


Advances in Computer Vision and Pattern
Recognition

For further volumes:
www.springer.com/series/4205

http://www.springer.com/series/4205




Klaus D. Toennies

Guide to Medical
Image Analysis

Methods and Algorithms



Prof. Klaus D. Toennies
Computer Science Department, ISG
Otto-von-Guericke-Universität Magdeburg
Magdeburg
Germany

Series Editors
Prof. Sameer Singh
Research School of Informatics
Loughborough University
Loughborough
UK

Dr. Sing Bing Kang
Microsoft Research
Microsoft Corporation
Redmond, WA
USA

ISSN 2191-6586 e-ISSN 2191-6594
Advances in Computer Vision and Pattern Recognition
ISBN 978-1-4471-2750-5 e-ISBN 978-1-4471-2751-2
DOI 10.1007/978-1-4471-2751-2
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2012931940

© Springer-Verlag London Limited 2012
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy


Preface

Hans Castorp, in Thomas Mann’s Magic Mountain, keeps an x ray of his lover as it
seems to him the most intimate image of her to possess. Professionals will think dif-
ferently of medical images, but the fascination with the ability to see the unseeable
is similar. And, of course, it is no longer just the x ray. Today, it is not sparseness, but
the wealth and diversity of the many different methods of generating images of the
human body that make the understanding of the depicted content difficult. At any
point in time in the last 20 years, at least one or two ways of acquiring a new kind
of image have been in the pipeline from research to development and application.
Currently, optical coherence tomography and magnetoencephalography (MEG) are
among those somewhere between development and first clinical application. At the
same time, established techniques such as computed tomography (CT) or magnetic
resonance imaging (MRI) reach new heights with respect to the depicted content,
image quality, or speed of acquisition, opening them to new fields in the medical
sciences.

Images are not self-explanatory, however. Their interpretation requires profes-
sional skill that has to grow with the number of different imaging techniques. The
many case reports and scientific articles about the use of images in diagnosis and
therapy bears witness to this. Since the appearance of digital images in the 1970s,
information technologies have had a part in this. The task of computer science has
been and still is the quantification of information in the images by supporting the
detection and delineation of structures from an image or from the fusion of infor-
mation from different image sources. While certainly not having the elaborate skills
of a trained professional, automatic or semi-automatic analysis algorithms have the
advantage of repeatedly performing tasks of image analysis with constant quality,
hence relieving the human operator from the tedious and fatiguing parts of the in-
terpretation task.

By the standards of computer science, computer-based image analysis is an old
research field, with the first applications in the 1960s. Images in general are such
a fascinating subject because the data elements contain so little information while
the whole image captures such a wide range of semantics. Just take a picture from
your last vacation and look for information in it. It is not just Uncle Harry, but
also the beauty of the background, the weather and time of day, the geographical
location, and many other kinds of information that can be gained from a collection of
pixels of which the only information is intensity, hue, and saturation. Consequently,
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a variety of methods have been developed to integrate the necessary knowledge in
an interpretation algorithm for arriving at this kind of semantics.

Although medical images differ from photography in many aspects, similar tech-
niques of image analysis can be applied to extract meaning from medical images.
Moreover, the profit from applying image analysis in a medical application is im-
mediately visible as it saves times or increases the reliability of an interpretation
task needed to carry out a necessary medical procedure. It requires, however, that
the method is selected adequately, applied correctly, and validated sufficiently.

This book originates from lectures about the processing and analysis of medi-
cal images for students in Computer Science and Computational Visualistics who
want to specialize in Medical Imaging. The topics discussed in the lectures have
been rearranged to provide a single comprehensive view on the subject. The book
is structured according to potential applications in medical image analysis. It is a
different perspective if compared to image analysis, where usually a bottom-up se-
quence from pixel information to image content is preferred. Wherever it was pos-
sible to follow the traditional structure, this has been done. However, if the method-
ological perspective conflicted with the view from an application perspective, the
latter was chosen. The most notable difference is in the treatment of classification
and clustering techniques that appears twice since different methods are suitable for
segmentation in low-dimensional feature space compared to classification in high-
dimensional feature space.

The book is intended for medical professionals who want to get acquainted with
image analysis techniques, for professionals in medical imaging technology, and
for computer scientists and electrical engineers who want to specialize in the med-
ical applications. A medical professional may want to skip the second chapter, as
he or she will be more intimately acquainted with medical images than the intro-
duction in this chapter can provide. It may be necessary to acquire some additional
background knowledge in image or signal processing. However, only the most ba-
sic material was omitted (e.g., the definition of the Fourier transform, convolution,
etc.), information about which is freely available on the Internet. An engineer, on
the other hand, may want to get more insight into the clinical workflow, in which
analysis algorithms are integrated. The topic is presented briefly in this book, but a
much better understanding is gained from collaboration with medical professionals.
A beautiful algorithmic solution can be virtually useless if the constraints from the
application are not adhered to.

As it was developed from course material, the book is intended for use in lectures
on the processing and analysis of medical images. There are several possibilities
to use subsets of the book for single courses, which can be combined. Three of
the possibilities that I have tried myself are listed below (Cx refers to the chapter
number).
• Medical Image Generation and Processing (Bachelor course supplemented with

exercises to use Matlab or another toolbox for carrying out image processing
tasks):
– C2: Imaging techniques in detail (4 lectures),
– C3: DICOM (1 lecture),
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– C4: Image enhancement (2 lectures),
– C5: Feature generation (1 lecture),
– C6: Basic segmentation techniques (2 lectures),
– C12: Classification (1 lecture),
– C13: Validation (1 lecture).

• Introduction to Medical Image Processing and Analysis (Bachelor course supple-
mented with a student’s project to solve a moderately challenging image analysis
task; requires background on imaging techniques):
– C2: Review of major digital imaging techniques: x ray, CT, MRI, ultrasound,

nuclear imaging (1 lecture),
– C3: Information systems in hospitals (1 lecture),
– C4: Image enhancement (1 lecture),
– C6: Basic segmentation techniques (2 lectures),
– C7: Segmentation as a classification task (1 lecture),
– C8–C9: Introduction to graph cuts, active contours, and level sets (2 lectures),
– C10: Rigid and nonrigid registration (2 lectures),
– C11: Active Shape Model (1 lecture),
– C13: Validation (1 lecture).

• Advanced Image Analysis (Master course supplemented with a seminar on hot
topics in this field):
– C7: Segmentation by using Markov random fields (1 lecture),
– C8: Segmentation as operation on graphs (3 lectures),
– C9: Active contours, active surfaces, level sets (4 lectures),
– C11: Object detection with shape (4 lectures).
Most subjects are presented so that they can also be read on a cursory level,

omitting derivations and details. This is intentional to allow a reader to understand
the dependencies of a subject on other subjects without having to go into detail in
each one of them. It should also help to teach medical image analysis on the level
of a Bachelor’s course.

Medical image analysis is a rewarding field for investigating, developing, and
applying methods of image processing, computer vision, and pattern recognition.
I hope that this book gives the reader a sense of the breadth of this area and its many
challenges while providing him or her with the basic tools to take the challenge.

Klaus D. ToenniesMagdeburg, Germany
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1The Analysis of Medical Images

Abstract
Medical images are different from other pictures in that they depict distribu-
tions of various physical features measured from the human body. They show
attributes that are otherwise inaccessible. Furthermore, the analysis of such im-
ages is guided by very specific expectations, which gave rise to acquiring the
images in the first place. This has consequences on the kind of analysis and on
the requirements for algorithms that carry out some or all of the analysis. Im-
age analysis as part of the clinical workflow will be discussed in this chapter as
well as the types of tools that exist to support the development and carrying out
of such an analysis. We will conclude with an example for the solution of an
analysis task to illustrate important aspects for the development of methods for
analyzing medical images.

Concepts, notions and definitions introduced in this chapter

› Introduction to basic development strategies
› Common analysis tasks: delineation, object detection, and classification
› Image analysis for clinical studies, diagnosis support, treatment planning, and

computer-assisted therapy
› Tool types: viewers, workstation software, and development tools

Why is there a need for a book on medical image analysis when there are plenty of
good texts on image analysis around? Medical images differ from photography in
many ways. Consider the picture in Fig. 1.1 and the potential questions and prob-
lems related to its analysis. The first question that comes to mind would probably be
to detect certain objects (e.g., persons). Common problems that have to be solved
are to recover the three-dimensional (3D) information (i.e., missing depth informa-
tion and the true shape) to separate illumination effects from object appearance, to
deal with partially hidden objects, and to track objects over time.

K.D. Toennies, Guide to Medical Image Analysis,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-2751-2_1, © Springer-Verlag London Limited 2012
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Fig. 1.1 Analysis questions for a photograph are often based on a detection or tracking task (such
as detecting real persons in the image). Problems relate to reducing effects from the opacity of
most depicted objects and to the reconstruction of depth information (real persons are different
from those on the picture because they are 3D, and—if a sequence of images is present—because
they can move)

Medical images are different. Consider the image in Fig. 1.2. The appearance
of the depicted object is not caused by light reflection, but from the absorption of
x rays. The object is transparent with respect to the depicted physical attribute. Al-
though the detection of some structure may be the goal of the analysis, the exact
delineation of the object and its substructures may be the first task. The variation
of the object shape and appearance may be characteristic for some evaluation and
needs to be captured. Furthermore, this is not the only way to gain insight into the
human body. Different imaging techniques produce mappings of several physical
attributes in various ways that may be subjects of inspection (compare Fig. 1.2 with
Fig. 1.3). Comparing this information with reality is difficult, however, since few if
any noninvasive methods exist to verify the information gained from the pictures.
Hence, the focus on analysis methods for medical images is different if compared to
the analysis of many other images. Delineation, restoration, enhancement, and reg-
istration for fusing images from different sources are comparably more important
than classification, reconstruction of 3D information, and tracking (although it does
not mean that the last three topics are irrelevant for medical image analysis). This
shift in focus is reflected in our book and leads to the following structure.
• Medical images, their storage, and use will be discussed in Chaps. 2 and 3.
• Enhancement techniques and feature computation will be the subject of Chaps. 4

and 5.
• Delineation of object boundaries, finding objects and registering information

from different sources will make up the majority of the book. It will be presented
in Chaps. 6 to 12.
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Fig. 1.2 Detail of one of the
first radiographs showing the
wrist and part of the hand.
The image projects a physical
entity that is transparent with
respect to the detection
technique. Bone structures
are clearly visible

• A separate chapter, Chap. 13, will be devoted to the validation of an analysis
procedure since this is particularly difficult for methods developed for medical
images.
Computer-assisted analysis of medical images is meant to support an expert (the

radiologist, the surgeon, etc.) in some decision task. It is possible to associate analy-
sis tasks to the kind of decision in which the expert shall be supported (see Fig. 1.4).
• Delineation of an object requires solving a segmentation task.
• Detection of an object requires solving a classification task.
• Comparison of the object appearance from pictures at different times or from

different modalities requires solving a registration task.
Although the characterization above is helpful in deciding where to look for so-

lutions, practical applications usually involve aspects from not just one of the fields.
Hence, before deciding on the kind of methodology that is needed, it is important to
understand the technical questions associated with the practical application. Several
aspects need to be discussed.
• Analysis in the clinical work flow: How does the analysis fit into the clinical

routine within which it has been requested?
• Strategies to develop an analysis tool: How can it be assured that an efficient and

effective solution has been chosen?
• Acquisition of necessary a priori information: What kind of information is nec-

essary to solve the analysis task and how can it be acquired?
• Setup of an evaluation scenario: How can the quality of the analysis method be

tested?
• Tools to support an analysis task: How can tools be used to spend as little effort

as necessary to solve the analysis task?
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Fig. 1.3 Detail of a slice to a similar region as the one depicted in Fig. 1.2 by a magnetic reso-
nance image (MRI). The acquisition technique produces a 3D volume and the imaged physical en-
tity highlights soft tissue structures (from the website http://www.exeter.ac.uk/~ab233/, with kind
permission of Dr. Abdelmalek Benattayallah)

Fig. 1.4 Different tasks in medical image analysis require different methodology and validation
techniques

It is easy to forget about these more general questions when being confronted
with some analysis problem because
• each analysis task is different from most other analysis tasks (different organ or

pathology to be analyzed, different imaging system, imaging parameters, imaging
equipment);

• when being asked, finding a solution fast is usually the main motivation and other
aspects such as fitting the solution into the workflow appear to be of lesser impor-
tance;

• the development of a method usually takes place well separated from the regular
practice in which the method is supposed to be used;

• it is more fun to experiment with some new method or to apply a methodology
with which the developer has experience rather than truly looking for the most
appropriate solution.

http://www.exeter.ac.uk/~ab233/
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Nonetheless, the final result needs to be an effective and ideally efficient solu-
tion. The following sections will present strategies for developing a method in the
clinical environment, for deciding on the type of methodology, and for deciding on
an evaluation scenario.

Digital medical images and computer-assisted methods for their interpretation
have been around for quite some time. Several books exist that treat the subject.
Books on specific aspects of medical image analysis will be referenced in the re-
spective chapters. Books on medical image analysis in general are the following.
• The Handbook of Medical Imaging and Analysis (Bankman 2008) is an edited

book containing almost 60 articles of active researchers in the field on all relevant
aspects of the topic. It is a well structured text of more than 1000 pages.

• The Handbook of Biomedical Image Analysis (Suri et al. 2005) is another,
even more extensive book on the subjects of the analysis of medical images,
although—compared to Bankman (2008)—the text is slightly outdated.

• Principles and Advanced Methods in Medical Imaging and Image Analysis
(Dhawan et al. 2008) is a reference covering a broad spectrum of topics that is
particularly strong in image generation techniques.

• Medical Image Analysis (Dhawan 2011) is strong on the physics, generation, and
information content of modern imaging modalities.
There is still a need for another text since the subject is either treated with focus

on the generation of images rather than on their analysis, or the treatment requires
a very good background to appreciate the information. The book at hand will intro-
duce the subject and present an overview and detailed look at the many dependen-
cies between different strategies for the computer-assisted interpretation of medical
images.

1.1 Image Analysis in the Clinical Workflow

A newly developed method or a newly adapted method for carrying out some anal-
ysis (e.g., for determining the tumor boundary and tumor volume in brain MRI) will
most likely not be implemented on the computer that is used to generate or to eval-
uate the images. The reason for this is that this piece of software will often not be
certified as part of the equipment to be used in a clinical routine. Hence, the method
will be separate from other analysis devices while still is intended to be used within
some medical procedure. This has to be accounted for when developing a method.
The developer will not only have to create the method, but also needs to provide
an environment in which the method can be applied. The type of environment de-
pends on the problem that has to be solved. At least four different scenarios can be
differentiated (see Table 1.1).
• For a clinical study, images are analyzed outside a clinical routine task to under-

stand or confirm findings based on images. In this case, images that are part of the
study are often copied to some workstation where the study is taking place. The
image analysis method is then implemented on this workstation and the results
from analysis are kept here as well. The transfer of data to this workstation has to
be organized and bookkeeping must enable a later checking of results.
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Table 1.1 Different scenarios for computer-assisted image analysis have very different require-
ments

Clinical study Computer
aided diagnosis

Treatment
planning

Computer
assisted surgery

No. of cases Large Small Small Small

Time-constraints Low Medium Medium High

Location Anywhere Office, Reading room Office, ward Operating room

Interaction Not acceptable Acceptable Acceptable Acceptable

Archival requirements High High Medium Medium

• For diagnosis support (computer-aided detection, computer-aided diagnosis), sin-
gle cases that may consist of several studies containing images are analyzed on a
medical workstation. The transfer of images to this workstation is often done by
other software, but access to the images, which may be organized by the export
module of the image acquisition system, has to be part of the analysis method.
Diagnosis support systems often involve interaction since the user has to accept
or reject the analysis result anyway. If interaction is used to supply the method
with additional information by the data expert, it has to be ensured that it is in-
tuitive and efficient and that contradictions between the results from the analysis
and any overwriting actions by the user are clear.

• Analysis in treatment planning precedes treatment. It may be carried out in a ra-
diology department or at a surgery department, depending on who is doing the
treatment planning. Methods have to take the time into account that is acceptable
for doing this task (which may be critical in some cases). Furthermore, the results
from treatment planning are the input for the treatment. This input may happen by
the medical expert taking numerical results from planning and using it for some
kind of parameterization. The generated results should be well documented and
measures should be enacted that help to avoid mistakes during the transfer from
results to parameterization. The input into some treatment module may also hap-
pen automatically (after the acceptance of the result by the expert). The interface
for the transfer has then to be specified as well.

• Image analysis for computer-assisted surgery is time-critical. Since noncertified
software is usually not allowed on the imaging system, fast transfer to the sys-
tem on which the analysis method is implemented has to be organized. Further-
more, the time constraints have to be known and kept by the method. With pro-
grammable graphic cards, time constraints are often adhered to by implementing
some or all of the analysis method on the graphics hardware. Any constraints from
the use of the system in an operating theater have to be considered and adhered
to.
Any constraints, such as speed requirements, and additional methods, such as

access to the data, should be included in the specification of the method to be de-
veloped. While this is a standard software engineering routine, it is sometimes ne-
glected in practice.
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An important part of the description is the definition of the problem to be solved
and the underlying assumptions for a solution. This is not to be underestimated. A lot
of domain knowledge exists about the appearance of structures of interest in medical
images. Nevertheless, anatomical variation, artefacts from image generation, and
changes of appearance due to different imaging techniques make it unlikely that the
conditions to extract information from the image for some specific analysis task can
be proven to be sufficient.

Arriving at a problem description is a result of a discussion between a data expert
(the radiologist, surgeon, or physician) and the methodology expert (the computer
scientist or engineer). An experienced radiologist will certainly have the knowledge
to come to a well-founded decision based on the images presented to him or her.
However, a radiologist is seldom forced to formalize this decision in some general
way a priori (i.e., before looking at some evidence from the images). Hence, gener-
ating the domain knowledge for a computer-assisted method will be more difficult
than making decisions based on a set of images. Furthermore, the different scientific
background of the data expert and the methodology expert will make it difficult for
either side to decide on the validity, representativeness, and exhaustiveness of any
fact conveyed from one side to the other. Experience helps, of course, but there is
still room for misunderstandings.

Reviewing the underlying assumptions for an analysis method later helps to iden-
tify sources of error. Such a description should contain the following information.
• Description of the images on which the analysis is performed (i.e., kind of images,

technical parameters, etc.).
• Description of the patient group on which the analysis is performed.
• All image features that are used for the analysis method, including any assump-

tions about the reliability of the features.
• All a priori information that is used as domain knowledge to perform the analysis.

Any change of method to correct errors found on test data will have to result in
changes of this description as well.

The description also helps to set up an evaluation scenario. Evaluation ensures
that the information generated by the analysis method really reflects an underlying
truth. Since the truth is usually not known, evaluation has to abstract from specific
cases and has to provide some kind of “generic truth.” This can be of two different
types. Either the method is evaluated with respect to some other method of which
the performance and quality has been proven, or the method is evaluated with re-
spect to the assumptions made a priori. The former is the simpler way to test a
method, as it shifts the responsibility of defining truth to the method against which
our new method is tested. For the latter, two aspects have to be tested. The first is
whether the analysis result is as expected when the assumptions from the domain
knowledge hold. The second is whether the assumptions hold. This evaluation has
the advantage of not relying on some gold standard, which may be difficult to come
by. However, it is usually difficult to show that the domain knowledge sufficiently
describes the problem. Hence, the topic of validation requires a careful look and it
will be discussed in detail in the final chapter of this book.
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Fig. 1.5 The free MicroDicom viewer (www.microdicom.com) allows viewing DICOM images
and simple operations such as annotations and some filtering operations

1.2 Using Tools

Fortunately, developing an analysis method does not mean that everything has to be
created from scratch. Different types of software greatly support speedy develop-
ment:
• viewer software;
• analysis software;
• rapid prototyping software;
• software libraries.

An extensive list of free software (either open source software or at least free to
use for academic and/or educational purposes) to view, export, analyze, and transfer
images is found at http://www.idoimaging.com.

Viewer software has been primarily developed to look at the data, but usually
contains some methods for analyzing the data as well. Although it is not thought
to be extended, it facilitates the development of a new analysis method by provid-
ing quick access to the image data (see Fig. 1.5 for an example of a free DICOM
viewer). Commercial software can be quite comfortable and if it is found that a
combination of existing methods solves the problem, development stops here. But
even if it is just a way of accessing and looking at the image data, it helps to get a
first impression on the kind of data, to organize a small data base on which the de-
velopment of an analysis method is based, and to discuss the problem and possible
solutions with the data expert.

Analysis software is different from viewer software in that it is intended to pro-
vide the user with a set of parameterizable analysis modules that perform different
steps of image analysis ranging from image enhancement methods to segmentation,

http://www.microdicom.com
http://www.idoimaging.com
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Fig. 1.6 Example of the user interface for an analysis module implemented under MeVisLab (with
kind permission of MeVis Medical Solutions AG, Bremen, Germany)

registration, or classification tools. An example for such analysis software is MeVis-
Lab, which exists in a commercial and a noncommercial version (www.mevis.de,
see Fig. 1.6).

MeVisLab provides the user with a set of implemented, parameterizable mod-
ules that produce output from the data. Different modules can be combined using
a graphic interface that allows the user to connect the output of one module with
the input of another module (see Fig. 1.7). It is, for instance, possible to create a
processing chain, where the data are first enhanced by removing artefacts and noise
using suitable filters, and then separated into different regions by a segmentation
technique of which one segment is then selected and analyzed (e.g., by measur-
ing its volume). This kind of modularization provides much more flexibility than
the usual workstation analysis software. It does, of course, require some knowledge
about the implemented modules to use them in an appropriate fashion.

One step further is to use a rapid prototyping programming language such as
Matlab or IDL. These are interpreter languages that are geared toward rapidly pro-
cessing arrays. It makes them particularly suitable to be used for working with two-
dimensional (2D) and 3D image arrays.

It is possible to write programs in both languages that can be executed later (see
Figs. 1.8 and 1.9 for a view at the program development interfaces of the two pro-
totyping languages). A wealth of methods for signal and image processing makes it
easy to program even more complex methods. The possibility to use the methods in
interpreter mode allows for experimenting with different methods for finding a solu-
tion for some image analysis problem. For efficient use, the user should be familiar
with the basic vocabulary of image processing and image analysis.

http://www.mevis.de
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Fig. 1.7 The interface for generating analysis modules in MevisLab (Ritter et al. 2011). The pro-
grammer can combine existing modules, e.g., for filtering, segmentation, and visualization, in a
way that is suitable to solve some specific problem using an intuitive graphical user interface (with
kind permission of MeVis Medical Solutions AG, Bremen, Germany)

Since routines for the input of images (filters for the most common formats in-
cluding DICOM) and for display are provided by IDL and Matlab, they are also
excellent tools to discuss potential methods and their contribution to analysis. With-
out having to go into detail the developer can simply show what is happing.

There is the danger that the simple way to construct analysis modules results in
ad hoc developments. They may be difficult to justify later except for the fact that
they worked on the data provided. Still, if prototyping languages are so useful, why
should they not be used for software development? If software development consists
of combining modules for which Matlab or IDL have been optimized, there is little
to say against such a decision except for the fact that both environments are com-
mercial products and require licenses for the development and runtime environment.

If substantial program development is necessary, other reasons may speak against
using Matlab or IDL. Both environments allow object-oriented programming, but
they do not enforce it (simply because this would interfere with the nonobject-
oriented fashion of the interpreter mode). It requires a disciplined development of
software that is meant to be extended and used by others. Furthermore, both en-
vironments optimize the computation of matrix operations. Computation may be-
come slow if software development requires nonmatrix operations. In such a case,
the performance suffers from translating the implemented program into the under-
lying environment (which in both cases is C). It usually pays to implement directly
into C/C++ or any other suitable language using the techniques and strategies for
efficient computation.
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Fig. 1.8 The Matlab interface is similar to the programming environment for some programming
language. The main differences are that Matlab can be used in interpreter modes and that it has
toolboxes for many methods in image analysis, pattern recognition, and classification

If a method is to be implemented completely without the help of some specific
programming environment, various libraries aid the developer. For analysis tasks in
medical imaging, two environments are mainly of interest: OpenCV and ITK.

OpenCV began as a way to promote Intel’s chips by providing an extensive and
fast image processing library for Windows and Intel chips. The restriction no longer
applies. OpenCV is intended to support general image processing and computer
vision tasks. The input is assumed to consist of one or several 2D images. The
analysis can be almost anything in the field of computer vision including, e.g., im-
age enhancement, segmentation, stereovision, tracking, multiscale image analysis,
and classification. The software has been published under the BSD license, which
means that it may be used for commercial or academic purposes. With respect to
medical image analysis its main disadvantage is that the processing of 3D or four-
dimensional (4D) scenes is not supported.

This is different for ITK (Insight Toolkit), which focuses on the segmentation and
registration of medical images. It is an open source project as well. Being meant to
support medical image analysis, it also contains plenty of auxiliary methods for
accessing and enhancing images. Furthermore, registration methods not included in
OpenCV for rigid and nonrigid registration are part of the software. Segmentation,
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Fig. 1.9 The IDL interface is similar to the Matlab interface. Windows for program development,
interactive evaluation of programs and functions, status of system variables, and generated output
enable the development of methods while inspecting results from the current chain of processes

which plays a much bigger role in medical imaging compared to the analysis of
other images, is extensively covered by including state-of-the-art methods.

ITK is written in C++, and the use of classes and methods is fairly simple. Being
an open source project, new contributions are invited, provided that guidelines for
software development within the ITK community are followed. As with OpenCV,
the efficient use of ITK requires some background knowledge about the methods
implemented, if only for deciding whether, e.g., the implemented level set frame-
work can be used for a segmentation solution for which you have worked out a
level set formulation. Information about OpenCV and ITK can be accessed by their
respective websites (http://opencv.willowgarage.com/wiki/ and http://www.itk.org/)
with Wiki and user groups. Being open source projects with voluntary supporters,
it is usually expected that the questioner spent some time on research work before
asking the community. A question such as “How can I use ITK for solving my (very
specific) registration problem?” might receive an answer such as “We suggest read-
ing some literature about registration first.”

As with the prototyping languages, the open source libraries may be all that is
needed to solve an analysis problem. But even if not, they will provide for quick
access to methods that can be tested with respect to their capability for solving the
problem. They also may provide state-of-the-art methods for data access, prepro-
cessing, and postprocessing. If the solution of image analysis problems is a recurring
task, it should well justify the effort to understand and efficiently use these toolkits.

http://opencv.willowgarage.com/wiki/
http://www.itk.org/
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Fig. 1.10 White matter lesions can be recognized in MR images as their signal differs from the
surrounding tissue. However, this information alone is insufficient as it can be seen by comparing
a simple intensity-based segmentation (b) of an MRI slice (a) with the result of a segmentation by
a human expert (c)

1.3 An Example: Multiple Sclerosis Lesion Segmentation in
Brain MRI

So far the discussion has been rather abstract. We conclude this chapter with a
presentation of an example. We selected a rather complex segmentation task (see
Fig. 1.10) for finding multiple sclerosis lesions to exemplify the range of models
and decisions in performing the analysis. The description is based on the two publi-
cations (Al-Zubi et al. 2002) and (Admasu et al. 2003).

Multiple sclerosis (MS) is a disease of the central nervous system where the
myelin shield of axons is receding. Estimating the extent and distribution of MS
lesions supports understanding the development of the disease and estimating the
influence of treatment. MS lesions can be detected in magnetic resonance images
using spin echo imaging. The method produces registered proton density (ρ),T1,
and T2 images (see the next chapter for details on this imaging technique), all of
which are going to be used in the segmentation process.

The choice of an appropriate analysis technique was guided by the goal of re-
placing the manual delineation of MS lesions by some automatic procedure. Lesion
detection is an active research field and the presentation of the method below by no
means should indicate that this is the only or even the best way to do the segmenta-
tion. It was chosen because the author of the book contributed to the result and can
comment on the various decisions and point out problems that are usually not stated
in a publication.

Selecting, adapting, or developing an analysis algorithm follows the standard
practice of scientific work. Information about data and possible a priori information
is gathered, a representation is selected in which this information can be described
and which can be used during segmentation. Then the method is implemented and
tested.
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Since the goal is to separate MS lesions from the background, it points to the
segmentation of foreground segments. Their characteristics describe the properties
of MS lesions. The properties of other structures need to be captured only to the
extent of enabling the separation of lesions from the background.

Discussions with physicians, MR physicists, and the study of the related literature
resulted in the following description of the appearance of MS lesions in T2-weighted
spin echo images.
1. 90–95% of all lesions occur in white matter. White matter segmentation can be

used for imposing a location constraint on the lesion search.
2. The anterior angle of the lateral ventricles, the corpus callosum, and the periven-

tricular areas are more often affected by MS than other regions of the nervous
system. Identifying those regions will further restrict localization.

3. There is considerable size variation for lesions, but their shape is roughly ellip-
soidal. It points to the use of shape constraints as part of the a priori knowledge.

4. MS lesions tend to appear in groups. This will require the introduction of a priori
knowledge about neighboring segments.

5. The intensity of an MS lesion varies from being bright in its center to being
lower at its boundaries. The intensity range is brighter than white matter intensity,
but overlaps with intensity for the cerebrospinal fluid (CSF). The data-driven
criterion will thus be some homogeneity constraint on intensity, but it is clear
that data-driven segmentation alone will be insufficient.

6. Shading in the MR images affects the brightness of the white matter as well as of
the MS lesions. Thus, the above-mentioned homogeneity criterion will be more
efficient in separating lesions, if shading is considered.
It was possible to accumulate such an extensive list of attributes because of the

high interest of the research community in the topic. There will be other cases where
the medical partner who requested an analysis solution may be the only source of
information. It will still be possible to generate a good description as the partner is
an expert and trained to develop such assumptions. He or she will also be able to
point to medical literature where such information can be found (even if it has not
been used for generating computer-assisted solutions).

The way of describing the attributes typically involves expressions like “tends
to” or “intensity varies” indicating a rather fuzzy knowledge about the permissi-
ble ranges for attribute values. Even mentioning numbers such as “90–95% of all
lesions” may refer to a single study with other studies coming up with different
numbers.

The research in medical science is often conducted empirically with observa-
tions leading to hypotheses. This is no problem in general. Much of the scientific
research—especially if it involves complex dependencies that do not easily point to
simple underlying facts—is empirical. However, for making this information useful
as a priori knowledge it has to be treated as factual. The transition from empirical
evidence to known facts may be a source of failure of an analysis method because
the underlying model assumptions turn out to be false.

Considering possible model knowledge, a number of consequences arose regard-
ing a successful segmentation strategy for the problem.
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Fig. 1.11 The overall structure of the algorithm with the three different analysis phases

• Segmentation will need to include a strong model component to account for the
ambiguities between the appearance of CSF and MS lesions.

• Model constraints regarding the shape and the location of lesions will need to
be stated probabilistically or in some fuzzy manner (at least in some informal
fashion).

• The first location constraint (condition 1 above) requires white matter segmenta-
tion. The application of the second constraint (condition 2) further requires some
representation of relative positions.

• Constraint 4 requires the definition of the neighborhood among segments.
The fuzziness of the described lesion properties led us to use a Bayesian Markov

random field (MRF) for representation (MRFs will be described in Sect. 14.1).
An MRF allows a probabilistic description of known neighborhood dependencies,
which is just what we need to describe constraints 1, 2, and 4.

Segmentation takes place in three stages (see Fig. 1.11). At the first stage, white
matter and lesions are segmented based on their intensities. A classifier for sepa-
rating white matter is trained which determines the expected values and variances
of a multivariate Gaussian distribution for ρ,T1, and T2. Intensity variation due
to magnetic field inhomogeneities is estimated based on segmented white matter
regions (which are assumed to have constant intensity). Segmentation is repeated
(see Fig. 1.12a). The subsequent MRF-based restoration reduces noise in the re-
sult since the a priori knowledge about the neighborhood states that adjacent pixels
belong, more likely, to the same kind of object rather than to different objects. Find-
ing the most probable segmentation given the MRF formulation resulted in a first
estimate of potential MS lesions (see Fig. 1.12b).

The white matter segmentation of the first stage is used to find neighboring struc-
tures by atlas matching (see Fig. 1.12c). The segmentation of gray matter is diffi-
cult but necessary. We needed to differentiate between white matter bordering gray
matter or the CSF of the ventricles to apply the second localization condition. The
spatial continuity of the gray matter and CSF regions is exploited when assuming
that the elastic registration of patient images with an anatomical atlas gives a suffi-
cient approximation of the different structures. Lesions segmented in the previous
step are reassessed using the deformed atlas as a priori information.

The shape constraint of lesions is used as a final confirmation. Because of the
fuzzy a priori knowledge, thresholds in the two previous stages for segment mem-
bership were set in a way so as to not exclude potential lesion sites. The final step
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Fig. 1.12 In the first two stages, the initial segmentation (a) is first postprocessed using a local
homogeneity constraint arriving at (b). Then atlas matching is used to remove lesions at unlikely
locations arriving at (c)

Fig. 1.13 In the final step, the result from atlas matching in (a) is postprocessed by defining a
shape-based MRF. The result in (b) compares favorably with the expert segmentation in (c)

treats the labels of lesion segments as random variables being either a lesion or gray
matter. Criteria are the deviation from the ellipsoidal shape and the distance of a seg-
ment from the ventricles. An (abstract) neighborhood system is defined. Segments
in this neighborhood are assumed to have the same label, as lesions tend to appear
in groups (condition 4). Labeling optimizes this MRF (see Fig. 1.13).

The stages described above accumulate the constraints derived from attributes
that characterize the lesions. Selecting a sequential order was necessitated by the
nature of some of the attributes (e.g., groups of lesions can only be identified when
potential lesions are already segmented, the neighborhood of white matter to other
tissues requires white matter segmentation first, etc.). Using a common representa-
tion for neighborhood relations at the pixel and the segment level was intentional as
it enabled an easy reconsideration of segment labeling in subsequent steps.

The resulting structure of the analysis methods accumulates and evaluates se-
mantics gradually in several steps that introduce different kinds of domain knowl-
edge. This is typical for many automatic analysis methods, as it allows keeping the
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fuzziness of knowledge through many steps of the decision process. If it enables
correcting erroneous decisions, it also contributes to the robustness of the method.
While this is generally desired, it may hide the use of incomplete, incorrect, or in-
adequate domain knowledge. Evaluation should account for this by validating the
expected results of the intermediate steps as well.

The modular structure of the method may also be a problem from the viewpoint
of a developer. A large part of the solution lies in the proper combination of the
modules. Reusing modules for a different problem solution requires the expertise of
a developer since the purpose of single modules within the overall problem solution
is rather abstract. This may be unwanted in a clinical environment where clinical
and radiological expertise is available, but not the expertise of an engineer for image
analysis solutions.

Using the methodology described above is by no means the only way to en-
code the prior knowledge about lesion attributes. This is proved by the numerous
publications on MS lesion detection using different knowledge representations and
segmentation strategies. Selecting a specific method is often influenced by reasons
such as existing experience with specific types of representation or segmentation
techniques, existing software, or other preferences by the developer. If the justifica-
tion for some technique is conclusive nonetheless, it may not influence the effective-
ness of a method. The effectiveness may only be affected when the existing prior
knowledge was used incompletely or inaccurately despite the conclusiveness of the
argument.

Reviewing our own decisions above, several points come to mind.
• The sequential order of removing lesions does not enable the reconsideration of

the segments excluded from being lesions at later stages.
• Assuming Gaussianity for the probability distributions in the framework is an

approximation that may not always be true.
• Repeated MRF optimization in the first two stages may be redundant because it

uses rather similar kinds of a priori knowledge.
• Using the Bayesian framework was influenced by the type of expertise in our

group at that time.
In a later revision (Admasu et al. 2003), the sequential order of the removal of

lesions was replaced by a sequence of two steps, which explicitly addressed two
different aspects of the prior knowledge. At a data-driven first step, segments were
created by adaptive intensity region growing using the concept of fuzzy connect-
edness of Udupa and Samarasekera (1996). It created CSF, gray matter (GM), and
white matter (WM) regions. The uncertainty of the homogeneity criterion in the
data-driven step was not modeled by Gaussian distributions but by introducing in-
teraction to indicate seed points for growing, fuzzily connected GM, WM, and CSF
regions.

