two pins crosses the loop (Figure 31.4). This connection violates the loop constraint because
there must be a Steiner tree that lies entirely outside the loop.

Ting and Tien consider several loops simultaneously. Given a set of loops and a set of violating
nets, they form a bipartite graph. One set of vertices are the violating nets, the other set are the loops,
and there is an edge between a net and a loop if the net violates the corresponding loop constraint.
Using this bipartite graph, Ting and Tien attempt to find an intelligent subset of nets to rip-up and
reroute. They select a minimal set of nets such that, if removed, no loop constraint will be violated.
(By minimal, this means that if any net was removed from the set, some loop constraint would be
violated.) The smallest such set is called a set cover, which is also an NP-complete problem, so a
suitable approximation is used.

After the set of nets to reroute is obtained, Ting and Tien (1983) use a greedy strategy to obtain
a net ordering, and then reroute the connections in that order. They note that their sequence may not
remove all congestion, even if an uncongested solution can be found by another sequence. Such an
issue is endemic to the iterative rip-up-and-reroute schema.

31.3.2.1 Issues

The strength of iterative improvement is its consistent progress.Design constraint violations are found
and resolved if possible. If the routing problem is feasible and the initial solution is of reasonable
quality, the number of violationswill be a small fraction of the design. If the probability of a successful
rip-up and reroute is sufficiently high, the iterative improvementmethodology will converge rapidly
(see Dees and Smith [1981] for a probabilistic justification).

(b)(a)

C

A

B

L

C

A

B

L

FIGURE 31.4 (a) Loop L has four crossings, but it can only support two. (b) Net B is rerouted to avoid loop L.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C031 Finals Page 623 29-9-2008 #10

Rip-Up and Reroute 623

A

B

C

L

FIGURE 31.5 Region R is the area outside of L. Routing in R prevents B from being successfully rerouted.

The weakness of iterative improvement depends on the exact method used. Here are some issues
that can arise.

31.3.2.1.1 Insufficient Rip-Up
Ting and Tien take a direct approach; they remove violating routes. However, it is also possible that
nets that are not in violation may need to be ripped up as well. (Figure 31.5) A net that is nearby a
violation may control a resource that is needed to remove the violation. For instance, suppose that
wire a avoids closed regionR, but it must pass throughR in an optimal solution. There is no incentive
to reroute wire a when considering R because it does not cross R.

Another example is if wire a is placed in the middle of a two-track gap (Figure 31.6). Near the
gap, wires b and c cross. If the rip-up-and-reroute region is at the spot where b and c cross, and wire
a is not in the region, wire a would not be considered. If, however, wire a is moved to make room
for wire b, then the violation would be removed.

31.3.2.1.2 Net Ordering
Ting and Tien noted that their net ordering strategy may not produce a global minimum. This is
always the case with iterative optimization techniques. Many authors have noted this issue; the net
ordering problem is dealt with using heuristics, Lagrangian weights, and randomization (Dees and
Karger 1982).

(b)(a)

a b c a b c

FIGURE 31.6 (a) Wires b and c cross. Assume the rip-up region is the cross-hatched area. Wire a is not
moved. (b) If the rip-up region is enlarged to contain wire a, then the rip-up and reroute is successful.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C031 Finals Page 624 29-9-2008 #11

624 Handbook of Algorithms for Physical Design Automation

31.3.2.1.3 Lack of Progress
Suppose that the rip-up and reroute of a region does not reduce the total cost. Such an issue is called
a lack of progress. A lack of progress always occurs if a design constraint cannot be removed, but it
may occur because of insufficient rip-up, for instance.

31.3.2.1.4 Oscillation
Oscillation is a phenomenon where a sequence of rip-up-and-reroute operations results in a return
to the original configuration. For instance, a reroute may move wire a out of a region, and then a
successive reroute may place the route back in its original configuration. Oscillation may occur if
a lack or progress is permitted. If oscillations do occur, there is the possibility of an infinite loop in
the routing strategy.

A special type of oscillation occurs when no change takes place during the rip-up and reroute of
a connection.

31.4 RIP-UP-AND-REROUTE STRATEGIES

The two schemas presented have strengths andweaknesses. For some routing problems, the strengths
may suffice. However, the most successful routers use combinations of these schemas that form a
strategy.

A good example of the strategic development of a router is the router Mighty, developed by Shin
and Sangiovanni-Vincentelli (1987), which mixes progressive rerouting and iterative improvement
in a sophisticated way. The first pass of Mighty routes all the connections, but it does not commit
them. The information is used to order the connections for the second pass. Specifically, connections
are placed on a priority queue that is ordered by length. In the second pass, connections are either
implemented if no network constraint is violated, or they are rerouted. Connections are rerouted so
that they avoid conflicts, and the resulting connection is tested for quality. Connections that pass the
quality test are placed on the priority queue. Connections that fail the quality test cause a sequence
of modifications to the implemented connections. These modifications are either localized moves
such as shifting the location of the wire (weak modifications) or more drastic moves that involve
the rip-up of the conflicting connections (strong modifications). In the strong modification stage,
connections are routed so that they are allowed to conflict with existing objects. During this stage,
conflicts are taxed, and a minimum-weight path is used to identify the connections to remove.

Mighty demonstrates the power of strategy. It deals with the schema issues in the following way.
With respect to progressive reroute, the initialization problem is resolved by routing all connections
independently of each other. They use a strategy for net ordering where certain simple connections
are done first. There are two routing phases; in one phase, violations are not allowed, so Lagrangian
weights are not an issue. In the second phase, violations are allowed, and Lagrangian weights are
needed, though it is expected that the first phase will succeed most of the time. With respect to
iterative improvement, there are two types of rip-up techniques. When using weak modifications, a
history is stored to avoid oscillation. Lack of progress is dealt with using a sequence ofmore powerful
(and extensive) rip-up-and-reroute operations.

31.5 HISTORY

Rip-up and reroute was mentioned in early papers on printed circuit boards (PCBs) in the late 1960s.
The earliest reference appears to be Dunne (1967). A slightly later work in a more visible publication
is by Lass (1969). In that paper, Lass described a rip-up-and-reroute technique where the changes
were localized to a small window. Further work on PCBs was given by Rubin (1974).

For IC design, IBM played a particularly important role in developing area routers (Darringer
et al. 2000) and in the use of rip-up and reroute to solve these problems. The central concepts
were established by the mid-1980s. The schemas described here were also established in the early-
to-mid 1980s.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C031 Finals Page 625 29-9-2008 #12

Rip-Up and Reroute 625

A good short survey of rip-up-and-reroute techniques for global routing appears in Hu and
Sapatenekar (2001). One interesting rip-up-and-reroute algorithm that does not use path search as
its main component appears in Meixner and Lauther (1990). Rip-up-and-reroute concepts appear in
some recent work as well, such as Hu and Sapatnekar (2002), Liu and Sechen (1999), and Tseng and
Sechen (1997). We note that much of the commercial work on rip-up and reroute is folklore. Key
developers of proprietary routing software have not published all of their discoveries.

31.6 ENGINEERING PRACTICALITY

Rip-up-and-reroute strategies are used in many commercial routers and are mentioned in recent
technical papers. There are many reasons why rip-up and reroute is so common.

First of all, rip-up-and-reroute algorithms always satisfy the network constraints. After the reroute
step, one can perform an analysis such as a timing analysis or a process antenna check. Because the
network constraints are satisfied, only a single routing representation is needed; intermediate results
are lost.

Rip-up-and-reroute algorithms typically allow individual control over a net. For instance, if a net
is involved in a timing violation because it has too much cross capacitance, only that net and nearby
affected nets need to be rerouted.

Many of the rip-up-and-reroute schemas are easy to implement. If one implements the basic
components of the routing algorithm, then the rip-up step consists of deleting routes and remarking
the routing grid. For example, only an A∗ routing engine is needed in progressive rerouting. This
represents a significant simplification from the standpoint of software engineering—there is only
one place that would need to be updated or fixed when an enhancement is needed.

Rip-up-and-reroute algorithms typically represent only one physical realization of a connection
at a time. The routing representation is a significant memory consumer, so care must be taken to
ensure that the memory footprint is small. In rip-up and reroute, the memory footprint is as efficient
as possible because alternate solutions are not represented.

Through the use of strategies, a variety of rip-up-and-reroute techniques can be used to solve
difficult problems. In this sense, some different techniques dovetail in the same way as optimizing
compiler techniques dovetail: each additional strategic tool improves router quality without affecting
the quality of the other tools.

Finally, rip-up-and-reroute algorithms have been used successfully in many practical applica-
tions. From the commercial risk–reward standpoint, there is little risk to implement an improved
rip-up-and-reroute algorithm, and there is little reward if the underlying routing algorithm worked
as well as the competition but took longer to develop.

REFERENCES

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice
Hall, New Jersey, 1993.

C. Albrecht. Global routing by new approximation algorithms for multicommodity flow. IEEE Transactions on
CAD, 20(5), 2001, 622–632.

J. Darringer et al. EDA in IBM: Past, present, and future. IEEE Transactions on CAD, 19(12), 2000, 1476–1497.
W. A. Dees, Jr. and P. G. Karger. Automated rip-up and reroute techniques. 19th Design Automation Conference,

Annual ACM IEEE Design Automation Conference, IEEE Press, Piscataway, NJ, 1982, pp. 432–439.
W. A. Dees, Jr. and R. J. Smith, II. Performance of interconnection rip-up and reroute strategies. Proceedings

of the 18th Design Automation Conference, Nashville, TN, Annual ACM ICEEE Design Automation
Conference, IEEE Press, Piscataway, NJ, 1981, pp. 382–390.

G.V. Dunne. The design of printed circuit layouts by computer.Proceedings of AustralianComputer Conference
3, 1967, pp. 419–423.

R. T. Hadsell and P. H. Madden. Improved global routing through congestion estimation. DAC, Anaheim, CA.
ACM, NY, 2003, pp. 28–31.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C031 Finals Page 626 29-9-2008 #13

626 Handbook of Algorithms for Physical Design Automation

P. E. Hart, N. J. Nilsson, and B. Rafael. A formal basis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics, 4, 1968, 100–107.

J. Hu and S. S. Sapatenekar. A survey on multi-net global routing for integrated circuits. Integeration: The VLSI
Journal, 31(1), 2001, 1–49.

J. Hu and S. S. Sapatnekar. A timing-constrained simultaneous global routing algorithm. IEEE Transactions on
CAD, 21(9), 2002, 1025–1036.

F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. Annals of Discrete Mathematics, 53,
Amsterdam, The Netherlands, 1992.

S. E. Lass. Automated printed circuit routing with a stepping aperture. CACM, 12(5), 1969, 262–265.
H. Lin, T. Roughgarden, E. Tardos, and A. Walkover. Braess’s paradox, Fibonacci numbers, and exponential

inapproximability, ICALP, Lisbon, Portugal, 2005, pp. 497–512.
R. Linsker. An iterative-improvement penalty-function-driven wire routing system. IBM Journal of Research

and Development, 28(5), 1984, 613–624.
L. E. Liu andC. Sechen.Multilayer chip-level global routing using an efficient graph-based Steiner tree heuristic.

IEEE Transactions on CAD, 18(10), 1999, 1442–1451.
G. Meixner and U. Lauther. A new global router based on a flow model and linear assignment. Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design, Santa Clara, CA, 1990, pp. 44–47.
R. Nair. A simple yet effective technique for global wiring. IEEE Transactions on CAD, 6(2), 1987, 165–172.
T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the ACM, 49(2), 2002, 236–259.
F. Rubin. An iterative technique for printed wire routing. 11th Design Automation Workshop, Annual ACM

IEEE Design Automation Conference, IEEE Press, Piscataway, NJ, 1974, pp. 308–313.
H. Shin and A. Sangiovanni-Vincentelli. A detailed router based on incremental routing modifications: Mighty.

IEEE Transactions on CAD, 6(6), 1987, 942–955.
B. S. Ting and B. N. Tien. Routing techniques for gate array. IEEE Transactions on CAD, 2(4), 1983, 301–312.
H. -P. Tseng and C. Sechen. Multi-layer over-the-cell routing with obstacles. IEEE Custom Integrated Circuits

Conference, Santa Clara, CA, 1997, pp. 565–568.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 627 9-10-2008 #2

32 Optimization Techniques
in Routing

Christoph Albrecht

CONTENTS

32.1 Introduction.. 627
32.2 Global Routing Problem Formulation .. 628
32.3 Fractional Global Routing and Linear Programming Duality . 629
32.4 Simplex Algorithm with Column Generation.. 632
32.5 Multicommodity Flow and Fractional Packing Problems .. 633
32.6 Fully Polynomial-Time Approximation Scheme for Fractional Global Routing 634

32.6.1 Approximation Scheme Minimizing the Relative Congestion .. 635
32.6.2 Approximation Scheme Minimizing the Total Weighted Netlength 639

32.7 Randomized Rounding.. 640
32.8 Extensions . 641
32.9 Conclusion.. 642
References . 642

32.1 INTRODUCTION

Today’s routing instances are of enormous complexity. Millions of nets need to be routed on chip
images that have tens of thousands routing channels in x- and y-direction and up to eight routing
planes. Because of this complexity, routing is usually split up into two subtasks: global routing,which
gives the approximate area for the Steiner tree of each net, and detailed routing, which performs a
path search in this area and determines the actual tracks and vias for the nets. Global routing also
provides a fast method to determine if a routing instance is feasible or not, or feasible only with long
detours that may not be acceptable. If the global routing does not have a solution, it is necessary to
change the placement. This chapter focuses on the global routing problem.

Many global routers are based on an initial route of all nets followed by a rip-up and reroute
procedure, which tries to reduce the congestion of the edges by rerouting segments of nets on
overloaded edges as described in Chapter 31. For difficult instances, these algorithms may run
forever and not come up with a solution, even though a solution exists.

In this chapter, we discuss routing techniques that are based on the linear relaxation of an integer
programming formulation of the global routing problem. If the linear program does not have a
solution, by linear programming duality the dual linear program provides a proof, and this is a
certificate that also the given global routing instance does not have a solution.

The linear relaxation of the global routing problem allows multiple Steiner trees (or routes) for
a single net, each Steiner tree having a nonnegative weight. The weights of the Steiner trees for
each net sum up to 1. In the end, we would like to have an integer solution that has only on single
Steiner tree for each net. This is achieved by randomized rounding as introduced by Raghavan and
Thompson in 1987 [1,2].

627

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 628 9-10-2008 #3

628 Handbook of Algorithms for Physical Design Automation

Solving the linear programming relaxation was (and still is) the computationallymost expensive
part in this approach and this was the reason why the approach was used only very limitedly in prac-
tice. This changedwith newdevelopmentsof approximationalgorithms for themulticommodity flow
problemand the fractional packing problem [3–8]. These problems are related to the linear relaxation
of the global routing problem, the fractional global routing problem. We present an approximation
scheme for the linear relaxation of the global routing problem, which is based on the approximation
algorithms by Garg and Könemann [6] and Fleischer [7]. In the year 2000, it was possible to route
the latest IBM application specific integrated circuit (ASIC) and microprocessor designs with up to
1,000,000 netswith this approximation scheme [9]. Subsequently, the algorithmwas also used in com-
mercial electronic design automation (EDA) tools for the X-architecture as discussed in Chapter 40.

This chapter is organized as follows. In the next section, Section 32.2, we formulate the global
routing problem. Then in Section 32.3, we discuss the linear relaxation and the dual linear program.
In Section 32.4, we present early work on linear programming for global routing, in particular
the simplex method with column generation. In Section 32.5, we describe the multicommodity flow
problem and the fractional packing problem and show the relationship to the fractional global routing
problem. In Section 32.6, we present a fully polynomial approximation scheme for the fractional
global routing problem based on the multicommodity flow approximation schemes and prove the
approximation ratio. In Section 32.7, we present randomized rounding as introduced by Raghavan
and Thompson [1,2], which is used to achieve the final integer solution. In the last section, we discuss
extensions of the approach.

32.2 GLOBAL ROUTING PROBLEM FORMULATION

In global routing, an undirected grid graph G = (V ,E) is constructed. A two-dimensional grid is
placed over the chip. For each tile, there is a vertex v ∈ V and two vertices corresponding to adjacent
tiles are connected by an edge. It is possible that the grid graph G consists of different layers such
that via-capacities as well as capacities for different layers can be considered. Figure 32.1 shows a
global routing graphwith two layers, one for wiring in x-direction, the other for wiring in y-direction,
and via edges in between.

The number of edges inG is denoted bym, that ism = |E|. For global routing, only nets with pins
in different tiles are considered. Let k be the total number of these nets and for each net i, i = 1, . . . , k,
let Ni ⊆ V be the set of vertices for which there exists a pin of the net in the corresponding tile. The
vertices of Ni are called the terminals of net i.

For a given net i, let Ti be the set of all possible Steiner trees. This set might be restricted such
that it contains only a subset of all possible Steiner trees—for example, for timing critical nets, the
set may contain only the Steiner trees with minimum L1-length.

For the algorithms presented in this chapter, we assume that given any nonnegative lengths for
the edges, a subroutine can be queried to compute a Steiner tree T ∈ Ti of minimum length with
respect to these edge lengths. In practice, a heuristic that does not necessarily return the optimum
Steiner tree is often good enough.

FIGURE 32.1 Global routing graph with two layers and via edges.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 629 9-10-2008 #4

Optimization Techniques in Routing 629

For each edge e = {u, v}, a capacity c(e) is computed according to the number of free channels
between the two tiles corresponding to u and v, taking into account the entanglement of the nets that
have all pins either in u or in v.

Global routing asks for a Steiner tree Ti for each net i. Given these Steiner trees, the relative
congestion of an edge e is defined as λ(e) := |{i|e ∈ Ti}|/c(e), and themaximum relative congestion
is λ := maxe∈E λ(e).

Several versions of the global routing problem have been studied. As a first approach, we will
consider the task to find for each net i a Steiner tree Ti such that the maximum relative congestion
is minimized. Later, in Section 32.6.2, we consider another version of the global routing problem:
Find Steiner trees such that the maximum relative congestion is at most 1 and the total weighted
netlength is minimized.

With the notation above, the global routing problem for minimizing the maximum relative
congestion can be formulated as a mixed integer linear program:

min λ

subject to

∑
i,T :e∈T∈Ti

xi,T ≤ λ c(e) for e ∈ E

∑
T∈Ti

xi,T = 1 for i = 1, . . . , k

xi,T ∈ {0, 1} for i = 1, . . . , k; T ∈ Ti

(32.1)

In this mixed integer linear program, the variable xi,T is 1, if and only if for net i the Steiner tree
T is part of the solution.

The global routing problem is NP-complete as was shown by Kramer and van Leeuwen [10]. It
is even NP-complete for the special case that all nets have only two terminals and the capacities are
c(e) = 1 for all edges (edge-disjoint path problem), see Ref. [11].

The problempresented here is simplified compared to previous problem formulations. For exam-
ple, it is possible to consider different wire widths for the nets and if the global routing graph models
different layers, these wire widths may depend not only on the net but also on the edge. It is straight
forward to adjust the algorithms presented here to incorporate additional factors that represent the
wire width [9].

32.3 FRACTIONAL GLOBAL ROUTING AND LINEAR PROGRAMMING
DUALITY

In this section, we consider the linear relaxation of the global routing problem introduced in the
previous section. We then analyze and discuss the dual linear program.

The linear programming relaxation of the mixed integer linear program (Equation 32.1) is the
following:

min λ

subject to

∑
i,T :e∈T∈Ti

xi,T ≤ λc(e) for e ∈ E

∑
T∈Ti

xi,T = 1 for i = 1, . . . , k

xi,T ≥ 0 for i = 1, . . . , k; T ∈ Ti

(32.2)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 630 9-10-2008 #5

630 Handbook of Algorithms for Physical Design Automation

We call the problem of solving this linear program the fractional global routing problem and
denote the value of the optimum solution by λ∗. For any feasible solution of this linear program, the
relative congestion of an edge e is given by λ(e) := ∑

i,T :e∈T∈Ti xi,T/c(e). We will sometimes write a
solution (xi,T)i=1,...,k;T∈Ti for the fractional global routing problem simply as a vector x.

The dual linear program of the linear program (Equation 32.2) is given by

max
k∑
i=1

zi

subject to

∑
e∈E

c(e)ye = 1

∑
e∈T

ye ≥ zi for i = 1, . . . , k; T ∈ Ti

ye ≥ 0 for e ∈ E

(32.3)

By linear programming duality (a comprehensive overview about linear programming can be
found in the books by Chvátal [12] and Schrijver [13]), any feasible solution of the dual linear
program provides a lower bound on the optimum solution for the primal linear program, and for the
optimum solutions equality holds.

According to the second inequality in Equation 32.3, the value of zi has to be smaller than the
minimum length of all Steiner trees T ∈ Ti with respect to the length ye for edge e. As

∑k
i=1 zi is

maximized, zi can be substituted by this minimum value, and by rescaling all lengths ye, e ∈ E by
1/
∑

e∈E c(e)ye such that the first inequality in Equation 32.3 holds, we get the following theorem:

Theorem 1 Given any nonnegative values ye for the edges e ∈ E, the expression

k∑
i=1

min
T∈Ti

∑
e∈T
ye∑

e∈E
c(e)ye

provides a lower bound on the optimum value of the fractional global routing problem.
Moreover, there exist nonnegative values ye, e ∈ E, such that the expression above is equal to

the optimum value of the fractional global routing problem.

We briefly prove the weak duality, that the expression in Theorem 1 provides a lower bound
on the minimum relative congestion. Let λ, xi,T for i = 1, . . . , k; T ∈ Ti be a feasible solution of
Equation 32.2 and ye, e ∈ E, zi, i = 1, . . . , k of Equation 32.3. Then, we get

λ
∑
e∈E

c(e)ye ≥
∑
e∈E

⎛
⎝ ∑

i,T :e∈T∈Ti
xi,T

⎞
⎠ ye =

k∑
i=1

∑
T∈Ti

xi,T
∑
e∈T

ye ≥
k∑
i=1

min
T∈Ti

∑
e∈T

ye ≥
k∑
i=1

zi

These inequalities show that for any optimal solution of Equations 32.2 and 32.3 the following
holds: First, an edge e can have a positive length ye > 0 only if it has themaximum relative congestion,
that is, λc(e) = ∑

i,T :e∈T∈Ti xi,T . Second, every Steiner tree with positive xi,T has to be minimal with
respect to the dual lengths ye, that is,

∑
e∈T ye = minT∈Ti

∑
e∈T ye.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 631 9-10-2008 #6

Optimization Techniques in Routing 631

2

2

2

2

1

22

2

2

2

3
10

1
2

1
23

10

2
5

(a) (b)

(c) (d)

0

2

1 1

0

0

0 0

1

1

Pins of Net 2
Pins of Net 1 Blockage

FIGURE 32.2 Example for fractional global routing with the dual solution: (a) the chip with some blockages
and the pins for two nets, (b) the global routing graph with the capacitances c(e), e ∈ E, (c) a fractional solution
for the global routing problem minimizing the maximum relative congestion, and (d) an optimal dual solution
ye, e ∈ E (without scaling).

Figure 32.2 shows an example for the fractional global routing problem with an optimal
fractional global routing for the primal problem in Figure 32.2c in which the fractional num-
bers specify the values for the variables xi,T , and an optimal solution for the dual problem in
Figure 32.2d. We can verify Theorem 1: The maximum relative congestion is 2

5
and five edges

have a congestion equal to the maximum relative congestion. For the dual solution, the value of
the expression

∑
e∈E c(e)ye, which can be considered (speaking of flows) as the total volume avail-

able, is 10, and the value of the expression
∑k

i=1 minT∈Ti
∑

e∈T ye, the total volume needed, is 4.
Hence, the value of the lower bound in Theorem 1 is 2

5
and the primal and dual solutions are

optimal.
In this example, the length of one edge in the dual solution has to be twice as high as the length of

all other edges that have a positive length. In most cases, the dual solution just consists of a solution
in which the edges with positive length form a cut and all edges in the cut have the same positive
length. It is possible to extend this example such that in any optimal dual solution the length of one
edge is required to be an arbitrary multiple of any other length [14].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 632 9-10-2008 #7

632 Handbook of Algorithms for Physical Design Automation

32.4 SIMPLEX ALGORITHM WITH COLUMN GENERATION

The first algorithm to solve the fractional global routing problem (Equation 32.2) by Hu and Shing in
1985 [15] used the simplex algorithm by Dantzig in 1951 [16] with column generation. This method
finds an optimal solution even though it does not explicitly enumerate all the possible Steiner trees,
nor has variables for all Steiner trees in memory. The method is limited in the size of the problem
instances, and hence Hu and Shing propose a decomposition and cut-and-paste approach.

In this section, we show how the simplex algorithm with column generation is applied to the
fractional global routing problem. The simplex method goes from vertex to vertex along edges of
the polyhedron underlying the linear program until an optimal vertex is reached. For a complete
description of the simplex method, we refer the reader to Refs. [12,13,17]. Interesting is that this
method requires a subroutine that computes minimal Steiner trees for nets with respect to a nonneg-
ative length function on the edges, a subroutine that is also required by the approximation schemes
is presented later.

The linear program of the fractional global routing problem (Equation 32.2) can be rewritten
with matrices as follows in a standard form for linear programs:

min

⎧⎨
⎩λ :

(
M −c I
N 0 0

)⎛⎝xλ
v

⎞
⎠ =

(
0
1

)
, x, λ, v ≥ 0

⎫⎬
⎭ (32.4)

In this linear program, the first constraint
(
M −c I

)
⎛
⎝xλ
v

⎞
⎠ = 0 corresponds to the capacity

constraints on the edges, the first inequality in Equation 32.2. Each row corresponds to an edge and
each column of the matrix M corresponds to a Steiner tree T for a net i and is the incidence vector
for the edges of the corresponding Steiner tree. The vector v contains slack variables for the equality
constrains.

The second constraint
(
N 0 0

)⎛⎝xλ
v

⎞
⎠ = 1 of the linear program ensures that the weights xi,T

for each net i and all Steiner trees T for the net sum up to 1, the second inequality in Equation 32.2.
The matrix N has one row for each net and each row is the incidence vector for all the Steiner trees
of the corresponding net.

The dual of this linear program is as follows:

max{1z : zN ≤ yM, yc ≤ 1, y ≥ 0} (32.5)

The simplex method requires an initial vertex of the polyhedron as a starting point and basis of

the matrix A =
(
M −c I
N 0 0

)
: for each net i, pick one Steiner tree T arbitrarily, set xi,T ,= 1, and

the corresponding column of

(
M
N

)
i,T

becomes part of the basis. Next,

(−c
0

)
is part of the basis. We

can assume that this column is always part of the basis, because λ does not become 0. Finally, for all

edges that do not have the maximum relative congestion, the corresponding columns

(
I
0

)
e

are part

of the basis. In case several edges have the maximum relative congestion, additional columns

(
I
0

)
e

are chosen until the basis has |E| + k columns. We denote by

[(
M
N

)
B1

(−c
0

)(
1
0

)
B2

]
the matrix

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 633 9-10-2008 #8

Optimization Techniques in Routing 633

that has all the columns for the basis. This matrix has the full rank and can be inverted. The simplex
algorithm computes a dual solution as follows:

(−y, z) =
[(

M
N

)
B1

(−c
0

)(
I
0

)
B2

]−1
⎛
⎝0
1
0

⎞
⎠

The algorithm checks if this is a feasible dual solution: We have yc = 1 because

(−c
0

)
is part of

the basis. Checking y ≥ 0 is straight forward. The inequality zN ≤ yM is checked by computing a
minimal Steiner tree for each net i with respect to the length function ye, e ∈ E and comparing this
length with zi. We will later see that the approximation algorithms require the same subroutine.

If (y, c) is a feasible dual solution, the vertex for the primal linear program is an optimal solution.
Otherwise a column corresponding to a violated constraint becomes part of the basis, another column
leaves the basis, and if the vertexwasnot degenerate, a newvertex is computed. The simplex algorithm
terminates in the worst case, after exponentially many steps; however, in practice, it is reasonably
fast for most applications.

We conclude this section by mentioning another linear programming approach for the global
routing problem by Vannelli from 1989 [18]. In a first step, Vannelli reduces the complexity and
size of the linear program by restricting the set of Steiner trees to only the minimal or near-minimal
Steiner trees using also the result by Hanan, that a shortest rectilinear Steiner tree can be found
in the grid induced by the terminals [19]. This restriction of the solution space may of course
result in a suboptimal solution of the fractional global routing problem. Then he uses the Karmarkar
algorithm [20], an interior point algorithm,whichmoves through the interior of the feasible region and
reaches the optimal solution asymptotically. The runtime of the Karmarkar algorithm is polynomial,
but it has the disadvantage compared to the simplex algorithm that it requires the complete linear
program as input.

32.5 MULTICOMMODITY FLOW AND FRACTIONAL PACKING PROBLEMS

In this section, we give an overview about multicommodity flow and fractional packing problems.
These problems are similar to the fractional global routing problem. In fact, the fractional packing
problem is a generalization of the fractional global routing problem. There have beenmany advances
in the field of approximation algorithms for multicommodity flow and fractional packing problems
and we will apply these to the fractional global routing problem in the next section.

For this section, let G = (V ,E) be a directed graph with an edge utilization (or capacity)
function c : E → R+. For a vertex v ∈ V we denote by δ+(v) all outgoing edges of v and by δ−(v)
all incoming edges of v. Let s (the source) and t (the sink) be two specified vertices. An s–t flow is a
function f : E → R+, which fulfills the flow conservation rule

∑
e∈δ−(v) f (e) = ∑

e∈δ+(v) f (e) for all
v ∈ V\{s, t} and the capacity constraints f (e) ≤ c(e) for all e ∈ E. The value of an s–t flow f is
defined as value(f) := ∑

e∈δ−(s) f (e) −∑
e∈δ+(s) f (e).

It is possible to decompose an s–t flow into at most m = |E| flows along s–t paths: Given
an s–t flow f of nonzero value, we find an s–t path P with f (e) > 0 for all e ∈ P. If we set
x := min{f (e)|e ∈ P}, the function f ′ : E → R+ with f ′(e) = f (e) − x if e ∈ P and f ′(e) = f (e)
otherwise is again an s–t flow, but it has at least one edge e with f (e) > 0 less. Repeating this
procedure until the value of the flow is 0 (flow along cycles may remain), we find x1, . . . , xt and
P1, . . . ,Pt such that

∑
i:e∈Pi xi ≤ f (e) for all e ∈ E.

For the multicommodity flow problem, several commodities are given. Each commodity i has
a source si, a sink ti, and a demand di. Let k be the number of commodities. The task of the
maximum-concurrent multicommodity flow problem is to find an si–ti flow fi for each commod-
ity i subject to the capacity constraints

∑k
i=1 fi(e) ≤ c(e) for all e ∈ E such that the total throughput

µ is maximized. The value of each flow fi is at least µ di.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 634 9-10-2008 #9

634 Handbook of Algorithms for Physical Design Automation

Other version of the multicommodity flow problem are the maximum multicommodity flow
problem for which no demands are given and just the sum of the flows is maximized and the
minimum-cost multicommodity flow problem for which a cost function for the edges is given in
addition to the capacitances and the task is to minimize the total cost of all the flows.

It is possible to formulate the maximum concurrent flow problem as a linear program in which
the variables are the flow values for the edges fi(e). The size of this linear program is polynomial in
the size of the input, hence we can find an optimal solution in polynomial time using the ellipsoid
method [21]. However, for large problem instances, it is computationally impossible to solve the
linear program optimally.

Let Pi be the set of all si − ti paths. The following linear programming formulation makes use
of the decomposition of flows into paths.

maxµ

subject to
∑

i,P:e∈P∈Pi
xi,P ≤ c(e) for e ∈ E

∑
P∈Pi

xi,P = µdi for i = 1, . . . , k

xi,P ≥ 0 for i = 1, . . . , k; P ∈ Pi

(32.6)

This linear program has exponentiallymany variables. Nevertheless, it is possible to compute an
ε-approximate solution in polynomial time using this formulation implicitly as most of the variables
xi,P can be 0.

There has been a series of papers about fully polynomial-time approximation schemes (FPTAS)
for multicommodity flow problems in the last decade. An approximation scheme is a family of
algorithms that compute a solution within a factor (1 − ε) of the optimal for any constant ε. If the
running time can be bounded by a polynomial depending on the input size and 1/ε, then the scheme
is called fully polynomial time.

All approximation algorithms maintain a flow and then iteratively improve it by computing
single commodity flows or single commodity flows restricted to paths with respect to a cost function
depending on the congestion.

The fractional packing problem is a generalization of the multicommodity flow problem. Given
a convex set P ⊆ Rn, a matrix A ∈ Rm×n

+ , and a vector b ∈ Rm, the task is to find an x ∈ P with
Ax ≤ b. The approximation scheme, as for example by Plotkin et al. [4], requires a subroutine, which
finds for a vector c ∈ Rn

+, a vector x ∈ P that minimizes cTx.
The fractional global routing problem is a special case of the fractional packing problem: The

convex set P is given by the constraints
∑

T∈Ti xi,T = 1 for i = 1, . . . , k and xi,T ≥ 0 for i =
1, . . . , k, T ∈ Ti and the constraints Ax ≤ b represent the constraints

∑
i,T :e∈T∈Ti xi,T ≤ λc(e) for

e ∈ E. The subroutine needs to find a Steiner tree for each net minimizing a cost function and this
cost function is the sum of some nonnegative cost of the edges of the Steiner tree.

32.6 FULLY POLYNOMIAL-TIME APPROXIMATION SCHEME
FOR FRACTIONAL GLOBAL ROUTING

In this section, we present and describe a fully polynomial-time approximation scheme for the
fractional global routing problem.Carden et al. in 1996 [22] were the first to apply amulticommodity
flow approximation algorithm to global routing. They use the approximation algorithm by Shahrokhi
and Matula [3]. The approximation scheme presented here, first published in Ref. [9], is based on
the approximation scheme by Garg and Könemann [6], but also use ideas from Fleischer [7]. The

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 635 9-10-2008 #10

Optimization Techniques in Routing 635

approximation scheme iteratively finds Steiner trees with respect to dual lengths ye, then adjusts the
dual lengths just for the Steiner tree found.

32.6.1 APPROXIMATION SCHEME MINIMIZING THE RELATIVE CONGESTION

The approximation scheme that solves the fractional global routing problem for any given
approximation ratio 1 + ε0 is shown in Figure 32.3.

The variables are initialized in lines 1 and 2. The algorithm is called with the parameters ε andM.
The proof of the theorem in this section will show which value to choose for these parameters to get
the desired approximation ratio.

The algorithm runs through several phases. A phase starts in line 4 and ends in line 11. For each
net i, a minimal Steiner tree T ∈ Ti with respect to lengths ye, e ∈ E is computed (line 7). For this
Steiner tree, the variable xi,T is increased by 1 (line 8). To achieve that for each net i, the variables
xi,T , T ∈ Ti, sum up to 1, all variables xi,T are divided by the total number of phases at the end of the
algorithm. Finally, the dual variables ye are increased for all edges used by the Steiner tree T (line 9).
The variables are increased more if the net uses a greater fraction of the capacity of the edge.

Theorem 2 If there exists a solution for the fractional global routing problem with maximum
relative congestion at most 1, the algorithm finds a (1 + ε0)-approximation in

O

(
1

ε2
0λ

∗ ln m

)

phases, if ε := min

{
1, 1

4

[
1 −

(
1

1 + ε0

) 1
3
]}

and M := (
m

1−ε′
) 1

ε′ with ε ′ := ε (1+ ∈) .

Moreover, the variables ye, e∈E, provide at some time during the algorithm a (1 + ε0) −
approximation for the dual linear program.

The total number of phases of the algorithm depends on λ∗, but usually in the application of
global routing λ∗ is not arbitrarily small, for example, we can assume λ∗ ≥ 1

2
.

To prove this theorem, we follow the proof by Garg and Könemann [6], but also use parts from
the proof by Fleischer [7] because we have a modified update rule for ye.

Proof Let t be the total number of phases executed by the algorithm. We will prove that if the
algorithm had stopped one phase before the last one, namely after t − 1 phases, the solution would
have had the desired approximation ratio.

(1) Set ye : = 1
c(e)

for all e ∈ E.
(2) Set xi,T : = 0 for i = 1,...,k; T ∈ Ti.
(3) While

(∑
e∈E c(e)ye < M

)
(4) begin
(5) For i := 1 to k
(6) begin
(7) Find a minimal Steiner tree T ∈ Ti for net i

with respect to length ye, e ∈ E.
(8) Set xi,T : = xi,T + 1.

(9) Set ye : = yee
ε 1
c(e) for all e ∈ T.

(10) end
(11) end

FIGURE 32.3 Approximation scheme for fractional global routing.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 636 9-10-2008 #11

636 Handbook of Algorithms for Physical Design Automation

Let y(p,i)
e be the value of variable ye, after net i has been considered in phase p and ye has been

increased in line 9, y(0,0)
e = 1

c(e)
and let y(p)

e := y(p,k)
e be the value at the end of phase p. Sowe compute the

minimal Steiner tree in phase p and iteration i with y(p,i−1)
e as edge lengths. At the beginning, we have

∑
e∈E

c(e)y(0)
e =

∑
e∈E

c(e)
1

c(e)
= m (32.7)

When the dual variables ye are increased in line 9 after a Steiner tree T has been found, the expression∑
e∈E
c(e)ye increases, and we have

∑
e∈E

c(e)y(p,i)
e =

∑
e/∈T

c(e)y(p,i−1)
e +

∑
e∈T

c(e)y(p,i−1)
e eε

1

c(e)

≤
∑
e/∈T

c(e)y(p,i−1)
e +

∑
e∈T

c(e)y(p,i−1)
e

{
1 + ε

1

c(e)
+ ε2

[
1

c(e)

]2}

For the last inequality, we used ex ≤ 1+ x+ x2 for 0 ≤ x ≤ 1. We can assume c(e) ≥ 1 and because
ε ≤ 1 we have x = ε 1

c(e)
≤ 1. Hence,

∑
e∈E

c(e)y(p,i)
e ≤

∑
e/∈T

c(e)y(p,i−1)
e +

∑
e∈T

c(e)y(p,i−1)
e

[
1 + ε(1 + ε)

1

c(e)

]

=
∑
e∈E

c(e)y(p,i−1)
e + ε(1 + ε)

∑
e∈T

y(p,i−1)
e

Because ye increases only during the algorithm, for the Steiner tree T found in line 7, we have

∑
e∈T

y(p,i−1)
e ≤ min

T∈Ti

∑
e∈T

y(p)
e

which means that at the end of phase p, we get

∑
e∈E

c(e)y(p)
e ≤

∑
e∈E

c(e)y(p−1)
e + ∈′

k∑
i=1

min
T∈Ti

∑
e∈T

y(p)
e (32.8)

where ε ′ := ε(1 + ε). By linear programming duality (Theorem 1), the expression

λ
(p)
lb :=

k∑
i=1

min
T∈Ti

∑
e∈T
y(p)
e∑

e∈E
c(e)y(p)

e

is a lower bound on the maximum relative congestion, that is, λ(p)
lb ≤ λ∗.

With this, inequality (Equation 32.8) can be rewritten as

∑
e∈E

c(e)y(p)
e ≤

∑
e∈E

c(e)y(p−1)
e + ε ′λ(p)

lb

∑
e∈E

c(e)y(p)
e

which can be transformed to

∑
e∈E

c(e)y(p)
e ≤ 1

1 − ε ′λ(p)
lb

∑
e∈E

c(e)y(p−1)
e

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 637 9-10-2008 #12

Optimization Techniques in Routing 637

If we set λlb := maxp=1,...,t λ
(p)
lb , we get with Equation 32.7

∑
e∈E

c(e)y(p)
e ≤ m

(1 − ε ′λlb)p

= m

(1 − ε ′λlb)

(
1 + ε ′λlb

1 − ε ′λlb

)p−1

≤ m

(1 − ε ′)

(
1 + ε ′λlb

1 − ε ′

)p−1

≤ m

(1 − ε ′)
e

ε′λlb(p−1)
1−ε′

(32.9)

For the last inequality, 1 + x ≤ ex for x ≥ 0 is used.
An upper bound on the relative congestion of an edge e can nowbederived: Suppose edge e is used

s times by some tree during the first t− 1 phases, and let the jth increment in the relative congestion
of edge e be aj := 1

c(e)
for the appropriate i. After rescaling the variables xi,T , the relative congestion

of edge e is λ(e) = ∑s
j=1 aj/(t − 1). Because y(0)

e = 1
c(e)

and y(t−1)
e < M

c(e)
(because the condition in

line 4 still holds before the last phase is executed) and because

y(t−1)
e = 1

c(e)

s∏
j=1

eεaj

we get

1

c(e)

s∏
j=1

eεaj ≤ M

c(e)

It follows that

eε
∑s
j=1aj ≤ M

and hence

λ(e) =
∑s

j=1 aj

t − 1
≤ lnM

ε(t − 1)
(32.10)

Because
∑

e∈E c(e)y
(t)
e ≥ M, solving inequality (Equation 32.9) with p = t for λlb gives a lower

bound on the optimum solution value:

λlb ≥ 1 − ε ′

ε ′(t − 1)
ln

[
M

m
(1 − ε ′)

]

from which together with Equation 32.10, we get an upper bound on the approximation ratio ρ:

maxe∈E λ(e)

λlb

≤
lnM

∈(t−1)

1−ε′
ε′(t−1)

ln
[
M
m
(1 − ε ′)

] = ε ′

(1 − ε ′)ε

lnM

ln
[
M
m
(1 − ε ′)

]

IfM is now chosen to beM := (m
1−ε′)

1
ε′ , we get

lnM

ln
[
M
m
(1 − ε ′)

] = 1

1 − ε ′

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 638 9-10-2008 #13

638 Handbook of Algorithms for Physical Design Automation

such that

ρ ≤ ε ′

(1 − ε ′)2ε
= ε(1 + ε)

[1 − ε(1 + ε)]2 ε
= (1 + ε)

[1 − ε(1 + ε)]2

If ε ≤ 1, 1 + ε ≤ 2, we get

ρ ≤ (1 + ε)

(1 − 4ε)2
≤ 1

(1 − 4ε)3

(
because
1 + ε ≤ 1

1−ε
≤ 1

1−4ε

)

If ε is chosen such that 1
(1−4ε)3

≤ 1 + ε0, so we choose

ε = min

{
1, 1

4

[
1 −

(
1

1+ε0

) 1
4

]}

we get ρ ≤ 1 + ε0. After all, we have ε = O(ε0) and also ε ′ = O(ε0).
Because maxe∈E λ(e) ≥ λ∗, we get from Equation 32.10 that

λ∗ ≤ lnM

ε(t − 1)

which means that the maximum number of phases is bounded by

t ≤ 1 + lnM

λ∗ε
= 1 + 1

εε ′λ∗ ln

(
m

1 − ε ′

)

The last expression can be bounded by O(1

ε20λ∗ lnm).

It is important that the actual implementation does not have one single variable xi,T for every
possible Steiner tree, because there are exponentially many. A variable is only needed for a Steiner
tree that was at some point during the algorithm the minimal Steiner tree and found by the algorithm
in line 7 and for which the variable xi,T is greater than 0.

To simplify the presentation of the algorithm and the proof we have omitted one idea that gives
additional runtime improvements. The algorithm in Figure 32.3 computes a Steiner tree for all the nets
in every phase. However, this is not necessary. The length (with respect to ye) of a newly computed
Steiner tree is stored and then in the following phases a new Steiner tree is computed for the net only
if the length of the Steiner tree has increased by more than a certain factor (depending on ε). It can
be shown that still any approximation ratio can be achieved [9]. This idea was used by Fleischer [7]
to reduce the theoretical runtime of the maximum multicommodity flow problem.

Another practical speedup can be achieved with the Newton method as used in Refs. [5,9]: After
p phases, the last Steiner tree computed has a weight of 1

p
in the current solution where all previously

computed Steiner trees have a total weight of p−1
p
. After each Steiner tree is computed, the Newton

method is used to compute a new weight for the new Steiner tree with respect to the other Steiner
trees minimizing an expression similar to ψ = ∑

e∈E e
αλ(e).

Another advantage of this approximation algorithm (compared to some rip-up and reroute algo-
rithms) is that not only the maximum relative congestion is minimized, but also that the congestion of
the edges is distributed and that the algorithmworks toward a solution that is optimal in awell-defined
sense—the vector of the relative congestion of the edges sorted in nonincreasing order is minimal by
lexicographic order [9]. Reducing the congestion beyond the maximum relative congestion on some
edges can speed up the local router and also improves the signal integrity.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 639 9-10-2008 #14

Optimization Techniques in Routing 639

32.6.2 APPROXIMATION SCHEME MINIMIZING THE TOTALWEIGHTED NETLENGTH

The approximation scheme described in Section 32.6.1 can be modified such that the total weighted
netlength is considered andminimized subject to the condition that the maximum relative congestion
of the edges is at most 1. We follow the approach by Garg and Könemann [6] for the minimum-cost
multicommodity flow problem.

In addition to the capacity for each edge e = {u, v}, the L1-length l(e) is given, that is, for an
edge in x- or y-direction as the distance between the midpoints of the tiles corresponding to u and v.
For each net i, a weight gi ∈ R+ is given. We would like to minimize the total weighted netlength,

which is given by the expression
k∑
i=1

gi
∑
T∈Ti

[∑
e∈T
l(e)

]
xi,T .

Let L be a target for the total weighted netlength. Then the constraint

k∑
i=1

gi
∑
T∈Ti

[∑
e∈T

l(e)

]
xi,T ≤ λL (32.11)

is added to the linear program (Equation 32.2) of the fractional global routing problem. This constraint
is very similar to the capacity constraints for the edges, the first constraint in (Equation 32.2),
and the algorithm can be modified to treat this new constraint in the same way as the capacity
constraints. To minimize the total weighted netlength, we want L to be as small as possible such
that λ, the maximum relative congestion, is at most 1. This is achieved by binary search over L.
In practice, the netlength in the final solution is only slightly higher compared to the minimum
netlength if each Steiner tree is as short as possible ignoring capacities. This gives a good estimate
for L.

For the dual of the linear program, an additional dual variable yL for the constraint in
Equation 32.11 is needed. The dual linear program is given by

max
k∑
i=1

zi

subject to

∑
e∈E

c(e)ye + LyL = 1

∑
e∈T

[ye + gil(e)yL] ≥ zi for i = 1, . . . , k; T ∈ Ti

ye ≥ 0 for e ∈ E

yL ≥ 0

Figure 32.4 shows the modified approximation scheme. During the algorithm, minimal Steiner
trees are computed with respect to the length ye + gil(e)yL for net i and edge e ∈ E (line 7).
The length of an edge e is the sum of the congestion cost ye and the wirelength cost gil(e)yL of
the edge.

With the assumption that gi
∑

e∈T l(e) ≤ L for each Steiner tree T found in line 7 (which usually
holds for the global routing problem), the proof in Section 32.6.1 can be extended to show that a
(1+ε0)–approximation for the fractional global routing problemwith the constraint in Equation 32.11

is found by the algorithm in Figure 32.4 in O
(

1

ε20λ∗ lnm
)
phases. If for some Steiner tree T we have

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 640 9-10-2008 #15

640 Handbook of Algorithms for Physical Design Automation

(1) Set ye : = 1
c(e)

for all e ∈ E and yL : = 1
L
.

(2) Set xi,T : = 0 for i = 1,...,k; T ∈ Ti.
(3) While

(∑
e∈E c(e)ye + LyL < M

)
(4) begin
(5) For i := 1 to k
(6) begin
(7) Find a minimal Steiner tree T ∈ Ti for net i

with respect to lengths (ye + gil(e)yL), e ∈ E.
(8) Set xi,T : = xi,T + 1.

(9) Set ye : = yee
ε 1
c(e) for all e ∈ T.

Set YL : = yLe
ε
gi

∑
e∈T l(e)
L

(10) end
(11) end

FIGURE 32.4 Approximation scheme for fractional global routing optimizing the total weighted netlength.

gi
∑

e∈T l(e) > L, variable xi,T in line 9 is increased only by L/[gi∑e∈T l(e)], and another Steiner
tree has to be found for the same net until the total increment of

∑
T∈Ti xi,T is 1 (for details see

Ref. [6]).

32.7 RANDOMIZED ROUNDING

So far we have focused on solving the linear relaxation of the global routing problem. To come from
a fractional solution of the global routing problem to an integer solution it is necessary to choose one
Steiner tree for each net. This is done by randomized rounding, a technique developed by Raghavan
and Thompson [1,2], which we present in this section.

The technique of randomized rounding can be summarized as follows:

RULE 32.1 Independently for each net i choose randomly one Steiner tree out of the set Ti. The
probability to choose Steiner tree T is xi,T .

The expected value for the relative congestion of an edge or of the maximum relative congestion
after randomized rounding is equal to the relative congestion of the fractional solution.

Randomized roundingmay increase the relative congestion of some edges. However, it is possible
to prove that there is a positive probability that the relative congestion does not increase bymore than
by a certain factor, and this factor decreases with increasing capacity of the edges. We will present
these results with the proofs.

In the following, we denote the probability of an event by P[·] and the expectation of a random
variable X by E[X]. The following lemma was proved in this version by Raghavan and Spencer
[23], and gives a variation of Chernoff’s bound [24]. The lemma bounds the tail of the distribution
of the sum of independent random variable in [0,1]. To simplify the notation, we use b(ε) :=
(1 + ε) ln(1 + ε) − ε. For small values of ε, b(ε) is approximately 1

2
ε2.

Lemma 1 Let X1, . . . ,Xt be independent random variables in [0, 1]. Let X := ∑t
p=1 Xp,

µ >
∑t

p=1 E[Xp] and ε > 0. Then

P[X ≥ (1 + ε)µ] ≤ 1

eb(ε)µ

Proof We first consider the case µ = ∑t
p=1 E[Xp]. Using (1) the Markov inequality, (2) the

independence of the random variables X1, . . . ,Xt, (3) (1 + ε)x ≤ 1 + εx for 0 ≤ x ≤ 1, and (4)
1 + x ≤ ex, we compute

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 641 9-10-2008 #16

Optimization Techniques in Routing 641

P[X ≥ (1 + ε)µ] = P[(1 + ε)X ≥ (1 + ε)(1+ε)µ]
= P

[
(1 + ε)

∑t
p=1 Xp ≥ (1 + ε)(1+ε)µ

]

= P

[
�t

p=1(1 + ε)Xp

(1 + ε)(1+ε)µ
≥ 1

]
(1)≤E

[
�t

p=1(1 + ε)Xp

(1 + ε)(1+ε)µ

]
(2)= �t

p=1(1 + ε)E[Xp]

(1 + ε)(1+ε)µ

(3)≤ �t
p=1(1 + εE[Xp])
(1 + ε)(1+ε)µ

(4)≤ �t
p=1 e

εE[Xp]

(1 + ε)(1+ε)µ

= eε
∑t
p=1 E[Xp]

(1 + ε)(1+ε)µ
= eεµ

(1 + ε)(1+ε)µ
= 1

eb(ε)µ

The lemma also holds if µ > E[X]. We add additional independent random variables in [0,1] to
X until µ = E[X]. This only increases P[X ≥ (1 + ε)µ].

For an edge e ∈ E, we denote the relative congestion after randomized rounding with respect to
Rule 32.1 by λ̂(e). The probability that the relative congestion of one edge increases by at least a
factor of (1 + ε) can be bounded as follows:

Lemma 2 P[λ̂(e) ≥ (1 + ε)λ] ≤ 1
eb(ε)c(e)λ

Proof We apply Lemma 1: for i = 1, . . . , k, let the random variable Xi be 1 if for net i a Steiner
tree is chosen that uses edge e, and zero otherwise. The variablesX1, . . . ,Xk are independent random
variables in [0,1] and with X := ∑k

i=1 Xp, we have E[X] = c(e)λ. Then, we have P[λ̂(e) ≥
(1 + ε)λ] = P[X ≥ (1 + ε)c(e)λ] ≤ 1

eb(ε)c(e)λ .

Finally, the probability of the overall failure, that is, the probability that any one edge has a relative
congestion of at least (1+ ε)λ can now be bounded. Let λ̂ := maxe∈E λ̂(e) be the maximum relative
congestion after randomized rounding and C := mine∈E c(e).

Theorem 3

P[λ̂ ≥ (1 + ε)λ] ≤
∑
e∈E

1

eb(ε)c(e)λ
≤ m

eb(ε)Cλ

If ε is chosen so large that the expression m
eb(ε)Cλ is smaller than 1, then the probability of success,

λ̂ < (1 + ε)λ, is positive. Repeating the randomized rounding experiment increases the probability
that one of the experiments is successful.

It is possible to derandomize this random experiment. Assuming that for some nets a Steiner
tree has already been chosen and that for each remaining net a Steiner tree is chosen according to
Rule 32.1, the probability of failure is computed. This is a pessimistic estimator. It is then possible to
choose one Steiner tree for the next net such that the probability of failure does not increase. Because
the total probability was smaller than 1 at the beginning, in the end this probability is also smaller
than 1, and because the Steiner trees for all nets are chosen, the final solution has to be a success.

32.8 EXTENSIONS

The approach of solving a fractional global routing problem and then applying randomized round-
ing has been used successfully in practice and has been extended to consider additional tasks and
objectives.

Albrecht et al. [25] consider the problem of finding global routes that need to buffered. In
addition, the sizes of the buffers and the widths of the wires are optimized. Some areas on the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 642 9-10-2008 #17

642 Handbook of Algorithms for Physical Design Automation

chip may be partially or completely blocked and buffers cannot be placed in these areas. As the
capacity constraints for the edges in the global routing graph ensure that not too many wires cross
the boundaries between two adjacent global routing tiles, similar constraints ensure that not toomany
buffers are placed in one global routing tile.

Vygen [26] considers the coupling capacitance and minimizes the total power consumption
while ensuring the timing constraints for individual nets and certain paths. A Steiner tree for a net is
characterized not only by the edges of the global routing graph, but also each edge of the Steiner tree
has a continuous parameter specifying the spacing to each side of the final route. It is assumed that
the coupling capacitance decreases linearly with the spacing. The timing constraints are ensured by
bounding the weighted capacitance for subsets of the nets, a constraint similar to the constraint that
bounds the total weighted wirelength. While more space decreases the coupling capacitance also
more routing resources are used. The problem can be formulated as a fractional packing problem of
infinitelymany Steiner trees, infinitelymany because of the continuous spacing parameters. Because
the capacitance depends linearly on the spacing, every edge of the Steiner tree that minimizes the cost
function with respect to the dual variables either has the maximum or minimum spacing. The task
of the subroutine is still to find a Steiner minimal tree in the grid graph with respect to a nonuniform
length function.

Müller [27] describes a parallel multithreaded implementation of the approximation scheme. He
shows that it is possible to update the dual variables at the end of each phase for all nets instead of
updating them immediately after a Steiner tree is found. The set of nets is split into subsets and each
thread computes the minimal Steiner trees for one subset in the global routing graph.

32.9 CONCLUSION

This chapter is about the global routing problem, and specifically about algorithms solving the linear
programming relaxation. The complexity of the linear program is enormous and hence it is not
possible to solve the linear program optimally. The linear programming relaxation for global routing
is a special case of a fractional packing problem and is similar to the multicommodity flow problem.
We showed that the approximation algorithm for the multicommodity flow problem can be applied
to the fractional global routing problem. A final integer solution is derived by randomized rounding.
This approach has been used successfully in practice and has been extended to consider additional
constraints and objectives.

The approach of the linear relaxation and randomized rounding is general and it may be possible
to apply it to other combinatorial optimization problems in physical design. For global routing, the
approach works well because the capacities of the edges are relatively large and hence randomized
rounding does not disturb the solution much.

REFERENCES
1. P. Raghavan and C. D. Thompson, Randomized rounding: A technique for provably good algorithms and

algorithmic proofs, Combinatorica, 7(4): 365–374, 1987.
2. P. Raghavan and C. D. Thompson, Multiterminal global routing: A deterministic approximation, Algorith-
mica, 6: 73–82, 1991.

3. F. Shahrokhi and D. W. Matula, The maximum concurrent flow problem, Journal of the Association for
Computing Machinery, 37: 24–31, 1990.

4. S. Plotkin, D. Shmoys, and E. Tardos, Fast approximation algorithms for fractional packing and covering
problems, Mathematics of Operations Research, 20: 257–301, 1995.

5. A. V. Goldberg, J. D. Oldham, S. Plotkin, and C. Stein, An implementation of a combinatorial approx-
imation algorithm for minimum-cost multicommodity flow, in Integer Programming and Combinatorial
Optimization (6th International IPCO Conference), Houston, TX, pp. 338–352, 1998.

6. N. Garg and J. Könemann, Faster and simpler algorithms for multicommodity flow and other fractional
packing problems, in Proceedings of the 39th Annual Symposium on Foundations of Computer Science,
Palo Alto, CA, pp. 300–309, 1998.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 643 9-10-2008 #18

Optimization Techniques in Routing 643

7. L. K. Fleischer, Approximating fractionalmulticommodity flow independent of the number of commodities,
SIAM Journal on Discrete Mathematics, 13(4): 505–520, 2000. (FOCS 1999).

8. G. Karakostas, Faster approximation schemes for fractional multicommodity flow problems, inProceedings
of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, pp. 166–173, 2002.

9. C. Albrecht, Global routing by new approximation algorithms for multicommodity flow, IEEETransactions
on Computer-Aided Design of Integrated Circuits and Systems, 20: 622–632, May 2001. (ISPD 2000).

10. M. R. Kramer and J. van Leeuwen, The complexity of wire routing and finding minimum area layouts for
arbitrary VLSI circuits, in Advances in Computing Research, Vol. 2: VLSI Theory, F. P. Preparata (Eds),
JAI Press, Greenwhich, CT, pp. 192–146, 1984.

11. J. Vygen, Disjoint paths, Technical Report 94816, Research Institute for Discrete Mathematics, University
of Bonn, Bonn, Germany, 1994.

12. V. Chvátal, Linear Programming. New York: Freeman, 1983.
13. A. Schrijver, Theory of Linear and Integer Programming. Chichester, United Kingdom: Wiley, 1986.
14. J. Werber, Das Multicommodity-Flow-Problem und seine Anwendung im Global Routing. Diplomarbeit,

Universität Bonn, Bonn, Germany, 2000.
15. T. C. Hu and M. T. Shing, A decomposition algorithm for circuit routing, in VLSI Circuit Layout: Theory

and Design, T. C. Hu and E. S. Kuh (Eds), IEEE Press, pp. 144–152, 1985.
16. G. B. Dantzig, Maximization of a linear function of variables subject to linear inequalities, in Activity

Analysis of Production and Allocation, Tj. C. Koopmans (Eds), Wiley, NY, pp. 399–347, 1951.
17. H. T. Jongen, K. Meer, and E. Triesch, Optimization Theory. Norwell, MA: Kluwer Academic Publishers,

2004.
18. A. Vannelli, An adaptation of the interior point method for solving the global routing problem, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 10: pp. 193–203, February
1991. (CICCC 1989).

19. M. Hanan, On Steiner’s problem with rectilinear distance, Soviet Mathematics Doklady, 14(2): 255–265,
1966.

20. N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica, 4: 373–395,
1984.

21. L. G. Khachiyan, A polynomial-time algorithm in linear programming, Soviet Mathematics Doklady, 20:
191–194, 1979.

22. R. C. Carden IV, J. Li, and C. -K. Cheng, A global router with a theoretical bound on the optimum solution,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15: 208–216, February
1996.

23. P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating packing integer
programs, Journal of Computer and System Sciences, 37: 130–143, 1988.

24. H. Chernoff, A measure of asymptotic efficiency for tests based on the sum of observations, Annals of
Mathematical Statistics, 23: 493–509, 1952.

25. C. Albrecht, A.Kahng, I.Măndoiu, and A. Zelikovsky,Multicommodity flow algorithms for buffered global
routing, in Handbook of Approximation Algorithms and Metaheuristics, T. F. Gonzales (Ed.), Boca Raton,
FL: Chapman & Hall/CRC, pp. 80.1–80.18, 2007. (ASPDAC 2002).

26. J. Vygen, Near-optimum global routing with coupling, delay bounds, and power consumption, in Integer
Programming and Combinatorial Optimization (10th International IPCO Conference), LNCS 3064,
G. Nemhauser and D. Bienstock (Eds.). Berlin, Germany: Springer, pp. 308–324, 2004.

27. D.Müller, Optimizing yield in global routing, inDigest of Technical Papers of the IEEE/ACM International
Conference on Computer-Aided Design. San Jose, CA, November 2006.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C032 Finals Page 644 9-10-2008 #19

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 645 29-9-2008 #2

33 Global Interconnect Planning

Cheng-Kok Koh, Evangeline F.Y. Young,
and Yao-Wen Chang

CONTENTS

33.1 Buffer Planning Basics. 646
33.1.1 Feasible Regions . 648
33.1.2 Independent Feasible Regions . 649
33.1.3 Two-Dimensional Feasible Region . 649

33.2 Buffer Blocks and Sites . 649
33.2.1 Buffer Block Planning . 650
33.2.2 Buffer Site Planning . 652

33.3 Interconnect Planning and Buffer Planning .. 653
33.3.1 Routability-Driven Buffer Planning .. 653

33.3.1.1 Routability-Driven Buffer Planning with Dead
Space Redistribution . 654

33.3.1.2 Interconnect Planning with Fixed Interval Buffer
Insertion Constraint . 655

33.3.1.3 Methodology for Interconnect Planning in Buffer Site 656
33.3.1.4 Other Routability-Driven Buffer Planning Approaches 656

33.3.2 Pin Assignment with Buffer Planning.. 657
33.3.3 Noise-Aware Buffer Planning . 658

33.3.3.1 Independent Feasible Regions with Transition Time Constraints 658
33.3.3.2 Common Independent Feasible Region . 660
33.3.3.3 Buffer Block Planning Considering Transition Time and Delay. 660

33.3.4 Buffer Planning with Noise Constraints . 661
33.4 Flip-Flop and Buffer Planning (Wire Retiming) . 663

33.4.1 Minimizing Latency. 664
33.4.1.1 Two-Pin Net Optimization Using Analytical Formulas 664
33.4.1.2 Multiple-Terminal Net Optimization . 666

33.4.2 Latency Constrained Optimization .. 666
33.4.3 Wire Retiming . 667
33.4.4 Area Constrained Wire Retiming . 668

33.5 Concluding Remarks . 669
References . 670

With the growing dominance of global interconnects on circuit performance, it is desirable to optimize
interconnects as early as possible. Recall fromChapter 26 that buffer insertion is generally considered
the most effective and popular technique to reduce interconnect delay, especially for global signals.
A buffer is composed of two inverters while a repeater is referred to as a buffer or an inverter.
To simplify the discussions, we shall use buffer and repeater interchangeably throughout this chapter.

645

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 646 29-9-2008 #3

646 Handbook of Algorithms for Physical Design Automation

As hundreds of thousands of buffers may be inserted for modern high-performance VLSI designs,
it is imperative to plan for the buffer positions as early as possible to ensure timing closure and
design convergence. In this chapter, we shall first present the enabling concept of buffer planning,
namely, the feasible region in which a buffer can be inserted such that the timing constraint is
met. Following a description of two fundamental approaches to buffer planning, taking into account
only timing constraints, we address also other important design issues such as noise constraints and
routability in buffer planning. When buffer insertion fails to meet the timing constraints, pipelining
of global interconnectswith flip-flops becomes necessary.We devote a section on flip-flop and buffer
planning to deal with the challenges that arise from the additional latency introduced by interconnect
pipelining.

33.1 BUFFER PLANNING BASICS

Some VLSI designs may not allow buffers to be inserted inside a circuit block as they consume
silicon resource and require connections to the power/ground network. Consequently, buffers are
placed in channels and dead spaces of a floorplan, and they are often clustered to form buffer blocks
between existing circuit blocks of the floorplan, which inevitably increases the chip area [1]. It is
thus desirable to carefully plan for the buffer blocks during/after floorplanning to minimize the area
overhead and facilitate routing. This is known as buffer block planning.

However, the existence of buffer blocks imposes more design constraints. Because buffers con-
nect global nets, the routing regionswhere buffer blocks are locatedmight be congested. Furthermore,
buffers might be placed in poor locations because buffers are clustered into blocks and thus the best
location for a buffer is forbidden. A remedy to this deficiency is to distribute buffers more uniformly
in a chip, so as to naturally spread out global nets. This approach looks promising in handling the
aforementioned problems with wire congestion and buffer blockages. In contrast to the buffer block
planning methodology, Alpert et al. [2] proposed the buffer site methodology. The methodology
allocates a buffering resource within a block by inserting a buffer site that can accommodate buffers
(or other logic gates if the buffer site is not used for buffering). For buffer site planning, we shall plan
for the buffers during/after floorplanning such that the given buffer sites can accommodate buffers
and the routing timing and congestion constraints are satisfied.

To determine the optimal location for buffer insertion, we shall first consider the feasible region
(FR) for a buffer, which is referred to as the region where the buffer can be placed to satisfy the
timing constraint. Figure 33.1 shows respective FRs for inserting (a) one buffer and (b) multiple
buffers into a net between a source and a sink, where the FRs are shaded.

The concepts of the feasible region come in two forms. Cong, Kong, and Pan first defined in
Ref. [1] the feasible region for buffer insertion to be the region where a buffer could be placed to
satisfy a target timing constraint, assuming that all the remaining bufferswere placed in their optimal
positions. In contrast, Sarkar and Koh [3] introduced the idea of independent feasible region (IFR)
for buffer insertion, which was defined as the region where a buffer could be placed such that the
timing constraint of the net was satisfied, assuming that the other buffers were also placed within
their respective independent feasible regions.

Before presenting the analytical formulas for computing the feasible regions, we shall first
introduce the notation and delay model that will be used throughout this chapter. Each driver/buffer
is modeled as a switch-level RC circuit [4] and each wire is modeled as a π-type circuit, as shown
in Figure 33.2. We use the Elmore delay model [5] covered in Chapter 3 for delay computation. The
notation for the physical parameters of wire and buffer is listed in Table 33.1.

Given a wire segment of length l with driver output resistance R and sink capacitance C, the
Elmore delay of this segment is given by

D(R,C, l) =
(rc
2

)
l2 + (Rc+ rC)l + RC.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 647 29-9-2008 #4

Global Interconnect Planning 647

(a)

(b)

Feasible region

x1,min

x1,max

x1

Rd

Feasible regions for the corresponding buffers

x1
x2

xn

Rd

FIGURE 33.1 Feasible regions for buffer insertion. (a) Single-buffer insertion and (b) multiple-buffer
insertion. (From Cong, J., Kong, T., and Pan, Z., IEEE Trans. VLSI Sys., 9, 929, 2001 (ICCAD 1999).)

(b)

rl

cl/2 cl/2

Length l

Wire

(a)

Buffer

Rb

Cb Tb/Rb

FIGURE 33.2 Buffer and wire model. (a) Switch-level buffer model and (b) wire model.

Using the preceding expression, the Elmore delay of a single-source, single-sink net (i.e., two-pin
net) N of length L with n buffers can be computed as

DN(x1, x2, . . . xn, L) = D(Rd,Cb, x1) + D(Rb,Cs, L − xn) +
n−1∑
i=1

D(Rb,Cb, xi+1 − xi) + nTb,

where
Rd is the driver resistance
Cs is the sink capacitance
xi is the location of the ith buffer

For convenience, we reexpress the optimal locations of the n buffers for the delay minimization of a
net [6], presented in Chapter 26, as follows:

x∗
i = (i − 1)y∗

L + x∗
L i ∈ {1, 2, . . .n},

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 648 29-9-2008 #5

648 Handbook of Algorithms for Physical Design Automation

TABLE 33.1
Parameters of Wire and Buffer
Parameter Description

r Wire resistance per unit length
c Wire capacitance per unit length
Tb Intrinsic buffer delay
Cb Buffer input capacitance
Rb Buffer output resistance

where

x∗
L = 1

n+ 1

(
L + n(Rb − Rd)

r
+ (Cs − Cb)

c

)
and y∗

L = 1

n + 1

(
L − (Rb − Rd)

r
+ (Cs − Cb)

c

)
.

We denote the optimal delay for the net N, of length L, with n buffers by

DN
opt(n, L) = DN(x∗

1 , x
∗
2 , , x

∗
n , L).

In the following subsections, we first discuss the computation of the feasible region and the
independent feasible region of a buffer on a one-dimensional line segment, and then extend the idea
to a two-dimensional chip plane.

33.1.1 FEASIBLE REGIONS

For n buffers inserted in a two-pin net N as shown in Figure 33.1b, their feasible regions can be
computed as follows [1].

Theorem 1 For a two-pin net N of length L and with n buffers inserted and a given timing bound
DN

tgt, the feasible region for the ith buffer (i ≤ n) is xi ∈ [xi,min, xi,max] with

xi,min = max

{
0,
K2 −√

K2
2 − 4K1K3

2K1

}
,

and

xi,max = min

{
L,
K2 −√

K2
2 + 4K1K3

2K1

}
,

where
K1 = (n+ 1)rc

2i(n − i + 1) ,

K2 = (Rb − Rd)c
i + (Cs − Cb)r + rcL

n − i + 1 , and

K3 = nTb−DN
tgt +

(
Rd + (i − 1)Rb + (n − i)rL

n − i + 1

)
Cb +Rb((n−1)Cb+Cs +cL)+ rcL2

2(n− i + 1)

+ rLCs − (i− 1)c(Rb − Rd)
2

2ir − (n− i)r(Cb − Cs)
2

2(n− i + 1)c .

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 649 29-9-2008 #6

Global Interconnect Planning 649

We denote the width of the feasible region for a given buffer by WFR. Cong, Kong, and Pan
gave an analytical expression forWFR in Ref. [1]. Sarkar and Koh presented an equivalent analytical
expression in Ref. [3], as given below.

Theorem 2 For DN
tgt ≥ DN

opt(n, L), the width of the feasible region for the ith buffer (i ≤ n) of the
net N is

WFR = 2 ·
√
2(DN

tgt − DN
opt(n, L))(n− i + 1)(i)

rc(n+ 1)
.

33.1.2 INDEPENDENT FEASIBLE REGIONS

In contrast to the definition of feasible region, the IFR of a buffer is the region where it can be placed
to satisfy the timing constraints of the net, assuming that the other buffers are placed within their
respective IFRs [3]. To provide every buffer in the net with an equal degree of freedom to move
within its IFR, the IFRs are chosen to have the same width, denoted byWIFR. Hence, the IFR for the
ith buffer of a net N with a corresponding target delay DN

tgt is given by

IFRi = (x∗
i −WIFR/2, x∗

i +WIFR/2) ∩ (0, L),

such that ∀ (x1, x2, . . . , xi, . . . , xn) ∈ IFR1 × IFR2 × . . . × IFRn and DN(x1, x2, . . . , xn, L) ≤ DN
tgt. The

following theorem gives an analytical expression forWIFR.

Theorem 3 For DN
tgt ≥ DN

opt(n, L), the width of the independent feasible region for the ith buffer
(i ≤ n) of the net N is

WIFR = 2

√
DN

tgt − DN
opt(n, L)

rc(2n− 1)
.

33.1.3 TWO-DIMENSIONAL FEASIBLE REGION

Implicit in the preceding discussions are the assumptions that a routing from source to sink exists,
which is not true for buffer planning during floorplanning, and that buffer insertion occurs only along
an one-dimensional line. For buffer planning, we typically assume that the two terminals of a net are
connected with a shortest path within the bounding box of the net. The union of the one-dimensional
FRs (or one-dimensional IFRs) of a buffer on all monotonic Manhattan routes between source and
sink forms the two-dimensional FR (or two-dimensional IFR) of that buffer (see Figure 33.3).

The feasible region of a buffer may be reduced by circuit blocks. Moreover, 2D IFRs of buffers
of the same net are not entirely independent of each other. As the widths and locations of a 2D IFR
are determined under the assumption of a monotonic Manhattan route between the source and the
sink, an assignment of buffers to locations within their respective 2D IFRs is legal only if the buffers
lie along a monotone source-to-sink path. Figure 33.3 shows a nonmonotonic buffer assignment,
which may not meet the timing constraint, even though the buffers are all within their respective 2D
IFRs. Therefore, when we have committed a buffer to a location in its 2D IFR, it may be necessary
to update the 2D IFRs of all other buffers in the net.

33.2 BUFFER BLOCKS AND SITES

There are two approaches to buffer planning: buffer block planning and buffer site planning. For
buffer block planning, top-level macroblocks with only buffers, or buffer blocks, are inserted into
the floorplan [1,3,7–9]. The underlying idea to this methodology is that when one moves a buffer
considerably from its optimal location, only a small delay penalty is incurred. As a result, buffers can

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 650 29-9-2008 #7

650 Handbook of Algorithms for Physical Design Automation

Source

Sink

Feasible regions of three buffers, two of which have their areas reduced by
circuit blocks

Assignment of buffers to these locations results in a nonmonotonic path

Circuit block A

Circuit block B

FIGURE 33.3 2D feasible regions and their implications on buffer assignment.

be relocated within their respective feasible regions or independent feasible regions such that they
can be clustered together to form buffer blocks. The buffer site methodology puts the onus on block
designers to allocate a buffering resource within a block by inserting a buffer site. The allocation
of buffer sites within blocks may not be uniform; a low-performance block may accommodate more
buffer sites than a high-performance one, and some blocks, such as a cache, may not have any buffer
sites. A preallocated buffer site may remain unassigned to a net after planning. In that case, unused
buffer sites can be used to accommodate other useful circuit elements, such as decoupling capacitors.

To facilitate buffer planning, a chip is typically divided into tiles first. Figure 33.4 shows a tiled
chip layout with channel regions, hard blocks, and soft blocks. The capacity of each tile for buffer
insertion depends on whether the tile overlaps with channel regions, dead areas, or hard blocks.
Channel regions and dead areas of the floorplan have high capacity for buffer insertion. In contrast,
hard blocks have very low capacity for buffer insertion unless some buffer sites have been inserted
intentionally [2]. As the exact layout of each soft block is yet to be determined, it is typically
assumed that as long as the total area of functional units and buffers in a soft block is not larger than
its preallocated space, the layout of this block can be completed in the placement stage. For ease
of problem formulation, all the tiles in a soft block may be merged together, as in Figure 33.4. The
buffer capacity of this merged block tile is the total area less the area consumed by its functional
units. It is the responsibility of the placement tool to ensure that buffers are placed at appropriate
locations in the physical realization of a soft block.

Let VT denote the set of tiles obtained as described in the preceding paragraph.We can construct
a tile graphGT(VT, ET), where every two neighboring tiles u and v in VT are connected by an edge eu,v
in ET. For a tile v, let B(v) be the number of buffer sites within v and b(v) be the number of buffers
assigned to v. Let W(eu,v) be the wire capacity of the edge eu,v, and w(eu,v) denote the actual wire
usage of eu,v. It is clear that a buffer planning solution is feasible only if b(v) ≤ B(v) for all v ∈ VT

and w(e) ≤ W(e) for all e ∈ ET.

33.2.1 BUFFER BLOCK PLANNING

The buffer block planning problem can be informally stated as follows: Given a set of circuit blocks
and a set of connectionswith feasible regions for buffer insertion to satisfy the design constraints (e.g.,
timing, noise), plan the locations of buffer blocks within the available free space (e.g., dead spaces

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 651 29-9-2008 #8

Global Interconnect Planning 651

Hard block Soft block
Dead space/

channel region

FIGURE 33.4 Tile graph for buffer planning.

and channels) so as to route a maximum number of connections. Buffer blocks can be planned after
floorplanning [1,3,7,9] or during floorplanning [10–13]. Postfloorplanning buffer block planning is
more efficient, but is often limited by the quality of a given floorplan because the location and size of
the space for buffer insertion are fixed. Furthermore, as the dead spaces are often treated as undesired
cost during floorplanning, they are usually avoided or minimized. As a result, the size and location
of dead spaces may not be suitable for postfloorplanning buffer insertion. Therefore, there are also
efforts that integrate buffer block planning into floorplanning to fully utilize useful dead spaces for
performance optimization. This approach typically enjoys higher design flexibility, but inevitably
incurs higher time complexity.

Cong, Kong, and Pan first considered postfloorplanning buffer block planning in Ref. [1]; they
derived feasible region formulas to determine where to insert buffers to meet timing constraints and
proposed a greedy algorithm to plan buffer blocks in a slicing floorplan. Sarkar and Koh also con-
sidered routability and addressed the concept of independent feasible regions in Ref. [3]. Moreover,
both approaches in Refs. [1,3] expand channels to provide more buffers if necessary. On the basis
of a network-flow formulation, Tang and Wong in Ref. [9] optimally planned as many buffers into
buffer blocks as possible for all nets, each with at most one buffer. Given an existing buffer block
plan, Dragan et al. in Ref. [7] performed buffering of global nets. Nets are routed using available
buffer blocks such that required upper and lower bounds on buffer intervals and the wirelength upper
bounds per connection are satisfied.

We describe the generic approach for postfloorplanning buffer block planning as presented in
Ref. [1]. First, we construct a directed horizontal constraint graph and a vertical constraint graph
for a given floorplan, denoted by GH and GV, respectively. Each vertex v in GH models a vertical
routing channel, and an edge e = (v1, v2) denotes a circuit block whose respective left and right
boundaries are adjacent to the routing channels v1 and v2. The weight of a vertex v,w(v), denotes
the corresponding channel width while the weight of an edge e,w(e), represents the corresponding

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 652 29-9-2008 #9

652 Handbook of Algorithms for Physical Design Automation

block width. The graph GV is constructed similarly. The respective width Wc and height Hc of the
chip can be computed by applying a longest-path algorithm on GH and GV.

Then, the algorithm divides the dead spaces and routing channels into tiles to facilitate buffer
block planning. For each tile, its area slack is computed from the longest paths in GH and GV. For
dead spaces and routing channels that are not on the critical paths of the constraint graph GH(GV),
they will each have a positive area slack in width (height). If there are buffers required to be inserted
to meet timing constraints, the algorithm picks a tile that can accommodate the most number of
these buffers and then inserts appropriate buffers into this tile. If there are no tiles with positive area
slack, we have to shift some circuit blocks for the buffer insertion, thereby increasing the overall
chip area. This block shifting might make rooms for other tiles, resulting in new positive slacks
for these tiles. We pick the dead space or the routing channel with the maximum buffer-insertion
demand, and then select one tile in it. For the selected tile, we insert appropriate buffers into the
tile. If there is not sufficient space in the tile for buffer insertion, the associated routing channel
will be expanded to make room for the buffers. After inserting buffers into the selected tile, the
information of the constraint graphs, feasible regions, and the chip dimension is updated and the
buffer insertion/clustering process is repeated until all buffers are placed.

More recently, there have been attempts to perform simultaneous buffer block planning and
floorplanning to fully utilize useful dead spaces for performance optimization [10–13]. Jiang et al.
provided a generic paradigm along this direction in Ref. [11]. The algorithm presented in Ref. [11]
simultaneously considersfloorplanning and buffer blockplanning for a general floorplan. Themethod
adopts simulated annealing to refine the floorplan so that buffers can be inserted more effectively. In
each iteration, it constructs a routing tree for each net and calculate the longest path from the source
to the sink in each routing tree. On the basis of the aforementioned formulas presented in preceding
sections, it computes the number of buffers needed for the longest path, the optimal distance from
the source terminal to each buffer, and the width of independent feasible regions. After allocating
buffers for all nets, it inserts buffer blocks as soft circuit blocks into the constraint graphs. These
buffer blocks may occupy dead spaces or be inserted into routing channels. After all buffers for all
nets are allocated, the area of each buffer block is determined as the bounding area of inserted buffers.
It then reshapes the floorplan by Lagrangian relaxation. Unlike the work for buffer block planning
after floorplanning that generates buffer blocks before buffer assignment, this work generates buffer
blocks after buffer assignment. Consequently, the area of buffer blocks can be properly controlled,
especially for the buffer blocks in routing channels.

33.2.2 BUFFER SITE PLANNING

In general, buffer block planning algorithms assume that routing has not been performed. In contrast,
the first two steps of the buffer site planning algorithm proposed in Ref. [2] are Steiner tree construc-
tion and wire congestion reduction. The purpose is to establish the global routing so that accurate
estimation of delay of global interconnects in subsequent steps can be obtained. Any timing-driven
and congestion-aware global router can be used for these two steps.

The third step, buffer assignment, is the heart of the planning algorithm. Buffer assignment is
performed net-by-net in decreasing order of net delay. For a general multiple-terminal net Ni, let Li
be the maximum number of tiles that can be driven by either the source or an inserted buffer. If net
Ni crosses tile v, the probability of netNi using a buffer site in v is 1/Li. With p(v) denoting the sum
of these probabilities for tile v over all unprocessed nets, B(v) the number of buffer sites within v,
and b(v) the number of buffers assigned to v, the cost of using a buffer site in v is defined as

q(v) =
{

b(v)+p(v)+1
B(v)−b(v) if b(v)

B(v)
< 1,

∞ otherwise.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 653 29-9-2008 #10

Global Interconnect Planning 653

A minimum cost buffering solution can be computed using a van Ginneken-style dynamic pro-
gramming algorithm [14] as follows. First, we describe the computation of a minimumcost buffering
solution for a two-pin net with source s and sink t. Let γ = (c, l) denote a solution at v, where c is
the cost of the solution and and l is the number of un-buffered tiles seen at v. Let u be the parent tile
of v in the route. If l < Li, there are two solutions at u that can be derived from γ : an un-buffered
solution (c, l+ 1) and a buffered solution (c+ q(u), 0). As in any van Ginneken-style dynamic pro-
gramming approach, pruning of inferior solutions is crucial for achieving runtime efficiency. Given
two solutions γ = (c, l) and γ ′ = (c′, l′), we say that γ is inferior and can be pruned if c > c′ and
l ≥ l′. Consequently, there are no more than Li noninferior solutions at each tile along the route. The
algorithm in Ref. [2] can generate the noninferior solutions at each tile in O(Li) time and compute
the optimal solution of the net in O(nLi) time, where n is the number of tiles the net crosses.

For amultiple-pin net, it is necessary to consider the casewhere a parent tileu drivesmultiple child
tiles. For simplicity, we assume that u has only two child tiles v and w. Given the sets of noninferior
solutions at v andw, denoted respectively asCv andCw, we compute two sets of noninferior solutions
at u, denoted as Cuv and Cuw, derived respectively from Cv and Cw, using the procedure outlined in
the preceding paragraph. Let γ = (c, l) and γ′ = (c′, l′) be solutions in Cuv and Cuw, respectively. If
l+ l′ ≤ Li, there are two solutions in Cu that can be constructed from γ and γ′ : (1)(c+ c′ + q(u), 0)
is a solution if a buffer is inserted at u to drive γ and γ′, and (2)(c + c′, l + l′) is an un-buffered
solution. If we assume as in Ref. [2] that a net can only be assigned one buffer in a tile, the solution
in (1) is feasible only if both γ and γ′ have no buffers at u, and the solution in (2) is feasible only
if there is at most one buffer at u in γ and γ′. The time complexity of the algorithm is O(nL2

i) for a
multiple-pin net that spans n tiles.

A final postprocessing step,which involves ripping up and rerouting nets, is then applied to reduce
buffer and wire congestion, as well as the number of nets that fail to meet their length constraints.

33.3 INTERCONNECT PLANNING AND BUFFER PLANNING

Routability is a critical issue inmodernVLSIdesign flowdue to the dominance of systemperformance
by today’s interconnects. Interconnect planning must be done early to ensure an achievable routing
solution. The locations of buffer blocks/sites are places where signals get in and out and it is thus
essential to consider routability and buffer planning simultaneously. Early planning of buffer and
wiring resources is a critical component of high-performance VLSI design methodologies. Such
planning is required to evaluate the quality of RT-level partitioning, floorplanning, placement and
pin assignment, etc. In this section, the topic of performing interconnect planningwith buffer planning
is explored.

33.3.1 ROUTABILITY-DRIVEN BUFFER PLANNING

In Ref. [3], one of the earliest works that consider congestion in the buffer block planning step, a
two-level tile structure (Figure 33.5) is used. The coarser tile structure is used for estimating routing
congestion, and the finer one is used for defining the candidate buffer block (CBB) locations. For
each buffer b to be inserted, let Sb denote the set of CBBs in which b can be placed in order to
satisfy the timing constraint. Sb contains all the finer tiles that overlap with the FR or IFR of b. The
objective of buffer block planning is to assign each buffer to one CBB such that the congestion cost
is minimized. A congestion-driven iterative deletion algorithm is used to obtain such an assignment.

In each iteration of the congestion-driven iterative deletion algorithm, the candidate set of each
buffer is first generated. A bipartite graph Ga = (Va,Ea) that represents the set of all possible buffer
assignments is then constructed. The edge set in Ga is defined as Ea = {(b, c)|b ∈ B, c ∈ Sb}
where B is the set of buffers needed to be inserted. The iterative deletion algorithm starts with all
possible assignments of the buffers to their CBBs. The edges in Ga are weighted according to the
compatibility of the corresponding buffer assignment. An incompatible buffer assignment (an edge

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 654 29-9-2008 #11

654 Handbook of Algorithms for Physical Design Automation

Circuit
block

Fine tiles to
define CBBs in
feasible region

Coarse
routing

tiles

Independent
feasible region Sink

Source

FIGURE 33.5 Two-level tile structure.

of large weight), corresponding to an assignment that may result in high-routing congestion or too
many buffer blocks, will be deleted one at a time until only one assignment is left for each buffer. The
weight of each edge e = (b, c) is a composite function of the routing congestion cost C1(e) and the
buffer block cost C2(e), assuming that all the other buffers have equal probability of being assigned
to their CBBs. The congestion cost of a routing tile in the two-level tile structure is estimated by the
traditional 2D grid based probabilistic map assuming two-bend shortest Manhattan route for each
wire segment (a wire segment can be from the source to a buffer, from a buffer to another buffer,
or from a buffer to the sink). The routing congestion cost C1(e) of an edge e is then defined as the
maximum congestion cost among all the routing tiles in a one-bend routing path of the net segment
represented by the edge. The buffer block cost C2(e) is computed according to the number of buffers
already assigned to the CBB c and the maximum number of buffers allowed in a CBB. This iterative
deletion process will remove the highest cost redundant assignment at each step, and the bipartite
graph and its associated edge costs are needed to be updated dynamically.

33.3.1.1 Routability-Driven Buffer Planning with Dead Space Redistribution

Dead spaces in a floorplan or placement can be redistributed by moving some circuit blocks within
their rooms to achieve better buffer insertion result. Chen et al. [15,16] considered this problem of
congestion-driven buffer block planningwith dead space redistribution. Dead spaces can be classified
into two types, detached dead-space (DDS) and attached dead-space (ADS). A DDS is generated
because of the existence of an empty room,while an ADS is generated because a room is not entirely
occupied by a circuit block. The ADSs can be redistributed while keeping the topology and the total
area unchanged. Each ADS or DDS is associated with a circuit block or a dummy block, which
can be found efficiently from a floorplan. In order to find a good dead space distribution to insert
as many buffers as possible such that the number of nets meeting their timing constraints without
considering congestion is maximized [15], a bipartite graph can first be constructed to represent all
possible assignments of buffers to tiles (each dead space is divided into small tiles). An s–t graph
can then be constructed based on this bipartite graph to find a maximum cardinality matching in it.

To consider congestion, a preprocessing step, presented in Ref. [16], first inserts some vertical
and horizontal channels into the boundaries of the circuit blocks, based on an estimation of the
buffer distribution. Instead of performing a maximum cardinality matching, a more sophisticated
congestion-drivenbuffer planning algorithm is employed. The traditional 2D grid based probabilistic
map assuming two-bend shortest Manhattan routes is used to estimate congestion. At the beginning,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 655 29-9-2008 #12

Global Interconnect Planning 655

the congestion estimations are initialized without considering buffers. Then buffer planning and
congestion updates are performed net by net. For each net i, a single-source-single-sink shortest-
path problem is set up and solved to insert buffers to minimize the sum of the congestion levels at
the most congested grid in each wire segment of i. The congestion information at each grid is then
updated by erasing the original congestion contribution of net i and adding back the new contribution
by its wire segments. The whole process is repeated until all the nets are routed and buffered. It is
possible that a net cannot be buffered successfully, when there is no more dead spaces for buffer
insertion, orwhen all the possible routing paths constrained by the buffer locations are nonmonotonic.
A local search is performed to explore different ways to redistribute the ADSs. A new redistribution
can be generated by randomly selecting an ADS and moving its associated block to change the
dead space distribution around it. The cost function to evaluate a floorplan with different dead space
redistribution is a composite function of the number of nets that fail to satisfy their delay constraints
and the average congestion of the top 5 percent most congested grids.

33.3.1.2 Interconnect Planning with Fixed Interval Buffer Insertion Constraint

In fixed interval buffer insertion constraint, buffers are constrained to be inserted such that the
distance between adjacent buffers is within a range [low, up] given by the user. Sham and Young [17]
introduced this concept and performed interconnect planning and buffer planning based on this
assumption. In their approach, wires are routed over-the-cell with multibend shortest Manhattan
distance and buffers are inserted in the dead space area. A floorplan is first divided into a 2D array
of grids and the size of the dead space in each grid is computed for estimating the amount of buffer
resources in that grid bspace(). The probability of successful buffer insertion bsuccess(x, y) at a grid (x, y)
can be estimated from the amount of dead space bspace(x, y) at (x, y) and the number of possible buffer
insertions busage(x, y) at (x, y) according to the formula:

bsuccess(x, y) = min{1, bspace(x, y)/busage(x, y)},

where busage(x, y) is obtained by considering all the nets and all their possible multibend shortest
Manhattan distance routes satisfying the fixed interval buffer insertion constraint, assuming that
every possible route of a net and every feasible way of buffer insertion is equally likely to occur.
These busage() values can be computed efficiently by dynamic programming, and then saved and
reused. After estimating the probability of successful buffer insertion at each grid, the congestion
information is computed and interconnect planning is performed accordingly, taking into account
the fact that the probability of occurrence of a route will be higher if it passes through those grids
with larger bsuccess(), that is, with a higher chance of successful buffer insertion. All these computa-
tions can be done efficiently by dynamic programming and by making use of some table look-up
techniques.

Wong and Young [18] have also assumed the fixed interval buffer insertion constraint in their
interconnect planning. Similar to the work in Ref. [17], all multipin nets are first broken down into
a set of two-pin nets by the MST approach. For each two-pin subnet, a simple dynamic program-
ming approach is employed to find a path from the source to the destination with buffer insertion
satisfying the fixed interval buffer insertion constraint and minimizing a cost function that is the
sum of the costs at the grids with buffer insertion, where the cost at a grid is a composite function
of the congestion cost and the buffer insertion cost. The buffer insertion cost is computed as a ratio
between the number of buffers already inserted and the largest number of buffers allowed while
the congestion cost is computed by the traditional 2D grid based probabilistic map assuming multi-
bend shortest Manhattan route for each wire segment. The wire segments of each two-pin subnet
are processed one after another and the congestion cost is updated accordingly for further buffer
insertions.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 656 29-9-2008 #13

656 Handbook of Algorithms for Physical Design Automation

33.3.1.3 Methodology for Interconnect Planning in Buffer Site

The buffer sitemethodologywas first proposed byAlpert et al. [2].Details of their approach have been
described in Section 33.2. Albrecht et al. [19] studied a similar problem of performing timing-driven
buffered routing given a buffer site map. The constraints are on wire loading (maximum number
of tiles driven by either the source or an inserted buffer), buffer site capacity, wire congestion, and
individual sink delay, and the objective is to minimize the routing area, that is, the total wirelength
and the total number of buffers. Unlike many previous works that solves each net optimally one
after another, the problem of buffering all the nets simultaneously is formulated as an integer linear
program (ILP). However, as solving ILP exactly is NP-hard, the approach taken in Ref. [19] is to first
solve the corresponding fractional relaxed linear program and then obtain a near-optimal integral
solution by randomized rounding. Their approximation algorithm can be extended to find paths with
bounded delay and handle multiple buffer and wire width libraries.

33.3.1.4 Other Routability-Driven Buffer Planning Approaches

Ma et al. [20] also developed an efficient algorithm to perform congestion-driven buffer planning
that could be budgeted into the floorplanning process to give better timing performance and chip
area. In their approach, the dead spaces are first partitioned into rectangular empty space (ES) blocks.
The ES blocks in a floorplan can be obtained efficiently based on the CBL representation, and it
is proved that all the dead spaces in a packing can be partitioned into no more than 2n ES blocks
without overlapping, where n is the total number of circuit blocks. Intersection between the feasible
region (FR) of a buffer and a ES block will be a regular hexagon (with possibly some degenerations)
of which two edges are parallel to the x-axis, two edges are parallel to the y-axis, and the other two
edges have a slope of +1 or −1. To facilitate data manipulation, the ES blocks are further partitioned
into grids and each grid contains buffer sites for buffer insertion. The whole process of computing
the intersection between the FR of a buffer and the ES blocks is divided into two steps. The first step
computes the intersection between the ES blocks and the bounding box of the net, and the second
step computes the overlapping between the rectangular regions obtained from step one and the two
parallel slanted lines of the FR. The grids in a ES block are ordered in parallel to these slanted
lines with slope +1 or −1, so that the overlapping obtained from step two will just be two indices
specifying the range of grids where a buffer can be inserted. Because it is only needed to compute
the first and the last grid number in the range, the complexity is linear and independent of the grid
size. Assuming that the probabilities of buffer insertion are equal at each possible buffer insertion
site, the probability of a buffer b being inserted into a grid g is computed as 1/NFRb where NFRb is
the total number of grids in some ES blocks overlappingwith the FR of b. This number can be easily
obtained from step two above by knowing the range of grids in each ES block overlapping with the
FR of b. By summing up these probabilities for all the buffers, the expected number of buffers to be
inserted in each grid can be obtained.

These probabilities of successful buffer insertion are then used for buffer allocation with
consideration of routing congestion. The congestion model used is essentially the traditional 2D
grid based probabilistic map assuming multibend shortest Manhattan route for each wire segment.
Because the probabilities of successful buffer insertion are different at different routing tiles, the
chance of the occurrence of a route will be higher if it runs through those tiles with high proba-
bilities of successful buffer insertion. Consider the route of a net i passing through a set of tiles
{T1, T2, . . . , Tk}. Suppose that a buffer b of this net is to be inserted in one of these tiles Tj where
1 ≥ j ≥ k. The size of the overlapping area between the feasible region of buffer b and the dead
spaces in tile Tj will affect the probability of the occurrence of a route. This fact is taken into account
in their congestion model. The nets are then considered one after another for buffer allocation. For
each net, all its feasible routes are processed in a nondescending order of their sums of congestion
levels of all the tiles it goes through. A route will be taken if all of its required buffers can be inserted
successfully when it is being processed.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 657 29-9-2008 #14

Global Interconnect Planning 657

33.3.2 PIN ASSIGNMENT WITH BUFFER PLANNING

It is beneficial to performpin assignment and buffer planning simultaneously to achieve better timing
performance. Given a placement of macroblocks and buffer blocks, the objective is to assign pins
and insert buffers for a given set of nets to minimize a weighted sum of the total wirelength,W , and
the total number of buffers inserted, R:

C = αW + βR.

Xiang, Tang, and Wong [21] presented a polynomial time algorithm to perform simultaneous pin
assignment and buffer planning optimally for all two-pin nets from one particular macroblock to all
the other blocks. The algorithmminimizes the cost C for any given positive constants α and β while
enforcing the lower and upper bound constraints on wire segment length for each net. By applying
this algorithm iteratively (picking one source block each time), pin assignment and buffer planning
can be done for all the nets. The subproblem of performing simultaneous pin assignment and buffer
planning from one source block to all the other blocks can be formulated as a min-cost max-flow
problem. In the example shown in Figure 33.6, the source block is bs, and it has two nets connecting
to block b1 and b2, and each block bi has a set of available pin locations Pi. There are two buffer
blocks r1 and r2, and each buffer block ri is associated with a capacity ci denoting the maximum
number of buffers ri can hold. A network flow problem can be set up as shown in Figure 33.6b. In
the constructed flow network, a directed edge from a pin p ∈ Ps to a buffer block rj (or from a buffer
block rj to a pin p ∈ Pi where bi is not the source block) exists if and only if the shortest Manhattan
distance between p and rj satisfies the lower and upper bound constraints on wire segment length.
Similar conditions hold for other edges between two pins or between two buffers. Then a source
node s, which is connected to all the pins in the source block bs with capacity one and zero cost, is
added. An intermediate sink node ti is added for each block bi other than the source block and is
connected from every pin p ∈ Pi with capacity one and zero cost. Each of these intermediate sink
nodes ti is then connected to the final sink node t with zero cost and capacity |Ni| where Ni is the
set of nets from bs to bi. For all the remaining edges, the capacities are one and the costs are α × d
where d is the shortest Manhattan length of the edge. For each buffer node ri, there will be a cost of
β and a capacity of ci. For all the remaining nodes, the capacity is one and the cost is zero.

It is not difficult to see that a min-cost max-flow solution f in the flow network constructed as
described above can give an optimal solution that minimizes the cost and maximizes the number

(a) (b)

p21

b2

b1

bs

p23

p22 r1
r2

p24

ps1

ps3

ps2

ps4

p11

p13

p12

p14

t2

ps1

ps3 ps4

ps2

p21 p22
r1 r2

t1

p11 p12

p13 p14p23 p24

t

s

FIGURE 33.6 Min-cost max-flowmethod for simultaneous pin assignment and buffer planning: (a) a problem
instance and (b) the corresponding flow network.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 658 29-9-2008 #15

658 Handbook of Algorithms for Physical Design Automation

of connections made. If the flow | f | is equal to |N| where N = ∪iNi, a feasible solution of pin
assignment and buffer planning for all the nets in N is found. However, if | f | < |N|, there is no way
to make all the connections and have the constraints satisfied. Every flow solution can be mapped to
a pin assignment and buffer planning solution of the given set of nets. However, this min-cost max-
flow approach can only consider nets connecting between one source block and all the other blocks.
To route all the nets between all the macroblocks, each macroblock is treated as the source block
once and the min-cost max-flow algorithm is invoked; a solution for all the nets between multiple
macroblocks can be obtained at the end. To reduce the complexity of this approach, neighboring
pins are grouped together at the beginning. Once several nodes are grouped together, the average
coordinate is used as the location of the new super-node. After getting a solution with the super-
nodes, the flow solution is mapped back to the original problem, that is, distributing the flow fromone
super-node to its pin nodes. This subproblem can also be solved by the min-cost max-flow method.

33.3.3 NOISE-AWARE BUFFER PLANNING

The aforementioned buffer block planning is done for delay or routability optimization. It is also
of crucial importance to consider the signal integrity, for example, maintain fast transition time
(the inverse of slew rate) of the signal at the receiver and along the net and minimize the crosstalk-
induced noise during buffer planning.Otherwise, a slow transition on a netmay be highly susceptible
to coupling noise injection from faster switching signal lines in its vicinity. Furthermore, if the length
of the net between two successive buffers is too long, the interconnect resistance becomes comparable
to the driver resistance. This effectively decouples the receiver from the driver andmakes the receiver
highly susceptible to any attacking signals. Another reason for concern is that a slow transition on
the input causes higher short-circuit power consumption.

To avoid such signal integrity problems and higher power consumption, guidelines on most
modern large-circuit designs require signal transition times to be no slower than a specified value.
As a rule of thumb, the allowed signal transition time is between 10 and 15 percent of the clock cycle
time for modern circuit design. Without considering the signal transition time constraint for buffer
planning, as pointed out in Ref. [3], the buffer insertion solution may not maintain the required signal
transition rate even though the target delay (as defined by 50 percent input to 50 percent output) on a
net may be satisfied. Therefore, it is desirable to consider the problem of buffer block planning under
delay, rise/fall time, and crosstalk-induced noise constraints for interconnect-centric floorplanning.

In the following subsections, we describe the independent feasible regions defined by the
transition time and delay constraints presented in Ref. [22], as well as the crosstalk-induced noise
constraint introduced in Ref. [23].

33.3.3.1 Independent Feasible Regions with Transition Time Constraints

In addition to inserting buffers to improve signal delay, it is also popular to insert buffers at regular
intervals to ensure a proper slew rate (or transition time) at the input to all gates. Let R be the driver
output resistance, C be the sink capacitance, and L(R,C,Rtgt) be the maximum length of a net such
that the signal transition time at the sink is no more than Rtgt (it can be assumed that the input signal
transition time is also Rtgt).

The independent feasible region under the signal transition time constraint for the ith buffer of
a net N is given by

IFR(R)i =
(
x⊗
i −WIFR(R)

/
2, x⊗

i +WIFR(R)

/
2
) ∩ (0, l),

such that ∀(x1, x2, . . . , xi, . . . , xn) ∈ IFR(R)1 × IFR(R)2 × . . . × IFR(R)n and the input transition
times for all buffers and the sink satisfy the signal transition time constraint. Here, WIFR(R) denotes
the width of independent feasible region IFR(R)i, and x⊗

i the center of IFR(R) for the ith buffer.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 659 29-9-2008 #16

Global Interconnect Planning 659

For all segments of the net N to satisfy the signal transition time constraint, the following
inequalities must hold:

x⊗
1 +WIFR(R)/2 ≤ l1,

x⊗
i+1 − x⊗

i +WIFR(R) ≤ l2 for 1 ≤ i ≤ n − 1, and

l − x⊗
n +WIFR(R)/2 ≤ l3,

where
l1 = L

(
RD,CB,RN

tgt

)
l2 = L

(
RB,CB,RN

tgt

)
l3 = L

(
RB,CS,RN

tgt

)

Here, RN
tgt denotes the target signal transition time for the netN. Summing up the preceding n+1

inequalities and making the IFR(R) intervals of equal width, we get

WIFR(R) = l1 + (n − 1)l2 + l3 − l

n
.

For thisWIFR(R), the centers of the feasible regions are determined by the following equalities:

x⊗
1 = l1 −WIFR(R)/2,

x⊗
i+1 − x⊗

i = l2 −WIFR(R) for 1 ≤ i ≤ n − 1, and

x⊗
n = l − l3 +WIFR(R)/2.

To find the IFR of the ith buffer considering both delay and signal transition time constraints
for a given number of inserted buffers, we should find the intersection of IFRi and IFR(R)i. If IFRi

and IFR(R)i do not overlap, we have to insert a different number of buffers. Given l1, l2, and l3, the
minimum number of buffers required to satisfy the transition time constraint is given by

nmin
R =

⌈
l − l1 − l3

l2
+ 1

⌉
.

Let nmin
D and nmax

D be the respective minimum and maximum numbers of buffers that can be inserted
into a net to satisfy the delay constraints. For the delay constraint, DN

tgt, n
min
D to nmax

D can be computed
as follows:

nmin
D = max

(
0,

−B− √
(B2 − 4AC)

2A

)
,

and

nmax
D = −B+ √

(B2 − 4AC)

2A
,

where
A = RbCb + Tb

B = DN
tgt + r

c
(Cb − Cs)

2 + c
r
(Rb − Rd)

2 − (rCb + cRb)l − Tb − RdCb − RbCs

C = 1
2
rcl2 + (rCs + cRd) l − DN

tgt

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 660 29-9-2008 #17

660 Handbook of Algorithms for Physical Design Automation

If nMaxD ≤ 0, the delay constraint on the net cannot be satisfied by inserting buffers of this type
alone.

The number of buffers required to satisfy both delay and signal transition time constraints,
denoted by nD,R, is bounded by max{nmin

R , nmin
D } ≤ nD,R ≤ nmax

D . A linear search within the interval
would typically find a feasible solution.

33.3.3.2 Common Independent Feasible Region

The common IFR for buffer i of net N under both delay and signal transition time constraints is
referred to as the maximal region where the buffer can be placed such that both the constraints can
be satisfied, assuming that the other buffers are placed within their respective common IFRs.

Both the constraints cannot be satisfied by buffer insertion if

max{nMin
R , nMin

D } > nMax
D .

For a fixed value of nD,R in the feasible range, the IFR(D,R) for the ith buffer (IFR(D,R)(i)) on
the net is the region common to both IFR(R)(i) and IFR(D)(i). Let Wmin = min{WIFR(R),WIFR(D)},
δi = |x∗

i − x⊗
i |, and δw = |WIFR(R) −WIFR(D)|.

The width of the common independent feasible region is given by

WIFR(D,R)(i) =

⎧⎪⎨
⎪⎩
Wmin ; if δi ≤ δw

/
2

Wmin − δi + δw
/
2 ; if δw

/
2 ≤ δi ≤

(
WIFR(R) +WIFR(D)

)/
2,

undefined ; otherwise.

We can observe that min1≤i≤nD,R{WIFR(D,R)(i)} will occur at i = 1 or i = nD,R. To fix the number
of buffers inserted on the net, we pick the value of nD,R that maximizes the minimum width of
IFR(D,R)(i).

33.3.3.3 Buffer Block Planning Considering Transition Time and Delay

In this section,we briefly describe the algorithm for buffer block planning considering both transition
time and delay constraints. The inputs to the algorithm are the initial floorplan and the transition time
and delay constraints on the global nets. The algorithm determines the locations, assignments, and
sizes of buffer blocks to be inserted in a dead space or a routing channel such that the two constraints
are satisfied.

Figure 33.7 summarizes the algorithm. Step 1 divides the available channel space, as performed
in Section 33.2.1, into a set of buffer-block tiles to meet both constraints. Step 2 determines the
type and the number of buffers to be inserted in each net to satisfy its timing constraints. The buffer
type chosen for a net is the smallest size buffer, such that all the buffers on the net have a nonzero
IFR(D,R)width. Furthermore, it constrains all the buffers on a net to be of the same size. The number
of buffers required is then obtained by searching the common feasible range of buffer numbers for
delay and transition time requirements. The chosen value of nD,R maximizes the minimum IFR(D,R)

width, as mentioned in Section 33.3.3.2.
Steps 4–6 find the set of buffer-block tiles into which each buffer can be placed. Let B be the

set of buffers needed to be inserted to satisfy the constraints, and the candidate buffer blocks (CBB)
set of b, Sb, b ∈ B, be the set of buffer-block tiles into which it can be placed. The intersection of
the two-dimensional IFR(D,R) of a buffer with the buffer-block tiles defines the CBB set of the
buffer.

If there exists one buffer to be placed along the monotonicManhattan route with an empty CBB,
non-monotonedetour routes are considered. Steps 7–9 compute the CBB sets for buffers to be placed
along the shortest detour route. Step 8 finds the shortest detour path. The optimal number of buffers

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 661 29-9-2008 #18

Global Interconnect Planning 661

Algorithm: Buffer block planning with transition time and delay constraints
1. Divide dead spaces and routing channels into buffer block tiles;
2. Find type of buffers and nD,R for each net N
3. Compute IFR(D,R) for each buffer b ∈ B;
4. foreach net N
5. foreach buffer b in net N
6. Obtain CBB set Sb;
7. If there exists (Sb = ∅) for a net N
8. Find the shortest detour path;
9. Obtain Sb along the detour path;
10. Generate the bipartite graph G;
11. While there exists a buffer to be assigned do
12. Delete the highest cost edge of G;
13. Update edge costs;
14. Assign a buffer to a CBB if required;

FIGURE 33.7 Algorithm for buffer block planning considering both transition time and delay constraints.
(FromSarkar, P. andKoh, C.-K.,Proceedings of IEEE/ACMDesign, Automation and Test in Europe Conference,
IEEE Press, Piscataway, NJ, 2001.)

(nD,R) to be inserted to satisfy the timing constraints is computed based on this path length. Then,
the width of the IFR(D,R) for each buffer along this path is computed. Step 9 applies this width to
compute the CBB set for the net N.

Each buffer could have several feasible CBBs to be assigned. A method based on the iterative
deletion and bipartite graph formulation introduced in Section 33.3.1 is used to assign each buffer.
Step 10 constructs the bipartite graph G, and Steps 12–14 prune G by removing incompatible buffer
assignments or edges in each iteration, similar to the process in Section 33.3.1. The algorithm
terminates when a unique CBB is assigned to each buffer.

33.3.4 BUFFER PLANNING WITH NOISE CONSTRAINTS

Coupling noise between adjacent nets could induce unexpected circuit behavior. Figure 33.8 shows
a noise model that considers coupling capacitance cc. The coupling capacitance is proportional to
the fringing capacitance (cf) and the coupling length (lc), and it is inversely proportional to the
distance (d) between the aggressor and the victim nets, that is, cc ∝ cf lc/d. Because the detailed
routing information is not available during floorplanning or postfloorplanning,we may adopt a more
conservative approach and make d the minimum wire distance dmin specified by the design rule.
Furthermore, we set the coupling length (lc) to be twice the victim net’s length (lν), which is the

Aggressor net1
0

X

Cc

Cs

Cs

Ic

Victim net

FIGURE 33.8 Noise model resulting from the coupling capacitance and crosstalk-induced current.
(From Cheng, Y. -H. and Chang Y. -W., Proceedings of IEEE/ACM Asia South Pacific Design Automation
Conference, IEEE Press, Piscataway, NJ, 2004.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 662 29-9-2008 #19

662 Handbook of Algorithms for Physical Design Automation

worst case when the victim net is fully coupled from both sides by two aggressor nets. Of course,
more optimistic modeling, for example, based on some distribution assumption, is also applicable.
Nevertheless, it will be clear that the technical conclusion, say with the distribution assumption,
remains similar, and thus we should focus on the worst-case scenario for easier presentation.

With the worst-case scenario, we have

cc = 2lvcf
dmin

.

Furthermore, 2cc is adopted in the model to account for the worst case coupling effect when all
the aggressor nets have different signal transitions from that of the victim net, for which the Miller
effect makes the coupling phenomenonmore significant by doubling the coupling effect. Again, the
technique to be presented readily applies to other models with less pessimistic estimation.

Consider a wire e = (u, v), where u and v are two nodes in a buffered tree. Let the length of the
wire segment e be le, and T(v) be the subtree rooted at v. IT (v) is the total downstream current seen at
v and is the current induced by aggressor nets on downstreamwires of v. The current on a unit-length
wire induced by aggressor nets is i0 = λpc [24], where c is the unit-length wire capacitance, λ is the
fixed ratio of coupling to total wire capacitance, p is the slope (i.e., power supply voltage over input
rise time) of all aggressor nets’ signals, and cc is modeled as some fraction of the unit-length wire
capacitance of the victim net. Let χ(u, v) be the noise on the wire segment between two neighboring
buffers u and v. The resulting noise χ(u, v) induced from the coupling current is the voltage pulse
coupled from aggressor nets in the victim net for a wire segment e = (u, v). Using an Elmore-delay
like noise metric [24] to model χ(u, v) (see Chapter 3), we can express the noise constraint as

χ(u, v) = RbIT(v) + rle

(
i0le
2

+ IT(v)

)
≤ Mv, (33.1)

where Rb is the output resistance of a minimum size buffer, and Mv is the noise margin for a buffer
or a sink v, which is the maximum allowable noise without incurring any logic error.

The widthWIFR(N)i of the independent feasible region IFR(N)i for the ith buffer that satisfies the
noise constraint is given by

WIFR(N)i ≤
√(

Rb

r

)2

+
(
IT(v)

i0

)2

+ 2Mv

i0r
− Rb

r
− IT(v)

i0
. (33.2)

For this noise model, the four factors that determine the size of a feasible region are noise margin
Mv, buffer resistance Rb, unit-length wire resistance r, and crosstalk-induced unit current i0.

The feasible region under noise constraint, denoted by IFR(N)i is the maximumallowable length
in each net satisfying the noise margins after buffer insertion. To estimate the feasible region under
noise constraint, IFR(N)i, the noise formulas [11] below can be applied. The induced noise current
on wire segment e = (u, v) is computed by Ie = i0le. To satisfy the noise constraint, a buffer can be
inserted at u as in Equation 33.1, whereWIFR(N)i the width of the feasible region IFR(N)i for buffers
satisfying the noise constraint, is computed from Equation 33.2.

χ(u, v) = RbIT(u) + rWIFR(N) i

(
i0WIFR(N) i

2
+ IT(v)

)
≤ Mv. (33.3)

Given two-pin nets as inputs, the method is to scan from the sink si with the given Msi to the
source s0. Because the accumulated crosstalk-induced current IT(v) is zero for pins of two-pin nets,
the noise formula is given by

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 663 29-9-2008 #20

Global Interconnect Planning 663

Source

IFR(D)i

IFR(N)iIntersection

Obstacle

Sink

FIGURE 33.9 Respective feasible regions IFR(D)i, IFR(N)i, and IFR(D)i ∩ IFR(N)i for inserting a buffer
that satisfy the delay, noise, and both delay and noise constraints.

χ(u, v) = RbIT(u) + rWIFR(N)i

(
Ie
2

+ IT(v)

)

= Rb

(
Ie + IT(v)

)+ rWIFR(N)i

(
Ie
2

+ IT(v)

)

= RbIe + rWIFR(N)i

Ie
2
. (33.4)

On the basis of Equations 33.3 and 33.4,WIFR(N)i , can be computed by

WIFR(N) i ≤
√(

Rb

r

)2

+ 2Mv

i0r
− Rb

r
.

In the preceding equation, WIFR(N)i is the maximum length from the next buffer Bi+1 back to Bi

without causing any logic error.
To handle the transition time, delay, and noise constraints simultaneously, we first compute

the respective feasible regions IFR(R)i, IFR(D)i, and IFR(N)i for inserting buffer i to satisfy the
transition time, delay, and noise constraints, and then find the intersection of IFR(R)i, IFR(D)i, and
IFR(N)i to derive the feasible region for buffer i that meets all these constraints (see Figure 33.9
for an illustration). Furthermore, the buffer block planning algorithm presented in section 33.3.3.3
still works by additionally considering the noise constraint.

33.4 FLIP-FLOP AND BUFFER PLANNING (WIRE RETIMING)

Although buffer insertion is very effective in improving the delay performance (and noise toler-
ance) of interconnects, the timing constraints may be so tight that they are beyond the maximum
performancedeliverable by buffer insertion,making the insertion of flip-flops or latches for pipelined
signal transmission necessary. In the case of modern high-performance microprocessors [13], it is
not unusual for global signals to take several clock cycles to travel across the chip to reach their
destinations. In fact, the wire delay can be as long as about ten clock cycles in the near future [25].
It has been shown in Ref. [26] that under an aggressive scaling scenario where the frequency of
microprocessors approximately doubles and die size increases by about 25 percent in every process
generation, the number of flip-flops (referred to as clocked repeaters) increases by 7 times every
process generation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 664 29-9-2008 #21

664 Handbook of Algorithms for Physical Design Automation

As the number of flip-flops and buffers increases in an exponential fashion, the planning and
design of pipelined interconnects are very important emerging problems. Several design challenges
can be posed:

1. What is the minimum latency required between two communicating functional blocks of a
design?

2. Given the latency constraints between two communicating functional blocks of a design,
where should flip-flops and buffers be inserted to minimize, for example, the total flip-flop
and buffer area?

3. How does interconnect latency affect the system behavior? Arbitrary interconnect latency
may destroy the functionality of a sequential circuit. How can functional blocks and
interconnects be simultaneously retimed to achieve the desired circuit performance while
maintaining its functionality?

4. How can buffer planning take into consideration the retiming of logic blocks and
interconnects, as well as the placement of those flip-flops relocated by retiming?

33.4.1 MINIMIZING LATENCY

In the initial stages of the design of high-performance microarchitectures, the minimum latency
that can be achieved on long interconnects gives microarchitects and circuit designers an accurate
prediction of the timing and routing demands required of the design. There are two approaches
to the problem of latency minimization: (1) using analytical formulas [27]; and (2) using a van
Ginneken-style dynamic programming approach [26].

33.4.1.1 Two-Pin Net Optimization Using Analytical Formulas

Consider a wire with length L, driver Rd, and sink Cs. On the basis of the optimal delay formula
obtained when we insert n buffers into the wire [6], the optimal delay for an interconnect properly
inserted with an ideal optimal number of buffers is

D′
opt(L) =

(
Rbc + rCb +√

2rc(RbCb + Tb)
)

· L + (lr + lc) ·√2rc(RbCb + Tb)

+ lrrCb + lcRbc− rc

2
(l2r + l2c) − Tb,

where

lr = Rd − Rb

r

lc = Cs − Cb

c

Here, the ideal optimal number of buffers is defined as

n′
opt(L) =

√
rc

2(RbCb + Tb)
· (L + lr + lc) − 1,

which may not be an integer. Therefore, the maximum length of a wire inserted with the ideal
optimal number of buffers that can meet a given delay constraint Dtgt is

L′
max(Rd,Cs,Dtgt) = Dtgt + Tb + rc

2
(l2r + l2c) − lrrCb − lcRbc− (lr + lc)

√
2rc(RbCb + Tb)

Rbc+ rCb + √
2rc(RbCb + Tb)

.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 665 29-9-2008 #22

Global Interconnect Planning 665

Although the ideal optimal number of buffers n′
opt may not be an integer, which is not realizable, the

actual optimal number of buffers of the interconnect is either �n′
opt� or �n′

opt�. Let LN(n) denote the
maximal length for an interconnect N with n buffers under a given timing requirement Dtgt. (LN(n)
can be obtained by solving for L in the optimal delay formula for a given n and Dtgt.) The maximum
wire length of the interconnect inserted with buffers that can meet a given target delay Dtgt is

Lmax(Rd,Cs,Dtgt) = max{LN(�n′
opt

�), LN(�n′
opt

�)}.
With flip-flops inserted,we have to define target delays for the first segment, themiddle segments,

and the last segment of the pipelined interconnects separately. The timing constraint for any middle
segment, denoted Dtgt,M, is the clock period less the setup time and the flip-flop propagation delay.
The timing constraint for the first segment, denoted Dtgt,F, should ensure that the maximum delay
from those source flip-flops before the driver to the first flip-flop along the pipelined interconnect is
smaller than one clock period less the setup time and the flip-flop propagation delay. Similarly, the
timing constraint for the last segment, denoted Dtgt,L, should ensure that the maximum delay from
the last flip-flop along the pipelined interconnect to the flip-flops after the sink is smaller than one
clock period less the setup time and the flip-flop propagation delay. Therefore, the minimum latency
or the least number of flip-flops required to meet the delay and clock period constraints is

NFF =

⎧⎪⎪⎨
⎪⎪⎩
0 ifL ≤ Lmax(Rd,Cs,Dtgt),

1 ifLmax

(
Rd,Cs,Dtgt

)
< L ≤ LL + LF,⌈

L−LF−LL
LM

⌉
+ 1 otherwise,

where

LF = Lmax(Rd,CF,Dtgt,F)

LL = Lmax(RF,Cs,Dtgt,L)

LM = Lmax(RF,CF,Dtgt,M)

with RF and CF being respectively the output resistance and input capacitance of a flip-flop.
In the context of flip-flop and buffer planning, of greater interest is the feasible regions (or

independent feasible regions) of flip-flops and buffers. Let n be the number of flip-flops inserted in
an interconnect and fi be the location of the ith (1 ≤ i ≤ n) flip-flop. With f ∗

i denoting the central
location of the ith flip-flop in its feasible region, andWFR the uniform width of the feasible regions,
we define the FR for the ith flip-flop as

FRi =
(
f ∗
i −WFR

/
2, f ∗

i +WFR

/
2
) ∩ (0, L),

such that (f1, f2, . . . , fi, . . . fn) ∈ FR1 × FR2 × . . . × FRn, f1 ≤ LF, fi − fi−1 ≤ LM for 2 ≤ i ≤ n, and
L − fn ≤ LL.

The following inequalities must hold for a flip-flop solution to be feasible:

f ∗
1 +WFR/2 ≤ LF, f ∗

i − f ∗
i−1 +WFR ≤ LM for 2 ≤ i ≤ n, and L − f ∗

n +WFR/2 ≤ LL.

The largestWFR that satisfies these inequalities is

WFR = (LF + LL + (n− 1)LM − L)/n.

Correspondingly, the central locations f ∗
i are

f ∗
i = LF + (i− 1)LM − (i− 1/2)WFR for 1 ≤ i ≤ n.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 666 29-9-2008 #23

666 Handbook of Algorithms for Physical Design Automation

The independent feasible regions of flip-flops and buffers can also be determined in a fairly
straightforward fashion [27]. With the definition of feasible regions of flip-flops in place, the buffer
planning algorithms outlined in preceding sections can be easily extended to handle the latency
minimization problem.

33.4.1.2 Multiple-Terminal Net Optimization

In the case of two-pin net optimization (Section 33.4.1.1), the planning can be carried out without
first performing routing. In the case of multiple-terminal net optimization, the assumption is that the
routing solution of global nets is known. In the context of design migration, this is typically true,
where the microarchitects and circuit designers would like to make minimal changes to the design.
A natural algorithm to adopt would be that of van Ginneken [14].

In Ref. [26], each flip-flop and buffer insertion solution can be represented by a four-tuple
γ = (c, r, λ, a), where c is the capacitance seen by the upstream resistance, r is the required arrival
time, λ is the maximum number of flip-flops crossed when going from this node (or edge) to its leaf
nodes, and a is the flip-flop or buffer assignment at this node. For simplicity, we assume that long
edges are segmented properly and that flip-flop and buffer insertion is allowed only at nodes.

At a leaf node v, the solution is (cv, rv, 0, ∅), where cv is the sink capacitance, and rv is the required
arrival time at node v. The propagationof a solution fromanode to its parent edge (the edge connecting
the node to its parent node) proceeds as in the dynamic programming algorithm of Ref. [14]. Let
the node solution at node v be (cv, rv, λv, av). The corresponding solution at the upstream node of the
branch (u, v) is (cv + Cu,v, rv − Ru,v(Cu,v + cv), λv, ∅), where Cu,v is the edge capacitance and Ru,v is
the edge resistance. When two downstream branches meet at a parent node, we merge two solutions
(cu, ru, λu, au) and (cv, rv, λv, av) from the two branches to form (cu + cv, min(ru, rv), max(λu, λv), au ∪
av). When we insert a buffer g to drive a subtree with solution (cu, ru, λu, au), the new solution is
(cg, ru −Rgcu − tg, λu, {g}), where cg is the gate capacitance of g, Rg is the output resistance of g, and
tg is the intrinsic delay of g. When we add a flip-flop f to drive the subtree instead, the new solution
is (cf , TCP − tsu,f , λu + 1, {f }), where cf is the gate capacitance of f , TCP is the clock period, and tsu, f
is the setup time of f . Note that when we insert a flip-flop, we have to first verify that the pipeline
stage immediately after the newly inserted flip-flop has nonnegative slack or required arrival time.

As in the van Ginneken’s algorithm, it is important to perform pruning of all solutions to keep
only noninferior solutions that can lead to an optimal solution at the root node. Let γ = (c, r, λ, a)
and γ′ = (c′, r′, λ′, a′) be two solutions at any node in the tree. We say that γ is inferior and can be
pruned if at least one of the following is true:

• λ = λ′, c ≥ c′, and r < r′

• λ = λ′, c > c′, and r = r′

• λ = λ′, c = c′, r = r′, and cost(γ)> cost(γ′), where cost(·) is a user-specified cost function
associated with the flip-flop and buffer solution; an example of the cost function is the total
area of the solution.

• λ > λ′, c ≥ c′, and r ≤ r′

Also note that all solutions kept in the algorithm have nonnegative r.

33.4.2 LATENCY CONSTRAINED OPTIMIZATION

Suppose the required latency at leaf node v is λv (assuming that the latency at the root node is zero),
we can generalize the algorithm given in Section 33.4.1.2 by using γ = (cv, rv,−λv, 0) at v. The
algorithm in Section 33.4.1.2 can then be applied to compute an optimal solution to the latency
constrained optimization problem with a minor modification: Any solution that has a latency greater
than zero can be pruned [26].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 667 29-9-2008 #24

Global Interconnect Planning 667

As the required latency at the root node is zero, only solutions that have zero latency would be
feasible. Consequently, at the root node, if a solution has a negative latency λ, more flip-flops can
always be added to make the solution feasible, that is, the latency at the root node equals zero. As
we search top-down to retrieve an optimal solution at all nodes, we might have to insert more flip-
flops. Consider the solution (cu + cv, min(ru, rv), max (λu, λv), au∪av) obtained by merging solutions
(cu, ru, λu, au) and (cv, rv, λv, av) of two downstream branches. If λu = max(λu, λv), an additional
λu − λv flip-flops should be inserted to the branch that contains the solution (cv, rv, λv, av).

33.4.3 WIRE RETIMING

Unfortunately, long wires cannot be pipelined in isolation. It is important to consider the effect of
interconnect latency on overall system behavior. Relocation of flip-flops to pipeline logic path while
preserving the functionality of the circuit is known as retiming [28]. However, traditional retiming
approaches ignore interconnect delay. Inmodern-day designs, it is imperative to consider the problem
of retiming with both interconnect and gate delays [29–31].

In the context of retiming, a sequential circuit can be represented by a direct graph GR(VR,ER),
where each node v ∈ VR corresponds to a combinational gate, and each directed edge euv ∈ ER

connects the output of gate u to the input of gate v, through a nonnegative number of registers.
Without loss of generality, GR can be assumed to be strongly connected; fictitious nodes and edges
can be added to make it strongly connected otherwise. Let du be the gate delay of node u,wuv the
number of flip-flops of edge euv, and duv the interconnect delay of edge euv if all the flip-flops are
removed. Although it is hard to accurately model interconnect delay, it is fairly accurate to assume
that the delay of a wire is linearly proportional to its length for the following reasons:When a wire is
short, the linear component of the wire delay dominates the quadratic component. For a long wire,
buffers inserted at appropriate locations can render the delay linear.

The retiming problem can be viewed as one of determining a labeling of the nodes r : VR → Z ,
where Z is the set of integers [28], such that wuv + r(v) − r(u) ≥ 0 for all edges wuv ∈ ER. The
retiming label r(v) of node v represents the number of flip-flopsmoved from its outputs to its fan-ins
and ŵuv = wuv+r(v)−r(u) denotes the number of flip-flops on edge euv after retiming. Retiming can
be formulated as a problem of determining a feasible retiming solution for a given clock period, that
is, a solution in which the number of flip-flops on every edge is nonnegative for a given clock period.
The minimum achievable clock period T ∗

CP can then be computed by performing a binary search.
A feasible retiming solution for a given clock period TCP must satisfy the following set of

constraints [30]:

dv ≤ a(v) ∀ v ∈ VR,

a(v) ≤ TCP ∀ v ∈ VR,

wuv + r(v) − r(u) ≥ 0 ∀ euv ∈ ER,

a(v) ≥ a(u) + duv + dv − TCP[wuv + r(v) − r(u)] ∀ euv ∈ ER,

Here, a(v) represents the maximum arrival time at the output of gate v from a flip-flop that directly
drives the logic path containing v. The first two constraints are fairly straightforward. The third
constraint is required for a feasible retiming solution. The fourth constraint ensures that sufficient
flip-flops are inserted along each edge euv for the circuit to be operable at a clock period of TCP. Every
flip-flop along the edge euv after retiming reduces the right-hand side of the inequality by TCP.

By introducing a variable R(v) defined as a(v)/TCP + r(v) at each node v, the preceding set of
constraints can be transformed into a set of difference constraints as follows [30]:

R(v) − r(v) ≥ d(v)

TCP

∀ v ∈ VR, (33.5)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 668 29-9-2008 #25

668 Handbook of Algorithms for Physical Design Automation

R(v) − r(v) ≤ 1 ∀ v ∈ VR, (33.6)

r(u) − r(v) ≤ wuv ∀ euv ∈ ER, (33.7)

R(v) − R(u) ≥ duv
TCP

+ dv
TCP

− wuv ∀ euv ∈ ER, (33.8)

These difference constraints involve |VR| real variables R(v), |VR| integer variables r(v), and 2|VR| +
2|ER| constraints, and can be solved in polynomial time of O(|VR||ER| log |VR| + |VR|2 log2 |VR|),
using Fibonacci heap as the data structure [32].

Given a feasible retiming solution, the exact positions at which flip-flops should be inserted
can be determined as follows: For each edge euv with nonzero ŵuv, the first flip-flop on this edge
is inserted at a distance that corresponds to a delay of TCP − a(u) from the output of gate u. Other
flip-flops are inserted at a distance that corresponds to a delay of TCP from the previous one, until
gate v is reached. All remaining flip-flops on this edge are then inserted right before v.

A fast approximation algorithm can be obtained by first replacing each gate by a wire of the
same delay, and then solving optimally and efficiently the retiming problem with only interconnect
delays [30]. The key to the fast approximation algorithm is the observation that for a directed graph
where dv = 0 for all v ∈ VR, given R(v) for all v ∈ VR that satisfy the constraint in Equation 33.8, the
set of difference constraints can be satisfied by setting r(v) = �R(v)� for all v ∈ VR. The problem
of finding R(v) for all v ∈ VR to satisfy the constraint given in Equation 33.8 can be posed as a
single-source longest-paths problem on GR with the cost or length of each edge euv ∈ ER defined
as duv/TCP − wuv. Any node in GR can be the source node as the graph is strongly connected. If GR

has a positive cycle, the clock period TCP is infeasible. The single-source longest-paths problem can
be solved by the Bellman–Ford algorithm in O(|VR||ER|) time complexity. With a path compaction
preprocessing step to the reduce the size of GR, the complexity can be further reduced.

Given a retiming solution for a graph with only interconnect delays, if the solution retimes some
flip-flops into a wire that represents a gate, a postprocessing step is required to get back a feasible
retiming solution that has both gate and interconnect delays. First, we move the flip-flops in a gate to
its fan-ins or fan-outs depending on which direction has a shorter distance (delay). A linear program
is then used to determine the exact positions of the flip-flops on the interconnect edges. The objective
of the linear program is to minimize the clock period TCP subject to constraints on the flip-flop counts
and constraints on the delays between flip-flops. Let xkuv denote the delay from the kth flip-flop to the
(k+ 1)st flip-flop of the wire from node u to node v in GR, for k = 0, 1, . . . , ŵuv. The linear program
is formulated as follows:

Minimize TCP

subject to
ŵuv∑
k=0

xkuv = duv ∀ euv ∈ ER,

xŵuvuv + dv ≤ a(v) ∀ euv ∈ ER s.t. ŵuv > 0,

a(u) + x0uv ≤ TCP ∀ euv ∈ ER s.t. ŵuv > 0,

a(u) + duv ≤ a(v) ∀ euv ∈ ER s.t. ŵuv > 0,

33.4.4 AREA CONSTRAINEDWIRE RETIMING

To account for the area overhead incurred by wire retiming during the planning stage, a more closely
related problem is that of minimum-area retiming. To render conventional minimum-area retiming
applicable to interconnects, each long interconnect can be represented as a series of interconnect units,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 669 29-9-2008 #26

Global Interconnect Planning 669

each of which has delay but performs no logic function. A natural segmentation of an interconnect
can be obtained by buffer insertion,with each interconnect unit being a buffer driving an interconnect
segment.

Althoughminimum-area retiming is optimal in terms of overall area consumption, it may not be
directly applicable to interconnect retiming and planning. To minimize the total area consumption,
it may relocate flip-flops from regions with a lot of empty space to overcongested regions. That may
result in area constraint violations in a given floorplan, necessitating iterations of floorplanning and
interconnect planning. Therefore, for interconnect retiming and planning, it is necessary to consider
local area constraints such that both the timing and the impact on floorplan of the relocated flip-flops
can be taken into account. In Ref. [29], a new retiming problem, called local area constrained (LAC)
retiming problem, has been formulated with the following three sets of constraints, of which the first
two are typical of the retiming problem [28] and the third captures the local area constraints:

1. Edge weights must be nonnegative:

r(v) − r(u) ≥ −w(eu,v), ∀ eu,v ∈ ER.

2. For any path u� v whose delay (along successive combinational logic paths) is larger than
the clock period TCP, there should be at least one flip-flop on it after retiming:

r(v) − r(u) ≥ −W(u, v) + 1, ∀ u� v,D(u, v) > TCP,

where
W(u, v) defines the minimum latency for a signal to transfer from u to v before retiming
D(u, v) is the maximum delay (of successive combinational logic paths) of the logic

path from u to v with the minimum latencyW(u, v)
3. To define the local area constraints, we let F be the set of all functional units, VT be the

set of all tiles, and for any ti ∈ VT , C(ti) be the remaining capacity (after buffer insertion)
that is available for flip-flop insertion. The function P : F → VT maps each functional unit
v ∈ F to a tile ti ∈ VT such that P(v) = ti means that functional unit or interconnect unit v
is in tile ti of the floorplan. The local area constraint of a tile requires that

∑
P(u)=ti , eu,v∈ER

[
w(eu,v) + r(v) − r(u)

] ≤ C(ti), ∀ ti ∈ VT .

As each local area constraint involves more than two retiming variables, the LAC-retiming
problem is an integer linear programming problem, which is NP-complete. In Ref. [29], a heuristic
based on minimum-area retiming was used to solve the LAC-retiming problem. In minimum-area
retiming, all flip-flops are assumed to have the same area cost; thus, the minimization of total number
of flip-flops is equivalent to the minimization of the total area. In LAC-retiming, the insertion of flip-
flops into different tiles should take into account the differences in the tile capacities. To achieve that,
the LAC-retiming problem was solved in Ref. [29] as a series of weighted minimum-area retiming
problems, with the weights of flip-flops adjusted according to the congestion levels in the tiles. As
different weights are assigned to flip-flops in different tiles based on the area consumption and tile
capacities in the series of minimum-area retiming problems, flip-flops from overutilized tiles can be
repositioned to those with low-area consumption.

33.5 CONCLUDING REMARKS

While Semiconductor process scaling has enabled integrated circuits of increasingly high perfor-
mance, it has also created several new design concerns. In this chapter, we have summarized several

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 670 29-9-2008 #27

670 Handbook of Algorithms for Physical Design Automation

buffer planning methodologies that tackle the design challenges brought forth by the exponential
growth of buffers.Most of thesemethodologies address both timing and layout closure issues simulta-
neously by allocating sufficient silicon resources and routing resources during floorplanning or right
after floorplanning. As multiple-cycle data communications become increasingly necessary, many
of these buffer planning methodologies have been extended to also address the exponential growth
of flip-flops (clocked repeaters). The challenge here is to account for the changes in latency intro-
duced by additional flip-flops along global interconnects. While we have presented these planning
methodologies in the context of synchronous system design, we believe that these methodologies
also have an important role to play in the design of SOCs, NOCs, latency-insensitive systems, and
globally asynchronous locally synchronous systems.

It is also important to recognize that the planning methodologies presented in this chapter may
have fundamental limits. To a certain extent, the planning methodologies shield the downstream
stages of physical synthesis from the problem of inserting a huge fraction of repeater (and clocked
repeater). However, empirical studies [33] indicate that it is unlikely that incremental improvements
to the physical synthesis technologies can adequately handle the exponential growth in repeater
and clocked repeater counts if the scaling continues at the existing pace. Instead, a correct-by-
construction design methodology that trades off optimality for predictability has been proposed in
Ref. [33]. Perhaps even more alarming is a theoretical study, which is based on Rent’s rule [34,35],
that demonstrates the necessity of excessively long wires as the number of computing elements
within a system continues to grow [36]. As large monolithic designs are unattractive, increased
quality, instead of improved capacity, of CAD algorithms and tools should perhaps be the proper
objective of future research [36].

REFERENCES
1. J. Cong, T. Kong, and Z. Pan. Buffer block planning for interconnect planning and prediction. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 9(6):929–937, 2001 (ICCAD 1999).

2. C. J. Alpert, J. Hu, S. S. Sapatnekar, and P. G. Villarrubia. A practical methodology for early buffer and
wire resource allocation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
22(5):573–583, 2003 (DAC 2001).

3. P. Sarkar and C. -K. Koh. Routability-driven repeater block planning for interconnect-centric
floorplanning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
20(5):660–671, 2001 (ISPD 2000).

4. J. Cong, L. He, K. -Y. Khoo, C. -K. Koh, and Z. Pan. Interconnect design for deep submicron ICs. In
Proceedings of IEEE/ACM International Conference on Computer Aided Design, San Jose, CA, pp. 478–
485, 1997.

5. W. C. Elmore. The transient response of damped linear networks with particular regard to wide-band
amplifiers. Journal of Applied Physics, 19(1):55–63, January 1948.

6. C. J. Alpert and A. Devgan. Wire segmenting for improved buffer insertion. In Proceedings of ACM/IEEE
Design Automation Conference, Anaheim, CA, pp. 588–593, June 1997.

7. F. F. Dragan, A. B. Kahng, I. I. Mandoiu, S. Muddu, and A. Zelikovsky. Provably good global buffering
by generalized multiterminal multicommodity flow approximation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 21(3):263–274, 2002 (ASPDAC 2001).