Regions that are enclosed by GM, WM, or CSF and that are not found by the
method are labeled as potential lesion sites. The method does involve interaction,
but it is robust to input errors and not very costly. Only a few seed points have to be
selected for each of the connected components of GM, WM, or CSF. If any of those
components are missed they will be erroneously classified as a potential lesion site,



18 1 The Analysis of Medical Images

but this will be remedied in the next step. The advantage of using interaction is to
avoid the specification of absolute homogeneity criteria.

The features of potential lesion sites were then fed to a trained backpropagation
network. Shape and location features described a potential lesion site. The beauty of
using a neural network was that it essentially creates an approximation of a decision
boundary in feature space. The decision boundary describes locations in feature
space where the probability of a segment being a lesion equals that of a segment not
being a lesion. Other properties of the two probability distributions are not needed
and are not approximated. This results in a good estimate of the decision boundary
even if only relatively few samples are present. Although the relative spatial relation
among lesions was not considered—an important step of the previous approach—
success was in the range of the previous method and computation speed was much
faster.

What can be learned from the simplification? Sometimes it pays to consider lim-
ited interaction for supplying a priori knowledge. Reconsidering the limitations of
the use of model knowledge, even if the performance is very satisfactory, may lead
to a more efficient computation without sacrificing quality. After all, developing a
solution for a complex problem and experimenting with the results usually produces
a lot of insight into the importance of applied domain knowledge and its represen-
tation. It should be noted that redesigning a method may again slant the view of the
developer toward methods supporting a chosen strategy.

1.4 Concluding Remarks

Analysis in medical imaging differs from other image analysis tasks. The various
medical images carry very different information and many of the analysis tasks
are related to the individual quantification of entities (volume, extent, delineation,
number of occurrences) in the human body. Normal anatomy that is subject to the
quantification varies enormously. This is even moreso the case for pathological de-
viations. Hence, a major part of the analysis is to acquire, represent, and integrate
this knowledge in the image interpretation method.

It is not always necessary to develop an analysis method from scratch. Existing
commercial and free software packages provide methods that can be adapted to
the purpose of carrying out some specific analysis. They range from parametrisable
analysis methods offered through a graphical user interface to class libraries that
can be used or extended to serve a developer’s purpose for a new method. The
question of how to employ which domain knowledge to solve a specific analysis
task still resides with the developer when deciding on the use and adaptation of
such a method.

1.5 Exercises

• What analysis task would be typical for analyzing a photograph that would be
untypical for a medical image?
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• What is an example for the kind of information that is measured for a medical
image?

• Name at least two analysis tasks that could arise when using images for diagnosis
support.

• What is the main problem when validating an analysis method?
• Name a difference between analysis tasks for a clinical study compared to image

analysis in computer-assisted surgery.
• Where in a hospital does image analysis take place? Who are the persons in-

volved?
• Name a rapid-prototyping language that could be used for developing an analysis

method.
• How can workstation software be used for developing an analysis solution if the

workstation software itself does not provide the solution?
• Why is it so important to provide detailed documentation for all information and

assumptions used for developing an analysis algorithm?
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2Digital Image Acquisition

Abstract
Medical images are pictures of distributions of physical attributes captured by
an image acquisition system. Most of today’s images are digital. They may be
postprocessed for analysis by a computer-assisted method.
Medical images come in one of two varieties: Projection images project a phys-
ical parameter in the human body on a 2D image, while slice images produce a
one-to-one mapping of the measured value. Medical images may show anatomy
including the pathological variation of anatomy if the measured value is related
to it or physiology when the distribution of substances is traced.
X-ray imaging, CT, MRI, nuclear imaging, ultrasound imaging, photography, and
microscopic images will be discussed in this chapter. The discussion focuses on
the relationship between the imaged physical entity and the information shown
in the image, as well as on reconstruction methods and the resulting artefacts.

Concepts, notions and definitions introduced in this chapter

› Imaging techniques: x ray, fluoroscopy and angiography, DSA, x-ray CT, CT
angiography, MR imaging, MR angiography, functional MRI, perfusion MRI,
diffusion MRI, scintigraphy, SPECT, PET

› Reconstruction techniques: filtered backprojection, algebraic reconstruction,
EM algorithms

› Image artefacts: noise, motion artefacts, partial volume effect, MR-specific
artefacts, ultrasound-specific artefacts

A major difference between most digital medical images and pictures acquired from
photography is that the depicted physical parameters in medical images are usu-
ally inaccessible for inspection (see Fig. 2.1). Features or quantities determined by
computer-assisted analysis cannot easily be compared with true features or quanti-
ties. It would be, e.g., infeasible to open the human body to verify whether a tumor
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Fig. 2.1 Information from a photography is quite different from that of a medical image (in this
case a bone scintigraphy, published under Creative Commons license). While the human depicted
in the photo looks familiar, interpretation of the image on the right requires expertise with respect
to the meaning of the intensities. On the other hand, specific domain knowledge exists as to how to
interpret image intensity in the scintigraphy and the image is acquired in a way that makes analysis
as easy as possible, all of which cannot be said about the picture on the left. Obviously, the kind of
task for computer-based image analysis is different for these two pictures

volume measured in a sequence of CT images in some posttreatment confirmation
scan corresponds to the true volume.

Fortunately, the physical property depicted, its diagnostic value, and possible
artefacts are usually well known. Furthermore, the imaging technique has been cho-
sen on purpose because it is known to produce images that depict diagnostically
relevant information. The development of efficient analysis techniques often uses
this knowledge as part of the domain knowledge to make up for the inaccessibility
of the measured property.

A physical property measured by an imaging device and presented as a picture
must meet three conditions to be useful. It has to penetrate the human body, it must
not unduly interfere with it, and it must be meaningful for answering some medically
relevant question.
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With respect to digital imaging, four major1 and several minor imaging tech-
niques meet these requirements. The major techniques are as follows.
• X-ray imaging measures the absorption of short wave electromagnetic waves,

which is known to vary between different tissues.
• Magnetic resonance imaging measures the density and molecular binding of se-

lected atoms (most notably hydrogen which is abundant in the human body),
which varies with tissue type, molecular composition, and functional status.

• Ultrasound imaging captures reflections at the boundaries between and within
tissues with different acoustic impedance.

• Nuclear imaging measures the distribution of radioactive tracer material admin-
istered to the subject through the blood flow. It measures function in the human
body.
Other imaging techniques include EEG and MEG imaging, microscopy, and

photography. All the techniques have in common that an approximate mapping is
known between the diagnostic question, which was the reason for making the image
and the measurement value that is depicted. This can be very helpful when select-
ing an analysis technique. If, for instance, bones need to be detected in an x-ray
CT slice, a good first guess would be to select a thresholding technique with a high
threshold because it is known that x-ray attenuation in bone is higher than in soft
tissues and fluids.

Many of the imaging techniques come in two varieties: Projection images show
a projection of the 3D human body onto a 2D plane and slice images show a dis-
tribution of the measurement value in a 2D slice through the human body. Slice
images may be stacked to form a volume. Digitized images consist of a finite num-
ber of image elements. Elements of a 2D picture are called pixels (picture elements)
and elements of stacked 2D slices are called voxels (volume elements). We will call
pixels or voxels scene elements if the dimension of the scene is not known or not
important.

2D and 3D images may have an additional time dimension if the variation along
the time axis provides additional diagnostic information (e.g., if normally and ab-
normally beating hearts are compared). Slice images are usually reconstructed from
some kind of projection. Reconstruction may cause additional artefacts.

The chapter provides an overview on image acquisition systems for digital im-
ages in medicine. Emphasis is put on the semantics of the image and on system-
specific artefacts. A more detailed look at the imaging techniques and the recon-
struction of medical images is provided by specialized literature such as Prince and
Links (2005) or the text of Bushberg et al. (2002) (the latter is more directed toward
radiology residents). Imaging techniques in this chapter are listed by the kind of
entity that is measured.

1Imaging techniques are ordered by importance with respect to digital imaging and digital image
analysis. Orders of importance with respect to relevance to diagnosis or with respect to frequency
of examination are different, of course.
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Fig. 2.2 X-rays penetrate the human body and produce an image that shows the integral of tis-
sue-specific absorption along a path from the X-ray source to a detector

2.1 X-Ray Imaging

X rays were discovered in 1895 by Wilhelm Röntgen.2 He noticed an unknown kind
of ray emitted by a cathode ray tube (CRT) that easily penetrated paper, aluminum,
and many other materials, but not a lead plate. He also found that this kind of ray
is not reflected, refracted, diffracted, or deflected by electrical fields. He discov-
ered that the rays blackened film so that photographic images could be produced.
Röntgen called this unknown type of radiation x rays.

A material-specific amount of the energy of an x ray is attenuated when penetrat-
ing a material. For the first time in history, a technique allowed noninvasive insight
into the human body (see Fig. 2.2).

The harmful aspects of x rays were not known in the early years. It was employed
for all kinds of purposes without balancing the potential information gain through
imaging against the harmfulness of exposure to radiation. For instance, until the
1960s, some shoe stores offered a service by which customer’s feet wearing shoes
to be fitted were x rayed. Few, if any, precautions were taken to secure operators of
x-ray machines from harmful exposure.

2.1.1 Generation, Attenuation, and Detection of X Rays

X rays are electromagnetic waves with a wavelength above the visible spectrum.
Electromagnetic radiation has the characteristics of waves, but is actually travel-
ing as clusters of energy called photons with a given wavelength. Electromagnetic
waves do not need a carrier such as sound waves and travel at the speed of light c.
Their wavelength λ and frequency f are related by

c = λf. (2.1)

2Carl Wilhelm Röntgen was Professor for physics at the Julius-Maximilian-Universität Würzburg,
when he discovered x rays in his experiments with the cathode ray tube in 1895. He received the
Nobel price in Physics for his discovery.
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Fig. 2.3 The spectrum of diagnostic X-ray is above the spectrum of visible light in the range of
0.01 to 15 nm (10−11 to 1.5 × 10−8 m)

The energy of a photon measured in electron volts (eV) is the energy that a single
electron acquires when moving through a potential of 1 V. The energy of a photon
is characterized by its wavelength. It is given by

e = 1.24/λ (2.2)

if the unit of measurement is a kilo electron volt (keV) and the wavelength is mea-
sured in nanometers (nm).

The wavelength of an electromagnetic wave corresponds to its energy. Examples
for electromagnetic waves, in the order of increasing energy, are radio waves (being
used for magnetic resonance imaging), visible light, and x rays or gamma rays (see
Fig. 2.3). The difference between x rays and gamma rays is not their wavelength,
but the fact that gamma rays are created in the nucleus of an atom while x rays are
not. The energy of x-ray photons is sufficient to release electrons from an atom, a
process which is called ionizing radiation.

X rays are characterized by their exposure, i.e., the amount of charge per volume
of air, which is measured in röntgen (R). Exposure measures the energy of the ra-
diation source, but it does not describe how much of the radiation is absorbed by a
body under radiation. Absorption per unit mass is called dose and it is measured in
radiation absorbed dose (rad) or gray (Gy) with 1 Gy = 100 rad. The ratio between
exposure and dose varies with the x-ray energy and is often called the f -factor. The
f -factor at low exposure for hard tissues such as bone is much higher than for soft
tissues and water. Hence, bone at low doses absorbs a significantly higher amount
of radiation than soft tissues.

2.1.1.1 X-Ray Generation
Understanding the different types of x rays requires some understanding about their
generation. Electrons in an atom are organized in shells around the nucleus. Since
the negatively charged electrons are attracted to the protons in the nucleus, the inner-
most shell contains electrons with the lowest energy. Energy is needed for moving
an electron from an inner shell to an outer shell, which is equivalent to the difference
between energy levels of the two shells. If an electron is released from a shell, the
required energy amounts to the difference between its current energy level and the
level of the outermost shell plus the energy to remove an electron from the outer-
most shell. Electrons on the outermost shell are thus the easiest to remove and are
called valence electrons.
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Fig. 2.4 X-ray generation by excitation and ionization. In excitation, external energy pushes an
electron from an outer shell to an inner shell. Excess energy is released as x rays. The ioniza-
tion process is similar, except for the fact that excitation happens indirectly by an electron that is
released from an outer shell of a different atom

X rays are generated as excess energy from electrons in the material of a cathode
ray tube (CRT)3 when heating the cathode. Energy from heating causes electrons
to be released from the cathode and accelerated toward the anode. In the anode,
electrons lose their kinetic energy by excitation, ionization, and radiation. Excitation
and ionization cause electrons of the anode material to move from an outer shell to
an inner shell (see Fig. 2.4). For excitation, this happens directly, whereas ionization
causes the electrons of an outer shell to be released, which then excites the electrons
of another atom. The excess energy being released as x rays depends on the energy
difference between the outer and the inner shells. Hence, the radiation from this
process is monochrome. This kind of x ray is called characteristic or monochrome
x-ray radiation.4

Most of the x-ray radiation, however, is polychrome. An incident electron is
slowed down by passing the nucleus of an atom. Slowing down means that the
frequency of the electron changes. The excess energy is emitted as a photon. Its
amount depends on how close the incident electron passes to the nucleus. All its
energy is released as x rays if it annihilates in the nucleus. If it passes the nucleus,
more energy is released for an inner shell passage than for an outer shell passage.
This type of radiation is called bremsstrahlung and it is inherently polychrome (see
Fig. 2.5).

3The material for anode and cathode is usually Tungsten (also called Wolfram), a chemical element
belonging to the metals with the highest melting point of all metals. In CRTs for mammography,
another metal, Molybdenum, is used.
4The detection of characteristic x ray radiation by Charles G. Barkla in 1905 resulted in another
Nobel price in Physics presented to its discoverer in 1917.
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Fig. 2.5 Polychrome
radiation is a result of a
passage of an electron. The
frequency of the released
radiation depends on the
extent to which the electron
loses its energy

The likelihood of passing an atom at a given distance increases with the distance
to the nucleus because the surface of a sphere of a given radius increases with the ra-
dius. Thus, the spectrum of the bremsstrahlung of a cathode ray tube should roughly
be of a triangular shape. However, the surrounding glass of the tube filters some of
the low-energy radiation. Hence, the actual curve is zero at low energy levels, then
increases to some maximum at intermediate energy levels and finally decreases to
zero at the maximum energy (which is the maximum energy of electrons incident on
the anode of the tube). The complete spectrum of a typical x-ray tube is a combina-
tion of monochrome and polychrome radiation, where some spikes indicate various
characteristic radiation energy levels in the otherwise smooth curve.

X-ray tubes are characterized by the total amount of energy that is emitted as x
rays and the quality of the radiation. A high-quality tube has a higher ratio of high-
energy radiation and of monochrome radiation. High-quality radiation imposes a
lower dose on the patient and generally produces better images.

The quantity and quality of x-ray radiation depend on a number of characteristics
of the tube (such as the anode material) and on the parameters to be selected by the
operators (such as the potential between cathode and anode, voltage, and exposure
time).

The quality of the emitted x rays can be enhanced by a filtering process called
beam hardening. The glass surrounding the tube already filters some of the low-
energy rays of the bremsstrahlung. It reduces the total energy of the emitted
x rays, but shifts the spectrum toward the high-quality range. The emitted frequency
range can be further improved by the additional filtering of low-frequency com-
ponents. The amplitude of monochrome radiation is usually higher than that of
bremsstrahlung. Beam hardening may thus be used for an overall reduction of x-ray
radiation enhancing monochrome radiation in the spectrum as well.

2.1.1.2 X-Ray Attenuation
When x rays enter the human body, four types of attenuation can happen:
Raleigh, scatter, Compton scatter, photoelectric absorption, and pair production (see
Fig. 2.6). Of these, Compton scatter and photoelectric absorption are the main fac-
tors for image generation from medium-range energy x-ray imaging such as that
used in diagnostic imaging.
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Fig. 2.6 Four kinds of X-ray attenuation exist. Raleigh and Compton scatter causes noise in the
image since the scatter direction is random. Photo-electric absorption produces the X-ray image,
since the released energy is too low to be detected. The energy levels used in X-ray imaging do not
produce pair production

Raleigh scatter mainly happens in low-energy imaging such as mammography.
A photon causing Raleigh scatter loses its energy by exciting the whole atom, which
immediately releases a photon with almost the same energy, although usually scat-
tered in a different direction.

A photon causing Compton scatter will release a valence electron from its shell.
It will lose as much energy as was necessary for the release. Scattered photons will
change their direction.

Scatter, be it Raleigh scatter or Compton scatter, increases noise and reduces
contrast in an image. Noise stems from the randomness of scattering and the ran-
dom change of direction for scattered photons. Contrast is reduced because scattered
photons reaching the receptor do not carry position information of the locus of scat-
tering, thus only increasing the overall brightness in the image.

Photoelectric absorption is the main contributor to imaging even though absorp-
tion in diagnostic x rays happens less often than Compton scattering. A photon re-
leases its energy through photoelectric absorption by removing one of the electrons
of the inner shells. The photon loses its energy completely. The released electron
leaves a vacancy in the shell that is filled by an electron of one of the outer shells.
This initiates a cascade of filling in the vacancies from the outer shells. The energy
gain from each transition is released as characteristic radiation. The characteristic
radiation caused by this process has a much lower energy than that of the incident
photon. Hence, it is absorbed by the surrounding atoms and does not contribute to
the degradation of the image. Absorption is the cause of a meaningful image, but it
also increases the radiation dose absorbed by the tissue.

The probability of absorption increases with atomic number (e.g., the calcium in
bone absorbs more than the hydrogen of the cerebrospinal fluid) and decreases with
beam energy. Absorption increases dramatically when the photon energy equals the
binding energy of an inner electron. This value is called the absorption edge and its
existence is exploited by contrast agents. Contrast agents such as iodine and barium
have a high atomic number and an absorption edge in the range of diagnostic x
rays (33 and 37 keV). The high atomic number already increases the probability of
absorption. Energy in the range of the absorption edge of the radiation spectrum will
be further reduced.
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Fig. 2.7 Two radiographs (with kind permission from Siemens Sector Healthcare, Erlangen, Ger-
many). Bone structures in the two images are clearly visible. Differentiating between different soft
tissues is more difficult as is the depth order of the projected structures

Pair production, the last of the four effects, happens only if the energy exceeds
1022 keV, which is beyond the usual diagnostic range for x-ray imaging. In pair pro-
duction, a photon annihilates and produces an electron–positron pair. The positron
and electron are sent in opposite directions. Although this is not relevant for x-
ray imaging, it should be noted that the opposite process (i.e., the annihilation of
a positron when merging with an electron producing two photons with 511 keV)
is used for positron emission tomography (PET), an imaging technique that is de-
scribed later in this chapter.

2.1.2 X-Ray Imaging

X-ray imaging uses the dependency of photoelectric absorption on the atomic num-
ber for producing a diagnostically meaningful image (see Fig. 2.7 for examples).
Being the oldest technique, a vast number of different imaging methods evolved
from the original method presented by C.W. Röntgen. In this section we will only
touch on the subject to give an impression of how the images are created and what
kind of different x-ray imaging techniques exist. A more detailed treatment can be
found in Bushberg et al. (2002) and Prince and Links (2005). Much of this section
has been taken from there and from the AAPN/RSNA Physics Tutorial for Residents
that appeared in various issues of the Radiographics journal (McCollough 1997;
Bushberg 1998; McKetty 1998; Pooley et al. 2001; Wang and Blackburn 2000).
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Fig. 2.8 Different sizes of
the focal spot cause different
blurring even if the aperture is
the same

Diagnostic equipment for x-ray imaging consists at least of a cathode ray tube
emitting x rays and a receptor with the patient placed between the emitter and re-
ceptor. The receptor may be film, an image intensifier, or a flat panel detector with
the latter two producing digital images.

If the x-ray tube is assumed to be a point source for x rays and the receptor is
planar, the image intensity at every location of the receptor will be proportional
to the attenuation along a ray from the x-ray tube to the receptor. The measured
intensity for a monochromatic beam at a location (x, y) on the receptor is then

Iout = Iin · exp

(
−

∫ s1

s0

μ(s) ds

)
, (2.3)

where Iin is the incident intensity of x rays when entering the body, s is a ray from
the x-ray source to (x, y) on the image plane, s1 is the point where the ray enters the
body, and s2 is the point where it exits the body. The function μ(s) is the attenuation.
Attenuation, as pointed out in the previous section, is mainly caused by Compton
scatter and photoelectric absorption and to a small extent by Raleigh scatter. The
intensity at some location (x, y) is given by x-ray attenuation plus intensity due to
scattered photons. If scattered photons are assumed to be distributed evenly over the
image, they increase the brightness in the image by a noise component thus reducing
contrast.

The imaging process described above is idealized in that it assumes that the x-
ray source is a point source. In reality, the focal spot of an x-ray source covers a
finite area leading to a loss of resolution due to penumbrae. Its extent depends on
the distances between the source, object, and receptor, as well as on the diameter of
the focal spot (see Fig. 2.8). Regular x-ray CRTs have a focal spot with a diameter
of 1 mm, fine focus CRTs have one with a 0.5-mm diameter and microfocus CRT
has a 0.2-mm diameter focal spot.

Integrated attenuation along s of polychromatic x rays is different to the
monochromatic case described above since low-energy radiation is absorbed ear-
lier than high-energy radiation. Placing the patient between the source and receptor
causes additional beam hardening. Continuous beam hardening of an x ray traveling
through the body has the effect that attenuation changes depending on the distance
traveled in the body. This makes the image content dependent on patient position-
ing. It also causes some of the low-energy radiation to be absorbed by the patient
without having an impact on the images and unnecessarily increases the dose. Prior
beam hardening by filtering lessens these unwanted effects.
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Fig. 2.9 Vignetting causes shading in an image as it can be seen in the picture of homogeneous
material on the left. The location dependent magnification by a pincushion distortion of an image
intensifier is seen on the test pattern of equal-sized squares on the right (dashed lines). This image
also shows the much less prominent deformation due to the earth magnetic field

Of the three types of receptors analogue film is the oldest and still the most
widespread. Film may be digitized, but receptors such as image intensifiers and
flat panel detectors are preferred if computer-assisted postprocessing is desired.

An image intensifier produces a visible image from x rays in a similar fashion
than a conventional CRT. X rays are turned into visible light on a phosphor screen in
a vacuum tube, which is then converted into electrons by a photocathode. The elec-
trons are focused and accelerated—this is the enhancement step—toward the anode
and cast onto the output phosphor producing the intensified image. Enhancement
through an image intensifier increases the brightness at the output phosphor more
than 1000 times with respect to the very weak signal at the input phosphor.

The image intensifier was originally invented for creating a visible signal without
the need to use and develop film. It has the additional advantage of enabling the
transmittance of the electronic signal and its digitization through an A/D converter.

Images from an image intensifier suffer from a number of artefacts of which the
following three are relevant for postprocessing (see Fig. 2.9).
• Vignetting is caused by the angle at which rays fall onto the input screen. The

angle is perpendicular to the image screen in the center. In this case, the incident
x-ray energy is distributed over the smallest possible area. The intensity (i.e.,
the energy per unit area) is maximal. The angle decreases with the distance to
the center, causing the incident x-ray energy to be distributed over a larger area.
Hence, the intensity decreases with the distance to the center.

• Pincushion distortion is caused by the curvedness of the input screen and results
in magnification. Magnification increases with the deviation of the input surface
from a tangent plane to the center of the screen.

• The S-distortion is caused by external electromagnetic fields that influence the
course of the electron beam between the input and output phosphor.
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Fig. 2.10 (a) Fluoroscopy guiding pacemaker implanting (from knol.google.com/k/pacemakers,
published under Creative Commons license). (b) Angiogram of cranial vessels showing an
aneurysm (the eye sockets and parts of the skull are visible as well and hide some of the small
vessels), (c) Digital subtraction angiogram of (b)

A completely digital receptor for x rays is the TFT flat panel detector that has
been developed in recent years. A flat panel detector combines a flat panel scintil-
lator, which turns x rays into visible light with a detector that transforms the light
into an analogue electric signal, which then may be digitized. Several studies es-
tablished the adequateness of using a flat panel detector in diagnostic imaging with
the added advantage of lower doses necessary for imaging (e.g., Bacher et al. 2003;
Fink et al. 2002; Garmer et al. 2000).

The blackening curve, which measures the dependency of incident radiation on
the receptor and intensity of the resulting images, has a larger interval of linear in-
crease for flat panel detectors and image intensifiers than for film. This decreases the
likelihood of an accidental overexposure or underexposure. The spatial resolution in
digital radiography is still lower than that of film. However, recent advances in TFT
detector design have pushed the limits of achievable resolution into the range of film
(about 4000 × 4000 pixels).

An advantage of digital radiography using either a TFT detector or an image
intensifier is that the operator may choose the spatial resolution. If imaging at a
lower resolution is sufficient for some diagnostic purpose, this can be achieved by
analogue or digital integration over several pixels of the image. Since integration
reduces noise, the signal-to-noise ratio increases without having to increase the ex-
posure and, consequently, the dose.

2.1.3 Fluoroscopy and Angiography

Fluoroscopy is a specific kind of x-ray imaging to visualizes moving or changing ob-
jects in the human body (see Fig. 2.10a). Examples for using diagnostic fluoroscopy
are as follows:
• to follow the heartbeat for detecting abnormal behavior,

http://knol.google.com/k/pacemakers
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• to follow the course of a contrast agent through the colon to detect potential ab-
normalities such as a tumor,

• to image cardiac or cerebral blood flow by using a contrast agent.
The technique received its name because x rays are turned into visible light using

a fluorescent screen. Early fluoroscopy systems placed the screen directly behind
the x-ray tube and the patient. The physician was sitting in front of the screen.
Fluorescence from the x rays is very weak so that the introduction of the image
intensifier made fluoroscopic imaging a much more viable tool.

Most of today’s fluoroscopic imaging devices produce digital images and enable
the creation of x-ray films as well. Fluoroscopic imaging devices are not necessar-
ily static. When mounted on a C-arm, they can be rotated around the patient for
producing projections along arbitrary directions. Fluoroscopic imaging is used for
diagnosis and supports surgical interventions. It is an attractive imaging technique
for the latter usage because images can be produced during the intervention.

Fluoroscopic imaging of the vascular system using a contrast agent is called an-
giography (see Fig. 2.10b). The contrast agent is applied by a catheter being guided
to the location to be imaged (e.g., the brain or the heart wall). Imaging cerebral or
cardiovascular flow supports the diagnosis of arteriosclerosis, arterio-venous mal-
formations (AVMs), and so on. Angiographic images show anatomy of the human
body with the blood vessels enhanced through the contrast agent. Angiographic im-
ages can be acquired in real-time and can be used to guide a surgical intervention
(see Fig. 2.11 for a modern angiographic image acquisition system). Such acquisi-
tion systems can also be used to reconstruct 3D images from a sequence of projec-
tion from different angles similar to the computed tomography (see Sect. 2.1.5).

Anatomic information from all other structures can be removed when an image
is subtracted, which was made prior to giving the contrast agent. Although it is
possible—and has been done—to do the subtraction mechanically using film, it is
now done on digital images. The technique is called digital subtraction angiography
(DSA, see Fig. 2.10c).

DSA enhances vessels much more when compared to angiography, but the im-
ages may suffer from motion artefacts. This is particularly true in cardiac angiogra-
phy. Cardiac motion is too fast for creating two images without the heartbeat influ-
encing the result. Gated imaging is possible, but it may be still difficult to choose
two images with and without the contrast agent that were taken at exactly the same
point in the heart cycle. Furthermore, motion due to breathing and patient movement
cannot be removed by gating. DSA images from cerebral blood flow are affected to
a much smaller extent by motion artefacts from heartbeat and patient motion.

Motion artefacts cannot be corrected easily because of the location dependency
between 3D motion and its projection onto a 2D plane. If corrected at all, motion
correction consists of selecting an optimal null image (the image without the con-
trast agent) from several images, which after subtraction minimizes some error mea-
sure. Some research work on nonrigid registration between the two images in DSA
has been reported, but as far as we know none of this has reached maturity up to a
point that the technique is routinely applied (see Meijering et al. 1999 for a review).
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Fig. 2.11 Angiographic imaging device (C-arm) which is used for guiding minimal invasive inter-
ventions (Siemens Artis zeego, with kind permission from Siemens Sector Healthcare, Erlangen,
Germany)

2.1.4 Mammography

Bremsstrahlung is the major influence in most x-ray tubes with the exception of
x-ray tubes for mammography (see Fig. 2.12). The purpose of mammography is to
detect small, nonpalpable lesions in the female breast. This requires a much higher
image quality than normal x-ray imaging with respect to contrast and spatial resolu-
tion. Since contrast and resolution are affected by scattering, mammography tubes
reduce bremsstrahlung by suitable filtering. Furthermore, mammography tubes use
a material (Molybdenum) that produces an almost monochrome x ray with peak
energies around 17 to 19 keV. This would be unwanted in regular x-ray imaging as
most—if not all—of the radiation would be absorbed and not reach the receptor. For
the breast, however, the use of low-energy beams increases the contrast between the
subtle differences of different tissues. Using an (almost) monochromatic beam will
also reduce scatter, which again increases contrast.

Differences and findings in mammograms are subtle. Hence, digital mammogra-
phy with its potential for postprocessing has received much attention for quite some
time (see, e.g., Chan et al. 1987; Dengler et al. 1993; Cheng et al. 1998). Digital
mammograms have numerous advantages. They can be easily distributed and ac-
cessed in a hospital network. The dynamic range of digital detectors (about 1000:1)
is much higher than that of film (40:1). Digital mammograms can be created using
currently available TFT flat panel detectors, but owing to the need for a high reso-
lution, the development of techniques reaching an even better resolution is still an
active research field.
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Fig. 2.12 The goal of human or computer-assisted analysis in mammography is to find calcifica-
tions which are potential tumor sites (images with kind permission from Siemens Sector Health-
care, Erlangen, Germany)

2.1.5 Image Reconstruction for Computed Tomography

The images from x-ray attenuation discussed so far are projection images. The struc-
tures are projected on top of each other. High attenuating objects such as bone may
hide other objects. In cranial images, for instance, the skull would hide most of the
details of the enclosed soft tissue. Furthermore, the cone beam geometry makes the
measurement of absolute distances impossible.5

Tomography (from the Greek “tomos” = cut, slice) attempts to create an image
of one or more slices through the body. A set of slices provides a detailed 3D distri-
bution of x-ray attenuation per volume unit. The name computed tomography (CT,
also called CAT = computed axial tomography) emphasizes that these images are
not acquired directly by some clever imaging device, but are computed from pro-

5There are exceptions, if, e.g., images are made by two different cone beams of a rotating C-arm
where the magnification of objects in the center of both cones can be computed.
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jection measurements. X-ray computed tomography was invented in the 1970s by
Godfrey N. Hounsfield based on the work of Alan M. Cormack6 (Buzug 2008).

Tomography had been known before as an analogue technique. It produced slices
through the body directly on film by moving the film and x-ray source in opposite
directions during exposure (Geluk 1979). Depending on the ratio between the speeds
of the film cassette and x-ray source, a specific single slice parallel to the image
plane was imaged in focus overlaid by blurred layers above and below this slice.

Computed tomography goes a different way. It produces a digitized solution of
the inverse Radon transform from projections in a slice without interference from
other slices (see Buzug 2008 for a detailed treatment of reconstruction techniques).
The inversion is computed numerically from projections by the imaging computer.7

For a 2D attenuation function μ(x, y) describing the x-ray attenuation per unit
volume in some slice z in the human body, the Radon transform is given by all line
integrals through this function

R (s, θ)
[
μ(x, y)

] =
∫ ∞

−∞

∫ ∞

−∞
μ(x, y) δ (s − x cos θ − y sin θ) dx dy, (2.4)

where δ is the Dirac-delta function.
In other words, for a given angle θ , the Radon transform produces the projections

onto a line s along rays perpendicular to s with angle θ to the x-axis. The Radon
transform is invertible, which means that μ(x, y) may be reconstructed from all
projections onto lines s for all angles 0◦ < θ < 180◦. This essentially solves the
reconstruction problem. Since

Iout = Iin · exp

(
−

∫ t1

t0

μ(t) dt

)
, (2.5)

we have
∫ t1

t0

μ(t) dt = − ln

(
Iout

Iin

)
with t = s − x cos θ − y sin θ. (2.6)

If we assume that no attenuation takes place outside of [t1, t2], we can extend the
bounds of the integral to infinity and

R (s, θ)
[
μ(x, y)

] =
∫ ∞

−∞
μ(t) dt =

∫ ∞

−∞

∫ ∞

−∞
μ(x, y) δ (s − x cos θ − y sin θ)

(2.7)

6Alan M. Cormack has been a physicist at the University of Cape Town in South Africa when he
developed the theoretical basis for Computer Tomography in the late 1950s. This work was taken
up later by Godfrey N. Hounsfield, an electrical engineer at EMI research lab, who presented the
first whole body CT scanner in 1975. For their invention, both received the Nobel price of Medicine
and Physiology in 1979.
7An optical solution for the reconstruction exists as well which has been proposed in the 70s in
order to overcome limitations because of lack of computing power (Geluk 1979).
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Fig. 2.13 Schematic view of CT image generation. The patient is placed on a moveable table.
A CT image is a slice that is reconstructed from multiple projections taken from different angles.
A sequence of CTs is created from translating the table and repeating the image acquisition proce-
dure

Fig. 2.14 An X-ray CT scanner (Siemens Somatom, image with kind permission by Siemens
Sector Healthcare, Erlangen, Germany). Image acquisition takes place in the doughnut-shaped
gantry that houses x-ray source and detector rings (which, in this system, can be tilted). The patient
is moved through the gantry while slices of CT images are acquired

may be computed from radiographic projections at angles 0◦ < θ < 180◦. If we had
enough of these projections, the Radon transform could be inverted numerically and
a 3D distribution of attenuation coefficients is reconstructed.

A CT scanner that acquires projections consists of a single slice or a multi-
ple slice detector ring around which an x-ray source rotates (see Fig. 2.13 for a
schematic view and Fig. 2.14 for an image acquisition system). During rotation,
detections are constantly made. It can be thought of as a device that creates single
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or multiple lines of x-ray images from different angles. Measurements are created
much faster than creating complete x-ray images from multiple angles.

Reconstruction by the inversion of the Radon transform creates single or multiple
slices of voxels containing attenuation per unit volume in the imaged patient.

A stack of slices is produced by scanning a sequence of different slices or groups
of slices. For the scanning process, the patient lies on a table that moves into the
detector ring in prespecified steps. The movement is called (translational) gantry.
The step size of the horizontal movement determines the distance between slices.
The thickness of the detector ring determines the slice thickness. Slice thickness is
often lower than the distance between slices causing a gap between slices.

The number of slices and their thickness for a CT study has changed dramatically
with the advent of multislice scanners. In the early times of computed tomography,
a slice thickness of 5 mm with a 5 mm gap or even thicker slices was quite common.
A brain image data set from CT may have contained less than 20 slices. A detailed
analysis (e.g., of the fine structures in the brain) was difficult to impossible. Newer
scanners produced thinner slices, but motion during image acquisition often caused
artefacts and image quality deteriorated. An advancement was the development of
the spiral scanner. In a spiral scanner, the x-ray source rotates in a continuous spiral
while measuring absorption data. Resolution and the number of images have been
further improved with the use of multislice detectors that acquire more than one
slice simultaneously (Buzug 2008).

A body CT study may easily contain 500 to 1000 slices with slice distances of
1 mm or less. Slice thickness may vary, however, because of dose considerations.
Thin slices with high resolution may be acquired in the region of interest for cap-
turing as much detail as possible. Slice thickness may be much larger in the context
region for providing the necessary anatomic context.

Inverting the Radon transform for slice reconstruction from projections implies
parallel projection, whereas x-ray images are acquired in a cone beam projection. It
turns out that this is solvable by transformations not essentially affecting the recon-
struction method. We thus will assume parallel projection for the remainder of this
discussion.

Another problem of image reconstruction is more difficult. The Radon transform
assumes a continuous space for s, θ, x, and y. An image will be reconstructed from
a limited number of projections and a limited number of measurements per projec-
tion. Fortunately, just a finite number of voxels needs to be reconstructed with the
attenuation coefficients assumed to be constant within the voxel. Nevertheless, the
influence of the digitization on the inversion of the Radon transform needs to be
investigated.

Inversion is by means of the Fourier transform, which leads to the filtered back-
projection (FBP) algorithm. The Fourier transform of the Radon transform delivers
what is known as the Central Slice Theorem. The theorem states that the Fourier
transform M(u,v) of a projection of a function μ(x, y) in a direction with angle
θ to the x-axis equals the coefficients on a line with this angle θ in the frequency
space of the Fourier transform of μ (see Fig. 2.15). This can easily be shown for a
line with θ = 0, where
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Fig. 2.15 The central slice theorem states that the Fourier transform of a projection onto a line
with some angle a equals a line in frequency space of the Fourier transform with equal angle of the
image

FFT
[
R(s,0)

(
μ(x, y)

)] = FFT

[∫ ∞

−∞
μ(x,0) dx

]

=
∫ ∞

−∞

[∫ ∞

−∞
μ(x,0) dx

]
exp(−ivy) dy

=
∫ ∞

−∞

∫ ∞

−∞
μ(x,0)x exp

(−i(0u + vy)
)
dx dy

= M(x,0). (2.8)

The theorem is true for all other angles θ as well because of the rotation property
of the Fourier transform. Hence, projections of R(s, θ)[μ(x, y)] for all angles θ

are transformed into one-dimensional (1D) frequency space. The coefficients for a
projection R(s, θ) are mapped out on the corresponding line with angle θ in the 2D
frequency space. The inverse Fourier transform is then applied for computing the
reconstructed image.

There are two problems with this. First, the Fourier transform from projections
is defined in a polar coordinate system, whereas coefficients for carrying out the
inverse transform are required in Cartesian coordinates. We need to account for the
difference in the size of a unit area in polar and Cartesian coordinates. Otherwise,
low frequency components in the image would be overly emphasized (see Fig. 2.16).
The correction is done by multiplying the Fourier coefficients with 1/r , where r is
the radial distance of a given location (u,v) to the origin. Hence, it is an application
of a radial ramp filter (see Fig. 2.17 for a filtered reconstruction).

Second, the distribution of Fourier coefficients from polar coordinates becomes
sparser in the high frequency range of the Cartesian coordinate system. It may cause
artefacts because noise often predominates in the high frequency range. Hence, pro-
jections are usually low-pass filtered, by filters such as the Hamming window or
Hamming filter (see Sect. 4.3 on image enhancement).
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Fig. 2.16 Projecting along angles between 0◦ and 180◦ produces a projection image (which is
also called sinogram). Unfiltered reconstruction results in artefacts because the varying density of
Fourier coefficients has not been accounted for

Fig. 2.17 Filtering the projection with a ramp filter that attenuates amplitudes with decreasing
frequency removes artefacts from simple reconstruction

The inversion of the Radon transform using the Central Slice Theorem does not
really require transforming the projection data into frequency space. The Fourier
transform is a linear operator. Adding terms for the Fourier transform or its inverse
may be carried out in any order. One particular order would be to transform a line s

of the projection data, filter the result and invert the transformation, and then carry
on with the next line. If we look at the process more closely, we see that this can
be replaced by convolving the projection data of this line with a convolution func-
tion that is the spatial domain equivalent of the filter function, and then project the
result perpendicular to s onto the image. This is to be done for every projection
and gives the method its name filtered backprojection or convolution backprojection
reconstruction.

The reconstruction result is a digital image of attenuation coefficients for each
voxel with the thickness of the slice and a size along x and y according to the chosen
in-plane spatial resolution. Common image sizes for CT images are 512 × 512 or
256 × 256. The size of the voxel along the x- and y-axes depends on the field of
view (FOV), which depends on the opening angle of the cone beam scanning the
patient. For brain images with an FOV of about 30 × 30 cm2, in-plane voxel sizes
for a 512 × 512 image are 0.5 × 0.5 mm2.
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Table 2.1 Hounsfield units of different tissues. Air, water and bone are well-differentiated, while
contrast between different soft tissues is low
Air Fat Water Blood Muscle White matter Grey matter CSF Bone

−1000 −100 0 30–45 40 20–30 37–45 15 >150

Attenuation coefficients are normalized for making the result independent of
imaging parameters such as beam energy. The scale is called the Hounsfield scale.
Normalization is based on the attenuation μWater of water and μAir of air

HU(μ) = 1000 · μ − μWater

μWater − μAir
. (2.9)

Thus, air has −1000 HU (Hounsfield units) and water has 0 HU. Hounsfield units
for different tissue types are given in Table 2.1. Hounsfield units are mapped to
integers and usually represented in a range from −1000 to 3000. Hence, attenuation
coefficients can be represented by two byte integers.

The display software of a scanner system lets the user choose an appropriate HU
range to be mapped onto the displayable range of 256 gray values by specifying the
window (the width of the range to be mapped) and the level (the value to be mapped
onto the gray value 128). Different window and level settings are used to emphasize
different tissues. A bone window, for instance, will have a high level and a large
window because attenuation for bone is high and extends over a wide range. A lung
window, on the other hand, will have a much lower level since most of the lung is
filled with air.

Air, fat, water, and bone have significantly different attenuation, whereas the dif-
ferences between the various soft tissues are small (see Table 2.1). In fact, the results
from the first experiments of CTs of the head were not overwhelming and medical
equipment companies were reluctant to build a CT scanner.8 Scanners have much
improved since then in terms of spatial resolution as well as in terms of suppressing
noise and artefacts. CT is probably still the most often used digital image device in
diagnosis and surgical intervention. Typical application areas for diagnostic imaging
are bone CT, CT of the brain, and CT of the parenchyma.

A number of artefacts may occur when creating the image by FBP, which have
to be accounted for in a later image analysis.
• Noise (Fig. 2.18) is caused from scatter in the patient and at the detector. Since

the likelihood of a photon reaching the detector unscattered can be modeled as a
Poisson process, the noise is often modeled by a Gaussian function (which is a
good approximation of a Poisson distribution for large numbers of events).

• The partial volume effect (PVE, Fig. 2.18) occurs because attenuation within a
voxel may not be uniform. The PVE within a slice is usually easy to recognize.
It is most prominent between adjacent voxels with very different attenuation co-
efficients such as at the bone-CSF boundary. The reconstructed attenuation coef-
ficient will be a value between that of the two tissues. The PVE occurs between

8The first CT scanner was built by a record company (EMI).
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Fig. 2.18 Noise and the partial volume effect (PVE) in CT imaging. The PVE causes blur at skin,
fat, bone and CSF boundaries. Noise amplitude in this image is in the range of the signal increase
at the object boundary

slices as well and may be less obvious because the object causing the PVE may
be in the slice above or below the currently displayed slice.

• Metal artefacts are caused by the very high difference between the attenuation
of metal and tissue. This makes the reconstruction less robust against other influ-
ences such as noise and PVE.9 It results in severe streak artefacts. Such artefacts
can be observed at all high contrast boundaries, but are particularly severe in the
case of metal artefacts.

• Motion artefacts are the result of voluntary or involuntary patient movement
(movement due to breathing, heartbeat, etc.) during the acquisition of a single
slice. Motion violates the assumption that attenuation at some location (x, y) is
the same for every projection and causes blur in the image. Since the influence
from motion may be different for different slices, it may cause the so-called step-
ladder-artefact between slices (visible in reoriented views, see, e.g., Ghersin et
al. 2006).
Tomographic imaging using x rays can also be carried out using x-ray equip-

ment for projection images. Early attempts included the use of image intensifiers for
rapid imaging of the heart (Mayo Clinic; Robb et al. 1982). Newer developments
employed angiographic acquisition systems for reconstruction (Ning et al. 2000;
Akpek et al. 2005). Since angiography uses a moveable and rotatable C-arm, pro-
jections can be reconstructed from programmed C-arm rotation. The receptor device
is a TFT flat panel detector with up to 1000 × 1000 elements. Each projection si-

9The problem of image reconstruction can be stated as an algebraic problem of finding
unknowns—the attenuation—from linear equations—the projections—and it can be shown that
the problem becomes more ill-conditioned when some very high attenuation regions exist.
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Fig. 2.19 CT angiography (a) shows contrast-enhanced vessels. While showing also tissue in the
context, vessels are more difficult to detect than in reconstructed DSA images (b)

multaneously acquires data from 1000 slices with 1000 projections per line. Recon-
structed images thus have a higher spatial resolution than ordinary CT images and
produce all slices at the same time. It comes at a cost, however. Current systems are
not fast enough to generate projections from as many angles as a conventional CT
system. In consequence, artefacts due to an insufficient number of measurements
increase. The images are noisier and the streak artefacts are more pronounced.

2.1.6 Contrast Enhancement in X-Ray Computed Tomography

The contrast agent used in fluoroscopic imaging or angiography is used in x-ray
CT as well. Instead of showing a time-varying function such as in fluoroscopy, the
use of a contrast agent in x-ray CT enhances structures that are otherwise difficult
to differentiate. A major application is the depiction of vessels (CT angiography or
CTA; Dillon et al. 1993).

CTA works similarly to ordinary x-ray angiography with the difference being
that the images are not projections (see Fig. 2.19a for an example). The 3D nature
of CTA images allows quantitative analysis by direct measurement on the image.
With the spatial resolution of today’s scanners, diagnosis of the extent of a stenosis
becomes possible through CTA even for smaller vessels. It needs to be kept in mind,
however, that CTA requires a higher exposure to x rays than x-ray angiography.
Compared to subtraction angiography (a reconstruction from DSA is depicted in
Fig. 2.19b), CTA provides information about soft tissues not visible in DSA. On the
other hand, the intensity of vessels filled with the contrast agent is similar to that
of bone, making it difficult to separate the vessel structures close to the skull from
bone structures.
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2.1.7 Image Analysis on X-Ray Generated Images

Radiographs have a high spatial resolution which supports the detection of small
lesions such as microcalcifications in mammography, potentially cancerous nodules
in lung scans, or small stenoses in angiography. The signal is bright for dense struc-
tures and dark for low attenuation objects.

As the image is a projection, no assignments between absolute brightness value
and tissue type can be made. Distance measurements are not possible, except for
measurements of distance ratios between structures of which the approximate dis-
tance to the radiation source is known to the radiologist. Overexposure or underex-
posure (for digitized film) may reduce the contrast and the images may be blurred
due to motion or the size of the focal spot.

Recognition of small objects may be hindered by the fact that structures hide
other structures in the projection. Projection may also cause a very convoluted ap-
pearance of larger objects (such as complex bone fractures), which bears little re-
semblance to the actual shape of this object. Deducing the true geometry of such an
object from its projection may be easy to the experienced radiologist, but difficult
to implement in an algorithm. It requires extensive context knowledge about the
projection direction, the orientation of the organs being imaged, and their relative
position with respect to the projection direction.

Creating tomographic images reduces or removes some of the problems above,
which is one of the reasons for the sudden increase of computer-assisted analysis
methods in medicine with the appearance of CT imaging in the 1970s. CT images
have a lower spatial resolution than radiographs, which is why radiographs may still
be preferred if the diagnosis requires high resolution images.

If noise, partial volume effects, and other artefacts are disregarded, a mapping
between the tissue type and attenuation coefficient exists in a voxel of a CT. The
normalized attenuation coefficients of the Hounsfield scale make mappings from
different images created by different machines comparable. The value of this is not
to be underestimated. Even though the mapping is only approximate and distorted
by artefacts and even though it is certainly not invertible (i.e., a certain HU value
is not uniquely associated with a certain type of tissue), it comes close to the pri-
mary goal of imaging (i.e., directly measuring and displaying the tissue and tissue
characteristics).

2.2 Magnetic Resonance Imaging

Protons and neutrons of the nucleus of an atom possess an angular momentum that
is called spin. These spins cancel if the number of subatomic particles in a nucleus
is even. Nuclei with an odd number exhibit a resultant spin that can be observed out-
side of the atom. This is the basis of magnetic resonance imaging (MRI) (Liang and
Lauterbur 2000). In MRI, spins of nuclei are aligned in an external magnetic field.
A high frequency electromagnetic field then causes spin precession that depends on
the density of magnetized material and on its molecular binding. The resonance of
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the signal continues for some time after this radio signal is switched off. The effect
is measured and exploited to create an image of the distribution of the material.

The resonance effect has been used in MR spectroscopy for quite some time.
A detailed description of MR spectroscopy and its clinical applications can be found
in Salibi and Brown (1998). However, imaging (i.e., the computation of the spa-
tial distribution of effects from magnetic resonance) did not exist before the 1970s.
Image generation with magnetic resonance is due to Paul C. Lauterbur and Peter
Mansfield.10

Magnetic resonance imaging almost exclusively uses the response of the hydro-
gen nucleus which is abundant in the human body. Variation of hydrogen density
and specifically its molecular binding in different tissues produces a much better
soft tissue contrast than CT. MRI has some further advantages if compared with
x-ray CT.
• MRI does not use ionizing radiation.
• Images can be generated with arbitrary slice orientation including coronal and

sagittal views.
• Several different functional attributes can be imaged with MRI.

In summary, MRI is a remarkably versatile imaging technique justifying an ex-
tended look at the technique.

2.2.1 Magnetic Resonance

As mentioned above, nuclei with an odd number of protons or neutrons possess a
spin. To produce a resonance image, spins of all nuclei of the body are aligned in a
static magnetic field B0. The strength of the magnetic field is measured in Tesla (T)
or gauss (10,000 Gauss = 1 T). Today’s MR imaging devices for human full body
imaging operate with field strengths between 1 and 3 T.

The static field causes spins to be aligned either parallel or antiparallel to the
magnetic field. The strength of the measurable signal depends on the difference
between these two types of alignment. This, in turn, depends on the type of atom,
on the magnetic field strength and on the temperature at which the measurement
takes place. The atom-specific sensitivity is highest for hydrogen.

A precession of spins around an axis parallel to the B0-field can be induced by
a radio signal. The effects of parallel and antiparallel precessing spins cancel. For
hydrogen at normal room temperature and a magnetic field of 1.5 T, the ratio be-
tween the parallel and antiparallel spins is approximately 500.000:500.001. Hence,
the observed net signal from all spins will come from just one in a million protons
(see Fig. 2.20).

10Peter Mansfield is a British physicist who provided the basis for interpreting the signal from
resonance. Paul C. Lauterbur is a chemist who first provided the methodology for turning the signal
into an image. For their achievement, both received the Nobel price for Physiology and Medicine
in 2003.
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Fig. 2.20 Spins are aligned parallel or anti-parallel to the B0-field. They produce a signal induced
by an RF field. Just a small excess amount of protons aligned parallel produce the signal, since
signals from parallel and anti-parallel aligned protons cancel

Given that the hydrogen atom possesses the highest sensitivity of all atoms and
that the temperature cannot be increased arbitrarily, the only way to increase the
signal is to increase the magnetic field. This is the reason for the exceptionally high
magnetic fields that are applied in MRI (for comparison, the strength of the Earth’s
magnetic field is 0.00003–0.00006 T).

If spins are aligned in the external B0-field, their angular momentum (i.e., their
spin frequency ω) depends on the strength of B0 and an atom-specific gyromagnetic
constant γ

ω = γB0. (2.10)

The frequency ω is called the Larmor frequency. The gyromagnetic constant for
water is 42.58 MHz/T, which translates into a spin frequency of 63.87 MHz for an
MRI scanner with a static field with 1.5 T.

To produce resonance, additional energy is supplied causing the spins to precess
around the direction of the B0-field.11 It is applied by an electromagnetic field that
is perpendicular to B0. The field effects proton spins only if it changes with the
same frequency than the rotation frequency of the spins. Hence, if the strength of
the B0-field would be 1.5 T, the required frequency of the resonance triggering field
would be 63.87 MHz. This high frequency field (HF) radio wave is supplied by a
radio antenna.

The radio signal tilts the spins by an angle 0◦ < α < 180◦ from their rest direc-
tion. The magnitude of the angle depends on the energy of the HF field signal (see
Fig. 2.21). After the signal is switched off, the spins slowly return into their rest di-
rection parallel or antiparallel to the B0-field while still carrying out the precession.

11The following discussion relates to effects observed in voxels containing a large enough number
of photons so that quantum effects can be neglected.
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Fig. 2.21 Free induction decay experiment: spins of excited hydrogen atoms are projected into
the xy-plane orthogonal to the B0 magnetic field. After switching of the RF signal, the original
z-magnetization is restored with time constant T1. The observed signal decreases much faster since
spins start to dephase

This can be measured by an antenna (which could be the sender of the HF field
acting as receiver). The observed decreasing signal is called free induction decay
(FID). Its amplitude depends on several factors.
• The amplitude is proportional to the number of spins. Hence, amplitude per unit

volume is proportional to the proton density.
• Spins returning to their rest direction will deliver a signal of decreasing magni-

tude, which will cause the FID signal decay with time. The restoration of the
original spin direction is called longitudinal relaxation. Magnetization Mz(t) in
the z-direction (the direction of the B0-field) at time t is

Mz(t) = M0
(
1 − c · exp(−t/T1)

)
, (2.11)

with M0 being the magnetization in M0 before excitation. The time constant of
the exponential relaxation is called T1-time, spin-lattice-relaxation time, or lon-
gitudinal relaxation time.

• Spinning protons act as magnets and influence the behavior of adjacent protons.
The precession of spins will dephase with time and the observable FID signal
will vanish long before the original magnetization in the z-direction is restored
since the antenna measures a vector sum of all spins (see Fig. 2.22). The signal
decay is exponential as well, and is described by a constant that is called T2-time,
spin-spin-relaxation time, or transverse relaxation time. If MT (t) is the transverse
magnetization perpendicular to z at time t , then

MT (t) = MT (0) · exp(−t/T2). (2.12)

T1 and T2 constants for the same proton differ depending on the proton’s molec-
ular binding. Protons in water have a larger T1 than in soft tissue, while T2 is smaller
in soft tissue. T1 and T2 in water are in the range of seconds.

Additionally to the tissue-specific attributes, an unwanted effect causes a much
faster signal decay than T2 relaxation. Signal generation is made under the assump-
tion that the static B0 field is constant everywhere in the imaged region. Even small
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Fig. 2.22 Immediately after the RF signal is switched off, all spins are in phase giving the max-
imum signal. Locally different magnetization from neighboring atoms causes dephasing as does
inhomogeneity of the B0 field. The observed net magnetization decreases, since its magnitude is
the magnitude of the vector sum of all protons in a voxel

field variations cause a much quicker dephasing of spins than dephasing by spin–
spin relaxation. Signal decay due to an inhomogeneous magnetic field is exponential
with a constant T ∗

2 . The T ∗
2 effect is unwanted, as it interrogates the homogeneity

of the magnetic field, but not the chemical composition of the probe to be imaged.
The resonance signal allows analyzing the chemical composition of a probe in

MR spectroscopy. Instead of exciting just hydrogen, the occurrence and density
of other atoms with an odd number of protons or neutrons may be measured by
applying a frequency band encompassing all the frequencies necessary to excite the
respective atoms. Frequency analysis and the measurement of decay times enables
the separation of the signal in constituents caused by the different materials. For
imaging, however, additional measures need to be taken to localize the MR signal.

2.2.2 MR Imaging

Extending the MR technique for creating an image is due to the work of Mansfield
and Lauterbur. The dependency of the excitability of a proton on the frequency of
the HF field is used for the necessary localization. It requires additional gradient
magnetic fields (called x-, y-, or z-gradient according to the direction of increasing
field strength).

If, before applying the HF field, a linear gradient field in the z-direction is over-
laid to the B0-field, the magnetic field strength will linearly increase in the direction
of z. Protons will spin with a frequency that depends on their location in z. If an
HF field is applied whose frequency range corresponds to the spin frequencies of
protons in a slice with z1 < z < z2, only those protons will be excited and produce
a resonance signal (see Fig. 2.23). The process is called slice selection. After ex-
citation, the z-gradient is switched off and protons in the selected slice spin with a
frequency as determined by the B0-field.
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Fig. 2.23 Slice selection is done by selecting an RF band that corresponds to a specific resonance
frequency band given by the B0 field and the slice selection gradient

Fig. 2.24 Frequency
encoding of the signal is done
by a gradient field in the
xy-plane. It causes spins to
rotate with different
frequencies at readout time,
so that atoms can be
associated to lines orthogonal
to the gradient field

To localize protons within a slice, a similar technique is applied while reading the
signal. If a linear gradient field in the x-direction is applied during the observation
of the resonance signal, the recorded signal will contain a range of frequencies (see
Fig. 2.24). The process is called frequency encoding. The gradient is called readout
gradient. Frequencies w0 to wmax correspond to x-values x0 to xmax. The resonance
signal is then transformed into frequency space. The amplitude value at frequency
w0 + (wmax −w0) · (xk −x0)/(xmax −x0) corresponds to the response of all protons
on the line x = xk .

The technique produces a projection of spin densities along y onto the x-axis.
A complete set of projections can be obtained by adding projections at measure-
ments with gradient fields along different directions. Having obtained the data, an
image could be reconstructed by filtered backprojection. This was the first technique
for reconstructing MR images.
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Fig. 2.25 The gradient field for each phase encoding causes a controlled dephasing which acts as
a weighting of the observed signal with a cosine function. Phase encoding is done before readout
and the phase encoding gradient is switched off before readout

Today’s scanners employ a different technique, which is called k-space imaging
(k-space is another word for frequency space). k-space imaging generates the image
function in frequency space directly through measurements. The first line in k-space
is already the result of frequency encoding as described above. It produces the inte-
gral of spin densities along the lines of the constant y-value and can be interpreted
as the first line of values of a Fourier transform in the u-direction (containing the
coefficients with frequency 0) assuming that the Fourier transform maps (x, y) to
(u,v).

Let us now consider the signal before applying the frequency encoding gradient.
If we apply another linear gradient in the y-direction prior to making the measure-
ment, spin frequency will increase along y and the spins will dephase. The gradient
is called the phase encoding gradient. It is applied just long enough to dephase spins
between 0 and 2π for the range of y-values between y0 and ymax. After switch-
ing off phase encoding, frequency encoding is applied and the obtained signal is
transformed into frequency space. The results are integrated spin densities along x

weighted with a cosine wave of frequency 1 for each line of constant y. In other
words, we have produced the real-valued part of the next line in k-space of the
Fourier transform in the u-direction (see Fig. 2.25). The imaginary part is computed
by weighting the signal with the corresponding sine wave.

The measurement is repeated with phase encoding for the remaining lines in k-
space. Once the k-space is filled, the image is generated by transforming it back into
the spatial domain.

The image equipment looks similar to CT (see Fig. 2.26). However, the gantry
in which the B0-field is produced is usually smaller than a CT gantry. Image planes
need not to be perpendicular to the direction of the B0-field since the gradients
may be generated in arbitrary directions. It is a major difference compared to CT
imaging. Also, a variety of different images may be produced of the same patient
showing different aspects of the resonance signal. Three different parameters—spin
density ρ, spin-lattice relaxation T1, and spin–spin relaxation T2—determine the
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Fig. 2.26 Gantry of an MR imaging device (Magnetom Avanto, with kind permission from
Siemens Sector Healthcare, Erlangen, Germany). Images can be produced at arbitrary angles with
respect to the gantry by producing appropriate slice selection gradients

resonance signal. Hence, different sequences can be developed for enhancing ei-
ther of the parameters (some of the major sequences used in MR imaging will be
discussed in the next section; a more detailed treatment can be found in Liang and
Lauterbur 2000). It changes the appearance of different tissues in images (e.g., wa-
ter and fat is bright in T2 images and tissue is darker while the opposite is true for a
T1 image). A normalized scale such as the Hounsfield units of CT does not exist.

2.2.3 Some MR Sequences

T1 and T2 time constants cannot be measured directly because signal strength is al-
ways influenced by proton density and because field inhomogeneities (the T ∗

2 decay)
hide the T2 effect. T2-enhanced images can be generated by the spin echo sequence.
The sequence uses a clever mechanism to cancel out T ∗

2 effects. It consists of a 90◦
impulse that tilts spins into the xy-plane followed by a sequence of 180◦ impulses
producing spin echoes.

After application of the 90◦ impulse spins start to dephase due to the combined
influence of spin–spin relaxation and field inhomogeneities. Spin–spin relaxation
continues after application of the 180◦ impulse since relative spin orientation al-
though turned by 180◦ remains the same. T ∗

2 influence is inverted, however, because
higher frequency spins, which had a positive phase difference, now have a negative
phase difference with respect to spins with lower frequency. Spins will rephase with
respect to field inhomogeneities and produce the first echo of T2-relaxation (see
Fig. 2.27). They dephase again until the next 180◦ impulse causes the next echo.
The envelope containing the echoes decreases exponentially with T2.
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Fig. 2.27 The spin-echo sequence causes dephasing spins to rephase by flipping by a 180◦ im-
pulse which reverses the direction of precession

Usually, a single echo will be taken as the image. The time between the 90◦ im-
pulse and the echo impulse is called echo time TE. The time between two measure-
ments is called repetition time TR. Short TE (20 msec) and long TR (2000 msec)
will produce a proton-density-weighted image. Using a shorter repetition time
(TR = 300–600 msec) will produce a T1-weighted image because T1 relaxation
is generally longer than 200–600 msec. A long TE (> 60 msec) and a long TR
(2000 msec) produces a T2-weighted image.

The inversion recovery sequence is another sequence used in MRI. It produces
an image that is strongly influenced by the T1 time constant. In inversion recovery
a 180◦ impulse is followed by a 90◦ impulse. The time between the two impulses
is called TI or inversion time. The 180◦ impulse leads to saturation (i.e., a new
impulse would not produce a signal). However, after time TI protons have recovered
their longitudinal magnetization to an extent that depends on their individual T1
time. Hence, they are able to produce a resonance signal from the 90◦ impulse. An
echo at echo time TE rephases spins that are then read out. Long inversion times
(TI > 2000 msec) and short echo times (TE = 10 msec) produce a proton-density-
weighted image. Shorter inversion times (400–800 msec) with the same echo time
produce a T1-weighted image, while choosing a long echo time (TE > 60 msec) will
produce an image that is T2-weighted.

MR images of the head created by imagining sequences like the ones above usu-
ally have a slice thickness of 1 to 3 mm and 256 × 256 voxels in a slice. Body MR
images usually have 512 × 512 voxels per slice. Data acquisition times using either
of the sequences are longer compared to CT imaging. For reconstructing an image
of size 256 × 256 pixels, 256 lines in k-space need to be measured. This requires
256 different measurements. A new measurement is only possible after the effects
from the previous measurement have decayed. With T1-time constants in the range
of a second, it results in repetition times in the range of several seconds. It leads
to data acquisition times for the image in the range of 10–15 minutes. If the image
size doubles, the acquisition time doubles as well. If measurements are repeated to
increase the signal-to-noise ratio or if more than one measurement is desired, ac-
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Fig. 2.28 The main difference between normal encoding and a fast imaging sequence is that in
fast imaging several to all encodings are done during a single excitation of the resonance signal

quisition times for a full study may easily reach 30–60 minutes. The acquisition of
a sequence of slices, however, does not necessarily take much longer. Since slice
selection only influences protons of a given slice, signals from several slices may be
acquired in an interleaved mode.

In the early 1980s, acquisition times have been a serious drawback. Since the
1990s, a wealth of fast imaging sequences have been developed. Gradient echo
imaging was one of the first techniques to speed up imaging time. In gradient echo
imaging an excitation pulse of α (with α ≤ 90◦) is given. However, instead of using
the 180◦ impulse to produce a rephased spin echo, an inverse gradient is applied
to cause the echo. Echo times between applying the second gradient and readout
are much faster than echo times of the spin echo sequence. Pulses with α close to
90◦ produce a T1-weighted image. Low angle pulses result in a T ∗

2 -weighted image.
The image is not T2-weighted because, as opposed to spin echo imaging, the gra-
dient echo reverses dephasing from inhomogeneities and spin-spin relaxation in the
same way.

Turbo spin echo sequences make several measurements at a time. This is done by
applying a sequence of several phase shift gradients during a single echo and reading
the signal after each phase shift (see Fig. 2.28). Several lines of k-space are filled
at the same time and image acquisition time decreases by a factor of the number
of lines acquired per repetition. In its extreme, all lines are acquired from a single
excitation (RARE—Rapid Enhancement with Relaxation Enhancement) so that an
image can be acquired within time TE. RARE is a variant of an older sequence
known as Echoplanar Imaging (EPI), a term which simply refers to acquiring the
complete k-space in a single resonance experiment.

2.2.4 Artefacts in MR Imaging

Ultrafast sequences such as EPI produce images in less than 100 msec. There are
problems, however. While making the measurements from a single echo, T ∗

2 de-
phasing continues to occur. Different lines in k-space are measured with a different
contrast with respect to T ∗

2 decay. Moreover, the number of lines to be measured in
k-space is usually restricted to 128 or less so that the spatial resolution of a single
shot image does not exceed 128 × 128 pixels. Furthermore, artefacts from chem-
ical shift, ghosting, and shading may be particularly pronounced for fast imaging
sequences.
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The chemical shift of protons (and any other nuclei) is caused by magnetic shield-
ing from electrons in the molecular environment. It depends on the molecular bind-
ing of protons and causes a material-dependent deviation of spin frequency. The
difference is particularly apparent for protons in water, as compared to those in fat.
Since frequency encoding interprets the measured frequency as location, water pro-
tons will be reconstructed at an offset to fat protons in the frequency encoding direc-
tion. Chemical shift is present in all nonshift-corrected images, but is pronounced
in EPI (RARE) images where the offset may amount to 8–10 pixels. At 3-mm voxel
size this is an offset of about 2.5 cm.

Ghosting appears because of the inaccuracies in the phase encoding. If one or
more lines in k-space are phase shifted, the corresponding waves in the spatial do-
main are shifted as well. Ghost images appear in this direction. Ghosting may also
happen in regular imaging if the patient has moved in the phase encoding direc-
tion between acquisitions. Motion in the direction of frequency encoding causes the
much less prominent blurring artefact similar to this kind of artefact in CT.

Shading is due to the variation of attenuation of the RF signal and an inhomo-
geneous magnetic field. It causes differences in the resonance signal according to
location. It is then turned into different intensities to be reconstructed for the same
material at different locations.

Artefacts from noise and PVE are similar to CT imaging. Metal artefacts from
paramagnetic materials cause signal deletion. The presence of ferromagnetic mate-
rials such as implants is a contraindication for MR imaging as is the presence of
implanted electronic devices such as a pacemaker.

2.2.5 MR Angiography

MR angiography (MRA) exists with and without using contrast agents. Contrast-
enhanced angiography uses gadolinium, an agent that causes a strong decrease of the
T1 relaxation time. Gadolinium-enhanced vessels can be imaged with a T1-weighted
sequence that saturates all other tissues while highlighting the vessels. The resulting
contrast is so high that the images look similar to DSA images, but without the
necessity of subtracting a null image (see Fig. 2.29a). Vessels may be depicted even
if they are smaller than a voxel because of the partial volume effect.

MRA images come as a true 3D volume, but they are often displayed as max-
imum intensity projection images (MIP). This visualization technique projects the
brightest voxel along the projection line on a pixel on the output screen. MIP is
simple, fast, and produces images similar to digital subtraction angiograms.

MR angiography without the use of a contrast agent exploits two different ef-
fects, which are called flow void and phase contrast angiography (Dumoulin 1995).
A flow void occurs when a proton that has been excited by an HF impulse has moved
out of the slice before the readout impulse is applied.

Phase contrast angiography uses the motion artefact of moving blood for imag-
ing. If a proton moves in the direction of the phase encoding gradient, it carries its
phase with it (see Fig. 2.30). Two different phase encoding gradients are applied at
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Fig. 2.29 Maximum intensity projections of gadolinium-enhanced MRA (left) and phase-contrast
MRA (right). While using gadolinium contrast agent produces images with better resolution, phase
contrast imaging is non-invasive and has the potential for computing vessel velocities (images from
Siemens Sector Healthcare with permission)

Fig. 2.30 Principle of phase-contrast imaging: protons are phase-encoded by applying a gradient
field. Motion in phase encoding direction leads to dephasing. If a rephasing gradient is applied,
dislocated protons cause a signal loss since they are not completely rephased. The amount of signal
loss depends on the motion in phase encoding direction

times t1 and t2. The second gradient is exactly opposite to the first gradient. The ef-
fects of the gradients on protons that have not moved between t1 and t2 will cancel.
Protons that moved along the gradient direction will acquire a phase shift relative to
static protons, which is proportional to the distance traveled between t1 and t2 (i.e.,
proportional to their speed). A 3D velocity vector for moving protons can be cre-
ated by applying phase encoding in the x-, y-, and z-directions. Velocity indicates
the existence of a vessel (see Fig. 2.29b). Suggestions have been made that phase
contrast angiography may even enable the analysis of velocity differences in blood
vessels (e.g., at a stenosis or in an aneurysm).
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2.2.6 BOLD Imaging

Blood supplying the brain carries oxygen via hemoglobin. Oxygenated hemoglobin
is diamagnetic such as all the other tissues but deoxygenated hemoglobin is param-
agnetic causing a small, local distortion of the magnetic field. The distortions change
the measurable signal that can be made visible. The technique is called Blood Oxy-
gen Level Dependency (BOLD) imaging (see Huettel et al. 2004 for a detailed look
and Forster et al. 1998 for a short tutorial).

Since brain activity is associated with the energy supply through oxygenated
hemoglobin, BOLD imaging may be used to image brain activity. The ability for
measuring functional activity truly differentiates MRI from CT imaging and has
put MRI in competition with Nuclear Medicine Imaging techniques such as PET
(described below). To produce an image from the BOLD effect, a sequence is cho-
sen that is sensitive to local field inhomogeneities caused by the presence of de-
oxygenated hemoglobin. The gradient echo imaging with low angles presented in
Sect. 2.2.3 is particularly sensitive to inhomogeneities and is often used in func-
tional MRI (fMRI). It can be carried out using an EPI sequence by which an image
is acquired with a single shot. Spin echo EPI can be used as well.

The BOLD effect is subtle. Reliable estimates for brain activity require experi-
ments comprising a large number of images to cancel out noise effects. During im-
age acquisition, a subject is asked to perform a task (e.g., listen to sound) for some
time and then refrain from performing it. It is logged whether images are acquired
during “action” or “no action” periods. The experiment is repeated several times.
The potential correlation between intensity changes in the images and the “action”–
“no action” sequence is computed for every voxel in a postprocessing phase (see
Fig. 2.31).

The spatial resolution of a functional image is usually lower than that of anatomic
images (128 × 128 voxels per slice). It may be registered with an anatomic image
to relate function to anatomy.

Creating an fMRI image study is not easy. Severe distortions due to recording T ∗
2

images for fMRI need to be corrected properly. Motion artefacts during the study
may bias the correlation of the task. Noise further reduces contrast and the resolution
of the fMRI images.

Several software packages exist to register anatomic and functional images,
to carry out signal analysis, and to enable intersubject studies. The most popu-
lar software, SPM, carries out statistic parametric mapping (as presented by Fris-
ton et al. (1995), webpage http://www.fil.ion.ucl.ac.uk/spm/). Other commercial as
well as noncommercial alternatives exist [e.g., BrainVoyager (Goebel et al. 1998),
www.brainvoyager.com, FreeSurfer (Fischl et al. 1999), surfer.nmr.mgh.harvard.
edu/]. Despite the complexity of processing the functional data, fMRI is popular
and currently the only technique to measure cortical activity at a spatial resolution
under 3 mm. Newer scanners such as a 7T scanner, now commercially available,
carry the promise of pushing the achievable resolution even further.

http://www.fil.ion.ucl.ac.uk/spm/
http://www.brainvoyager.com
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Fig. 2.31 A simple fMRI sequence consists of a sequence of images taking during a time in which
a task is either on or off. Locations of which intensity changes correlate with the task design are
then emphasized

Fig. 2.32 Perfusion images are not interpreted as raw images. Diagnostically relevant measures
such as the regional blood volume, regional blood flow and mean transit time are computed and
visualized. The two images here show the mean transit time of two slices of the brain of a normal
volunteer

2.2.7 Perfusion Imaging

Gadolinium may be used to measure perfusion in MRI. Gadolinium not only reduces
the T1 time, but also shortens the T2 time (and with this the T ∗

2 time). The change
in T ∗

2 is related to the amount of gadolinium. Since this is related to the amount of
blood passing through the volume of tissue, gadolinium-caused T ∗

2 contrast predicts
blood perfusion.

The main application of perfusion imaging is the depiction of parameters such as
the relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and
the mean transit time (MTT) in the brain (Gillard et al. 2004) (an example for the
display of MTT is depicted in Fig. 2.32), perfusion imaging for tumor analysis in
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the female breast (Kuhl and Schild 2000), and perfusion imaging in cardiac imaging
for rest and stress studies (Jahnke et al. 2007).