8. F. F. Dragan, A. B. Kahng, S. Muddu, and A. Zelikovsky. Provably good global buffering using an available
buffer block plan. In Proceedings of IEEE/ACM International Conference on Computer Aided Design, San
Jose, CA, pp. 104–109, 2000.

9. X. Tang and D. F. Wong. Network flow based buffer planning. Integration, 30(2):143–155, 2001 (ISPD
2000).

10. Y. -H. Cheng and Y. -W. Chang. Integrating buffer planning with floorplanning for simultaneous multi-
objective optimization. In Proceedings of IEEE/ACM Asia South Pacific Design Automation Conference,
pp. 624–627, Piscataway, NJ, 2004. IEEE Press.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 671 29-9-2008 #28

Global Interconnect Planning 671

11. H. -R. Jiang, Y. -W. Chang, J. -Y. Jou, and K. -Y. Chao. Simultaneous floorplan and buffer block
optimization. IEEETransactions onComputer-AidedDesign of IntegratedCircuits and Systems, 23(5):694–
703, 2004 (ASPDAC 2003).

12. Y. Ma, X. Hong, S. Dong, S. Chen, Y. Cai, C. K. Cheng, and J. Gu. Dynamic global buffer planning
optimization based on detail block locating and congestion analysis. In Proceedings of ACM/IEEE Design
Automation Conference, pp. 806–811, New York, 2003. ACM Press.

13. R. McInerney, M. Page, K. Leeper, T. Hillie, H. Chan, and B. Basaran. Methodology for repeater insertion
management in the RTL, layout, floorplan, and fullchip timing databases of the Itanium microprocessor.
In Proceedings of ACM International Symposium on Physical Design, San Diego, CA, pp. 99–104, 2000.

14. L. P. P. P. van Ginneken. Buffer placement in distributed RC-tree networks for minimal Elmore delay.
In Proceedings of IEEE International Symposium on Circuits and Systems,New Orleans, LA, pp. 865–868,
1990.

15. S. Chen, X. Hong, S. Dong, Y. Ma, Y. Cai, C. -K. Cheng, and J. Gu. A buffer planning algorithm based
on dead space redistribution. In ASP-DAC ’03: Proceedings of the 2003 Conference on Asia South Pacific
Design Automation, pp. 435–438, Piscataway, NJ, 2003. IEEE Press.

16. S. Chen, X. Hong, S. Dong, Y. Ma, Y. Cai, C. -K. Cheng, and J. Gu. A buffer planning algorithm with
congestion optimization. In Proceedings of IEEE/ACMAsia South Pacific Design Automation Conference,
pp. 615–620, Piscataway, NJ, 2004. IEEE Press.

17. C. W. Sham and E. F. Young. Routability driven floorplanner with buffer block planning. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(4):470–480, 2003
(ISPD 2002).

18. K. K. Wong and E. F. Young. Fast buffer planning and congestion optimization in interconnect-driven
floorplanning. InProceedings of IEEE/ACMAsia SouthPacificDesignAutomationConference,Kitakyushu,
Japan, pp. 411–416, 2003.

19. C. Albrecht, A. B. Kahng, I. Mandoiu, and A. Zelikovsky. Floorplan evaluation with timing-driven global
wireplanning, pin assignment and buffer/wire sizing. In Proceedings of IEEE/ACM Asia South Pacific
Design Automation Conference, Bangalore, India, pp. 580–591, 2002.

20. Y. Ma, X. Hong, S. Dong, S. Chen, C. -K. Cheng, and J. Gu. Buffer planning as an integral part of
floorplanning with consideration of routing congestion. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 24(4):609–621, 2005 (ISPD 2003, ASPDAC 2004).

21. H. Xiang, X. Tang, and D. F. Wong. An algorithm for integrated pin assignment and buffer planning. ACM
Transactions on Design Automation of Electronics Systems, 10(3):561–572, 2005 (DAC 2002).

22. P. Sarkar and C. -K. Koh. Repeater block planning under simultaneous delay and transition time constraints.
InProceedings of IEEE/ACMDesign, Automation and Test in Europe Conference, pp. 540–545, Piscataway,
NJ, 2001. IEEE Press.

23. S. -M. Li, Y. -H. Cherng, and Y. -W. Chang. Noise-aware buffer planning for interconnect-driven
floorplanning. InProceedings of IEEE/ACMAsia SouthPacificDesignAutomationConference,Kitakyushu,
Japan, pp. 423–426, 2003.

24. A. Devgan. Efficient coupled noise estimation for on-chip interconnects. In Proceedings of IEEE/ACM
International Conference on Computer Aided Design, San Jose, CA, pp. 147–153, 1997.

25. D. Matzke. Will physical scalability sabotage performance gains? IEEE Computers, 8:37–39, September
1997.

26. P. Cocchini. A methodology for optimal repeater insertion in pipelined interconnects. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 22(12):1613–1624, 2003 (ICCAD 2002).

27. R. Lu, G. Zhong, C. -K. Koh, and K. -Y. Chao. Flip-flop and repeater insertion for early interconnect
planning. In Proceedings of IEEE/ACMDesign, Automation and Test in Europe Conference, Paris, France,
pp. 690–695, March 2002.

28. C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. Algorithmica, 6:5–35,1991.
29. R. Lu and C. -K. Koh. Interconnect planning with local area constrained retiming. In Proceedings of

IEEE/ACM Design, Automation and Test in Europe Conference, Messe Munich, Germany, pp. 442–447,
March 2003.

30. C. C. Chu, E. F. Young, D. K. Tong, and S. Dechu. Retiming with interconnect delay. In Proceedings of
IEEE/ACM International Conference on Computer Aided Design, San Jose, CA, pp. 221–226, 2003.

31. C. Lin and H. Zhou. Retiming for wire pipelining in system-on-chip. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 23(9):1338–1345, 2004 (ICCAD 2003).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C033 Finals Page 672 29-9-2008 #29

672 Handbook of Algorithms for Physical Design Automation

32. C. E. Leiserson and J. B. Saxe. A mixed-integer programming problem which is efficiently solvable.
Journal of Algorithms, 9:114–128, 1988.

33. P. Saxena, N. Menezes, P. Cocchini, and D. Kirkpatrick. Repeater scaling and its impact on CAD.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23(4):451–463, 2004
(ISPD 2003).

34. C. E. Radke. A justification of, and an improvement on, a useful rule for predicting circuit-to-pin ratios.
In Proceedings of ACM/IEEE Design Automation Conference, pp. 257–267, 1969.

35. B. Landman and R. Russo. On a pin versus block relationship for partitioning of logic graphs. IEEE
Transactions on Computers, C-20:1469–1479, December 1971.

36. P. H. Madden. SuperSized VLSI: A recipe for disaster. In Proceedings of Electronic Design Processes
Workshop, Monterey, CA, 2005.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 673 24-9-2008 #2

34 Coupling Noise

Rajendran Panda, Vladimir Zolotov,
and Murat Becer

CONTENTS

34.1 Coupling Noise Phenomenon.. 674
34.1.1 Interconnect Capacitance .. 674
34.1.2 Coupling Noise Injection . 675

34.2 Noise Analysis . 676
34.2.1 Noise Calculation . 676
34.2.2 Failure Criteria . 679

34.3 Simplifying Models and Analysis . 681
34.3.1 Simplification of Models . 681

34.3.1.1 Aggressor Driver Model . 681
34.3.1.2 Quiet Victim Model (for Functional Noise) . 681
34.3.1.3 Switching Victim Driver Model (for Delay Noise) . 682
34.3.1.4 Receiver Characterization . 683

34.3.2 Conservative Filtering of Nonrisky Nets. 683
34.4 Reducing Pessimism in Crosstalk Noise Analysis. 684

34.4.1 Logic Correlation . 685
34.4.2 Switching (Timing) Windows . 687

34.5 Noise Avoidance, Noise-Aware Design, and Noise Repair . 688
34.5.1 Noise Prevention and Noise-Aware Design . 688

34.5.1.1 Slew Control . 688
34.5.1.2 Congestion Minimization . 689
34.5.1.3 Noise-Aware Routing (Spacing, Shielding, Layer Assignment). 689

34.5.2 Postroute Noise Repair . 689
34.5.2.1 Gate Sizing, Buffer Insertion .. 689

References . 690

As a result of the scaling of physical geometries of wires and devices to ultra-deep submicron
(UDSM) dimensions, signal integrity has become, in addition to area, timing, and power, an impor-
tant design challenge. Although signal integrity problems can arise from many sources, such as
capacitive coupling between signal wires, inductive and substrate coupling, power supply variation,
degradation of devices and interconnect, and leakage current, capacitive coupling is the single major
source of noise in current technologies. In UDSM technologies, its contribution has grown to be a
major fraction, as much as 60–70 percent, of the total wiring capacitance. Depending on the signal
levels on the coupled wires, this capacitance can speed up or slow down switching, and introduce
signal-dependent variations in the delays. The domination of wire delays over gate delays in these
technologies has the effect of making a significant part of the circuit delay susceptible to wide vari-
ation because of capacitive coupling. As a result, delay variation effects of coupling noise must be

673

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 674 24-9-2008 #3

674 Handbook of Algorithms for Physical Design Automation

considered while verifying the timing of a design. In addition to delay-related failures, noise can
also cause functional failures, increase power consumption, and accelerate degradation of devices.
For these reasons, physical design and circuit design must seriously consider coupling noise issues.

Serious noise issues, if not caught and fixed early,may require significant designmodifications at
very late design stages and impact adversely the design completion schedule. Because noise analysis
and repair cost significant time and resources, noise avoidance techniques should be embraced at all
design stages.

In this chapter, we look at the coupling noise phenomenon, noise analysis, and some of the
criteria for determining noise failures. We then present modeling and analysis techniques suitable
for efficient noise analysis at the global routing, detailed routing, and postrouting stages. Techniques
for reducing pessimism in noise analysis are also provided in some detail. Finally, noise avoidance,
noise-aware physical and circuit design, and noise repair are discussed.

34.1 COUPLING NOISE PHENOMENON

Coupling noise can be broadly defined as distortion of a signal by other signals. The net with the
distorted signal is usually called a victim net, and the nets affecting a victim net are called aggressor
nets. The victim net and its aggressor nets collectively form a noise cluster. In real circuits, coupling
noise is a bidirectional phenomenon: if netA injects noise into netB, then netB injects some noise into
net A too. However, this symmetrical consideration of coupling noise [1] is not very popular in very
large scale integration (VLSI) design, except during a full SPICE-level circuit simulation, because it
complicates the analysis. Asymmetrical consideration of coupling noise significantly simplifies the
analysis but may have lower accuracy.

A noise event occurs when a victim net is electrically coupled with an aggressor net. Capacitive
coupling is the most important cause of coupling noise in VLSI interconnects. There are several
reasons for the strong effect of capacitive coupling in UDSM technologies. Complementary metal
oxide semiconductor (CMOS) transistors have a very high input gate resistance and a small gate
capacitance, as compared to the coupling capacitance of interconnects. With technology scaling,
the minimum spacing between wires is decreased while the ratio of thickness to width of wires
is increased (to control wire resistance). The net result of this is that, in successive technology
generations, the wire coupling capacitance increases relative to the wire capacitance to ground.
Moreover, strict constraints on power dissipation require the use of small drivers with rather high
output resistance, which accentuates the contribution of the coupling capacitance to the total delay.
All these factors exacerbate coupling noise injection.

34.1.1 INTERCONNECT CAPACITANCE

The total wire capacitance consists of grounded and coupling capacitances, as shown in Figure 34.1.
The grounded capacitance results from several sources. First, an important component of the
grounded capacitance is wire capacitance to orthogonal wiring on upper and lower metal layers.
The coupling capacitance to each of the orthogonal wires is quite small and although these wires
may switch at different time moments in different directions, the total noise injected by these wires is
close to zero. Therefore, the capacitance to orthogonal wires is considered as grounded capacitance.
Second, if the wire is on the lowest metal layer, its grounded capacitance includes also coupling
capacitance to the substrate. Third, the coupling capacitance between a wire and the power and
ground distribution networks on the same or different layers contributes to the grounded capaci-
tance. The coupling capacitance of a wire is usually the sidewall capacitance to other (nonsupply)
wires in the same metal layer. This capacitance can be high compared to the capacitance to the other
metal layers, because wires in modern chips are rather tall and narrow.

Although detailed capacitance extraction involves a three-dimensional field solver, for the pur-
poses of analyzing large networks of interconnects, it is sufficient to use much simpler models. The

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 675 24-9-2008 #4

Coupling Noise 675

Coupling capacitance to

Grounded capacitance
Coupling capacitance

Orthogonal wiring

Victim wire Aggressor wire

FIGURE 34.1 Coupling and grounded capacitances of interconnect wires.

coupling capacitance between two parallel wires is approximately proportional to the height of the
wires and the distance that they run parallel to each other, and inversely proportional to the spacing
between the wires. On the other hand, the grounded capacitance of a wire is proportional to the wire
length and wire width, and inversely proportional to the thickness of the interlayer dielectric.

34.1.2 COUPLING NOISE INJECTION

The injection of capacitive coupling noise is illustrated on a simple model, as shown in Figure 34.2a.
Here, the aggressor net transitions fromzero voltage toVddduring time ta. The resistanceRh modeling
the driver of the victim net is trying to hold the victim net at zero potential. The capacitance Cg is
the total grounded capacitance of the victim net, and the capacitance Cc is the coupling capacitance
between the victim and aggressor nets. When the aggressor transitions, it increases voltage on one
terminal of the coupling capacitance Cc, which increases the voltage on the other terminal of Cc.
The pair of capacitors Cc and Cg acts as a capacitive voltage divider. If the holding resistance Rh is
infinitely large, the voltage on the victim net would be V ∗

a Cc/(Cg + Cc). The voltage on the victim

Aggressor net

Victim net

VA
Cc

Cg

ta

VB

VA

Rh

(a) (b)

A

B

V

t

FIGURE 34.2 (a) Circuit and (b) waveforms of capacitive coupling noise injection.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 676 24-9-2008 #5

676 Handbook of Algorithms for Physical Design Automation

net is growing during switching of the aggressor net. If the holding resistance Rh has a finite value,
the current flowing through this resistance discharges the grounded capacitance Cg and charges the
coupling capacitance Cc. This slows down the voltage increase on the victim and eventually makes
this voltage return to zero after the aggressor completes its switching. The speed of this process and,
correspondingly, the height and thewidths of the noise pulse depend on the amount of current flowing
through the holding resistance. The smaller the holding resistance, the higher the current it provides
to the victim net and the shorter and narrower is the noise pulse. The waveforms of noise injection
are shown in Figure 34.2b. A similar situation occurs if the victim is at Vdd and the aggressor net
switches from Vdd to 0.

The circuit shown in Figure 34.2a can be solved analytically. A formula for the height of the
noise pulse is expressed as follows [2,3]:

Vn = Vdd · RhCc

ta

{
1 − exp

[−ta
Rh(Cg + Cc)

]}
(34.1)

From the above formula, it is clear that noise can be reduced by the following methods:

• Slowing down the aggressor transition, i.e., increasing its transition time ta
• Reducing the coupling capacitance Cc

• Increasing the grounded capacitance Cg

• Reducing the holding resistance Rh

These methods form the basis for the noise avoidance and repair techniques discussed in the sequel.

34.2 NOISE ANALYSIS

Depending on the victim net behavior, there are two possible types of coupling noise: functional
noise and noise on delay. Functional noise occurs when the victim net is not expected to switch
during noise injection. There are four types of functional noise corresponding to the combinations of
undershoot and overshoot from signals that are nominally at low and high logic levels. These types
of coupling noise are shown in Figure 34.3. Typically, low overshoot and high undershoot are most
harmful types of noise for circuit operation. If a noise pulse on a logic low wire is high enough,
it can change the state of the victim receiver gate and create a circuit logic failure. However, high
overshoot and low undershoot can be problematic for some kinds of circuits, such as circuits with
pass-transistors. Additionally, they affect circuit reliability by magnifying the hot electron injection
(HCI) and the negative bias temperature instability (NBTI).

Noise on delay occurs when the victim net transitions from one state to the other during noise
injection. The injected noise pulse affects the victim transition, making it either faster or slower,
depending on whether the aggressor net switches in the same or opposite direction as the victim net.
If the delay variation because of the noise pulse is too high, it may create a circuit timing failure.
Figure 34.4 shows waveforms of victim and aggressor transitions for noise on delay.

34.2.1 NOISE CALCULATION

The goal of noise analysis is to identify all nets susceptible to noise that may result in circuit failure.
To be useful, the noise analysis should be conservative so as not to miss any potentially dangerous
noise. On the other hand, noise analysis should not be too pessimistic, or it will report too many false
noise violations, which are difficult to repair and will lead to wasted power and design effort. Thus, a
good noise analysis tool should be both conservative and sufficiently accurate. The simplified model
shown in Figure 34.2, while useful for understanding the coupling noise phenomenon, is not accurate
for computing the actual noise in VLSI interconnects.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 677 24-9-2008 #6

Coupling Noise 677

(b)

(a)

High undershoot High overshoot

Vvictim

Vvictim

Low undershoot Low overshoot

0

0

Vdd

t

t

FIGURE 34.3 Types of functional noise. (a) Noise injected to high logic level and (b) noise injected to low
logic level.

Aggressor transition

Noise injected into quiet victim

Victim transition Victim transition

Additional delay owing to noise

t

t

FIGURE 34.4 Waveforms of noise on delay.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 678 24-9-2008 #7

678 Handbook of Algorithms for Physical Design Automation

Victim receiver 1
Victim net

Victim receiver 2

Victim driver

Aggressor net 2
Aggressor

Aggressor
Aggressor net 1

FIGURE 34.5 Example of noise cluster with capacitive coupling.

Figure 34.5 shows a more accurate model of a noise cluster. The interconnect wires are broken
into segments, and each segment is modeled with its resistance, grounded capacitance and coupling
capacitance. The noise is injected into the victim net along the whole length of the victim wire by
multiple aggressors. The victim driver is trying to hold the victim net at the correct potential by
providing the current for charging or discharging the capacitances of the victim net. This current is
a nonlinear function of the voltage at the input and output of the victim driver. The injected noise
pulse is propagated through the victim interconnect to the input of the victim receiver gates affecting
their state and behavior.

Noise analysis requires solving two main problems: calculating the amount of injected noise and
determining whether the injected noise pulse is critical for circuit operation or not. The calculation
of the actual noise waveform is a difficult problem because a noise cluster is a complex nonlinear
circuit. This can be solved most accurately by performing a SPICE-level transient analysis, and by
solving differential equations describing the transient behavior of the noise cluster. Unfortunately, this
approach is too slow for large designs because VLSI chipsmay havemanymillions of noise clusters.
Moreover, the simulation-based approach with a single stimulus is not necessarily conservative
enough. There can be an extremely large number of possible noise injection scenarios and we cannot
guarantee that theworst of these has been chosen for simulation. Theaggressors can switch at different
moments in time and have various waveforms with different transition times. The actual aggressor
behavior depends on many factors such as the state of the circuit, its input signals, supply voltage,
temperature, and process variation. Therefore, SPICE simulation of noise clusters is resorted to only
in special cases such as verifying and tuning noise analysis techniques, or in analyzing complicated
situations.

To simplify the computation of an injected noise pulse, it is common to approximate the non-
linear circuit of the noise cluster with a linear circuit. The approximation should be conservative
enough so that the noise computed from this approximation is not less than the worst possible actual
noise. The transformation of the nonlinear circuit into a linear circuit is performed by modeling the
aggressor and victim drivers with linear models, as will be discussed in Section 34.3. The receivers
are modeled by their input capacitances. The resulting linear circuit can be analyzed using the super-
position principle, which is a key benefit of linear modeling. The noise injected by each aggressor
net is computed separately assuming that all the other aggressor drivers are quiet. A model order

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 679 24-9-2008 #8

Coupling Noise 679

reduction technique [4,5] is usually used for this computation. The total noise pulse is calculated by
superimposing the noise pulses injected by each aggressor net. The noise pulses are aligned at their
peaks to obtain the maximum possible combined noise pulse.

34.2.2 FAILURE CRITERIA

The second main problem of noise analysis is making a decision whether the injected noise is
dangerous for circuit operation or not. This problem is solved differently for functional noise and
noise on delay. In case of noise on delay, delay variation even from small injected noise can be harmful
for correct circuit operation if the affected net is on a critical-signal propagation path. Therefore, in
case of noise on delay,wemust compute not only the noise pulse but compute also the delay variation
due to that pulse and perform timing analysis with the delay variations obtained from noise analysis.

Accurate computation of the delay variation because of an injected noise pulse is a difficult
nonlinear problem.One of the common approximatemethods to solve this problem is to superimpose
linearly the transition of the victim net and the injected noise pulse. According to Ref. [6], the
maximum delay variation is obtained if the peak of the noise pulse is aligned with the 50 percent
crossing time of the victim transition in the presence of noise. This alignment is demonstrated in
Figure 34.4. However, this method maximizes the delay variation of the victim net as seen at the
victim receiver's input and does not take into account the propagationof the resulting signal transition
through the victim receiver gate. To improve the accuracy of delay computation, it was proposed
to maximize the delay measured from the output of the victim driver to the output of the victim
receiver [7]. This takes into account nonlinear and low-pass filtering properties of the victim receiver
gate. However, because it is difficult to compute this delay variation without nonlinear simulation
of the victim receiver gate, precharacterized multidimensional tables are used for this computation
in Ref. [7]. After the noise analysis, the calculated delays are used for noise-aware timing analysis
that verifies whether the circuit meets timing requirements in the presence of noise.

An alternative approach to estimating delay variation because of coupling noise is based on
the observation that the noise pulse injected during victim net transition results in additional charge
flowing either from or into the victim driver. From this, it was concluded that the injected noise
pulse can be modeled with a change of the effective load capacitance [8,9]. The degree of the
effective load capacitance variation is called theMiller coefficient. Themain benefit of this approach
is its simplicity and convenience for integration of the noise analysis into a timing analysis engine.
The noise analysis tool simply updates values of the effective load capacitance, and then performs
the timing analysis in the usual way with the updated load capacitances. Unfortunately, the accuracy
of this approach is not very good because it does not take into account the fact that the waveforms in
the presence of the injected noise are significantly different from the waveformswithout noise, and a
simple change of the victim load capacitance cannot accurately capture the effect of noise injection.

In case of functional noise, a noise pulse is injected into a victim net when it is in its stable
state. If the noise pulse is large enough, it can propagate through combinational gates to memory
elements (latches or flip-flops) and change their state, resulting in a circuit failure. Digital gates
suppress propagation of narrow short pulses for two reasons: (1) their voltage transfer characteristic
attenuates small deviations of the input voltage from the values corresponding to logic 1 and 0 and
(2) CMOS gates act as low-pass filters.

There are two main classes of failure criteria for functional noise. One of them is propagation
of the injected noise pulse though the circuit until memory elements [10]. The computation of the
propagated noise pulse can be carried out either by precharacterized tables or by using simplified
nonlinear models of gates [10,11]. The noise propagation failure criterion takes into account that the
propagated noise pulse combines with noise pulses injected into the nets along the noise propagation
path.Unfortunately, the noise propagation criterion requires rather complex computations. Therefore,
it is more suitable for sign-off analysis.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 680 24-9-2008 #9

680 Handbook of Algorithms for Physical Design Automation

Low noise margin: NML = VIL−VOL

Vin

VIH

VOH

Vout

VIL

VOL

FIGURE 34.6 Inverter voltage transfer characteristic and noise margins.

The other class of noise failure criteria is based on using local noise threshold values [10–15].
Only noise signals that are higher than a specified threshold level are considereddangerous. Themain
difficulty with such criteria lies in the selection of the appropriate threshold. One of the common
approaches is to use the static noise margin of the victim receiver gate [16] derived from the unity
gain points of the transfer characteristic, as shown in Figure 34.6. This derivation is based on the
consideration that, for safe operation, the differential DC amplification coefficient of the gate should
be less than 1. However, this criterion does not take into account the low-pass filtering properties of
CMOS gates, and therefore, it can be too pessimistic. There are several modifications of the local
noise failure criteria that either directly compute a propagated noise pulse or use a noise rejection
curve [12]. An example of a noise rejection curve, whose coordinates are the height and the width
of the noise pulse, is shown in Figure 34.7. The points lying higher than the noise rejection curve

Noise in this region is
dangerous

Noise width (ps)
Noise in this region is not dangerous

Noise

FIGURE 34.7 Noise rejection curve.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 681 24-9-2008 #10

Coupling Noise 681

correspond to the combinations of noise height and width that are dangerous for circuit operation.
To take into account the noise propagating from the input of the victim driver to its output, the local
criterion can increment the injected noise by some predefinedmargin. In this case, the criterion checks
that the noise propagated through the victim's receiver gate is less than this predefined margin. This
approach is called noise budgeting, and although it is computationally efficient, the local criteria
of noise failure are not very accurate because they cannot take into account how the noise pulse
propagates through the circuit. However, because of their efficiency, the local noise criteria are very
popular for noise avoidance, noise-aware routing, and repairing methodology.

34.3 SIMPLIFYING MODELS AND ANALYSIS

For chip-level signal-integrity verification, it is essential to analyze millions of net clusters (each
cluster consisting of a victim net and its significant aggressors). Moreover, the chip-level analysis
will have to be carried out several times before a complete noise sign-off, nearly as often as significant
changes are made to the design layout. Design productivity requires this analysis be performed with
a reasonable computational time, typically within a few hours. A fast noise analysis turnaround is
made possible mainly through two simplifications discussed in this section: simplification of models
and conservative filtering of nonrisky nets. These simplifications are indispensable for early noise
estimation during the global and detailed routing procedures, wherein noise is to be estimated in an
inner loop of routing optimization.

34.3.1 SIMPLIFICATION OF MODELS

Linear models for the victim and aggressor drivers, receivers, and the interconnection significantly
speed up noise simulation while providing acceptable accuracy. Linear simulation is extremely fast
compared to nonlinear simulation. Moreover, in certain situations, even analytical formulations can
be used. Another key advantage of working with linear models is the ability to apply the principle
of superposition, which permits simulating the victim and aggressor driver sources individually
and later combining their effects. This is crucial for determining a temporal alignment between the
switching of the victim and aggressors that produces conservative noise estimation. Searching for
a proper alignment of source waveforms that will maximize the noise effect (i.e., glitch or delay
variation at a receiver gate) is prohibitively expensive for nonlinear circuits. Using superposition,
the results of independent simulations of linear aggressor and victim driver sources can be easily
combined to maximize the noise effect. The construction of linear models of drivers and receivers is
described in the following subsections.

34.3.1.1 Aggressor Driver Model

A simple linear model of the aggressor driver consists of a Thevenin voltage source with a series
resistance, as shown in Figure 34.8. Typically, a saturated ramp is used as the voltage source, although
other waveforms can also be used. Such a model is fitted bymatching the salient time points (e.g., 10,
50, and 90 percent crossing points) of the output waveforms obtained with the linear model and with
the actual nonlinear driver, for a given load capacitance. The model is precharacterized for a range
of load capacitance values. During noise analysis, the effective capacitance [17] of the distributed
parasitic elements of the interconnect wires and the driver slew are determined using either iterative
or noniterative techniques.

34.3.1.2 Quiet Victim Model (for Functional Noise)

For a small noise height, the driver can be approximated by a holding resistor connected to ground
or Vdd. The holding resistance can be characterized in several ways:

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 682 24-9-2008 #11

682 Handbook of Algorithms for Physical Design Automation

C1

C1

11

1

1

VThevenin

RThevenin

FIGURE 34.8 Aggressor driver model.

1. A small signal analysis of the gate can be performed, wherein a small noise voltage is
applied at the output (over a 0 or Vdd bias as appropriate for the output state) and the
output current is measured. The ratio of the output current to the applied noise voltage then
characterizes the holding resistance. Note that, a conservative (larger) holding resistance
value is obtained when the output is biased to the maximum expected noise level.

2. The holding resistance of the driver gate can be computed from the channel resistances of
individual transistors, by traversing all the conducting paths in the gate from output node to
Vdd/ground [12]. As the transistors in the conducting paths will be in the linear operating
region, the transistor channel resistance in the linear region may be precharacterized as
a function of transistor width. For a conservative analysis, the inputs of the gate must be
asserted so as to obtain the maximum holding resistance.

34.3.1.3 Switching Victim Driver Model (for Delay Noise)

A switching event on the victim affects the load seen by the aggressors and vice versa. The change
in aggressor's effective loading owing to victim's switching has only secondary effects on the noise
induced on the victim (effected through the change in aggressor's output slew), and so can be ignored.
For this reason, the aggressor drivermodel (discussed before) is createdwith no special consideration
of the victim's switching. However, a drivermodel created thus cannot be used for a switching victim
without incurring significant error, because the nonlinearity error is severe in the victim driver case.
The change in effective loading of victim owing to aggressors' switching and its impact on victim's
delay is significant. One way to compensate this error is to adjust the Thevenin resistance of the
driver model to a larger resistance, called the transient holding resistance, Rtr , which is calculated as
below and illustrated in Figure 34.9 [7].

1. Obtain the noise waveform on the victim by performing a linear simulation using an initial
(uncompensated) Thevenin model with the victim source grounded. Aggressors are simu-
lated individually and aligned appropriately to get the maximumpeak noise. From the noise
voltage waveform, Vn(t), compute the associated noise current waveform, In(t), using the
simplified model in Figure 34.9a: In = Vn/Rth + CLOAD(∂Vn/∂ t).

2. Perform nonlinear simulations of the victim driver gate with CLOAD, with and without the
added current source In(t) at the output, to obtain the noiseless transition V1 and noisy
transition V2, as shown in Figure 34.9b, and calculate the noise voltage response of the
nonlinear model, V ′

n, by subtracting the two nonlinear simulation results: V′
n = V1 − V2

(Figure 34.9c).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 683 24-9-2008 #12

Coupling Noise 683

Vn V1

V1

In

Rth (Rtr)

(V �n)

(V �n)

CLoad CLoad

(a) (b)

(In)

(V2) V2

(c)

V(t)

t

FIGURE 34.9 Characterization of transient Thevenin resistance: (a) Computation of noise current waveform
using a linear driver model, (b) Computation of noisy and nonnoisy output waveforms with a nonlinear driver
model, and (c) Computation of noise voltage waveform for computing transient holding resistance.

3. Finally, construct the equivalent linear model with the transient holding resistance Rtr by
replacing Rth in Figure 34.9a with Rtr . Determine the value of Rtr such that the area under
the resulting noise voltage waveform V ′′

n matches the area under V ′
n. It can be shown that

Rtr = �
V ′

n dt/
�
In dt.

34.3.1.4 Receiver Characterization

The loading of a receiver gate on a victim or an aggressor net is modeled as a fixed capacitance,
averaged over the period of transition of its input. A receiver gate is also characterized for its
noise threshold values that define a local failure, or for noise propagation. The noise threshold can
be as detailed as a noise rejection table, such as the one shown in Figure 34.7, or as simple as
the static noise margin. The noise propagation table, which gives the amount of output noise as a
function of properties of input noise pulse (width and height), provides a very efficient mechanism
for propagating noise to memory elements, without a need to perform an expensive simulation of a
cascade of multiple stages of nets together. Where a noise propagation table is available, the noise
threshold can be computed on the fly when a local noise check is to be performed.

The above discussed linear models do introduce some error, but their accuracy is acceptable
in most situations. Situations requiring high accuracy may be simulated using accurate nonlinear
models with SPICE level accuracy, using the worst-case conditions (e.g., alignment of aggressors)
predicted through the linear model.

34.3.2 CONSERVATIVE FILTERING OF NONRISKY NETS

Simulation with detailed models is unnecessary for a majority of nets as coupling noise is significant
only in a small fraction of the nets. We can use extremely simplified, but conservative, models to
quickly identify potentially risky nets (a very small number usually) for detailed noise analysis. It is
a common practice to use initially very simple driver and interconnectionmodels and then gradually
increase the details of the models and resimulate only those net clusters that fall with the simpler
model. A hierarchy of filters used by Ref. [12] is shown in Figure 34.10 and described below as an
example of this approach:

1. Conservative default drivermodels are used for victims and aggressors. Lumped resistance-
capacitance (RC) models are used for nets. The lumped grounded capacitor of the victim
net is placed at the driving end of the victim net and the lumped coupling capacitance at
the receiver end of the net. The resulting model is shown in Figure 34.10a. In this case,
the actual driver models and the distributed RC need not be loaded, and the noise can be
computed analytically.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 684 24-9-2008 #13

684 Handbook of Algorithms for Physical Design Automation

Cg-side

Cg-path

RpathCc

Cc

Cg

Rthev = Rdefault/N
Rthev = Rdefault/N

Rhold

Rhold

Rside

tdefault
tdefault

Rnet

(a) (b)

v

v

Rside

Cg-path Cg-path = sum of grounded caps for source–sink path

Cg-agr

Cg-agr = grounded capacitance of aggressors
Cg-side = side branch capacitance

Cg-side

Rpath

Rpath,Rside = resistances of source–sink path and side branch

Cc

Cc, Cg = sum of coupling and grounded capacitance

R thev = || RThevenin

Rhold

Rhold = victim driver holding resistance

tThevenin v

(c)

N = number of aggressors

Rdefault, tdefault = default aggressor Thevinin model

FIGURE 34.10 Hierarchy of conservative noise filters.

2. The default victim driver is now replaced by the linear model of the actual driver and
the victim net model is expanded to handle the main path to receiver and the side paths
differently, as shown in Figure 34.10b.

3. The default aggressor driver is now replaced by the actual aggressor linear drivers and the
aggressor nets are expanded to include topology details, as shown in Figure 34.10c.

34.4 REDUCING PESSIMISM IN CROSSTALK NOISE ANALYSIS

As described in the previous sections, practical noise analysis is performed in a static way that
locally creates a worst-case scenario. This results in an inherent pessimism in both functional and
delay noise analyses. Crosstalk noise induced on a net greatly depends on how many aggressor nets
switch and how their transitions are aligned among themselves, and in the case of delay noise, also
with respect to the victim transition.An infinite number of switching scenarios is possible, depending
on input signal arrival times, process variation, environment parameters, and the logical operation
of the circuit. Predicting the exact worst-case noise occurrence is very difficult. Therefore, noise
analysis tools compute a conservative estimate of possible induced noise. Typically, it is assumed
that all aggressor nets switch in the same direction at the worst alignment time. However, many
switching scenarios are prohibited in reality because of timing and logic correlations between the
victim and aggressor signals. In most cases, worst-case switching scenario does not occur due to
such correlations, rendering the estimated noise from a naive analysis approach very pessimistic.
This pessimism, also called false noise, results in false functional and timing violations. False noise
results in wastage of precious design and silicon resources, which are spent for fixing nonexisting
problems.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 685 24-9-2008 #14

Coupling Noise 685

In this section, we present an overview of approaches that utilize the timing and logical correla-
tions to reduce false noise. Note that this section presents techniques thatmake use of available design
data to reduce pessimism. Choosing a meaningful failure criterion during analysis, as explained in
Section 34.2.2, is an orthogonal way to reduce false failures.

34.4.1 LOGIC CORRELATION

A pair of aggressor nets, which can each switch individually at a particular time point, may not be
able to switch together at that time because of logic relationships in the circuit. A simple example of
such a situation is shown in Figure 34.11. Aggressor 1 and Aggressor 2 can never both be at logic 0,
therefore they cannot have a falling transition at the same time.

Any circuit hasmany logic correlations between its signals. For noise analysis, these correlations
can be considered as logic constraints prohibiting circuit nets to have some combinations of signals.
For false noise analysis, it is especially important to find that a group of aggressor nets are prohibited
from having simultaneous rising or falling transition if the victim net is at the given voltage level.
Aggressor nets (a1, a2, . . . , an) cannot switch simultaneously in the same direction if one of the two
signal combinations (a1 = 1, a2 = 1, . . . , an = 1) or (a1 = 0, a2 = 0, . . . , an = 0) is prohibitedwhen
the victim net is at the given state.

In Refs. [18–21], logic constraints between the pins of a gate are represented in disjunctive form,
which coincideswith the gate's characteristic equation. For example, logic constraints for a two-input
AND gate with logic function x = a · b can be written as x · a · b+ x · a+ x · b = 0, which is exactly
its characteristic function. Here term x · a · b prohibits the combination (x = 0, a = 1, b = 1). In
Figure 34.12, a simple circuit and some of its logic constraints are shown.

Such logic constraints are generated at gate or transistor level and propagated through the circuit
with the purpose of generating nontrivial logic relations. Logic correlations can be in the form of
simple pairwise relations, such as simple logic implications (SLIs) [18] and new implications can be
generated by forward and backward propagation of existing ones. They can also be among multiple
signals and resolution method can be used for propagation and generation of new relations [21].

In case of functional noise, after logic constraints generation, noise analysis is performed for
every cluster for its respective noise type. If the generated logic constraints are made of two variable
relations only, a constraint graph is formed based on generated SLIs, and then maximum weighted
independent set (MWIS) problem is solved [18]. If the constraints involve many variables [21], then
the constraint graph turns into a hypergraph. Therefore, instead of the constraint graph, a reduced
order binary decision diagram (ROBDD) of the noise cluster constraints is constructed. Using the
characteristic ROBDD of the noise cluster, the maximum noise of a given type is calculated by
finding the maximum weighted set of the aggressors for which simultaneous switching of the same
type is not prohibited. In Figure 34.13, examples for a constraint graph and a constraint hypergraph
are given.

Aggressor 1

Aggressor 2

FIGURE 34.11 Example illustrating logic correlations.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 686 24-9-2008 #15

686 Handbook of Algorithms for Physical Design Automation

a1

a2

a4

a5a3

a1 · a4 , a2 · a4 , a2 · a5 , a3 · a5

a1 · a2 · a4 , a2 · a3 · a5

v

v · a4, v · a5, v · a4 · a5

FIGURE 34.12 Example circuit and its logic constraints.

(b) Constraint hypergraph

(a) Constraint graph

0.1

0.1

0.2

0.2

0.25

0.25

0.1

0.1

0.3

0.3

MWIS: {a1, a2, a5} with weight
w = 0.65

MWIS: {a1, a3, a5} with weight
w = 0.45

Hyperedges: {a1, a2, a3}, {a4, a5},
{a2, a3, a5}

Edges: {a1, a2}, {a2, a3}, {a2, a4},
{a2, a5}, {a4, a5}

SLI constraints = {a1a2, a2a3,
a2a4, a2a5, a4a5}

Constraints: {a1a2a3, a4a5, a2a3a5}a2

a2

a1

a1

a4

a4

a5

a5

a3

a3

·

·

·

·

·

·

FIGURE 34.13 Constraint graph and constraint hypergraph for a noise cluster.

On the other hand, in case of delay noise analysis, amaximal set of aggressors needs to be selected
such that the effect of noise is maximized globally and conservatively over several signal stages of a
timing path. As a result, logical constraints must be considered among a much larger set of signals
(set of victims in the timing path and all their aggressors) than is necessary for functional analysis.
Because an aggressor can interact with multiple victim nets on a timing path and each interaction can
contribute different amount of delay change relative to other aggressors, the problem of finding such
an aggressor set becomes difficult. Despite the exponential complexity, enumerative traversal of the
ROBDD of constraints is a reasonable approach for functional noise analysis, as each noise cluster is
analyzed separately and a typical noise cluster consists of only about ten aggressor nets. However, to
achieve maximum possible pessimism reduction in delay noise analysis, it is necessary to consider
all victim nets of an analyzed path and all their aggressor nets together. As a result, one needs to
computeMWIS from about 100 or more nets depending on the length of the timing path. Thus, more

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 687 24-9-2008 #16

Coupling Noise 687

sophisticated techniques than direct enumeration are necessary. In Ref. [19], a branch-and-bound
method as well as several heuristic techniques to address this need are provided.

34.4.2 SWITCHING (TIMING) WINDOWS

In addition to logic correlations, the victim and the aggressor nets may have restrictions in the
temporal domain because of signal delays in the circuit. An activity window is defined as the interval
from the earliest time to the latest time the net can switch. Typically, activity windows are obtained
from static timing analysis by propagating the early and the late arrival times of the circuit inputs (or
sequential element outputs) along all paths to the outputs (or sequential element inputs). In functional
noise, sensitivity windows are also useful and can be generated by performing backward propagation
of required times at circuit outputs or latch inputs. A sensitivity window of a victim net is defined as
the interval from the earliest required time to the latest required time, in other words the period of
time when the net should stay stable for a correct logic value acquisition at a sequential element.

Timing windows can be used simply to decide whether an aggressor can induce noise on a
victim by checking for the existence of overlap between the aggressor net timing window and the
proper timing window of the victim net (activity window in delay noise and sensitivity window in
functional noise).Wewill use Figure 34.14 to explain some concepts in timingwindowusage. In case
of functional noise, suppose that A1, A2, and A3 are aggressor timing windows for rising transition
and V is victim sensitivity window. A1, A3, and V overlap in region r1. A1, A2, and V overlap in
region r2. In other words, A1 and A2 can induce noise together as well as A1 and A3, but not all
three of them at the same time. Scan line algorithms are usually used to determine the worst-feasible
aggressor set. In case of delay noise, suppose that V is victim timing window for falling transition.
Same arguments apply as in functional noise analysis in determining the worst aggressor set that
will impact the victim net delay the most. Note that timing windows of nets can only be compared if
they are in the same synchronous clock domain, otherwise nets in asynchronous clock domains can
switch at any time relative to each other.

Besides the above simple idea of using temporal relations in the circuit to reduce pessimism in
crosstalk noise analysis, several ideas have been proposed to refine the usage of timing windows. In
Ref. [15], instead of obtaining sensitivity windows by backward propagation of required times, noise
windows (period of time when noise pulse can occur) are propagated and checked against required
time window at the timing check points. Because propagated noise pulses have windows associated
with them, this method allows one to see whether the propagated and injected noise can occur at
the same time. In Ref. [22], a more refined definition of a timing window is used where instead of
the traditional continuous timing window, a set of discontinuous timing windows are used to more
accurately represent possible switching events.

In the case of delay noise, further refinement in timing window usage has been proposed by
finding how much of an induced delay by an overlapping active aggressor should actually be taken

A1

A2

A3

r2 t1

r1

V

FIGURE 34.14 Timing windows for noise evaluation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 688 24-9-2008 #17

688 Handbook of Algorithms for Physical Design Automation

into account in the noise-aware static timing analysis traversal. For example, in Figure 34.14, although
A1 and A3 may impact the delay of the victim net, this may not be important from a setup analysis
point of view as long as the delay increase does not go beyond the latest arrival time of the victim net
(tl). In this scenario, aggressor A2 considered to be switching around time tl is the most likely one to
impact the latest arrival time of the victim net. Because the latest arrival time is the one that is finally
checked against timing constraints at a path endpoint, this is sufficient for a noise-aware timing
analysis in terms of delay increase [23]. Timing windows depend on signal propagation delays and
therefore depend on the injected noise. On the other hand, the injected noise depends on the timing
windows. So we have a chicken and egg problem. This problem is usually resolved by iterating
timing window calculations and noise analysis until convergence.

Note that the logic correlation techniques presented in the previous section are based on zero-
delay implications. These logic relations are valid only when the circuit has reached a stable state,
i.e., at the beginning and end of a clock cycle. However, when the circuit is in transition, it is possible
that two aggressor nets can switch simultaneously even though their zero-delay logic relations would
indicate that such switching is impossible. This occurswhen there are glitches in the circuit. Methods
to handle this have been proposed where timing and logic information are propagated together in the
form of timed logic representation [2].

34.5 NOISE AVOIDANCE, NOISE-AWARE DESIGN, AND NOISE REPAIR

In previous sections, we talked about crosstalk noise phenomenon, accurate and efficient analysis
techniques, aswell as pessimism reduction techniques to prevent false failures. In this section,we turn
to design implications of crosstalk noise and present techniques and methodology to be incorporated
in the design flow with the purpose of early detection and avoidance of noise problems, as well as
postroute repair approaches.

As mentioned in Section 34.2, several approaches are available to avoid and reduce crosstalk
noise. In literature, fast crosstalk noise estimation methods [24,25] have been developed, which can
be used as metrics to evaluate what-if scenarios as well as study the effectiveness of noise reduction
approaches [26]. Also, extensive work has been carried out in noise prevention, noise-aware design,
and noise repair [27–35]. In what follows, we present some widely used practical approaches.

34.5.1 NOISE PREVENTION AND NOISE-AWARE DESIGN

Modern design flows have adopted crosstalk noise prevention and noise-aware design techniques
such that this issue is addressed early in the design cycle. In this section, we look at some of these
methods.

34.5.1.1 Slew Control

Signal slope on a net is a good indicator of how strongly the net is driven compared to its RC loading
characteristics. Strongly driven nets not only become more noise immune but also become stronger
aggressors. Slew control targets to balance this throughout the design, preventing very weak victims
and very strong aggressors. This is a noise avoidance technique employed early in the design cycle,
during synthesis and placement. Although applying slew optimization globally results in stronger
aggressor drivers, its benefit on overall noise because of the prevention of unacceptably weak victim
drivers is greater [30].

In practice, a faster slewconstraint produces a better design for noise, both in number of functional
and delay noise violations, as well as the severity of worst-path delay slack. Balancing the slew rates
throughout the design reduces the possibility of strong aggressors injecting high amounts of noise
into weak victims, thus reducing functional noise failures. On the other hand, delay variation owing
to crosstalk noise, in a first-order approximation, is proportional to tr · (Vn/Vdd), where tr is the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 689 24-9-2008 #18

Coupling Noise 689

transition time and Vn is the injected noise height. Therefore, improving slew rate also helps to
reduce crosstalk-induced delay variation. Achieving faster slew may increase the layout area and the
power consumption of the design, as buffers are inserted to meet the target slew rate. It has been
reported that the increase in power consumption because of the inserted buffers is minimal as a result
of improved slew rates, which help reduce the short circuit power [30]. These effects should be taken
into consideration as constraints during design decision process.

34.5.1.2 Congestion Minimization

Coupling capacitance is the factor that crosstalk noise is most sensitive to [26] and therefore reducing
coupling is a very effective noise prevention/repair method. As crosstalk capacitance and spacing
between nets are closely correlated, reducing routing congestion in a design helps reduce noise. This
is an avoidance method applied during placement and routing stages of the design cycle.

34.5.1.3 Noise-Aware Routing (Spacing, Shielding, Layer Assignment)

A router can use simple crosstalk noise estimation methods as mentioned earlier to be noise-aware.
Capacitances and resistances in the noise estimation model can be calculated using per unit length
parasitic information and wirelength, wire width, spacing to neighbor nets, and coupling length
(distance where two wires run parallel to each other). Routers can try to optimize parameters under
their control (wirelengths and coupling lengths) using techniques available to them such as spacing,
shielding, layer/track assignment, etc. [31–37].

34.5.2 POSTROUTE NOISE REPAIR

Noise prevention methods presented in Section 34.5.1 help with the overall crosstalk noise quality
of the design. In later stages of the design cycle, i.e., after detailed routing, flexibility to make
modifications is reduced and targeted actions are required to handle remaining functional and timing
failures owing to crosstalk noise.

34.5.2.1 Gate Sizing, Buffer Insertion

Even after employing the prevention and noise-aware design techniques given in Section 34.5.1, some
failures remain in postroute stage. It has been shown that the crosstalk noise induced functional and
timing failures in a design usually have common causes and attacking functional noise problems first
results in a more straightforward noise repair approach [30].

The most commonly used techniques in postroute noise repair are gate sizing, buffer insertion,
net spacing, and shielding. There are benefits and drawbacks with all these approaches. To reduce
crosstalk noise on a victim net, its driving gate's strength can be increased (i.e., same functionality
with bigger equivalent transistor widths). However, this also causes the victim net to be a stronger
aggressor on its neighbors, causing new problems to show up while fixing existing ones. Even
worse, a sequence of gate sizing actions can become cyclic involving few nets and thus prevent the
convergence of the repair actions. Algorithms have been developed to identify and address such cyclic
effects such that the sizing is very effective and the convergence is fast [29]. Buffer insertion helps
both by dividing a net into two separate nets thus reducing coupling, and by providing additional
drive strength if necessary. However, buffer insertion is more intrusive in the design than gate sizing.
It is a common practice to place dummy buffers in the design at early stages, which can then be
used for such repair purposes. Net spacing on the other hand reduces coupling capacitance between
particularly targeted nets. However, in already congested routing situations, this techniquemay result
in dense routing regions to shift from one area of the design to another resulting in new failures. Net
shielding is another effective method to address crosstalk noise issues. This method places a power
(Vdd or ground) net next to a crosstalk noise problematic net, virtually eliminating its coupling

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 690 24-9-2008 #19

690 Handbook of Algorithms for Physical Design Automation

capacitance. As with spacing, this technique may not be feasible depending on the availability of
power grid and signal routing resources.

Hierarchical properties of the design being worked on also play a role in deciding which noise
repair techniqueswill bemost effective.Routing changes are to be preferredover sizing and buffering
for fixing noise at the system-on-chip (SoC) integration stage. This assumes that all SoC blocks are
timing clean, and long global nets are already buffered in the previous timing optimization phase.
Although both sizing and buffering can be used for block level noise fixing, driver sizing is not to
be preferred at the chip level because the drivers reside in the SoC blocks that are being integrated.
However, gates in the sea of gates can be resized at the chip level, because they are legalized and
routed at the chip level.

REFERENCES
1. H. Zhou, Timing analysis with crosstalk is a fixpoint on a complete lattice, IEEE Transactions on
Computer-Aided Design, 22(9): 1261–1269, Sept. 2003.

2. P. Chen and K. Keutzer, Towards true crosstalk noise analysis, IEEE/ACM International Conference on
Computer-Aided Design, San Jose, CA, Nov. 7–11, 1999, pp. 132–137.

3. A. Rubio, N. Itazaki, X. Zu, and K. Kinoshita, An approach to the analysis and detection of crosstalk faults
in digital VLSI circuits, IEEE Transactions on Computer-Aided Design, 13: 387–394, Mar. 1994.

4. A. Odabasioglu, M. Celic, and L. Pileggi, PRIMA—Passive reduced order interconnect macromodeling
algorithm, IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, Nov. 9–13,
1997, pp. 58–65.

5. P. Feldmann and R. W. Freund, Circuit noise evaluation by Pade approximation based model-reduction
technique, IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, Nov. 9–13,
1997, pp. 132–138.

6. P. D. Gross, R. Arunachalam, K. Rajagopal, and L. T. Pileggi, Determination of worst-case aggressor
alignment for delay calculation, IEEE/ACM International Conference on Computer-Aided Design, San
Jose, CA, Nov. 8–12, 1998, pp. 212–219.

7. D. Blaauw, S. Sirichotiyakul, and C. Oh, Driver modeling and alignment for worst-case delay noise, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 11(2): 157–166, April 2003.

8. P. Chen, D. A. Kirkpatrick, and K. Keutzer, Miller factor for gate-level coupling delay calculation,
IEEE/ACM International Conference on Computer AidedDesign, San Jose, CA, Nov. 5–9, 2000, pp. 68–74.

9. F. Dartu and L. T. Pileggi, Calculating worst-case gate delays due to dominant capacitance coupling, 34th
Design Automation Conference, Anaheim, CA, Jun. 9–13, 1997, pp. 46–51.

10. V. Zolotov, D. Blaauw, S. Sirichotiyakul, M. Becer, C. Oh, R. Panda, A. Grinshpon, and R. Levy, Noise
propagation and failure criteria for VLSI designs, IEEE/ACM International Conference on Computer Aided
Design, San Jose, CA, Nov. 10–14, 2002, pp. 587–594.

11. I. Keller, K. Tseng, and N. Verghese, A robust cell-level crosstalk delay change analysis, IEEE/ACM
International Conference on Computer Aided Design, San Jose, CA, Nov. 7–11, 2004, pp. 147–154.

12. R. Levy, D. Blaauw, G. Braca, A. Dasgupta, A. Grinshpon, C. Oh, B. Orshav, S. Sirichotiyakul, and
V. Zolotov, ClariNet: A noise analysis tool for deep submicron design, 37th Design Automation Conference,
Los Angeles, CA, June 5–9, 2000, pp. 233-238.

13. K. L. Shepard and V. Narayanan, Noise in deep submicron digital design, IEEE/ACM International
Conference on Computer-Aided Design, San Jose, CA, Nov. 10–14, 1996, pp. 524–531.

14. K. L. Shepard, V. Narayanan, and R. Rose, Harmony: static noise analysis of deep submicron digital
integrated circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
18(8): 1132–1150, Aug. 1999.

15. K. Tseng andV.Kariat, Static noise analysiswith noisewindows,Design AutomationConference, Anaheim,
CA, Jun. 2–6, 2003, pp. 864–868.

16. K. L. Shepard, Designmethodologies for noise in digital integrated circuits,Design AutomationConference,
San Francisco, CA, Jun. 15–19, 1998, pp. 94–99.

17. J. Qian, S. Pullela, and L.T. Pillage, Modeling the effective capacitance for the RC interconnect of CMOS
gates, IEEE Transactions on Computer-Aided Design, San Jose, CA, Dec. 1994, pp. 1526–1535.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 691 24-9-2008 #20

Coupling Noise 691

18. A. Glebov, S. Gavrilov, D. Blaauw, S. Sirichotiyakul, C. Oh, and V. Zolotov, False-noise analysis using
logic implications, IEEE/ACM International Conference on Computer Aided Design, San Jose, CA, Nov.
4–8, 2001, pp. 515–521.

19. A. Glebov, S. Gavrilov, R. Soloviev, V. Zolotov, M. R. Becer, C. Oh, and R. Panda, Delay noise pessimism
reduction by logic correlations, IEEE/ACM International Conference on Computer Aided Design, San Jose,
CA, Nov. 7–11, 2004, pp. 160–167.

20. A. Glebov, S. Gavrilov, V. Zolotov, C. Oh, R. Panda, and M. Becer, False-noise analysis for domino
circuits, Design, Automation and Test in Europe Conference and Exhibition, Paris, France, Feb. 16–20,
2004, pp. 784–789.

21. A. Glebov, S. Gavrilov, D. Blaauw, V. Zolotov, R. Panda, and C. Oh, False-noise analysis using resolution
method, International Symposium on Quality Electronic Design, San Jose, CA, Mar. 18–21, 2002, pp. 437–
442.

22. P. Chen, Y. Kukimoto, and K. Keutzer, Refining switching window by time slots for crosstalk noise calcu-
lation, IEEE/ACM International Conference on Computer Aided Design, San Jose, CA, Nov. 10–14, 2002,
pp. 583–586.

23. M. Becer, V. Zolotov, R. Panda, A. Grinshpon, I. Algor, R. Levy, and C. Oh,Pessimism reduction in
crosstalk noise aware STA, International Conference on Computer Aided Design, San Jose, CA, Nov. 2005,
pp. 954–961.

24. L. Ding, D. Blaauw, and P. Mazumder, Accurate crosstalk noise modeling for early signal integrity analy-
sis, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22(5): 627–634,
May 2003.

25. J. Gong, D. Z. Pan, and P. V. Srinivas, Improved crosstalk modeling for noise constrained interconnect
optimization, Asia and South Pacific Design Automation Conference, Yokohama, Japan, Jan. 30 to Feb. 2,
2001, pp. 373–378.

26. M. R. Becer, D. Blaauw, V. Zolotov, R. Panda, and I. N. Hajj, Analysis of noise avoidance techniques
in DSM interconnects using a complete crosstalk noise model, Design, Automation and Test in Europe
Conference and Exhibition, Munich, Germany, Mar. 4–8, 2002, pp. 456–463.

27. M. R. Becer, D. Blaauw, S. Sirichotiyakul, R. Levy, C. Oh, V. Zolotov, J. Zuo, and I. N. Hajj, A global
driver sizing tool for functional crosstalk noise avoidance, International Symposium on Quality Electronic
Design, San Jose, CA, Mar. 26–28, 2001, pp. 158–163.

28. M. R. Becer, D. Blaauw, R. Panda, and I. N. Hajj, Early probabilistic noise estimation for capacitively
coupled interconnects, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
22(3): 337–345, Mar. 2003.

29. M. R. Becer, D. Blaauw, I. Algor, R. Panda, C. Oh, V. Zolotov, and I. N. Hajj, Postroute gate sizing for
crosstalk noise reduction, IEEETransactions onComputer-AidedDesign of IntegratedCircuits and Systems,
23(12): 1670–1677, Dec. 2004.

30. M. Becer, R. Vaidyanathan, C. Oh, and R. Panda, Crosstalk noise control in an SoC physical design
flow, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23(4): 488–497,
Apr. 2004.

31. D. Sylvester and K. Keutzer, A global wiring paradigm for deep submicron design, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 19(2): 242–252, Feb. 2000.

32. T. Zhang and S. S. Sapatnekar, Simultaneous shield and buffer insertion for crosstalk noise reduction in
global routing, IEEE International Conference on Computer Design: VLSI in Computers and Processors,
San Jose, CA, Oct. 11–13, 2004, pp. 93–98.

33. C. C. -P. Chen and N. Menezes, Noise-aware repeater insertion and wire sizing for on-chip interconnect
using hierarchical moment-matching, 36th Design Automation Conference, New Orleans, CA, Jun. 21–25,
1999, pp. 502–506.

34. C. J. Alpert, A.Devgan, and S. T. Quay, Buffer insertion for noise and delay optimization, IEEETransactions
on Computer-Aided Design of Integrated Circuits and Systems, 18(11): 1633–1645, Nov. 1999.

35. R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, Coupling aware routing, 13th Annual IEEE International
ASIC/SOC Conference, Arlington, VA, Sept. 13–16, 2000, pp. 392–396.

36. P. Saxena and C. L. Liu, A postprocessing algorithm for crosstalk-driven wire perturbation, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19(6): 691–702, Jun. 2000.

37. T. Jing and X. Hong, The key technologies of performance optimization for nanometer routing, 5th
International Conference on ASIC, Beijing, China, Vol. 1, Oct. 21–24, 2003, pp. 118–123.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C034 Finals Page 692 24-9-2008 #21

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S007 Finals Page 693 24-9-2008 #2

Part VII

Manufacturability and Detailed
Routing

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S007 Finals Page 694 24-9-2008 #3

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 695 24-9-2008 #2

35 Modeling and Computational
Lithography

Franklin M. Schellenberg

CONTENTS

35.1 Introduction.. 696
35.1.1 Modeling in a Design Flow. 696
35.1.2 Lithographic Processing .. 697

35.2 Lithographic Modeling . 699
35.2.1 Introduction . 699
35.2.2 Lithographic Modeling Fundamentals . 699

35.2.2.1 Maxwell’s Equations . 700
35.2.2.2 Propagation . 701
35.2.2.3 Linearity. 703
35.2.2.4 Computation by Superposition .. 704

35.2.3 RET Tools . 705
35.2.3.1 OPC . 706
35.2.3.2 PSM . 707
35.2.3.3 OAI . 710
35.2.3.4 RET Combinations . 711
35.2.3.5 Polarization . 712

35.2.4 RET Flow and Computational Lithography . 713
35.2.5 Mask Manufacturing Flow . 715
35.2.6 Contour-Based EPE. 715

35.3 Simulation Techniques .. 717
35.3.1 Introduction . 717
35.3.2 Imaging System Modeling . 717
35.3.3 Mask Transmission Function.. 720

35.3.3.1 FDTD . 720
35.3.3.2 RCWA and Waveguide Techniques .. 723
35.3.3.3 DDM .. 723

35.3.4 Wafer Simulation . 723
35.4 EDA Results . 725

35.4.1 Process Windows . 726
35.4.2 MEEF.. 727
35.4.3 PV-Bands. 728
35.4.4 Extraction . 731

35.5 Conclusion.. 731
References . 731

695

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 696 24-9-2008 #3

696 Handbook of Algorithms for Physical Design Automation

35.1 INTRODUCTION

35.1.1 MODELING IN A DESIGN FLOW

Electronic design automation (EDA) for integrated circuits, and especially digital circuits, by and
large concerns itself with computer algorithms for the arrangement and interconnection of transistors
[1]. These are often fairly abstract representations of an IC Design, and their use and optimization
is generally an application of algorithms in computer science. At some point, however, an IC layout
must be generated and fabricated as actual structures on a silicon wafer. It is at this point where
process modeling and simulation must enter the domain of EDA.

To fabricate an IC, numerous processes are employed: doping of materials, deposition of thin
film layers, planarization, and etching or removing material, among others. [2–4] Most of these
processes are bulk processes, carried out on an entire wafer or batches of wafers at one time, but each
can leave its signature on the individual features as they are fabricated. These differences between
the ideal, as-designed layout and the final as-manufactured device can be trivial and insignificant, or
can cause the device to fail utterly, depending on the sensitivity to variation.

Technology CAD (TCAD) tools have existed to model aspects of certain processes and devices
ever since these processes and devices came into existence [5]. TCAD tools typically set up a
physics-based model of a structure or process, and are used to examine these physical structures in
great detail. They have served as useful tools for research scientists and process engineers to study
the relationships between different process variables and predicted device properties. They can be
extremely cost effective, in that one can run a virtual experiment without incurring the expense of a
complicated, multivariable experiment in a silicon clean room. These tools, however, are generally
run off-line—that is, they are tools for simulating small, representative samples of layouts or devices
in great detail to guide experts in process and device engineering.These are not tools for the simulation
of entire layouts.

With the advent of inexpensive parallel processing for computing, simulation tools are now
becoming more streamlined and their use on entire layouts can be reconsidered. A typical EDA
flow [6] incorporating a process model is shown in Figure 35.1. In this flow, once the physical layout
has been created in a layout format such as GDS-II [7] or OASIS [8], a model is called to transform

Synthesis

Place and Route

Maskmaking

Lithography

RTL SPICE
Model

Extracted netlist

Extraction

Simulation
result

Yield
prediction

Model

Correction

Netlist

Layout

Modified
layout

Mask

Wafer

FIGURE 35.1 Example of an EDA flow with the insertion of a modeling step, in this case a model for
correction of the layout for physical effects. RTL is the Register Transfer Level; SPICE stands for Simulation
Program with Integrated Circuit Emphasis and is a general purpose analog circuit simulator.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 697 24-9-2008 #4

Modeling and Computational Lithography 697

this layout into a new version that represents what is expected on the wafer. Sections of a layout,
discrete cells, or the entire layout can be simulated, depending on the desired outcome. The output of
this model is typically represented as a set of contours, and stored as new data layers in the layout file.

Extraction tools can then be used on this modified layout, and the suitable SPICE models used
to predict the expected electrical behavior of the manufactured result [9]. If the results deviate too
much for the desired electrical specifications, the information is passed back into the earlier design
flow in the form of new constraints or rules would prevent this specific deviation from occurring,
and that the upstream tools must now consider in creating revised versions of the IC.

There are other processing steps besides lithography that can be modeled. Bulk processing steps
such as plasma etching or chemical–mechanical polishing (CMP) are broadly understood, but detailed
modeling behavior, especially on individual feature scale, is still an active area of research. [10–12]
And, even if perfectly understood, the ability to quantify andmanage statistical variation expected in
these processes also affects the yield expected for a particular design [13]. Coping with variation in
IC modeling and incorporating those results into EDA tools for improved IC performance and yield
remains an active topic of research [14]. A number of related issues are described in Chapter 36.

On the other hand, various analysis tools such as Critical area analysis (CAA) [15–18] or various
density metrics [19] can be applied once simulated results have been generated, to better estimate
expectations of real wafer yield. Such analysis tools are currently run on layouts generated by EDA
tools, but their use with simulated wafer results can lead to a more accurate estimation of real
yield [20]. The accuracy of the overall yield model then depends on the accuracy of the underlying
model used for the simulation. A more detailed discussion is provided in Chapter 37.

35.1.2 LITHOGRAPHIC PROCESSING

The most commonly used process for detailed patterning has been relatively well understood in
principle for nearly a century. This process is optical lithography [21]. The processing steps for
optical lithography are illustrated in Figure 35.2. To begin, a photomask, sometimes called simply a
mask butmore precisely referred to as a reticle, is retrieved from its storage location. Themask is a flat
piece of quartz coatedwith an opaque layer (usually chrome)written with the layout patterns required
for a particular layer (e.g., poly, contact, metal-1, etc.). This serves as the master for patterning the
wafers, analogous to a negative for printing conventional photography. This photomask is mounted
in a projection printer, which forms a miniaturized image of the mask (usually four times smaller)
using a highly precise multielement lens system.

The lithographic process flow starts by loading wafers in the processing system (called a track)
and preprocessing them. This involves an initial cleaning, to remove any particles or contaminants,
coating with photosensitive polymer, called a photoresist, and sometimes a baking step, to drive

Load mask
Wafer coating

Prebake

Align wafer to mask

Photoexposure

Postexposure
bake

Development

Etch/deposition

FIGURE 35.2 Typical steps in an optical lithography process.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 698 24-9-2008 #5

698 Handbook of Algorithms for Physical Design Automation

any remaining solvent out of the photoresist. Once prepared, the wafer is then transferred into
the optical projection system for exposure. The wafer is aligned precisely to the patterns on the
photomask to minimize overlay errors, and a timed exposure of the image of the photomask is made
onto the photosensitive polymer. With photoexposure, the polymer properties (usually the polymer
solubility) change. The wafer is subsequently transferred back to the track and further processed
(e.g., developed) to selectively remove the more soluble materials, leaving resist polymer in a local
pattern corresponding to the patterns in the IC layout.

This wafer will then be used in the subsequent processing step. Only the uncovered regions
experience the desired process action (e.g., material deposition, etching, etc.). The regions that
remain covered by the polymer are protected and remain unchanged (hence the name – they resist
the process) [22].

Typically, a photomask will contain the layouts for the appropriate layers (e.g., gate, contact,
etc.) for only a few chips (or, for a complex microprocessor, a single chip). Repetition throughout
the wafer, allowing hundreds of chips to be printed on a standard 300mm diameter silicon wafer,
occurs by moving the wafer stage under the photomask and making a succession of exposures until
exposures have been made for all chips on the wafer. Projection exposure equipment is commonly
called a stepper, because the wafer is stepped from exposure to exposure.

Lithographic patterning processes are superb examples of the highest precision imaging ever
achieved. With contemporary processing, light with a wavelength of λ = 193 nm is being used to
produce ICs with dimensions of 65 nm, and even being considered for the next generations as well,
which have features as small as 45 nm or 32 nm [23]. However, certain limitations inherent in the
patterning and subsequent processing steps can distort the transfer of the pattern from the desired,
ideal layout. When projection optical lithographywas initially introduced in the manufacture of ICs,
the wavelength of the light used to form patterns was much smaller than the individual feature sizes.
As a result, there was very little image distortion, and the patterns on the wafer appeared essentially
as designed. The alignment and overlay of these features was a more critical concern.

As Moore’s law [24] continued to push transistors to be ever smaller, in 1998 the feature size
became smaller than the wavelength used for manufacturing. This is shown in Figure 35.3 [25,26].

Year

1980
0.01

F
ea

tu
re

 s
iz

e
(n

m
)

W
av

el
en

gt
h

(n
m

)

0.1

1

10

10

100

1,000
365 nm

130 nm
90 nm

65 nm

Lithography
wavelength

Feature
size

248 nm

193 nm

13 nm
EUV

193 nm + i

10,000

1990 2000 2010 2020

Gap

FIGURE 35.3 Evolution of lithography wavelength and IC feature size. (Data from Bohr, M., Intel’s 65 nm
Process Technology, Intel Developer Forum, Sept. 8, 2004. Figure adapted from Schellenberg, F.M., EDA for IC
Implementation, Circuit Design and Process, and Process Technology, L. Scheffer, L. Lavagno, and G. Martin,
Eds., CRC Press, Boca Raton, FL, 2006.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 699 24-9-2008 #6

Modeling and Computational Lithography 699

Now, significant process distortions were routinely occurring on the wafer, and without correction,
wafer yield would be impacted. Although some relief was provided by introducing lithography
technology using immersion, with the shrinking of IC dimensions to be smaller than 100 nm, these
distortions are significant, and unless compensated, IC yield drops to zero. Process modeling for
lithography is therefore essential for the design of manufacturable ICs in this sub-wavelength world.

In this chapter, I give an overviewof the requirements of lithographymodeling for subwavelength
EDA flows. In Section 35.2, I describe the physics of optical image formation for lithography, and
the various lithographic techniques that must be modeled. This is essentially the framework in which
the models must fit to describe the lithographic process. In Section 35.3, I describe some of the
mathematical techniques used to compute specific results that fit into the framework of Section 35.2.
Finally, in Section 35.4, I describe some of the issues encountered in the implementation of the
models in contemporary EDA software.

35.2 LITHOGRAPHIC MODELING

35.2.1 INTRODUCTION

In this section, the fundamental steps of a lithographic process aredescribed, alongwith the techniques
used to represent lithography in models. Then, the most frequently used configurations of models
needed for the implementation of various resolution enhancement techniques (RETs) are presented.

The fundamental elements of the lithographic patterning process are shown in Figure 35.4. Light
froma source (typicallyUV light froma lampor an excimer laser) is shapedby the illumination system
to control intensity uniformity, polarization properties, and angular spectrum. This light illuminates
the photomask, patterned with the layout for the particular layer to be reproduced. A very large and
complex lens system then forms an image of the photomask (typically reduced in linear dimension by
a factor of four) on the resist-coated silicon wafer. The wafer may actually be coated with a number
of layers that complicate exposure considerably. For immersion lithography systems, the lens–wafer
gap itself may be filled with a fluid (typically water) to enhance imaging fidelity [27]. Once exposed,
the patterns are developed and the wafer moved on to the next process step.

35.2.2 LITHOGRAPHIC MODELING FUNDAMENTALS

Although the imaging systems are very complex, with lenses containing over 20 precision optical
elements and costing severalmillion dollars,modeling this process is actually a fairly straightforward
procedure. This is due to the following:

Mask

Illumination
UV

Lens

Wafer

FIGURE 35.4 Elements of a typical lithographic exposure system. (After Schellenberg, F. M., EDA for IC
Implementation, Circuit Design, and Process Technology, L. Scheffer, L. Lavagno, and G. Martin, Eds., CRC
Press, Boca Raton, FL, 2006.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 700 24-9-2008 #7

700 Handbook of Algorithms for Physical Design Automation

1. Light in the system is an electromagnetic wave, governed by Maxwell’s Equations [28].
2. Propagation through the illumination system is generally collimated, and therefore can be

modeled by the approximations for far-field diffraction.
3. All optical processes in the stepper (aside from the possible generation of the initial source

photons) can be represented by a linear superposition (typically of electric fields, however,
under some circumstances, using field intensity).

4. Imaging for complex illumination systems and layout patterns can be modeled with a
suitable linear superposition of subcomponent systems (because of (3)).

35.2.2.1 Maxwell’s Equations

All electromagnetic phenomena can be described through the use of the well-known Maxwell
equations [28,29]:

∇ × �E = −µ
∂ �H
∂ t

(35.1a)

∇ × �H = ε
∂ �E
∂ t

+ σ �E (35.1b)

∇ · ε �E = ρ (35.1c)

∇ · µ �H = 0 (35.1d)

where
�E and �H represent the vector electric and magnetic fields, respectively
ε and µ the electric permittivity and magnetic permeability of the material in which the fields

exist
ρ represents the electric charge density
σ the electrical conductivity

When combined, and in the absence of charges and currents, a wave equation is formed [29].

∇2 �E − n2

c2
∂2 �E
∂ t2

= 0 (35.2)

where the refractive index n is defined relative to the permittivity ε0 and permeability µ0 of the
vacuum by

n =
√

ε

ε0

µ

µ0

(35.3)

and c is

c = 1√
µ0ε0

= 2.998× 108 m/s (35.4)

This corresponds to the speed of light in a vacuum (which has n = 1). The value of n, which is better
known as the refractive index of the material, relates the speed v of a wave in a material to the speed
of light in a vacuum.

v = c

n
(35.5)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 701 24-9-2008 #8

Modeling and Computational Lithography 701

c is related to the physical properties of wavelength (λ, λ0 in vacuum) and frequency v of the wave
through

v = c

n
= λν = λ0ν

n
(35.6)

In the presence of charges and currents, the wave equation becomes

∇2 �E − n2

c2
∂2 �E
∂ t2

− µσ
∂ �E
∂ t

= 0 (35.7)

For most situations, this simply becomes a more complex wave, in which the refractive index can be
represented by a complex number

n̂ = n + iκ (35.8)

where
n represents the ratio of speeds as before
κ (kappa) represents a loss related to electrical conductivity σ as the wave propagates through

the material, and is sometimes called the extinction coefficient

35.2.2.2 Propagation

When a collimated wave propagates through a well-behaved medium, the propagation of waves
from an extended source PS at some point P a distance rp away can be represented by an integral of
spherical waves emitted from across the source:

E(P) =
�
S

M(PS)
e+i(2π/λ)rp

rp
dS (35.9)

where M(PS) is a representation of the field strength (or amplitude) and phase at various points
PS in the source. This illuminating source can in turn fall on a mask, with a transmission function
M(x, y). The mask acts as a secondary source, and the integral of Equation 35.9 applies again, this
time with the mask function describing the source. In the far field, when the light is monochromatic
(λ constant), the transmission through the mask becomes a function of the patterns on the mask,

E(p, q) ∝ −ie
+i(2π/λ)R0+Rp

R0Rp

�
M

M(x, y)e−i(2π/λ)(xp+yq)dx dy (35.10)

where the R0 and Rp factors are geometric distances from the source to the mask, and the and each
point in the mask having both a transmission value (typically 0 or 1) and a phase shift φ. This is
called the Fraunhofer diffraction formula, and it is clear that, with the exception of the phase factor
in front, the far field amplitude pattern will be proportional to the 2D Fourier transform [30] of the
mask function M(x, y). The approximation that the mask can be represented by this infinitely thin
transmission function is sometimes called the Kirchhoff boundary condition [29].

Although electromagnetic wave propagation can occur in arbitrary directions, for most optical
systems, the direction of propagation is very well defined. Light falls on a mask at near normal
incidence, and diffracts at relatively small angles (typically less than 20◦). When a simple lens of
focal length f is inserted into the optical path, the lens introduces a quadratic phase factor:

L(a, b) = e−i(2π/λ)(1/f)(a2+b2) (35.11)

where a and b are the Cartesian coordinates in the lens plane.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 702 24-9-2008 #9

702 Handbook of Algorithms for Physical Design Automation

It can be shown that, when the diffraction pattern of Equation 35.10 is placed at exactly the focal
distance in front of the lens, the field at the focal plane (a distance f behind the lens) allows this
phase factor to cancel the phase factor in the Fraunhofer diffraction formula, and the field in the
image plane becomes

E(p, q) ∝ −i 1
λf

∞�
−∞

∞�
−∞

M(x, y)e−i(2π/λ)(xp+yq)dx dy (35.12)

This formwill be recognized as a mathematical representation that corresponds to the 2D Fourier
transform [30] of the mask pattern:

E(p, q) ∝ FT[M(x, y)] (35.13)

To actually form the image of the mask at position (x1, y1), the lens aperture and behavior,
represented by a pupil function designated as P(a, b), are multiplied with the diffraction pattern at
the focal point. This image in the focal plane is in turn transformed by a second lens at a distance f :

E(x1, y1) ∝ FT
[
P(a, b) · E(p · q)] = FT

{
P(a, b) · FT [M(x, y)

]}
(35.14)

where P represents the pupil function, encompassing the wavefront transforming behavior of the
lens. This is illustrated in Figure 35.5.

Pupil functions can be simple mathematical structures, such as

P(a, b) =
{
1, a2 + b2 ≤ r

0, a2 + b2 > r

}
=
{
1, ρ ≤ r

0, ρ > r

}
(35.15)

representing the physical cutoff of the circular lens housing or radius r (shown in both Cartesian (a, b)
and polar coordinates (ρ,φ)). However, additional phase behavior of the lens can also be included
in the pupil function. Lens aberrations can be represented by an orthonormal set of polynomials
called Zernike polynomials, each representing a specific aberration [29]. The Zernike polynomials
are generally represented in polar coordinates, following the form

Zj(ρ,φ) = amn R
m
n (ρ)Ym

j (φ) (35.16)

Table 35.1 below shows a few of the Zernike polynomials and the corresponding aberration. More
detail on these functions can be found in Ref. [29].

Mask

First lens Second lens

ImageSystem pupil plane

FIGURE 35.5 Simplified representation of the optical system of an imaging tool. At the pupil plane, the
amplitude of the field represents a two-dimensional Fourier transform of the object, multiplied with the pupil
function.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 703 24-9-2008 #10

Modeling and Computational Lithography 703

TABLE 35.1
First Ten Zernike Polynomials, an Orthogonal Set of Functions
That Describe the Lens Aberrations

j n m amn Rmn (ρ) Ym
n (φ) Aberration

1 0 0
√
1 1 1 Piston

2 1 1
√
4 ρ Cosφ x-Tilt

3 1 1
√
4 ρ Sinφ y-Tilt

4 2 0
√
3 2ρ2 − 1 1 Defocus

5 2 2
√
6 ρ2 Sin2φ 45◦ Astigmatism

6 2 2
√
6 ρ2 Cos(2φ) 90◦ Astigmatism

7 3 1
√
8 3ρ3 − 2ρ Sinφ (Balanced) y-coma

8 3 1
√
8 3ρ3 − 2ρ Cosφ (Balanced) x-coma

9 3 3
√
8 ρ3 Sin3φ Shamrock

10 3 3
√
8 ρ3 Cos3φ Shamrock

Note: More details can be found in Ref. [29].

At this point, the image can be calculated, but the representation is still in terms of the amplitude
and phase of the local electric field. Photosensors, whether they be the retinas of the eye, a photo-
electric cell, or the molecules of a photoresist, produce a signal in proportion to the amount of energy
in the electromagnetic field. The energy is proportional to the image intensity, found by squaring the
modulus of the electric field:

I(x, y) = E · E∗ (35.17)

where ∗ denotes the complex conjugate operation.

35.2.2.3 Linearity

Although actual imaging systems comprise more than two simple phase front transformations, a key
theorem on which all lens design is based is that any complex lens can be reduced to a simple Fourier
transform, a Pupil function, and an inverse Fourier transform.

This is a very powerful result, and is the basis of the entire field of Fourier optics [30]. Regard-
less of the exact lens structure and configuration, image simulation becomes a simple matter of
designating the appropriate coordinate system, computing Fourier transforms and finding the proper
representation of the pupil function P. Because Fourier transforms themselves are linear, the optical
system is modeled by a linear process. This means that any arbitrary image can be assembled by
creating a superposition of images from a suitable set of building blocks, each computed on its own.

The linearity of the Fourier transform allows a complex 2D pattern to be decomposed into
a Fourier series expansion of different 2D spatial frequencies, each being treated in turn and the
final fields summed together. Note also that a nonmonochromatic distribution of wavelengths λ

can similarly be computed wavelength by wavelength, and the final results summed as appropriate.
This linearity holds as long as the media can be adequately descried by a refractive index, as in
Equation 35.8.

Note that for some materials, optical properties can change in the presence of strong electric
fields, and the refractive index itself becomes an expansion:

n = n1 + n2E
2 + · · · (35.18)

Materials in which these effects are significant are called ‘nonlinear optical materials’ [31].
Clearly, these nonlinearities can cause additional complications if they were to be used in imaging

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 704 24-9-2008 #11

704 Handbook of Algorithms for Physical Design Automation

applications. However, values of n2 are generally very small, even for highly nonlinearmaterials, and
these nonlinear effects are generally only observed using lasers with extremely high power densities.
In general, the assumption that a total E field can be represented by a linear superposition of E fields
remains valid.

35.2.2.4 Computation by Superposition

The mathematics of Equation 35.14 represent that the imaging of any particular mask function is
the multiplication of the FT of the mask with the pupil function. Because multiplication in Fourier
space corresponds to convolution in position (x, y) space, image simulation reduces to the ability to
do the following computational tasks in various combinations:

1. Digitize the mask function into a 2D amplitude and phase pixel array [M(x, y)]
2. Estimate a discrete 2D representation of the pupil function [P(ωx,ωy)]
3. Perform array multiplication (e.g., [P] • [M] in frequency space)
4. Compute discrete Fourier transforms (and inverse transforms as well)

35.2.2.4.1 Pixel Representation of the Mask
Creating a pixel representation of the mask is usually fairly straightforward.Mask layouts are gener-
ated using polygons, often exclusively with Manhattan geometries. The ability to create an accurate
discrete representation of the layout then becomes a question of the resolution desired and the size
of array that can be computationally managed. This selection of the address grid can impact the
computation and data management properties significantly, so should be done with care. Generally,
a grid around 1 nm is selected for contemporary ICs with features as small as 45 nm.

35.2.2.4.2 Pixel Representation of the Pupil
Once the pupil function is known, a similar mapping onto a grid is carried out. Here, the resolution of
the pupil components need not be nearly as dense as the grid selected for the layout. However, because
the transform of the mask and the pupil must be entry-wise multiplied, some care should be taken to
ensure that the two grids match well. Although the simplest pupil functions are mathematically easy
to represent (e.g., a circular aperture), these functions do not map to a Manhattan grid in the same
way most mask functions can. In addition to this, the lens aberrations, also incorporated into the
pupil, typically have circular symmetry (Table 35.1). Staircasing of these non-Manhattan functions
occurs, and without a very fine grid, the results are less accurate.

35.2.2.4.3 Array Multiplication
This is one of the basic computing operations, and is typically straightforward. The matrix multipli-
cation occurs pixel by pixel, and the entries in the corresponding matrices are therefore multiplied
entrywise.

⎡
⎢⎢⎣

P1,1M1,1 P1,2M1,2 P1,3M1,3 P1,4M1,4

P2,1M2,1 P2,2M2,2 P2,3M2,3 P2,4M2,4

P3,1M3,1 P3,2M3,2 P3,3M3,3 P3,4M3,4

P4,1M4,1 P4,2M4,2 P4,3M4,3 P4,4M4,4

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

P1,1 P1,2 P1,3 P1,4

P2,1 P2,2 P2,3 P2,4

P3,1 P3,2 P3,3 P3,4

P4,1 P4,2 P4,3 P4,4

⎤
⎥⎥⎦ •

⎡
⎢⎢⎣

M1,1 M1,2 M1,3 M1,4

M2,1 M2,2 M2,3 M2,4

M3,1 M3,2 M3,3 M3,4

M4,1 M4,2 M4,3 M4,4

⎤
⎥⎥⎦ (35.19)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 705 24-9-2008 #12

Modeling and Computational Lithography 705

whereM1,1 represents, for example, a pixel of the Fourier transform ofM(x, y),

M1,1 = FT
[
M(x, y)

]
Pixel(a1,b1)

(35.20)

P1,1 represents the pupil function at pixel (a1, b1), etc.
It is clear from this that the grids of the mask function, the pupil function, and the final image

need to be matched to avoid excessive interpolation.

35.2.2.4.4 Fast Fourier Transform
The fast Fourier transform (FFT) is one of the best known and widely used computational algorithms
[32–34]. Normally, a discrete Fourier transform (DFT) numerically executing the Fourier transform
in a brute force manner, would require O(N2) arithmetic operations. However, when the functions
to be transformed can be discretized into elements that are a multiple of 2, the DFT can be broken
down into a number of smaller DFTs. The final result can be constructed to only have O(N log N)

arithmetic operations. In a similar fashion, 2D discrete Fourier transforms can be broken down into
a collection of 1D DFTs, each with a similar gain in computational efficiency.

Because the mask function M is well behaved (with values of either 0 or 1, depending on the
coordinates) and the pupil function P is continuous, both the mask function and pupil function can
be digitized into a 2D array of pixels, with the number of pixels on each side being some multiple
of 2. The FFT can therefore be used for this computation, and it has become the main engine of
image simulation.

35.2.3 RET TOOLS

The ability to simulate images quickly with tools such as the FFT and to compose arbitrary images
based on the superposition of partial images gives rise to the possibility of EDA tools with dual, com-
plementary capabilities: a database engine, to manage and process layout polygons, and a process
simulation engine. The process engine calls on certain layers of data representing portions of the IC
layout, transforms them to simulate processing behavior, and returns a representation of the trans-
formed data to the database for further analysis. This is illustrated schematically in Figure 35.6. This
combination of data management and simulation is how the entire class of ‘resolution enhancement
techniques (RETs) [35] are implemented in an EDA flow.

Layer 2: Isolation
Layer 3: Gate
Layer 4: Contact
Layer 5: Metal 1
Layer 6: Via 1
Layer 7: Metal 2
Layer 8: Via 2

Other simulated layers

Layer 1: Implant Single data layer

Simulation

Layout

…

FIGURE 35.6 Lithographic simulation of a single layer of an IC layout.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 706 24-9-2008 #13

706 Handbook of Algorithms for Physical Design Automation

(a) (b)

FIGURE 35.7 Iso-dense bias. (a) represents the drawn layout, while (b) illustrates the result on the wafer.
For this process, the lines in the dense region are thinner than isolated lines with the same nominal dimension.
(Reproduced from Schellenberg, F.M., Zhang, H., and Morrow, J., Optical Microlithography XI, Proceedings
of SPIE, 3334, 892, 1998. With permission.)

There are three major RETs in use today: Optical and process correction (OPC), phase-shifting
masks (PSM), and off-axis illumination (OAI) [35–37]. Each corresponds to control andmanipulation
of one of the independent variables of the optical wave at the mask: amplitude (OPC), phase (PSM),
and direction (OAI). The changes required for OPC and PSM are implemented by changing the
layout of the photomask, while OAI is implemented by changing the pattern of light emerging from
the illuminator as it falls on the mask.

35.2.3.1 OPC

The acronym ‘OPC’, which is now used as a general term for changing the layout to compensate
for process effects (optical and process correction), originally stood for optical proximity correction,
andwas used to predict and compensate for one-dimensional proximity effects. One example of a 1D
effect, ‘iso-dense bias’ [38,39], is illustrated in Figure 35.7 [40]. Here, isolated and dense features
of identical dimension on the photomask print at different dimensions on the wafer, depending on
the proximity to nearby neighbors. Shown in the ‘pitch curve’ of Figure 35.8 is the characteristic
behavior observed for 1D periodic features in a typical optical lithography process [41]. In this case,
‘pitch’ is the 1D sum of line and space dimensions.

Some of this can be readily understoodas an interaction of the Fourier spectrumof the photomask
layout and the low-pass properties of the stepper lens and process: Dense lines have a well-defined

Target linewidth

IsolatedDense

Pitch

M
ea

su
re

d
lin

ew
id

th

FIGURE 35.8 Iso-dense pitch curve, quantifying the linewidth changes for nominally identical features (i.e.,
lines all at a single target dimension) as a function of pitch. (Adapted from Cobb, N.B., Fast optical and
process proximity correction algorithms for integrated circuit manufacturing, Ph.D. Dissertation, University of
California, Berkeley, California, 1998. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 707 24-9-2008 #14

Modeling and Computational Lithography 707

(a) (b)

(c) (c)

FIGURE 35.9 (a) and (b) Line-end pullback and (c) and (d) corner rounding. (Reproduced from Schellenberg,
F.M., Zhang, H., and Morris, J., Optical Microlithography XI, Proceedings of SPIE, 3334, 892, 1998. With
permission.)

pitch and therefore a narrow spectrum, which passes easily through the pupil, while isolated features
with sharp edges correspond to a range of spatial frequencies, including many high frequencies that
are cut off by the pupil. It is therefore not a surprise that isolated and dense features of the same
nominal dimension may have different images on the wafer.

Additional effects that can impact the image are line-end pullback and 2D corner rounding,
illustrated in Figure 35.9 [40]. These also are interpretable partly through the spectral analysis of
the layout.

To compensate for the loss in higher spatial frequencies, the positions of the edges in the original
layout can be altered and adjusted as appropriate to correct the image in the local environment.
[38,42,43] This is illustrated in Figure 35.10. Additional features not present in the original layout,
sometimes called ‘scattering bars’ or ‘assist features’ can also be added to the layout [44,45]. These
features, with dimensions chosen so that they themselves do not print on thewafer, form a quasi-dense
environment around printing features, which would otherwise be isolated. An example is illustrated
in Figure 35.11. The overall effect is to make the behavior of the isolated features better match the
behavior of dense features on the final wafer.

35.2.3.2 PSM

Traditional photomasks are fabricated using a lithography process to etch away portions of a layer
of opaque chrome coated on a quartz mask blank [46,47]. The presence or absence of chrome forms
the pattern to be reproduced on the wafer. However, the underlying quartz substrate of the mask can
be etched as well. Because the refractive index of the quartz and air are different, a relative phase
shift between the two neighboring regions can be created. This is illustrated in Figure 35.12.

For apertures that are close together, if the light emerging from the apertures has the same phase,
the images overlap on thewafer, the fields add, and the spots blur together, as shown in Figure 35.13a.
If the phase difference is 180◦, as shown in Figure 35.13b, however, the wave peaks and troughs sum
to zero in the overlap region, and destructive interference occurs. Therefore, for two regions in close

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 708 24-9-2008 #15

708 Handbook of Algorithms for Physical Design Automation

(a) (c)

(d)(b)

FIGURE 35.10 (a) Original layout and (b) its simulated wafer result, and (c) layout after modification with
OPC and (d) its simulated wafer result. The wafer result for the corrected version is clearly a better match
to the original drawn polygon. (Adapted from Maurer, W. and Schellenberg, F.M., Handbook of Photomask
Manufacturing Technology, S. Rizvi, Eds., CRC Press, Boca Raton, Florida, 2005. With permission.)

FIGURE 35.11 Example of a contemporary layout with printing features and SRAF. (Reproduced, Courtesy
Mentor Graphics.)

proximity, a dark fringe forms, allowing the images to remain distinct. [48–50] This is often called
an ‘alternating’ PSM, because the phase alternates between apertures.

Careful assignment of the mask regions to be etched, or phase-shifted, can lead to enhanced
resolution for an IC layout. This can lead to problems, however, if polygons that require phase shifting

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 709 24-9-2008 #16

Modeling and Computational Lithography 709

Chrome
180�0�

Quartz substrate

FIGURE 35.12 Cross-section view of an optical wave passing through two apertures of a photomask. Etching
the mask substrate for one of the apertures can produce a phase shift of 180◦ .

In
te

ns
ity

E
-f

ie
ld

M
as

k
pr

of
ile

In
te

ns
ity

E
-f

ie
ld

0� 180�M
as

k
pr

of
ile

(a) (b)

FIGURE 35.13 Amplitude and intensity for (a) a conventional mask, and (b) a mask with a 180◦ phase shift.
Contrast for neighboring apertures is clearly enhanced for the phase-0 shifting mask. (Adapted from Maurer,
W. and Schellenberg, F.M., Handbook of Photomask Manufacturing Technology, S. Rizvi, Ed., CRC Press,
Boca Raton, Florida, 2004. With permission.)

in one area of the chip are contiguous with polygons in other regions that require the opposite phase.
These topological constraints, illustrated in Figure 35.14, are called ‘phase conflicts’, and can place
additional design rule restrictions on layouts [51–54].

Several variations on phase-shifting techniques have been adopted. Themost common is a hybrid
phase shifter, called an ‘attenuated PSM’ [55]. Here, the opaque chrome material of a conventional
photomask is replaced with an attenuating but partially transmitting material (typically a MoSi film
with 6 percent transmission [56]), with properties selected such that the light weakly transmitted
through the film emerges with a phase shift of 180◦. This improves contrast between light and dark
regions, because the E-field (and therefore intensity) must be zero somewhere near the edge between
the clear region and the phase shifted, darker region. However, fabrication techniques are similar to
regular chrome mask processing, and no additional quartz etch step is required.

There are also several double exposure techniques, in which certain phase-shifted features are
created on a first photomask, while a second mask is used to trim or otherwise adapt the exposed

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 710 24-9-2008 #17

710 Handbook of Algorithms for Physical Design Automation

Desired layout
Phase conflict regions

180� phase shift

FIGURE 35.14 Examples of layouts that have phase conflicts.

region to complete the exposure. [57–60] In this way, some of the unwanted artifacts of the phase-
shifting structures can be eliminated in the second exposure.More details on various PSM techniques
can be found in the literature. [35,37]

35.2.3.3 OAI

For light falling at or near normal incidence to the photomask (on-axis illumination), the diffraction
spectrum is straightforward to interpret. For light entering at an angle (i.e., using off-axis illumination
[OAI]), the spectrum is shifted [61], as shown in Figure 35.15. Clearly, depending on the layout on
the mask and the imaging properties of the lens system, the spectral content of the image can be
significantly affected.

FIGURE 35.15 Spectrum for an off-axis ray (left) and spectrum for an annular cone of off-axis rays (right).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 711 24-9-2008 #18

Modeling and Computational Lithography 711

+1 orders

0 orders

−1 orders

+ −1 +1−

FIGURE 35.16 Spectrum for conventional illumination (left), and for off-axis annular illumination (right),
in which the annulus has been chosen to coincide with the diffracted orders of the pattern on the photomask.

Typical illuminators shape the light to be uniform and to illuminate the photomask with a fairly
narrow range of angles. The spectrum of illumination then corresponds to a circle. By using illumi-
nation with a specific angle of incidence, represented, for example, by the annulus in Figure 35.16,
certain pitches can be emphasized and their imaging contrast enhanced, but only at the expense of
lower contrast for other spatial frequencies [61,62]. For IC layoutswith a large proportion of periodic
patterns, such as memories, a suitable choice of illuminator pattern that matches the spatial frequen-
cies of the layout can enhance imaging performance significantly [62]. An example of this is shown
in Figure 35.17, in which a quadrupole-like illuminator was used in combination with subresolution
assist features (SRAFs) to overcome certain “forbidden pitches” of low contrast [63].

More elaborate interactions between the spectrum of source angles and the photomask layout
are possible. Shown in Figure 35.18 is an example of an IC cell and a source spectrum created
through mask/source co-optimization. There are several methods demonstrated to achieve this
goal [64–67].

35.2.3.4 RET Combinations

Although each of these techniques can enhance lithographic performance in and of itself, it is
in combinations that dramatic improvements in imaging performance are achieved. For exam-
ple, phase-mask images may have higher contrast, but still suffer from iso/dense bias, requiring
OPC [59]. Likewise, combinations of OAI tuned for photomasks with OPC layouts can be very
effective [68–70]. In some cases, all three techniques have been used together to create the best
lithographic performance [35,71,72]. Success with developing processes using these combinations,
with choices tuned to the unique combinations of skills present in individual companies, is a lively
source of competition among IC makers.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 712 24-9-2008 #19

712 Handbook of Algorithms for Physical Design Automation

2

1.5 0 SRAF ½ SRAF 1 SRAF 2 SRAF/edge
D

ep
th

 o
f f

oc
us

 (
µm

)

1

0.5

0
200 400 600 800 1000 1200 1400

Pitch (nm)

Acceptable
Unacceptable

Without SRAF
With SRAF

FIGURE 35.17 Pitch curve for lines and spaces under a particularOAI approach calledQUASAR illumination.
Without SRAFs, certain pitches do not have enough contrast, and will not print. SRAF are added to restore
the contrast. (Adapted from Schellenberg, F.M., Capodieci, L., and Socha, B., Proceedings of the 38th Design
Automation Conference, ACM, New York, 2001, pp. 89–92. With permission.)

35.2.3.5 Polarization

At this time, there is a fourth independent variable of the EM field that has not yet been as fully
exploited as the other three: polarization [73]. For advanced steppers, which fill the gap between the
last lens element and the wafer with water for the higher angle coupling it allows (water immersion

(a)

(c)

(b)

(d)

FIGURE 35.18 (a) Layout with alternating phase-shifted apertures, (black is opaque, left stripe is 0◦, right
stripe 180◦), and (b) pupil map of an illumination pattern optimized for this layout; (c) Layout with or a memory
cell (dark is opaque, clear is normal 0◦ mask transmission), and (d) pupilmapof an illuminationpattern optimized
for this layout. (Adapted from Granik, Y., J. Microlith. Microfab. Microsyst., 3, 509, 2004. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 713 24-9-2008 #20

Modeling and Computational Lithography 713

steppers [26]), anticipation of and compensation for polarization properties of the light is becom-
ing crucial [73–76]. At the time of this writing, however, although some very creative techniques
exploiting polarization have been proposed [77], no definitive polarization-based RET has been
demonstrated as practical. Instead, polarization is considered in each of the other RETs—source
illumination, mask diffraction, and lens pupil transmission. This may change in the future as the
polarization issues with advanced immersion lithography become better understood.

35.2.4 RET FLOW AND COMPUTATIONAL LITHOGRAPHY

Nomatterwhat patterning technique is used, incorporating the simulationof the corresponding effects
requires some care for insertion into an EDA environment. Complete brute force image simulation
of a 32mm × 22mm IC with resolution at the nanometer scale would require a gigantic amount of
simulation and days or even weeks to complete. Some effort to therefore determine the minimum
necessary set for simulation is called for.

Therefore, the initial step simulation for an EDA flow involves fragmentation of the layout. In
a layout format such as GDS-II or OASIS, a polygon is defined by a sequence of vertices. These
vertices are only placed where the boundary of a polygon makes a change (e.g., at the corners
of rectangles). With fragmentation, additional vertices are inserted [41,78]. The rules governing
fragmentation can be complex, but the intention is to basically break the longer edge segments into
shorter, more manageable edge segments, with more segments (higher fragmentation) in regions
of high variability and fewer segments (low fragmentation) in regions of low variability. This is
illustrated in Figure 35.19.

Once fragmented, a simulation point is determined for each edge segment. This is the location at
which the image simulation results will be determined, and the corresponding position of the edge
as expected on the wafer determined. Each simulation point has an associated cutline, along which
the various values for the image intensity and its derivatives (e.g., image slope) will be calculated.
This is illustrated in Figure 35.20 [41,79,80].

At this point, the simulator is invoked to systematically simulate the image properties only along
the cutline for each edge segment. Using some assumptions or a suitable algorithm, the position of
the edge of the resist is determined from the computed image. Once this edge position is determined,
a difference between the edge position in the desired layout and the simulated edge position is
computed. This difference is called the edge placement error (EPE) [41].

Fragmentation point

FIGURE 35.19 Original portion of a layout with original fragmentation (left) and layout after refragmentation
for OPC (right). (Adapted fromWord, J. and Cobb, N., Proc. SPIE, 5567, 1305–1314, 2004. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 714 24-9-2008 #21

714 Handbook of Algorithms for Physical Design Automation

Fragmentation point

Simulation cutline

Location for image computation

FIGURE 35.20 Selection of the simulation cutlines to use with the fragmentation from Figure 35.19.
(Reproduced, Courtesy Mentor Graphics.)

Fragmentation

Simulation

Generate EPE

Correction
Layer selection

FIGURE 35.21 Sequence of operations within a typical OPC iterative loop.

For each and every edge segment there is, therefore, an EPE. For an EPE of zero, the image
of the edge falls exactly on the desired location. When the EPE is nonzero, a suggested motion
for the edge segment is determined from the sign and magnitude of the EPE that should reduce
the EPE. The edge segment in the layout is then moved, according to this prediction. Once this
happens, a new simulation and a new EPE are generated for the revised layout. The iterative process
proceeds until the EPE has been reduced to be within a predetermined tolerance. This is illustrated
in Figure 35.21.

Although simplistic in outline, determining fragmentation settings and suitable simulation sites
while remaining optimal for the competing metrics of high accuracy, rapid convergence, and man-
ageable data volume remains challenging. A real-world example of a layout with fragmentation
selections is shown in Figure 35.22. In general, high fragmentation density leads to better accuracy,
but requires more simulation and may create higher data volume. Poorly chosen simulation sites
can converge rapidly, but may not accurately represent the average behavior along the entire edge
fragment (and in some cases, may even lead to a motion in the wrong direction). Cutlines chosen in
certain orientations (e.g., normal to the layout, not normal to the image gradient) may again produce
less representative EPEs, and the iteration may require longer to converge.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 715 24-9-2008 #22

Modeling and Computational Lithography 715

FIGURE 35.22 Example of a real-world layout, showing the target layout, simulation cutlines, and image
contours. (Reproduced, Courtesy Mentor Graphics.)

35.2.5 MASK MANUFACTURING FLOW

Although originally developed for computing the relationship between the layout and the wafer
image, a similar procedure can be carried out to compensate for mask manufacturing effects [81]. In
this case, themodelmust be derived for the various processes used inmask fabrication. These typically
involve exposure using an electron beam (E-beam), and because electrons are charged and repel, a
significant amount of computationmay be required to compensate for electron proximity effects [82].
Optical mask writers, which write masks using UV lasers and use lithography materials similar to
those used for wafers [82], can also be corrected for optical proximity and processing effects.

35.2.6 CONTOUR-BASED EPE

For sparse layouts, with feature dimensions larger than the optical wavelength, selection of frag-
mentation settings and simulation sites can be fairly straightforward, as illustrated in Figure 35.23a.
As feature dimensions become significantly smaller than the optical wavelength, however, more
simulation sites can be needed, as illustrated in Figure 35.23b [83]. At some point, the advantage
of a sparse simulation set is severely reduced, and the use of a uniform grid of simulation points
becomes attractive again.

In this case, the simulation of the image intensity is carried out using a regular grid, as illustrated
in Figure 35.24. Contours from the simulation result, using again a suitable model to predict the edge
location on the wafer, are used to represent the image intensity. The EPE is then synthesized from
the desired position of an edge segment and a corresponding location on the contour. Subsequent
motion of the edge segments proceeds as previously described.

Representation of the contour data can present additional problems not encountered in the sparse
approach.Accurate representations of contours contain farmore vertices than their counterparts in the
original GDS-II layout. And although storing the contours after it has been used to determine an EPE
may be extremely useful, because identical regions may be encountered later and the precomputed

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 716 24-9-2008 #23

716 Handbook of Algorithms for Physical Design Automation

(a)

(b)

FIGURE 35.23 (a) Layout with sparse simulation plan and (b) scaled layout using sparse simulation rules
when the target dimension is 65 nm and the exposure wavelength is 193 nm. At some point, sparse simulations
are no longer sparse. (Adapted fromCobb,N. andDudau, D.,Proc. SPIE, 6154, 615401, 2006.With permission.)

solution accessed and reused, the additional data volume for storage of contours with their high
vertex counts in the database can present problems. In spite of these logistical problems, however,
there are some clear advantages for accuracy. With the dense approach, certain features such as the
bridge shown in Figure 35.24 can be simulated and flagged; catching such a structure with a sparse
number of simulation sites becomes far more problematic.

No matter what the simulation strategy, image and process simulators are invoked in these OPC
flows. We now turn our attention to the simulator itself, and some of the practical approximations
that are used to make a simulator functional in an EDA environment.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 717 24-9-2008 #24

Modeling and Computational Lithography 717

Sparse Dense

FIGURE 35.24 Fragmentation/simulation plan for a portion of a layout using sparse rules (left), and a dense
grid simulation (right). Using the contours from the dense grid, features such as the bridge between the two
features can be detected. (Reproduced, Courtesy Mentor Graphics).

35.3 SIMULATION TECHNIQUES

35.3.1 INTRODUCTION

In Section 35.2, the fundamental framework for modeling lithography and various RETs were pro-
vided. In this section, computational techniques that can be used within that framework for detailed
mask transmission, image propagation, and wafer process simulation are presented, and the various
trade-offs in the approximations they use are discussed.

As described in Section 35.2.2.2, the imaging system can be approximated as a simple Fourier
transform and its inverse, with the pupil aperture (e.g., a circle) providing a low pass cutoff for the
spatial frequencies of the image.

Although abstractly true, certainly much more than a pair of FFTs are needed to provide highly
accurate simulation results. The three areas that require modeling attention are the imaging system
itself, the interaction with the photomask, and the interaction with the wafer.

35.3.2 IMAGING SYSTEMMODELING

A lithographic imaging system has a large number of highly polished, precision optical elements,
mounted in a precision mechanical housing. The lens column can weigh over 2 t and be over 2m
tall. An example of a contemporary lens design [84] is shown in Figure 35.25. These lenses are
usually designed with complex ray tracing programs that accurately represent the path that light
takes through the reflective and refractive elements [85].

Because the mathematical theory of lens design is linear and well understood, the complex
interactions of the lens elements can be represented as the simple, ideal Fourier lens described in
Section 35.2.2.2, with all the physical properties of the lens (refraction, aberrations, etc.) lumped
together into an idealized pupil function represented by Zernike polynomials. This function can be
measured using precision interferometry techniques, but this is usually not easy to do for an individual
stepper in the field [86].

The interaction of this pupil with the illuminator presents the essential challenge of imaging
simulation. If the light falling on the lens were a single, coherent, uniform normal incidence (on-
axis) plane wave, the corresponding spectrum in the pupil would be a single point at the center of
the pupil. This represents coherent illumination, as shown in Figure 35.26a. In practice, however,
light falls on the photomask at a range of angles, from a number of potential source points. The
corresponding interactions in the lens pupil are shifted and overlapped. The degree to which the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 718 24-9-2008 #25

718 Handbook of Algorithms for Physical Design Automation

502
508 511 512

514

LG1

516 518

531 532

LG2

520

522
524
526

528

538

536

530531534
LG3

180

548
546

544
542

540

110

FIGURE 35.25 Example of a contemporary scanner lens design. (From Kreuzer, J., US Patent 6,836,380.)

pupil is filled is then related to the spatial coherence of the light source. For very coherent light,
the pupil filling ratio is small (Figure 35.26b); for larger angles and lower coherence, the pupil
filling is higher (Figure 35.26c). This ratio, also called the coherence factor, is typically designated
by lithographers using the symbol σ . This should not be confused, however, with the electrical
conductivity from Equation 35.1b above.

Imaging with complicated sources and pupils can be complicated to model. For coherent light,
the image fields add directly both at every moment in time and in a time average, and so we can sum
the various contributions individually. For incoherent light, the local fields add instantaneously, but
for the time average, the correlation is lost, and so the various image intensities must be computed
and added.

However, most illumination systems are partially coherent. This means that the relation between
the image I(x, y) from two different points in an object (xo ′, yo ′) and (xo′′, yo ′′) (e.g., two points in a
mask) do not fit either of these simple cases. Likewise, the illumination of an object by a distribution
of source points follows similarly.

(a) (b) (c)

FIGURE 35.26 Pupil maps for illumination that is (a) coherent, (b) partially coherent, and (c) incoherent.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 719 24-9-2008 #26

Modeling and Computational Lithography 719

The image formulation for this situation can be computed using the mutual intensity function
J(xo ′, yo′; xo′′, yo′′), according to Refs. [29,87,88]

I(x, y) =
∞�

−∞

�
J(x′

o − x′′
o , y

′
o − y′′

o) ·M(x′
o, y

′
o) ·M∗(x′′

o , y
′′
o)

× H(x′
o, y

′
o) ·H∗(x′′

o , y
′′
o) · dx′

ody
′
odx

′′
o , dy

′′
o (35.21)

where
M(xo, yo) are the points in the mask
H(x, y, xo, yo) represents the optical system transfer function from point (xo, yo) to (x, y).

When the mask and the transfer function are replaced by Fourier representations,

M(x, y) =
∞�

−∞

�
M̂(p, q) · e−i2π(px+qy)dp dq (35.22a)

J(x, y) =
∞�

−∞

�
Ĵ(p, q) · e−i2π(px+qy)dp dq (35.22b)

the image intensity can be rewritten as

I(x, y) =
� +∞�

+∞

� �
Ĵ(p, q) · Ĥ(p+ p′, q + q′)Ĥ∗(p+ p′′, q + q′′)

× M̂(p′, q′) · M̂∗(p′′, q′′) · e−i2π[(p′−p′′)x+(q′−q′′)y]dp dqdp′ dq′ dp′′ dq′′ (35.23)

Changing the order of integration, the integral can be reexpressed as

I(x, y) =
� +∞�

+∞

�
TCC(p′, q′, p′′, q′′) · M̂(p′, q′)M̂∗(p′′, q′′) · e−i2π[(p′−p′′)x+(q′−q′′)y]dp′dq′dp′′ dq

(35.24)
where

TCC(p′, q′, p′′, q′′) =
+∞�

+∞
Ĵ(p, q)Ĥ(p+ p′, q + q′)Ĥ∗(p+ p′′, q + q′′)dp dq (35.25)

is called the transmission cross coefficient (TCC). An illustration of this overlap integral in the pupil
plane is shown in Figure 35.27.

This TCC overlap integral depends only on the illumination source and the transfer of light
through the lens, which are independent of mask layout. J(p, q) in Figure 35.27 is a representation
of the projection of a circular source illumination. This could just as well be an annular, quadrupole,
or other off-axis structure, as illustrated in Figure 35.16, or a more complex pattern, as shown in
Figure 35.18. Only portions in frequency space (the pupil plane) where source light overlaps with
the lens transmission (the shaded area) will contribute to the final image.

The key element here is that the interaction of the source and lens can be precomputed as TCCs
and stored for later use, once the details of the mask layoutM(x, y) are known. This formulation for
imaging was originally presented by Hopkins [88] and is often called the Hopkins approach.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 720 24-9-2008 #27

720 Handbook of Algorithms for Physical Design Automation

q

p

TCC (p ′,q ′, pÁ,qÁ)

H (p + p ′,q + q ′)
^

H (p + pÁ, q + qÁ)
^

J (p,q)
^

FIGURE 35.27 Diagram of the integral of overlap for the computation of images using TCCs.

One example of the utility of this approach is the simulation of defocus. Normally, the Fourier
optical equations represent the image at the plane of focus. However, for propagation beyond focus,
the expansion of a spherical wave from a point follows a quadratic function that is equivalent to
introducing a fourth-orderZernike aberrationZ4 in the pupil plane [89] (SeeTable 35.1). Computation
of a defocused image therefore becomes equivalent to the computation of an in-focus image with a
suitable degree of fourth-order aberration. By precomputing the TCCs for a systemwith fourth-order
aberration, defocus images for a mask pattern can therefore be calculated merely by using different
sets of precalculated TCCs.

35.3.3 MASK TRANSMISSION FUNCTION

In our formulations of imaging so far, the mask transmission is a simple function,M(x, y). Typically,
this is a binary mask, having a value of 0 or 1 depending on the pixel coordinates. In the Kirchhoff
approximation, mentioned in Section 35.2.2.2, the mask transmission is exactly this function. How-
ever, in a real photomask, with layers of chrome coated onto a substrate of quartz, the wavefronts
reflect and scatter off the three-dimensional structures, and the wavefront can be a complicated
function of position, amplitude, and phase.

This wavefront can still be represented as a 2D function, in which each pixel has its own trans-
mission value and a phase factor, depending on the phase shift of the transmitted light. To derive
this representation, however, a simple scalar representation of the field at the mask will not suffice.
Instead, a full vector EM field computation may be required.

35.3.3.1 FDTD

A widely used first-principles method for simulating the electromagnetic field over time is the
finite-difference time domain (FDTD) method [90–93]. This is illustrated in Figure 35.28. Here,
a grid in time and space is established, and the initial conditions for sources (charge and current)
determined and the field at the boundaries determined. Then, using Maxwell equations in a finite
difference form, the time step is incremented, and the E-field recomputed, based on the previous E
field and the curl ofH at the previous time step. Once this is generated, the time step in incremented
again, and the H field is computed, based on the previous H field and the curl of the E field.
As an example, following the notation of Erdmann [93], the Maxwell equations for a transverse
electric (TE) field mode can be represented for grid point i, j at time step n in finite difference
form as

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 721 24-9-2008 #28

Modeling and Computational Lithography 721

Hy

Hy

Hy

Hy

Hz Hz

Hz

Ex

Ez

Ey

Hx

Hx

∆z

∆y

∆x

FIGURE 35.28 Illustration of the geometry used in the computation of EM fields according to the FDTD
method. (Adapted from Taflove, A. and Hagness, S.C., Computational Electrodynamics: The Finite-Difference
Time-Domain Method, Artech House, Boston, 2005. With permission. After Yee, K. S., IEEE Trans. Antennas
Propagation, AP-14, 302, 1966, Copyright IEEE. With permission.)

Hx

∣∣n+1/2
i,j = Hx

∣∣n−1/2

i,j
+ �t

µ�x

(
Ey

∣∣n
i,j+1 − Ey

∣∣n
i,j

)
(35.26a)

Hz

∣∣n+1/2
i,j = Hz

∣∣n−1/2

i,j
+ �t

µ�x

(
Ey

∣∣n
i,j − Ey

∣∣n
i+1,j

)
(35.26b)

Ey

∣∣n+1
i,j = Ca

∣∣
i,j

· Ey

∣∣n
i,j + Cb

∣∣
i,j

(
·Hx

∣∣n+1/2
i,j − ·Hx

∣∣n+1/2

i,j−1
+ ·Hz

∣∣n+1/2
i−1,j − ·Hx

∣∣n+1/2

i,j

)
(35.26c)

where the coefficients Ca and Cb depend on the materials properties and charge densities:

Ca

∣∣
i,j =

(
1 − σi,j�t

2εi,j

)/(
1 + σi,j�t

2εi,j

)
(35.27a)

Cb

∣∣
i,j =

(
�t

2εi,j

)/(
1 + σi,j�t

2εi,j

)
(35.27b)

From the initial conditions, the suitable fields are computed at half time steps throughout the spatial
grid, and the revised fields are then used for the computation of the complementary fields for the
next half time step. Each step, of course, could be designated as a unit time step for the algorithm.
But then the entire algorithm (E generatingH;H generating E) would then require two time steps to
come full circle. The use of half time steps is therefore convenient so that the entire algorithm counts
a single cycle in a single unit time step. This staggered computation is illustrated in Figure 35.29.
The calculation proceeds through time and space until the maximum time allocated is reached.

For a steady-state source of excitation (e.g., incident electromagnetic waves), the time interval
should be chosen such that the final few cycles reach a steady state, and can be time averaged to give
average local fields and intensity values.

For this method to work, the optical properties of each point in the computation grid must
be specified. For metals (such as the chrome photomask layer), this can be difficult, because the
refractive index is less than 1 and a denser grid may be required. However, because the optical

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 722 24-9-2008 #29

722 Handbook of Algorithms for Physical Design Automation

E E E E

E E E E

E E E E

H H H

H H H

x = 0 x = ∆x x = 2 ∆x x = 3 ∆x

t = 0.5 ∆t

t = ∆t

t = 1.5 ∆t

t = 2 ∆t

t = 0

x = 0 x = ∆0 x = 2 ∆x x = 3 ∆x

x = 0.5 ∆x x = 1.5 ∆x x = 2.5 ∆x

FIGURE 35.29 Illustration of the time steps used in the computation of EM fields according to the FDTD
Method. (Adapted from Taflove, A. and Hagness, S.C.,Computational Electrodynamics: The Finite-Difference
Time-Domain Method, Artech House, Boston, 2005. With permission.)

properties of air, quartz, and chromium have been measured and can be found in Ref. [94], this tends
to not be a practical drawback to its use.

More critical is the fact that the grid must extend throughout the space to be simulated. If a
large system such as an entire lens were to be simulated point by point, the amount of computation
would be gigantic. Lens propagation is well described by the approximations described previously,
in Section 35.2.2.2 and using the Hopkinsmethod of Section 35.3.2. To use the more accurate results
of the FDTD simulation where it matters, at the mask and more particularly at the patterned surface
of the mask, a grid can be set up to only simulate the thin region at the quartz/chrome/air interface of
the photomask, using fine grids (e.g., grid spacing of 5 nm for illuminationwavelengthλ = 193 nm).
The scattering of the mask patterning structures can then be accurately computed locally using the
FDTD method, and a replacement for the mask function, a new M ′(x, y), can be generated from
the results at the bottom of the simulation window. ThisM ′(x, y) will have the amplitude and phase
information as generated by the FDTD simulator, and the angular spectrum (e.g., Fourier transform)
of this complex function can be used in the established equations.

Another problem lies with the treatment of the boundary conditions. Normally, such a program
would assume the edges are contiguous with another domain, periodically repeated from the grid
under simulation. If this is actually the case on the photomask (e.g., with repeating cells or features),
then this will be accurate, but to simulate isolated features, something must be done. The usual
treatment here is to use perfectly matched layers (PMLs) [95] at the edges of the simulation domain
that attenuate the incoming EM excitations. Ideally, there is no reflection at all from the PMLs, and
analytically this is true. But with a discrete grid, some artificial reflection can occur, and at oblique
angles, this can grow to be significant. Therefore, care must be taken when creating these black holes
at the appropriate edges of the simulation regime to allow accurate simulation of local isolated layout
patterns.

If a suitable grid and boundary conditions are set up, the FDTD simulator produces correct
results [96,97]. However, the computation time consumed to reach steady-state result, and to then

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 723 24-9-2008 #30

Modeling and Computational Lithography 723

infer a function that represents a complex effective mask transmission, makes this unmanageable as
an in-line simulation tool for the simulations called for in full-chip RET.

35.3.3.2 RCWA and Waveguide Techniques

Other techniques can also be used to provide a more rigorous technique for simulating the electro-
magnetic field without the computational intensity of the FDTD method. Rigorous coupled wave
analysis (RCWA) [98] is a technique for modeling the light diffraction from gratings. The linearity
of optics, as discussed above in Section 35.2, allows for the Fourier decomposition of an arbitrary
pattern into a set of gratings, which can be computed individually and the final image reassembled.
This technique is more commonly used for one-dimensional patterns [99].

The waveguide method (WGM) [100] assumes the object is periodic with rectangular sidewalls,
and expands the fields in the object into the eigenmodes of a waveguide with a similar profile.
Although these boundary conditions may be somewhat limited, they correspond to many real-world
mask structures, such as certain phase-shifting masks [101], and when the boundary conditions are
met, they can be several times faster than FDTD without a significant loss in accuracy [102].

35.3.3.3 DDM

An alternative approach to the in-line use of FDTD can be found in techniques such as the domain
decompositionmethod (DDM) [103]. Here, a basis set of fundamental imaging components is deter-
mined. One possible set of basis elements is a collection of topographic edges of various dimensions,
each one illuminated at particular angles and for each polarization (parallel and perpendicular).
Another uses predetermined geometric regions. For each of the basis elements, the EM fields are
presimulated using an accurate method, such as a FDTD simulator, and stored in a table for future
use [104].

When a complex layout is encountered that requires simulation, the programdecomposes the lay-
out into a summation of the fundamental basis set elements, looks up and assembles the precomputed
field contributions, and presents the resulting E fields. In this way, a fairly accurate simulation result
for a complex topographic pattern can be presented without requiring a large area, time-consuming
FDTD calculation.

The DDM method is illustrated in Figure 35.30. For simulating topographic mask patterns, this
has been quite successful using a basis set of chrome or quartz edges of various heights and lengths,
illuminated with either parallel or perpendicular polarization. It relies, however, on the linearity of
the EM system and the correct choice of a basis set for its success. If certain resonant phenomena are
encountered, such as the excitation of surface plasmons at a metal/dielectric interface, [105–107] the
basis set must be expanded to include the fundamental resonant structures, and the decomposition
must be expanded to ensure that they are recognized. If nonlinear interactions occur, the technique
will not work.

35.3.4 WAFER SIMULATION

The image intensity I(x, y) that is produced corresponds to the image that would be formed in free
space or air (the aerial image). Defocus, as discussed above, can be introduced as equivalent to a
fourth-order aberration function. To model the effect of dose in the photoresist, the behavior of the
image as it coupled into the photosensitive resist must be considered [108].

Photoresists are engineered to be very high contrast materials. This means that, once the expo-
sure dose has exceeded a certain threshold, the desired reaction (either the breaking of bonds, or the
formation of crosslinks) occurs rapidly and thoroughly [22]. For this reason, an image can be eval-
uated for regions in which the intensity exceeds the threshold versus those where intensity does not
exceed a threshold, and the final pattern defined appropriately.The simplest approach is to determine

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 724 24-9-2008 #31

724 Handbook of Algorithms for Physical Design Automation

Opaque

T=1, φ = 0°
T=1, φ = 180°

FIGURE 35.30 Illustration of the DDM (Adapted Adam, K. and Neureuther, A.,Proc. SPIE, 4691, 107, 2002.
With permission.)

a single threshold value, and apply that universally. This is called a constant threshold model for
aerial image evaluation [41].

For some estimations, this works well, but results can vary with individual resists. Some modern
resists for usewith deep-UVexposure resists with chemical amplification operatewith the creation of
a catalyst through photoexposure. This catalyst then migrates through the polymer matrix, breaking
bonds [22]. Depending on the density of the photocatalysts, the delivered dose can produce different
effects in different regions.

One can, as above, use a first-principles method to precompute resist profiles for a basis set of
structures. In this case, the actual 3D intensity profile within the resist is computed, using all the
reflections at the front and back surfaces that may cause interference within the layers [109]. The
refractive indices of the resist and various coating layers are needed, and their change as exposure
takes place (bleaching) must also be computed. The generation of photoactive compounds and their
diffusion during postexposure baking can be simulated kinetically [110], and finally, the removal of
material through the development process can also be modeled [111].

These photoexposure and development processes, however, are threshold-based processes. The
ability to find a suitable set of basis structures that would allow a look-up table of resist results to be
assembled into an image, analogous to DDM, would require a very large look-up table.

Instead, it has been observed that the basic characteristics of resist image formation can be
inferred by calibrating the actual formation of an image edge to the local aerial image parameters,
such as local image maximum intensity (Imax), intensity slope, etc.

In a technique pioneered byCobb [112], the variable threshold resist (VTR)method [41,112,113],
creates a table of values relating image parameters (e.g., Imax, slope) and then determines the
local threshold as a function of these imaging parameters. This is illustrated in Figure 35.31 and
Figure 35.32.

Other, more complicated functions have been derived for evaluating the relationship between
printed (and even etched) image and the parameters in the image. These optimizations can be level
specific, and often require extensive calibration. Their use for memory ICs, which are manufactured
in great volumes, provide the best return on the investment in this calibration [114].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 725 24-9-2008 #32

Modeling and Computational Lithography 725

Intensity

lmax

T = f (lmax m)

1.0

0.5 m

x

FIGURE 35.31 Intensity profile through a simulation cutline. (Adapted from Cobb, N.B., Fast optical and
process proximity correction algorithms for integrated circuit manufacturing, Ph.D. Dissertation, University of
California, Berkeley, California, 1998; Cobb, N.B., Zakhor, A., and Miloslavsky, E.,Optical Microlithography
IX, Proceedings of SPIE, 2726, 208, 1996. With permission.)

Threshold empirical data points
Threshold surface fit

0.6

0.4

0.2

0
0.4

1.51.1
1

0.9
0.8

0.7
0.6

0

0.2

0.4

0.6

2
2.5

3
3.5

0.6
0.8

1
1.2 1.5

(b)

Slope
Imax

(a)

Slope
Imax

2
2.5

3
3.5

FIGURE 35.32 VTR model. (a) Empirical threshold values determined from linewidth measurements, and
(b) a model surface that fits the empirical data. (Reproduced from Cobb, N.B., Fast optical and process proxim-
ity correction algorithms for integrated circuit manufacturing, Ph.D. Dissertation, University of California,
Berkeley, California, 1998; Cobb, N.B., Zakhor, A., and Miloslavsky, E., Optical Microlithography IX,
Proceedings of SPIE, 2726, 208, 1996. With permission.)

The calibration of these functions requires that a test pattern of representative features be prepared
in advance and printed using the resist process in question [41,115]. Such a test pattern is illustrated
in Figure 35.33. Wafer results are then measured for each of the structures, and the result compared
with a aerial image simulation of the image placement and the values for the imaging parameters.
From the empirical calibration of the change in line placement with image parameters, the variable
threshold values can be determined.

This technique, once the test pattern calibration data has been gathered, has proven to be a very
effective and fast way to generate the simulation results needed to generate EPEs and remains the
fundamental methodology for most of the OPC computations in use today.

35.4 EDA RESULTS

We have shown how simulation results can be generated, and seen one case of how the use of a
call to a simulator by an RET tool is used to dictate the motion of edges for process compensation.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 726 24-9-2008 #33

726 Handbook of Algorithms for Physical Design Automation

FIGURE 35.33 Example of the layout of a test pattern used for creating empirical OPC models. (Courtesy
Mentor Graphics.)

This involves the simple use of a single simulation per site, or, in more recent implementations, the
comparison of a layout and a contour. There are other applications that involve more sophisticated
simulations.

35.4.1 PROCESSWINDOWS

For lithographers, a typical test of a lithographic process is the focus–exposure matrix. Often called
a Bossung plot, after the author of original paper proposing the technique, [116] or sometimes an
ED-tree (for exposure–dose tree) [117], they are generated by making an array of exposures with
a stepper, systematically changing focus and exposure dose. The resulting feature of interest is
measured for each setting to form a matrix, allowing the range of settings for which the feature
dimension (commonly called a CD, for critical dimension) is within a preset tolerance to be deter-
mined. The region over which acceptable feature deviation is achieved is called the process window.
An example of a process window is illustrated in Figure 35.34 [60]. Typically, the acceptable region
is the nominal dimension ±10 percent.

Process windows are extremely useful tools for the evaluation of, for example, a novel RET
approach [60,118]. Improving the process window with the addition of assist features or by using
a different illuminator design is a standard procedure. The number of simulations that must be run
to accurately estimate the behavior through focus and dose can vary, and dynamic adaptation of
simulation settings can lead to more computationally efficient estimations without a significant loss
in accuracy [119].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 727 24-9-2008 #34

Modeling and Computational Lithography 727

CD (nm)

160.0 mJ/cm2

180.0 mJ/cm2

200.0 mJ/cm2

220.0 mJ/cm2

240.0 mJ/cm2

260.0 mJ/cm2

280.0 mJ/cm2

300.0 mJ/cm2

320.0 mJ/cm2

800

700

600

500

400

300

200

100

(a)
Li

ne
w

id
th

 (
nm

)
0

−1.5 −1.0 −0.5 0.0 0.5

Focus (µm)

360.
240 CD

SA
RL

220

200

180

160

−1.0 −0.5 0.0 0.5

320.

280.

240.

200.

160.
−1.40

(b) (c)

E
xp

os
ur

e
en

er
gy

 (
m

J/
cm

2)

E
xp

os
ur

e
en

er
gy

 (
m

J/
cm

2)

−.96 −.52 −.08 .36 .80
Focus (µm) Focus (µm)

0.30 µm

0.40 µm

0.50 µm

0.20 µm
0.20 µm

FIGURE 35.34 Determination of a process window. (a) Linewidth data as a function of defocus are plot-
ted for various exposure doses. (b) Replotting of the data from (a) showing contours of constant linewidth
and (c) determination of process conditions where the linewidth is within specification, forming a process
window. (Reproduced from Mack, C., Design, Process Integration and Characterization for Microelectronics,
Proceedings of SPIE, 4692, 454, 2002. With permission.)

Other, more complicated functions have been derived for evaluating the relationship between
printed (and even etched) image and the parameters in the image. One example from a recent paper
is shown in Figure 35.35 [120]. Sometimes, because resists 100 nm thick are therefore out of focus
by 100 nm at the top or bottom, additional image metrics incorporating computation of defocused
images can also be considered. Process window OPC is an area of increasing sophistication for
modeling and calibration for OPC applications.

35.4.2 MEEF

Another use for simulation is the evaluation of the change in the image that occurs when a feature
on a photomask is not accurately fabricated. The change in printed feature for a small change in the
original photomask dimension is called the mask error enhancement factor (MEEF) [121,122]:

MEEF = M
�CDwafer

�CDmask

where M (not to be confused with M(x, y)) is the mask magnification factor (typically M = 4 for
modern steppers).

For large features using normal lithography, MEEF is typically 1. For smaller features, dimen-
sions are eventually reached where these no longer print at all, as shown in Figure 35.36a. In these
cases, the change in printed feature varies dramatically with the change in mask dimension, and
MEEF is very large, as illustrated in Figure 35.36b [123,124].

The use of RET can be evaluated here not only by the improvement of the process window but
also by the impact on MEEF [125]. For some choices of RET, this can be very advantageous. For

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 728 24-9-2008 #35

728 Handbook of Algorithms for Physical Design Automation

F
ac

to
r

Imin Imax0 0.2

0.05

0.1

0.15

0.2

−2

−1

0

1

2

3

4

0.4
0.6

0.8
1

1.2

FIGURE 35.35 Contemporary illustration of the extension of the model fitting routines as illustrated in
Figure 35.32, but now considering process windows. (Reproduced from Shang, S., Granik, Y., Cobb, N.,
Maurer, W., Cui, Y., Liebmann, L., Oberschmidt, J., Singh, R., Vampatella, B., Optical Microlithography
XVI, Proceedings of SPIE, 5040, 431, 2003. With permission.)

400

300

200

M
ea

su
re

d
C

D
 (

nm
)

100

0
0 100

Reticle CD/4
Resist CD

200

Wafer target CD (nm)

300 400
0

1

2

3

M
E

E
F

4

5

0 100 200

Wafer target CD (nm)

300

Resist MEEF

400

FIGURE 35.36 Measured CD versus desired CD for an isolated line (left). CD stands for critical dimension, a
commonmetrology term todesignate a linewidth. For small features, the process completely fails. Corresponding
MEEF result (right). As the process fails, theMEEF clearly increases dramatically. (Adapted fromSchellenberg,
F.M., Boksha, V., Cobb, N., Lai, J.C., Chen, C.H., and Mack, C., Optical Microlithography XII, Proceedings of
SPIE, 3679, 261, 1999. With permission.)

example, the image of a phase edge formed by a phase shifting mask, the dark fringe occurs no
matter what the dimension of the photomask, and theMEEF approaches zero for this technique. This
is illustrated in Figure 35.37 [60,126].

35.4.3 PV-BANDS

Simulation can be used to also evaluate the typical extremes of a process, and then used to generate
contours representing the placement of these edges on the wafer under these extreme conditions.
These contours can be converted to a sequence of vertices and stored in the layout database as

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 729 24-9-2008 #36

Modeling and Computational Lithography 729

0

50

100

150

200

250

0 50 100 150 200 250 0 50 100 150 200 250

Measured reticle phase separation/4 (nm) Wafer target CD (nm)

0

1

2

3

4

5

MEEF

M
E

E
F

W
af

er
 C

D
 (

nm
)

FIGURE 35.37 Measured CD versus desired CD for an isolated line fabricated using a phase-shifting mask
(left). For small features, the linewidth converges to the fundamental limit formedby the narrow, dark interference
fringe. The corresponding MEEF result (right). (Adapted from Schellenberg, F.M., Toublan, O., Cobb, N.,
Sahonria, E., Hughes, G., MacDonald, S., and West, C., Proc. SPIE, 4000, 1062, 2000. With permission.)

PV-bands (process variation bands) [127]. These are illustrated in Figure 35.38. These are similar
to the contours generated by other image simulation techniques, and can be used in DRC and
other checking operations to verify that the layout, even if distorted by manufacturing processes, can
still pass.

In the past, the generation of PV-bands throughout an entire layout was too computationally
intensive to be practical. Now, with the computing power typically brought to bear to generate OPC
layouts, computing PV-bands for every feature in the layout becomes possible, and if the hierarchy
of the original layout can be maintained for the layouts rendered as PV-bands, even practical.

Minimum

Non-printability

Printability

Variability region

Maximum

FIGURE 35.38 Illustration of a layout polygon and its corresponding process variation (PV)-bands. (Repro-
duced from Robles, J.A.T., Integrated circuit layout design methodology for deep sub-wavelength processes,
Ph.D. Dissertation, OGI School of Science and Engineering, Beaverton, Oregon, 2005. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 730 24-9-2008 #37

730 Handbook of Algorithms for Physical Design Automation

FIGURE 35.39 Portion of a layout where the PV-bands have flagged a violation (left), and (upper right) the
corresponding simulated layout and (lower right) the printed wafer behavior. (After Robles, J.A.T., Integrated
circuit layout design methodology for deep sub-wavelength processes, Ph.D. Dissertation, OGI School of
Science and Engineering, Beaverton, Oregon, 2005. With permission.)

Dose
0.9
0.95
1
1.05
1.1
1.15
1.2

Dose
0.9
0.95
1
1.05
1.1
1.15
1.2

Defocus (nm)

TT

TT

Signal arrival time (ns)

Signal arrival time (ns)

9.78

9.76

9.74

9.72

9.7

9.68

9.66

9.78

9.76

9.74

9.72

9.7

9.68

9.66

−250 −200−150−100 −50 0 50 100 150 200 250 300

Defocus (nm)
−250 −200−150−100 −50 0 50 100 150 200 250 300

FIGURE 35.40 Standard layout (upper), with the corresponding timing information as a function of litho-
graphic defocus. The layout (lower), modified slightly to be more uniform and to remove the possible sources
of variation highlighted by the PV-bands, along with the corresponding improvement in timing with variation in
defocus. (After Robles, J.A.T., Integrated circuit layout designmethodology for deep sub-wavelength processes,
Ph.D. Dissertation, OGI School of Science and Engineering, Beaverton, Oregon, 2005. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 731 24-9-2008 #38

Modeling and Computational Lithography 731

35.4.4 EXTRACTION

The generation of data layers corresponding to PV-Bands opens up the possibility of linking the
PV-band layout not only to a DRC tool but also to an extraction tool. By using the PV band for
a circuit instead of the nominal layout (or a simulated result at perfect focus and exposure) in an
extraction tool, the effect of process variations on electrical properties can now be determined [128].

An example of this is shown in Figures 35.39 and 35.40. Here, simulated results for a cell
have been generated with PV-bands under various settings, and the timing behavior of the circuit
determined using an extraction tool. Rather than predict the imaging fidelity using process windows
(which may or may not correlate with electrically meaningful performance), this link to extraction
and SPICE modeling can allow lithographic modeling to predict the electrical performance of a
circuit, and its response to variation in optical parameters.

35.5 CONCLUSION

This chapter has attempted to present an overview of the interaction of an EDA layout flow using
process modeling, and given details on the specific example of lithographic process modeling.
Maxwell’s equations and the Fourier transforms used in optics have been well known and character-
ized for over a century, and this has lead to a very mature algorithmic environment for introducing
these computations for all features in an EDA layout.

There are other processes that can bemodeled, such as (CMP) [11–13] and plasma etching [129].
The results of these models have direct consequences for the layout and design, for example, in the
domain of density dummyfill patterns inserted into a layout to improve theCMPuniformity.However,
these are not as well understood as lithography processes, and are often based purely on empirical
characterization. The utility of these models, however, will follow the same principle as for the flow
outlined in Figure 35.1.

As computing power continues to grow and become even more inexpensive, the seamless inser-
tion of large computational modeling modules into EDA flows, as has already been done for RET, is
expected to grow and make the accounting of process variability a routine part of the design process.

REFERENCES
1. L. Scheffer, L. Lavagno, and G. Martin, Electronic Design Automation for Integrated Circuits Handbook,

CRC Press, Boca Raton, FL, 2006.
2. Handbook of Semiconductor Manufacturing Technology, Y. Nishi and R. Doering, Eds., Marcel Dekker,

New York, 2000.
3. S. Wolf,Microchip Manufacturing, Lattice Press, Sunset Beach, CA, 2004.
4. S. Wolf, Silicon Processing for the VLSI Era, Vols. 1–4, Lattice Press, Sunset Beach, CA, 2002.
5. R. Dutton and Z. Yu, Technology CAD—Computer Simulation of IC Processes and Devices, Kluwer

Academic Publishers, Dordrecht, Netherlands, 1993.
6. F.M. Schellenberg, Design for manufacturing in the semiconductor industry: The litho/design workshops,

in Proceedings of the 12th International Conference on VLSI Design, R. Sipple, Ed., IEEE Computer
Society Press, Los Alamitos, CA, 1999, pp. 111–119.

7. GDSII Stream Format Manual, Release 6.0, Documentation No. B97E060, Cadence Design Systems,
Inc./Calma, San Jose, CA, Feb. 1987.

8. SEMI P39-0304E2-OASIS—Open Artwork System Interchange Standard, available at. www.semi.org/.
9. A. Vladimirescu, The SPICE Book, John Wiley, New York, 1994; and G. Roberts and A. Sedra, SPICE,

Oxford University Press, Oxford, United Kingdom, 1997.
10. A.B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, Filling algorithms and analyses for layout density

control, IEEE Transactions on Computer-Aided Design, 18(4), 445–462, 1999.
11. Y. Chen, A.B. Kahng, G. Robins, and A. Zelikovsky, Area fill synthesis for uniform layout density, IEEE

Transactions on Computer-Aided Design, 21(10), 1132–1147, 2002.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 732 24-9-2008 #39

732 Handbook of Algorithms for Physical Design Automation

12. D.O. Ouma, D.S. Boning, J.E. Chung, W. Easter, V. Savene, S. Misra, and A. Crevasse, Characterization
and modeling of oxide chemical-mechanical polishing using planarization length and pattern density
concepts, IEEE Transactions on Semiconductor Manufacturing, 15(2), 232–244, 2002.