For observing the primary passage of the blood bolus containing the gadolinium
through the tissue, a fast sequence is needed to produce sufficient temporal resolu-
tion. Echoplanar imaging with a gradient echo sequence is one of the sequences that
are fast enough and sensitive to T ∗

2 .
An indication for performing cerebral perfusion imaging is the diagnosis of re-

gions affected by a stroke. Diffusion imaging (see below) can demonstrate the cen-
tral effect of a stroke on the brain, whereas perfusion imaging visualizes the larger
“second ring” delineating blood flow and blood volume.

2.2.8 Diffusion Imaging

Molecules in a medium are in constant motion and will stray further away from an
initial start location with time. The motion is neither directed nor deterministic. Af-
ter a given time it can only be said that—with certain likelihood—a molecule will
be in some sphere around its initial position. The radius of the sphere depends on
the time passed and on a diffusion coefficient. The latter is characteristic of the kind
of molecule and the medium in which diffusion takes place. This is called homo-
geneous, isotropic diffusion and requires molecules to be able to move unhindered.
Diffusion will be lower if blocked by a cell boundary. It will be anisotropic if the
shape of the cell restricts diffusion in some directions more than in others.

Measuring the diffusion coefficient of isotropic diffusion is called diffusion imag-
ing (Gillard et al. 2004). A change of the value of the diffusion coefficient may indi-
cate, for instance, the breakdown of cells in the brain after a stroke. Diffusion tensor
imaging (DTI) relates to the measurement of a tensor that describes anisotropic dif-
fusion. A diffusion tensor D(x, y, z) at some voxel (x, y, z) relates the flux j(x, y, z)

to the gradient D of concentration u(x, y) of some diffusing quantity u in the fol-
lowing way:

j (x, y, z) = −D (x, y, z) × ∇u (x, y, z) . (2.13)

The interesting part is the tensor itself. An eigenvector decomposition of D will
produce an orthogonal system of diffusion directions together with the variance
of diffusion (the eigenvalues) in each of the directions. Elongated cells such as
a nerve fiber (an axiom) should produce maximal diffusion in one of these di-
rections. This is the direction of the fibers. Diffusion in the other two directions
should be much lower (see Fig. 2.33). The knowledge of the local fiber direction
is used for fiber tracking in the brain (Mori and van Zijl 2002), which—together
with fMRI—may be used to infer the configuration of the regions of brain func-
tion (see Fig. 2.34). If two adjacent voxels belong to the same fiber bundle, they
should exhibit linear diffusion and their main diffusion directions should be simi-
lar.
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Fig. 2.33 The diffusion tensor of unbounded diffusion will have equal eigenvalues. If diffusion is
bounded, eigenvalues will be lower and if the bounds are anisotropic, at least one eigenvalue will
be lower than the others. Furthermore, the first eigenvector will point in the direction in which the
bounded volume has its maximal extent

Fig. 2.34 Reconstructed fibers from diffusion MRI depicted on the right can be used with fMRI
(depicted on the left) to infer configurations of functional regions in the brain (images from Mag-
netom Verio, with kind permission of Siemens Sector Healthcare, Erlangen, Germany)

Diffusion imaging by magnetic resonance employs a variant of a spin echo se-
quence. The purpose of the spin echo sequence is to cancel out the effects of mag-
netic field inhomogeneities given that the protons being imaged are static. Diffusion
causes a slight loss of signal that cannot be recovered by the echo because diffus-
ing protons move (as in phase contrast imaging). A diffusion sequence measuring
isotropic diffusion emphasizes this signal loss. The amount of diffusion enhance-
ment depends on the strength and duration of the gradient impulses and on the time
between the two impulses. The diffusion coefficient can be computed if these are
known.

In the case of anisotropic diffusion, the response on the gradient impulse depends
on the directions of the gradient field. Elements of the diffusion tensor are computed
separately by applying a sequence of different gradient excitations.
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2.2.9 Image Analysis on Magnetic Resonance Images

There are a number of parallels between MRI and x-ray CT such as the reconstruc-
tion of a true 3D volume with good spatial resolution. Many analysis methods being
developed for x-ray CT are, in principle, appropriate for the analysis and measure-
ment in MR as well. There are differences, however. The much better contrast for
soft tissue enables the separation of soft tissues by means of the reconstructed image
intensity. However, there is no standardization of the image intensity with respect
to the entity that has been measured. A T2-weighted image may look different de-
pending on the kind of sequence used, on the type of scanner, and on measurement
parameters such as repetition time or echo time; and it certainly differs from the ap-
pearance of a T1-weighted image. Computer-assisted analysis tools must take this
into account either by incorporating scanning parameters into the method (which is
seldom done), or by training the appearance from sample images, or by requesting
user information at the time of analysis.

Artefacts from shading in a study with known acquisition parameters hinder
defining a mapping between tissue type and image brightness within this study.
The automatic separation of gray matter and white matter in the brain, for instance,
which have excellent contrast in some MR images, may need to deal with the dif-
ferent absolute brightness of the two materials at different locations.

The wealth of different properties that can be imaged through magnetic res-
onance also increased interest in registration algorithms (discussed in Chap. 10).
Sometimes, images showing different properties are already registered (e.g., if two
echoes of a spin echo sequence are reconstructed). The first echo is dominated by
proton density and the second is T2-weighted. Clustering and classification in multi-
dimensional feature space may, in such a case, provide further information about the
entities being imaged. If registration is required (e.g., when combining functional
images with a high resolution T1-weighted image of anatomy) rigid registration is
usually insufficient. Registration has to account for deformation due to the different
effects of T ∗

2 susceptibility in different imaging sequences.
Noise in MR imaging can be a problem if an analysis tool requires the mapping of

a tissue type to a small range of brightness values such as in direct volume rendering
visualization or in threshold segmentation. Noise removal through the usual set of
filters (to be discussed later in Chap. 4) helps, of course. It should be kept in mind,
however, that most noise removal techniques operate under the hypothesis that the
true image value is locally constant. Local homogeneity is not given if the size of
image details reaches the limits of spatial resolution. The accidental removal of such
details by noise reduction is critical in MRI since the detection of small objects is
often an objective of applying MRI because of its good soft tissue contrast.

2.3 Ultrasound

Sound waves will be reflected at the boundaries between materials of different
acoustic impedance. An ultrasound wave sent into the human body will be reflected
at organ boundaries. The locus of reflection can be reconstructed if the speed of
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Fig. 2.35 Ultrasound equipment (Siemens Acuson, with kind permission of Siemens Sector
Healthcare, Erlangen, Germany)

sound in the material through which the wave travels is known (Szabo 2004). For
most soft tissues this speed is around 1500 m/sec.

An ultrasound reflection signal is created using a transducer which acts as the
sender and receiver of ultrasound waves (Fig. 2.35 shows typical ultrasound equip-
ment). Frequencies for diagnostic ultrasound range between 1 and 20 MHz. High
frequency waves attenuate faster than low frequency waves and do not penetrate
the body as good as low frequency waves. High frequency waves resolve smaller
structures, however, since the size of a reflecting object has to be larger than the
wavelength.

2.3.1 Ultrasound Imaging

An ultrasound A-scan sends a single wave with known direction into the body and
records the amplitude of reflections as a function of travel time between send-
ing and receiving the signal. It is a one-dimensional probe into the body show-
ing tissue boundaries and other boundaries between regions with different acoustic
impedance. Ultrasound (US) images (the so-called B-scans, see Fig. 2.36) are cre-
ated from a planar fan beam of differently rotated A-scans. Amplitudes are mapped
to gray values for creating the image. They may also be acquired as 3D images with
this fan beam rotating around a second axis perpendicular to the first axis of rotation.

Ultrasound imaging (also called sonography) happens in real time and is able to
show the motion of the organs being imaged. Ultrasound imaging of internal organs
is only possible if they are not hidden by bone since bone causes the total reflection
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Fig. 2.36 Ultrasound B-scan of the abdomen (image with kind permission of Siemens Sector
Healthcare, Erlangen, Germany)

of the incident sound waves. The organs to be imaged include the liver, gallbladder,
pancreas, kidneys, spleen, heart, and uterus. Heart imaging may also be carried out
by putting the ultrasound device (a transducer sending and receiving sound waves)
into the esophagus.

Doppler imaging is a specific technique using the Doppler effect for estimating
the speed and direction of moving objects (such as blood) in the ultrasound image
(see Fig. 2.37). It is used for diagnosing the effects of vessel blockages or changes
of blood flow due to stenosis.

A number of effects cause artefacts in an ultrasound image (see Fig. 2.38).
• Sound waves are attenuated just as electromagnetic waves in x-ray imaging.
• Absorption turns wave energy into heat.
• The wave may be scattered or refracted.
• Interference and a diverging wave cause further deterioration.

Absorption causes a decrease in amplitude with increasing depth. The decrease
is exponential with an unknown absorption coefficient of the tissue. It is usually
corrected by assuming constant absorption throughout the tissue.

Interference, scatter, and refraction of and between waves lead to the typical
speckle artefacts in ultrasound images. It is a nonlinear, tissue-dependent distortion
of the signal.

Tissues and tissue boundaries that reflect or attenuate a high amount of the in-
coming sound energy produce an acoustic shadow behind the tissue. Materials that
attenuate little of the incident energy lead to signal enhancement in tissues behind
this material. This is, for instance, the case when imaged organs are behind a fluid-
filled organ such as a filled bladder. The smaller absorption in the fluid contradicts
the hypothetically assumed constant absorption and causes a higher than necessary
absorption correction.



2.3 Ultrasound 63

Fig. 2.37 Doppler sonography uses the Doppler effect to depict blood velocity. In its original,
velocity is color-coded differentiation between flow direction and velocity (image with kind per-
mission of Siemens Sector Healthcare, Erlangen, Germany)

Fig. 2.38 Different effects influence the incident US wave of which only direct reflection is the
wanted effect

2.3.2 Image Analysis on Ultrasound Images

Ultrasound is noninvasive and inexpensive. Hence, it is widely used as a diagnostic
tool. The artefacts mentioned in the previous section as well as the approximate
nature of many of the underlying assumptions for imaging may adversely influence
measurements in quantitative analysis.
• Localization in ultrasound imaging assumes that the speed of sound in the mate-

rial is known. It is usually taken as a constant value of the average speed of sound
in soft tissue and causes signal displacement depending on the deviation from this
average.

• Refraction that has not been accounted for may lead to a further displacement
error.
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• Organ boundaries may cause mirror echoes or multiple echoes that appear as false
boundaries in the image. Mirror echoes appear behind the true boundary. Multiple
echoes appear between the transducer and boundary.

• False, hyperbola-shaped boundaries may be caused by low frequency lateral os-
cillation of the sound wave.

• Motion artefacts lead to wave-like distortions of boundaries.
• Acoustic shadowing may hide parts of tissues and fluid-induced signal enhance-

ment may lead to a position-dependent signal increase.
• Absorption decreases the signal-to-noise-ratio with respect to the distance from

the transducer.
Artefact removal through postprocessing is only partially successful since their

nonlinearity and nonstationarity defy common restoration techniques (although de-
convolution in ultrasound images has been done; Jensen et al. 1993; Hokland and
Kelly 1996). Using standard noise removal techniques to reduce speckle noise
would seriously affect the image content since speckle is neither of high frequency
nor stationary. Hence, image analysis often proceeds using the unaltered image and
analysis methods have to account for this.

Tissue detection by means of their imaged intensity is impossible. However, the
texture from reflection and speckle due to scatter and refraction within a tissue may
be characteristic to certain tissue properties. This has been used for the texture anal-
ysis of such tissues (Wagner et al. 1985; Wu et al. 1992).

Delineation of objects in ultrasound images has to account for inexact bound-
ary depiction due to speckle, missing signal due to acoustic shadowing, and for
artefactual boundaries. Most boundary-finding algorithms therefore include some
knowledge about the expected course of a boundary.

Measurements of distance, size, and angles have to account for the fact that the
slice direction of the scan is operator-directed and may vary between different im-
ages of the same patient.

2.4 Nuclear Imaging

Nuclear imaging measures the distribution of a radioactive tracer material and pro-
duces images of a function in the human body. The tracer material is injected intra-
venously prior to the image acquisition and will distribute through blood circulation.
Distribution is indicative to the perfusion of organs in the body. Examples for appli-
cations are measurements of brain activity, perfusion studies of the heart, diagnosis
of inflammations due to arthritis and rheumatism, or the detection of tumor metas-
tases due to increased blood circulation.

Images are created from measuring photons sent by the tracer material through
the body. Spatial resolution in nuclear imaging is lower than for the procedures
described above since tracer concentration is very low so as to not to interfere with
the metabolism. The sensitivity of imaging techniques in nuclear medicine is high
since detectors are able to measure a signal from a few photons. Major imaging
techniques in nuclear medicine are as follows.
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Fig. 2.39 Photons reaching the scintillator are those on (approximately) parallel rays

• Scintigraphy, which measures a projection of the tracer distribution with a geom-
etry similar to projection x-ray imaging.

• SPECT (Single Photon Emission Computed Tomography), which is a reconstruc-
tion from projections of tracer material producing a 3D material distribution.

• PET (Positron Emission Tomography), which is a tomographic technique as well,
but uses a different tracer material that produces positrons. Radiation of positron-
electron annihilation is measured and reconstructed.

2.4.1 Scintigraphy

For creating a scintigram, a molecule carrying the radioactive atom 99Tc (Tech-
netium-99) is applied. Photons emitted by tracer radiation are measured by a gamma
camera (also written as γ -camera and sometimes called Anger camera; see Mettler
and Guiberteau 2005). The camera consists of a collimator that restricts measure-
ments of photons to those who hit the detector approximately at a 90◦ angle, a scin-
tillator crystal that turns incident radiation into visible light, and photomultipliers
for amplifying the signal.

The camera is usually mounted on a gantry that enables the camera to rotate
(around various directions) around the patient. The collimator is a thick lead plate
with drilled cylindrical holes whose axes are perpendicular to the scintillator crys-
tal. Photons reaching the detector on a path perpendicular to the detector plane will
reach the scintillator at a location that is given by the positioning of the detector hole
through which it passes. Photons on a path with any other angle are reflected or at-
tenuated by the lead collimator. If they reach the detector crystal through scattering,
they have lost too much energy for being detected. Hence, the collimator causes the
image to be an approximate parallel projection of photons from tracer material in
the body onto the image (see Fig. 2.39).

The scintigram acquired by the gamma camera is a projection of activity
weighted by the attenuation that photons experience on their path between emis-
sion and detection (see Fig. 2.40 for an example). Photons are attenuated by absorp-
tion and scatter. Absorption reduces the signal while scatter reduces contrast and
increases noise.
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Fig. 2.40 Bone scintigraphy (in this case before and after-treatment bone scintigraphy from Mado
et al. 2006, published under Creative Commons license)

Collimator characteristics limit spatial resolution and contrast of the scintigram
(see Fig. 2.41). Photons reaching the detector do not exactly follow a path perpen-
dicular to the detector plane. They originate from a cone-shaped volume whose size
is determined by the diameter and the length of the cylindrical apertures in the col-
limator. Reducing the diameter and increasing the length will increase the spatial
resolution, but it will also decrease the number of photons that reach the scintillator
crystal, hence reducing the signal.

2.4.2 Reconstruction Techniques for Tomography in Nuclear
Imaging

Slice computation from multiple views of the gamma camera is done by apply-
ing tomographic reconstruction techniques. A sequence of images is acquired while
the gamma camera rotates around the patient. If the axis, around which the camera
rotates, is taken as the y-axis of a device coordinate system, a slice may be recon-
structed from lines with a constant x-value of all projection images made by the
camera.

Slice reconstruction of nuclear images from projections for SPECT and PET is
similar to reconstruction from x-ray projection but with an important difference,
which makes the FBP technique of x-ray CT less suitable for slice reconstruction
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Fig. 2.41 The geometry of
the collimator limits the
spatial resolution of the
scinitgram. Resolution
decreases with distance to the
gamma camera

Fig. 2.42 Attenuation that
depends on the attenuation
coefficients along the path
between emission site and
detector causes different
activity levels to be measured
of from the same site if the
detection position is different

although it is commonly used in commercial software. The aim of reconstruction is
to depict the spatial distribution μ(x, y) of radioactive tracer material. Reconstruc-
tion from projection would require projection of this distribution. The measurement,
however, consists of projected, attenuated activity. Attenuation depends on the ma-
terial between the emission site and detector. This violates the assumption of the
Radon transform since the contribution of μ(x, y) to a line integral is dependent on
the projection direction (see Fig. 2.42).

If attenuation is neglected, filtered backprojection may be used. However, it may
lead to signal degradation, which is unwanted in view of the already low signal. If
attenuation were known for each voxel (x, y) in any projection direction (θ, s), it
could be accounted for, provided a suitable reconstruction algorithm exists.

Such a technique is given by modeling reconstruction as a problem of estimating
unknowns (the unknown densities μ(x, y)) from a number of (linear) equations,
which are the different projections. The oldest method based on this model, which
originally was also used to reconstruct CT images, is the algebraic reconstruction
technique (ART; Herman et al. 1978). For reconstructing the image, variables are
rearranged so that all unknown densities μ are in a 1D vector x. Projections are
arranged in another 1D vector y (see Fig. 2.43). Now, the reconstruction requires
finding an x, for which

Mx = y. (2.14)
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Fig. 2.43 Projection
geometry for algebraic
reconstruction. The value of
mij is the ratio of the total
area of pixel xi that is
covered by ray yj

Elements mij of matrix M contain weights that represent how much of the vol-
ume in element xi is measured in the projection yj (mij = 0, if the projection ray yj

does not pass xi ; otherwise it is the relative volume of the voxel xi , which is covered
by a cylindrical ray yj ).

The matrix M can be very large and it is not necessarily square. If an image with
256 × 256 elements shall be reconstructed from 180 × 350 projections, the matrix
would have 65,536 × 63,000 elements. Even if it were a square matrix it may be
singular. The reconstruction is done numerically in an iterative fashion.

The reconstruction scheme is simple. Suppose that an estimate x(n) of x is given.
Then, an estimate y(n) = Mx(n) of the projection vector can be computed. This esti-
mate is compared with the true projection y. The error yj −y

(n)
j for some projection

yj is then used to correct the equationyj = ∑N
j=0 mijxj in the following way:

x
(n+1)
i = x

(n)
i + (

yj − y
(n)
j

) mij∑M
i=0 mij

. (2.15)

This procedure is repeated for every equation in the system and—since correc-
tions of x from a later equation will have changed earlier corrections—it will be iter-
ated until the residual error ‖y − y(n)‖ falls below some threshold. The first estimate
x(0) can be simply x(0) = 0 or it may be an estimate from some other reconstruction
technique (e.g., FBP).

Algebraic reconstruction takes much longer than FBP and is no longer applied
for CT reconstruction. However, it is particularly easy to include effects such as
attenuation into the problem. If αij is the attenuation of photons emitted at xi and
detected at yj , all that is needed is to weight the mij (which may be interpreted as
the likelihood of an emitted photon at xi to be detected at yj ) with αij .

Reconstruction in SPECT and in PET employs this strategy although a different
reconstruction strategy is used. Photon detection is treated as a random process with
known probability distribution. The method is called maximum likelihood expecta-
tion maximization (MLEM) reconstruction. For a detailed treatment see Lange and
Carson (1984) for an introductory treatment of common reconstruction techniques
in nuclear imaging.

To model the problem, we assume that photon emission is a random process
and that xi is the mean number of photons emitted at location i, which is detected
at location yj with probability mij . It results in the same equation as above, but
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with a slightly different meaning for x and y. The number of photons detected at j

depends on the probability that it is attenuated on its way, which in turn depends on
the density, i.e., the mean number of photons ȳj along the ray, which is

ȳj =
M∑
i=1

mijxi . (2.16)

It can be described by a Poisson process, whereby the probability of detecting yj

photons at j is

P(yj ) = exp(−ȳj ) · (ȳj )
yj

yj ! . (2.17)

The measurements and thus the probabilities are independent. The conditional
probability P(y|x) of observing measurement y given the tracer distribution x is the
product

L(x) = P(y |x̄ ) =
N∏

j=1

P(yj ) =
N∏

j=1

exp(−ȳj ) · (ȳj )
yj

yj ! . (2.18)

The maximum of L is computed by taking the derivative and setting it to zero. To
simplify the computation, the derivative is taken on the log-likelihood (maximizing
the logarithm l of L also maximizes L)

l(x) =
N∑

j=1

−ȳj + yj ln(ȳj ) − ln(yj !). (2.19)

Replacing ȳj by the right-hand side of (2.16), we get

l (x) =
N∑

j=1

(
−

M∑
i=1

mijxi + yj ln

(
M∑
i=1

mijxi

)
− ln(yj !)

)
. (2.20)

Taking the partial derivatives with respect to the xi (using the chain rule and
remembering that the derivative of ln x is 1/x), we get

∂l(x)

∂xi

= −
M∑
i=1

mij +
N∑

j=1

yj∑M
i=1 mij x̄i

mij xi = 0. (2.21)

Multiplying both sides with xi and resolving for xi , we receive

xi = − xi∑M
i=1 mij

·
N∑

j=1

yj∑M
i=1 mij x̄i

mij , (2.22)
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which can be turned into the iteration step

x
(n+1)
i = − x

(n)
i∑M

i=1 mij

·
N∑

j=1

yj∑M
i=1 mij x̄

(n)
i

mij . (2.23)

This is the MLEM algorithm. Again, attenuation correction may be added by
modifying the likelihoods mij with the attenuation weight. Other effects such as
the loss of resolution with distance to the detector can be included in the weighting
as well. Even scatter interaction can be included although this is not possible by
simply adopting the weighting since interactions between sites have to be modeled
(Shcherbinin et al. 2008).

A variant of the MLEM algorithm is OSEM (ordered subset expectation maxi-
mization), by which the order in which equations are updated is changed (Hudson
and Larkin 1994). If projections are taken from 96 angles, projection angles may be
ordered in, say, 16 subsets with projections 1, 17, 33, . . . , in the first subset, projec-
tions 2, 18, 34, . . . , in the second subset and so on. This reconstruction strategy has
been shown to speed up convergence. The factor by which convergence increases is
in the order of numbers of subsets.

Image reconstruction with EM increases noise in later iterations because noise
characteristics are not accounted for. This means that it can be difficult to decide
when to stop the algorithm. MAP-EM (maximum a posteriori expectation maxi-
mization) remedies this by including a priori knowledge about desired smoothness
in the model. Different versions of MAP-EM exist. They have in common that
smoothness is described by making constraints about activity differences in adja-
cent pixels. An algorithm by Green (1990), which is called the OSL (one-step-late)
algorithm, for computing the MAP-EM estimate is similar to the EM algorithm. The
term

∑M
i=1 mij in (2.23) is replaced by

M∑
i=1

mij + β
∂

∂xi

U
(
x̄

(n)
i

)
, (2.24)

where ∂
∂xi

U(x̄
(n)
i ) is an energy term enforcing smoothness, e.g.,

∂

∂xi

U
(
x̄

(n)
i

) =
∑

k∈Nbs(i)

wik

(
x̄

(n)
i − x̄

(n)
k

)
, (2.25)

and Nbs() refers to some neighborhood around a site i. The weighting term wik

balances different types of neighboring pixels (e.g., neighbors at different dis-
tances).
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Fig. 2.44 Two-plane SPECT imaging system used in cardiac imaging (with kind permission from
Siemens Sector Healthcare, Erlangen, Germany)

2.4.3 Single Photon Emission Computed Tomography (SPECT)

SPECT uses projection images from the gamma camera to create an image of the
radioactive tracer distribution (Mettler and Guiberteau 2005) (see Fig. 2.44 for an
example of the image acquisition system used in cardiac SPECT). Images without
attenuation correction can be reconstructed by FBP yielding a spatial resolution of
approximately 3 to 6 mm side length of a pixel. Image sizes vary between 64 ×
64 and 128 × 128 voxels per slice with 25 to 35 slices to be reconstructed. Using
iterative reconstruction, attenuation correction and smoothness constraints may be
included, leading to a better image quality at the expense of longer reconstruction
times if compared to FBP (see Fig. 2.45). Attenuation maps can be generated from
the reconstruction of a transmission scan taken prior to imaging.

The acquisition of SPECT images can be carried out by a single rotating gamma
camera. However, modern systems use 3-head cameras for capturing three projec-
tions at a time. The acquisition time for a single projection is about 15 to 20 sec-
onds, which amounts, for a 3-head system, to total acquisition times between 5 and
10 minutes.

Scatter in SPECT decreases contrast and causes noise in the image. Due to the
small number of photons measured, scatter may also cause artefacts since scatter-
ing in dense materials with a high uptake of radioactive material may be falsely
attributed to nearby regions. Scattered photons due to Compton scattering can be
identified due to the energy loss of the scattered photon. Scattered photons may be
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Fig. 2.45 SPECT image of the left ventricle. The two images are not smoothed in order to reveal
their true spatial resolution. The left image was reconstructed without, the image on the right with
attenuation correction using the method of Celler et al. (2005) (with kind permission of Anna
Celler, Department of Radiology, University of British Columbia, Vancouver)

removed by the appropriate frequency filtering of the signal. The removal of scatter
does reduce artefacts, but it cannot increase the signal-to-noise-ratio.

Artefacts due to motion during image acquisition cause blurring of the data. Non-
gated cardiac SPECT is not able to show the heart motion because of the long ac-
quisition time, but produces an average image over the complete heart cycle.

Major application fields for SPECT imaging are the imaging of ventricular per-
fusion and ejection fraction of the heart, scans of lungs, kidneys, liver, and bone for
tumor detection, and brain perfusion studies.

2.4.4 Positron Emission Tomography (PET)

PET uses positron emitters for producing the image (Mettler and Guiberteau 2005).
Radioactive isotopes of atoms such as oxygen or fluoride emitting positrons are
administered to the human body. If distributed in the body, emanating positrons
annihilate if they meet an electron and produce two photons that are emitted in
the near-opposite direction. Photon energy is 511 keV. Events are measured by a
detector ring and do not require collimators. An annihilation event is registered if
two photons are detected at nearly the same time (within nanoseconds). The event
is attributed to a location on a line connecting the two detection sites (see Fig. 2.46).
This line is called the line of response (LOR).

PET is an expensive technique if compared to SPECT because positron emit-
ting isotopes have a short half-life and need to be generated in a cyclotron in close
neighborhood to the PET scanner. The scanning technique is demanding, requiring
a fixed detector ring that is capable of analyzing events according to synchronicity
of measurement. The image quality of PET is better than SPECT. The number of
attenuated photons decreases without collimation, the higher energy of the photons
reduces attenuation loss in the body, and the near-parallelism of the path of the two
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Fig. 2.46 Schematic view of a PET scanner (left) and resulting image of measured activity in the
brain

protons focuses the ray better than the cylindrical aperture of the collimator in a
gamma camera.

The spatial resolution of PET is in the range of 2 to 5 mm side length of a voxel.
The signal-to-noise level is low due to the low number of counts. The true spatial
resolution (i.e., the closest distance between two discernable objects) is often sac-
rificed to reduce noise by smoothing the data during or after reconstruction. PET,
similarly to SPECT, does not produce anatomic information. Metabolic function as
imaged by PET is best evaluated if registered with some anatomic scan (e.g., from
CT or MRI). Registration algorithms for the registration of PET with anatomic im-
agery were developed in the 1980s and 1990s (Pelizzari et al. 1989). The technical
problems of registration at the resolution of PET images can be considered to be
solved. Some of today’s PET machines are combined with a multislice CT scan-
ner for creating anatomic and functional images almost simultaneously and in close
registration.

One of the many uses of functional imaging using PET is to observe brain activity
using an oxygen isotope as a tracer. Being able to resolve cortex activity at resolu-
tions of 5 to 10 mm stipulated much activity beginning in the late 1980s because
PET, for the first time, allowed to observe activity at a resolution that is comparable
to the size of major substructures—such as the visual cortex—in the brain (Senda et
al. 2002). Presently, functional brain imaging through PET is challenged by fMRI,
which is able to measure activity at an even higher spatial resolution than PET al-
though being only an indirect indicator using the BOLD effect.

Further applications for PET imaging are the analysis of tumor metabolism in
oncology or the tracing of labeled neuroreceptors in psychiatry.

2.4.5 Image Analysis on Nuclear Images

Images come as projection images as well as slice images sharing the advantages
and disadvantages of such kinds of images, as explained in the section on computed
tomography. The signal strength in the images depends on the amount of tracer given



74 2 Digital Image Acquisition

and the individual metabolism. Quantitative measurements based on intensity are
usually a comparison of activity between two regions because the absolute intensity
value at some location depends on external factors.

The image quality (i.e., resolution and signal-to-noise ratio) is poor because of
the low number of photons contributing to an image and because of the restrictions
from image acquisition. This sometimes requires integrating quantitative measure-
ments of relative activity over a larger region for arriving at reliable estimates.

Analysis often requires correlating the functional signal with anatomy. One
should never be tempted to take the apparent agreement between activity distribu-
tion and expected anatomy as reason to derive anatomy from the functional signal.
Anatomy and function may coincide, but a major purpose using a nuclear imaging
technique is to identify and analyze regions where this is not the case. If analysis
has to be carried out with respect to anatomy (e.g., “which part of the cardiac ven-
tricle in a SPECT image is perfused normally?”), anatomical information has to be
supplied by other means such as registering the data with anatomic images or an
anatomic model of the organ to be imaged.

2.5 Other Imaging Techniques

The image modalities discussed so far make up the majority of images that are
subjected to computer-assisted analysis. We will conclude this chapter with a brief
discussion of some other methods that—although in part quite common in clinical
practice—are not often subject to image analysis methods. The reasons for this are
that, at present, most of them are diagnosed quite satisfactorily by inspection by a
human expert.

2.5.1 Photography

An example for diagnosis using photography is the depiction of vascular processes
in retina photography (see Fig. 2.47). The retina is the only location in the human
body where vessels are visible on the surface (Saine and Tyler 2002). Another ap-
plication is the diagnosis and staging of skin tumors (Malvehy 2002) or burn scars
(van Zuijlen et al. 2002). Photography in this field is sometimes replaced by der-
moscopy (Bowling 2011) which produces microscopic images of the skin surface
with a magnification factor of 1:10.

In treatment planning, photography may be used for estimating the effects of
plastic surgery. Digital photographs are usually high quality and high resolution
color images.

A photographic image is a projection of some opaque surface, so that similar
rules with respect to measurement and analysis apply than for x-ray projection im-
ages. If, for instance, distances on the retina surface shall be measured, the curved-
ness of the retina and the magnification factor due to the distance between the cam-
era and retina has to be considered. When using intensity or color in digital pho-
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Fig. 2.47 Examples of retina photography (note that the original images are in color): (a) retina
of a normal (b) degeneration of the macula (with kind permission of the National Eye Institute
http://www.nei.nih.gov)

tographs for analysis, effects from external lighting, shading, or the camera position
need to be accounted for.

2.5.2 Light Microscopy

Microscopes in medical imaging are often light-optical microscopes, which are able
to analyze living structures of sizes between 0.1 µm and 1 mm. Magnification is gen-
erated through a system of lenses. Photosensitivity decreases with increased spatial
resolution. Microscopic images are often used for the diagnosis of pathology in a tis-
sue specimen on the cell level (see, e.g., Fig. 2.48). Images are usually color images
with good contrast and signal-to-noise ratio. Microscopic images are used for cell
counting, shape analysis of cells, and structural analysis of cells and cell distribution
(Török and Kao 2008).

Microscopic images are good quality high resolution images, which may suffer
from blurring due to defocussing. Since color staining in cells is done on purpose,
color-based segmentation and classification are often appropriate strategies for suc-
cessful analysis. Cell classification and the detection of the structural arrangement
of cells may require quite elaborate segmentation techniques and a very good un-
derstanding of the often qualitative criteria to categorize cells.

A variant of cell microscopy is fluorescence microscopy. Instead of using re-
flection and absorption, the signal is generated by the fluorescence response of the
living material to incident laser light. Since the response is at a different wave-
length than the evoking laser light, influences from light reflection and absorption
can be filtered so that the image only shows the fluorescence of the reacting material
(Fig. 2.49 shows examples of fluorescence microscopy of the synaptic vesicles from
drosophila larvae).

http://www.nei.nih.gov
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Fig. 2.48 Red-, green- and blue-channel of a color-stained microscopic image of lung cells (image
taken from Rogers 2004 published under Creative Commons license)

Fig. 2.49 Dendritic spine (left) and fluorescence microscopy (right) of the synapses of drosophila
larvae, see Bachmann et al. (2004). It is characteristic for fluorescence images that only fluores-
cent particles are visible while influence from the incident illumination is filtered out (the original
images are in color showing different types of particles in different color channels). Hence, the
dendrite is not visible in the image on the right

2.5.3 EEG and MEG

For creating an electroencephalogram (EEG) a number of electrodes (16 to 25)
are placed on the scalp to detect electrical impulses caused by brain activity. The
impulses are amplified and represent an array of brain activity curves indicating the
function of the human brain. Brain activity happens in gray matter, which—for the
most part—is close to the scalp. Hence, EEG provides a brain map of functional
activity (Chambers and Sanei 2007).

Spatial resolution is poor, but the temporal resolution of EEG is excellent (see
Fig. 2.50 for an example of EEG time curves). Hence, EEG is a potential candidate
to supplement methods with good spatial resolution and low temporal resolution of
imaging (such as fMRI). An EEG measures neural activity directly whereas other
methods such as fMRI, SPECT, or PET deduce brain activity from secondary signals
(such as the blood oxygen level). Currently, the main activity in processing EEGs is
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Fig. 2.50 An EEG consists
of a set of time signals that
are acquired from different
locations on the head surface.
Lines of the original EEG
were dilated in this picture for
enhanced visibility (EEG
entry of www.wikipedia.de
from user “Der Lange”,
published under Creative
Commons license)

signal analysis and pattern recognition of the temporal image. Image analysis plays
a lesser role due to the poor spatial resolution of the signal.

A magnetoencephalogram (MEG) measures a similar effect as EEG through the
magnetic field of neural brain activity (Hämäläinen et al. 1993; Papanicolaou 1995).
MEG requires a system for recording very small magnetic fields (10−15 T) and re-
quires a special kind of recording magnet that is sensitive to such small fields (it is
called SQUID—superconducting quantum interference device). Measuring a mag-
netic field that is more than a billion times smaller than the Earth’s magnetic field
requires excellent shielding of the examination room. Compared to EEG, require-
ments for applying MEG are much higher. However, the achievable spatial resolu-
tion of about 2 mm is much better than in EEG. The temporal resolution is 1 ms and
in the same range as EEG.

MEG is a very new technique and does not produce images yet. Hence, not much
can be said about its potential and of the properties of such images. So far, spatially
resolved MEG was mainly used for the exact localization of a certain activity. How-
ever, acquiring a surface map of the cortex is possible in principle and may provide
excellent spatiotemporal resolution.

2.6 Concluding Remarks

Image acquisition methods presented in this chapter can be grouped by acquisition
technique into projective and nonprojective methods, by the imaged parameters into
physiological and functional imaging techniques, and by the physical effect that is

http://www.wikipedia.de
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measured. Each of the techniques produces information that is related to physiolog-
ical and/or functional attributes in a known way. It can be assumed that the selection
of an imaging technique is always intentional so that this relation can be exploited
for subsequent analysis. Artefacts are often specific to an imaging technique so that
this knowledge can and should be used when developing an analysis method.

The term “medical image” comprises a wide variety of different acquisition tech-
niques and different signals to be acquired. Hence, understanding the semantics of
the image will require a new effort every time that a new analysis task shall be
solved with the help of a semi-automatically or automatically working algorithm.
This is one of the major differences between processing medical images and other
pictures. Another important aspect is that the depiction is usually not the projection
of mostly opaque materials, but either a projection of transparent materials (such as
in x-ray imaging or in scintigraphy) or a full reconstruction of a 3D (or even 4D)
scene. Recovery of distances or the treatment of partially hidden structures being in
the focus of many computer vision algorithms are therefore not a major concern of
the analysis of medical images. The main problems in medical image analysis are to
deal with the incomplete differentiation of structures of interest, with artefacts from
image acquisition and with the inaccessibility of the data to be analyzed.