13. A. Srivastava, D. Sylvester, and D. Blaauw, Statistical Analysis and Optimization for VLSI: Timing and
Power, Springer, New York, 2005.

14. W.Maly,Computer-aideddesign forVLSI circuitmanufacturability,Proceedings of IEEE, 78(2), 356–390,
Feb. 1990.

15. W.Maly and J. Deszczka, Yield estimation model for VLSI artwork evaluation, Electronics Letters, 19(6),
226–227, 1983.

16. A.V. Ferris-Prabhu, Role of defect size distributions in yield modelling, IEEE Transactions on Electron
Devices, ED-32(9), 1727–1736, 1985.

17. C.H. Stapper, Modeling of integrated circuit defect sensitivities, IBM Journal of Research and Develop-
ment, 27(6), 549–557, 1983.

18. G.A. Allan and A.J. Walton, Hierarchical critical area extraction with the EYE tool, in Proceedings of the
IEEE Workshop Defect Fault Tolerance in VLSI Systems, pp. 28–36, Nov. 1995.

19. W. Maly, H.T. Heineken, and F. Agricola, A simple new yield model, Semiconductor International,
pp. 148–154, July 1994.

20. I. Bubel, W. Maly, T. Waas, P.K. Nag, H. Hartmann, D. Schmitt-Landsiedel, and S. Griep, AFFCCA: A
tool for critical area analysis with circular defects and lithography deformed layout, in Proceedings of the
IEEE International Workshop on Detect and Fault Tolerance in VLSI Systems, pp. 19–27, IEEE Computer
Society Press, 1995.

21. H. Levinson,Principles of Lithography, 2nd edn., SPIEPress, Bellingham,WA, 2005; orMicrolithography,
Science and Technology, 2nd edn. K. Suzuki and B.W. Smith, Eds., CRC Press, Boca Raton, FL, 2007.

22. C.G. Willson, Organic resist materials, Introduction to Microlithography, 2nd edn., L. Thompson, C.G.
Willson, and M. Bowden, Eds., American Chemical Society, Washington, DC, 1994.

23. The International Technology Road Map for Semiconductors (http://www.itrs.net/).
24. G. Moore, Cramming more components onto integrated circuits, Electronics, 38, 114–117, 1965.
25. M. Bohr, Intel’s 65 nm Process Technology, Intel Developer Forum, Sept. 8, 2004, available at

http://www.intel.com/technology/silicon/65 nm_technology.htm or ftp://download.intel.com/technology/
silicon/IRDS002_65 nm_logic_process_100_percent.pdf.

26. F.M. Schellenberg, Resolution enhancement techniques and mask data preparation, EDA for IC Imple-
mentation, Circuit Design, and Process Technology, L. Scheffer, L. Lavagno, and G. Martin, Eds., CRC
Press, Boca Raton, FL, 2006.

27. B.J. Lin, Immersion lithography and its impact on semiconductor manufacturing, Journal of Microlitho-
graphy Microfabrication and Microsystems, 3, 377–395, 2004.

28. J.D. Jackson, Classical Electrodynamics, 3rd edn., J. Wiley, New York, 1999.
29. A.K.K. Wong, Optical Imaging in Projection Microlithography, SPIE Press, Bellingham, WA, 2005.
30. R.N. Bracewell, The Fourier Transform and Its Application, 3rd edn., McGraw Hill, New York, 1999; or

J.W. Goodman, Introduction to Fourier Optics, 3rd edn., Roberts & Co, Greenwood Village, CO, 2005.
31. C.L. Tang, Nonlinear optics, The Handbook of Optics, Part II: Devices, Measurements, and Properties,

M. Bass, editor in chief, McGraw Hill, New York, 1995.
32. J.W. Cooley and J.W. Tucky, An algorithm for the machine calculation of complex Fourier series,

Mathematics of Computation, 19(90), 297–301, April 1965.
33. E. Brigham, The Fast Fourier Transform and Its Applications, Prentice Hall, New York, 1988.
34. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C++: The Art of

Scientific Computing, 2nd edn., Cambridge University Press, New York, Feb. 2002.
35. A.K.K. Wong, Resolution Enhancement Techniques in Optical Lithography, SPIE Press, Bellingham,

WA, 2001.
36. M.D. Levenson, Wavefront engineering for photolithography Physics Today, 46(7), 28–36, 1993.
37. Selected Papers on Resolution Enhancement Techniques in Optical Lithography, F.M. Schellenberg, Ed.,

SPIE Press, Bellingham, WA, 2004.
38. O. Otto, J.G. Garofalo, K.K. Low, C.M. Yuan, R.C. Henderson, C. Pierrat, R.L. Kostelak, S. Vaidya,

and P.K. Vasudev, Automated optical proximity correction: A rules-based approach, in Optical/Laser
Microlithography VII, Proceedings of SPIE, vol. 2197, p. 278–293, 1994.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 733 24-9-2008 #40

Modeling and Computational Lithography 733

39. N. Shamma, F. Sporon-Fiedler, and E. Lin, A method for the correction of proximity effects in optical
projection lithography, in Interface 91, Proceedings of the 1991 KTI Microelectronics Seminar, pp. 145–
156 San Jose, CA, 1991.

40. F.M. Schellenberg, H. Zhang, and J. Morrow, SEMATECH J111 project: OPC validation, in Optical
Microlithography XI, Proceedings of SPIE, vol. 3334, pp. 892–911, 1998.

41. N.B. Cobb, Fast optical and process proximity correction algorithms for integrated circuit manufacturing,
Ph.D. Dissertation, University of California, Berkeley, California, 1998.

42. M. Rieger and J. Stirniman, Using behavior modeling for proximity correction, in Optical/Laser
Microlithography VII, Proceedings of SPIE, vol. 2197, pp. 371–376, 1994.

43. W.Maurer and F.M. Schellenberg, Advanced lithographic masks,Handbook of PhotomaskManufacturing
Technology, S. Rizvi, ed., CRC Press, Boca Raton, FL 2005.

44. J. Garofalo, C. Biddick, R.L. Kostelak, and S. Vaidya, Mask assisted off-axis illumination technique for
random logic Journal of Vacuum Science and Technology B, B11, 2651–2658, 1993.

45. J.F. Chen and J.A. Matthews, Mask for photolithography, US Patent No. 5,242,770 (filed Jan. 16, 1992;
issued Sept. 7, 1993).

46. Handbook of Photomask Manufacturing Technology, S. Rizvi, Ed., CRC Press, Boca Raton, FL 2005.
47. B. Eynon Jr. and B. Wu, Photomask Fabrication Technology, McGraw Hill, New York, 2005.
48. Masato Shibuya, “ ” [Projection master for use with transmitted illumination],

(A) 57–62052, (B) 62–50811 [Japan Patent Office Laid-open Patent Publi-
cation (A) Showa 57-62052, Patent Publication (B) Showa 62–50811] (filed Sept. 30, 1980; published
Apr. 14, 1982, issued Oct. 27, 1987).

49. M.D. Levenson, N.S. Viswanathan, and R.A. Simpson, Improving resolution in photolithography with a
phase-shifting mask, IEEE Transactions Electron Devices ED-29, 1828–1836, 1982.

50. M.D. Levenson, D.S. Goodman, S. Lindsey, P.W. Bayer, and H.A.E. Santini, The phase-shifting mask II:
Imaging simulations and submicrometer resist exposures, IEEETransactions on Electron Devices, ED-31,
753–763, 1984.

51. K. Ooi, S. Hara, and K. Koyama, Computer aided design software for designing phase shifting masks,
Japanese Journal of Applied Physics, 32, 5887–5891, 1993.

52. L.W. Liebmann, G.A. Northrop, J. Culp, L. Sigal, A. Barish, and C.A. Fonseca, Layout optimization at
the pinnacle of optical lithography, inDesign and Process Integration for Microelectronic Manufacturing,
Proceedings of SPIE, vol. 5042, pp. 1–14, 2003.

53. L. Liebmann, J. Lund, F.L. Heng, and I. Graur, Enabling alternating phase shifted mask designs for a full
logic gate level: Design rules and design rule checking, in Proceedings of the 38th Design Automation
Conference, pp. 79–84, ACM, New York, 2001.

54. L. Liebmann, J. Lund, F.L. Heng, and I. Graur, Enabling alternating phase shifted mask designs for a full
logic gate level, Journal of Microlithography, Microfabrication, and Microsystems, 1, 31–42, 2002.

55. Y.-C. Ku, E.H. Anderson, M.L. Schattenburg, and H.I. Smith, Use of a pi-phase shifting x-ray mask to
increase the intensity slope at feature edges, Journal of Vacuum Science and Technology B, B6, 150–153,
1988.

56. Y. Saito, S. Kawada, T. Yamamoto, A.Hayashi, A. Isao, andY. Tokoro, Attenuated phase-shiftmask blanks
with oxide or oxinitride of Cr or MoSi absorptive shifter, in Photomask and X-Ray Mask Technology,
Proceedings of SPIE, vol. 2254, pp. 60–63, 1994.

57. H. Jinbo and Y. Yamashita, Improvement of phase-shifter edge line mask method, Japanese Journal of
Applied Physics, 30, 2998–3003, 1991.

58. H.Y. Liu, L. Karklin, Y.T. Wang, and Y.C. Pati, Application of alternating phase-shifting masks to 140-
nm gate patterning: II. Mask design and manufacturing tolerances, in Optical Microlithography XI,
Proceedings of SPIE, vol. 3334, pp. 2–14, 1998.

59. C. Spence, M. Plat, E. Sahouria, N. Cobb, and F. Schellenberg, Integration of optical proximity correction
strategies in strong phase shifter design for poly-gate layer, in 19th Annual Symposium on Photomask
Technology, Proceedings of SPIE, vol. 3873, pp 277–287, 1999.

60. C. Mack, Characterizing the process window of a double exposure dark field alternating phase shift mask,
inDesign, Process Integration and Characterization forMicroelectronics, Proceedings of SPIE, vol. 4692,
pp. 454–464, 2002.

61. A.K.K. Wong (Ed.) Modified illumination, in Resolution Enhancements Techniques in Optical Lithogra-
phy, SPIE Press, Bellingham, WA, 2001.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 734 24-9-2008 #41

734 Handbook of Algorithms for Physical Design Automation

62. N. Shiraishi, S. Hirukawa, Y. Takeuchi, and N. Magome, New imaging technique for 64M-DRAM in
Optical/Laser Microlithography V, Proceedings of SPIE, vol. 1674, pp. 741–752, 1992.

63. F.M. Schellenberg and L. Capodieci, and B. Socha, Adoption of OPC and the Impact on Design and
Layout, Proceedings of the 38th Design Automation Conference, ACM, New York, 2001, pp. 89–92.

64. M. Burkhardt, A. Yen, C. Progler, and G. Wells, Illuminator design for printing regular contact patterns,
Microelectronic Engineering, 41, 91, 1998.

65. E. Barouch, S.L. Knodle, S.A. Orszag, and M. Yeung, Illuminator optimization for projection printing, in
Optical Microlithography XII, Proceedings of SPIE, vol. 3679, pp. 697–703, 1999.

66. A.E. Rosenbluth, S. Bukofsky, M. Hibbs, K. Lai, R.N. Singh, A.K. Wong, Optimum mask and source
patterns for printing a given shape, Journal of Microlithography, Microfabrication, and Microsystems, 1,
13–30, 2002.

67. Y. Granik, Source optimization for image fidelity and throughput, Journal of Microlithography,
Microfabrication, and Microsystems, 3, 509–522, 2004.

68. Y. Granik and N. Cobb, New process models for OPC at sub-90 nm nodes, in Optical Microlithography
XVI, Proceedings of SPIE, vol. 5040, pp. 1166–1175, 2003.

69. J.F. Chen, J.S. Petersen, R. Socha, T. Laidig, K.E. Wampler, K. Nakagawa, G. Hughes, S. MacDonald,
and W. Ng, Binary halftone chromeless PSM technology for λ/4 optical lithography, in Optical
Microlithography XIV, Proceedings of SPIE, vol. 4346, pp. 515–533, 2001.

70. D.J. Van Den Broeke, J.F. Chen, T. Laidig, S. Hsu, K.E. Wampler, R.J. Socha, and J.S. Petersen,
Complex two dimensional pattern lithography using chromeless phase lithography (CPL), Journal of
Microlithography, Microfabrication, and Microsystems, 1, 229–242, 2002.

71. S.R.J. Brueck and A.M. Biswas, Extension of the 193-nm optical lithography to the 22-nm half pitch node,
in Optical Microlithography XVII, Proceedings of SPIE, vol. 5377, pp. 1315–1322, 2004.

72. S.R.J. Brueck, There are no fundamental limits to optical lithography International Trends in Applied
Optics, A. Guenther, Ed., SPIE Press, Bellingham, WA, 2002.

73. S. Asai, I. Hanyu, and M. Takikawa, Resolution limit for optical lithography using polarized light
illumination, Japanese Journal of Applied Physics, Part I, 32, 5863–5866, 1993.

74. S.H. Jeon, B.D. Cho, K.W. Lee, S.M. Lee, K.H. Biak, C.N. Ahn, and D.G. Yim, Study on elliptical
polarization illumination effects for microlithography, Journal of Vacuum Science and Technology B,
B14, 4193–4198, 1996.

75. Z.M. Ma and C.A. Mack, Impact of illumination coherence and polarization on the imaging of attenuated
phase shift masks, inOptical Microlithoraphy XIV, Proceedings of SPIE, vol. 4346, pp. 1522–1532, 2001.

76. K. Adam and W. Maurer, Polarization effects in immersion lithography, Journal of Microlithography,
Microfabrication, and Microsystems, 4, 031106, 2005.

77. R. Wang, W. Grobman, A. Reich, and M. Thompson, Polarized phase shift mask: Concept, design, and
potential advantages to photolithography process and physical design, in 21st Annual BACUS Symposium
on Photomask Technology, Proceedings of SPIE, vol. 4562, pp. 406–417, 2002.

78. M. Rieger and J. Stirniman, Using behavior modelling for proximity correction, in Optical/Laser
Microlithography VII, Proceedings of SPIE, vol. 2197, pp. 371–376, 1994.

79. N. Cobb and Y. Granik, New concepts in OPC, in Optical Microlithography XVII, Proceedings of SPIE,
vol. 5377, pp. 680–690, 2004.

80. J. Word and N. Cobb, Enhanced model based OPC for 65 nm and below, 24th Annual BACUS Symposium
on Photomask Technology, Proceedings of SPIE, vol. 5567, pp. 1305–1314, 2004; J. Word, J.A. Torres,
and P. LaCour, Advanced layout fragmentation and simulation schemes for model based OPC, Optical
Microlithography XVIII, Proceedings of SPIE, vol. 5754, pp. 1159–1168, 2004.

81. N.B. Cobb and W. Maurer, Flows for model-based layout correction of mask proximity effects, in 23rd
Annual BACUS Symposium on Photomask Technology, Proceedings of SPIE, vol. 5256, pp. 956–964,
2003.

82. M. Gesley, Pattern generation, Photomask Fabrication Technology, B. Eynor, Jr. and B. Wu, Eds.,
McGraw Hill, New York, 2005.

83. N. Cobb and D. Dudau, Dense OPC and verification for 45 nm, in Optical Microlithography XIX,
Proceedings of SPIE, vol. 6154, p. 615401, 2006.

84. J. Kreuzer, US Patent 6,836,380 (filed Feb. 14, 2003; issued Dec. 28, 2004).
85. Litel Corporation (http://www.opticalres.com/).
86. Litel Corporation (http://www.litel.net).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 735 24-9-2008 #42

Modeling and Computational Lithography 735

87. K.K.H. Toh and A.R. Neureuther, Identifying and monitoring effects of lens aberrations in projection
printing, in Optical Microlithography VI, Proceedings of SPIE, vol. 772, pp. 202–209, 1987.

88. H.H. Hopkins, On the diffraction theory of optical images, Proceedings Royal Society London Series A,
217, 408–432, 1953.

89. A.K.K. Wong, Optical Imaging in Projection Microlithography, SPIE Press, Bellingham, WA, 2005.
90. K.S.Yee,Numerical solutionof initial boundaryvalueproblems involvingMaxwell’s equations in isotropic

media, IEEE Transactions on Antennas and Propagation, 14, 302–307, 1966.
91. A. Taflove and S.C. Hagness, Computaional Electrodynamics: The Finite-Difference Time-Domain

Method, 3rd edn., Artech House, Boston, MA, 2005.
92. www.fdtd.org (For more references on the FDTD method).
93. A. Erdmann, Modelling and simulation, Handbook of Photomask Manufacturing Technology, S. Rizvi,

Ed., CRC Press, Boca Raton, FL 2005.
94. E. Palik, Handbook of Optical Constants of Solids, Vols. 1–4, Academic Press, San Diego, CA, 1991.
95. Computational Electrodynamics: The Finite Difference Time-Domain Method, 3rd edn., A. Taflove and

S.C. Hagness, Eds., Artech House, Boston, MA, 2005, Chapter 7.
96. A.K.K. Wong and A.R. Neureuther, Rigorous three dimensional time-domain finite difference electro-

magnetic simulation, IEEE Transactions on Semiconductor Manufacturing, 8, 419–431, 1995.
97. T.V. Pistor, Accuracy issues in the finite difference time domain simulation of photomask scattering, in

Optical Microlithography XIV, Proceedings of SPIE, vol. 4346, pp. 1484–1491, 2001.
98. M.G. Moharam and T.K. Gaylord, Rigorous coupled-wave analysis of planar grating diffraction, Journal

of the Optical Society of America, 71, 811, 1981.
99. A. Estroff, Y. Fan, A. Bourov, F. Cropanese, N. Lafferty, L. Zavyalova, and B. Smith, Mask Induced

polarization, in Optical Microlithography XVII, Proceedings of SPIE, vol. 5377, pp. 1069–1080, 2004.
100. D. Nyyssonen, The theory of optical edge detection and imaging of thick layers, Journal of the Optical

Society of America, 72, 1425, 1982.
101. C.M. Yuan, Calculation of one-dimensional lithographic aerial images using the vector theory, IEEE

Transactions on Electron Devices, ED-40, 1604, 1993.
102. A. Erdmann, P. Evanschitzky, G. Citarella, T. Fuehner, and P. De Bisschop, Rigorous mask modeling

using waveguide and FDTD methods: An assessment for typical hyper NA imaging problems, in Pho-
tomask and Next-Generation Lithography Mack Technology XIII, Proceedings of SPIE, vol. 6283, 628319,
pp. 1–11, 2006.

103. K. Adam and A. Neureuther, Algorithmic implementations of domain decomposition methods for the
diffraction simulation of advanced photomasks, Optimal Microlithography XV, Proceedings of SPIE, vol
4691, pp. 107–124, 2002; and K. Adam and A.R. Neureuther, Domain decomposition methods for the
rapid electromagnetic simulation of photomask scattering, Journal of Microlithography, Microfabrication
and Microsystems, 1, 253–269, 2002.

104. K. Adam, Modeling of electromagnetic effects from mask topography at full-chip scale, in Optical
Microlithography XVIII, Proceedings of SPIE, vol. 5754, pp. 498–505, 2004.

105. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, Extraordinary optical transmission
through sub-wavelength hole arrays, Nature, 391, 667–669, 1998.

106. H. Raether, Surface Plasmons, Springer, Berlin, Germany, 1988.
107. F.M. Schellenberg, K. Adam, J. Matteo, and L. Hesselink Electromagnetic phenomena in advanced

photomasks, Journal of Vacuum Science and Technology, 23(6), 3106–3115, 2005.
108. A. Neureuther and C.Mack, Optical lithography modeling,Handbook of Microlithography, Micromachin-

ing, and Microfabrication, Vol 1: Microlithopgraphy, P. Rai-Choudhury, Ed., SPIE Optical Engineering
Press, Bellingham, WA, 1997.

109. C.A. Mack, Analytical expression for the standing wave intensity in photoresist, Applied Optics, 25(12),
1958–1961, 1986.

110. R.A. Ferguson, C.A. Spence, E. Reichmanis, and L.F. Thompson, Investigation of the exposure and bake
of a positive-acting resist with chemical amplification, in Advances in Resist Technology and Processing
VIII, Proceedings of SPIE, vol. 1262, pp. 412–242, 1990.

111. F.H. Dill, W.P. Hornberger, P.S. Hauge, and J.M. Shaw, Characterization of positive photoresist, IEEE
Transactions on, Electron Devices, ED-22, 456–464, 1975.

112. N. Cobb, A. Zakhor, and E. Miloslavsky, Mathematical and CAD framework for proximity correction, in
Optical Microlithography IX, Proceedings of SPIE, vol. 2726, pp. 208–222, 1996.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C035 Finals Page 736 24-9-2008 #43

736 Handbook of Algorithms for Physical Design Automation

113. N. Cobb, A. Zakhor,M. Reihani, F. Jahansooz, and V. Raghavan, Experimental results on optical proximity
correction with variable threshold resist model, in Optical Microlithography X, Proceedings of SPIE,
vol. 3051, pp. 458–468, 1997.

114. A Wong, R. Ferguson, S. Mansfield, A. Molles, D. Samuels, R. Schustr, and A. Thomas, Level-specific
lithography optimization for 1Gb DRAM, IEEE Transactions on Semiconductor Manufacturing, 13(1),
76–87, 2000.

115. J. Stirniman and M. Rieger, Optimizing proximity correction for wafer fabrication processes, in 14th
Annual BACUS Symposium on Photomask Technology and Management, Proceedings of SPIE, vol. 2322,
pp. 239–246, 1994.

116. J.W. Bossung, Projection printing characterization, in Semiconductor Microlithography II, Proceedings
of SPIE, vol. 100, pp. 80–84, 1977.

117. B.J. Lin, Partially coherent imaging in two dimensions and the theoretical limits of projection printing in
microfabrication, IEEE Transactions on Electron Devices, ED-27, 931–938, 1980.

118. K.H. Kim, K. Ronse, A. Yen, and L. Van den Hove, Feasibility demonstration of 0 18µm and 0.13µm
optical projection lithography based on CD control calculations, in 1996 Symposium on VLSI Technology,
Digest of Technical Papers, pp. 186–187, 1996.

119. C. Mack. Lithography simulation in semiconductor manufacturing, in Advanced Microlithography
Technologies, Proceedings of SPIE, vol. 5645, pp. 63–83, 2005.

120. S. Shang, Y. Granik, N. Cobb, W. Maurer, Y. Cui, L. Liebmann, J. Oberschmidt, R. Singh, and
B. Vampatella, Failure prediction across process window for robust OPC, in Optical Microlithography
XVI, Proceedings of SPIE, vol. 5040, pp. 431–440, 2003.

121. W.Maurer,Mask specifications for 193-nm lithography, in 16th Annual BACUSSymposium onPhotomask
Technology and Management, Proceedings of SPIE, vol. 2884, pp. 562–571, 1996.

122. C. Mack, Mask linearity and the mask error enhancement factor, Microlithography World, pp. 11–12,
Winter 1999.

123. F.M. Schellenberg, V. Boksha, N. Cobb, J.C. Lai, C.H. Chen, and C. Mack, Impact of mask errors on full
chip error budgets, in Optical Microlithography XII, Proceedings of SPIE, vol. 3679, pp. 261–275, 1999.

124. F.M. Schellenberg and C. Mack, MEEF in theory and practice, in 19th Annual Symposium on Photomask
Technology, Proceedings of SPIE, vol 3873, pp. 189–202, 1999.

125. N. Cobb and Y. Granik, Model-based OPC using the MEEF matrix, in 22nd Annual BACUS Symposium
on Photomask Technology, Proceedings of SPIE, vol. 4889, pp. 1281–1292, 2002.

126. F.M. Schellenberg, O. Toublan, N. Cobb, E. Sahouria, G. Hughes, S. MacDonald, C. West, OPC beyond
0.18µm: OPC on PSM Gates, Optical Microlithography XIII, Proceedings of SPIE, vol. 4000, pp. 1062–
1069, 2000.

127. J.A.T. Robles, Integrated circuit layout design methodology for deep sub-wavelength processes. Ph.D.
Dissertation, OGI School of Science and Engineering, Beaverton, OR, July 2005.

128. Z. Ren, W. Zhang, and J. Falbo, Computation of parasitic capacitances of an IC cell in accounting for
photolithography effect, in 6th International Conference on Computational Electromagnetics (CEM2006)
Proceedings, pp. 163–164, VDE Verlag, Berlin, Germany, 2006.

129. See J.A. Mucha, D.W. Hess, and E.S. Aydil, Plasma etching, Introduction to Microlithography, 2nd edn.,
L. Thompson, C.G. Willson, and M. Bowden, Eds., American Chemical Society, Washington, DC, 1994.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 737 10-10-2008 #2

36 CMP Fill Synthesis:
A Survey of Recent Studies

Andrew B. Kahng and Kambiz Samadi

CONTENTS

36.1 Chemical–Mechanical Polishing . 737
36.2 Impacts on Interconnect Design and Manufacturing . 739
36.3 Characterization and Modeling Approaches .. 741

36.3.1 General CMP Process Models. 741
36.3.2 Oxide CMP Modeling . 742
36.3.3 Copper CMP Modeling .. 743
36.3.4 STI CMP Modeling .. 745

36.4 Density Analysis Methods . 747
36.4.1 Fixed-Dissection Regime . 748
36.4.2 Multilevel Density Analysis . 748

36.5 CMP Fill Synthesis Methods . 749
36.5.1 Density-Driven Fill Synthesis . 749

36.5.1.1 LP-Based and Monte-Carlo-Based Methods . 751
36.5.1.2 Iterated Monte-Carlo and Hierarchical Methods . 752
36.5.1.3 Timing-Driven Fill Synthesis . 753

36.5.2 Model-Based Fill Synthesis . 754
36.5.3 Impact of CMP Fill on Interconnect Performance . 754

36.5.3.1 Fill Patterns . 755
36.5.3.2 CMP Fill and Interconnect Capacitance . 757

36.5.4 STI Fill Insertion .. 758
36.6 Design Flows for Fill Synthesis . 760

36.6.1 RC Extraction and Timing Closure . 761
36.6.2 Impact of Spatial Variation .. 762
36.6.3 Topography-Aware Optical Proximity Correction . 763
36.6.4 Intelligent CMP Fill Synthesis . 763

36.7 Conclusion.. 765
References . 765

36.1 CHEMICAL–MECHANICAL POLISHING

Chemical–mechanical polishing (CMP) is the planarizing technique of choice to satisfy the local and
global planarity constraints imposed by today’s advanced lithography methods [36,58]. As device
geometries scale, there is an inevitable need for better planarization of the multilevel interconnect
structures. Older planarizingmethods, such as flowing oxide layers, spin-on glass (SOG), and reverse
etchback (REB) can no longer meet the lithographic and other requirements of modern multilevel
metallization processes [52].

737

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 738 10-10-2008 #3

738 Handbook of Algorithms for Physical Design Automation

Pad

Wafer

Conditioner

Slurry

FIGURE 36.1 Thin film formation in SOG method. (Modified from Toan, N.N., Spin-on-glass materials and
applications in advanced IC technologies, Ph.D. Dissertation, Universiteit Twente, Netherlands, 1999.)

SOG is a method that consists of coating the surface of a particular layer with SOG materi-
als. These materials can be categorized into three different groups: (1) silicate-based compounds,
(2) organosilicon compounds, and (3) dopant-organic compounds. In SOG, the silicon wafer must be
cleaned before coating. The wafer is placed on a spinner and approximately 1mL of SOG material
is dropped on the center of the wafer. Then the carrier holding the wafer (Figure 36.1) is rotated
at several thousand cycles per minute to create a thin layer of SOG material on the wafer. In most
cases, a film thickness between 50 and 500 nm will result. Controlling the thickness is a matter of
controlling the solution viscosity. Among the various techniques for planarization, the SOG method
is advantageous because of the simplicity of the process, the good adhesion characteristics, and the
low level of stress and shrinkage in the SOG material [67]. Implementation of the SOG technique
requires thorough understanding of the glass and the stability of the remaining material, which leads
to considerable variation in the practicality of this technique [52].

REB uses a secondmask to etchback-raised areas to lower the pattern density. The etchbackmask
is created by shrinking all features on a given layout by a fixed amount called etchback bias. This
results in removal of the majority of the raised material if the features are large. Selective reverse
etchback uses customization of the etchback mask to reduce the amount material that is etched
away [37]. Although the REB method is understood, it suffers from complexity and significant cost
due to extra masking steps. It also requires a significant amount of monitoring to control the level of
defects caused by the process [52].

Chemical–mechanical polishing uses both mechanical and chemical means to planarize the
surface of the wafer. In a typical CMP tool, the wafer is held on a rotating holder as shown in
Figure 36.2. The surface of the wafer being polished is pressed against the polishing pad (i.e., a
resilient material), which is mounted on a rotating disk. In addition, a slurry composed of particles
suspended in a chemical solution is deposited on the pad as the chemical abrasive.

The material removal mechanism of silicon dioxide (oxide) CMP is similar to the removal found
in glass polishing. First, a chemical reaction softens the deposited film surface, then a mechani-
cal surface abrasion aided by slurry particles removes the material [15,36]. The chemical reaction
between the slurry and the surface of the wafer creates a -formmaterial. The newmaterial has weaker
atomic bonds. It is therefore more easily removed during the polishing process [45]. The second step
involves the removal of the weakened film surface through abrasion. The actual wear mechanism is
not well understood. There is speculation that a fluid layer exerts the force necessary to remove the
film surface [56]. Others speculate that the removal of the film surface is due to a complex interac-
tion of particle, fluid, and pad [16]. In either case, the abrasion removal mechanism is a dynamic
process that depends on surface characteristics of the pad and slurry particles, although the exact
contributions of these factors are not known [36].

Compared with conventional planarization methods, CMP offers a more deterministic behavior
and does not incur extra processing cost such as extra masking steps. However, CMP has its own
drawback which is its dependence on layout pattern density. This dependency causes variations in

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 739 10-10-2008 #4

CMP Fill Synthesis: A Survey of Recent Studies 739

Conditioning head is
not shown

Polish pad

Slurry

Slurry feed

Wafer carrier

FIGURE 36.2 Typical CMP tool. (From Lee, B., Modeling for chemical–mechanical polishing for shal-
low trench isolation, Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, MIT,
Cambridge, MA, 2002)

post-CMP layout parameters (i.e., variations in interlayer dielectric [ILD] thickness, metal height,
etc.), which in turn impact circuit performance. In Section 36.2, the impact of the CMP process on
interconnect design is reviewed.

Major planarization defects are caused by the pattern dependency of the CMP process. Among
the significant defects are metal dishing and dielectric erosion, which account for approximately
50 percent of yield loss in IC fabrication processes. In Section 36.2, these defects are introduced and
their impact on interconnect design is reviewed. Section 36.3 discusses several traditional as well as
recent work on oxide (dielectric), copper, and shallow trench isolation (STI) CMP characterization
andmodeling approaches.To increase predictability, the layout pattern density variationmust be kept
to a minimum. A current solution is to insert dummy metal shapes (CMP fill features) in the layout
to decrease the density variation. Different density analysis methods are reviewed in Section 36.4. In
Section 36.5 the problem of how to insert the required amount of CMP fill after calculating density
is discussed. Section 36.6 reviews the parts of design flow that are affected by CMP fill insertion.
Finally, the conclusion is presented in Section 36.7.

36.2 IMPACTS ON INTERCONNECT DESIGN AND MANUFACTURING

In the very deep-submicron VLSI regime manufacturing steps including optical exposure, resist
development, and etch, and CMP have varying effects on device and interconnect features depending
on local properties of the layout. Foundry economics dictate that the process window volumes be
maximized, which in turn requires that device and interconnect features be fabricated as predictably
and uniformly as possible. To achieve this goal, the layout must be made uniform with respect to a
certain density parameter. The physics of semiconductor processing make predictable and uniform
manufacturing difficult [7,18,35,55]. In particular, the quality of post-CMP depends on the pattern
density of the layer beneath a given dielectric layer.

The layout pattern density is one of the dominant factors in determining the post-CMP thickness
profile of the deposited film [6,9,48,63]. Pattern density can be defined as the fraction of the raised
areas that affect the CMP process at a particular region on the layout. Figure 36.3 illustrates the
concept of pattern density in one-dimensional and two-dimensional cases. Intuitively, the higher the
pattern density the larger the contact area with the pad and the lower the pressure on raised features.
High-density regions are polished more slowly than low-density regions resulting in locally planar
but globally nonplanar regions [36].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 740 10-10-2008 #5

740 Handbook of Algorithms for Physical Design Automation

Deposited film

Density ~50 percent

Density ~25 percent

Layout
feature

Top–down view of layout

Underlying metal

Cross section of layer

FIGURE 36.3 Pattern density in one and two dimensions. (From Lee, B., Modeling for chemical–mechanical
polishing for shallow trench isolation, Ph.D. Dissertation, Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA, 2002.)

In the past decade, CMP has emerged as the predominant planarization technique for multilevel
metallization processes. However, significant surface topography variation can still exist for some
layout patterns; this impacts depth of focus in lithographywhich in turn leads to variations in critical
dimension (CD). Two other major defects caused by CMP are metal dishing and oxide erosion. In
the copper CMP process, metal dishing is defined as the difference between the height of the oxide
in the spaces and that of the metal in the trenches. Oxide erosion is defined as the difference between
the oxide thickness before and after CMP [69]. In this chapter, dishing and erosion refer to metal
dishing and oxide erosion, respectively. Figure 36.4 showsmetal dishing and oxide erosion in copper
CMP process. These two phenomena impact the performance of the circuit because variation in ILD
thickness profile and interconnect height lead to variations in interconnect capacitance and resistance.
This variationwill increase the timing uncertainty of the circuit, hence it is crucial tominimize dishing
and erosion. However, due to CMP nonidealities there will always be some amount of dishing and
erosion. It is important to model the effect of these variations during parasitic extraction to obtain a
more accurate estimation of the circuit performance [54].

Even though pattern density is the major cause of the CMP defects, there are other factors such
as slurry flow rate and pad conditioning temperature that contribute to the amount of dishing and
erosion. The slurry acts as a coolant material at the interface of the pad and wafer contact and takes
away a significant part of the heat through convective heat transfer [42,59,60,72].The dissipated heat
changes the chemical kinetics and the physical properties of the polishing pad [42,59].As the amount
of dissipated heat increases, the polishing pad tends to become softer that results in an increase in

Oxide
erosion

Copper
dishing

CuCu

SiO2

FIGURE 36.4 Dishing and erosion in copper CMP process. (From Tugbawa, T., Chip-Scale modeling of
pattern dependencies in copper chemical mechanical polishing processes, Ph.D. Dissertation, Department of
Electrical Engineering and Computer Science, MIT, Cambridge, MA, 2002.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 741 10-10-2008 #6

CMP Fill Synthesis: A Survey of Recent Studies 741

the area contact at the interface. In addition, pad conditioning has a major impact on the removal rate
(RR) during the CMP process, as underconditioned pads will lose their surface roughness, which
eventually leads into RR reduction [43]. For more details on effects of slurry flow rate and pad
conditioning temperature on metal dishing and dielectric erosion reader is encouraged to look into
Ref. [43].

To increase the fabrication process uniformity and predictability, the layout must be made uni-
form with respect to a certain density parameter. One solution for designers and manufacturers is to
use techniques like CMP fill insertion and slotting to increase and decrease the pattern density [26].
CMP fills are dummy features that do not directly contribute to the functionality of the circuit and
can either be grounded or left floating. CMP fill insertion reduces the amount of dishing and erosion
by increasing the pattern density uniformity. However, it is well known that CMP fill insertion can
increase the coupling and total interconnect capacitance and consequently deteriorate circuit perfor-
mance [38,62]. If not modeled appropriately, this can directly affect yield and time-to-market. In the
next section, characterization and modeling approaches of different CMP processes are represented.

36.3 CHARACTERIZATION AND MODELING APPROACHES

This section, first presents a number of early works on CMP modeling which have been reviewed in
Ref. [45] and then introduces three recent works [36,47,68] on CMP characterization and modeling
of oxide CMP, copper CMP, and STI CMP.

36.3.1 GENERAL CMP PROCESS MODELS

The combination of the chemical and mechanical aspects of CMP makes it a complex process
to model based on physical principles. Typical characterization of a CMP process requires exten-
sive experimentation that must be repeated for each particular CMP process (combination of tool,
consumable, and process settings). The main objective of CMP is to remove the extraneous material
from the surface of the wafer and planarize it. The process of material removal can be described by
Preston’s equation:

dT

dt
= KP

ds

dt
(36.1)

where
T is thickness of the wafer
P denotes the pressure caused by polishing process
s is the total distance traveled by the wafer
t is the elapsed time

The RR is proportional to the pressure exerted on the wafer as well as the speed in which the
wafer is rotating.Any other physical considerations are put into the constantK , which is independent
of pressure and velocity. In this subsection, a few CMP models are introduced and their advantages
and disadvantages are reviewed [45].

The first model is based on works by Sivaram et al. [57]. The proposed model uses Preston’s
equation and considers the bending of the polishing pad. The bending of the polishing pad has
a significant impact on the quality of the planarization and must be modeled in RR expression.
However, this model only considers the effects of bending between two neighboring step heights on
the wafer. It does not take into account the three-dimensional information of the structures, which
limits its applicability.

The next model proposed by the authors of Ref. [6] depends on the degree of nonplanarity. The
model has two parts: an analytical expression based on an ordinary differential equation and a more
complex model which iteratively adjusts the polishing rate to the actual nonplanarity. Even though

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 742 10-10-2008 #7

742 Handbook of Algorithms for Physical Design Automation

this model takes the topography of the wafer into account and adjusts the polishing rate accordingly,
it does not consider the bending of the polishing pad. Neither does it consider the fluid mechanics.
The model is purely empirical and does not depend on the pressure. Because of these shortcomings,
it has limited use in modeling the entire CMP process.

Warnock et al. [71] propose another model that quantitatively analyzes the absolute and the
relative polish rate for different sizes and pattern factors. This model defines the dependence of the
polish rate on the wafer shape. In particular, it takes into account all possible geometrical cases,
which makes it applicable to modeling of the entire CMP process.

Finally, a model proposed by Yu et al. [74] considers the dependence of the RR on the asperity of
the polishing pad. The surface height variation for a 200µm×200µm pad is reported to be 100µm.
In addition, the model divides the Preston’s constant K into three different parts: (1) a constant only
dependent on the pad roughness and its elasticity, (2) a factor determined by the surface chemistry,
and (3) a constant that is related to the contact area. However, it is not clear how these asperities
affect the global quality of planarization. A global planarization quantity of 200Å over a distance
of 0.5 cm is reported in Ref. [64]. This variation is much less than the reported polishing pad height
variation (100µm), making it unclear how the approach fits into a general CMP simulation.

36.3.2 OXIDE CMPMODELING

Pattern density is a significant contributor to oxide CMP process quality. The Preston equation shows
that the material RR is a linear function of the pressure, which is affected by the pattern density at
the interface between polishing pad and wafer. However, pattern density calculation is not trivial. In
fact, the effective density at a particular point on the die depends on the size of the neighboring area
over which density is averaged. The weighting function is also a major factor because it captures the
influence of the surrounding area on the local pressure.

Modeling of CMP for oxide planarization is reduced to accurately calculating the local pressure,
and hence the pattern density distribution across every die [47]. As described in the previous sub-
section, there are several models that have been proposed to account for pattern effects in CMP, but
their applicability has been limited.

The basic model in Ref. [47] is based on the work by Stine et al. [63]. In this model, the interlayer
dielectric thickness z at location (x, y) is calculated as

z =
{
z0 − (Kt

ρ0(x,y)
) t < (ρ0z1)/K

z0 − z1 − Kt + ρ0(x, y)z1 t > (ρ0z1)/K
(36.2)

The constantK is the blanketwafer RR (i.e., where the density is 100 percent).The important element
of this model is the determination of the effective initial pattern density ρ0(x, y). Figure 36.5 defines
the terms used in Equation 36.2.

In Equation 36.2 when t < (ρ0z1)/K , the local step height has not been completely removed.
However, when features are planarized for a long enough time (t > (ρ0z1)/K), local step height is
completely removed and a linear relationship between pattern density and ILD thickness exists [63].

The planarization length, which captures pad deformation during the CMP process, determines
the amount in which neighboring features affect pattern density at a spatial location on the die.
Thickness profile of any arbitrary mask pattern, under same process conditions, can be determined
using the effective local density and an analytic thickness model. This reduces the characterization
step into a single phasewhere only the planarization length of the process is determined. Planarization
length is also a useful metric in oxide CMP process optimization because it reduces the investigation
of the entire die to smaller regimes according to the planarization length [47].

Ouma [47] proposes a characterization methodology for oxide CMP processes that includes
(1) the use of an elliptic pattern density weighting function that which has better correspondence to
the polish pad deformation, (2) a three-step effective pattern calculation scheme that uses fast Fourier

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 743 10-10-2008 #8

CMP Fill Synthesis: A Survey of Recent Studies 743

Up areas Down areas

Bias, B

Z > Z0 − Z1

Z < Z0 − Z1

Z1

Z0

Z
=

0

Metal

Oxide

FIGURE 36.5 Dishing and erosion in copper CMP process. (From Ouma, D., Modeling of chemical–
mechanical polishing for dielectric planarization, Ph.D. Dissertation, Department of Electric Engineering and
Computer Science, MIT, Cambridge, 1998.)

transforms (FFTs) for computational efficiency, and (3) the use of layout masks with step densities
that facilitate the determination of the characteristic length (defined as the planarization length) of
the elliptic function by introducing large abrupt post-CMP thickness variations.

36.3.3 COPPER CMPMODELING

Unlike oxide CMP, which involves the removal of only oxide material, the copper CMP involves
simultaneous polishing of three materials: copper, dielectric (oxide), and barrier. Barrier is a very
thin layer (Tan, Ti, etc.) that prevents the copper from diffusing into the dielectric. The goal in copper
CMP is to remove the excess copper (also called overburden copper) and to polish the barrier on top
of the dielectric regions isolating the adjacent interconnect lines. This is required to prevent electrical
connection between adjacent interconnect lines. Owing to the heterogeneous nature of copper CMP,
a specific set of process parameters as well as a consumable set are required to achieve the particular
RR for each corresponding material [68].

Two major defects caused by copper CMP are pattern-dependent problems of metal dishing and
dielectric erosion as shown in Figure 36.6. If the height of the copper in the trench is lower than the
height of the neighboring dielectric, then dishing is positive otherwise it is negative. On the other

Dishing

Dielectric Copper

Erosion Pre-CMP
dielectric level

FIGURE 36.6 Dishing and erosion. (From Tugbawa, T., Chip-Scale modeling of pattern dependencies in
copper chemical–mechanical polishing processes, Ph.D. Dissertation, Department of Electrical Engineering
and Computer Science, MIT, Cambridge, MA, 2002.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 744 10-10-2008 #9

744 Handbook of Algorithms for Physical Design Automation

Field region Field regionRecess

Dielectric Copper

FIGURE 36.7 Definition of recess. (From Tugbawa, T., Chip-Scale modeling of pattern dependencies in
copper chemical–mechanical polishing processes, Ph.D. Dissertation, Department of Electrical Engineering
and Computer Science, MIT, Cambridge, MA, 2002.)

hand, dielectric erosion is always positive due to the loss of dielectric thickness during the CMP
process. The sum of dishing and erosion gives the copper thickness loss (also known as the copper
thinning) during CMP [68].∗

Another pattern-dependent defect occurring during copper planarization is recess. Recess of a
copper interconnect line is equivalent to the dishing of that line. However, the recess of the dielectric
within an array of interconnect lines is the difference between the dielectric height at a location
within the array and the height of surrounding dielectric fields as shown in Figure 36.7 [68].

The goal in copper CMP is to remove the excess copper and the unwanted barrier layer. Ideally,
this process should be fast without incurring extra dishing, erosion, or other defects. Owing to
heterogeneous nature of copper CMP, different materials are polished simultaneously. Initially, only
overburden copper is polished followed by the polishing of both copper and barrier film. Finally,
copper, barrier, and dielectric are polished at the same time. As stated in Ref. [68], to model copper
CMP process three stages of polish are identified: excess copper removal, barrier film removal, and
overpolish stage, as shown in Figure 36.8. In the excess copper removal stage, the evolution of the

Stage 1

Stage 3

Bulk
copper
removal

Barrier
removal

Overpolish

Oxide erosion

Cu dishing

Stage 2

FIGURE 36.8 Three intrinsic stages in copper CMP processes. (From Tugbawa, T., Chip-Scale modeling of
pattern dependencies in copper chemical–mechanical polishing processes, Ph.D. Dissertation, Department of
Electrical Engineering and Computer Science, MIT, Cambridge, MA, 2002.)

∗ In the published literature, erosion is sometimes referenced to the height of a neighboring field dielectric region, and a
separate field dielectric loss parameter is then specified. In Ref. [68], a single dielectric erosion term is used to represent
dielectric loss.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 745 10-10-2008 #10

CMP Fill Synthesis: A Survey of Recent Studies 745

copper thickness profile across the chip and the time it takes to remove the excess copper are of
interest. The time to polish the overburden copper varies across the die depending on the pattern
density at the location of interest.

In the second stage, copper and barrier film are polished simultaneously. The time to clear the
barrier film, as well as the dishing that results when barrier is removed at any location on the die, is
of interest. Due to process variation and deposited copper thickness variation across the wafer and
different pattern densities across the die, theRRs of the threematerials (copper, barrier, and dielectric)
are different. This difference in RRs results in different polish times across the wafer for each stage.
For example, by the time the excess copper and barrier are cleared at a point on the die, they might
have already been cleared at another point. Hence, some points on the die are overpolished. In copper
CMP, overpolishing is defined as polishing beyond the time it takes to remove the overburden copper
and barrier at any spatial location. During the overpolishing stage, the dielectric is eroded [68].

In addition, the dishing that might have started during the barrier clearing stage can worsen
during overpolishing. This overpolishing is identified as the third intrinsic stage in the copper CMP
process. The dishing and erosion that occur during this stage are of interest. In computing the amount
of dishing during the overpolish stage, the dishing that occurs during the barrier clearing stage is
used as an initial condition. It is important to note that the term overpolishing is used loosely in the
CMP literature, and in the CMP industry [68].∗

36.3.4 STI CMPMODELING

Shallow trench isolation is the isolation technique of choice in CMOS technologies. In STI, trenches
are etched in silicon substrate and filled with silicon dioxide to electrically separate active devices
[31]. The previously used isolation technique, LOCOS (local oxidation of silicon), suffers from lateral
growth that causes the isolation region to widen beyond the etched spaces. This lowers the integration
density. It also complicates device fabrication and introduces device functionality problems such as
high parasitic capacitances [47].

As described by Lee [36], the typical STI process flow initially involves growing a thin pad oxide,
and then depositing a blanket nitride film on a raw silicon wafer. The isolation trenches are etched
such that the desired trench depth (i.e., depth from silicon surface) is achieved. The CMP process is
used to polish off the overburden dielectric down to the underlying nitride, where the nitride serves
as a polishing stop layer. After CMP, the nitride layer is then removed via etch, resulting in active
areas surrounded by field trenches. A typical STI process flow is shown in Figure 36.9.

Lee [36] identifies two major phases in STI CMP process. The first phase is the polish of
overburden oxide. The second phase is the overpolish into the nitride layer. The second phase is due
to the different pattern densities across the die, for example, CMP pad contacts the nitride layer at
different locations at different times. The first phase can be further broken down into two subphases.
The first subphase happens between the start of the polish and before the CMP pad contacts the
down areas (i.e., areas with lower height than their surroundings). The second subphase occurs from
the time CMP pad contacts the down areas until the up area overburden oxide has been completely
cleared to nitride.

The first subphase has a homogeneous nature in that only one material is being polished at each
moment. Reference [36] uses RR diagram to represent the polish of a singlematerial. In this analysis,
the assumption is that the initial starting point is a spatial location on the dielectric layer with a fixed
step height. The feature densities for each point vary depending on the location on the die. Thus,
any spatial location with a fixed effective pattern density can be expressed using a RR diagram.
Figure 36.10 shows the RR diagram for phase one. For a significantly large step height, the CMP pad
only contacts the up areas, and the down area RR is zero. This is the first subphase denoted as phase
1A as shown in the figure. The up areas polish at a patterned RR, K/ρ, as shown on the RR diagram.

∗ In the CMP industry, overpolishing means polishing beyond the endpoint time.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 746 10-10-2008 #11

746 Handbook of Algorithms for Physical Design Automation

Raw silicon wafer Silicon wafer

Silicon wafer

Silicon wafer

Silicon wafer

Silicon wafer

Silicon wafer

Nitride removal

Active area

Field region

SiO2

Nitride/pad oxide

z0

T

Deposit nitride/oxide stack

Typical deposition
nitride 1500 Å

Etch isolation trenches

Typical trench depth 5000 Å
(does not include nitride/oxide stack)

Deposit dielectric
(SiO2 oxide)

Typical deposition
z0 = 9000 Å

CMP to remove
overburden oxide

FIGURE 36.9 Typical STI process. (From Lee, B., Modeling for chemical–mechanical polishing for shal-
low trench isolation, Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, MIT,
Cambridge, MA, 2002.)

RR

K

0

Phase 1A
Phase 1APhase 1B

Phase 1B

Up area RR

Down area RR

hc Step height (H)

K
r
_

CMP pad

CMP pad

Oxide

Oxide

Phase 1A indicates polish before the CMP pad contacts the down areas.
Phase 1B indicates polish after down area has been initially contacted.

FIGURE 36.10 RR diagrams for STI CMP polish (oxide overburden phase). (From Lee, B., Modeling
for chemical–mechanical polishing for shallow trench isolation, Ph.D. Dissertation, Department of Electrical
Engineering and Computer Science, MIT, Cambridge, MA, 2002.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 747 10-10-2008 #12

CMP Fill Synthesis: A Survey of Recent Studies 747

RR

P

RR

P
Nitride

Slope KPnit
Slope KPox

Oxide

FIGURE 36.11 RR versus pressure, for oxide and nitride. (From Lee, B., Modeling for chemical–mechanical
polishing for shallow trench isolation, Ph.D. Dissertation, Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA, 2002.)

As CMP process progresses, the step height reduces and eventually the polishing pad contacts the
down areas. This is when the second subphase starts, denoted as phase 1B in the figure. The up and
down RRs linearly approach each other until the step height is zero, after which the entire oxide film
is polished at the blanket oxide RR K [36].

Owing to heterogeneous nature of the secondSTICMPphase, a different removal diagram is used
to express the polish of the two separate materials of silicon dioxide and silicon nitride. Figure 36.11
shows the two RR versus pressure curves for nitride and oxide. Assuming a Prestonian relationship,
these are linear curves [36].

Dishing and erosion equations can be derived from the amount removal equations. These
equations are more useful because it is the dishing and erosion phenomenon that is of most inter-
est in STI CMP. The dishing and erosion equations are also more useful because they isolate key
model parameters, making simpler equations from which to extract out model parameters. Dishing
is simply the step height as a function of time and erosion can be computed as the amount of nitride
removed.Therefore, dishing and erosion can be fully specified and predicted if the phase 1 and phase
2 STI CMP model parameters are known. These model parameters are characteristic of a given CMP
process (tool, consumable set, etc.), and the model equations can be used to predict dishing and
erosion on wafers patterned with arbitrary layouts that are subjected to a specific characterized CMP
process [36]. In Section 36.4, density analysis methods are introduced. To asses the post-CMP effect,
the pattern density parameter must be computed.

36.4 DENSITY ANALYSIS METHODS

Traditionally, only foundries have performed the postprocessing needed to achieve pattern density
uniformity using insertion “filling” or partial deletion “slotting” of features in the layout [26]. How-
ever, layout pattern density must be calculated before addressing the filling or slotting problem.
Regions that are violating the lower and upper area density bounds are identified using density
analysis methods. Kahng et al. [26] present three density analysis approaches with different time
complexities all using the following density analysis problem formulation:

Extremal-density window analysis. Given a fixed window size w and a set of k disjoint rectangles in
an n× n layout region, find an extremal-density w× w window in the layout.∗

∗ Borrowing the terminology from Ref. [26], an extremal-density window is a window with either maximum or minimum
density over all the windows throughout the layout.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 748 10-10-2008 #13

748 Handbook of Algorithms for Physical Design Automation

Tile

Windows

FIGURE 36.12 Layout is partitioned by r2(r = 4) fixed dissections into nr
w

× nr
w
tiles. Each w × w

window (light gray) consists of r2 tiles. A pair of windows from different dissections may overlap.
(Kahng, A.B., Robins, G., Singh, A., and Zehikovsky, A., Proceedings of IEEE International Conference
on VLSI Design, 1999.)

36.4.1 FIXED-DISSECTION REGIME

To verify (or enforce) upper and lower density bounds for w× w windows, a very practical method
is to check (or enforce) these constraints only for w × w windows of a fixed dissection of the
layout into w

r
× w

r
tiles, that is, the set of windows having top-left corners at points (i · w

r
, j · w

r
), for

i, j = 0, 1, . . . , r(n
w

− 1), as shown in Figure 36.12. Here r is an integer divisor of w.
To analyze all the eligible w×w windows takes a significant amount of time, while the analysis

of fixed dissections can be done much faster. Simply an array of n
w

× n
w
counters will be associated

with all the dissection windows, and then for each rectangle R the counters of windows intersecting
R will be incremented by the area of intersection. In general, the above procedure must be repeated
r2 times to check all the (r · n

w
)2 windows [26].

36.4.2 MULTILEVEL DENSITY ANALYSIS

Even though the fixed dissection analysis can be performed quickly, it can underestimate the max-
imum floating-window density worst case.∗ Kahng et al. [28] propose a new multilevel density
analysis approach that, as opposed to the techniques presented in Refs. [26,27], has the efficiency
of the fixed dissection analysis without sacrificing the accuracy for the floating window worst-case
analysis. The multilevel density analysis is based on the following simple observation.

Observation. Given a fixed r-dissection, any arbitrary floating w × w window will contain some
shrunk w(1 − 1/r) × w(1 − 1/r) window of the fixed r-dissection, and will be contained in
some bloated w(1 + 1/r) × w(1 + 1/r) window of the fixed r-dissection as shown in Figure 36.13.

The first implication of the above observation is that the floating window area can be upper
bounded by the area of bloated windows, and lower bounded by the area of shrunk windows. A fixed

∗ In general, when all the eligible windows are being examined and filled, it is referred to as the floating window regime.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 749 10-10-2008 #14

CMP Fill Synthesis: A Survey of Recent Studies 749

Fixed dissection
window

Floating window W

Shrunk fixed
dissection window

Bloated fixed
dissection window

Tile

FIGURE 36.13 Any floating w × w window W always contains a shrunk (r − 1) × (r − 1) window of a
fixed r-dissection, and is always covered by a bloated (r + 1) × (r + 1) window of the fixed r-dissection.
(Kahng, A. B., Robins, G., Singh, A., and Zehikovsky, A., Proceedings of IEEE Asia and South Pacific Design
Automation Conference, 1999.)

r-dissection regime can be recursively subdivided into smaller dissections until the number of tiles
in each dissection is small. Then the floating density analysis can be applied without significant
runtime complexity. In addition, the recursion can be terminated once the floating density analysis
is within some user-defined criteria, say ε = 1 percent [28]. In this subsection, different density
analysis approaches proposed by the authors of Refs. [26–28] have been presented.

36.5 CMP FILL SYNTHESIS METHODS

Layout density problem includes two stages: density analysis and fill synthesis. Having presented
the different approaches proposed for the density analysis stage, in this section the techniques used in
fill synthesis will be reviewed. The first fill synthesis approach proposed by Ref. [26] was basically
to first sort all the wires by rows, and within each row sort them by the coordinates of their leftmost
starting points. Then, for each row, from left to right, metal fill would be placed in the space between
the wires as shown in Figure 36.14. This simple method is based on scanline algorithm principles
and is applicable to only wiring-type layouts. Reference [26] also proposes a simple technique for
slotting. However, due to the reliability issues arising from slotting (i.e., change in current density
due to change in wire cross section) it was not studied further, and themain focus of research is on fill
insertion approaches. In the following four subsections, in Section 36.5.1, different density-driven
problem formulations are presented. In Section 36.5.2, the model-based fill synthesis approach is
introduced. In Section 36.5.3 the impact of CMP fill on circuit performance is investigated. And in
Section 36.5.4, a new fill insertion method to be used in STI process is discussed.

36.5.1 DENSITY-DRIVEN FILL SYNTHESIS

The following notation and definitions are used in defining the filling problem as described in
Ref. [27].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 750 10-10-2008 #15

750 Handbook of Algorithms for Physical Design Automation

(a)

(b)

FIGURE 36.14 (a) Example of a wiring-type layout and (b) a corresponding fill solution. (Kahng, A. B.,
Robins, G., Singh, A., Wang, H., and Zelikovsky, A., Proceedings of ACM/IEEE International Symposium on
Physical Design, 1998.)

• Input is a layout consisting of rectangular geometries, with all sides having length as a
multiple of c (minimum feature width, spacing).

• n ≡ side of the layout region. If the layout region is the entire die, nmight be about 50, 000·c.
• w ≡ fixed window size. The window is the moving square area over which the layout

density rule applies.
• k ≡ layout complexity, number of input rectangles.
• U ≡ area density upper bound, expressed as a real number 0 < U < 1. Each w×w region

of the layout must contain total area of features ≤ U · w2.
• B ≡ buffer distance. Fill geometries cannot be introduced within distance B of any layout

feature.
• slack (W) ≡ slack of a given w × w windowW . Slack (W) is the maximum amount of fill

area that can be introduced into W .

Using the above notation and definition the filling problem is stated as follows [27]:

Filling problem. Given a design rule-correct layout geometry of k disjoint rectilinear rectangles in
an n× n layout region, minimum feature size c, window size w < n, buffer distance B, and area (or
perimeter) density lower bound L and upper bound U, add fill geometries to create a filled layout
that satisfies the following conditions:

1. Circuit functionality and design rule-correctness are preserved.
2. No fill geometry is within distance B of any layout feature.
3. No fill is added into any window that has density ≥U in the original layout.
4. For any window that has density <U in the original layout, the filled layout density is ≥L

and ≤U.
5. Minimum window density in the filled layout is maximized.

Condition (5) corresponds to the so-called min-variation objective. This constraint minimizes the
difference between minimum and maximum window density in the filled layout. However, adding
fill will impact circuit performance by changing the total and coupling interconnect capacitances. To
attack this problem, another objective called min-fill, has been added to the previous min-variation
objective, which deletes as much previously inserted fill as possible, while preserving a minimum
window density of no less than the lower bound L.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 751 10-10-2008 #16

CMP Fill Synthesis: A Survey of Recent Studies 751

36.5.1.1 LP-Based and Monte-Carlo-Based Methods

Kahng et al. [27] propose the first min-variation formulation using a linear programming (LP)
approach. In a fixed r-dissection regime, for any given tile T = Tij, i, j = 1, . . . , nr

w
, the total feature

area inside T and the maximum fill amount that can be placed within T without violating the density
upper boundU in any window containing T are denoted as area (T) and slack (T), respectively. The
following is the filling problem as described in Ref. [27].

Filling problem for fixed r-dissection. Suppose a fixed r-dissection of the layout with tiles of size
w
r
× w

r
, as well as an area (T) and slack (T) for each tile in the dissection. Then, for each tile Tij, the

total fill pattern area pij = p(Tij) to be added to Tij must satisfy

0 ≤ pij ≤ slack(Tij)

and ∑
Tij∈W

pij ≤ max{U · w2 − area(W), 0} (36.3)

for any fixed dissection w × w windowW .
Then, the min-variation formulation seeks to maximize the minimum window density:

Maximize

(
min
ij

(area(Tij) + pij)

)

The linear programming approach seeks the optimum fill area p(Tij) to be inserted into each tile
Tij. Recall that the fill area p(Tij) cannot exceed slack (Tij), which is the area available for filling inside
the tile Tij computed during density analysis. The first LP for the min-variation objective [27,29] is

Maximize M

subject to

0 ≤ p(Tij) ≤ slack(Tij)

M ≤ ρ(Mij) ≤ U i, j = 1, . . . ,
nr

w
− 1

An important step in the above LP approach is to determine slack values. To calculate the total
area of all the possible overlapping rectangles the approach of measure of union of rectangles sweep-
line-based technique [53] has been used. In a follow up work by the authors in Ref. [68], the fill
placement problem was described by the following LP formulation:

Minimize
∑
i,j

p(Tij)

subject to

0 ≤ p(Tij) ≤ slack(Tij)

L ≤ ρ(Mij) ≤ U i, j = 1, . . . ,
nr

w
− 1

Reference [68] also proposes a variant LP approach, that manufacturability does not require the
extreme min-variation formulation, that is, given a target window density M, a variability budget
ε must be minimized:

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 752 10-10-2008 #17

752 Handbook of Algorithms for Physical Design Automation

Minimize ε

subject to

0 ≤ p(Tij) ≤ slack(Tij)

M − ε

2
≤ ρ(Tij) ≤ M + ε

2
i, j = 1, . . . ,

nr

w
− 1

The above formulation is also called a ranged LP formulation where the manufacturability is
guaranteed by the constraints.

In addition to the LP approaches, Ref. [14] introduces theMonte-Carlomethod formin-variation
objective. In the Monte-Carlo approach, a tile is chosen randomly and its content is increment with
a predetermined fill amount. Tiles are chosen based on their priority, which is the probability of
choosing a particular tile Tij. The priority of a tile Tij is zero if and only if either Tij belongs to
a window that has already achieved the density upper bound U, or the slack of Tij is equal to the
already-inserted fill area. As described inRef. [14], the priority of a tileTij is chosen to be proportional
to U – MinWin(Tij), where MinWin(Tij) is the minimum density over windows containing the tile
Tij. The only drawback of the Monte-Carlo method is that it may insert an excessive amount of total
fill. A variant of the Monte-Carlo approach is the greedy algorithm. At each step, the min-variation
greedy algorithm adds the maximum possible amount of fill into a tile with the highest priority,
which causes the priority of that particular tile to become zero.

In the presence of two objectives, namelymin-variation andmin-fill, the intuitive approachwould
be to first find a solution that optimizes one of the objectives thenmodifying the solutionwith respect
to the other objective. Min-fill objective tries to delete as much previously inserted fill as possible,
while maintaining the density criteria.

To optimize the min-fill objective problem with the Monte-Carlo approach, a filling geometry
from a tile randomly chosen according to a particular priority is iteratively deleted. Priorities are
chosen symmetrical to the priority in the min-variationMonte-Carlo algorithm, that is, proportional
to MinWin(Tij) − L. Again, symmetrically no filling geometry can be deleted from the tile Tij (i.e.,
Tij is locked) if and only if it either has zero priority or else all fill previously inserted into Tij have
been deleted. Thus, the min-fill Monte-Carlo algorithm deletes fill geometries from unlocked tiles,
which are randomly chosen according to the above priority scheme. Similarly, the min-fill greedy
algorithm iteratively deletes a filling geometry from an unlocked tile with the current highest priority.

A variant of the Monte-Carlo approach is the deterministic greedy algorithm where at each step
the greedy min-variation algorithm adds the maximum possible amount of fill into a tile with the
highest priority. The runtime for this approach is slightly higher thanMonte-Carlo because of finding
highest-priority tile rather than random ones [12].

36.5.1.2 Iterated Monte-Carlo and Hierarchical Methods

Monte-Carlo and greedy approachesare both suboptimal for themin-variationobjective resulting in a
minimumwindow density thatmay be significantly lower than the optimum.Reference [12]proposes
a new iterative technique alternating between the min-variation and min-fill objectives, to narrow
the gap between the upper window density bound U and the minimum window density bound L.
As described in Ref. [12] the iterated Monte-Carlo and greedy filling algorithms are modified as
follows:

1. Interrupt the filling process as soon as the lower bound L on window density is reached,
that is, whenM = L, instead of improving the minimum window density (while possible)
for the min-variation objective.

2. Continue iterating, but without changing the lower density bound M = L. An improved
solution can typically be obtained by keeping track of the best solution oserved over all
iterations.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 753 10-10-2008 #18

CMP Fill Synthesis: A Survey of Recent Studies 753

All the filling methodsmentioned abovewere proposed for flat designs; however, the filling problem
for hierarchical layouts (standard-cell) is similar to the one for flat layouts. The constraints for the
hierarchical filling problem as described by the authors in Ref. [13] are as follows:

• Filling geometries are added to master cells
• Each cell in a filled layout is a filled version of the original master cell
• Layout data volume should not exceed a given threshold

The proposed method by the authors in Ref. [13] first computes the slack value for all the master
cells. Then a keep-off zone around master cells will be created to avoid overfilling the regions near
master cell boundaries. Then master cells are filled using a Monte-Carlo method where master cells
that are more underfilled will be assigned a higher priority. This process is continued until either all
the master cells are filled above their minimum density lower bound or the slack in the underfilled
master cells becomes zero.

However, due to overlaps between different instances of master cells and features or the inter-
actions among the bloat regions in the vicinity of the master cells, pure hierarchical filling may
result in some sparse or unfilled regions. This could result in high layout density variation. An intu-
itive solution would be to apply a postprocessing phase, that is, apply a standard flat fill approach.
However, this will greatly increase the resultant data volume and runtime and diminish the benefit
of the hierarchical approach. Reference [13] proposes a three-phase hybrid hierarchical flat-filling
approach as follows:

1. Purely hierarchical phase
2. Split-hierarchical phase, where certain master cells that were considered underfilled in

phase 1 would be replicated so that distinct copies of a master cell may be filled differently
than other copies of the same master cell

3. Flat-fill cleanup phase (i.e., LP, Monte-Carlo, etc.), which will fill any remaining sparse or
underfilled regions that were not satisfactorily processed during the first two phases

36.5.1.3 Timing-Driven Fill Synthesis

One of the largest concerns in fill synthesis, apart from meeting the CMP design rules, is the impact
of fill insertion on the interconnect capacitance. An excessive increase in wire capacitance can
cause a net to violate its setup timing constraint. A large value for keep-off distance (i.e., minimum
distance from fill to wire) reduces the impact but it erodes into available areas to insert fills and
sometimes makes it impossible to meet the minimum density constraint. Reference [11] proposes
the first formulation of the performance impact limited fill (PIL-Fill) problem with the objective of
either minimizing total delay impact or maximizing the minimum slack of all nets, subject to a given
predetermined amount of fill. They also developed simple capacitance models to be used in their
delay calculations. The PIL-Fill synthesis formulation has two objectives:

• Minimizing layout density variation
• Minimizing the CMP fill features’ impact on circuit performance (e.g., signal delay and

timing slack)

Because it is difficult to satisfy both the objectives simultaneously, practical approaches tend to
optimize one objective while transforming the other into constraints. Using the terminology in
Ref. [11], the two problem formulations proposed are as follows (note that these formulations are
for fixed-dissection regimes):

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 754 10-10-2008 #19

754 Handbook of Algorithms for Physical Design Automation

1. Given tile T , a prescribed amount of fill is to be added into T , a size for each fill feature, a
set of slack sites (i.e., sites available for fill insertion) in T per the design rules for floating
square fill, and the direction of current flow and the per-unit length resistance for each
interconnect segment in T , insert fill features into T such that total impact on delay is
minimized.

2. Given a fixed-dissection routed layout and the design rule for floating square fill features,
insert a predetermined amount of fill in each tile such that the minimum slack over all nets
in the layout is maximized.

The first formulation corresponds to minimum delay with fill constrained formulation while
the second one is the maximum min-slack with fill constrained formulation. A weakness with the
first formulation is that it minimizes the total delay impact independently for each tile. Hence, the
impact due to fill features on signal delay of the complete timing path is not considered. The second
formulation, therefore has been proposed to alleviate this problembymaximizing theminimum slack
of all nets, subject to a constraint of inserting a predetermined amount of fill in every tile of the layout.
Reference [11] proposes two integer linear programming (ILP) methods and a greedy approach for
the minimum delay and maximum min-slack formulations, respectively. However, the capacitance
models used in delay calculations of Ref. [10] are not accurate as they do not consider the presence
of fill features on the neighboring layers. This incurs inaccuracy in the estimated capacitance values
and eventually causes uncertainty in the timing analysis. Also, they do not account for signal flow
direction, which causes layout nonuniformity (i.e., as fills are pushed to the receiver edge, the driver
edge becomes less dense).

In addition to the timing-driven fill synthesis, recently an auxiliary objective-driven fill synthesis
has been introduced by the authors in Ref. [41]. In this work, in addition to meeting the layout
pattern density criteria, the IR-drop of the power distribution network is also reduced. IR-drop is an
increasing challenge in 90 nm (and beyond) designs. The tolerance for IR-drop is becoming smaller
as the voltage source scales. It also adds excess burden on routing resources. The work by Leung
et al. [41] addresses these issues and according to their experimental results achieves an average
IR-drop reduction of 62.2 percent.

36.5.2 MODEL-BASED FILL SYNTHESIS

Methods for fill insertion can be categorized into two groups: rule-based and model-based. Rule-
based fill insertion is usually performed by Boolean operations considering design rule constraints
such as minimum fill-to-fill spacing, and minimum fill-to-wire spacing (keep-off distance). On the
other hand, the model-based fill insertion approach is based on analytical expressions that define the
relationship between local pattern density and ILD thickness. Figure 36.15 shows possible rule- and
model-based fill insertion approaches.

The model-based fill insertion approach, given a CMP process model, is to find the amount and
the location of the fill features to be inserted in the layout so that certain electrical and physical design
rules are preserved and certain post-CMP topography variation is met. Reference [65] proposes a
two-step solutionwith consideration of both single- andmultiple-layer layouts in the fixed-dissection
regime. The first step uses linear programming to compute the necessary amount of fill to be inserted
in each of the dissection’s tiles. In the second step, the amount of fill calculated by the first step will
be placed into each tile such that certain local properties (i.e., electrical, physical, etc.) are preserved.
Experimental results with the single-layer formulation (i.e., the cumulative variation of underlying
layers is ignored) show reduction of post-CMP topography variation from 767 to 152Å.

36.5.3 IMPACT OF CMP FILL ON INTERCONNECT PERFORMANCE

In this subsection, the impacts of CMP fill on both interconnect resistance and capacitance have
been reviewed. CMP fill insertion can change both coupling and total capacitance of interconnect. In

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 755 10-10-2008 #20

CMP Fill Synthesis: A Survey of Recent Studies 755

(a) (b)

(c) (d)

FIGURE 36.15 (a) Example layout with features lightly shaded and exclusion zone in dashed lines.
(b) Twenty-five percent density fill insertion before Boolean operations. (c) Rule-based fill insertion after
the application of the Boolean operations. (d) Possible model-based fill insertion. (Tian, R., Wong, D.F., and
Boone, R., Proceedings of ACM/IEEE Design Automation Conference, 2000.)

addition, metal dishing and dielectric erosion change interconnect cross section and therefore affect
interconnect resistance. He et al. [23] report an increase of more than 30 percent in interconnect
resistance due to dishing and erosion, while the impact on interconnect capacitance is insignificant.
Reference [24] proposes a wire sizing approach to lessen the amount of interconnect resistance
variation due to theCMPprocess. Increasedwire size compensates for the increased resistance caused
by dishing and erosion and also reduces the effect of the large Reff (i.e., driver output resistance)
variation on delay.

36.5.3.1 Fill Patterns

CMP fill insertion, even as it contributes to layout pattern density uniformity, increases the coupling
and total interconnect capacitance. Therefore, it is important to assess the impact of CMP fill on inter-
connect capacitance to reduce the uncertainty in circuit timing calculations. Reference [22] explores
a space of different fill patterns that are equivalent from the foundry perspective (i.e., respecting
all the minimum design rules, etc.) and their respective impact on interconnect capacitance. All the
fill features are assumed to be rectangular, and are aligned horizontally and vertically as shown in
Figure 36.16. Using the notation fromRef. [22], conductors A and B are active interconnects and the
metal shapes between them are CMP fills. Each distinct fill pattern is specified by (1) the number of
fill rows (M) and columns (N); (2) the series of widths {Wi}i=1...N and lengths {Lj}j=1...M of fills; and
(3) the series of horizontal and vertical spacings, {Sx,i}i=1...N−1 and {Sy,j}j=1...M−1 between fills.

Enumeration of all the possible combinations of the above parameters is not feasible. Therefore,
to restrict the space of exploration, Ref. [22] proposes a positive distribution characteristic function
(DCF), denoted f (k), where k is an integer variable that takes the index of the element in the series.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 756 10-10-2008 #21

756 Handbook of Algorithms for Physical Design Automation

A A

(a) (b) (c)

B Y

X

ABW3W2W1

Sx, 2Sx, 1
L1

L2

L3

L4

L5

AB B

(d)

Sy, 4

Sy, 3

Sy, 2

Sy, 1

FIGURE 36.16 Examples of fill pattern. (a) Traditional fill pattern, (b) fillwith different length and spacing, (c)
fill with different width and spacing, and (d) fill with different length, width and spacing (L. He, Kahng, A. B.,
Tam, T. H., and Xiong, J., Proceedings of International VLSI/ULSI Multilevel Interconnection Conference,
2004.)

For example, the value of the ith element of the width is calculated asWi = f (i) + �Wl, where �Wl is
the minimum width design rule. Figure 36.17 shows an example of three different DCFs for width.
Reference [22] uses combinations of different DCFs for the parameters mentioned. On the basis of
the results of the experiments, Ref. [22] proposes two guidelines as to what a “good” fill pattern
might be among all the possible valid fill pattern combinations. The criteria for this assessment are
based on the impact of the pattern on interconnect capacitance. According to these guidelines

• In a fixed length budget, the number of fill columns should be maximized
• In a fixed width budget, the number of fill rows should be minimized

In addition to the parameters covered in the previous experiments, Ref. [20] adds four more
parameters in its space of exploration. These parameters are, metal width, metal height, dielectric
constant, and keep-off distance. The trend of changes in interconnect capacitance were observed for
the corresponding parameters. A recent work by Kahng et al. [30] systematically studies the impact
of various floating fill configuration parameters, such as fill size, fill location, interconnect size,
separation from interconnect edges, multiple fill columns and rows, etc., on coupling capacitance.
On the basis of their studies, Ref. [30] proposes certain guidelines for fill insertion to reduce their
impact on coupling capacitance while achieving the prescribed metal density. The following are the
proposed guidelines in order of decreasing importance:

1. High-impact region. Fill insertion impacts the coupling capacitancemost in the area between
the two overlapping interconnects and in a close proximity to it.

2. Edge effects. Fill insertion should be preferred at the edges of the above region.
3. Wire spacing. Impact on coupling capacitance is smaller if spacing between the two

interconnects is large. Hence, fill must be inserted where spacing is large.

(a) (b) (c)

Z ZZ

f (z) f (z) f (z)

FIGURE 36.17 Examples of DCFs and their corresponding geometrical interpretation. (a) f (z) is a constant,
(b) f (z) is nearly increasing, and (c) f (z) is a triangular function. (L. He, Kahng, A. B., Tam, T. H., and
Xiong, J., Proceedings of International VLSI/ULSI Multilevel Interconnection Conference, 2004.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 757 10-10-2008 #22

CMP Fill Synthesis: A Survey of Recent Studies 757

A

DBC
(a)

DB

A

C
(b)

FIGURE 36.18 (a) Regular fill pattern and (b) fill insertion with guidelines.

4. Wire width. Large-width wires are more susceptible to increase in capacitance due to fill
insertion. Thinner wire must be preferred as neighbors of fill.

5. Maximize columns. The number of columns should be maximized. That is, fill must be
split up subject to the minimum size design rules in a column and spread evenly between
the two interconnects.

6. Minimize rows. Fill rows may be merged to reduce the coupling capacitance.
7. Increase length not width. Increasing fill length must be preferred to increasing width to

attain the same fill area.
8. Centralize fill. Fill or fill configurations when centered between the two interconnects have

a smaller impact on the increase in coupling capacitance.

Figure 36.18 shows an application of the proposed guidelines for a represented fill/wire config-
uration. In this configuration Guidelines 1, 2, 3, 6, and 8 have been utilized. Increase in coupling
capacitance is 27 percent and 11 percent when fill is inserted in a regular pattern and with the
proposed guidelines respectively. Reference [30] reports that on average 53 percent reduction in
coupling capacitance increase is achieved through applying the guidelines for fill insertion.

36.5.3.2 CMP Fill and Interconnect Capacitance

CMP fill features despite their role in uniforming layout pattern density have a significant impact
on coupling and total interconnect capacitance. There is a body work that addresses different issues
regarding the estimation or optimization of the capacitance impact of the CMP fill.

Reference [50] briefly described a model-library-based approach to extract floating-fill. Results
demonstrating the accuracy of the approach and characterization time were, however, not presented.
Reference [40] presented a methodology for full-chip extraction of total capacitance in presence

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 758 10-10-2008 #23

758 Handbook of Algorithms for Physical Design Automation

of floating-fill and Ref. [39] extended their analysis. Their approach adjusts the permittivity and
sidewall thickness of dielectric to account for the capacitance increase due to fill. According to
Ref. [34] capacitance of a configuration is directly proportional to the charge accumulated on one of
the electrodes (Q = CV). The charge density on an electrode depends on the electric field close to the
electrode (E = σ/A). Therefore, the electric field close to an electrode determines the capacitance
of a configuration. When a floating plate of thickness t(t < d) and the same size as the conductor
plates is inserted in the space between the conductors, the capacitance increases to εA/(d − t).

Also, Ref. [1] has proposed an extraction methodology, where fills are eliminated one by one
using a graph-based randomwalk algorithmwhile updating the coupling capacitances. In thismethod,
a network of capacitors is collapsed into the equivalent capacitance between two nets. In addition,
Yu et al. [75] propose enhancements to the current field solvers by taking into account floating fills
and their conditions in the direct boundary element equations. The basic idea in their approach is
to add additional equations about the floating CMP fill features to generate a solvable system of
linear equations. In the conventional approach, the field solver is called as many times as the number
of conductors and floating fill features, whereas in the proposed method the field solver is only
called as many times as the number of conductors. Hence, the proposed method has reduced the
computation runtime of the field solving process compared to traditional methods. Reference [8]
presents a charge-based capacitance measurement methodology to analyze the impact of fills. And
finally Ref. [33] proposes three techniques of fill insertion to reduce the interconnect capacitance and
the number of fills inserted. It also provides an estimation of the required number of fill geometries
for each of the proposed techniques. However, it fails to report the accuracy and reliability of the
methods and estimations for densities greater than 30 percent.

36.5.4 STI FILL INSERTION

Shallow trench isolation is the isolation technique of choice for IC manufacturing designs. STI is
used to created trenches in silicon substrate between regions that must be isolated. Today’s STI
processes involvemany steps of which nitride deposition, oxide deposition, and CMP are of interest.
Nitride is deposited on silicon to protect the underlying regions and to act as a polish stop (i.e., in
overburden oxide removal stage). In the next stage, oxide is deposited to fill in the trenches and cover
the nitride regions by means of chemical vapor deposition (CVD). CMP is required to remove the
overburden oxide over the nitride and in the trenches to ensure the planarity.

In STI, the oxide is polished until all the deposited oxide over the nitride regions have been
removed. However, due to the pattern-dependent nature of CMP, the planarization is imperfect as
shown in Figure 36.19. Depending on the underlying pattern density, different regions have different
polish rates causing oxide thickness variation which results in functional and parametric yield loss.

Oxide

Nitride

Si

FIGURE 36.19 Cross section of silicon substrate with nitride and oxide being deposited. (From Kahng,
A. B., Sharma, P., and Zelikovsky, A., Proceedings of IEEE International Conference on Computer-Aided
Design, 2006.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 759 10-10-2008 #24

CMP Fill Synthesis: A Survey of Recent Studies 759

Nitride

Si

Oxide

FIGURE 36.20 Desired planarization profile after CMP. (FromKahng, A. B., Sharma, P., and Zelikovsky, A.,
Proceedings of IEEE International Conference on Computer-Aided Design, 2006.)

Figure 36.20 shows an ideal planarization case after CMP process where there is no nitride erosion
or oxide dishing.

In STI CMP, the planarization quality depends on pattern densities of both nitride and oxide.
Because the oxide is deposited over the nitride, the oxide density is dependent on nitride pattern
density. Owing to the variation in underlying nitride pattern density, three key failures may occur
after STI CMP process. First, the CMP process may fail to completely remove the excess oxide.
Second, even if it does remove the excess oxide completely, it may cause erosion of the underlying
nitride. Third and finally, it may remove an excessive amount of oxide within the trenches causing
oxide dishing [4]. If the overburden oxide is not completely removed, it will prevent the stripping
of the underlying nitride resulting in a circuit failure. Nitride erosion exposes the underlying active
devices and causes device failure. On the other hand, oxide dishing results in poor isolation. These
failures due to the CMP process have been shown in Figure 36.21. Traditionally, CMP imperfections
have been addressed by reverse etchback and fill insertion.However, the etchback process incurs extra
processing cost (i.e., mask cost and others) and hence is not economically desirable. Fill insertion
for STI is the other technique that involves the addition of dummy nitride features to increase the
nitride (and hence oxide) density.

The postplanarization topography in STI CMP is dependent on the overburden oxide den-
sity, which is affected by the underlying nitride density. Due to the high density plasma (HDP)
process, which is used widely as the oxide deposition technology, the deposited oxide exhibits an
interesting property (i.e., slanted sidewalls). Hence, features on the oxide layer are a shrunk version
of the nitride features [2,49,73]. For example, a square feature on the nitride layer with sides of five
times will have sides of three when deposited on the oxide layer. Therefore, features with sides less
than two times will not appear on the oxide layer. As mentioned earlier, the density of the oxide is
dependent on the underlying nitride density. Therefore, fill is inserted in the nitride layer to control
the densities of both nitride and oxide layers.

Failure to clear oxide Nitride erosion Oxide dishing

FIGURE 36.21 Three main defects caused by CMP process. (From Kahng, A. B., Sharma, P., and
Zelikovsky, A., Proceedings of IEEE International Conference on Computer-Aided Design, 2006.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 760 10-10-2008 #25

760 Handbook of Algorithms for Physical Design Automation

Failure to remove the overburden oxide completely is the main cause of failure in the oxide CMP
process. This phenomenon happens over the regions where oxide density is higher than average. In
higher density regions, the CMP pad pressure is reduced and hence the RR is less than that of the
regions with lower density [47]. Oxide dishing and nitride erosion can be significantly reduced by
increasing the nitride density. In fact, because nitride is used as a polish stop, higher nitride density
makes the detection of the nitride more accurate. In a recent work, Kahng et al. [31] propose a new
fill insertion methodology for STI CMP processes. In the problem formulation they propose the
following fill insertion objectives in the order of their priority:

• Minimize oxide density variation
• Maximize nitride density

Correspondingly, a bicriteria problem formulation was introduced by Ref. [31] as follows.
Given:

• Set of rectilinear nitride regions contributed by the devices in the design
• Parameter α by which nitride features shrink on each side to give oxide features
• Design rules: minimum nitride width, maximum nitride width, minimum nitride space and

notch, minimum nitride area, and minimum enclosed area by nitride

Find:

• Locations for fill insertion

Such that:

1. Oxide density variation is minimized
2. Nitride density is maximized

For the first objective, Ref. [31] uses the sameLP formulation proposed inRef. [29], asmentioned
in Section 36.4. The fill slack in the STI method is the maximum oxide density due to fill insertion
and the maximum contribution is made by maximum fill insertion on the nitride layer. Using the
terminology of Ref. [31], the maximum fill region, the union of all regions where fill can be inserted
subject to design rule constraints, is denoted by Nitridemax and its density is denoted as |Nitridemax|.
The proposed procedure for finding the region Nitridemax is shown in Figure 36.22.

Maximum oxide density could be achieved by shrinking Nitridemax by x on all sides for any
polygon.To address the second objective of the bicriteria formulation,Ref. [31] introduces |Oxidemax|
to denote the oxide density due to Nitridemax, which is highest oxide density achievable by fill
insertion. Experimental results show that using the proposed method, averaged over two testcases,
the oxide density variation is reduced by 63 percent and minimum nitride density is increased by
79 percent compared with tiling-based fill insertion. Also, the quality of post-CMP topography is
improved as the maximum final step height is reduced by 9 percent with only 17 percent increase in
the planarization window [31].

36.6 DESIGN FLOWS FOR FILL SYNTHESIS

The impact of CMP-induced variations on yield and performance can be controlled by inserting
CMP fill features. When it comes to CMP fill insertion, there are two different hypotheses. The first
hypothesis is that the fill synthesis and timing should be closed inside the detailed router. This might
sound like an intuitive solution due to the following:

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 761 10-10-2008 #26

CMP Fill Synthesis: A Survey of Recent Studies 761

Nitride STI

(a)

Min. spacing rule-correct
fill regions

(b)

Region for fill
(Nitridemax)

Width too small

(c)

FIGURE 36.22 Computation of maximum fill region (Nitridemax). (a) Unfilled layout. (b) Possible regions
for fill insertion. (c) Spaces of small width and area (shown in the lightest shade of gray) are not available for
fill. (From Kahng, A. B., Sharma, P., and Zelikovsky, A., Proceedings of IEEE International Conference on
Computer-Aided Design, 2006.)

• Routers lay down geometries and close timing, and so they are the natural candidate to
perform fill synthesis.

• Timing closure will be more certain for the design team before hand off to manufacturing.
• Multi-grounded fill, which reduces timing uncertainty and improves IR drop, is a natural

extension of power/ground routing capability.

The other hypothesis suggests that the router should not perform the fill insertion due to the following:

• Complicated density analyses that support high-quality CMP modeling are not easily
performed by the router (wrap-around, full-chip, width-distribution dependent, etc.).

• Routers cannot deliver high-quality fill without a runtime hit.
• With the possible exception of hold time slack and coupling-induced delay uncertainty

issues, grounded fill is a bad idea froma performance standpoint (there are some verification
and planning closure issues as well). Floating fill synthesis is preferable, but is unnatural
for a router.

• Foundries want to ownmore and more of the RET (reticle enhancement technique), includ-
ing CMP fill, because RET exposes the process. Extraction, coverage, and fill pattern rules
provide a huge amount of leverage, to avoid any need for solving fill in the router.

• Better passing of design intent from design to manufacturing can reduce the need to solve
the problem in the router as mentioned in Ref. [11].

36.6.1 RC EXTRACTION AND TIMING CLOSURE

CMP fill insertionmust not compromise the sign-off timing and signal integrity.However, it has been
shown that CMP fill insertion will adversely impact the interconnect capacitance and therefore the
signal delay [22]. Gupta et al. [10,11] proposeCMP fill insertion approaches aimed at minimizing the
impact of the fill features on the circuit performance. Their method has two objectives, minimizing
the layout density variation, and minimizing the CMP fill features’ impact on circuit performance
(i.e., signal delay and timing slack). Practical approaches tend to find an optimized solution for one
objective and then the solution will be adjusted to satisfy the other objective while preserving the
first constraint. The PIL-Fill approach discussed in Section 36.5.1.3 can reduce the negative timing
slack impact of floating fill by more than 80 percent [11].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 762 10-10-2008 #27

762 Handbook of Algorithms for Physical Design Automation

As mentioned in Section 36.2, CMP-inducedmetal dishing increases the line resistance. In addi-
tion,metal height can vary as a function of linewidth, local and global densities. It is critical to ensure
the basic computational accuracy of RC extraction tools before including process variation effects.
Silicon validation of parasitics helps in closing the loop between process realities and interconnect
extraction [44].

36.6.2 IMPACT OF SPATIAL VARIATION

As device and interconnect dimensions continue to shrink,maintaining process uniformity is increas-
ing in importance and difficulty [61]. The 2004 edition of the International Technology Roadmap
for Semiconductors (ITRS) [25] lists the control of printed transistor gate length in the lithography
process as falling short of expectations for the coming technology generations. Variability is happen-
ing at multiple scales in semiconductor manufacturing processes, but only the largest of these scales
has been studied. Statistical metrology methods are now used to model the variation of different
parameters not only across the wafer but also within the die itself. The modeling of both wafer-
level and die-level spatial dependencies will become increasingly important for effective process
control. The quality of planarization with CMP depends on the layout feature density uniformity.
In addition, the features on each die follow a systematic within-die variation. Therefore, different
devices within the wafer will exhibit similar characteristics even though they have different char-
acteristics within the die [3]. This interaction between wafer and die variation, if not considered,
leads to erroneous modeling as shown in Figure 36.23. Figure 36.23a displays a one-dimensional
cross section through the wafer displaying the ILD thickness over a particular device. Although the
die mean (or wafer-level trend) across the wafer shows a small curvature, the enclosing curvature
of wafer and die variation is larger. A sampling of only one device on each die may erroneously
assign both die and wafer variation to the wafer scale uniformity, as illustrated in Figure 36.23a. A
control technique that tries to make these sampled values more uniform will be ineffective as shown
in Figure 36.23b.

A method to solve this sampling problem is to intensively sample the devices within the mea-
sured die in addition to sampling them across the wafer. However, this method comes with extra
cost of gathering the measurements. An alternative approach, for example, in CMP, is to mea-
sure both a sparse and a dense region of the measured die to obtain a simple estimate for die
variance [3].

(a) (b)

Die
size

Die
size

Wafer-level
trend

Wafer-level
trend

Wafer/die
samples

FIGURE 36.23 (a) Wafer-level trend generated by single-point sampling within each die can be very dif-
ferent than the mean surface. (b) Control based on sampled surface may achieve erroneous uniformity. (From
Boning, D., Chung, J., Ouma, D., and Divecha, R., Proceedings in Process Control, Diagnostics and Modeling
in Semiconductor Manufacturing II, 1997.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 763 10-10-2008 #28

CMP Fill Synthesis: A Survey of Recent Studies 763

36.6.3 TOPOGRAPHY-AWARE OPTICAL PROXIMITY CORRECTION

Depth of focus is the major contributor to lithographic process margin. One of the major causes of
focus variation is imperfect planarization of fabrication layers. Presently, OPC (optical proximity
correction) methods are oblivious to the predictable nature of focus variation arising from wafer
topography. As a result, designers suffer from manufacturing yield loss, as well as loss of design
quality through unnecessary guardbanding. Figure 36.24 shows how post-CMP thickness variation
results in loss of CD (critical dimension) control. Figure 36.24a shows how post-CMP thickness
in copper-oxide polishing will predictably change with the region pattern density. The depth-of-
focus (DOF) variation corresponding to the thickness variation severely affects metal patterning
of the subsequent upper layer, as shown in Figure 36.24b. In this figure, t1 and t2 are post-CMP
thickness variations over dense and sparse regions, respectively. Hence, to minimize the impact of
pattern-dependent effects of the CMP process, the OPC methods should be aware of the post-CMP
topography to assign appropriate defocus value for all the features with the same topography. A
recent work by Gupta et al. [21] proposes a flow and methodology to drive OPC with a topography
map of the layout that is generated by CMP simulation. The experimental results showed that the
proposed topography-aware OPC can yield up to 67 percent reduction in edge placement errors at
the cost of little increase in mask cost.

36.6.4 INTELLIGENT CMP FILL SYNTHESIS

Current commercial CMP fill insertion tools such as Encounter from Cadence perform fill insertion
after routing and before RC extraction. Upon analyzing the density and calculating the required
amount of fill to be inserted, there are designated commands that set the metal fill parameters for a
givenmetal layer, includingminimumandmaximum length andwidth of fillmetal, keep-off distance,
spacing between fill metal geometries, preferred and maximum metal density, and window size. In
particular, to insert fill features, Encounter starts with bigger fills and makes them smaller as it goes
along. It uses the maximummetal fill size specified until it is impossible to fit a piece of metal fill of
that size into a particular area, then it uses successively smaller pieces of metal fill until reaching the

Metal layer

t1
t2

Post-CMP

(a)

(b)

FIGURE 36.24 (a) Side view showing thickness variation over regions with dense and sparse layout. (b) Top
view showing CD variation when a line is patterned over a region with uneven wafer topography, that is, under
conditions of varying defocus. (FromGupta, P., Kahng, A. B., Park, C. -H., Samadi, K., and Xu, X.,Proceedings
of the SPIE, 2005.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 764 10-10-2008 #29

764 Handbook of Algorithms for Physical Design Automation

minimum length [32]. CMP fill insertion tools, however, do not have much flexibility in controlling
the impact of the added fill features on interconnect performance (i.e., they only have a set of rules
to abide). Therefore, a more sophisticated fill insertion methodology is required.

As the industrymoves toward the 65 nmnode and beyond, traditional fill synthesismethods reach
their limits of usefulness. One indication of this is the emergence of the so-called recommended rules,
for example, “it is better to have a small difference between the density values of adjacent windows,”
or “it is better tomaximize the overlap of fill shapeson adjacent layers to enable dummyvia insertion.”
Of course, the impact of fill synthesis on timing continues to be a key concern for the designer. It is
increasingly difficult for a DRC platform to obtain an optimal, design-driven fill synthesis solution
thatmeets all basic CMP design rules and asmany recommended rules as possible, whileminimizing
the impact on timing. In this subsection, we sketch the anticipated features of a more sophisticated,
dedicated CMP fill synthesis tool—intelligent fill synthesis—that can potentially reduce engineering
effort while enhancing manufacturability (by increasing process and design latitudes). Hence, an
intelligent fill synthesis must embody such features as the following [20].

• Multilayer density control. Post-CMP deposition of oxide in the back end is conformal;
therefore, the topography variation in one layer is almost directly transferred to the upper
layer, and the topography variation of the upper layer is added to that from the previous
layer. Even when the density variation of one layer is small, it is possible to have large
enough variation for the entire back-end stack to cause yield loss or to exceed DOF limits
of lithography. Intelligent fill synthesis should perform concurrent minimization of the
density variation of multiple layers, as well as that of each individual layer.

• Model-based fill synthesis. Rule-based fill synthesis is based on concepts such as density
or keep-off distance rules, which are applied to wiring segments that have less than certain
threshold amounts of timing slack. Model-based fill synthesis, on the other hand, would
use CMP models to identify regions where planarity is important (next to heavily loaded
critical segments and below critical segments). Themodel-based approach has implicit tight
coupling to a timer, and models the impact of fill on coupling capacitance.

• Timing-driven fill synthesis. One of the largest concerns in fill synthesis, apart frommeeting
theCMPdesign rules, is the impact of fill insertion to the capacitances of the existing nets.An
excessive increase in wire capacitance can cause a net to violate its setup timing constraint.
A large value for keep-off distance reduces this danger but it erodes into available areas to
insert fills and sometimesmakes it impossible tomeet theminimumdensity constraint.With
timing-driven intelligent fill, the impact of inserting fills on timing is continually assessed,
and the minimum keep-off distance for each net to meet the setup time constraint can be
computed to avoid a wastefully large one-size-fits-all keep-off distance. In amore advanced,
intelligent timing-driven fill flow, the impact of fill insertion on both wafer topography and
timing would be analyzed and optimized concurrently. One additional advantage of timing-
driven fill is that it can improve the hold-time slack of a net by deliberately and selectively
introducing capacitance to that net.

• Wire sizing. Changing the width of a wire has certain impact on the parasitics of the wire
such as resistance and capacitance. For example, in an organic low-k/Cu system, widening a
wire may result in reduced resistance not only because the wire gainswidth but also because
wider wire suppresses metal thickness loss. To complement the execution of timing-driven
fill, it is possible to bias thewires by some small amount (<10 percent) and gain small timing
slack. This will increase the operating latitude of the circuit. Alternatively, the impact of
the height variation of wires can be compensated by width sizing to tighten the distribution
of wire parasitics for any given drawn width.

Figure 36.25 shows a practical approach to intelligent timing-driven fill. In the following approach,
after all the required fill has been inserted, the windows that are still violating the minimum density

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 765 10-10-2008 #30

CMP Fill Synthesis: A Survey of Recent Studies 765

Timing-Driven Fill
Loop:
0. Set an initial conservatism factor
1. Do (initial) RCX and STA
2. Identify timing-violating nets (TVNs) – i.e., timing-critical nets
3. Apply conservative net-protection (+keep-off distance and blockingM + 1/M − 1 layers) per
TVN segment

4. Run (incremental) MC-Fill? target fill amount
5. PIL-FILL Synthesis:
5.1 Greedy insert fill in fill slack columns, targeting most-needy tiles and largest-slack nets first
5.2 After K fill shapes have been inserted, re-run (incremental) STA based on �C’s
5.3 Iterate until all required fill has been inserted (or, until no timing constraint

looks safe) – return to step 5
6. Update Conservatism
6.1 Analyze windows that violate min density constraints
6.2 Identify nets that belong to the windows that violate the constraints
6.3 Do (incremental) RCX and STA to change the conservatism factor

of TVNs – return to Step 2

FIGURE 36.25 Timing-driven fill synthesis approach. (From Gupta, P., Kahng, A.B., Nakagawa, O.S., and
Samadi, K., Proceedings of the International VLSI/ULSI Multilevel Interconnection Conference, 2005.)

criteria are identified. Then all the nets belonging to these windows will be selected. To meet the
density criteria the conservatism factor of TVNs must be updated by allowing the fill to be inserted.
This is done in accordance with the results of an incremental RCX and STA (i.e., basically to update
the timing slacks of TVNs).

36.7 CONCLUSION

In this survey, an overviewof CMPprocesseswas presented.Different characterization andmodeling
approaches were investigated. Even though CMP is the planarizing technique of choice in silicon
manufacturing processes, its effectiveness is dominated by the layout pattern density. One technique
that designers andmanufacturers use to uniform the layout pattern density is CMP fill insertion. CMP
fill features are nonfunctional metal features that are added to the layout to make the layout pattern
density uniform while not contributing to the logic of the circuits. However, before addressing the
problemof filling the layout with fill features, the density of the layoutmust to be analyzed.Different
density calculation approaches such as fixed dissection regime and multilevel density analyses have
been presented. Next, different fill synthesis methods including density-driven, model-based, and
auxiliary objective-driven have been introduced. Even though CMP fill features help in making the
layout pattern densitymore uniform, they impact total and coupling interconnect capacitances. In this
survey, several different fill patterning and modeling techniques that aim at accurately assessing the
impact on interconnect capacitance have also been presented. Finally, the concept of intelligent fill
(IF) has been introduced. IF has the capability to produce globally optimized, design-drivenCMP fill
that satisfies difficult fill pattern and density constraints arising in 90nmand 65 nm technology nodes.

REFERENCES
1. S. Batterywala, R. Ananthakrishna, Y. Luo, and A. Gyure, A statistical method for fast and accurate

capacitance extraction in the presence of floating dummy fills, in Proceedings of VLSI Design, Hyderabad,
India, 2006.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 766 10-10-2008 #31

766 Handbook of Algorithms for Physical Design Automation

2. P. Beckage, T. Brown, R. Tian, E. Travis, A. Phillips, and C. Thomas, Prediction and characterization of
STI CMP within-die thickness variation on 90 nm technology, in Proceedings of CMP-MIC Conference,
Marina Del Ray, CA, 2004, pp. 267–274.

3. D. Boning, J. Chung, D. Ouma, and R. Divecha, Spatial variation in semiconductor processes: Modeling for
control, in Proceedings in Process Control, Diagnostics and Modeling in Semiconductor Manufacturing II,
1997.

4. D. Boning and B. Lee, Nanotopography issues in shallow trench isolation CMP, in Materials Gateway,
2002, pp. 761–765.

5. D. Boning, B. Lee, C. Oji, D. Ouma, T. Park, T. Smith, and T. Tugbawa, Pattern dependent modeling for
CMP optimization and control, in Proceedings of Symposium of Chemical–Mechanical Polishing, 1999.

6. P. A. Burke, Semi-empirical modeling of SiO2 chemical mechanical polishing planarization, in Proceedings
of International VLSI/ULSI Multilevel Interconnection Conference, 1991, pp. 379–384.

7. L. E. Camilletti, Implementation of CMP-based design rules and patterning practices, in Proceedings of
IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Cambridge, MA, 1995, pp. 2–4.

8. Y. W. Chang, H. W. Chang, T. C. Lu, Y. King, W. Ting, J. Ku, and C. Y. Lu, A novel CBCM method free
from charge injection induced errors: Investigation into the impact of floating dummy fills on intercon-
nect capacitance, in Proceedings of International Conference on Microelectronic Test Structures, Leuven,
Belgium, 2005, pp. 235–238.

9. E. Chang, B. Stine, T. Maung, R. Divecha, D. Boning, J. Chung, K. Chang, G. Ray, D. Bradbury, S. Oh, and
D. Bartelink, Using a statistical metrology framework to identify systematic and random sources of die-
and wafer-level ILD thickness variation in CMP processes, in Proceedings of IEEE International Electron
Devices Meeting, 1995, pp. 499–502.

10. Y. Chen, P. Gupta, and A. B. Kahng, Performance-impact limited area fill synthesis, in Proceedings of SPIE
Conference on Design and Process Integration for Microelectronic Manufacturing, 2003, pp. 75–86.

11. Y. Chen, P. Gupta, and A. B. Kahng, Performance-impact limited area fill synthesis, in Proceedings of
ACM/IEEE Design Automation Conference, Anaheim, CA, 2003, pp. 22–27.

12. Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, Practical iterated fill synthesis for CMP uniformity,
in Proceedings of ACM/IEEE Design Automation Conference, Los Angeles, CA, 2000, pp. 671–674.

13. Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, Hierarchical dummy fill for process uniformity,
in Proceedings of IEEE Asia and South Pacific Design Automation Conference, Las Vegas, NY, 2001,
pp. 139–144.

14. Y. Chen, A. B. Kahng, G. Robins, and A. Zelikovsky, Monte-Carlo algorithms for layout density control,
in Proceedings of IEEE Asia and South Pacific Design Automation Conference, Yokohama, Japan, 2000,
pp. 523–528.

15. L. M. Cook, Chemical processes in glass polishing, Journal of Non-Crystalline Solids, 520, 152–171, 1990.
16. D. Dornfeld, Mechanical aspects of CMP, in Proceedings of International VLSI/ULSI Multilevel Intercon-

nection Conference, Santa Clara, CA, 2000, pp. 105–112.
17. P. Friedberg, W. Cheung, and C. J. Spanos, Spatial variability of critical dimensions, in Proceedings of

International VLSI/ULSI Multilevel Interconnection Conference, Fremont, CA, 2005.
18. W. B. Glendinning and J. N. Helbert, Handbook of VLSI Microlithography: Principles, Technology, and

Applications, Noyes Publications, 1991.
19. Y. Gotkis, D. Schey, S. Alamgir, J. Yang, and K. Holland, Cu CMP with orbital technology: Summary of

the experience, in Proceedings of ASMC, 1998, pp. 364–371.
20. P. Gupta, A. B. Kahng, O. S. Nakagawa, and K. Samadi, Closing the loop in interconnect analyses and

optimization: CMP fill, lithography and timing, in Proceedings of International VLSI/ULSI Multilevel
Interconnection Conference, Fremont, CA, 2005, pp. 352–363.

21. P. Gupta, A. B. Kahng, C. -H. Park, K. Samadi, and X. Xu, Wafer topography-aware optical proxim-
ity correction for better DOF margin and CD control, in Proceedings of the SPIE, vol. 5853, 2005,
pp. 844–854.

22. L. He, A. B. Kahng, K. H. Tam, and J. Xiong, Variability-driven considerations in the design of integrated-
circuit global interconnects, in Proceedings of International VLSI/ULSI Multilevel Interconnection
Conference, Waikoloa Beach, Hawai, 2004, pp. 214–221.

23. L. He, A. B. Kahng, K. H. Tam, and J. Xiong, Design of IC interconnects with accurate modeling of CMP,
in Proceedings of SPIE Conference on Design and Process Integration for Microelectronic Manufacturing,
2005, pp. 109–119.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 767 10-10-2008 #32

CMP Fill Synthesis: A Survey of Recent Studies 767

24. L. He, A. B. Kahng, K. H. Tam, and J. Xiong, Simultaneous buffer insertion and wire sizing considering sys-
tematic CMP variation and random leff variation, inProceedings of ACM/IEEE International Symposium on
Physical Design, San Francisco, CA, 2005, pp. 78–85.

25. International Technology Roadmap for Semiconductors, 2007.
26. A.B.Kahng,G.Robins,A. Singh,H.Wang, andA.Zelikovsky, Filling and slotting:Analysis and algorithms,

in Proceedings of ACM/IEEE International Symposium on Physical Design, Monterey, CA, 1998, pp. 95–
102.

27. A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, New and excat filling algorithms for layout density
control, in Proceedings of IEEE International Conference on VLSI Design, Goa, India, 1999, pp. 106–110.

28. A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, Newmultilevel and hierarchical algorithms for layout
density control, in Proceedings of IEEE Asia and South Pacific Design Automation Conference, Wanchai,
Hong Kong, 1999, pp. 221–224.

29. A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, Filling algorithms and analyses for layout density
control, inProceedings of IEEETransactions onComputer-AidedDesignof IntegratedCircuits andSystems,
18(4), 445–462, 1999 (ISPD 1998).

30. A. B. Kahng, K. Samadi, and P. Sharma, Study of floating fill impact on interconnect capacitance,
in Proceedings of IEEE International Symposium on Quality Electronic Design, San Jose, CA, 2006,
pp. 691–696.

31. A. B. Kahng, P. Sharma, and A. Zelikovsky, Fill for shallow trench isolation CMP, in Proceedings of IEEE
International Conference on Computer-Aided Design, San Jose, CA, 2006, pp. 661–668.

32. K. Kelly, Effect of grounded vs. floating fill metal on parasitic capacitance, International Cadence Users-
Group Conference, 2004.

33. A.Kurokawa, T. Kanamoto, T. Ibe, A.Kasebe, C.W. Fong, T. Kage, Y. Inoue, andH.Masuda, Dummy filling
methods for reducing interconnect capacitance and number of fills, in Proceedings of IEEE International
Symposium on Quality Electronic Design, San Jose, CA, 2005, pp. 586–591.

34. A. Kurokawa, T. Kanamoto, A. Kasebe, Y. Inoue, and H. Masuda, Ecient capacitance extraction method
for interconnects with dummy fills, in Proceedings of CICC, Orlando, FL, 2004, pp. 485–488.

35. H. Landis, P. Burke, W. Cote, W. Hill, C. Hoffman, C. Kaanta, C. Koburger, W. Lange, M. Leach, and
S. Luce, Integration of chemical–mechanical polishing into CMOS integrated circuit manufacturing, Thin
Solid Films, 220, 1–7, 1992.

36. B. Lee, Modeling of chemical–mechanical polishing for shallow trench isolation, Ph.D. Dissertation,
Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 2002.

37. B. Lee, D. S. Boning, D. L. Hetherington, and D. J. Stein, Using smart dummy fill and selective reverse
etchback for pattern density equalization, inProceedings ofChemicalMechanical Polish forULSIMultilevel
Interconnection Conference, Santa Clara, CA, 2000, pp. 255–258.

38. W. -S. Lee, K. -H. Lee, J. -K. Park, T. -K.Kim, and Y. -K. Park, Investigation of the capacitance deviation due
to metal-fills and the effective interconnect geometry modeling, inProceedings of International Symposium
on Quality Electronic Design, San Jose, CA, 2003, pp. 354–357.

39. W. -S. Lee, K. -H. Lee, J. -K. Park, T. -K. Kim, Y. -K. Park, and J. -T. Kong, Investigation of the capacitance
deviationdue tometal fills and the effective interconnect geometrymodeling, inProceedings of International
Symposium on Quality Electronic Design, San Jose, CA, 2003, pp. 373–376.

40. K. -H. Lee, J. -K. Park, Y. -N. Yoon, D. -H. Jung, J. -P. Shin, Y. -K. Park, and J. -T. Kong, Analyzing the
effects of floating dummy fills: From feature scale analysis to full-chip RC extraction, in Proceedings of
IEDM, Washington, Washington D.C., 2001, pp. 31.3.1–31.3.4.

41. K. -S. Leung, SPIDER: Simultaneous post-layout IR-drop and metal density enhancment with redundant
fill, inProceedings of International Conference on Computer-Aided Design, San Jose, CA, 2005, pp. 33–38.

42. Z. Li, L. Borucki, I. Koshiyama, and A. Philipossian, Effect of slurry flow rate on tribological, thermal, and
removal rate attributes of copper CMP, Journal of Electrochemical Society, 151, G482–G487, 2004.

43. S. Mudhivarthi, N. Gitis, S. Kuiry, M. Vinogradov, and A. Kumar, Effects of slurry flow rate and
pad conditioning temperature on dishing, erosion, and metal loss during copper CMP, Journal of
Electrochemical Society, 153(5), G372–G378, 2006.

44. N.S. Nagaraj, T. Bonifield, A. Singh, C. Bittlestone, U. Narasimha, V. Le, and A. Hill, BEOL variability
and impact on RC extraction, in Proceedings of Design Automation Conference, Anaheim, CA, 2005,
pp. 758–759.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 768 10-10-2008 #33

768 Handbook of Algorithms for Physical Design Automation

45. G. Nanz and L. E. Camilletti, Modeling of chemical–mechanical polishing, in IEEE Transactions on
Semiconductor Manufacturing, 8(11), 382–389, 1995.

46. M.Nelson, B.Williams, C. Belisle, S. Aytes, D. Beasterfield, J. Liu, S. Donaldson, and J. Prasad, Optimizing
pattern fill for planarity and parasitic capacitance, in Proceedings of International Semiconductor Device
Research Symposium, 2003, Washington, Washington D.C., pp. 428–429.

47. D. Ouma, Modeling of chemical–mechanical polishing for dielectric planarization, Ph.D. Dissertation
Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 1998.

48. D.Ouma, B. Stine, R.Divecha, D. Boning, J. Chung, I. Ali, andM. Islamraja, Using variation decomposition
analysis to determine the effects of process on wafer and dielevel uniformity in CMP, Symposium on
Chemical Mechanical Planarization (CMP) in IC Device Manufacturing, 190th Electrochemical Society
Meeting, 1996.

49. J. T. Pan, D. Ouma, P. Li, D. Boning, F. Redecker, J. Chung, and J. Whitby, Planarization and integration of
shallow trench isolation, inProceedings of International VLSI/ULSIMultilevel Interconnection Conference,
1998, pp. 467–472.

50. J. -K. Park, K. -H. Lee, J. -H. Lee, Y. -K. Park, and J. -T. Kong, An exhaustive method for characterizing
the interconnect capacitance considering the floating dummy fills by employing an efficient field solving
algorithm, in Proceedings of SISPAD 2000, Seattle, Washington, pp. 98–101.

51. W. J. Patrick,W. Doedel, T. Souts, and P. H. Schiable, Application of chemical–mechanical polishing to the
fabrication of VLSI circuit interconnects, Journal of Electrochemical Society, 138(6), 1778–1784, 1991.

52. K. A. Perry, Chemical mechanical polishing: The impact of a new technology on an industry, Proceedings
of Symposium on VLSI Technology, Honalulu, Hawaii, 1998, pp. 2–5.

53. P. F. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, New York,
1985.

54. S. Raghvendra and P. Hurat, DFM: Linking design and manufacturing, in Proceedings of International
Conference on VLSI Design, Kolkata, India, 2005, pp. 705–708.

55. P. Rai-Choudhury (Ed.), Handbook of Microlithography, Micromachining, and Microfabriation, vol. 1:
Microlithography, Bellingham, SPIE Optical Engineering Press, 1997.

56. S. Runnels, M. Kim, J. Schleuter, C. Karlsrud, and M. Desai, A modeling tool for chemical–mechanical
polishing design and evaluation, IEEE Transactions on Semiconductor Manufacturing, 11(8), 501–510,
1995.

57. S. Sivaram, H. Bath, E. Lee, R. Leggett, and R. Tolles, Measurement and modeling of pattern sensivity
during chemical–mechanical polishing of interlevel dielectrics, SEMTECH, Austin, TX, Technical Report,
1992.

58. S. Sivaram, H. Bath, R. Legegett, A. Maury, K. Monning, and R. Tolles, Planarizing interlevel dielectrics
by chemical mechanical polishing, Solid State Technology, pp. 87–91, May 1992.

59. J. Sorooshian, D. Hetherington and A. Philipossian, Effect of process temperature on coefficient of friction
during CMP, Electrochemical Solid-State Letters, G222–G224, 2004.

60. J. Sorooshian, D. DeNardis, L. Charns, Z. Li, F. Shadman, D. Boning, D. Hetherington and A. Philipossian,
Arrhenius characterization of ILD and copper CMP process, Journal of Electrochemical Society, 151,
G85–G88, 2004.

61. B. E. Stine, D. S. Boning, and C. E. Chung, Analysis and decomposition of spatial variation in integrated
circuit processes and devices, IEEE Transactions on Semiconductor Manufacturing, 10(2), 24–41, 1997.

62. B. E. Stine, D. S. Boning, J. E. Chung, L. Camilletti, F. Kruppa, E. R. Equi, W. Loh, S. Prasad, M.
Muthukrishnan, D. Towery, M. Berman, and A. Kapoor, The physical and electrical effects of metal-fill
patterning practices for oxide chemical-mechanical polishing processes, in IEEE Transactions on Electron
Devices, 45(3), 665–679, 1998.

63. B. Stine, D. Ouma, R. Divecha, D. Boning, J. Chung, D. L. Hetherington, I. Ali, G. Shinn, J. Clark, O. S.
Nakagawa, and S. -Y. Oh, A closed-form analytic model for ILD thickness variation in CMP processes, in
Proceedings of Chemical–Mechanical Polish for ULSI Multilevel Interconnection Conference, Santa Clara,
CA, 1997, pp. 266–273.

64. M. E. Thomas, S. Sekigahama, P. Renteln, and J. M. Pierce, The mechanical planarization of interlevel
dielectrics for multilevel interconnect applications, in Proceedings of International VLSI/ULSI Multilevel
Interconnection Conference, 1990, pp. 438–440.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 769 10-10-2008 #34

CMP Fill Synthesis: A Survey of Recent Studies 769

65. R. Tian, D. F.Wong, and R. Boone, Model-based dummy feature placement for oxide chemical–mechanical
polishing manufacturability, in Proceedings of ACM/IEEE Design Automation Conference, Los Angeles,
CA, 2000, pp. 667–670.

66. R. Tian, D. F. Wong, R. Boone, and A. Reich, Dummy feature placement for oxide chemical–mechanical
polishing manufacturability, in Technical Report, University of Texas at Austin CS Department, 1999,
pp. 9–19.

67. N. N. Toan, Spin-on glass materials and applications in advanced IC technologies, Ph.D. Dissertation,
Universiteit Twente, Netherlands, 1999.

68. T. Tugbawa, Chip-scale modeling of pattern dependencies in copper chemical mechanical polish-
ing processes, Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, MIT,
Cambridge, MA, 2002.

69. T. Tugbawa, T. Park, D. Boning, T. Pan, P. Li, S. Hymes, T. Brown, and L. Camilletti, Amathematical model
of pattern dependence in Cu CMP process, in Proceedings of CMP Symposium Electrochemical Society
Meeting, 1999, pp. 605–615.

70. X. Wang, C. C. Chiang, J. Kawa, and Q. Su, A min-variance iterative method for fast smart dummy
feature density assignment in chemical–mechanical polishing, in Proceedings of International Symposium
on Quality Electronic Design, San Jose, California, 2005, pp. 258–263.

71. J. Warnock, A two-dimensional process model for Ic chemimechanical polish planarization, Journal of
Electrochemical Society, 138(8), 2398–2402, 1991.

72. D. White, J. Melrin, and D. Boning, Characterization and modeling of dynamic thermal behavior in CMP,
Journal of Electrochemical Society, 150, G271–G278, 2003.

73. X. Xie, T. Park, D. Boning, A. Smith, P. Allard, and N. Patel, Characterizing STI CMP processes with
an STI test mask having realistic geometric shapes, in Chemical–Mechanical Polishing Symposium, MRS
Spring Meeting, 2004.

74. T. -K. Yu, C. C. Yu, and M. Orlowski, A statistical polishing pad model for chemical–mechanical polishing,
in Proceedings of IEEE International Electron Devices Meeting, 1993, pp. 865–868.

75. W. Yu, M. Zhang, and Z. Wang, Ecient 3-D extraction of interconnect capacitance considering floating
metal fills with boundary element method, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 25(1), 12–18, 2006.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C036 Finals Page 770 10-10-2008 #35

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 771 19-9-2008 #2

37 Yield Analysis
and Optimization

Puneet Gupta and Evanthia Papadopoulou

CONTENTS

37.1 Introduction.. 771
37.2 Sources of Yield Loss . 774
37.3 Yield Analysis . 775

37.3.1 Parametric Yield Analysis . 775
37.3.2 Random Defect Yield Modeling and Critical Area Computation 776

37.3.2.1 Defect Models . 778
37.4 Methods for Yield Optimization.. 783

37.4.1 Critical Area and Catastrophic Yield Optimization Methods . 783
37.4.2 Design Rules . 785
37.4.3 Corner-Based Design Analysis . 786
37.4.4 Future of Parametric Yield Optimization . 786

37.4.4.1 Methods for Systematic Variability . 787
37.4.4.2 Statistical Optimization . 787

37.5 Conclusion.. 787
References . 787

In this chapter, we discuss yield loss mechanisms, yield analysis and common physical design
methods to improve yield. Yield is defined as the ratio of the number of products that can be sold to
the number of products that can bemanufactured.Tomotivate the importance of yield, it is instructive
to look at the economics of chip manufacturing. The estimated typical cost of a modern 300mm or
12 in. wafer 0.13µm process fabrication plant is $ 2–4 billion, a typical number of processing steps
for a modern integrated circuit is more than 150, a typical production cycle-time is over six weeks,
and individualwafers cost multiple thousands of dollars. Given the huge investments that this entails,
consistent high yield is necessary for faster time to profit.

37.1 INTRODUCTION

The total yield for an integrated circuit Ytotal can be expressed a follows:

Ytotal = Yline × Ybatch (37.1)

Here Yline denotes line yield or wafer yield that is the fraction of wafers which survive through
the manufacturing line, and Ybatch is the fraction of integrated circuits which, on each wafer, are
fully functional at the end of the line. A steep yield ramp implies a quicker path to high batch
yield, and hence, volume production,which in turn, means higher profitability for the semiconductor
manufacturer who operates under time-to-market pressures.

771

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 772 19-9-2008 #3

772 Handbook of Algorithms for Physical Design Automation

FIGURE 37.1 SEM picture showing a bridging fault on Metal 3. Note the row of vias on each metal line.
(Reprinted from Song, Z.G., Neo, S.P., Loh, S.K., and Oh, C.K., International Symposium for Testing and
Failure Analysis, 2005. With permission.)

The yield ingredient, Ybatch can be further classified based on either type of defect or of failure.
A taxonomy of failure types is as follows:

• Catastrophic yield loss. These are functional failures such as open or short circuits that
cause the part to not work at all. Extra or missing material particle defects are the primary
causes for such failures. Figure 37.1 [2] shows a magnified view of a bridging fault. The
yield loss due to such faults can be predicted by critical area analysis, and this is discussed
later in this chapter.

• Parametric yield loss. These failures occur when the chip is functionally correct but it
fails to meet some power or performance criteria. Parametric failures are caused by vari-
ations in one or set of circuit parameters, such that their specific distribution in a design
causes it fall out of specifications. For example, a part may function at a certain VDD
value, but not over entire required range of VDD. Another example of parametric yield
loss is due to leakage in deep submicron technologies [3], where parametric failures may
be caused by process variations. Some classes of integrated circuits may be speed-binned
(i.e., grouped by performance): a common example of this class of designs is microproces-
sors, wherein lower performance parts are priced lower. Typical ASICs are an example of
a class of circuits that cannot be speed-binned, because they cannot be sold if their per-
formance is below a certain threshold (e.g., due to compliance with standards). For these
circuits, there can be significant performance-limited yield loss, and therefore, they are
designed with a large guardband. However, even in case of speed-binned circuits, yield
loss is important because there can be significant dollar value loss even if there is little
yield loss.

In addition to these, another source of yield loss is due to testing-related yield loss, as no practical
testing process can detect all possible faults (and potential faults). Such yield loss is related to defect
level (e.g., see Ref. [4]) and field returns (e.g., see Ref. [5]).We are not including such yield losses in
our discussion as they are not related to physical design. We add that another aspect of field-returns
is long-term reliability of designs (e.g., see Ref. [6]). Reliability is typically treated as a separate
topic and we discuss yield loss only in terms of its most common definition: number of bad parts at
the end of manufacturing line.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 773 19-9-2008 #4

Yield Analysis and Optimization 773

Catastrophic failure

Yield loss

Parametric failure Systematic defect

Random defect

E.g., open/short circuit

E.g
.,

to
o

slo
w/to

o
lea

ky

E.g., Random
missing particle

E.g., Random

dopant fluctuation
E.g., C

MP-re
lated

erosion

E.g., Litho-related
gate length variation

FIGURE 37.2 Sources and types of yield loss. Note that either type of failure can be caused by either type
of defects.

Defect types can be classified as follows:∗

• Random defects. These are randomly distributed faults due to sources such as particle
contamination.

• Systematic defects. These kind of defects are predictable. Example sources include
CMP (chemical mechanical polishing) and photoresist pattern collapse, which are treated
elsewhere in this book.

It is important to understand that both random and systematic defects can cause parametric
or catastrophic yield loss. For example, lithographic variation, which is typically systematic and
pattern dependent, can cause catastrophic line-end shortening, leading to an incomplete formation
of the gate (polysilicon over diffusion) of the MOS transistor, and hence a functional failure. A less
drastic rendition of lithographic variation is shown by gate-length variation, causing gates on critical
paths to speed up too much, leading to hold-time violations under certain voltage and temperature
conditions. Various defect types and failure modes are shown in Figure 37.2. Systematic mechanism
limited yield loss is projected to be the dominant source of yield loss in current and future technology
generations [1].

The decision at the IC manufacturing site, of which parts are nonfunctional and should be dis-
carded, is an important one. Though this discussion is more closely related to testing and testability,
a very brief introduction is essential to understand final yieldmeasurement at the foundry. For a more
detailed discussion, see Ref. [7]. Tests are usually classified as delay tests (intended usually to test for
parametric failures) and functional tests (intended usually to test for catastrophic failures). Two com-
mon examples of test are FMAX testing and IDDQ testing. FMAX tests essentially keep increasing
the clock frequency until a failure is detected, and permit the determination of the maximum fre-
quency of operation of the circuit, while IDDQ testsmeasure the quiescent current in the power supply
after bringing the circuit to a known state. Such tests can help detect, for example, bridging faults.

Root cause analysis of failures is a necessary component of the yield improvement and process
ramp-up process. Failure analysis attempts to determine both the failure mechanism and their under-
lying cause. Modern failure analysis laboratories have several advanced techniques at their disposal.
For example, with focused ion beam (FIB), existing circuit lines can be cut and new lines inserted
for mechanical or electron beam probing. In some cases, a transmission electron microscope (TEM)
may be used to provide atomic resolution images of structures.

∗ Asimilar taxonomy is typically used for process variations aswell. The terms defects and variations are used interchangeably
in literature. One common distinction between the two terms is the exclusion of the particle defects from variations.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 774 19-9-2008 #5

774 Handbook of Algorithms for Physical Design Automation

Inline processmonitoring is another commonway tomake sure that the fabrication line is running
fine, and is also used for characterization purposes (e.g., to characterize process variation). The most
commonway to accomplish this is to place andmeasure simple test structures such as ring oscillators
in the scribe-line area of the wafer (i.e., the empty area on the wafer between functional chips). Such
measurements are performed by wafer-level probing and do not require dicing and packaging of
the structures. In addition, scanning electron microscope (SEM) measurements of critical dimension
(CD)∗ may also provide useful diagnostics.

37.2 SOURCES OF YIELD LOSS

As mentioned earlier in the chapter, yield loss can be due to systematic as well as random defects.
In this section, we focus our attention to variations; contamination-related spot defects are discussed
later in the chapter. There are several ways to classify variations, depending on the axis:

• Process versus environmental. Variation occurring during circuit operation (e.g., temper-
ature, power supply) are environmental in nature, while variations occurring during the
manufacturing process (e.g., maskmisalignment, stepper focus) are physical.We will focus
here only on process variations.

• Systematic versus random. As discussed earlier, systematic variations (e.g., metal dishing,
lithographicproximity effects) can bemodeled and predicted,while randomvariations (e.g.,
material variations, dopant fluctuations) are inherently unpredictable.

• Interdie versus intradie. Depending on the spatial scale of the variation, it can be classified
as die-to-die (e.g., material variations) or within-die (e.g., layout pattern dependent litho-
graphic variation). Interdie variations correspond to variation of a parameter value across
nominally identical die. Such variations may be die-to-die, wafer-to-wafer, or even lot-to-
lot. Interdie variations are typically accounted for in design, by a shift in the mean of a
parameter value. Intradie variations, on the other hand, correspond to parameter fluctua-
tions across nominally identical circuit elements, such as transistors. Intradie perturbations
are usually accounted in design by guardbanding and prevention. Variation compensation
in design is further discussed in the next section.

An interesting point to note here is the level of abstraction for sources of variation. From the logic
designer’s point of view, variationmay be caused by cell delay or transistor delay changes. Suchmod-
eling is evident, for example, in most statistical timing analysis tools (e.g., [8–11]). From the circuit
desinger’s viewpoint, the level of abstraction may go down to (say) transistor gate-length variation,
which leads to cell or transistor delay variation. Going further down, a lithographer may attribute
CD variation to focus variation, which may be further blamed on wafer flatness imperfections.

Variation in process conditions can manifest itself as dimensional variations or material
variations. Dimensional variations include the following:

• Lateral dimension variation. Across chip linewidth variation (ACLV) is one of the largest
contributors to parametric variation. In this category, important causes of parametric and
functional failure include gate-length variation, line-endpullback andcontact, or viaoverlap.
Lithography and etch processes are the largest culprits for such variations. Such variations
are largely systematic and layout pattern dependent.† With scaling geometries, even small
variations in dimensions can be detrimental to circuit performance. For example, line edge
roughness (LER) is projected to be a large concern for 32 nm device performance [12,13].

∗ CD is the commonly used term for the smallest (and hence the most critical) linewidth in the design.
† Lateral dimension variation is typically mitigated on the manufacturing side by resolution enhancement techniques (RETs)
such optical proximity correction (OPC).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 775 19-9-2008 #6

Yield Analysis and Optimization 775

• Topography variation. Dielectric erosion and metal dishing caused by CMP processes is
one of the largest contributors to interconnect failures. In the front end of the line, imperfect
STI (shallow trench isolation) CMP process is an example cause of topographic variation.
Topographic variation not only results in interconnect resistance and capacitance variation
but by virtue of acting as defocus for lithographic manufacturing of subsequent layers, also
results in linewidth variation [14].

Several processing steps during the manufacture of deep submicron integrated circuits can result
inmaterial parameter perturbations.Besidesmaterial purity variations, such variations can be caused,
for example, by perturbations in implantation or deposition processes. An important example of
material variation is discrete dopant fluctuation. Random placement of atoms at discrete locations in
the channel can cause V th variation. With the number of dopant atoms going down to a few hundred
in sub-100nm devices, random dopant fluctuation is becoming an important source of variation.

The result of these physical variations is variation in circuit metrics like performance and power.
The international technology roadmap for semiconductors (ITRS) project as much as 15 percent
slowdown in design sign-off delay by the year 2014. Leakage and leakage variability is an even
larger problem, due to exponential dependence of leakage power on physical dimensions like gate-
oxide thickness and gate length, as well material properties like dopant concentration, and a 30 times
variation in leakage in microprocessors has been noted by the authors in Ref. [15]. According to
ITRS projections, containing V th variability to within 58 percent, circuit performance variability to
within 57 percent, and circuit power variability to within 59 percent is a red-brick (i.e., there are no
known solutions). On the BEOL (back end of the line) side, electrical parameters that see significant
variation include via resistance as well as wire resistance and capacitance.

Our description in this section has only barely touched upon various sources of yield loss. A very
good discussion of process variations can be found in Ref. [16].

37.3 YIELD ANALYSIS

The yield of a VLSI chip depends on its parametric as well as functional sensitivity to the various
kinds of defects discussed earlier.Yield prediction requiresmodeling of various complicated physical
and statistical phenomena. The yield analysis problem can be decomposed into the analysis of
(1) parametric and (2) catastrophic failures. Yield analysis of catastrophic failures is discussed at
length in Section 37.3.2. A very brief introduction to parametric yield analysis is presented next.

37.3.1 PARAMETRIC YIELD ANALYSIS

The analysis of chip failures and consequent yield loss is an active area of research, and there is little
consensus on yield metrics and calculation methods in this regime. In recent years, statistical timing
analysismethods,which help predict parametric yield loss due to timing failures, have received a lot of
attention [8–11,17]. Other statistical methods have focused on power-limited yield as well [18–20].
Several other methods that concentrate on the systematic component of variation have also been
proposed [21–24]. Statistical analysis methods can be characterized either as performance-space
(directly modeling distributions of gate or interconnect delays) or parameter space (modeling distri-
butions of sources of performance variations such as gate length, threshold voltagewith performance
variables modeled as functions of basic parameters) techniques. Block-based analysis tools propa-
gate these variability distributions through circuit timing graph∗ to calculate arrival time and required
time distributions and consequent slack distributions at all circuit nodes. Path-based methods work
on a set of critical paths instead of the full design and as a result are better equipped to handle
arbitrary distributions and correlations using Monte Carlo simulations. Correlations, spatial, logical,
or otherwise, play an important role in such statistical timing analysis.

∗ The key operations in such propagation are sum, min, and max of random variables.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 776 19-9-2008 #7

776 Handbook of Algorithms for Physical Design Automation

From a foundry perspective, it is very difficult to characterize the process to identify all sources
of variation and their magnitude, to compute correlations between these sources, and also to find out
the spatial scale to which they extend. To add to the complexity, most of these sources of variation
have very systematic interactions with layout and cannot be easily split into inter- and intradie
components.Nevertheless, with themagnitude and sources of variability increasing, statistical power
and performance analysis, coupled with accurate modeling of systematic variations, will lead to a
stage where parametric yield analysis is a part of standard design sign-off.

37.3.2 RANDOMDEFECT YIELD MODELING AND CRITICAL AREA COMPUTATION

A number of models for the prediction of yield of a semiconductor device due to random manu-
facturing defects have been proposed over the years. The common focus of all models is a measure
called the critical area that represents the sensitivity yield of a VLSI design to random defects during
the manufacturing process that result in catastrophic failures.

A majority of random defects is introduced into the IC layer by the lithography process. These
are spot defects caused by various contamination particles. Spot defects may result in circuit failure,
depending on their size and location, They are classified into extra-material defects (also referred
to as bridges or protrusion defects) and missing-material defects (also called voids, notches, or
intrusion defects). Extra-material defects result in shorts between different conducting regions, while
missing-material defects result in open circuits. Missing-material defects that result in broken (open)
conducting paths or destroyed contacting regions are called opens or breaks.Missing-material defects
on contact and via layers that destroy contacts and vias are called via blocks. Another class of
defects, known as pinholes, occur in dielectric insulators. Pinholes are tiny defects that may cause
shorts if located in the overlap region between patterns at different photolithographic levels (see
e.g., Ref. [25]). Shorts, opens (breaks), and via blocks are the main types of random manufacturing
defects resulting in circuit failure.

The yield of a chip considering random manufacturing defects is computed as

Y =
m∏
i=1

Yi

where Yi is the random defect yield associated with the ith step of he manufacturing process (see,
e.g., Refs. [26–28]). For convenience, the subscript is omitted, and Y is referred as the yield of a
single processing step. There are a number of models to compute random defect yield such as Seed’s
model, the Poisson model, the negative binomial model, and Murphy’s model(see, e.g., Ref. [29]).
Themain difference between the various yield models is in the choice of statistics that are assumed to
govern the spatial distribution of defects. For example, choosing negative binomial statistics results
in the widespread negative binomial yield model shown and is given by the following equation for
a single processing step:

Y =
(
1 + dAc

α

)−α

where
d denotes the average number of defects per unit of area
α is a clustering parameter
Ac denotes the critical area

All yield models, independent of the statistics used, result in yield equations that are functional
forms of the same quantity, termed the critical area. The critical area is a measure reflecting the
sensitivity of the design to random manufacturing defects, and is defined as follows:

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 777 19-9-2008 #8

Yield Analysis and Optimization 777

Ac =
∞�
0

A(r)D(r)dr

where
A(r) denotes the area in which the center of a defect of radius r must fall to cause circuit failure
D(r) is the density function of the defect size
A(r) is referred to as the critical area for defect size r

The total critical area integral Ac for all defect sizes is also referred to as the weighted critical area.
The defect density function has been estimated as follows [25,26,29,30,68,75]:

D(r) =
⎧⎨
⎩

Crq

r
q+1
0

, 0 ≤ r ≤ r0

Cr0
p−1

rp
, r0 ≤ r ≤ ∞

(37.2)

where
p, q are real numbers (typically p = 3, q = 1)
c = (q + 1)(p− 1)/(q + p)
r0 is some minimum optically resolvable size

Figure 37.3 illustrates A(r), the critical area for shorts for the given defect size r. Note that the
illustrated defect causes a short if and only if its center falls anywhere within the shaded area A(r).
The extraction of critical area requires further the computation of the total critical area integral for
all defect sizes given the defect size distribution D(r).

The extraction of critical area for various types of faults poses themajor computational bottleneck
in VLSI random yield prediction. In the following, we review the main computational paradigms
proposed in the literature for the extraction of critical area and focus on their algorithmic aspects.
Pinhole defects are ignored because extracting their critical area is straightforward. Pinhole defects
are modeled as points of no area and their critical area is simply the area of overlap between patterns
at different photolithographic levels (see, e.g., Ref. [25]). We first give some mathematical insight
on various defect models.

r

FIGURE 37.3 Critical area A(r) for a given defect of size r.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 778 19-9-2008 #9

778 Handbook of Algorithms for Physical Design Automation

(b)

r rr

(a)

r

(d)(c)

FIGURE 37.4 Common defect shapes of size r.

37.3.2.1 Defect Models

Random manufacturing defects are typically modeled as circular disks with a size distribution. In
particular, a defect of size r is modeled as a circle of radius (or diagonal) r. The radius r is a
random variable with a known probability density function D(r) as given above. When calculating
critical area, it has been a normal practice to approximate the circular defect by shapes that are
computationally easier to deal with such as squares or regular k-gons for an even k, usually k = 8.
Figure 37.4b through d depicts defect shapes commonly used in practice instead of the ordinary
circular defect depicted in Figure 37.4a. This common practice has a mathematical interpretation
that can facilitate the derivation of error bounds.

Modeling defects by any convex shape corresponds to measuring distance for critical area under
a corresponding convex distance function. For example, the circular defect corresponds to measuring
distance in the ordinaryEuclideanway, where the Euclidean distance between two points p = (xp, yp)
and q = (xq, yq) is de(p, q) = √

(xq − xp)2 + (yq − yp)2. The square defect model corresponds to
computing distances in the L∞ metric, where the L∞ distance between two points p = (xp, yp) and
q = (xq, yq) is d∞(p, q) = max{|xp−xq|, |yp−yq|}. Computingdistances in theL1 (Manhattan)metric,
where d1(p, q) = |xp − xq| + |yp − yq|, corresponds to a square diamond defect (a square rotated
by 45◦). The k-gon distance between two points p, q is the size of the smallest k-gon P touching
p and q, where the size can be naturally defined either in terms of the diameter∗ or the width† of P.
Depending on whether the diameter or the width of the k-gon is used to define size, the k-gon metric
can be regarded as a generalization of the L1 or the L∞ metric respectively in k/2 directions. For
example, the distance functions implied by Figure 37.4c and d can be defined as generalizations of
the L1 and the L∞ metric, respectively.

The critical area computed under these metrics can serve as an upper bound to the Euclidean
critical area of circular defects, for example, the L∞ metric or the metric of Figure 37.4d, or as a lower
bound, for example, the L1 metric and the metric of Figure 37.4c. A worst-case bound of 2 for critical
area between square and circular defects is given in Ref. [31].Often in practice, the purpose of critical
area computation is the prediction of relative yield. That is, predict how a new design will yield in
comparison to existing designs by comparing their critical areas. In this respect, the consistency of
the defect model is far more important than the actual numerical values. In the following, we review
the main computational paradigms that have been proposed for the extraction of critical area.

37.3.2.1.1 Statistical Methods
There have been two types of statistical methods proposed for critical area estimation at the chip
level:MonteCarlo simulation [32,33] and layout sampling [34].MonteCarlo simulation has been the
oldest and the most widely implemented technique. The method is as follows: Draw a large number
of defects with their radii distributed according to D(r), check for each defect if it causes a fault, and
divide the number of defects causing faults with the total number of defects. The main advantage of
theMonte Carlo method is simplicity and the ease to conceptualize the procedure necessary to detect
almost any type of failure mechanism. A tool can potentially be constructed upon most design rule
checking (DRC) platforms. The method is computationally intensive. A naive implementation could

∗ The radius of the regular k-gon P is the distance from the center of P to any of its vertices. The diameter is twice the radius.
† The width of a regular k-gon, for an even k, is the distance between two parallel edges of P.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 779 19-9-2008 #10

Yield Analysis and Optimization 779

result in prohibitively long runtimes.However, adaptive sampling and adaptive integration techniques
can greatly benefit the basic method. Distributed processing can significantly improve performance
further as reported in Ref. [35]. Despite potential inefficiencies, the Monte Carlo simulation method
is widely accepted and it provides a good standard for comparison.

Layout sampling, in combination with a deterministic method to compute critical area over a
layout window, can give an alternative statistical technique to estimate the critical area of an entire
chip. Layout random sampling in combination with standard shape-shifting techniques to compute
critical areawere introduced in Ref. [34]. Themethodworks as follows: Randomly sample the layout
to obtain random sample windows, compute critical area in every sample using a deterministic
method, and combine results on sample windows to obtain a critical area estimate for the entire
chip. Stratified sampling can increase the accuracy of the prediction by dividing the layout area
into a number of regions (strata) for which critical area is estimated using sampling techniques.
The performance as well as the accuracy of the sampling methodology depends heavily on the
method to generate samples as well as on the method to compute critical area in a selected sample.
Details of the method as implemented in the EYES system combining stratified random sampling
and shape-shifting techniques are given in Ref. [34].

37.3.2.1.2 Deterministic Iterative Methods
Critical area estimation methods in this category iteratively compute A(r), the critical area for a
specific defect size r, for several different values or r. Those values are then interpolated with the
defect density function D(r) to approximate the total critical area integral. The majority of these
methods are based on shape-shifting techniques (see, e.g., Refs. [36–38]). For shorts, the typical
shape-shifting method to compute A(r) can be described as follows:

1. Expand each geometry shape by r/2
2. Compute the region of overlap among two or more shapes in different nets
3. Let the area of the resulting region be A(r)

The main advantage of the shape-shifting methods is the ease of implementation using widely
available shape-manipulation functions throughmost DRC platforms. The disadvantage is that step 2
can be expensive demonstrating quadratic behavior even for smart scanline type of implementations.
The reason is that the number of intersections between the expanded polygons, denoted as I , can be
�(n2), where n is the number of edges of the original shapes, especially for medium- or large-defect
radii r. Even in the case whereO(N logN) type of efficient scanline algorithms are used to compute
the area of overlap (see, e.g., Refs. [36,37]), N has a quadratic flavor because N = �(I + n) and
I = �(n2). As a result, shape-shifting methods work well for small to medium values of r; however,
they break down when trying to compute the entire critical area integral for a sizable layout because
of the quadratic time required to compute A(r) for medium or large values of r. The layout hierarchy
can substantially speed up the computation of A(r) (see, e.g., Ref. [39]) for regular designs up to
medium values of r. Hierarchical processing, however, becomes less useful as the value of the defect
radius r increases providing no benefit beyond a certain threshold.

For Manhattan layouts (i.e., layouts consisting of axis parallel shapes only) and square defects
there are additional more efficient methods in this category that require an initial decomposition of
shapes into rectangles [40,41]. Reference [41] is a scanline approach that first computes susceptible
sites (rectangular regions defined by the original layout shapes that provide defect susceptibility
information), thenmanipulates (shrink/expand) those susceptible sites to compute critical regions for
a given defect size r, and finally computesA(r) as the total area of those critical regions (each critical
region is a rectangle). The method in Ref. [40] can be regarded as a reverse shape-shifting method
that first computes A(rmax) for the maximum defect size rmax and then iteratively determines A(r)
for smaller radii r. The method can be summarized as follows: (1) Compute all maximum-critical-
area rectangles (called Max-CARs) by expanding all layer rectangles by rmax and determining all

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 780 19-9-2008 #11

780 Handbook of Algorithms for Physical Design Automation

overlapping pairs of rectangles such that the two rectangles belong to different nets. Max-CARs are
collected into buckets, one bucket per net pair. (2) Given a defect radius r, the critical-area rectangles
for r (called CARs) in each bucket are readily available by shrinking theMax-CARs by�r = rmax−r.
(3) Let A(r) be the total area of all computed CARs for defect of radius r. Computing theMax-CARs
of step 1 is a rather expensive operation performed only once. The area of N rectangles can be
efficiently computed in O(N logN) time using interval trees (see, e.g., Ref. [42]) and thus, once the
Max-CARs are available, A(r) can be computed efficiently for a number of radii r. The number N
however, of Max-CARs or CARs can be large, that is �(n2), where n is the number of layout edges.
Clearly the number of CARs reduces as the defect radius r decreases and thus performance depends
on the size of rmax.

Most of the investigation on critical area extraction in this category has been done for shorts.
Opens have been studied less and are often approximated as a dual problem, substituting shape-
expansion by shape-shrinking enhanced with other shape manipulation operations to derive critical
regions. The reader is referred to Ref. [43] for details on such a treatment of opens based on DRC
operations. Via blocks are also treated in Ref. [43] for a simplified definition where a defect is
considered a fault if it simply overlaps any portion of a contact or via. For a discussion on the
sensitivity of via chains to metal opens and via opens see Ref. [44].

37.3.2.1.3 Voronoi (Noniterative) Deterministic Method
This method, originally proposed in Refs. [31,45], computes the entire critical area integral in
O(n log n) time, where n is the number of layout edges, in a single pass of the layout. It is based on
the following concept: Divide the area of the layout into small regions such that critical area within
each region is easy to compute. The total critical area integral can be derived as the summation of
all partial critical areas obtained within each region. Assuming that within each layout region the
critical area integral can be computed accurately, the total critical area of the layout can be easily
extracted once the appropriate layout subdivision is available. The well-known concept of a Voronoi
diagram can help obtain the appropriate layout subdivision needed for each type of fault.

The Voronoi diagram of a set of polygonal sites is a partitioning of the plane into regions, one for
each site, called Voronoi regions, such that the Voronoi region of a site s is the locus of points closer
to s than to any other site. The Voronoi region of s is denoted as reg (s)where s is the owner of reg (s).
The boundary that borders two Voronoi cells is called a Voronoi edge, and consists of portions of
bisectors between the owners of the neighboring cells. The bisector of two polygonal objects (such
as points or segments) is the locus of points equidistant from the two objects. The point where three
or more Voronoi edges meet is called a Voronoi vertex. Figure 37.5 illustrates the Voronoi diagram
of polygons under the L∞ distance metric. The Voronoi diagram can be regarded as an encoding of
nearest neighbor information. The combinatorial complexity of the Voronoi diagram is linear in the
number of the original sites.

The critical radius of a layout point t, denoted rc(t), is the radius of the smallest defect centered at
t causing a circuit fault. Given a layer of interest C, and a fault type, the Voronoi method subdivides
C into regions such that for any point t the critical radius is easy to compute. In particular, rc(t)
is given by the distance of t from the layout element owning the region where t belongs. In the
L∞ metric (similarly for L1 and the octagon metric), rc(t) becomes a simple linear function allowing
for simple critical area integration. In the following we indicate the Voronoi diagram for shorts and
refer the reader to Refs. [31,46] for the case of opens and via-blocks. The L∞ metric is assumed
throughout the section. The concepts are easily extendible to the octagon metric with some penalty
in the complexity of the Voronoi diagram construction (see, e.g., Ref. [47] for k-gons). For circular
defects no analytical formulation for critical area integration is known.

37.3.2.1.3.1 Voronoi Diagram for Shorts
A short at a layout point t is a defect centered at t overlapping with at least two shapes in two
different nets. Let P to be the polygon nearest to t. The critical radius of t is determined by the
second nearest polygon to t, sayQ, such thatQ is in a different net than P, and rc(t) = d(t,Q). Thus,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 781 19-9-2008 #12

Yield Analysis and Optimization 781

FIGURE 37.5 L∞ Voronoi diagram of polygons. (Reproduced from Papadopoulou, E. and Lee, D.T., IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 18, 463, 1999.)

second nearest neighbor information is needed, which can easily be obtained by the second-order
Voronoi diagramon the layer of interest defined as follows: For every polygonP partition, the interior
of reg(P) by the Voronoi diagramof all polygons other thanP. In Figure 37.6, the thick lines illustrate
the second-order subdivision of reg(P), where P is shown in dotted lines. Note that only Voronoi
neighbors of reg(P) can contribute to the second-order subdivision of reg(P). More formally, given
a layer C, the second-order Voronoi region of an element s ∈ C − P within the Voronoi cell of P is
defined as regP(s) = {x|d(s, x) ≤ d(t, x), ∀t ∈ C − P}. For any point t ∈ regP(s), rc(t) = d(t, s). To
avoid counting shorts between disjoint polygons of the same net, any neighboring Voronoi regions
of the same net can be united before the second-order Voronoi computation.

P

FIGURE 37.6 Second-order L∞ Voronoi diagram in reg(P). (Reproduced from Papadopoulou, E. and
Lee, D.T., IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 18, 463, 1999.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 782 19-9-2008 #13

782 Handbook of Algorithms for Physical Design Automation

37.3.2.1.3.2 Critical Area Integration
Let us assume that the appropriate Voronoi subdivision of a layer for a fault type is available. Each
Voronoi region can be partitioned into simple subregions such as rectangles and triangles (assuming
the L∞, L1, or octagon metric), where the critical area integral can be computed analytically given
the defect size distribution D(r). Once analytic formulas are established for each type of simple
region, the total critical area integral can be derived as a simple summation of those formulas. As
formulas are analytic, there is no integration error. In Refs. [45,48] analytic formulas were derived
for the widely used defect size distribution D(r) = 1/r3 assuming the L∞ metric and were shown to
simplify into terms derived directly fromVoronoi edges. As a result, critical area extraction becomes
trivial once the appropriate Voronoi diagram is computed. In case A(r), the critical area for a given
specific defect size r, is also needed, it can be easily derived in linear time from the same Voronoi
subdivision of the layout.

37.3.2.1.3.3 Scanline Construction of the Voronoi Diagram
The Voronoi diagram of a layout can be constructed by a scanline approach as described in
Refs. [45,48] for the L∞ metric. The main advantage of the scanline construction is the low memory
requirement for critical area computation. For critical area extraction, there is never any need to keep
the Voronoi diagram of the entire layout in memory. Instead, only a portion of the Voronoi diagram
near the scanline is maintained. As soon as the Voronoi cell of a polygon or a net is computed,
second-order computation and critical area computation within that cell can be performed and the
Voronoi cell can be immediately discarded. As a result, the layout can remain in a compact hier-
archical form while the scanline incrementally flattens keeping only a small neighborhood of the
design flat at a time near the scanline. The time complexity of the scanline algorithm to compute the
L∞ Voronoi diagram is O(n log n), where n is the number of input layout edges, that is, the size of
the layout. The second-order Voronoi diagram within the Voronoi cell of a polygon is computed in
the same way maintaining the same time complexity. Critical area integration is then easily done in
linear time. Thus, the entire critical area integral can be computed accurately in one scanline pass of
the layout in O(n log n) time.

Results on the wide use of the Voronoi method to compute critical area and predict yield by IBM
Microelectronics are given in Ref. [49].

37.3.2.1.3.4 Other Noniterative Approaches
The grid method of Ref. [26] assumes a fine grid over the layout and uses it to perform critical area
integration. The grid resolution can provide a trade-off between accuracy and speed. The method
computes the critical radius for every grid point and uses this information to compute the critical
area integral. The approach is appropriate for an interactive tool and can be sped up as shown in
Ref. [45].

FedEx [50] is a fault extractor for shorts. That is, instead of computing critical area, it extracts a
list of all two node intralayer bridges (shorts). It also computes approximate weighted critical area
for each bridge, and provides approximate fault locations. As pointed out in Ref. [50] FedEx trades
accuracy for speed and memory. It assumes Manhattan layouts. FedEx starts with a hierarchical
design description, incrementally flattens the layout, and writes bridging faults out in a flat manner.
For circuit and fault extraction uses a scanline algorithm that first converts polygons into rectangles.
Memory consumption is relatively small as only a moving window of geometry is kept, that is,
approximately O(

√
n), where n is the size of the layout (number of rectangles). Bridge fault sites

are written flat to the output file. There are several performance similarities between FedEx and the
Voronoi method. Both methods start with a hierarchical design using a scanline that only locally
sees the layout geometry flat. Memory consumption is relative small as only a neighborhood of the
design near the scanline is kept in memory. The first-order Voronoi diagram of the layout geometry
also provides information on same layer two node bridges as obtained by FedEx. FedEx outputs fast
an approximate critical area for each bridge and the Voronoi method uses the second-order Voronoi

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 783 19-9-2008 #14

Yield Analysis and Optimization 783

diagram to obtain an accurate same layer critical area number maintaining an O(n log n) worst-case
performance.

37.4 METHODS FOR YIELD OPTIMIZATION

Aggressive technology scaling has made process variation control from purely manufacturing
perspective very tough. Design-related yield losses have been projected to increase [51], which
implies greater cooperation between physical design and process communities is necessary. Yield
optimization methods work with the measure, model, and mitigate flow. Measurements are usually
done by targeted test structures, which are measured on silicon for physical parameters like linewidth
and thickness as well as electrical parameters like sheet resistance and transistor saturation current.
A good publication to keep track of for those interested in test-structure design and measurement
is ICMTS [52]. Models of process extracted from such test-structure measurements are usually
abstracted to simpler models or a set of rules for physical design and verification tools to use. In this
section, we briefly discuss the evolution of yield optimization physical design techniques.

37.4.1 CRITICAL AREA AND CATASTROPHIC YIELD OPTIMIZATIONMETHODS

Back-end-of-the-line yield and manufacturability optimization is a complicated task. Methods for
yield improvement vary ranging from critical-area-based wire spreading, metal fill, and the develop-
ment of new rules and optimization for routers. We start with a review of available methods for wire
spreading and critical area reduction.

Methods for critical area reduction fall into two broad categories: methods that alter the topology
of the layout by attempting critical area optimization at the routing phase and methods used as a
postprocessing step that keep the layout topology fixed while attempting to alleviate congestion
and increase wire spacing. The two categories can be regarded complementary and both can be
incorporated into the design cycle.

In the first category, the most representative method is Ref. [53], where a general routing cost
function is described that takes into account critical area in conjunction with traditional routing
objectives. The cost function combines most types of major defects, that is, shorts, opens, number
of vias, and pinhole defects. Results verify that taking critical area into account at the routing
phase can result in effective critical area reduction and therefore effective optimization for yield. In
Ref. [54], channel routing is modified to reduce critical area between wire segments. Reference [54]
also minimizes the number of vias as their presence increases manufacturability complexity and
degrades the yield.

The methods in the second category attempt to redistribute spacing between adjacent wires
without changing the layout topology. They are usually based on compaction techniques using the
following observation: In a VLSI layout, distances between shapes can vary as long as the minimum
value imposed by the design rules is met. Slack between two shapes is defined by the difference of
the current distance between the two shapes and the minimum distance required by the design rules.
Carefully redistributing the slacks can result in a layoutwith a better yield. Several slack redistribution
techniques have been proposed, see Refs. [55–58]. In their majority, they are based on principles
of layout compaction and are formulated as a one-dimensional layout optimization problem. They
start with a constraint graph representation of the layout and perform layout modification for yield
in one direction at the time, using in majority a one-dimensional yield objective function. The main
drawback of a one-dimensional yield objective function is that, although it optimizes for critical
area in one direction, it fails to take into consideration a potential critical area increases in the
orthogonal direction. Figure 37.7 illustrates one such situation where movement of a layout element
in one direction decreases critical area in one direction but increases critical area in the orthogonal
direction. To address this problem, Ref. [57] combines the one-dimensional movement for slack
redistribution with a two-dimensional yield objective.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 784 19-9-2008 #15

784 Handbook of Algorithms for Physical Design Automation

d

c

B: critical area
in Y direction

A: critical area in X direction

X-direction
modification

a b b2 b1

X

Yield cost = A+B

FIGURE 37.7 Movement of wire b in x-direction decreases critical area in x-direction but increases critical
area in y-direction. (Reproduced from Heng, F.L. and Chen, Z., VLSI yield enhancement through layout
modification, IBM T.J. Watson Research Report, 1999.)

The first compaction based algorithm to improve yield was given in Ref. [55]. A heuristic
algorithm increases the spacing of layout objects througha series of spacing iterations in onedirection.
Only objects off the critical path are allowed to movemaintaining the original layout area. The defect
sensitivity of open-circuit type faults is reduced by increasing thewidthof certain noncritical elements
in the layout. In Ref. [56] the slack redistribution problem in one direction was transformed into
a network flow problem, which can be solved via the fast wirelength minimization algorithm of
Ref. [59]. The layout is represented by a constraint graph where a node corresponds to a layout
object and an edge links the nodes of two adjacent layout objects. The cost of each graph edge is an
estimate of the fault probability between the two corresponding objects, expressed as a function of
the length of the graph edge, that can be approximated by a convex piecewise linear cost function.
Another one-dimensional compaction based formulation is given in Ref. [58] where first the critical
area rectangles for one chosen defect size are computed. The standard compaction area optimization
objective is enhanced with the additional terms of minimizing the critical area rectangles, which are
reduced into functions of original layout variables. In this manner, the original compaction algorithm
is upgraded with yield enhancement without introducing extra variables or constraints.

A noncompaction-based approach in this category is based on postroute optimization using a
rubber-band wiring model [60]. The layout is given in a rubber-band sketch (RBS) form, which
represents every layer of interconnect as a set of flexible rubber-bands with elastic properties. Wire
spreading is achieved by estimating the critical area of the RBS and exploiting the flexibility of
the rubber band behavior while maintaining wire connectivity. For more information see Ref. [60].
Heuristic layout changes to improve yield are described in Ref. [61] through the use of a set of local
rules for contacts, metal and polysilicon layers. A system that allows the user to first evaluate layout
modifications by applying them to samples only of the chip layout, rather than the entire layout, is
described in Ref. [62]. The results from these samples can be used to define the modifications to be
applied to the whole chip.

An effective way to reduce open faults is the introduction of redundant interconnects. Using
redundant interconnects, the potential for open faults reduces at the cost of increasing the potential
for shorts. By trading off, the two overall design reliability can increase. The problemwas formulated
in Ref. [63] as a variant of the classic 2-edge connectivity augmentation problem taking into account
a wirelength increase budget, Steiner points, and routing obstacles. The formulation is as follows:

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 785 19-9-2008 #16

Yield Analysis and Optimization 785

Manhattan routing tree augmentation (MRTA) problem: Given a rectilinear feasible routing region
(FRR), a rectilinear Steiner routing tree T within FRR, and a wirelength budget W , find a set of
augmenting paths. A within the FRR such that the total length of augmenting paths is at most W ,
and the total length of edges of T that ate nonbridges in G = T ∪ A is maximum.

An exact algorithm based on an integer programming formulation, and a greedy heuristic algo-
rithm that iteratively adds an augmentingpath between verticeswere given inRef. [63]. Experimental
results show that the greedy augmentation method achieves significant increase in reliability, as
measured by the percentage of biconnected tree edges, with only small increase in wirelength.

In addition to reducing the potential for opens, redundant interconnects have also been proposed
in clock networks to overcome the clock skew variation problem. In Ref. [64] cross links are inserted
to a regular clock tree converting it to a nontree with lower skew variability and only a small increase
in wirelength.

Redundant via insertion provides another effectiveway of increasing design reliability and yield.
Vias have an inherently low reliability (e.g., due to stress related via voids) and thus redundant via
insertion is a good solution to reduce the yield loss by via failure. Typically redundant via insertion is
done postrouting on a “wherever space is available” basis but considering redundant vias in detailed
routing also has been proposed [65]. Note that an increased number of vias could have a negative
impact in terms of routing area and may reduce critical area for via blocks at the cost of increasing
the critical area for shorts. Overall, however, making appropriate trade-offs design reliability can
increase considerably.

Antenna fixes is another topic for improving design reliability. Because VLSI layers are formed
one at a time during fabrication, danglingmetal1 routes (e.g., nets not yet fully fabricated) connected
to the polygate can cause stray charge deposition on gate damaging it. Methods to correct such
situations include inserting jumpers in routes such that the maximumdangling route length is limited
(see e.g., Ref. [66]). Diffusions diodes can also be inserted to provide a discharge path if space is
available.

37.4.2 DESIGN RULES

The abstraction of manufacturing constraints into a set geometric of constraints or design rules, for
the layout designers to follow, has traditionally been the foundry’s main method to ensure a high
probability of correct fabrication of integrated circuits. Typical design rules are constraints on width,
spacing, or pattern density. The origins of design rules lie in the constraints imposed by various
manufacturing steps such as lithography, etch, implant, and CMP. Other factors influencing design
rule values include preserving scaling, area overhead, layout migratability,∗ and the ability of design
tools and flows to handle them.

Manufacturability implications of technology scaling have led to three major trends in design
rules:

• More complicated rule sets. The sheer number of design rules has been growing at a rapid
pace with every technology generation. More process constraints have required new kinds
of rules [67,68]. This has made physical verification, routing as well as custom layout very
difficult and time-consuming tasks.

• Restrictive design rules. To cope with sub-100 nm manufacturability concerns where
manufacturing equipment is not keeping pace with feature scaling, radically restraining
layout options has been proposed as a viable option [69,70]. One common restriction is to
enforce regularity in layout that aids printability. An example of such a rule is allowing only
one or two pitches on the polysilicon layer.

∗ The automatic migration of layouts from one technology generation to next is an important concern, especially for custom
layouts.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 786 19-9-2008 #17

786 Handbook of Algorithms for Physical Design Automation

• DFM rules. Most 90 and 65 nm design rule manuals include a separate set of nonminimum
design rules. These design rules if obeyed by the layout, enhance its manufacturability. For
example, the minimum metal-via enclosure can be 20 nm while the corresponding DFM
rule can be 30 nm. The increased enclosure can reduce chances of loss of contact between
metal route and via at the cost of increased routing area.

Though design rules have served the industry well in the past as the abstraction layer, the inadequacy
and suboptimality of such yes/no rules has led to a slow but steady adoption ofmodel-based checking
methods [68].

37.4.3 CORNER-BASED DESIGN ANALYSIS

Traditionally, static timing and power analysis tools have relied on two or more corners of process,
voltage, and temperature or PVT. We are not going to discuss operating variations such as voltage
fluctuations and temperature gradients here. Timing corners are typically specified as slow (S),
typical (T), or fast (F). Thus, SS represents a process corner with slow PFET and slow NFET
behavior. The common performance analysis process corners are (TT, SS, FF, SF, FS). Similarly,
interconnect parasitics are extracted atmultiple (usually two) corners.Amore systematic approach to
determine interconnect R/C corners is given in Ref. [71]. Usually, hold time violations are checked
at the FF corner and setup time violations are checked at the SS corner. Similarly, interconnect
parasitics can also have typical, minimum, and maximum values. The rationale for corner-based
analyses lies in the fact that ensuring correct operation of the design at the PVT extrema ensures
correct operation throughout the process and operation range. This assumption, though not strictly
correct, usually holds well in practice. Corner-based analysis enables pessimistic but deterministic
analysis and optimization of designs. Most modern physical design algorithms rely on corner-based
design being acceptable. Sub-100 nm process issues (especially variability) have led to the following
trends in corner-based design analysis and optimization.

• More corners. As more complicated process effects emerge and as a result of nonmonotone
dependence of delay on many of the process parameters, the number of PVT corners at
which a design needs to be signed off is increasing.

• On chip variation (OCV) analysis. To model within-die variation in static timing tools
implicitly analyze clock paths and data paths at separate corners [72]. For example, for
setup time analysis, the launching clock path may be analyzed at a slow corner while
the capturing clock is analyzed at a fast corner and the data path is analyzed at the slow
corner. This in essence tries to model the worst-case impact of on chip variation. Additional
techniques such as common path pessimism removal (CPPR), which figures out the shared
logic between launching and capturing paths to avoid pushing them to different corners, are
used to reduce the inherent pessimism in OCV analysis.

Though the runtime overhead of ever-increasing number of corners, the excess pessimism in
corner-based analysis and fear of missing some corners in a high process-variability regime has
led to an increasing interest in statistical analysis tools, corner-based design deterministic design
optimization still remains mainstay of commercial parametric yield optimization.

37.4.4 FUTURE OF PARAMETRIC YIELD OPTIMIZATION

As mentioned earlier, explicit parametric yield analysis and optimization is a relatively new field of
research. Several interesting published works in the past few years have attempted to deal with the
problem of manufacturing variability.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 787 19-9-2008 #18

Yield Analysis and Optimization 787

37.4.4.1 Methods for Systematic Variability

There are several pattern-dependent process effects, which are systematic in nature. These can be
compensated for during physical design to aidmanufacturability and hence improve yield. The largest
contributors in this bucket are CMP and photolithography. Metal filling and slotting techniques
for CMP are discussed elsewhere in the book. Traditionally, design rules have been the method
to optimize for systematic variation. Recently, more explicit mitigation of impact of systematic
variation on circuit power and performance has been studied. For instance, some methods have
tried to reduce CD variability by avoiding lithography-induced forbidden pitches during detailed
placement [73] or detailed routing [74,75]. Making circuit more robust to focus variations has been
studied in Refs. [76,77].

37.4.4.2 Statistical Optimization

Just as statistical analyses, statistical physical design is an active area of research with very little in
terms of well-accepted methods of optimization. Deterministic physical design tends to generate a
wall of slack. As the number of uncorrelated critical paths increase in a design, any of them can pop
up to being critical and hence be the determinant of circuit delay. As a result, a higher wall of slack
canmean a slower circuit delay distribution. Intentional under-optimization by assigning a penalty to
paths that are close to critical has been suggested as a simple technique to overcome this issue [78].
Another approach in same vein assigns a delay penalty to every gate proportional to its delay vari-
ability [79] and uses standard static timing analysis in optimization. Other approaches explicitly rely
on a statistical timing engine in a statistical sensitivity [80,81] or nonlinear programming based opti-
mization [82]. The largest challenge in statistical physical design besides computational complexity
is accuratemodeling of physical reality. For example, ignoring parametric or spatial correlations (i.e.,
assuming independence or perfect correlation between performance or process random variables)
can undo any benefit from statistical optimization.

37.5 CONCLUSION

In this chapter, we have touched upon various sources of manufacturing yield loss in modern sub-
micron processes. We have briefly described methods of yield calculation and optimization with
emphasis onwell-knownmethods related to random-defect driven yield loss. We have also discussed
the emerging area of parametric yield analysis and optimization in physical design.

REFERENCES
1. International Technology Roadmap for Semiconductors: Yield Enhancement. http://public.itrs. net, 2005.
2. Z.G. Song, S.P. Neo, S.K. Loh, and C.K. Oh. Root cause analyses of metal bridging for copper damascene

process. In International Symposium for Testing and Failure Analysis, 2005.
3. Richard Goering. 90-, 65-nm yields prey to leakage. EE Times. http://www.eetimes.com/news/latest/

showArticle.jhtml?articleID=172303036, October 24, 2005.
4. W.-B Jone and K.S. Tsai. Confidence analysis for defect-level estimation of VLSI random testing. ACM
Transactions on Design Automation of Electronic Systems, 3(3):389–407, July 1998.

5. S. Pateras, J. Hussain, and T. Martis. Reducing leakage-induced field returns. Whitepaper Logicvision Inc.,
2005.

6. C. Constantinescu. Trends and challenges inVLSI circuit reliability. IEEEMicro, 23(4):14–19, July–August
2003.

7. M. Abramovici, M.A. Breuer, and A.D. Friedman. Digital Systems Testing and Testable Design. John
Wiley & Sons, New York, 1994.

8. M. Orshansky and K. Keutzer. A general probabilistic framework for worst-case timing analysis. In
Proceedings of the ACM/IEEE Design Automation Conference, pp. 556–561, 2002.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 788 19-9-2008 #19

788 Handbook of Algorithms for Physical Design Automation

9. H. Chang and S.S. Sapatnekar. Statistical timing analysis considering spatial correlations using single
PERT-like traversal. InProceedings of the IEEE/ACMInternationalConference onComputer-AidedDesign,
pp. 621–625, 2003.

10. A. Agarwal, D. Blaauw, and V. Zolotov. Statistical timing analysis for intra-die process variations with
spatial correlations. InProceedings of the IEEE/ACMInternational Conference on Computer-AidedDesign,
pp. 900–907, 2003.

11. C. Visweswariah, K. Ravindran, K. Kalafala, S.G. Walker, and S. Narayan. First-order incremental
block-based statistical timing analysis. In Proceedings of the ACM/IEEE Design Automation Conference,
pp. 331–336, 2004.

12. International Technology Roadmap for Semiconductors: Front End Processes. http://public.itrs.net, 2005.
13. S.-D. Kim, H. Wada, and J.C.S. Woo. TCAD-based statistical analysis and modeling of gate line-edge

roughness effect onnanoscalemos transistor performance and scaling. IEEETransactions on Semiconductor
Manufacturing, 17(2):192–200, May 2004.

14. P. Gupta, A.B. Kahng, C.-H. Park, K. Samadi, and X. Xu. Wafer topography-aware optical proximity
correction. IEEETransactions onComputer-AidedDesign of IntegratedCircuits and Systems, 25(12):2747–
2756, December 2006.

15. S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. Parameter variations and impact
on circuits and microarchitecture. In Proceedings of the ACM/IEEE Design Automation Conference,
pp. 338–342, 2003.

16. D. Boning and S. Nassif. Models of process variations in device and interconnect. In A. Chandrakasan,
W.J. Bowhill, and F. Fox, Eds., Design of High-Performance Microprocessor Circuits, pp. 98–116. Wiley-
IEEE Press, New York, 2000.

17. C. Visweswariah. Death, taxes and failing chips. In Proceedings of the ACM/IEEE Design Automation
Conference, pp. 343–347, 2003.

18. R.R. Rao, A. Devgan, D. Blaauw, and D. Sylvester. Modeling and analysis of parametric yield under power
and performance constraints. IEEE Design & Test, 22(4), 376–385, July–August 2005.

19. H. Chang and S.S. Sapatnekar. Full-chip analysis of leakage power under process variations, including
spatial correlations. In Proceedings of the ACM/IEEE Design Automation Conference, pp. 523–528, 2005.

20. A. Srivastava, D. Sylvester, andD. Blaauw. Statistical Analysis andOptimization for VLSI. Springer, Boston,
MA, 2005.

21. L. Chen, L. Milor, C. Ouyang, W. Maly, and Y. Peng. Analysis of the impact of proximity correction
algorithms on circuit performance. IEEE Transactions on Semiconductor Manufacturing, 12(3):313–322,
August 1999.

22. M.Orshansky, L.Milor, andC.Hu.Characterizationof spatial intrafield gateCDvariability, its impact on cir-
cuit performance, and spatial mask-level correction. IEEE Transactions on Semiconductor Manufacturing,
17(1):2–11, February 2004.

23. P. Gupta and F.-L. Heng. Toward a systematic-variation aware timing methodology. In Proceedings of the
ACM/IEEE Design Automation Conference, pp. 321–326, 2004.

24. J. Yang, L. Capodieci, and D. Sylvester. Advanced timing analysis based on post-OPC extraction of critical
dimensions. In Proceedings of the ACM/IEEE Design Automation Conference, pp. 359–364, 2005.

25. C.H. Stapper.Modeling of integrated circuit defect sensitivities. IBMJournal of Research andDevelopment,
27(6):549–557, November 1983.

26. I.A. Wagner and I. Koren. An interactive VLSI CAD tool for yield estimation. IEEE Transactions on
Semiconductor Manufacturing,8(2):130–138, May 1995.

27. W. Maly. Computer-aided design for VLSI circuit manufacturability. In Proceedings of the IEEE,
pp. 356–392, February 1990.

28. A.V. Ferris-Prahhu. Introduction to Semiconductor Device Yield Modeling. Artech House, Norwood, MA,
1992.

29. A.V. Ferris-Prabhu. Role of defect size distribution in yield modeling. IEEE Transactions on Electron
Devices, 32(9):1727–1736, September 1985.

30. A.V. Ferris-Prabhu. Defect size variations and their effect on the critical area of VLSI devices. IEEE Journal
of Solid State Circuits, 20(4):878–880, August 1985.

31. E. Papadopoulou.Critical area computation formissingmaterial defects inVLSI circuits. IEEETransactions
on Computer-Aided Design of Integrated Circuits and Systems, 20(5):583–597, May 2001.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 789 19-9-2008 #20

Yield Analysis and Optimization 789

32. H. Walker and S.W. Director. VLASIC: A yield simulator for integrated circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 5(4):541–556, April 1986.

33. C.H. Stapper. Modeling of defects in integrated circuit photolithographic patterns. IBM Journal of Research
and Development, 28(4):461–475, July 1984.

34. G.A. Allan. Yield prediction by sampling IC layout. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 19(3):359–371, March 2000.

35. D.M.H. Walker and D.S. Nydick. DVLASIC; Catastrophic yield simulator in a distributed processing
environment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 9(6):
655–664, June 1990.

36. G.A. Allan and A.J. Walton. Efficient extra material critical area algorithms. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 18(10):1480–1486, October 1999.

37. I. Bubel, W. Maly, T. Wass, P. Nag, H. Hartmann, D. Schmitt-Landsiedel, and S. Griep. AFFCA: A tool
for critical area analysis with circular defects and lithography deformed layout. In Proceedings of the IEEE
International Workshop on Defect and Fault Tolerance in VLSI Systems, pp. 10–18, 1995.

38. A.L. Jee and F.J. Ferguson. CARAFE: An inductive fault analysis tool for CMOS VLSI circuit. In
Proceedings of the IEEE VLSI Test Symposium, pp. 92–98, 1992.

39. P.K. Nag and W. Maly. Hierarchical extarction of critical area for shorts in very large ICs. In Proceedings
of the IEEE International Workshop on Defect and Fault Tolerance in VLSI Systems, pp. 19–27, 1995.

40. S. T. Zachariah and S. Chakravarty. Algorithm to extract two-node bridges. IEEE Transactions on VLSI
Systems, 11(4):741–744, April 2003.

41. J. Pineda de Gyvez and C. Di. IC defect sensitivity for footprint-type spot defects. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 11(5):638–658, May 1992.

42. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry, Algorithms and
Applications. Springer-Verlag, Berlin, Germany, 1997.

43. W.A. Pleskacz, C.H. Ouyang, and W. Maly. Extraction of critical areas for opens in large VLSI circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 18(2):151–162, 1999.

44. D.K. de Vries and P. L. C. Simon. Calibration of open interconnect yieldmodels. In Proceedings of the
IEEE Intermational Symposium on Defect and Fault Tolerance in VLSI Systems, pp. 26–33, 2003.

45. E. Papadopoulou and D.T. Lee. Critical area computation via Voronoi diagrams. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 18(4):463–474, April 1999.

46. E. Papadopoulou. The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica, 40:63–82,
December 2004.

47. Z. Chen, E. Papadopoulou, and Jinhui Xu. Robustness of k-gon Voronoi diagram construction. Information
Processing Letters, 97(4):138–145, February 2006.

48. E. Papadopoulou and D.T. Lee. The l∞ Voronoi diagram of segments and VLSI applications. International
Journal of Computational Geometry and Applications, 11(5):503–528, October 2001.

49. D.N. Maynard and J.D. Hibbeler. Measurement and reduction of critical area using Voronoi diagrams. In
Advanced Semiconductor Manufacturing IEEE Conference and Workshop, 2005, pp. 243–249.

50. Z. Stanojevic and D.M.H. Walker. FedEx–A fast bridging fault extractor. In Proceedings of the IEEE
International Test Conference, pp. 696–703, 2001.

51. K. Wu, D. Thon, and P. Mayor. Collaborative DFM critical for enabling nanometer design. FSA Fabless
Forum. http://www.fsa.org/publications/forum/article.asp?article=0503/wu, March 2005.

52. IEEE International Conference on Microelectronic Test Structures.
53. E.P. Huijbregts, H. Xue, and J.A.G. Jess. Routing for reliable manufacturing. IEEE Transactions on

Semiconductor Manufacturing, 8(2), 188–194, May 1995.
54. S.Y. Kuo. YOR: A yield optimizing routing algorithm by minimizing critical areas and vias. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 12(9):1303–1311, September 1993.
55. V.K.R. Chiluvuri and I. Koren. Layout synthesis techniques for yield enhancement. IEEE Transactions on

Semiconductor Manufacturing, 8(2):178–187, May 1995.
56. C. Bamji and E. Malavasi. Enhanced network flow algorithm for yield optimization. In Proceedings of the

ACM/IEEE Design Automation Conference, pp. 746–751, 1996.
57. F.L. Heng and Z. Chen. VLSI yield enhancement through layout modification. IBM T.J. Watson Research

Report, 1999.
58. Y. Bourai and C.J.R. Shi. Layout compaction for yield optimization via critical area minimization. In

Design and Test in Europe, pp. 122–125, 2000.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C037 Finals Page 790 19-9-2008 #21

790 Handbook of Algorithms for Physical Design Automation

59. R. Varadarajan and G. Lakhani. A wire length minimization algorithm for circuit layout compaction.
In Proceedings of the IEEE International Symposium on Circuits and Systems, 1987, pp. 276–279.

60. J.Z. Su and W. Dai. Post route optimization for improved yield using a rubber-band wiring model.
InProceedings of the IEEE/ACMInternational Conference on Computer-Aided Design, pp. 700–706, 1997.

61. G.A. Allan and A.J. Walton. A yield improvement technique for IC layout using local design rules.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 11(11):1355–1360,
November 1992.

62. G.A. Allan. Targeted layout modifications for semiconductor yield/reliability enhancement. IEEE
Transactions on Semiconductor Manufacturing, 17(4):573–581, November 2004.

63. A.B. Kahng, B. Liu, and I.I. Mandoiu. Non-tree routing for reliability and yield improvement. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 23(1):148–156, January 2004.

64. A. Rajaram, J. Hu, and R. Mahapatra. Reducing clock skew variability via cross links. In Proceedings of
the ACM/IEEE Design Automation Conference, pp. 18–23, 2004.

65. G. Xu, L. Huang, D.Z. Pan, and M.D.-F. Wong. Redundant-via enhanced maze routing for yield improve-
ment. In Proceedings of the Asia-South Pacific Design Automation Conference, 2005, pp. 1148–1151.

66. B.-Y. Su, Y.-W. Chang, and J. Hu. An optimal jumper insertion algorithm for antenna avoidance/fixing
on general routing trees with obstacles. In Proceedings of the ACM International Symposium on Physical
Design, 2006, pp. 56–63.

67. A.B. Kahng. Research directions for coevolution of rules and routers. In Proceedings of the ACM/IEEE
International Symposium on Physical Design, pp. 122–125, 2003.

68. P. Rabkin. DFM for advanced technology nodes: Fabless view. Future Fab International. Issue 20.
http://www.future-fab.com, 2006.

69. L. Liebmann, G. Northrop, J. Culp, L. Sigal, A. Barish, and C. Fonseca. Layout optimization at the pinnacle
of optical lithography. In Proceedings of SPIE, vol. 5042, pp. 1–14, 2003.

70. M. Lavin, F.-L. Heng, and G. Northrup. Backend cad flows for restrictive design rules. In Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design, p. 739746, 2004.

71. N. Chang, V. Kanevsky, O.S. Nakagawa, K. Rahmat, and S.-Y. Oh. Fast generation of statistically-based
worst-case modeling of on-chip interconnect. In Proceedings of the IEEE International Conference on
Computer Design, 1997, 720–725.

72. M. Weber. My head hurts, my timing stinks, and I don’t love on-chip variation. In SNUG, Boston.
http://www.siliconlogic.com/pdf/OCVstinks_MattWeber_SLE.pdf, 2002.

73. P. Gupta, A.B. Kahng, and C.-H. Park. Enhanced resist and etch CD control by design perturbation.
In Proceedings of the 25th SPIE BACUS Symposium on Photomask Technology and Management, 2005,
pp. 3P1–3P11.

74. S.C. Shi, A.K. Wong, and T.-S. Ng. Forbidden-area avoidance with spacing technique for layout
optimization. In Proceedings of SPIE Design and Process Integration for Microelectronic Manufacturing
II, Vol. 5379, pp. 67–75, 2004.

75. J. Mitra, P. Yu, and D.Z. Pan. RADAR: RET-aware detailed routing using fast lithography simulations.
In Proceedings of the ACM/IEEE Design Automation Conference, 2005, pp. 369–372.

76. P. Gupta, A.B. Kahng, Y. Kim, and D. Sylvester. Self-compensating design for focus variation.
In Proceedings of the IEEE/ACMDesign Automation Conference, pp. 365–368, 2005.

77. A.B. Kahng, S. Muddu, and P. Sharma. Defocus-aware leakage estimation and control. In Proceedings of
the International Symposium on Low Power Electronics and Design, pp. 263–268, 2005.

78. X. Bai, C. Visweswariah, P.N. Strenski, and D.J. Hathaway. Uncertainty-aware circuit optimization.
In Proceedings of the IEEE/ACMDesign Automation Conference, pp. 58–63, 2002.

79. S. Boyd, S.-J. Kim, D. Patil, and M. Horowitz. A heuristic method for statistical digital circuit sizing.
In Proceedings of the SPIE International Symposium on Microlithography, 2006, pp. 08-1–08-9.

80. M.R. Guthaus, N. Venkateswaran, C. Visweswariah, and V. Zolotov. Gate sizing using incremental parame-
terized statistical timing. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, pp. 1029–1036, 2005.

81. M. Hashimoto and H. Onodera. A performance optimization method by gate sizing using statistical static
timing analysis. InProceedings of the ACM International SympoiumonPhysical Design, pp. 111–116, 2000.

82. E.T.A.F. Jacobs and M.R.C.M. Berkelaar. Gate sizing using a statistical delay model. In Proceedings of
Design and Test in Europe, pp. 283–290, 2000.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 791 23-9-2008 #2

38 Manufacturability-Aware
Routing

Minsik Cho, Joydeep Mitra, and David Z. Pan

CONTENTS

38.1 Introduction.. 791
38.2 Major Manufacturability Issues . 792
38.3 Rule-Based Approach versus Model-Based Approach .. 793
38.4 Manufacturability-Aware Routing Optimization . 794

38.4.1 CMP-Aware Routing for Topography Variation Minimization 794
38.4.2 Critical-Area-Aware Routing for Random Defect Minimization 796
38.4.3 Lithography-Aware Routing for Printability . 798
38.4.4 Redundant-Via- and Antenna-Effect-Aware Routings . 801

38.5 Dealing with Manufacturing Rules during Detailed Routing . 802
38.5.1 Representative Rule 1—Minimum Edge Rule . 802
38.5.2 Representative Rule 2—Width-Dependent Parallel-Length Spacing Rule. 804
38.5.3 Representative Rule 3—Width-Dependent Influence Spacing Rule 805

38.6 Conclusion.. 805
Acknowledgments .. 806
References . 806

38.1 INTRODUCTION

Nanometer very large scale integration (VLSI) design is facing increasing challenges from manu-
facturing limitations, arising from factors such as printability issues because of deep subwavelength
lithography, topography variations because of chemical–mechanical polishing (CMP), and random
defects because of missing/extra material, the via void. Thus, for nanometer designs, conventional
design closure may not lead to closure in manufacturing because of yield factors. It has been shown,
however, that themajority of the yield loss is strongly layout-dependent (as demonstrated in Chapters
35 through 37), and therefore, manufacturability-aware layout optimization can play a key role in
the overall yield improvement of a design.

In this chapter,we focus onmanufacturability-aware routing.Althoughmanufacturability consid-
erationsmay be brought to bear on earlier design stages such as logic synthesis and placement [1–3],
routing is often believed to be one of the most effective stages to address the manufacturability
issues because of the following reasons [4–7]: (1) the key manufacturing issues (e.g., topography
variation because of CMP, random defects, lithography, and redundant vias) are tightly coupled
with the distribution of interconnects, which is mainly determined by routing; (2) routing is the last
major VLSI physical design step before manufacturing, and thus it has more a comprehensive and
accurate picture on the expected manufacturability; (3) routing still has considerable design flexi-
bility to find a reasonable trade-off between manufacturability and conventional design objectives

791

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 792 23-9-2008 #3

792 Handbook of Algorithms for Physical Design Automation

(e.g., timing, noise, power). These factors have led to strong recent academic and industrial efforts
in manufacturability-aware routing.

In general, routing consists of two steps: global routing and detailed routing. Global routing
plans an approximate path for each net, while detailed routing finalizes the exact design rule checker
(DRC)-compatible pin-to-pin connections [8]. Track routing, as an intermediate step between global
and detailed routing, can expedite detailed routing by embeddingmajor trunks from each net within a
panel (a row/column of global routing cells) in DRC-friendly manner [9]. Manufacturability-aware
routing can be accomplished at any stage of routing system if propermanufacturingmodel is available,
and the approaches can be roughly classified into two groups: rule-based and model-based. The
rule-based approach imposes additional manufacturability-driven design rules on a router to avoid
manufacturability-unfriendly patterns. The model-based approach utilizes some models to estimate
the manufacturability effects to guide router. There are pros and cons for both the rule-based and
the model-based approaches, in terms of runtime, scalability, implementation, and controllability.

This chapter surveys recent practices and researches onmanufacturability-aware routing. Before
discussing key techniques, the major manufacturability challenges for advanced technologies is
discussed in Section 38.2. Then, we compare the pros and cons of the rule-based and model-based
approaches in Section 38.3. In practice, both approaches are used where the model-based approach
can be used for optimization and the required rules must be satisfied, in particular, at the detailed
routing stage. Section 38.4 then goes into details of various key aspects of manufacturability-aware
routing optimizations, including CMP-aware routing, random defect-aware routing, lithography-
aware routing, etc. Section 38.5 discusses techniques for dealing with manufacturing rules at the
detailed routing stage. We will use a few examples to show how these rules are becoming more
complicated (largely owing to lithography-related matters) and the key issues in addressing them.
Finally, we conclude in Section 38.6.

38.2 MAJOR MANUFACTURABILITY ISSUES

In this section, we give an overview of the major manufacturing issues for 90-nm technology node
and below, and analyze their causes and effects: (1) printability issues owing to subwavelength
lithography systems [10,11], (2) random defects owing to missing/extra material, (3) topography
variations owing to CMP, and (4) other causes such as via failure and antenna effect [12,13].

A fundamental limitation for the subwavelength optical lithography is WYSINWYG, i.e., “what
you see (at design) is not what you get (at fab).” The printability issue arises between neighboring
wires/vias because of subwavelength effects and process variations. As of now, the 193-nm (wave-
length) optical lithography is still the dominant integrated circuit manufacturing process for 90-nm
and 65-nm nodes. It is likely to remain so for 45- and 32-nm technology nodes [14] because of
tremendous efforts in the domain of resolution enhancement techniques (RET). However, if the ini-
tial design is very litho-unfriendly, even aggressive RET may not be able to solve the printability
problem. Thus, the routing stage should strive hard to construct only litho-friendly and printable
layouts. It should noted that litho-aware routing is more general than the restrictive design rules
(RDR), which, at this time, have mostly been adopted so far for the poly-layer [15–18].

The reduced feature sizes in nanometer VLSI designs make them more vulnerable to random
defects, which can be further divided into open or short defect [19,20]. Both defects are at the back-
end-of-line (BEOL) [21], and cause electrical opens or shorts between interconnects. Although it is
generally believed that the yield loss because of systematic sources is greater than that because of ran-
dom defects during the technology and process ramp-up stage, the systematic yield loss can be largely
eliminated when the process becomes mature and systematic variations are extracted/compensated.
On the other hand, the random defects that are inherent owing to manufacturing limitations will still
be there even for mature fabrication processes. Thus, their relative importance will indeed be larger
for mature process with systematic variations designed in Ref. [5]. A more detailed introduction on
random defect is provided in Chapter 37.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 793 23-9-2008 #4

Manufacturability-Aware Routing 793

Topography (thickness) variations owing to dishing and erosion after CMP are shown to be sys-
tematically determined by wire density distribution [22–26]. Even after CMP, intrachip topography
variation can still be on the order of 20–40 percent [22,27]. Such topography variations lead to not
only significant performance degradation owing to increased wire resistance and capacitances, but
also acute manufacturing issues such as etching and printability owing to defocus [22,25–27]. The
detailed description of their impact on design and manufacturability can be found in Chapter 36.

The main reason for CMP problems is related to the wire density distribution. Higher wire
densities usually lead to copper thickness reduction owing to erosion after CMP [23,24], making
wire resistances worse. Moreover, the reduced copper thickness after CMP can worsen the scattering
effect, further increasing resistance [28].

A viamay fail due to various reasons such as randomdefects, electromigration, cutmisalignment,
or thermal stress-induced voiding effects. Redundant vias (or double vias) can be inserted to build
fault-tolerance into the interconnect. Redundant vias are known to be highly effective, leading to
10–100x lower failure rate [29]. Another reliability problem that during the fabrication process
arises from charges from plasma etching can be accumulated in long floating wires. Such charges
may create high current to the thin-oxide gate (Fowler–Nordheim tunneling current), and cause
permanent damage to the gate. This is known as the antenna effect [13]. There are three kinds of
solutions to prevent the antenna effect: protection diode embedding, diode insertion after placement
and routing, and jumper insertion. Although the first two solutions need extra area for the inserted
diode, jumper insertion incurs overhead in the routing system as it inserts additional vias [30].

These challenges will be the primary optimization target in manufacturability-aware routing,
which our discussion in Sections 38.4 and 38.5 is mainly centered on.

38.3 RULE-BASED APPROACH VERSUS MODEL-BASED APPROACH

Techniques for manufacturability-aware routing can be categorized into the rule-based approach and
the model-based approach. In this section, we discuss the pros and cons of each class of approaches,
in terms of complexity and efficiency.

The rule-based approach extends the conventional design rules, i.e., a set of rules that must
be observed by designers/tools, by introducing a new set of manufacturability-aware rules. These
new manufacturability-aware rules can be required/hard rules, or recommended/soft rules. Because
existing routing systems have been based on design rules for decades [31], the rule-based approach
is friendly to the conventional design flow, which makes them seemingly easy to implement and
apply. However, there can be several problems with this approach:

1. The number of such manufacturability-aware rules is increasing exponentially with each
new technology node. For example, although the number of rules is only a few dozen at
the 180-nm node, it reaches to several hundred at the 65-nm node. Moreover, design rules
between similar objects may work differently depending on the design context.

2. The complexity of checking such rules becomes more computationally expensive, as the
rules are becoming increasingly context-sensitive [10,32,33]. For example, the minimum
spacing between wires may depend on the wirelengths and the wires in the neighborhood,
as shown in an example in Figure 38.1. Therefore, simply checking rules by itself needs
considerable amount of computing resource.

3. The rules are binary in nature, i.e., a design may either follow the rule or violate the rule,
and thus the rule-based approach does not provide smooth trade-off with yield.

4. The rules themselves may be too restrictive and pessimistic, leading to a sacrifice in per-
formance. In some cases, it may be infeasible to achieve the performance goals because
of overguard banding from the rules. Furthermore, the rules may not be accurate enough
to model very complicated manufacturing processes, in particular for the future deeper
subwavelength lithography systems.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 794 23-9-2008 #5

794 Handbook of Algorithms for Physical Design Automation

Description Rule (mm)

0.12 mm

0.11 mm

0.14 mm

Otherwise, minimum spacing

Minimum spacing (Sa) between a metal and the end of line
of the metal whose edge with (W) <<=0.2 mm

Minimum spacing (Sb) between a metal and the end of line of the
metal whose edge with (W) <=0.2 mm, if there exist objects in the
influence region on both sides with parallel overlap (L1 and L2)

(a) (b)

Sa

W W

Sb

L2L1

FIGURE 38.1 Context-dependent minimum spacing rule for 65-nm technology. Each case, (a) and (b), is
described in the table. (From Cong, J., Tutorial presentation at the IEEE/ACM International Conference on
Computer-Aided Design, San Jose, CA, 2006.)

Because of these limitations of the rule-based approach, there have been significant ongoing
efforts in developing themodel-based approach in both academia and industry, expecting thatmodels
will capture manufacturing effects more accurately at affordable computational overhead, when
coupled with a small number of simple design rules. For example, the model-based approach may
involve lithography system modeling where the light will pass through the mask and react with the
chemicals on the surface of the wafer, resulting in printed structures.

The challenge with the model-based approach is in abstracting a set of reasonably accurate yet
high-fidelity models at various abstraction levels to guide physical layout optimizations. A typical
manufacturing system involves nonlinear optical, chemical, electrical, and mechanical processes,
which could be extremely complicated to model accurately and mathematically. On the other
hand, the models have to be compact and efficient to be embedded in the already time-consuming
VLSI routing system. Therefore, the key technical bottleneck for model-based manufacturability-
aware routing is to develop simple/compact yet effective/high-fidelity models, and apply them to
existing routing flow in a seamless manner.

38.4 MANUFACTURABILITY-AWARE ROUTING OPTIMIZATION

In this section, we survey key manufacturability-aware routing optimization issues related to various
aspects of manufacturability, including topography variations owing to CMP in Section 38.4.1, yield
loss owing to random defects in Section 38.4.2, lithography-related printability in Section 38.4.3,
and other issues such as via failure and antenna effect in Section 38.4.4. The optimization may be
driven through models or some rules of thumb, depending on the nature of the optimization target.

38.4.1 CMP-AWARE ROUTING FOR TOPOGRAPHY VARIATIONMINIMIZATION

As explained in Section 38.2, topography variation has significant impact on performance as well
as printability. Widely adopted solutions to reduce the topography variation include dummy fill
synthesis, where dummy features are inserted to increase copper density, and cheesing, which creates
patterns of holes for fat/wide wires. The reader is referred to Chapter 36 for more details on CMP

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 795 23-9-2008 #6

Manufacturability-Aware Routing 795

fill synthesis. However, these solutions have inherent limitations, as they are often performed after
all the essential polygons are embedded, i.e., on GSDII files to mitigate the problems introduced by
the upstream design stages. A more effective solution will build in intelligent CMP-awareness into
the router, in particular at the global routing as CMP-induced variation is a coarse-grained variation.

CMP-aware rules include a certain maximum density rule, requiring that a density within any
window of a given size should not exceed the maximum density threshold set by foundry. However,
the maximumdensity rule does not explicitly address the topography variation problem, even though
it may help to achieve more uniformness by reducing the range of density distribution.

In Ref.[6], a predictive copper (Cu) CMPmodel is proposed to evaluate the topographyvariation,
and used to guide a CMP-aware global routing. Topographyvariation (thickness variation) after CMP
is determined by the underlyingmetal density, contributed by bothwires and dummies. As dummy fill
in turn depends on wire density, the required dummy density and the Cu thickness can be predicted
from a given wire density. In Figure 38.2a, the normalized Cu thickness change as a function of
metal density, based on three industrial designs, is shown. For a given global routing cell vi with
a metal density mi, the expected Cu thickness of vi, ti can be expressed as follows:

ti = α

(
1 − m2

i

β

)
(0.2 ≤ mi ≤ 0.8) (38.1)

where α and β are technology-dependent constants. Equation 38.1 requires the metal density mi as
an input, which is essentially the summation of the wire density wi and the dummy density di in a
global routing cell vi. Figure 38.2b shows the required dummydensity and the predictedCu thickness
with respect to wire density. For a given vi, di can be looked up with wi using Figure 38.2b, and then
mi can be obtained by addingwi and di. Note that the metal density in real designs would neither fall
below 20 percent with the aid of dummy fill nor rise above 80 percent owing to cheesing. Finally,
the calculated mi can be fed into Equation 38.1 to predict the Cu thickness ti. This predictive model
is verified with a commercial CMP simulator [34] and industry test cases. Intuitively, as copper is
softer than dielectricmaterial, a regionwith less copperwill experience less erosion duringCMP [25].
Therefore, a region with lower metal density will have higher copper thickness, and such region in
turn needs more dummies to balance wire density distribution for less topography variation.

The illustration of the CMP-aware global routing is shown in Figure 38.3 where the predicted
Cu thickness guides the global router for less topography variations. A unified metal density driven
global router is proposed, which not only helps to reduce CMP-induced thickness variation, but also

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.85

0.9

0.95

1

N
or

m
al

iz
ed

 c
op

pe
r

th
ic

kn
es

s
(t

i)

Metal density (mi)

Design1
Design2
Design3

Normalized Cu thickness by metal density

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

D
um

m
y/

M
et

al
 d

en
si

ty
 (

d i
/m

i)

Wire density (wi)

0.75

0.8

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 c
op

pe
r

th
ic

kn
es

s
(t

i)

Normalized copper thickness (ti)
Metal (Wire+Dummy) density (mi)
Dummy density (di)

Predicted dummy fill density by wire density(b)(a)

FIGURE 38.2 Predictive CMP model. (From Cho, M., Xiang, H., Puri, R., and Pan, D. Z., Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, 2006, pp. 487–492. With
permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 796 23-9-2008 #7

796 Handbook of Algorithms for Physical Design Automation

Global routing

Dummy fill density
from lookup table

Metal density
= Wire density +

Dummy fill density

Cu thickness

Cu thickness

Wire density

FIGURE 38.3 Illustration of CMP-aware global routing based on the predictive CMPmodel. (From Cho, M.,
Xiang, H., Puri, R., and Pan, D. Z.,Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, 2006, San Jose, CA, pp. 487–492. With permission.)

helps to improve timing. Promising experimental results are shown in Ref. [6], with 7.510 percent
improvement for topography variation and timing and small runtime overhead.

38.4.2 CRITICAL-AREA-AWARE ROUTING FOR RANDOMDEFECT MINIMIZATION

Yield loss owing to random defects in general can be minimized by optimizing the critical area.
As described in Section 37.3.2, the critical area is the region where, if a defect of the given size
falls, a circuit will be opened or shorted [20,35]. Because of the importance of yield in semi-
conductor industry, there have been considerable amount of efforts to enhance yield by reducing
critical area in routing or postrouting. The probability of failure (POF) based on critical area analysis
with defect size distribution is a widely used metric for yield prediction and optimization [19,20].
The defect size distribution F(x) can be modeled as follows [20,36]:

F(x) = kx−r for xmin ≤ x < ∞ (38.2)

where
x is the defect size
xmin is the minimum resolvable lithographic feature size
k is a coefficient to ensure

� ∞
xmin

F(x)dx = 1
r ≈ 3 [37]

When the end effect is ignored [38], the critical area Ao
i (x) for open defects on a wire Wi and the

critical area As
ij(x) for short defects between two parallel wires Wi and Wj can be approximated as

follows [20,36,39]:

Ao
i (x) =

⎧⎪⎨
⎪⎩
0 for 0 ≤ x < wi

Li(x − wi) for wi ≤ x < 2wi + Smin

Li(wi + Smin) for 2wi + Smin ≤ x < ∞

As
ij(x) =

⎧⎪⎨
⎪⎩
0 for 0 ≤ x < sij
lij(x − sij) for sij ≤ x < 2sij +Wmin

lij(sij +Wmin) for 2sij +Wmin ≤ x < ∞

(38.3)

where Li,wi, lij, and Sij are the length of wire i, the width of wire i, the overlappedwirelength between
wire i and j, and the spacing between wire i and j, respectively. The values of Ao

i (x) and A
s
ij(x) will

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 797 23-9-2008 #8

Manufacturability-Aware Routing 797

saturate at defect sizes of 2sij + Wmin and 2wiw + Smin, respectively [36]. Note that more detailed
definition of critical area and various approaches to compute it are presented in Section 37.3.2. Then,
the probability of failure owing to open defects onWi(POF

o
i) and owing to short defects betweenWi

andWj(POF
s
ij) on a given layer can be obtained as follows [20,36]:

POFo
i =

∞�
xmin

F(x)
Ao
i (x)

Achip

dx = kLi
2Achip

(
wi + Smin

2w2
i + Sminwi

)

POFs
ij =

∞�
xmin

F(x)
As
ij(x)

Achip

dx = klij
2Achip

(
sij + Smin

2s2ij +Wminsij

) (38.4)

where Achip is the total chip area. As POF
o
i and POF

s
ij indicate the chance of having a random defect,

yield can be improved by minimizing POFo
i and POFs

ij together, which can be accomplished by
maximizing wire width (wi) and wire spacing (sij), respectively. However, minimizing POFo

i and
POFs

ij are two conflicting objectives, as larger wi to decrease POF
o
i leads to smaller sij that increases

POFs
ij with a fixed routing area.
Yield optimization in channel routing is proposed in Refs. [40,41]. Weight interval graph is

proposed [40] to facilitate the channel routing algorithm in Ref. [42] in a way that net merging in
vertical constraint graph will minimize the number of channels as well as critical area. In Ref. [41], a
wire segment is shifted either from top layer to bottom layer (net burying) or vice versa (net floating),
like wrong way routing to reduce critical area in a greedy manner. Critical area minimization based
on Equation 38.4 during global routing is proposed in Ref. [43], where a linearized critical area is
one of the cost factors in multicommodity flow optimization. Redundant link insertion technique to
minimize open defect is proposed in Ref. [21]. Additional wires will increase the critical area for
short defect. Assumption that the POF owing to open defects of a given size is much higher than the
POF owing to short defects of identical size is not always valid, as it depends on design style as well
as process technology [20].

Although some level of critical area reduction is achieved, there are a fewdrawbacks in these early
works that are mostly performed at postrouting or late-stage optimizations: (1) one single defect size
is considered, rather than a defect size distribution [40,41]; (2) the trade-off between open and short
defects owing to fixed routing area is ignored [21,40,41,44,45]; (3) localized/greedy optimization
is performed, which may be suboptimal [21,44,46–48]; and (4) wire adjacency information is not
available for accurate critical-area estimation [38,43].

In Ref. [5], the random defect issue is addressed at the track routing stage, which provides
reasonable details to model random defect-induced yield loss, while also providing much more
flexibility than the detailed-routing or postrouting optimization. The proposed TROY algorithm,
based on mathematical programming and graph theory, attempts to find the best trade-off between
open and short defects with respect to a defect size distribution through effective wire planning (wire
ordering, sizing, and spacing). The mathematical formulation for the yield-driven track routing is as
follows:

min : α
∑

i POF
o
i + (1 − α)

∑
i,j>i POF

s
ij

s.t. : |pi −Mi| ≤ di ∀ i
Smin ≤ sij ≤ pi − pj − (wi + wj)

2 + (1 − oij)N ∀ i, j
Smin ≤ sij ≤ pj − pi − (wi + wj)

2 + oijN ∀ i, j
oij ∈ {0, 1} ∀ i, j

Bk + wi
2 ≤ pi ≤ Tk − wi

2 ∀ i ∈ Pk

Wmin ≤ wi ≤ Wmax ∀ i

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 798 23-9-2008 #9

798 Handbook of Algorithms for Physical Design Automation

However, this formulation is an integer nonlinear programming problem that is prohibitively expen-
sive to solve. The key strategy in Ref. [5] is that POFo

i and POF
s
ij in Equation 38.4 can be simplified

into simpler convex forms as in Equation 38.5 and if the wire-ordering oij (thus, ni as well) is known,
the wire sizing and spacing problem for yield optimization can be formulated as the second-order
cone programming (SOCP) shown below, which can be solved optimally and efficiently.

min : α
∑

i[δi +
(
1 − b

a

)
di] + (1 − α)

∑
i,j γij

s.t. : |pi −Mi| ≤ di ∀ i
Smin ≤ sij = pi − pj − wi + wj

2 ∀ oij = 1, ∀ j ∈ ni
lijWmin ≤ sijγij ∀ i, ∀ j ∈ ni
LiSmin ≤ wiδi ∀ i

Bk + wi
2 ≤ pi ≤ Tk − wi

2 ∀ i ∈ Pk

Wmin ≤ wi ≤ Wmax ∀ i

The wire ordering optimization is performed by finding the minimum Hamiltonian path. The exper-
imental results are promising, with 18 percent improvement in terms of random-defects induced
yield loss.

POFo
i ≈ kLi

2Achip

(
a
Smin

wi

− b

)(
1 ≤ wi

Smin

≤ 40

)

POFs
ij ≈

klij
2Achip

(
a
Wmin

sij
− b

)(
1 ≤ sij

Wmin

≤ 40

) (38.5)

38.4.3 LITHOGRAPHY-AWARE ROUTING FOR PRINTABILITY

Optical projection systems in modern optical-lithography technology usually use partially coherent
illumination.An illustration of a typical optical-lithography system is shown inFigure 38.4.Because a
partially coherent system can be approximately decomposed into a small number of P fully coherent
systems [4,49], the aerial image intensity I(x, y) at the point (x, y) can be shown as follows by
approximating Hopkins equation [50] through kernel decomposition [51]:

I(x, y) =
P−1∑
i=0

∣∣∣∣
∑

j∈W(x,y)

(Fj � Ki)(x, y)

∣∣∣∣
2

(38.6)

Illumination L (x, y) Transmission F (x, y) Transfer K (x, y) Intensity I (x, y)

WaferLensPhoto maskCondenser

Laser
source

FIGURE 38.4 Illustration of optical lithography system for VLSI manufacturing.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 799 23-9-2008 #10

Manufacturability-Aware Routing 799

where
Ki is the transfer function for the ith fully coherent optical subsystem
Fj is the transmission function (1 over clear regions and 0 over opaque regions) of the jth

rectangle in effective window W(x, y), the intensity support region of the control point at
location (x, y)

The size of theW(x, y) depends on the wavelength and numerical aperture of the optical system,
but in general is about 1–4µm. Based on Equation 38.6, lithography simulations can be performed
to obtain aerial images and then printed silicon images.

The first attempt to address the lithography problem in routing is the optical proximity correc-
tion (OPC)-aware maze routing work in Ref. [4]. Based on aerial image simulation, it stores the
expected OPC cost in a lookup table, which has the information on the interference from patterns
at different length by distance. While routing a new pattern, the interferences from all existing pat-
terns in its influence window are looked up from the table, and then summed up to evaluate the
total optical interference from existing patterns. Meanwhile, the optical interference (OPC cost) on
existing patterns owing to the new pattern is estimated using the maximum interference on these
patterns. Figure 38.5 shows an example of optical interference lookup table. Then, a vector-weighted
graph method is applied to map the grid routing model to a graph, where the edge cost is a vector
consisting of the interferences from existing patterns as well as the interference of a new pattern
to existing patterns. With such vector-weighted graph, OPC-aware maze routing can be casted as
multiconstrained shortest path problem, which is then solved by Lagrangian relaxation. It should be
noted that optical interference is not a direct lithography metric, such as the edge placement error
(EPE) widely used in OPC algorithms.

Another lithography-aware maze routing algorithm is proposed in Ref. [52], where a table of
EAD (electric amplitude of diffraction) is prebuilt, and the OPC error is estimated as the square of the
accumulated EAD values from the patterns within process window. Then, it greedily performsmaze
routing such that a routed path for each net does exceed neither OPC error threshold nor path length

Layout

A (�4, 3, 9)

A (−4,3,9)

B (�4, �2, 7)

B (-4,-2,7)

C (1,−4,3)

−5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4
−3

−2
−1

0
1

2
3

4

B

C

A

−5
−4

−3
−2

−1
0

1
2

3
4

−5
−4

−3
−2

−1
0

1
2

3
4

−5
−4

−3
−2

−1
0

1
2

3
4

-5
-4

-3
-2

-1
0

1
2

3
4

−5−4−3−2−1 0 1 2 3 4 5

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 -4 −3−2−1 0 1 2 3 4 5

−5 −4−3 −2−1 0 1 2 3 4 5

All lengths

Table lookup

IA

IB

IC

Total optical
interference

(IA + IB + IC)2

Decomposition

C (1, �4, 3)

FIGURE 38.5 There patterns (A, B, and C) are within the effective window of the point (0,0) in the layout,
and each effective pattern is denoted by the left most edge coordinate and its length. The layout is decomposed
for each effective pattern that is further located in the center of the decomposed window. The optical interference
is simulated for all lengths of patterns centered at the origin, and the interference information on every point
above each pattern is kept in the lookup table. Therefore, the interferences from A, B, and C can be looked up
from the table according to the length, then added up to compute the total optical interference energy. (From
Huang, L. and Wong, D. F., Optimal proximity correction (OPC) friendly maze routing, in Proceedings of the
ACM/IEEE Design Automation Conference, pp. 186–191, June 2004. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 800 23-9-2008 #11

800 Handbook of Algorithms for Physical Design Automation

R 3

= +− −

R 1 R 2 R 4

R

Reference point

FIGURE 38.6 Convolution lookup for fast lithography simulation. (From Mitra, J., Yu, P., and Pan, D.Z.,
RADAR: RET-aware detailed routing using fast lithography simulations, in Proceedings of the ACM/IEEE
Design Automation, pp. 369–372, June 2005. With permission.)

constraint. Again, it should be noted that the EAD square metric is not a direct/verified lithography
measurement.

The RADAR work [7] is the first attempt to directly link a lithography simulator (using the
direct EPE metric) to detailed routing. Based on fast lithography simulation techniques that are more
suitable for full-chip simulations, it generates the so-called lithography hotspot maps to guide the
postrouting optimization, namely wire spreading and rip-up/rerouting. As an example to measure
the lithography and RET effort, the EPE metric is used. To compute EPE efficiently, Ref. [7] utilized
effective kernel decompositionmethod and fast table-lookup techniques. In the kernel decomposition
based simulation, a core computational step is the convolution term. Because of the linearity of
convolution in Equation 38.6, the convolution for any arbitrary rectangle inside the effective window
can be decomposed into four upper-right rectangles that can reduce the table size significantly [7],
as shown in Figure 38.6. Therefore, the linear combination of the convolutions of R1, R2,R3, and R4
can be used to compute the aerial image of R. After the EPE map is obtained from fast lithography
simulations, wire spreading and rip-up/rerouting can be applied to reduce the EPE hotspots and
to improve printability. The fast lithography simulator is called during the routing modification if
needed to make sure no new lithography hotspots occur. Figure 38.7 shows an example of RADAR
for EPE hotspot reduction. The result implies that both wire spreading and rip-up/rerouting are
effective in reducing EPE hotspots, but rip-up/rerouting can be more effective than wire spreading
with less wirelength overhead.

Similar rip-up/rerouting approach is proposed later on in Ref. [53]. But different from Ref. [7],
effective pattern searching is adopted, i.e., a set of known undesirable patterns are stored/matched to
identify lithography hotspots. Then, the identified undesirable routing patterns are either removed
or modified by performing rip-up/rerouting. Recently, a multilevel routing approach to minimize
the number of OPC features is studied in Ref. [54]. A simple OPC cost that becomes higher for

EPE hotspots of the initial
routing after design closure

is shown.

Wire spreading results
in12 percent EPE reduction

with 10 percent WL increase.

Rip-up/rerouting results
in 40 percent EPE reduction

5 percent WL increase.

(a) (b) (c)

FIGURE 38.7 RADAR example. (From Mitra, J., Yu, P., and Pan, D. Z., Proceedings of the ACM/IEEE
Design Automation Conference, Anaheim, CA, 2005, pp. 369–372. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 801 23-9-2008 #12

Manufacturability-Aware Routing 801

longer and wider wires is proposed, and applied as a factor in maze routing. It should be noted that
the lithography-aware routing is still in its infancy, and there are many research issues to achieve a
holistic understanding for it.

38.4.4 REDUNDANT-VIA- AND ANTENNA-EFFECT-AWARE ROUTINGS

The first redundant-via-aware routing is presented in Ref. [12]. The problem is formulated as multi-
objective maze routing by assigning redundant-via cost to the routing graph, and solved by applying
Lagrangian relaxation technique. In Ref. [29], the redundant via is reflected as a factor in the maze
routing cost. Each original via has different number of possible redundant-via locations, namely
degree of freedom (DOF). Wherever a wire occupies a possible redundant-via location during maze
routing, it is inversely penalized by DOF of its corresponding original via.

In postlayout optimization, redundant-via insertion is one of the key steps for yield improvement.
In Ref. [55], the redundant-via insertion problem is formulated as a maximum independent set
(MIS) problem by constructing a conflict graph. Figure 38.8 shows an illustration of the approach
in Ref. [55], where each original via from 1 to 5 needs one redundant via. For such original vias,
there can be up to four redundant-via candidates as for via 2 in Figure 38.8a (U2, R2, D2, L2).
Each redundant-via candidate will be a vertex in the conflict graph as in Figure 38.8b, unless it
has electrical/rule violations with other redundant vias (no U6 owing to electrical violation). An
edge between vertices (redundant vias) will be created, if either both belong to the same original
via or two redundant vias have conflict as in Figure 38.8b. Then, finding MIS from the conflict
graph in Figure 38.8b is equivalent to maximum redundant-via insertion. Because solving MIS is
an NP-hard problem, a heuristic approach is adopted in Ref. [55]. Different redundant-via insertion
solutions, based on geotopography information, are proposed in Ref. [56], where a redundant via is
tried for each original via in a greedy manner. However, as an excessive number of vias can even
worsen yield, redundant-via insertion under via-density constraint is required, which is addressed in
Ref. [57] based on integer linear programming.

While via failure can occur during either fabricating or operating a chip, antenna effect occurs
during manufacturing process. The first work in antenna avoidance is presented in Ref. [58] and fur-
ther improved later [59] where rip-up/rerouting strategy is used. Another work on antenna avoidance
during full chip-level routing is discussed in Ref. [60]. While these works try to address antenna
effect during routing, there are another set of works to fix antenna issue during postlayout optimiza-
tion as in redundant-via insertion. In Ref. [61], antenna avoidance is achieved by a layer assignment
technique based on tree partitioning. Regarding diode and jumper insertion, the research in Ref. [62]

L2

U2

R2

D2

2

3

4 6

5

1

Conflict Violation

(a) Layout for redundant-via insertion

L2

U2 U 3

R2

D2U1

R1

D1

L4

R4

D4 L6

D 6

L5

U5

R5

D5

L3

R3

(b) Corresponding conflict graph

FIGURE 38.8 Redundant-via insertion problem in postlayout optimization can be formulated asMIS problem
by constructing conflict graph.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 802 23-9-2008 #13

802 Handbook of Algorithms for Physical Design Automation

proposes a diode insertion and routing algorithm by using minimum-cost network flow optimiza-
tion, and Ref. [63] proposed an optimal algorithm for jumper insertion. However, both the diode
and jumper insertion approaches only try to fix antenna problem either by diode or jumper insertion
alone. The interaction between diode and jumper insertions is not taken into consideration, as diode
or jumper insertion can be cheaper than one another depending on the design context. The work in
Ref. [64] combines diode and jumper insertions for optimal simultaneous diode/jumper insertion,
based on minimum-cost network flow optimization.

38.5 DEALING WITH MANUFACTURING RULES DURING
DETAILED ROUTING

Theprevious sectionmostly focuses onmanufacturability/yield optimization at various stages of rout-
ing, driven by certain manufacturingmodels/metrics or rules of thumb. Although their main purpose
is to improvemanufacturability at the global scope, the final detailed routing still has to satisfy all the
required design rules set by manufactures. These rules are contracts/guarantees frommanufacturers.
For nanometer designs, these required rules are becomingmore andmore complicated. In addition to
the required rules, there can be many even more complicated recommended rules for manufactura-
bility enhancement. This is a topic with very few publications, but it is often a designer’s nightmare
because of the explosion in the number of design rules at the detailed routing level.

In this section,weuse several representative design rules (in a progressivemore complexmanner),
extracted from advanced technologies, and illustrate how they are becoming more complicated, and
outline approaches for dealing with them at a typical grid-based detailed routing. Some complex
design rules, when decomposed, each may be equivalent to several simpler rules at early technology
generations, and detailed routers could handle them either during the initial route creation process
or iteratively through a subsequent rip-up/reroute step. In either case, this is a tedious and time-
consuming process.

As design rules becomemore complex with each technology node, the effort of making detailed
router free of these complex design-rule violations increases exponentially. Previously,what could be
achieved simply by following minimum spacing requirements by keeping routes on certain uniform
pitch is no longer sufficient under complex design rules in 65 nm and below. It is necessary tomonitor
design-rule compliance much more frequently. As shown in Figure 38.9, for 90 nm and above, the
DRC compliance check is triggered usually after the routing for the entire net, but for 65 nm and
below, such check is needed during the routing of the net, e.g., for all the connected components of
the net on the same layer, before going to the next layer, etc. In the worst case, such DRC checking
could happen after every routing rectangle is dropped by the router. The main issue and trade-off are
then how to properly select the triggering events for DRC violations. This is mainly based on the
candidate shapes being dropped, such as vias that may trigger a minimum edge rule check, as to be
explained soon. Moreover, routers need to select DRC correction schemes that are manufacturing
friendly, as several correction alternatives may exist. For example, it may be possible to select vias
that introduce the least number of vertices by selecting vias whose landing pads are aligned with the
adjacent routing segments.

We will now examine three representative classes of complex rules to get a flavor of the level
of complexity that the newer generation of routers have to deal with. Each class is progressively
more complex than the previous one. The first class of rules is just limited to violations on the same
signal net. The second class of rules limits the violations to two signal nets. The third class of rules
introduces violations between three or more signal nets.

38.5.1 REPRESENTATIVE RULE 1—MINIMUM EDGE RULE

An example of the minimum edge rule is shown in Figure 38.10a [65]. This rule essentially forbids
the formation of consecutive edges with length below certain minimum threshold length T . This
minimum edge design rule applies to physical components of the same signal net. First, we define

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 803 23-9-2008 #14

Manufacturability-Aware Routing 803

(a) 90-nm node and above (b) 65-nm node and below

Schedule net

Pitch-based
maze routing of

a single net

DRC
clean

DRC
clean

Check
DRC

Check
DRC

DRC
violation

DRC
violation

Rip-up and
reroute

Try local
correction

Schedule net

DRC
clean

DRC
clean Check

DRC

DRC
violation

DRC
violation

Check
DRC triggered
by candidate

shapes

Pitch-based
maze routing of

a connected
component on the

same layer

Rip-up and
reroute

Try local
correction

FIGURE 38.9 Typical DRC correction flow for a grid-based detailed routing system. The DRC check is more
complex in 65-nm node and below than 90-nm node and above.

the concave and convex corners in Figure 38.10 as the corners with both adjacent edges less than
the minimum threshold length T . There may be several variations of minimum edge rule, depending
on the process technologies and routing layers where routing DRC is performed, e.g., any of the
following three situations may be a minimum edge rule violation:

• Rule 1a: Formation of any concave or convex corner is a design rule violation.
• Rule 1b: The number of consecutive minimum edges (i.e., edges with length less than T)

should be less than certain number (≥2). Otherwise, it is a design rule violation. Essentially,
compared to Rule 1a, Rule 1b may allow formation of concave or convex corners up to
certain point.

• Rule 1c: The same situation as in Rule 1b, but it further requires that the sum of these
consecutive minimum edges is greater than another threshold for design rule violation. For
example, in Figure 38.10a, there are three highlighted edges, A, B, and C, which are all
minimum edges. If A+ B+C is larger than the threshold value, it will cause a design rule
violation. Otherwise, it does not.

A

B
C

Concave corner

(a) Minimum edge rule violation (same net) (b) Shape alignment to fix (a)

Convex corner

FIGURE 38.10 Example of the context-dependent minimum edge rules for 65-nm technology.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 804 23-9-2008 #15

804 Handbook of Algorithms for Physical Design Automation

As can be seen from Figure 38.10a, this rule checking requires a router to perform a polygon
analysis of composite shapes, to keep routes free of this design rule violation during routing con-
struction. The challenge for a detailed router is when to trigger this analysis, as this is a rule for the
same signal net and is polygon-based,whereas the routing shapes are usually rectangles. If the router
is symbolic and center-line based, it needs to maintain a history of recent shapes that it has dropped
to have enough information to perform this analysis. A history of only the previous shape will not
suffice, because several overlapping shapes may comprise of a composite polygonal shape, which
leads to this violation. Therefore, the router needs to maintain a history of at least three previous
rectangles that it has dropped, to construct a composite polygon and detect the minimum edges.
Moreover, the router needs to choose a proper correction method to remove any minimum-edge
violations that may have been introduced. Several competing solutions may exist, such as shape
alignment as shown in Figure 38.10b, via rotation, or even rerouting. The challenge would be how
to select the most manufacturing-friendly one. All of the above detection and correction schemes
are computationally intensive, and the router needs to have a proper trade-off between optimization
during route creation or postroute correction.

38.5.2 REPRESENTATIVE RULE 2—WIDTH-DEPENDENT PARALLEL-LENGTH SPACING RULE

A second class of complex design rules—width-dependent parallel-run-length spacing rule—is
shown in Figure 38.11a [65]. This is a spacing rule between two neighboring physical shapes on
different signal nets. The spacing requirement changes depending on the context of the two physical
shapes. If the width of either of the two shapes (W1 orW2) are within a certain range and the parallel
run length (L) is also within a certain range, then the spacing (S) between the two shapes has to be
greater than a certain threshold. There may be different spacing thresholds for various combinations
of the ranges of the widths and lengths between the two shapes. In other words, this class of rules
may be decomposed into two or more rules such as

• Rule 2a: If A1 ≤ (W1,W2) ≤ B1 and C1 ≤ L ≤ D1, then S ≥ S1.
• Rule 2b: If A2 ≤ (W1,W2) ≤ B2 and C2 ≤ L ≤ D2, then S ≥ S2.

The challenge for the router in this case is that this design rule involves both polygonal analysis
within the connected physical components of the same signal net and area queries between different
signal nets, to detect violating neighbors. Again, as in the minimal edge rule situation, a composite
polygon and in particular wide wire of interest may be formed as the router may drop several
overlapping shapes that trigger this rule checking/fixing. Hence, the router first needs to detect the
formation of a composite wide wire and once detected, and then an area query needs to be triggered

W1

W2

Spacing S

Parallel run length L

(a) Width-dependent parallel-length spacing rule

S1

S2

W

(b) Width-dependent influence spacing rule

D

FIGURE 38.11 Example of the context-dependent spacing rules for 65-nm technology.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 805 23-9-2008 #16

Manufacturability-Aware Routing 805

to detect neighbors within the specified spacing threshold. Triggering a query based on composite
wide wires while they are formed may not be sufficient, because new neighbors may be dropped
later on (it should be noted that one of the two objects needs to meet the width threshold, not both).
Therefore, to be safe, the router may need to either performmore frequent checks or perform a check
at the end of completion of a fully connected physical component on the same layer. In this case,
the only possible postroute corrections are reducing wire widths or rerouting. Hence, once again,
several trade-offs between correct-by-construction routing and postrouting optimization or a hybrid
approach need to be considered.

38.5.3 REPRESENTATIVE RULE 3—WIDTH-DEPENDENT INFLUENCE SPACING RULE

The third complex design rule involves with three or more nets, described as a width-dependent
influence spacing rule shown in Figure 38.11b. It is more complicated than Rule 1, which involves
only a single composite shape, and Rule 2, which involves the interaction between two disjoint
objects/nets. Rule 3 involves the interaction of two ormore shapes in the presence of a third composite
wide shape. This rule has the following complex context:

• A wide wire whose width (W) is greater than some threshold
• Two or more shapes within a halo distance (D) of the above shape
• The spacing (S) between these two shapes being less than some threshold

If all of the above three situations occur simultaneously, we have an influence spacing-rule
violation. Again, we first need to detect a wide-wire shape, which can be from several composite
shapes. Because the rule violation has three conditions, the DRC checking may need to be triggered
if any of the above three situations occur, which in the worst case could be during the dropping of
any shape by the router. But doing such exhaustive checking would be too expensive. A reasonable
triggermight be during the formationof awidewire. However, as in the case of the parallel run-length
rule, a neighbor within the halo distance D may appear after the wide wire has been formed. Thus,
this is not a sufficient check. The router may also choose to be conservative and forbid any neighbor
wires to enter the halo distanceD regions from any wide wires, but this may lead to routability issues
because we miss a lot of routing opportunities where this rule is not violated indeed. Therefore, the
runtime and performance trade-off would be a major issue.

So far, we have discussed several representative required design rules in nanometer designs. In
addition to hard constraints, nanometer designs (in 65 nm and below) have many manufacturability
related recommended and soft rules for potential yield improvement, such as multicut redundant
vias, vias with fatter enclosures, via and metal density requirements, etc. There are also some soft
constraints for preferred versus nonpreferred routing directions. For example, routes in the nonpre-
ferred direction or jogs are recommended to have wider widths owing to poor printability in the
nonpreferred direction by specific lithographic systems. Manufacturability-aware routers attempt to
follow these recommended rules, but not mandatory because there may be too many to follow, or
too hard to implement them efficiently in the already highly complicated routing system.

38.6 CONCLUSION

Design for manufacturability (DFM) in nanometer integrated circuit (IC) designs has been drawing
a lot of attentions from both academia and industry owing to its significant impact on manufactur-
ing closure. This chapter surveys various key issues in manufacturability-aware routing, a crucial
step in the DFM landscape, including model-based manufacturability optimization and rule-based
yield improvement, as well as issues of how to deal with complex design rules. Although most
current DFM solutions rely on either rule-based optimization or postlayout enhancement guided by
modeling, there are tremendous ongoing research and development to capture the downstreamman-
ufacturing/process effects, and abstract them early on into the key physical design stage, through

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 806 23-9-2008 #17

806 Handbook of Algorithms for Physical Design Automation

model-based manufacturability-aware routing optimization [4–7,53]. This will allow designers to
perform more global optimization for manufacturability/yield in the context of other design objec-
tives such as timing, power, area, and reliability. For rule versusmodel, we believe that the rule-based
and model-based approaches will coexist and coevolve. Ultimately, a simple set of rules combined
with powerful models would be ideal.

As manufacturability-aware routing is still at its early stage under heavy research, there
are a lot of rooms to improve in terms of both process modeling/abstraction and DFM-routing
algorithms/interfaces, to enable true design for manufacturing [66]. Most current optimizations for
DFM are performed independently, but different DFM issues are indeed highly related with each
other such as critical area, lithography, CMP, and redundant via. Improving one aspect (e.g., critical
area) may make other aspects (e.g., lithography) worse, and vice versa. Therefore, holistic modeling
and optimization of all key DFM effects into some global yield metric will be in great demand. This
should be a future direction for manufacturability-aware routing.

ACKNOWLEDGMENTS

The author would like to thank Dr. Li-da Huang in Magma DA and Professor Martin D.F. Wong in
UIUC for their help and support in making this work possible.

REFERENCES
1. A. Nardi and A. L. Sangiovanni-Vincentelli, Logic synthesis for manufacturability, in IEEE Design and
Test of Computers, Vol. 21, pp. 192–199, May 2004.

2. P. Gupta, A. B. Kahng, and C.-H. Park, Detailed placement for improved depth of focus and CD control, in
Proceedings of the Asia and South Pacific Design Automation Conference, Shanghai, China, pp. 343–348,
Jan. 2005.

3. S. Hu and J. Hu, Pattern sensitive placement for manufacturability, in Proceedings of the International
Symposium on Physical Design, Austin, TX, pp. 27–34, Mar. 2007.

4. L. Huang and D. F. Wong, Optical proximity correction (OPC)-friendly maze routing, in Proceedings of
the ACM/IEEE Design Automation Conference, San Diego, CA, pp. 186–191, Jun. 2004.

5. M. Cho, H. Xiang, R. Puri, and D. Z. Pan, TROY: Track router with yield-driven wire planning, in
Proceedings of the ACM/IEEE Design Automation Conference, San Diego, CA, pp. 55–58, Jun. 2007.

6. M. Cho, H. Xiang, R. Puri, and D. Z. Pan, Wire density driven global routing for CMP variation and
timing, in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, San Jose,
CA, pp. 487–492, Nov. 2006.

7. J. Mitra, P. Yu, and D. Z. Pan, RADAR: RET-aware detailed routing using fast lithography simulations, in
Proceedings of the ACM/IEEE Design Automation Conference, Anaheim, CA, pp. 369–372, Jun. 2005.

8. J. Hu and S. Sapatnekar, A survey on multi-net global routing for integrated circuits, Integration: The VLSI
Journal, 31: 1–49, Nov. 2002.

9. S. Batterywala, N. Shenoy, W. Nicholls, and H. Zhou, Track Assignment: A desirable intermediate step
between global routing and detailed routing, in Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, San Jose, CA, pp. 59–66, Nov. 2002.

10. D. Cross, E. Nequist, and L. Scheffer, A DFM aware, space based router, inProceedings of the International
Symposium on Physical Design, pp. 171–172, Mar. 2007.

11. D. J. Frank, R. Puri, and D. Toma, Design and CAD challenges for 45nm and beyond, in Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, pp. 329–333, Nov. 2006.

12. G.Xu, L.Huang,D.Z. Pan, andD. F.Wong,Redundant-via enhancedmaze routing for yield improvement, in
Proceedings of the Asia and South PacificDesign Automation Conference, Shanghai, China, pp. 1148–1151,
Jan. 2005.

13. W.Maly,C.Ouyang, S.Ghosh, andS.Maturi,Detectionof an antenna effect inVLSI designs, inProceedings
of the IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems, Boston, MA, pp.
86–94, Nov. 1996.

14. International Technology Roadmap for Semiconductors (ITRS) 2007.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 807 23-9-2008 #18

Manufacturability-Aware Routing 807

15. L. W. Liebmann, Resolution enhancement techniques in optical lithography: It’s not just a mask problem,
in Proceedings of the SPIE, Kanagawa, Japan, Vol. 4409, pp. 23–32, Sep. 2001.

16. A. K. Wong, Microlithography: Trends, challenges, solutions, and their impact on design, IEEE Micro,
23: 12–21, Mar. 2003.

17. L. W. Liebmann, Layout impact of resolution enhancement techniques: impediment or opportunity? in
Proceedings of the International Symposium on Physical Design, Monterey, CA, pp. 110–117, Apr. 2003.

18. R. F. Pease, Lithographic technologies that haven’t (yet) made it: Lessons learned (Plenary paper), in
Proceedings of the SPIE, San Jose, CA, Vol. 5751, pp. 15–25, May 2005.

19. I. Koren, Should yield be a design objective? in Proceedings of the International Symposium on Quality
Electronic Design, San Jose, CA, pp. 115–120, Mar. 2000.

20. P. Cristie and J. P. de Gyvez, Prelayout interconnect yield prediction, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 11: 55–59, Feb 2003.

21. A. B. Kahng, B. Liu, and I. I. Mandoiu, Non-tree routing for reliability and yield improvement, in Proceed-
ings of the IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, pp. 260–266,
Nov. 2002.

22. X. Qi, A. Gyure, Y. Luo, S. C. Lo, M. Shahram, and K. Singhal, Emerging technologies: Measurement and
characterization of pattern dependent process variations of interconnect resistance, capacitance and induc-
tance in nanometer technologies, inProceedings of the ACMGreat Lakes Symposium on VLSI, Philadelphia,
PA, pp. 14–18, Apr. 2006.

23. P. Zarkesh-Ha, S. Lakshminarayann, K. Doniger, W. Loh, and P. Wright, Impact of interconnect pattern
density informationon a 90nm technologyASICdesign flow, inProceedings of the International Symposium
on Quality Electronic Design, San Jose, CA, pp. 405–409, Nov. 2003.

24. S. Lakshminarayanan, P. J. Wright, and J. Pallinti, Electrical characterization of the copper CMP process
and derivation of metal layout rules, IEEE Transactions on Semiconductor Manufacturing, 16: 668–676,
Nov. 2003.

25. T. E. Gbondo-Tugbawa, Chip-scale modeling of pattern dependencies in copper chemical mechanical
polishing process. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 2002.

26. R. Tian, D. F.Wong, and R. Boone, Model-based dummy feature placement for oxide chemical–mechanical
polishing manufacturability, IEEE Transaction on Computer-Aided Design of Integrated Circuits and
Systems, 20: 902–910, Jul. 2001.

27. L. He, A. B.Kahng, K. Tam, and J. Xiong, Design of integrated-circuit interconnects with accuratemodeling
of CMP, in Proceedings of the SPIE, San Jose, CA, Vol. 5756, pp. 109–119, Mar. 2005.

28. S. Im, N. Srivastava, K. Banerjee, and K. E. Goodson, Scaling analysis of mulitilevel interconnect
temperature for high-performance ICs, IEEE Transactions on Electron Devices, 52: 2710–2719, Dec 2005.

29. H. -Y. Chen, M. -F. Chiang, Y. -W. Chang, L. Chen, and B. Han, Novel full-chip gridless routing considering
double-via insertion, inProceedings of the ACM/IEEEDesign AutomationConferernce, San Francisco, CA,
pp. 755–760, Jul. 2006.

30. Z. Chen and I. Koren, Layer reassignment for antenna effect minimization in 3-layer channel routing,
in Proceedings of the Intenational Workshop on Defect and Fault-Tolerance in VLSI Systems, Boston, MA,
pp. 77–85, Nov. 1996.

31. C. Mead and L. Conway, Introduction to VLSI Systems. Addison-Wesley, Boston, MA, 1980.
32. H. K. -S. Leung, Advanced routing in changing technology landscape, in Proceedings of the International

Symposium on Physical Design, Monterey, CA, pp. 118–121, Apr. 2003.
33. J. Cong, Tutorial: Advanced routing techniques for nanometer IC designs, in Proceedings of the IEEE/ACM

International Conference on Computer-Aided Design, San Jose, CA, Nov. 2006.
34. http://www.praesagus.com/.
35. E. Papadopoulou and D. T. Lee, Critical area computation via Voronoi diagrams, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 18: 463–474, Apr. 1999.
36. W. Maly, Modeling of lithography related yield losses for CAD of VLSI circuits, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 4: 166–177, Jul. 1985.
37. R. Glang, Defect size distribution in VLSI chips, IEEE Transactions on Semiconductor Manufacturing,

4: 265–269, Nov. 1991.
38. E. P. Huijbregtz, H. Xue, and J. A. Jess, Routing for reliable manufacturing, IEEE Transactions on

Semiconductor Manufacturing, 8: 188–194, May 1995.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 808 23-9-2008 #19

808 Handbook of Algorithms for Physical Design Automation

39. T. Iizuka, M. Ikeda, and K. Asada, Exact wiring fault minimization via comprehensive layout synthesis for
CMOS logic cells, in Proceedings of the International Symposium on Quality Electronic Design, San Jose,
CA, pp. 377–380, Mar. 2004.

40. A. Pitaksanonku, S. Thanawastien, C. Lursinsap, and J. Gandhi, DTR: A defect-tolerant routing algorithm,
in Proceedings of the ACM/IEEE Design Automation Conference, Las Vegas, NV, pp. 795–798, Jun. 1989.

41. S. -Y. Kuo, YOR: A yield-optimizing routing algorithm by minimizing critical areas and vias, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12: pp. 1303–1311, Sep.
1993.

42. T. Yoshimura and E. Kuh, Efficient algorithms for channel routing, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 1: 25–35, Jan. 1982.

43. D. Muller, Optimizing yield in global routing, in Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, San Jose, CA, pp. 480–486, Nov. 2006.

44. C. Bamji and E. Malavasi, Enhanced network flow algorithm for yield optimization, in Proceedings of the
ACM/IEEE Design Automation Conference, Las Vegas, NV, pp. 746–751, Jun 1996.

45. G. A. Allan, Targeted layout modifications for semiconductor yield/reliability enhancement, IEEE
Transactions on Semiconductor Manufacturing, 17: 573–581, Nov 2004.

46. J. Z. Su and W. Dai, Post route optimization for improved yield using a rubber-band wiring model,
in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA,
pp. 700–706, Nov. 1997.

47. V. K. I. Chiluvuri and I. Koren, Layout-synthesis techniques for yield enhancement, IEEE Transactions on
Semiconductor Manufacturing, 8: 178–187, May 1995.

48. Y. Bourai and C. -J. R. Shi, Layout compaction for yield optimization via critical area minimization, in
Proceedings of the Design, Automation and Test in Eurpoe, pp. 122–127, Mar. 2000.

49. Y. Pati, A. Ghazanfarian, and R. Pease, Exploiting structure in fast aerial image computation for integrated
circuit patterns, IEEE Transactions on Semiconductor Manufacturing, 10: 62–74, Feb. 1997.

50. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and
Diffraction of Light, 7th edition. Cambridge University Press, NY, 1999.

51. N. B. Cobb, Fast optical and process proximity correction algorithms for integrated circuit manufacturing.
PhD thesis, University of California at Berkeley, CA, 1998.

52. Y. -R. Wu, M. -C. Tsai, and T. -C. Wang, Maze routing with OPC consideration, in Proceedings of the Asia
and South Pacific Design Automation Conference, Shanghai, China, pp. 198–203, Jan. 2005.

53. T. Kong, H. Leung, V. Raghavan, A. K. Wong, and S. Xu, Model-assisted routing for improved lithography
robustness, in Proceedings of the SPIE, San Jose, CA, Vol. 6521, p. 65210D, Feb. 2007.

54. T. -C. Chen and Y. -W. Chang, Routability-driven and optical proximity correction-aware multilevel full-
chip gridless routing, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
26: 1041–1053, Jun. 2007.

55. K. -Y. Lee and T. -C. Wang, Post-routing redundant via insertion for yield/reliability improvement, in
Proceedings of the Asia and South Pacific Design Automation Conference, San Francisco, CA, pp. 303–308,
Jan. 2006.

56. F. Luo, Y. Jia, andW.W. -M. Dai, Yield-preferred via insertion based on novel geotopological technology, in
Proceedings of the Asia and South Pacific Design Automation Conference, Yokohama, Japan, pp. 730–735,
Jan. 2006.

57. K. -Y. Lee, T. -C. Wang, and K. -Y. Chao, Post-routing redundant via insertion and line end extension with
via density consideration, in Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design, San Jose, CA, pp. 633–640, Nov. 2006.

58. H. Shirota, T. Sadakane, and M. Terai, A new rip-up and reroute algorithm for very large scale gate arrays,
in Proceedings of the IEEE Custom Integrated Circuits Conference, San Diego, CA, pp. 171–174, May
1996.

59. H. Shirota, T. Sadakane, M. Terai, and K. Okazaki, A new router for reducing “Antenna effect” in ASIC
design, in Proceedings of the IEEE Custom Integrated Circuits Conference, Santa Clara, CA, pp. 601–604,
May 1998.

60. T. -Y. Ho, Y. -W. Chang, and S. -J. Chen, Multilevel routing with antenna avoidance, in Proceedings of the
International Symposium on Physical Design, Phoenix, AZ, pp. 34–40, Apr. 2004.

61. D. Wu, J. Hu, and R. Mahapatra, Antenna avoidance in layer assignment, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 25: 734–748, Apr. 2006.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 809 23-9-2008 #20

Manufacturability-Aware Routing 809

62. L. -D. Huang, X. Tang, H. Xiang, M. D. F. Wong, and I. -M. Liu, A polynomial time-optimal diode
insertion/routing algorithm for fixing antenna problem, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 23: 141–147, Jan. 2004.

63. B. -Y. Su, Y. -W. Chang, and J. Hu, An optimal jumper insertion algorithm for antenna avoidance/fixing on
general routing trees with obstacles, in Proceedings of the International Symposium on Physical Design,
pp. 56–63, Nov. 2006.

64. Z. -W. Jiang and Y. -W. Chang, An optimal simultaneous diode/jumper insertion algorithm for antenna
fixing, inProceedings of the IEEE/ACMInternational Conference onComputer AidedDesign, pp. 669–674,
San Jose, CA, Apr. 2006.

65. LEF/DEF Reference Manual, version 5.7. https://www.si2.org/openeda.si2.org/projects/lefdef
66. D. Z. Pan and M. D. F. Wong, Manufacturability-aware physical layout optimizations, in Proceedings of

the International Conference on Integrated Circuit Design and Technology, Austin, TX, pp. 149–153, May
2005.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C038 Finals Page 810 23-9-2008 #21

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S008 Finals Page 811 24-9-2008 #2

Part VIII

Physical Synthesis

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S008 Finals Page 812 24-9-2008 #3

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 813 29-9-2008 #2

39 Placement-Driven Synthesis
Design Closure Tool

Charles J. Alpert, Nathaniel Hieter, Arjen Mets,
Ruchir Puri, Lakshmi Reddy, Haoxing Ren,
and Louise Trevillyan

CONTENTS

39.1 Introduction.. 813
39.2 Major Phases of Physical Synthesis . 814
39.3 Optimization and Placement Interaction . 816

39.3.1 Bin-Based Placement Model . 817
39.3.2 Exact Placement . 818

39.4 Critical Path Optimizations . 818
39.4.1 Gate Sizing . 819
39.4.2 Gate Sizing with Multiple-vt Libraries . 819
39.4.3 Incremental Synthesis . 820
39.4.4 Advanced Synthesis Techniques . 823
39.4.5 Fixing Early Paths . 823
39.4.6 Drivers for Multiple Objectives . 823

39.5 Mechanisms for Recovery . 824
39.5.1 Area Recovery . 824
39.5.2 Routing Recovery .. 826
39.5.3 vt Recovery.. 827

39.6 Other Considerations.. 827
39.6.1 Hierarchical Design . 827
39.6.2 High-Performance Clocking.. 830
39.6.3 Power Gating to Reduce Leakage Power . 830

39.7 Into the Future . 832
References . 833

39.1 INTRODUCTION

Much of this book has focused on the components of physical synthesis, such as global placement,
detailed placement, buffering, routing, Steiner tree, and congestion estimation. Physical synthesis
combines these steps as well as several others to (primarily) perform timing closure. When wire
delays were relatively insignificant compared to gate delays, logic synthesis provided a sufficiently
accurate picture of the timing of the design. Placement and routing did not need to focus on timing,
but were exclusively wirelength driven. Of course, technology trends have transformed physical
design because the physical implementation affects timing.

813

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 814 29-9-2008 #3

814 Handbook of Algorithms for Physical Design Automation

Today, a design that satisfies timing requirements in synthesis almost certainly will not do so
once implemented physically due to wire delays. Physical synthesis is a process that modifies the
design so that the impact on timing due to wiring is mitigated. It may move cells, resize logic, buffer
nets, and perform local resynthesis.

Besides basic timing closure, there are many newer challenges that the physical synthesis system
needs to handle [1]. Some examples include lowering power using a technology library with multiple
threshold voltages (vt), fixing noise violations that show up after performing routing, and handling
the timing variability and uncertainty introduced by modern design processes.

This chapter surveys IBM’s physical synthesis tool, called placement-driven synthesis (PDS) or
placement-driven synthesis. It builds upon a description of the basics of the tool [2] and also some
innovations in turnaround time published in Ref. [3].

39.2 MAJOR PHASES OF PHYSICAL SYNTHESIS

Placement-driven synthesis has hundreds of parameter settings available to the user and can be
customized by the designer to run in many ways. For example, there are different degrees of routing
congestion mitigation or area recovery available. The user may want to exploit gates with low vt
or allow assignment of wires to different routing planes. These choices depend on the nature of the
design being closed. Although there is no single PDS algorithm to describe, the following outlines
a typical invocation:

1. Netlist preparation.When PDS initializes, of course, the data model needs to be loadedwith
timing assertions (which encapsulate the timing constraints), user parameters, etc. There
also may need to be some scrubbing of the netlist so that optimization is even viable. As
examples,
• Gates may need to be sized down so that the total area of the netlist fits within the area

of the placaeable region.
• Buffers inserted during synthesis may need to be removed so that they do not badly

influence placement. A placement algorithm may handle a fanout tree several levels
deep, then they logically equivalent single large net.

• If the clock tree has not yet been built, it may need to be hidden from optimization so
that it is not treated as a signal net. Changes to a clocked sequential cell could otherwise
cause the timing for every cell in the clock tree to be updated. Before synthesis, an ideal
clock with zero skew can be assumed and later replaced with the optimized one.

• Timing information can be extracted from either an unplaced or a previously optimized
netlist to generate net weights for the placement step.

2. Global placement. This step is well-covered in Chapters 14 through 19. Besides just tradi-
tional minimumwirelength optimization, placement needs to address several other types of
constraints. For example,
• Density targets direct the placer to not pack cells in tightly in certain areas, so that

physical synthesis will have the flexibility to size up cells, insert buffers, etc.
• Designer cell movement constraints are used to enable floorplanning in a flat

methodology. By restricting a set of cells to a certain rectangular region, the designer is
able to plan that block,while still allowing the tool the flexibility to performoptimizations
and placements of the cells within the block.

• Routability directives can be used to improve the routability of placement, such as arti-
ficially inflating the size of cells in routing congested regions in order to force more
spreading [4].

• Clock domain constraints can be consideredduring placement to reduce clock tree latency
and dynamic power consumption. Latches that belong to the same clock domain can be

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 815 29-9-2008 #4

Placement-Driven Synthesis Design Closure Tool 815

directed to be placed close to each other by either adding special net weights or by
imposing movement constraints on latches.

3. Timing analysis. At every point in the flow, timing analysis is a core component because it
provides the evaluation of how well PDS is doing in terms of timing closure. It is run both
stand alone and incrementally throughout the optimization. For this, IBM’s static timing
analysis tool, EinsTimer [5], is used.

4. Electrical correction. After placement, one will certainly find gates that drive loads above
the allowed specification and long wires for which the signal exceeds the designer specified
slew rate. A few bad slew rates inevitably cause terrible timing results. At this point, it
makes sense to correct the design by fixing local slew and capacitance violations, typically
through buffering and gate sizing, thereby getting the design into a reasonably good timing
state. One can also employ a logical effort [6] type of approach to improve the global timing
characteristics of the design.

5. Placement legalization. Fixing electrical violation may result in thousands of buffers being
added to the design, and potentially every gate may be assigned a new gate size, which will
create overlaps, causing the placement solution to become illegal. The goal of legalization
is to fix these overlaps while providing minimum perturbation to the netlist (Chapter 20).

6. Critical path optimization. Once the design is legal and is in a reasonably good timing state,
one can employ all kinds of techniques to try to fix the critical paths. Chapters 26 through
28 discuss powerful buffering techniques. Section 39.5 describes how other optimization
or transforms can also be deployed. A transform is a change to the netlist designed to
improve some aspect of the design, for example, breaking apart a complex gate into several
smaller simpler ones. During this phase, incremental timing analysis and legalization may
be periodically invoked to keep the design in a legal and consistent state.

7. Compression. Critical path optimization may become stuck at some point, when a certain
set of the most critical paths cannot be fixed without manual design intervention (e.g.,
changes to the floorplan must be made). This is shown in Figure 39.1 where the original
timing histogram (Figure 39.1a) is improved by critical path optimizations (Figure 39.1b)
until it saturates. However, there still may be thousands of failed timing points that exist
which could be fixed with lighter weight optimizations directed at the not so critical regions
that still violate timing constraints. The purpose of this phase is to compress the remaining
negative portion of the timing histogram to leave as little work as possible for the designer as
shown in Figure 39.1c. As in critical path optimization phase, incremental timing analysis
and legalization must be incorporated where appropriate.

(b)

F

ai
lin

g
en

dp
oi

nt
s

Slack(a) Slack

F

ai
lin

g
en

dp
oi

nt
s

(c)

F

ai
lin

g
en

dp
oi

nt
s

Slack

FIGURE 39.1 Timinghistogramof (a) anunoptimizeddesign can be improved by (b) critical path optimization
and (c) histogram compression.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 816 29-9-2008 #5

816 Handbook of Algorithms for Physical Design Automation

After these phases, the design may still be far from closing on the given timing constraints. At
this point, a designer could intervenemanually or rerun the flow to try and get a better timing-driven
placement now that the real timing problems have been identified. One can run a net weighting
algorithm (Chapter 21) to drive the next iteration of placement and the entire flow.

In the flow described above, one canmake several assumptions to make fast optimization achiev-
able. For example, (1) clocks can be idealized so that one assume a zero skew clock will later be
inserted, (2) Steiner estimates and one-dimensional extraction can be used for interconnect delay
estimation, (3) crosstalk can be ignored, etc. Making these assumptions certainly allows faster run-
time than otherwise achievable. In practice, these assumptions are stripped away as the designer
makes progress toward timing closure. Once the designer is reasonably happy with the design after
running PDS, he or she may then perform clock insertion and perform a pass of incremental physical
synthesis to fix problems resulting from actual clock skews. Similarly, once the design is routed,
there could be timing problems caused by scenic routes, along with noise violations from capacitive
coupling. The designer can then run incremental physical synthesis in this postrouting environment,
using accurate coupling information while also modeling variability for timing.

Because several of the main components of the physical synthesis flow are covered elsewhere
in the book, this chapter focuses on aspects that are not covered.

1. Optimization and placement interaction. When optimizations such as buffering or resizing
need to make adjustments to the netlist, they cannot happen in a vacuum because they
affect the placement. Certain regions may have blockages or be too congested to allow
transforms to happen. We explain the communication mechanisms between optimization
and placement.

2. Critical path optimizations. Besides buffering, there are numerous techniques one can use to
improve the timing along a critical path. Section 39.4 overviews gate sizing and incremental
synthesis techniques and the driver/transformmodel that PDS uses.

3. Recovery mechanisms. During optimization, PDS can cause damage by overfilling local
regions, causing routing congestion, etc. Section 39.5 explains how one can apply spe-
cialized optimizations for repairing damage so that physical synthesis can continue
effectively.

4. Specialized design styles. A typical instance for PDS is a flat ASIC, though customers also
utilize it for hierarchical design and for high-performance microprocessors. Section 39.6
explains some of the issues faced by PDS and their solutions for these different types of
design styles.

39.3 OPTIMIZATION AND PLACEMENT INTERACTION

During the critical-path optimization and compression, optimizations such as buffer insertion, gate
sizing, box movement, and logic restructuring may need to add, delete, move, or resize boxes.
To estimate benefit/cost of these transformations accurately, transforms need to generate legal or
semilegal locations for these boxes on the fly. Otherwise, boxes may be moved to overcongested
locations or even on top of blockages, which later need to be resolved by legalization. Legalization
then may move boxes far from their intended locations and undo (at least in part) the benefits of
optimization. It could even introduce new problems that need further optimization.

Of course, ideally one would like to compute the exact legal locations for such boxes during
optimization, but it often can be too computationally expensive. One strategy PDS uses is to use
rough legal locations during early optimization (e.g., electrical correction) when substantial changes
are made. During later stages of optimization when smaller or finer changes are made, exact legal
locations may be computed. Such a strategy strikes a good balance between quality of results and
the runtime of the system.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 817 29-9-2008 #6

Placement-Driven Synthesis Design Closure Tool 817

39.3.1 BIN-BASED PLACEMENT MODEL

PDS uses a synthesis–placement interface (SPI) to manage the estimation or computation of
incremental placement. Before optimization, the placement image is divided into a set of regions
called bins. Each placeable object in the design is assigned to a bin, and space availability is deter-
mined by examining the free space within a bin. The SPI layer manages the interface to an idealized
view of the bin structure and provides a rich set of functions to access and manipulate placement
data. The SPI layer uses callbacks to keep placement, optimization, and routing data consistent.

Instead of computing an exact legal location, newly created or modified logic can be placed in a
bin and assigned a coarse-placement location inside the bin. A fast check is performed to make sure
that there is enough free space within the bin to accommodate the logic.

The interaction between optimizations and the SPI layer works as follows. Suppose an optimiza-
tion requests SPI to add or move a box to a specific (x, y) location. SPI gets the bin in which the (x, y)
location falls and checks the free space. If there is enough space then optimization uses the location
specified. If not, the optimizationmay ask SPI to find the closest bin in which there is space, in which
case, SPI “spirals” through neighboring bins and returns a valid location, which the optimization can
evaluate and choose to use. When a placement is actually assigned, SPI updates bin information to
accurately reflect the state of the placement.

Using rough placement may result in boxes placed so they overlap each other. This is one reason
why legalization needs to be called periodically (see e.g., Ref. [7]). It is important for the optimized
design to remain stable, so the legalizer maintains as many pre existing locations as possible and,
when a box must move, an attempt is made to disturb the timing of critical paths as little as possible.

As an example, assume the potential area of placed logic inside a bin is 1000 units and that 930
units of cells are already placed within the bin. If one tries to add a new cell of size 90, the SPI
interface reports that the bin would become too full (1020) and cannot afford to allow the cell to be
placed. On the other hand, a cell of size 50 can fit (total area 980) so SPI would permit the transform
to place the cell in the bin.

The problem with the bin-based model is that just because the total area allows another cell to
be inserted, does not mean it actually can be inserted. As a simple example, consider placing three
cells of width three into two rows of width five, with height one for cell and each row. The total
area of the cells is nine, while the total placeable area is ten, so it would seem like the cells could
fit. However, the cells cannot be placed without exceeding the row capacity. In this sense, legalizing
cells within a bin so that they all fit is like the NP-complete bin packing problem.

Consider Figure 39.2 in which Bin A and Bin B have exactly the same set of nine cells, though
arranged differently. If one tries to insert a new cell into either bin, SPI would return that there is room
in the bin, yet one cannot easily insert it in Bin Awhile one can in Bin B. It is likely that the fracturing
of white space in Bin A will lead to legalization eventually moving a cell into a different bin.

New cell

(a) (b)

FIGURE 39.2 New cell cannot be inserted into (a) Bin A but can be in (b) Bin B even though both bins contain
the same set of cells.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 818 29-9-2008 #7

818 Handbook of Algorithms for Physical Design Automation

Because of these effects, the designer often runs with a guard band (e.g., 5 percent) to make it
more likely that cells will avoid unsolvable bin packing scenarios. In our earlier example, we put the
virtual bin capacity at 950. Alternatively, one can allow overfilling of bins (say by 5 percent) to allow
transforms to successfully perform optimization, and then rely on powerful legalization techniques
like diffusion (Chapter 20) to reduce the likelihood of legalization moving cells far away.

As physical synthesis progresses, the bins are reduced in size. This tends to limit the size of box
movements that legalization must do.

39.3.2 EXACT PLACEMENT

The major problem with the bin-based model is that one can never guarantee that the cell really does
fit in its bin. One could always construct test cases with cells of strange sizes that break any bin
model (or force it to be ultra-conservative in preventing cells to be inserted). For example, fixed-area
I/Os and decoupling capacitors can contribute to the problem.When it gets too late in the flow, PDS
may not be able to recover from big legalization movements that degrade timing. During later stages
of the system when the major optimizations have been completed, finding exact locations for the
modified cells provides better overall quality of results with reasonable runtimes.

PDS implements exact legal locations during optimization as follows. The placement subsystem
maintains an incremental bit map (imap) to track all location changes and available free space. For
example, if a cell is one row high and seven tracks wide, then seven bits of the imap corresponding to
the cell’s location are set to one. If the two tracks next to the cell are empty, their bits are set to zero.
When a new or modified box needs to be placed at a desired location, the imap capability essentially
works like a hole finder. It tries to locate a hole or an empty slot (within some specified maximum
distance from the desired location) large enough to place legally the newly created or modified box.
As with rough locations, the optimization can evaluate and choose to use the exact locations. If this
location is used then the imap data model is updated incrementally. Thus, when timing evaluates the
quality of the solution, it knows exactly where the cell will end up. In this model, legalization is not
necessary.

An example of one problem with the imap model occurs when a cell seven tracks wide wants to
be placed in a hole that is five trackswide. To a user, it may be obvious to simply slide the neighboring
cell over by two tracks to make room. In general, small local moves like this will haveminimal effect
on timing andmake it more likely that the cells will be placed at their desired locations. In such a case,
a list of all the cells that need to bemoved tomake room for the new/modified box as well as their new
locations is supplied to the transform. The transform can then evaluate this compound movement
of a set of boxes and estimate the benefit/cost and decide to accept or reject such movement. The
advantages of this approach include more successes in legally placing boxes within some specified
maximum as well as obtaining legal locations that are generally closer to the desired locations. On
the other hand, the transforms may get more complicated as they need to manage and evaluate the
movement of, possibly unrelated, multiple cells. It may also cause more churn to the design during
the later stages of optimization due to the movement of significantly larger number of boxes, which
may not be directly targeted by the optimizations.

Thus, it is a bit of an art to find the right degree of placement and optimization interaction that
trades off accuracy versus runtime. These models are still evolving in PDS today.

39.4 CRITICAL PATH OPTIMIZATIONS

Optimization of critical paths is at the heart of any physical synthesis system. Timing closure is
clearly an important goal, but electrical correctness, placement and routing congestion, area, power,
wirelength, yield, and signal integrity are also important design characteristics thatmust be considered
and optimized when making incremental changes to the netlist.

Within PDS, there is a large menu of optimizations that can be applied to the design. The
sequences of optimizations are packaged for various functions and can be enabled or disabled

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 819 29-9-2008 #8

Placement-Driven Synthesis Design Closure Tool 819

via system parameters.Optimizationsmay also be used interactively by designers. Themost effective
optimizations are generally buffering and gate sizing. As a secondary dimension for optimization,
with buffering one can also perform wire sizing and with gate sizing one can perform assign gates
to different vt. Because buffering is covered in other chapters, we turn to gate sizing.

39.4.1 GATE SIZING

Gate sizing is responsible for selecting the appropriate drive strength for a logic cell from the
functionally equivalent cells available in the technology library. For example, a library may contain
a set of ten inverters, each with a characteristic size, power consumption, and drive strength. Upon
finding an inverter in the design, it is the task of gate sizing to assign the inverter with the appropriate
drive strength to meet design objectives.

When the mapped design comes from logic synthesis, gate sizes have already been assigned
based on the best information available at the time. Once the design is placed, Steiner wire estimates
can be used to give a more-accurate estimation of wire loads, and many of the previous assignments
will be found to be suboptimal. Likewise, gate sizes must be reevaluated after global and detailed
routing, because wire delays will again have changed.

As discussed earlier, the electrical correction step performs an initial pass over the entire design.
Gate sizes are assigned in a table-lookup fashion to fix capacitance and slew violations introduced
by the more accurate Steiner wire models. There may be several cells in the library that meet the
requirements of a logic cell, so the one with minimal area is chosen. If gate sizing is insufficient to
fix the violation, buffering or box movement may be used.

Later optimizations have the option of modifying these initial gate sizes. If a cell in the design
is timing critical, the library cell that results in the best path delay would be chosen, while if the cell
already meets its timing requirements, area recovery will pick the cell with greatest area savings.

For critical path optimizations, gate sizing examines a size-sorted window of functional alterna-
tives and evaluates each of them to choose the best library cell. For example, suppose that the current
cell is a NAND2_D, and the library has, from smallest to largest, NAND2_A through NAND2_G
cells. The program might evaluate the B, C, E, and F levels to see if they are a better fit for the opti-
mization objectives. The size of the window is dynamic and affects both the accuracy of the choice
and the runtime of the optimization. Because the design is constantly changing during optimization,
it is necessary to periodically revisit the assigned gate sizes and readjust them. This allows revisiting
choices, perhaps with different cell windows.

Other algorithms, such as simulated annealing, Lagrangian relaxation (see Chapter 29), or
integer programming approaches [8], have been suggested for use in resizing, but they tend to be
too slow, given the size of today’s designs and the frequency with which this needs to be done.
Further, these approaches tend to make gross assumptions about a continuous library, which then
needs to be mapped to cells in a discrete library; this mapping may severely distort the quality of the
optimization. Also, these methods do not account well for capacitance and slew changes resulting
from new power-level assignments, and the physical placement constraints, as described above.

Gate sizing is important to nearly every facet of optimization. It is used in timing correction,
area recovery, electrical correction, yield improvement, and signal-integrity optimization.

39.4.2 GATE SIZING WITH MULTIPLE-VT LIBRARIES

Besides performing timing closure, PDS also manages the total power budget. See Chapter 3 for an
overview of the components of power consumption. The contribution of the static power component
or leakage to the total power number is growing rapidly as geometries shrink.

To account for that, technology foundries have introduced cell libraries with multiple vt. These
libraries contain separate cellswith the same functionality butwith different threshold. These libraries
contain separate cells with the same functionality but with different vt. In the simplest form there
are two different thresholds available, commonly called high-vt and low-vt, where vt stands for vt.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 820 29-9-2008 #9

820 Handbook of Algorithms for Physical Design Automation

Cells made up with high threshold transistors are slower but leak less while cells with low threshold
transistors are faster at the expense of higher leakage power and less noise immunity. In practice,
there is a limit to the number of different vt in the library because each vt introduces an additional
mask in the fabrication process.

Multi-vt libraries enable synthesis to select not only the appropriate gate size but also the appro-
priate vt for each cell. Cells on a timing critical path can be assigned a lower vt to speed up the
design. Cells that are not timing critical do not need the performance of a high-leakage cell and can
use the slower and less leaky versions. In general, one prefers not to use low-vt cells at all unless
they are absolutely necessary to meet high-performance timing constraints.

During vt assignment, PDS simply collects all critical gates and sorts them based on their criti-
cality. vt assignment then proceeds by lowering the vt on the cells starting with the most critical cell
first. The algorithm honors designer supplied leakage limits by incrementally computing the leakage
current in the design.

In general, multiple threshold libraries are designed such that the low-vt equivalent of each cell
has the same area and cell image as the high-vt cell. This makes the multiple voltage threshold
optimization a transformation, which does not disturb the placement of a design.

Because the input capacitance of a low-vt cell is slightly higher than that of a correspondinghigh-
vt cell, resizing the cells after threshold optimization can yield further improvement in performance.

The impact of multiple vt optimization on the power/performance trade off depends on the
distribution of slack across the logic. Designs with narrow critical regions can yield significant
performance improvements with little affect on leakage power. The performance boost obtained
from using low-vt cells is significant, making it one of the more powerful tools PDS has to fix
critical paths.

39.4.3 INCREMENTAL SYNTHESIS

Besides buffering and gate sizing, many other techniques can be applied to improve critical paths.
Techniques from logic synthesis, modified to take placement and routing into account, can at times
be very effective. Even though the design comes from logic synthesis optimized for timing, the
changes caused by placement, gate sizing, buffering, etc. may disrupt the original timing and may
create an opportunity for these optimizations to be effective in correcting a path that may not be
fixable otherwise.

• Cell movement: In general, the nextmost effective optimization technique is cell movement.
One can move cells to not only improve timing, but also minimize wirelength, reduce
placement congestion, or balance pipeline stages. For critical path optimization, a simple,
yet effective approach is to find a box on a critical path and try to move it to a better location
that improves timing.

• Cloning: Instead of sizing up a cell to drive a net with a fairly high load, one could copy the
cell and partition the sinks of the original output nets among the copies. Figure 39.3 shows
an example where four sinks are driven by two identical gates after cloning. Cloning can
also improve wirelengths and wiring congestion.

• Pin swapping: Pin swapping takes advantageof cells where the input to output timings differ
by pin. As an example, a 4-input NAND, with inputs A, B, C, andD and output Z . the delay
from A to Z could be less than the delay fromD to Z . Some cells may be architected so that
the behavior is intentional. By swapping a timing critical at pin D with a noncritical signal
at pin A, one can obtain timing improvement.More generally, when one has a fan-in tree as
in Figure 39.4, commutative pins can also be swapped, so that the slowest net can be moved
forward in the tree. Like cloning, pin swapping can also be used to improve wirelength and
decrease wiring congestion.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 821 29-9-2008 #10

Placement-Driven Synthesis Design Closure Tool 821

C1

C1

C1′

S

FIGURE 39.3 Cloning. (From Trevillyan, et al., IEEE Design and Test of Computers, pp. 14–22, 2004. With
permission.)

AND

AND

AND

AND

AND

AND

AND
AND AND

AND

AND

AND

AND

AND
A

E

H

C

F

G

B

D

F

D

B

G

H

C

E

A

FIGURE 39.4 Pin swapping.

• Inverter processing: In a rich standard-cell library, complement and dual-complement cells
are available for many functions. Timing or area can be improved by manipulating invert-
ers. For example, Figure 39.5 shows an example of an INVERT-NAND sequence being
replaced with a NOR-INVERT sequence. Other examples include changing an AND-
INVERT sequence to a NAND or an AND-INVERT into and OR. Inverter processing
may remove an inverter, add an inverter, or require an inverter to be moved to another sink.

• Cell expansion: The cell librarymay contain “complex”multilevel functions, such as AND-
OR, XOR, MUX, or other less-well-defined cells. These cells normally save space, but can
be slower than a breakdown into equivalent single-level cells (NAND,NOR, INVERT, etc.).
Cell expansion breaks apart these cells into its components; for example, Figure 39.6 shows
an XOR gate decomposed into three AND gates and two inverters.

• Off-path resizing: As discussed earlier, gate sizing is a core technique for optimization of
gates on a critical path. However, one can also attempt to reduce the load driven by these
gates by reducing the size of noncritical sink cells, as shown in Figure 39.7. The smaller

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 822 29-9-2008 #11

822 Handbook of Algorithms for Physical Design Automation

A A

B
C C

NORNAND B

FIGURE 39.5 Inverter processing.

A

A

B
B

XOR

NAND

NAND

NAND CC

FIGURE 39.6 Cell expansion.

A BA B

FIGURE 39.7 Off-path resizing.

A

AND

AND

ANDX

Y

AND

F

D

F C

A
B

E

B

C

D

E

FIGURE 39.8 Shattering.

cells generally present lower pin capacitances, and so may improve the delay on a timing-
critical net, though it could hurt the delay for another path. The timing analyzer and the
optimization metric is the arbiter on whether the optimization suggestion is accepted by
PDS. When correcting hold violations (short paths), the off-path cells can be powered up
to present higher pin capacitance and slow down a path.

• Shattering: Similar to cell expansion, larger fan-in cell can be decomposed into a tree of
smaller cells. This may allow the most critical path to move ahead to a faster, smaller
cell. Figure 39.8 shows how the delay through pins A and B of a five-input AND gate can
be reduced by shattering the gate into three NAND gates, so that a and b only need to
propagate through a cell with less complexity. Merging, the opposite of shattering, can also
be an effective timing optimization. A rule of thumb is that merging is goodwhen the slacks
at the inputs of a tree are similar, and shattering is good when there is a wider distribution
of slacks.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 823 29-9-2008 #12

Placement-Driven Synthesis Design Closure Tool 823

Note that the optimizations are atomic actions and are synergistic. Optimizations can call other
optimizations. For example, a box could be shattered, then pin-swapped, and finally resized, and the
new solution could then be accepted or rejected based on the combined effect of these optimizations.

39.4.4 ADVANCED SYNTHESIS TECHNIQUES

The descriptions of some of the above incremental synthesis optimizations are deceptively simple.
For example, Figure 39.6 shows an XOR decomposed as two inverters and three NAND gates. It
could also be implemented as two inverters, two ANDs, and an OR; two inverters, one OR, and
two NANDs; or three inverters, an AND, and two NANDs; etc. An optimization like cell expansion
examines several decompositions based on rules of thumb, but does not explore the expansion
possibilities in any systematic way.

Another way of accomplishing cell expansion and many of the other optimizations is through
logic restructuring [9], which provides a systematic way of looking at functional implementations. In
this method, seed cells are chosen and a fan-in and depth-limited cone is examined for reimplemen-
tation to achieve timing or area goals. The seed box and its restricted cone of logic are represented
as a Boolean decision diagram (BDD) [10]. This provides a canonical form from which different
logic structures can be implicitly enumerated and evaluated. When a new structure is chosen, it is
implemented based on the primitives available in the library and the new cells are placed and sized.
The restructuring process can be thought of as a new technology mapping of the selected cone.

Advanced synthesis techniques can be a computationally intensive process because, for a large
cone, the number of potential implementations can be huge. The fan-in and depth constraints must
be chosen so as to balance design quality with runtime. However, they are quite effective and are
especially useful for high-performance microprocessor blocks, which typically are small yet have
very aggressive timing constraints.

39.4.5 FIXING EARLY PATHS

Timing closure consists of correcting both long (late mode) and short (early mode) paths. The delay
of long paths must be decreased because the signal is arriving at the register a cycle too late, while
the delay of short paths must be increased because they are arriving a cycle too early. The strategy
we use in PDS is to correct the long paths without consideration of the short paths, then do short-path
correction as a postprocess in such a way as to lengthen the paths without causing a long path to be
more critical. This can be tricky because it is possible that all the boxes along a short path can be
intertwined with a long path.

Doing short-path correction requires that there be (at least) two timingmodels active: early mode
timing tests are done with a slow clock and fast data, while late-mode tests are done with fast clocks
and slow data. The presence of two timing models enables correction of the early mode paths while
minimizing or reducing any adverse effects to the late-mode paths. In PDS, short-path correction is
done very late in the process, after routing and with SPICE extraction.

The premier way of correcting short paths is by adding delay pads (similar to buffers) along the
path to slow it down. In some cases, short-path nets can be reconnected to existing buffers (added for
electrical violations or long-path correction) to slow down the path. This can correct the path without
incurring the area overhead of a new pad. As noted above, resizing to a slower cell or powering up
side-path cells can also be used for early mode correction.

39.4.6 DRIVERS FOR MULTIPLE OBJECTIVES

The previous discussion discussed transforms primarily in the context of improving timing.However,
other objectives like wirelength, routing congestion, or placement congestion can be addressed by
the same set of optimizations or transforms.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 824 29-9-2008 #13

824 Handbook of Algorithms for Physical Design Automation

To facilitate the use of transforms for multiple objectives, PDS employs a driver-transform
paradigm. Programs are split into local transforms and drivers. The transforms are responsible for
the actual manipulation of the logic, for example, adding a buffer, moving or resizing a cell, etc.
The driver is responsible for determining the sections of logic that need to be optimized. If the
optimization goal is electrical correction the driver will pick cells that violate slew or capacitance
limits; if the goal is timing, it will pick cells that lie on the critical paths; if the goal is area reduction,
the driver will choose cells in the noncritical region, where slack can be sacrificed for area. The
transforms understand their goals (e.g., whether they should be trying so save area of time) and
adjust their actions accordingly.

The drivers are also responsible for determining which transforms should be applied in what
order. Given a list of available optimizations, the driver may ask for evaluations of the characteristics
of applying each transform, then choose the order of application based on a cost/benefit analysis
(in terms of timing, area, power, etc.). A driver may also leave it to the transform to decide when
to apply, in which case the order of the transform list given to the driver becomes quite important.
There are a variety of drivers available in PDS.

• Themost commonly used one is the critical driver,which picks a group of pinswith negative
slack and sends the pins to the transforms for evaluation. Because transforms can interact,
the critical driver iterates both on the current and, when no more can be done on its current
list, iterates on sets of lists. To conserve runtime, it “rememebers” the transforms that have
been tried and does not retry failed attempts.

• The correction driver is used to filter nets,which violate their capacitance or slewconstraints,
which can then be used with a transform designed to fix these violations.

• Levelized drivers that present design in “input to output” or “output to input” order, and are
useful in areas like global resizing, where it is desirable to resize all of the sink cells before
considering the driving cell.

• There is a randomized driver that provide pins in a random order so that an optimization
that relies on the order of pins may discover alternate solution.

• The histo driver is used in the compression phase to divide all the failing paths into slack
ranges and then work iteratively on each range.

• Of special important is the list driver, which simply provides a predetermined list of cells or
nets for the transform to optimize. This enables the designer to selecting specific pieces of
the design for optimizationwhile in an interactive viewing session. The designer’s selection
is made into a list of objects for optimization to be processed by the list driver.

In summer, PDS contains a large number of atomic transformations and a variety of drivers that
can invoke them. This yields a flexible and robust set of optimizations that can be included in a
fixed-sequence script or can be used directly by designers.

39.5 MECHANISMS FOR RECOVERY

During the PDS flow, optimization may occur that damage the design. Local regions could become
overfull, legalization could slide critical cells far away, unnecessary wiring could be introduced, etc.
This is inevitable in such a complex system. Thus, a key component to PDS is its ability to gracefully
recover from such conditions. We now overview a few recovery techniques.

39.5.1 AREA RECOVERY

The total area used by the design is one of the key metrics in physical synthesis. The process of
reducing area is known as area recovery. The goal of area recovery is to rework the structure of the
design so as to use less area without sacrificing timing quality; this contrasts with other work in area

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 825 29-9-2008 #14

Placement-Driven Synthesis Design Closure Tool 825

reduction, which makes more far-reaching design changes [11] or changes logic cell or IP designs
to be more area efficient [12].

Aside from the obvious benefits of allowing the design to fit on the die, or of actually reducing
die size, reduction in area also contributes to better routablility, lower power, and better yield. It
especially useful as a recovery mechanism because it can create placement space in congested areas
that other optimizations can now exploit. Recall the previously discussed SPI bin model: for a bin
of size 1000, if area recovery can reduce the used call area from 930 to 800, this increases the free
space available for other cell (such as buffers) from 70 to 200.

When a design comes into physical synthesis from logic synthesis, the design has normally
been optimized with a simplified timing model (e.g, constant delay or wireload). Once the design is
placed, routes can be modeled using Steiner estimates or actual global or detailed routes. As more
accurate information is know about the real delays due to wires, logic can be restructured to reduce
area without impacting timing closure or other design goals.

For example, for most designs, a plurality of the nets will be two-pin nets. A wireload model
will give the same delay for every two-pin net. Obviously, this is a very gross estimate, as some
such nets may be only a few tracks long, while others could span the entire chikp. Paths with shorter-
than-average nets may have seemed critical during logic synthesis but, once the design is placed and
routed, are noncritical, while paths with longer-than-averagenets may bemore critical than predicted
during logic synthesis.

PDS timing optimizations can also create a need for area recovery when there are multiple
intersecting critical paths. For example, in Figure 39.9, PDS will first optimize B because its slack
is more critical than A. Using gate sizing, PDS may change B to larger B′ and thereby improve its
slack from−15 to +20. Net it will optimize A, improving its slack from−10 to +10 and also taking
more area. This may improve the slack at B′ to +30. Area reduction might then be applied to change
B′ to B′′, reducing both area and slack.

A good strategy is to have area recovery work on the nontiming-critical paths of the design and
give up delay to reduce area. Normally, the noncritical regions constitute a huge percentage—80
percent or more—of the gates in the design, so care must be taken to use very efficient algorithms in
this domain. In addition to being careful about timing, area reduction optimizations must take care
to not disturb other design goals, such as electrical correctness and signal integrity.

By far, the most effective method of reducing area is sizing down cells. Aside from being
extremely effective, this method has the advantages of being nondestructive to placement (because

Slack −15A B

B�

B�

B �

A

A�

A�

Slack +20

Slack +30

Slack +10

Slack −10

Slack −10

Slack +10

Slack +10

FIGURE 39.9 Physical synthesis creates opportunities for area recovery.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 826 29-9-2008 #15

826 Handbook of Algorithms for Physical Design Automation

the new call will fit where the old one was) and minimally disruptive to wiring (the pins might
move slightly). Care must be taken when reducing the size of drivers of nets so that they do not
become crosstalk victims (Chapter 34). When optimizing without coupling information, noise can
be captured to the first order by a slew constraint. As a rule of thumb, Ref. [13] recommends that
drivers of nets in the slack range of zero to 15 percent of the clock period not have the size of
their drivers reduced.

Because timing optimizations nearly always add area, a good rule of thumb for area reduction
techniques is that they are the reverse of timing optimizations. So area reduction can remove buffers,
inverter pairs, or hold-violation pads so long as timing and electrical correctness goals are preserved
[14]. It can force the use of multilevel calls (such as XORs and AOs), which are normally smaller
and slower than equivalent sigle-level implementations. If appropriate library functions are available,
it can manipulate inverters to, for example, change NANDs to ANDs, ORs, or NORs, if the new
configuration is smaller and maintains other design goals.

These types of optimizations may be applied locally in a pattern-matching kind of paradigm.
For example, each noncritical a buffer in a design could be examined to determine whether it can
be removed. Another, more general, approach would be to simultaneously apply areas-reduction
techniques through re-covering a section of logic to produce a different selection of technology
cells. In this context, re-covering involves a new technology mapping for the selected logic with
an emphasis on area, and is more frequently used in logic synthesis, as the placement and routing
aspects of physical synthesis make this technique extremely complex. Some success at re-covering
small, fairly shallow (two to four levels) sections of logic has been reported [15].

A useful adjunct to area reduction is yield optimization. Overall critical-area-analysis (CAA)
yield scores [16] can be reduced by considering individual CAA scores for the library cells and using
this as part of the area reduction scheme. For example, suppose a transform wants to reduce the size
of a particular cell. Two functionally identical cells may be of the same size and either could be used
in the context of the cell to be downsized. However, one may have a better CAA score than the other
(though slightly different auxiliary characteristics like delay and input capacitance), so the better
scoring cell should be used. Of course, area reduction generally improves CAA scores by reducing
the active area of the design.