2.7 Exercises

• Why is it impossible to measure distances in projections images?
• Why is angiography in cardiac imaging more popular than digital subtraction

angiography?
• Explain the difference of the imaging technique between standard x-ray imaging

and mammography.
• Explain the image acquisition process for digital radiography.
• What is meant by vignetting in radiographic imaging and what are the effects of

this artefact?
• What is the partial volume effect and how does it affect the image?
• Why is it necessary to filter the projection data in filtered backprojection?
• Explain the backprojection procedure.
• What is the major difference between CT angiography and 3D reconstructed dig-

ital subtraction angiography?
• What is the purpose of filtering with a Hamming window filter when reconstruct-

ing CT images?
• What is meant by window and level in displaying CT images? Why is it needed?
• What is the typical spatial resolution of a body CT scan?
• Name three typical artefacts that occur in CT and MR imaging.
• What is the entity in the body that gives rise to the signal in MR imaging?
• Explain the meaning of the three components (ρ, t1, t2) that make up the MR

signal.
• Explain the steps of slice selection, phase, and frequency encoding in MR imag-

ing.
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• What is the difference between t2-relaxation and t∗2 -relaxation in MR imaging?
• How does the spin-echo sequence in MR imaging avoid adverse effects from t∗2 -

relaxation?
• Why is most MR image acquisition much slower than CT image acquisition?
• What is the principle of fast MR imaging techniques such as EPI imaging?
• Name and explain the differences between the different kinds of angiogtaphic

imaging in MRI. Which of the techniques can be used to recover velocity infor-
mation?

• What is meant by ghosting in MR imaging and when does it occur?
• What imaging technique uses Hounsfield units for normalization and what are the

two reference values for normalization?
• What is the purpose of MR perfusion imaging? How is the perfusion information

generated?
• What is the BOLD effect and how is it used in functional MRI?
• Why is it necessary to acquire a time sequence of images in functional MRI?
• What is measured in diffusion imaging? Why and how can this information be

used for fiber tracking?
• What are A- and B-scans in ultrasound imaging?
• How is spatial information about the depth of a reflection generated in ultrasound

imaging?
• Name some typical artefacts in ultrasound images.
• What imaging techniques are subsumed under the term “nuclear imaging”?

Which of the techniques produces projection images?
• Explain the design of a gamma camera. What is the purpose of the collimator in

this design?
• What are the adverse influences for reconstructing SPECT images?
• What are the reasons for SPECT having a low spatial resolution compared to,

e.g., CT imaging?
• What are potential diagnostic questions that require a scintigraphy?
• What are the advantages and disadvantage of MRI opposed to x-ray CT?
• Why is filtered backprojection not always appropriate to reconstruct SPECT im-

ages?
• Why is the spatial resolution of PET generally higher than the one of SPECT?
• What generates the signal in PET imaging? How does PET compare with func-

tional MRI?
• What are the applications for using photography in diagnosis?
• What are the potential applications of using light microscopy?
• What is measured by an EEG? What is the spatial resolution of the signal?
• Name a potential application for acquiring an EEG?
• What other imaging techniques produce similar information as that generated by

EEG?



80 2 Digital Image Acquisition

References

Akpek S, Brunner T, Benndorf G, Strother C (2005) Three-dimensional imaging and cone beam
volume CT in C-arm angiography with flat panel detector. Diagn Intervent Radiol 11:10–13

Bacher K, Smeets P, Bonnarens K, De Hauwere A, Verstraete K, Thierens H (2003) Dose reduction
in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography
versus conventional film-screen radiography and phosphor-based computed radiography. Am J
Radiol 181:923–929

Bachmann A, Timmer M, Sierralta J, Pietrini G, Gundelfinger ED, Knust E, Thomas U (2004) Cell
type-specific recruitment of Drosophila Lin-7 to distinct MAGUK-based protein complexes
defines novel roles for Sdt and Dlg-S97. J Cell Sci 117(10):1899–1909

Bowling J (2011) Diagnostic dermoscopy: the illustrated guide. Wiley, New York
Bushberg JT (1998) X-ray interaction. Radiographics 18(2):457–468
Bushberg JT, Seibert JA, Leidholdt EM (2002) The essential physics of medical imaging, 2nd edn.

Lippincott Williams and Wilkins, Philadelphia
Buzug TM (2008) Computed tomography—from photon statistics to modern cone-beam CT.

Springer, Berlin
Celler A, Dixon KL, Chang Z, Blinder S, Powe J, Harrop R (2005) Problems created in attenuation-

corrected SPECT images by artefacts in attenuation maps: a simulation study. J Nucl Med
46(2):335–343

Chambers JA, Sanei S (2007) EEG signal processing. Wiley, New York
Chan HP, Doi K, Galhotra S, Vyborny CJ, MacMahon H, Jokich PM (1987) Image feature analysis

and computer-aided diagnosis in digital radiography. I. Automated detection of microcalcifica-
tions in mammography. Med Phys 14(4):538–548

Cheng HD, Lui YM, Freimanis RI (1998) A novel approach to microcalcification detection using
fuzzy logic technique. IEEE Trans Med Imaging 17(3):442–450

Dengler J, Behrens S, Desaga JF (1993) Segmentation of microcalcifications in mammograms.
IEEE Trans Med Imaging 12(4):634–642

Dillon EH, van Leeuwen MS, Fernandez MA, Mali WP (1993) Spiral CT angiography. Am J
Roentgenol 160(6):1273–1278

Dumoulin CL (1995) Phase contrast MR angiography techniques. Magn Reson Imaging Clin N
Am 3(3):399–411

Fink C, Hallscheidt PJ, Noeldge G, Kampschulte A, Radeleff B, Hosch WP, Kauffmann GW,
Hansmann J (2002) Clinical comparative study with a large-area amorphous silicon flat-panel
detector—image quality and visibility of anatomic structures on chest radiography. Am J Ra-
diol 178:481–486

Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II. Inflation, flattening, and
a surface-based coordinate system. Neuroimage 9:195–207

Forster BB, MacKay AL, Whittall KP, Kiehl KA, Smith AM, Hare RD, Liddle PF (1998) Func-
tional magnetic resonance imaging: the basics of blood-oxygen-level dependent (BOLD) imag-
ing. Can Assoc Radiol J 49(5):320–329

Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995) Statistical para-
metric maps in functional imaging: a general linear approach. Hum Brain Mapp 2(4):189–210

Garmer M, Hennigs SP, Jäger HJ, Schrick F, van de Loo T, Jacobs A, Hanusch A, Christmann
A, Mathias K (2000) Digital radiography versus conventional radiography in chest imaging—
diagnostic performance of a large-area silicon flat-panel detector in a clinical CT-controlled
study. Am J Radiol 174:75–80

Geluk RJ (1979) Transverse analogue tomography (TAT): a new method for cross-sectional imag-
ing using X-rays. J Mod Opt 26(11):1367–1376

Ghersin E, Litmanovich D, Dragu R et al (2006) 16-MDCT coronary angiography versus inva-
sive coronary angiography in acute chest pain syndrome: a blinded prospective study. Am J
Roentgenol 186(1):177–184

Gillard JH, Waldman AD, Barker PB (2004) Clinical MR neuroimaging: diffusion, perfusion and
spectroscopy. Cambridge University Press, Cambridge



References 81

Goebel R, Sefat DK, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision:
direct evidence from functional magnetic resonance imaging studies of apparent motion and
motion imagery. Eur J Neurosci 10(5):1563–1573

Green PJ (1990) Bayesian reconstructions from emission tomography data using a modified EM
algorithm. IEEE Trans Med Imaging 9(1):84–93

Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalo-
graphy—theory, instrumentation, and applications to noninvasive studies of the working human
brain. Rev Mod Phys 65(2):413–497

Herman GT, Lent A, Lutz PH (1978) Relaxation methods for image reconstruction. Commun ACM
21(2):152–158

Hokland JH, Kelly PA (1996) Markov models of specular and diffuse scattering in restoration of
medical ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 43(4):660–669

Hudson HM, Larkin RS (1994) Accelerated image reconstruction using ordered subsets of projec-
tion data. IEEE Trans Med Imaging 13(4):601–609

Huettel SA, Song AW, McCarthy G (2004) Functional magnetic resonance imaging. Palgrave
Macmillan, Basingstoke

Jahnke C, Nagel E, Gebker R, Kokocinski T, Kelle S, Manka R, Fleck E, Paetsch I (2007) Prognos-
tic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine
stress wall motion imaging. Circulation 115:1769–1776

Jensen JA, Mathorne J, Gravesen T, Stage B (1993) Deconvolution of in-vivo ultrasound B-mode
images. Ultrason Imag 15(2):122–133

Kuhl CK, Schild HH (2000) Dynamic image interpretation of MRI of the breast. J Magn Reson
Imaging 12(6):965–974

Lange K, Carson R (1984) EM reconstruction algorithms for emission and transmission tomogra-
phy. J Comput Assist Tomogr 8:306–316

Liang ZP, Lauterbur PC (2000) Principles of magnetic resonance imaging: a signal processing
perspective. IEEE press series on biomedical engineering. Wiley, New York

Mado K, Ishii Y, Mazaki T, Ushio M, Masuda H, Takayama T (2006) A case of bone metastasis of
colon cancer that markedly responded to S-1/CPT-11 combination chemotherapy and became
curable by resection. World J Surg Oncol 4:3

Malvehy J (2002) Follow-up of melanocytic skin lesions with digital total-body photography and
digital dermoscopy: a two-step method. Clin Dermatol 20(3):297–304

McCollough CH (1997) X-ray production. Radiographics 17(4):967–984
McKetty MH (1998) X-ray attenuation. Radiographics 18(1):151–163
Mettler M, Guiberteau MJ (2005) Essentials of nuclear medicine imaging. Saunders, Maryland

Heights
Mori S, van Zijl PCM (2002) Fiber tracking: principles and strategies—a technical review. NMR

Biomed 5(7–8):468–480
Meijering EHW, Niessen WJ, Viergever MA (1999) Retrospective motion correction in digital

subtraction angiography: a review. IEEE Trans Med Imaging 18(1):2–21
Ning R, Chen B, Yu R, Conover D, Tang X, Ning Y (2000) Flat panel detector-based cone-beam

volume CT angiography imaging: system evaluation. IEEE Trans Med Imaging 19(9):949–963
Papanicolaou AC (1995) An introduction to magnetoencephalography with some applications.

Brain Cogn 27(3):331–352
Pelizzari CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen CT (1989) Accurate three-

dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr
13(1):20–26

Pooley RA, McKinney JM, Miller DA (2001) Digital fluoroscopy. Radiographics 21(2):512–534
Prince JL, Links J (2005) Medical imaging signals and systems. Prentice Hall, New York
Robb RA, Sinak LJ, Hoffman EA, Kinsey JH, Harris LD, Ritman EL (1982) Dynamic volume

imaging of moving organs. J Med Syst 6(6):539–554
Rogers A (2004) T cells cause lung damage in emphysema. PLoS Med 1(1):e25
Saine PJ, Tyler ME (2002) Ophthalmic photography: retinal photography, angiography, and elec-

tronic imaging, 2nd edn. Butterworth-Heinemann, Stoneham



82 2 Digital Image Acquisition

Salibi N, Brown MA (1998) Clinical MR spectroscopy: first principles. Wiley, New York
Senda M, Kimura Y, Herscovitch P (2002) Brain imaging using PET. Academic Press, San Diego
Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A (2008) Accuracy of quantitative

reconstructions in SPECT/CT imaging. Phys Med Biol 53(17):4595–4604
Szabo T (2004) Diagnostic ultrasound imaging: inside out. Academic press series in biomedical

engineering
Török P, Kao FJ (2008) Optical imaging and microscopy. Techniques and advanced systems,

Springer series in optical sciences
van Zuijlen PPM, Angeles AP, Kreis RW, Bos KE, Middelkoop E (2002) Scar assessment tools:

implications for current research. Plast Reconstr Surg 109(3):1108–1122
Wagner RF, Insana MF, Brown DG (1985) Unified approach to the detection and classification of

speckle texture in diagnostic ultrasound. Int Conf Speckle 556:146–152
Wang J, Blackburn TJ (2000) X-ray image intensifiers for fluoroscopy. Radiographics 20(5):1471–

1477
Wu CM, Chen YC, Hsieh KS (1992) Texture features for classification of ultrasonic liver images.

IEEE Trans Med Imaging 11(2):141–152



3Image Storage and Transfer

Abstract
Medical images are created, stored, accessed, and processed in the restricted en-
vironment of a hospital. The semantic of a medical image is driven by the par-
ticular purpose for creating it. This results in specific solutions for the archiving
of medical images. Transfer is different for medical images as well as it is driven
by the technical specification of the various image acquisition systems and the
particular requirements of the users of these images.
The archiving and transfer of images is governed by two standards (HL7 and
DICOM) that will be discussed in this chapter. The goal of the presentation is
to enable the reader to understand the way images are stored and distributed in
a hospital. It should further enable the reader to access images if some analysis
method shall be applied to it and to decide how to implement such an analysis
method in a clinical environment.

Concepts, notions and definitions introduced in this chapter

› Information systems: the role of HIS, RIS, and PACS
› Basic concepts of HL7
› Introduction to the DICOM standard: information objects and services,

establishing DICOM connectivity, the DICOM file format
› Technical properties of medical images
› Medical workstations

It is likely that the first problem encountered when processing a digital medical im-
age is how to access the image within the framework of information systems in the
hospital. It will be difficult to set up a useful software module for postprocessing im-
ages without some basic understanding as to how they are archived and transferred.
Although experienced users in the hospital may be able to help, an image process-
ing expert is generally assumed to be sufficiently knowledgeable with respect to
data bases and information systems.

K.D. Toennies, Guide to Medical Image Analysis,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-2751-2_3, © Springer-Verlag London Limited 2012
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Medical images differ from other images in several aspects. This has an impact
as to how they can be accessed. The most obvious of these aspects is that medi-
cal images receive their semantics only within the context in which they were cre-
ated. Context information includes, for instance, demographic information about the
person who was imaged, technical details about the image acquisition system, or
the reason for the examination. Context information about medical images is much
more extensive than for other images, where information about the size and quanti-
zation may suffice. For reasons of data integrity and data security, context needs to
be firmly associated to the image.

A second important difference is that medical images are mappings of measure-
ments of very different origins into a pictorial representation. Although photographs
are used in diagnosis and treatment planning as well, medical imaging goes far be-
yond this, hence adding to the requirements for image meta-information. An un-
known number of details about different image acquisition techniques have to be
stored with the image. Storing meta-information describing the different parameters
related to some image acquisition system efficiently leads to image formats that are
different from conventional formats such as JPEG or PNG.

A third aspect that differentiates medical images from other pictures is that the
use of medical images is highly constrained and regulated. Medical images contain
sensitive personal information of which misuse must be prevented. Images have
often been acquired for justifying quite invasive actions (a decision in diagnosis or
therapy with its consequences) that have to be executed with care and responsibility.
A system where such images are created, stored, and accessed must be designed
in a way that actively supports these goals. In consequence, images must not be
accessed out of a framework that guarantees that the purpose of image access serves
the intention for creating and keeping the image.

If a user intends to apply computer-based analysis techniques on a medical im-
age he or she should be aware of the points raised above. Hence, we will give an
overview about storing and accessing medical images in a hospital. The chapter is
not meant to be a comprehensive description about information systems in a hospi-
tal in general. We will mainly focus on topics that are directly related to images in
the information system.

3.1 Information Systems in a Hospital

Images may be generated from patients who are either admitted to the hospital or
who are sent in for outpatient examination. In either case, information is acquired
that is necessary for the management of the actions performed while the patient is
in the hospital. Hence, this information has to be accessible at various places (see
Fig. 3.1). This includes information
• which is necessary for administrating the patient’s stay such as patient demo-

graphics, billing information, and so on;
• which is necessary for performing the examination to which the images belong

such as patient demographics, anamnesis, reports, and so on;
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Fig. 3.1 Schematic view at functions and location in a hospital that deal with images or informa-
tion related to images

• which is necessary for interpreting the images such as patient demographics, re-
ports, imaging device information, the images themselves, and so on.
The information is kept in different information systems in the departments of

the hospital. Patient administration data are kept in the hospital information system
(HIS). The HIS maps the internal structure of a hospital (its departments, clinics,
its access points for getting administrative information) into a data base representa-
tion and governs access to this information. Ideally, a HIS would replace all paper
files documenting a patient’s stay. Any authorized person at any location in a hos-
pital would have immediate access to this information. It requires that a modern
hospital is equipped with the necessary network infrastructure, storage devices, and
access points (such as PCs on the network). Such an environment exists in many
modern hospitals. Communication is often realized as a type of intranet solution to
prevent unauthorized access. With increasing decentralization (outpatient care, out-
sourcing of administrative and technical support, teleradiology, etc.), the secure and
authorized access to this and other information systems from the outside world has
become necessary and possible.

Data about radiological examinations are kept in a different system, which is
called a radiology information system (RIS, see Fig. 3.2). The reason for this and
other independent subsystems within the hospital is the complexity of the informa-
tion structure and information flow. Modularization keeps the information where
it is needed with well-defined interfaces governing the information exchange be-
tween systems. It also helps to prevent unauthorized access. Department policy may
prohibit, for instance, that an image created in a Radiology Department may be
accessed without having a report from the Radiology Department associated to it.



86 3 Image Storage and Transfer

Fig. 3.2 The departmental Radiology Information System (RIS) and the Picture Archiving and
Communication System (PACS) are responsible for organizing, transferring and archiving image
data and image meta data

Hospital information systems evolved from the need to create a paperless admin-
istration of inpatients and outpatients in a hospital. Development was initiated from
the hospital administration and in many cases evolved from data base systems for
patient data administration. In early times, these systems were in-house adaptations
of data base systems or completely locally developed solutions. With information
stored in such a system being increasingly used for administrating and scheduling
services performed in patient stay, they have evolved into fully grown hospital in-
formation systems accessible by all departments of a hospital.

Radiology Information Systems are built to manage information about services
that are connected with a radiological examination. This includes information about
• examinations ordered,
• patient scheduling information,
• images created as part of an examination,
• reporting.

RIS and HIS are similar in that they mainly cover the administrative aspects of
the patient’s stay. If a patient is transferred to a radiology department, his or her
demographic data are entered into the RIS together with all the information about
the services requested from the department. The RIS is then responsible to guide the
patient’s stay in the department. Examinations requested are scheduled, reports on
examinations performed are kept and transferred to authorized requesters, services
rendered are reported to the hospital information system, and so on.

The images themselves are not included in an RIS because of historical as well
as practical reasons. Administrative data on the patient were digitized well before
the majority of images became digital. Images were linked to the RIS by means of
an identification code referring to the pictures kept on film in some archive. The
management of these pictures—e.g., ensuring that they actually were in the archive
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Fig. 3.3 In a PACS, the user has access to images from acquisition systems, workstations and the
archive. It usually requires a specific monitor configuration to render images, meta-information,
and the interface to administer data access in a suitable way (with kind permission of Siemens
Sector Healthcare, Erlangen, Germany)

or, if not, that it was known where they could be found—was a nondigital and only
partially computer-supported task.

The situation changed dramatically in the last three decades. In the 1970s, the
majority of images created in a radiology department were still analogue x-ray im-
ages. Thus, the preferred mode of access and display used analogue means. With
the advent of x-ray computed tomography in the 1970s and that of magnetic reso-
nance imaging in the 1980s, images were generated whose primary representation
was digital. Even x-ray images, still making up the bulk of the images generated in
a hospital, are more and more created digitally. In the foreseeable future, most if not
all of the images created in the departments of a hospital will be digital.

It gave rise to the introduction of another image information system, which is
called a picture archiving and communication system (PACS, see Fig. 3.3). First
PACSs were introduced in the early 1980s. A PACS should archive and distribute
pictures together with the related information within radiology and to the depart-
ments who ordered the images. Besides the images, this information includes patient
demographics, information about reports, as well as technical information about the
images such as the imaging device and its technical parameters.

RIS and PACS are the two information systems that a computer scientist is most
likely to encounter when images in a hospital need to be accessed. The RIS contains
information about the specific examination and associated previous examinations.
This may also concern nonpicture-based examinations. The brief description above
already indicated that RIS and PACS share a lot of information (such as patient de-
mographics). Hence, the RIS sometimes serves as the primary access mechanism
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to archived images. It then governs access authorization and basic image manipu-
lations such as retrieving or anonymizing images. The task may also be part of the
PACS. In this case, access requires only communication with the PACS. In fact,
the separation between RIS and PACS is much less obvious than that between HIS
and RIS. For the latter, a clear hierarchy between the hospital and departmental
information systems is reason for different systems, while for the former one asyn-
chronicity of the development and type of data (text vs. images) is the main reason.
In the future, PACS and RIS will probably fuse into a single departmental informa-
tion system.

The existence of digital information systems throughout the hospital ensures
that—in principle—authorized access to images is easy from any location in the
hospital. Using the internet, this can—again, in principle—easily be extended to
virtually any place in the world. However, a necessary prerequisite is that these sys-
tems have export interfaces fitting to each other.

This is not self-evident. The different information systems were initially devel-
oped locally with local requirements in mind. With information systems increas-
ingly entering the clinical world, the need for standardized communication between
information systems arose. It became clear that much of the information is needed
multiple times (such as the patient demographics). Entering such information again
every time a patient is admitted to a different department with its own departmental
information system is tedious and error-prone.

Two different communication standards evolved: the HL7 messaging standard
and DICOM. HL7 was developed for standardizing communication between clinical
information systems, whereas DICOM is specifically targeted at standardizing the
communication of images. The former plays a role when connecting HIS, RIS, and
PACS systems and it will be briefly reviewed here. The latter mainly standardizes
image communications between the components of a PACS system. As such, it will
be a likely interface encountered by somebody wishing to access images stored
in some picture archiving system. It will be reviewed in more detail in the next
section.

HL7 is a standard developing organization that is accredited by the American
National Standards Institute (ANSI). It is devoted to developing standards for com-
munication in the health care business. The name HL7 stands for Health Level 7
and it refers to the application layer (the seventh layer) of the OSI (open systems
interconnect, see Fig. 3.4) model.

The OSI model is a framework for layered protocols in network communication.
The application layer provides application-specific protocols for communication in-
cluding information about the authentification of communication partners, quality
of service of the communication, and syntax of the messages exchanged. HL7 is
not a complete specification of such a protocol (such as DICOM, see below), but
describes the syntax and semantics of messages on this layer. For establishing com-
munication a layer-7-protocol is still to be agreed upon by which these messages are
exchanged (such as, e.g., FTP).

An HL7-conform system typically means that HL7-conform messages are cre-
ated by an interface by which a system (archive, workstation, etc.) communicates
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Fig. 3.4 The layers of the
OSI model

with other systems. It generally does not mean that a system internally uses the HL7
standard to exchange information. This has consequences for accessing information
in an HL7-conform system. Even if the module that uses the information is part of
the system, it will need to be defined as an external partner communicating through
the HL7 interface. If this is infeasible for reasons of performance, access through
internal, often vendor-specific interfaces is needed.

HL7 messages are based on the HL7 reference information model (RIM), which
is the main contribution of the HL7 organization. In a heroic undertaking they suc-
ceeded in mapping most of the clinical information entities onto one big, generic,
relational model. Within the RIM, six different stereotypes are specified, four of
which refer to the nodes and two of which refer to the relations between nodes of
the RIM as follows:
• entity,
• act,
• role,
• participation,
• role-relationship,
• act-relationship.

A specific HL7 message is an instance of a representation of this model. In HL7
versions 2.x, it is a sequence of ASCII characters which consists of segments that in
turn consist of composites (see Fig. 3.5). The segments are delimited by “carriage
return” (\r) symbols, the components are delimited by other delimiter symbols. The
segments or components are either mandatory or optional accommodating a wide
range of different messages while still conforming to the HL7 model. The segments
may be repeated.

Choosing ASCII was intentional to make the messages readable by humans
(although this may require some practice). The new HL7 Version 3 standard re-
placed the somewhat outdated way of structuring the data. XML-tags are used to
tag information units, but the basic structure of the syntax remains the same (see
Fig. 3.6).

The semantic of an HL7 message is determined by the first and mandatory iden-
tifying component. The current standard defines more than 100 different segments
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Fig. 3.5 HL7 messages in versions 2.x are sequences of ASCII characters delimited by carriage
return symbols

Fig. 3.6 In version 3 of the HL7 standard XML tags are used to structure the message

that may then follow. A specific implementation may still require a message part,
which is not yet standardized. To let a message adhere to the standard nonethe-
less, the standardization committee allowed user-defined “Z” messages (named af-
ter the identification key). It is a potential source of incompatibility between two
HL7-conform systems, as it—for instance—allows a vendor to hide nonmanda-
tory information in a “Z” message. Other reasons for incompatibility are the use
of different versions of the standard and various violations against the standard
that are difficult to detect, such as missing fields (in versions 2.x fields are iden-
tified by their position in the segments which means that the missing, nonmanda-
tory fields must be made identifiable by the delimiter symbol) or wrong data for-
mats.
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3.2 The DICOM Standard

When digital image acquisition systems such as x-ray computed tomography ap-
peared in the clinics, the medium for data exchange and archival was film. Even
though the data were created digitally, they were printed on film when sent away for
reporting, for transferring them to the referring physician, or for archiving. Digital
images were stored digitally as well, but mainly for internal reasons related to the lo-
cal infrastructure around the image acquisition system. There, digital images could
be displayed on a local workstation, simple image analysis tools could be applied,
or images could be selected that should be printed on film.

Initially, digital communication with other systems was not considered. Conse-
quently, most vendors developed their own formats to store information deemed
necessary for the purposes mentioned above. The decision about what information
to store was dictated by the need to preserve the semantically relevant information
produced. This includes the following.
• Patient information: Name and demographic information, identification in other

information systems in the hospital, and so on.
• Examination information: Referring clinic and/or physician, examination type,

and so on.
• Technical information: Many image acquisition systems require careful param-

eter selection controlling the acquisition process. A description of an x-ray CT,
for instance, would include the wavelength and amplitude of radiation, number
and spacing of slices, spatial resolution within slices, reconstruction method and
reconstruction kernel, and so on.

• (Auxiliary) reporting information: Measurements and annotations being created
during reporting, and so on.

• The image or image sequence.
If sequences of images are generated, this information is often tagged to every

single image of the sequence. The kind of information to be stored depends on the
type, make, and version of the acquisition system.

With the number and variety of digital imaging systems increasing there was a
growing need to manage images digitally. Preventing the digital communication of
the images inhibited the inclusion of them into the information system infrastructure
of the hospital. This motivated the development of the DICOM 3.0 standard (and its
predecessors ACR-NEMA 1.0 and 2.0). DICOM stands for digital image communi-
cation in medicine and is a full-fledged specification of the application layer of the
OSI model. For the communication of medical images it replaces other file commu-
nication protocols such as, e.g., FTP.

The DICOM standard and its two predecessors evolved from a joint effort of the
American College of Radiology (ACR, http://www.acr.org) and the National Electri-
cal Manufacturer’s Association (NEMA, http://www.nema.org). Resources may be
found on the home page for DICOM on the NEMA website (http://medical.nema.
org).

Initially, DICOM was adopted only reluctantly by the industry. An open sys-
tem standard supports multivendor environments in a hospital, which automatically
increases competition. It was also feared that a multipurpose standard would be infe-

http://www.acr.org
http://www.nema.org
http://medical.nema.org
http://medical.nema.org
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rior to the highly specialized single purpose interfaces of image acquisition systems.
On the other hand, DICOM-conform machinery greatly simplifies the connectivity
between the imaging components and the hospital information system. Today, it will
be difficult to sell a major imaging device that does not conform to the standard.

DICOM is an interface standard similar to HL7. Internal communication is still
vendor-specific. DICOM is designed to standardize communication between com-
ponents such as imaging systems, printers, archives, and workstations. Formerly,
these were often stand-alone system clusters communicating through specialized
interfaces. This meant, for instance, that a CT image acquisition device of manu-
facturer X and an MRI device of manufacturer Y both required their own printer,
archive, and workstation. Not only does this inhibit combined access to images from
both devices, it also results in an inefficient use of hardware resources.

At present, it seems that the potential disadvantages from communication over-
head generated by a multipurpose standard are outweighed by the advantages of the
open system architecture. It simplifies component sharing in a multivendor environ-
ment and ensures system compatibility when adding new components.

DICOM specifies a protocol for communicating objects between devices. Two
different types of objects, composite and normalized, may be exchanged. An image
is a typical composite object since it consists of several different entities such as
various text entities (e.g., the patient name), numerical entities (e.g., the number of
pixels), and the image itself. Normalized objects, on the other hand, consist only of
a single entity such as a report. For each of the two types the standard defines the
number of services associated with it.

Services were first defined for composite objects, as DICOM was developed to
support image communication. Four services, C-STORE, C-FIND, C-GET, and C-
MOVE are designed to exchange images. A service for updating an image is not
provided to prevent the intentional or unintentional alteration of an acquired image.
In practice, this means that every change of an image (e.g., by some image enhance-
ment procedure) will add a new image to a study.

Normalized services apply to single real-world entities. Four general services,
N-CREATE, N-DELETE, N-SET, and N-GET, as well as the two specialized ser-
vices N-ACTION and N-EVENT-NOTIFY were defined. The latter need to be spec-
ified within their specific context (e.g., printing a sheet of film followed by notifica-
tions of events that are caused by this request).

Service classes describe services that may be rendered to representations of in-
formation entities. Such an information entity could be, for instance, an MRI im-
age with all its associated information (patient demographics, technical information
about the acquisition, etc.). Classes of information entities in the DICOM world are
templates that are called information object description (IOD, see Fig. 3.7).

An instance of an IOD is an information object. Information objects are uniquely
identified. DICOM has adopted the ISO concept of the unique identifier (UID)
which is a text string of numbers and periods with a unique root for each orga-
nization that is registered with ISO and various organizations that in turn register
others in a hierarchical fashion.
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Fig. 3.7 An Information Object Description (IOD) is defined for each information object. Dif-
ferent object classes may have different variants of the same modules. In the example above, for
instance, the equipment module will contain different descriptions for CT and MR objects

Fig. 3.8 A service-object pair combines an IOD (such as the CT object in this example) with
services that are offered for this object. The services are called DICOM Message Service Elements
(DIMSE)

For a given information object, the left-hand part of a UID is prespecified by
the vendor. It may be decomposed into its hierarchical components. The right-hand
part is generated when an information object is created. It is usually a combina-
tion of hospital, device, and patient identification together with a time stamp of the
examination. This part is not intended to be parsed to regain the components. Its
sole purpose is uniqueness. All relevant semantic information may be found in the
information object itself.

Information objects are composed of sets of modules. Each module contains a
specific set of data elements that is present or absent according to specific rules
defined by the standard. Modularization supports the reuse of information specifica-
tions that are shared among different IODs. For example, a CT Image Information
Object contains among others, a Patient module, a General Equipment module, a
CT Image module, and an Image Pixel module. An MR Image Information module
would contain all of these except the CT Image module, which would be replaced
by an MR Image module.

For a given IOD, several composite or normalized services may be useful. A ser-
vice is defined as a DICOM message service element (DIMSE) that invokes an op-
eration or notification across the network. A DIMSE service group is a collection of
DIMSEs applicable to an IOD (see Fig. 3.8). An information object description and
the set of services operating on it are called a service object pair (SOP) class (see
Fig. 3.8). An SOP class using composite services is called a composite SOP class
and an SOP class using normalized services is called a normalized SOP class. An
instance of such a class is called a composite or normalized object (or, more cor-
rectly, a composite or normalized SOP instance). DICOM classes are static, which
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Fig. 3.9 Different
application entities (AE) offer
different services

means that information entities (the data structures) and services (i.e., the methods)
are provided as a template.

Communication follows the client-server paradigm. In the DICOM world, the
server is called the service class provider (SCP) and a client is called the service
class user (SCU). Communication between two components supporting the DI-
COM standard may be established in different ways between a server and a client.
They have in common that messages are created as part of the external interface.
A communication session between two components, which are called application
entities (AE), is initiated by establishing a DICOM association (see Fig. 3.9). Basic
understanding is established as to what information objects are to be exchanged and
what services are to be invoked.

If communication is established such that full interoperability is ensured, com-
ponents may exchange messages via DIMSEs. DICOM service classes support five
different general application areas for communication:
• network image management,
• network image interpretation management,
• network print management,
• imaging procedure management,
• offline storage media management.

Of these five the first application area is most relevant for accessing images in
a hospital environment and thus will be explained in more detail. Network image
management involves sending images between two devices. This could be, e.g., a
scanner generating images and an external workstation or a digital image archive
somewhere in the hospital network.

Two different kinds of communication are supported (see Fig. 3.10). In push
mode, images are sent from one device to another device. This basic service would
be appropriate, e.g., for sending images from a scanner to an archive. DICOM does
not specify the timing behavior of the sending device, which means that the scanner
could send images whenever the system is ready to do so. The receiver acts as a lis-
tener that has to accept information at any time during which a DICOM association
is established.
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Fig. 3.10 In push mode images are transferred without request, while pull mode only transfers
requested images

Pushing images may also be appropriate for communication to a workstation.
This could be the case if the workstation serves as a reporting station where all
images should be present. It could also be intended for sending images to a depart-
mental workstation of a referring clinic.

Often, however, the push service is not adequate. If a subset of images from an
archive or from a scanner shall be processed on some workstation, it makes little
sense to send all images over the network and to decide then which of those are
actually to be used. Alternatively, the pull mode may be used for information ex-
change. It allows querying the sender first about its images. Selected images may
then be pulled by the receiver.

The pull mode consists of two phases. First, the requesting component sends a
query to the sending component. The prospective sender matches the keys of the
query with images in its data base and returns the number of information objects
that match the keys together with their UIDs. The receiver then selects images from
this list that he or she wishes to receive and requests them from the archive. Finally,
these images are sent to the workstation.

The transfer of information is similar to that using other file transfer protocols
such as FTP, however, with one important difference. The establishment of commu-
nication includes a common understanding between the sender and receiver about
the basic properties of the kind of information exchanged such as keys to request
in a pull service. Hence, the sender and receiver know how to interpret such rele-
vant information before a data transfer takes place. This enables the organization
and presentation of data according to such criteria. Instead of listing data by file
names, which, in the case of the DICOM images, are their UIDs and difficult to
interpret anyway, images can be presented in a more meaningful fashion. The result
of a query may be structured by listing image data by patient name, patient ID, and
study ID. Such organization by clinically relevant categories substantially enhances
the use of transferred information.

DICOM network management services are specified in the service, query/re-
trieve, and storage commitment service classes. They are defined for composite
objects only. The storage service class specifies the C-STORE service for pushing
data to a client. The query/retrieve service class specifies C-MOVE, C-FIND, and
C-GET services. With C-FIND, the sender is queried using the number of keys sent
to him. With C-MOVE, a third party may invoke transferring images between two
locations. A workstation, e.g., may query a scanner using the C-FIND service and
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then initiate a move of images from the scanner to an archive. C-GET is a service to
retrieve images from a sending device.

For every information object, service classes have to be separately defined and
supported. Standardization for almost all diagnostic imaging modalities exist, but all
of the participating equipment has to conform to the standards of all the information
objects that shall be shared among the components to communicate. An archive, for
instance, that supports the storage service class for MRI images will not be able
to receive images from a CT scanner if it does not conform to the standard for CT
images as well.

The storage commitment service class specifies the quality of storage provided
by a device. Medical images are sensitive information and it is to be assured that
images are stored reliably for a given amount of time. Reliability means that im-
ages must not get lost in the time span to which a storage device has committed
itself. Such commitment was part of an analogue archiving system as well. How-
ever, digital image archiving required such commitment to be formalized so that it
can be converted into a technical solution. Long-term storage devices such as long-
term image archives commit to store an image permanently while short-term storage
devices such as a departmental image archive commit to a specified amount of time.

3.3 Establishing DICOM Connectivity

This book is not intended to serve as a reference to image networking in a hospi-
tal. However, a computer scientist working in medical image analysis in a hospital
may encounter a situation where he or she has to participate actively in establishing
communication for accessing images in the hospital network. Hence, we will give a
short overview on aspects of transferring such images.

With DICOM as accepted standard it would seem that the only question to ask
is whether communication of a piece of equipment conforms to DICOM. Unfor-
tunately this is not true. DICOM needs to be highly modularized to accommodate
the large variety of information objects to be exchanged in a hospital and the wide
range of services requested. DICOM conformity without further specification just
means that the piece of equipment conforms to communication according to at least
one of the many parts of the standard. Somebody who has to access images from a
DICOM-conform image acquisition device, a DICOM archive, or a DICOM work-
station needs to know just to which part of the standard this device conforms. For
this purpose, every piece of equipment that is said to conform to the DICOM stan-
dard has to provide a DICOM conformance statement.