In some cases, it is desirable to apply area reduction even in the critical-slack range. When a
design, or part of a design, is placement congested, it is sometimes a good strategy to sacrifice some
negative-slack paths by making them slower but smaller to create room to improve paths with even
worse slack. Again, resizing is a good example. Suppose a path has a slack of −50 and it would
be desirable to upsize a cell on the path, but there is no room to do so. Downsizing a cell in the
neighborhood, degrading its slack from −2 to −4, may make sense as long as the loss from the
downsizing is less than the gain from the upsizing. Typically, this kind of trade-off is made early in
the physical synthesis process.

The effectiveness of area recovery is very dependent on the characteristics of the design, on the
logic synthesis tool used to create it, and on the options used for the tool. Reductions in area of
around 5 percent are typical, but reductions in excess of 20 percent have been observed.

39.5.2 ROUTING RECOVERY

Total wirelength and routing congestion can also be recovered. Damage to wirelength can be caused
by legalization, buffering, or timing-driven placement. For example, when one first buffers a net, it
may use a timing-driven Steiner topology (Chapter 25). Later, when one discovers that this net is not
critical and meets its timing constraint, it can be rebuffered with a minimum Steiner tree (Chapter
24) to reduce the overall wirelength.

PDS has a function that rebuilds all trees with positive slack and sufficiently high windage,
defined as follows. A net with k− 1 buffers divides it into k trees. Let Tk be the sum of the minimum
Steiner wirelengh of these k trees. Let T0 be the wirelength of the minimum Steiner tree with all the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 827 29-9-2008 #16

Placement-Driven Synthesis Design Closure Tool 827

buffer removed. Windage is the value of Tk − T0. Nets with high windage indicate potentially good
candidates for wirelength reduction through alternative buffer placement.

One can also deploy techniques to mitigate routing congestion. A buffer tree that goes through a
routing congested region likely cannot be rerouted easily unless one also replaces the buffers. Smaller
spacing between buffers reduces the flexibility of routing, so these problemsmust be handled before
routing is required. PDS has a function that identifies buffer trees in routing congested regions and
rebuilds them so that they avoid the routing resources using algorithms described in Chapter 28.
Routing techniques can also be mitigate via spreading the placement using diffusion [17].

Of course, wiring congestion can occur independently of buffers. As noted earlier. PDS has
programs that will reduce wirelength by moving boxes (also using the windage model) and by pin
swapping within fan-in-trees.

39.5.3 VT RECOVERY

As explained previously, formulti-vt libraries, trade-offs amongvt levels can have significant impacts
on leakage power and delay. In some instances, low-vt cellsmay have been used to speed up the design
but subsequent optimization may have made the use of low-vt unnecessary. In terms of Figure 39.9,
it could be that the change from B to B′ was actually a vt assignment, in which B was a high-vt
cell while B′ was low-vt. Once A has been changed to further improve timing, it may be possible to
change B′ back to a higher-vt cell to reduce power.

In fact, a reasonable strategy for timing closure is to use low-vt cells very aggressively to close on
timing, even though it likely will completely explode the power budget. Then, vt recovery techniques
can attempt to reduce power as much as possible while maintaining timing closure.

39.6 OTHER CONSIDERATIONS

This chapter focuses primarily on physical synthesis in the context of a typical flat ASIC design
style. However, PDS is also used to drive timing closure for hierarchical designs and for designing
the sub-blocks of high-performance microprocessors. We now discuss a some issues and special
handling required to drive physical synthesis in these regimes.

39.6.1 HIERARCHICAL DESIGN

Engineers have been employing hierarchical design since the advent of the hardware description
languages. What has changed over the years is the degree with which the hierarchy is maintained
throughout the design automation flow. The global nature of optimizations like placement, buffering,
and timing, means it is certainly simpler for PDS to handle a flat design. However, PDS is just
one consideration for designers in terms of whether they design flat or hierarchically. Despite the
simplicity of flat design, as of this writing, hierarchical design is becoming more prevalent. There
are several reasons for this:

• Design size: The available memory in hardware may be insufficient to model properly
the entire design. Although hardware performance may also be an issue, it can often be
mitigated through various thread-parallel techniques.

• Schedule flexibility: The design begins naturally partitioned along functional boundaries.
A large project, employing several engineers, will not be finished all at once. Hierarchical
design allows for disparate schedules among the various partitions and design teams. This
is especially true for microprocessor designs.

• Managing risk: Engineers cannot afford to generate a great deal of VHDL and then simply
walk away. In some cases, the logic design process is highly interactive. The design automa-
tion tools must successfully cope with an ever-changing netlist in which logic changes may

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 828 29-9-2008 #17

828 Handbook of Algorithms for Physical Design Automation

arrive very late in the schedule. By partitioning the design, it is possible to limit the impact
of these changes, protecting the large investment required to reach the current design state.

• Design reuse: It is common to see the same logic function replicated many times across
the design. In a fully automated methodology, one can uniquely construct and optimize
each instance of this logic. If the uses are expanded uniquely, each use can be optimized
in the context in which it is used. If the physical implementation is reused, then the block
must be optimized so that it works in all of its contexts simultaneously, which is a more
challenging task. However, common practice shows that even the so-called fully automated
methodologies require a fair amount of human intervention. Although reuse does present
more complexity, there is a point (number of instances) for every design, for which the
benefit of implementing the logic just once outweighs the added complexity.

After choosing and hierarchical design automation methodology, the single most important
decision impacting physical synthesis is the manner in which the design is partitioned. One may
work within the boundaries implied by the logic design, or instead one may completely or partially
flatten the design and allow the tools to draw their own boundaries. The first choice, working within
the confines of the logic design, is still the most common use of hierarchy.

Hierarchical processing based on logical partitioning involves getting a leaf set of logical par-
titions (perhaps using node reduction as described below) then using those partitions as physical
entities, which are floorplanned. In this sense, the quality of the logical partitioning is defined by the
quality of the corresponding physical and timing partitioning, which in turn directly affects difficulty
of the problem presented to PDS.

But this is a source of conflict in developing the design. From a functional point of view, for
example, the designer might develop a random logic block that describes the control flow for some
large section of dataflow logic. This is a good functional decomposition and is probably good for
simulation, but it may not be good physically because in reality one would not want the control to
be segmented in a predefined area by itself, but would want it to be interspersed among the data
flow block.

The distribution of function within the logical hierarchy may make it impossible to success-
fully execute physical synthesis. Attributes of an optimal physical partitioning include a partition
placement and boundary pin assignment that construct realively short paths between the partitions.
Attributes of an optimal timing partitioning include paths that do not go in and out of several par-
titions before being captured by a sequential element with the signals being launched of captured
logically close to the hierarchical boundaries.

An effective partitioning also include a distribution of chip resources. The first step is to reduce
the number of hierarchical nodes by collapsing the design hierarchy. Collapsing the design hierarchy
removes hierarchical boundaries that will constrain PDS. In practice, this node reduction is limited
only by the performance of the available tools. It is possible (even probable) that some logic function
get promoted all theway to the top level if it interfaceswithmultiple partitions. In our earlier example,
the control flow logic partition would be a good candidate to promote to the top level so its logic
could be distributed as needed. As noted above, one of the motivating factors for doing hierarchical
design is to manage risk by limiting the impact on the design of logic changes to the logical partition.
Collapsing nodes can reduce this advantage of hierarchy, so there is again a conflict between obtaining
a good physical representation and maintaining the logic hierarchy for engineering changes.

The next step, floorplanning, is to assign space on the chip image to each partitionwhile reserving
some space for top level logic. These two steps, although guided by automated analysis, usually
require a fair amount of human intervention.

To run PDS on a partition out of the context of the rest of the design hierarchy, sufficient detail
regarding the hierarchical boundaries must be provided. The floorphanning steps specify the outline
of the hierarchical boundary. What remains is the determinations determine of the location of the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 829 29-9-2008 #18

Placement-Driven Synthesis Design Closure Tool 829

pins on the hierarchical boundary and their timing characteristics. These details are best determined
by viewing the design hierarchy as “virtually flat” and performing placement and timing analysis.

A virtually-flat placement simultaneously places all partitions, allowing hierarchical boundary
pins to float, while constraining the contents of each partition to adhere to the floorphan. The hierar-
chical boundary pins are then placed at the intersection of the hierarchical net route with the outline
of the partition. The timing details for hierarchical boundary pins can be calculated by constructing a
flat timing graph for the hierarchical design. Once the hierarchical boundary paths have been timed,
the arrival and required arrival times should be adjusted by apportioning the slack.

This process of slack apportionment involves examining a timing path that crosses hierarchical
boundaries and determining what portion of that path may be improved through physical synthesis.
To perfectly solve this problem, the slack apportionment algorithm would have to encompass the
entire knowledge base of the optimization suite. Because, this is impractical, one must rely upon
simple heuristics. The elastic delay of a particular element in a hierarchical path can be modeled as a
simple weight applied against the actual delay. If it is known that a portion of the design will not be
changingmuch, one would assert a very low elasticity. In the case of an static random access memory
(SRAM) or core, a zero elasticity would be used. Once the elastic delay along the hierarchical path is
determined, the slack is apportioned between the partitions based upon the relative amount of elastic
delay contained within each partition.

In addition to timing, capacitance and slew values are apportioned to the hierarchical pins. This
results in hierarchical boundary pin placement and timing assertions allow physical synthesis to be
executed on each partition individually.

Once all of the blocks have been processed out of context, all of the sequentially terminated
paths within a block have been fully optimized, but there still may be some improvement needed on
cross-hierarchy paths.

In Figure 39.10, consider the path between sequential elements S1 and S2. Two cells on the path
are in block 1 and three cells are in block 2. There is a global net between them going from block
pin 1 to block pin 2. There are timing and other assertions on BP1 and BP2 that have been developed
during the apportionment phase. Out-of-content optimization on block 1 and block 2 may have made
these assertions incorrect. At this point, one wants to reoptimize this path in a virtually flat way by
traversing the path hierarchically and applying optimization along it with accurate (nonapportioned)
timing.

Note that no additional optimization needs to be done on the logic cloud between sequentials
S0 and S1 because there was no timing approximation needed during out-of-context optimization.

Block 1

Block 2

BP1

BP2

S0 S1

S2

FIGURE 39.10 Hierarchical design example.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 830 29-9-2008 #19

830 Handbook of Algorithms for Physical Design Automation

Further, when the hierarchical optimization is done on the S1 to S2 path, no timing information is
needed for the logic between S0 and S1. Eliding the timing on such paths reduces CPU time and the
memory footprint needed for hierarchical processing.

Again referring to Figure 39.10, top-level optimization may be performed to buffer the net from
BP1 to BP2.

39.6.2 HIGH-PERFORMANCE CLOCKING

Inmicroprocessor designs, clock frequencies are significantly higher than forASICs and the transistor
counts are large as well. Thus, the global clock distribution can contribute up to 50 percent of the
total active power in high-performancemultihertz designs. In a well-designed balanced clock trees,
most of the power is consumed at the last level of the tree, that is , the final stage of the tree that
drives the latches.

The overall clock power can be significantly reduced byconstraining each latch tobe as physically
close as possible to the local clock buffer (LCB) that drives it. Figure 39.11 shows this clustering
that latches around the LCB. One may think that constraining latches in this matter could hurt
performance because latches may not be ideally placed. However, generally, there is an LCB fairly
close to a latch’s ideal location, which means the latch does not have to be moved too far to be placed
next to an LCB. Further, there can be a positive timing effect because skew is reduced from all the
latches being clustered around local clock buffers (as shown in Figure 39.12).

Savings in power are obtained as a result of the reduction in wire load being driven by the clock
buffer. We have found empirically that clustering latches in this manner reduces the capacitive load
on the LCB by up to 40 percent, compared to unconstrained latch placement; this directly translates
into power saving for the local clock buffer.

39.6.3 POWER GATING TO REDUCE LEAKAGE POWER

Exponential increase in leakage power has been one of the most challenging issues in sub-90 nm
CMOS technologies. Power gating is one of most effective techniques to reduce both subthreshold
leakage and gate leakage as it cuts off the path to the supply 18, 19.Conceptually, it is a straightforward
technique; however, the implementation can be quite tricky in high-performance designs where the
performance trade-off is constrained to less than 2 percent of the frequency loss due to power gate

FIGURE 39.11 Latch clustering around LCBs in a high-performance block.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 831 29-9-2008 #20

Placement-Driven Synthesis Design Closure Tool 831

FIGURE 39.12 Cluster of latches around a single LCB.

(footer/header switch insertion). Figure 39.13 shows a simple schematic of a logic block that has
been power gated by a header switch (PFET) or a footer switch (NFET). Obviously, footer switches
are preferred due to the better drive capability of NFETs. Operationally, if the logic block is not
active, the SLEEP signal can turn off the NFET (footer switch) and the virtual ground (drain of
NFET) will float toward Vdd (supply voltage), thereby reducing the leakage by orders of magnitude.

Introducing a series transistor (footer/header) in the logic path results in a performance penalty.
This performance penalty can be mitigated by making the size of the footer/header larger so as to
reduce the series resistance. However, the leakage benefit reduces with increasing size of the power
gate. Practically, in low-power applications, over 2000 times leakage saving can be obtained at the
expense of 8–10 percent reduction in performance. However, in high-performance designs, this is
a relatively large performance penalty. So, larger power gate sizes are chosen (approximately 6–8
percent of logic area) to achieve less than 2 percent performance penalty with over 20 times leakage
reduction.

In general, power gating can be physically implemented in the designs using block-based coarse-
grained power gating and intrablock fine power gating (similar to multiple-supply voltages). In a
block-based implementation, the footer (or header) switches surround the boundary of the block,
as shown in Figure 39.14. This physical implementation is easier because it does not disturb the
internal layout of the block. However, it has a potential drawback in terms of larger IR drop on the
virtual ground supply. For IP blocks, this is the preferred implementation technique for power gating.

Sleep Header switch

Logic block

Footer switchSleep

FIGURE 39.13 Power gating using header/footer switches.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 832 29-9-2008 #21

832 Handbook of Algorithms for Physical Design Automation

GND GND GNDVDD VDD

M1 metal

M2 metalFooter locations

VGND

VGND
VGND

VDD

VDD

VDD

FIGURE 39.14 Coarse-grained power gating with macro/core. GND=Ground; VDD= voltage drain drain;
VGND= virtual ground.

Fine-grained power gating, as shown in Figure 39.15, where the footer switches are implemented
within the logic in a regular layout aremore desirable in a high-performancedesignwhere the voltage
drop across the power gate as well as IR and EM (electromigration) requirements are more stringent.

39.7 INTO THE FUTURE

We have summarized the current workings of IBM’s physical synthesis capabilities to display the
complexities of such a system. Physical synthesis requires a seamless integration of many previously
separate design automation domains, such as optimization, placement, timing, extraction, and routing.
However, as technology progresses toward 45 nm and beyond, more will be demanded of physical
synthesis. It must be dynamic and must constantly adapt to changing technologies, design styles,
and design specifications.

Timing closure will continue to evolve into the even more complex problem of design closure.
Design closure requires that accurate modeling of the clock tree network and routing be incorporated
earlier and earlier up the physical synthesis pipeline to take into account their effects on timing and
signal integrity. Meeting global power constraints, using multithreshold voltages, voltage islands,
power gating, etc. also becomesmore critical. Onemust pay attention to how physical-design choices
relate to chip fabrication, so design for manufacturability and handling of variability will become
increasingly important. Optimizations must become more sophisticated to take these additional
objectives into account.

Increasing chip sizes and additional requirements for physical synthesis to meet and incorporate
these additional constraints also further exacerbates the ability to run efficiently, perhaps another
reason why hierarchical design is becoming more prevalent.

GND

VGND

Virtual
grid

Macro/core

M2 metal

M1 metal

Footer switch
location

Global
grid

FIGURE 39.15 Fine-grained power gating within a block. GND=Ground and VGND= virtual ground.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 833 29-9-2008 #22

Placement-Driven Synthesis Design Closure Tool 833

REFERENCES
1. C. J. Alpert, C. -N. Chu, and P. G. Villarrubia. The coming of age of physical synthesis, In IEEE/ACM
ICCAD, San Jose, CA, 2007, pp. 246–249.

2. L. Trevillyan, D. Kung, R. Puri, L. N. Reddy, and M. A. Kazda. An integrated environment for technology
closure of deep-submicron IC designs. In IEEE Design and Test of Computers, pp. 14–22, January 2004;
W. Donath, P. Kudva, L. Stok, P. Villarubia, L. Reddy, A. Sullivan, Transformational placement and
synthesis, in Proceedings of the Conference on Design, Automation and Test in Europe Exhibition, Paris,
France, 2000, pp. 194–201.

3. C. J. Alpert, S. K. Karandikar, Z. Li, G. -J. Nam, S. T. Quay, H. Ren, C. N. Sze, P. G. Villarrubia, and M.
C. Yildiz. Techniques for fast physical synthesis. Proceedings of the IEEE, 95(3):573–599, March 2007.

4. U. Brenner and A. Rohe. An effective congestion driven placement framework. In Proceedings of
International Symposium on Physical Design, San Jose, CA, pp. 6–11, 2002.

5. J. Darringer, E. Davidson, D. J. Hathaway, B. Koenemann, M. Lavin, J. K. Morrell, K. Rahmat, W. Roesner,
E. Schanzenbach, G. Tellez, and L. Trevillyan. EDA in IBM: Past, present, and future. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 19(12):1476–1497, December 2000.

6. I. Sutherland, R. F. Sproull, and D. Harris. Logical Effort: Designing Fast CMOS Circuits. Morgan
Kaufmann, San Fransisco, CA, 1999.

7. L. Trevillyan, P. Kotecha, A. Drumm, and R. Puri. A Method for Incremental Cell Placement for Minimum
Wire Length, U. S. patent pending.

8. E. Bozorgzadeh, S. Ghiasi, andM. Sarrafzadeh. Optimal integer delay budget assignment on directed acyclic
graphs. IEEE Transactions on CAD of ICs and Systems, 23(8):1184–1199.

9. V. Kravets and P. Kudva. Implicit enumeration of structural changes in circuit optimization. In Proceedings
of Design Automation Conference, San Diego, CA, pp. 439–441, June 2004.

10. R. E. Bryant. Graph-based algorithms for Boolean function maniupulation. IEEE Transactions on
Computers, C-35(6):677–691, August 1986.

11. G. R. Chiu, D. P. Singh, V. Manohararajah, and S. D. Brown. Mapping arbitrary login functions into
synchronous embedded memories for area reduction on FPGAS. In IEEE/ACM ICCAD, San Jose, CA,
pp. 135–142, 2006.

12. B.Guan andC. Sechen. Large standard cell libraries and their impact on layout area and circuit performance.
In IEEE ICCD, Austin, TX, pp. 378–383, 1996.

13. A. Hussain and K. Umino. Method to close timing on all corners with synopsys galaxy at and below
130 nm. In SNUG, San Jose, CA, 2005.

14. R. Murgai. Improved layout-driven area-constrained timing optimization by net buffering, In 18th Interna-
tional Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems
Design (VLSID’05), Kolkota, India, pp. 97–102, 2005.

15. V. N. Kravets. Constructive multi-level synthesis by way of functional properties. PhD Thesis, University
of Michigan, Ann Arbor, MI, 2001.

16. C.Guardiani,M. Bertoletti, N. Dragone,M.Malcotti, and P.McNamara. An effectiveDFMstrategy requires
accurate process and IP pre-characterization. In IEEE/ACM DAC, Anaheim, CA, pp. 760–761, June 2005.

17. H. Ren, D. Z. Pan, C. J. Alpert, and P. Villarrubia. Diffusion-based placement migration. In Proceedings of
Design Automation Conference, Anaheim, CA, pp. 515–520, 2005.

18. R. Puri, L. Stok, J. Cohn, D. Kung, D. Pan, D. Sylvester, A. Srivastava, and S. Kulkarni. Pushing ASIC
performance in a power envelope. In Proceedings of Design Automation Conference, Anaheim, CA, p. 788,
2003.

19. H. Li, S. Bhunia, Y. Chen, T. N. Vijaykumar, and K. Roy. Deterministic clock gating for microprocessor
power reduction. In High-Performance Computer Architecture, Anaheim, CA, pp. 113–122, 2003.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C039 Finals Page 834 29-9-2008 #23

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 835 29-9-2008 #2

40 X Architecture Place
and Route: Physical Design
for the X Interconnect
Architecture
Steve Teig, Asmus Hetzel, Joseph Ganley,
Jon Frankle, and Aki Fujimura

CONTENTS

40.1 Introduction . 835
40.2 History. 836
40.3 X Interconnect Architecture . 836
40.4 Theoretical Benefits of X . 837
40.5 Limitations of X . 839
40.6 Role of Vias . 840
40.7 System For X Place and Route . 840
40.8 X Placement . 840
40.9 X Global Routing . 843
40.10 X Detailed Routing . 848

40.10.1 Routing Space Model and Search Algorithm .. 849
40.10.2 Manufacturing-Constrained Routing .. 851

40.11 X Steiner Trees. 855
40.12 X Manufacturing Considerations . 856
40.13 X in Practice . 859
40.14 Summary . 860
References . 861

40.1 INTRODUCTION

For 40 years, physical design dogma has decreed that (nearly) every wire on a chip be Manhattan—
either horizontal or vertical—despite the intuition that adding diagonal wires should significantly
reduce the total interconnect required to implement a design. This chapter briefly provides some
historical context for the ubiquity of Manhattan wiring and then introduces and explores the
X interconnect architecture [IML+02,T02], which combines diagonal and Manhattan wires per-
vasively to improve IC layout. Realizing the theoretical benefits of X, which are substantial and
surprisingly diverse, in practice has proven to be quite challenging, demanding both a careful reex-
amination and refinement of the manufacturing flow and a material revision of almost every tool in
the physical design flow. For example, X place and route (XPR)—the X system described here—has
required new methods for floorplanning, wire load estimation in synthesis, global placement, global

835

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 836 29-9-2008 #3

836 Handbook of Algorithms for Physical Design Automation

routing, detailed placement, detailed routing, parasitic extraction,OPC, clock routing, power routing,
geometric search, and even database representation. The novelty of these methods has resulted in
numerous patents. Even as X has begun to see commercial use, with X chips from Toshiba and ATI,
among others, many challenges remain, and X-enabled physical design techniques should become
and increasingly active area of research in both academia and industry in the coming years.

40.2 HISTORY

The transistors for almost every chip are distributed across the chip’s two-dimensional surface, so
at least two routing directions are required for the flexible interconnection of those transistors. Until
the mid-1980s, it was not practical to have more than one or two layers of metal wiring above the
polysilicon, or poly, layer. Because chips are generally rectangular so that the silicon wafers on
which they are manufactured can be efficiently diced, it seemed logical to make the poly layer and
the one metal layer (M1) orthogonal and axis-parallel.∗ The second metal layer, M2, where it was
used, was typically orthogonal to M1. Very short diagonal jogs were used in some channel routers
and to miter the corners in the power rail through the I/O pads, but general diagonal wiring was
not seriously considered. With the introduction in the late 1980s of planarization techniques to IC
manufacturing, an additional layer of metal, M3, became widely available, which single-handedly
precipitated the invention ofmodern, area-based, place-and-routemethods and their rapid dominance
over the row-and-channel-based techniques that preceded them. Although hexagonal wiring (i.e., 0◦,
120◦, and 240◦)—now, sometimes called the Y architecture [CCK+03]—could, in principle, have
been very powerful even then, the newness of multilayer, Manhattan IC manufacturing caused the
fabs to fear the added complexity of adding diagonalwires aswell. So, despite a few theoretical papers
(e.g., [K95] and references therein) and patents [FHM+98,SKK+96](never reduced to practice) in the
mid-1990s, therewas no significant, practical exploration of diagonalwiring, either inmanufacturing
or in EDA, before the X effort at Simplex Solutions in the 1990s. Fortunately, the number of wiring
layers increased sharply in the 1990s, which motivated a reexamination of the possible benefits of
diagonal wiring and the practical hurdles involved in realizing them.

There are two apparent challenges in producing chips with diagonal wires: manufacturing and
EDA. As it happens, for some diagonal interconnect architectures, such as those that add 45◦ and
135◦ wires to Manhattan wires, mainstream manufacturing flows and equipment enable reasonably
straightforward fabrication. Physical design for diagonal wiring, on the other hand, is considerably
more challenging than it first appears, andXPR—the first full-fledged such physical design system—
required dozens of person-years of development before reaching industrial-strength maturity.

The sections that follow describe the X interconnect architecture, which uses both Manhattan
and diagonal wires pervasively, and introduce some of the many EDA innovations that were required
to reduce X to practice.

40.3 X INTERCONNECT ARCHITECTURE

Moore’s law has been largely driven by the regularity and rapidity with which fabs have been
able to shrink transistors and wires while still manufacturing them reliably. Even with the 20-fold
shrink from the 5-µ (∼1982) to the 0.25-µ (∼1982) technology node, transistors continued to
dominate area, performance, and power. But the emergence of nanometer technologies (e.g,. 180,
130, 90 nm, etc.) starting in the late 1990s so sharply increased the relative impact of wires versus
transistors on area, performance, and power as to necessitate radical innovations in the interconnect.
The severity of the interconnect problem at nanometer nodes is evident from the replacement of
aluminum wires on chips with copper: a multibillion-dollar effort that required new chemistry, new

∗ In fact, even in the two-layer case, the total wirelength would be reduced by about 1 percent by making the two wiring
directions be northeast and northwest instead, but the complexity of doing so outweighs a mere 1 percent benefit.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 837 29-9-2008 #4

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 837

equipment, and revised EDA tools that collectively reduced interconnect delay by ∼50 percent. Of
course, changes of wiring material are not the only tools available, and other radical suggestions,
such as the pervasive use of diagonal wires, reemerged as worthy of consideration. Just as with
the introduction of copper wiring, though, the benefits of diagonal wires carry significant practical
challenges with them.

For one, most of the equipment for the generation of masks and the manufacture of chips relies
on an underlying, fine, discrete grid. All manufactured structures must have their edges on this grid,
which was designed for Manhattan wiring but also directly permits 45◦ (northeast or NE) and 135◦

(northwest or NW), because a diagonal wire of length k
√
2, where k is a positive integer, resolves

into k units in each of the horizontal and vertical directions. The apparent manufacturability of NE
and NWwires suggested that an interconnect architecture with Manhattan, NE, and NWwires could
provide the benefits of diagonals in a practical implementation. By contrast, the griddedness of
manufacturing is a significant obstacle to the practicality of hexagonal wiring, for example, as the
edges of the wires do not lie on grid. Further, at least one of the legs of a 30–60–90 right triangle
must be irrational; that is the

√
3 term does not cancel for hexagonal wiring the way that the

√
2

terms do for the X architecture.
A second consideration is that lower layers of writing (e.g., M1 and M2) are typically used for

the internal connections of the standard cells and IP blocks themselves. Because cells and blocks
are overwhelminglyManhattan, there was no significant benefit in adding diagonals to those wiring
layers for connections between cells. On the other hand, upper layers of mental are specifically
intended for connections between cells, so it is more reasonable to combineManhattan and diagonal
wires there.

An X interconnect architecture is one that combines the extensive use of both Manhattan wires
and diagonal wires. In practice, distinct wiring layers (or, at least, regions within those wiring layers)
are devoted to particular Manhattan or diagonal preferred directions. While one can construct an
X architecture with each layer having wires rotated 45◦ with respect to the previous layer, it is
improbable that such structures outperform those in which layers are stacked in orthogonal pairs.
Further, the desire for backward compatibility with Manhattan-based infrastructure, such as standard
cell libraries, has strongly influenced the application of diagonals in practice.

The above observations—particularly, backward compatibility—motivated the typical use in
practice of X interconnect architectures in which M1–M3 are Manhattan, typically alternating
between horizontal and vertical preferred directions on successive layers, M4 is diagonal (e.g.,
NE), and M5 is perpendicular to M4 (e.g., NW). If there are additional metal layers, such as M6 and
M7, they are again Manhattan, while M8 and M9 could be diagonal. Thus,

1. Every layer is adjacent to a perpendicular layer (to facilitate efficient local wiring)
2. Every sequential quartet of layers above M1 contains a horizontal, a vertical, a NE, and

a NW (to facilitate efficient, larger-scale wiring)

An interconnect architecture that satisfies these two properties makes the name “X” apparent,
owing to the novel, X-shaped intersection of adjacent diagonal layers. However, the term and the
techniques described in this chapter apply more generally to any interconnect architecture in which
both Manhattan and diagonal wires play a significant role.

40.4 THEORETICAL BENEFITS OF X

X, both in theory and in practice, reduces chip area, wirelength, delay, coupling capacitance, and
power versus Manhattan, sometimes to such as extent that a full layer of interconnect can be
removed. To estimate these benefits analytically, it is easiest to begin with wirelength reduction.
Most current placement algorithms minimize some approximation to the sum over all nets of the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 838 29-9-2008 #5

838 Handbook of Algorithms for Physical Design Automation

semiperimeter of each net’s Manhattan bounding box.∗ As a result, placers optimize a correlate to
wirelength, possibly weighted by timing considerations or congestion, but one might expect that
they are unbiased with respect to bounding-box aspect ratios. To test this hypothesis, we examined
dozens of industrial, Manhattan designs early in the X project and found that, in fact, aspect ratios
are distributed uniformly.

At least 55–60 percent of nets in contemporary designs are two-pin nets even before placement,
and the increasing use of buffers has sharply increased that percentage after placement. So, as a
simple but reasonable estimate of the wirelength reduction versus Manhattan to expect with X,
one can estimate the expected reduction in the wirelength of a two-pin net with a random aspect
ratio. In the Manhattan metric, a circle (i.e., the locus of points at a fixed distance from a specified
center point) is diamond-shaped; for the Xmetric, the circle is octagonal. Consider a connectionwith
extent (|�x|, |�y|).Without loss of generality, suppose that (|�x| ≥ |�y|); then, theManhattan-to-X
wirelength reduction for this connection is 1−[|�x| + |�y|(√2− 1)]/(|�x| + |�y|). The expected
value of this reduction, assuming that the source is at the center of a diamond, and the sink’s location
is uniformly distributed around the periphery is Ref. [T02].

1 −

1/2�
0

[(√
2 − 2

)
y+ 1

]
dy

1/2�
0

dy

∼= 14.6 percent

Importantly, this analysis assumes that only the router has changed, yet the real benefits of X become
apparent only bymaking the whole system X-aware. For example, suppose that the placer is X-aware
too; then, by analogy to theManhattan system, the placer for Xminimizes wirelength but is unbiased
with respect to aspect ratio. To model an X placer analytically, rearrange the components that would
have been placed within the Manhattan disk of radius r (i.e., filled diamond) to occupy an X disk
(i.e., filled octagon) of equal area [T02]. The resulting wirelength reduction, which is one minus the
ratio the octagon’s radius of a diamond of equal area, is 1 − (1/2)1/4 ∼= 15.9 percent.†

For the significant fraction of high-end designs that are core-limited rather than pad-limited,
substantial additional improvement with X is possible, though. Most designs have utilizations far
below 100 percent: often as low as 70 percent or even lower for interconnect-dominated designs,
such as network switches [BR02]. It is reasonable to assume that X-place-and-route systems are as
good at optimizing X objective functions as Manhattan place-and-route systems are at optimizing
Manhattan objectives, but reducing wirelength by 15.9 percent while leaving die size unchanged
would leave the X router with a much easier problem than a Manhattan router had. Instead, an X
system can exploit the wirelength reduction versusManhattan by shrinking the die until the X routing
is as dense as the Manhattan routing was in the original design. In particular, reducing wirelength
by 15.9 percent would require a die size shrink of 15.9 percent to restore the wiring density of the
original Manhattan layout. Of course, this die size reduction would permit an additional wirelength
reduction of 1 − [1 − (1/2)1/4]1/2 ∼= 8.3 percent, which, in turn, permits an additional die shrink of
8.3 percent, etc. The resulting infinite product converges to a wirelength and die size reduction of
(1−1

√
2) ∼= 29.3 percent. This reasoning demonstrates that, in general, any technique that achieves

a wirelength reduction of R percent with fixed area can be used to achieve a wirelength reduction

∗ Of course, the minimization of bounding-box semiperimeters, despite its near-ubiquity in current placers, ignores the
location of pins within the box and the concomitant flexibility of wiring; it is, thus, a very crude measure of placement
quality.

† The analogous analysis for Euclidean (i.e., all-angle) wiring results in a wirelength reducton of 1−√
(2/π) ∼= 20.2 percent

versus Manhattan.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 839 29-9-2008 #6

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 839

of almost 2R percent (i.e., R(2−R) percent) if area reduction is used to maintain constant layout
difficulty. Particularly for wire-dominated designs such as networking chips, which typically have
low utilizations with Manhattan wiring, significant die size reduction is possible with X. Although
the above analysis is somewhat aggressive in assuming that all nets have only two pins, it is also
conservative in that the substantial additional area reduction owing to the concomitant shrinkage of
drivers and elimination of buffers is not considered. In practice, reducing the die size by 15–20 percent
and the wirelength by 20–25 percent has proved straightforward in general, and the alternative of
not reducing the die size but instead using X to remove a wiring layer (e.g., at ATi)—and sometimes
two wiring layers—has also been achieved.

One additional, nonobvious, benefit of X is its utility for routing over IP blocks. Most IP blocks
(e.g.,memories) useManhattanwiring for layers 1–3 and sometimes 4, andmany have the restriction
that Manhattan wiring over the block is forbidden due to capacitive coupling considerations. X, on
the other hand, can cross over such such blocks diagonally with no risk of parallel runs between the
over-the-block wiring and within-the-block wiring. Because more than half of a typical chip today
is occupied by IP such as memory blocks, the opportunity to use the entirety of the upper wiring
layers confers substantial benefit.

40.5 LIMITATIONS OF X

Although both practical experience with X and theoretical analysis demonstrate its significant
benefits—to wirelength, area, delay, power, etc.—X is not a panacea. For example, the above analy-
sis demonstrates that the wirelength reduction is nearly doubled by permitting area reduction, but
for those atypical designs that have extremely high utilizations (e.g., more than 90 percent of the
die is occupied by components that are not buffers), X can provide only more modest wirelength
reductions. Clearly, for blocks that have highly eccentric aspect ratios (e.g., 5:1), the use of diagonals
does not buy much. In practice, such narrow blocks typically abut Manhattan IP blocks, though,
so over-the-IP, diagonal wiring somewhat mitigates the diminished utility of X within the eccentric
block.

X requires enough wiring layers for some of them to be used for diagonals; for low-end devices
for which signal routing extends only to M4, for example, X cannot be usefully applied. Finally,
for designs with extensive Manhattan constraints on the upper wiring layers, diagonal wiring can be
difficult to incorporate effectively. For example, if the floorplan is Manhattan-oriented, so that large
horizontal buses cross an X block on M4, large-scale, diagonal wires on M4 become infeasible by
construction.

In practice, though, the vastmajority of designs showsignificantwirelength and die size reduction
with X when compared to their Manhattan equivalents. Curiously, the most significant limitation of
X in practice is the widespread misconception that X changes only the router and not the full layout
system. Indeed, as the theoretical analysis above shows, keeping the area and the placement fixed
and changing only the wiring to permit diagonals buys only 14.6 percent wirelength reduction and
achieves that only for netlists with only two-pin nets. For real netlists, the improvement is somewhat
lower in practice—perhaps, 10 percent (e.g., [I06])—if only the wiring is permitted to change. Using
a Manhattan floorplan, and Manhattan buses on the upper layers, can make the situation even worse.

To see the benefits of X in practice, one must apply it to problems it addresses well:

• Designs for which high utilization could not be achieved in Manhattan
• Designs that are not overly eccentric in aspect ratio
• Designs with enough wiring layers to devote part of at least one to diagonals
• Designs that accommodate X by not overconstraining the upper layers with required

Manhattan wires, and, most importantly
• Designs that permit the whole layout system, and just the router, to be X-aware

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 840 29-9-2008 #7

840 Handbook of Algorithms for Physical Design Automation

40.6 ROLE OF VIAS

Analyses such as the one above assume that vias between layers are free. Although the interconnect
delay caused by vias is sharply reduced with copper wires, vias remain the most difficult features to
manufacture reliably on an integrated circuit, and reducing the number of vias can have a significant,
positive effect on yield. In addition, vias create routing obstacles on two layers, rather than one, so
reducing the number of vias can significantly simplify layout.

An even more entrenched dogma than the use of Manhattan wiring is the use of preferred-
direction wiring: that is, the requirement that each routing layer have a designated, preferred wiring
direction (e.g., horizontal), such that virtually all of the wire length on that layer is required to be in
the preferred direction. The assumption of a preferred direction for each layer significantly simplifies
and accelerates routing algorithms, but it also demands a via for every change of direction and, thus,
for any connection in a Manhattan layout that is not exactly vertical or horizontal. Because X can
move diagonally without using a via, it has the potential to reduce the number of vias significantly.
On the other hand, backward compatibility with existing, Manhattan cell libraries demands that the
diagonal layers are upper layers (e.g., M4 and M5), so extra vias are required to use the diagonals,
mitigating via reduction somewhat. The pronounced impact of vias on the both yield and layout thus
motivates the consideration of nonpreferred-direction wiring: layouts in which wires in multiple
orientations coexist on the same wiring layer.

Even a conservative nonpreferred-direction strategy for X, using diagonal jogs on Manhattan
layers and Manhattan jogs on diagonal layers, can sharply reduce the number of vias required for
layout, and XPR sees substantial via reductions in practice versus contemporaryManhattan systems.
More radical than short, nonpreferred-direction jogs, though, but considerably more powerful is
the complete abandonment of the preferred-direction requirement. Full directional freedom on all
layers, called liquid routing, makes the fullest use of the power introduced by diagonals, but is far
more challenging from an EDA point of view than preferred-direction X. In the addition, the yield
benefits of a via reduction from liquid routing must be weighed against lithographic concerns about
nonpreferred-direction wiring in nanometer technologies to assess its long-term practicality. From
an academic point of view, though, liquid routing is almost completely unexplored territory. The
problems there are particularly challenging, but the potential, practical payoff is high. The reader
is encouraged to investigate the patents by Caldwell and Teig on Q∗ and related liquid routing
ideas [TC04,TC05,TC06] as a starting point for future work.

40.7 SYSTEM FOR X PLACE AND ROUTE

In the sections that follow, we describe a few of the tools and techniques used within XPR that
made X layout possible starting in 2001. Many additional X-aware tools are required, ranging from
parasitic extraction to clock routing and even to visualization infrastructure, as quad and K-D trees
(Section 4.3.2) are highly inefficient for region queries with both long diagonal and long Manhattan
wires. We confine the presentation here to placement, global routing, detailed routing, and Steiner
tree construction.

40.8 X PLACEMENT

Placement is typically performed in one of the three ways: recursive partitioning, analytical tech-
niques, or Monte Carlo methods such as simulated annealing. Annealing, which is often used for
detailed placement but rarely for global placement anymore because of its high computational
expense, can be directly adapted to theX interconnect architecture by changing the objective function,
but the other two placement methods require much more drastic modifications.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 841 29-9-2008 #8

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 841

Another common approach to modern placement is analytical formulation. Here, the netlist’s
wirelength is approximated by a continuously differentiable function that is either directly mini-
mizedwith a conjugate gradient-basedminimizer (or other derivative-based techniques) or indirectly
minimized using a linear system of equations whose solution minimizes the original wirelength
formula.

An unusual and significant challenge in X placement stems from the inseparability of two-
dimensional distance into independent, one-dimensional components. The Manhattan distance
between (x1, y1) and (x2, y2) is simply |x2 − x1| + |y2 − y1|, so x and y can be treated indepen-
dently, and reducing distance by one unit in either x or y is equally desirable, all other considerations
(e.g., congestion) being equal. Distance in X, though, is max (|x2 − x1|, |y2 − y1|) + (

√
2 − 1)∗

min(|x2 − x1|, |y2 − y1|). When this equation is differentiated, the resulting derivative inter-
twines x and y in ways for which most analytical placers and partitioners were not designed. In
fact, this requirement for separability is why most analytical placers use either squared Euclidean
length [KSJA91], some approximation of linear wirelength using piecewise squared length [SDJ91]
or β-regularization [BKKM01], or some other approximation such as bounding-box semiperimeter
[KRW05]. All of these techniques have the desirable property that the x- and y- equations are sparse
and separable: that is, can be solved as two separate systems, thus greatly reducing runtime.

Typical analytical placement techniques often also require separability within the legalization
step that follows, which is usually partitioning-based. For example, it is not clear that techniques
such as Ref. [V97] can be made X-aware, even in principle.

Methods such as β-regularization [BKKM01] and conjugate gradient methods [KRW05] can be
generalized to accommodate X, at the expense of some implementation complexity, and this would
be a potentially fruitful area for future research.

By contrast, recursive partitioning methods, either standalone or as legalization methods for
analytical placers, seem to be fundamentally incompatible with X. To see this, consider how a
modern partitioning algorithmworks. Most of these techniques are ultimately derived from the early
algorithm of Kernighan and Lin [KL70], later improved by Fiducia and Mattheyses [FM82]. After
the authors’ names, this type of approach is typically referred to as KLFM.

The KLFM algorithm first divides the set of components into two roughly equal-sized subsets.
It then moves or swaps individual components between these subsets heuristically to minimize the
number of nets that contain components in both subsets—that is, that are cut. The KLFM algorithm
itself is a fairly simple local optimization heuristic, yet it performs quite well on this problem.
An enormous amount of later research builds improvements onto the basic KLFM structure (see
Section 7.2).

The way that KLFM is typically used to solve the placement problem is by recursive bipartition-
ing, in which the two-dimensional placement problem is artificially decomposed into a sequence of
one-dimensional partitioning problems. This is accomplished by specifying a vertical or horizontal
cutline that roughly bisects the placement area and using KLFM to partition the set of components
into two subsets that are constrained to lie on opposite sides of the cutline. Then, each partition is,
in turn, bisected by a cutline, and KLFM divides the subset within the partition into two smaller
subsets that are constrained to lie on opposite sides of the partition’s cutline. This process contin-
ues recursively until only a few components are left in each partition. A variety of techniques have
been devised for terminal propagation, which allows the algorithm to capture the influence of con-
nected components outside of the current subproblem on the placement of the components inside
the subproblem to which they are connected.

Unfortunately, recursive bipartitioning of this type is poorly suited to theX interconnect architec-
ture. The use of horizontal and vertical cutlines one at a time assumes the separability of horizontal
and vertical distances in assessing placement quality just as many of the analytical placement tech-
niques do. The inseparability of the X metric means that even the addition of diagonal cutlines to
a partitioning strategy will not capture X placement quality, which depends fundamentally on the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 842 29-9-2008 #9

842 Handbook of Algorithms for Physical Design Automation

interplay betweenManhattan and diagonal geometries. To modify partitioning to support X, we used
two-dimensional, k-way partitioning in place of one-dimensional bipartitioning.

To exploit the benefits of the partitioning idea within an X system, we use a modified simulated
annealing strategy to partition the components into an n × m grid, where n and m are both greater
than 1. This approach was used by Suaris and Kedem [SK89], where n = m = 2, and by Bapat and
Cohoon [BC93], Alexander et al. [ACGR98], and Ganley [G95], where n = m = 3. We refined and
improved this approach for n = m = 4 to create the first placer for the X interconnect architecture.

The key principle behind these algorithms is to consider an approximate routing of each net,
where the cell positions are rounded to the centers of the partitions in the n× m grid. The partition
of a given net can then be considered to form a bit vector of length nm, in which each bit is on if a
component on the net lies in the corresponding partition. The numeric value of this bit vector can
then be used to index a table giving the score of that particular configuration of the net. This table is
precomputed once and stored, so there is no recurring runtime cost for the computation of its values.
A single, canonical value for the score can be stored and simply scaled (if necessary) to the actual
size of the current grid.

The default measure used by all of the placement algorithms cited above, including ours, is the
length of an optimal (in our case, octilinear) Steiner tree of the points in the n × m grid. Although
Suaris and Kedem [SK89] and Huang and Kahng [HK97] report that KLFM-style partitioningworks
well for n = m = 2, it turns out to perform quite poorly for n,m ≥ 3. The terrain of the optimization
objective becomes too rough, and KLFM-style, local optimization algorithms become trapped in
deep local optima that are globally poor. Our algorithm instead uses a sophisticated, multiobjective
variant of simulated annealing; although this is computationally expensive, it produces substantially
higher-quality solutions thanKLFMor any of several other, simpler heuristics that we tried.The other
objectives, aside from total Steiner tree length, enforce that both the components in each partition
and the (approximate) routing congestionwill fit in the partition. The increased number of partitions,
and the fact that their sizes cannot be adjusted to match a particular partition, makes the balance
problem harder to solve in this context as well. In particular, balancing the 16 slots alone often leads
to overfilled rows or columns in the 4× 4 grid. Additional terms to enforce the balance of each rows
and columns are added, resulting in the overall objective function for a particular p:

f (p) =
∑
nets n

len(n) + α
∑
slots s

bal(s) + β
∑
rows r

bal(r) + γ
∑

columns c

bal(c)

bal(s) = max{size(s) − cap(s), 0}2

The capacity cap(s) of a slot s is calculated simply by evenly distributing the total size of the
cells across the available space in the slot. The row and column are the four rows and columns of
slots in the 4×4 grid. Some care must be taken in optimizing this multiobjectivemeasure, especially
because the balance terms are highly correlated with one another.

The major drawback of simulated annealing is its high running time. We alleviate this problem
somewhat by using multilevel techniques [CCY03,YWES00]. The netlist is recursively clustered so
that the clusters are (heuristically) loosely connected to one another and approximately the same size.
The clustering recursion stops when there are a few hundred clusters. That clustered netlist is then
partitioned in the 4×4 grid using annealing.One level of clusters is then resolved into its subclusters,
leaving each subcluster in the same partition as its parent cluster. Annealingmeasures the temperature
of the revised solution (in the higher-resolution optimization space) and then continues to improve it.
This process is repeated until the bottom level of clustering—that is, the original netlist—is reached.
Note that in this process, it is critical that the annealer accurately measure the temperature of the
starting partitions; too high a temperature will destroy the quality of the partitioning solution found
so far, and too low a temperature will restrict the amount of further improvement that the annealer
can make.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 843 29-9-2008 #10

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 843

Once a partitioning solution is found for a particular grid, the same technique is applied recur-
sively to each of the 16 slots. This process repeats until there are few enough cells in a partition that
a solution can be found by branch-and-bound, without the use of partitioning. The entire algorithm
is as follows:

Place(Netlist N , Grid G: {

Recursively cluster N (= N0) to form netlists N1,N2, . . .,Nc

Randomly partition Nc into G
Anneal to improve the partition of Nc in G
Repeat for c down to 1: {
Break the clusters that form Nc, producing netlist Nc−1
Measure the temperature of Nc−1’s partition in G
Continue annealing to improve the solution further

This technique is completely data-driven; although the default measure stored in the table is the
optimal Steiner tree length, by simply swapping in a different table the algorithm can optimize
different distance metrics or different measures such as low-diameter trees or cross-cut congestion.

The increased resolution of the partition matters fundamentally; just as Ganley [G95] demon-
strated the superiority of a 3×3 partition over a 2×2 partition, our own work has demonstrated that
the 4× 4 partition is superior still to the 3× 3 partition. For future work, storing the table for a 5× 5
partition is probably still within reach on current hardware. It could certainly be accomplished by
storing only one of each set of eight symmetric configurations, though this presents an algorithmic
challenge in being able to look them up sufficiently quickly; after all, this is by far the most-executed
operation in the algorithm.

To achieve the best overall results with X, the layout system must include a placement strategy
that optimizes layout in an X-aware way. Accomplishing this is in many ways more difficult than in
theManhattan realm and presents challenges that require new approaches than those used historically
forManhattan placement. A few solutions to those challenges are presented here, but doubtless there
is much improvement yet to be made.

40.9 X GLOBAL ROUTING

Most physical design tools start the routing process with a global router (GR), which creates a plan—
that is, a set of corridors—for the detailed router to follow for each net. The basic objectives of GR are
to minimize wirelength and to minimize the worst congestion, measured as (wires planned/estimated
capacity) at boundaries between regions called Gcells.

In the X interconnect architecture, another application for GR is in determining pin placement
on macros during floorplanning. Without pin assignment of the quality that an X-aware GR can
provide, final X routing at both the top level and within blocks would suffer.

Global routing for the X interconnect architecture should be sensitive to problem details for
which the change from a rectilinear to an octilinear distance metric makes a difference. For example,
the set of pin locations of a net can be augmented up front with auxiliary Steiner points to steer
the routing toward an optimal topology. Such points should be derived using octilinear Steiner tree
algorithms as discussed in Section 40.11.

Another example arises in the computationofwirelength lower bounds, as in estimating distance-
based future cost used to evaluate intermediate nodes in search algorithms. Given an already derived
target set of wiring (e.g., wiring T in Figure 40.1), consider the subproblem of routing to it from
a new point, P. A fast approximation of distance to the target set is the distance L1 to a minimal

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 844 29-9-2008 #11

844 Handbook of Algorithms for Physical Design Automation

T

T

L 2

L1

P

B1

B2

FIGURE 40.1 Use of two bounding boxes in estimating distance.

bounding box, B1, of that set. Checking the distance L2 to a second minimal bounding box B2,
with sides rotated—for example, 45◦ with respect to the first—sometimes gives a much more useful
(larger) lower bound. Although this technique springs naturally from consideration of the octilinear
distance metric, it is applicable to rectilinear wiring problems as well.

The largest impact of the X interconnect architecture is that it requires fundamental rethinking
of the GR problem representation. At the core of any approach is the scheme chosen to model global
routes as connections between Gcells, at the boundaries of which congestion will be evaluated.

In a search algorithm, the model prescribes a routing graph: the basic nodes in the search space,
and the available moves between nodes (edges). It is preferable to use three dimensions of routing
nodes (x, y, layer) to allow accurate assessment of costs associated with vias, especially in areas
where particular layer transition are unavailable. For octilinear routing, octagonal Gcells might seem
appropriate, but they are unworkable because octagons do not tile the plane. One could consider
rotating the Gcell grids on diagonal layers 45◦ with respect to those on Manhattan layers, but mis-
matched shapes complicate themodeling of layer transitions.We beganwith a uniformgrid of square
Gcells on all layers.

Planar moves are exclusively in the preferred routing direction for the given layer. But how
should moves on diagonal layers be modeled? A naive approach, providing diagonal moves between
Gcells that touch at their corners, would introduce two problems:

1. Routes using only diagonal layers would fall unnaturally into two disjoint sets. As with
opposite-colored bishops in chess, there is no purely diagonal path between black and
white squares: for example, between two Manhattan neighbors.

2. Because diagonally adjacent Gcells touch only at their corners, it is unclear where the
congestion impact of a move between them would be assessed. Any detailed connection
between such neighbors must also traverse one of their mutual Manhattan neighbors, but
which one, is ambiguous.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 845 29-9-2008 #12

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 845

FIGURE 40.2 Gcells with routing nodes.

To address these issues, we have instead used a graphwith higher-resolutionmoves. EachGcell is
divided into four quadrants, which serve as routing graph nodes. TheGcells with nodes are illustrated
in Figure 40.2. On Manhattan layers, this doubles the steps needed to cover a given distance: half
the moves are internal to a Gcell and do not pay a congestion cost.

Routes on 45◦ layers visit southeast (SE) and northwest (NW) quadrants alternately; routes on
135◦ layers visit northeast (NE) and southwest (SW) quadrants alternately. The connections for both
types of diagonal layers are illustrated in Figure 40.3. Every diagonal move crosses a known Gcell
boundary.Moreover, congestion is sampled at the same places (Gcell boundaries) on every layer, as

A

NW

NW

SE

SE

B

NE

NE

SW

SW

FIGURE 40.3 Alternate routing nodes on diagonal layers. The left-side illustration shows moves between
quadrants in the 45◦direction. The right-side illustration shows moves between quadrants in the 135◦ direction.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 846 29-9-2008 #13

846 Handbook of Algorithms for Physical Design Automation

FIGURE 40.4 Congestion is measured on every layer only at Gcell boundaries.

shown in Figure 40.4. Direct moves between Gcells that touch at their corners, which suffer from
ambiguous congestion effects, are eliminated.

Because in this model the different diagonal layers use disjoint sets of (x, y) nodes, special zig
direction changes are introduced inside Gcells, providing, for example, for direct moves between a
SE quadrant on a 45◦ layer (e.g., node A in Figure 40.3), and a NE quadrant on an adjacent 135◦

layer (e.g., node B in Figure 40.3).
The presence of Gcell-internal moves at which planar congestion is not assessed in unusual.

Care must be taken to prevent search algorithms from abusing internal moves: for example,
if NE moves across northern Gcell boundaries could be alternated with NW sequences inside
Gcells, long due-north connections could be constructed in which only 45◦-layer boundaries were
crossed. For this reason, we allow at most one zig in a Gcell, because two successive zig moves
(e.g., SE(45) to NE(135) and NE(135) to NW(45)) could form a NW sequence without incurring
135◦-layer congestion.

Zig moves are awkward, and the high-resolution move grid incurs a substantial runtime penalty.
We are investigating less cumbersome models. Still, the model described here has proven quite
practical. The model provides the substrate for any routing algorithm chosen. Although the most
popular algorithms for global routing use a rip-up-and-reroute approach, we were attracted to the
multicommodity flow formulation as described by Albrecht ([A01], also in Chapter 32) for the
provably optimal properties that its theoretical framework offers and because its use of multiple
rounding phases reduces its dependence on routing order. This approach builds on an algorithm of
Garg and Könemann [GK98] and insightful theoretical work by Fleischer [F99].

Ref. [A01] formulates a mixed integer program for GR and a linear programming relaxation
that allows fractional global routes and describes cost functions in terms of edge congestion and
net length with respect to which minimal Steiner trees are found for all nets in one phase and for

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 847 29-9-2008 #14

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 847

prescribed subsets of nets in later phases. The average of solutions from the different phases is a
solution to the fractional GR; selection of one route for each net from a random phase gives the
GR solution. Two key strong points of this approach are that it uses a very effective exponential
congestion cost function and that it provides multiple alternative routes per net.

Our work convinced us that multicommodity flow approaches to GR are more attractive than
previously reported.We have foundmodifications of the cost function and new uses for the alternative
routes, some described below, that dramatically speed up the algorithm and improve the quality of
its GR solutions. A major motivationwas our desire to provide tighter guidance to the detailed router
by using smaller Gcells: on the order of 10–20 tracks wide versus 50–100 in Ref. [A01]. Taken
together with our interest in modeling five or more layers instead of two and a fourfold increase in
nodes per layer to support the routing graph discussed above, the need for performance improvement
is clear.

Runtime is reduced when wirelength is considered, because length contributions to cost help
rein in the very broad expansion characteristic of Dijkstra-style search when minimizing congestion
cost alone. Curiously, Ref. [A01] recommends initializing the variables ye (for congestion on each
edge) and yL (for total wirelength) so that the initial contribution to congestion cost from any move
dominates its contribution to length cost by a very large factor, L/c(e). (L is the total wirelength of
the design, and c(e) is the capacity of Gcell edge e.) If, instead, ye and yL are initialized to an identical
value (to put length and congestion costs on an even footing), excellent congestion is still achieved
with much more reasonable runtime.

Normalized to its initial value, the recommended congestion cost ye of using an edge e during
any search for a minimal Steiner tree is exp[εU(e)/c(e)], where ε is an experimental constant, and
U(e) is the total capacity already used by routes passing through edge e. This cost is backward-
looking in that it accounts only for earlier routes. A powerful and novel refinement is to charge a
forward-looking cost equal to the increase to ye that would result if the route being considered took
the given edge, namely exp[εU ′(e)/c(e)]− exp[εU(e)/c(e)], whereU ′(e)−U(e) is the incremental
usage involved. Without this refinement, the cost of increasing edge usage from 0 to 3, as for a wide
wire, for example, would be the same (= exp(0)) whether the edge’s capacity were 1 or 16.

Similarly, although a term like yL can help optimize total wirelength, the associated cost is only
linear in the length of a net during any search. Effective control of individual netlengths, as for
timing-driven GR, requires a super-linear cost: for example, a term exponential in the ratio of the
route length being produced to a desired length Ld. Any node n in a search can be associated with
a length estimate Lf(n) = Lg(n) + Lh(n), where Lg(n) is the total search length along the best path
found from the source to node n, and Lh(n) is a lower bound on the remaining distance to the target.
Lf , rather than Lg, should be consulted when optimizing route length, using a cost to step from node
A to node B such as

exp(εLf(B)/Ld) − exp(εLf(A)/Ld),

which penalizes detouring moves but not those that move toward the target.
Assembling aGRby selecting a route for each net at random from the solutions of different phases

(randomized rounding) is widely used and has advantages as a theoretical tool, but it is inappropriate
to use only this technique to convert fractional to integer solutions in practice. Especially for problems
with smaller Gcells, randomized rounding yields unreliable results because the tail of the congestion
distribution is so long (i.e., has somuch probabilitymass) that a small number of highly overcongested
cells frequently results in practice with a randomized rounding strategy. A better GR can be obtained
by applying heuristics to optimize the mix of solutions from different phases. Even the following
simple greedy procedure is effective:

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 848 29-9-2008 #15

848 Handbook of Algorithms for Physical Design Automation

Input: Routes R[n][p], for nets n = 1, . . . ,N, from phases
p = 1. . .P
Output: Selections s[n], defining the route to use for
each net n = 1, . . . ,N, namely R[n][s[n]].
Procedure:

(1) Set R[n] := 1 for n = 1, . . . ,N.
(2) Embed route R[n][s[n]] for n = 1, . . . ,N, to compute

total usages U (e) for edges e in the routing graph.
(3) For i := 1 to k
(4) begin
(5) For n := 1 to N
(6) begin
(7) Unembed the current route R[n][s[n]]
(8) Set cost[p]:= ∑

e∈R[n][p]
exp(εU (e)/c(e)) for p = 1, . . . ,P

(where each U (e) includes the embedding of R[n][p])
(9) Set s[n]:= the value of p (in 1 . . .P) for which cost [p]

is minimum.
(10) Embed route R[n][s[n]]
(11) end
(12) end

The procedure admits numerous variations: for example, initial solutions other than phase 1
(line (1)), different numbers of iterations k (line 3), different net orderings (line 5), and different cost
functions (line 8). Of course,more general, nongreedyheuristics are also possible. To our knowledge,
the problem of optimizing the mix of results from different phases has not yet been explored—even
for applications of multicommodity flow outside of global routing—which is interesting because
we have observed that it can yield substantially improved solution quality compared to randomized
rounding.

TheX interconnect architecture requires rethinkingof the basic routing graph and also encourages
a fresh look at several aspects of global routing algorithms. Exponential costs new solution selection
heuristics can be applied in the optimization of many criteria in a multicommodity flow approach.
Although the theory of these techniques remains to be developed further, they have already proven
effective in practice.

40.10 X DETAILED ROUTING

The most surprising thing about X is that the whole physical design system—not just the detailed
router—must be rethought to realize its full benefit and that the full benefit goes far beyond what
simple rerouting of a Manhattan design with a diagonal-aware detailed router can achieve. Perhaps
the second most surprising thing about X is that the detailed router itself requires modifications,
both to achieve runtimes competitive with Manhattan routers and the best possible results. The
modifications can range from fairly conservative repairs of existing routing techniques all the way
to radical reconceptualizations of the routing problem.

Ultimately, the complete abandonmentof preferreddirections—that is, liquid routing—promises
the highest-quality routing, both for X and for Manhattan, with respect to wirelength, timing, and
via counts. However, for reasons of both implementation simplicity and smoother adaptation of
X technology (versus possible lithographic concerns with liquid routing), we opted to maintain
preferred directions (except for local jogs), which still provides many of the advantages of the X
interconnect architecture versus Manhattan.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 849 29-9-2008 #16

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 849

Xdetailed routing requires changes throughout a detailed routing system, ranging from low-level
functionality such as the geometrymanipulationmachinery up to high-level strategies for double-cut
via insertion. In the following, we concentrate on two central areas of detailed routing in X: routing
space modeling and path search with manufacturing constraints.

40.10.1 ROUTING SPACE MODEL AND SEARCH ALGORITHM

Today’s (Manhattan) detailed routing systems vary somewhat in their specifics but are generally built
on top of gridded, Dijkstra/A∗/Lee maze router-based, rip-up-and-reroute strategies. For reasons of
memory, runtime, and solution quality, grid-based routers are particularly common in the domain of
both block-level and full-chip flat routing. Most connections are made with the minimum possible
wire width and spacing: that is, at the minimum pitch at which routing segments can be placed
adjacent to each other without violating design rule constraints. To model the routing space most
straightforwardly, a three-dimensional rectangular grid where nodes have distance equal to the min-
imum pitch is a convenient and accurate data structure for representing dense packing of wires. For
each layer, a preferred direction (horizontal or vertical) is given. All nodes and edges of the grid that
are located on a straight line in the preferred direction are commonly referred to as a track. The router
positions the majority of the wires onto tracks, and the remainder are connections between tracks
(jogs). All such jogs and also all vias between the planes connect two neighboring grid nodes. Special
methods are used to deal with off-grid pins, wider-than-normalwires, and other geometries, and con-
straints that cannot be fully modeled in the gridded approach. As described in Chapter 23, efficient
search algorithms such as line search, maze routing, and, in some circumstances, track assignment
methods and channel routing can be used for generating a routing on such a gridded representation.

Despite its near-ubiquity in Manhattan systems, the straightforward gridded representation is
ill-suited to the X interconnect architecture. To see this, suppose the horizontal (or vertical) distance
between adjacent nodes in the grid is P, as shown in Figure 40.5. Then, just adding diagonal edges
between the nodes will restrict diagonal routing to diagonal pitches P′ that are multiples of P/

√
2.

Because P′ > P, the minimumusable diagonal pitch would be P∗√
2, but for current manufacturing

technologies, P′ ≈ P holds. Thus, naively using the classical three-dimensional routing grid as a

P

2∗ P√

FIGURE 40.5 Gridded routing space rotation. Only every other diagonal track is usable so Manhattan pitch
P → diagonal pitch

√
2 ∗ P.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 850 29-9-2008 #17

850 Handbook of Algorithms for Physical Design Automation

model for diagonal routing would effectively waste more than 30 percent of all available routing
resources. The seemingly reasonable notion of simply rotating Manhattan routing resources on the
upper layers by 45◦ is not a viable approach.

A suitable model for X must provide efficient usage of the available routing space. This means
that Manhattan and diagonal tracks must be available at the smallest permissible Manhattan or
diagonal pitches, respectively, and grid nodes must exist at all intersections of tracks in two adjacent
planes (to allow vias between these places). At the same time, the memory requirements should not
be significantly higher, but this is impossible to achieve with a simple three-dimensional gridded
model.Making the resolution finer to allow diagonal tracks in almost minimumpitchwill necessarily
bloat the grid size and also seriously affect the runtime of algorithms.

Extensions of interval-based representations as described in Ref. [H98] are much better suited
for efficient detailed routing for X. Relying on the predominance of preferred-direction routing but
permitting diagonals, interval-basedmethodsmodel the routing spacewith arbitrarily high resolution
in one direction per layer without impacting memory requirements.

The whole routing area is implicitly viewed as a gigantic three-dimensional grid, where the
distance between two neighboring nodes is the manufacturing grid resolution M. Each plane is
seen as a collection of lines with a preferred direction (horizontal, vertical, NE, or NW) within
distance M, for Manhattan, or M

/√
2, for diagonal, planes. The lines that represent desired routing

tracks (according to the minimum pitch requirements) are stored as a set of intervals. Each interval
represents amaximal consecutive set of nodes on the linewith the same routability status.All intervals
comprising a single line are kept in an appropriate tree structure to support fast query, split, merge,
and update operations. Lines not representing routing tracks are not represented at all. More details
about the technique can be found in Ref. [H98].

Using this approach, tracks aremodeledwith manufacturing grid resolution, and at all (x, y) loca-
tions where tracks of adjacent routing layers intersect, there is a grid node on both tracks (implicitly
represented by an interval on the track), as illustrated in Figure 40.6. Because the highest possible
manufacturing resolutionM is used for the track representation, the model preserves the flexibility
of gridless routing within a superficially gridded data structure.

Manufacturing
grid node

Manufacturing
grid line

Diagonal
routing tracks

Manhattan
routing tracks

FIGURE 40.6 Efficient track-based routing space model. Dashed lines on manufacturing grid units. Solid
lines represent Manhattan and diagonal routing tracks. Diagonal pitchmatches almost fully theManhattan pitch.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 851 29-9-2008 #18

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 851

The memory consumption of such a data structure is determined by the complexity of the
obstructions and wires in the routing layers. It does not depend on the actual grid resolutionM. As
the overwhelmingmajority of wires obey the preferred directions, this type of interval representation
is very memory-efficient [SN02] . Moreover, there is no penalty for X versus Manhattan, either in
terms of memory requirements or in terms of packing tracks at the minimum possible pitch.

The interval-based representation enables the efficient implementation of path search algorithms
for X using extensions of the interval labeling approach in Ref. [H98]. The theoretical and practical
complexity is just moderately higher than the complexity of the variant for Manhattan setups.

The best possible X routing requires full octilinear wiring in the absence of preferred direction
constraints: that is, the generation of paths that make use of diagonal andManhattan directions on the
same plane. Therefore, in planes where diagonal wiring is allowed, up to three labeling operations
might happen between neighboring intervals on adjacent tracks versus one in the Manhattan case.
Fortunately, the runtime of a search using interval labeling is mostly determined in practice by the
number of labels used to traverse between adjacent planes. Because the number of potential via
locations is the same for X and Manhattan wiring, although their positions are different, the overall
runtime of an interval-based router is comparable for both interconnect architectures.

40.10.2 MANUFACTURING-CONSTRAINED ROUTING

Having an efficient routing space representation and fast search algorithms as previously described
makes it possible to use known sequential routing methods combined with rip-up-and-reroute strate-
gies to do the basic routing. At nanometer technology nodes, though, the fundamental routing
representation, path search machinery, and rip-up heuristics are far from sufficient for creating
manufacturable X designs.

Manufacturing constraints such as OPC require metal geometries to fulfill certain spacing or
length requirements and to avoid certain geometric structures completely. The space of possible
geometries that an X system can produce is far richer than those generated by a Manhattan system,
enabling X to produce superior solutions. On the other hand, X requires much more elaborate
constraint handling to avoid creating geometries that can be difficult to manufacture. Examples
include

• Acute angles: that is, a metal shape having two edges in a 45◦ outer angle. Such geometries
occur when the routing process creates a path that makes a 45◦ or 315◦ bend.

• Short edge: that is, boundary edges of metal geometries with a length below a certain
threshold. The length threshold may depend on the specific angle of the edge as well as on
the angle between this edge and its neighboring edges at the corners.

• Minimum area: that is, a small connected piece of metal on a plane with total area below a
certain threshold. Such geometries can occur if the routing process makes a very small jog
on the plane between two vias.

Although acute angles cannot be created by a Manhattan system, short edges and minimum area
constraints are troublesome inManhattan routing, too.Nonetheless, there is a fundamental difference
in how these constraints are handled within an X system versus its Manhattan counterparts; although
it is possible to handle these constraints in mostly separate pre- and postprocessing phases for
Manhattan wiring, X requires awareness of such rules in virtually all steps of the design process.
The flexibility of the X approach would otherwise generate a large number of violations that could
not be repaired with simple, local transformations in a postprocessor.

Short edges inManhattan designs typically occurwhencomplicated pin structures are accessedby
wires or vias. In practice, inManhattan systems, pin access constraints are handled by a preprocessing
step in which legal pin access directions are determined.Remaining short edges aside frompin access

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 852 29-9-2008 #19

852 Handbook of Algorithms for Physical Design Automation

(a) Illegal wire-to-via connections

(c) Illegal transition from wide
diagonal wire to thin diagonal wire

(d) Legal transition from wide
diagonal wire to thin diagonal wire

Violates minimum
edge length rules

(b) Legal wire-to-via connections

FIGURE 40.7 (a) Illegal and (b) legal access of wires to vias, (c) illegal and (d) legal pattern for a transition
between a wide diagonal and a narrow diagonal wire.

are typically cleaned up after routing by a postprocessing, search-and-repair pass that performs small
local routing modifications.

By contrast, X typically includes constraints that are sufficiently complex that they must be
addressed in core layout steps such as path search.Manufacturers typically require diagonal geometry
edges to have a significant minimum length, which leads to a menagerie of illegal patterns that must
be avoided during the layout process (Figure 40.14). Vias can be accessed only at specific angles,
transitions between wires of different widths must follow certain patterns, and jogging structures
must obey length constraints depending on the shapes that are adjacent to both sides of the jog.
Figures 40.7 and 40.8 illustrate legal and illegal geometries.

Minimum area requirements present additional challenges. Even a track-based approach such as
the one described here permits via positions at arbitrary small separations because of themisalignment

(a) Length requirement for
middle segment

(b) Length requirement for segment
 from via to diagonal wire

FIGURE 40.8 (a) Diagonal U-turn structure requiring a minimum length for the middle segment and
(b) via-jog-bend structure requiring a minimum length for the jog.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 853 29-9-2008 #20

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 853

If these vias are too close, the metal
segment between them can violate

minimum area rules

FIGURE 40.9 Via positions between can be too close together thus triggering a minimum area violation.

of Manhattan and diagonal tracks. The fine resolution of the underlying representation could allow
search algorithms to create paths that travel just a small distancewithin one plane, violatingminimum
area requirements. In contrast, a Manhattan setup is much more regular and prevents most such
problems inherently by not having any pair of potential via locations too close together. Figure 40.9
shows a potential minimum area violation.

In practice, the entire flow of an X detailed router has to be aware of such constraints and to
obey them throughout. In particular, the path search algorithms must be modified for X to address
the complex design rules involved.

Path search addresses the problem of finding a minimum cost path between two points or two
areas of the design such that the path geometries create aDRC-cleanmetal structure connecting them.
Assume a found path consists of segments S1, S2, . . . , Sn where each Si is either a via or a straight
line. A(Si) denotes the angle of planar segments or the direction of the via (whether going downward
or upward). L(Si) denotes the length of Si if Si is not a via. Without loss of generality, assume that all
planar segments are maximally extended: that is, Si−1 and Si+1 are either vias or straight lines with an
angle not equal to A(Si). The search process can be made both pattern-and length-aware as follows:

Let A be the set of all octilinear angles plus via directions (i.e., up and down), and let R ⊆ A×A
be a given set of invalid patterns. LetQ : A×A×A → � be a given set of pattern length constraints.
Then, the following conditions must be satisfied:

(1) [A(Si), A(Si+1)] /∈ R, for all i = 1, . . . , n− 1
(2) L(Si) ≥ Q[A(Si−1), A(Si), A(Si+1)] for all planar Si, 1 < i < n

R and Q can vary depending on the technology and the particular wire and via shapes involved.
So, a search algorithm must provide generic support for almost arbitrary and unrelated restrictions
while still maintaining a behavior similar to unconstrained Manhattan versions.

Although unusual in integrated-circuit routing, such path constraints are not uncommon in printed
circuit board (PCB) routing (e.g., [TT98,MH00,SFH+91]). Because problem sizes in PCB routing are
orders of magnitude smaller than in IC layout, computation- andmemory-intensive search heuristics
can be used in the PCB world. For an X-aware IC layout system to be compatible with traditional
Manhattan flows, runtime and memory requirements cannot be arbitrarily increased.

Fortunately, constraints such as those above can be handled exactly, at least in theory, through the
use of label-based path search. A traditional, node-based,Dijkstra-style, maze running algorithm can
be extended to permit multiple labels per node, v, instead of just a single one. Expansion (scanning)
is then done on a per-label basis rather than a per-node basis. Labels at a node v are classified by
triples in A × ℵ × A, which implicitly incorporate the history of the labeling process so far that is
relevant to evaluating the constraints. (A1, d,A2) denotes that this label has been originated from a

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 854 29-9-2008 #21

854 Handbook of Algorithms for Physical Design Automation

A1

A2

d

V

V�

History information (A1, d, A2) of a label at node V

FIGURE 40.10 History information (A1, d,A2) of a label at node V .

sequence of labels starting at a node v′ where all of the labeling steps leading from v′ to v use edges
within angle A1. v′ has distance d from v, and the label at v′ that was the start of these expansions
has been created by a prior expansion within angle A2 = A1. Within each such label class, only the
one with minimum cost value is kept and expanded.

This history information is sufficient to allow the algorithm to explore all paths P satisfying
the constraints and to generate a shortest one: successively, the not-yet-expanded node-label pair
[v, (A1, d,A2)] with minimum cost value is retrieved and expanded toward neighboring nodes v′ à la
Dijkstra, as shown in Figure 40.10. The expansion operation creates a new label of class (A′

1, d
′,A′

2)

at v′. If there already exists a label within the same class at v′, the one with higher costs can be pruned
while preserving the admissibility of the search algorithm.

Let � ⊂ A × ℵ × A be this set of label classes. For degenerate cases, P may contain self-
intersections that can be addressed by separate cleanup heuristics. Conveniently, one can use integral
distance values on both Manhattan and diagonal edges as distances in X are algebraic integers in
Z(

√
2): that is, the diagonal distances can be expressed as integral multiples of

√
2.

LetQ ≤ c, c ∈ �. Then, for any label (A1, d,A2)with d ≥ c, all short edge conditions are always
honored. Therefore, there are at most �c� + ∣∣c/√2

∣∣ different distance values for labels that can lead
to relevant short edge conditions and it is sufficient to handle at most 10 ∗ 10 ∗ 2 ∗ �c� label classes.
As a result, the runtimeof such a generalizedDijkstra algorithm is boundedbyO[c∗|V |∗log(c∗|V |)]
where V is the number of nodes in the grid,∗ because each pair [v, δ] ∈ V × � can be interpreted as
a virtual node. The algorithm performs a Dijkstra search, but instead of labeling nodes v ∈ V , the
virtual nodes are labeled, expanded, and stored in an appropriate priority queue.

Interval-based, Dijkstra-style searches as in Ref. [H98] can be extended in a manner directly
analogous to that described for nodes above. Although only a subset of all the potential label classes
is relevant in practice, and c is at most on the order of 50–80 manufacturing grid units, a rigorous
implementation would still be far too high in complexity to be practical. A more runtime-efficient
technique relaxes the search slightly into a heuristic that bounds the number of label classes at a node
to a small value.Using heuristics to decidewhich label classes aremost promising to find a path—for

∗ The analogously generalized A∗ has linear expected time.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 855 29-9-2008 #22

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 855

example, by considering which labels allow the greatest variety of bends and vias when they are
expanded and by pruning away the most restricted ones—yields enormous runtime improvements
without giving up significant quality.

Of course, with such a heuristic, a search may terminate unsuccessfully (even when a legal
path exists) or occasionally violate the constraints to connect the source and the target. Fortunately,
extensive use of such pruning heuristics on a wide variety of real-world designs has shown no
significant impact on wirelength versus an optimal algorithm. In practice, failures of the heuristic to
find a path are almost always caused by deadlocking close to a target area with limited access routes.
In such situations, pruning can accidentally exclude the only viable path that reaches the target.

Hybrid approaches that explore only part of the solution space in noncritical areas (by considering
only a few label classes per node) and automatically switch to a more exact mode in small areas
with limited routing flexibility (mostly near the source and target areas) can be very powerful in an
industrial setting. Because problematic areas, such as those around small pins, typically are just a
few tracks in diameter, search hybrids can be tuned to have only a modest impact on runtime while
achieving the last bits of solution quality in practice.

TheXsystemuses a slightly different approachbycombiningpruningwithbidirectional searches.
Having a search process originate from both the source and the target avoids deadlocks that might
otherwise occur near a target geometry. The search originating from the target still uses extensive
pruning, so it is equally fast, but the likelihood of getting deadlocked near the target is much smaller,
as the search starts with limited choices for expansions.

The search techniques described here generalize to a bidirectional Dijkstra or A∗ setting, and
deciding which partial solutions can be combined to form a fully legal path can be done efficiently
during the bidirectional expansions. Suppose node v has a label L in class δ from the source–target
search and a label L′ in class δ′ from the target–source search.Whether the two subpaths given by the
labels can be combined to a path respecting all constraints depends only on the history information
of the classes δ, δ′. So, provided that c is small, it is even possible to precompute all combinations
out of � × � that allow legal stitching and to use a lookup table.

The few remaining cases where this strategy fails are handled by completing a path with a small,
illegal portion and then applying powerful repair steps based on rip-up and reroute for final cleanup.
This approach provides very good results in practicewith only a small runtime penalty and negligible
impact on wirelength and via count in the resulting layout.

It should be noted that similar constraint handling could become essential forManhattan systems
too, especially with nanometer process nodes and the increasing importance of design for manufac-
turability. For example, stacked vias, inwhich two consecutive vias have nowiring in the intermediate
plane, are forbidden. This can be handled exactly within the above framework by having three label
classes per node.

40.11 X STEINER TREES

The Steiner tree problem, in the context of physical design, is to find a minimum-length interconnec-
tion of a set of points in the plane. The original problemwas studied in the Euclidean distancemetric,
in which a line may have any angle; later, because of its relevance to circuit design, the Manhattan
version was considered and was dubbed the rectilinear Steiner tree (RST) problem [H66].

The RST problem has been well studied, and a number of excellent heuristics have been devised
for finding near-optimal solutions (e.g., [KR92]) as well as a variety of algorithms for computing
optimal RSTs [G99,WWZ00]. As the problem’s NP-completeness would lead us to expect, these
latter exact algorithms have worst-case exponential running time.

Yet a different metric is of interest in the X interconnect architecture: the octilinear metric
in which each line may have an angle that is an integer multiple of 45◦. Although a generalized
version of the octilinear Steiner tree (OST) problem was considered before the introduction of the
X interconnect architecture [SW92], the increased relevance that the X interconnect architecture

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 856 29-9-2008 #23

856 Handbook of Algorithms for Physical Design Automation

provided led to a much wider examination of the problem. A number of heuristics have been devised
(e.g., [CC02],[ZZJ+05]), and the GeoSteiner algorithm for the Euclidean and Manhattan problems
has been generalized to the octilinear metric as well [NWZ02].

A number of characteristics make the octilinear problem more similar to the Euclidean than to
the RST problem. For the rectilinear problem, Hanan [H66] proved that the grid formed by passing
horizontal and vertical lines through each point contains an optimal RST. Some of themost successful
RST heuristics rely on this property (e.g., [KR92]). Unfortunately, although a similar graph does
exist for the octilinear problem, the number of vertices in this graph is exponential in the number
of original points, thus limiting its usefulness for polynomial-time heuristics. Some heuristics and
approximation algorithms use a reduced, polynomial-sized subgraph of this graph as the basis for
their computations. Perhaps because of this reduction, or perhaps simply because the problem has
not yet been as widely studied, OST heuristics do not seem to produce trees that are as nearly optimal
as the best RST heuristics do in the Manhattan world.

Another interesting property of the OST problem is that the minimum spanning tree is a higher-
quality approximation of an OST than in theManhattan case. The Steiner ratio defines the maximum
ratio of the lengths of a minimum spanning tree and an optimal Steiner tree in a given metric. The
Steiner ratio in the Manhattan metric 1.5 [H76], while in the octilinear metric it is approximately
1.17 [K95].

It is also noteworthy that moving from the Manhattan to the octilinear metric achieves much of
the wirelength savings that is possible in any metric. According to one computation [CCKMW03],
a typical octilinear routing reduces length versus a Manhattan routing of the same set of points by
13–15 percent, and that a Euclidean routing only achieves an additional 4 percent. In other words, the
wirelength savings achieved achieved by using octilinear routing is nearly as good as even Euclidean
routing would be while maintaining straightforward manufacturability.

Much of the research on the OST problem has been to apply techniques from past research in
othermetrics to the octilinear problem. Perhaps, future work on techniquesmore specifically tailored
to the X interconnect architecture will yield further improvements.

40.12 X MANUFACTURING CONSIDERATIONS

In the design-for-manufacturing (DFM) era, it is no longer possible to make a design innovation,
particularly in physical design, without considering its manufacturing impact. Even worse, design
rules today are far more arcane than the simple width and spacing rules obeyed by EDA systems of
ten years ago; instead, these rules have become awkward and rather contrived approximations to the
limitations imposed by optical, mechanical and chemical characteristics of manufacturing processes.
As a result, in practice, contemporary design rules tend to model only existing design styles.

For example, in the case of the X interconnect architecture, the Manhattan assumption is so
prevalent that the future design rules for diagonals either did not exist orwere extremely conservative.
When there was no practical possibility of a design with more than a tiny fraction of the wires in
the non-Manhattan direction, there was no need to do the extra work required to validate diagonal
design rules.

However, manufacturing permits most diagonal design rules to approximate their Manhattan
analogues, and X clearly benefits from the added flexibility. To establish appropriate diagonal design
rules, three changes in the electronics industry were required:

1. The design community had to validate that given the design rule changes, the benefits were
substantial.

2. The manufacturing equipment community had to validate that the design rules can indeed
be tighter without causing problems.

3. The fabs in IDMs and foundries had to do test chip runs to demonstrate unequivocally that
the tighter design rules in manufacturable chips with good yields.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 857 29-9-2008 #24

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 857

To facilitate these changes, a broad industry alliance called the X Initiative was created.
It includes representatives from the entire electronics supply chain, including IDMs, foundries,
fabless semiconductor companies, semiconductor IP companies, mask-making companies, mask-
making equipmentmanufacturers,mask inspection and repair equipmentmanufacturers, lithography
equipmentmanufacturers, wafer processing equipment companies, wafer inspection equipment com-
panies, yield enhancement technologies and services companies, and EDA companies. Over 20
cofunded engineering studies, including production of test chips and test designs, were performed
in the first three years of the partnership. These studies proved that, even at nanometer technol-
ogy nodes, X chips with width and spacing rules for the diagonal layers roughly equivalent to
those for Manhattan layers were not only manufacturable, but also that X chips actually yield bet-
ter. Furthermore, these studies proved that increases in the mask cost owing to the X interconnect
architecture are negligible. An image showing manufactured wires on an X chip is displayed in
Figure 40.11.

Through this collaboration, we also discovered some X-specific design rules that are criti-
cal for EDA design-for-manufacturability for X. Most notably, 45◦ angles are forbidden, even at
T-intersections, but 135◦ angles are permitted, as illustrated in Figure 40.12. In fact, 135◦ jogs are
more manufacturable than 90◦ jogs, but 45◦ angles are not only hard to manufacture but also difficult
to inspect adequately. Fortunately, 45◦ angles are unnecessary to exploit the benefits of X. In fact,
by the triangle inequality, an acute angle for wiring always uses more wire than a right or obtuse
angle, so one would only want an acute angle to satisfy a strange, putative design rule. Rather, even
for difficult pin access and T-intersections, routes must simply exit at 90◦ and then turn 135◦; an
acute angle, if desired, must be filled to make a wider wire the outside edges of which are 90◦ or
135◦ angles. In practice, forbidding acute connections with X has had no negative impact on layout
quality.

As lithography for advanced process nodes becomes increasingly difficult, light sources are
becoming more and more specialized. Unidirectional or bidirectional light sources, such as dipole
and quadrupole, that are more accurate for one or two directions are increasingly common. These

M5

M4

FIGURE 40.11 Images of manufactured wires on an X architecture chip.

Design rule violation DRC clean: Notch filled DRC clean: Jogged

FIGURE 40.12 Illegal and legal angles in the X architecture.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 858 29-9-2008 #25

858 Handbook of Algorithms for Physical Design Automation

techniques sacrifice accuracy in nonpreferred directions to gain accuracy in the preferred directions.
The appropriate design solutions for X must account for a tighter design rule in one direction per
layer than in the other directions for that same layer. Fortunately, on any layer, any direction can be
accommodated, whether diagonal or Manhattan.

Ever-increasing mask costs are of increasing concern in the semiconductor industry, and one
might reasonably be concerned that X exacerbates an already bad situation. Fortunately, after care-
fully studying this question, Ken Rygler, founder of DuPont Photomasks, concludes that the degree
to which X increases mask cost is negligible [X01]. Roughly half of the mask cost is associated with
mask writing times, while the other half is from inspection and repair times. As evidenced by numer-
ous studies at KLA-Tencor [X01], inspection and repair do not present any X-specific issues as long
as 45◦ notches are never created, so the primary question is whether mask writing is significantly
worsened by X.

There are two ways to write a mask, particularly for less stringent metallization layers: laser
and E-beam. In laser-based mask writers, a television-like raster method is used. The write time is
constant whether writing X orManhattan (or circular for that matter) patterns. So, there is no change
in mask costs because of X if laser-based systems are employed.

E-beam-based mask writing is often used when precision is important. E-beam systems expose
what are called variable shaped beams (VSBs) of E-beam, one shape at a time. If these VSBs could
assume only rectangular shapes, then X would take substantially longer to write than Manhattan
masks because to approximate a sharp diagonal edge, many small rectangles would be needed, as
shown in Figure 40.13. In practice, though, isosceles right triangles or rectangles rotated by 45◦ from
horizontal are available as VSBs in most E-beam-based mask-masking machines. These unique
capabilities enable 45◦ wiring (e.g., but not 60◦ wiring) to be precisely written on masks without a
significant increase in mask write times.

In addition, metallization layers for interconnect are M2 and above. A typical implementation
of the X interconnect architecture would have the predominantly diagonal layers in M4, M5,
or M6. These layers are not the most data-intensive or time-consuming layers. Typical standard
cell-based designs have one-quarter to one-fifth the amount of data in upper layers of metal as
compared with diffusion, polysilicon, contact, or M1. Thus, slight increases in the amount of data
in these upper layers of metal do not contribute noticeably to the overall mask write time or,
therefore, mask cost.

Through the diligent efforts of the X Initiative, both the design and the manufacturing of X
designs are now practical. Several years ago, the initial reaction to the idea of the X interconnect
architecture, while acknowledging the potential benefits, included great skepticism about both the
EDA technology required and the possible impact onmanufacturing. In developingXPR, we learned
to focus not only on the computer science and software engineering required for the EDA portion of

Fracturing with only rectangular
aperture increases mask write time

Fracturing with triangular aperture
reduces mask write time

Fracturing with rotated
rectangular aperture

minimizes mask write time

FIGURE 40.13 Effects of fracturing on mask write time.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 859 29-9-2008 #26

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 859

the solution but also on the constraints and considerations imposed by customers and their vendors. Of
course, customer “constraints” are often rooted in a different set of underlying physical or economic
assumptions. A deep knowledge of the customer’s problems can uncover opportunities that would
otherwise be missed.

40.13 X IN PRACTICE

Asof thiswriting, theX interconnect architecture has demonstrated its potential on avariety of designs
and has results in several commercial chips, but it is still in the initial adoption phase. Considering
the significant and diverse benefits conferred by X, though, one expects pervasive diagonal wiring
to become increasingly common in future production chips.

With a new idea such as X, onemight fear that the theoretical benefits would be overshadowedby
the practical inefficiencies. In practice, though, X has consistently demonstrated results that match
the theoretical predictions, including the cycle of combined area and wirelength reduction predicted
by the infinite series described above.

The first production chip employing the X interconnect architecture was announced by Toshiba
Corporation and Cadence Design Systems, Inc. in 2004 and is shown in Figure 40.14. The Dig-
ital TV ASSP chip went to engineering sample in 2004, and went into volume production in
2005. The X interconnect architecture portions of the chip were reduced in area by more than
10 percent.

The first fabless production chip employing the X interconnect architecture was announced by
ATITechnologies, Inc., TSMC(Taiwan SemiconductorManufacturingCompany, Ltd.), andCadence
Design Systems in 2005. The chip was manufactured at TSMC and went into volume production in
2005. Because this design was a second volume manufacturing revision of an existing PCI-Express

TSPTOP

GFXVIOU

DACs
PLLs

TX49

FIGURE 40.14 First production chip employing the X interconnect architecture. (Courtesy of Toshiba.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 860 29-9-2008 #27

860 Handbook of Algorithms for Physical Design Automation

Chip micrograph of the first fabless
production chip from ATI,
manufactured at TSMC

Magnified section of the chip
micrograph of the ATI production chip
showing the diagonal power grid and
the diagonal wires in between them

FIGURE 40.15 Micrographs of the first fabless production chip from ATI.

Graphics chip, the objective was to remove a layer of metal for cost reduction. The objective was
met, and the chip micrographs are shown in Figure 40.15.

40.14 SUMMARY

We have described the X interconnect architecture, which combines diagonal and Manhattan wires
pervasively to improve IC layout, and portions of XPR system for X-aware placement and routing.
One must consider the entire system to garner the full benefit of X; detailed routing for diagonals,
while obviously crucial, is only a small part of the innovation and engineering required. Physical
design for X is a surprisingly broad and rich area of inquiry, containing new challenges in floor-
planning, wire load estimation in synthesis, global placement, global routing, detailed placement,
detailed routing, parasitic extraction, OPC, clock routing, power routing, geometric search, and even
database representation. We believe that an effective X system must be designed from scratch to
incorporate X. A Manhattan-based system reworked to handle X designs as an afterthought is likely
to be impractically slow and to yield poor results.

The obvious concerns regarding X are

• Whether one can build a practical, industrially applicable layout system that is X-aware
• Whether X chips can be readily manufactured
• Whether X confers enough benefit to be worth the trouble

As this chapter shows, we have built an industrial-strength X layout system; X chips can be manu-
factured and are being used in production; and the benefits, both theoretical and practical, are very
substantial. Even as X has begun to see commercial use, many challenges remain, and X-enabled
physical design techniques should become an increasingly active area of research in both academia
and industry in the coming years.

Postscript: The XPR system has consistently won industrial benchmarks, often producing a 30
percent reduction in power over Manhattan implementations. Nonetheless, for various reasons, the
XPReffort has been discontinued at Cadence, so forXPRdetails beyond the 2003-vintage technology
described here, please refer to the numerous X-related patent applications that have now published.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 861 29-9-2008 #28

X Architecture Place and Route: Physical Design for the X Interconnect Architecture 861

REFERENCES

[A01] C. Albrecht, Global routing by new approximation algorithms for multicommodity flow, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 20: 622–632,
May 2001.

[ACGR98] M. J. Alexander, J. P. Cohoon, J. L. Ganley, and G. Robins, Placement and routing for
performance-driven FPGAs, VLSI Design 7: 97–110, 1998.

[BKKM01] R.Baldick,A.B.Kahang,A.A.Kennings, and I. L.Markov, Efficient optimizationbymodifying
the objective function, IEEE Transactions on Circus and Systems 48: 947–957, 2001.

[BC93] S.Bapat and J. P. Cohoon, A parallel VLSI circuit layout methodology, Proceedings of the Sixth
International Conference on VLSI Design, pp. 236–241, 1993.

[BR02] U. Brenner and A. Rohe, An effective congestion driven placement framework, Proceedings of
the International Symposium on Physical Design, pp. 6–11, 2002.

[CC02] C. Chiang and C. S. Chiang, Octilinear Steiner tree construction, Proceedings of the 45th
Midwest Symposium on Circuits and Systems, Vol. 1, pp. 603–606, 2002.

[CCKMW03] H. Chen, C. K. Cheng, A. B. Kahng, I. Mandoiu, and Q.Wang, Estimation of wirelength reduc-
tion forλ-geometry vs. Manhattan placement and routing,Proceedings of the ACMInternational
Workshop on System-Level Interconnect Prediction, pp. 71–76, 2003.

[CCK+03] H. Chen, C. K. Cheng, A. B. Kahng, I. I. Mandoiu, Q. Wang, and B. Yao, The Y-architecture for
on-chip interconnect: Analysis and methodology, Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, pp. 13–19, 2003.

[CCY03] C. C. Chang, J. Cong, and X. Yuan, Multi-level placement for large-scale mixed-size IC designs,
Proceedings of the Asia-South Pacific Design Automation Conference, pp. 325–330, 2003.

[F99] L. K. Fleischer, Approximating fractional multicommodity flow independent of the number of
commodities, Proceedings of the 40th Symposium on Foundations of Computer Science, pp.
24–31, 1999.

[FHM+98] Y. Fuchida, J. Hanari, K. Matsumoto, J. Kudo, K. Yoshikara, and A. Takagi, Multilayer wiring
structure, Patent No. 5,723,908, March 3, 1998, Toshiba.

[FM82] C. M. Fiduccia and R. M. Mattheyses, A linear time heuristic for improving network partitions,
Proceedings of the ACM/IEEE Design Automation Conference, pp. 175–181, 1982.

[G95] J. L. Ganley, Geometric interconnection and placement algorithms, Ph.D. Dissertation,
University of Virginia, Charlottesville, VA, 1995.

[G99] J. L. Ganley, Computing optimal rectilinear Steiner trees: A survey and experimental evaluation,
Discrete Applied Mathematics 89: 161–171, 1999.

[GK98] N. Garg and J. Könemann, Faster and simpler algorithms for multicommodity flow and other
fractional packing problems, Proceedings of the 39th Symposium on Foundations of Computer
Science, pp. 300–309, 1998.

[H66] M. Hanan, On Steiner’s problem with rectilinear distance, SIAM Journal on Applied
Mathematics 14: 255–265, 1966.

[HK97] D. H. Huang and A. B. Kahng, Partitioning-based standard-cell global placement with an exact
objective, Proceedings of the ACM/IEEE International Symposium on Physical Design, pp.
18–25, 1997.

[H76] F. K. Hwang, On Steiner minimal trees with rectilinear distance, SIAM Journal on Applied
Mathematics 30: 104–114, 1976.

[H98] A. Hetzel, A sequential detailed router for huge grid graphs, Proceedings of Design and Test in
Europe, pp. 332–338, 1998.

[I06] N. Ito, K. Hideaki, Y. Ryoichi, I. Hiroshi, S. Hiroyuki, K. Hiroaki, T. Yoshiyasu, Y. Akihiko,
N. Kazuhiro, I. Kinya, A. Hiroaki, M. Yutaka, I. Yutaka, and S. Yaroku, Diagonal routing in high
performance microprocessor design, Proceedings of the Asia-South Pacific Design Automation
Conference, pp. 624–629, 2006.

[IML+02] M. Igarashi, T. Mitsuhashi, A. Le, S. Kazi, Y. -T. Lin, A. Fujimura, and S. Teig,
A diagonal-interconnect architecture and its application to RISC core design, Proceedings of
the International Solid-State Circuits Conference, pp. 210,460, 2002.

[K95] C. -K. Koh, Steiner problem in octilinear routing model, Master’s Thesis, National University
of Singapore, Singapore, 1995.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C040 Finals Page 862 29-9-2008 #29

862 Handbook of Algorithms for Physical Design Automation

[KL70] B.W.Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell System
Technical Journal 49: pp. 291–307, 1970.

[KR92] A. B. Kahng and G. Robins, A new class of iterative Steiner tree heuristics with good perfor-
mance, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 11:
893–902, July 1992.

[KRW05] A. B. Kahng, S. Reda, and Q. Wang, A Place: A generic analytical placement framework,
Proceedings of the International Symposium on Physical Design, pp. 233–235, 2005.

[KSJA91] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, GORDIAN: VLSI placement
by quadratic programming and slicing optimization, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 10: 356–365, March 1991.

[MH00] M. Murakami and N. Honda, A maze-running algorithm using fuzzy set theory for routing
methods of printed circuit boards, Proceedings of the Ninth IEEE International Conference on
Fuzzy Systems, Vol. 2, pp. 985–988, 2000.

[NWZ02] B. K. Nielsen, P. Winter, and M. Zachariasen, An exact algorithm for the uniformly-oriented
Steiner tree problem, Proceedings of the 10th European Symposium on Algorithms (Lecture
Notes in Computer Science 2461), pp. 760–772, 2002.

[SFH+91] Y. Sekiyama, Y. Fujihara, T. Hayashi, M. Seki, J. Kusuhara, K. Iijima, M. Takakura, and
K. Fukatani, Timing-oriented routers for PCB layout design of high-performance computers,
Proceedings of the IEEE International Conference on Computer-Aided Design, pp. 332–335,
1991.

[SDJ91] G. Sigl, K. Doll, and F. M. Johannes, Analytical placement: A linear or quadratic objective
function? Proceedings of the ACM/IEEE Design Automation Conference, pp. 57–62, 1991.

[SK89] P. R. Suaris and G. Kedem, A quadrisection-based place and route scheme for standard cells,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 8: 234–244,
March 1989.

[SKK+96] R. Scepanovic, J. S. Koford, V. Kudryavsfev, A. Andreev, S. Aleshin, and A. Podkolzin, Micro-
electronic integrated circuit structure and method using three directional interconect routing
based on hexagonal geometry, Patent No. 5,578,840, November 26, 1996, LSI Logic.

[SN02] N. Shenoy andW.Nicholls, An efficient routing database,Proceedings of the ACM/IEEEDesign
Automation Conference, pp. 590–595, 2002.

[SW92] M. Sarrafzadeh and C. K. Wong, Hierarchical Steiner tree construction in uniform orientations,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 11: 1095–
1103, September 1992.

[T02] S. Teig, The X architecture: Not your father’s diagonal wiring, Proceedings of the International
Workshop on System-level Interconnect Prediction, 2002, pp. 33–37.

[TC04] S. Teig and A. Caldwell, U. S. Patents 6,829,757.
[TC05] S. Teig and A. Caldwell, U. S. Patents 6,877,146; 6,886,149; 6,889,371; 6,889,372; 6,898,773;

6,928,633; 6,931,608; 6,931,615; 6,948,144; 6,951,005; 6,951,006; 6,957,408; 6,957,409;
6,978,432.

[TC06] S. Teig and A. Caldwell, U. S. Patents 6,986,117; 7,000,209.
[TT98] T. Takahashi and N. Shibuya, Development of a support tool for PCB design with EMC con-

straint: Reflection and crosstalk noise reduction inmanual design,Proceedings of the Asia-South
Pacific Design Automation Conference, pp. 397–402, 1998.

[V97] J. Vygen, Algorithms for large-scale flat placement, Proceedings of the ACM/IEEE Design
Automation Conference, pp. 746–751, 1997.

[WWZ00] D. M. Warme, P. Winter, and M. Zachariasen, Exact algorithms for plane Steiner tree problems:
A computational study, in Advances in Steiner Trees, eds. D. Z. Du, J. M. Smith, and J. H.
Rubinstein, pp. 81–116, Kluwer Academic Publishers, Boston, MA, 2000.

[X01] www.xinitiative.org.
[YWES00] X. Yang, M. Wang, K. Eguro, and M. Sarrafzadeh, A snap-on placement tool, Proceedings of

the International Symposium on Physical Design, pp. 153–158, 2000.
[ZZJ+05] Q. Zhu, H. Zhou, T. Jing, X. -L. Hong, and Y. Yang, Spanning graph-based nonrectilinear

Steiner tree algorithms, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 24: 1066–1075, July 2005.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S009 Finals Page 863 24-9-2008 #2

Part IX

Designing Large Global Nets

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S009 Finals Page 864 24-9-2008 #3

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 865 24-9-2008 #2

41 Inductance Effects
in Global Nets
Yehea I. Ismail

CONTENTS

41.1 Historical Perspective . 865
41.2 Importance of Inductance in Current and Future Technologies .. 866
41.3 Extraction and Physical Representations of Inductance .. 869
41.4 Effects of Inductance.. 871

41.4.1 Effects of Inductance on Delay and Signal Rise Time . 872
41.4.2 Effects of Inductance on Power Dissipation . 873
41.4.3 Effects of Inductive Coupling on Delay Uncertainty. 873

41.5 Inductive Noise . 874
41.6 Requirements on CAD Tools and Their Performance .. 876
41.7 Physical Design Including Inductance Effects . 877
References . 878

41.1 HISTORICAL PERSPECTIVE

Historically, the gate parasitic impedances have been much larger than interconnect parasitic imped-
ances because the gate geometries (the width and length) were quite large (about 5µm was a typical
minimum feature size in 1980). Thus, interconnect parasitic impedances have historically been
neglected and the interconnect was modeled as a short circuit. With the scaling of the minimum gate
feature size, interconnect capacitances have become comparable to the gate capacitance, requiring
the interconnect to be modeled as a single lumped capacitance that is added to the gate capacitance.
With this interconnect model, new design techniques emerged to drive large capacitive loads associ-
ated with long global interconnects and large interconnect trees with high fanout. Cascaded tapered
buffers are used to minimize the propagation delay of CMOS gates driving these large capacitive
loads (e.g., [1,2]).

With increasing device densities per unit area, the cross-sectional area of interconnects has been
reduced to provide more interconnect per unit area. Also, the improved yield of CMOS fabrica-
tion processes permits manufacturing larger chips with higher reliability. Thus, the global wires
connecting modules across an IC have increased in length. Both the decreased cross-sectional area
and the increased wirelength have caused the global wire resistances to dramatically increase. The
interconnect model now includes the resistance of the interconnect. Including resistance in the inter-
connect model dramatically changed the design and analysis of integrated circuits, e.g., [3–5]. With
a short circuit or a capacitive interconnect model, the interconnect could be treated as a single node.
However, by including the series resistance, the interconnect is composed of multiple nodes, each
node having a different voltage waveform. This characteristic has greatly complicated the analysis of
circuits with resistive interconnect. Completely new problems and design techniques have emerged
due to the transition from a capacitive to an RC model such as RC tree analysis techniques, clock
skew problems, repeater insertion techniques, power consumption estimation, model order reduction

865

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 866 24-9-2008 #3

866 Handbook of Algorithms for Physical Design Automation

techniques, and IR drops in the power supply, to name a few. Almost every aspect of the design and
analysis of integrated circuits was affected by the new interconnect model.

The rest of this chapter summarizes the importance, effects, and issues involved in a transition
from an RC interconnect model to an RLCmodel, which includes the inductance of the interconnect.
This transition has the potential to change all aspects of the design and analysis of integrated circuits in
analogy to the transition froma capacitive to anRC interconnectmodel. However, unlike the transition
from a capacitive to an RC model, which only resulted into undesirable effects, the increasing
inductance effects can have several desirable consequences, which are pointed out later.

41.2 IMPORTANCE OF INDUCTANCE IN CURRENT AND FUTURE
TECHNOLOGIES

On-chip inductance has currently become more important with faster on-chip rise times and wider
wires. Wide wires are frequently encountered in clock distribution networks and in upper metal
layers. Thesewires are low-resistance lines that can exhibit significant inductive effects. Furthermore,
performance requirements are pushing the introduction of newmaterials such as copper interconnect
for low-resistance interconnect and new dielectrics to reduce the interconnect capacitance. These
technological advances increase the importance of inductance.

On-chip inductance can cause significant errors in current deep-submicron technologies. For
example, three sets of simulation∗ results are presented based on IBM’s 0.1-µm technology to
illustrate the importance of on-chip self and mutual inductances. The first example is a four-bit
coupled bus (Table 41.1). The second example is a tree coupled with two lines (Table 41.2). And
the third example is a pair of lines coupled with each other (Table 41.3). In all three examples,
simulations are done for three cases. In case I, self and mutual inductances are not included. That
is, signal lines are considered as standard RC lines with coupling capacitances only. In case II,
self-inductance is included, and lines are considered as RLC lines with coupling capacitance, but
no coupling inductance. In case III, both self and mutual inductances are included and lines are
considered asRLC lineswith coupling capacitance andmutual inductance. Results show that the error
owing to neglecting inductance can bemore than 100 percent for the delay calculation and 70 percent
in the rise time. What makes these errors even more serious is that neglecting inductance and using
an RC model always results in underestimating the propagation delay (e.g., see Figure 41.1). Thus,
VLSI circuits designed using an RC interconnect model may not satisfy the assigned performance
targets despite a worst-case analysis being applied in the circuit design process.

In general, there are two factors controlling the error between an RC model and an RLC
model. These two factors are the damping factor of an RLC line and the ratio between the input
signal rise time to the time of flight of signals across the line [7]. The damping factor of an RLC
line is given by

ξ = Rl

2

√
C

L
(41.1)

where
R,L, andC are the resistance, inductance, and capacitance per unit length of the line, respectively
l is the length of the line

The damping factor of the line represents the degree of attenuation the wave suffers as it propagates
a distance equal to the length of the line. As this attenuation increases, the effects of the reflections
decrease and the RC model becomes more accurate. Note that the damping factor is proportional to

∗ Circuit simulations in this section are either performed using HSPICE or IBM’s circuit simulation tool AS/X [6].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 867 24-9-2008 #4

Inductance Effects in Global Nets 867

TABLE 41.1
Circuit Simulation of a 4-Bit Bus

All Lines Are Switching in the Same Direction
Case Deviation (percent)

Bus I II III I–III II–III

Delay (ps) 29.32 44.2 58.67 100 33
Rise time (ps) 84.59 25.5 26.81 68.3 5.14
Overshoot (%) 0 10.3 23.79 — 126
Time of overshoot — 115 155.2 — 35.3

TABLE 41.2
Circuit Simulation of a Coupled Tree Network

All Lines Are Switching in the Same Direction
Case Deviation (percent)

Tree I II III I–III II–III

Delay (ps) 30.46 43.59 51.98 71.5 18.5
Rise time (ps) 87.1 43.36 37.29 58.6 13.4
Overshoot (%) 0 7.2 15 — 108
Time of overshoot — 113.4 134 — 18.2

TABLE 41.3
Circuit Simulation of a Pair of Coupled Lines

All Lines Are Switching in the Same Direction
Case Deviation (percent)

Line I II III I–III II–III

Delay (ps) 63.12 74.13 83.64 32.53 12.83
Rise time (ps) 147.8 85.36 49 67 43
Overshoot (%) 0 0.74 6.2 — 737
Time of overshoot — 269 221.5 — 17.69

V
D

D

RC

RC + self-inductance + mutual inductance

RC + self-inductance

FIGURE 41.1 Signal behavior on one net of a 4-bit bus.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 868 24-9-2008 #5

868 Handbook of Algorithms for Physical Design Automation

the length of the line and thus very long lines will exhibit less inductance effects. Alternatively, the
damping factor can be expressed as

ξ = RtCt

2
√
LtCt

= τRC

2τLC
(41.2)

where
Rt, Lt , and Ct are the total resistance, inductance, and capacitance of the line, respectively
τRC and τLC are the RC and LC time constants of the line

This relation illustrates the fight between the RC and LC time constants of the line. A reduction in
the RC time constant results in a direct increase in the inductance effects exhibited by the line. Note
that many of the technological advancements that have been achieved or are still in development
target reducing the RC time constant. Examples are copper interconnect, dielectrics with lower εr,
and superconductive interconnects. Also, many of the designmethodologies used to reduce the delay
of critical lines concentrates mainly on reducing the RC time constant of the line, such as using wider
wires, wider drivers, and repeater insertion. In the limit, if theRC time constant of a line is sufficiently
reduced, the line will behave as a lossless transmission line and signals can be transmitted across the
line with the speed of light.

The other factor determining inductance effects is the ratio between the input signal rise time to
the time of flight of signals across the line and is given by

tr

2l
√
LC

(41.3)

where tr is the rise time of the input signal. As this ratio increases, the line can be more accurately
modeled as an RC line. Note that in this case the relation implies that shorter lines will suffer less
inductance effects mainly because the rise time of the input signal will override the LC time constant.
Hence, there is a range of the length of the interconnect for which inductance effects are significant
with very short and very long lines suffering no inductance effects [7]. Note that the rise times of
input signals to the interconnect are becoming faster all the time with technology scaling, increasing
inductance effects in future technologies. Even if some techniques can be applied today to reduce the
effect of inductance allowing the use of the well-developedRC-based CAD tools, inductance effects
will be very hard to suppress or ignore in future technologies and CAD tools have to be modified to
include the effect of inductance.

Equivalent figures of merit for trees were developed in Ref. [8] to characterize the importance
of on-chip inductance. These expressions at node i of a tree are given by

ζi = 1

2

∑
k

CkRik

√∑
k

CkLik
(41.4)

and

tr/2

√∑
k

CkLik (41.5)

respectively,whereRik (Lik) is the common resistance (inductance) from the input of the tree to nodes
i and k and k runs over all the capacitances in the tree.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 869 24-9-2008 #6

Inductance Effects in Global Nets 869

41.3 EXTRACTION AND PHYSICAL REPRESENTATIONS OF INDUCTANCE

Each interconnect line has an associated self-inductance and an associatedmutual inductance to other
lines in the circuit. Unlike the resistance and capacitance of interconnect lines, both self and mutual
inductances are loop quantities, and they can be determined only if the whole current loop is known;
i.e., the exact path in which the current returns to the source is known.The self-inductance of a loop is
defined as the flux linked through the loop because of the variation in the current flowing in the loop
divided by the value of the current. The current loop also has corresponding coupling inductances
that couple the current loop to surrounding current loops. The coupling inductance is the flux caused
by an aggressor loop linked to a given loop divided by the value of the aggressor current [9].

The current return path is frequency dependent. At low frequency, the inductive impedance
(ωL) is less than the resistive impedance (R). Hence, the current tries to minimize the interconnect
impedance and thus tries to minimize the interconnect resistance. This causes the current to use as
many returns as possible to have parallel resistances, as shown in Figure 41.2 [9]. However, at high
frequency ωL > R and the current tries to minimize interconnect impedance by minimizing the
loop inductance. This causes the current to use the closest possible return path to form the smallest
possible loop inductance, as shown in Figure 41.2 [9]. The current would be confined to the nearest
possible return only at ultra-high frequencies (higher than 20GHz) [10]. Therefore, at current clock
frequencies, current can spread into a number of possible current return paths. This behavior makes
the extraction of inductance a nontrivial task as it tremendously increases the number of surrounding
interconnects that have to be considered. The distribution of the current into different wires as a
function of frequency is typically referred to as proximity effects, while the confinement of current
in parts of an interconnect, as shown below, is referred to as skin effect.

To limit the complexity of the problem, the inductance can be approximated [11] by assuming
that the current return path is limited to the nearest power or ground line. Other approaches such
as in Ref. [12] incrementally improve the accuracy by adding more ground lines to the return path
until the extracted inductance is accurate enough. One way to go around the prerequisite of knowing
the actual current return paths beforehand is by using the three-dimensional (3D) field solver. A
common approach that is used by 3D solvers is to extract inductance by applying a finite difference
or finite element method to the governingMaxwell equations in differential form. Such an approach
generates a global 3D mesh for all parts of analyzed structure and for surrounding external space.
This causes the number of unknowns to increase significantly, and thus a very large linear system
can be generated. Solving this large linear system requires excessive memory and consumes long
CPU time, which makes inductance extraction of complex 3D structures using finite element or finite
difference methods impractical.

The other approach used in inductance extraction employs the partial element equivalent circuit
method (PEEC) [13,14]. Using PEEC, only the volume of the conductors needs to be discretized.

High frequency

GND GND GND GND GND GND

GND GND GND GND GND GND

Low frequency

Signal

Signal

FIGURE 41.2 Frequency dependence of current distribution across signal and ground lines.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 870 24-9-2008 #7

870 Handbook of Algorithms for Physical Design Automation

Thus, using the PEEC method produces a fewer number of unknowns than finite elements and dif-
ferences. The integral formulation of the PEECmethod is used in the widely knownMIT inductance
extraction program, FastHenry [15].

Hence, inductance extraction is a nontrivial process. However, there are two characteristics of
on-chip inductance that can be exploited to simplify the extraction process of on-chip inductance.
First, the sensitivity of a signal waveform to errors in the inductance values is low compared to
sensitivity to errors in resistance and capacitance values, particularly the propagation delay and rise
time. Second, the value of the on-chip inductance is a slow varying function of the width of the wire
and the geometry of the surrounding wires [16].

The first characteristic can be explained by the fact that inductance only appears under a square
root function in a waveform or timing expression characterizing a signal. The reason for this square
root dependence is physical because an LC constant has the dimensions of time squared, where L and
C are any inductance and capacitance values in the circuit, respectively. The square root dependence
can be compared to the linear dependence of the delay expressions on the resistance because any RC
constant has the dimensions of time, where R is any resistance of the circuit. For example, according
to the equivalent Elmore delay for RLC trees that was introduced in Ref. [17], the 50 percent delay
of the signal at node i of an RLC tree is

tpdi = 1.047 ·
√∑

k

CkLik · e− ζi
0.85 + 0.695 ·

∑
k

CkRik (41.6)

where ζi is the damping factor at node i and is

ζi = 1

2

∑
k

CkRik

√∑
k

CkLik
(41.7)

Note that inductance only appears under a square root. This fact is also evident in Equations 41.8
and 41.14.

As an example, circuit [6] simulations are performed for an RLC tree with no inductance (an RC
model), and with all of the inductance values increased by 10, 20, and 30 percent. These simulations
are depicted in Figure 41.3. Note in the simulations that using an approximate inductance estimation

V
o1

 (u
)

0.00 0.50 1.501.00

2.50

3.00

2.00

1.50

1.00

0.50

0.00
10 percent error in extracted inductance values

(a)
Time (ns)

FIGURE 41.3 Circuit simulations of anRLC tree with the actual inductance values, with no inductance (anRC
model), and with all of the inductance values increased by (a) 10 percent.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 871 24-9-2008 #8

Inductance Effects in Global Nets 871

V
o1

 (u
)

0.00 0.50 1.501.00

2.50

3.00

3.50

2.00

1.50

1.00

0.50

0.00
20 percent error in extracted inductance values

No inductance (RC)

Actual inductance values

Rough inductance values

(b)
Time (ns)

V
o1

 (u
)

0.00 0.50 1.501.00

2.50

3.00

3.50

2.00

1.50

1.00

0.50

0.00

30 percent error in extracted inductance values

(c)

Time (ns)

FIGURE 41.3 (continued) (b) 20 percent, and (c) 30 percent.

greatly improves the accuracy of the waveform as compared to using an RC model. Even with a 30
percent error in the inductance values, the propagation delay differs by 9.4 percent from the actual
value as compared to 51 percent if an RC model is used. The improvement in the rise time is even
greater. The rise time differs from the actual value by 5.9 percent with a 30 percent error in the
inductance values as compared to a 71 percent error when an RC model is used. The maximum
error in the waveform shape occurs around the overshoots (Figure 41.3). However, estimating the
overshoot requires less accuracy because the overshoot is usually evaluated to decide if the overshoot
is within an acceptable limit. This high tolerance of the delay expressions to errors in the extracted
inductance combinedwith the slowvariation of extracted inductance valueswith changes in geometry
encourage the use of simplified techniqueswith higher computational efficiency to extract the on-chip
inductance.

41.4 EFFECTS OF INDUCTANCE

This section briefly discusses the effects of inductance on the performance of integrated circuits.
The effects of inductance on signal delay and rise time, power consumption, and delay uncertainty
are discussed.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 872 24-9-2008 #9

872 Handbook of Algorithms for Physical Design Automation

41.4.1 EFFECTS OF INDUCTANCE ON DELAY AND SIGNAL RISE TIME

A general expression for the propagation delay from the input to the output of an RLC line of length
l with an ideal power supply and an open circuit load is given by [18]

tpd = √
LC

[
e−2.9(αasym l)

1.35
l + 0.74αasyml

2
]

(41.8)

where

αasym = R

2

√
C

L
(41.9)

αasym is the asymptotic value at high frequencies of the attenuation per unit length of the signals as
the signals propagate across a lossy transmission line, as shown in Figure 41.4.

For the limiting case where L → 0, Equation 41.8 reduces to 0.37RCl2, illustrating the square
dependence on the length of an RCwire as aforementioned.For the other limiting case whereR → 0,
the propagation delay is given by

√
LtCt = l

√
LC. Note the linear dependence on the length of the

line. Note also that inductance always increases the delay as compared to an RC model; i.e., if
inductance is neglected, the delay is underestimated by the incomplete RC model.

The rise time of signals propagating across RLC lines improves as the inductance effects of the
line increase. This behavior can be explained by referring to Figure 41.4, which depicts the attenuation
of signals as they travel across an RLC line as a function of frequency.Higher frequency components
at the edges of a pulse suffer greater attenuation as compared to low frequency components. The
shape of a signal degrades as the signal travels across a lossy transmission line because of the loss
of these high-frequency components. The attenuation constant becomes less frequency dependent
as inductance effects increase or as R/ωL decreases as shown in Figure 41.4. In the limiting case
of a lossless line representing maximum inductance effects, the attenuation constant α is 0. Thus,
as inductance effects increase, a pulse propagating across an RLC line maintains the high-frequency
components in the edges, improving the signal rise and fall times.

A
tt

en
ua

tio
n

co
ns

ta
nt

 a

R = 400 Ω/cm

R =100 Ω/cm

R =50 Ω/cm

R =10 Ω/cm

R =200 Ω/cm

2

1

0
0 2 � 109 4 � 109 6 � 109 8 � 109 1 � 1010

Frequency (Hz)

FIGURE 41.4 Attenuation constant versus frequency. L = 10 nH/cm, C = 1 pF/cm, and R is 10, 50, 100,
200, and 400 �/cm, respectively.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 873 24-9-2008 #10

Inductance Effects in Global Nets 873

41.4.2 EFFECTS OF INDUCTANCE ON POWER DISSIPATION

Power consumption is an increasingly important design parameter with mobile systems and high
performance, high-complexity circuits such as leading edge microprocessors. If the frequency of
switching is f cycles per second, then the dynamic power consumption is described by thewell-known
formula,

Pdyn = CtV
2
DD f (41.10)

The dynamic power depends only on the total load capacitance, the supply voltage, and the operating
frequency. As discussed in Section 41.7, increasing inductance effects result in a lower number of
repeaters as well as smaller repeater size. The smaller size and number of repeaters therefore signif-
icantly reduces the total capacitance of the repeaters and, consequently, reduces the total dynamic
power consumption.

The short-circuit power results from the NMOS and PMOS blocks of a CMOS gate being on
simultaneously during the rise and fall times of the input signal, creating a current path between the
power supply and ground. As discussed in Section 41.4.1, the inductance reduces the rise time of the
signals in an integrated circuit, reducing the short-circuit power. The short-circuit power consumption
of a gate driven by an RLC line versus the line inductance is plotted in Figure 41.5. Note that as
inductance effects increase, the short-circuit power consumption significantly decreases due to the
faster input rise time. Also, the smaller repeater sizes dramatically reduces the short-circuit power
consumption because the short-circuit power of a CMOS gate is super linearly dependent on the
transistor widths. Finally, it has been shown in Ref. [19] that the short-circuit power consumption
of a CMOS gate decreases as the inductance of the driven net becomes more significant. Intuitively,
inductance is an element that does not consume any power while resistance consumes power. Hence,
as the interconnect behavior becomes dominated by inductance rather than resistance, the power
consumption of integrated circuits will be reduced.

41.4.3 EFFECTS OF INDUCTIVE COUPLING ON DELAY UNCERTAINTY

In a set of inductively and capacitively coupled lines, the signal propagation delay on a particular
line reaches a minimum when neighbor lines are switching in the same direction. The delay on
that line reaches a maximum when that particular line is switching in opposite direction to neighbor
lines because of the increased effective capacitance that has to be charged or discharged. The ratio of

S
ho

rt
-c

irc
ui

t p
ow

er
 (

pJ
/c

yc
le

)

2.5

2

1.5

1

0.5

0
0 2 4 6 8 10 12

Lt (nH)

FIGURE 41.5 Short-circuit energy consumed per cycle by CMOS gate driven by an RLC line versus the
inductance of the line. The total resistance and capacitance of the line are maintained constant at 100 � and
1 pF, respectively.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 874 24-9-2008 #11

874 Handbook of Algorithms for Physical Design Automation

the maximum andminimum signal delays on a certain signal line can be defined as delay uncertainty
(DU) for that line, as given by

DU = tdmax

tdmin

(41.11)

For RLC lines, the delay is given by [20]

td = 1.047 · E · τLC + 1 · 4 · τRC (41.12)

where E is a term that depends on the damping factor of this line as described in Ref. [20],

τRC =
∑
k

[
Rk ·

∑
r,j

Crj · (αr − αj)

]
(41.13)

and

τLC =
√√√√∑

k

[
Lk ·

∑
r,j

Crj · (αr − αj) +Mk ·
∑
l,m

Clm · (αl − αm)

]
(41.14)

Each line has a switching factor associated with it and is denoted αi for interconnect i. The switch-
ing factor takes the values 1, 0, and −1 for lines switching from low-to-high, nonswitching lines,
and lines switching from high-to-low, respectively. k runs over all the branches on the path from the
primary input to node i on the tree (which i belongs to), r runs over all the nodes downstream of k
on that tree, and j runs over all the nodes to which r has a capacitance connected to. In the case of
capacitances to ground, j = 0. The index l runs over all the nodes downstream ofMk on the coupled
tree (which i does not belong to). The index m runs over all the nodes, which l has a capacitance
connected to.

The time constants τRC and τLC depend on the switching directions of neighbor lines. As neighbor
lines switch in opposite directions to the line in consideration, τRC is maximum.When neighbor lines
switch in the same direction, τRC is minimum as given by Equation 41.13. On the other hand,
τLC decreases when neighbor lines switch in opposite directions because of the opposite currents
in neighbor lines, which causes negative mutual inductance terms to appear in Equation 41.14.
When neighbor lines switch in the same direction, τLC increases because the mutual inductances add
to the self-inductance as in Equation 41.14. This opposite behavior of τRC and τLC results in reducing
the discrepancy between the maximum and the minimum delays of a line because of coupling with
other lines.

Circuit simulation (Figure 41.6) for the signal on themiddle line of three coupled lines shows that
as inductance effects increase, the ratio between the maximum and the minimum delays decreases.
That is, higher inductive effects lead to lower delay uncertainty and narrower switching windows.
Lowering delay uncertainty is a positive effect of inductance because narrower switching windows
give significant degrees of freedom in physical design to limit noise and control glitches among
many other benefits.

41.5 INDUCTIVE NOISE

Asdiscussed before, a line can inductively couple to lines that are far away unlike capacitive coupling,
which only occurs between adjacent lines. The problem of inductive coupling is particularly severe
in wide busses, which are commonplace in most digital integrated circuits such as DSP and micro-
processor circuits. The width of busses in digital circuits is continuously increasing with technology

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 875 24-9-2008 #12

Inductance Effects in Global Nets 875

Delay uncertainty

Minimum delay

Maximum delay

0

50

100

150

200

250

D
el

ay
 (

ps
)

Increasing inductance

FIGURE 41.6 Delay uncertainty dependence on inductance effects. The data shown are for the delay of the
middle line of three coupled parallel lines.

scaling. Hence, the problem of inductive coupling in busses will have even more significance in
future technologies.

Physically, a wide bus with all the lines switching in the same direction behaves as one wide
line. Such a wide line has much higher inductance effects as compared to any of the individual lines
in the bus. Hence, the effective inductance of a line that is part of a bus is far larger than the self-
inductance of that line. This fact can also be quantitatively understood by referring to Equation 41.14,
which shows that if all the lines are switching in the same direction, the LC time constant of the line
becomes much larger than the case of an individual line because of all the mutual terms adding to
the self-inductance term. This increase in the LC time constant means much higher overshoots and
inductive noise on any line in the bus.

To examine the impact of inductance on circuit cross talk in a high-performance 0.18-µm process,
the worst-case noise generated on an 8-bit, 3000-µm long, standard data bus was simulated in
Refs. [9,21]. The bus was implemented in metal 6 with all lines having a metal width of 3µm and a
metal-to-metal spacing of 1.5µm consistent with typical high-level metal implementations of high-
performance global busses. The data buswas also sandwiched betweenaVDD line and aGNDline each
15-µm wide to provide a return path for the current flowing in the buses. The drivers and receivers
were implemented using simple buffers. A distributed RLCmodel for the interconnect was produced
where FastCap [22] was used to model the interconnect capacitance, and FastHenry [15] was used to
model both the resistance and the inductance of the interconnects. By applying a 5-ps rise time step
signal to all the inputs except the one in the middle, SPICE simulations show a totally unacceptable
voltage glitch of 1.17V. Such a glitch could cause erroneous switching and logic failures. Note that
if the inductance is neglected and not modeled, the cross-talk noise becomes only 0.59V, which is
almost half the value of the actual glitch. This shows the importance of modeling on-chip inductance
for accurate detection of cross-talk voltage glitches.

In terms of substrate coupling, inductance effects increase this type of noise significantly. Over-
shoots and undershoots owing to inductance cause noise coupling through the common substrate,
which is both difficult to measure and difficult to control. Substrate noise-conduction modes can
be classified into (1) resistive coupling, (2) capacitive coupling, (3) impact ionization, and (4) body
effect (Figure 41.7). All these modes involve currents running into the substrate from the drains or
the sources of transistors and affecting other devices. Ideally, the p-bulk is grounded, which always

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 876 24-9-2008 #13

876 Handbook of Algorithms for Physical Design Automation

Contact Contact

n -well

n + n-well
p+

source
p+

drainn + drainn + source n + bulk

p+ bulk

Impact ionization

p-epitaxy

Capacitive
couplingNegative transient causing

depletion layer increase

Resistive
coupling

FIGURE 41.7 Mechanisms of substrate noise propagation in an integrated circuit.

reverse biases the p−n junctions at the drains and sources of NMOS transistors assuming that ground
is the lowest voltage that can appear at the drain or source of any transistor. Similarly, the n-well is
connected to VDD to reverse bias the drains and sources of PMOS transistors. However, inductance
effects cause overshoots and undershoots that can forward bias these junctions resulting in currents
flowing into the substrate causing substrate coupling. For that reason, substrate coupling noise is
sometimes called bootstrap noise. Also, if the bulk is biased with a switching ground bus, the ground
on the bulk is not perfect because switching transientswill cause voltage drops across the line. Hence,
the switching transients on the power supply line can couple to transistors resistively through the p+
bulk contacts. The parallel summation of bulk contacts and epitaxy resistances provides a very low
impedance path (nearly short) to the p+ buried layer.

The second source of substrate noise is capacitive coupling through the MOSFET source and
drain p − n junctions. Each n-well on p+ bulk also introduces fairly large p − n junctions forming
a capacitance between the VDD rails biasing the n-well and the VSS rails biasing the bulk. The noise
injected into the substrate via capacitive coupling is inversely proportional to the rise time of the
signals on the drains and sources of transistors. As discussed in the previous section, inductance
effects result in faster signal transition times. Another source of substrate noise is impact ionization
current, generated at the pinch-off point of the NMOS transistors. Impact ionization causes a whole
current in the bulk.A negative bulk transientwill increase the depletion region between the source and
the bulk. This depletes the channel of charge carriers and increase Vth. The total effect is a sporadic
decrease in the IDS current. In general, these transients increase with higher inductance effects owing
to the higher voltage swings and overshoots.

41.6 REQUIREMENTS ON CAD TOOLS AND THEIR PERFORMANCE

The signals that occur in RLC circuits are significantly more complicated than signals in RC circuits.
For example, the RLC signals shown in Figure 41.1 have overshoots, very large inertial delay, fast
rise time, and are rich in harmonics. Hence, new delay models and model order reduction techniques
are required to handle RLC circuits. One of the most popular approximate delay models used for the
design and analysis of integrated circuits is the Elmore delay model. This first order delay model
cannot be used with RLC circuits with underdamped responses, because underdamped responses
involve complex poles that appear in conjugate pairs. Hence, at least a second order approximation
is required for RLC circuits. One such model was developed in Ref. [17] and maintains the popular
characteristics of Elmore delay.

Model order reduction techniques allow the calculation of approximations of higher orders to
accurately simulate the interconnect. Asymptotic waveform evaluation (AWE) is one popular tech-
nique used successfully with RC interconnects [23]. However, AWE cannot calculate enough poles

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 877 24-9-2008 #14

Inductance Effects in Global Nets 877

to handle complex underdamped responses because of numerical errors. Hence, a set of new model
order reduction techniques have been recently developed that are capable of calculating higher order
approximations necessary for simulating systems with complex responses. Examples are Pade via
Lanczos (PVL) and matrix Pade via Lanczos (MPVL) [24], Arnoldi algorithms [25], block Arnoldi
algorithms [26], passive reduced-order interconnect macromodeling algorithm (PRIMA) [27], and
SyPVL algorithm [28]. However, these model order reduction techniques can have significantly
higher computational complexity than AWE. Hence, there is a need for innovative simulation
techniques for handling complex responses arising in RLC circuits.

Another feature that complicates the analysis and design of integrated circuits including on-chip
inductance, is the far-reaching inductive coupling to other lines in the integrated circuit. Typically, a
line in a wide bus couples to all the lines in the bus. As compared to capacitive coupling, which only
couples a line to the immediate neighbors, inductive coupling results in larger circuits (the whole
bus rather than three lines) to be analyzed, and these circuits have a significant amount of inputs.

In general, all CAD tools will run significantly slower when using an RLC model as compared
to an RC model. This behavior is simply due to the more complex model used and the higher
signal integrity issues involved. In addition to the lower performance of CAD tools, a very large
infrastructure of RC-based CAD tools needs to be modified to include inductance effects.

41.7 PHYSICAL DESIGN INCLUDING INDUCTANCE EFFECTS

Currently, the industry applies a three-step design process for integrated circuits when handling
inductance. First, employ design methodologies and techniques to reduce the inductance effects in
the design. Second, use the well-developed RC-based design tools to optimize and verify the circuit.
Third, pray nothing will go wrong. However, as discussed in this chapter, inductance can have useful
effects such as improving the rise time of signals, reducing the power consumption, and reducing the
number of inserted repeaters. Hence, by suppressing inductance effects and using RC-based tools,
a suboptimal circuit results in terms of area, power consumption, and speed. Also, signal integrity
and cross-talk issues owing to inductive coupling are neglected, which can result in undetected
reliability problems. Fortunately, in recent years many researchers have started modifying design
methodologies and physical design to include inductance rather than suppressing it. A sample of
these works is discussed in this section.

Including inductance in interconnect routing has been dealt with in several works. An example
is the work in Ref. [29]. The work mainly deals with reducing capacitive and inductive cross talk
within the interconnect during full chip routing. The work shows a reduction in cross talk by a factor
of 2.5 while increasing the routing area with less than 5 percent as compared to an algorithm that
does not include cross talk. In wide busses, inductive cross talk can sometimes exceed capacitive
coupling when all lines switch in the same direction.

Repeater insertion is another commondesignmethodology for driving long-resistive interconnect
(e.g., Refs. [3–5]). Because the RC time constant of a line is given by RtCt = RCl2 and has a
square dependence on the length of the line, subdividing the line into shorter sections by inserting
repeaters is an effective strategy for reducing the total propagation delay. Currently, typical high-
performance circuits have a significant number of repeaters inserted along global interconnect lines.
These repeaters are large gates and consume a significant portion of the total circuit power.

As discussed in Section 41.2, the amount of inductance effects present in an RLC line depends
on the ratio between the RC and the LC time constants of the line. Hence, as inductance effects
increase, the LC time constant dominates the RC time constant and the delay of the line changes
from a quadratic to a linear dependence on the line length [18]. As a consequence, the optimum
number of repeaters for minimum propagation delay decreases as inductance effects increase. In the
limit, an LC line requires zero repeater area to minimize the overall propagation delay.

Inserting repeaters based on an RC model and neglecting inductance result in a larger repeater
area than necessary to achieve a minimum delay. The magnitude of the excess repeater area when

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 878 24-9-2008 #15

878 Handbook of Algorithms for Physical Design Automation

TABLE 41.4
Total Repeater Area, Total Power, and Total Maximum Path Delay of All of the Trees

Savings in Buffered RLC Savings Compared Buffered RC
Totals Unbuffered Delay (percent) Model to RC (percent) Model

Area (minimum inverters) 0 — 14,116 40.8 23,854
Maximum delay (ps) 6,554 42.2 3,787 6.7 4,061
Power (pJ/cycle) — — 1,379 15.6 1,632

The percent savings shown here represent the average savings in area, power, and maximum path delay when using an RLC
model for repeater insertion

using an RCmodel depends upon the relative magnitude of the inductance within the RLC tree. The
reduced number of inserted repeaters also simplifies the layout and routing constraints. Also, the
reduced repeater area greatly reduces the power consumed by the repeaters in an integrated circuit.
A more thorough analytical analysis of the effect of inductance on the repeater insertion process can
be found in Ref. [18]. Practical data are listed in Table 41.4 for repeaters inserted in a large number
of typical copper interconnects from a 0.25-µm CMOS technology [30]. Note that by using an RLC
model rather than an RC model, a better delay can be achieved with significantly less repeater area
and power consumption by the repeaters.

Inductance plays a central role in power and clock distribution networks [31–36]. Typically,
the inductive characteristics of the clock distribution network are intimately related to the power
distribution network. The return currents from the clock determine the size of the inductive loop.
These currents typically return in the wide, low-resistance, power distribution network wires. The
clock wires are typically wide enough to exhibit significant inductance effects. Full transmission line
models are needed for these wires when sizing the clock distribution network. Several works (such
as Refs. [34,35]) have dealt with these clock distribution design including inductance.

In terms of the power distribution networks, inductance does dominate the total impedance of
the network [31–36]. Electromigration poses an upper limit on the current density carried by the
power distribution networks. Because of the unidirectional nature of the currents carried by
the power distribution network, it is crucial to upsize these wires to meet the upper bound on current
density. Hence, power distribution networks typically have very wide wires that exhibit significant
inductance effects. However, typically a power distribution network is designed with interleaving
VDD and GND lines on each layer. This design results in inductive coupling typically limited to adja-
cent wires with opposing currents canceling at far distances. Hence, inductance in the power grid
can be easily modeled using loop inductance models rather than partial inductances. Interestingly,
designers have found ways to justify ignoring inductance in power distribution networks despite its
dominance. The justification is typically that currents taken from the power distribution network are
DC. There is no experimental data that supports this claim. In fact, in synchronous circuits, most of
the currents are drawn around the clock edges, giving rise to very large current slopes. Several works
have considered inductance in the power distribution network. However, accurate estimation of the
currents drawn from the power distribution network remains crucial.

REFERENCES
1. H. G. Lin and L. W. Linholm, An optimized output stage for MOS integrated circuits, IEEE Journal of
Solid-State Circuits, SC-10(2): 106–109, April 1975.

2. B. S. Cherkauer and E. G. Friedman, Design of tapered buffers with local interconnect capacitance, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 3(1): 99–111, March 1995.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 879 24-9-2008 #16

Inductance Effects in Global Nets 879

3. J. Cong, L. He, C. -K. Koh, and P. Madden, Performance optimization of VLSI interconnect, Integration:
The VLSI Journal, 21: 1–94, November 1996.

4. V. Adler and E. G. Friedman, Delay and power expressions for a CMOS inverter driving a resistive-
capacitive load, Analog Integrated Circuits and Signal Processing, 14(1/2): 29–39, September 1997.

5. S. S. Sapatnekar, RC interconnect optimization under the Elmore delay model, Proceedings of the
IEEE/ACM Design Automation Conference, pp. 387–391, San Diego, CA, June 1994.

6. AS/X User’s Guide, IBM Corp., 1994.
7. Y. I. Ismail, E. G. Friedman, and J. L. Neves, Figures of merit to characterize the importance of

on-chip inductance, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7(4): 442–449,
December 1999.

8. Y. I. Ismail, E. G. Friedman, and J. L. Neves, Inductance effects in RLC trees, Proceedings of the IEEE
Great Lakes Symposium on VLSI, pp. 56–59, Ypsilanti, MI, March 1999.

9. Y. Massoud and Y. I. Ismail, On-chip inductance in high-speed integrated circuits, IEEE Circuits and
Devices Magazine, 17(4): 14–21, July 2001.

10. Y. Massoud and J. White, Simulation and modeling of the effect of substrate conductivity on coupling
inductance, Proceedings of the IEEE International Electron Devices Meeting, pp. 491–494, Hong Kong,
China, December 1995.

11. K. Shepard and Z. Tian, Return-limited inductances: A practical approach to on-chip inductance extraction,
IEEE Transactions on Computer-Aided Design, 19: 425–436, April 2000.

12. B. Krauter and S. Mehrotra, Layout based frequency dependent inductance and resistance extraction for on-
chip interconnect timing analysis, Proceedings of the IEEE Design Automation Conference, pp. 303–308,
San Francisco, CA, June 1998.

13. A. E. Ruehli, Inductance calculations in a complex integrated circuit environment, IBM Journal of Research
and Development, 16: 470–481, September 1972.

14. P. A. Brennan, N. Raver, and A. Ruehli, Three dimensional inductance computations with partial element
equivalent circuits, IBM Journal of Research and Development, 23: 661–668, November 1979.

15. M. Kamon, M. Tsuk, and J. White, FastHenry: A mutipole-accelerated 3-D inductance extraction program,
IEEE Transactions on Microwave Theory Technology, 42(9): 1750–1758, September 1994.

16. Y. I. Ismail and E. G. Friedman, Sensitivity of interconnect delay to on-chip inductance, Proceedings of the
IEEE International Symposium on Circuits and Systems, pp. 403–407, Geneva, Switzerland, May 2000.

17. Y. I. Ismail, E. G. Friedman, and J. L. Neves, Equivalent Elmore delay for RLC trees, IEEE Transactions
on Computer-Aided Design, 19(1): 83–97, January 2000.