A DICOM conformance statement consists of four parts: problem statement, ap-
plication entity specifications, communication profiles, and specialization. In the
problem statement, the vendor states the purpose of communication for his piece of
equipment (e.g., a DICOM conform CT scanner would state that its communication
purpose is to transfer images to a storage device).

The major part of the conformance statement is the application entity specifica-
tion. An application entity is a software module of the equipment implementing a
specific application on the equipment. Several application entities may be imple-
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Fig. 3.11 It should be possible to decide whether two application entities are able to exchange
information by comparing the desired service for the exchange with services offered by the AEs

mented. An entity that is intended to communicate using the DICOM standard will
offer one or more services for one or more information objects. Information objects
and the services to be provided are described here.

The communication profile then describes how services are communicated. Re-
member that DICOM specifies just the seventh layer of the ISO/OSI layered model.
For successful communication, the lower layers have to be specified as well. The
conformance statement will list and specify the necessary details such as supported
media access protocols (FDDI, Ethernet, etc.) or supported physical media (fiber,
coaxial cable, etc.).

The specialization part of the conformance statement relates to extensions and
vendor-specific specializations. DICOM is designed to be extensible to support new
types of equipment or new uses of equipment without invalidating the standard. This
policy is implemented by allowing a certain degree of freedom in designing and
filling templates of information objects. The subject will be discussed further when
we explain the format of DICOM files, but it is of utmost importance that any of
such extensions are described in detail in the specialization part of the conformance
statement.

It should be possible to decide whether two pieces of DICOM-conform equip-
ment can communicate based on the information in the conformance statements
(see Fig. 3.11). If a CT system is SCP for C-STORE of CT information objects
and some workstation is an SCU for the same service and information object and
if the two components communicate using the TCP/IP protocol and are connected
by an Ethernet connection, then the scanner should be able to send images to the
workstation.

However, while it is true that the conformance statement greatly simplifies the
installation of DICOM communication, it does not guarantee it. By comparing con-
formance statements, it may tell the engineer whether communication is possible at
all. If, for instance, a new CT scanner should send images to an already installed
archive, this will be only possible if common intermediate layers 1 to 6 of the OSI
model exist and if the conformance statements of the two devices both implement
at least the Storage Service class for CT images. Communication may still be im-
possible or limited for several reasons, including the following.
• Conformance has not been thoroughly tested and fails to establish in the specific

environment.
• Information that is optional in the information object may be expected, but is not

present.



98 3 Image Storage and Transfer

• Optional information may be present in specialized fields.
• Claimed conformance is erroneous.

Hence, the compatibility of DICOM conformance statements does not ensure
plug-and-play behavior of the equipment.

If devices of two different vendors shall be connected, it is sometimes difficult
to establish who is violating the confirmations in the respective conformance state-
ments. The search for necessary adjustments may be simpler if new equipment can
be tested against some reference DICOM installation. Reference installations are
open source software that do not only provide a standardized communication in-
terface, but also allow insight in the communication process itself. It may help an
experienced user to determine and fix possible problems for DICOM-based com-
munication.

Client and server software for various DICOM services may be found at the DI-
COM website of OFFIS (DICOM Test Kit DCMTK, http://dicom.offis.de) or at the
Mallinckrodt Institute of Radiology (DICOM Test Node DTN, http://milan.wustl.
edu/DICOM/). These two testing modules have been used for several years as
vendor-free installations for various demonstration projects and are the base for
many of the open-source implementations of DICOM viewers.

3.4 The DICOM File Format

User-implemented image analysis methods usually are not directly integrated into
software on a medical workstation communicating via DICOM with an archive or
the image acquisition system. In most cases, the images to be analyzed are accessed
as files stored on some offline medium. Chapter 10 of the DICOM standard de-
scribes a file format standard for communication using offline media. A description
is found on NEMA’s DICOM pages (http://medical.nema.org).

Since the file format has to support the storage of many different types of infor-
mation objects, it has to be highly variable. On the other hand, the necessary effort
for reading a file should be minimal. The two goals have been achieved by choosing
a tagged format. Each tag relates to some data element (e.g., the patient name) of an
information object. Its description can be found in a data dictionary.

The name of the DICOM file is its UID. Its content consists of a header of a
fixed length followed by a sequence of tagged data elements. The header contains
the following.
• A 128-byte preamble, which is meant to support specific DICOM implementa-

tions. It does not have to follow the tagged structure of the DICOM file. If it is
not used, it should be filled with zeroes.

• A four byte identification by the ASCII codes of the letters “D,” “I,” “C,” and
“M.” Again, this information is not tagged.

• A mandatory set of data elements containing meta-information about the file.
Each of the data elements has to follow the tagged file format described below.
A data element consists of three parts: the tag, the length of the data element

specified by the tag, and the information itself. The tag consists of a 4-byte group

http://dicom.offis.de
http://milan.wustl.edu/DICOM/
http://milan.wustl.edu/DICOM/
http://medical.nema.org
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Fig. 3.12 The tagged file
format makes interpretation
simple. Even if some data
elements are unknown, others
can be read, since unknown
elements are simply skipped

number and a 4-byte element number. The length of the tag is a 4-byte element
following the tag and indicates the number of bytes reserved for the following in-
formation.

An information object must contain all mandatory data elements as specified in
the standard for this type of object. The standard may also list a number of optional
data elements. The information object may be encapsulated according to the meta-
information to provide possibilities for encrypting and/or compressing the data. If
it is neither encrypted nor compressed, it consists of a sequence of tagged data ele-
ments similar to the ones in the meta-information.

Tags are listed by their group and element number in the data dictionary. The data
dictionary is part of the DICOM standard and can be found on NEMA’s website. It
also describes how data are represented (bytes may be interpreted as ASCII code or
as various types of integers).

Odd group numbers are reserved for allowing vendor-specific adaptations or spe-
cializations. Hence, tags with odd group numbers will not appear in the data dictio-
nary. These groups are also called shadow groups. Sometimes, shadow groups are
used to represent nonmandatory data elements, which is an efficient way to hide
this information. It is possible that the same tag of a shadow group may describe
different information for files stemming from different systems because group and
element numbers of shadow groups need not be unique.

The semantic of tags from shadow groups must be explained in the confor-
mance statement. Only then will it be possible to interpret all the information con-
tained in transmitted or stored data. Even then the interpretation of the data may
be difficult because files may be exchanged without sharing the conformance state-
ment.

Data elements of which the tag definition is missing may be skipped by a DICOM
reader since the length of information of a data element is part of the representation.
This helps in dealing with unknown shadow groups and it enables reading data
without a data dictionary (see Fig. 3.12 for a simple DICOM reader). For the latter,
tag interpretation of only the most vital information for reading the data is hard-
coded into the reader program. This is a solution of some software products that
read the DICOM file format. The advantage is its simplicity although it is clearly
insufficient for a DICOM reader within a PACS.
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3.5 Technical Properties of Medical Images

Medical images differ from ordinary images taken by a camera in several aspects
because they are visualized measurement values (as explained in Chap. 2). This has
consequences on the technical properties of these images. With technical properties
we mean attributes that result from the image acquisition technique and that are
independent of the image’s semantics.

Medical images may come with two, three, or four dimensions. 2D images may
be slices of the human body such as an ultrasound image or a single CT slice. They
may also be projections of a 3D scene such as an x-ray image or a scintigram.
3D images are volumes of the human body such as a 3D sequence from computed
tomography, or time sequences of 2D images. 4D images are 3D volumes acquired
over time. The DICOM file format in which images are stored often treats 2D images
as an information unit even if they are part of a 3D or 4D sequence. A 3D data set is
then treated as a sequence and a 4D data set is treated as a study of several sequences.

Images may be differentiated into projection and slice images. In projection im-
ages, image attributes are integrated along rays and projected on a single pixel. The
type of projection is important, if measurements in such images shall be made. For
a cone beam projection such as in x-ray radiography an unambiguous relationship
between distance in the image and distance in imaged space cannot be established.

Images may be acquired at several signal bands (e.g., in MRI imaging, see
Chap. 2). If done so, these bands are stored separately. Two different bands may
even be stored as separate studies. Interpretation is only possible if the image file
information about the semantic of each image with respect to the signal can be re-
trieved.

Image sizes given in the DICOM tags relate to the number of pixels per column
or row. The true physical size of a pixel or voxel (in mm or cm) are mandatory data
elements that can be found if the tag identification is known (either from the data
dictionary or hard-coded in the image reading program).

Pixel values of medical images are quantized. The quantization often differs from
digital photos. The range may exceed 256 values when the information acquired by
the imaging device justifies a bigger quantization range. Pixel values are stored as
integers. The storage reserved for a single pixel is one or two bytes depending on the
quantization range. For 2-byte-per-pixel images often only 12 bits are used. Some-
times negative values are stored (e.g., to represent Hounsfield units which begin at
−1000).

The user should be aware that there is no guarantee that different vendors rep-
resent values in the same fashion. This is especially true if the file format for data
exchange is nonstandard. Hounsfield units, e.g., may be represented on a scale from
−1000 to 3000 or—shifted—as unsigned integers on a scale from 0 to 4000.

Transferring digital image files between systems may involve changing between
big-endian and little-endian notation of the two bytes. This refers to whether the
first or the last byte is the most significant byte in a 2-byte-word. It should be no
problem if communication is standardized, but needs to be considered otherwise. It
is easily recognized when looking at the images (see Fig. 3.13). Endianity may also
be different for the bit-order in a byte.
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Fig. 3.13 MR image with correct endianity (scaled from its original range 0. . . 4000 to 0. . . 255)
and the same image with endianity reversed

Sometimes, pixels or voxels of images presented for postprocessing are reduced
to single bytes. This is the case when images are transferred via formats that do
not support a wider range. The mapping from 2 to 1 byte may have been created
expertly and intentionally to highlight specific details in an image. It may support
human capabilities of recognizing important aspects in an image, but computer-
based methods operate on very different assumptions than human vision. The re-
duction, while being supportive for human perception, may be counterproductive to
computer-based image interpretation.

3.6 Displays and Workstations

Traditionally, many medical images—x-ray images, computer tomograms, MR
images—are viewed as hard copies. Hard copies are readily transportable and read-
ily readable. No specific equipment is needed to perceive a hard copy radiograph
although a light box system is required for professional reading.

For reading an image by a radiologist, the film is placed in front of a light box
(see Fig. 3.14). Reporting or other evaluation tasks are carried out there. Film has
a number of advantages. Backlit light boxes allow for a good control of perceived
contrast. This is further supported by the fact that most light boxes are large and
are at a fixed position where lighting conditions can be controlled. A modern light
box system can easily carry several hundreds of films. On such a system, films are
mounted beforehand. Several of the films may be presented simultaneously. They
can be selected at the push of a button from the set of films mounted.

Replacing analogue data transfer and display by a PACS has advantages. Most
notably, digital data can be easily copied and transferred to any location reachable
on the network. Transfer may also be extended to long distances in a short time
(teleradiology). Replacing the analogue archive by a digital archive also makes lo-
calizing images easier. It has been reported that accessibility increased from 70%
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Fig. 3.14 Light box in a
traditional reading room: The
system can be loaded with
several hundreds of films.
Films to be read are loaded
immediately using a handheld
or a foot control (with kind
permission of Planilux,
Warstein, Germany)

to 98% after switching from analogue to digital archives. Another advantage is that
image enhancement techniques such as magnification or contrast enhancement may
support image interpretation.

Replacing film viewing by displaying images on a screen should preserve most
of the advantages of a film-based reporting. The first problem to be solved relates
to image transfer. The capacity of the “muscle net” (i.e., carrying films around) can
be surprisingly high and may compare favorably to digital transfer capacities if the
network infrastructure is poor.

Although this is becoming a problem of the past with improvement of the net-
work infrastructure, perceived transfer capacity may still be unsatisfactory. Conven-
tionally transported radiographs are “invisibly” transferred to places, i.e., the user
does not perceive transport time as waiting time (although he or she may get upset
about pictures not or not yet delivered). Once pictures are present, all of them are
immediately at his or her disposal.

In a digital environment, the user initiates the image transfer. The time span be-
tween the request and completion of an image transfer is perceived as waiting time.
Although an 80% decrease in preparation time has been reported after switching to
digital reporting, this includes time spent by technicians and archive support staff.
The radiologist may still feel that the waiting time increased with the introduction
of a digital system. With increased data sizes—a CT study from a modern multislice
CT scanner may contain more than 1000 slices—the situation may worsen, as even
a fast network may need several minutes to transfer the data. Faster networks and
intelligent solutions similar to those preparing a conventional reading session can
help to reduce this problem.
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Fig. 3.15 A reading room as part of a PACS displays images on monitors instead of light boxes.
Active and passive components of the depicted system control the lighting situation (with kind
permission of Planilux, Warstein, Germany)

Another problem is the limited spatial and contrast resolution of a monitor. The
contrast range of today’s TFT monitors is quite satisfactory, but monitor placement
and the influence from external lighting can reduce perceived image contrast. A pro-
fessional reading system will allow to control such influence (see Fig. 3.15 for an
example).

The spatial resolution of a conventional monitor is about 2 megapixels, whereas
a digital radiograph may contain up to 4096 × 4096 pixels (=16 megapixels). There
are few monitors that are able to display such a resolution. Hence, a professional
reading station is much more expensive than a conventional TFT monitor.

Furthermore, a reading room usually contains several light boxes that are able
to display several images at the same time. Using several monitors instead is only
a partial replacement since there will never be enough monitor space to display as
many images as can be displayed on a big light box (see Fig. 3.15 for an example
and compare it to Fig. 3.14). A suitable user interface for switching between views
has to make up for this deficiency.

There are no legal standards for the display of digital radiography, but the Amer-
ican College of Radiology (ACR) has developed some recommendations. The ACR
distinguishes between the images used for diagnosis (interpretation) and those used
for other purposes (clinical review, teaching, etc.). According to ACR, the image
quality should be sufficient to satisfy the needs of the clinical circumstances if im-
ages are meant for display use only. Their recommendations for display and display
software are as follows.
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• The luminance of the gray-scale monitor should be greater or equal than 50 foot-
lamberts.

• Controlled lighting should enable eliminating reflections in the monitor.
• The ambient light level should be as low as feasible.
• A capability for the selection of image sequences should be provided.
• The software should be capable of associating the patient with the study and

demographic characterizations with the images.
The rendering software for images should

• be capable of window and level adjustment,
• be capable of pan and zoom (magnification) functions,
• be capable of rotating or flipping the images, provided correct labeling of patient

orientation is preserved,
• be capable of calculating and displaying accurate linear measurements and pixel

values,
• be capable of displaying prior image compression ratio, processing, or cropping,
• have available the matrix size, the bit depth, and the total number of images ac-

quired in the study.
Requirements for display consoles that are not used for interpretation are less

stringent. This relates, for instance, to workstations that are used for computer-
assisted procedures. There are two places where such work can take place:
• workstations as part of the image acquisition system,
• independent workstations in the hospital network.

Most vendors sell workstations and workstation software for postprocessing im-
age data. These workstations are a part of the imaging system and as such may
communicate with image acquisition devices in some nonstandard fashion. Stan-
dardized communication is not really necessary unless such a workstation is meant
to be connected to the network. Methods for image processing are predefined by
the vendor of the imaging device (a typical user interface for such a workstation
software is depicted in Fig. 3.16). They are generally not open (i.e., they are neither
adaptable nor extendable). Software being delivered with such a workstation falls in
six different groups.
• Image display: Retrieval and display of images, setting window and level of the

mapping between image values and rendered intensities, printing of images.
• Image enhancement: Magnification, contrast enhancement, noise filtering.
• Image annotation.
• Image analysis: Measurements of distances and angles, volume estimation or vol-

ume measurements, simple segmentation techniques.
• 3D imaging: Slice view in cine mode, maximum intensity projection, surface and

volume rendering.
• Specialized interpretation or support to a specific planning task (e.g., surgical,

radiotherapeutical).
Workstations at imaging devices support the radiologist in interpreting the im-

ages. If the results of such postprocessing of images are exported, it is carried out
by using the DICOM standard or by creating hard copies. Analysis results may not
be mandatory data elements of the DICOM standard. Tags for their description may
belong to the shadow groups.
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Fig. 3.16 Example of a user interface of a DICOM viewer software. The software is able to in-
terpret the information in the DICOM header and organizes images accordingly. Viewing software
includes display and simple tools such as setting window and level or annotating the image (with
kind permission of Siemens Sector Healthcare, Erlangen, Germany)

Workstations elsewhere in the network and independent of the image acquisition
system may be used for postprocessing image data as well. Such workstations were
first offered by vendors selling archiving equipment. An image archive is intention-
ally meant to make images accessible and it was an obvious strategy to provide
processing methods as well.

Images in the archive are associated with records in the RIS. Access to them
may be realized through the RIS or PACS interface. Communication with such a
workstation is carried out using the DICOM standard and/or the RIS interface. Such
a workstation allows radiologists or clinicians anywhere in the hospital direct access
to images, provided that they have been granted access to the RIS/PACS.

Images may also be accessed from other workstations connected to the network.
DICOM client software such as contained in the DICOM Test Kit (see Sect. 3.3) is
needed that pulls images from the archive, the imaging device, or some other work-
station. A more comfortable solution is a DICOM viewer, which is able to query
other modalities and display the results in some organized fashion. The functional-
ity of a DICOM viewer should consist of the following.
• An implementation of a query to the data base of a DICOM sender (C-FIND).
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• An implementation of the C-GET to retrieve images.
• An interface for displaying the result of a query and for selecting queried images

to be fetched.
• A rendering module to display retrieved images.
• A storage module that stores retrieved images on the local machine.

Free DICOM viewers can be found on the internet. A good reference for search-
ing a viewer is http://www.idoimaging.com already mentioned in Chap. 1. Some of
the viewers only support accessing DICOM files on a local storage device and need
to be combined with suitable client software to transfer images to local storage.
The DICOM viewer may be used for selecting images for further processing (which
would have to be developed and implemented by the user). The viewer may contain
further routines that support interpretation or computer-based analysis.

Selecting an appropriate viewer can be difficult. Some viewers are very good in
reading and exporting images while others have many useful modules to display and
manipulate images. Our current favorites are the following.
• microDicom (http://www.microdicom.com/) is sufficient to display images and

view tags. Since it has been implemented as a 64-bit version it is able to handle
large data sets (large 3D studies, 4D data sets).

• ezdicom (http://sourceforge.net/projects/ezdicom) is fast and appropriate for dis-
playing images. Tags are not always interpreted correctly. DICOM studies cannot
be read.

• dicomWorks (http://dicom.online.fr) reads DICOM studies and is able to export
images into other formats.

• MeVislab (http://www.mevislab.de) is—as detailed in Chap. 1—much more than
a DICOM viewer, but also displays images, interprets DICOM tags, and exports
images.

• OsiriX (http://www.osirix-viewer.com) is software for MAC OS.
The suggestions have to be taken with a grain of salt, however. The selection

reflects the current interest of our group when dealing with DICOM images. Fur-
thermore, open-source software may improve rapidly. Some research and experi-
mentation with the software listed on the website mentioned above will always be
necessary to find the current best software for a specific purpose.

3.7 Compression of Medical Images

DICOM supports data compression. Images may be compressed lossless or lossy.
Lossless compression such as entropy encoding or run-length encoding typically
result in compression rates of 1:2 to 1:3. Lossy compression achieves much higher
compression rates in the range 1:10 to 1:30. Anybody who ever created a JPEG
image knows that most images contain much psychovisual redundancy since data
reduction does not automatically reduce the perceived image quality.

Regarding medical images, lossy compression is a difficult issue. Laws in most
countries require that medical images are to be saved for a given time. The intention
of these laws is that decisions that have been based on these images can be reviewed

http://www.idoimaging.com
http://www.microdicom.com/
http://sourceforge.net/projects/ezdicom
http://dicom.online.fr
http://www.mevislab.de
http://www.osirix-viewer.com
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based on the original data. If data have been compressed for saving storage space,
their original content must be retrievable, which prohibits lossy compression.

However, there are other reasons for image compression. If images are trans-
ferred in a teleradiology network, their purpose is to provide the person at the re-
ceiving end with additional information. This person may be a senior radiologist at
home who has to decide whether attendance in the hospital is required. It may also
be a transferring radiologist at a small clinic who receives images from one of his
patients taken and interpreted in a medical center. In such cases, image compression
may be lossy if the partners in the data exchange have agreed that this loss does not
constitute a loss of information for the kind of purpose.

There are no general rules as to the quality of such images since image interpre-
tation is to be carried out or confirmed by reading the original images. A recom-
mendation of the American College of Radiology states, however, that, clinically,
diagnostic image quality must not be reduced. While this does not rule out lossy
compression it is not clear whether it can be established statistically by means of
readability studies or whether it requires expert decisions for every individual im-
age.

Compression is part of the DICOM standard. Among others, the JPEG and
JPEG2000 standards have been adopted by the DICOM standardization committee.
The DICOM committee does not make a decision about the type of compression,
whether lossless or lossy. Not all DICOM viewers, however, can read compressed
DICOM images. It may also be an obstacle to a self-written DICOM image inter-
preter when the data have first to be uncompressed before they can be interpreted.

3.8 Concluding Remarks

There are a plethora of resources regarding the two standards HL7 and DICOM,
their development, and their role in the clinical environment. Good sources for get-
ting a grip on this topic are the Journal of the American Medical Informatics As-
sociation, the Journal of Digital Imaging, Radiology, and the European Journal of
Radiology.

A short description of the HL7 protocol is given by Hammond (1993). The new
version 3 of HL7 is described in Beeler (1999). The complete description is available
at the HL7 website http://www.hl7.org.

An introductory text about the requirements and current state of Picture Archiv-
ing and Communication Systems is Bick and Lenzen (1999). Tutorial publications
on the DICOM standard directed towards nonexperts in information systems are
the papers of Bidgood et al. (1997) and Horii (1997). Honeyman et al. (1996) and
Mulvaney (2002) described the current state of integrating DICOM-based PACS
with HL7-based RIS systems. The annual SPIE conference Medical Imaging has
a conference devoted to PACS and Medical Informatics, where numerous reports
about introducing DICOM-based PACS in hospitals have been published. The same
is true for the InfoRAD section of the annual RSNA meetings. While the challenges
and problems of introducing a PACS may be more of interest for scientists dealing

http://www.hl7.org
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with clinical information systems, knowledge about the transfer and representation
of images is vital for developing and using image-processing methods. Manufac-
turers usually do not publish their format specifications, but David Clunie (2005)
maintains an extensive website about medical image formats. Detailed descriptions
of several proprietary data formats as well as about the DICOM file format can be
found at his site.

3.9 Exercises

• What is the difference between an HIS and an RIS? Why is it useful to have
several different information systems in a hospital?

• Which information systems communicate via the HL7 standard?
• Which aspect of the seventh level of the ISO/OSI standard is not included in the

HL7 standard?
• What is the main difference between the versions 2.x and 3 of HL7?
• Name potential reasons for the failure to connect via the HL7 standard.
• What is the purpose of a PACS? What is the difference to a RIS?
• What is an information object in the DICOM standard?
• What are the names for client and server in DICOM terminology?
• Where is information to be found that is necessary to connect a new piece of

equipment to a system that supports DICOM?
• What are potential reasons for the failure to establish connectivity under DICOM?
• When is it useful to use DICOM test nodes and what kind of information can be

gained from such use?
• Why is the DICOM file format a tagged format?
• Explain the structure of a DICOM file. What are the general components and how

is the structure of a tagged information entity in the file?
• What information is contained in the data dictionary and how does this support

reading DICOM files?
• How can DICOM files be interpreted without the use of a data dictionary? What

are the disadvantages of this?
• What do shadow groups mean? Why are they necessary and what are the disad-

vantages of this?
• What is the range of values of a CT image?
• What are the differences when reading film as opposed to reading digital images?
• What are the requirements for displays of a medical workstation?
• List a number of image manipulation methods that can be expected to be offered

in a medical workstation.
• What are the reasons for avoiding or even prohibiting lossy compression of med-

ical images? When could it be used nonetheless?
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4Image Enhancement

Abstract
Two reasons exist for applying an image enhancement technique. Enhancement
can increase the perceptibility of objects in an image to the human observer or it
may be needed as a preprocessing step for subsequent automatic image analysis.
Enhancement methods differ for the two purposes.
An enhancement method requires a criterion by which its success can be judged.
This will be a definition of image quality since improving quality is the goal of
such a method. Various quality definitions will be presented and discussed.
Different enhancement techniques will be presented covering methods for con-
trast enhancement, for the enhancement of edges, for noise reduction, and for
edge-preserving smoothing.

Concepts, notions and definitions introduced in this chapter

› Measures of image resolution and contrast
› The modulation transfer function
› Signal-to-noise ratio
› Contrast and resolution enhancement
› Noise reduction and edge enhancement by linear filtering
› Edge-preserving smoothing by median filtering, diffusion filtering, and

Bayesian image restoration

A seemingly simple operation on digital images is to enhance the image or features
in the image. The main purpose of it is to map a given image to another image such
that the content to be depicted is now easier to recognize. In medical imaging, image
enhancement essentially enhances contrast by reducing any artefacts or noise in the
image or by emphasizing the differences between objects.

The reason for enhancement is to make structures more easily detectable by a
human observer. It may also serve as some necessary preprocessing step for further
automatic analysis. While in the latter case success or failure may be found by ex-
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perimenting (e.g., does some image processing task perform better with or without
the enhancement step?), deciding on the effectiveness of the former can be difficult
because it requires modeling the human observer.

Quantitative measures of image quality will help as they describe the aspects
of an image that are relevant to human or computer analysis independent of an
observer. The improvement of quality measures is then evidence for the success of
an enhancement procedure. Some of the measures can also be used to construct a
method that only improves this measure.

It should be noted that image quality for visual inspection by human or computer
vision depends on many influences that require knowledge of the specific detection
task. These include image content, observation task, visualization quality, and per-
formance of the observer. Measures that can be computed a priori make assumptions
about these aspects or exclude them from the definition of quality.

4.1 Measures of Image Quality

4.1.1 Spatial and Contrast Resolution

The spatial and contrast resolution already being used in Chap. 2 to characterize
images, determine the smallest structure that can be represented in a digital image.
These two measures are easily computable and relevant to digital image processing.
Structures can only be analyzed (delineated, measured, etc.) if they appear in the im-
age. Spatial resolution describes this directly since the sampling theorem states that
no detail with a frequency less than twice the sampling distance can be represented
without aliasing. The contrast resolution is an indirect measure of the perceptibil-
ity of structures. The number of intensity levels has an influence on the likelihood
with which two neighboring structures with similar but not equal appearance will
be represented by different intensities.

Subsequent enhancement steps such as noise removal (described below) can re-
duce intensity differences further, which may have consequences for the recogniz-
ability of structures if the original intensity difference was small.

Technical measures of resolution do not, however, relate directly to the ability of
humans to recognize a structure. Human visual processing involves a combination
of various enhancement techniques such as smoothing, edge enhancement, contrast
enhancement at edges, and the like. Hence, perceived resolution, as opposed to tech-
nical resolution, cannot easily be reduced to a single cause such as spatial resolution.

Perceived resolution may be measured experimentally by treating the human vi-
sual system as a black box system with images as input and recognized objects
determining resolution as output. The same kind of measure is also used when loss
of resolution by transfer of information through a technical system shall be docu-
mented (such as creating a radiograph from a scene). The quantity that is measured
is called line pairs per millimeter (lpmm), which refers to the thinnest pair of paral-
lel black and white lines that can be differentiated (either by a human observer or by
an image analysis algorithm). A sequence of parallel pairs of black and white lines
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Fig. 4.1 A test pattern for determining perceived resolution in line pairs per millimeter (lpmm).
The number of line pairs per millimeter increases from left to right while the contrast decreases
from top to bottom. It can be seen that perceived resolution depends on the contrast in the image
and also that this relationship is non-linear

with decreasing line thickness is displayed (see Fig. 4.1). The apparent resolution is
1/x lpmm if the thickness of the thinnest line pair is x mm. The measure is propor-
tional to frequency, but it is a more figurative expression and easier to understand.

Perceived resolution by a human is not independent of contrast. An object stands
out less against the background if the intensity difference between the object and
background is low. Perceived resolution may sometimes be even higher than tech-
nical resolution because decreasing contrast may be interpreted as PVE due to the
subvoxel size of the object. For instance, vessels are visible in contrast-enhanced
MR angiography that are smaller than the voxel size because of the PVE.

4.1.2 Definition of Contrast

Determining contrast requires knowledge about what is an object and what is back-
ground. Since this is unknown prior to analysis, a number of measures for calcu-
lating image contrast exist that makes implicit assumptions about image content.
Examples for object-independent contrast measures are global contrast, global vari-
ance, entropy, and contrast from the co-occurrence matrix.

Global contrast CMichelson according to the Michelson equations (Peli 1990) sim-
ply compares the ratio of difference between the highest and the lowest intensity
values lmax and lmin of an image to the average intensity level given by the sum of
lmax and lmin:

CMichelson = lmax − lmin

lmax + lmin
. (4.1)

The measure assumes a simple image in which the number of foreground pixels
approximately equals that of the background pixels. Michelson contrast ranges from
0 to 1. It is 1.0 if the full range of intensity values is used and less than 1.0 otherwise.
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Fig. 4.2 The two images have the same global contrast CMichelson, while their local rms contrast
Crms differs by a factor of three (Crms = 0.006 for (a) and Crms = 0.018 for (b))

It is a useful measure to quantify the inefficient usage of the available intensity
range. However, it does not account for the distribution of intensities in the image
(see Fig. 4.2a). An image could be highly underexposed with most of the pixels
having intensities below some low threshold but having just one pixel with value
Imax, possibly caused by an artefact. The image would be perfect according to global
contrast.

A somewhat better approach for measuring global contrast is the root-mean-
square (rms) contrast (see Fig. 4.2b). Given an image (x, y) with M · N pixels
and intensities l(x, y), the expected value of l is

l̄ = 1

MN

M−1∑
i=0

N−1∑
j=0

l(i, j), (4.2)

and the rms contrast is

Crms(f ) =

√√√√√ 1

MN − 1

M−1∑
i=0

N−1∑
j=0

(
l(i, j) − l̄

)2
. (4.3)

The measure takes all pixels into account instead of just the pixels with maximum
and minimum intensity values.

Crms does not differentiate well between different intensity distributions. Assum-
ing lmin = 0, an image containing just two intensity levels 0.75 · lmax and 0.25 · lmax

would have approximately the same variance than another one that contains all in-
tensities between 0 and lmax equally distributed. If both are images of the same
scene, the latter may show more details than the former.

Entropy as a contrast measure includes histogram characteristics into the mea-
sure. It is computed from the normalized histogram of image intensities. A his-
togram H(l) of an image l(x, y) gives the frequency of occurrence for each inten-
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sity. A normalized histogram Hnorm(l) is computed from H(l) by

Hnorm(l) = H(l)∑Imax
k=Imin

H(k)
. (4.4)

It gives the probability of l to appear in an image. If Hnorm(20) = 0.05, the prob-
ability is 0.05 that the gray value of a randomly picked pixel is 20.

Entropy is computed from Hnorm. It is being used in information theory for deter-
mining the average information capacity of a pixel. Entropy is a convenient measure
for estimating compression rates for images for a type of lossless compression,1 but
it may also be interpreted as representing the amount of information contained in an
image. Increased entropy of an image would indicate enhanced contrast.

Information capacity is defined assuming that information I (l) of a pixel with
intensity l is inversely proportional to the probability of its occurrence. Thus,

I (l) = (
Hnorm(l)

)−1
. (4.5)

If information is stored in a binary number, the number of required digits would
be

SI(l) = log2
1

Hnorm(l)
= − log2 Hnorm(l). (4.6)

The distribution of intensities of all pixels in the histogram can be used to com-
pute the total number of digits needed to encode the image

SItotal(H) = −
Imax∑

k=Imin

Hnorm(k) log2 Hnorm(k). (4.7)

The entropy Centropy is then the average signal length needed (see Fig. 4.3 for an
example):

Centropy(H) = − 1

MN

Imax∑
k=Imin

Hnorm(k) log2 Hnorm(k), (4.8)

where MN is the number of pixels in f .
Entropy still does not account for the fact that contrast should measure intensity

differences between some foreground and background object. This can be computed
using a gray-level co-occurrence matrix (GLCM). Co-occurrence calculates the nor-
malized rates of co-occurring intensity values in a given neighborhood. The neigh-
borhood is defined by the distance and direction between the two pixels. Hence, co-
occurrence Cα,d is a two-dimensional function of intensities l1 and l2. Cα,d(l1, l2)

1Compression rates of a lossless compression method using signal compression are bounded by
the entropy. These methods compress pixels independent of their neighborhood. It can be shown
that the maximum compression rate is the ratio of bits per pixel in the image to bits per pixel
as predicted by entropy. Lossless compression using other kinds of methods such as run-length
encoding may achieve higher compression rates.
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Fig. 4.3 Histograms of the pictures in Fig. 4.2 and entropy-based contrast measure

Fig. 4.4 Coocurrence matrices for the two pictures in Fig. 4.2 and entropy-based contrast measure
CGLCM

is the probability with which pixels with intensities l1 and l2 occur such that pixel l1
and l2 are d units apart at an angle of α with the x-axis. Co-occurrence matrices can
be computed with different distances and different directions representing intensity
changes between structures at different angles and with different sharpness at the
edge.

For measuring contrast in a given image, co-occurrence is computed for a fixed
distance (e.g., d = 1 pixel) and for arbitrary angles. Cd(l1, l2) is then the co-
occurrence of pixels with gray levels l1 and l2 at distance d with an arbitrary angle
(Fig. 4.4 shows an example for the two images in Fig. 4.2). For d = 1 this would be
the four pixels of the 4-neighborhood. Contrast CGLCM is then defined as

CGLCM = 1

I 2
max

Imax∑
i=0

Imax∑
j=0

Cd(i, j)
(
1 + (i − j)2)− 1. (4.9)

Contrast thus weights the co-occurrences of two intensities by the difference be-
tween the two. Higher differences indicating edges receive higher weights.
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4.1.3 The Modulation Transfer Function

To a large extent, the improvement of contrast and resolution are constrained by
technical parameters of an imaging modality. Artefacts, noise, and approximations
in the reconstruction may reduce contrast in the original measurement due to recon-
struction. The degradation that an image suffers through reconstruction, transfer,
or any other process that changes contrast, is described by the modulation transfer
function (MTF). An MTF is a function of frequency (or of resolution in lpmm),
which describes the extent of signal loss (damping) with respect to frequency. It is
used, for instance, to describe the loss of contrast, when creating an x-ray image. It
can also be used to describe the discrimination performance of human vision with
respect to varying contrast. Curiously enough, the human observer MTF does not
exhibit a monotone decrease with frequency, but peaks at some low frequency. In
other words, contrast at low frequency needs to be higher for recognizing an object
than in midrange. This justifies edge sharpening (described below) for enhancing
perceived resolution.

4.1.4 Signal-to-Noise Ratio (SNR)

Noise in an image is another factor limiting the perceptibility of objects in an image.
So far, all information in an image is assumed to be useful. Noise is an unwanted,
image-corrupting influence. Noise n(i, j) in an image is usually described as a ran-
dom fluctuation of intensities with zero mean. If noise is assumed to be normally
distributed, variance σ 2(n) or standard deviation σ(n) characterizes the noise level.
Object detection depends on the ratio of object-background-contrast to noise vari-
ance. The former is called the difference signal between the object and background
and it is related to noise in the signal-to-noise ratio (SNR):

SNR(f ) = S(f )/σ (n). (4.10)

Various specifications exist of what the difference signal should be leading to
different definitions for measuring the signal-to-noise ratio in an image. In the sim-
plest case, signal S(f ) is defined to be the largest intensity fmax (peak SNR) or the
average intensity E(f ). The two measures take the maximum or average image con-
trast between all objects in the image into account. They can be computed without
analysis as to which objects should be recognized in the image.

A common measure, which is measured in dB, is given by the logarithm of the
ratio of signal and noise variance

SNRdB = 10 · log10

[
1

MN

∑M−1
i=0

∑N−1
j=0 (f (i, j) − f̄ )2

σ 2

]
. (4.11)

The increase in SNR may indicate the enhancement of the image. If SNR shall be
used as an absolute quantity to determine the perceptibility of objects, the difference
signal has to reflect the difference between the object and background intensity.
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Fig. 4.5 The four images have the same noise level, noise characteristics and contrast. Object-de-
pendent features such as the size of the object or the sharpness of boundaries still cause differences
in the perceptibility of depicted objects

None of the quantities listed covers the dependency of recognizing objects based
on their size, shape, sharpness of edges, and texture as it would require prior detec-
tion of the object in the image. This should be kept in mind. Two images with equal
contrast or noise characteristics may still be perceived as being of different quality
(see Fig. 4.5).