18. Y. I. Ismail andE.G. Friedman, Effects of inductance on the propagationdelay and repeater insertion inVLSI
circuits, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(2): 195–206, April 2000.

19. Y. I. Ismail, E. G. Friedman, and J. L. Neves, Dynamic and short-circuit power of CMOS gates dri-
ving lossless transmission lines, IEEE Transactions on Circuits and Systems 1: Fundamental Theory and
Applications, CAS-46(8): 950–961, August 1999.

20. M. Chowdhury, Y. I. Ismail, C. V. Kashyap, and B. L. Krauter, Performance analysis of deep sub micron
VLSI circuits in the presence of self and mutual inductance, Proceedings of the IEEE International
Symposium on Circuits and Systems, pp. 197–200, Scottsdale, AZ, May 2002.

21. Y. Massoud, J. Kawa, D. MacMillen, and J. White, Modeling and analysis of differential signaling for
minimizing inductive cross-talk, Proceedings of the IEEE Design Automation Conference, pp. 804–809,
Anaheim, CA, June 2001.

22. K. Nabors and J. White, Fast capacitance extraction of general three-dimensional structures, IEEE
Transanctions on Microwave Theory Technology, 40(7): 1496–1506, June 1992.

23. L. T. Pillage and R. A. Rohrer, Asymptotic waveform evaluation for timing analysis, IEEE Transactions on
Computer-Aided Design, CAD-9(4): 352–366, April 1990.

24. P. Feldmann and R. W. Freund, Reduced-order modeling of large linear subcircuits via block Lanczos
algorithm, Proceedings of the IEEE/ACM Design Automation Conference, pp. 474–479, San Diego, CA,
June 1995.

25. M. Silveira, M. Kamon, and J. White, Efficient reduced-order modeling of frequency-dependent coupling
inductances associated with 3-D interconnect structures, Proceedings of the IEEE/ACMDesign Automation
Conference, pp. 376–380, San Diego, CA, June 1995.

26. D. L. Boley, Krylov space methods on state-space control models, Journal of Circuits, Systems, and Signal
Processing, 13(6): 733–758, May 1994.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C041 Finals Page 880 24-9-2008 #17

880 Handbook of Algorithms for Physical Design Automation

27. A. Odabasioglu, M. Celik, and L. T. Pillage, PRIMA: Passive reduced-order interconnect macromodeling
algorithm, IEEE Transactions on Computer-Aided Design, CAD-17(8): 645–654, August 1998.

28. P. Feldmann and R. W. Freund, Reduced-order modeling of large passive linear circuits by means of the
SyPVL algorithm, Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,
pp. 280–287, San Jose, CA, November 1996.

29. J. Xiong and L. He, Full-chip routing optimization with RLC crosstalk budgeting, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 23(3): 366–377, March 2004.

30. Y. I. Ismail, E. G. Friedman, and J. L. Neves, Repeater insertion in tree structured inductive intercon-
nect, Proceedings of the ACM/IEEE International Conference on Computer-Aided Design, pp. 420–424,
San Jose, CA, November 1999.

31. H. Hu, D. Blaauw, V. Zolotov, K. Gala, M. Zhao, R. Panda, and S. Sapatnekar, Fast on-chip inductance
simulation using a precorrected-FFT method, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (T-CAD), 22(1): 49–66, January 2003.

32. H. Hu and S. S. Sapatnekar, Efficient inductance extraction using circuit-aware techniques, IEEE
Transactions on VLSI Systems, 10(6): 746–761, December 2002.

33. G. Zhong, H. Wang, C. -K. Koh, and K. Roy, A twisted bundle layout structure for minimizing induc-
tive coupling noise, Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,
pp. 406–411, Los Angeles, CA, June 2000.

34. M. A. El-Moursy and E. G. Friedman, Exponentially tapered H-tree clock distribution networks, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 13(8): 971–975, August 2005.

35. M. A. El-Moursy and E. G. Friedman, Shielding effect of on-chip interconnect inductance, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 13(3): 396–400, March 2005.

36. V. Mezhiba and E. G. Friedman, Inductive properties of high-performance power distribution grids, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 10(6): 762–776, December 2002.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 881 23-9-2008 #2

42 Clock Network Design: Basics

Chris Chu and Min Pan

CONTENTS

42.1 Metrics for Clock Network Design . 882
42.1.1 Skew . 882
42.1.2 Transition Time . 882
42.1.3 Phase Delay . 883
42.1.4 Area . 883
42.1.5 Power . 883
42.1.6 Skew Sensitivity to Process Variations . 883

42.2 Clock Networks with Tree Structures . 883
42.2.1 Method of Means and Medians. 884
42.2.2 Geometric Matching Algorithm .. 884
42.2.3 Exact Zero-Skew Algorithm .. 885
42.2.4 Deferred Merge Embedding . 887
42.2.5 Wire Width and Buffer Considerations in Clock Tree . 888

42.3 Clock Networks with Nontree Structures . 889
42.3.1 Grid . 889
42.3.2 Spine . 889
42.3.3 Hybrid . 890

42.4 Clock Skew Scheduling .. 891
42.5 Handling Variability. 893
References . 894

A vast majority of VLSI chips are based on a synchronous sequential circuit design methodology.
For these circuits, a clock signal is used to synchronize the operations of different components
across the chip. Typically, this signal is produced by a clock generator circuit based on an external
reference, and it is distributed inside the chip by a clock network. Because the timing of the entire
chip is controlled by the clock signal, a poor design of the clock distribution network will limit the
performance of the chip. As the clock network connects the clock generator to a huge number of
clocked elements (including latches, flip-flops, memories, and dynamic gates) all over the chip and it
has high switching activity, it usually consumes a significant portion of the overall routing resources
and of the total chip power. Hence the clock network must be carefully designed to optimize the
performance of the chip, routing resource usage, and power consumption.

This chapter discusses some basic issues in clock network design. In Section 42.1, the metrics
used in designing clock networks are introduced. In Sections 42.2 and 42.3, algorithms to generate
clock networkswith tree structures and nontree structures are described, respectively. In Section 42.4,
the clock skew scheduling technique, which makes use of intentional clock skew to optimize per-
formance, is introduced. In Section 42.5, clock network design techniques that focus on handling
variability are presented. In Chapter 43, the clock network designs of several high-performance

881

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 882 23-9-2008 #3

882 Handbook of Algorithms for Physical Design Automation

microprocessors are presented to illustrate how the basic techniques described in this chapter are
applied in practice.

42.1 METRICS FOR CLOCK NETWORK DESIGN

Unlike other signals that carry data information, the clock signal in edge-triggered circuits carry
timing informationby the signal transitions (i.e., edges). Therefore, themetrics used in clock network
design are different from those for general signal net design, and these are discussed in the remainder
of this section.

42.1.1 SKEW

Clock skew refers to the spatial variation in the arrival time of a clock transition. The clock skew
between two points i and j on a chip is defined as ti − tj, where ti and tj are the clock arrival time
to point i and point j, respectively. The clock skew of a chip is defined as the maximum clock
skew between any two clocked elements on the chip. In general, clock skew forces designers to be
conservative and use a longer clock period, that is, a lower clock frequency, for the design (unless both
the clock network and the circuit are specially designed to take advantage of clock skew as described
in Section 42.4). Therefore, clock networks with zero skew are most desirable. However, because of
static mismatches in the clock paths and clock loads, clock skew is nonzero in practice, and hence
skew minimization is always one of the most important objectives in clock network design. Skew
can be effectively minimized in both physical design and circuit design stages. Skew minimization
approaches in physical design stage are discussed in this chapter. Deskewing techniques in circuit
design stage will be illustrated by several examples in Chapter 43.

Jitter is another measure of the variation in the arrival time of a clock transition. Specifically, it
refers to the temporal variation of the clock period at a given point on the chip. Like skew, it is an
important metric to the quality of the clock signal because it also forces designers to be conservative
and use a longer clock period. The structure of the clock network has insignificant effect on jitter. Jitter
is caused by delay variation in clock buffer due to power supply noise and temperature fluctuation,
influence of substrate/power supply noise to the clock generator, capacitive coupling between clock
and adjacent signal wires, and data-dependent nature of load capacitance of latch/register [1]. It is
more effectively minimized by the design of other components like power supply network and clock
generator. Therefore, it is typically not considered during clock network design.

42.1.2 TRANSITION TIME

The transition time is usually defined as the time for a signal to switch between 20 and 80 percent of
the supply voltage.∗ This corresponds to the rise time for the rising transition, and the fall time for
the falling transition. The reciprocal of the transition time is called the slew rate.†

Slow transitions could potentially cause large skew and jitter values in the presence of process
variations or noise. Transition times also need to be substantially less than the clock period to allow the
clock to achieve a rail-to-rail transition, to provide adequate noise immunity. Another motivation for
sharp transition times is that they limit the short-circuit power, which is roughly proportional to input
transition time [2], in the clock network. However, to reduce transition time, larger or more buffers
are normally required, which would increase power consumption, layout congestion, and process
variations. In practice, transition times are bounded rather than minimized in clock network design.

∗ Definitions as switching time between 10 and 90 percent, and between 30 and 70 percent are also common.
† However, in common usage, the term slew rate is often used to mean transition time rather than its reciprocal.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 883 23-9-2008 #4

Clock Network Design: Basics 883

42.1.3 PHASE DELAY

Phase delay (or latency) is defined as the maximum delay from the clock generator to any clock
terminal. It is important to realize that because the clock is a periodic signal, the absolute delay
from the clock generator to a clock terminal is not important. However, it has been observed that
the shorter the phase delay, the more robust the clock network will generally be [3]. Therefore, the
phase delay can be used as a simple albeit indirect criterion in clock network design.

42.1.4 AREA

The clock network is a huge structure driving a large number of widely distributed terminals. It
consists of a large number of wire segments, many of which are long and wide. Hence the clock
network utilizes a significant wire area. For example, it consumes 3 percent of the total available
metals 3 and 4 [4]. Moreover, because the clock network is sensitive to noise, it is usually shielded
and hence uses even more wire resources. In addition, typically, a lot of possibly large buffers are
inserted in the clock network. Those buffers could occupy a significant device area. It is important
to minimize both wire area and device area in clock network design.

42.1.5 POWER

Because of battery life concern in portable electronic devices and heat dissipation problem in high-
performance ICs, power consumption is a very important design consideration in recent years. The
clock signal switches twice every cycle. Whenever it switches, the huge capacitance associated
with the wires and devices of the clock network needs to be charged or discharged. Therefore,
clock distribution is a significant component of total power consumption. The clock distribution and
generation circuitry is known to consume up to 40 percent and 36 percent of the total power budget
of high-performance [4] and embedded [5] microprocessors, respectively. However, a significant
portion of the clock power is consumed in the input capacitance of the clocked elements [3,6].
Unless large amounts of local clock gating is done, as is typical in high-performance designs, this
portion of power cannot be reduced by modifying the clock network.

42.1.6 SKEW SENSITIVITY TO PROCESS VARIATIONS

If the manufacturing process is ideal, a careful clock network design can eliminate any clock skew.
However, with reductions in the feature sizes ofVLSI processes,manufacturing variations are becom-
ing increasingly significant. These variations are the major causes of clock skew in modern designs,
as designers usually can keep the systematic skew under nominal process parameters low. As a
design goal, it is important not only to minimize metrics such as the skew but also to minimize their
sensitivity to process variations.

42.2 CLOCK NETWORKS WITH TREE STRUCTURES

A common and simple approach to distribute the clock is to use a tree structure. The most basic tree
structure is the H-tree as shown in Figure 42.1, and it is obtained by recursively drawing H-shapes
at the leaf nodes. With enough recursions, the H-tree can distribute a clock from the center to within
an arbitrarily short distance of every point on the chip.

If all clock terminals have the same load and are arranged in a regular array as in Figure 42.1, and
if there is no process variation, the H-tree will have zero skew. However, the clock loads are almost
always irregularly arranged all over the chip. To handle the irregularity, algorithms that produce
generalized H-tree structures are presented in Sections 42.2.1 through 42.2.4.Wire sizing and buffer
insertion in clock trees are discussed in Section 42.2.5.

As a notationalmatter, we point out that Manhattan distances and rectilinear routing are assumed
throughout this chapter. However, for simplicity, nonrectilinear segments are drawn in most figures

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 884 23-9-2008 #5

884 Handbook of Algorithms for Physical Design Automation

A B

Source

Terminal

FIGURE 42.1 Clock network for 64 terminals with H-tree structure.

(e.g., Figure 42.2). Each nonrectilinear segment can be replaced by a set of two (or more) rectilinear
segments in an actual implementation.

42.2.1 METHOD OFMEANS ANDMEDIANS

Jackson et al. [7] proposed an algorithm called themethod ofmeans andmedians (MMM) to construct
a clock tree for a set of arbitrarily distributed terminals. The algorithm takes a top-down recursive
approach, a recursive step of which is illustrated in Figure 42.2. In each step, the set of terminals is
partitioned according to either the x- or y-coordinate into two subsets about the median coordinate of
the set. Note that the number of terminals in the two subsets may be equal, if the number of nodes is
even, or may differ by one otherwise. Then the center of mass (i.e., mean coordinate) of the entire set
is connected to both centers of mass of the two subsets. The partitioning direction at each recursive
level is determined by an one level look-ahead technique in which both x-then-y partitioning and
y-then-x partitioning are attempted, and the one that minimizes skew between its current endpoints
is chosen. The clock trees for the subsets are recursively constructed until there is only one terminal
in each subset. The time complexity of MMM is O(n log n), where n is the number of terminals.

42.2.2 GEOMETRIC MATCHING ALGORITHM

The geometric matching algorithm (GMA) proposed by Kahng et al. [8] solves the same prob-
lem formulation as the MMM algorithm, but takes a bottom-up recursive approach. A geometric

Center of mass
of subset 2

Subset 2

Center of mass
of subset 1

Center of mass
of whole set

Subset 1

Median of whole set
in x direction

FIGURE 42.2 Recursive step of the MMM algorithm. The set is partitioned according to x-coordinate.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 885 23-9-2008 #6

Clock Network Design: Basics 885

(a) (b) (c)

FIGURE 42.3 Recursive steps of the GMA algorithm. Seven terminals are merged into four subtrees in (a),
then two subtrees in (b), and finally one subtree in (c).

matching of a set of k points is a set of �k/2� line segments connecting the points, with no two
line segments connecting to the same point. The cost of the geometric matching is the sum of the
lengths of its line segments. The GMA is illustrated in Figure 42.3. In each recursive step, a set of
k path-length-balanced subtrees are given. (At the beginning, each terminal is a subtree by itself.)
The subtrees are merged by finding a minimum-cost matching of their tapping points (i.e., roots) to
form �k/2� new subtrees. The tapping point of each new subtree is chosen to be the balance point
that minimizes the maximum difference in path lengths to the leaves of the subtree. The resulting
set of subtrees (including the �k/2� new ones and potentially one unmatched subtree when k is odd)
will be recursively matched until a single path-length-balanced tree is obtained.

In some cases, it is impossible to find a balance point such that the path lengths to all leaves are
exactly the same. For example, in Figure 42.4a, if l1+ l < l2, then the best balance point is nodeA but
the path lengths to leaves are still not completely balanced. For those cases, a H-flipping operation
as shown in Figure 42.4b can be applied to reduce the skew.

If using optimal matching algorithm in planar geometry, the time complexity of GMA is
O(n2.5 log n), where n is the number of terminals. Faster nonoptimal matching heuristics can also be
used to speed up the algorithm. It was experimentally shown in Ref. [8] that the trees generated by
GMA are better in wirelength and skew than those by MMM.

42.2.3 EXACT ZERO-SKEW ALGORITHM

Both the MMM algorithm and GMA assume the delay is linear to the path length, and then focus
on balancing of path lengths. For high-performance designs with tight skew constraints, algorithms
based on more accurate delay models are desirable. Tsay [9] presented an algorithm that produces
clock treeswith exact zero skew according to the Elmore delaymodel [10]. LikeGMA, this algorithm
recursively merges subtrees in a bottom-up manner. However, it assumes that a tree topology, which
determines the pairing up of subtrees, is given. It addresses the problem of finding the tapping points
precisely so that the merged trees have zero skew.

Suppose two zero-skew subtrees are merged by a wire of length l as shown in Figure 42.5a.
The wire is divided by the tapping point into two segments of length xl and (1 − x)l, respectively.
By representing each subtree by a lumped delay model and each segment by a π-model, we can
transform the circuit into an equivalent RC tree as shown in Figure 42.5b.

(a) (b)

H-flipping

A

l

l2

l1

FIGURE 42.4 H-flipping operation for further skew minimization.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 886 23-9-2008 #7

886 Handbook of Algorithms for Physical Design Automation

(b)

(a)
Tapping point

Subtree 2

Subtree 1

xl (1�x)l

Subtree 2Subtree 1

t2t1

r1 r2

C1
c1/2 c1/2 c2/2 c2/2

C2

FIGURE 42.5 Zero-skew merge of two subtrees.

To ensure the delay from the tapping point to leaf nodes of both subtrees to be equal, it requires that

r1 (c1/2 + C1) + t1 = r2 (c2/2 + C2) + t2 (42.1)

Let α be the wire resistance per unit length and β be the wire capacitance per unit length. Then,
r1 = αxl, r2 = α(1 − x)l, c1 = βxl, and c2 = β(1 − x)l. Hence, after solving Equation 42.1, we
find the zero-skew condition to be

x = (t2 − t1) + αl (βl/2 + C2)

αl (βl + C1 + C2)

If 0 ≤ x ≤ 1, it indicates that the delay can be balanced by setting the tapping point somewhere
along the segment. On the other hand, if x < 0 or x > 1, it implies the two subtrees are too much out
of balance and extra delay needs to be introduced through wire elongation, which is commonly done
by snaking. Without loss of generality, consider the case x < 0. For this case, the tapping point has
to be at the root of subtree 1 and the segment connecting subtree 1 to subtree 2 has to be elongated.
Assume the length of the elongated segment is l′. To balance the delay,

t1 = t2 + αl′
(
βl′/2 + C2

)

or

l′ =
√

(αC2)
2 + 2αβ (t1 − t2) − αC2

αβ

Similarly, for the case x > 1, the tapping point should be at the root of subtree 2, and

l′ =
√

(αC1)
2 + 2αβ (t2 − t1) − αC1

αβ

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 887 23-9-2008 #8

Clock Network Design: Basics 887

(a) (b)

E

A

B

F

D

C

G

E
A

B

G

C

D

F

FIGURE 42.6 Two different ways to construct a zero-skew clock tree for terminals A–D. The connection EF
in (b) is much shorter than the one in (a).

42.2.4 DEFERRED MERGE EMBEDDING

In the exact zero-skew algorithm in Section 42.2.3, there are many possible ways to route the
connection between each pair of tapping points. As shown in Figure 42.6, the routing will determine
the location of the tapping point, and hence the wirelength of the connection at the next higher level.
In Ref. [9], it was suggested that a few possible wiring patterns (e.g., two one-bend connections)
may be constructed and the one which gives a shorter length at the next level is picked.

In general, the problem is to embed any given connection topology to create a zero-skew clock
tree while minimizing total wirelength. This problem can be solved in linear time by the deferred
merge embedding (DME) method independently proposed by Edahiro [11], Chao et al. [12], and
Boese and Kahng [13]. The DME algorithm consists of two phases. First, a bottom-up phase finds
a line segment called the merging segment, ms(v), to represent all possible placement locations for
each tapping point v. Then, a top-down phase resolves the exact location for each tapping point.

We use the example in Figure 42.6 to explain how to find the merging segments in the bottom-up
phase. The steps are illustrated in Figure 42.7. Consider the tapping point E. The distances dAE from
A to E and dBE from B to E that balance the delay according to some delay model are first computed.
The algorithm to compute the distances depends on the delay model used. For example, for Elmore
delaymodel, Tsay’s algorithm [9] can be applied. Thenwe set ms(E) to be the set of all points within
a distance dAE from A and within a distance dBE from B.ms(F) can be found similarly. Next, consider
the tapping point G. The least possible length of the connection between E and F is the minimum
distance between any point in ms(E) and any point in ms(F). Based on this length, we can compute
the distances dEG from E to G and dFG from F to G that balance the delay. Finally, we set ms(G) to
be the set of all points within a distance dEG from some point in ms(E) and within a distance dFG
from some point in ms(F).

A Manhattan arc is defined to be a line segment, possibly of zero length, with slope +1 or −1.
A crucial observation is that all merging segments areManhattan arcs. To prove this observation, first

(a) (b)

dAE

dBE

dCF

dDF

ms(F)

ms(E)

C

A
DB

dEG

dFG

A
D

B

C

ms(G)

ms(E)

ms(F)

FIGURE 42.7 Construction of merging segments in the bottom-phase of DME.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 888 23-9-2008 #9

888 Handbook of Algorithms for Physical Design Automation

notice that the merging segment of a terminal is a single point and thus a Manhattan arc. Consider
the merge of two subtrees rooted at X and Y to form a tree rooted at Z such that both ms(X) and
ms(Y) are Manhattan arcs. Let l be the minimum distance between any point in ms(X) and any point
in ms(Y). l is the least possible length of the connection between X and Y. To balance the delay, we
compute dXZ and dYZ . There are two possible cases. The first case is dXZ + dYZ = l. Note that both
the region within a distance dXZ from ms(X) and the region within a distance dYZ from ms(Y) are
tilted rectangles. Moreover, the two rectangles are touching each other as dXZ + dYZ = l. ms(Z) is
set to the intersection of them and hence is a Manhattan arc. The second case is dXZ + dYZ > l. In
this case, Z coincides with either X or Y , and wire is elongated to balance the delay. Without loss of
generality, assume Z coincides with X . Then ms(Z) is set to all points in ms(X) that are also within
a distance dYZ from ms(Y). Hence it is also a Manhattan arc. By induction, therefore, all merging
segments must be Manhattan arcs. Because of this observation, each merging segment can be found
in constant time. The whole bottom-up phase requires linear time.

For the top-down phase, the locations of tapping points are fixed in a top-downmanner as follows.
For the root r of the whole tree, its location is set to any point in ms(r). For any other tapping point
v, its location is set to any point in ms(v) that is within a distance dvp (determined in bottom-up
phase) from the location of v’s parent p. The top-down phase also takes linear time. Therefore, DME
is a linear time algorithm. It has been proved that for linear (i.e., path length) delay model, DME
produces zero-skew tree with optimal wirelength. However, it has also been shown that DME is not
optimal for Elmore delay model [13].

Instead of achieving zero skew, the DME algorithm can be extended to handle general skew
constraints. The extended DME algorithm has applications in clock skew scheduling (Section 42.4)
and process variation aware clock tree routing (Section 42.5).

42.2.5 WIREWIDTH AND BUFFER CONSIDERATIONS IN CLOCK TREE

Wire resistance is a major concern for clock tree design in advanced process. If a clock wire is long
and narrow, it will have a very significant resistance. Together with the significant capacitive load of
the clock wires and terminals, this implies that the clock signal will have very long phase delay and
transition time. Note that this problem cannot be resolved merely by increasing the driving strength
(i.e., size) of the clock generator. Even though a strong clock generator can produce a sharp clock
signal at the source, the signal degrades rapidly as it is transmitted through the lossy clock wire.

One solution is to size up the width of the clock wires as wire resistance is inversely proportional
to the wire width. Such a method must require a router to handle wires of varying widths, and also
requires appropriate sizing of the clock drivers to meet the delay and transition time constraints under
an increased load for the stage.

Another solution is to insert buffers distributively in the clock tree: the basic concept is similar
to buffer insertion for signal lines, discussed elsewhere in this book. Buffers are effective in main-
taining the integrity of the clock signal by restoring degraded signals. Buffered clock trees generally
use smaller clock generator and narrower wires, and hence consume less power and area [14,15].
However, buffer delay is more sensitive to process variations and power supply noise thanwire delay.
Hence, buffered clock trees may have more skew and jitter. Moreover, clock tree design is typically
performed after placement so that clock terminals are fixed. Inserting the clock buffers into a placed
circuit may be difficult.

To reduce skew and skew sensitivity to process variations in buffered clock tree design, the
following guidelines are often followed:

• Buffered clock trees should have equal numbers of buffers in all source-to-sink paths
• At each buffered level, the buffers should have the same size
• At each buffered level, the buffers should have the same capacitive load and the same input

transition time (potentially by adjusting the width and length of the wires)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 889 23-9-2008 #10

Clock Network Design: Basics 889

In practice, a mixed approachof wire width adjustment and buffer insertion is typically used [16].
For example, Restle et al. [3] presented the clock network design of six microprocessor chips. In all
these chips, the clock network consists of a series of buffered treelike networks driving a final set
of 16–64 sector buffers. Each sector buffer drives a tree network tunable by adjusting wire widths.
(The tunable trees finally drive a single clock grid, which is discussed in Section 42.3.1.)

42.3 CLOCK NETWORKS WITH NONTREE STRUCTURES

Although tree structures are relatively easy to design, a significant drawback associated with them
is that, in the presence of process variations, two physically nearby points that belong to different
regions of the clock tree, may have a significant skew. For example, points A and B in Figure 42.1
may experience a large skew because the two paths from source to them are distinct and may not
match well with each other. This kind of local skew is particularly troublesome, because physically
nearby registers are likely to be connected by a combinational path. Therefore, the significant skew
can easily cause a hold time violation, which is especially costly as it cannot be fixed by slowing
down the clock frequency. In the following, several nontree structures are introduced. They are more
effective in reducing skew in a local region, but they consume more area and power.

42.3.1 GRID

A clock grid is a mesh of horizontal and vertical wires driven from themiddle or edges. Typcially, the
mesh is fine enough to deliver the clock signal to within a short distance of every clocked element.
The skew minimization approach of grids is fundamentally different from that of trees. Grids try to
equalize delay of different points by connecting them together, whereas trees try to balance delay of
different points by carefully matching the characteristics of different paths.

As the grid connects nearby points directly, it is very effective in reducing local skew. Moreover,
its design is not as sensitive to the placement details as a tree structure, which makes late design
changes easier. On the other hand, for a tree-structured network, if a late design change significantly
alters the locations of the clocked elements or the values of the load capacitances, an entirely new
tree topology may be required. The main disadvantage of grids is that they consume a large amount
of wire resources and power. In addition, grids may have significant systematic skew between the
points closest to the drivers and the points furthest away. This problem can be illustrated by the clock
network design of the 300MHz Alpha 21164 processor [17], where the clock signal generated at the
center of the chip is distributed to the left and right banks of final clock drivers (Figure 42.8a), which
then drive a grid. It is clear from the simulation results in Figure 42.8b that the skews between points
near the left and right drivers and points further away are very significant (up to 90 ps). Therefore,
grids are rarely used by themselves. A balanced structure is usually employed to distribute the clock
globally to various places in the grid, as discussed in Section 42.3.3.

42.3.2 SPINE

The spine structure for clock distribution is shown in Figure 42.9. A clock spine is a long and
wide piece of wire running across the chip, which drives the clock signal through delay-matched
serpentine wires into each small group of clocked elements. This idea was first introduced by Lin
and Wong [18]. Typically, the clock signal is distributed from the clock generator to the spine by a
balanced buffered tree such that it arrives at many different points of the spine simultaneously. If the
load distribution induced by the serpentine wires on the spine is uniform, the spine has zero skew
everywhere. If the delays of the serpentine wires are perfectly matched, then the skew at the clocked
elements will also be zero.

Like grids, spines provide a stable structure that facilitates late design changes. Although this
structure does not make the clock as readily available as grids so that serpentine routing is required,
a serpentine is easy to design. To accommodate for late design changes, each serpentine can be tuned

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 890 23-9-2008 #11

890 Handbook of Algorithms for Physical Design Automation

80
72
64
56
48
40
32
24
16
8
017

16
15

14
13

12
11

10
9Y
 (m

m
)

8
7

6
5

4
3

2
1

0

0 1 2 3 4 5 6 7
X (mm)8 9 10 11 12 13 14 15 16 17

(b)(a)

Clock drivers

D
el

ay
 (

ps
)

FIGURE 42.8 Clock driver locations (a) and clock delay in Alpha 21164 (b). (Courtesy of Hewlett-Packard
Company.)

Spine 1

Spine 2

Delay-matched
serpentine routing

FIGURE 42.9 Clock distribution by spines with serpentine routing.

individually without affecting others. Moreover, clock gating is easy to be incorporated as each
serpentine can be gated separately. However, a system with many clocked elements may require a
lot of serpentine routes, which cause high area and power consumption. Like trees, spines also may
have large local skews between nearby elements driven by different serpentines.

Intel has used the spine structure in its Pentium processors. Details can be found in Chapter 43.

42.3.3 HYBRID

The tree structure is good atminimizing skew globally, while the grid structure is effective in reducing
skew locally. To achieve low skew at both global and local levels, tree and grid can be combined to
form a hybrid structure. A practical approach is to use a balanced tree to distribute the clock signal
to a large number of points across the chip, and then a grid to connect these points together. As the
grid is driven in many points, the systematic skew problem of grid is resolved. Moreover, as the tree
sinks are shorted by grid segments, the local skew problemof tree is eliminated. In high-performance

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 891 23-9-2008 #12

Clock Network Design: Basics 891

Zero-skew
subtree 1

Zero-skew
subtree 2

Zero-skew
subtree 3

Zero-skew
subtree 4

Zero-skew mesh

Clock driver
or buffer

FIGURE 42.10 Clock network with a global mesh driving local trees.

design, the skew budget is too tight to be satisfied either by a pure tree or a pure grid approach. The
hybrid approach is a common alternative. In addition, like a grid, the hybrid network also provides
a stable structure that facilitates late design changes. The only drawback of this approach is power
and area cost even higher than a pure grid approach.

Many microprocessors have used a hybrid structure for clock distribution, and several of them
are discussed in Chapter 43. In particular, IBM has used the hybrid approach on a variety of micro-
processors including the Power4, PowerPC, and S/390 [3]. In the IBM designs, a primary buffered
H-tree drives 16–64 sector buffers arranged on the chip. Each sector buffer drives a smaller tree
network. Each tree can be tuned to accommodate nonuniform load capacitance by adjusting the wire
widths. Together, the tunable trees drive a global clock grid at up to 1024 points.

Su and Sapatnekar [19] proposed a different hybrid approach. In this mesh/tree approach, a
global zero-skew mesh is used to drive local zero-skew trees as shown in Figure 42.10. This idea
can be generalized to a multilevel structure in which each subtree sink at a certain level is driving
another mesh with four subtrees at the next lower level.

To construct an one-levelmesh/tree clock network, the sinks are first divided into four groups and
a buffered tree is built for each group by any zero-skew tree construction algorithm (e.g., Tsay [9]).
Based on the delay and downstreamcapacitance of the four trees, a zero-skewmesh is then constructed
by adjusting the width of the eight mesh segments. Interestingly, they show that the problem of
minimizing the total segment area to achieve zero skew with respect to Elmore delay (by requiring
all four trees to meet a given target delay) can be formulated as a linear program of only four of the
segment width variables. A heuristic procedure is presented to iteratively set the target delay and
possibly elongate some segments until a feasible solution (with all segment widths within bounds)
is found. As a postprocessing step, wire width optimization under an accurate higher-order delay
metric is performed.

It is shown experimentally that clock networks by this hybrid mesh/tree approach are better in
skew, skew sensitivity, phase delay, and transition time than trees by Tsay’s algorithm. They are
also better in skew, phase delay, and transition time, and similar in area when comparing to the IBM
structures discussed above.

42.4 CLOCK SKEW SCHEDULING

The clock skew scheduling technique makes use of intentional nonzero clock skews to optimize
the performance of synchronous systems. The basic idea is to use clock skews to balance the slack
difference between combinational paths instead of achieving zero-skew clock arrival times. This idea
was first proposed by Fishburn [20].

Before presenting the clock skew scheduling problem formulations, we first introduce the timing
constraints on clock signals. To avoid clock hazards, setup time constraints and hold time constraints
have to be satisfied by all source/destination register pairs in the system. Consider a pair of registers

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 892 23-9-2008 #13

892 Handbook of Algorithms for Physical Design Automation

FFi

ti ti Combinational
logic

D Q D Q

FFj

Dij

clk2q

FIGURE 42.11 Clock hazards and timing constraints.

FFi and FFj as shown in Figure 42.11. Let ti and tj be the clock delays from clock source to FFi and
FFj, respectively. Let Dij be the set of all combinational path delays from FFi to FFj. Let t

clk2q
i be the

clock-to-Q delay for FFi. Let t
setup
j and tholdj be the setup time and hold time for FFj, respectively. Let

P be the clock period. The setup time and hold time constraints can be expressed as

ti + tclk2qi + MAX
(
Dij

) + tsetupj ≤ tj + P (42.2)

ti + tclk2qi + MIN
(
Dij

) ≥ tj + tholdj (42.3)

A clock schedule is a set of delays from clock source to all registers in the synchronous system.
The clock scheduling problem is to find a clock schedule {t1 , . . . , tN} for all registers FF1 , . . . , FFN

to minimize the clock period P while satisfying the constraints in Equations 42.2 and 42.3. This
problem can be formulated as a linear program as follows [20]:

LP_SPEED: Minimize P
subject to tj − ti ≥ tsetupj + tclk2qi + MAX

(
Dij

) − P for i, j = 1, . . . , N
ti − tj ≥ tholdj − tclk2qi − MIN

(
Dij

)
for i, j = 1, . . . , N

ti ≥ MIN_DELAY for i = 1, . . . , N

Alternatively, we can find a clock schedule to maximize the minimum safety margin M for a
given clock period P. This problem can be formulated as a linear program as follows:

LP_SAFETY: Maximize M
subject to tj − ti ≥ tsetupj + tclk2qi + MAX

(
Dij

) − P +M for i, j = 1, . . . ,N
ti − tj ≥ tholdj − tclk2qi − MIN

(
Dij

) +M for i, j = 1, . . . ,N
ti ≥ MIN_DELAY for i = 1, . . . ,N .

In both formulations, MAX(Dij) = −∞ and MIN(Dij) = ∞ if there is no combinational path from
FFi to FFj.

After the clock schedule S = {t1, . . . , tN} is computed, the next step is to construct a clock network
to realize the obtained schedule. The DME algorithm in Section 42.2.4 can be easily extended to
handle this problem. We only need to construct the merging segments to achieve the given skews
instead of zero skews in the bottom-up phase of the DME algorithm. However, the solutions of the
linear programs may not be unique. Each clock delay ti could be a range rather than a fixed value.
In this case, the clock routing problem becomes the bounded-skew routing tree (BST) problem. In
Ref. [21], Cong et al. proposed two algorithms, BME (boundary merging and embedding) and IME
(interior merging and embedding), to handle this problem. These two algorithms extend the DME
algorithm by finding a polygonal region based on the skew bounds rather than a merging segment
to represent all possible locations for each tapping point.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 893 23-9-2008 #14

Clock Network Design: Basics 893

Apart from the original formulations of clock scheduling, there are some other extensions. Neves
and Friedman [22] formulated the process variation tolerant optimal clock skew scheduling problem.
To better control the effects of process variations, they find the permissible range (i.e., the range of
the clock skew without timing violation) for each local path, select a clock skew value that allows
a maximum variation of skew within the permissible range, and finally determine the clock delay
to each register. Recently, Ravindran et al. [23] discussed the multidomain clock skew scheduling
problem. For a given number of clocking domains n and a maximum permissible within-domain
latency δ, the multidomain range constraints require that all clock latencies must fit into n value
ranges (l(di), l(di) + δ) for i = 1, . . . , n. The objective of multidomain clock skew scheduling is to
determine domain phase shifts l(di) and register latencies that satisfy the clock domain constraints
and minimize the clock period.

Finally, we want to have a brief discussion on two similar sequential optimization techniques,
clock scheduling and retiming. They are, respectively, continuous and discrete optimizations with
the same effect on minimizing the clock period [20]. The equivalence of the two techniques was
studied in Ref. [24]. It is proved that there exists a retiming R to achieve clock period P if and only
if there exists a clock schedule S with the same clock period. However, the practical use of retiming
is limited due to two reasons. First, retiming has adverse impact on the verification methodology.
Second, using retiming for maximum performance often causes a steep increase in the number
of registers. Clock scheduling does not have these two limitations. Another advantage of clock
scheduling is that because retiming can only move registers across discrete amounts of logic delay,
the resulting system after retiming can still benefit from clock scheduling.

42.5 HANDLING VARIABILITY

In minimizing skew sensitivity to process variations, two guiding principles are that the network
should be as symmetrical and as fast as possible. In a clock network designed and laid out sym-
metrically, chipwide process (or environmental) variations should affect all clock paths identically.
An additional advantage is that any systematic skew caused by modeling errors is eliminated by
symmetry. In a fast network, as the clock phase delay is small, any fractional variations in delay
lead only to a modest amount of skew. In addition, a clock network with optimal delay is the most
tolerant to process variations. At the optimal delay point with respect to a certain parameter, the
delay sensitivity over that parameter (i.e., the slope of the delay function) should be zero. However,
it is not trivial to apply these two principles in practice. Because of uneven load distribution and
routing/buffer obstacles, it is usually impossible to construct a completely symmetrical network.
Moreover, minimizing the network delay may be conflicting with the optimization of some other
metrics (e.g., skew, area and power). Several important works on reliable clock network design under
process variations are discussed below.

The concept of delay sensitivity is very useful in considering process variations. Pullela et al. [25]
first made use of delay sensitivity with respect to wire width variations to improve the delay, skew
and skew sensitivity of a given clock tree by wire width optimization. The Elmore delay model and
the L-type RC model for each branch are used in the paper, but the concept can be generalized to
other models. Let Rj be the resistance, Cj be the capacitance, and Cdj be the downstream capacitance
of branch j. Let U(i) be the set of all branches on the path from sink i to the root. Then the Elmore
delay from the root to sink i is Tdi = ∑

j∈U(i) RjCdj . Therefore, the sensitivities of Elmore delay of
sink i with respect to circuit parameters Cj and Rj are

∂Tdi

∂Cj

= Rcij (42.4)

∂Tdi

∂Rj

=
{
Cdj if j ∈ U (i)

0 otherwise
(42.5)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 894 23-9-2008 #15

894 Handbook of Algorithms for Physical Design Automation

where Rcij is the total resistance along the common path from sink i to the root and branch j to
the root. Rj and Cj can be expressed as functions of width wj of branch j as Rj = R0Lj/wj and
Cj = CaLjwj + Cf Lj, where R0, Ca, and Cf are technology parameters independent of wj, and Lj is
the length of branch j. Therefore, the delay sensitivity of sink i to width wj is

∂Tdi

∂wj

= ∂Tdi

∂Cj

∂Cj

∂wj

+ ∂Tdi

∂Rj

∂Rj

∂wj

= ∂Tdi

∂Cj

CaLj − ∂Tdi

∂Rj

R0Lj
w2
j

By incremental computation as described in Ref. [26], Equations 42.4 and 42.5 for all i and j can
be computed in O(n2) time for a tree with n sinks.∗ Hence, the delay sensitivities for all sinks to all
branch widths can also be found in O(n2) time.

In Ref. [25], a greedy heuristics is proposed to iteratively increase the widths to improve delay,
skew, and skew sensitivity. The selection of the branch to widen in each step is based on the delay
sensitivities, which give the delay change of each sink when widening a branch. In particular, they
argued that wire widening is a better method for delay balancing than wire elongating as widening
generally reduces skew sensitivity but elongating increases it.

Lu et al. [27] formulated the minimizing skew violation (MinSV) problem to construct a clock
tree considering wire width variation due to process variations. Given the range of permissible skew
for each pair of clock sinks, they tried to find a clock routing tree such that the maximum skew
violation among all pairs of sinks is minimized under wire width variation. The way they construct
the tree follows the framework of the DME algorithm. Because of wire width variation, the skew
between a sink pair becomes a range rather than a unique value. To maximize the safety margin
due to process variations, in the bottom-up stage, they chose the merging segment for the tapping
point such that the center of the skew range of the most critical sink pair coincides with the center
of permissible range for this sink pair. Besides improving process variation tolerance, they also
proposed an algorithm to minimize wirelength when there is no skew violation under wire width
variation.

Recently, Rajaram et al. [28] proposed to insert cross links in a given clock tree to improve its
skew sensitivity. Like the grid and the spine structures, the cross links equalize delay of different
points by connecting them together. Such an approach can tolerate both process and environmental
variations. Moreover, because the cross links are selectively inserted based on the trade-off between
skew sensitivity reduction and extra wire usage, this approach can achieve significant skew sen-
sitivity reduction with little increase in wirelength. The link insertion algorithm is improved in
Ref. [29].

REFERENCES
1. J. M. Rabaey, A. Chandrakasan, and B. Nikolić.Digital Integrated Circuits: A Design Perspective, 2nd edn.

Prentice Hall, 2003.
2. H. Veendrick. Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer

circuits. IEEE Journal of Solid-State Circuits, SC-19:468–473, August 1984.
3. P. J. Restle, T. G. McNamara, D. A. Webber, P. J. Camporese, K. F. Eng, K. A. Jenkins, D. H. Allen,

M. J. Rohn, M. P. Quaranta, D. W. Boerstler, C. J. Alpert, C. A. Carter, R. N. Bailey, J. G. Petronick,
B. L. Krauter, and B. D. McCredie. A clock distribution network for microprocessors. IEEE Journal of
Solid-State Circuits, 36(5):792–799, May 2001.

∗ In [25], an O(n2 log n) algorithm by adjoint analysis is proposed.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 895 23-9-2008 #16

Clock Network Design: Basics 895

4. M. Gowan, L. Biro, and D. Jackson. Power considerations in the design of the Alpha 21264 microprocessor.
In Proceedings of the ACM/IEEE Design Automation Conference, San Francisco, CA, pp. 433–439, 1998.

5. D. R. Gonzales. Micro-RISC architecture for the wireless market. IEEE Micro, 19(4):30–37, 1999.
6. D. E. Duarte, N. Vijaykrishnan, and M. J. Irwin. A clock power model to evaluate impact of architectural

and technology optimizations. IEEE Transactions on Very Large Scale Integration Systems, 10(6):844–855,
December 2002.

7. M. A. B. Jackson, A. Srinivasan, and E. S. Kuh. Clock routing for high-performance ICs. In Proceedings
of the ACM/IEEE Design Automation Conference, Orlando, FL, pp. 573–579, 1990.

8. J. Cong, A. B. Kahng, and G. Robins. Matching-based methods for high-performance clock routing. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12(8):1157–1169, August
1993 (DAC 1991).

9. R. -S. Tsay. An exact zero-skew clock routing algorithm. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 12(2):242–249, February 1993 (ICCAD 1991).

10. W. C. Elmore. The transient response of damped linear network with particular regard to wideband
amplifiers. Journal of Applied Physics, 19:55–63, 1948.

11. M. Edahiro. Minimum skew and minimum path length routing in VLSI layout design. NEC Research and
Development, 32(4): 569–575, 1991.

12. T. -H. Chao, Y. -C. Hsu, and J. -M. Ho. Zero skew clock net routing. In Proceedings of the ACM/IEEE
Design Automation Conference, Anaheim, CA, pp. 518–523, 1992.

13. K. D. Boese and A. B. Kahng. Zero-skew clock routing trees with minimum wirelength. In Proceedings of
the IEEE International ASIC Conference, Rochester, NY, pp. 1.1.1–1.1.5, September 1992.

14. J. G. Xi and W. W. -M. Dai. Buffer insertion and sizing under process variations for low power clock
distribution. In Proceedings of the ACM/IEEE Design Automation Conference, San Francisco, CA,
pp. 491–496, 1995.

15. A. Vittal and M. Marek-Sadowska. Low-power buffered clock tree design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 965–975, September 1997 (DAC 1995).

16. S. Pullela, N. Menezes, J. Omar, and L. T. Pillage. Skew and delay optimization for reliable buffered clock
trees. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, San Jose,
CA, pp. 556–562, 1993.

17. B. J. Benschneider, A. J. Black, W. J. Bowhill, S. M. Britton, D. E. Dever, D. R. Donchin, R. J. Dupcak,
R. M. Fromm, M. K. Gowan, P. E. Gronowski, M. Kantrowitz, M. E. Lamere, S. Mehta, J. E. Meyer, R. O.
Mueller, A. Olesin, R. P. Preston, D. A. Priore, S. Santhanam, M. J. Smith, and G. M. Wolrich. A 300-MHz
64-b quad-issue CMOS RISC microprocessor. IEEE Journal of Solid-State Circuits, 30(11):1203–1214,
November 1995 (ISSCC 1995).

18. Shen Lin and C. K. Wong. Process-variation-tolerant clock skew minimization. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, pp. 284–288, 1994.

19. H. Su and S. S. Sapatnekar. Hybrid structured clock network construction. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, San Jose, CA, pp. 333–336, 2001.

20. J. P. Fishburn. Clock skew optimization. IEEE Transactions on Computers, 39(7):945–951, July 1990.
21. J. Cong, A. B. Kahng, C. -K. Koh, and C. -W. A. Tsao. Bounded-skew clock and Steiner routing. ACM

Transactions on Design Automation of Electronics Systems, 3(3):341–388, 1998 (ICCAD 1995).
22. J. L.Neves andE.G. Friedman.Optimal clock skew scheduling tolerant to process variations. InProceedings

of the ACM/IEEE Design Automation Conference, Las Vegas, NV, pp. 623–628, 1996.
23. K. Ravindran, A. Kuehlmann, and E. Sentovich. Multi-domain clock skew scheduling. In Proceedings of

the IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, pp. 801–808, 2003.
24. L. -F. Chao and E. H. -M. Sha. Retiming and clock skew for synchronous systems. In Proceedings of the

IEEE International Symposium on Circuits and Systems, London, England, pp. 283–286, 1994.
25. S. Pullela, N. Menezes, and L. T. Pillage. Reliable non-zero skew clock trees using wire width optimization.

In Proceedings of the ACM/IEEE Design Automation Conference, Dallas, TX, pp. 165–170, 1993.
26. C. -P. Chen and D. F. Wong. A fast algorithm for optimal wire-sizing under Elmore delay model.

In Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 4, Atlanta, GA,
pp. 412–415, 1996.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C042 Finals Page 896 23-9-2008 #17

896 Handbook of Algorithms for Physical Design Automation

27. B. Lu, J. Hu, G. Ellis, and H. Su. Process variation aware clock tree routing. In Proceedings of the
International Symposium on Physical Design, Monterey, CA, pp. 174–181, 2003.

28. A. Rajaram, J. Hu, and R. Mahapatra. Reducing clock skew variability via cross links. In Proceedings of
the ACM/IEEE Design Automation Conference, Anaheim, CA, pp. 18–23, 2004.

29. A. Rajaram, D. Z. Pan, and J. Hu. Improved algorithms for link-based non-tree clock networks for skew
variability reduction. In Proceedings of the International Symposium on Physical Design, San Francisco,
CA, pp. 55–62, 2005.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 897 24-9-2008 #2

43 Practical Issues in Clock
Network Design

Chris Chu and Min Pan

CONTENTS

43.1 IBM S/390 .. 898
43.2 IBM Power4 .. 900
43.3 Alpha 21264 .. 901
43.4 Intel Pentium II . 904
43.5 Intel Pentium III . 905
43.6 Intel Pentium 4 . 905
43.7 Intel Itanium .. 907
43.8 Intel Itanium 2 . 909
References . 911

In this chapter, we present the clock network designs of several high-performance microprocessors
to illustrate how the basic techniques presented in Chapter 42 are applied in practice. We focus on
the clock network design of high-performance microprocessors as the stringent slew requirements
make the design most challenging. Some useful discussions on practical issues in clock network
design can also be found in Bindal and Friedman [1], Zhu [2], and Rusu [3].

Year/ Clock Number of
Main Process Frequency Area Transistors Clock Skew

Section Processor Reference (nm) (MHz) (mm2) (M) Topology Deskew (ps)

43.1 IBM S/390 1997 [4] 200 (Leff) 400 300 7.8 Tree No 30
43.2 IBM Power4 2002 [5] 180 SOI 1300 174 Tree driving

single grid
No 25

43.3 Alpha 21264 1998 [6] 350 600 15.2 Hierarchical
grids

No 65

43.4 Pentium II 1997 [7] 350 300 203 7.5 1 spine No 140
43.5 Pentium III 1999 [8] 250 650 123 9.5 2 spines Active 15
43.6 Pentium 4 2001 [9] 180 2000 217 42 3 spines Active 16

2003 [10] 90 Up to 5000 109 8 spines 10
43.7 Itanium 2000 [11] 180 800 25.4 Tree driving

grids
Active 28

43.8 Itanium 2 2002 [12] 180 1000 421 25 Tree driving
trees

No 62

2003 [13] 130 1500 374 410 Tree driving
trees

Fuse
based

24

(dual core) 2005 [14] 90 100–2500 596 1720 Hierarchical
trees

Active 10

897

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 898 24-9-2008 #3

898 Handbook of Algorithms for Physical Design Automation

The processors discussed in this chapter are summarized in the table above. (Some entries are
left blank because the corresponding information cannot be found.)

43.1 IBM S/390

The design of a 400-MHz microprocessor for IBM S/390 Enterprise Server Generation-4 system
is described in Ref. [4]. The chip is fabricated in a 0.2-µm Leff CMOS technology with five layers
of metal and tungsten local interconnect. The power supply is 2.5V. The chip size is 17.35mm ×
17.30mm with about 7.8 million transistors. The clock distribution network uses a balanced tree
design, which is suitable for the relatively low clock frequency. A single-phase clock is distributed
from a phase-locked loop (PLL)/central clock buffer located near the center of the chip to all the
latches inside the macros in three levels of hierarchy.

The first two levels of clock distribution are in the form of balanced H-like trees, using primarily
the top two metal layers. The first-level tree routes the global clock from the central clock buffer
to nine sector buffers, as shown in Figure 43.1. The sector buffers repower the clock to all macros
inside the sectors. There are 580 macro clock pins in the whole design.

RU

32 KB cache

Directory

16 KB ROS 16 KB ROSTLB_LOG

TLB_ABS

32 KB cache

IU control IU control

CLKD

I/E trace
PLL

I/E trace

F
P

U
 c

on
tr

ol

F
P

U
 c

on
tr

ol

F
X

U
 c

on
tr

ol

F
X

U
 c

on
tr

ol
F

P
U

 d
at

af
lo

w

F
P

U
 d

at
af

lo
w

F
X

U
 d

at
af

lo
w

A
dd

re
ss

 fl
ow

A
dd

re
ss

 fl
ow

In
st

ru
ct

io
n

flo
w

In
st

ru
ct

io
n

flo
w

B
C

E
 lo

gi
c

F
X

U
 d

at
af

lo
w

Clock sector buffer

Clock waveform measurement point

FIGURE 43.1 First-level tree of the IBM S/390 clock distribution network. (From Welb, C.F. et al.,
J. Solid-State Circuits, 32, 1665, 1997. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 899 24-9-2008 #4

Practical Issues in Clock Network Design 899

The clock propagation delay along the tree is balanced against macro input capacitance and
RLC characteristics of the tree wires. Horizontal wiring of each tree is in low-resistance Metal 5
(M5) (with 4.8-µm pitch). At various places along the tree, inductive coupling is reduced and return
path is improved by using power wires for shielding. Decoupling capacitors are incorporated into
central and sector buffers to reduce delta-I noise. A clock wiring methodology was developed with
custom routing and timing computer-aided design (CAD) tools. The detailed routing as well as the
widths of all clock wires were optimized to minimize skew, mean delay, power, wiring tracks, and
sensitivity to process variations. Three-dimensional (3D) modeling was performed using a full-wave
electromagnetic field solver [15], and distributed RLCmodeling was used for virtually every wire in
all the trees during the design and tuning/optimization process [16]. A number of caseswere analyzed,
and the results were used to generate a combination of analytic models and lookup tables containing
distributed RLC parameters for all clock geometries used. Each wire segment was represented by
an equivalent circuit consisting of up to six RLC π-segments. Extensive simulations and wire width
tuning [17] were done to guarantee low clock skew at macro pins. Typical simulated RLC delay of
the first-level tree is 300 ps with 20 ps skew at the sector buffers. The sector buffer delay is 230 ps.
Typical simulated RLC delay within sectors is 210 ps with 30 ps skew at the macros.

The last level of clock distribution is local to eachmacro. Figure 43.2 shows the clocking scheme
within macros. From the macro pin, the clocks are wired to clock blocks. The overall target skew for
this wire is under 20 ps. For large area macros, multiple clock pins were used to reduce wirelength
to clock blocks. The clock block generates local clocks that drive latches. The target skew for local
clocks is under 50 ps.

All macrolevel wiring is done by hand for custom macros or with a place and route tool for
synthesized macros. For synthesized macros that had many latches, and therefore multiple clock
blocks, a clock optimization tool was used that reassigned latches to clock blocks based on cell
placement. This resulted in clock blocks driving latches that were placed closest to them. Macro
layouts were extracted for R and C parasitics, and the extracted netlists were used to time the
macros. This means that any skew in the last level of clock distribution was captured in that macro’s
timing abstraction.

Figure 43.3 shows the measured waveforms of the central clock buffer output and clocks at ten
points of the 580 macro pin locations (marked on Figure 43.1) driven by the second level clock tree.
The measurement was performed using a novel electron-beam prober with a 20-ps time resolution
on the top wiring layer. Because the chip was powered using a standard cantilever probe card in the

CLKG

Clock chopper

Clock splitter

Combinational
logic

CLKL

C 2

C1

L2 L2

L 2L1 L2L1

FIGURE 43.2 Last/macrolevel clock distribution of IBM S/390. (From Welb, C.F. et al., J. Solid-State
Circuits, 32, 1665, 1997. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 900 24-9-2008 #5

900 Handbook of Algorithms for Physical Design Automation

2.5

2.0

1.5

1.0

0.0

Central
clock
buffer
output

Clock at ten of 580 macro
pins in second level clock tree

V
ol

ts

1000500 1500

0.50.50.5

FIGURE 43.3 Electron beam measured clock waveforms at macro pin locations marked on Figure 43.1.
(From Welb, C.F. et al., J. Solid-State Circuits, 32, 1665, 1997. With permission.)

electron-beam prober, the chip clock was run at low frequency to reduce power supply noise. Power
supply noise during these measurements was measured to be less than 100mV. The results indicate
a mean delay of 740 ps and less than 30 ps skew from the central clock buffer to the macro pins.

43.2 IBM POWER4

The clock distribution of a 1.3-GHz Power4 microprocessor is described in Refs. [5,18]. The chip is
fabricated in the IBM 0.18-µm CMOS 8S3 SOI (silicon-on-insulator) technology with seven levels
of copper wiring. It has 174 million transistors. The power supply is 1.6V.

The microprocessor uses a single chip-wide clock domain, with no active or programmable
skew-reduction circuitry. Havingmultiple domainswould allow active/programmable deskewing and
coarse clock gating, and could result in lower skew within each small domain. Inevitably, however,
withmultiple domains there is increased skewand uncertainty between domains. In addition,multiple
clock domains complicate early- and late-mode timings, and degrade critical paths that crossmultiple
domain boundaries. Extensive simulations of the Power4 chip and test-chip hardware measurements
support the simplifying decision to maintain a single-domain global clock grid for the entire chip,
with no programmable or active deskewing.

The global clock distribution strategy is based on a topology using a number of tuned trees driving
a single full-chip clock grid [19]. This strategy is developed with the goal of being applicable to a
variety of high-performance server microprocessors. It has been previously used in three S/390 chips
and three PowerPC chips [19]. The trees-driving-grid topology combines many of the advantages
of both trees and grids. Trees have low latency, low power, minimal wiring track usage, and the
potential for very low skew. However, without the grid, trees must often be rerouted whenever the
locations of clock pins change, or when the load capacitance values change significantly. The grid
provides a constant structure so that the trees and the grids they are driving can be designed early
to distribute the clock near every location where it may be needed. The regular grid also allows
simple regular tree structures. This is important as it facilitates the design of carefully designed
transmission line structures with well-controlled capacitance and inductance. The grid reduces local
skew by connecting nearby points directly. The tree wires are then tuned to minimize skew over
longer distances.

The global clock distribution network of the 1.3-GHz Power4 chip is illustrated in Figure 43.4
using a 3D visualization showing all wire and buffer delays. In the network, a PLL near the center
of the chip drives buffered H-trees, which are designed as symmetrically as possible. The H-trees

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 901 24-9-2008 #6

Practical Issues in Clock Network Design 901

800

700

600

500

400

300

200

100

Grid
Tuned
sector
trees

Sector
buffers
level 4

Buffer
level 3

Buffer
level 2

Buffer level 1

X

Y

D
el

ay
 (

ps
)

FIGURE 43.4 3D visualization of the Power4 global clock distribution. (From Restle, P.J. et al., Proc. IEEE
Intl. Solid-State Circuits Conf., 2002, pp. 144–145. With permission.)

drive the final set of 64 carefully placed sector buffers. Each sector buffer drives a tunable sector
tree network, designed for minimum delay without length matching. These sector trees are tuned
primarily bywire-width tuning. Then they all drive a single full-chip clock grid at 1024 evenly spaced
points. From the global clock grid, a hierarchy of short clock routes completed the connection from
the grid down to the individual local clock buffer inputs in the macros. There are 15,200 global
clock pins.

It is reported in Ref. [5] that the maximum skew measured at 19 places with picoprobes is 25 ps,
and the maximum skew by picosecond imaging for circuit analysis (PICA) measurements from nine
sector buffers is less than 18 ps.

43.3 ALPHA 21264

The clocking design of a 600-MHz Alpha 21264microprocessor is presented in Ref. [6]. The chip is
fabricated in a 0.35-µm CMOS process with six metal layers. Four metal layers (called M1 to M4)
are for signals, one (between M2 and M3) is for a VSS reference plane, and one (above M4) is for a
VDD reference plane. It has 15.2million transistors. This microprocessor employs a hierarchical clock
distribution scheme as illustrated in Figure 43.5. At the top level, there is a global clock grid called
GCLK, which covers the entire die. Next, there are six major clock grids over certain execution units.
At the bottom level, local clocks are generated as needed from any clock (global clock, major clocks,
or other local clocks). Previous Alphamicroprocessors use a single grid to distribute the global clock
signal [20,21]. The hierarchical scheme is chosen for thismicroprocessor because of tighter skew con-
straints, the importance of clock powerminimization, and the need of a flexible clockingmethodology
to solve local timing problems. The drawback is that skewmanagement becomesmuchmore compli-
cated. State elements and clocking points exist from 0 to 8 stages past GCLK. The clock distribution
network needs to be carefully designed based on rigorous and thorough timing verification.

The GCLK grid is driven by a global clock distribution network as shown in Figure 43.6. The
network connects a PLL located in a corner of the chip to 16 distributed global clock drivers. The
arrangement of global clock drivers, which resembles four windowpanes, achieves low skew by
dividing the chip into regions, thus reducing the maximum distance from the drivers to the farthest
loads. A windowpane arrangement also reduces sensitivity to process variation because each grid
pane is redundantly driven from four sides. In general, distributing the drivers widely across the chip

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 902 24-9-2008 #7

902 Handbook of Algorithms for Physical Design Automation

External
clock

PLL

Conditioned
local clocks

Conditioned
local clocks

State elements

Local clocks

Local clocks

Cond

Cond

GCLK grid

Major
clk
grid

FIGURE 43.5 Alpha 21264 clock hierarchy. (From Bailey, D.W. and Behschneider, B.J., IEEE J. Solid-State
Circuits, 33, 1627, 1998. With permission.)

PLL

FIGURE 43.6 Global clock distribution network of Alpha 21264. (FromBailey, D.W. and Behschneider, B.J.,
IEEE J. Solid-State Circuits, 33, 1627, 1998. With permission.)

also helps power-supply and heat-dissipation problems. The GCLK grid is shown in Figure 43.7.
It traverses the entire die and uses 3 percent ofM3 andM4.All clock interconnect is laterally shielded
with either VDD or VSS. All clock wires and all lateral shields are manually placed. The measured
GCLK skew is 65 ps running at 0◦C ambient and 2.2V.

The six major clocks are two gain stages past GCLK with grids juxtaposed with GCLK, but
shielded from it. The major clock grids are shown in Figure 43.8. Because of the wide variation of
clock loads, the grid density varies widely between major clocks, and sometimes even for a single
major clock. The densest areas use up to 6 percent of M3 and M4. Major clocks driven by a gridded
global clock substantially reduce power because major clock drivers are localized to the clock loads
andmajor clock grids are locally sized tomeet the skew targets. A gridded global clockwithoutmajor

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 903 24-9-2008 #8

Practical Issues in Clock Network Design 903

FIGURE 43.7 GCLK of Alpha 21264. (From Bailey, D.W. and Behschneider, B.J., IEEE J. Solid-State
Circuits, 33, 1627, 1998. With permission.)

clockswould require larger drivers and a denser grid to deliver the same clock skew and edges.Major
clocks are designed so that delay fromGCLK is centered at 300 ps. The target specifications for skew
are ±50 ps. The target specifications for 10–90 percent rise and fall times are less than 320 ps. All
major clocks easily meet both sets of objectives.

PCLK

ECLK

JCLK

C
C

LK
M

C
LK

F
C

LK

FIGURE 43.8 Six major clock grids of Alpha 21264. (From Bailey, D.W. and Behschneider, B.J., IEEE
J. Solid-State Circuits, 33, 1627, 1998. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 904 24-9-2008 #9

904 Handbook of Algorithms for Physical Design Automation

Local clocks are generally neither gridded nor shielded. There are no strict limits on the number,
size, or logic function of local-clock buffers, and there is no duty-cycle requirement, although timing
path constraints must always be met. Local clocks have permitted ranges for clock rise and fall
times, but with only this restriction there is considerable design freedom.As a result, it facilitates the
implementation of clock gating to reduce power and clock skew scheduling to improve performance.

Because, rather dense grid structures are required to meet the aggressive skew targets, the clock
power consumption is very significant. At 600MHz and 2.2V, typical power usage for the processor
is 72W. The complete distribution network that drives GCLK uses 5.8W, and GCLK uses 10.2W.
The major clocks use 14.0W. Local unconditional clocks use 7.6W, and local conditional clocks use
a maximum of 15.6W, assuming they switch every cycle.

The clock distribution network design for a 1.2-GHz Alpha 21364 microprocessor can be found
in Ref. [22]. We choose not to include the details here as Compaq, which acquired DEC in 1998,
decided to phase out Alpha on 2001.

43.4 INTEL PENTIUM II

The clock distribution network design for a 300-MHz Intel Pentium II microprocessor is presented
in Refs. [7,23]. The chip is fabricated in a 0.35-µm CMOS process with four metal layers. The power
supply is 2.8V. The chip has 7.5 million transistors and the die area is 203mm2. This processor uses
a single spine scheme to distribute the global clock as shown in Figure 43.9. The spine is driven by a
balanced tree with five levels of buffers. Global clock is distributed to all units in M4. The measured
skew is also shown in Figure 43.9. The skew acrossM4 global distribution is 140 ps. The low skew is
achieved by balancing the load of each global clock tapping and adjusting global clock track length.

SK = �564 ps

SK = �476 ps
SK = �488 ps

SK = �592 ps

SK = �460 ps

Input point to local buffers
with clock gating

SK = �424 ps
SK = �548 ps

Five-level driver for 500 pF load
with M4 metal strapping ring

FIGURE 43.9 Global clock distribution network of Pentium II with electron beam measured skew. SK is the
skew relative to feedback point from local buffer. (From Young, I.A., Mar, M.F., and Bushan, B., Proc. IEEE
Intel. Solid-State Circuits Conf., pp. 330–331, 1997. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 905 24-9-2008 #10

Practical Issues in Clock Network Design 905

43.5 INTEL PENTIUM III

The design of an Intel Pentium III microprocessor is presented in Ref. [8]. This chip has an operating
voltage of 1.4–2.2V and is running up to 650MHz. It is fabricated in a 0.25-µm CMOS process
with five metal layers. It has 9.5 million transistors and the chip size is 10.17mm× 12.10mm. This
processor uses a two-spine scheme for global clock distribution. A two-spine clock block diagram is
shown in Figure 43.10. The two spines were shielded properly such that they would not be impacted
by the fringing fields from any interconnects associated with the core as well as I/O sides. The
two-spine scheme has many benefits over a single-spine approach. First, the serpentine wires can be
shortened, and hence power consumption can be reduced. Second, power distribution to the clock
subsystem becomes easier as the clock power demand is more spread out. Third, shielding of clock
network is also easier as shields are more readily available on sides than in the center. Fourth, routing
congestion can be improved because there will not be a center spine running through the center part
of the chip, which is typically most congested.

Skew minimization between the two spines is a major challenge. Because of the lengthy left
and right clock spines with multiple tap points, it was very difficult to match the delays with good
accuracy. In addition to precision capacitance matching techniques on the global clock tree, an
adaptive digital deskewing technique based on a delay-locked loop (DLL) was employed [24]. The
deskewing circuit is composed of delay lines to both spines, a phase detection circuit, and a controller
(Figure 43.10). The phase detection circuit determines the phase relationship between the two spines
and generates an output accordingly. The controller takes the phase detection information andmakes
a discrete adjustment to one of the delay lines. The digital delay line is implemented with two
inverters in series. Each inverter has a bank of eight capacitive loads connecting to the output. The
addition or removal of the capacitive loads is controlled by the delay shift register. This allows 17
monotonic discrete steps of delay. Latency from sampling clocks to making adjustment to the delay
lines is just over three cycles. Note that this DLL-based deskewing scheme compensates for not
only interconnect/device mismatch but also process, voltage, and temperature variations. Adaptive
deskewing helped to reduce the left-to-right clock spine skews from 100 to 15 ps.

43.6 INTEL PENTIUM 4

The clocking scheme of a 2-GHz Intel Pentium 4 microprocessor is presented in Ref. [9]. The chip
is fabricated in a 0.18-µm CMOS process with six metal layers. The chip has 42 million transistors
and the die area is 217mm2.

Core

PD

clk_Gen

Delay lineDelay line

Delay SR Delay SRDeskew cti

X clk

FB clk

Le
ft

sp
in

e

R
ig

ht
 s

pi
ne

FIGURE 43.10 Block diagram for two-spine global clock distribution of Pentium III. (From Senthinathan,
R., Fischer, S., Rangchi, H., and Yazdanmehr, H., IEEE J. Solid-State Circuits, 3, 1454, 1999. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 906 24-9-2008 #11

906 Handbook of Algorithms for Physical Design Automation

FIGURE 43.11 Three spines in a 0.18-µm Pentium 4. (From Kurd, N., Barkatullah, J., and Dizon, R., IEEE
J. Solid-State Circuits, 36, 1647, 2001. With permission.)

To cover the large Pentium 4 die, its global clock distribution uses three spines as shown in
Figure 43.11. A modified buffered binary tree is used to distribute the global clock from the clock
generator to the spines. Then 47 domain buffers are driven, producing 47 independent clock domains
(Figure 43.12). Domain buffers can be disabled to power down large functional units to save power.
The clock distribution network includes static skew optimization capability to correct systematic
skew (caused by asymmetric layout or within-die process variation) as well as provide intentional
skew. Each domain buffer consists of a programmable delay stage controlled by a 5-bit domain
deskew register (DDR) that determines the edge timing of the domain clock. The values of the DDRs
can be set according to phase information obtained by a phase-detector network of 46 phase detectors.

From PLL

FIGURE 43.12 Global clock distribution in Pentium 4. (From Kurd, N., Barkatullah, J., and Dizon, R., IEEE
J. Solid-State Circuits, 36, 1647, 2001. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 907 24-9-2008 #12

Practical Issues in Clock Network Design 907

10.7 mm

Clock
stripes

10
.2

 m
m

FIGURE 43.13 Eight stripes (i.e., spines) in a 90-nm Pentium 4. (From Bindal, N. et al., Proc. IEEE Intel.
Solid-State Circuits Conf., pp. 346–498, 2003.)

This deskewing scheme can reduce interdomain skew from 64 to about 16 ps. A major component
of the clock distribution jitter is due to supply noise from logic switching. To reduce supply-noise
induced jitter, an RC-filtered power supply is used for global clock drivers.

The clock distribution design for a next generation Pentium 4 microprocessor that scales to
5GHz is described in Ref. [10]. The chip is implemented in a 1.2V, 90-nm dual-Vt process with
seven metal layers. The die size is 10.2mm × 10.7mm.

The clock network consists of a pre-global clock network (PGCN), a global clockgrid (GCG), and
local clocking. The PCGNcomprises 12 inversion stages from the PLL to the die center, and 15 stages
to the input of more than 1400 GCG drivers. It has a tree structure with strategic shorting of inputs to
adjacent receiverswithin a stage to eliminate skew accumulation overmultiple stages because of ran-
domvariations. Shorting of adjacent receivers provides a very gradual clock skewgradient at the input
to adjacent GCG drivers. The GCG consists of eight spines spaced roughly 1200µm apart, as shown
in Figure 43.13. The local scheme consists of two stages of gated buffering. The first stage is used for
reducing power consumption through clock gating. The second stage is reserved for functional gating.

The design achieves less than 10 ps of global clock skew. The final grid stage and its driver
dissipate 1.75W/GHz in addition to 0.75W/GHz in the PGCN. Overall die area allocation ranges
from 0.25 percent for devices and lower metals, to less than 2, 3, and 5 percent for M5, M6, and M7
layers, respectively.

43.7 INTEL ITANIUM

The clock design of an 800-MHz Itaniummicroprocessor is presented in Ref. [11]. Themicroproces-
sor is the first implementation of Intel’s IA-64 architecture. Its core contains 25.4 million transistors
and is fabricated on a 0.18-µm, six layer metal CMOS process. The high level of integration requires
a significant silicon real estate and high clock loading. The large die size and the small feature
size result in prominent within-die process variation. Hence, the Itanium processor uses an active
deskewing scheme in conjunction with a combined balanced clock tree and clock grid to distribute
the clock over the die. The design also provides enough flexibility for the local clock implementation
to support intentional clock skew and time borrowing.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 908 24-9-2008 #13

908 Handbook of Algorithms for Physical Design Automation

DSK
Reference

clock

Global
distribution

Local
distribution

Regional
distribution

GCLK

CLKP
CLKN

VCC/2

Main
clock

RCD

RCD

DSKPLL

DSK
DLCLK

OTB

FIGURE 43.14 Clock distribution topology of the Itanium microprocessor. (From Tam, S. et al., IEEE
J. Solid-State Circuits, 35, 1545, 2000. With permission.)

DSK DSK DSK DSK

DSK

DSK
DSK

PLL

DSK

FIGURE 43.15 Global core H-tree of the Itanium microprocessor. (From Tam, S. et al., IEEE J. Solid-State
Circuits, 35, 1545, 2000. With permission.)

The clock system architecture is shown in Figure 43.14. The clock topology is partitioned into
global distribution, regional distribution, and local distribution.

In the global distribution, a core clock and a reference clock are routed fromaPLLclock generator
to eight deskew clusters via two identical and balanced H-trees. A schematic drawing of the global
core clock tree is shown in Figure 43.15. The global clock tree is implemented exclusively in the two
highest level metal layers. To reduce capacitive noise coupling and to ensure good inductive return
path, the tree is fully shielded laterally with VDD/VSS. In addition, inductive reflections at the branch
points are minimized by properly sizing the metal widths for impedance matching.

The regional clock distribution encompasses the deskew buffer, the regional clock driver (RCD),
and the regional clock grid. There are 30 separate clock regions each consisting of the above three
elements. The 30 regional clocks are illustrated in Figure 43.16. Each of the eight deskew clusters
consists of four distinct deskew buffers. Because 32 deskew buffers are available, two of them are
unused. The deskew buffer is connected to the RCDs by a binary distribution network, which uses
top layer metals with complete lateral shielding. The RCDs are located at the top and bottom of the
regional clock grid. The grid is implemented using M4 and M5. As with the global clock network,
it contains full lateral shielding to ensure low capacitance coupling and good inductive return paths.
The regional clock grid utilizes up to 3.5 percent of the available M5 and up to 4.1 percent of the
available M4 routing over a region.

The deskewbuffer architecture is shown in Figure 43.17. It is a digitally controlledDLL structure.
Aphase detector residingwithin the local controller of the deskewbuffer analyzes the phase difference

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 909 24-9-2008 #14

Practical Issues in Clock Network Design 909

DSK

DSK DSK
DSK

CDC

CDC

DSK

DSK

DSK DSK DSK

= Cluster of four deskew buffers

= Central deskew controller

FIGURE 43.16 Thirty regional clocks of the Itaniummicroprocessor. (FromTam, S. et al., IEEE J. Solid-State
Circuits, 35, 1545, 2000. With permission.)

RCD

RCD

Regional
clock grid

Deskew buffer
Delay
circuitGlobal clock

TAP I/F

Ref. clock

Local controller

FIGURE 43.17 Deskew buffer architecture of the Itanium microprocessor. (From Tam, S. et al., IEEE J.
Solid-State Circuits, 35, 1545, 2000. With permission.)

between the reference clock and a local feedback clock sampled from the regional clock grid. Then
the core clock delay is adjusted through a digitally controlled analogue delay line. Experimental skew
measurements show that the total skew is 28 ps with deskewing and is 110 ps without deskewing.

The local clock distribution consists of local clock buffers (LCBs) and local clock routings that
are embedded within a functional unit. The LCBs receive the input directly from the regional clock
grid and then drive the clocked sequential elements.

43.8 INTEL ITANIUM 2

The clock distribution of the 1-GHz Itanium 2 processor is described in Refs. [12,25]. The chip is
fabricated on a 180-nm CMOS process with six layers of aluminum interconnects. The processor
has 25 million logic transistors and 221 million total transistors. The die size is 21.6mm×19.5mm.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 910 24-9-2008 #15

910 Handbook of Algorithms for Physical Design Automation

L1R

B

Core
primary
driver

Repeaters SLCBs

Gaters

L2R

To PLL
A

FSB
clock

C

From latch pipe

FIGURE 43.18 Clock distribution of the Itanium 2 microprocessor. (From Anderson, F.E., et al., Proc. IEEE
Intel. Solid-State Circuits Conf., pp. 146–147, 2002. With permission.)

The clock network of this processor is shown in Figure 43.18. Similar to that of the Itanium
processor in Section 43.7, it can be partitioned into global distribution (L1R), regional distribution
(L2R driven by second-level clock-buffers [SLCBs]), and local distribution (driven by gaters). How-
ever, it has three significant differences from that of Itanium. First, the global clock network, which
is also implemented as a balanced H-tree, applies differential routing to reduce jitter from supply
noise, injected common mode noise, and signal slew rates. It is also heavily shielded to reduce jitter
because of coupled noise. Second, instead of grids, the regional distribution makes use of width
and length balanced side-shielded H-trees. Third, deskewing technique is not utilized. The skew is
minimized by precisely tuning the delay of the H-trees. It achieves a skew of 62 ps.

The clock distribution of a more advanced Itanium 2 processor is presented in Ref. [13]. This
chip is fabricated on a 130-nm CMOS process with six layers of copper interconnects. It operates at
1.5GHz at 1.3V. It has a total of 410 million transistors with a die size of 374mm2.

The main difference from its 180-nm predecessor is that this design implements a fuse-based
deskewing technique to address the clock skew issue and to increase the frequency of operation. There
are 23 regional clocks in the core. The SLCB associated with each region contains a 5-bit register
that stores the deskew setting. The register controls the delay of the SLCB. On-chip electrically
programmable fuses are incorporated to set the register values. To reduce the area required for the
fuses, only three of the five deskew setting bits can be addressed with fuses. When the device is
under test, all five deskew bits can be accessed using SCAN for finer resolution. The fuse-based
deskew can remove unintentional clock skew caused by on-die process variations and clock network
design mismatches. It can also inject intentional skew to improve the critical timing paths. A fuse-
based deskew scheme is selected over an active scheme because of the deterministic nature of the
fuse-based algorithm and its simple implementation. The intrinsic skew without using any deskew
technique is 71 ps. The skew reduces to 24 ps when operating with the 3-bit resolution fuse-based
deskew. It further reduces to 7 ps when the 5-bit resolution SCAN-based deskews is applied.

The clock distribution of a dual-core Itanium 2 processor, code-named Montecito, is described
in Ref. [14]. The chip is fabricated on a 90-nm CMOS process with seven layers of copper intercon-
nect and it has 1.72 billion transistors with a die size of 21.5mm × 27.7mm [26]. It implements a
dynamically variable-frequency clock system to support a power management scheme, which maxi-
mizes processor performance within a configured power envelop [27]. Its clock distribution delivers
a variable-frequency clock from 100MHz to 2.5GHz over a clock network over 28-mm long.

The clock network consists of four stages as shown in Figure 43.19. The first stage is the level-0
(L0) route, which connects the PLL to 14 digital frequency dividers (DFDs). The L0 route is the only
stage that does not adjust supplies and frequencies during normal operation. The L0 route is 20-mm

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 911 24-9-2008 #16

Practical Issues in Clock Network Design 911

Bus clock
Repeaters

L0 route L1 route L2 route Postgater route

Core0

Core1

PLL

Foxton
x3

IOs

Bus logic

DFD

CVD

SLCB

SLCB

SLCB

SLCB

SLCB

RAD

RAD

Gaters Latches

Latches

Latches

Latches

Latches

Latches

Latches

Differential Single ended

Variable-frequency full rail transitionsFixed frequency
low-voltage swings

Gaters

Gaters

Gaters

Gaters

CVD

CVD

CVD

CVD

DFD

DFD

DFD

DFD

DFD

x3

FIGURE 43.19 Clock distribution of the dual-core Itanium 2microprocessor. (FromMahoney, P., et al., Proc.
IEEE Intel. Solid-State Circuits Conf., pp. 292–293, 2005. With permission.)

long consisting of four 5-mm segments that are 400-mV low-voltage swing differential routes. Each
segment is resistively terminated at the receiver and is tapered to optimizeRLC flight time and reduce
power consumption. All route segments are matched in composition in both layer and length. The
second stage, the level-1 (L1) route, connects the DFD to 6–10 SLCBs. The DFD output varies
in frequency and it operates on a varying core supply voltage. A half-frequency distribution using
differential 0◦ and 90◦ clocks is used. The third stage, the level-2 (L2) route, connects the SLCB
to LCBs. A typical SLCB drives 400 LCBs at 200 different locations across 3mm with a skew of
less than 6 ps between locations. For this stage, instead of using a grid-based network as in many
contemporary designs, a skew-matched RLC tree network technique is employed to reduce metal
resources and power. An in-house tool is utilized to route the trees and to match route RLC delays
using width and space. The resulting clock route is adaptable to changes in the design, and uses far
less metal resources and power than a grid-based design while achieving skews that are nearly as low
as in grid-based designs. The LCBs, called clock vernier devices, can add 70 ps of delay to any clock
in 8 ps increments and are controlled via scan operations. They can facilitate postsilicon debug and
remove skew not found in presilicon analysis. The fourth stage, the postgater route, is in the hands
of the individual circuit designers. Clock gaters are designed by the clock team into the library in a
variety of sizes. With hundreds of latches per gater, routes up to 2-mm long must be engineered for
delay, shielding, and load matching.

Montecito implements an active deskewing system that runs continuously to null out offsets
causedbyprocess, temperature,andvoltagevariationsacrossthedie.Thesystemreliesonahierarchical
collection of phase comparators between the ends of different L2 routes (i.e., only the first three stages
are corrected by deskewing). Each SLCB has a 128-bit delay line with 1-ps resolution. With active
deskewing and scan-chain adjustments, the total clock-network skew is reduced to less than 10 ps.

REFERENCES
1. N. Bindal and E. Friedman. Challenges in clock distribution networks. In Proc. Intl. Symp. on Phys. Des.,

Monterey, CA, p. 2, 1999.
2. Q. K. Zhu. High-Speed Clock Network Design. Kluwer Academic, Boston, 2003.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C043 Finals Page 912 24-9-2008 #17

912 Handbook of Algorithms for Physical Design Automation

3. S. Rusu. Clock generation and distribution for high-performance processors. In IEEE Intl. SOC Conf.,
Santa Clara, CA, p. 207, 2004.

4. C. F. Webb et al. A 400-MHz S/390 microprocessor. IEEE J. Solid-State Circuits, 32(11): 1665–1675,
November 1997. (ISSCC 1997).

5. P. J. Restle et al. The clock distribution of the Power4 microprocessor. In Proc. IEEE Intl. Solid-State
Circuits Conf., San Francisco, CA, pp. 144–145, 2002.

6. D. W. Bailey and B. J. Benschneider. Clocking design and analysis for a 600-MHz Alpha microprocessor.
IEEE J. Solid-State Circuits, 33(11): 1627–1633, November 1998. (ISSCC 1998).

7. I. A. Young, M. F. Mar, and B. Bhushan. A 0.35µm CMOS 3-880MHz PLL N/2 clock multiplier and
distribution network with low jitter for microprocessors. In Proc. IEEE Intl. Solid-State Circuits Conf.,
San Francisco, CA, pp. 330–331, 1997.

8. R. Senthinathan, S. Fischer, H. Rangchi, and H. Yazdanmehr. A 650-MHz, IA-32 microprocessor with
enhanceddata streaming for graphics andvideo. IEEEJ. Solid-StateCircuits, 34(11): 1454–1465,November
1999. (Microprocessor Report 1999).

9. N. Kurd, J. Barkatullah, and R. Dizon. A multigigahertz clocking scheme for the Pentium 4microprocessor.
IEEE J. Solid-State Circuits, 36(11): 1647–1653, November 2001. (ISSCC 01).

10. N. Bindal et al. Scalable sub-10ps skew global clock distribution for a 90 nmmulti-GHz IAmicroprocessor.
In Proc. IEEE Intl. Solid-State Circuits Conf., San Francisco, CA, pp. 346–498, 2003.

11. S. Tam et al. Clock generation and distribution for the first IA-64 microprocessor. IEEE J. Solid-State
Circuits, 35(11): 1545–1552, 2000. (ISPD 2000).

12. F. E. Anderson, J. S. Wells, and E. Z. Berta. The core clock system on the next generation Itanium
microprocessor. In Proc. IEEE Intl. Solid-State Circuits Conf., San Francisco, CA, pp. 146–147, 2002.

13. S. Tam,R.D. Limaye, andU.N.Desai. Clock generation and distribution for the 130-nm Itanium2processor
with 6-MB on-die L3 cache. IEEE J. Solid-State Circuits, 39(4): 636–642, April 2004. (ISSCC 2003).

14. P.Mahoney et al. Clock distribution on a dual-core, multi-threaded Itanium-family processor. InProc. IEEE
Intl. Solid-State Circuits Conf., San Francisco, CA, pp. 292–293, 599, 2005.

15. B. J. Rubin and S. Daijavad. Calculations of multi-port parameters of electronic packages using general
purpose electromagnetics code. In Proc. IEEE Topical Meet. Electron. Performance Electron. Packag.,
Monterey, CA, pp. 37–39, 1993.

16. A. Deutsch et al. Modeling and characterization of long on-chip interconnections for high-performance
microprocessors. IBM J. Res. Dev., 39(5): 547–567, September 1995.

17. C. L. Ratzlaff and L. T. Pillage. RICE: Rapid interconnect circuit evaluation using AWE. IEEE Trans.
Comput.-Aided Des., 13(6): 763–776, June 1994.

18. J. D. Warnock et al. The circuit and physical design of the POWER4 microprocessor. IBM J. Res. Dev.,
46(1): 27–51, January 2002.

19. P. J. Restle et al. A clock distribution network for microprocessors. IEEE J. Solid-State Circuits, 36(5):
792–799, May 2001.

20. D. W. Dobberpuhl et al. A 200-MHz 64-b dual-issue CMOS microprocessor. IEEE J. Solid-State Circuits,
27(11): 1555–1567, November 1992. (ISSCC 1992).

21. W. Bowhill et al. A 300-MHz 64-b quad-issue CMOSRISCmicroprocessor. In Proc. IEEE Intl. Solid-State
Circuits Conf., San Francisco, CA, pp. 182–183, 1995.

22. T. Xanthopoulos et al. The design and analysis of the clock distribution network for a 1.2 GHz Alpha
microprocessor. In Proc. IEEE Intl. Solid-State Circuits Conf., San Francisco, CA, pp. 402–403, 2001.

23. M. R. Choudhury and J. S. Miller. A 300MHz CMOS microprocessor with multi-media technology. In
Proc. IEEE Intl. Solid-State Circuits Conf., San Francisco, CA, pp. 170–171, 450, 1997.

24. G. Geannopoulos and X. Dai. An adaptive digital deskewing circuit for clock distribution networks. InProc.
IEEE Intl. Solid-State Circuits Conf., San Francisco, CA, pp. 400–401, 1998.

25. S. Nafzigger et al. The implementation of the Itanium 2 microprocessor. IEEE J. Solid-State Circuits,
37(11): 1448–1459, November 2002. (ISSCC 2002).

26. S. Naffziger et al. The implementation of a 2-core, multi-threaded Itanium-family processor. IEEE J.
Solid-State Circuits, 41(1): 197–209, January 2006. (ISSCC 05).

27. T. Fischer et al. A 90-nm variable frequency clock system for a power-managed Itanium architecture
processor. IEEE J. Solid-State Circuits, 41(1): 218–228, January 2006. (ISSCC 05).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 913 24-9-2008 #2

44 Power Grid Design

Haihua Su and Sani Nassif

CONTENTS

44.1 Motivation . 913
44.1.1 Technology Trends and Challenges . 913
44.1.2 Overview of the Chapter . 915

44.2 Modeling and Analysis Methodology .. 915
44.2.1 Package and Power Grid Modeling . 915
44.2.2 Decoupling Capacitance and Cell Modeling.. 916
44.2.3 Leakage Modeling . 918
44.2.4 Methodology . 920
44.2.5 Tolerance Analysis of Power Grids . 920

44.3 Power Grid Noise Analysis . 922
44.3.1 Noise Metrics. 922
44.3.2 Fast Analysis Techniques .. 922

44.3.2.1 Hierarchical Partitioning Method. 923
44.3.2.2 Multigrid Methods . 924
44.3.2.3 Model Order Reduction Methods . 927
44.3.2.4 RandomWalk Method . 928

44.3.3 Power Grid Analysis with Uncertain Work Loads . 930
44.4 Power Grid Optimization . 931

44.4.1 Wire Sizing . 931
44.4.2 Decoupling Capacitance Allocation and Sizing . 933
44.4.3 Topology Optimization . 934
44.4.4 Optimal Placement of Power Supply Pads and Pins. 935

References . 936

44.1 MOTIVATION

44.1.1 TECHNOLOGY TRENDS AND CHALLENGES

The annual report of the International Technology Roadmap (ITRS) for semiconductors [1] has
shown the continued reduction of power supply voltage (Vdd), driven by power consumption reduc-
tion, reduced transistor channel length, and reliability of gate dielectrics. It is expected that the lowest
Vdd target on this roadmap is 0.5V in 2016 for low-operating power applications. The parameters and
characteristics trend ofmicroprocessor unit (MPU) (high-performancemicroprocessor)with on-chip
static random access memory (SRAM) from the 2005 edition of ITRS is summarized in Table 44.1.

It can be seen from Table 44.1 that the trend for high-performance integrated circuits is toward
higher operating frequency and lower power supply voltages. Power dissipation continues to increase,
but tends to saturate at 0.64W/mm2 from 2008 to 2020. The increased power consumption is driven
by higher operating frequencies and the higher overall capacitances and resistances in larger chips that

913

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 914 24-9-2008 #3

914 Handbook of Algorithms for Physical Design Automation

TABLE 44.1
Trends in IC Technology Parameters

Gate Number of Number Number Current Average
Length Transistors of Power of Wire f Vdd Size Per Power Power

Year (nm) (M) Pads Levels (MHz) (V) (mm2) Pad (mA) Density (W/mm2)

2005 32 225 2,048 15 5,204 1.1 310 74.3 0.54
2006 28 283 2,048 15 6,783 1.1 310 79.8 0.58
2007 25 357 2,048 15 9,285 1.1 310 83.9 0.61
2008 23 449 2,048 16 10,972 1.0 310 96.9 0.64
2009 20 566 2,048 16 12,369 1.0 310 96.9 0.64
2012 14 1,133 2,048 16 20,065 0.9 310 107.6 0.64
2014 11 1,798 2,048 17 28,356 0.9 310 107.6 0.64
2016 9 2,854 2,048 17 39,683 0.8 310 121.1 0.64
2018 7 4,531 2,048 18 53,207 0.7 310 138.4 0.64
2020 6 7,192 2,048 18 73,122 0.7 310 138.4 0.64

have more on-chip functions. However, such high-power consumption has to flatten out because of
the single-chip package power limits, electromigration problems, and thermal impacts on reliability
and performance. In addition, lowering the power supply voltage worsens switching currents and
decreases noise margins. As a result, powermanagement is recognized in Ref. [1] as one of the grand
challenges in the near term and leakage power management as one of the grand challenges in the
long term.

The power delivery system includes on-chip and off-chip power grid and decoupling capacitors
on die, package, and board. The power grid (power distribution network) provides the Vdd and ground
signals throughout a chip. Compared to signal wires, power wires typically have lower impedances
to reduce power grid current resistance (IR) drops because of currents drawn by functional blocks.
All levels of decoupling capacitors are extensively used to suppress transient noise because of the
transient currents drawn by functional blocks and because of the interaction of package inductance
and switching currents, also known as L dI

dt
noise or �I noise. The inductive components in package

power grids and decoupling capacitors are the major limitation for performance at high frequency.
Supply voltage variations can lead not only to problems related to spurious transitions but also to
delay variations [2,3] and timing unpredictability [4]. Thus, a successful design requires careful
design of all levels of the power delivery system.

In early technologies, the design of power networks was relatively easier because power wires
had low resistances and transistors drew relatively low currents. Computer-aided design (CAD)
techniques addressed power networks with well-designed tree topologies [5–7] that were said to
be sufficient to meet the performance requirements. A typical power grid network in the early
technologies consists of only thousands of nodes.

In recent deep submicron technologies (0.25 nm and below), as pointed out in Refs. [8,9], with
the shrinking of feature sizes and increases in the clock frequency, the power grid noise problem
has become more significant and power supply noise is among the major reasons that affect the
circuit functionality. Even if a reliable supply is provided at an input pin of a chip, it can deteriorate
significantly within the chip. These problems become worse with the scaling down of the voltage
supply level (Vdd). The solutions to the above problems become even harder because of the larger
size of the power distribution network. A typical power grid network size can easily exceed millions
of nodes. Therefore, fast and accurate design, verification and optimization techniques are necessary
to address the power grid design issue efficiently.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 915 24-9-2008 #4

Power Grid Design 915

44.1.2 OVERVIEW OF THE CHAPTER

This chapter discusses basic concepts and techniques for deep submicron power grid design and
verification in various aspects: modeling, methodology, analysis, and optimization. Section 44.2
discusses widely adopted power grid analysis and verificationmethodologies andmodeling for every
part of the power distribution system. Section 44.3 addresses four analysis techniques to handle large-
scale power grid circuits with fixed and uncertain work loads. Optimization techniques including
wire sizing, decoupling capacitance optimization, topology optimization, and optimal power pads/pin
placement are covered in Section 44.4.

44.2 MODELING AND ANALYSIS METHODOLOGY

44.2.1 PACKAGE AND POWER GRIDMODELING

The power grids in the entire power delivery system from board to die are coupled with each other,
implying that the effects at one level can impact another. Because the composite board-to-die system
is extremely large, analyzing the entire system can be a difficult task and a simplified model has
to be applied. A typical approach is to use a simplified on-chip power grid model when package
level power gridperformance is analyzed. Similarly, a simplified packagemodel is usedwhenon-chip
power grid performance is of interest, which is typically the case because it directly impacts chip
timing performance and functioning.

In terms of accuracy, such macromodels that capture the major electrical properties at other
levels are seen to be sufficient for the levels of accuracy desired in simulation, but ignoring these
effect entirely can lead to accuracy losses. This is reinforced in Ref. [10], which motivates why a
complete chip-level power grid analysis must include a package-levelmodel that considers the effect
of package inductance.An interesting comparison between a circuit under 0.25-µm technology using
the flip-chip C4 package and wire-bond I/Os shows a difference of worst-case steady-state voltage
drop of 0.37V out of the 2.5V power supply voltage.

A simplified package-level power bus model [10] is shown in Figure 44.1. The inductance
dominance of the package can be clearly seen. Although there is only self-inductance in this model,
mutual inductance has to be considered if the power buses are close to each other.

C4

V G V G

Pin

MLC Mesh

TF Mesh

Chip

MLC Via

V

G

V

G

V G

V G

FIGURE 44.1 Simplified package-level power bus model. (From Chen, H. H. and Neely, J. S., IEEE Trans.
Component Package and Manufacturing Technology, 21, 209, 1998. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 916 24-9-2008 #5

916 Handbook of Algorithms for Physical Design Automation

ls

Cs
2

Cs
2

Rs Ls

ws

FIGURE 44.2 RLC π-model of wire segment. (From H. H. Chen and J. S. Neely, Interconnect and
Circuit Modeling Techniques for Full Chip Power Supply Noise Analysis, IEEE Tran. Component Package
and Manufacturing Technology, 21, 209, 1998. With permission.)

On-chip power grids in each metal layer can be accurately modeled using lumped RLC para-
meters. Each power wire in the power grid is represented as a set of connected segments under
the π-model (Figure 44.2), with each segment modeled using lumped RLC parameters (considering
self-inductances only) given by

Rs = ρls/ws

Cs = (βws + α) ls
Ls = γ ls/ws

(44.1)

where
ls and ws are the length and the width of the segment
ρ, β, α, and γ are the sheet resistance per square, capacitance per square, fringing capacitance
per unit length, and the self-inductance per square of the metal layer that is being used for
routing the power grid

The following rules are commonly applied for most on-chip power buses:

• Grid capacitances (area and fringing capacitance) are order of magnitude less than the cell
or decoupling capacitors, therefore are often ignored. However, there are some works that
show that leveraging these capacitors can provide enhanced accuracy and benefit.

• Grid inductances can be ignored if they are order ofmagnitude smaller compared to package
inductances.

• Although the inductance on the package dominates the �I noise, on-chip power bus
inductance generally cannot be ignored for wires wider than 5µm.

44.2.2 DECOUPLING CAPACITANCE AND CELL MODELING

The modeling of cell switching current has been an active branch of research. The difficulty of the
problem lies in the complexity of determining the sets of input patterns that matter most to the power
grid noise. The model must capture the worst-case, average currents or transient currents drawn by
cells among all input patterns.

A typical RCmodel for cells and decaps was presented in Refs. [10,11]. The switching activities
for each functional block can be modeled by an equivalent circuit (Figure 44.3), which consists of
time-varying resistors (Ri), loading capacitors (CiL), and nonideal decoupling capacitor (Cdi and
Rdi). The loading capacitance for the equivalent circuit is calculated by CiL = P/V 2f , where P is
the estimated power for the corresponding area i, V is the power supply voltage, and f is the clock
frequency.When the circuit is turned on, the time-varying resistancewill be set toRion, whereRion CiL
is the switching time constant. Similarly, when the circuit is switched off, the time-varying resistance
will be set to Rioff . At the beginning of every clock cycle, a subset of the switching circuits are turned
on and off, corresponding to an event list. An example showing the switching events at a node in the
power network is illustrated in Figure 44.4 [12,13].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 917 24-9-2008 #6

Power Grid Design 917

Rdi

Vdd

Gnd

Rioff

CiL

Cdi

CiL
Rion

FIGURE 44.3 Equivalent switching circuit. (FromH.H. Chen and J. S. Neely, Interconnect andCircuitModel-
ing Techniques for Full Chip Power SupplyNoiseAnalysis, IEEETran. Component Package andManufacturing
Technology, 21, 209, 1998. With permission.)

Although the above model is accurate, the simulation of the entire power grid would require
analyzing a varying topology as circuit elements switch in and out of the network, complicating the
simulation procedure. Therefore, a direct application of this model is not widely used.

A more convenient method is to replace the switching circuit model in Figure 44.3 with a
piecewise linear current source whose waveform approximates the actual current waveform of
the functional block, assuming ideal Vdd and Gnd levels. Because these current waveforms are
input-pattern-dependent, algorithms for worst-case current waveform estimation are necessary.
Recently published algorithms are briefly summarized below.

Algorithm 1 In Ref. [14] the circuit is divided into conbinational logic macros. The maximum
current requirement for each macro is separately estimated and the input excitation at which the
maximum of the transient current occurs is identified. All input-states can be enumerated using a
branch-and-bound search technique. The complexity of their method is exponential, and therefore it
is hard to be applied to large circuits. This work pessimistically assumes that every macro draws the
maximum current simultaneously, and hence it tends to overestimate the worst-case currents.

Algorithm 2 In Ref. [15] Kriplani et al. proposed an input-pattern-independent algorithm that
estimates an upper bound for the maximum envelope current(MEC) waveform. IMEC(t) is defined as
themaximum possible current value that could be drawn from the power grid at time t among all input
patterns, given that each input can switch at any time. An accurate estimation of the MECwaveforms

E
ve

nt
s

0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t

FIGURE 44.4 Switching events at a node in a P/G network. (From Shah J. C., Younis, A. A., Sapatnekar,
S. S., and Hassoun, M. M., IEEE TCAS, 45, 1372, 1998. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 918 24-9-2008 #7

918 Handbook of Algorithms for Physical Design Automation

would typically require an exponential set of enumerations of all input patterns and is therefore not
desirable. The algorithm proposed in this chapter has linear time performance because it ignores
signal correlations. This results in a very loose upper bound for theMECwaveformsand can therefore
overestimate the supply currents. The same authors extended their work in Ref. [16] to consider the
signal correlations and obtained a tighter bound for the maximum instantaneous current.

Algorithm 3 Bobba in Ref. [17] proposed a constraint-graph-based patten-independent method
formaximumcurrent estimation. Thismethod accounts for the timing informationand spatiotemporal
correlations between pairs of logic gates. In this method, the maximum current value in the kth time
interval is obtained as a sum of the peak current values of the gates that can switch in that time
interval. Therefore, it provides an improved upper bound on the maximum current waveform.

Algorithm 4 In Ref. [18] a timed atomic test pattern generation (ATPG)method and a probability-
based method to generate a small set of input patterns for estimating the maximum instantaneous
current are presented.

Algorithm 5 Chaudhry and Blaauw in Ref. [19] presented a current signature compression tech-
nique, which exploits the pattern of change of individual currents, time locality, and periodicity to
achieve better compression and accuracy in comparison to the single cycle compression.

Algorithm 6 Chen and Ling in Ref. [10] proposed a simple model to represent the switching
activities for circuits with information of only the average current Iave and peak current Ipeak.
Depending on the ratio of Ipeak and Iave, a triangular waveform will be generated if Ipeak ≥ 2Iave,
and a trapezoidal waveform will be generated if Ipeak < 2Iave.

Algorithm 7 In Ref. [20] Jiang et al., a genetic algorithm (GA)-based input vector generation
approach was proposed, which iteratively reduces the number of patterns causing the highest power
supply noise at specific blocks. The fitness value of a pattern is simply the highest power supply noise
at the target chip area. Their experimental results show an average of 23 and 17 percent tighter lower
and upper bounds for the benchmark circuits.

Algorithm 8 In Ref. [21], block currents are modeled as random variables to capture current
variations. The first and second moments of the block currents, as well as the correlations between
the currents are assumed to be known, because they can be obtained from simulation of the block
and static timing analysis. The optimized power grids in this work show robust performance against
variations in block currents.

Three decoupling capacitor models are described in Ref. [10]: the n-well capacitor Cnw, the
circuit capacitorCckt , and the thin-oxide capacitorCox. The n-well capacitorCnw is the reverse-biased
pn junction capacitor between the n-well and p-substrate. The time constant for Cnw is process-
dependent, but usually can be characterized between 250 and 500 ps for contemporary technologies.
The circuit capacitorCckt is derived from the built-in capacitance betweenVdd andGnd in nonswitching
circuits. The total capacitance from nonswitching circuits is estimated to be P/(V 2f) ∗ (1−SF)/SF,
where P is the power of the circuit, V is the supply voltage, f is the frequency, and SF is the
switching factor. The nonswitching capacitance are usually placed in parallel with a current source
modeling of the functional block. The time constant for Cckt is determined by the switching speed
of the device. The thin-oxide capacitor Cox uses the thin-oxide layer between n-well and polysilicon
gate to provide additional decoupling capacitance needed to alleviate the switching noise.

44.2.3 LEAKAGEMODELING

As described in Chapter 3, leakage power is emerging as a key design challenge in current and future
designs because of the lowering of the power supply voltage, reduction of the threshold voltage,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 919 24-9-2008 #8

Power Grid Design 919

and reduction of gate oxide thickness. It is estimated that although leakage power is only about 10
percent of total chip power for current technologies, the number is expected to rise to 50 percent for
the future technologies [1].

There are two major components of leakage: subthreshold leakage Isub and gate leakage Igate. For
a given complementarymetal-oxide-semiconductor (CMOS) technology, both subthreshold and gate
leakage currents have strong dependency on the environmental parameters, such as temperature and
supply voltage. Based on the Berkeley short-channel IGFET model (BSIM) [22], the subthreshold
leakage can be modeled as

Isub = I0 · exp [(Vgs − Vth

)
/nVT

] · [1 + exp (−Vds/VT)
]

(44.2)

where VT is the thermal voltage VT = kT/q. I0 is defined as

I0 = µ0Cox (Weff/Leff) · V 2
Te

1.8 (44.3)

From Equation 44.2, clearly the subthreshold leakage is an exponential function of Vds. When
the device is off, Vds is proportional of supply voltage Vdd. Therefore, the dependency of Isub on Vdd

is also exponential:

�Isub
�Vdd

∼ exp (�Vdd) (44.4)

Besides directly affecting the thermal voltageVT, temperature influences the subthreshold leakage
via surface potential �s, which in turn affects Vth. Because of the short-channel effect and drain-
induced barrier lowering (DIBL) effect, the equation describing Vth is quite complicated. It can be
shown in Ref. [23] that

Vth ∝ √
T (44.5)

Combining the above two factors, a derivation based on Equation 44.2 can show that the effect of
temperature change on subthreshold leakage is about order 1.5, i.e.,

�Isub
�T

∼ (�T)
1.5 (44.6)

The gate leakage current model used in Berkeley BSIM4 model consists of four components:
gate to body (Igb), gate to drain (Igd), gate to source (Igs), and gate to channel (Igc). The last of these
is then partitioned between drain and source: Igcd and Igcs. All four components are functions of
temperature and supply voltage. The details can be found in Ref. [23]. For example, the first-order
dependency of the gate-to-channel current on temperature can be shown as

Igc = K
(√

�s

)
· Vaux (44.7)

where Vaux is defined as

Vaux = NIGC · VT · log
[
1 + exp

(
Vgse − VTH0

NIGC · VT

)]
(44.8)

Here VT is the thermal voltage, Vgse is the equivalent gate voltage and the rest are BSIM4
parameters.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 920 24-9-2008 #9

920 Handbook of Algorithms for Physical Design Automation

For current CMOS technologies, subthreshold leakage ismuch stronger than gate leakage. There-
fore, when we consider the effects of temperature and Vdd fluctuation, subthreshold leakage is the
dominate part. From Equations 44.4 and 44.6, it is clear that same amount of Vdd fluctuation has a
stronger effect on the leakage than the temperature.

44.2.4 METHODOLOGY

Because of the modeling complexity and the large problem sizes associated with the power grid
analysis problem, most of the methodologies for full-chip power grid verification proposed in the
literature [10,11,24–26] simplify the nonlinear devices into linear elements (current sources and
capacitors) attached to the power grid. The entire analysis is typically performed in two steps. First, the
cells (nonlinear devices) are analyzed assuming perfect power and ground voltages. Static, switching,
and leakage current models are generated using approaches discussed in preceding sections. Next,
attaching these current sources to the power grid, DC or transient analysis for the large-scale power
grid linear circuit is performed to estimate the noise or electromigration problems. In Ref. [27], one
more step is added due to the nonlinear dependency of dynamic and leakage currents on Vdd. In this
step, power grid voltages computed in step two are applied to the cells to obtain an updated static
switching and leakage power. The updated power is used to reanalyze power grid noise.

The work in Ref. [10] emphasized that an integrated package-level and chip-level power bus
analysis is critical. This is in comparison with traditional technologies where the resistive IR drop
occurs mostly on the chip and the inductive �I noise only occurs on the package. Therefore, under
a traditional methodology, the IR drop and �I noise are separately analyzed and summed up. This
can become too pessimistic because of the fact that the worst-case �I noise and worst-case IR drop
do not occur at the same time.

Realistic power grid analysis methodologies must handle cells or power grids in a hierarchical
manner to manage the complexity of the problem. For example, smaller cells can be grouped into
larger macros, and a global level power grid analysis can be performed by applying the current
models of such macros. In addition, as indicated in Ref. [26], an important aspect to observe is the
voltage distribution trends in a chip. In commercial CAD tools, a visual IR voltage drop plot is often
generated to identify hot spots. Hot spot portions identified in the global level need to be investigated
in detail in the next level of hierarchy.

Similarly, power bus models can also be treated hierarchically [10]. For hot spot areas roughly
identified in the global level, finer grids can be generated to model the detailed power bus structure.
It is pointed out that the detailed power bus of each fine grid should always be connected to the
adjacent global power bus model to ensure the accuracy because of the hierarchy.

44.2.5 TOLERANCE ANALYSIS OF POWER GRIDS

To understand the tolerance analysis of power grids, we must examine two importance factors:

1. The manner in which the electrical model of the power grid is derived from the physical
implementation, a process commonly referred to as circuit extraction

2. The sources of variability in a power grid model, and the impact such variability will have
on the various components of the grid

Circuit extraction starts with the physical implementation of the power grid, which consists of
the layout geometry of the power grid shapes and defines the power grid wires in the x and y direc-
tions, along with the semiconductor process manufacturing information that defines the thickness
of the various conducting and insulating layers and that thus defines the power grid wires in the z
direction.With the geometry defined, the circuit extraction process applies models for the resistance,
capacitance, and inductance as a function of geometry to calculate the values of the equivalent circuit
components for the various geometries defining the power grid.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 921 24-9-2008 #10

Power Grid Design 921

For example, the resistance of a rectangular wire segment with width W and length L can be
estimated using the simple formula

R = ρ
L

WT
(44.9)

where
ρ is the resistivity of the metal layer in question
T is the thickness of the layer

Similar first-order equations exist for capacitance (e.g. Ref. [28]) and—to a lesser extent—for
inductance.Adeeper exploration of circuit extraction is, however, beyond the scopeof this discussion.
The important point to note is that well-established procedures exist to map the layout geometry of
the power grid to equivalent circuit components.

With the above understanding in place, let us consider the sources of variability that would impact
the performance of a power grid. Such sources include

1. Variations in the electrical material properties, for example, material resistivity, insulator
die-electric constant, etc. Let us denote these by category A.

2. Variations in the horizontal geometry of the power grid wires, which will naturally occur
in the semiconductor manufacturing process and arise primarily from the lithography and
etch processes. We denote these by category B.

3. Variations in the vertical geometry of the power grid wires, which arise primarily from the
chemical-mechanical polishing (CMP) process. We denote these by category C.

4. Variations in the loading of the power grid. These are caused by two possible sources:
(1) lack of complete knowledge of the operational characteristics of the integrated circuit
connected to the power grid (e.g., not knowing how active a certain part of the circuit is
likely to be), and (2) the impact of manufacturing variations on the power dissipated by the
circuit (e.g., the impact of MOSFET channel length fluctuations on the leakage current of
the circuit). We denote these by category D.

Note that A, B, and C categories are the traditional sources of variations one might consider
when performing a tolerance analysis, while category D has more to do without lack of knowledge
of the workload.We discuss categoryD later in Section 44.3.3. It is important when performing such
tolerance analysis to understand the relative impact of each source of variability, and to insure that
no one source is over- or under-analyzed.

For resistors, we note that all three of the categories (A, B, and C) are important, and that one
needs to make a careful study of the tolerances expected for each dimensions, especially for those
shapes that are at the lower limits of the manufacturing process resolution limits (e.g., vias).

For capacitors, on the other hand, the distances between grid wires of different polarities are
typically large enough that the small variations caused by lithography, etch, or CMP are not as
important for determining the intrinsic capacitance of the power gridwires themselves. The dielectric
constant, however, can play a part. Capacitance between the power grid and signal wires, which are
typically interspersed between power grid wires, will vary, but such capacitance does play only a
small part in the performance of the power grid compared to the decoupling capacitance presented
by inactive circuits.

For inductors, the total loop inductance is primarily a function of the loop geometry and how it
interacts with other loops as well as the conducting ground plane. Because the variations in geometry
caused by variations B and C are small, they have minimal impact on inductance.

Therefore, in summary, the primary source of variations in a power grid is the variations in
the resistive part of the power grid model. The capacitive part varies significantly, but its impact is
relatively small, while the inductive part does not vary significantly.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 922 24-9-2008 #11

922 Handbook of Algorithms for Physical Design Automation

44.3 POWER GRID NOISE ANALYSIS

44.3.1 NOISE METRICS

For static (DC) analysis, the maximum voltage drop among all power grid nodes is a general metric
for the entire chip. In dynamic (transient) analysis, maximumvoltage drop of a node is defined as the
largest voltage drop value along the period of time for simulation. Themaximumvoltage drop among
all nodes in the power grid circuit can indicate performance of the power grid and help identify hot
spots on a chip. This measurement is widely used in most power grid noise estimation tools.

However, such a measurement is very sensitive to the accuracy of circuit analysis and does not
take the timings of the voltage violations into account [29]. An efficient metric for the performance
of each node in a circuit was first introduced in Ref. [29], which is the integral of voltage waveform
beyond the noise margin:

zj (p) =
T�
0

max
{
NMH − vj (t, p) , 0

}
dt

=
te�
ts

{
NMH − vj (t, p)

}
dt

(44.10)

where p represents the tunable circuit parameters. Su et al. in Ref. [30] initially applied this metric
in transient power grid noise analysis and optimization. The transient noise in a node in the supply
network is represented by the shaded area (voltage integral) in Figure 44.5.

44.3.2 FAST ANALYSIS TECHNIQUES

Because of the large scale (millions of nodes) of the power distribution network, even after separating
the nonlinear devices from the linear grids andmodeling them using independent current sources, the
analysis of such a huge linear network in reasonable amount of time and memory is still a challenge.

The behavior of the power distribution circuit can be described by a first-order differential
equation formula using modified nodal analysis (MNA) [31]:

Gx (t) + Cẋ (t) = u(t) (44.11)

where

x is a vector of node voltages and source and inductor currents
G is the conductance matrix
C includes both the decoupling capacitance and package inductance terms
u(t) includes the loads and voltage sources

0 tte Tts

NMH

Vdd

90 percent Vdd

Vj (t, p)

FIGURE 44.5 Illustration of the voltage drop at a given node in the Vdd power grid. The area of the shaded
region corresponds to the integral z at that node. (From H. Su, S. S. Sapatnekar and S. R. Nassif, Optimal
Decoupling Capacitor Sizing and Placement for Standard Cell Layout Designs, IEEE TCAD, 22, 428, 2003.
With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 923 24-9-2008 #12

Power Grid Design 923

By applying the backward Euler integration formula [31] to Equation 44.11, we have

(G+ C/h) x (t + h) = u (t + h) + C/hx (t) (44.12)

where h is the time step for the transient analysis. Equation 44.12 can be shown to be formulated
to consist only of node voltages and the matrix is symmetric positive definite. Typically this left-
hand-side (LHS) matrix is very large and sparse. Efficient linear system solution techniques such
as Cholesky factorization (direct method) and conjugate gradient (iterative method) are both good
candidates.Various fast analysis techniques [12,13,32–39], etc., have been published in the literature.
Ref. [39] proposed a hierarchicalmacromodeling approach. Even though this approach is suitable for
both direct or iterative methods, direct solver is used in their work. Nassif et al. proposed a multigrid-
based technique [33,34], which intended to make use of the beauties of both direct and iterative
methods, i.e., it can avoid the memory limitation of direct solvers during coarse grid correction and
can significantly bring down the number of iterations for the iterative solver during the fine grid
relaxation or the smoothing step. While the method in Refs. [33,34] is based on geometric multigrid,
the method proposed in Ref. [37] is based on the algebraic multigrid technique. Another category
of analysis methods [12,13,32,38] is based on model-order reduction techniques. A random walk
based [35,36] power grid analysis algorithm is presented recently and has demonstrated its success
in solving large-scale power grid circuits. In the following four subsections, we discuss the above
four approaches in detail.

44.3.2.1 Hierarchical Partitioning Method

In Equation 44.12, if h is kept constant, only a single initial factorization (directmethod) of thematrix
G+C/h is required and for each successive time steps only a forward/backward solution is required.
This method is very efficient for transient analysis; however, the initial Cholesky factorization is very
expensive and can lead to a peak memory hit if the entire network is flatly solved. This motivates the
hierarchical macromodeling technique in Ref. [39]. This approach first partitions the power grid into
local and global grids: this may be achieved either by exploiting the designer-specified hierarchy
or by automated partitioning. Next, macromodels for the local grids are generated, abstracting the
large number of internal nodes into a port-based representation. These macromodels may be dense
matrices that can be sparsified with minimal loss of accuracy: the intuition here is that if two ports are
far from each other, their port-to-port resistance will be large, and may be ignored. The hierarchical
approach then proceeds by passing the macromodels to the global grid and solving this reduced
system. This solution yields the port voltages, which can then be used to find internal voltages within
the local grids.

They first partition the whole network into macromodels, with each macromodel i described by
its port currents and port voltages as follows:

Ii = Ai · Vi + Si, Ii ∈ Rm,Ai ∈ Rm×m,Vi ∈ Rm, Si ∈ Rm (44.13)

where
m is the number of ports in the local grid
Ai is the port admittance matrix
Vi is the vector of voltages at the ports
Ii is the current through the interface between the local and the global grids
Si is a vector of current sources connected between each port and the reference node vector

The partitioning strategy they propose is to identify a subnetwork and an interface boundary
such that the number of internal nodes is much larger than the square of the number of nodes at
the interface. This is to ensure that each macromodel is not too densely stamped. The authors then

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 924 24-9-2008 #13

924 Handbook of Algorithms for Physical Design Automation

proposed a 0–1 integer linear programming based sparsification technique to further reduce the
matrix density.

The port admittance matrix Ai and current vector Si can be derived by looking at the MNA
equations of the macro and by splitting the matrices into submatrices corresponding to the internal
nodes and ports: [

G11 G12

GT
12 G22

] [
U1

V

]
=
[

J1

J2 + I

]
(44.14)

and the formula for Ai and Si can be derived as

Ai =
(
G22 − GT

12G
−1
11 G12

)
Si =

(
GT

12G
1
11J1 − J2

) (44.15)

where
Vi is the vector of voltages at the ports
J1 and J2 are vectors of current sources connected at the internal nodes and ports, respectively
Ii is the vector of currents through the interface
G12 is the admittance of links between the internal nodes and the ports
G11 is the admittance matrix of internal nodes
G22 is the admittance matrix of ports.

Because the LHS matrix in Equation 44.14 is positive definite, its Cholesky factorization is

[
G11 G12

GT
12 G22

]
=
[
L11 0
L21 L22

][
LT
11 LT

21

0 LT
22

]

=
[
L11LT

11 L11LT
21

L21LT
11 L21LT

21 + L22LT
22

] (44.16)

The explicit inverse of G11 in Equation 44.15 can be avoided and efficiently computed by

Ai = L22L
T
22

Si = L21L−1
11 J1 − J2

(44.17)

The nodal equation for the global power grid can be formed by feeding each macromodel in

⎡
⎢⎢⎢⎢⎢⎣

G00 G01 G02 . . . G0k

GT
01 A1 G12 . . . G1k

GT
02 GT

12 A2 . . . G2k

...
...

GT
0k GT

1k GT
2k · · · Ak

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

V0

V1

V2

...
Vk

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

I0
−S1

−S2

...
−Sk

⎤
⎥⎥⎥⎥⎥⎦

(44.18)

Here, partition 0 corresponds to the global nodes, and partition i, i > 0, to the local grids that are
represented by Equation 44.13, and Gij represents the conductance links between partition and j.

44.3.2.2 Multigrid Methods

Nassif et al. first proposed to use idea of the multigrid solver for fast power grid analysis in
Ref. [34] and they further expanded the idea and experiments in Ref. [33]. This method was moti-
vated by the fact that the power grid equation system is structurally identical to that of a finite

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 925 24-9-2008 #14

Power Grid Design 925

element discretization of a two-dimensional parabolic partial differential equation (PDE) because
the multigrid method is very efficient in solving smooth PDEs [40].

In iterative methods, the error between the approximate solution and the exact solution can
be divided into two components: high-frequency and low-frequency Fourier modes [40]. Classi-
cal iterative methods suffer from slow convergence because they are inefficient in reducing the
low-frequency error components. In general, multigrid methods also consist of two complementary
components [40,41]:

1. Relaxation (smoothing), which reduces the high-frequency error components using a
classical iterative solver.

2. Coarse grid correction, which reduces the low-frequency error components. It involves
mapping the problem to some coarser grid (�2h), solving the mapped smaller problem
using a direct solver or an iterative solver, and mapping the solution back to the original
fine grid (�h). A restriction operator �2h

h and a corresponding prolongation (interpolation)
operator Ph

2h are defined for the mappings between the coarse grid and the fine grid.

Figure 44.6 illustrates a recursive V-cycle [40] of the multigrid method with three nested
iterations. At the bottom level, the exact solution can be obtained from either a direct or an
iterative solver.

The multigrid-like power grid analysis method is explained as follows. First, the original power
grid is reduced and the interpolation operator is defined. Then, the problem is mapped to the coarser
grid, solved at the coarser grid using a direct solver, and then, the solution is mapped back to the
original fine grid. It is called multigrid-like because it ignores the relaxation step and therefore
makes it a direct method, which has the advantage of maintaining fast speed without losing too
much accuracy. Such a simiplifcation is justified by the fact that well-designed power grids are
characterized by smooth voltage variation over the grid. The grid coarsening can be recursively
repeated until the coarse grid is small enough to be exactly solved using a direct solver. The overall
scheme consists of four passes. Initially, all voltage source nodes and corner nodes are flagged as K
while other nodes are marked N . In the first pass, each K node is updated: starting from that node,
we go along horizontal (vertical) direction and flag all visited nodes as H (or V). A node flagged

P10

P21
ℜ12

ℜ01

FIGURE 44.6 V-cycle of the multigrid method.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 926 24-9-2008 #15

926 Handbook of Algorithms for Physical Design Automation

with both H and V is updated with the flag, K . In the second pass, each H (V) node is flagged as
R and its neighbors along same row (column) as K . Next, in the third pass, the reduced grid is built
by adding edges between the K nodes. Finally, in the fourth pass, the linear interpolation (INT()) is
defined from neighboring nodes. If node m neighbors with nodes A and B, then

V (m) = INT (V (A),V (B)) = α0V (A) + α1V (B) (44.19)

where α0 = gmA
gmA+gmB and α1 = gmB

gmA+gmB . The voltages on the fine grid can be mapped from the coarse

grid using this interpolation formula.
The proposed technique is especially efficient in transient analysis. It applies a direct solver only

on the reduced grid. Further more, while analyzing the reduced system matrix using fixed time step,
only one initial factorization is needed and a forward/backward substitution will be performed in
each following time steps. This further speedups the method because the solution for the fine grid
can be obtained by linear interpolation, even though it compromises certain amount of accuracy.

The geometrical grid reduction of the above algorithm for general irregular grids can become
complicated to maintain smooth reduction. A typical power grid in lower level metal layers can be as
irregular (a picture of this is provided in Figure 2 of Ref. [37]). Another weakness of the above grid
reduction scheme is that it geometrically builds each level of grids (from the finest to the coarsest),
which requires extra memory to store the graph data structure.

To take advantage of the algebraic multigrid (AMG) technique that performs grid reduction
through matrix multiplications, Ref. [37] proposes an AMG-based algorithm that constructs the
restriction and interpolation matrices directly from the circuit (MNA) matrix.

In general, variables representing important boundary conditions should be preserved. In the
power grid model, these variables include all ideal voltage source nodes, all nodes in the top-level
metal layer that are directly connected to package/pins, all package inductance or RL-in-series
branches, and all nodes in the bottom-level metal layer that are connected to critical loads. The
equation for these boundarynodes/branches are put at the beginning of the originalG andCmatrices,
which makes them easy to be preserved. For the rest of the variables, the AMG-based grid reduction
algorithm can be applied to determine the coarse-level grid points.

The coarse grid has to be chosen to represent smooth errors and has to be able to interpolate
these errors onto the fine grid. It is shown in Ref. [42] that smooth error varies slowly in the direction
of strong connections. In power grid circuits, a strong connection between node p and node q in G
means a relatively large conductance value at the off-diagonal entries (p, q) and (q, p), compared to
the diagonal entries at (p, p) and (q, q). Therefore, a measure of connection between node p and q
can be chosen as

mespq = (
gpq/Gp + gpq/Gq

)
/2 (44.20)

where Gp and Gq are self conductance at node p and q. If mespq > ψ , node q is chosen in the coarse
grid and p in the fine grid and will be interpolated as x(p) = x(q), where ψ is a threshold chosen to
control the reduction rate and accuracy. This is equivalent to shorting node p to q when the resistor
connected between them is small. The corresponding restriction matrix for shorting node p to q1 in
Figure 44.7 becomes

R5×4 =

q1 q2 q3 q4⎡
⎢⎢⎢⎢⎣

1
1

1
1

1

⎤
⎥⎥⎥⎥⎦

q1
q2
p
q3
q4

(44.21)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 927 24-9-2008 #16

Power Grid Design 927

To be shorted

pq1

q2

q3

q4

FIGURE 44.7 Shorting node p to its strongly connected neighbor q1.

This reduction scheme iteratively removes relatively smaller resistors in thegrid, therefore the number
of nonzeros in the coarse-level matrix RTGR decreases.

44.3.2.3 Model Order Reduction Methods

In model order reduction methods, the MNA equation of a linear circuit is typically described in the
Laplace domain.

(G+ sC)V(s) = Bu (s) (44.22)

where G and C represent the conductance and susceptance matrices. The vector V of the MNA
variables is of dimension N × 1, and includes the nodal voltages and the branch currents for voltage
sources and inductors. B is the input selector matrix mapping sources to the internal states, and u is
the vector of independent sources. One of the most popular model order reduction methods is based
on Krylov subspace methods, in which the following subspace is generated:

spanG−1B,G−1CG−1B, . . . ,
(
G−1

)n
CG−1B . . . (44.23)

The subspace matrix is then used to project the original system (Equation 44.22) onto a smaller
system that usually keeps major ports u of the original system:

(
G̃+ sC̃

)
Ṽ (s) = B̃u (s) (44.24)

where G̃, C̃, Ṽ , and B̃ are the reduced matrices/vectors.
From Equation 44.24, we can see that the number of independent source is a bottleneck of such

methods. Different techniques to deal with this situation in power grid analysis have been proposed
recently in Refs. [13,38].

In Refs. [13,38], instead of using piecewise linear-independent current source as the load model,
a switchingRC cell model is used to avoid the problemof a large number of ports. Therefore, the only
independent sources in the power grid circuit are the independent voltage sources from the power
pins or pads, which is significantly smaller compared to the total number of nodes in the circuit.

When a piecewise linear-independent current source model is used for each cell, because the
Laplace transform of each piecewise linear (PWL) source is not a constant term, an extended Krylov
subspace (EKS) [43] method or an improved EKS (IEKS) method [32] need to be used. In EKS, the
contribution of source moments are considered at each step of iteration during the Krylov subspace

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 928 24-9-2008 #17

928 Handbook of Algorithms for Physical Design Automation

Overlying mesh

Pad

Pad

+

Underlying tree Contact point

Pin

FIGURE 44.8 Hybrid mesh/tree structure with the mesh in the upper level and trees in the lower level. (From
H. Su, K. H. Gala and S. S. Sapatnekar, Analysis and Optimization of Structured Power/Ground Networks,
IEEE TCAD, 22, 1533, 2003. With permission.)

calculation and orthogonalization process. In addition, moment shifting has to be performed to
recover the proper moments in EKS, therefore the IEKS method that no longer needs to perform
moment shifting for source waveform modeling was proposed in Ref. [32].

Both works in Ref. [32] and Ref. [38] analyze the power grid circuit hierarchically. A hybrid
mesh/tree topology (Figure 44.8) is proposed in Ref. [38] for fast turnaround time of design and veri-
fication of power grid. Themodel order reduction technique in this work is an enhanced PRIMA [44]
method considering nonzero initial conditions in capacitors and inductors. The procedure contains
three stages: first, each tree is reduced to an equivalent passive model. In this stage, an efficient path
tracing technique [44] for trees is applied to speed up the reduced model computation. Next, the
mesh along with these passive reduced tree models is further reduced using PRIMA and all nodal
voltages in the mesh, i.e., mesh voltages can be obtained. Finally, these mesh voltages equivalent to
voltage sources at the root of each tree are used to solve each tree individually and independently.

The HiPRIME [32] algorithm hierarchically analyzes a general power grid with the mesh struc-
ture. It first partitions the circuit into multiple blocks and then generates multiport Norton equivalent
order reduced circuits using PRIMA and IEKS and then combines all the reduced ordermacromodels
into the higher level and perform either IEKS or PRIMA for further reduction, and poles and residues
in the higher grids can be obtained. Finally, internal nodes inside each partition can be computed
from the reduced order model of each partition and the voltages on the ports.

44.3.2.4 Random Walk Method

In Refs. [35,36], a statistical approach based on random walks is proposed to perform power grid
analysis. In this section, we only discuss in detail the DC analysis of the Vdd grid, given that the
ground grid can be similarly analyzed and that the method can be easily extended to handle transient
analysis.

For theDC analysis of a power grid, a single node x in the circuit can be illustrated in Figure 44.9.
According to Kirchoff’s current law, Kirchoff’s voltage law, and the device equations for the
conductances, we have

degree(x)∑
i=1

gi (Vi − Vx) = Ix (44.25)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 929 24-9-2008 #18

Power Grid Design 929

1 3

4

2

Ix

g1

g2

g3

g4

x

FIGURE 44.9 Representative node in the power grid. (FromH. Qian, S. R. Nassif and S. S. Sapatnekar, Power
Grid Analysis Using Random Walks, IEEE TCAD, 24, 1204, 2005. With permission.)

where
the nodes adjacent to x are labeled 1, 2, . . . , degree(x)
Vx is the voltage at node x
Vi is the voltage at node i
gi is the conductance between node i and node x
Ix is the current load connected to node x

Equation 44.25 can be rewritten as

Vx =
degree(x)∑
i=1

gi∑degree(x)
j=1 gj

Vi − Ix∑degree(x)
j=1 gj

(44.26)

We can see that this implies that the voltage at any node is a linear function of the voltages at its
neighbors. We also observe that the sum of the linear coefficients associated with the Vi’s is 1. For
a power grid problem with N non-Vdd nodes, we have N linear equations similar to the one above,
one for each node. Solving this set of equations gives the exact solution.

Now let us look at a random walk game, given a finite undirected connected graph (e.g.,
Figure 44.10) representing a street map. A walker starts from one of the nodes, and goes to an
adjacent node i every day with probability px,i for i = 1, 2, . . . , degree(x), where x is the current
node, degree(x) is the number of edges connected to node x.

These probabilities satisfy the following relationship:

degree(x)∑
i=1

px,i = 1 (44.27)

The walker pays an amount mx to a motel for lodging everyday, until he or she reaches one of the
homes, which are a subset of the nodes. If the walker reaches home, he or she will stay there and be
awarded a certain amount of money, m0. We will consider the problem of calculating the expected
amount of money that the walker has accumulated at the end of the walk, as a function of the starting
node, assuming he or she starts with nothing. This gain function is therefore defined as

f (x) = E
[
total money earned|walk starts at node x

]
(44.28)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 930 24-9-2008 #19

930 Handbook of Algorithms for Physical Design Automation

Home

Home

Home

mx
px, 2

px, 3

px, 1

FIGURE 44.10 Instance of a random walk game. (From Qian, H., Nassif, S. R., and Sapatnekar, S. S., IEEE
TCAD, 24, 1204, 2005. With permission.)

It is obvious that

f (one of the homes) = m0 (44.29)

For a nonhome node x, assuming that the nodes adjacent to x are labeled 1, 2, . . . , degree(x), the f
variables satisfy

f (x) =
degree(x)∑
i=1

px,i f (i) − mx (44.30)

For a random-walk problem with N nonhome nodes, there are N linear equations similar to the one
above, and solving this set of equations gives the exact values of f at all nodes.

It is easy to drawaparallel between this problemandpowergrid analysis. Equation44.30 becomes
identical to Equation 44.26, and Equation 44.29 reduces to the condition of perfect Vdd nodes if

px,i = gi∑degree(x)
j=1 gj

i = 1, 2, . . . , degree(x)

mx = Ix∑degree(x)
j=1 gj

m0 = Vdd f (x) = Vx (44.31)

44.3.3 POWER GRID ANALYSIS WITH UNCERTAINWORK LOADS

In Section 44.2.5, we outlined the various sources of variation that can impact power grid perfor-
mance, and roughly divided them into (1) physical variations such as changes in the dimensions of
power grid wires, and (2) loading variations that arise because of changes in the manner with which
the integrated circuit operates.

Consider the steady-state (DC) version of the power grid system of equations first introduced in
Equation 44.11, which would be

Gx = I (44.32)

where
G and x are the same as before
I is a vector of node currents representing the loading at each node of the power grid

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 931 24-9-2008 #20

Power Grid Design 931

In Refs. [45,46], it was shown that the vector I can be represented as

I = A.diag (w) .Ib (44.33)

where
A is an n × k incidence matrix with n being the number of nodes, and k being the number of
circuit blocks

diag(w) is a k × k matrix with diagonal entries being 0 for blocks that do not switch, and 1 for
blocks that do

Ib is a k long vector of block currents

Equations 44.11 and 44.33 describe the behavior of the power grid as the various parts of the
circuit become active.

With this formulation in place, one can motivate several analyses to study the dependence of the
behavior of the power grid on circuit operation. The works in Refs. [45,46] showed how an integer
linear program can be set up to determine the worst-case power grid drop under various constraints,
e.g., the maximum power that a design can consume.

A different approach it taken in Ref. [47] where a statistical bounding framework is developed
to translate the statistical variations in leakage current, which would exhibit themselves as statistical
variations in the components of the block current vector Ib, to statistical bounds on the various node
voltages.

With power dissipation increasing, and manufacturing variability increasing, this area promises
to remain relevant as researchers struggle to find efficient static (i.e., not specific to a particular
workload) methods to insure the performance of a power grid.

44.4 POWER GRID OPTIMIZATION

Given load current of each functional block, the goal of power distribution network optimization is
to maintain voltage drop within certain threshold (typically 5 ∼ 10 percent Vdd) with various con-
straints such as wiring resource, empty space for decaps, pin and pad locations, etc. The performance
of power distribution network can therefore be improved through wire sizing, decap optimization,
topology optimization, and optimal placement of power pins and pads. Combination of the above
techniques has also been proposed in a number of literatures, for example, Refs. [48,49] perform
simultaneous wire sizing and topology optimization and Refs. [13,38] perform simultaneous wire
and decap sizing.

44.4.1 WIRE SIZING

A general formulation of power wire sizing is as follows:

minimize area = ∑
i

liWi

subject to Vg ≤ Vth

Vp ≥ Vdd − Vth

Iimax ≤ Ith
and wmin ≤ wi ≤ wmax

where li represents the length of each P/Gwire segmentwith widthwi, which subjects to theminimum
and maximum wire width constraints. Each nodal voltage Vg in the ground network and Vp in
the power network should be constrained within a voltage drop limit Vth typically chosen to be
5 ∼ 10 percent of Vdd. Ith sets a threshold corresponding to the electromigration constraint for each
wire segment. Voltages and currents here can either be the DC voltages/currents or the worst-case
transient voltages/currents. This is a constrained nonlinear optimization problem.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 932 24-9-2008 #21

932 Handbook of Algorithms for Physical Design Automation

The earliest power/groundnetwork sizingwork [5,6] takes special advantage of the tree topology
of the power/ground network typically used in early designs. Instead of restricting the voltage drop
on every node in the P/G network, only the voltage drop from root to every leaf of the tree structure
is constrained, where the root corresponds chip power pad and the leaf corresponds to the power
pin of each macro. In this work, constant branch current constraints Iimax and Iimin are used to further
reduce the total number of voltage and current constraints.

Chowdhury proposes to solve the general nonlinear optimization problem (Equation 44.34) on a
general graph topology in Ref. [50]. In this work, both currents and voltages are treated as variables.
Specifically, the entire optimization procedure consists of two optimization stages. Assuming fixed
branch currents and given wi = ρli/Ri and Ri = Vi1−Vi2

Ii
, the first stage minimizes area, a nonlinear

function of each branch voltage

Area = f (v) =
∑
i

liwi =
∑
i

αi

Vi1 − Vi2

(44.34)

where αi = ρIil2i , subject to change of current direction constraints

Vi1 − Vi2

Ii
≥ 0 (44.35)

the minimum width constraints,

Vi1 − Vi2

Ii
≤ ρli
wi,min

(44.36)

voltage IR drop constraints, and current density constraints. This problem was converted into an
unconstrained convex programming problem and was solved using the conjugate gradient method.
The second stage assumes that all nodal voltages are fixed, the objective function becomes

area =
∑
i

βiIi (44.37)

where βi = ρl2i
Vi1−Vi2 . Constraints include changes of current directions, minimum width constraints,

and Kirchoff’s current law. This is a linear programming problem.
Tan et al. [51] improves the above method by expanding the nonlinear objection function of the

first-stage optimization problem using Taylor’s expansion as follows:

g (v) = f
(
v0
)+ ∂ f

(
v0
)

∂v

(
v− v0

) =
∑
i

2|αi|
v0i

−
∑
i

|αi|
v02i

vi (44.38)

Instead of minimizing the nonlinear objective function (Equation 44.34), they minimize Equa-
tion 44.38, which is a linear function of v. The solution is thus transformed into a sequence of
linear programming problem.

Ref. [52] directly treatswirewidth as the optimization variable and solves the nonlinear optimiza-
tion problem (Equation 44.34) using augmentedLagrangian relaxation. The following unconstrained
minimization problem is formulated

F(v) = area + ω ×
(∑

i

Vdrop
2 +

∑
j

Idensity
2

)
(44.39)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 933 24-9-2008 #22

Power Grid Design 933

where
i is every node connected to the power grid
j is every branch in the power grid circuit
ω is the penalty parameter

Adjoint sensitivity [53] technique is used to evaluate the sensitivity of the objective function
with respect to each wire width.

The multigrid power grid analysis idea is applied to optimization in Ref. [54]. The method first
reduces the original power grid to a coarse grid according to grid density in each region andmaintains
the total grid area. The sequence of linear program [51] algorithm is then applied to optimize the
coarse grid. The optimal solution is then mapped back to a solution to the original grid.

44.4.2 DECOUPLING CAPACITANCE ALLOCATION AND SIZING

Optimal decoupling capacitance allocation and placement is critical for suppressing transient power
grid noise. A simple and greedy decap estimation for each module k is based on the total charge that
each module will draw from the power grid:

Qk = ∫ τ

0 I
k (t) dt

Ck = Qk/V (lim)

noise

(44.40)

where
Ck is the upper limit of required decap for module k
τ is the duration that the switching process lasts
Ik(t) is the switching current of module k
V (lim)

noise is the upper limit of voltage drop

As pointed out in Ref. [55], the above decap estimation is very conservative by not considering
its impact on neighboring modules that draw currents from the same Vdd pins. An iterative process
is proposed to reduce the pessimism of the above solution. The initial solution is chosen as

θ = max

(
1, V

k
noise

V (lim)
noise

)

Ck = (1 − 1/θ)Qk/V (lim)

noise

(44.41)

Power supply noise is then verified after decap insertion. If some Vk
noise still go beyond Vnoise, θ is

changed to increase Ck without exceeding the upper limit (Equation 44.41). If Ck is increased to the
limit and Vk

noise is still above the voltage limit, decap of its neighboring modules will be increased
until Vk

noise goes below V (lim)

noise .
In the abovework, only the worst-case voltage drop across the entire transient voltage waveform

is taken into consideration. Refs. [30,56] use the integral of voltage waveform beyond the noise
margin as the transient noisemetric and formulates the decap sizing problem as a linearly constrained
nonlinear optimization problem for row-based standard-cell designs as follows:

minimize Z(wj) j = 1 · · ·Ndecap

subject to
∑

k∈rowi wk ≤ (1 − ri)Wchip i = 1 · · ·Nrow

and 0 ≤ wj ≤ wmax j = 1 · · ·Ndecap

The scalar objective Z , defined in Equation 44.10, is a function of all of the decap widths and Ndecap

is the total number of decaps in the chip. The first constraint states that the total decap width in a row
cannot exceed the total amount of empty space in that row, andWchip andNrow denote, respectively, the

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 934 24-9-2008 #23

934 Handbook of Algorithms for Physical Design Automation

width of the chip and the number of rows in the chip. The second constraint restricts the decap widths
within a realistic range.An upper boundwmax for a cell in row i is easily seen to be (1−ri)Wchip, which
is the largest empty space in row i; while the lower bound of each decap width is zero. Standard
quadratic programming solver is applied to solve this optimization problem.