The dependency of recognizability on object shape exists sometimes for a com-
puter algorithm as well. It is possible, for instance, to recognize an object with
SNR < 1 (i.e., where the noise exceeds the signal) if the object is large enough.
Human vision and also some computer-based enhancement techniques are able to
reduce noise in such a case while leaving the signal more or less intact. The potential
for such recognition ability cannot be measured or deduced from the image unless
the kind of structures to be recognized are known.
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4.2 Image Enhancement Techniques

Originally, image enhancement methods were meant to enhance the perceptibility
of information. Hence, contrast or edge enhancement improve the image for in-
spection by a human observer. This should be kept in mind when considering an
enhancement procedure. Although most of the methods are also valuable and nec-
essary preprocessing steps for automatic analysis, some of them—such as contrast
enhancement—are not since they do not improve the relation between information
and artefacts in the image.

4.2.1 Contrast Enhancement

Some of the contrast enhancement techniques can be directly related to contrast
measures described in the previous section. The simplest method increases global
contrast. If the range of possible intensity values Imin to Imax exceeds the range of
intensities fmin to fmax, linear contrast enhancement is carried out creating new
values g from intensities f for every pixel by

g(f ) = (
f − fmin

) Imax

fmax − fmin
+ Imin. (4.12)

The function to map f on g is called the transfer function. Contrast enhancement
in an arbitrary intensity window wmin to wmax with Imin < wmin < wmax < Imax can
be achieved with a similar transfer function. As there may be pixels with values f

outside the window, (4.12) is changed to (see Fig. 4.6)

g(f ) =

⎧⎪⎨
⎪⎩

Imin, if f < wmin,

(f − wmin)
Imax

wmax−wmin
+ Imin, if wmin ≤ f ≤ wmax,

Imax, if f > wmax.

(4.13)

The output intensity of structures with input intensities outside of [wmin,wmax]
is either Imin or Imax so that they are no longer recognizable. Contrast is improved
for all other structures. This kind of enhancement is routinely used for mapping a
16-bit-per-pixel intensity image (such as CT or MRI) onto an 8-bit range. It is called
windowing with window size wmax − wmin and level (wmax + wmin)/2.

Entropy is enhanced using histogram equalization. Assuming that intensities of
some image f with normalized histogram Hnorm(f ) are defined on a continuous
domain, histogram equalization maximizes entropy by creating a new image g with
a constant histogram. The transfer function is

g(f ) =
∫ f

Imin

Hnorm(f ) df. (4.14)
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Fig. 4.6 Linear contrast enhancement in a window (50,120) for enhancing soft tissue differences
in an MR image. The enhancement comes at the cost of reducing contrast in regions outside of the
window (such as the water in the eye balls)

Intensities are quantized and, hence, histogram equalization is approximated by

g(f ) =
∣∣∣∣∣(Imax − Imin + 1)

f∑
i=Imin

Hnorm(i)

∣∣∣∣∣− 1. (4.15)

Histogram equalization does not always achieve the desired effect. Using entropy
as a measure for information content implies that information of often occurring in-
tensities should be increased by spreading them over a larger range. It comes at the
cost of reduced information for intensities that rarely occur. Entropy does not con-
sider any information about objects in an image and each pixel is equally important.
For instance, the large and dark background region of the MR image in Fig. 4.7 is
to be enhanced at the cost of reducing contrast in the foreground.

Histogram equalization can be improved by making it locally adaptive. In adap-
tive histogram equalization, local histograms are computed separately for every
pixel from the intensity distribution in some neighborhood around this pixel. The
resulting mapping is carried out separately for each pixel. This definitely improves
local contrast because a large region in some location of the image no longer influ-
ences contrast of some small detail at another location. However, it does no longer
guarantee that f (i, j) ≤ f (k, l) implies g(i, j) ≤ g(k, l) for all locations (i, j) and
(k, l) in the image, which may confuse the observer and will confuse most computer
algorithms as well.

4.2.2 Resolution Enhancement

None of the sections above dealt with enhancing the spatial resolution, although
contrast enhancement and noise removal will certainly improve the perceived res-
olution. Improving the spatial resolution within an image is often avoided because
information needs to be added for up-sampling a given image.
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Fig. 4.7 Histogram equalization may produce unwanted effects since it enhances contrast on the
assumption that often occurring gray values carry the most information. In the case depicted in this
figure it leads to the enhancement of background while reducing foreground contrast

Fig. 4.8 Preparations for shape-based interpolation between two binary images: Computation of
the binary image from the original (in this case SPECT images from the left ventricle of the heart),
computation of a distance transform in the foreground (positive distance values) and in the back-
ground (negative distance values)

Slice interpolation is a case where interpolation after reconstruction may be
needed. The resolution within an image is sometimes much better than the inter-
slice resolution. Most algorithms perform better on isotropic voxels, however.

In its simplest variant, interpolation is carried out as a 1D linear or cubic inter-
polation in the direction of the z-axis. Interpolation is improved if structures to be
interpolated are already segmented and the data are binary. Then, shape-based in-
terpolation on the segment boundary can be carried out (Raya and Udupa 1990).
Shape-based interpolation consists of three steps.
1. Creation of a signed distance map from every slice (see Fig. 4.8 for an exam-

ple): For every voxel, a signed distance map contains a distance to the closest
boundary. Voxels inside the object have a positive distance assigned to them.
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Fig. 4.9 Result of interpolated intermediate slices from the binary images in Fig. 4.8

Voxels outside the object have a negative distance. The distance transform can
be carried out, e.g., by using a morphological erosion operator on foreground and
background voxels.

2. Linear (or cubic) interpolation of distance maps: Interpolation is carried out
along the z-axis.

3. Binarization of interpolated slices (see Fig. 4.9): Voxels with negative distances
are mapped to a background and all other are mapped to foreground voxels.
Shape-based interpolation requires segmented data. It avoids many artefacts from

partial volume effects under the assumption that objects in two adjacent slices only
overlap if they share a common surface.2

For the interpolation of nonsegmented data, a model for continuity based on in-
tensities (instead on boundaries such as in shape-based interpolation) between two
slices is needed. A criterion, which has been used, is to assume that structure conti-
nuity between two slices may be derived from the continuity of intensity. Interpola-
tion would have to be carried out along the continuity direction. This is easier said
than done because the continuity of adjacency has to be preserved as well. A dis-
placement field d(i, j) = (u(i, j)v(i, j)) between two slices with images f1(i, j)

and f2(i, j) is sought such that

M−1∑
i=0

N−1∑
j=0

(
f1
(
i + u(i, j), i + v(i, j)

)− f2(i, j)
)2 = min (4.16)

and

M−1∑
i=0

N−1∑
j=0

(
u(i, j) − uavg(i, j)

)2 + (
v(i, j) − vavg(i, j)

)2 = min, (4.17)

2The actual definition is a bit more complex. It essentially says that only those objects in two
adjacent slices should overlap for whom the shortest distance on the surface between any two
points on the two slices should not intersect any other slices.
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Fig. 4.10 The gradient is a
vector that is always
orthogonal to an edge. The
length of the gradient depends
on the strength of the edge

where uavg() and vavg() are the average values in some neighborhood around (i, j).
The solution can be found using optical flow techniques. Interpolation is then carried
out along displacement vectors. Using the quadratic (4.17) for enforcing smoothness
of the displacement field will create a smooth interpolation. This behavior is desired
if slices are not too thick and a smooth variation of displacement within a slice is
the norm. For thick slices, two neighboring pixels in one slice may be displaced
to different sites in the next slice (e.g., if a new structure appears in the next slice
between them). In such a case, discontinuity-preserving constraints such as the one
presented in Sect. 4.3.4 may be more appropriate for achieving the desired results.

4.2.3 Edge Enhancement

Enhancing the edges improves recognizing structures in images. Since automatic or
interactive object delineation is a frequent task in image analysis, edge enhancement
is often a prerequisite for tracking object boundaries.

Edges are closely associated with the intensity gradient because the existence of
an edge implies a local change of intensity. For a 2D image with continuous domain
(x, y), the gradient is a vector (see Fig. 4.10)

∇f (x, y) =
(

∂f

∂x
(x, y)

∂f

∂y
(x, y)

)T

. (4.18)

The length (the norm) of the gradient is the change of intensity in the direction
of steepest ascent, hence characterizing the strength of the edge at (x, y). The gra-
dient points in the direction of steepest ascent, which is perpendicular to the edge
orientation at (x, y).
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The gradient does not exist in the discrete domain (i, j), but can be approximated
by differences

∇f (i, j) ≈
(

f (i, j) − f (i − 1, j)

f (i, j) − f (i, j − 1)

)
. (4.19)

Since the edges and noise both have high frequency components, edge enhance-
ment is often combined with smoothing. The two differences are computed by con-
volving the image with smoothing difference kernels

∇f (i, j) ≈
( [f ∗ Dx](i, j)

[f ∗ Dy](i, j)

)
. (4.20)

Various kernels have been used. Examples are the Sobel operator with kernels
DSobel,x and DSobel,y (see Fig. 4.11)

DSobel,x =
⎛
⎝−1 0 1

−2 0 2
−1 0 1

⎞
⎠ and DSobel,y =

⎛
⎝−1 −2 −1

0 0 0
1 2 1

⎞
⎠ , (4.21)

or the use of a Gaussian kernel. The partial derivatives of the Gaussian with standard
deviation σ are

DGauss,x = ∂fGauss

∂x
(x, y) = − x

σ 3
√

2π
exp

(
−x2 + y2

2σ 2

)
(4.22)

and

DGauss,y = ∂fGauss

∂y
(x, y) = − y

σ 3
√

2π
exp

(
−x2 + y2

2σ 2

)
. (4.23)

For computing the two filters DGauss,x and DGauss,y , the derivatives are digitized
and cut off using a suitable window size.

Edge enhancement using first derivatives produces information about the strength
and direction of edges, but it does not tell the location of an edge very well. This
information is delivered from computing the second derivative. If edges are located
at positions where the edge strength has a local maximum, then the edge location is
at the zero crossing of the second derivative.

A zero crossing is located between two adjacent pixels if one pixel has a second
derivative with value 0 or if the second derivatives of the two pixels have different
signs. Zero crossings are computed by the Laplace operator (or Laplacian). The
Laplacian ∇2 is the sum of all unmixed second derivatives,3 i.e.,

∇2f (x, y) = ∂2f

∂2x
+ ∂2f

∂2y
. (4.24)

3The Laplacian may also be computed as divergence of the gradient, denoted as ∇2 = ∇ ·∇ , hence
the symbol ∇2.
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Fig. 4.11 Gradient filters produce approximations of the partial derivatives in x- and y-direction
(the two pictures in the second row show the result from applying the Sobel operator). The length
of the gradient (upper right) can be used for computing edge features

For discrete images it is approximated by differences, leading to a convolution
with one of the following two kernels

DLaplace_4 =
⎛
⎝ 0 −1 0

−1 4 −1
0 −1 0

⎞
⎠ or DLaplace8 =

⎛
⎝−1 −1 −1

−1 8 −1
−1 −1 −1

⎞
⎠ . (4.25)

The former approximates (4.24) and the latter adds the two mixed derivatives
to (4.24).

The Laplacian is often used in conjunction with a smoothing kernel because it
is very sensitive to noise. A well-known kernel is the Laplacian of Gaussian (LoG)
filter, which computes the Laplacian of a Gaussian function

LoG(x, y) = − 1

πσ 4

(
1 − x2 + y2

2σ 2

)
exp

(
−x2 + y2

2σ 2

)
, (4.26)
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Fig. 4.12 The Laplacian of Gaussian combines a Gaussian smoothing (upper right) with a Lapla-
cian to arrive at the result depicted in the lower left image. Zero crossings of the Laplacian indicate
edge locations in the image (shown in the lower right image)

and then uses the result to convolve the image (see Fig. 4.12). The filter is sometimes
called the Mexican hat filter because of its shape. It is also known as the Marr-
Hildreth filter after David Marr and Ellen Hildreth, who showed that early edge
enhancement in human vision can be modeled by an LoG filter.

The four second derivatives of a 2D image that are summed in DLaplace8 are
components of the Hessian matrix

H =

⎛
⎜⎜⎜⎝

∂2f

∂2x
(x, y)

∂2f

∂x∂y
(x, y)

∂2f

∂y∂x
(x, y)

∂2f

∂2y
(x, y)

⎞
⎟⎟⎟⎠ , (4.27)
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which may be used for enhancing corners. The value of the determinant of the Hes-
sian increases at corner points. The eigenvalues indicate whether a point in the image
is a local maximum, minimum, or saddle point. If the two eigenvalues are positive,
it is a local maximum, if they are negative, it is a local minimum. Otherwise, it is a
saddle point.

Edges may also be enhanced in a directionally sensitive fashion by combining
a difference operator with a directionally sensitive smoothing operator. A filter that
has been shown to be a model for directionally sensitive cells in the primary visual
cortex is the Gabór filter. In continuous space (x, y), it is defined as

Gσ,α,γ,λ,ψ (x, y) = exp

(
− s2 + γ t2

2σ 2

)
cos

(
2π

s

λ
+ ψ

)
, (4.28)

with

s = x sinα + y cosα, t = x cosα − y sinα. (4.29)

The exponential term is a smoothing function that is wider along s (i.e., in a
direction α with respect to x) than along t perpendicular to s. The parameter γ de-
termines the elongatedness of the function. The cosine term produces the difference
of values along s. Its wavelength is given by λ. It controls the width of the range
along which the difference is taken. The parameter Ψ is an offset for the difference
function.

Filter banks of Gabór filters can be used to enhance and group edges by direction,
curvedness, and steepness.

4.3 Noise Reduction

Noise is usually modeled stationary, additive, and with zero mean. A noisy image
g is related to the unknown noise-free image f through g = f + n, where n is the
zero mean noise. Noise removal through linear filtering consists of estimating the
expected value E(g). Since E(n) = 0, we have

E(g) = E(f ) + E(n) = E(f ) = f, (4.30)

because the deterministic function f has E(f ) = f . Hence, noise reduction
schemes try to reconstruct E(g) from various assumptions about f as follows.
• Linear filtering assumes f to be locally constant. E is then estimated by averaging

over a local neighborhood.
• Median filtering assumes that noise is normally distributed, f is locally constant,

except for the edges, the signal at the edges is higher than the noise, and the edges
are locally straight.

• Diffusion filtering assumes that f is locally constant, except at the edges, and
that the properties of the edges and noise can be differentiated by amplitude or
frequency.
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• Bayesian image restoration requires f to be locally smooth, except for the edges.
It further requires that in some local neighborhood edge pixels are not the majority
of all pixels in that neighborhood.

Since most of the assumptions are not true everywhere in the image, filtering results
in the various filter-specific artefacts.

4.3.1 Noise Reduction by Linear Filtering

If f is constant in some neighborhood around (i, j), E(i, j) can be estimated by
averaging over this neighborhood. The operation can be carried out in the spatial
domain as a convolution with a mean (sometimes called boxcar filter) of size s:

f (i, j) ≈ [g ∗ cboxcar,s](i, j), (4.31)

where “*” stands for the convolution operation. The convolution kernel cboxcar,s is
a square matrix of size s × s with s being odd and the filter being centered:

cboxcar,s = 1

s2

⎛
⎜⎜⎝

1 1 . . . 1
1 . . . 1
. . . . . .

1 1

⎞
⎟⎟⎠ . (4.32)

The estimate of E(g(i, j)) improves with the size of s, but the likelihood that f is
constant in this neighborhood for all locations (i, j) decreases, leading to increased
blurring at the edges.

Several other linear filters also deliver an estimate of E(g). The binomial filter is
a convolution kernel cbinom,b whose one-dimensional version contains the binomial
coefficients of order b. A 2D kernel can be computed from convolving two 1D filters.
A 1D filter of order b is created from the repetitive convolution of a 1D filter of
order 1:

c1D
binom,b = 1

2b
c1D

binom,b−1 ∗ c1D
binom,1, with c1D

binom,1 = [1 1 ]. (4.33)

The 2D filter cbinom,b is computed by cbinom,b = c1D
binom,1 × (c1D

binom,1)
T, where T

denotes the transpose of a matrix. The analysis of the binomial filter in frequency
space shows that it produces fewer artefacts than the boxcar filter (see Fig. 4.13). It
also emphasizes pixels in the neighborhood that are closer to the center pixel when
estimating E(g). This strategy is reasonable as the likelihood of f having the same
value than f (i, j) decreases with the distance of a pixel to the center location (i, j).

With higher order, the binomial filter approaches a Gaussian filter. A Gaussian
with a given standard deviation σ can be used for noise filtering as well. The infinite
support of the Gaussian function

cGauss,σ (x) = 1

σ
√

2π
exp

(
− x2

2σ 2

)
(4.34)
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Fig. 4.13 If high frequency attenuation in frequency space by neighborhood averaging (left) or
a binomial filter (right) is comparable, the results look very similar. However, attenuation in fre-
quency space is highly anisotropic (lower left) while this is not the case for the binomial filter. It
may cause anisotropic enhancement of edges which may be a source of problems for subsequent
boundary detection steps

has to be transformed into a finite support region with some window size |x| < xmax.
Selecting |xmax| > 3σ ensures that the values x > xmax are sufficiently close to zero
to avoid significant changes in the result. After cutting the function it has to be
normalized. Two-dimensional Gaussian kernels are created by multiplying a 1D
kernel with its 1D transpose.

The separability of the Gaussian and also that of the Binomial filters reduces
computational costs when filter sizes are large. Instead of explicitly creating a 2D
filter of size s × s and convolving the image with this filter, noise reduction is done
by subsequent convolution with the two 1D filters. The computational costs per pixel
are O(s) instead of O(s2).

Filtering may be carried out by multiplication in the frequency domain. Noise
in the frequency domain is modeled as a random process whose expected value for
the amplitude is either constant (so-called white noise) or much slower decreasing
with frequency than the amplitude of the signal (colored noise). In either case, noise
dominates the high frequency range and noise reduction consists of applying a low
pass filter. The ideal low pass filter with cut-off frequency wmax, however, produces
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Fig. 4.14 Filtering in frequency space with an ideal low pass filter produces severe ringing arte-
facts (a) that can be avoided by a filter using gradual attenuation of high frequencies such as the
Butterworth filter (b)

severe ringing artefacts.4 Examples for filters that do not cause ringing are the Gaus-
sian, the Butterworth filter, the Hamming, or the Hann windows (see Fig. 4.14 for a
comparison of two filters). The latter two are often used for noise and artefact reduc-
tion in tomographic image reconstruction, but are useful for additional a posteriori
smoothing as well.

The Gaussian for filtering in frequency space corresponds to a Gaussian in the
spatial domain with inverted standard deviation. The Butterworth filter attenuates
noise proportional to frequency with cut-off frequency wmax:

CButterworth,ωmax(u, v) = 1

1 + ((u2 + v2)/ω2
max)

k
, (4.35)

where k regulates the steepness of the damping function at ωmax. The Hamming and
Hann windows with cut-off frequency wmax are two similar filter functions. They
are defined by

CHa,ωmax(u, v) =
{

α − (1 − α) cos
(√u2+v2

ωmax
π
)
, if u2 + v2 < ω2

max,

0, otherwise.
(4.36)

The filter is called a Hamming window if α = 0.53836. For α = 0.5 it is called
the Hann window.

Low pass filtering in frequency space has similar effects as approximating E(g)

in the spatial domain in that both methods blur the edges. The reason is the same.
The Fourier transform F of an image f containing an ideal step edge is a func-

4The reason for this is easily seen when the filter is transformed into the spatial domain in order to
form the corresponding convolution kernel. The result is a sinc function which obviously causes
the repetitions of edges after filtering, which is called ringing.
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tion with infinite support, i.e., there exists no cut-off frequency wmax for which
F(u, v) = 0 if u2 + v2 > ω2

max.
If the SNR is high and the noise is white, selecting a proper wmax—or in spatial

filtering selecting a proper filter size—is a compromise between the loss of signal at
edges due to blurring and the overall improvement of the SNR.

Noise reduction in medical images may be difficult because often spatial res-
olution must not be reduced. Small structures or structures with a very convoluted
surface must still be visible after noise removal. If, e.g., voxels in an MR brain image
have an edge length of 1.0 mm, it may be expected that small gyrii are recognizable
which are only a few millimeters apart. The assumption of a constant image func-
tion f over an area of several pixels for smoothing by linear filtering is violated in
such regions. Smoothing makes detail less visible or may even make it to disappear.

Smoothing either requires a sufficiently high object-dependent contrast in the
input image, a low level of spatial detail, or a combination of both. High contrast
images are, for instance, MR soft tissue images, CT bone images, contrast-enhanced
CT or MR angiograms, or some nuclear images. CT soft tissue images are difficult to
smooth because of the low contrast between tissues. The same is true for ultrasound
images because of the high ratio of low frequency noise and artefacts. Noise removal
in nuclear images, such as SPECT, may also be inappropriate since—despite a good
contrast—it may further reduce the already low spatial resolution.

Linear filtering will generally produce poor results if the SNR is low or if the ratio
of low frequency noise is high. Successful noise reduction in such cases requires an
edge model as an integral part of the smoothing process. Such methods are called
edge-preserving smoothing.

4.3.2 Edge-Preserving Smoothing: Median Filtering

A median filter is a nonlinear rank order filter that selects the result at some loca-
tion (i, j) from an ordered list of values. The values are taken from pixels in the
neighborhood of (i, j). A filter is a median filter if the median rank is selected from
the list. A 3 ×3 median filter would thus sort nine pixel values—the pixels in an 8-
neighborhood of (i, j) plus (i, j) itself—and select the one ranked at position five.
The neighborhood is usually square-shaped covering an odd number of pixels (e.g.,
3 × 3, 5 × 5, or 7 × 7 neighborhoods).

The result of a median filter approaches the expected value with increasing filter
size if Gaussian noise can be assumed. Under such conditions, the median filter has
similar noise reduction capabilities as the linear filters presented in Sect. 4.3. How-
ever, there is more to the median filter. If the neighborhood region of a median filter
contains an edge, it preserves the edge under the following conditions (compare
results in Fig. 4.15).
• The edge is straight within the neighborhood region.
• The signal difference of the two regions incident to the edge exceeds the noise

amplitude.
• The signal is locally constant within each of the two regions.
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Fig. 4.15 Comparison between boxcar filter (a) and median filter (b) of the same size. It can
be seen in the enlarged part that the median filter preserves sharp edges while the boxcar filter
produces blur

Fig. 4.16 Median filtering on a simple test image. Corners are rounded by filters of any size,
since there exists no neighborhood size in which the boundary is locally straight at corners. Object
details are removed if the filter size is larger than the detail

Under these conditions it can be shown that the filter result for a pixel (i, j) in
some region r1 at an edge separating r1 from r2 will always be chosen from r1.

Although the filter is edge-preserving at such edges, it does not reduce noise
since the probability distribution of pixels p ∈ r1 ∪ r2 is certainly not Gaussian. In
summary, the median filter is noise-reducing in neighborhoods with a constant value
and edge-preserving at the edges.

The median filter does not work properly if the conditions listed above do not
hold (see Fig. 4.16). Some of the problems that may arise are as follows.
1. Noise reduction improves with the size of the filter under the condition that the

function f is constant in this region. The usual compromise is that the neighbor-
hood region is as large as possible while f may still be assumed to be constant.
An extreme case is given if the size of a region is a single pixel. Median filtering
will remove the pixel. If it were noise (such as in impulse noise), this is a wanted
behavior, but otherwise the structure would just vanish.
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2. Boundaries are rarely straight. Again, the neighborhood size will be a compro-
mise resulting in a neighborhood region just as large so that the boundary is
(approximately) straight. At sharp corners where no neighborhood with straight
boundary exists, median filtering removes the corners.

3. The SNR at edges separating regions r1 and r2 may not be high enough to ensure
that the noise amplitude is always lower than the signal difference between r1
and r2. Filtering a pixel in r1 may lead to the selection of a pixel from r2. The
course of the boundary would change. This is particularly unwanted because the
median filter tends to enhance the contrast between any two regions. The new
boundary is visually more pleasing than the noisy boundary before filtering, but
it is the wrong boundary nonetheless.

4. More than one edge may exist within the region covered by the filter. In such a
case, neighboring structures may be merged. This, again, is a serious alteration
of the image.
All this can happen in medical images. Conditions 1, 2, and 4 are often violated

because the image depicts structures or boundary details that are smaller than the
filter size (consider again the detailed structure of the cortex surface in MR brain
images). Condition 3 is often violated in CT soft tissue images as the contrast be-
tween different tissues is small compared to the noise level.

The median filter—or any other edge-preserving filter—should be used with care.
It may remove or alter edges that do not follow the (implicit) edge model. It can
result in difficulties for later human or computer vision tasks relying on a faithful
depiction of edges. This is especially true when the user is not aware of the implicit
edge model.

4.3.3 Edge-Preserving Smoothing: Diffusion Filtering

The median filter has two disadvantages: It does not remove noise at edges even if
the edge follows the implicit edge model, and it may alter edges in a random fashion
that does not follow the edge model. Diffusion filtering is an alternative that enables
smoothing at edges. It may also accommodate a wide range of edge models.

Diffusion filtering uses the diffusion of a liquid or gaseous material as a model
for noise reduction. Using homogeneous and inhomogeneous diffusion for data fil-
tering was first proposed by Perona and Malik (1990) and has since become very
popular for edge-preserving smoothing. The popularity is probably due to the rela-
tive simplicity of the concepts, the intuitive behavior of a diffusion process, and a
fairly simple implementation.

For applying a diffusion process as a filter, image intensity is taken as material
density. Noise is taken as density variation and diffusion is carried out iteratively.
After an infinite number of iterations, homogeneous diffusion (Fig. 4.17a) levels any
density inhomogeneity resulting in a noise-free image without edges.

Diffusion across edges should be inhibited for edge enhancement. Since the
boundaries are unknown (otherwise edge-preserving smoothing would be trivial),
the edge response from edge enhancement is used to indicate the potential bound-



134 4 Image Enhancement

Fig. 4.17 (a) Homogeneous diffusion is only dependent on the density gradient, (b) inhomo-
geneous diffusion decrease at edges, (c) anisotropic diffusion decrease at edge in edge normal
direction

ary locations. Inhomogeneous diffusion (Fig. 4.17b) treats such boundary loca-
tions as a semi-permeable material. The process will still level densities (i.e., im-
age intensities), but the process will be slower at potential edge locations. It will
not be prohibited, however, because the gradient response may also be caused
by noise. Hence, noise removal should stop after a number of iterations to pre-
vent leveling the intensity difference between objects. The stopping criterion de-
pends on the image characteristics and on the parameters of the diffusion equa-
tion.

Preserving boundaries may be improved if, instead of restricting any kind of
diffusion at edges, it is only restricted across the edges. This is called anisotropic
diffusion (Fig. 4.17c). Allowing diffusion parallel to an edge enables noise removal
by smoothing while inhibiting diffusion across an edge. Gradient direction is used
as a discriminative feature between noise and the edges. The gradients between
adjacent edge pixels tend to have similar directions while this is not true for the
gradients of adjacent noise pixels. Diffusion in regions with noise pixels will be in
random directions supporting homogenization while it will be directed in boundary
regions supporting contrast enhancement.

All three diffusion types can be described by the diffusion equation introduced
in Sect. 2.2.8 on MR diffusion imaging. Diffusion in a 2D scene at some location
(x, y) causes a flux j according to Fick’s law

j(x, y) = −D(x, y) × ∇u(x, y) = −D(x, y) ×

⎛
⎜⎜⎝

∂f (x, y)

∂x

∂f (x, y)

∂y

⎞
⎟⎟⎠ . (4.37)

The type of diffusion is described by the diffusion tensor D. It specifies for the
density gradient ∇u how much diffusion takes place in any direction.
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Fig. 4.18 Comparison of the different types of diffusion: (a) homogeneous diffusion, (b) inhomo-
geneous diffusion, (c) anisotropic inhomogeneous diffusion

Homogeneous diffusion is independent of the strength and direction of the gra-
dient (see Fig. 4.18a). The diffusion tensor is the product of a diffusion coefficient
ε0 and the identity matrix

D(x, y) = ε0

(
1 0
0 1

)
. (4.38)

Inhomogeneous diffusion depends on the gradient strength (see Fig. 4.18b). Per-
ona and Malik, who presented diffusion filtering, suggested

D(x, y) =
(

ε(‖∇u(x, y)‖2) 0
0 ε(‖∇u(x, y)‖2)

)
(4.39)

with

ε
(∥∥∇u(x, y)

∥∥2)= ε0
λ2

‖∇u(x, y)‖2 + λ2
. (4.40)

Inhomogeneous diffusion depends on the location (x, y) and decreases with in-
creasing gradient length ‖∇u‖. The parameter λ governs the influence of gradient
length to diffusion. With λ approaching infinity, inhomogeneous diffusion turns into
homogeneous diffusion.

The tensor is still a diagonal matrix imposing no constraints of the diffusion di-
rection based on ∇u. This changes for anisotropic diffusion, where the diffusion
tensor at each location (x, y) is chosen such that diffusion in the gradient direc-
tion is reduced while diffusion perpendicular to the gradient is not affected (see
Fig. 4.18c for an example). As was already mentioned in Sect. 2.2.8, the amount of
anisotropic diffusion is given by the eigen decomposition of D. The desired result
for edge-preserving anisotropic diffusion is an eigenvector of which the eigenvalue
decreases with increasing gradient ∇u and another eigenvector perpendicular to ∇u
of which the eigenvalue does not depend on the strength of ∇u. Hence, the tensor is
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constructed from the desired eigen decomposition

D(x, y) =
(

e1,1(x, y) e2,1(x, y)

e1,2(x, y) e2,2(x, y)

)(
λ(x, y)1 0

0 λ2(x, y)

)

×
(

e1,1(x, y) e1,2(x, y)

e2,1(x, y) e2,2(x, y)

)
, (4.41)

with

[
e1,1(x, y) e1,2(x, y)

] = ∇u(x, y)

‖∇u(x, y)‖ , λ1(x, y) = ε
(∥∥∇u(x, y)

∥∥2)
,

(4.42a)[
e2,1(x, y) e2,2(x, y)

] = [
e1,2(x, y) −e1,1(x, y)

]
, λ2(x, y) = 1.

(4.42b)

Computing the diffusion requires solving a differential equation. It can be done
analytically for homogeneous diffusion. Homogeneous diffusion at some time t

equals the convolution of the image with a Gaussian with variance depending on t .
The other two diffusion types are more interesting for edge-preserving smooth-

ing. Here, diffusion is computed iteratively, assuming constant diffusion over fixed
(small) time intervals. The image f (x, y) is assumed to be the density distribution
u(x, y,0) at time t0. Given the density at time ti , the density at time ti+1 is computed
as

u(x, y, ti+1) = u(x, y, ti) + (ti+1 − ti )
∂u(x, y, ti )

∂t
, (4.43)

where ∂u(x,y,ti )
∂t

indicates the change of density due to diffusion. It can be computed
from the divergence of the flux

∂u(x, y, t)

∂t
= −div j(x, y, t) with div j =

(
∂jx(x, y, t)

∂x
+ ∂jy(x, y, t)

∂y

)
. (4.44)

Although it may look complex at first sight, implementation is straightforward.
After specifying the appropriate diffusion tensor, an iterative scheme for updating
the density according to (4.43) is implemented using the divergence of flux of (4.44).

Some care has to be spent on selecting appropriate parameters. The difference
between time steps is critical, as it governs the approximation accuracy of solving
an initial value problem by finite differences. However, if the step size is too small,
noise reduction will progress slowly.

Selecting ε0 influences the maximum diffusion per time step. Again, a small
value causes slow progress, but if the value is too high diffusion may cause oscilla-
tion of density values.

Finally, λ restricts diffusion at edges. An ideal value of λ would cause edge
contrast to increase faster than contrast decreases due to diffusion. However, λ also
influences the behavior within regions. For a low SNR image there may be no value
that is globally valid everywhere in the image.
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Fig. 4.19 Diffusion filtering in a CT body image. While noise is reduced and contrast is enhanced,
small structures start to disappear and at some locations (indicated by arrows), the course of the
boundary starts to change

Fig. 4.20 Diffusion filtering in an MR brain image. Since structures are much smaller than in the
CT image, the removal and change of boundaries due to diffusion is much more prominent than in
the application depicted in Fig. 4.19

Discrimination between boundaries and noise can be enhanced if gradient ap-
proximation is different for computing ε and for computing the flux due to density
variations. The gradient in (4.49) could be replaced by some gradient ∇g(x, y),
which is intended to measure the likeness of a pixel to be a part of a boundary.
This boundary gradient ∇g(x, y) can be, for instance, approximated by applying a
Gaussian kernel with some variance σ 2 to the density image before computing the
differences. The noise gradient ∇u(x, y) would still be computed without Gaus-
sian smoothing. Details that are smaller than the variance of the Gaussian are then
treated as noise and would be diffused with time, whereas larger details are treated
as boundaries inhibiting diffusion.

Using anisotropic diffusion for noise removal is often preferred to inhomoge-
neous diffusion because the resulting images look more pleasing to the observer.
It should be noticed, however, that anisotropic diffusion may produce smooth but
false boundaries if the true boundary contains details that are not recognized by
the edge model (compare Figs. 4.19 and 4.20). Sometimes it is better to use an
isotropic method that either leaves the noise unchanged or carries out a homoge-
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Fig. 4.21 Image acquisition as a random process. The restoration aim is to find the most probable
undistorted image given the observation and the parameter of the a priori knowledge

neous smoothing. Both effects are more easily recognized as an artefact than a false
boundary.

If kept going for a large number of iterations, diffusion will almost always lead
to a complete homogenization of the image. It rarely can be parameterized such that
the likeness to boundary, i.e., contrast, everywhere in the image increases faster than
noise is dissolved at the boundaries. Hence, it is important to provide content- and
parameter-specific thresholds at which diffusion stops. As such, diffusion filtering
is not a suitable tool for the inexperienced user and will probably play a major role
only in a research context where expert knowledge on the use and consequences of
its application will be accessible.

4.3.4 Edge-Preserving Smoothing: Bayesian Image Restoration

Linear filtering assumes existing prior knowledge about the noise, but nothing about
the image. Restoration in a probabilistic framework is able to incorporate smooth-
ness constraints into the method. For this purpose, the image characteristics are
assumed to be representable by a Markov random field (MRF, see Sect. 14.1).

Determining an unknown image function f from some observation g—which
does not necessarily have to be an image, but must be associated with the image in
some known fashion—given some probabilistic knowledge about the nature of the
mapping from f to g is a powerful tool based on a simple concept (see Fig. 4.21).
Its application fields in image processing are image reconstruction—e.g., in the re-
construction of nuclear images (see Sect. 2.4.2)—noise removal, segmentation, and
classification.

For simplifying the notation, we assume that the pixels of an image are ordered
as a vector. A vector f shall be restored from an observed vector g. An individual
pixel in the vector will be represented by fi and gi , respectively.

Noise reduction in a Bayesian framework searches for an image f that maximizes
the conditional probability of observing a noisy image g, given that the true image
is f. In Bayesian notation, we have

P(f|g) ∝ P(g|f) · P(f). (4.45)
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Fig. 4.22 Data knowledge and a priori domain knowledge about the images to be restored are the
two components that define the probability of f having caused an observation g

The term P(g|f) is the data term since it describes the dependency of the observa-
tion on the unknown undistorted data f. The term P(f) comprises domain knowledge
about f independent of an observation (e.g., that in most images neighboring scene
elements have similar values, see Fig. 4.22).