Li et al. proposes a partitioning scheme to reduce the problem size. The partition-based strategy
is based on the fact that decap has a local impact on suppressing the transient noise. The partitioning
task is achievedby a noise-aware graph-basedmultilevelminimumcut algorithm.Conjugate gradient
solver is then applied for an optimal solution to each partition.

44.4.3 TOPOLOGY OPTIMIZATION

Ref. [57] presents an early work on mesh-based P/G network topology optimization for standard
cell layouts. The problem was formulated into a nonlinear combinatorial optimization problem as
follows:

minimize z = f (gx)
subject to gxi ∈ Nx

voltage drop and electromigration constraints
(44.42)

and circuit constraints (kirchholff’s voltage law [KVL],
kirchholff’s current law [KCL], and Ohm’s law)

(44.43)

The objective function z is the total wiring resources required by the power buses. The decision
variable vector gx is the conductance of every branch. gx can take any discrete value between zero
and gxnx , nx = |Nx|. The problem was relaxed into a continuous optimization problem by allowing
g0
i ≤ gxi ≤ gXi , iεNx . Starting from an initial feasible solution, the solution is improved by moving

toward the direction that decreases the objective function, total wiring resources, without causing the
violation of any constraint. The improvement step is iterated until no improvement is obtained. The
gradient calculation was based on adjoint sensitivity technique [53]. After obtaining an approximate
solution, an exact or integer solution is locally searched in a neighborhood of the approximate
solution. Note that the nature of the problem formulation provides possibility of topology changes
during each iteration as gx may change between zero and nonzero. If gx is not allowed to be zero,
this work reduces to be a wire sizing technique.

Refs. [12,13,38] propose to design power grid using hybrid mesh/tree topologies. Although tree
structures provide the benefits of easier to route and analyze, they can easily result in poor quality in
P/G signal delivery especially in recent technologies. On the other hand, dense meshes are excellent
in satisfying the quality requirements but are computationally difficult to analyze. The key idea in this
work is that an approach that meets both requirements of quality and fast turnaround time of analysis
would be some topology between a pure tree and a full mesh. Both Ref. [12] and Refs. [13,38]
illustrate the benefit of such a hybrid power grid topology of a global mesh feeding multiple local
trees by proposing a fast and accurate analysis approach and showing its efficiency of both analysis
and optimization. As pointed out by Refs. [13,38], the hybrid topology can be extended to other
topologies that are intermediate to the two extremes of full trees and full meshes, for example, a
global mesh that feeds smaller unconnected local meshes.

Ref. [58] proposes another idea of hybrid power grid topology, which is intermediate to fully
regular grids and highly irregular grids. Power grids with regularity help signal routing because
power wires can be easily accounted for during routing. At global level, a regular power grid also
provides well-balanced ground returns for signal lines. On the other hand, a highly irregular grid
may adaptively provide excellent power delivery according to current demands at different regions
of a chip. Therefore, Ref. [58] proposes a power grid topology with global irregularity and local
regularity, which has the advantages for routing that is afforded by fully regular nets, while offering
the flexibility in optimization and better resource utilization permitted by irregular grids.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 935 24-9-2008 #24

Power Grid Design 935

The optimization procedure begins by abstracting the P/G network with an equivalent circuit
model as described in Section 44.2. The current in each tile is assumed to be evenly distributed. The
chip is then divided into k rectangular tile and an imaginary skeleton grid is superimposed on the
chip area on which the actual supply grid is built, to maintain wire alignments across tile boundaries.
Starting with an equal number of wires in all tiles in both horizontal and vertical directions, an initial
sparse actual grid is formed on the skeleton grid. The grid is analyzed using the macromodeling
technique in Ref. [39] after the required port approximations, and the most critical node x in tile i
with the maximum voltage drop from Vdd is determined. The voltage sensitivity of the most critical
node x, with respect to increase in wire area in tile i, by addition of l wires, is computed using a
finite-difference based gradient calculation method. Next, the number of horizontal or vertical wires
in the tile, which produces the maximum voltage sensitivity, is increased by l. The current source to
internal nodes of the tile are reassigned, so that the sum of the current sources at all internal nodes is
the total current drawn by the P/G buses in that tile. The analysis-sensitivity-optimization steps are
repeated until the voltage of the most critical node is greater than a specified value.

44.4.4 OPTIMAL PLACEMENT OF POWER SUPPLY PADS AND PINS

For a given power supply network, Ref. [59] provides an optimal solution for placement of power
pads and pins, subject to DC voltage drop constraints and maximum current constraints on each
pad and pin. The problem is modeled as a mixed integer linear program using the macromodeling
technique discussed in Section 44.3:

minimize number of pads N
subject to (1) Ii ≤ Ith, i ∈ PC

(2) Vj ≥ Vth, j ∈ PC and OBS
(3) Ii and Vj satisfy Equation 44.13

(44.44)

where
PC represents candidate pad locations
OBS means observation nodes on ports of the macromodel
Ith is the maximum current allowed through pads
Vth is the worst-case voltage for each node in the power grid

Introducing 0–1 integer variables z, with zi = 1 denoting that a pad is placed at pad candidate i.
This will help set different voltage and port current constraints for PC nodes depending on whether
a pad is connected at the candidate location or not. The constraints for PC ports can be written as

Vi − Vdd × zi ≥ 0 (44.45)

Vi ≤ Vdd (44.46)

Vi ≥ Vth (44.47)

Ith × zi − Ii ≥ 0 (44.48)

Ii ≥ 0 (44.49)

The above formulation assumes ideal supply voltage of Vdd at pad locations. By further partitioning
the macromodel in Equation 44.13 based on PC and OBS ports, Equation 44.13 can be rewritten as

[
IPC
IOBS

]
=
[
A11 A12

A21 A22

] [
VPC

VOBS

]
+
[
SPC
SOBS

]
(44.50)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 936 24-9-2008 #25

936 Handbook of Algorithms for Physical Design Automation

where
IPC and IOBS are currents through the PC and OBS ports, respectively
SPC and SOBS are constant current sources from these ports to the reference node

It should be noted that all elements in IOBS are zero because there is no current flow into the
macromodel through the observation nodes. Given T = −A−1

22 × A21 and B = −A−1
22 × SOBS, further

derivation gives

T × VPC ≥ C (44.51)

where

C =

⎡
⎢⎢⎣
Vth − B1

Vth − B2

· · ·
Vth − Bn

⎤
⎥⎥⎦ (44.52)

REFERENCES
1. SIA, ESIA, JEITA,KSIA, andTSIA. The International TechnologyRoadmap for Semiconductors. Available

at http://www.itrs.net/Common/2005ITRS/Home2005.html, 2005.
2. G. Bai, S. Bobba, and T. N. Hajj. Static timing analysis including power supply noise effect on propagation

delay in VLSI circuits. In Proceedings of the Design Automation Conference, pp. 295–300, Las Vegas, NV,
June 2001.

3. L. H. Chen, M. Marek-Sadowska, and F. Brewer. Coping with buffer delay change due to power and ground
noise. In Proceedings of the Design Automation Conference, pp. 860–865, New Orleans, LA, June 2002.

4. R. Saleh, S. Z. Hussain, S. Rochel, and D. Overhauser. Clock skew verification in the presence of IR-drop in
the power distribution network. IEEE Transactions on Computer-Aided Design of ICs and Systems, 19(6):
635–644, June 2000.

5. S. Chowdhury. An automated design of minimum area IC power/ground nets. In Proceedings of the Design
Automation Conference, pp. 223–229, Miami Beach, FL, June 1987.

6. S. Chowdhury andM.A. Breuter. Optimumdesign of IC power/ground nets subject to reliability constraints.
IEEE Transactions on Computer-Aided Design, 7(7): 787–796, July 1988.

7. A. Vittal and M. Marek-Sadowska. Power distribution topology design. In Proceedings of the Design
Automation Conference, pp. 503–507, San Francisco, CA, June 1995.

8. S. Bobba, T. Thorp, K. Aingaran, and D. Liu. IC power distribution challenges. In Proceedings of the
International Conference on Computer-Aided Design, pp. 643–650, San Jose, CA, 2001.

9. K. L. Shepard andV.Narayanan. Noise in deep submicron digital design. InProceedings of the International
Conference on Computer-Aided Design, pp. 524–531, San Jose, CA, November 1996.

10. H. H. Chen and D. D. Ling. Power supply noise analysis methodology for deep-submicron VLSI chip
design. In Proceedings of the Design Automation Conference, pp. 638–643, Anaheim, CA, June 1997.

11. H. H. Chen and J. S. Neely. Interconnect and circuit modeling techniques for full-chip power supply noise
analysis. IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, 21(3):
209–215, August 1998. (DAC 1997).

12. J. C. Shah, A. A. Younis, S. S. Sapatnekar, and M. M. Hassoun. An algorithm for simulating power/ground
networks using Padé approximants and its symbolic implementation. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, 45: 1372–1382, October 1998. (ECCTD 1997).

13. H. Su, K. H. Gala, and S. S. Sapatnekar. Fast analysis and optimization of power/ground networks. In
Proceedings of the International Conference on Computer-Aided Design, pp. 477–480, San Jose, CA,
November 2000.

14. S. Chowdhury and J. S. Barkatullah. Estimation of maximum currents in MOS IC logic circuits. IEEE
Transactions on Computer-Aided Design of ICs and Systems, 9(6): 642–654, June 1990. (ICCAD 1988).

15. H. Kriplani, F. Najm, and I. Hajj. Maximum current estimation in CMOS circuits. In Proceedings of the
Design Automation Conference, pp. 2–7, Anaheim, CA, June 1992.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 937 24-9-2008 #26

Power Grid Design 937

16. H. Kriplani, F. Najm, and I. Hajj. Resolving signal correlations for estimating maximum currents in CMOS
combinational circuits. In Proceedings of the Design Automation Conference, pp. 384–388, Dallas, TX,
June 1993.

17. S. Bobba and I. N. Hajj. Estimation of maximum current envelope for power bus analysis and design. In
Proceedings of the International Symposium on Physical Design, pp. 141–146, Monterey, CA, April 2001.

18. A. Krstic and K. -T. T. Cheng. Vector generation for maximum instantaneous current through supply lines
for CMOS circuits. In Proceedings of the Design Automation Conference, pp. 383–388, Anaheim, CA,
June 1997.

19. R. Chaudhry, D. Blaauw, R. Panda, and T. Edwards. Current signature compression for IR-drop analysis.
In Proceedings of the Design Automation Conference, pp. 162–167, Los Angeles, CA, June 2000.

20. Y. -M. Jiang, K. -T. Cheng, and A. Krstic. Estimation of maximum power and instantaneous current using
a genetic algorithm. In Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 135–138, San
Diego, CA, May 1997.

21. S. Boyd, L. Vandenberghe, A. E. Gamal, and S. Yun. Design of robust global power and ground networks.
In Proceedings of the International Symposium on Physical Design, pp. 60–65, Napa, CA, April 2001.

22. B. Sheu, D. Scharfetter, P. -K. Ko, and M. -C. Jeng. BSIM: Berkeley short-channel IGFET model for MOS
transistors. IEEE Journal of Solid-State Circuits, 22: 558–566, August 1987.

23. University of California Berkeley. BSIM4.2.0 Manual, 2001. Available at http://www-device.eecs.berkeley.
edu/∼bsim3/bsim4.html

24. M. Benoit, S. Taylor, D. Overhauser, and S. Rochel. Power distribution in high-performance design. In
Proceedings of the International SymposiumonLowPower Electronics andDesign, pp. 268–272,Monterey,
CA, August 1998.

25. A. Dharchoudhury, R. Panda, D. Blaauw, and R. Vaidyanathan. Design and analysis of power distrib-
ution networks in PowerPC™ microprocessors. In Proceedings of the Design Automation Conference,
pp. 738–743, San Francisco, CA, June 1998.

26. G. Steele, D. Overhauser, S. Rochel, and S. Z. Hussain. Full-chip verification for DSM power distribution
systems. InProceedings of theDesign Automation Conference, pp. 744–749, San Francisco, CA, June 1998.

27. H. Su, F. Liu, A. Devgan, E. Acar, and S. R. Nassif. Full chip leakage estimation considering power supply
and temperature variations. In Proceedings of International Symposium on Low Power Electronics and
Design, pp. 78–83, Seoul, Korea, August 2003.

28. T. Sakurai and K. Tamaru. Simple formulas for two and three dimensional capacitance. IEEE Transactions
on Electronic Devices, 30, 183–185, February 1983.

29. A. R. Conn, R. A. Haring, C. Visweswariah, and C. W. Wu. Circuit optimization via adjoint Lagrangians.
In Proceedings of the International Conference on Computer-Aided Design, pp. 281–288, San Jose, CA,
November 1997.

30. H. Su, S. S. Sapatnekar, andS.R.Nassif.Analgorithm for optimal decoupling capacitor sizing andplacement
for standard cell layouts. In Proceedings of the International Symposium on Physical Design, pp. 68–73,
San Diego, CA, April 2002.

31. L. T. Pillage, R. A. Rohrer, and C. Visweswariah.Electronic and System SimulationMethods. McGraw-Hill,
New York, 1995.

32. Y. Cao, Y. Lee, T. Chen, and C. Chen. HiPRIME: Hierarchical and passivity reserved interconnect
macromodeling engine for RLKC power delivery. In Proceedings of the Design Automation Conference,
pp. 379–384, New Orleans, LA, June 2002.

33. J. N.Kozhaya, S. R.Nassif, and F.N.Najm.Multigrid-like technique for power grid analysis. InProceedings
of the International Conference on Computer-Aided Design, pp. 480–487, San Jose, CA, November 2001.

34. S. R. Nassif and J. N. Kozhaya. Fast power grid simulation. In Proceedings of the Design Automation
Conference, pp. 156–161, Los Angeles, CA, June 2000.

35. H. Qian, S. R. Nassif, and S. S. Sapatnekar. Random walks in a supply network. In Proceedings of the
Design Automation Conference, pp. 93–98, Anaheim, CA, June 2003.

36. H. Qian, S. R. Nassif, and S. S. Sapatnekar. Power grid analysis using random walks. IEEE Transactions
on Computer-Aided Design of ICs and Systems, 24(8): 1204–1224, August 2005. (DAC 2003).

37. H. Su, E.Acar, andS.R.Nassif. Power grid reductionbasedon algebraicmultigrid principles. InProceedings
of the Design Automation Conference, pp. 109–112, Anaheim, CA, June 2003.

38. H. Su, K. H. Gala, and S. S. Sapatnekar. Analysis and optimizatioin of structured power/ground networks.
IEEE Transactions on Computer-Aided Design, 22(11): 1533–1544, November 2003. (ICCAD 2000).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C044 Finals Page 938 24-9-2008 #27

938 Handbook of Algorithms for Physical Design Automation

39. M. Zhao, R. V. Panda, S. S. Sapatnekar, T. Edwards, R. Chaudhry, and D. Blaauw. Hierarchical analysis
of power distribution networks. In Proceedings of the Design Automation Conference, pp. 481–486, Los
Angeles, CA, June 2000.

40. W. L. Briggs, Henson, V. E., and McCormick, S., A Multigrid Tutorial, Available at http://computation.
llml.gov/casc/people/henson/mgtut/slides.html

41. W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, Berlin, Germany, 1985.
42. J. Harris, Stocker, H., and Harris, J. W., Handbook of Mathematics and Computational Science,

S. McCormick (Ed), Springer-Verlag, New York, 1998.
43. J. M. Wang and T. V. Nguyen. Extended Krylov subspace method for reduced order analysis of linear

circuits with multiple sources. In Proceedings of the Design Automation Conference, pp. 247–252, Los
Angeles, CA, June 2000.

44. A. Odabasioglu, M. Celik, and L. T. Pilleggi. PRIMA: Passive reduced-order interconnect macromodeling
algorithm. In Proceedings of the International Conference on Computer-Aided Design, pp. 645–654, San
Jose, CA, November 1998.

45. H. Qian, S. R. Nassif, and S. S. Sapatnekar. Early-stage power grid analysis for uncertain working modes.
In Proceedings of the International Symposium on Physical Design, pp. 132–137, Phoenix, AZ, April 2004.

46. H. Qian, S. R. Nassif, and S. S. Sapatnekar. Early stage power grid analysis for uncertain working modes.
IEEETransactions onComputer-AidedDesignof ICs andSystems, 24(5): 676–682,May 2005. (ISPD2004).

47. I. A. Ferzli and F. N. Najm. Analysis and verification of power grids considering process-induced leakage
current variations. IEEE Transactions on Computer-Aided Design of ICs and Systems, 25(1): 126–143,
January 2006. (DAC 2003).

48. B. R. Stanisic, R. A. Rutenbar, and L. R. Carley. Addressing noise decoupling in mixed-signal IC’s: Power
distribution design and cell customization. IEEE Journal of Solid-State Circuits, 30: 321–326, March 1995.

49. B. R. Stanisic, N. K. Verghese, R. A. Rutenbar, L. R. Carley, and D. J. Allstot. Addressing substrate coupling
in mixed-mode IC’s: Simulation and power distribution synthesis. IEEE Journal of Solid-State Circuits,
29: 226–238, March 1994.

50. S. Chowdhury and M. A. Breuter. Minimum area design of power/ground nets having graph topologies.
IEEE Transactions on Circuits and Systems, CAS-34(12): 1441–1451, December 1987.

51. S. X. Tan and C. R. Shi. Fast power/ground network optimization based on equivalent circuit modeling. In
Proceedings of the Design Automation Conference, pp. 550–554, Las Vegas, NV, June 2001.

52. X. Wu, X. Hong, Y. Cai, C. K. Cheng, J. Gu, and W. Dai. Area minimization of power distribution network
using efficient nonlinear programming techniques. In Proceedings of the International Conference on
Computer-Aided Design, pp. 153–157, San Jose, CA 2001.

53. S. W. Director and R. A. Rohrer. The generalized adjoint network and network sensitivities. IEEE
Transactions on Circuit Theory, 16(3): 318–323, August 1969.

54. K. Wang and M. Marek-Sadowska. On-chip power supply network optimization using multigrid-based
technique. In Proceedings of the Design Automation Conference, pp. 113–118, Anaheim, CA, June 2003.

55. S. Zhao, K. Roy, and C. -K. Koh. Decoupling capacitance allocation for power supply noise suppression.
In Proceedings of the International Symposium on Physical Design, pp. 66–71, Napa, CA, April 2001.

56. H. Su, S. S. Sapatnekar, and S. R. Nassif. Optimal decoupling capacitor sizing and placement for standard
cell layout designs. IEEE Transactions on Computer-Aided Design of ICs and Systems, 22(4): 428–436,
April 2003. (ISPD 2002).

57. T. Mitsuhashi and E. S. Kuh. Power and ground network topology optimization for cell-based VLSIs. In
Proceedings of the Design Automation Conference, pp. 524–529, Anaheim, CA, June 1992.

58. J. Singh and S. S. Sapatnekar. Topology optimization of structured power/ground networks. In Proceedings
of the International Symposium on Physical Design, pp. 116–123, Phoenix, AZ, April 2004.

59. M. Zhao, Y. Fu, V. Zolotov, S. Sundareswaran, and R. Panda. Optimal placement of power supply pads and
pins. In Proceedings of the Design Automation Conference, pp. 165–170, San Diego, CA, June 2004.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S010 Finals Page 939 24-9-2008 #2

Part X

Physical Design for Specialized
Technologies

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_S010 Finals Page 940 24-9-2008 #3

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 941 24-9-2008 #2

45 Field-Programmable
Gate Array Architectures

Steven J.E. Wilton, Nathalie Chan King Choy,
Scott Y.L. Chin, and Kara K.W. Poon

CONTENTS

45.1 Introduction.. 941
45.2 Programming Technologies. 942

45.2.1 SRAM-Based FPGAs. 942
45.2.2 Flash-Based FPGAs . 943
45.2.3 Antifuse-Based FPGAs . 944

45.3 Logic Block Architectures . 944
45.3.1 Lookup-Tables . 944

45.3.1.1 Clusters . 945
45.3.1.2 Carry Chains . 946

45.3.2 Non-LUT-Based Logic Blocks. 947
45.4 Routing Architectures . 947

45.4.1 Segmentation .. 947
45.4.2 Programmable Switches . 948
45.4.3 Switch Blocks and Connection Blocks . 948
45.4.4 Bus-Based Routing Architectures . 949
45.4.5 Pipelined Interconnect Architectures . 950

45.5 Memories . 950
45.5.1 Embedded Memory .. 950
45.5.2 Distributed Memory . 952

45.6 Embedded Computation Blocks . 952
45.6.1 Multipliers and DSP Blocks . 952
45.6.2 Embedded Processors. 953

45.7 Summary . 953
References . 954

45.1 INTRODUCTION

Field-programmable gate arrays (FPGAs) have become the implementation medium of choice for
many digital systems. FPGAs are integrated circuits that can be programmed after fabrication to
implement virtually any digital circuit. This instant manufacturability reduces time-to-market as well
as nonrecurring engineering costs.Most FPGAs are also reprogrammable,meaning the digital circuit
implemented in the device can change as requirements or standards change or as bugs are found.

The flexibility in a FPGA is afforded through flexible logic elements connected to each other and
to the I/O pads using flexible routing resources. Because the elements are prefabricated, the physical
design tasks associated with mapping a circuit to an FPGA are somewhat different than those used

941

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 942 24-9-2008 #3

942 Handbook of Algorithms for Physical Design Automation

to map a circuit to an application specific integrated circuit (ASIC). The next chapter will describe
the physical design algorithms for FPGAs; this chapter sets the stage by describing the architecture
of FPGAs. Section 45.2 describes several programming technologies, Section 45.3 describes logic
block architectures, Section 45.4 describes routing architectures, and Sections 45.5 and 45.6 describe
embedded memories and embedded computation blocks.

45.2 PROGRAMMING TECHNOLOGIES

The circuit being implemented on an FPGA is stored in the FPGA using a set of configuration
bits. These bits can be constructed in various ways; this section describes static random access
memory (SRAM), Flash, and antifuse-based configuration bits. These schemes are all used in con-
temporary commercial FPGAs; many FPGAs vendors, such as Xilinx, Altera, and Lattice, use
SRAM configurable bits to control the programmable switches to configure routing and logic
[Altera05,Lattice05,Xilinx05a].Actel produces both Flash and antifuse FPGA products [Actel05a].
QuickLogic uses antifuse technology in their products [Quick05]. Table 45.1 provides a comparison
among these three technologies; details on each are provided below. FPGAs based on emerging
technologies have also been described [Ferrera04,Dehon05], but because they are not commercially
available yet, they will not be discussed further here.

45.2.1 SRAM-BASED FPGAS

The most popular scheme to implement configuration bits is to use SRAM cells. SRAM technology
is fast, and allows for reprogrammability. In addition, SRAM bits can be implemented using standard
complementarymetal-oxide-semiconductor (CMOS) processes, meaning FPGAs using SRAMs can
be implemented in leading-edgeprocesses. Figure 45.1 shows a typical six-transistor SRAMmemory
cell. It uses the data bit in both the true and complement forms to achieve fast read and write
time [Trimberger94]. Although a six-transistor cell is generally more stable because it is resistant
to state flipping owing to crosstalk or charge sharing [Betz99], four-transistor and five-transistor
SRAM cells are possible. Xilinx uses a five-transistor SRAM cell for their FPGAs [Trimberger94].

The main disadvantage of SRAM is its volatility. Data stored in SRAM cells is erased when the
power is turned off. Therefore, additional off-chip memory, like electrically erasable programmable
read-onlymemory (EEPROM), is necessary to store the configuration bits and program the FPGA at
power-up. This potentially causes security concerns, because designs can be copied by capturing the
external bit stream [Zeidman02]. To address this, some FPGA vendors, such as Altera and Lattice,
apply on-chip Flash memory to store the configuration bits, so the SRAM-based FPGA can be
programmed without external memory upon power-up. A second disadvantage of this technology
is that SRAM cells are susceptible to neutron-induced errors, also known as soft-errors, which are

TABLE 45.1
Comparison among SRAM, Antifuse, and Flash

Features SRAM Flash Antifuse

Volatile Yes No No
In-system programmable Yes Yes No
Power consumption High Lower Lower
Density High High High
IP security No Yes Yes
Soft-error resistance Low High High

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 943 24-9-2008 #4

Field-Programmable Gate Array Architectures 943

Data Data_bar

Program line:
Asserted during the
configuration phase

Load line:
Load the value for

data during configuration
phase

Load line_bar:
Load the value for
data_bar during

 configuration phase

FIGURE 45.1 Six-transistor SRAM cell.

caused by neutrons, alpha particles, cosmic or terrestrial radiation. These errors are common in high-
radiation environments, such as at high altitude or in space. Such errors do not permanently damage
the FPGA, but they may cause instability and functional failure in the system. The main strategies
to overcome these errors in SRAM-based FPGAs are triple redundancy, error-correcting or parity
codes, and redundancy in time.

45.2.2 FLASH-BASED FPGAS

Flash cells provide nonvolatile programmabilitywhile retaining the ability to reprogram the FPGAs.
Figure 45.2 illustrates the Flash switch used in Actel’s ProASIC3. In the Flash switch, two transistors
share the floating gate, which stores the programming data. The sensing transistor is used for writing
and verification of the floating gate voltage while the switching transistor is employed to configure
routing nets and logic. Flash-based FPGAs aremore secure and consume less power than their SRAM

Wordline

Switch
output

Switch
input

Sensing
transistor

Switching
transistor

Floating gate

R
ea

db
ac

k

C
on

fig
ur

e

FIGURE 45.2 Flash-based switch.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 944 24-9-2008 #5

944 Handbook of Algorithms for Physical Design Automation

counterparts [Actel05a]. However, the manufacturing process for Flash is more complicated than
that of SRAM. As a result, Flash technology usually lags one to two process generations behind
SRAM technologies. Testing is also lengthy owing to the nature of Flash. Therefore, Flash-based
FPGAs have a slower time-to-market compared to the SRAM-based FPGAs.

45.2.3 ANTIFUSE-BASED FPGAS

Antifuses can also be used to implement configurationbits [Actel05b].An antifuse is a thin insulating
layer between conductors. The insulating layer gets mutated by applying high voltage. After the
alteration, a low-resistance path is created between the conductors. Such alteration is irreversible.
Like Flash, antifuse technology is nonvolatile. The major disadvantage of antifuse FPGA is its
one-time programmability. However, it consumes less power and is more area-efficient than SRAM
and Flash.

45.3 LOGIC BLOCK ARCHITECTURES

Programmability is provided in an FPGA in two ways. Logic is implemented in configurable logic
blocks; these logic blocks are then connected to each other and to the I/O pads using a configurable
routing network [Rose93,Betz99]. This section focuses on logic blocks and the next section focuses
on the routing network.

45.3.1 LOOKUP-TABLES

Most FPGAs use lookup-tables (LUTs) as their basic logic element. A K-input LUT (K-LUT) is a
memory with 2K bits, K address lines, and a single output line. Each K-LUT can be configured to
implement any function ofK inputs by storing the truth table of the desired function in the 2K storage
bits. Figure 45.3 shows an example of a 2-input LUT implemented using SRAM cells (antifuse and
Flash memory cells could also be used).

Early research has shown that K = 4 works well; this is used in most commercial FPGAs
[Rose90,Singh92]. Later work reconfirmed that K = 4 is a good choice for area, but that for
performance, K = 7 works well [Ahmed04]. In general, the parameter K has a significant impact
on the efficiency of the architecture. If K is too large, it may not be possible to completely fill each
logic block, while if K is too small, delay will suffer because more logic blocks will be needed along
the critical path of a circuit. Figure 45.4 shows how a 6-input function might be implemented with
two 4-LUTs; had a 6-LUT been used, only 1-LUT would be required.

Variations on the basic LUT architecture have been used. Figure 45.5 shows a logic block that
employs a fracturable LUT mask (FLM) [Lewis05]. A k,m-FLM can implement a single k-input
function or two functions, each with up to k − 1 inputs, which together use no more than k + m
distinct inputs. The architecture in Figure 45.5a is a 6,2-FLM.An extension of the FLM architecture,
called a shared LUTmask (SLM) architecture, is shown in Figure 45.5b.A k,m-SLM can implement
two identical functions of k inputs provided that the two functions share k − m inputs. The SLM

Output Output

SRAM
cells

SRAM
cells

Inputs Inputs

00

11

10

01

0

0
0

1

FIGURE 45.3 Two-input LUT. Unprogrammed and programmed as a two-input and gate.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 945 24-9-2008 #6

Field-Programmable Gate Array Architectures 945

Out

Out

A

B

C

D

E

F

A

B

C

D

E

F

2 logic levels 1 logic level

4-input
LUT

4-input
LUT

6-input
LUT

FIGURE 45.4 Implementing a 6-input function using two 4-LUTs.

(a) (b)

E0

E1

F 0

F 1

A

E

F
FLM SLM

B

C0

C1

D0

D1

A

B

DC0

DC1
Z1(A,B,C1,D1,F)

Z 2(A,B,C,D,E,F)

Z0(A,B,C 0,D0,E)

4

4

4
4-LUT

Fixed
input

routing

Fixed
input

routing

4-LUT

4-LUT

4-LUT

3-LUT

3-LUT

3-LUT

3-LUT

3-LUT

3-LUT

3-LUT

3-LUT

MUX
network

MUX
network

4

/

/

/

/

/
/

/

/

/

/

/

/

3

3

3

3

3

3

3

3

Z 0(A,B,DC 0,DC 1,E 0,F 0)
Z 1(A,B,DC 0,E 0,F 0)

Z 0(A,B,DC 0,DC 1,E 1,F 1)
Z 2(A,B,DC 1,E 1,F F)

FIGURE 45.5 Advanced logic block structures.

architecture does this through the sharing of LUT masks (the set of configuration bits that indicate
the function implemented by the LUT) so that both functions are the same but can have different
inputs. The logic block in the Altera Stratix II FPGA is based on a 6,2-SLM [Altera05].

Lookup-tables are usually coupled with flip-flops, as shown in Figure 45.6. In this structure, a
configuration bit is used to control the state of the output multiplexer. Depending on the value of
this configuration bit, the output signal of the LUT can either be registered or unregistered. As in
Ref. [Betz99], we refer to the LUT and flip-flop as a basic logic element (BLE).

45.3.1.1 Clusters

To increase speed and reduce area and compile time, larger logic blocks are preferred. However,
LUT complexity grows exponentially with the number of inputs [Rose93]. Clusters are logic blocks
of larger granularity, typically composed of multiple BLEs, internal cluster routing, and possibly
specialized internal cluster connections, such as carry and arithmetic chains [Marquardt00]. Within
a cluster, BLE inputs are typically connected to the cluster inputs and BLE outputs by a multiplexer-
based crossbar. This internal interconnect is generally faster than the general purpose routing between

Clock

Inputs Output4-input
LUT D

flip-flop

FIGURE 45.6 LUT coupled with a flip-flop (BLE).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 946 24-9-2008 #7

946 Handbook of Algorithms for Physical Design Automation

N

I

N Outputs

Logic cluster

Clock

I Inputs

BLE
#1

BLE
#N

… …

FIGURE 45.7 Basic BLE and basic cluster composed of identical BLEs.

blocks. Altera refers to clusters as logic array blocks (LABs), while Xilinx refers to clusters as
configurable logic blocks (CLBs).

Figure 45.7 shows a typical cluster. The cluster architecture is described by these four parameters:
(1) K , the number of inputs to a LUT, (2) N , the number of BLEs in a cluster, (3) I , the number of
inputs to the cluster that connect to LUT inputs, and (4)Mclk, the number of clock inputs to a cluster
(most studies assume this is 1).

Increasing K or N increases the functionality of the cluster. This reduces the number of blocks
needed to implement circuits and the number of blocks on the critical path, but increases the size
of the block and makes the local cluster interconnect slower. Research has found that K = 4–6 and
N = 3–10 provide the best combined speed and area [Ahmed04].

The value of I is often smaller than K × N , because BLEs often share inputs or use the outputs
from BLEs within the cluster. Smaller values of I use smaller multiplexers in the crossbar, reducing
area, but overly small I values make some BLEs unusable. Research has found that 98 percent
utilization can be achieved when I = [(K/2) × (N + 1)] [Ahmed04].

45.3.1.2 Carry Chains

Carry chains are locally routed connections that aid in the efficient implementation of arithmetic
operations. They also can be used in the efficient implementation of logical operations, such as
parity and comparison. Fast carry chains are important because the critical path for these operations
is often through the carry.

Each 4-LUT in a BLE can be fractured to implement two 3-LUTs; this is sufficient to implement
both the sum and carry, given two input bits (a and b) and a carry input, as shown in Figure 45.8.
The carry out signal from one BLE would typically be connected to the carry in of an adjacent BLE
using a fast dedicated connection. The Z-input is used to break the carry chain before the first bit of
an addition.

More complex carry schemes have been described. In Ref. [Hauck00], carry chains based on
carry select, variable block, and Brent–Kung schemes are described; the Brent–Kung scheme is
shown to be 3.8 times faster than the simple ripple carry adder in Figure 45.8. Support for carry-
lookahead adders is included in the Actel Axcelerator device, the Xilinx Virtex-II, Virtex-II Pro,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 947 24-9-2008 #8

Field-Programmable Gate Array Architectures 947

Carry out

Sum out

Carry in

Za
b

3-LUT 3-LUT

2-LUT 2-LUT 2-LUT 2-LUT
P

FIGURE 45.8 Carry chain connections to a 4-LUT.

and Virtex-4 devices. Carry select capabilities are included in the Altera Stratix FPGAs. The Altera
Stratix-II contains two dedicated 1-bit adders in each logic block. Because high-fanin arithmetic can
cause routing congestion in a small area of the device, both Xilinx and Altera parts support two
independent carry chains in each cluster. This allows for narrower fanin logic, which helps reduce
routing congestion around the adders.

45.3.2 NON-LUT-BASED LOGIC BLOCKS

Not all FPGAs contain logic blocks based on LUTs. The Actel ProASIC3 logic blocks contain a set
ofmultiplexers, which allow for the implementation of 3-input combinational or sequential functions
in each logic block [Actel05a]. TheQuickLogicEclipse II logic cell contains two 6-inputAND gates,
four 2-input AND gates, and seven two-to-one multiplexers [Quick05]. The use of universal logic
modules as FPGA logic blocks has also been proposed; these blocks can implement any function of
their inputs by applying input permutation and negation [Lin94]. Finally, programmable devices using
more coarse-grained logic blocks exist; these logic blocks are typically arithmetic/logic units and
are suitable for computationally intensive applications [Ebeling96,Goldstein00,Singh00,Mei03].

45.4 ROUTING ARCHITECTURES

Connections between logic blocks are implemented using fixed prefabricated metal tracks. These
tracks are arranged in channels; channels typically run vertically and horizontally, forming a grid
[Lemieux04a]. Although many academic studies have assumed that all channels contain the same
number of tracks [Betz99], many commercial architectures (such as those fromAltera) contain more
tracks in each horizontal channel than each vertical channel. Figure 45.9 shows an FPGAwith tracks
arranged in horizontal and vertical channels.

45.4.1 SEGMENTATION

Tracks within a channel can span one logic block, or multiple logic blocks. Typically, not all tracks
within a channel will be of the same length. Several studies have investigated the optimum segment
length. In Ref. [Brown96], a heterogeneous routing architecture, in which some tracks span three
logic blocks, some span two logic blocks, and some span one logic block, is found to work well.
In Ref. [Betz99], it is shown that longer wires result in a more efficient architecture; they suggest
a homogeneous architecture in which all tracks span either four or eight logic block gives the most
efficient FPGA.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 948 24-9-2008 #9

948 Handbook of Algorithms for Physical Design Automation

Horizontal
channel

Switch
block

Connection
block

Vertical
channel

Routing
track

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

FIGURE 45.9 Overall routing architecture.

45.4.2 PROGRAMMABLE SWITCHES

The tracks are connected to each other and to the logic blocks using programmable switches. These
programmable switches can be buffered or unbuffered, as shown in Figure 45.10. Switches in
modern FPGAs are typically buffered, because unbuffered switches result in a quadratic increase
in delay for long connections. Buffered switches can be bidirectional, as shown in Figure 45.10b or
unidirectional, as shown in Figure 45.10c. Although many academic studies assume bidirectional
switches [Betz99], most modern FPGAs contain unidirectional switches [Lemieux04b]; these
switches allow for better delay optimization and result in a more dense routing fabric.

45.4.3 SWITCH BLOCKS AND CONNECTION BLOCKS

Tracks are connected to each other using switch blocks, and to logic blocks using connection blocks.
Commercial FPGAs often contain combined switch blocks and connection blocks, however for
clarity, this section will describe each separately.

(a) Unbuffered (b) Buffered bidirectional (c) Buffered unidirectional

FIGURE 45.10 Programmable switches.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 949 24-9-2008 #10

Field-Programmable Gate Array Architectures 949

0

00 0

0

0 0

0

0

00

1

1 1

1

1

11

1

1

1

1 1

2

2 2

2

2 2

2

2

2

2

2

2

3

3

3

3

3

3 3

3

3

3

3

3

4

4 4

4

4

4

4

4

4

44

4

0

FIGURE 45.11 Switch block patterns.

A switch block lies at the intersection of each horizontal and vertical channel, and can connect
each incident track to some number of other incident tracks. Academic work uses the notation Fs to
describe the number of outgoing tracks to which each incoming track can be connected [Rose93].
Most physical design algorithm studies assume Fs = 3; in this case, each incoming track can be
connected to one track on each of the other three sides of the switch block. The switch pattern
determines which Fs tracks to which each incoming track can be connected. Academic work has
proposed the three switch patterns in Figure 45.11. The disjoint pattern divides the routing fab-
ric into domains; if there are W tracks in each channel, there are W domains. This simplifies the
routing task, and results in an efficient layout. The universal pattern has been shown to support
the largest number of simultaneous connections through each switch block [Chang96], while the
Wilton block has been shown to result in good overall routability [Wilton97]. An extension of
the Wilton block to architectures with different segment lengths is described in Ref. [Masud99].
In Ref. [Sivaswamy05], it is proposed that some of the connections in a switch block should be hard-
wired (nonprogrammable); this gives 30 percent speedup, a slight reduction in area, and an 8 percent
reduction in power.

Connection blocks are used to connect logic block pins to the routing tracks. Each logic block pin
can be connected to a subset of routing tracks in the neighboring channel. The quantity Fc indicates
the proportion of the tracks in each channel to which a pin can be connected. In ref. [Betz99], it is
shown that Fc = 0.25–0.5 (depending on the type of switch block employed) works well.

45.4.4 BUS-BASED ROUTING ARCHITECTURES

FPGAs are often used to implement datapath-intensive circuits, in which many signals are part of
wide buses. Because each bit of a bus is connected in the same way, it has been suggested that a
datapath routing architecture, in which a single configuration bit controlsmultiple switches, will lead
to an improvement in FPGA density. In Ref. [Ye05], the architecture in Figure 45.12 is presented. In
this architecture, some of the tracks (the top four in Figure 45.12) are dedicated bus-based routing
tracks, and connections to them are controlled by a bus switch; a bus switch contains one switch for
each bit controlled by a single configuration cell. In this case, each bus (and each bus switch) is 4-bits
wide. The lower tracks are regular bit-based routing tracks, which are connected to each other and to
the logic cells using standard connection and switch blocks, as described above. In Ref. [Ye05], it is
shown that a bus-width of 4 works well, and that 40–50 percent of the tracks should be buses (with
the remainder being bit-based routing tracks). It is shown that this results in a density improvement
of 9.6 percent compared to a conventional architecture.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 950 24-9-2008 #11

950 Handbook of Algorithms for Physical Design Automation

4-bit bus

Bit-based routing
tracks

P = Configuration cell

LUT LUT LUT LUT

P P P P

P

FIGURE 45.12 Bus-based routing architecture.

45.4.5 PIPELINED INTERCONNECT ARCHITECTURES

In deep-submicron technologies, the delay of long wires can limit the clock speed of the circuit
implemented on an FPGA. To address this, several authors have proposed pipelined intercon-
nect architectures [Singh01a,Singh01b,Weaver04]. In these architectures, some of the interconnect
switches contain registers. This results in additional complexity for the router, however, because it
must now balance the number of registers on each path.

45.5 MEMORIES

Today, FPGAs are often used to implement entire systems. These systems often require storage.
Although it is possible to implement storage off-chip, on-chip storage has a number of advantages.
On-chip storage reduces system costs, allows for a wider, faster memory interface, and reduces I/O
demands on the FPGA.

There are two ways of implementing memory on FPGAs: embedded memory and distributed
memory. Embedded memory solutions offer a number of relatively large fixed dedicated memory
blocks on the FPGA. Distributed memory, on the other hand, uses small memories spread across the
entire FPGA chip, often implemented in unused logic elements.

45.5.1 EMBEDDED MEMORY

Most FPGAs contain embeddedmemory blocks (EMBs). EMBs are typically arranged in columns or
rows to simplify connections to logic and between other EMBs [Wilton99], as shown in Figure 45.13.
Altera’s Stratix and Stratix-II devices include three different sized EMBs: 512 bits, 4Kbits, and
512Kbits [Altera05]. Xilinx’s Virtex-4, Virtex-II, and Spartan series contain 18Kbits EMBs [Xil-
inx05a]. Actel’s ProASIC3 and ProASIC-Plus contain 4Kbits and 2Kbits EMBs, respectively
[Actel05].

Each EMB has a fixed number of bits, but its aspect ratio can be configured by the user. For
example, in the Stratix II architecture, a 4-Kbit EMB may be configured to act as memories with
aspect ratios of 4096 × 1, 2048 × 2, 1024 × 4, 512 × 8, 256 × 16, or 128 × 32. On many devices,
EMBs can be configured to act as a ROM, single-port RAM, or dual-port RAM. In addition, they
typically include parity bits, various enable/reset control signals, and have synchronous inputs with
synchronous or asynchronous outputs.

Of particular importance is the interface between the memory and the logic. Figure 45.14 shows
one published scheme; in this architecture, each EMB connects to the logic through a memory-
logic interconnect block [Wilton99]. Figure 45.15 shows the contents of one of these memory-logic

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 951 24-9-2008 #12

Field-Programmable Gate Array Architectures 951

Logic blocks

Logic blocks

Memory
arrays

FIGURE 45.13 Logic and memory in an FPGA.

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Logic
block

Memory/logic
interconnect

block

Memory
block

Memory/logic
interconnect

block

Memory
block

Memory/logic
interconnect

block

FIGURE 45.14 Memory/logic interconnect architecture.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 952 24-9-2008 #13

952 Handbook of Algorithms for Physical Design Automation

To logic

To logic

Memory
block

FIGURE 45.15 Memory/logic interconnect block.

interconnect blocks; crosses indicate programmable connections. The flexibility of the connection
block, Fm, can be defined as the number of programmable connections available between each
horizontal pin and the adjacent vertical channel. In Figure 45.14, Fm = 4. In Ref. [Wilton99], it is
shown that a value of Fm between 4 and 7 works well. To increase routability, the architecture in
Figure 45.14 includes dedicated tracks for memory-to-memory connections. These tracks are used
whenmultiplememory arrays are cascaded together to form larger user arrays, and are more efficient
for suchmemory-to-memoryconnections. EMBs can also be used to implement logic by configuring
them as large ROMs [Cong98] [Wilton00].

45.5.2 DISTRIBUTEDMEMORY

Commercial FPGAs such as Xilinx’s Virtex-4, Virtex-II, and Spartan-3 devices allow the 4-input
LUTs in their logic blocks to be configured as 16 × 1-bit memories [Xilinx05a]. These memories
have synchronous inputs. Their outputs can be synchronous through the use of the LUTs associated
register. These 16 × 1-bit memories can also be cascaded to implement deeper or wider memory
arrays through specialized logic resources.

Anothermethod for supporting distributed memory is proposed in Ref. [Oldridge05]. This archi-
tecture allows the configurationmemory in the interconnect switch blocks to be used as user memory
and is very efficient for wide, shallow memories.

45.6 EMBEDDED COMPUTATION BLOCKS

45.6.1 MULTIPLIERS AND DSP BLOCKS

To address the performance requirements of digital signal processing (DSP) applications, FPGA
manufacturers typically include dedicated hardwaremultipliers in their devices.AlteraCyclone II and
XilinxVirtex-II/-II Pro devices include embedded 18×18-bitmultipliers,which can be split into 9×9-
bitmultipliers [Xilinx05a]. TheVirtex-II/-II Pro devices are further optimizedwith direct connections
to theXilinx blockRAM resources for fast access to input operands.Asmanufacturersmoved toward
high-performanceplatform FPGAs, they began to includemore complex dedicated hardware blocks,
referred to asDSP blocks,which are optimized for awider range ofDSP applications.Altera’s Stratix
and Stratix II DSP blocks support pipelining, shift registers, and can be configured to implement

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 953 24-9-2008 #14

Field-Programmable Gate Array Architectures 953

9×9-bit, 18×18-bit, or 36×36-bit multipliers that can optionally feed a dedicated adder/subtractor
or accumulator [Altera05]. Xilinx Virtex-4 XtremeDSP slices contain a dedicated 18 18-bit 2’s
complement signed multiplier, adder logic, 48-bit accumulator, and pipeline registers. They also
have dedicated connections for cascading DSP slices, with an optional wire-shift, without having to
use the slower general routing fabric [Xilinx05a].

This inclusion of dedicated multipliers or DSP blocks to complement the general logic resources
results in a heterogeneous FPGA architecture. Research has considered what could be gained from
tuning FPGA architectures to specific application domains, in particular DSP. The work in Ref.
[Leijten03] deliberately avoids creating a heterogeneous architecture because they found that DSP
applications contain both arithmetic and random logic, but that a suitable ratio between arithmetic
and random logic is difficult to determine. Instead they develop two mixed-grain logic blocks that
are suitable for implementing both arithmetic and random logic by looking at properties of the
target arithmetic operations and of the 4-LUT. Their logic blocks are coarse-grained: each block
can implement up to 4-bit addition/subtraction, 4 bits of an array multiplier, 4-bit 2:1 multiplexer,
or wide Boolean functions. At the same time, each logic block continues to be able to implement
single-bit output random logic functions much like a normal LUT. Their architecture reduces con-
figuration memory requirements by a factor of 4, which is good for embedded systems or those with
dynamic reconfiguration, and offers higher flexibility for handling a range of proportions of datapath
operations to random logic.

45.6.2 EMBEDDED PROCESSORS

The increase in the capacity of FPGAs has enabled the creation of entire systems on a chip.
To support applications involvingmicrocontrollers and microprocessors, FPGAmanufacturers offer
embedded processors tailored to interface with the FPGA logic fabric. There are two types of
FPGA embedded processors: soft and hard.

Soft processors are intellectual property cores that have configurable features, such as caches,
register file sizes, RAM/ROM blocks, and custom instructions. They are typically available as hard-
ware description language descriptions and are implemented in the logic blocks of the FPGA. Altera
and Xilinx have 32-bit reduced instruction set computer (RISC) processor cores that are optimized
for their FPGAs: Nios/Nios II and PicoBlaze/MicroBlaze, respectively. Altera and Xilinx also offer
development and debugging tools and other intellectual property cores that interface with their
processors. The advantages of soft processors include the options to use and configure features only
when they are needed, reducing area, and the ability to include multiple processors on a single chip.
A Xilinx MicroBlaze requires as few as 923 LUTs [Xilinx05b] and can be used in the creation of
multiprocessor systems. Because soft processors are implemented using logic resources, they are
slower and consume more power than off-the-shelf processors.

Hard processors are dedicated hardware embedded on the FPGA. Altera Excalibur devices
include the ARM 32-bit RISC processor and Xilinx Virtex-4 and Virtex-II Pro devices include
up to two IBM PowerPC 32-bit RISC processors [Altera02,Xilinx05b].

45.7 SUMMARY

This chapter has described the essential architectural features of contemporary FPGAs. Most
commercial FPGAs contain small LUTs, in which logic is implemented. These LUTs are usually
arranged in clusters, often with special support for arithmetic circuits (such as carry chains). Signals
are transmitted between logic blocks using fixed metal tracks, connected using programmable
switches. The topology of these tracks and switches make up the device’s routing architecture. In
addition to logic blocks, modern FPGAs contain significant amounts of embedded memory, and
dedicated arithmetic functional blocks (such as multipliers). This chapter has set the stage for the
next chapter, which describes physical design algorithms that target FPGAs.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 954 24-9-2008 #15

954 Handbook of Algorithms for Physical Design Automation

REFERENCES

[Actel05a] Actel Corp., ProASIC3 Flash Family FPGAs Handbook, 2005. Available at: http://www.actel.
com/documents/PA3_HB.pdf.

[Actel05b] Actel Corp., Actel Quality and Reliability Guide, 2005 Available at http://www.actel.com/
document/RelGuide.pdf.

[Ahmed04] E. Ahmed and J. Rose, The effect of LUT and cluster size on deep-submicron FPGA
performance and density, IEEE Transactions on VLSI, 12(3): 288–298, March 2004.

[Altera02] Altera Corp., Excalibur Device Overview, May 2002. Available at: http://www.altera.com/
literature/ds/ds_arm.pdf

[Altera05] Altera Corp., Stratix II Device Handbook, 2005. Available at http://www.altera.com/
literature/list_stx2.jsp

[Betz99] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs,
Kluwer Academic Publishers, Norwell, MA, February 1999.

[Brown96] S. Brown, M. Khellah, and G. Lemieux, Segmented routing for speed-performance and
routability in field-programmable gate arrays, Journal of VLSI Design, 4(4): 275–291, 1996.

[Chang96] Y. -W. Chang, D. Wong, and C. Wong, Universal switch modules for FPGA design, in
ACM Transactions on Design Automation of Electronic Systems, Vol. 1, NY, January 1996,
pp. 80–101.

[Cong98] J. Cong and S. Xu, Technology mapping for FPGAs with embedded memory blocks, in
Proceedings of the 6th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pp. 179–188, Monterey, CA, 1998.

[Dehon05] A. DeHon, Design of programmable interconnect for sublithographic programmable logic
arrays, in ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, February 2005, pp. 127–137.

[Ebeling96] C. Ebeling, D. Conquist, and P. Franklin, RaPiD—Reconfigurable pipelined datapath, in Inter-
national Conference on Field-Programmable Logic and Applications, Darmstadt, Germany,
1996, pp. 126–135.

[Ferrera04] S. P. Ferrera and N. Carter, A magnoelectronic macrocell employing reconfigurable thresh-
old logic, in ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, February 2004, pp. 143–154.

[Goldstein00] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor, PipeRench:
A reconfigurable architecture and compiler, Computer, 33(4): 70–77, 2000.

[Hauck00] S. Hauck, M. M. Hosler, and T. W. Fry, High-performance carry chains for FPGAs, IEEE
Transactions on VLSI Systems, 8(2): 138–147, April, 2000.

[Lattice05] Lattice Semiconductor Corp., LatticeXP Datasheet, 2005. Available at http://www.
latticesemi.com/lit/docs/datasheets/fpga/DS1001.pdf

[Leijten03] K. Leijten-Nowak and J. van Meerbergen, An FPGA architecture with enhanced datapath
functionality, in ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, February 2003, pp. 195–204.

[Lemieux04a] G. Lemieux and D. Lewis, Design of Interconnection Networks for Programmable Logic,
Kluwer Academic Publishers, Norwell, MA, November 2004.

[Lemieux04b] G. Lemieux, E. Lee, M. Tom, and A. Yu, Directional and single-driver wires in FPGA inter-
connect, in IEEE International Conference on Field-Programmable Technology, Brisbane,
Australia, December 2004, pp. 41–48.

[Lewis05] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman, D. Galloway,
M. Hutton, C. Lane, A. Lee, P. Leventis, S.Marquardt, C.McClintock, K. Padalia, B. Pedersen,
G. Powell, B. Ratchev, S. Reddy, J. Schleicher, K. Stevens, R. Yuan, R. Cliff, and J. Rose, The
Stratix II logic and routing architecture, in ACM/SIGDA International Symposium on FPGAs,
Monterey, CA, February 2005, pp 14–20.

[Lin94] C. -C. Lin, M. Marek-Sadowska, and D. Gatlin, Universal logic gate for FPGA design, in
Proceedings of the 1994 IEEE/ACM International Conference on Computer-Aided Design,
San Jose, CA, November 1994, pp. 164–168.

[Marquardt00] A. Marquardt, V. Betz, and J. Rose, Speed and area trade-offs in cluster-based FPGA
architectures, IEEE Transactions on VLSI, 8(1): 84–93, February 2000.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 955 24-9-2008 #16

Field-Programmable Gate Array Architectures 955

[Masud99] M. I. Masud and S. J. E. Wilton, A new switch block for segmented FPGAs, in International
Workshop on Field Programmable Logic and Applications, Glasgow, U.K., August 1999,
pp. 274–281.

[Mei03] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, ADRES: An architecture
with tightly coupled VLIW processor and coarse-grained reconfigurable matrix, in Interna-
tional Conference on Field-Programmable Logic and Applications, Lisbon, Portugal, 2003,
pp. 61–70.

[Oldridge05] S. W. Oldridge and S. J. E. Wilton, A novel FPGA architecture supporting wide, shallow
memories, IEEE Transactions on Very-Large Scale Integration (VLSI) Systems, 13(6): 758–
762, June 2005.

[Quick05] Quicklogic, Eclipse II Family Data Sheet, 2005. Available at http://www.quicklogic.com/
images/eclipse2_family_DS.pdf

[Rose90] J. S. Rose, R. J. Francis, D. Lewis, and P. Chow, Architecture of field-programmable gate
arrays: The effect of logic block functionality on area efficiency, IEEE Journal of Solid-State
Circuits, 25(5): 1217–1225, October 1990.

[Rose93] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, Architecture of field-programmable
gate arrays, Proceedings of the IEEE, 81(7): 1013–1029, July 1993.

[Singh92] S. Singh, J. Rose, P. Chow, and D. Lewis, The effect of logic block architecture on FPGA
performance, IEEE Journal of Solid-State Circuits, 27(3): 281–287, March 1992.

[Singh00] H. Singh, M. -H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. Chaves, MorphoSys: An
integrated reconfigurable system for dataparallel and compute intensive applications, IEEE
Transactions on Computers, 49(5): 465–481, 2000.

[Singh01a] A. Singh, A. Mukherjee, and M. Marek-Sadowska, Interconnect pipeling in a throughput-
intensive FPGA architecture, in ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, Monterey, CA, February 2001, pp. 153–160.

[Singh01b] D. P. Singh and S. D. Brown, The case for registered routing switches in field programmable
gate arrays, in ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Monterey, CA, February 2001, pp. 161–172.

[Sivaswamy05] S. Sivaswamy, G. Wang, C. Ababei, K. Bazargan, R. Kastner, and E. Bozorgzadeh, HARP:
Hardwired routing pattern FPGAs, in ACM International Symposium on Filed Programmable
Gate Arrays, Monterey, CA, February 2005, pp. 21–32.

[Trimberger94] S. Trimberger, Field-Programmable Gate Array Technology, Kluwer Academic Publishers,
Norwell, MA, 1994.

[Weaver04] N. Weaver, J. Hauser, and J. Wawrzynek, The SFRA: A corner-turn FPGA architecture, in
ACM/SIGDA International Symposium on FPGAs, February 2004, pp. 3–12.

[Wilton00] S. J. E. Wilton, Hetergenous technology mapping for area reduction in FPGAswith embedded
memory arrays, IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 19(1):56–68, 2000.

[Wilton97] S. J. E.Wilton, Architecture and algorithms for field-programmable gate arrayswith embedded
memory, PhD thesis, University of Toronto, Toronto, Ontario, Canada, 1997.

[Wilton99] S. J. E. Wilton, J. Rose, and Z. G. Vranesic, The memory/logic interface in FPGA’s with
large embedded memory arrays, IEEE Transactions on Very-Large Scale Integration Systems,
7(1):80–91, March 1999.

[Xilinx05a] Xilinx Corp., Virtex-4 Users Guide, 2005. Available at http://www.xilinx.com/support/
documentation/user_guides/ug070.pdf

[Xilinx05b] Xilinx Corp., Processor IP Reference Guide, February 2005.
[Ye05] A. G. Ye and J. Rose, Using bus-based connections to improve field-programmable gate array

density for implementing datapath circuits, in ACM/SIGDA Symposium on FPGAs, February
2005, Monterey, CA, pp 3–13.

[Zeidman02] B. Zeidman and R. Zeidman, Designing with FPGAs and CPLDs, CMP Books, Upper Saddle
River, NJ, 2002.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C045 Finals Page 956 24-9-2008 #17

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 957 9-10-2008 #2

46 FPGA Technology Mapping,
Placement, and Routing

Kia Bazargan

CONTENTS

46.1 Introduction.. 957
46.2 Technology Mapping and Clustering.. 958

46.2.1 Technology Mapping . 959
46.2.2 Clustering . 960

46.3 Floorplanning.. 961
46.3.1 Hierarchical Methods . 961
46.3.2 Floorplanning on FPGAs with Heterogeneous Resources . 963
46.3.3 Dynamic Floorplanning .. 964

46.4 Placement . 966
46.4.1 Island-Style FPGA Placement . 967
46.4.2 Hierarchical FPGA Placement . 969
46.4.3 Physical Synthesis and Incremental Placement Methods . 969
46.4.4 Linear Datapath Placement . 972
46.4.5 Variation-Aware Placement . 974
46.4.6 Low Power Placement . 975

46.5 Routing . 975
46.5.1 Hierarchical Routing .. 976
46.5.2 SAT-Based Routing . 977
46.5.3 Graph-Based Routing .. 979
46.5.4 Low Power Routing . 980
46.5.5 Other Routing Methods . 980

46.5.5.1 Pipeline Routing.. 980
46.5.5.2 Congestion-Driven Routing. 981
46.5.5.3 Statistical Timing Routing . 981

References . 982

46.1 INTRODUCTION

Computer-aided design (CAD) tools for field-programmable gate arrays (FPGAs) primarily emerged
as extensions of their application-specific integrated circuit (ASIC) counterparts in the 1980s because
of the relativematurity of theASICCAD tools at that time. Traditional logic optimization techniques,
simulated-annealing-based placement algorithms, and maze routing methods were common in the
FPGAworld. But as FPGA architecture developed distinct features both in terms of logic and routing
architectures, FPGA CAD tools evolved into today’s FPGA design flows that are highly optimized
for specific characteristics of FPGA devices. More specialized timing models, technology mapping

This work is supported in part by the National Science Foundation under grant CCF-0347891.

957

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 958 9-10-2008 #3

958 Handbook of Algorithms for Physical Design Automation

Technology mapping

RTL synthesis

Placement

Routing

Configuration
bitfile

Design entry

Verification/
simulation

Power
analysis

Timing
analysis

FIGURE 46.1 Typical FPGA flow.

solutions, and placement and routing strategies are needed to ensure high-qualitymapping of circuits
to FPGAs.

Figure 46.1 shows a common design flow for FPGA designs. The high-level description
of the FPGA design is fed to a register transfer level (RTL) synthesis tool that performs
technology-independent logic optimization. The synthesis tool might detect opportunities for utiliz-
ing special-purpose logic gates within the FPGA logic fabric. Examples are carry chains, high-fanin
sum-of-product gates, and embedded multiplier (see Sections 45.3.1.2 and 45.3.2).

The functional gates of the technology-independent optimized design are mapped to FPGA
lookup tables (LUTs) (see Section 45.3.1), a process called technology mapping. Clustering of
the LUTs is performed next (see Section 45.3.2). Placement and routing steps follow clustering.
Floorplanning may or may not precede placement. Each of these steps would use timing and power
analysis engines to better optimize the design. Furthermore, the usermight simulate or perform formal
verifications at various steps of the design cycle. If timing or power constraints are notmet, the design
flow might backtrack to a previous step. For example, if routing fails due to high congestion, then
placement might be attempted again with different parameters.

The rest of the chapter is organized into four sections. FPGA-specific technology mapping and
clustering algorithms are covered in Section 46.2.1. Sections 46.3 and 46.4 cover floorplanning and
placement algorithms. We conclude the chapter by discussing routing algorithms in Section 46.5.

46.2 TECHNOLOGY MAPPING AND CLUSTERING

Technology mapping converts a logic circuit into a netlist of FPGA K-LUTs and their connections.
A K-LUT is usually implemented as a K-input, one output static random-access memory (SRAM)
block. By writing the truth table of a Boolean function in the K-LUT, we can implement any function
that has K or fewer inputs regardless of the complexity of the function. Neighboring LUTs can be
clustered into local groups with dedicated fast routing resources to improve the delay of the circuit.
Clustering algorithms are used to group together local LUTs to minimize connection delays. Later
in the design flow, these clusters are used as input to the placement step. Some placement algorithms
might never touch a cluster, but some other placement methods (such as the ones presented in
Section 46.4.3) might move individual logic blocks from one cluster to another to improve timing,
power, etc.

Given the fact that technologymapping considering area and delay optimization isNP-hard,Cong
andMinkovich [1] synthesize benchmarkswith known optimal or upper-bound technologymapping
solutions and test state-of-the-art FPGA synthesis algorithms to see how far these algorithms are

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 959 9-10-2008 #4

FPGA Technology Mapping, Placement, and Routing 959

from producing optimal solutions (a preliminary version of their work appeared in the FPGA 2007
conference). They show that current technology mapping solutions are close to optimal (between 3
and 22 percent away, see Table III in Ref. [1]) while logic optimization methods have much room for
improvement. Although some argue that the generated benchmarks are artificial and do not reflect
characteristics of large industry benchmarks, nevertheless the work in Ref. [1] gives us insights into
what needs to be done to improve existing CAD algorithms. Our goal in the next two sections is to
introduce basic technologymapping and clustering algorithms so that the reader can better understand
placement and routing algorithms for FPGAs. Many great technology mapping algorithms (such as
DAOmap [2], ABC [3], and the work by Mishchenko et al. [4]) are not discussed here.

46.2.1 TECHNOLOGY MAPPING

Amajor breakthrough in the FPGA technologymapping came about in 1994with the introduction of
the FlowMap tool [5]. Library-based ASIC technology mapping (that maps a logic network to gates
such as AND, OR, etc.) for depthminimizationwas known to be NP-hard, but Cong et al. proved that
the K-LUT technology mapping can be done in O(KVE), where V and E are the number of nodes
(gates) and edges (wires) in the circuit, respectively. The FlowMap algorithm traverses the circuit
graph containing simple gates and their connections in a breadth-first search fashion and determines
depth-optimal mappings of the fanin cones of the nodes as it progresses toward primary outputs.
The fanin cone of a node is the set of all gates from the circuit primary inputs (input pads) to the
node itself.

The algorithm uses the notion of K-feasible cuts to find K-LUT mappings of a subcircuit.
Figure 46.2a shows an example subgraph in which a cut separates the nodes into disjoint sets X and
X where only three nodes in set X provide inputs to nodes in X , that is, the nodes that are drawn
using thick lines. Cut (X ,X) is said to be K-feasible for K≤3. All the nodes in set X can be mapped
into one 3-LUT, which gets its input values from the LUTs that implement the three boundary nodes
in X and their fanin cones.

The labels on the nodes in Figure 46.2a show the depth of the minimum depth K-LUT mapping
of the input cone of the node. The authors prove that for a node t, the minimum depth is either the
maximum label l inX , or l+1.∗ Consider an example graph for another circuit shown in Figure 46.2b.

s

f g

d

1 1

1

1

0

00 0 0 0

h

t�
N �

t

s

f
g

d

1

∞

∞ ∞ ∞ ∞ ∞ ∞

∞∞

∞
∞ ∞

∞

∞ ∞ ∞ ∞

1 1 1 1

1
1

1

1h

t� N �
t

0 0 0

1

1
22X

3

3

3
3

4

4
4

4

t

1

s

X

(a) Three-feasible cut (b) Node labeling (d) Dual graph

X

s

f g

d 1

1 1

0

0 0 0 0

1

2

2

2

h

a

b

c

t Nt

X

(c) Checking the
 feasibility of a

 mapping of depth 2

FIGURE 46.2 Flowmap mapping steps. (From Cong, J. and Ding, Y., IEEE Trans. Comput. Aided Des.
Integrated Circuits Syst., 13, 1, 1994. Copyright IEEE 1994. With permission.)

∗ If the new node t can be packed with the rest of the nodes with label l, then the depth of LUTs used in implementing the
circuit up to this point would not increase. Otherwise, a new LUT with depth l + 1 has to be allocated to house the new
node t.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 960 9-10-2008 #5

960 Handbook of Algorithms for Physical Design Automation

In a breadth-first search traversal on subgraphNt , when we get to node t, the question is whether we
can pack t with nodes a, b, c (which have the maximum depth of l) in one K-LUT.

Wecan create an auxiliary graphN ′
t (shown inFigure 46.2c, note that nodeswith labels correspond

to their counterpart nodes in Figure 46.2b with the same labels), which replaces a, b, c, t with one
node t′ and see if t′—and possibly other nodes—can be packed in one K-LUT. Node t′ can be
mapped to a K-LUT if we can find a cut (X , X)where t′ ∈ X and at mostK nodes in X provide input
to nodes in X . Network flow algorithms can be used to answer this question.We can model one LUT
in the fanin cone as a flow of one unit, and look for a maximum flow of K-units at the sink node.
If the maximum flow is K , it means that we have found a cut with at most K-LUTs as inputs, and
anything below the cut can be packed into a K-LUT. More details are provided next. Subgraph N ′

t

can be transformed to a dual graphN ′′
t (Figure 46.2d) in which each node y is replaced by two nodes

yi and yo that are connected by an edge of weight 1. An edge (y, z) in N ′
t corresponds to edge (yo, zi)

inN ′′
t with an infinite edge weight. If a flow of K units can be found in N ′′

t , then at most K nodes in X
provide inputs to nodes in X , which means node t in the original Nt graph can indeed be packed with
other nodes with the maximum label. The authors introduce variations on the original technology
mapping algorithm to minimize area as a secondary objective.

46.2.2 CLUSTERING

Today’s FPGAs cluster LUTs into groups and provide fast routing resources for intracluster con-
nections. When two LUTs are assigned to one cluster, their connections can use the fast routing
resources within the cluster, and hence reduce the delay on the connection. On the other hand, if
two LUTs are in two separate clusters, they have to use intracluster routing resources that are more
scarce and more costly in terms of delay. Placement and routing algorithms are needed to balance
the usage of intracluster routing resources (see Sections 46.4 and 46.5).

Many clustering algorithms were introduced in the past decade. Most work by first selecting a
seed and then choosing LUTs to cluster with the seed. The difference between various clustering
algorithms is in their criteria for choosing the seed node and the way other nodes are chosen to be
absorbed by the seed. The clustering algorithm used in the popular versatile placement and routing
(VPR) tool [6] is called T-VPack [7], which is an extension of the earlier packing algorithm VPack.

VPack chooses LUTs with high number of input connections as initial seeds for clusters. The
criteria for packing a node B into a cluster C is the attraction of the node, defined as the number of
nets that are shared between node B and nodes inside C. The more sharing there is between nodes
within a cluster, the less routing demand is needed to connect clusters.

T-VPack is the timing-driven version of VPack and extends the definition of the attraction of a
node to include timing criticality of nets connecting the node to those packed into the cluster. Timing
criticality of a net i is defined as 1 – [slack(i)/MaxSlack]. If two nodes have equal net criticality
values connecting them to nodes packed into a cluster, then the one through which more critical
paths pass is chosen to be packed into the cluster first. The results in Ref. [7] show that clusters of
size 7–10 provide the best area/delay tradeoff.

Clustering algorithms such as RPack [8] and the work by Singh et al. [9] improve routability of
the clustered circuit by introducing absorption costs that try to weigh nodes based on how promising
they are in absorbing more nets into the cluster. The authors in Ref. [9] define connectivity factor
(c) of a LUT x as c(x) = separation(x)/degree(x)2, where separation of a LUT is the number of
LUTs adjacent to it. Figure 46.3a shows node A with a separation value of 18, degree of 4, and
connectivity of 1.125. Figure 46.3b shows node B with the same degree as A, but with a smaller
separation and hence smaller connectivity. Node A cannot absorb any nets if one node from each
net is clustered into the same cluster as A. On the other hand, node B can absorb all the nets shown
in Figure 46.3 by including one node from each net in its cluster. The selection of the seed node in
Singh et al. work is done by lexicographically sorting nodes by their (degree, –connectivity) values
and choosing the ones with highest values as initial seeds (T-VPack used only the degree values).

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 961 9-10-2008 #6

FPGA Technology Mapping, Placement, and Routing 961

(a) Number of nets
absorbed = 0

(b) Number of nets
absorbed = 4

A B

FIGURE 46.3 Examples illustrating the usefulness of the connectivity factor. (Based on Singh, A. andMarek-
Sadowska, M., Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
59–66, 2002. With permission.)

Nodes are greedily packed into seed clusters based on how many nets they absorb, with higher
priority given to the nets with fewer terminals. To guarantee spatial uniformity of the clustered netlist,
the authors limit the number of available pins to a cluster so that the number of logic blocks inside
a cluster and the number of connections to the nodes within the cluster follow Rent’s rule. Doing so
effectively depopulates clusters to reduce overall intercluster routing demands. Such strategies are
in line with what DeHon’s study [10] on routing requirements of FPGA circuits suggested. Because
interconnect resources (switches and buffers) consume most of the silicon area of an FPGA (80–90
percent), sometimes it is beneficial to underutilize clusters to reduce routing demand in congested
regions of the FPGA array.

46.3 FLOORPLANNING

Floorplanning is used on FPGAs to speed up the placement process or to place hard macros with
prespecified shapes. The traditional FPGA floorplanning problem is discussed in Section 46.3.1.
Another class of floorplanning algorithms for FPGAs is the ones that deal with heterogeneous
resource types. An example of this approach is the work by Cheng and Wong [11], to be covered
in Section 46.3.2. A third class of floorplanning for FPGAs addresses dynamically reconfigurable
systems in which modules are added or removed at runtime, requiring fast, on-the-fly modification
of the floorplan. These approaches are discussed in Section 46.3.3.

46.3.1 HIERARCHICALMETHODS

Sankar and Rose [12] first use a bottom-up clustering method to build larger clusters out of logic
blocks (refer to Section 46.2.2). Then they use a hierarchical simulated annealing algorithm to
speed up the placement compared to a flat annealing methodology. They show trade-offs between
placement runtime and quality.

While clustering the circuit into larger subcircuits, they limit the shape and size of the clusters
to prespecified values. The leaves of the clustering tree are the logic blocks and the first level of
the tree are nodes that combine exactly two leaves. All level-one nodes will be placed in 1 × 2
regions, that is, on two adjacent clusters in the same row. The next level of hierarchy clusters two
level 1 clusters and will be placed as 2× 2 squares. Figure 46.4 shows the clustering and placement
conceptually. Such restrictions on the clustering and placement steps would limit the ability of the
algorithms to search a larger solution space compared to an unrestricted version of the problem,
but on the other hand relieve the algorithm designers of dealing with the sizing problem during the
floorplanning process, described in Section 9.4.1.

The work by Emmert and Bhatia [13] too starts by clustering the logic elements into larger
subcircuits. The input to their flow is a list of macros, each macro being either a logic block, or a
set of logic blocks with a list of predefined shapes. An example of a macro is a multiplier with two
shape options, one for minimum area, the other for minimum delay.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 962 9-10-2008 #7

962 Handbook of Algorithms for Physical Design Automation

Multilevel clustering Coarse placement of clusters

Level 1 Level 2
Level 1 cluster Level 2 cluster

FIGURE 46.4 Multilevel clustering and placement. (Based on Sankar, Y. and Rose, J., Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 157–166, 1999. With permission.)

The flow maintains a list of clusters of macros, and a set of buckets that correspond to regions
on the FPGA that have to house one cluster each. The buckets are all of the same shape, but unlike
the work by Sankar and Rose [12], their shapes are not predetermined by the algorithm. Instead, the
width (height) of the buckets is determinedby themaximumwidth (height) of all macros initially, and
as clustering progresses, the width might be increased so that it can fit larger clusters. For example,
the algorithm could start with buckets of size 3 × 2, and after a clustering step merge them in pairs
to get buckets of size 6× 2 (it is not clear from Ref. [12] if the bucket sizes in this example could be
set to 3× 4 too or not, but the initial bucket shapes is determined by the maximummacro width and
height). The iterative process of clustering macros and increasing the size of the buckets is repeated
until the number of clusters becomes less than or equal to the number of buckets. Because the width
and height requirements of clusters are calculated using an upper bound method, the buckets are
guaranteed to have room for all clusters once there are at least as many buckets as there are clusters.

Once the clustering phase is done, a tabu-search∗ cluster placement step follows. In this step,
neighboring clusters are swapped using force-directed moves, as in Chapter 18. Once a cluster is
moved, it is locked andwill not be swapped until a prespecified number of othermoves are attempted.
The force-directedmoves use connections between clusters as forces pulling highly connected cluster
closer together. Toward the end of the intercluster placement phase, critical edges are assigned higher
weights in the force calculations, and candidate clusters for swapping are chosen based on their timing
criticality rank. Hence, the intercluster placement step starts by minimizing average wirelength, and
in its second phase minimizes timing-critical edges.

The intercluster placement is done in three phases: first the hard macros are placed next to each
other (same Y -coordinate), then soft macros are assigned coordinates, and finally soft macro shapes
might be changed to fit all macros within the bucket. Figure 46.5 shows an example intercluster
placement within a bucket of size 12 × 9, where modules m16, m19, m27, and m41 are hard macros,
and the rest of the modules are soft macros. Note that the feasibility checks during clustering and
bucket resizing guarantees that hard macros can be placed within their assigned buckets.

During hard macro placement, the center of gravity of the x-coordinate of all modules connected
to a hard macro is calculated. Then hard macros are sorted based on the x-coordinate of the center
of gravity, and placed from the right edge of the bucket to the left in decreasing order of the center of

∗ Tabu search refers to a heuristic search algorithm in which certain moves are tried and a lock is placed on a move after it
is tried so that it cannot be attempted before a certain number of other moves are applied first. It is a fast solution space
exploration method that tries to avoid getting stuck in local minima by locking moves.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 963 9-10-2008 #8

FPGA Technology Mapping, Placement, and Routing 963

m
21

m7

m6

m19
m41m16

m27

m
13

FIGURE 46.5 Intercluster placement example. (Based on Emmert, J. M. and Bhatia, D., Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 47–56, 1999. With permission.)

gravity coordinates. Soft macros are placed from left to right, filling logic block locations as shown
by the arrow in Figure 46.5. A greedy method moves logic blocks to minimize wirelength.

46.3.2 FLOORPLANNING ON FPGAS WITH HETEROGENEOUS RESOURCES

Cheng and Wong [11] consider the floorplanning problem on FPGAs with heterogeneous resources
such as memory blocks and embeddedmultipliers, described in Sections 45.5 and 45.6, respectively.
The input to the problem is a set of modules with a vector of resource requirements, for example,
φi = (ci, ri, mi), where φi is the resource requirement vector of module i, and ci, ri, and mi are the
number of units of logic, RAM block, and embedded multiplier units that the module needs. The
floorplanning problem can be formulated as assigning nonoverlapping regions to the modules such
that each region satisfies resource requirements of the module that is assigned to it, all modules are
assigned regions on the chip, and a given cost function such as wirelength is minimized.

Cheng and Wong [11] use slicing floorplans to explore the search space, ensuring the resource
requirements are met when assigning locations and sizing the module, as in Section 9.4.1. A post-
processing step follows that compacts modules by changing their shape to reduce the area of the
floorplan. An example floorplan generated by this method is shown in Figure 46.6.

To ensure resource requirements are met, the authors define the irreducible realization list (IRL)
for eachmodule at any location (x, y) as a list L(θ , x, y) = {r|r ∈ �θ , x(r) = x∧y(r) = y}, where r
is defined as a rectangle r = (x, y, w, h)with bottom-left coordinates (x, y) and dimensions (w, h)
such that it satisfies resource requirements of the module. Another condition for the IRL of a module
is that it should be the set of nondominant rectangles that satisfy resource requirements of the module
(i.e., no other rectangle at location (x, y) can be found that has a smaller width and a smaller height
and satisfies resource requirements of the module). Figure 46.7 shows IRLs at coordinates (4, 1) and
(10, 0) for a module with resource requirement vector φ = (12, 1, 1). In Figure 46.7, dark modules
are RAM blocks, and long white modules are multipliers.

The heterogeneous floorplanning problem discussed in Ref. [11] is different from the traditional
slicing floorplanning problem described in Chapter 9. Because in the FPGA problem, the shapes a
module can take depend on the location it is placed at (see the example of Figure 46.7), whereas
in the traditional problem formulation, the list of the shapes a module can take is prespecified.
This difference causes challenges when combining two subfloorplans. Care must be taken to ensure
that the assigned shape of a subfloorplan during the bottom-up sizing process satisfies resource

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 964 9-10-2008 #9

964 Handbook of Algorithms for Physical Design Automation

FIGURE46.6 Floorplanningexample. (BasedonCheng,L. andWong,M.D.F.,Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, 292–299, 2004. With permission.)

requirements of the modules in the subfloorplans. The authors in Ref. [11] prove that generating the
combined shape of two subfloorplans can be done in O(l log l), where l = max(W , H), in whichW
and H correspond to the chip width and height, respectively.

A modified slicing-tree annealing-based floorplanning algorithm is used to generate floorplans.
The sizing process takes care of resource requirements as discussed above, and a cost function that
includes floorplan area and wirelength as well as the sum of module aspect ratios is utilized. Because
the FPGA fabric is tile-based, the authors can do a significant amount of preprocessing on each
module, finding its IRL based on the (x, y) coordinate within a tile, and then utilizing the data during
floorplanning. A postprocessing step follows that compacts the floorplan (Figure 46.7). Interested
readers are referred to Ref. [11] for details on the compaction process.

46.3.3 DYNAMIC FLOORPLANNING

Bazargan et al. introduced a floorplanning method for dynamically reconfigurable systems in
Ref. [14]. Such systems allow modules to be loaded and unloaded on-the-fly to cater to applications’

(0,0) (4,1) (10,0)

FIGURE 46.7 Example of an IRL. (Based on Cheng, L. and Wong, M. D. F., Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, 292–299, 2004. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 965 9-10-2008 #10

FPGA Technology Mapping, Placement, and Routing 965

different needs at various points in runtime.Amodule is unloaded to free up space for futuremodules
to be loaded onto the system. A module corresponds to a set of datapath operations such as adders
and multipliers that perform computations in a program’s basic block (refer to Section 46.4.4 for a
discussion on basic block modules). Limited versions of such systems have been implemented in the
past [15,16].

The method in Ref. [14] divides the chip into an explicit list of rectangular empty regions,
called the list of maximal empty rectangles, and when a new module is to be placed on the chip, its
dimensions are compared against the empty rectangles to see if it fits in any of them. Interconnections
between large modules are ignored in this work, which means the floorplanning problem can be
reduced to a two-dimensional bin-packing problem.∗ The number of empty rectangles in an arbitrary
floorplan with the ability to remove as well as add modules is quadratic in terms of the number
of active modules present on the chip in the worst case [14]. As a result, the authors propose to
keep a linear list of empty regions to speed up the floorplanning process at the cost of quality. If a
suboptimal list is used, then there might be cases that an arriving module can fit in an empty region,
but the empty region is not present in the maintained list of empty rectangles. A number of heuristics
are also provided that try to choose an empty rectangle to house a new module that maximizes the
chances that large enough empty regions are available to future modules.

Handa and Vemuri [17] observe that even though the number of maximal empty rectangles could
be quadratic in theory, in practice the number is more likely to be linear in terms of the number of
active modules on the chip. Instead of keeping an explicit list of empty rectangles, they encode the
FPGA area using a smart data structure that can quickly determine if an empty region is large enough
to house an incoming module.

An example floorplan is shown in Figure 46.8. A positive number at a logic block location
indicates the height of the empty region above the logic block, and a negative number can be used
to find the distance to the right edge of a module. These numbers are used in obtaining maximal
staircases, which are data structures that help keep track of empty regions without explicitly storing
the location and dimensions of every maximal empty rectangle. Such a methodologywould improve
runtime on average (worst-case delay is still quadratic).

Unlike Bazargan et al. [14] and Handa and Vemuri [17] who assume that the floorplanning
decisionsmustbe takenat runtime,SinghalandBozorgzadeh[18]assumethat theflowofcomputations

1

2

3

4

5

6

7

8

9

−5

−5

−5

−5

1

2

3

4

5

−4

−4

−4

−4

1

2

3

4

5

−3

−3

−3

−3

1

2

3

4

5

−2

−2

−2

−2

1

−4

−4

−4

1

−1

−1

−1

−1

1

−3

−3

−3

1

1

2

3

4

5

−2

−2

−2

1

1

2

3

4

5

−1

−1

−1

1

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

M

PO
N

8

9

FIGURE 46.8 Encoding the area of the floorplan. (From Handa, M. and Vemuri, R., Proceedings of the
ACM/IEEE Design Automation Conference, pp. 960–965, 2004. With permission.)

∗ In real life applications, interconnections between modules cannot be ignored. Even if modules do not communicate directly,
they need to get the input data and write the results into memory resources and buffers on the FPGA. Such interactions are
ignored in both Refs. [14,17].

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 966 9-10-2008 #11

966 Handbook of Algorithms for Physical Design Automation

Design 1

Case 1

m1

m2

m5

m5

m5

m6 m14

m16

m35

m14 m26 m37

m6

m6

m7

m7

m7

m4

m4

m4

m3

m1

m1

m2

m2

m3

m3

Case 2

Case 3

Design 2
Reconfigure to Reconfigured and reused

regions on the chip

FIGURE 46.9 Reusing partial configurations. (From Singhal, L. and Bozorgzadeh, E., Proceedings of the
2006 International Conference on Field Programmable Logic and Applications, 2006. With permission.)

is known a priori and floorplanning for multiple configurations can be done at compile time. The
goal of their approach is to floorplanmultiple designs so that the number of shared modules between
consecutive configurations is maximized while area is minimized and timing constraints are met.
Figure 46.9 shows three floorplan examples for a two-configuration system. In Figure 46.9, design 1
is first loaded on the FPGA, followed by design 2. Assuming that modules m1, m2, . . . ,m7 are the
same, case 1 in Figure 46.9 only shares the configuration of m1 and m4, while case 3 shares three
modules when doing a transition from design 1 to design 2. As a result, case 3 requires the least
amount of configuration time. The challenge is to share as many modules as possible between the
two floorplans, but at the same time not to increase critical path delay on any of the configurations.

They propose a new floorplanning data structure called multilayer sequence pairs, which as the
name suggests is an extension of the sequence pair data structure, described in Section 11.5. Consider
two designsD1 andD2.Assuming thatmodules s1, s2, . . . , sk are shared between the two designs, and
D1 has exclusivemodulesm1, m2, . . . , mM andD2 has exclusivemodules n1, n2, . . . , nN , they build
one sequence pair consisting of modules {s1, . . . , sk} ∪ {m1, . . . ,mM} ∪ {n1, . . . , nN}. Floorplanning
moves are similar to regular sequence pair moves. However, when building horizontal and vertical
constraint graphs, edges are not added between exclusive modules from one design to the other. As
a result, by construction, the shared modules are placed at the same location in the two designs. The
cost function includes terms relating to overall area, aspect ratio, configuration length, wirelength of
the two designs, and their congestions. They compare their method to a method that first floorplans
one design independently of the other design, and then fixes the location of the shared modules in
the floorplanning of the second design. Their approach outperforms the simplistic method because
in their approach they optimize the two floorplans simultaneously. Although they showed the results
on only two configurations, their approach could be extended to multiple configurations.

46.4 PLACEMENT

Early FPGA placement algorithms emerged as extensions of their ASIC counterparts. Simulated
annealing was the optimization engine of choice, and still is the most commonmethod for academic
placement engines. Even though major strides have been taken in improving the quality of FPGA
placement tools, there is still much room for improvement as shown in Ref. [19]. The authors first

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 967 9-10-2008 #12

FPGA Technology Mapping, Placement, and Routing 967

synthetically generated a number of circuits with known optimal solution, and then ran a number of
FPGA placement algorithms on the circuits and showed that the length of a longest path could be
from 10 to 18 percent worse than the optimal solution on the average, and between 34 and 53 percent
longer in the worst case. These results are for the case in which only one path is timing-critical.
If multiple critical paths are present in the circuit, then the results of existing FPGA placement
algorithms are on average 23–35 percent worse than the optimal on average, and 41–48 percent
worse in the worst case.

46.4.1 ISLAND-STYLE FPGA PLACEMENT

There are a number of methods used in the placement of FPGAs. The dominant method is based on
a simulated annealing engine, as in Chapter 16. There are also partitioning-based and hierarchical
methods that we discuss later in this subsection.

Versatile placement and routing [6] is arguably the most popular FPGA placement and routing
tool. It is widely used in academic and industry research projects. VPR originally was developed
to help FPGA architecture designers place and route circuits with various architectural parame-
ters (e.g., switch-block architecture, number of tracks to which the input pins of logic blocks
connect [Fc], logic output Fc, etc.). Its flow reads an architectural description file along with the
technology-mapped netlist.

VPR uses a simulate annealing engine to minimize wirelength and congestion. The cost function
that the annealing algorithm uses is

WiringCost =
Nnets∑
n=1

q (n)

[
bbx (n)

Cav,x (n)
+ bby (n)

Cav,y (n)

]
(46.1)

where
q(n) is a weighting factor that adjusts the wirelength estimation as a function of a net’s number
of terminals

bbx and bby are the horizontal and vertical spans of a net’s bounding box
Cav,x and Cav,y are the average channel capacities in the x and y directions over the bounding

box of net n

Function q(n) is defined in Equation 46.2, where T(n) is the number of terminals of net n. The
function is equal to 1 for nets with three or fewer terminals, and gradually increases to 2.79 for nets
that have at most 50 terminals, and linearly increases for nets with more than 50 terminals.

q (n) =

⎧⎪⎨
⎪⎩
1 T (n) ≤ 3

RISA [T (n)] 3 < T (n) ≤ 50

2.79 + 0.02616 [T (n) − 50] T (n) > 50

(46.2)

Internally, VPR uses a table RISA[] to lookup the value of q for nets that have fewer than 50 ter-
minals. The values in the table come from the RISA routabilitymodel [20]. Essentially, RISAmodels
the amount of routing resource sharing when the number of terminals of a net increases. Annealing
parameters used in VPR automatically adjust to different circuit sizes and costs to achieve high-
quality placements. Furthermore, the parameters change dynamically in response to improvements
in cost.

The timing-driven version of VPR is called TVPR [21] (its placement algorithm is called
T-VPlace after VPR’sVPlace). TVPRoptimizes for wirelength and timing simultaneously. The delay
of a net is estimated using an optimistic delay model. For any bounding box that spans from coordi-
nates (0, 0) to (x, y), the router is invoked on the FPGA architecture where all routing resources are

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 968 9-10-2008 #13

968 Handbook of Algorithms for Physical Design Automation

free and a source and a sink are placed at (0, 0) and (x, y), respectively. Because all routing resources
are available, the best combination of wire segments and switches will be used to route the net with
the smallest possible delay. The delay achieved by the router is recorded in a table at indices [x, y].
The process is repeated for 1 ≤ x ≤ W and 1 ≤ y ≤ H, whereW andH are the width and the height
of the FPGA chip. The values in the table are optimistic because a net might not be routable using
the best routing resources because of congestion. Furthermore, because FPGAs are built as arrays of
tiles, the values in the delay table are valid for any starting point, and not just (0,0). So the table really
stores the values (�x,�y). The delay between a source node i and sink node j of a two-terminal
net is therefore d(i, j) = TableLookup(|xi − xj|, |yi − yj|), where xi and xj are the x-coordinates of
nodes i and j and TableLookup is the array storing the precomputed delays. The delay values can be
used as lower bound estimations for individual sinks of multiterminal nets. A multifanout net can
be broken into two-terminal (source, sink) nets. Using the table on individual sinks is valid because
buffers are heavily used in FPGA routing trees, effectively cutting off the branches of a route and
converting it into two-terminal routes.

The timing,wirelength, and congestion costs are combined inTVPR.The timingcost is calculated
as aweighted sumof delays of nets. The timing cost of a net between source iand sink j is calculated as

NetTimingCost(i, j) = d (i, j) .criticality (i, j)β (46.3)

criticality (i, j) = 1 − slack (i, j)/Dmax (46.4)

where
slack(i, j) is calculated using static timing analysis, described in Section 3.1.1.3
Dmax is the critical path delay

Parameter β can be tuned by the user. The timing cost component is defined as TimingCost =
�i,j NetTimingCost(i, j). The overall cost function in TVPR is defined as

�Cost = λ
�TimingCost

PrevTimingCost
+ (1 − λ)

�WiringCost

PrevWiringCost
(46.5)

where λ can be tuned to trade off between timing and congestion.�Cost is used during the annealing
decision process to accept or reject a move based on its improvement of wiring and timing costs over
the previous solution.

The timing delay table enables TVPR to balance a reasonable strike between faster runtime
and acceptable lower bound estimation on the delays of all nets. However, using the lower bound
during placement is bound to introduce a disconnect between what the placement engine thinks the
router is going to do and what it actually does during routing. To overcome the discrepancy between
the placement’s notion of net delays and the actual delays after routing, Nag and Rutenbar [22]
perform detailed routing at every step of the placement. The method is computationally expensive
but shows that 8–15 percent improvements in delay can be achieved when using routing inside the
placement loop.

Maidee et al. [23] took a different approach in their partitioning-based placement for FPGAs
(PPFF) placement tool: they first placed and routed sample benchmarks and found empirical relation-
ships between a net’s wirelength bounding box, its timing-criticality at the end of the routing step,
and the type of routing resources used to route it. The study would provide a better approximation
of the routing behavior to be used during placement. They showed that 5 percent delay improvement
can be achieved using the empirical routing models during the annealing placement phase. PPFF’s
main mode of operation, however, is not annealing. It uses a partitioning-based placement engine.
We will cover more details of PPFF in Section 46.4.2.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 969 9-10-2008 #14

FPGA Technology Mapping, Placement, and Routing 969

46.4.2 HIERARCHICAL FPGA PLACEMENT

A clustered FPGA architecture such as the one discussed in Section 46.2.2 is an example of a
hierarchical architecture with one level of hierarchy. In general, hierarchical architectures might
have several tiers of hierarchies, and usually the lower levels of hierarchy can be connected to each
other using faster routing resources.

The authors in Ref. [24] introduced a hierarchical placement algorithm for a hierarchical FPGA.
In a hierarchical architecture, logic blocks are grouped into clusters at different levels of hierarchy.
The leaf level nodes are the closest and can communicate by fast routing resources. The next level of
routingwould connect clusters of leaves using the second tier routing resources that are slightly slower
than the first level resources. Their method can accommodate an arbitrary number of hierarchical
levels, as long as a higher level hierarchy has slower routing resources than a lower level hierarchy.

For each output cone in the circuit, they compute lower and upper bounds on the number of
hierarchy levels the cone has to pass through. For example, if an output cone has only four logic
elements in series and the lowest hierarchy contains four logic blocks, the lower bound delay on this
cone is four times the delay of the fastest routing resource. The upper bound would occur when each
of the blocks on the path inside the cone are placed in different partitions at the highest level of the
hierarchy. In this scenario, the delay would be four times the summation of the delays of all levels
of hierarchy.

After obtaining the lower and upper bounds on the delays of all cones, they divide the cones
into three categories. The first category contains paths whose lower bound delay is close to the delay
constraint of the circuit. These paths are labeled critical. Paths in the second category are those
whose upper bound delays violate the timing constraint, but the lower bound delays do not. The third
category contains cones whose upper bound delay is smaller than the circuit’s target delay. They
prune out these paths in the placement process and only focus on the first two categories. As a result,
they reduce the circuit size by about 50 percent.

Another partitioning-based timing-drivenplacementmethod for hierarchical FPGAs (specifically
Altera’s) was presented byHutton et al. [25]. The authors perform timing-analysis at each level of the
partitioning and place the netlist, trying to avoid potentially critical nets from becoming critical. The
differencebetween this method and the one presented in Ref. [24] is that Hutton’smethod updates the
current estimate of the criticality of the paths as the placement process progresses. Senouci’s method
computes crude estimates as upper and lower bound delays at the beginning and never updates these
estimates.

46.4.3 PHYSICAL SYNTHESIS AND INCREMENTAL PLACEMENT METHODS

Physical synthesis refers to the process of simultaneously performing placement and logic opti-
mization (e.g., resynthesizing a group of gates, gate duplication, retiming, etc.). Doing so has the
advantage that the timing estimations available to the synthesis engine are more accurate and only
synthesis optimization moves will be attempted whose benefits would sustain after placement. Tim-
ing improvements of 20–25 percent have been reported using physical synthesis [26,27] compared
to a placement method that does not consider physical synthesis. In this section, we primarily focus
on the placement methods used in physical synthesis approaches. Because placement and resynthe-
sis are attempted iteratively, most of the placement methods used in physical synthesis are of an
incremental nature.

Chen et al. [26] consider LUT duplication to improve timing. Timing could be improved by
duplicating a LUT x that is driving two sink LUTs y and z. If we call the duplicated LUT x′, then
x′ has to have the same inputs and the same functionality as x. Moving x′ closer to y, which we
assume is the more timing-critical sink, results in timing improvement because the connection (x′, z)
is shorter than (x, z), assuming thatwe do not increase thewirelength of the input wires to x′ compared
to the input wirelengths of x.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 970 9-10-2008 #15

970 Handbook of Algorithms for Physical Design Automation

(a) (b)

Super feasible region

Feasible region

(xv(s), yt (s))
(x(r), y(r)) (x(s), y(s))

(x(t), y (t))(x �(r),
y �(r))

(x �(s),
y �(s))

(x(t), y(t))

(x (s), y (s))

(x(i
1), y(i

1))

(x(i
2), y(i

2))

(x(i
3), y(i

3)) (x(pi
1), y(pi

1))

(xl(s), yb(s))

Feasible region

FIGURE 46.10 Feasible and super-feasible regions. (From Chen, G. and Cong, J., Proceedings of the
ACM/SIGDA International SymposiumonFieldProgrammableGateArrays, pp. 51–59, 2005.With permission.)

Placement is modified by either moving or duplicating critical gates such that critical paths
become monotone. A path is defined to be monotone if the X (Y) coordinate of successive LUTs
along its path increase or decrease monotonically. If a path is not monotone, it means that it is taking
detours and its delay could be improved by moving LUTs (or duplicating the LUT and moving the
duplicate) so that the path becomes closer to a monotone path, and hence its wirelength becomes
smaller. The placement methods that Chen et al. use are (1) move a LUT or its duplicate to a
location within the feasible or super-feasible region (Figure 46.10), and (2) legalize the placement
immediately.Assume that node S gets its inputs from critical nodes i1, i2, . . . , ik and provides an input
to node T . The feasible region for node S shown in Figure 46.10a is defined to be the rectangular
area in which node S can be moved without increasing the length of the path from any of its critical
fanin nodes i1, i2, . . . , ik to its fanout node T .

A super-feasible region shown in Figure 46.10b is a rectangular area that not only does not
increase the length of the path from an immediate fanin to the fanout, but it also converts all global
paths from the primary inputs in the fanin cone of a node to its fanout node into monotone paths.
Moving a node to its desired destination location might result in overcrowding on the nodes, as
the destination configurable logic block, which consists of LUTs and local interconnects in modern
FPGAs (CLB) might already be fully utilized. Hence, there is a need for some legalization method
after a placement move.

To choose a particular location in a feasible or super-feasible region to move a node to, they
consider the replacement cost after legalization. The replacement cost is a linear combination of
the slack improvement of the node being moved, the congestion cost of the destination, and the
accumulative cost of moving other nodes to legalize the placement. The legalization procedure
is an improvement over Mongrel [28]. The goal of the legalization procedure is to move nodes
from overcrowded regions toward empty regions by minimally disturbing the placement. Assuming
that the overcrowded CLB is at location (x, y) and the vacant CLB is at (x + w, y + h), a grid
graph is constructed with w × h nodes in which each node has outgoing edges to its east and north
neighbors. Finding a path from the lower left to the upper right node in the grid graph determines
the consecutive CLBs that LUT nodes should move through, resulting in a ripple move that transfers
LUTs from overcrowded to vacant regions. The weight on an edge is determined by the amount
of disturbance to a cost function (e.g., wirelength or delay) as a result of that particular move. To
minimally change the current placemet, a node will only move one unit to the right or up. One of
the LUTs at the newly overcrowded CLB must in turn move either to the right or up. The goal is to
find a sequence of replacements from (x, y) to (x+ w, y+ h) such that the overall cost of replacing
the nodes is minimized. The authors in Ref. [26] solve this problem optimally using a longest path
approach for cost functions that are linear in terms of the change in the physical location of the nodes.
For example, a wirelength-based cost function can be solved optimally, but solving for minimum

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 971 9-10-2008 #16

FPGA Technology Mapping, Placement, and Routing 971

delay change cannot, because change in the delay of a path containing a LUT that is moved is not a
linear function of the amount of dislocation of that LUT.

Another incremental placementmethod is presented by Singh and Brown [27]. In their approach,
they define a minimally disruptive placement to be an incremental placement, which (1) is a legal
placement, (2) does not increase the delay on the critical paths, and (3) does not increase routing area.
Condition (1) means that the incremental placement algorithm must be flexible enough to handle
many architectural constraints such as the number of inputs to a CLB, the flexibility in connections
of the registers within the CLB, etc. Condition (2) above means that a node can move anywhere as
long as it does not violate current timing constraints. And finally, condition (3) means that the new
placement is desired to be routable.

The incremental placement algorithm starts by moving a few nodes to their preferred locations,
determined by the synthesis engine. Then architectural violations are gradually removed by itera-
tively modifying the placement. At every placement move, a combination of three cost functions,
namely cluster legality cost, timing cost, and congestion cost∗ is evaluated and the move is accepted
greedily, that is, a move is only accepted if it reduces the overall cost. The legality cost component
includes the legality of clusters based on the number of inputs, outputs, LUTs, etc. In their timing
cost, they introduce a damping function that limits the range of movement of a node based on its
slack: the larger the slack, the farther the node can move. This is designed to reduce fluctuations in
the timing cost because of near-critical nodes becoming critical as a result of moving long distances.

The move set includes moving a candidate node to either the cluster containing one of its fanin
nodes, one of its fanout nodes, a neighboringCLB, any random vacant CLB, move in the direction of
critical vector, or its sibling cluster. The notion of a sibling cluster is shown in Figure 46.11. Moving
in the direction of critical vector is similar to moving a node within the feasible region in the Chen
and Cong work [26].

To avoid getting stuck in local minima, the authors propose a hill climbing method after a
number of greedy moves fail to resolve architectural violations. The violation costs of CLBs that
have not been resolved for a long time are increased compared to other CLBs, allowing LUTs to

Fanins

SiblingSibling

Fanout

x

FIGURE 46.11 Fanin, fanout, and sibl4ng relationships. (Based on Singh, D. P. andBrown, S. D.,Proceedings
of the IEEE/ACM International Conference on Computer-Aided Design, pp. 752–759, 2002.)

∗ The authors call the congestion cost the wirelength cost, but they essentially evaluate congestion, not wirelength.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 972 9-10-2008 #17

972 Handbook of Algorithms for Physical Design Automation

move to other CLBs, overcrowding them instead. This process gradually results in moving nodes
from overcrowded regions to empty regions. They take care not to cause thrashing in which LUTs
are moved back and forth between two clusters. Avoiding thrashing can be done by keeping a history
of violations of CLBs. Hence, if thrashing has been occurring for a few moves, the relative cost of
both CLBs involved in thrashing is increased, resulting in the extra LUT or register to be moved to
a third CLB.

46.4.4 LINEAR DATAPATH PLACEMENT

Callahan et al. [29] presented GAMA, a linear-time simultaneous placement and mapping method
for LUT-based FPGAs. They only focus on datapaths that are comprised of arrays of bitslices. The
basic idea is to preserve the datapath structure so that we can reduce the problem size by primarily
looking at a bitslice of the datapath. Once a bitslice is mapped and placed, other bitslices of the
datapath can be mapped and placed similarly on rows above or below the initial bitslice.

One of the goals in developingGAMAwas to performmapping and placementwith little compu-
tational effort. To achieve a linear time complexity, the authors limit the search space by considering
only a subset of solutions, which means theymight not produce an optimal solution. Because optimal
mapping of directed acyclic graphs (DAGs) is NP-complete, GAMA first splits the circuit graph into
a forest of trees before processing it by themapping and placement steps. The tree covering algorithm
does not directly handle cycles or nodes with multiple fanouts, and might duplicate nodes to reduce
the number of trees. Each tree is compared to elements from a preexisting pattern library that contains
compound modules such as the one shown in Figure 46.12. Dynamic programming is used to find
the best cover in linear time. After the tree covering process, a postprocessing step is attempted to
find opportunities for local optimization at the boundaries of the covered trees. Interested readers
are referred to Ref. [29] for more details on the mapping process of GAMA.

Because the modules will form a bitslice datapath layout, the placement problem translates into
finding a linear ordering of the modules in the datapath.Wirelength minimization is the primary goal
during linear placement. The authors assume that the output of every module is available at its right
boundary. A tree is placed by recursively placing its left and right subtrees, and then placing the root
node to the right of the subtrees. The two subtrees are placed next to each other. Figure 46.13 shows
an example of a tree placement. Because subtree t2 is wider, placing it to the right of subtree t1 will
result in longer wirelength. Because the number of fanin nodes to the root of the tree is bounded, an
exhaustive search for the right placement order of the subtrees is reasonable and would result in a
linear-time algorithm.

In addition to the local placement algorithm, Callahan et al. also attempt some global optimiza-
tions. The linear placement algorithm arranges modules within a tree, but all trees in the circuit
must also be globally placed. A greedy algorithm is used to place trees next to each other so that

+

&

+

&

Pattern in library Library pattern found
in circuit graph

FIGURE 46.12 Example of a pattern in the tree covering library. (Based on Callahan, T. J. et al., Proceed-
ings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 123–132, 1998. With
permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 973 9-10-2008 #18

FPGA Technology Mapping, Placement, and Routing 973

t2
t1

(a)

t2
t1

(b)

FIGURE 46.13 Tree placement example. (Based on Callahan, T. J. et al., Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, 123–132, 1998. With permission.)

the length of the critical path in the circuit is minimized. Furthermore, after global and local place-
ment is accomplished, individual modules are moved across tree boundaries to further optimize the
placement.

Ababei and Bazargan [30] proposed a linear placement methodology for datapaths in a dynami-
cally reconfigurable system in which datapaths corresponding to different basic blocks∗ in a program
are loaded, overwritten, and possibly reloaded on linear strips of an FPGA. They assume that the
FPGA chip is divided into strips as shown in Figure 46.14. An expression tree corresponding to
computations in a basic block is placed entirely in one strip, getting its input values from either
memory blocks on the two sides of the strip and writing the output of the expression to one of
these memory blocks.

Depending on how frequently basic blocks are loaded and reloaded, three placement algorithms
are developed:

1. Static placement: This case is similar to the problem considered by Callahan et al. [29],
that is, each expression tree is given an empty FPGA strip to be placed on. The solution
proposed by Ababei tries to minimize critical path delay, congestion, and wirelength

Strip 1I/O
M

I/O
M

I/O
M

I/O
M

I/O
M

I/O
M

I/O
M

I/O
M

Strip 2

Strip 3

Strip 4

FIGURE 46.14 FPGA divided into linear strips.

∗ A basic block is a sequence of code, for example, written in the C language, with no jumps or function calls. A basic block,
usually the body of a loop with many iterations, could be mapped to a coprocessor like an attached FPGA to perform
computations faster. Data used by the basic block should be made accessible to the coprocessor and the output of the
computations should in turn be made accessible to the processor. This could be achieved either by streaming data from the
processor to the FPGA and vice versa, or by providing direct memory access to the FPGA.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 974 9-10-2008 #19

974 Handbook of Algorithms for Physical Design Automation

using a matrix bandwidth minimization formulation. The matrix bandwidth minimization
algorithm is covered in Section 47.3.2.1.

2. Dynamic placement with no module reuse: In this scenario, we assume that multiple basic
blocks can be mapped to the same strip, either because a number of them run in parallel, or
because there is a good chance that a mapped basic block be invoked again in the future. The
goal is to place the modules of a new expression on the empty regions between the modules
of previous basic blocks, leaving the previously placedmodules and their connections intact.
As a result, the placement of the newbasic block becomes a linear, noncontiguous placement
problem with blockages being the modules from previous basic blocks.

3. Dynamic placement with no module reuse: This scenario is similar to the previous one,
except that we try to reuse a fewmodules and connections left over by previous basic blocks
that are no longer active. Doing so will save in reconfiguration time and results in better
usage of the FPGA real estate. Finding the largest common subgraph between the old and
the new expression trees helps usmaximize the reuse of the modules that are already placed.

The authors propose a greedy solution for the second problem, that is, dynamic placementwithout
module reuse. The algorithm works directly on expression trees. Modules are rank-ordered based on
parameters such as the volume (sum of module widths) of their children subtrees, and latest arrival
time on the critical path. The ordering of the nodes determines the linear order in which they should
be placed on the noncontiguous space.

To solve the third problem, that is, dynamic placement with module reuse, first a linear ordering
of modules is obtained using the previous two algorithms to minimize wirelength, congestion, and
critical path delay. Then a maximummatching between the existing inactive modules and the linear
ordering is sought such that the maximum number of modules are reused while perturbations to
the linear ordering are kept at a minimum. The algorithm is then extended to be applied to general
graphs, and not just trees. To achieve better reuse, a maximum common subgraph problem is solved
to find the largest subset of modules and their connections of the expression graphs that are already
placed and those of the new basic block.

46.4.5 VARIATION-AWARE PLACEMENT

Hutton et al. proposed the first statistical timing analysis placement method for FPGAs [31]. They
consider both inter- and intradie process variations in their modeling, but do not model spatial
correlations among within-die variables. In other words, local variations are modeled as independent
random variables.∗ In Ref. [31], they model delay of a circuit element as a Gaussian variable, which
is a function of Vt and Leff , each of which are broken into their global (systematic) and local (random)
components. Block-based statistical timing analysis [33] is used to compute the timing criticality of
nodes, which will be used instead of TVPR’s timing-cost component (see Equations 46.3 and 46.5).
SSTA (statistical static timing analysis) is performed only at each temperature, not at every move.

In their experiments, they compare their statistical timing-based placement to TVPR, and con-
sider the effect of guard-banding and speed-binning. Guard-banding is achieved by adding k.σ to
the delay of every element, where k is a user-defined factor such as 3, 4, or 5, and σ is the stan-
dard deviation of the element’s delay. Timing yield considering speed-binning is computed during
Monte Carlo simulations by assuming that chips are divided into fast, medium, and slow critical
path delays. Their statistical placement shows yield improvements over TVPR in almost all combi-
nations of guard-banding and speed-binning scenarios. In a follow-up work, Lin and He [34] show

∗ Cheng et al. [32] show that by ignoring spatial correlations, we lose at least 14 percent in the accuracy of the estimated delay.
The error in delay estimation accuracy is defined as the integration of the absolute error between the distributions obtained
through Monte Carlo simulations and statistical sum and maximum computations of the circuit delay. See Section 46.3 of
Ref. [32] for more details.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 975 9-10-2008 #20

FPGA Technology Mapping, Placement, and Routing 975

that combining statistical physical synthesis, statistical placement and statistical routing result in
significant yield improvements (from 50 failed chips per 10,000 chips to 5 failed chips in their
experimental setup).

Cheng et al. [32] propose a placement method that tailors the placement to individual chips,
after the variation map for every chip is obtained. This is a preliminary work that tries to answer the
question of given the exact map of FPGA element delays, how much improvement can we get by
adapting the placement to individual chips. They show about 5.3 percent improvement on average
in their experimental setup, although they do not address how the device parameter maps can be
obtained in practice.

46.4.6 LOW POWER PLACEMENT

Low power FPGA placement and routing methods try to assign noncritical elements to low power
resources on the FPGA. There have been many recent works targetting FPGA power minimization.
We will only focus on two efforts: one deals with the placement problem [35] and the other addresses
dual voltage assignment to routes [36], the latter will be discussed in Section 46.5.4.

The authors in Ref. [35] consider an architecture that is divided into physical regions, each of
which can be independently power gated. To enable leakage power savings, designers must look into
two issues carefully:

1. Region granularity: They should determine the best granularity of the power gating regions.
Too small a region would have high circuit overheads both in terms of sleep transistors and
configuration bits that must control them. On the other hand, a finer granularity gives more
control over which logic units could shut down and could potentially harness more leakage
savings.

2. Placement strategies: CAD developers should adopt placement strategies that constrain
logic blocks with similar activity to the same regions. If all logic blocks placed in one
region are going to be inactive for a long period of time, then the whole region can be power
gated. However, architectural properties of the FPGA would influence the effectiveness of
the placement strategy. For example, if the FPGA architecture has carry chains that run in
the vertical direction, then the placement algorithm must place modules in regions that are
vertically aligned. Not doing so could harm performance significantly.

By constraining the placement of modules with similar power activity, we can achieve two
goals: power gate unused logic permanently, and power gate inactive modules for the duration of
their inactive period. In their experiments, they consider various sizes of the power gating regions
and also look into dynamic versus static powering down of unused/idle regions.

46.5 ROUTING

Versatile placement and routing [6]usesDijkstra’s algorithm (i.e., amaze router) to connect terminals
of a net. Its router is based on the negotiation-based algorithmPathFinder [37]. PathFinder first routes
all nets independently using the shortest route for each path. As a result, some routing regions will
become overcongested. Then in an iterative process, nets are ripped-up and rerouted to alleviate
congestion. Nets that are not timing-critical take detours away from the congested regions, and nets
that are timing critical are likely to take the same route as round one.

There is a possibility that two routing channels show a thrashing effect, that is, nets are ripped-
up from one channel and rerouted through the other, and then in the next iteration be ripped-up
from the second and rerouted through the first. To avoid this, VPR use a history term that not only
penalizes routing through a currently congested region, but it also uses the congestion data from the
recent history to avoid thrashing. So the congestion of a channel is defined as its current resource
(over-)usage plus a weighted sum of the previous congestion values from previous routing iterations.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 976 9-10-2008 #21

976 Handbook of Algorithms for Physical Design Automation

 Reexpand around
new wire

Expansion wavefront

FIGURE 46.15 Local expansion of the wavefront. (Based on Betz, V. and Rose, J., Field-Programmable
Logic and Applications (W. Luk, P. Y. Cheung, and M. Glesner, eds.), pp. 213–222, Springer-Verlag, Berlin,
Germany, 1997. With permission.)

To route a multiterminal net, VPR uses the maze routing algorithm, described in Chapter 23.
After connecting two terminals of a k terminal net, VPR’s maze router starts a wave from all points
on the wire connecting the two terminals. The wave is propagated until the next terminal is reached.
The process is repeated k − 1 times. When a new terminal is reached, instead of restarting the wave
from the new wiring tree from scratch, the maze routing algorithm starts a local wave from the new
branch of wire that connected the new terminal to the rest of the tree. When the wavefront of the
local wave gets as far out as the previous wavefront, the two waves are merged and expanded until
a new terminal is reached. Figure 46.15 illustrates the process.

46.5.1 HIERARCHICAL ROUTING

Chang et al. propose a hierarchical routing method for island-style FPGAs with segmented routing
architecture in Ref. [38] (Section 45.4.1). Because nets are simultaneously routed, the net-ordering
problemat the detailed routing level would not be an issue, in fact, global routing and detailed routing
are performed at the same time in this approach. Theymodel timing in their formulation as well, and
estimate the delay of a route to be the number of programmable switches that it has to go through.
This is a reasonable estimation because the delay of the switch points is much larger than the routing
wires in a typical FPGA architecture. Each channel is divided into a number of subchannels, each
subchannel corresponding to the set of segments of the same length within that channel.

After minimum spanning routing trees are generated, delay bounds are assigned to segments of
the route and then the problems of channel assignment and delay bound recalculation are solved
hierarchically. Figure 46.16 shows an example of a hierarchical routing step, in which connection i
is generated by a minimum spanning tree algorithm. The problem is divided into two subproblems,
one containing pin1 and the other containing pin2. The cutline between the two regions contains a
number of horizontal subchannels. The algorithm tries to decide on the subchannel through which
this net is going to be routed. Once the subchannel is decided (see the right part of Figure 46.16),
then the routing problem can be broken into two smaller subproblems. While dividing the problem
into smaller subproblems, the algorithm keeps updating the delay bounds on the nets, and keeps an
eye on the congestion.

To decide on which subchannel j to use to route a routing segment i, the following cost
function is used:

Cij = C(1)
ij + C(2)

ij + C(3)
ij (46.6)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 977 9-10-2008 #22

FPGA Technology Mapping, Placement, and Routing 977

pin1

After assignment

pin1ch1

ch2

ch3

ch4

ch1

ch2
li1

li2

Subchannel j

ch3

ch4

Cutline

Pin2

Region 1 Region 2

pin2

Connection i

FIGURE 46.16 Delay bound redistribution after a hierarchical routing step. (Based on Chang, Y.-W. et al.,
ACM Transactions on Design Automation of Electronic Systems, 5, 433–450, 2000. With permission.)

where C(0)
ij is zero if connection i can reach subchannel j, and ∞ otherwise. Reachability can be

determined by a breadth-first search on the connectivity graph. The second term intends to utilize
the routing segments evenly according to the connection length and its delay bound:

C(2)
ij = a

∣∣∣∣ liUi

− Lj

∣∣∣∣ (46.7)

where
li is the Manhattan distance of the connection i
Ui is the delay bound of the connection
Lj is the length of routing segments in the subchannel j
a > 0 is a constant

The term tries to maximize routing resource efficiency in routing. So, for example, if a net
has a delay bound Ui = 4 and Manhattan distance li = 8, it can be routed through four switches,
which means the ideal routing resource whose length is just right for this connection is 8/4 = 2.
For a subchannel that contains routing segments of length 2, the cost function will evaluate to zero,
that is, segment length of 2 is ideal for routing this net. On the other hand, if a subchannel with
segment length of 6 is considered, then the cost function will evaluate to 4, which means using
segments of length 6 might be an overkill for this net, as its slack is high and we do not have to waste
our length 6 routing resources on this net.

Cost component C(3)
ij in Equation 46.6 is shown in Figure 46.17. Figure 46.17b shows a typical

nontiming driven routing, and Figure 46.17a shows the cost function used in Ref. [38]. The basic idea
is to assign a lower cost to routes that are likely to use fewer bends. For example, in Figure 46.17a,
if subchannel s3 is chosen, then chances are that when the subproblem of routing from a pin to s3
is being solved, more bends are introduced between the pin and s3. On the other hand, routing the
net through s1 or s5 will guarantee that the route from the subchannel to at least one pin is going to
use no bends. Note that the cost of routing outside the bounding box of the net increases linearly to
discourage detours, which in turn hurt the delay of a net.

After a net is divided into two subnets, the delay bound of the net is distributed among the
two subnets based on their lengths. So, for example, in Figure 46.17, if the original delay bound of
connection i was Ui, then Ui1 = [li1/(li1 + li2)] × Ui, and Ui2 = [li2/(li1 + li2)] ×Ui.

46.5.2 SAT-BASED ROUTING

Recent advances in SAT (Satisfiability problem) solvers have encouraged researchers to formulate
various problems as SAT problems and utilize the efficiency of these solvers. Nam et al. [39] for-
mulated the detailed routing on a fully segmented routing architecture (i.e., all routing segments

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 978 9-10-2008 #23

978 Handbook of Algorithms for Physical Design Automation

C
os

t

s1 s2 s3

(b)

(a)

s4

s5

Cutline

Pin

Cij
(3)

X-coordinate of the subchannel used for routing

T
yp

ic
al

 n
on

tim
in

g
co

st

SubchannelsPin

FIGURE 46.17 Cost function. (Based on Chang, Y.-W. et al., ACM Transactions on Design Automation of
Electronic Systems, 5, 433–450, 2000. With permission.)

are of length 1) as a SAT problem. The basic idea is shown in Figure 46.18. Figure 46.18a shows
an instance of a global routing problem that includes three nets, A, B, and C and an FPGA with a
channel width of three tracks. Figure 46.18b shows possible solutions for the routing of net A.

In a SAT problem, constraints are written in the form of conjunctive normal form (CNF) clauses.
The CNF formulation of the constraints on net A are shown in Equation 46.8, where AH, BH, and
CH are integer variables showing the horizontal track numbers that are assigned to nets A, B, and C,
respectively.AV is the vertical track number assigned to netA. The conditions on the first line enforce
that a unique track number is assigned to A, the second line ensures that the switchbox constraints
are met (here it is assumed that a subset switchbox is used), and the third line enforces that a valid
track number is assigned to the vertical segment of net A. These conditions state the connectivity
constraints for net A.

2

1 2
Row index

(a) Global routing example (b) Possible solutions for net A

Net B

Net A

Net C

C
ol

um
n

in
de

x

CLB
(0, 0)

CLB
(0, 0)

CLB
(2, 0)

CLB
(4, 0)

CLB
(2, 0)

CLB
(4, 0)

CLB
(4, 0)

CLB
(4, 2)

CLB
(2, 2)

CLB
(0, 2)

CLB
(0, 2)

Vertical
channel 1

2

2

1

1

0

0 210

H
or

iz
on

ta
l

ch
an

ne
l 1

Vertical
channel 3

SRC
0

1
DST

3 4

0

1

0

FIGURE 46.18 SAT formulation of a detailed routing problem. (From Nam, G.-J., Sakallah, K. A., and
Rutenbar, R. A., IEEE Trans. Comput. Aided Des. Integrated Circuits Syst., 21, 674, 2002. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 979 9-10-2008 #24

FPGA Technology Mapping, Placement, and Routing 979

Conn(A) = [(AH ≡ 0) ∨ (AH ≡ 1) ∨ (AH ≡ 2)]∧
[(AH = AV)]∧
[(AV ≡ 0) ∨ (AV ≡ 1) ∨ (AV ≡ 2)]

(46.8)

To ensure that different nets do not share the same track number in a channel (exclusivity
constraint), conditions like Equation 46.9 must be added to the problem:

Excl (H1) = (AH �= BH) ∧ (AH �= CH) (46.9)

where H1 refers to the horizontal channel shown in Figure 46.18a. The routability problem of the
example of Figure 46.18a can be formulated as in Equation 46.10:

Routable (X) = Conn (A) ∧ Conn (B) ∧ Conn (C) ∧ Excl (H1) (46.10)

whereX is a vector of track variablesAH,BH, CH,AV, BV, andCV. If Routable(X) is satisfiable, then
a routing solution exists and can be derived from the values returned by the SAT solver. The authors
extend the model so that doglegs can be defined too. Interested readers and referred to Ref. [39]
for details.

Even though detailed routing can be elegantly formulated as a SAT problem, in practice its
application is limited. If a solution does not exist (i.e., when there are not enough tracks), the SAT
solverwould take a long time exploring all track assignment possibilities and returningwith a negative
answer, that is, Routable(X) is not satisfiable. Furthermore, even if a solution exists but the routing
instance is difficult (e.g., when there are barely enough routing tracks to route the given problem
instance), the SAT solver might take a long time. In practice, the SAT solver could be terminated
if the time spent on the problem is more than a prespecified limit. This could either mean that the
problem instance is difficult, or no routing solution exists for the given number of tracks.

46.5.3 GRAPH-BASED ROUTING

The FPGA global routing problem can be modeled as a graph matching problem in which branches
of a routing tree are assigned (matched) to sets of routing segments in a multisegment architecture
to estimate the number of channels required for detailed routing. Lin et al. propose a graph-based
routing method in Ref. [40]. The input to the problem is a set of globally routed nets. The goal is
to assign each straight segment of each net to a track in the channel that it is globally routed so that
a lower bound on the required number of tracks is obtained for each channel. Interactions between
channels are ignored in this work, as a result, the bound on the number of tracks needed for each
channel is calculated in isolation. The actual number of tracks needed for the whole design might be
larger depending on the switchbox architecture and the way horizontal and vertical channels interact.

They model the track assignment problem within one channel as a weighted matching problem.
Straight segments of nets are called subnets (e.g., a net routed in the shape of an “L” is divided into
two subnets). Within a channel, subnets belonging to a maximum clique C of overlapping subnets∗

are assigned to tracks from a set of tracks H using a bipartite graph matching problem. Members of
set C form the nodes on one side of the bipartite graph used in the matching problem, and the nodes
on the other side of the matching graph are tracks in set H. The weight on the edges from subnets to
routing tracks are determined based on the track length utilization. The track utilization Ur(ix, t) of
a subnet ix on track t is defined as

Ur (ix, t) = len (ix)∑
1≤y<k len

(
sy
) + α

k
(46.11)

∗ Refer to Ref. [41] for more discussions on finding cliques of overlapping net intervals and calculating lower bounds on
channel densities.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 980 9-10-2008 #25

980 Handbook of Algorithms for Physical Design Automation

where
len(ix) and len(sy) are the respective lengths of the subnet ix and the segment sy
y is an FPGA routing segment in the track that ix is globally routed in
k is the number of segments needed to route the subnet on that track

Note that the first and the last FPGA routing segments used in routing the subnet might be
longer than what the subnet needs, and hence some of the track length would go underutilized. The
algorithm tries to maximize routing segment utilization by matching a subnet to a track that has
segments whose lengths and starting points match closely to those of the span of the subnet. This
is achieved by maximizing the sum of track utilizations Ur(ix, t) over all subnets. Parameter α in
the equation above is used to enable simultaneous routability and timing optimization. They further
extend the algorithm to consider timing as well as routability using an iterative process. After an
initial routing, they distribute timing slacks to nets, and order channels based on how critical they
are. A channel is critical if its density is the highest.

46.5.4 LOW POWER ROUTING

The authors in Ref. [36] assume that all switches and connection boxes in a modified island-style
FPGA are Vdd-programmable. An SRAM bit can determine if the driver driving a particular switch
or connection box will be in high or low Vdd. To avoid adding level converters, they enforce the
constraint that no low-Vdd switch can drive a high-Vdd element. The result is each routing tree can
be mapped either fully in high-Vdd, or fully in low-Vdd, or mapped to high-Vdd from the source
up to a point in the routing tree, and then low-Vdd from that point to the sink. In terms of power
consumption, it is desired to map as many routing resources to low-Vdd, as that would consume less
power than high-Vdd. But because low-Vdd resources are slower, care must be taken not to slow
down critical paths in the circuit.

They propose a heuristic sensitivity-based algorithm and a linear programming formulation for
assigning voltage levels to programmable routing resources (switches and their associated buffers).
The sensitivity-based method first calculates power sensitivity �P/�Vdd for each routing resource,
which is the power reduction by changing high-Vdd to low-Vdd. A resource with the highest
sensitivity is tried with low-Vdd. If the path containing the switch does not violate the timing con-
straint, then the switch and all its downsteam routing resources are locked on low-Vdd. Otherwise,
the switch is changed back to high-Vdd. The linear programming method tries to distribute path
slacks among route segments such that the number of low-Vdd resources is maximized subject to
the constraint that no low-Vdd switch drives a high-Vdd one.

46.5.5 OTHER ROUTING METHODS

In this subsection, we review miscellaneous routing methods such as pipeline routing, congestion-
driven routing, and statistical timing routing.

46.5.5.1 Pipeline Routing

Eguro andHauck [42] propose a timing-driven pipeline-aware routing algorithm that reduces critical
path delay. A pipeline-aware routing problem requires the connection from a source node to a sink
node to pass through certain number of pipeline registers and each segment of the route (between
source, sink, and registers) must satisfy delay constraints. The work by Eguro and Hauck adapts
PathFinder [37]. When considering pipelining, the problem becomes more difficult compared to a
traditional routing problem, because as registers move along a route, the criticality of the routing
segments would change. For example, suppose a net is to connect logic block A to logic block B
through one register R. In the first routing iteration, R might be placed close to A, which makes the
subroute A–R not critical, but R–B would probably be critical. In the next iteration, R might move

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 981 9-10-2008 #26

FPGA Technology Mapping, Placement, and Routing 981

closer to B, and hence the two subroutes might be considered critical and noncritical in successive
iterations.

To address the problem stated above, the authors in Ref. [42] perform simultaneous wave propa-
gationmaze routing searches, each assuming that the net has a distinct timing-criticality value.When
the sink (or a register) is reached in the search process, the routingwave that best balances congestion
and timing criticality is chosen. Interested readers are referred to Ref. [42] for more details.

46.5.5.2 Congestion-Driven Routing

Anotherwork that deals with routability and congestion estimation is fGrep [43]. To estimate conges-
tion, waves are started from a source node, and all possible paths are implicitly enumerated at every
step of the wave propagation. The probability that the net passes through a particular routing element
is the ratio of the total number of paths that pass through that routing element to the total number
of paths that can route the net. Routing demand or congestion on a routing element is defined as the
sum of these probabilities among all nets. Of course, performing full wave propagation for every net
would be costly. As a trade-off, the authors trim the wave once it has passed a certain predetermined
distance, which results in the speedup of the estimation at the cost of accuracy. Another speedup
technique used by the authors is to start waves from all terminals of a net and stop when two waves
reach each other.

46.5.5.3 Statistical Timing Routing

Statistical timing analysis has found its way into FPGA CAD tools in recent years. Sivaswamy
et al. [44] showed that using SSTA during the routing stage could greatly improve timing yield
over traditional static timing analysis methods with guard-banding. More specifically, in their
experimental setup they could reduce the yield loss from about 8 per 10,000 chips to about 1 per
10,000 chips. They considered inter- and intradie variations and modeled spatial correlations in their
statistical modeling of device parameters.

Matsumo et al. [45] proposed a reconfiguration methodology for yield enhancement in which
multiple routing solutions are generated for a design and the one that yields the best timing for a
particular FPGA chip is loaded on that chip. This can be done by performing at-speed testing of an
individual FPGA chip using each of the n configurations that are generated and by picking the one
that yields the best clock speed. The advantage of this method compared to a method that requires
obtaining the delay map of all elements on the chip (e.g., the work by Cheng et al. [32]) is that
extensive tests are not required to determine which configuration yields the best timing results.

In the current version of their method, Matsumo et al. [45] fix the placement and only explore
different routing solutions. In each configuration, they try to avoid routing each critical path through
the same regions used by other configurations, which means that ideally, each configuration routes
a critical path through a unique set of routing resources that are spatially far away from the paths
in other configurations. As a result, if a critical path in one configuration is slow due to process
variations, chances are that other configurations would route the same path through regions that are
faster, resulting in a faster clock frequency. Figure 46.19 shows three configurations with different
routes for a critical path and the delay variation map of the switch matrix. Using the delay map in
Figure 46.19,we can calculate the delayof the critical path in the first, second, and third configurations
as 4.9, 4.5, and 5.1, respectively.

They ignore spatial correlations in their method, hence they can analytically calculate the
probability that a design fails timing constraints given n configurations. The probability that none of
the n configurations passes the timing test is

Yn (Target) = 1 − [
1 − Y1(Target)

]n
(46.12)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 982 9-10-2008 #27

982 Handbook of Algorithms for Physical Design Automation

Source Switchbox

Sink

(a) Config 1 (b) Config 2

(c) Config 3 (d) Delay variation

1.5 1.1

0.5

1.0 1.0

1.0

1.0 0.9

0.9

FIGURE 46.19 Three critical path configurations and delay variations of a switch matrix. (Based on
Matsumoto, Y. et al., Proceedings of the 2007 ACM/SIGDA 15th International Symposium on Field
Programmable Gate Arrays, ACM Press, New York, 2007. With permission.)

where Y1(Target) is defined as

Y1 (Target) =
TTarget�
−∞

fcrit (t) dt (46.13)

In Equation 46.12, the likelihood that all n configurations fail is subtracted from 1. In their
work, they assume complete independence between critical paths in different configurations, which
enables them to analytically evaluate Equations 46.12 and 46.13. This assumption is not valid, as
we know spatial correlations exist between circuit elements, and also critical paths across different
configurations might share routing resources, especially close to the source and sink nodes.

They propose a routing algorithm that keeps track of the usage of routing resources by critical
paths and tries to avoid them in consecutive configurations that are generated. The method is similar
to the congestion avoidance procedure used in VPR, that is, resources that are used by critical paths
in other configurations are penalized so that the router avoids them if other paths with the same
delay exist.

REFERENCES
1. J. Cong and K. Minkovich, Optimality study of logic synthesis for Lut-based FPGAs, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 26(2): 230–239, 2007.

2. D. Chen and J. Cong, Daomap: A depth-optimal area optimization mapping algorithm for FPGA designs,
in ICCAD ’04: Proceedings of the 2004 IEEE/ACM International Conference on Computer-Aided Design,
pp. 752–759, IEEE Computer Society, Washington DC, 2004.

3. B. L. Synthesis and V. Group, Abc: A system for sequential synthesis and verification. Available at
http://www.eecs.berkeley.edu/∼alanmi/abc/.

4. Alan, S. Chatterjee, and R. Brayton, Improvements to technology mapping for Lut-based FPGAs, in FPGA
’06: Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field Programmable Gate
Arrays, pp. 41–49, ACM Press, New York, 2006.

5. J. Cong and Y. Ding, Flowmap: An optimal technology mapping algorithm for delay optimization in
lookup-table based FPGA designs, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 13(1): 1–12, 1994.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 983 9-10-2008 #28

FPGA Technology Mapping, Placement, and Routing 983

6. V. Betz and J. Rose, VPR: A new packing, placement and routing tool for FPGA research, in Field-
Programmable Logic and Applications (W. Luk, P. Y. Cheung, and M. Glesner, eds.), pp. 213–222,
Springer-Verlag, Berlin, Germany, 1997.

7. A. S. Marquardt, V. Betz, and J. Rose, Using cluster-based logic blocks and timing-driven packing to
improve FPGA speed and density, in Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Monterey, CA, pp. 37–46, 1999.

8. E. Bozorgzadeh, S. Ogrenci-Memik, and M. Sarrafzadeh, Rpack: Routability-driven packing for cluster-
based FPGAs, in Proceedings of the Asia-South Pacific Design Automation Conference, Yokohama, Japan,
2001, pp. 629–634.

9. A. Singh and M. Marek-Sadowska, Efficient circuit clustering for area and power reduction in FPGAs, in
Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey,
CA, pp. 59–66, 2002.

10. A. DeHon, Balancing interconnect and computation in a reconfiguable computing array (or, why you don’t
really want 100% LUT utilization), in Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Monterey, CA, pp. 69–78, 1999.

11. L. Cheng and M. D. F. Wong, Floorplan design for multi-million gate FPGAs, in Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, pp. 292–299, 2004.

12. Y. Sankar and J. Rose, Trading quality for compile time: Ultra-fast placement for FPGAs, in Proceed-
ings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, San Jose, CA,
pp. 157–166, 1999.

13. J.M.Emmert andD.Bhatia,Amethodology for fast FPGAfloorplanning, inProceedings of theACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Monterey, CA, pp. 47–56, 1999.

14. K. Bazargan, R. Kastner, and M. Sarrafzadeh, Fast template placement for reconfigurable computing
systems, IEEE Design and Test—Special Issue on Reconfigurable Computing, 17: 68–83, January 2000.

15. E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Parlour, Dynamic hardware plugins in an FPGA with
partial runtime reconfiguration, in Proceedings of the ACM/IEEE Design Automation Conference, New
Orleans, LA, pp. 343–347, 2002.

16. J. Chen, J. Moon, and K. Bazargan, A reconfigurable FPGA-based readback signal generator for hard-drive
read channel simulator, in Proceedings of the ACM/IEEE Design Automation Conference, New Orleans,
LA, pp. 349–354, 2002.

17. M. Handa and R. Vemuri, An efficient algorithm for finding empty space for online FPGA placement, in
Proceedings of the ACM/IEEE Design Automation Conference, San Diego, CA, pp. 960–965, 2004.

18. L. Singhal and E. Bozorgzadeh, Multi-layer floorplanning on a sequence of reconfigurable designs, in
FPL’06: Proceedings of the 2006 International Conference onField Programmable Logic and Applications,
Madrid, 2006.

19. J. Cong, M. Romesis, and M. Xie, Optimality and stability study of timing-driven placement algorithms,
in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA,
p. 472, 2003.

20. C. -L. E. Cheng, Risa: Accurate and efficient placement routability modeling, in Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, pp. 690–695, 1994.

21. A.Marquardt, V. Betz, and J. Rose, Timing-driven placement for FPGAs, inProceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Monterey, CA, pp. 203–213, 2000.

22. S. Nag and R. A. Rutenbar, Performance-driven simultaneous placement and routing for FPGA’s IEEE
Transactions on Computer-AidedDesign of Integrated Circuits and Systems (TCAD), 17(6): 499–518, 1998.

23. P. Maidee, C. Ababei, and K. Bazargan, Timing-driven partitioning-based placement for island style
FPGAs, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 24(3):
395–406, 2005.

24. S. A. Senouci, A. Amoura, H. Krupnova, and G. Saucier, Timing driven floorplanning on programmable
hierarchical targets, in Proceedings of the ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, Monterey, CA, pp. 85–92, 1998.

25. M. Hutton, K. Adibsamii, and A. Leaver, Timing-driven placement for hierarchical programmable logic
devices, in Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Monterey, CA, pp. 3–11, 2001.

26. G. Chen and J. Cong, Simultaneous timing-driven placement and duplication, in Proceedings of the
ACM/SIGDAInternationalSymposiumonFieldProgrammableGateArrays,Monterey,CA,pp.51–59,2005.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C046 Finals Page 984 9-10-2008 #29

984 Handbook of Algorithms for Physical Design Automation

27. D. P. Singh and S. D. Brown, Incremental placement for layout-driven optimizations on FPGAs, in
Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA,
pp. 752–759, 2002.

28. S. -W. Hur and J. Lillis, Mongrel: Hybrid techniques for standard cell placement, in Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, pp. 165–170, 2000.

29. T. J. Callahan, P. Chong, A. DeHon, and J.Wawrzynek, Fastmodule mapping and placement for datapaths in
FPGAs, in Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
Monterey, CA, pp. 123–132, 1998.

30. C. Ababei and K. Bazargan, Non-contiguous linear placement for reconfigurable fabrics, International
Journal of Embedded Systems (IJES)—esp. issue on Reconfigurable Architectures Workshop (RAW),
2(1/2): 86–94, 2006.

31. M. Hutton, Y. Lin, and L. He, Placement and timing for FPGAs considering variations, in FPL’06: Pro-
ceedings of the 2006 International Conference on Field Programmable Logic and Applications, Madrid,
2006.

32. L. Cheng, J. Xiong, L. He, and M. Hutton, FPGA performance optimization via chipwise placement
considering process variations, in FPL’06: Proceedings of the 2006 International Conference on Field
Programmable Logic and Applications, Madrid, 2006.

33. C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, S. Narayan, D. K. Beece, J. Piaget, N.
Venkateswaran, and J. G. Hemmett, First-order incremental block-based statistical timing analysis, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25: 2170–2180, October 2006.

34. Y. Lin and L. He, Stochastic physical synthesis for FPGAs with pre-routing interconnect uncertainty and
process variation, in FPGA ’07: Proceedings of the 2007 ACM/SIGDA 15th International Symposium on
Field Programmable Gate Arrays, pp. 80–88, ACM Press, New York, 2007.

35. A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and T. Tuan, Reducing leakage energy
in fpgas using region-constrained placement, in Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, Monterey, CA, pp. 51–58, 2004.

36. Y. Lin and L. He, Leakage efficient chip-level dual-vdd assignment with time slack allocation for FPGA
power reduction, in Proceedings of the ACM/IEEEDesign Automation Conference, Anaheim, CA, pp. 720–
725, 2005.

37. L. McMuchie and C. Ebeling, Pathfinder: A negotiation-based performance-driven router for FPGAs, in
Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey,
CA, pp. 473–482, 1995.

38. Y. -W. Chang, K. Zhu, and D. F. Wong, Timing-driven routing for symmetrical array-based FPGAs, ACM
Transactions on Design Automation of Electronic Systems, 5(3): 433–450, 2000.

39. G. -J. Nam, K. A. Sakallah, and R. A. Rutenbar, A new FPGA detailed routing approach via search-based
Boolean satisfiability, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 21(6): 674–684, 2002.

40. J. -M. Lin, S. -R. Pan, and Y. -W. Chang, Graph matching-based algorithms for array-based FPGA seg-
mentation design and routing, in Proceedings of the Asia-South Pacific Design Automation Conference,
Kitakyushu, Japan, pp. 851–854, 2003.

41. N. Sherwani, Algorithms for VLSI Physical Design Automation, 2 edn. Kluwer Academic Publishers,
Boston, MA, 1995.

42. K. Eguro and S. Hauck, Armada: Timing-driven pipeline-aware routing for FPGAs, in Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey, CA, pp. 169–
178, 2006.

43. P. Kannan, S. Balachandran, and D. Bhatia, On metrics for comparing routability estimation methods for
FPGAs, in Proceedings of the ACM/IEEE Design Automation Conference, New Orleans, LA, pp. 70–
75, 2002.

44. S. Sivaswamy and K. Bazargan, Variation-aware routing for FPGAs, in FPGA ’07: Proceedings of the 2007
ACM/SIGDA 15th International Symposium on Field Programmable Gate Arrays, pp. 71–79, ACM Press,
New York 2007.

45. Y.Matsumoto, M. Hioki, T. Kawanami, T. Tsutsumi, T. Nakagawa, T. Sekigawa, and H. Koike, Performance
and yield enhancement of FPGAs with within-die variation using multiple configurations, in FPGA ’07:
Proceedings of the 2007 ACM/SIGDA 15th International Symposium on Field Programmable Gate Arrays,
pp. 169–177, ACM Press, New York 2007.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 985 10-10-2008 #2

47 Physical Design for
Three-Dimensional
Circuits
Kia Bazargan and Sachin S. Sapatnekar

CONTENTS

47.1 Introduction.. 985
47.2 Standard Cell-Based Designs . 987

47.2.1 Thermal Vias . 987
47.2.2 3D Floorplanning . 989
47.2.3 3D Placement. 990
47.2.4 Routing Algorithms . 991

47.3 3D FPGA Designs . 993
47.3.1 Estimation Methods . 994
47.3.2 Placement and Routing Algorithms . 997

47.3.2.1 Partitioning the Circuit between Tiers . 998
47.3.2.2 Partitioning-Based Placement within Tiers . 999
47.3.2.3 Simulated Annealing Placement Phase . 1000

References . 1000

47.1 INTRODUCTION

Recent advances in process technology have brought three-dimensional (3D) circuits to the realm of
reality. This new design paradigm will require a major change from contemporary design method-
ologies, because an optimal 3D design has very different characteristics from an optimal 2D design.
The move from conventional 2D to 3D is inherently a topological change, and therefore, many of
the problems that are unique to 3D circuits lie in the domain of physical design.

The essential idea of a 3D circuit is to place multiple tiers of active devices (transistors) above
each other, as opposed to a conventional 2D circuit where all transistors and gates lie in a single tier.
An example of 3D circuit is shown in Figure 47.1.

One of the primary motivators for 3D technologies is related to the dominant effects of intercon-
nects in nanoscale technologies, and the addition of a third dimension provides significant relief in
this respect. This is achieved by reductions in the average interconnect lengths (in comparison with
2D implementations, for the same circuit size), lower wire congestion, as well as by denser integra-
tion, which results in the replacement of chip-to-chip interconnections by intrachip connections. In
addition, the increased packing density improves the computation per unit volume.

For instance, Figure 47.2 shows a 2D layout on a chip of dimension 2L × 2L on the left, where
the longest (nondetoured) wire, going from one end of the layout to the other, has a length of 4L.
If this design is built on four tiers, as shown at right, assuming the same total silicon area and a
square aspect ratio for each tier, the silicon area in each tier is L× L. Therefore, the longest possible

985

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 986 10-10-2008 #3

986 Handbook of Algorithms for Physical Design Automation

Intratier
wires

Devices

Intertier via

Silicon substrate

Tier 1

Tier 2

Tier 3

Tier 4

FIGURE 47.1 Schematic of a 3D integrated circuit.

undetoured wirelength, going from one end in the lowest tier to the other end in the uppermost tier,
is approximately 2L (because the intertier thickness is negligible). Because, for a buffered two-pin
interconnect, the delay of a wire is proportional to its length, this implies that the delay is halved.
Moreover, the reduced wire lengths also reduce the likelihood of congestion bottlenecks, potentially
reducing the need to detour wires. A more precise distribution of the wirelength has been reported
in Ref. [1], which shows that the histogram of wirelength distributions moves progressively to the
left as the number of tiers is increased.

In addition, 3D designs can result in new paradigms, for example, heterogeneous integration,
where each tier could be a differentmaterial (e.g.,a silicon-based circuit on one tier and aGaAs-based
circuit on another). Even for purely silicon-based circuits, 3D designs permit analog/RF and digital
circuits to be build on different tiers, which improves their noise behavior; additionally, it is possible
to construct shielding structures such as Faraday cages between tiers for enhanced noise reduction.

Various flavors of 3D technologies have been proposed and are in use. One of the simplest forms
involves wafer stacking, where the distance between active devices in the third dimension (or the
“z dimension”) equals the thickness of a wafer. However, the thickness of a wafer is of the order of
several hundreds of microns, and the full potential of 3D is not achieved by this approach due to
the long distance that a wire must traverse in the z dimension. Further progress has resulted in the
development of integrated 3D circuits in industrial [2], government [3], and academic [4] settings,
which have demonstrated 3D designs with intertier separations of the order of a few microns.

Today, it is only possible to build a few tiers in the third dimension, as a result of which many
of these technologies are often referred to as 2.5D rather than fully 3D. Nevertheless, even the half
dimension can provide the potential for substantial performance improvements, and perhaps future
technological improvements will enable truly 3D integration.

In this chapter, we present an overview of physical design technologies for 3D circuits. We begin
with a brief overview of a typical 3D technology, and then discuss physical design problems in the
custom/ASIC design as well as the FPGA paradigms. Generally speaking, the number of tiers is
taken in as a technology input by the 3D tools described in this chapter.

2L

2L

L

L

FIGURE 47.2 Comparison of the maximum wirelength in a 2D layout (left) and in its 3D counterpart (right).
For clarity, the intertier thicknesses in the 3D circuit are shown to be exaggeratedly large.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 987 10-10-2008 #4

Physical Design for Three-Dimensional Circuits 987

47.2 STANDARD CELL-BASED DESIGNS

A typical cell-based flow begins with a floorplanning step, where the system is laid out at the level
of macroblocks, detailed placement of the cells in the layout, and routing. In the 3D context, each of
these must bemodified to adapt to the constraints imposed by 3D circuits. In addition to conventional
metrics, 3D-specific geometrical considerations must be used, for example, for wirelength metrics.
In addition, temperature is treated as a first-class citizen during these optimizations.∗ Moreover,
intertier via reduction is considered to be a desirable goal, because the number of available vias is
restricted and must be shared between signal nets and supply and clock nets.

In addition to floorplanning, placement, and routing, a 3D-specific optimization that makes the
temperature distribution more uniform is the judicious positioning of thermal vias within the layout.
These vias correspond to intertier metal connections that have no electrical function, but instead,
constitute a passive cooling technology that draws heat from the problem areas to the heat sink, and
can be built into each of these steps or performed as an independent postprocessing step, depending
on the design methodology.

It is instructive to view the result of a typical 3D thermally aware placement [5]: a layout for
the benchmark circuit, IBM01, in a four-tier 3D process, is displayed in Figure 47.3. The cells are
positioned in ordered rows on each tier, and the layout in each individual tier looks similar to a 2D
standard cell layout. The heat sink is placed at the bottom of the 3D chip, and the lighter shaded
regions are hotter than the darker shaded regions. The coolest cells are those in the bottom tier, next
to the heat sink, and the temperature increases as we move to higher tiers. The thermal placement
method consciously mitigates the temperature by making the upper tiers sparser, in terms of the
percentage of area populated by the cells, than the lower tiers.

47.2.1 THERMAL VIAS

Although silicon is a good thermal conductor,with half or more of the conductivity of typical metals,
many of the materials used in 3D technologies are strong insulators that place severe restrictions on
the amount of heat that can be removed, even under the best placement solution. Thematerials include
epoxy bondingmaterials used to attach 3D tiers, or field oxide, or the insulator in an SOI technology.
Therefore, the use of deliberate metal lines that serve as heat-removing channels, called thermal
vias, are an important ingredient of the total thermal solution. The second step in the flow determines
the optimal positions of thermal vias in the placement that provide an overall improvement in the

Hot
Cool

0

0.5

�0.5

1
�10−5

�1
0.015

0.005
�0.005

0.01

�0.01

0

�0.015 0.015
0.01

0
0.005

�0.005
�0.01

�0.015

FIGURE 47.3 Placement for the benchmark ibm01 in a four-tier 3D technology. (From Ababei, C., et al.,
IEEE Design and Test, 22, 520, 2005. Copyright IEEE. With permission.)

∗ A description of techniques for thermal analysis is provided in Section 3.4

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 988 10-10-2008 #5

988 Handbook of Algorithms for Physical Design Automation

temperature distribution. In realistic 3D technologies, the footprints of these intertier vias are of the
order 5 × 5µm.

In principle, the problem of placing thermal vias can be viewed as one of determining one of two
conductivities (corresponding to the presence or absence of metal) at every candidate point where a
thermal via may be placed in the chip. However, in practice, it is easy to see that such an approach
could lead to an extremely large search space that is exponential in the number of possible positions;
note that the set of possible positions in itself is extremely large.

Quite apart from the size of the search space, such an approach is unrealistic for several other
reasons. First, the wanton addition of thermal vias in any arbitrary region of the layout would lead
to nightmares for a router, which would have to navigate around these blockages. Second, from a
practical standpoint, it is unreasonable to perform full-chip thermal analysis, particularly in the inner
loop of an optimizer, at the granularity of individual thermal vias. At this level of detail, individual
elements would have to correspond to the size of a thermal via, and the size of the thermal simulation
matrix would become extremely large.

Fortunately, there are reasonable ways to overcome each of these issues. The blockage problem
may be controlled by enforcing disciplinewithin the design, designating a specific set of areas within
the chip as potential thermal via sites. These could be chosen as specific interrow regions in the cell-
based layout, and the optimizer would determine the density with which these are filled with thermal
vias. The advantage to the router is obvious, because only these regions are potential blockages, which
is much easier to handle. To control the finite element analysis (FEA) stiffness matrix size, one could
work with a two-level schemewith relatively large elements, where the average thermal conductivity
of each region is a design variable.Once this average conductivity is chosen, it could be translatedback
into a precise distribution of thermal vias within the element that achieves that average conductivity.

Various published methods take different approaches to thermal via insertion. We now describe
an algorithm to postfacto thermal via insertion [6]; other procedures perform thermal via insertion
during floorplanning, placement or routing are discussed in the appropriate sections.

For a given placed 3D circuit, an iterative method was developed in which, during each iteration,
the thermal conductivities of certain FEA elements (thermal via regions) are incrementally modified
so that thermal problems are reduced or eliminated. Thermal vias are generically added to elements
to achieve the desired thermal conductivities. The goal of this method is to satisfy given thermal
requirements using as few thermal vias as possible, that is, keeping the thermal conductivities as low
as possible.

The approach uses the finite element equations to determine a target thermal conductivity.
A key observation in this work is that the insertion of thermal vias is most useful in areas with
a high thermal gradient, rather than areas with a high temperature. Effectively, the thermal via acts
as a pipe that allows the heat to be conducted from the higher temperature region to the lower
temperature region; this, in turn, leads to temperature reductions in areas of high temperature.

This is illustrated in Figure 47.4, which shows the 3D layout of the benchmark struct, before
and after the addition of thermal vias. The hottest region is the center of the uppermost tier, and a
major reason for its elevated temperature is because the tier below it is hot. Adding thermal vias to
remove heat from the second tier, therefore, effectively also significantly reduces the temperature
of the top tier. For this reason, the regions where the insertion of thermal vias is most effective are
those that have high thermal gradients.

Therefore the method in Ref. [6] employs an iterative update formula of the type

Knew
i = Kold

i

(∣∣goldi ∣∣
gi,ideal

)
i = x, y, z (47.1)

is employed, where Knew
i and Kold

i are, respectively, the new and old thermal conductivities in each
direction, before and after each iteration, goldi is the old thermal gradient, and gi,ideal is a heuristically
selected ideal thermal gradient.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 989 10-10-2008 #6

Physical Design for Three-Dimensional Circuits 989

0

−0.01
y

1
0.8
0.6

0.01
−1

−0.8
−0.6
−0.4
−0.2

z

0.4
0.2

0

�10�5 Before thermal via placement After thermal via placement�10�5

1
0.8
0.6

−1
−0.8
−0.6
−0.4
−0.2

0.4
0.2

0z

0

−0.01

0.01

y

−0.015 −0.005−0.01 0 0.005 0.01 0.015

x x
−0.015 −0.005−0.01 0.000 0.005 0.01 0.015

FIGURE 47.4 Thermal profile of struct before (left) and after (right) thermal via insertion. The top four layers
of the figure at right correspond to the four layers in the figure at left. (From Goplen, B. and Sapatnekar, S. S.,
IEEE Transactions on Computer-Aided Design, 26, 692, 2006. Copyright IEEE. With permission.)

Each iteration beginswith a distribution of the thermal vias; this distribution is corrected using the
above update formula, and theKnew

i value is then translated to a thermal via density, and then a precise
layout of thermal vias, using precharacterization. The iterations end when the desired temperature
profile is achieved. This essential iterative idea has also been used in other methods for thermal-
via insertion steps that are integrated within floorplanning, placement, and routing, as described in
succeeding sections. This general framework has been used in several other published techniques
that insert thermal vias either concurrently during another optimization, or as an independent step.

47.2.2 3D FLOORPLANNING

The 3D floorplanning problem is analogous to the 2D problem discussed in Chapters 8 through 13,
with all the constraints and opportunities that arise with the move to the third dimension. Typical
cost functions include a mix of the conventional wirelength and total area costs, and the temperature
and the number of intertier vias.

The approach in Ref. [7] presented one of the first approaches to 3D floorplanning, and used
the transitive closure graph (TCG) representation [8], described in Section 11.7, for each tier, and a
bucket structure for the third dimension. Each bucket represents a 2D region over all tiers, and stores,
for each tier, the indices of the blocks that intersect that bucket. In other words, the TCG and this
bucket structure can quickly determine any adjacency information. A simulated annealing engine is
then utilized, with the moves corresponding to perturbations within a tier and across tiers; in each
such case, the corresponding TCGs and buckets are updated, as necessary.

A simple thermal analysis procedure is built into this solution, using a finite difference approx-
imation of the thermal network to build an RC thermal network. Under the assumption that heat
flows purely in the z direction and there is no lateral heat conduction, the RCmodel obtained from a
finite difference approximation has a tree structure, and Elmore-like computations (Section 47.3.1)
can be performed to determine the temperature. The optimization heuristically attempts to make
this a self-fulfilling assumption, by discouraging lateral heat conduction, introducing a cost function
parameter that discourages strong horizontal gradients. A hybrid approach performs an exact thermal
analysis once every 20 iterations or so and uses the approximate approach for the other iterations.

The work in Ref. [9] expands the idea of thermally driven floorplanning by integrating thermal
via insertion into the simulated annealing procedure. A thermal analysis procedure based on random
walks [10] is built into themethod, and an iterative formula, similar to Ref. [6], is used in a thermal-via
insertion step between successive simulated annealing iterations.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 990 10-10-2008 #7

990 Handbook of Algorithms for Physical Design Automation

47.2.3 3D PLACEMENT

In the placement step, the precise positions of cells in a layout are determined, and they are arranged
in rows within the tiers of the 3D circuit. Because thermal considerations are particularly important
in 3D cell-based circuits, this procedure must spread the cells to achieve a reasonable temperature
distribution, while also capturing traditional placement requirements.

Several approaches to 3D placement have been proposed in the literature. The work in Ref. [11]
embeds the netlist hypergraph into the layout area. A recursive bipartitioning procedure is used to
assign nodes of the hypergraph to partitions, usingmincut as the primary objective and under partition
capacity constraints. Partitioning in the z direction corresponds to tier assignment, and xy partitions
to assigning standard cells to rows. No thermal considerations are taken into account.

The procedure in Ref. [5] presents a 3D-specific force-directed placer that incorporates thermal
objectives directly into the placer. Instead of the finite difference method that is used in many
floorplanners, this approach employs FEA, which discretizes the design space into regions known
as elements. For rectangular structures of the type encountered in integrated circuits, a rectangular
cuboidal element can simulate heat conduction in the lateral directions without aberrations in the
prime directions. As described in Chapter 3, FEA results in a matrix of the type

KT = P (47.2)

The left hand side matrix, K , known as the global stiffness matrix, can be constructed using stamps
for the finite elements and the boundary conditions. The FEA equations are solved rapidly using an
iterative linear solver, with clever adjustments of the convergence criteria to achieve greater or lesser
accuracy, as required at different stages of the iterative placement process.

The placement engine is based on a force-directed approach, the key idea of which is described
in Chapter 18. Attractive forces are created between interconnected cells, and these are proportional
to the quadratic function of the cell coordinates that represents the Euclidean distance between the
blocks. The constants of proportionality are chosen to be higher in the z direction to discourage
intertier vias.

Apart from design criteria such as cell overlap, in the 3D context, thermal criteria are also used
to generate repulsive forces, to prevent hot spots. The temperature gradient (which itself can be
related to the stiffness matrix and its derivative) is used to determine the magnitudes and directions
of these forces.

Once the entire system of attractive and repulsive forces is generated, repulsive forces are added,
the system is solved for the minimum energy state, that is, the equilibrium location. Ideally, this
minimizes the wirelengths while at the same time satisfying the other design criteria such as the
temperature distribution. The iterative force-directed approach follows the following steps in the
main loop. Initially, forces are updated based on the previous placement. Using these new forces,
the cell positions are then calculated. These two steps of calculating forces and finding cell positions
are repeated until the exit criteria are satisfied. The specifics of the force-directed approach to thermal
placement, including themathematical details, are presented in Ref. [5]. Once the iterations converge,
a final postprocessing step is used to legalize the placement. Even though forces have been added
to discourage overlaps, the force-directed engine solves the problem in the continuous domain, and
the task of legalization is to align cells to tiers, and to rows within each tier.

Another method in Ref. [12] maps an existing 2D placement to a 3D placement through trans-
formations based on dividing the layout into 2k regions, for integer values of k, and then defining
local transformations to heuristically refine the layout.

More recent work in Ref. [13] observes that because 3D layouts have very limited flexibility in
the third dimension (with a small number of layers and a fixed set of discrete locations), partitioning
works better than a force-directed method. Accordingly, this work performs global placement using
recursive bisectioning. Thermal effects are incorporated through thermal resistance reduction nets,
which are attractive forces that induce high power nets to remain close to the heat sink. The global

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 991 10-10-2008 #8

Physical Design for Three-Dimensional Circuits 991

placement step is followed by coarse legalization, inwhich a novel cell-shifting approach is proposed.
This generalizes the methods in FastPlace, described in Chapter 18, by allowing shift moves to adjust
the boundaries of both sparsely and densely populated cells using a computationally simple method.
Finally, detailed legalization generates a final nonoverlapping layout. The approach is shown to
provide excellent trade-offs between parameters such as the number of interlayer vias, wirelength,
and temperature.

47.2.4 ROUTING ALGORITHMS

During routing, several objectives and constraints must be taken into consideration, including avoid-
ing blockages due to areas occupied by thermal vias, incorporating the effect of temperature on the
delays of the routedwires, and of course, traditional objectives such aswirelength, timing, congestion,
and routing completion.

Once the cells have been placed and the locations of the thermal vias determined, the routing
stage finds the optimal interconnections between the wires. As in 2D routing, it is important to
optimize the wirelength, the delay, and the congestion. In addition, several 3D-specific issues come
into play. First, the delay of a wire increases with its temperature, so that more critical wires should
avoid the hottest regions, as far as possible. Second, intertier vias are a valuable resource that must
be optimally allocated among the nets. Third, congestion management and blockage avoidance is
more complex with the addition of a third dimension. For instance, a signal via or thermal via that
spans two or more tiers constitutes a blockage that wires must navigate around.

Consider the problem of routing in a three-tier technology, as illustrated in Figure 47.5. The
layout is gridded into rectangular tiles, each with a horizontal and vertical capacity that determines
the number of wires that can traverse the tile, and an intertier via capacity that determines the number
of free vias available in that tile. These capacities account for the resources allocated for nonsignal
wires (e.g., power and clock wires) as well as the resources used by thermal vias. For a single net,
as shown in the figure, the degrees of freedom that are available are in choosing the locations of the
intertier vias, and selecting the precise routes within each tier. The locations of intertier vias will
depend on the resource contention for vias within each grid. Moreover, critical wires should avoid
the high-temperature tiles, as far as possible.

The work in Ref. [14] presents a thermally conscious router, using a multilevel routing paradigm
similar to Ref. [15,16], with integrated intertier via planning and incorporating thermal considera-
tions. An initial routing solution is constructed by building a 3D minimum spanning tree (MST) for
each multipin net, and using maze routing to avoid obstacles.

At each level of the multilevel scheme, the intertier via planning problem assigns vias in a given
region at level k − 1 of the multilevel hierarchy to tiles at level k. The problem is formulated as

Tier 1

Tier 2

Tier 3

FIGURE 47.5 Example route for a net in a three-tier 3D technology. (From Ababei, C., et al., IEEE Design
and Test, 22, 520, 2005. Copyright IEEE. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 992 10-10-2008 #9

992 Handbook of Algorithms for Physical Design Automation

a mincost maxflow problem, which has the form of a transportation problem. The flow graph is
constructed as follows:

• Source node of the flow graph is connected through directed edges to a set of nodes vi,
representing candidate thermal vias; the edges have capacity 1 and cost 0.

• Directed edges connect a second set of nodes, Tj, from each tile to the sink node, with
capacity equaling the number of vias that the tile can contain, and cost zero. The capacity
is computed using a heuristic approach that takes into account the temperature difference
between the tile and the one directly in the tier below it (under the assumption that heat flows
downward toward the sink); the thermal analysis is based on a commercial FEA solver.

• Source and sink both have cost m, which equals the number of intertier vias in the entire
region.

• Finally, a node vi is connected to a tile Tj through an arc with infinite capacity and cost
equaling the estimated wirelength of assigning an intertier via vi to tile Tj.

Another approach to 3D routing, presented in Ref. [17], combines the problem of 3D routing
with heat removal by inserting thermal vias in the z direction, and introduces the concept of thermal
wires. Like a thermal via, a thermal wire is a dummy object: it has no electrical function, but is used
to spread heat in the lateral direction. Each tier is tiled into a set of regions, as shown in Figure 47.6.

The global routing scheme goes through two phases. In phase I, an initial routing solution is
constructed. A 3D MST is built for each multipin net, and based on the corresponding two-pin
decomposition, the routing congestion is statistically estimated over each lateral routing edge using
the method in Ref. [18]. This congestion model is extended to 3D by assuming that a two-pin net
with pins on different tiers has an equal probability of utilizing any intertier via position within the
bounding box defined by the pins.

A recursive bipartitioning scheme is then used to assign intertier vias. This is also formulated
as a transportation problem, but the formulation is different from the multilevel method described
above. Signal intertier via assignment is then performed across the cut in each recursive bipartition.

Grid cell at
the corner

Routing grid

Routing graph

Vertex in
routing graph

Vertical
routing edge

Grid cell
boundary

FIGURE 47.6 Routing grid and routing graph for a four-tier 3D circuit. (FromZhang, T., et al., In Proceedings
of the Asia-South Pacific Design Automation Conference, 2006. Copyright IEEE. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 993 10-10-2008 #10

Physical Design for Three-Dimensional Circuits 993

(a) (b)

Assign
signal
vias
first

Assign
signal vias

after
higher-level
assignment

Layer 0

Layer 1

Layer 2

Layer 3

Group 0

Group 1

(Capacity, cost) pair

N1

N0

N4

N 3

N 2

C 0

C3

C2

C1
S T

(1, 0)
(1, cost (Ni, Cj))

(Uj, 0)

FIGURE 47.7 (a) Example of hierarchical signal via assignment for a four-tier circuit. (b) Example of min-
cost network flow heuristics to solve signal via assignment problem at each level of hierarchy. (From Zhang,
T., et al., In Proceedings of the Asia-South Pacific Design Automation Conference, 2006. Copyright IEEE.With
permission.)

Figure 47.7a shows an example of signal intertier via assignment for a decomposed two-pin signal
net in a four-tier circuit with two levels of hierarchy. The signal intertier via assignment is first
performed at the boundary of group 0 and group 1 at topmost level, and then it is processed for
tier boundary within each group. At each level of the hierarchy, the problem of signal intertier via
assignment is formulated as a min-cost network flow.

Figure 47.7b shows the network flow graph for assigning signal intertier vias of five intertier nets
to four possible intertier via positions. The idea is to assign each net that crosses the cut to an intertier
via. Each intertier net is represented by a node Ni in the network flow graph; each possible intertier
via position is indicated by a node Cj. If Cj is within the bounding box of the two-pin intertier net
Ni, we build a directed edge from Ni to Cj, and set the capacity to be 1, the cost of the edge to be
cost(Ni, Cj). The cost(Ni, Cj) is evaluated as the shortest path cost for assigning intertier via position
Cj to net Ni when both pins of Ni are on the two neighboring tiers; otherwise it is evaluated as the
average shortest path cost over all possible unassigned signal intertier via positions in lower levels
of the hierarchy. The shortest path cost is obtained with Dijkstra’s algorithm in the 2D congestion
map generated from the previous estimation step, and the cost function for crossing a lateral routing
edge is a combination of edge length and an overflow cost function similar to that in Ref. [19]. The
supply at the source, equaling the demand at the sinks, is N , the number of nets.

Finally, once the intertier vias are fixed, the problem reduces to a 2D routing problem in each
tier, and maze routing is used to route the design.

Next, in phase II, a linear programming approach is used to assign thermal vias and thermal wires.
A thermal analysis is performed, and fast sensitivity analysis using the adjoint networkmethod,which
has the cost of a single thermal simulation. The benefit of adding thermal vias, for relatively small
perturbations in the via density, is given by a product of the sensitivity and the via density, a linear
function. The objective function is a sum of via densities and is also linear. Additional constraints are
added in the formulation to permit overflows, and a sequence of linear programs is solved to arrive
at the solution.

47.3 3D FPGA DESIGNS

As in the case of standard cell designs, the idea of building 3D designs using FPGAs is not new,
and there has been some earlier work in this area. Alexander et al. [20] proposed using the MCM
(multichip module) technology with through die vias to build 3D FPGAs, and enumerated a number
of issues that should be considered in building 3DFPGAs such as yield, channelwidth, thermal issues,

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 994 10-10-2008 #11

994 Handbook of Algorithms for Physical Design Automation

and placement and routing. A 3D FPGA architecture called Rothko, in which each RLB (routing and
logic block) tile is connected to the RLB directly above and below it (i.e., no multilength segments
in the z direction), was presented in Ref. [21]. The process technology that the authors assumed was
that of Northeastern University’s 3D fabrication technology, which was similar to that of MIT’s [4].
A more advanced version of Rothko’s work appears in Ref. [22] in which the authors propose
placing the routing in one layer and logic on another for more efficient layer utilization. Other
notable contributions include the work by Lin et al. [23] and Chiricescu et al. [24], who propose
placing memory and routing elements functions in different tiers; Campenhout et al. [25], who
proposes using optical interconnects to provide communications between tiers of a 3D FPGA; and
Wu et al. [26], who propose a universal switchbox for 3D FPGAs.

Recent 3D FPGA CAD efforts can be classified into estimation methods and placement and
routing algorithms. In the estimation methods, analytical models are developed to estimate 3D
wirelength and channel width, and as a result estimating the power consumption and area of a 3D
FPGA design. Because such methods do not require costly placement and routing steps, they can
predict resource requirements very fast at the cost of estimation accuracy. In the placement and routing
methods, specialized CAD algorithms are developed to target specific needs of a 3D architecture.
In the following sections we discuss both categories: estimation and placement/routing.

47.3.1 ESTIMATIONMETHODS

Analytical models for estimating channel width in gate arrays were studied by Gamal [27]. He
observed that the channel width follows a Poisson distribution and the average channel width W is
estimated as

W = γL

2
(47.3)

where
γ is the average number of edges incident to logic blocks
L is the average wirelength

Later studies have shown that better estimations can be obtained by considering multiterminal
nets and their wirelength distributions. Rahman et al. [28] extend these models for a 2D FPGA with
unit routing segments as follows:

W =

2
√
N−2∑
l=1

lf (l)Xfpgn

2Net
(47.4)

where
N is the number of CLBs (configurable logic block, or the basic unit of the FPGA logic)
l is the wirelength
f (l) is the probability density function of the wirelength and can be derived from the Rent’s rule

ParametersXfpga and et are architecture and placement and routing dependent.Xfpga is a multi- to two-
terminal routing adjustment factor and et is the channel utilization factor. Typically 5–10 percent
of the routing segments are shared among multiple terminals of a multiterminal net, resulting in
Xfpga = 90–95 percent. Channel utilization et is less than one because of detours in the routing.

For a 3D FPGA, they assume Fs = 5 for every switch (where Fs is as defined in Section 45.4.3.)
where Nz is the number of 3D tiers. The maximum length in the third dimension is (Nz − 1)tz where

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 995 10-10-2008 #12

Physical Design for Three-Dimensional Circuits 995

tz is the distance between adjacent tiers. The average channel width in a 3D FPGA is estimated as
the following:

W =

2
√
N/Nz−2+(Nz−1)tz∑

l=1

lf3D (l)Xfpga

(
2N + (Nz−1)N

Nz

)
et

(47.5)

where f3D(l) is the 3D wirelength distribution function.
The analytical model for channel width estimation is further improved in Ref. [29] by factoring

in the under-utilizationof the CLBs, which changes the number of nets by a factor of up+1 and the chip
area by 1/u, where u is the CLB utilization factor and p is the Rent’s exponent. Interested readers are
referred to Ref. [29] for details on the improved formulation. The authors validate their analytical
model by comparing the estimated channel width to channel widths obtained by placement and
detailed routing of benchmark circuits. They show an average of 11 percent error in their estimation.
A brief description of their placement and routing algorithm is presented in Section 47.3.2.

The reduction in channel width of a 3D design compared to the 2D version could potentially
result in fewer programmable switches per CLB/switchbox tile and smaller 2D distance between
CLBs. The area of an FPGA tile is AL + Ac + As where AL is the area of the logic blocks in a CLB,
Ac is the area of the connection box, and As is the area of the switchbox. Comparing a 2D versus 3D
implementation, AL does not change. Ac reduces linearly with a decrease in channel width, and As

is a linear function of the channel width and a quadratic function of Fs. The exact numbers depend
on the sizing of the transistors and the implementation of the switches and connection box. For
example, in Ref. [28], Ac = (20 + 13.5 × W) × O + (6 log2(W) + 35.5 × W) × I times the area
of a minimum width transistor where O and I are the number of output and input pins connected to
a CLB. Furthermore, in Ref. [28] As = 13.5 × W × Fs × (Fs + 1)/2. Note that in a 3D FPGA, the
channelwidth is likely to decrease compared to a 2D implementation, but Fs = 5 in a 3D architecture
studied in Ref. [28] compared to a 2D implementation with Fs = 3. If the channel width reduction
is significant (e.g., more than 1/3), then the area of a CLB/switchbox tile will be smaller in a 3D
FPGA compared to a 2D FPGA.

The reduction of the tile area will likely result in a decrease in power consumption and increased
clock frequency because the distance between adjacent CLBs decreases and hence the physical
lengths of the wire segments reduce. Although a more detailed analysis would have to consider
the countereffect of intertier via parasitics on delay and power. The authors in Ref. [28] use an
approximate model in which they assume the delay of an intertier routing segment is comparable to
that of a 2D wire segment. Furthermore, they ignore the under-utilization of long wire segments. As
a result, their delay and power improvement estimations are on the optimistic side.

Another study that uses analytical models to estimate potential benefits of 3D fabrication
technologies was presented by Lin et al. [23]. Assuming a monolithic 3D fabrication technology
with short intertier vias, they propose a 2.5D FPGA architecture in which the logic and routing tiles
are still placed in a 2D plane but the transistors implementing the tiles are stacked vertically. For
example, if three device layers are provided by the fabrication technology, the SRAMs that hold the
programming bits of the FPGA tiles could be placed on the top tier, pass transistors could be placed
in the middle tier, and routing resource buffers and logic block transistors could be placed on the
lower tier. Note that the CLB/switchbox tiles are still layed out in a 2D plane (unlike the 3D floorplan
proposed by Rahman et al. [23]). See Figure 47.8a and b for two examples. If the area utilization of
the three tiers is close to 100 percent, then the area of a three-tier FPGA could be 33 percent of a
regular CMOS FPGA at best. The authors further argue that if a RAM technology with smaller area
compared to 6T SRAM is used, then the area reduction would be even greater because a significant
portion of the area of an FPGA is occupied by the SRAM cells holding the configuration bits. For
example, in Figure 47.8c, the authors assume a RAM technology is used whose area is 0.7 times the
area of a regular CMOS SRAM.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 996 10-10-2008 #13

996 Handbook of Algorithms for Physical Design Automation

LB-SRAM

PT 60 percent

19 percent RR-SRAM 81 percent

Unoccupied 40 percent

Unoccupied

Scenario (a): 3D-FPGA Area = 0.43A.

LB 33 percent RR 39 percent CMOS

Switch

Memory

CMOS

Switch

Memory

CMOS

Scenario (c): 3D-FPGA Area = 0.31A.

Scenario (b): 3D-FPGA Area = 0.38A.

Redistributed PT+RR-SRAM

LB 45 percent

LB 37 percent RR 44 percent 19 percent

RR 55 percent

PT 84 percent

PT 61 percent Unoccupied 39 percent

16 percent

LB-SRAM + RR-SRAM

LB-SRAM + RR-SRAM

Switch

Memory

Unoccupied 28 percent

FIGURE 47.8 Using a monolithic 3D technology to distribute transistors of an FPGA. (From Lin, M., et al.,
In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 2006.) A,
area of a baseline 2D FPGA; LB, logic block; RR, routing resources; PT, pass transistor. In parts (a) and (b)
regular CMOS SRAMs are used and in part (c) RAM cells with 0.7 times the area of an SRAM are used.

Note that this approach is not applicable to a technology similar to the one assumed in Ref. [28]
because 3D vias need to be very small to produce any meaningful area savings. In the layout
implementation of Ref. [23], significantly more intertier vias are used compared to Ref. [28].

Unlike Rahman’s work [28], the layout in Lin’s work [23] does not result in any channel width
reduction because the underlying placement of the tiles does not change (but the size of the tiles
reduces). Instead, the reduction in footprint area of a tile results in shorter physical distances between
CLBs and hence smaller wirelengths, area and power consumption of a 3D implementation compared
to a 2DFPGA. The amount of area reduction depends on the size of the RAM cells used to implement
the configurationmemory (e.g., in Figure 47.8b the area is 0.38 of a 2D FPGA, while in Figure 47.8c
the area is 0.31 times the area of the 2D FPGA). They study area, performance and power benefits
of a monolithic 3D technology as a function of the ratio of the RAM cell size compared to a regular
6T CMOS SRAM cell for a number of process technologies.Wirelength reduction is the square root
of the area reduction, which in turn depends on the RAM size reduction. Hence, in the examples of
Figure 47.8b and c wirelength is

√
0.38 = 0.61 and

√
0.31 = 0.56 times the wirelength of a 2D

implementation.
Lin et al. consider 3D benefits for a number of technology nodes (180 nm, 130 nm, 90 nm, and

65 nm using the Berkeley Predictive Technology Model) and various wirelength reduction factors
0.56 ≤ r ≤ 0.61. Because various circuit parameters such as pass transistor sizes, number of
buffers on long segments, buffer sizes, and other circuit parameters should be optimized as functions

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 997 10-10-2008 #14

Physical Design for Three-Dimensional Circuits 997

of both technology node parameters and wiring parasitics, the authors develop analytical models
for the delay of each segment type based on the Elmore delay model and circuit parameters. For
any given combination of technology parameters and wirelength reduction, they optimize circuit
parameters such as buffer sizes, and then use the optimized delay values to study performance and
power benefits of 3D. Note that in their method they can plot the delay of each segment type (such as
single, double, hex) as a function of technology node and wirelength reduction factor r. As a result,
their estimations of delay improvements at the system level are more accurate compared to a method
that only studies average wirelength reductions. Assuming the configuration of Figure 47.8c is used
on a 65 nm technology, the authors report an estimated 3.2 times higher logic density, 1.7 times
lower critical path delay, and 1.7 times lower total dynamic power consumption than the baseline
2D-FPGA fabricated in the same technology node.

47.3.2 PLACEMENT AND ROUTING ALGORITHMS

Spiffy [30,31] was the first 3D placement and routing tool for FPGAs. Assuming the MCM fabri-
cation technology for 3D FPGAs proposed in Ref. [20], it uses a divide-and-conquer approach to
recursively partition the netlist and assign the partitions to physical subregions on the (3D) chip.
Terminal propagation is applied by fixing the location in which a net enters a partition from a
neighboring partition and rectilinear Steiner tree global routing is attempted simultaneously. Such a
strategy results in close interaction between global routing and recursive partitioning-based place-
ment. In addition to partitioning-basedplacement, the authors improve the quality of placement using
simulated annealing.

As mentioned in Section 47.3.1, Rahman et al. propose a modification of a 2D placement and
routing CAD flow to target 3D designs. Their placement method consists of two phases. In phase 1,
an hybrid simulated annealing (Chapter 16) and force-directed method (Chapter 18) is used to move
CLBs across tiers. Basically, an individual move of the annealing process in phase 1 moves a CLB
to the center of gravity of its adjacent CLBs. Phase 2 of the placement locks each CLB in its the tier
it was placed at the end of phase 1 and only allows movements within tiers. The placement phase is
followed by global and detailed routing steps, which are similar to their 2D counterparts.

Ababei et al. [32] proposed a 3D FPGA CAD flow called TPR (three-dimensional place and
route) that uses a partitioning-base placement phase to distribute CLBs across partitionswhile simul-
taneously minimizing both cutsize (hence the number of required 3D vias) and wirelength (hence
reducing circuit delay). One key difference between Ababei’s work and previous work such as [31]
and [28] is that in previous 3D FPGA studies, the authors assume that every track in a channel is 3D
(i.e., Fs = 5), whereas in Ababei’s work only a subset of tracks in a channel connect to 3D switches
(i.e., the majority of switches route signals within a tier and have a switch flexibility of Fs = 3 and
other switches have Fs = 5). This results in significant area, delay, and power savings.

Another difference between TPR and other 3D FPGA CAD efforts is the optimization steps that
they use to explicitly minimize the number of intertier vias, and the assumption that multisegment
routing is used in the third dimension as well as within tiers.

Figure 47.9a shows an example of a 3D FPGA where only a subset of the switches in the
switchbox provide connections between tiers. Figure 47.9b shows such a switchbox with a mixture
of switch flexibilities of Fs = 5 and Fs = 3. Note that the reduced area in the switchbox should
be carefully balanced with switch flexibility so that routability does not degrade. Switchboxes with
too much connectivity will excessively waste area, and meager intertier via counts will hurt the
performance of the design.

TPR is an extension of the VPR [33] algorithm. The flow of the TPR CAD tool is shown in
Figure 47.10. The placement algorithm first employs a partitioning step using the hMetis algorithm
[34] to divide the circuit into a number of balanced partitions, equal to the number of tiers for 3D
integration. The goal of this first mincut partitioning is to minimize the connections between tiers,
which translates into reducing the number of vertical (i.e., intertier) wires and decreasing the area

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 998 10-10-2008 #15

998 Handbook of Algorithms for Physical Design Automation

2D switch box

Fs = 3

Fs = 3

Fs = 3

Fs = 3

Fs = 5

Fs = 3

Fs = 5
y y

x x
z

(a) 3D FPGA (b) Example 3D FPGA switch and its
connectivity

3D switch box

FIGURE 47.9 3DFPGAand switch example. (FromAbabei, C., et al., IEEETransactions on Computer-Aided
Design, 25, 1132, 2006. Copyright IEEE. With permission.)

T-VPack Circuit (.blif)

Tech mapped
netlist (.net)

Architecture

3D-ADOpt TPR tool

Partitioning and assignment to layers

Constraint driven placement/
simulated annealing

Placement and routing info

3D detailed routing

FIGURE 47.10 Flowof the TPR tool. (FromAbabei, C., et al., IEEETransactions onComputer-AidedDesign,
25, 1132, 2006. Copyright IEEE. With permission.)

overhead associated with 3D switches as discussed before. After dividing the netlist into tiers, TPR
continueswith the placement of each tier using a hybrid approach that combines top-downpartitioning
and simulated annealing [35]. The annealing step moves cells mostly within tiers. Finally, the cells
are routed to obtain a placed and routed solution. The routing algorithm is very similar to the VPR’s
routing algorithm except that intertier vias are heavily penalized to avoid excessive usage of them.

47.3.2.1 Partitioning the Circuit between Tiers

The TPR step that performs partitioning and tier assignment of the circuit is shown conceptually
in Figure 47.11. After the netlist is partitioned using hMetis, a novel linear placement approach is
used to arrange the tiers such that wirelength and the maximum cutsize between adjacent tiers is
minimized. This is achieved by mapping this problem to that of minimizing the bandwidth of a
matrix,∗ using an efficient matrix bandwidth minimization heuristic.

∗ The bandwidth of a matrix is defined as the maximum bandwidth of all its rows. The bandwidth of a row is defined as the
distance between the first and last nonzero entries.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 999 10-10-2008 #16

Physical Design for Three-Dimensional Circuits 999

FIGURE 47.11 Partitioning of the netlist into tiers. (FromAbabei, C., et al., IEEE Transactions on Computer-
Aided Design, 25, 1132, 2006. Copyright IEEE. With permission.)

Figure 47.12 shows a graph in which each node corresponds to a cluster from the graph in
Figure 47.11. An E–Vmatrix is formed in which each row corresponds to an edge, and the columns
correspond to vertices. An entry aij in the matrix is nonzero if vertex j is incident to edge i, and
zero otherwise, and the bandwidth of this matrix is sought to be minimized by choosing an optimal
ordering of the vertices.

Intuitively, we would like to minimize the bandwidth of every row, because the bandwidth of a
row represents how many tiers the net corresponding to that row spans. Furthermore, it is desirable
to distribute the bands of different rows among all columns, because the number of bands enclosing
a particular column translates into the number of vertical vias that have to pass through the tier
corresponding to that column. Minimizing the matrix bandwidth achieves both goals: it minimizes
the span of every row (intertier wirelength minimization), and distributes the bands across columns
(cutsize minimization). Details of the bandwidth minimization problem can be found in Ref. [32].
When the bandwidth minimization algorithm is run on the example on the left of Figure 47.12, the
linear arrangement on the right is created.

47.3.2.2 Partitioning-Based Placement within Tiers

After the initial tier assignment, placement is performed on each tier starting with the top tier,
proceeding tier after tier. The placement of every tier is based on edge-weighted quad partitioning
using the hMetis partitioning algorithm, and is similar to the approach in Ref. [35], which has the
same quality as VPR but at three to four times shorter runtimes. Edge weights are usually computed
inversely proportional to the timing slack of the correspondingnets. To improve timing, the bounding

1 0 1 0 0 0

1

a

b

c

d

e

a

 b

c

d

e

a

c

d

b

e

a

c

d

b

e

Vertices

E
dg

es

Initial: WL = 11, Max-cut = 3 Final: WL = 7, Max-cut = 2

2 3 4 5 6

0 1 0 0 0 1

0 0 1 1 0 0

0 0 1 0 0 1

0 0 0 0 1 1

1 1 0 0 0 0

1 3 2 6 4 5

0 0 1 1 0 0

0 1 0 0 1 0

0 1 0 1 0 0

0 0 0 1 0 1

1 1 0 0 0 0

1 3 2 6 4 5

0 1 0 0 1 0

0 1 0 1 0 0

0 0 1 1 0 0

0 0 0 1 0 1

1 0 1 0 0 0

1 4 3 2 6 5

0 1 1 0 0 0

0 0 1 0 1 0

0 0 0 1 1 0

0 0 0 0 1 1

1 2
a

c
b

e
d

3 4 5 6
a

c
d

b e
1 4 3 2 6 5

FIGURE 47.12 E-V matrix and steps to minimize both wire length and cutsize. (From Ababei, C., et al.,
IEEE Transactions on Computer-Aided Design, 25, 1132, 2006. Copyright IEEE. With permission.)

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 1000 10-10-2008 #17

1000 Handbook of Algorithms for Physical Design Automation

Num_layers(e) = 2

Spanz = 2

Num_layers(e) = 3

Spanz = 2

FIGURE 47.13 Example showing the difference between a net's span and number of tiers. (From Ababei, C.,
et al., IEEE Transactions on Computer-Aided Design, 25, 1132, 2006. Copyright IEEE. With permission.)

box of the terminals of a critical net placed on a tier is projected to the lower tiers and used as a
placement constraint for other terminals. More details of the partitioning-based placement phase can
be found in Ref. [32].

47.3.2.3 Simulated Annealing Placement Phase

Following the partitioning-based placement step, a 3D-adapted version of VPR [33] is used in the
low-temperature annealing phase to further improve wirelength and routability. The following cost
function is used for each net.

Cost3D(e) = q.Cost2D(e) + α.Spanz(e) + β.numTiers(e) (47.6)

where
Cost2D is the half-perimeter size of the 2D projection of the bounding box of net e
Spanz(e) is the total span of the net between tiers
numTiers(e) is the number of tiers on which the terminals of the net are distributed
parameters q, α, and β are tuning parameters (q has the same role as in VPR)

Figure 47.13 shows an example to illustrate why both Spanz and numTiers should be used. In a
3D routing structure that employs multisegment intertier connections, the left figure is more likely
to use fewer vertical connections (of length 2) to connect the terminals on the first and the third tiers.

REFERENCES
1. J. W. Joyner, P. Zarkesh-Ha, and J. D. Meindl. Global interconnect design in a three-dimensional system-

on-a-chip. IEEE Transactions on VLSI Systems, 12(4):367–372, April 2004.
2. K. W. Guarini, A. W. Topol, M. Leong, R. Yu, L. Shi, M. R. Newport, D. J. Frank, D. V. Singh, G. M.

Cohen, S. V. Nitta, D. C. Boyd, P. A. O’Neil, S. L. Tempest, H. B. Pogpe, S. Purushotharnan, and W. E.
Haensch. Electrical integrity of state-of-the-art 0.13 µm SOI CMOS devices and circuits transferred for
three-dimensional (3D) integrated circuit (IC) fabrication. In Technical Digest of the IEEE International
Electron Devices Meeting, San Francisco, CA, pp. 943–945, 2002.

3. J. Burns, L. McIlrath, J. Hopwood, C. Keast, D. P. Vu, K. Warner, and P. Wyatt. An SOI-based three
dimensional integrated circuit technology. In IEEE International SOI Conference, Williamsburg, VA,
pp. 20–21, October 2000.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 1001 10-10-2008 #18

Physical Design for Three-Dimensional Circuits 1001

4. R. Reif, A. Fan, K. -N. Chen, and S. Das. Fabrication technologies for three-dimensional integrated circuits.
In Proceedings of the International Symposium on Quality Electronic Design (ISQED), Wakefield, MA,
pp. 33–37, 2002.

5. B. Goplen and S. S. Sapatnekar. Efficient thermal placement of standard cells in 3D ICs using a force
directed approach. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design,
San Jose, CA, pp. 86–89, 2003.

6. B. Goplen and S. S. Sapatnekar. Thermal via placement in 3D ICs. InProceedings of the ACM International
Symposium on Physical Design, San Francisco, CA, pp. 167–174, 2005.

7. J. Cong, J. Wei, and Y. Zhang. A thermal-driven floorplanning algorithm for 3D ICs. In Proceedings of the
ACM International Symposium on Physical Design, Phoenix, AZ, pp. 306–313, 2004.

8. J. -M. Lin andY. -W.Chang. TCG:A transitive closure graph based representation for non-slicing floorplans.
In Proceedings of the ACM/IEEE Design Automation Conference, Las Vegas, NV, pp. 764–769, 2001.

9. E. Wong and S. K. Lim. 3D floorplanning with thermal vias. In Proceedings of Design, Automation and
Test in Europe Conference, Munich, Germany, pp. 878–883, 2006.

10. H. Qian, S. R. Nassif, and S. S. Sapatnekar. Power grid analysis using random walks. IEEE Transactions
on Computer-Aided Design, 24(8):1204–1224, August 2005.

11. S. Das, A. Chandrakasan, and R. Reif. Design tools for 3-D integrated circuits. In Proceedings of the
Asia-South Pacific Design Automation Conference, Kitakyushu, Japan, pp. 53–56, 2003.

12. J. Cong, G. Luo, J. Wei, and Y. Zhang. Thermal-aware 3D IC placement via transformation. In Proceedings
of the Asia-South Pacific Design Automation Conference, Yokohama, Japan, pp. 780–785, 2007.

13. B. Goplen and S. S. Sapatnekar. Placement of 3D ICs with thermal and interlayer via considerations. In
Proceedings of the ACM/IEEE Design Automation Conference, San Diego, CA, pp. 626–631, 2007.

14. J. Cong and Y. Zhang. Thermal-driven multilevel routing for 3-D ICs. In Proceedings of the Asia-South
Pacific Design Automation Conference, Shanghai, China, pp. 121–126, 2005.

15. J. Cong, J. Fang, and Y. Zhang. Multilevel approach to full-chip gridless routing. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, pp. 234–241, 2001.

16. J. Cong, M. Xie, and Y. Zhang. An enhanced multilevel routing system. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design, San Jose, CA, pp. 51–58, 2002.

17. T. Zhang, Y. Zhan, and S. S. Sapatnekar. Temperature-aware routing in 3D ICs. In Proceedings of the
Asia-South Pacific Design Automation Conference, Yokohama, Japan, pp. 309–314, 2006.

18. J. Westra, C. Bartels, and P. Groeneveld. Probabilistic congestion prediction. In Proceedings of the ACM
International Symposium on Physical Design, Phoenix, AZ, pp. 204–209, 2004.

19. R. T. Hadsell and P. H. Madden. Improved global routing through congestion estimation. In Proceedings
of the ACM/IEEE Design Automation Conference, Anaheim, CA, pp. 28–34, 2003.

20. M. Alexander, J. Cohoon, J. Colflesh, J. Karro, and G. Robins. Three-dimensional field-programmable gate
arrays. In Proceedings of the International ASIC Conference, Austin, TX, pp. 253–256, 1995.

21. M. Leeser, W. Meleis, M. Vai, S. Chiricescu, W. Xu, and P. Zavracky. Rothko: A three-dimensional FPGA.
IEEE Design and Test of Computers, 15(1):16–23, January–March 1998.

22. S. Chiricescu, M. Leeser, and M. M. Vai. Design and analysis of a dynamically reconfigurable three-
dimensional FPGA. IEEE Transactions on VLSI Systems, 9(1):186–196, 2001.

23. M. Lin, A. El Gamal, Y. -C. Lu, and S.Wong. Performance benefits of monolithically stacked 3D-FPGA. In
Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey,
CA, pp. 113–122, 2006, New York, ACM Press.

24. S. M. S. A. Chiricescu and M. M. Vai. A three-dimensional FPGA with an integrated memory for
in-application reconfiguration data. In Proceedings of the IEEE International Symposium on Circuits and
Systems, volume 2, pp. 232–235, Monterey, CA, 1998.

25. J. van Campenhout, H. Van Marck, J. Depreitere, and J. Dambre. Optoelectronic FPGAs. IEEE Journal of
Selected Topics in Quantum Electronics, 5(2):306–315, 1999.

26. G. -M. Wu, M. Shyu, and Y. -W. Chang. Universal switch blocks for three-dimensional FPGA design. In
Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey,
CA, p. 254, 1999.

27. A. Gamal. Two dimensional model for interconnections in master slice integrated circuits. IEEE
Transactions on Circuits and Systems, 28:127–138, February 1981.

28. A. Rahman, S. Das, A. P. Chandrakasan, and R. Reif.Wiring requirement and three-dimensional integration
technology for field programmable gate arrays. IEEE Transactions on VLSI Systems, 11(1):44–54, 2003.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C047 Finals Page 1002 10-10-2008 #19

1002 Handbook of Algorithms for Physical Design Automation

29. Y. -S. Kwon, P. Lajevardi, A. P. Chandrakasan, F. Honoré, and D. E. Troxel. A 3-D FPGA wire resource
predictionmodel validated using a 3-D placement and routing tool. In Proceedings of the 2005 International
Workshop on System Level Interconnect Prediction (SLIP), San Francisco, CA, pp. 65–72, 2005.

30. M. Alexander, J. Cohoon, J. Colflesh, J. Karro, E. Peters, and G. Robins. Placement and routing for three-
dimensional FPGAs. In Fourth Canadian Workshop on Field-Programmable Devices, Toronto, Canada,
pp. 11–18, 1996.

31. J. Karro and J. P. Cohoon. A spiffy tool for the simultaneous placement and global routing for three-
dimensional field-programmable gate arrays. In Proceedings of the Great Lakes Symposium on VLSI, Ann
Arbor, MI, pp. 230–231, 1999.

32. C. Ababei, H. Mogal, and K. Bazargan. Three-dimensional place and route for FPGAs. IEEE Transactions
on Computer-Aided Design, 25(6):1132–1140, June 2006.

33. V. Betz and J. Rose. VPR: A new packing placement and routing tool for FPGA research. In
Field-Programmable Logic and Applications, London, U.K., pp. 213–222, 1997.

34. G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multi-level hypergraph partitioning: Applica-
tions in VLSI design. In Proceedings of the ACM/IEEE Design Automation Conference, Anaheim, CA,
pp. 526–529, 1997.

35. P. Maidee, C. Ababei, and K. Bazargan. Fast timing-driven partitioning-based placement for island
style FPGAs. In Proceedings of the ACM/IEEE Design Automation Conference, Anaheim, CA,
pp. 598–603, 2003.

36. C. Ababei, Y. Feng, B. Goplen, H.Mogal, T. Zhang, K. Bazargan, and S. Sapatnekar. Placement and routing
in 3D integrated circuits. IEEE Design and Test, 22(6):520–531, November–December 2005.

37. B. Goplen and S. S. Sapatnekar. Placement of thermal vias in 3-D ICs using various thermal objectives.
IEEE Transactions on Computer-Aided Design, 26(4):692–709, April 2006.

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1003 9-10-2008 #3

Index
A
Amplitude and intensity, for conventional mask, 709
Absorption metric, role of, 114
Abutment constraints, 172, 175–176, 199, 201
Accurate gate delay, steps of, 549
ACG, see Analytical constraint generation
Across chip linewidth variation (ACLV), 774
Actel ProASIC3 logic blocks, 947
Adaptive tree adjustment technique, 574
Adhesion metric, of logic network, 448–449
Ad hoc look-ahead floorplanning, 302–303
Adjacency graph, 140, 151, 158, 178, 217, 224–225
Adjacency matrix, of graph, 114
Adjacent constraint graph

define, 224
for floorplan, 224–225
perturbations for, 226–227
properties of

directed edges, 225
geometrical relations, 225–226

Admittance propagation, 547
ADS, see Attached dead-space
Advanced simulated annealing algorithm, 317
Advanced synthesis techniques, 823
Agglomerative clustering, 127–130
Aggressor net logic error, 42
Aggressor–victim pair, 44
AHHK spanning tree, 513
AHHK tree, euclidean plane, 513
Algebraic multigrid (AMG) technique, 378, 380, 923, 926
Algorithm for, buffer block planning, 661
Algorithmis complexity analysis, 73–74
Alpha 21264, 889, 901–904

clock
grids, 903
hierarchy, 902

GCLK grid, 901
global clock, distribution network of, 902

American map, definition of, 339
Analog floorplanning, 250–251
Analytical constraint generation, 295, 456
Analytical placement

algorithms, 284
basic idea of, 327
geometric partitioning, 337–341
netlength minimization of

linear netlength minimization, 331–332
netlength definition, 328–330
objective functions of, 334–335
quadratic netlength minimization, 332–334

parallelization technique and macros, 344
partitioning information usages in, 341–343
quadratic placement properties, 335–337
repartitioning technique, 343–344
steps of, 328

Annealing schedule, 312–313
Anticipated plot, acceptance rate vs. generated new

configurations, 315
APlace, 365

and log-sum-exp approximation, 366–369
relaxation in, 392–393

Appending, 226; see also Adjacent constraint graph
Application specific integrated circuit, 179, 450, 628, 942

counterparts, 957
and system-on-chip (SOC) design, 427

Approximation scheme; see also Fractional global routing
minimizing relative congestion, 635–638

advantages of approximation algorithm, 638
for any given approximation ratio 1 + ε0, 635
inequality, use of, 636–637
by linear programming duality (theorem 1),

expression, 636
maximum number of phases bounded by, 638
modified update rule for ye and prove to theorem,

635–638
theorem, with relative congestion at most 1, 635
upper bound on approximation ratio ρ, 637

minimizing total weighted netlength, 639–640
additional dual variable yL, use of, 639
to minimize total weighted netlength, 639–640
minimum-cost multicommodity flow problem,

use of, 639
Steiner tree and total increment expression, 639–640

Arbitraryweighted graphs, 519
Arc, capacity of, 124–125
Area-optimal slicing floorplans, 177–178
ASIC, see Application specific integrated circuit
Assignment problem

constructive methods for, 13
iterative methods for, 12–13

Asymptotic waveform evaluation technique, 586
Atomic test pattern generation (ATPG), 918
A-tree router, in congestion-driven placement

techniques, 463
Attached dead-space, 654–655
Augmenting path, 83
Automated wire-routing, 476
Automatic move strategy, 321
Avoid blockages, rip-up and reroute, 574

B
Backend-of-line (BEOL), 792
Bakoglu’s metric, 543
Balanced binary tree, 166–167
Basic blocks, 973; see alsoGAMA, linear-time simultaneous

placement and mapping method
Basic logic element (BLE), 945

cluster basic and, 946
LUT coupled with a flip-flop, 946

Batched greedy algorithm (BGA), 502
1003

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1004 9-10-2008 #4

1004 Index

Batched iterated 1-Steiner, 455
Batched 1-Steiner (B1S) algorithm, 492
Baxter number, 194
BBT, see Balanced binary tree
BB (V) model, 329
BC-subtrees, 576
BDD, see Boolean decision diagram
Bellman–Ford algorithm, 81–82, 668
Bell-shaped potential function, 367–369
Berkeley BSIM4 model, components, 919–920
Berkeley short-channel IGFET model (BSIM), 919
Berman algorithm, 503
Best-choice clustering method, 387–388; see also

Multiscale optimization, in placement
BFS, see Breadth first search
Binary routing tree, 538
Binary search, concave segment, 526
Bin-based placement model and placement-driven

synthesis, 818
newcell insertion, 817

Bipartite graphs, in rectangular dual, 144
Bisector list quad trees, 66–67
BI1ST, see Batched iterated 1–Steiner
4-Bit bus circuit simulation, 867
Block-based designs, evolution of, 259
Block-dominated design, 260

placement and partitioning, 269
Blocks

adjacency matrix, 121
define, 126
delay for, 40–41
interconnection of, 39–40
neighborhood graph, 143
pin access, wire, 616

BLQT, see Bisector list quad trees
BNG, see Block neighborhood graph
Boltzmann distribution, 313, 322
BonnPlace placer, 339
Boolean decision diagram, 823
Boolean function in K-LUT, 958
Boolean network logic synthesis, 610
Bossung plot, 726
Bottleneck gaps thin wire, 621
Bottom-up moment computation, 548
Bottom-up solution propagation process, 581
Boundary constraint, 199

B∗-tree conditions and, 233–234
checking, algorithm for, 200
modules, 233
in slicing floorplans, 173–174

Boundary merging and embedding (BME), 892
Bounded quad trees, 68
Bounded-radius bounded-cost, 511
Bounded-radius minimum routing tree, 511
Bounded-skew routing tree (BST), 892
Bounded-sliceline grid

constituents of, 216
perturbations, 218
transformation into placement, 217–218

Bounding boxes in estimating distance, use of, 844
Bounding box netlength, 329, 332, 335

BQT, see Bounded quad trees
BRBC, see Bounded-radius bounded-cost
BRBC spanning tree algorithm, 512
Breadth first search, 78

runtime complexity of, 79
Brent–Kung scheme, 946
BRMRT, see Bounded-radius minimum routing tree
BSG, see Bounded-sliceline grid
B∗-tree

admissible placement and, 207–208
perturbations, 208

Buffer
blockage, 570
long wire insertion, 265

Buffered clock trees, 888–889
Buffered paths

blockage avoidance
dynamic programming-based method, 571–572
graph-based approaches, 572–573

Buffered Steiner tree, environment aware
placement and routing congestion

measurement of, 577–578
plate-based tree adjustment

dynamic programming-based adjustment, 578–579
hybrid approach for tree adjustment, 579–581

relating buffering candidate locations
layout environment, 582–583

Buffered tree with blockage avoidance
simultaneous tree construction and buffer insertion

dynamic programming-based method, 574–575
graph-based method, 575–577

tree adjustment technique, 574
Buffer graph, 572
Buffering cost, 557
Buffering routes and blockages, interaction, 559
Buffering signal polarity, 558
Buffering sinks, 558
Buffer insertion, 545

parts of, 580
Buffer insertion algorithms, majority of, 580
Buffer library, 542
Buffer planning, 246; see also Interconnect planning
Buffer positions, low congestion path, 580
Bus-driven floorplanning, 247

C
CAD, see Computer-aided design
Candidate buffer block, 653–654, 660–661
Capacitive coupling noise injection, circuit

and waveforms, 675
Capo fixes blocks, 303
Catastrophic yield optimization methods, in yield

optimization, 783–785
CBB, see Candidate buffer block
CBL, see Corner block list
CD, see Critical dimension
Cell area, clustering in, 130
Cell-based flow design, thermal vias, 987–989
Cell compilation, 19–20

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1005 9-10-2008 #5

Index 1005

Cell labeling, coding schemes for, 477
Cell mirroring technique, in local improvement, 414–415
Cell modeling and decoupling capacitance, 916–918
Cell shifting technique, in space management, 410
Channel routing

algorithm, 471
constraints, 14–15
in design styles, 14
phase problem between placement and, 18, 22
terminology in, 15

Chemical–mechanical polishing, 697, 737–739
aware global routing, illustration, 796
characterization and modeling of, 741–747
density analysis methods in, 747–749
design flows for fill synthesis, 760–765
fill synthesis methods

density-driven fill synthesis, 749–754
impact on interconnect performance, 754–758
model-based fill synthesis, 754
STI fill insertion, 758–760

impacts on interconnect design and manufacturing,
739–741

model, 795
process, 921
wire density distribution, 793

Chemical vapor deposition (CVD), 758
Chip fabrication

field programmable gate arrays, 18
masks for, 17

Chip-level signal-integrity verification, 681
Circuit, diagram of, 110
Circuit hypergraphs, 110
Circuit sizes, acceptance rate vs. generated

new configurations, 315
Classical floorplanning

interconnect, 241
module shape and flexibility, 240–241
outline-free vs. fixed-outline, 240

Classical slicing floorplan design, 169
mincut-based method, 170
point-configuration based, 171
simulated annealing based, 171–172

CLBs, see Configurable logic blocks
Clique

define, 110
model, 112, 329, 333
net model, 129

Clock-aware placement, 283
Clock network design, 897

Alpha 21164
clock driver locations and delay, 890

ALPHA 21264, 901, 904
clock hierarchy, 902
GCLK and clock grids of, 903
global clock distribution network of, 902

clock
hazards and timing constraints, 892
skew scheduling, 891–893

handling variability, 893–894
IBM POWER4, 900–901

global clock distribution network, 900

IBM S/390, 900
clock distribution network, first-level tree, 898
last/macrolevel clock distribution, 899

Intel Itanium, 907
clock distribution topology of, 908
deskew buffer architecture of, 909
global core H-tree of, 908
thirty regional clocks of, 909

Intel Itanium 2 clock distribution, 909–910
dual-core, 911

Intel Pentium 4, 905
global clock distribution in, 906
90-nm Pentium 4, eight stripes, 907
three spines in a 0.18-µm Pentium, 906

Intel Pentium II
global clock distribution network of, 904

Intel Pentium III
two-spine global clock distribution of, 905

metrics for
clock skew and transition time, 882
phase delay/latency, area and power, 883

nontree structures, 889
grid and spine, 889–890
hybrid, 890–891

tree structure, 883
deferred merge embedding (DME), 887–888
exact zero-skew algorithm, 885–887
geometric matching algorithm (GMA), 884–885
method of means and medians (MMM), 884
wirewidth and buffer considerations in, 888–889

Clock signal, logic blocks, 29
Closure problems, 22
Clustering, 126–127

agglomerative, 127–130
define, 109–110
hierarchical, 127

Clustering algorithms, 958
multilevel, 962

Clustering based approaches, in multilevel optimization,
385–386

Clustering metrics, 112–114
CMOS, see Complementary metal oxide semiconductor
CMOS circuit, charge/discharge operation, 44–45
CMP, see Chemical–mechanical polishing
CMP process models, 741–742
Coarse-grained power gating with macro/core, 832
Coarsening algorithms, for multiscale placement, 386–387
Coherent illumination, 717
Combinational circuit, 590
Combinational logic circuit, as timing graph, 39–40
Combinatorial optimization algorithm, goal of, 311
Common path pessimism removal, 786
Compaction

layout, 20
two-dimensional and one-dimensional, 63

Complementary metal oxide semiconductor, 181, 674, 901,
904–905, 907, 909–910, 919, 942

Completely embedded and buffered tree, 561
Computational geometry

based placement migration method, in space
management, 409–410

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1006 9-10-2008 #6

1006 Index

convex hull, 85–86
Voronoi diagram and Delaunay triangulation, 86

Computation by superposition, 704; see also
Lithographic modeling

array multiplication, 704–705
fast Fourier transform, 705
pixel representation of the mask, 704
pixel representation of the pupil, 704

Computer-aided design, 139, 509, 914
tools, 957

Configurable logic blocks, 180, 946
Congestion-aware logic synthesis, 449–450
Congestion-driven placement techniques, 447

global-placement congestion improvement
free space management, 455–456
incorporating congestion estimation, 452–454
steiner wirelength optimization, 454–455

netlist-connectivity-based
congestion-aware logic synthesis, 449–450
metrics for structural logic synthesis, 448–449
perimeter-degree, 450–452

router integration in, 458
simulated annealing for

A-tree router, 463
over flow (OF), 462–463
RISA routability model in, 461–462
sparse parameter, 463–464

whitespace management in, 458–460
Congestion-driven routing, 981
Congestion estimation, placement-level

fast global routing
estimation based, 606–607
with probabilistic methods, 607–608

fast metrics for routing congestion, 601–602
probabilistic estimation methods, 602–606

Congestion evaluation metrics, 245–246
Congestion minimization, 689
Connectivity factor, 160–161; see also

Clustering algorithms
Conservative noise filters, hierarchy, 684
Constraint functions, 96, 102
Constraint graph and constraint hypergraph

for noise cluster, 686
Constraints, convex, inconsistency of, 14
Constraints, vertical, 14
Constructive congestion map generation, 608–609
Contemporary layout with printing features and SRAF, 708
Contemporary scanner lens design, 718
Continuous wire sizing, 588
Contour-based EPE, 715–717
Convex cone, 91
Convex functions, 91–92
Convex hull, 85–86

of subgradients of dual function, 97
Convex optimization problem, 92

global optimal solutions, 93
Convex pruning, nonredundant candidates, 552–553
Convex quadratic program, 592
Convex sets, 90–91
Copper CMP modeling, 743–745
Corner block list

corner block, 187–188
define, 188–189
extended (see Extended CBL)
floorplanning algorithm, 188–189
linear-time transformations between floorplan and, 189

Corner Sequence, 208
construction from placement, 209
perturbations, 211–213
transformation into placement

dynamic sequence packing scheme for, 209–211
solution space, 210

Corner stitching data structure
generalizations to geometries, 65
pointers for tile, 63
point-find operation in, 64

Coupled tree network circuit simulation, 867
Coupling capacitance, 475
Coupling noise

causes of, 42
transient approach to calculate, 44

Coupling noise phenomenon
coupling noise injection, 675–676
interconnect capacitance, 674–675

CPM-based algorithm
application to timing graph, 39
on a circuit with inverting gates, 40

CPPR, see Common path pessimism removal
Critical area analysis (CAA), 697, 826
Critical-area-aware routing for random defect minimization,

796–798
Critical-area rectangles (CARs), 780
Critical dimension, 726, 728, 740, 774, 787
Critical nets environment, cost impact of, 581
Critical-sink routing tree problem (CSRT), 520
CS, see Corner Sequence
C-Tree, algorithm, 560
Current deep-submicron technologies, 866

D
DAG, see Directed acyclic graph
Data structures

geometric
benefits of, 57
interval trees, 57–58
kd trees, 58–59

max-plus lists (seeMax-plus lists)
spanning graphs, 59–60

DDM, ilustration of, 724
Dead spaces, 654
Deep submicron (DSM) technologies, 277, 448
Deferred merge embedding (DME), 887–888

algorithm, 894
Degree of freedom (DOF), 763–764, 801
Delaunay triangulation, 86
Delay-locked loop (DLL), 905
Depth first search

process, 78
runtime complexity of, 79

Depth-first search, 78–79, 205, 207, 450

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1007 9-10-2008 #7

Index 1007

Depth-of-focus (DOF), 763–764
Design automation

for layout synthesis, 14
modern flows in, 23

Design for manufacturability (DFM), 786, 805–806, 856
Design of deep submicron very large scale integration (VLSI)

circuits, 586
Design rule checker/checking, 62, 69, 729, 764, 778, 792,

802–803, 805, 857
Deskewing techniques, 882
Detached dead-space (DDS), 654
3D floorplanning, 250

in slicing flooring, 181–182
3D floorplan representations

3D-subTCG (see 3D-subTCG)
sequence triplet (see Sequence triplet)
T-trees (see T-trees)

2D Fourier transform, 702
DFS, see Depth–first search
Diffusion-based placement migration technique, in space

management, 408
Diffusion (diff) layer, 62
Digital frequency dividers (DFDs), 910
Digital signal processing (DSP), 874, 952–953
Dijkstra’s algorithm, 81, 975
Dijkstra’s shortest path algorithm, 572, 573
Dijkstra’s shortest paths tree, 518
Directed acyclic graph, 170, 449
Directed Acyclic Graph (DAG), 79, 170, 178, 449–451, 582
Discrete cosine transform (DCT), 360
Discrete Fourier transform (DFT), 705
Discrete wire sizing, 588–589
Distribution characteristic function (DCF), 755–756
Domain decomposition method (DDM), 723–724
Domain deskewregister (DDR), values of, 906
DP, see Dynamic programming
3D-packing, of sequence triplet, 231
Dragon2006, mixed-size placement in, 299
Draininduced barrier lowering (DIBL), 919
DRC, see Design rule checker/checking
3D-SUBTCG

placement with modules, 231–232
topological representation, 232
transitive graphs, 231

Dual-core Itanium 2 microprocessor, clock distribution, 911
Dual function, 94
Dynamic netweighting algorithms, 433
Dynamic netweighting, in timing-driven placement, 432–434
Dynamic power

approach to reduce, 46
CMOS circuit, 44–45

Dynamic programming
algorithm, 311

in linear placement, 419–420
based buffered path algorithm

pseudocode of, 572
divide-and-conquer approach, 77
example, 76–77
in mathematical partitioning formulations, 126
method, in floorplanning, 158

E
ECBLλ, see Extended CBL
Ecos and accounting, 267–268
ECO-system, 305
EDA, see Electronic design automation
EDA flow, 696
Edge placement error, 713, 715, 799–800
Edge-separability clustering (ESC), 387
Electrically erasable programmable read-only memory

(EEPROM), 942
Electrical violations, 581
Electric amplitude of diffraction (EAD), 799
Electronic design automation, 628, 696, 840,

856–857
Elmore delay, 24, 30, 510, 536

based routing constructions, 520–522
calculations, 318

formula, analyses of, 510
limitations of, 35
model, 524–525, 543, 546, 572
for nontree RC network, 33–34
for RC trees

additive property, 33
between two nodes, 32

slew, 34–35
step response, in circuit analysis, 31–32

Elmore routing tree, 520, 522, 524
Embedded computation blocks

embedded processors, 953
multipliers and DSP blocks, 952–953

Embedded memory blocks (EMBs), 950–952
Embedded topology tree, 561
Empty room insertion process, 198
EPE, see Edge placement error
ERT, see Elmore routing tree
ERT algorithm

Elmore delay formula, 520
timing-driven SERT, 520

Euclidean traveling salesman problem, 503
E-V matrix, formation of, 999
Exact zero-skew algorithm, 885–887
Extended CBL

definition of, 189
solution space of, 190

Extended Krylov subspace (EKS), 927–928
Extraction, 731; see also PV-bands
Extremal-density window analysis, 747

F
Facial k-cycle, 149
Fanin cones

depth-optimal mappings, 959
fanout and sibling relationships, 971

Fast Fourier transforms (FFTs), 705, 717,
742–743

Fast global routing techniques, 606–608
Fast lookup table based wirelength estimation

technique, 455
FastPlace, fixed points in, 357–359

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1008 9-10-2008 #8

1008 Index

Fast timing metrics, 35
FDP/LSD, relaxation in, 393
FDTD, see Finite–difference time domain
Feasible routing region (FRR), 785
Fiduccia–Mattheyses (FM)

algorithm, 436
in classical slicing floorplan design, 170
heuristic method, 115–116
improvements on, 116–117
partitioner, 305

Fiedler vector, 120
Field programmable gate array lookup table

(FPGALUT), 322
Field programmable gate arrays, 117, 162, 322,

386, 458, 941, 957
antifuse-based, 944
commercial FPGAs, 952
design flow for, 958
3D designs using FPGAs, 993–994

estimation of, 994–997
monolithic 3D technology, 996
and switch, 998

embedded computation blocks
multipliers and DSP blocks, 952–953
soft and hard embedded processors, 953

flash-based
flash switch in, 943–944

hierarchical placement, 969
island-style placement, 967–968
linear datapath placement, 972–974
logic and memory in, 951
lookup-tables (LUTs), 944

carry chains, 946–947
clusters, 945–946
flip-flop coupling with, 946

low power placement, 975
memories

distributed, 952
embedded, 950
logic interconnect architecture and block, 951–952

non-LUT-based logic blocks, 947
physical synthesis and incremental placement

methods, 969–972
placement algorithms, 966
routing architectures, 947–948

bus-based routing architectures, 949–950
pipelined interconnect architectures, 950
programmable switches, 948
segmentation, 947–948
switch blocks and connection blocks, 948–949

SRAM-based
disadvantages of, 942–943

variation-aware placement, 974–975
Xilinx, Altera, and Lattice, vendors of, 942

Figure of merit (FOM), 426, 428, 430
Fine-grained power gating within block, 832
Fine-granularity clustering method, 389; see also

Multiscale optimization, in placement
Finite-difference time domain, 720–723
First-in-first-out (FIFO) schemes, 116
Fixed-die routing model, 402

Fixed layout region placement, 281
Fixed-outline floorplanning, 240

automated
Parquet, 243
slack-based moves, 242

Fixed points
define, 352–353
in FastPlace, 357–359
in mFAR, 353–357

Flat floorplan, 261
Flat placements, cell color code, 263
Flip-flop insertion, 265, 549
FLM architecture, 944–945
Floorplan/microarchitecture interactions

cycle-accurate simulators and, 247
SA algorithm, 248

Floorplanner
estimating parasitics and timing, 265–266
hierarchical design style, 259

Floorplanning, 4; see also Interconnect planning
academic vs. industrial, 261
ad hoc look-ahead, 303
branch-and-bound strategy for sizing, 156–157
canonical embedding of, 150
classical (see Classical floorplanning)
data structure, 966
definition of, 139–140
3D floorplanning problem, 989
dynamic, 964–966
on FPGAS with heterogeneous resources, 963–964
heterogeneous FPGA, 179–181
hierarchical, 151–153

application of, 19
methods, 961–963
placement, 302

knowledge-based, 157–158
with macro clustering, 301–303
macros in bin, 303
for manufacturability, 252–253
method for topology generation and sizing, 158
module locations, 242
optimization, 20–21
and power/ground cosynthesis, 249
problem, define, 204
process of, 266
rectangular duals and, 141–142

dualizability, 142–145
slicibility of, 145–147

sizing algorithms, 154–155
sizing methods, 153
for specialized architectures

analog circuits, 250–251
3D integrated circuits, 250
FPGA, 249–250

statistical (see Statistical floorplanning)
success of, 19
topology generation, 140–141

Floorplans, 18; see also Floorplanning
constraints

boundary constraints, 233–234
rectilinear modules, 234–236

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1009 9-10-2008 #9

Index 1009

define, 161, 188
design, placement constraints in

boundary check, 200
boundary constraints, 199
CBL, 199

design problem, 162–163
design, success of, 19
mosaic (seeMosaic floorplan)
power consumption of, 168–169
quarter-state sequence of (see Quarter-state

sequence)
representation (see Cornor block list; Q-sequence;

Twin binary sequence; Twin binary trees)
Flow and diffusion-based legalization technique, 411
Flow-based overlap removal method, in space

management, 404–405
transportation problem, calculation of, 406–408
transportation problem, solving and setting the,

405–406
FlowMap tool, 959
FLOYD, in floorplanning, 157
FLUTE, see Fast lookup table based wirelength

estimation technique
FLUTE algorithm, 503
FLUTE in floorplanning, 157
FM algorithm, principal modification to, 117
FMAX testing, in yield loss, 773
FM iterative improvement partitioning algorithm,

bucket structure in, 116
Focused ion beam (FIB), 773
Force-directed methods, 347–349

basic elements of
force-based spreading, 351–352
quadratic optimization preliminaries, 349–351

enhancements in
interleaved optimizations, 361–364
multilevel optimization, 364

issues related to, 371–373
nonquadratic, continuous methods

aplace and log-sum-exp approximation,
366–369

mPL generalization of, 369–371
placement via line search, 365–366

spreading cells techniques
fixed points and bin shifting, 352–359
frequency-based methods, 359–360

Force-directed net-constraint placement, 437
Force-directed placer (FDP), 352, 362–363, 365, 386,

391, 393
Force-directed relaxation, 12
Ford Fulkerson method, run-time complexity of, 83
Four-cycle theorem, 146
Fourier lens, 717
Four routing solutions, for four-pin net, 518
FPGA, see Field programmable gate array
FPGA floorplanning, 250; see also Floorplans

problem in, 249
FPGAs, see Field programmable gate arrays
Fractional global routing, 629

dual linear program of linear program, 630
with the dual solution, example for, 631

extensions, 641–642
coupling capacitance and parallel multithreaded

implementation, 642
fully polynomial-time approximation scheme for,

634–635
minimizing the relative congestion, 635–638
minimizing the totalweighted netlength, 639–640

linear programming relaxation, 629
relative congestion of edge (e), 630
theorem 1: given any nonnegative values ye

for edge, 630–631
verification, theorem 1, 631

Fractional packing problems, 633
Fracturing on mask write time, effects, 858
Fraunhofer diffraction formula, 702
Free space management, in global placement, 455–456
Front-end process, 258
Full multigrid (FMG), 380
Fully polynomial-time approximation schemes

(FPTAS), 634
Functional noise

failure criteria for, 679–681
approach noise budgeting, use of, 681
based on using local noise threshold values, 680
digital gates suppress propagation of pulses, 679
propagation of injected noise pulse, 679

types of, 677

G
GAMA, linear-time simultaneous placement and mapping

method, 972–974
Gamma statistical distribution, 35–36
Gate arrays, 14
Gate capacitors, charging and discharging of, 45
Gate sizing

incremental synthesis, 820–822
with multiple-VT libraries, 819–820

Gate sizing problem, as GP, 103–104
Gate tunneling current, 46
Gaussian variable, 974
Gcells, 843

congestion measurement on every layer
at boundaries, 846

with routing nodes, 845
GCLK grid of ALPHA 21264, 901–903
General routing-tree topology, 524
Genetic programming

advantage of, 322
stochastic algorithm, 322

Geometric data structures
benefits of, 57
interval trees, 57–58
kd trees, 58–59

Geometric matching algorithm (GMA), 884
recursive steps of, 885

Geometric programming
convex reformulation of, 102–103
gate sizing problem, 103–104

GiLa algorithm, 551

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1010 9-10-2008 #10

1010 Index

Global clock grid (GCG), 907
Global interconnects on circuit performance,

planning basics, 645
buffer blocks and sites, 649–650

buffer block planning, 650–652
buffer site planning, 652–653

buffer planning basics, 646–648
buffer and wire model, 647
feasible regions, for buffer insertion, 647–649
independent feasible regions (IFR), 649
parameters of wire and buffer, 648
two-dimensional feasible region, 649

flip-flop and buffer planning
area constrained wire retiming, 668–669
latency constrained optimization, 666–667
minimizing latency, 664–666
wire retiming, 667–668

interconnect planning and buffer planning
buffer planning with noise constraints, 661–663
noise-aware buffer planning, 658–661
pin assignment with buffer planning, 657–658
routability-driven buffer planning, 653–656

Global placement algorithms, 278, 281
Global-placement congestion improvement

free space management in, 455–456
incorporating congestion estimation in, 452–454
Steiner wirelength optimization in, 454–455

Global routing, 792
algorithms, 470
cells, 600
commonly used metrics for

bend count, 474
congestion, 473–474
coupling, 475
timing, 475
wirelength, 474–475

design constraints, 616
grid models for

capacity computation, 472–473
channel-based graph model, 470–471
tile-based graph model, 471–472

of multiple net
concurrent, 484
sequential, 482–484

objective of, 473
as physical design process, 469
problem formulation, 628–629

global routing graph with two layers, 628
for minimizing the maximum relative

congestion, 629
of single net, 475–476

Lee’s maze routing algorithm, 476–477
line-search algorithms, 479–481
maze-routing enhancements, 477–479
with multiple terminals, 481–482
pattern routing, 481

VLSI minimum-area, 488
X interconnect architecture, 843

Gordian method, for bipartitioning, 338
GP, see Geometric programming
Graph-based routing, 979–980

Graph-based simultaneous tree construction
and buffer insertion, 576

Graphical user interfaces (GUIs), 258
Graph iterated 1-Steiner (GI1S) algorithm, 494

time complexity of, 499–500
Graphs

directed, 82
minimum spanning tree of, 79

Kruskal’s algorithm and Prim’s algorithm, 80
path, tree, and cycles, 77
searching by

breadth first search, 78
depth first search, 78–79
topological ordering, 79

shortest paths in
Bellman Ford algorithm, 81–82
Dijkstra’s algorithm, 81
single-source shortest path problem, 80

theory, 77
Graph Steiner arborescence (GSA), 515
Graph Steiner minimal tree (GSMT) problem, 494
Greedy algorithms, 75
Grid-based

approaches, congestion computation by, 245–246
detailed routing system and DRC correction flow, 803

Gridded routing space rotation, 849
Grid expansion algorithm

input of, 10
space complexity, 10

techniques to reduce, 11
Grid-warping partitioning, 339–340
Grid warping technique, in space management, 410–411
Group Steiner trees, 496–497

applications of, 497–498
bounded-radius, 501–502
depth-bounded, 498–499
empirical performance of, 502

H
Hadlock’s minimum detour algorithm, 477

worst-case time complexity of, 478
Half-perimeter wire length, 291, 293–296, 303–304,

349, 361, 365–366, 378, 392, 400, 425, 438,
454–455, 457–458, 463

Half-rectangle perimeter, 601
Hall placement, 13
Hanan grid, 522

minimum Steiner tree embedded, 523
points, 491, 528

Hanan’s theorem, 489
Hard processors, 953
Hardware description language (HDL), 259
Heavy-edge matching, 126–127, 387
Heterogeneous FPGA floorplanning, 179–181
Heuristic Steiner tree, cost of, 511
H-flipping operation, 885
H-gamma, 35–36
Hierarchical clustering, 127
Hierarchical floorplanning, 5, 23, 151–153

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1011 9-10-2008 #11

Index 1011

Hierarchical moment computation, 594
Hierarchical partitioning method, 923–924
Hierarchy, use of

vs. flat design, 262
floorplanning and prototyping, 261
logical vs. physical, 262–263

High density plasma (HDP), 759
Hightower algorithm, 480
Hinted quad trees

for design-rule checking, 69
vs. QLQT, 69–70

HiPRIME algorithm, 928
Hopkins approach, 719
Horizontal constraints, 14
Hot electron injection (HCI), 676
HPWL, see Half–perimeter wirelength
HQT, see Hinted quad trees
HRPM, see Half–rectangle perimeter
H-tree structure, clock network, 884
Huang’s metric, 112
Hungarian method, 12
HV trees

bounds and, 69
components of, 68

Hwang’s theorem, 492, 504
Hybrid mesh/tree structure, 928
Hypergraph (GPS90), 126
Hypergraph partitioning, define, 112–114

I
IBM01 benchmark, from IBM-MSwPins

in four-tier 3D process, 987
placement, before and after legalization, 299
placement in four-tier 3D technology, 987
progress of mixed-size floorplacement on, 297

IBM Power4, 900–901
IBM S/390 clock distribution network

Enterprise Server Generation-4 system, 898
first-level tree of, 898
last/macrolevel clock distribution, 899

IC chip, heat transfer from, 48–49
IC floorplanners, 261
IDDQ testing, in yield loss, 773
IDOM algorithm, execution and producing

arborescences, 519
ILD, see Interlayer dielectric
Incidence matrix, define, 119
Incremental floorplanning problem, 244–245
Incremental mincut placement, 306
Incremental netweighting, 433
Incremental placement algorithm, 971
Incremental timing analysis, in timing-driven

placement, 432
Inductance

CAD tools and performance, requirements, 876–877
effects of, 871

coupling on delay uncertainty, 873–874
on delay and signal rise time, 872
on power dissipation, 873

historical perspective, 865–866
importance of, 866–868
inductive noise, 874–876
physical design, effects, 877–878
power and clock distribution networks, 878

Industrial floorplanning
chip, design of, 258
chip, versions of, 258
design and capabilities of

common changes, 267–268
incomplete and inconsistent designs

working with, 268
power supply design, 266–267
steps of, 257

Industrial global routers, 606
Inferior solutions, define, 542
INLP, see Integer linear program
Integer linear program, 124
Integer linear programming (ILP), 252, 484, 656, 754
Integer programming formulations, 123–124; see also

Mathematical partitioning formulations
Integrated circuit

mechanisms of substrate noise propagation in, 876
yield of, 771

Integrated circuit, 3D, 986
Intelligent fill synthesis, 764
Intel IA-64 architecture, 907–908
Intel Pentium III microprocessor, 905
Interactive floorplanning, 244
Intercluster placement, 962–963
Interconnect delay, 3–4, 585
Interconnect performance, CMP fill impact, 754–758
Interconnect planning

bus-driven floorplanning, 247
congestion considerations during

grid-based approaches, 246
probabilistic map, 245

with fixed interval buffer insertion constraint, 655
dead spaces, partitioned into ES blocks

and computation, 656
methodology, as integer linear program (ILP), 656

integrated buffer planning and, 246–247
routability-driven buffer planning, 653–654

coarser tile structure, use of, 653–654
congestion cost, of routing tile in two-level tile, 654
with dead space redistribution, 654–655
defining CBB locations, 653

VLSI design methodologies, 653
Interconnect tree, 589
Interconnect wires, coupling and grounded

capacitances of, 675
Interior merging and embedding (IME), 892
Interlayer capacitance, 472
Interlayer dielectric, 739–740, 754, 762
International Symposium on Physical Design, 4, 7, 286,

300–301, 303, 394, 443, 484
International Technology Roadmap for Semiconductors,

762, 775, 913
Interval trees, 57

for set of intervals, 58
Inverter processing, 821–822

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1012 9-10-2008 #12

1012 Index

Inverter voltage transfer characteristic, and noise
margins, 680

INVERT-NAND sequence, 821
IP block, 265–268
IRL, see Irreducible realization list
Irreducible empty rooms

T-junctions, 197
types of, 198

Irreducible realization list, 180, 963–964
Island-style FPGA placement, 967–968
Iso-dense bias, 706
ISPD, see International Symposium on Physical Design
ISPD 2005, global placements of, 301
Itanium microprocessor

clock distribution, 910
topology, 908

deskew buffer architecture of, 909
global core H-tree of, 908
regional clocks of, 909

Iterated dominance (IDOM) graph, 494
Iterated KMB (IKMB) construction, 495
Iterated 1-Steiner (I1S) heuristic, 490–492

empirical performance of, 493–494
generalization of, 494
graph generalization of, 494–495

Iterated Zelikovsky (IZEL) heuristic, 495
Iteration target acceptance rate, 316
Iterative floorplanning, 153
Iterative partitioning, 339
ITRS, see International Technology Roadmap

for Semiconductors

J
Jitter, arrival time of clock transition, 882

K
Karush–Kuhn–Tucker (KKT) condition, for optimality, 95
kd tree, 57–59, 67–68

range query algorithm on, 59
for set of points on plane, 58

Kernighan–Lin heuristic, for graph bipartitioning, 114–115
K-input LUT (K-LUT), 943–944, 958–960
Kirchhoff boundary condition, 701
Krishnamurthy’s method, 116; see also Partitioning
KLFM algorithm, 841
K-LUT technology mapping in O(KVE), 959
KMB algorithm, 494
KMB graph Steiner heuristic, 518
Kou, Markowsky, and Berman (KMB) method, 494
Kraftwerk, 349, 351–352, 365–366, 370–371, 373, 437
Kruskal’s algorithm, 59, 79–80
Kuhn–Tucker condition, 537

L
Lagrange multiplier, 436–437, 592
Lagrangian decomposition, see Lagrangian relaxation
Lagrangian function, 94–95

Lagrangian relaxation, 591, 616–617, 799
based methodology, 475
basic procedure, 96
duality function maximization, 96–97
method, in TDP, 440–441
updating of dual parameters, 97

Lam’s algorithm, 314
Lam’s theory, 315
Laplacian matrix, 113, 118–120
Large scale integration, 139
Last-in-first-out (LIFO) scheme, 116
Latency

constrained optimization, 666–667
minimization

multiple-terminal net optimization, 666
two-pin net optimization, 664–666

Layout compaction, 20
Layout data structure

corner stitching (see Corner stitching data structure)
high level operations support, 62
parasitics computation and, 63
quad tree and variants (see Quad trees)

Layout sampling, in yield analysis, 778–779
Layout synthesis

as masks, 17
netlist partitioning, 15–16
standard-cell/polycell, 18

Leakage current, major components of, 46
Leakage modeling, 918–920
Lee’s algorithm, 476
Lee’s router

grid expansion algorithm (see Grid expansion algorithm)
speedup, 11

Left-edge algorithm, 15, 21
Legalization and placement, limits of, 420–421
LER, see Line edge roughness
Library-based ASIC technology mapping, 959
Linear circuit, 34–35, 678, 920, 927
Linear conic optimization problems

interior point methods for, 100–101
linear programming, 99
second-order cone programming, 99–100
semidefinite programming, 100

Linearity, 93, 703, 723, 800
Linear netlength, minimization of, 331–332
Linear placement problem, 418

cost function, analysis of, 419
dynamic programming algorithm, 419–420
notations and assumptions in, 419

Linear programming duality, 629
Linear programming formulations, 122–123; see also

Mathematical partitioning formulations
Linear programming problem, 93, 98, 252, 932
Linear program/programming, 89, 105, 331, 341, 424,

435–436, 438–442, 451–452, 751, 760
Linear relaxation, of global routing problem, 627
Linear time algorithm, in rectangular dual, 145
Linear-time method, for module, 173
Line edge roughness, 774
Line expansion, 11, 479
Line graph, 120–121

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1013 9-10-2008 #13

Index 1013

Line-search algorithms, 476
Line search directed placement, 365–366, 386, 391, 393
Liquid routing, 840, 848
Lithographic modeling

contour-based EPE, 715–717
extraction and SPICE modeling, 731
mask manufacturing flow, 715
modeling fundamentals, 699–700

computation by superposition, 704–705
linearity, 703–704
Maxwell’s equations, 700–701
propagation, 701–703

RET flow and computational lithography, 713–715
RET tools, 705–706

OAI, 710–711
OPC, 706–707
polarization, 712–713
PSM, 707–710
RET combinations, 711–712

Lithographic processing, 697–699
Lithographic simulation, of single layer of IC layout, 705
Lithography-aware maze routing algorithm, 799
Lithography-aware routing, for printability, 798–800
Local area constrained (LAC), 669
Local clock buffer (LCB), 830, 909

latches cluster, 831
Local improvement

cell mirroring and pin assignment, 414–415
linear placement and fixed orderings, 418

cost function, analysis of, 419
dynamic programming algorithm, 419–420
notations and assumptions in, 419

optimal interleaving, 417–418
reordering of cells, 415–417

Local oxidation of silicon (LOCOS), 745
Location-based clustering method, 388–389; see also

Multiscale optimization, in placement
Logic array blocks (LABs), 945
Logic block architectures

lookup-tables (LUTs), 944
carry chains, 946–947
clusters, 945–946

non-LUT-based logic blocks, 947
Logic circuits

components of, 55
mathematical structure representing, 56
and netlist, 56

Lognormal delay, 38–39
Longest common subsequence (LCS), 215
Lookup tables, 944, 947, 953, 958–960, 970–972
Loss-contracting algorithm (LCA), 495, 503
Low-cost low-radius tradeoff hybrid tree, 511
Lower convex hull, 573
Low power FPGA placement and routing methods, 975
LP, see Linear program/programming
LSD, see Line search directed placement
LSD placers, 365–366
L-shaped routes, 604
LSI, see Large scale integration
LUTs, see Lookup tables

M
Macrocell layout, 18
Macrocell placement problems, 319
Manhattan arc, 887–888
Manhattan bounding box, 838
Manhattan distance, 477, 483
Manhattan routing tree augmentation (MRTA), 785
Manufacturability-aware routing

manufacturability-aware rules, 793
manufacturability issues

optical lithography, 792
random defects, 792–793

minimum spacing rule, 65-nm technology, 794
printability and lithography-aware routing

fast lithography simulation, convolution lookup, 800
optical interference lookup table, 799
RADAR example, 800

random defect minimization, critical-area-aware routing
channel routing, 797

redundant-via-and antenna-effect-aware routings,
801–802

rule-based vs. model-based approach
steps in, 792
topography variations

dummy fill synthesis, 794–795
Markov chain approach, 323
Mask error enhancement factor (MEEF), 727–729
Master-image style, 17
Mathematical partitioning formulations, 118–119

dynamic programming, 126
integer programming formulations, 123–124
linear programming formulations, 122–123
network flow, 124–126
quadratic programming formulation, 119–122

MaxDom Steiner points, 517
Maximal rectangle, in floorplan, 147
Maximal rectangular graph, 148
Maximal rectangular hierarchy, 147–148
Maximum-critical area rectangles (Max-CARs), 779
Maximum delay-violation Elmore routing tree, 522, 524
Maximum envelope current (MEC), 917–918
Maximum fanoutfree cones (MFFCs), 386
Maximum flow problem

augmenting path, 83
decision version for, 84
generalizations/extensions to, 83–84
iterative approach for, 82–83

Maximum independent set (MIS), 449
postlayout optimization, redundant-via insertion

problem, 801
Max-plus lists

flexibility of, 61
operation to combine elements, 61

complexity, 62
solution to optimization problem, 60

Maze routing algorithms, 478, 481
MCM, seeMulti-chip module routing
MELO, seeMultiple eigenvector linear orderings
Memory/logic interconnect architecture, 951–952

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1014 9-10-2008 #14

1014 Index

Method of means and medians (MMM), 884–885
Metropolis Monte Carlo method, 312
mFAR, fixed points in, 353–357
Mikami–Tabuchi algorithm, 479–480
MiLa algorithm, 550
Miller coefficient, 679
MIMD, multiple data architecture, seeMultiple instruction
Mincost flow, 83–84
Min-cost max-flow method

for simultaneous pin assignment and buffer planning, 657
Mincut-based method, in classical slicing floorplan

design, 170
Mincut floorplacement, 297

flow, modification, 302
Mincut framework

advantage of
flexible whitespace allocation, 299–300
floorplacement, solving difficult instances

of, 300–303
incremental placement, 305–307
optimizing Steiner wirelength, 303–305

enhancements to
additional partitioning, for improving results, 293
analytical constraint generation, 294–295
fractional cut for mixed-size placement, 294,

298–299
HPWL by partitioning, 295–296
mixed-size placement in Dragon2006, 299
PATOMA AND PolarBear, 298

partitioning-based placement techniques
Capo, 308
Dragon, 307
FengShui, 307
NTUPlace2, 307–308

Mincut partitioning, 113
Mincut placement, 16–17

legalization, 306
process, 305
techniques, HPWL performance of, 295

Min Flow Max Cut theorem, 125
Minimizing skew violation (MinSV), 894
Minimum-cost timing-constrained buffer insertion

problem, 542
Minimum edge rule, 802–804

during detailed routing, 802–804
DRC correction flow, 803
65-nm technology, 803

Minimum local whitespace (minLocalWS), 300
Minimum rectilinear Steiner arborescence (MRSA), 530
Minimum spanning tree, 279, 488, 511, 563, 601

algorithms for finding, 79–80
of graph, 79

Min-ratiocut k-way partitioning, 113
MIT inductance extraction program, 870
Mixed integer linear programming, floorplanning

algorithm and, 155
Mixed integer nonlinear program (MINP) floorplanner, 248
Mixed-size placement, 282

floorplacement, 296–298
MNA matrices, of coupled circuit, 42
Model-based fill insertion approach, 754

Modeling defect, in yield analysis, 778–783
Model order reduction methods, 927–928
Modified nodal analysis (MNA), 34, 42, 922–924,

926–927
Modules, in floorplanning algorithm, 140
Monomial function, 102
Monte Carlo approach, 751–753
Monte Carlo simulation, in yield analysis, 778–779
Montecito, dual-core Itanium 2 processor, 910

active deskewing system, 911
Moore’s law, 698
Moore’s shortest path algorithm, 476
Mosaic floorplan, 187

corner block list of (see corner block list)
insertion of corner block to, 188
mapping between nonslicing floorplan and, 199
TBT representation of, 196
terminologies, 194–195

MOSFET device
gate capacitors, charging and discharging of, 45
high temperature effect on

driving strength of, 50
threshold voltage and mobility, 48

static power, 46–47
Movable circuit element, 278
mPG, in congestion-driven placement, 463
mPL6, relaxation in, 392
MRG, seeMaximal rectangular graph
MRH, seeMaximal rectangular hierarchy
MSQT, seeMultiple storage quad trees
MST, seeMinimum spanning tree
Multibend routes, 604
Multi-chip module routing, 520
Multicommodity flow, 84, 484

problem, 633
ε-approximate solution in polynomial time, 634
commodities for, 633
FPTAS for, 634
and fractional packing problem, 634
version of, 634

Multidomain clock skew scheduling, 893
Multigrid method, 924

V-cycle, 925
Multilayer sequence pairs, 966
Multilevel density analysis, 748–749
Multilevel partitioning

multilevel eigenvector partitioning, 130–131
multilevel move-based partitioning, 131
new innovations in, 132

Multipin nets, 574
Multiple eigenvector linear orderings, 122
Multiple eigenvectors, partitioning solutions and, 122
Multiple instruction, multiple data architecture, 323
Multiple sources and sinks, 83
Multiple storage quad trees, 67
Multiscale algorithms, characterization of, 378–380
Multiscale formulation, of global optimization, 378–379
Multiscale optimization algorithm MG/Opt, 384–385
Multiscale optimization, in placement, 378–380

basic principles of, 380–385
characteristics of

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1015 9-10-2008 #15

Index 1015

clustering-based approach of, 385–386
coarsening of, 386–391
interpolation, 393–394
iteration flow, 391
multiscale legalization and detailed placement, 394
relaxation, 392–393

Multisection partitioning, 340–341
Multi-vt libraries, 820
Munkres’ algorithm, see Hungarian method
Mutual contraction formulation model, 389; see also

Multiscale optimization, in placement
MVERT, seeMaximum delay-violation Elmore routing tree
MVERT algorithm

computational complexity of, 528
phases of, 528

N
Nanometer very large scale integration (VLSI)

optical lithography system, illustration of, 798
Nanometer very large scale integration (VLSI)

design, 791
Negative bias temperature instability (NBTI), 48, 676
Negotiated-congestion-based algorithm, 483
Neighborhood population metric, 611
Net–cluster algorithm, 389–391; see alsoMultiscale

optimization, in placement
Net-constraint-based detailed placement, 437
Net-constraint-driven placement, steps of, 434
Net-constraint generation, in timing-driven placement,

434–437
Net half-perimeter, 279–280
Netlength constraint, 434

incremental, 435–436
single-shot, 434–435

Netlength, minimization of
linear netlength minimization, 331–332
netlength definition, 328–330
objective functions of, 334–335
quadratic netlength minimization, 332–334

Netlist clustering, 364
Netlist-connectivity-based, in congestion-driven placement

congestion-aware logic synthesis, 449–450
metrics for structural logic synthesis, 448–449
perimeter-degree, 450–452

Netlist logic gates, 56
Netlist partitioning into tiers, 999
Net modeling, in timing-driven placement, 424–425
Net models, 111–112

in analytical placement, 329–333
hyper-edge model, clique-edge model, and star, 278

Net wirelength model, 280
Network flow

maximum flow problem
augmenting path, 83
generalizations/extensions to, 83–84
iterative approach for, 82–83

properties, 82
Network flow, in mathematical partitioning formulations,

124–126
NHP, see Net half-perimeter

NHP bounding box, 279
NLC, see Netlength constraint
NMOS transistors, 876
Noise, see Coupling noise
Noise analysis, 676

conservative filtering of nonrisky nets, 683–684
reducing pessimism in crosstalk, 684–685

logic correlations, 685–687
switching (timing)windows, 687–688

simplification of models, 681–683
aggressor driver model, 681
quiet victim model, 681–682
receiver characterization, 683
switching victim driver model, 682–683

Noise-aware design, 688–689
Noise-aware routing, 689
Noise calculation, 676–679
Noise cluster, with capacitive coupling, 678
Noise margin (NM), 544–545
Noise model, 661
Noise prevention, 688–689
Noise rejection curve, 680
Noncritical nets, 581
Non-Hanan interconnect synthesis, 522–528
Non-Hanan optimization, 522
Non-Hanan routing, efficacy of, 524
Noninferior solutions, 573
Noninverting buffers, 542
Nonlinear transformation, 102
Nonslicibile floorplan topologies; see also Floorplanning

inherent nonslicibility, 148–149
MRH, 147–148
rectangular duals, canonical embedding of, 149–150
rectilinear modules, dualization with, 150–151

Nontree routing topologies, 529
Nonuniform wire, 589

sizing function, 593
NOR-INVERT sequence, 821
Notation, 402
NP-completeness

decision problems, 84
of 3SAT, 85

NP-complete problems, 84–85, 481
NP-complete Steiner problem, 496
NTUPlace2, analytical technique, 307

O
Off-axis illumination (OAI), 706, 710–711
Off-path resizing, 821
On-chip inductance, 866–868
On chip variation (OCV) analysis, in yield optimization, 786
OPC models, 725
Optical and process correction (OPC), 706, 711, 714, 725,

727, 763
Optical interference cost, 799–800
Optical lithography process, 697
Optical-lithography system, for VLSI manufacturing,

798–799
Optical proximity correction (OPC)-aware maze routing

work, 799–800

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1016 9-10-2008 #16

1016 Index

Optical system of imaging tool, 702
Optical wave, cross-section view, 709
Optimal buffer solutions, 580
Optimal clock skew scheduling, 893
Optimal connection algorithm

sink and edge, 527
Optimal interleaving technique, in local improvement,

417–418
Optimal matching algorithm, 885
Optimal propagation speed, 594
Optimal routing graph, problem, 529
Optimal subtree, generation graph, 577
Optimal wire sizing, 593
Optimization algorithms

wire-sizing problem solving
convex programming algorithm, 590
discrete optimization algorithm, 588–589
high-order moment-based algorithm, 593–594
Lagrangian relaxation-based algorithm, 590–592
nonuniform, 593
sequential quadratic programming algorithm, 592
variational calculus-based nonuniform sizing

algorithm, 592–593
Optimization concepts

convex cone, 91
convex functions, 91–92
convex optimization problem (see Convex optimization

problem)
convex sets, 90–91

Optimization problem, 120
convex (see Convex optimization problem)
dual function associated with, 94
local optimality condition for, 95

Optimize circuit performance
timing-driven routing methods, 510

ORG, see Optimal routing graph
Oriented slicing tree, 164–167
O-tree

vs. B∗-tree, 227–228
perturbations, 206
relationship between placement and, 205–206
types of, 205

Otten’s algorithm, in oriented slicing tree, 167
Outline-free formulation, 240
Oxide CMP modeling, 742–743

P
Package-level power bus model, 915
Packing floorplan representations

adjacent constraint graph (seeAdjacent constraint graph)
bounded-sliceline grid (see Bounded-sliceline grid)
B∗-tree (see B∗-tree)
O-tree (see O-tree)
sequence pair (see Sequence pair)
transitive closure graph (see Transitive closure graph)

Pairwise interchange, 13; see also Assignment problem
Parallel computation technique, in analytical placement, 344
Parametric yield analysis, 775–776
Parametric yield optimization, future of, 786–787

Partial differential equations, 120, 378
Partial element equivalent circuit method (PEEC), 869–870
Partially embedded routing tree topology, 561
Partition-based net-constraint placement, 436–437
Partitioning; see alsoMathematical partitioning formulations

define, 109
move-based methods

Fiduccia–Mattheyses heuristic, 115–117
Kernighan–Lin heuristic, 114–115
simulated annealing, 117–118

multilevel
multilevel eigenvector partitioning, 130–131
multilevel move-based partitioning, 131
new innovations in, 132

types of, 112–114
Partitioning-based placement for FPGAs (PPFF) placement

tool, 968
Passive reduced–order interconnect macromodeling

algorithm, 587
PathFinder negotiation-based algorithm, 975
Path-folding arborescence heuristic, 515
PDEs, see Partial differential equations
PEKO, see Placement examples with known optimal
Pentium 4

global clock distribution in, 906
spines, 906
stripes in, 907

Pentium II, global clock distribution network, 904
Pentium III, two-spine global clock distribution, 905
Perfectly matched layers (PMLs), 722
Performance impact limited fill (PIL-Fill), 753
Perimeter-degree, in congestion-driven placement, 450–452
PFA, see Path-folding arborescence heuristic
PFA heuristic, graph-based, 517
Phase conflicts, 709–710
Phase-locked loop, 898, 900, 907, 910
Phase-shifting masks (PSM), 706–709
Physical synthesis techniques, 969–972
PIAF, for top-down floorplanning system, 157
Picosecond imaging for circuit analysis (PICA), 901
Piecewise concavity, 527
Pin assignment

history of, 261
technique, in local improvement, 414–415
and timing budgeting, 263–264

Pin positions and netlength, 331
Pin swapping, 821

and critical path improvement, 820–821
Pipeline routing, 980–981
Placement

algorithm, 284
assignment problem (see Assignment problem)
before and after legalization of, 281
bins, 306–307
block/gate/transistor-level netlist, 277
constraints in floorplan design

boundary check, 200
boundary constraints, 199
CBL, 199

function of, 277, 279
general approaches, 285–286

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1017 9-10-2008 #17

Index 1017

IBM01 benchmark, 299
macroblock vs. ASIC, 284
modern issues in, 281–285
netlist partitioning, 296
NP-complete problem, 280
phase problem between routing and, 18, 22
primary task of, 278
problem formulation, 278–281
and routing blockages, 569–570
routing congestion

measurement of, 277–278
simulated annealing, 285
simulated annealing and, 313
standard cell vs. mixed-size, 282
top-down partitioning-based (see Top-down

partitioning-based placement)
3D Placement, 990–991
Placement-driven synthesis (PDS)

area recovery mechanisms, 824–826
critical path optimizations, 818

cell expansion, 822
cloning, 821
drivers and multiple objectives, 823–824
early paths fixation, 823
gate sizing, 819
high and low-vt cell, 820
incremental synthesis, 820–822
inverter processing and, 821–822
multiple-VT libraries and gate sizing, 819–820
off-path resizing, 821
shattering, 822
synthesis techniques, 823

hierarchical design, 827–830
high-performance clocking, 830
latch clustering and LCBs, 830–831
optimization and placement interaction

bin-based placement model, 817–818
exact placement, 818
incremental bit map (imap) and, 818
legalization, 816

physical synthesis, phases of
placement-driven synthesis, 814–815
timing-driven placement, 816
timing histogram of, 815

power gating and leakage power reduction, 830–832
header/footer switches and, 831
macro/core coarse-grained, 832

routing recovery mechanisms, 826–827
vt recovery mechanisms, 827

Placement examples with known optimal, 421
Placement grid, 278
Placement legalization techniques

flow and diffusion-based legalization, 411
single-row dynamic programming-based legalization,

412–414
tetris-based legalization, 412

PLL, see Phase-locked loop
PMOS transistors, 876
Point-configuration method, in classical slicing floorplan

design, 171
Point_Find, 64

Pointsets, with multiplicities, 304–305
Polarity distance, 560
Polarization, 712–713
Postroute noise repair, 689

gate sizing, buffer insertion, 689–690
hierarchical properties of design, effect of, 690

Posynomial function, 102
1.3-GHz Power4 chip, 900–901
Power dissipation

dynamic power
CMOS circuit, 44–45
toggling of devices, 46

short-current power, 46
static power, 46–48

Power gating using header/footer switches, 831
Power4 global clock distribution, 3D visualization, 901
Power grid design

decoupling capacitance and cell modeling
equivalent switching circuit, 917
P/G network, switching events, 917
worst-case current, algorithms for, 917–918

fast analysis techniques
hierarchical partitioning method, 923–924
hybrid mesh/tree structure, 928
macromodels and, 923
model order reduction methods, 927–928
multigrid methods, 924–927
random walk game, 930
random walk method, 928–930
representative node, 929
shorting nodes, 927
V-cycle, multigrid method, 925
Vdd power grid, voltage drop, 922

leakage modeling, 918, 920
subthreshold leakage, 919

methodology, 920
model order reduction methods, 927–928
noise metrics, 922
on-chip power buses, rules, 916
optimization

decoupling capacitance allocation and sizing,
933–934

power supply pads and pins, 935–936
stages of, 932–933
topology, 934–935
wire sizing, 931–933

package and power grid modeling, 915–916
package-level power bus model, 915
random walk method, 928–930
technology trends and challenge, 913–914

IC technology parameters, 914
tolerance analysis of

circuit extraction, 920–921
variability sources, 921

uncertain work loads and power grid analysis,
930–931

wire segment, RLC π -model, 916
Power supply

network, 266
plan, 266
wires, 266

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1018 9-10-2008 #18

1018 Index

Predictive congestion map
probabilistic congestion map, 608

Predictive pruning technique, 552
Pre-global clock network (PGCN), inversion stages, 907
Preston equation, 741–742
PRIMA, see Passive reduced–order interconnect

macromodeling algorithm
Prim–Dijkstra algorithm, 560
Prim’s algorithm, 80

and Dijkstra’s algorithm, 512
Printed wiring boards, 261
Probabilistic congestion

estimation, 606–607
maps, 602

Probabilistic estimation techniques, 602
Probability density function (PDF), integral of, 31
Probability of failure (POF), defect size distribution,

796–797
Process windows, tools for evaluation, 726–727

determination of, 727
Progressive routing, 619

strength and weaknesses
detouring, 620
divergence, 621

Properly triangulated plane, 143–144
Prototyping

ASIC handoff, 259
power supply network analysis, 267
process of, 266

Pruning techniques, 551
Pseudocell, define, 352
Pseudonet, define, 353
PTP, see Properly triangulated plane
P-Tree algorithm, 562

algorithmic framework, 563–564
P-Tree Steiner tree, construction algorithm, 559
P-Tree topology space

capture spatial sink locality, 565
PV-bands, 728–730
PWBs, see Printed wiring boards

Q
QLQT, see Quad list quad trees
Q-sequence, 191–192

extended, 192–194
Quad list quad trees

choice of list in, 67
leaf quads, 68
vs.MSQT, 68

Quadratic assignment problem
branch-and-bound solution for, 12

Quadratic netlength optimization, 332–334
Quadratic optimization, 348–351
Quadratic phase factor, of lens, 701
Quadratic placement

multiscale model problem for, 380–382
properties of, 335–337

Quadratic programming formulation, 119–122;
see alsoMathematical partitioning formulations

Quadratic program/programming (QP), 332, 437
Quadrisection partitioning, 339
Quad trees

bisector list, 66–67
bounded, 68
hinted, 69–70
HV tree, 68–69
kd trees, 67
multiple storage, 67
quad list, 67–68
and variants, 65–66

Quarter-state sequence
define, 191
extended, 192

R parenthesis tree of, 192–193
representation, 191
of room, 191

QUASAR illumination, 712
Quasi-bipartite graphs, 490, 496

R
RADAR work, 800
Ramaiyer’s algorithm, 503
RAM block, 963
Random defects

in yield loss, 773
yield modeling, 776–783

Randomized rounding technique, 640–641
lemma, proof of, 640–641
theorem expression, 641

Random walk method, 928–930
RAT, see Required arrival time
RC π -model, 548
RC trees

Elmore delay, 590
additive property, 33
between two nodes, 32

LU factorization of, 34
Reconnection point, optimal value of, 526
Rectangle dissection

compatible, 20
polar graph of, 17
slicing property, 21

Rectangular dissection, properties of, 185
Rectangular dualization method, in floorplanning, 157
Rectangular duals, 141–142; see also Floorplanning

canonical embedding of, 149–150
dualizability, 142–145
slicibility of, 145–147

Rectangular floorplan, 142
Rectilinear modules

filling approximation for, 236
L-shaped module, 234
partitioning of, 235–236

Rectilinear Steiner arborescence problem
minimum-cost shortest paths Steiner tree, 514

Rectilinear Steiner tree (RST), 329–330, 333, 633, 855
Recursive merging and pruning, 575
Recursive partitioning approach, 343–344

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1019 9-10-2008 #19

Index 1019

Redundant-via-aware routing, 801
Refractive index, 700
Regional clock driver (RCD), 908
Register transfer level (RTL) synthesis tool, 958
β-Regularization methods, 841
Relaxation method, in floorplan, 153
Removal rate (RR), 741
Required arrival time, 522
Residual graph, 83, 331
Resistance-capacitance (RC) model, 425
Resistive shielding effect, 546
Resolution enhancement techniques (RET),

792, 800
Restrictive design rules (RDR), 792
RET flow and computational lithography, 713–715
Retraction, 10
RET tools, 705–706
Reverse etchback (REB), 737–738
Rigorous coupled wave analysis (RCWA), 723
Rip-up and reroute

region, 623
routing problem

A∗ maze search, 617–618
cost functions and constraints, 618
Lagrangian relaxation, 616–617
Steiner tree construction, 617

strategies, 625
Rip-up-and-reroute schemas

basic methodology, 618
iterative improvement schema, 621–624
progressive rerouting schema

Gcell grid, 619
issues, 620–621

RISA routability model, 461–462
RLC lines

circuits, 876–877
damping factor, 866
π -model of wire segment, 916
rise time of signals, 872
signal delays and, 874
trees, 870

RMP, see Recursive merging and pruning
Robust optimization

of circuit under process variations
delay constraint, 105
robust constraint, 106–107

convex optimization, 104
Routability analysis, 264–265
Routed connection, loop, 622
Routed wirelength (rWL), 303
Router integration

in congestion-driven placement techniques, 458
Routing-based congestion estimation methods

probabilistic methods, price, 605
Routing blockages, modeling of, 604
Routing congestion, 599

metrics
for logic synthesis, 610–611
for technology mapping, 608–610

postrouting metrics for, 600–601
track overflow, 600

Routing demand
analysis

for bins, bounding box, 603
for noncorner bins, 605

computation of, 602
Routing graph, 571
Routing grid graph

blockages on, 618
pruned, 618

Routing in wiring layers, 12
Routing models, 402–403
Routing process, 843, 851

algorithms, 991–993
placement and, 997–998

architectures
bus-based routing architectures, 948–949
pipelined interconnect architectures, 950
programmable switches, 948
segmentation, 947–948
switch blocks and connection blocks, 949–950

grid and routing graph for four-tier 3D circuit, 992
nodes on diagonal layers, 845
and versatile placement, 975

congestion-driven routing, 981
graph-based routing, 979–980
hierarchical routing, 976–977
low power routing, 980–981
SAT-based routing, 977–979
statistical timing routing, 981–982

Routing resources, fine-grain modeling of, 469
Routing speed, techniques, two-pin segments, 606
Routing-tree topology

different embedded solutions, 562
nodes and edges connection, 524–525

Routing, violation control, 623
RPack, 960; see also Clustering algorithms
R parenthesis tree, of Q-sequence, 192–194
RQ-sequence, 191
RSA algorithm, 515–516
Rule based fill insertion approach, 754
Runtime complexity, 73–74

S
Safe whitespace, 300
SAT-based routing, 977–979
Scalability of multilevel approach, 383–384
SCAMPI, see Ad hoc look–ahead floorplanning
Second-level clock-buffers (SLCBs), 910
Second-order cone programming (SOCP), 99–100, 798
Semidefinite programming (SDP)

computational effort, to solve, 101
feasible regions of, 100

Sequence pair
equivalence of, 228–229
perturbations, 216
placement on chip

LCS, 215
optimal packing under constraint, 214–215
positive and negative loci, 213–214
vertical-constraint graph, 215

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1020 9-10-2008 #20

1020 Index

Sequence triplet, 231
Sequential circuit, timing diagram of, 29–30
SERT, see Steiner Elmore routing tree
SERT-C algorithm, 521

Elmore delay formula, 522
SERT-C critical-sink routing tree

eight-sink net, 523
SERT heuristic, execution of, 520
SERT Steiner, execution of, 521
Shallow trench isolation CMP, 775

modeling, 745–747
Shallow trench isolation (STI), 739
Shape-shifting methods, in yield analysis, 779
Shi’s algorithm, in oriented slicing tree, 165–167
Short-current power, 46
Shortest paths tree, 511
Signal integrity optimization algorithm

noise aware optimization, 594–595
Signal nets, 110
Signal source pin, 511
Signal switching, slew rate of, 543
SIMD, multiple data architecture, see Single instruction
Simple placement instance, 278
Simplex algorithm, with column generation, 632–633

algorithm checks, 633
dual of linear program, 632
linear program, with matrices, 632
use of, Karmarkar algorithm, 633

Simulated annealing, 86–87
in classical slicing floorplan design, 171–172
in congestion-driven placement techniques

A-tree router, 463
over flow (OF), 462–463
RISA routability model in, 461–462
sparse parameter, 463–464

in floorplan sizing methods, 153
formulation of, 313
for graph partitioning, 117–118
optimal solution, 311
in TDP, 441
TimberWolf system, 314

Simulated annealing algorithm, 312
acceptance function for, 313
advantages of, cost function, 318

Simulated annealing placement
algorithms, 320

configuration strategies, 320–321
multilevel methods, 321–322
parallel algorithm, 323

importance of, 324
Simulated annealing placers

cost functions, 319–320
evolution of, 323
partition-based methods, 322

Simulation cutlines, selection of, 714
Simulation techniques; see also Lithographic modeling

imaging system modeling, 717–720
fourth-order Zernike aberration Z4 in pupil

plane, 720
illumination systems partially coherent, image

formulation, 718–719

lens design, 717
TCC overlap integral, 719–720
for very coherent light, 718

mask transmission function, 720
domain decompositionmethod (DDM), 723
finite-difference time domain (FDTD) method,

720–723
RCWA and waveguide techniques, 723

wafer simulation, 723–725
Simultaneous buffer insertion, 538
Simultaneous tree construction

buffer insertion
P-Tree algorithm, 562–564
SP-Tree algorithm, 566
S-Tree algorithm, 564–566
tree topology, 566

Single instruction, multiple data architecture, 323
Single-layer wiring, 13–14
Single-row dynamic programming-based legalization

technique, 412–414
Single sink insertion, 561
Skew, 882

sensitivity to process variations, 883
Slack-based netweighting, in timing-driven placement,

428–429
Slew

constraint, 543
control, 688–689
degradation, 543
expression for, 34
rate, 882
scaling factor, 39

Slicible floorplans, 141, 145–146
four-cycle criterion for, 146–147

Slicing floorplans
advances in, 177–182
classical design, 169

mincut-based method, 170
point-configuration based, 171
simulated annealing based, 171–172

define, 161–162
design considering placement constraints, 172

abutment constraint, 175–176
boundary constraint, 173–174
clustering constraint, 176–177
range constraint, 174–175

optimizations on
area optimization, 164–168
power/area optimization, 168–169

polish expression by, 164
slicing tree in, 163–164

Slicing theorem, 146
Slicing tree

completeness of, 178–179
in slicing floorplans, 163–164

Slicing-tree annealing-based floorplanning algorithm, 964
SOC, see System–on–chip
Soft-errors in SRAM cells, 942
Soft processors, 953
Soukup’s fast maze algorithm, 478
SP, see Sequence pair

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1021 9-10-2008 #21

Index 1021

Space management, 403–404
cell shifting, 410
computational geometry-based placement migration,

409–410
diffusion-based placement migration, 408
flow-based overlap removal, 404–408
grid warping, 410–411
WSA, 408–409

Spaghetti code, 18
Spanning tree

to rectilinear Steiner tree, converting, 513
Sparse parameter

in congestion-driven placement techniques, 463–464
Spectrum for conventional illumination, 711
Spectrum for off-axis ray, 710–711
Speedup techniques, 11

best candidate, 553–554
convex pruning, 552–553
explicit representation

store slack and capacitance values, 554–555
predictive pruning, 551–552
speedup results, 550–551

Spin-on glass (SOG), 737–738
SP-Tree algorithm, 566
ST, see Sequence triplet
STA, see Static timing analysis
Standard breadth-first search

global routers, 607
Standard cell connectivity, 110
Standard cell-dominated design, 260
Standard cells, 110, 140, 257, 259, 269, 282, 292, 294,

298, 301, 322, 368, 402, 412, 470, 837, 990
Star graph, define, 111
Star (V) model, 329
State-of-the-art FPGA synthesis algorithms, 958–959
Static netweighting, in timing-driven placement,

427–432
Static power

gate tunneling current, 47
subthreshold leakage current, 46–47

Static random access memory (SRAM), 829, 913
based FPGAS, 942–943, 958

bit, 980
Static timing analysis, 425, 428
Statistical floorplanning, 251–252
Statistical learning techniques, 323
Statistical timing analysis, 981
Steiner approximation, 490, 502

heuristic, 495
ratio, 495

Steiner arborescences, 494, 513–519
Steiner candidate node, set of, 517
Steiner Elmore routing tree, 520
Steiner minimal tree (SMT), 617

problem, 487–488
Steiner node, buffer blockage, 575
Steiner tree, 627

algorithm, 490
construction

research and development, 530
net model, in TDP, 442

and placement-driven synthesis (PDS), 813, 826
wirelength, 454–455

Steiner tree wirelength (StWL), 279, 303, 454
Steiner (V) model, 329
Steiner wirelength optimization, in global-placement,

454–455
Steiner wire models and gate sizing, 819
STI, see Shallow trench isolation
STI fill insertion, 758–760; see also Chemical-mechanical

polishing
Stockmeyer’s algorithm, 61

in oriented slicing tree, 165
S-Tree topology space, 565
Strict aggregation and weighted aggregation, 383
Subthreshold leakage current, 46
Sum of all-pairs mincut (SAPMC), 448–449
Super-feasible region, 969–970; see also Physical synthesis
Swap, 226–227; see also Adjacent constraint graph
Switch blocks and connection blocks, 948
Switch matrix, critical path configurations and delay

variations, 982
Synthesis–placement interface (SPI)

bins and, 817
Systematic defects, in yield loss, 773
System on chip, 424, 455, 690

T
Tabu-search, 962
Taylor expansion, third-order, 547
TBS, see Twin binary sequence
TBTs, see Twin binary trees
TCG, see Transitive closure graph
TCG-S

construction from placement, 221–223
packing scheme for, 223
perturbations, 223–224
TCG, SP, and, 221

TDP, see Timing–driven placement
Technology CAD (TCAD) tools, 696
65-nm technology, context-dependent minimum spacing

rule, 794, 804
Technology mapping, and clustering, 958–961
Tetris-based legalization technique, 412
Three-dimensional (3D) circuits, 985

3D floorplanning, 989
3D placement, 990–991
three-tier 3D technology, 991–992

Three-dimensional place and route (TPR)
partitioning-based placement within tiers, 999–1000
partitioning circuit between tiers, 998–999
simulated annealing placement phase, 1000
tool, 998
TPR CAD tool, 997–998

Three-dimensional placement, 284
Tile graph, 277
TimberWolfSC, 319
Timing budgets, history of, 261
Timing closure, 23–24
Timing-driven buffer insertion problem, 538

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1022 9-10-2008 #22

1022 Index

Timing-driven placement, 424, 426–427
accurate net-modeling issue, 442–443
building blocks and classification of

net modeling, 424–425
time analysis and metrics, 425–426

Hippocrates in, 442
hybrid net method in, 442
net-constraint-based

net-constraint generation, 434–436
net-constraint placement, 436–437

netweighting-based
dynamic netweighting, 432–434
static netweighting, 427–432

path-based, 437–438
graph-based differential timing, 441
Lagrangian relaxation method, 440–441
LP-based formulation, 438–440
partitioning-based overlap removal, 440
simulated annealing, 441

Timing graph, in TDP, 437–438; see also Timing-driven
placement

Timing optimization, 475
T-junctions

degenerated case modeled by, 186
kinds of, 187
noncrossing segment of, 191
possible orientations for, 194–195
of reducible and irreducible empty rooms, 197
on top and right boundaries for floorplan, 194

TNS, see Total negative slack
Top-down partitioning-based placement

bipartitioning vs. multiway partitioning, 291
cutline direction selection techniques

types of, 291–292
process of, 290
terminal propagation and inessential nets, 291
whitespace allocation

free cell addition, 292–293
Top-down placement process, 290
Topological ordering, 79, 223
Topologies, permutation BDAC, 563
Topology embedding algorithm, modifications, 565
Total negative slack, 426
Total wirelength, 424
Track-based routing space model, 850
Track routing, 792
Transient Thevenin resistance, characterization of, 683
Transitive closure graph

construction from placement, 218–219
define, 218
equivalence of, 228–229
packing method for, 219
perturbations, 220–221
properties of, 220
representation, 989

Transmission cross coefficient (TCC), 719–720
Transverse electric (TE), 720
Traveling-salesman problem, 126, 563
Tree adjustment process, speed up, 581
Tree covering library, 972
TSP, see Traveling salesman problem

T-trees, 229–230
T-VPack, see Versatile placement and routing (VPR) tool
Twin binary sequence

constructing floorplan from, 197
definition of, 196
empty room insertion process, 198
transformation to floorplan, 197

Twin binary trees
definition of, 194
of mosaic floorplan, 196
T-junctions, 195
transformation from floorplan to, 195

TWL, see Total wirelength
Two-dimensional bin-packing problem, 965
Two-dimensional problem, solution of, 13
Two-phase flow

buffer-aware Steiner tree construction
buffer tree topology generation, 561–562
C-Tree, 560

Two-pin nets, 574
buffer insertion in, 537
optimization of, 536–538

U
UDSM technologies, 673
Ultra-deep-submicron VLSI technology, 530
Ultrafast VPR, usages of, 386
Uniform segmenting, for Steiner tree, 582

V
van Ginneken extensions

flip-flop insertion, 549–550
handle multiple buffers, 542
higher order delay modeling

accurate gate delay, 549
buffer insertion methods, 546
higher order point admittance model, 547–548
higher order wire delay model, 548–549

library with inverters, 542
noise constraints with Devgan metric

buffer insertion with noise avoidance,
algorithm of, 546

Devgan’s coupling noise metric, 544–546
polarity constraint, 542–543
slew and capacitance constraints, 543

van Ginneken’s algorithm, 265
buffer insertion, 538
candidate solution, concept of, 538–539
explicit representation, 554
generating candidate solutions

branch merging, 539
buffer insertion, 539
operations in, 539
wire insertion, 539

implicit representation, 554–555
inferior solution, 540
pruning implementation, 540
pseudocode, 540
work flow of, 540–542

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1023 9-10-2008 #23

Index 1023

van Ginneken’s dynamic programming algorithm, 557
van Ginneken style algorithm

buffer insertion candidate locations, 582
van Ginneken style buffering algorithms, 548
van Ginneken-style dynamic programming algorithm, 653
Variable shaped beams (VSBs), 858
Variable threshold resist (VTR), 724–725
Variation-aware placement, 974–975
V-cycle, and multigrid-like power grid analysis, 925
Vdd-programmable, 980
Versatile placement and routing (VPR)

timing-driven version (TVPR), 967
timing delay table, 968

tool, 960
Vertical constraints, 14
Very large scale integration, 18, 139, 427, 448, 557

chip design, 448
circuits, 139, 509, 586
design automation community, 110, 131–132
designs, 427, 674
layouts, 487

Victim net
noise injected to, 42

calculation of, 43
Virtex-II/-II Pro devices, 952
VLSI, see Very large scale integration
VLSI CAD, rectilinear Steiner minimum trees, 513
VLSI circuit design, buffer scaling, 536
VLSI designs, 277

methodologies, 653
VLSI physical design

automation, 55
constraints (see Power dissipation)
data structures used during (see Data structures)
detection of infeasibility in, 98
IR drop in, 249
purpose of, 3
synchronous, 29
timing metrics used in

Elmore delay (see Elmore delay)
fast timing metrics (see Fast timing metrics)
static timing analysis, techniques for, 39–41

VLSI technologies, 522, 536
Voronoi deterministic method, in yield analysis,

780–782
Voronoi diagram, 86
VTR model, 725

W
Wafer simulation, 723–725
Wave equation, 701
Waveforms of noise, on delay, 677
Wavefront expansion, 607
Wavefront propagation, 477

heuristic for, 478
Waveguide method (WGM), 723
Wave propagation, 10
Weibull-based delay, 36–38
Weibull distribution, 36

mean and variance of, 37

Weighted graph, defining dominance, 516
Weighted terminal propagation

with StWL, costs calculation, 304
White-space allocation, 408–411, 454–456, 458–460
Whitespace formulation, 241, 243–244
Whitespace management, in congestion-driven

placement techniques, 458–460
Width-dependent influence spacing rule, 805
Width-dependent parallel-length spacing rule, 805

context-dependent spacing, 804
Width-dependent parallel-run-length spacing rule, 804
Wire code, 544
Wire delay, accuracy of, 547
Wirelength buffers, 558
Wirelength-radius trade-offs, 510–513
Wire-load models, 23
Wire parallel plate capacitance, 587
Wire planning, chips, 24
Wire resistance, 587
Wire retiming, 667–668

area constrained, 668–669
LAC, formulation with sets of constraints, 669

introducing, variable R(v), 667–668
retiming solution, for given clock period TCP , 667

Wire segment, delay and slew of, 31
Wire sizing

basics
delay and cross-talkmodeling, 586–587
interconnect delay, 585
parasitics modeling, 587
result comparison, 586

optimization
discrete vs. continuous, uniform vs. nonuniform, 588
weighted delay, timing constraints, and power

consideration, 588
with tapering, 544
technique of, 529

Wiring closure, 22–23
WNS, seeWorst negative slack
Wong–Liu algorithm, 171–173, 175–176
Worst-case noise

calculation by graph traversal, 43
function of, 42

Worst negative slack, 426, 430, 438, 440
WSA, seeWhite–space allocation
WYSINWYG lithography, 792

X
Xilinx MicroBlaze, 953
X interconnect architecture

in determining pin placement, 843
global routing for, 843
impact of, 844
implementation of, 858
Manhattan wires and diagonal wires in, 837
Moore’s law, 836
placer for, 842
X initiative, 857

X place and route (XPR) system, 835–837, 840, 848,
858, 860

Alpert/Handbook of Algorithms for Physical Design Automation AU7242_C048 Finals Page 1024 9-10-2008 #24

1024 Index

global routing, 843–848
history, 836
limitations of, 839
manufacturing considerations, 856–859
manufacturing-constrained, 851–855
placement, 840–843
in practice, 859–860
production chip employing, 859
role of VIAS

nonpreferred-direction wiring, 840
routing spacemodel and search algorithm, 849–851
Steiner trees, 855–856
system for, 840
theoretical benefits of, 837–839

Y
Y architecture, 836
Yield analysis

parametric, 775–776
random defect yield modeling, 776–783

Yield ingredient, 772
Yield loss

sources of, 774–775
types of, 773

Yield optimization, methods for
corner-based design analysis, 786
critical area, 783–785
design rules, 785–786
future of parametric, 786–787

Z
Zelikovsky’s algorithm, 503
Zernike polynomials, 702, 717
Zero-skew clock tree, construction, 887
Zero-skew merged subtrees, 886
Zero-slack algorithm (ZSA), 264, 435–436
Zig moves, 846
Zimmerman’s algorithm, in oriented slicing tree, 168
Z-shaped routes, 604

	Front cover
	Contents
	Editors
	Contributors
	Part I: Introduction
	Chapter 1. Introduction to Physical Design
	Chapter 2. Layout Synthesis: A Retrospective
	Chapter 3. Metrics Used in Physical Design
	Part II: Foundations
	Chapter 4. Basic Data Structures
	Chapter 5. Basic Algorithmic Techniques
	Chapter 6. Optimization Techniques for Circuit Design Applications
	Chapter 7. Partitioning and Clustering
	Part III: Floorplanning
	Chapter 8. Floorplanning: Early Research
	Chapter 9. Slicing Floorplans
	Chapter 10. Floorplan Representations
	Chapter 11. Packing Floorplan Representations
	Chapter 12. Recent Advances in Floorplanning
	Chapter 13. Industrial Floorplanning and Prototyping
	Part IV: Placement
	Chapter 14. Placement: Introduction/ Problem Formulation
	Chapter 15. Partitioning-Based Methods
	Chapter 16. Placement Using Simulated Annealing
	Chapter 17. Analytical Methods in Placement
	Chapter 18. Force-Directed and Other Continuous Placement Methods
	Chapter 19. Enhancing Placement with Multilevel Techniques
	Chapter 20. Legalization and Detailed Placement
	Chapter 21. Timing-Driven Placement
	Chapter 22. Congestion-Driven Physical Design
	Part V: Net Layout and Optimization
	Chapter 23. Global Routing Formulation and Maze Routing
	Chapter 24. Minimum Steiner Tree Construction*
	Chapter 25. Timing-Driven Interconnect Synthesis
	Chapter 26. Buffer Insertion Basics
	Chapter 27. Generalized Buffer Insertion
	Chapter 28. Buffering in the Layout Environment
	Chapter 29. Wire Sizing
	Part VI: Routing Multiple Signal Nets
	Chapter 30. Estimation of Routing Congestion
	Chapter 31. Rip-Up and Reroute
	Chapter 32. Optimization Techniques in Routing
	Chapter 33. Global Interconnect Planning
	Chapter 34. Coupling Noise
	Part VII: Manufacturability and Detailed Routing
	Chapter 35. Modeling and Computational Lithography
	Chapter 36. CMP Fill Synthesis: A Survey of Recent Studies
	Chapter 37. Yield Analysis and Optimization
	Chapter 38. Manufacturability-Aware Routing
	Part VIII: Physical Synthesis
	Chapter 39. Placement-Driven Synthesis Design Closure Tool
	Chapter 40. X Architecture Place and Route: Physical Design for the X Interconnect Architecture
	Part IX: Designing Large Global Nets
	Chapter 41. Inductance Effects in Global Nets
	Chapter 42. Clock Network Design: Basics
	Chapter 43. Practical Issues in Clock Network Design
	Chapter 44. Power Grid Design
	Part X: Physical Design for Specialized Technologies
	Chapter 45. Field-Programmable Gate Array Architectures
	Chapter 46. FPGA Technology Mapping, Placement, and Routing
	Chapter 47. Physical Design for Three-Dimensional Circuits
	Index
	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.000000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages false
 /MonoImageMinResolution 1100
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU (T&F settings for black and white final Printer PDFs)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