The conditional probability of observing g given the image f is characterized
by the type of noise. For the following, we assume zero-mean Gaussian noise with
covariance matrix Σ :

P(g|f) = 1

Z1
exp

[
−1

2

(
(f − g)T Σ(f − g)

)]
. (4.46)

The factor Z1 is the normalizing constant of the Gaussian distribution. If it is
assumed that the probabilities of the individual pixels are independent of each other
and that they all have the same variance σ 2, the above equation simplifies to

P(g|f) = 1

Z1
exp

[
−

N−1∑
i=0

(fi − gi)
q

2σ 2

]
. (4.47)

The a priori probability P(f) is modeled as an MRF among elements of the im-
age f. The probability of an MRF is

P(f) = 1

Z2
exp

(−U(ω)
)
, (4.48)

where Z2 is a normalization constant and U(ω) is the clique potential of all cliques
in a neighborhood system. The neighborhood is defined as the spatial adjacency and
the cliques are possible configurations of scene elements in the neighborhood (see
Fig. 4.23). The clique potentials are designed such that they enforce smoothness in
the image. An example for clique energies has been given by Besag (1986),

U(ω) = β

K−1∑
k=0

uik, (4.49)
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Fig. 4.23 The a priori probability for some location in a grid depends on values in a freely defin-
able neighborhood. Given a neighborhood, cliques are configurations of a subset of its elements

where K is the number of cliques and uk is the number of pixels in clique k having
the same intensity value than the center pixel i. Since this function increases the
potential only for equal values, it will lead to strong edges.

If we now use (4.46) and take into account that the Markovian property ensures
the independence of P(f) outside some neighborhood, we arrive at (omitting the
normalization factors)

P(f|g) ∝ exp

(
−1

2
(f − g)Σ(f − g)T

)
· exp

(−U(ω)
)

=
N−1∏
i=0

exp

(
− (fi − gi)

2

2σ 2

)
· exp

(
−β

K−1∑
k=0

ui,k

)

=
N−1∏
i=0

exp

(
− (fi − gi)

2

2σ 2
− β

K−1∑
k=0

ui,k

)

= exp

(
−

N−1∑
i=0

(
(fi − gi)

2

2σ 2
− β

K−1∑
k=0

ui,k

))
. (4.50)

The maximization of P(f|g) means minimizing the exponent

N−1∑
i=0

(
(fi − gi)

2

2σ 2
− β

K−1∑
k=0

ui,k

)
. (4.51)

Finding the optimal estimate for f given the observation g is difficult as the num-
ber of configurations increases exponentially. Various techniques such as simulated
annealing (Geman and Geman 1984), ICM (Besag 1986), or mean-field annealing
(Zhang 1992) will be discussed in Sect. 14.1.

When Geman and Geman (1984) presented MRF Bayesian image restoration,
the application example was a kind of relabeling of homogeneous regions. The def-
inition of clique potentials and the optimization technique was geared toward the
restoration of a true labeling from a small set of labels. The greedy method of Be-
sag (1986) was much more appropriate for dealing with a large number of potential
labels (i.e., a large number of possible intensities). However, the clique potentials
defined by Geman and Geman (1984) already included an edge component sup-
porting the creation of edges between homogeneously labeled regions. The a priori
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Fig. 4.24 If only similarity is required, the restored image will be blurred. The constraint from
(4.55) also enforces as few intensity changes as possible, which enhances edges as well

model consists of two components. One essentially smoothes the data while the
other supports the creation of label discontinuities at the region boundaries based on
some line model.

Later approaches integrated the discontinuity condition parameter-free into the
a priori model. In Geman and Reynolds (1992), the authors proposed a constraint
that enforced the smoothness of some function with the values known at some loca-
tions by producing the smallest possible number of intensity changes (see Fig. 4.24).
The function defining the a priori probability of the MRF is

φ(u) = −1

1 + |u|β . (4.52)

This function is strictly concave for 0 < β < 2 (in their experiments, the authors
used β = 1) and it can be shown that for some 1D function f with values f (x1) = a

and f (x2) = b with x1 < x2 and a < b the result of minimizing
∫ x2
x1

φ(u)du is
a function that is constant between x1 and x2, except for one location where f

jumps from a to b. This is the opposite behavior to the use of interpolation functions
such as φ(u) = u2, which would cause f to decrease gradually from x1 to x2. The
behavior resulting from applying (4.52) achieves smoothness of data by maximizing
the area of constant values while it enhances the edges at the same time.

The two components of the logarithm of P(f|g) ∝ P(g|f) · P(f) for two cliques
finding first-order discontinuities, which consist of pairs of horizontally and verti-
cally adjacent pixels, are now

lnP(g|f) : λ
MN−1∑
i=0

(gi − Kfi)
2 (4.53)

and

lnP(f) :
C∑

c=1

φ

(
f(c)s − f(c)t

�

)
, (4.54)
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Fig. 4.25 Cliques used in
(4.56) and (4.58)

where K describes operator blurring given by a point spread function (PSF). C is
the number of cliques. The indices s and t stand for a reordering of elements in
f such that f

(c)
s,i and f

(c)
t,i contain the two members of a clique c. The term to be

minimized

f = arg min
f

C∑
c=1

φ

(
f(c)s − f(c)t

�

)
+ λ

MN−1∑
i=0

(gi − Kfi)
2, (4.55)

is not differentiable because of φ. For optimization, Geman and Reynolds (1992)
suggested using simulated annealing. As the number of values that a pixel in f may
take is large and the images may be large as well, two shortcuts to the optimization
are provided.
• At each iteration, a value at some site i is chosen from a range of values deter-

mined by the intensities of the four neighbors of f and from the value of g at
site i. The authors reported no visible degradation if using a range of six values
reducing the total number of states from 256 to 25 (4 × 6 plus the value of gi ).
Although this probably has to be adopted to suit a larger range when dealing with
medical images with a range of originally 4096 values, it does reduce the cost by
a factor of 10.

• Annealing is not started with some random values for f , but with a good guess
(which could be a smoothed version of g which essentially is the maximum like-
lihood estimate for g without considering the Markovian prior).
It is noted that using cliques of pixels in the horizontal and vertical directions may

bias the result against the diagonal edges. An extension to diagonal neighborhoods
was published later (Hurn and Jennison 1996).

Reducing noise based on the assumption that the image is locally constant may
be overly restrictive, as most scenes may contain some smooth intensity variation
within the bounded regions. Hence, Geman and Reynolds (1992) extended the a pri-
ori term defining a second- and third-order versions of φ that used the first- and
second-order derivatives of f instead f itself.

For the first-order derivative, three different cliques are defined: two cliques with
three members s, t , u organized horizontally or vertically, respectively, and one
clique with four members s, t , u, v organized in a square with the length of two
pixels (see Fig. 4.25). The function φ2 is defined as

φ2

(
f(c)s − 2f(c)t + f(3)

u

�

)
and φ2

(
f(c)s − f(c)t − f(3)

u + f(3)
v

�

)
, (4.56)
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depending on whether the clique consists of three or four members. For the second-
order derivative, four cliques are defined. Two of the cliques have four members
organized horizontally with

φ3

(
f(c)s − 3f(c)t + 3f(3)

u − f(4)
v

�

)
. (4.57)

The other two cliques have two rows s1, s2, s3 and t1, t2, t3 of pixels organized
either horizontally or vertically. The term is

φ3

(
f(c)s1 − 2f(c)s2 + 3f(3)

s3 − (f(4)
t1 − 2f(4)

t2 + f(4)
t3 )

�

)
. (4.58)

Edge-preserving smoothing using the Bayesian approach requires that noise can
be differentiated from edges based on local attributes, which requires a fairly good
SNR. In the original paper, a mean SNR of approximately 15 to 20 has been used
and restoration was able to restore the image in the presence of large blur artefacts.
Higher noise may be accommodated when blurring is excluded.

It was observed by the authors that using the second- or third-order constraints
may lead to step artefacts because these constraints only approximate an intensity
step edge.

A better result is achieved from the consecutive application of constraints. The
measured image is used as an estimate for first-order discontinuity. The result
serves as the initial estimate for a model allowing continuous shading using the
second-order constraint. This result is subjected to the third constraint resulting in
smooth surfaces. The parameters λ and � need to be chosen carefully. Geman and
Reynolds (1992) investigated restoration of a horizontal or vertical step edge for
first-, second-, and third-order discontinuity. They showed that λ and � are depen-
dent on each other and that, given �, the parameterization of λ depends on the noise
characteristics and on the order of the constraint.

Noise removal using Bayesian restoration has been used occasionally (Hu and
Dennis 1991; Johnson et al. 1991; Garnier et al. 1995). It does play a more impor-
tant role in image segmentation where the noise model is included into the segmen-
tation task. The applications are tumor enhancement, detection, and segmentation in
mammography and radiography (Li et al. 1995; Baydush and Floyd 2000), in MRI
(Bouman and Shapiro 1994; Marroquin et al. 2002; Al-Zubi et al. 2002), or in CT.
Hence, we will return to the subject in Chap. 7.

Using MRFs in a Bayesian framework for edge-preserving smoothing is an el-
egant approach to solve the inverse problem to regain the original image from a
distorted image given knowledge about the attributes of noise and edges. Correct
parameterization requires some understanding about the underlying methodology.
As a tool, it should be preconfigured if it cannot be assured that expert knowledge
is available. Similar to diffusion filtering, artefacts caused from parameterization
errors may be difficult to interpret.
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4.4 Concluding Remarks

The successful application of image enhancement methods require that informa-
tion content can be separated a priori from any artefactual influences. Enhancement
techniques attempt to extract this information or to suppress the artefacts. Since the
definition of information content will be different for every image and for every
possible request for information from an image, enhancement methods are a com-
promise that trades generality for the accuracy of this definition. Although most
methods are parameterizable to accommodate the enhancement of different kinds
of images, the user should be aware of the extent to which he or she can adapt the
method to some image class by changing parameters.

Whether the application of a method makes sense and how parameters should be
set is generally easy to decide if the method itself is simple (such as linear contrast
enhancement or linear filtering). The efficient application of advanced methods such
as diffusion filtering or Bayesian image restoration requires a good understanding of
the various aspects and components of the method. Otherwise, a visually pleasing
result may hide a degradation of the original information content.

Image enhancement is often a preprocessing step to segmentation. It is easier to
find a segment boundary if it is clearly distinct in the image. There is a danger in this
if edge-preserving smoothing has been applied. Since it is possible that false bound-
aries are created, segmentation results may be wrong as well. It can get difficult to
detect the source of this problem when the enhanced image is sent to the segmenter
without anybody checking the correctness of the enhancement step.

4.5 Exercises

• Name a difference in the goals of an enhancement technique applied to sup-
port the human perception of an image as opposed to enhancement to support
computer-assisted analysis.

• What contrast measure captures the local contrast at object boundaries?
• Name at least two problems when equating the perceived contrast with global

contrast.
• What kind of images do not profit from contrast enhancement by histogram equal-

ization? What is the disadvantage when using adaptive histogram equalization
instead?

• Why is histogram equalization not useful as preprocessing for an automatic image
analysis method such as an automatic segmentation?

• What would filter masks for a Sobel filter look like if the partial differentials are
approximated along the diagonal directions? How could the gradient be computed
from the response of two such filters?

• How could linear filtering be used to sharpen edges? Would this be useful as
preprocessing for a subsequent automatic image analysis? Explain why or why
not.

• Why is it useful to combine a Laplace filter with a smoothing filter (such as a
Gaussian)?



References 145

• Name the disadvantages of using a mean filter instead of a binomial filter.
• Why will the integral of all linear smoothing filters always sum up to unity?
• What kind of image degradation will always happen when using a linear low-pass

filter?
• What kind of artefacts will be produced by median filtering? Under what condi-

tions?
• Explain why the median filter will not reduce noise at edges.
• How will the results of isotropic and anisotropic diffusion filtering differ from

each other?
• How and where is the anisotropy of diffusion encoded in the diffusion process?
• Why will any diffusion filtering result in a completely homogeneous image pro-

vided that diffusion has been carried out long enough?
• What kind of artefact can be created by anisotropic diffusion that seriously affects

the perception of image content? Explain why this is inherent to the diffusion
procedure.

• What conditions need to be met so that a stochastic process is a Markov random
field?

• What domain knowledge is represented by the a priori probability of an MRF?
• Why is it so difficult to find the optimal images given an observation if the ob-

served values are an instantiation of an MRF?
• What is the role of a clique in an MRF and how does it relate to the representation

of domain knowledge?
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Abstract
Data-based features in images such as key point locations or potential parts of
object boundaries can be extracted from local image characteristics. Boundary
parts are generated from the results of an edge enhancement step while key point
locations are local extrema of some local object property. Features may also be
computed from samples of an object’s boundary or interior.
Potential object boundary parts are used for detecting or delineating objects in
images. Key points may, in some simple cases, also be used to detect objects.
In most cases, however, object characteristics are too complex to be captured by
the attributes of a key point. They can be important attributes nonetheless. Key
points define an object-dependent reference system in which they may be used
to map objects of the same class onto each other.

Concepts, notions and definitions introduced in this chapter

› Edge tracking
› Canny edge detector
› Hough transform for lines
› SIFT and SURF features, MSER features, local shape context, HOG features,

gist and saliency

Image analysis aims at reducing information to a subset that is relevant to some
analysis question. An example would be volumetry where the user wants a single
number (the volume of a certain organ or pathological structure) from the image
sequence. Other examples are the detection of metastases or the delineation of an
organ boundary for radiotherapeutic treatment planning. Information reduction of-
ten happens gradually with information being reduced until the desired result is
extracted from the data. The first level of reduction computes local features that
are assumed to pertain to objects of interest. Examples for local features are edges,
blobs, or ridges in the image. Such features carry more information than a pixel,
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as they represent a first differentiation between the object attributes and influences
from image acquisition.

There are a number of reasons to apply a feature detection step in medical im-
age analysis. In cases where the object of interest is simple, its attributes may be
captured directly by the feature detector. This then leads to object detection. More
often it is a preprocessing step. Feature locations and attributes may serve as an
object-specific reference if the same object is captured by different images that shall
be compared. While the content of the images may be different (e.g., if one of the
images is CT and the other MRI), the object features such as edges or corners should
be extractable in both images. Features may also help to define a region of interest
that shall be further inspected. A blob detector, for instance, could find potential
regions of interest that may comprise the blob-like lymph nodes. Further processing
will then be restricted to these regions. Features may also help to guide a segmen-
tation process in cases where the data are noisy or of low contrast. Edge features,
for instance, could be generated that support segmentation if noisy data would pro-
duce too many spurious responses from applying a simple gradient operator. Finally,
features may also be used to characterize deviations from an assumed norm of an
anatomic structure. As an example, features to enhance tubular structures may high-
light the potential sites of aneurisms in the vascular system since they deviate from
the normal, tube-like shape of vessels.

The description of a feature is richer than that of a pixel. It comprises at least the
feature location in image space and the feature type (e.g., edge or corner) and some
measure of strength of the feature response at that location. It may include other
information such as scale (e.g., size of a blob) or orientation (e.g., the direction of
an edge).

5.1 Edge Tracking

Structures are meant to be detectable by a change of appearance between it and the
background. Furthermore, the shape given by a structure’s outline may be an impor-
tant characteristic to differentiate it from other objects or to specify object-specific
locations. Hence, edges are relevant features for several types of analysis tasks.

Edges can be those of intensity but may also separate different textures. The fol-
lowing section will deal with intensity edges. Most of the techniques can be applied
to textures as well, provided that the texture measure can be mapped on a single
scalar value.1 Texture edges are then edges of this scalar value.

The detection of intensity edges uses the output of an edge enhancement step.
Edge strength is given by the length of the intensity gradient. The edge location is
given by the zero crossings of a Laplace operator (see Fig. 5.1). However, a large
gradient does not automatically mean that there is an edge. Finding salient edges in
an image can be difficult. Saliency can be based on many different attributes ranging

1This can be difficult, however, since texture measures are estimated from a local neighborhood
that is assumed to have the same texture. This is not true at texture boundaries.
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Fig. 5.1 Zero crossings computed from applying an LoG operator (a) may be combined with
information about edge strength from a gradient operator (b) to find edge locations and rate their
importance based on edge strength (c)

from local smoothness and continuity constraints to high-level domain knowledge.
Hence, edge detection is still an open problem in the general field of image analysis.
An extensive survey of past and recent techniques can be found in Papari and Petkov
(2011).

For edge detection in medical images, various, rather simple assumptions are
used to separate edges from noise.
• The gradient for edges is often stronger than that caused by noise.
• The edge direction varies slowly along the edge.
• The edge strength varies slowly along the edge.

These assumptions are too simple to detect all edges defining an object boundary.
They are, however, sufficient since edges resulting from a tracking step are usually
not the final result. Rather, these edges initialize some top-down analysis step to find
boundaries of an organ, pathological process, or other structure of interest.

The Canny edge operator (Canny 1986) takes into account all three assumptions.
It consists of an edge-enhancement step and an edge tracking step. Edge enhance-
ment is carried out by taking the maximum response from several one-dimensional
edge filters because—under an idealized edge model—the optimal response for an
edge is created by a one-dimensional smoothing differential operator orthogonal to
the yet unknown edge direction. The local maximum of the gradient length then
specifies the edge location. In most applications, this step is replaced by a two-
dimensional gradient operator (e.g., the derivatives of the Gaussian) combined with
a nonmaximum suppression step that reduces the edge response to a single pixel in
the gradient direction. Nonmaximum suppression can be done by computing zero-
crossings of the second derivative.

Edge tracking is done by hysteresis thresholding. Two thresholds, t1 and t2 with
t1 > t2, are defined and applied to the gradient length |g|. If |g| > t1 for some pixel,
this pixel always belongs to an edge. Pixels with |g| > t2 are edge pixels if they are
adjacent to other edge pixels. The algorithm proceeds as follows (see also Fig. 5.2).
• Select the next pixel with |g| > t1 that is not yet assigned to an edge and assign it

to a new edge.
• Track the edge as long as the adjacent pixels are found with |g| > t2.
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Fig. 5.2 The different steps of the Canny Edge Operator (the result from non-maximum suppres-
sion has been dilated for better visibility)

This process is repeated until no further pixels with |g| > t1 are found. The
method finds connected edge segments. At intersections, it will track only one of
the continuing curves. The other curve will be found as well if at least one of its
edge pixels has a gradient larger than t1. The value for t1 should be high enough
to make sure that none of the starting pixels is a noise pixel. However, since the
continuation of an edge is only found between neighboring pixels, the threshold t2
should be low so as not to hinder tracking (see the effect of different selections for
t1 and t2 depicted in Fig. 5.3).

The Canny edge detector (or similar tracking approaches) will create edges as a
subset of all edge locations with a certain strength. Since the locations to be con-
sidered for an edge are local maxima of the gradient length, edges may be false if
noise has distorted the course of the edge. Low-pass filtering before computing the
gradient prevents some of these erroneous responses, but it may also lead to false
local maxima locations if smoothing causes the nearby edges to fuse.

Multiresolution edge detection and multiresolution edge tracking are two ways
to get around this. In multiresolution edge detection, the gradient response is cal-
culated at different scales. For each location, an optimal scale is chosen to com-
pute the response. Hence, instead of deciding on a single scale for the complete
image—as it is done when selecting the variance in Gaussian smoothing—a dif-
ferent scale is selected for each location. The wavelet decomposition of an image
into localized frequency components is a good way to arrive at such a multiscale
edge response. Mallat and Zhong (1992) have presented the appropriate wavelet
transform. While wavelets provide for an (almost) redundancy-free representation



5.1 Edge Tracking 151

Fig. 5.3 Different choices for the two thresholds of the Canny Edge Detector lead to different
results. Thresholds are given as percentage of the strongest gradient in the image

of scale and frequency components, redundant decomposition schemes such as us-
ing a sequence of Gaussians with different variances could be applied as well (a
good survey on these techniques including multiresolution tracking techniques is
given in Basu 2002).

In multiresolution edge tracking, edges are searched at different scales. The pro-
cess commences with the lowest resolution and then proceeds to the next higher
resolution (see Fig. 5.4). At the higher resolution, edge locations from the previ-
ous resolution level are used to initiate the search for edges on the current level. In
Williams and Shah (1990), e.g., three different scales are used by convolving the
image with three different Gaussians with standard deviations σ ,

√
2σ , and 2σ and

computing gradients on each resolution level. The basic resolution σ has to be de-
termined based on the expected resolution and noise in the image. Edges are found
in the lowest-resolution image and are confirmed on the next higher resolution. The
detected edge locations on the current resolution image replace edges from the lower
resolution if they are close to an already found edge and have a similar direction.
This way, edge detection on the coarser resolution suppresses spurious edges while
at the same time allowing for corrections of accidentally fused edges or of an overly
smoothed course of an edge.
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Fig. 5.4 Multiscale edge detection on image (a) allows to detect edge detail on a high scale im-
age (b) and to decide whether to keep the edge based on a low resolution image (c)

If data are very noisy, such as, e.g., in ultrasound images, none of the techniques
mentioned above will produce useful edges. The amount of necessary smoothing
would very likely interfere with proper edge localization. In such a case, edge detec-
tion needs to be preceded by a restoration step, such as the edge-preserving smooth-
ing techniques presented in Sects. 4.3.2 to 4.3.4. Filters are often adapted based on
knowledge about the characteristics of noise or artefacts, such as the anisotropic
diffusion filter for reflection images in Yu and Acton (2002).

Alternatively, an edge or contour model has to be created that accounts for the
distortions in the data.

Contour models differ from edge models in that they assume that a set of open or
closed contours are searched in the image in a top-down fashion while edge models
generate edges in a bottom-up fashion based on a (possibly very elaborate) model
of what an edge is in this particular image. Contour models will be discussed in
Chap. 9 (Active Contours and Active Surfaces).

An edge model is usually just a local template that is convolved with the image.
The template represents the ideal edge. The response to the match can be exploited
to determine edge locations as well as a measure of confidence for the edge to be
present (see, e.g., Meer and Georgescu 2001). For ultrasound images, an example
for such a template model would be that of a stick model presented by Czerwinski
et al. (1993) who argued that the boundaries in an ultrasound are not visible as
intensity changes but as reflection lines at tissue boundaries. Hence, they matched
a line model with the image. The expected response for a location being part of
an edge is then a threshold that is derived from known noise characteristics in the
ultrasound images (Czerwinski et al. 1994).

5.2 Hough Transform

The Hough transform computes edge features by comparing image evidence with
a very specific edge model. Given an image containing edge information of an un-
known number of edges of a known kind, the Hough transform finds instances of
this kind.
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Fig. 5.5 Each edge point (xn, yn) in image space is represented by a curve in Hough space. The
curve describes all parameter combinations α,d(α) for lines passing through (xn, yn)

The Hough transform is a voting scheme that was first presented to find straight
lines in images and then was extended to find arbitrary kinds of boundaries. Each
location of a potential boundary—e.g., each location where the gradient length ex-
ceeds some threshold—votes for reference points in parameter space that are associ-
ated to certain shapes. Parameter combinations that receive the most votes describe
likely object instances.

Being a voting system, the Hough transform keeps its ability to predict structure
locations even if some votes are missing because of occlusion or a missing signal.
The method is robust with respect to noise or artefactual edges that do not follow
the edge model. Small variations from the predicted shape are tolerated.

The Hough transform can be defined for any dimension, but is most often applied
in 2D because the number of parameters (i.e., the dimensionality of parameter space
in which voting takes place) increases fast with the increasing dimension of the
images.

The transform for finding straight lines was presented in Hough (1962). A line in
2D space x = (x1 x2) can be defined by the following variant of the line equation

d(α) = xi cos(α) + yi sin(α), (5.1)

where α is the angle and d(α) the distance to the origin of a line passing through
a point (xi yi ). The Hough transform for a given potential boundary point (xi yi )
computes d(α). This point votes for all locations in parameter space (d(α),α) for
which (5.1) is true (see Fig. 5.5). The parameter space is digitized into bins in which
votes accumulate (called accumulator cells). The number of votes for a potential
boundary point in an image depends on its probability of being part of a boundary.
It could be, for instance, a function of the gradient length.

The lines in the image are those for which corresponding accumulator cells are
local maxima and have received a sufficiently high number of votes. The QoF (qual-
ity of fit) measure is a threshold on the number of votes (see Fig. 5.6 for an exam-
ple).

A number of strategies increase the computation speed of the Hough transform
and can be applied to most of its variants.
• The order in which votes are cast does not matter, which makes the method in-

herently parallelizable.
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Fig. 5.6 Example of applying the Hough transform on an edge image. The predominance of edges
at angles 45° and 135° with respect to the x-axis is visible as local maxima in Hough space

• If gradient directions in the edge images are reliable, the number of votes may
be reduced by letting every edge point only vote for those solutions of (5.1) for
which α is almost perpendicular to the gradient direction.

• If edge points are selected randomly from the image, the intermediate results of
the voting process may already be a good estimate for the final outcome.
There are also some strategies for increasing the robustness of the Hough trans-

form with respect to noise, artefacts, and shape variation.
• A multiscale strategy may be applied by computing an initial Hough transform

only for large accumulator cells. The result is used as a prediction for ranges of
parameters in Hough space that represent potential lines. The accumulation of
votes at higher resolution is reduced to these ranges.

• Vote distribution in parameter space may be smoothed to take variation due to
noise and artefacts into account.
The voting strategy of the Hough transform is not restricted to the search of

straight line segments. Any boundary structure that can be represented by a small
set of parameters can be found. Hence, the Hough transform is suitable to represent
shape information for searching object instances instead of object features in the
image. This will be detailed in Chap. 11.

5.3 Corners

Corners in an image indicate specific locations pertaining to an object. Such loca-
tions are important if objects of the same kind are to be compared or if the same
object shall be compared in different images (e.g., comparing brain data of a patient
from CT and PET). Another reason to identify specific locations is to classify an
unknown object by its characteristic outline as given by the corner point locations.
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Fig. 5.7 The Harris corner detector measures changes of intensity of a region around a point.
A corner causes significant changes for displacement in arbitrary direction, an edge only if dis-
placed orthogonal to it

The identification of a characteristic location will always require further knowl-
edge (e.g., anatomical knowledge about configuration or appearance), but the mini-
mum requirement is that this location is identifiable as a specific point. This is what
a corner detector does.

Corners belong to a class of local features that can be computed from images, but
represent attributes of depicted objects. This is of interest in many fields of computer
vision. For more details the reader is pointed to a survey about feature detectors in
Tuytelaars and Mikolajczyk (2007) who discussed the purpose, requirements, meth-
ods, and applications of local image features. The characteristic that is exploited for
most corner detectors is that the so-called aperture problem does not exist for a
corner.

The aperture problem states that for at least one direction the appearance of the
image in a small window does not change if the window is moved in this direction.
In homogeneous regions this is true for arbitrary directions. At edges it is true for
the direction along the edge. For corners this is not true for any direction.

The Harris corner detector (Harris and Stephens 1988) is based on this assump-
tion and has been shown to have a good performance (Schmid et al. 2000). The
detector computes a quantity for a location (x y) that depends on averaged intensity
variations in arbitrary directions around (x y). If this variation is high in almost all
directions a point of interest is found (see sketch in Fig. 5.7). The neighborhood
across which this variation is averaged constitutes the scale of the corner detector.
A second scale parameter is that of the image, given by the amount of smoothing
prior to compute the intensity variation between pixel locations.

The corner feature is computed from the eigenvalue of the Harris matrix. It con-
sists of the partial derivatives, weighted with some function w of the image function
I (x, y) in a neighborhood k around a direction (x0 y0) in which the image is dis-
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placed and then subtracted. It is defined as follows:
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This matrix represents the change of intensity, if the image were shifted by ±k

and then subtracted since it is derived from computing the weighted sum of squared
differences in this neighborhood
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x=x0−k
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by approximating I (x, y) using the Taylor expansion

I (x, y) = I (x0, y0) + (x0 − x)
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around (x0, y0), which results in
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Setting

Hp = w(x − x0, y − y0)
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and substituting u = x0 − x and v = y0 − y this can be written as

S(x0, y0) =
x0+k∑

x=x0−k

y0+k∑
y=y0−k

(u v )Hp(u v )T = (u v )H(u v )T. (5.7)

If the point in question is a corner, this difference should be large for arbitrary
directions (x0 y0). Hence, the two eigenvalues of H should be large. If just one
eigenvalue is large, an edge has been found since there exists one specific direc-
tion (the corresponding eigenvector) in which the difference is large. Hence, three
different cases can be derived from inspecting the eigenvalues λ1 and λ2 of H.
• A corner has been found if λ1 and λ2 are large.
• An edge has been found if either λ1 or λ2 is large.
• The region is locally homogeneous if λ1 and λ2 are low.
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The detection is not scale-invariant, however. The scale of the response is given
by two parameters. The first is the amount of smoothing that is part of the approx-
imation of the partial derivatives and the second is the window size over which the
Harris matrix is averaged. The corner detector can be made rotation-invariant by
using a rotationally symmetric window function w (e.g., a Gaussian).

Another popular corner detector that performed well in comparison tests is SU-
SAN (Smallest Univalue Segment Assimilating Nucleus; Smith and Brady 1997).
The operator assumes
• that a point of interest has a different intensity than locations in a prespecified

neighborhood,
• that this difference is larger than a threshold value g,
• that this point of interest is a local maximum of this difference.

First an intensity-gradient-based response in some neighborhood N is computed
as follows:

R(x, y) =
∑

(u,v)∈N

exp

(
−[I (x, y) − I (u, v)]6

t

)
. (5.8)

The exponent has been found experimentally. The value of t governs the strength
with which the intensity difference is influencing R. The higher the average inten-
sity difference is in N the lower is the response. To compute the final response
SSUSAN,R is inverted and thresholded with g

SSUSAN =
{

g − R(x, y), if g − R(x, y) > 0,

0, otherwise.
(5.9)

The value of SSUSAN is a local maximum if (x, y) is a corner or a single point.
The operator is faster to compute than the Harris corner detector, but was found to
be more sensitive to noise.

5.4 Blobs

Blobs are circular structures in the images. Blob detection either detects such struc-
tures (e.g., in counting microorganisms in cell microscopy) or highlights blobs as
important features of an object to be detected (e.g., in the detection of lung nod-
ules; Coppini et al. 2003; Schilham et al. 2003). Formally speaking, a blob is a local
maximum or minimum of a radially symmetric intensity distribution.

Blobs are characterized by their size and location. If the size is known, blobs
can be enhanced by a matched filter of the same size and shape. The Laplacian of
Gaussian with standard deviation σ according to the blob size is often used

LoG(x, y) = − 1

πσ 4

(
1 − x2 + y2

σ 2

)
exp

(
−x2 + y2

σ 2

)
. (5.10)
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Fig. 5.8 Result of a blob detection on a microscopy with blob-like microorganisms. Locations of
organisms are the local maxima of the detector response map. The large and bright structure on
the lower left (see arrow) produces a small response, because only the (barely visible) blobs in this
structure are of the expected blob size. The blob conglomerate on the right (see arrow) is nicely
resolved into its constituent blobs

Alternatively, the Difference of Gaussians (DoG) filter may be used. The re-
sponse of a DoG filter is computed by subtracting the filter response of the image
with two Gaussians with different standard deviation from each other.

Potential blob sites are the local maxima (or minima, if the blob is darker than the
background) of the convolution result (see Fig. 5.8 for an example). Blobs of size
σ are detected by thresholding the result. If finding a suitable threshold is difficult,
blob responses may be ordered by the strength of the response and the threshold is
defined by selecting the n most prominent blobs.

Since the scale and hence the size of the blob in image coordinates is not known,
blob detection can be extended to a scale-invariant detection including σ as a pa-
rameter in LoG(x, y, σ ). To make the response independent of the size of the blob,
the function needs to be normalized with σ yielding

LoGnorm(x, y, σ ) = − σ

πσ 4

(
1 − x2 + y2

σ 2

)
exp

(
−x2 + y2

σ 2

)
. (5.11)

The local minima or maxima in this space represent the blob location and the
size of the blob.

A different approach is to use the determinant of the Hessian matrix. It evaluates
the differential properties of the point-like shape of blobs. The Hessian is the matrix
of partial derivatives of a function. For a 2D image I (x, y) it is

H =
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Its determinant det(H) should be large if the image intensity peaks at some loca-
tion (i.e., if this location is a blob). Hence, blob detection consists of detecting local
maxima of the determinant. Again, the detector can be made scale-invariant by in-
cluding the scale parameter into the function and by searching for local maxima in
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space and scale. Since the value of the determinant decreases with increasing blob
size, the response is normalized by the blob size σ

BlobHessian(x, y) = σ 2 det
(
H(x, y)

)
. (5.13)

A different approach is to use the shape of a blob directly by applying a kind
of watershed transform (Lindeberg 1993). If a blob is a local maximum (or mini-
mum), the pixels surrounding the blob center should have lower (or higher) values.
A standard watershed transform on such an image would segment the image into
regions of which blobs that are darker than the background are a subset. The wa-
tershed transform treats intensity values as heights in a 3D landscape and computes
watersheds by flooding the landscape. Flooding starts from local minima in the im-
age (the sources in the landscape). A watershed is found when flooding water from
different sources meets (for details on the watershed transform see Roerdink and
Meijster 2001 or Sect. 6.4 in the segmentation chapter).

To separate blobs from the background, flooding stops if an intensity level is
reached beyond which everything counts as background. Blobs that are brighter than
the background can be found as well by inverting the procedure (i.e., by flooding
from the brightest pixel and again stopping at some threshold intensity).

5.5 SIFT and SURF Features

The scale-invariant feature transform (SIFT) was developed by Lowe (1999, 2004),
and patented by the University of British Columbia. SIFT generates and uses fea-
tures to detect and identify objects in images. Local features are identified and rep-
resented in a descriptor. Objects are identified by comparing expected feature con-
figurations with all possible subsets of configurations from features detected in an
image. The object is detected if a sufficiently large correspondence has been found.
The method proceeds in several steps:
• key point generation,
• key point reduction,
• feature computation,
• key point matching.

In key point generation, rotation- and scale-invariant features are generated by
searching for the local extrema of a multiscale blob detector based on a multi-
scale Difference of Gaussian (DoG, see previous section and Fig. 5.9). The de-
tector is insensitive with respect to noise by determining an optimal smoothing for
each scale. This is done by computing a sequence of Gaussian smoothings S(σi)

with standard deviations σi = σ1, σ2, . . . , σn and computing a sequence of DoG
D(σi) = S(σi) − S(σi−1), i = 2, n (see Fig. 5.10). A local extremum is maximal or
minimal not only in scale, but also along the range of different smoothing scales σi .

Key point generation will create numerous responses from noise and artefacts.
In key point reduction, the contrast at local extrema is used to remove low contrast
blob locations (Lowe 1999).
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Fig. 5.9 Key point responses are computed at different scales of an image pyramid. Potential key
points are local extrema in scale space

Fig. 5.10 Additionally to being an extremum in scale space it also has to be an extremum for
differently smoothing DoG filters

Fig. 5.11 Key point orientation is computed from a histogram of binned gradient directions in the
vicinity of the key point

Responses are also removed if contrast is high, but the localization is unstable.
This is the case along edges where the average contrast may be high because the
feature is prominent across the edge but the localization accuracy is low because the
feature strength varies little along the edge. The selection criterion to remove edge
responses uses corner detection schemes such as local curvature or the determinant
of the Hessian (see previous section). In Lowe (2004), an improved version of this
step was presented where the feature response function was interpolated and the at-
tributes of the interpolated function were used to remove unstable feature locations.

In feature computation, orientation attributes are determined and stored for each
remaining key point. A histogram of gradient directions is computed for locations
in the neighborhood of a key point (see Fig. 5.11). Gradient directions are computed
at the scale that was determined for the key point in the first step. The maximum of
this histogram indicates the local key point orientation. A threshold of 80% of this
maximum is set and it is tested whether any other local maximum in the histogram
exceeds this threshold. If it is the case, multiple key points with the same location but
different orientations are created. The key point orientation is then used to compute
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Fig. 5.12 The feature vector for a key point consists of binned histograms of normalized, relative
gradient directions with respect to the key point orientation. Hence, key points are represented by
a kind of rotation-invariant texture features

rotation-invariant features. A local window at the feature scale is defined around the
point location. Gradients within this window are weighted with a Gaussian. Then,
local gradient histograms in subwindows around the key point location are used as
key point features (see Fig. 5.12). The features are organized in a feature vector that
is then normalized to make the feature independent from intensity variation. Hence,
the feature vector describes the relative gradient length distribution for different
gradient directions in the vicinity of the key point.

Key point features can then be used for matching model key points with the key
points extracted from the image. Although the objective for developing the SIFT
procedure was to identify objects by key features, its main application in medical
image analysis is to support feature-based registration algorithms (for registration
methods see Chap. 10). Registration finds a transformation to map two images of
the same object onto each other. The reason for using SIFT features is that it can be
assumed that this mapping will only be successful if a sufficiently large number of
features corresponds in the two images. A registration is particularly easy if this cor-
respondence is given by sets of pairs of corresponding feature locations. Since most
medical image registration problems are 3D, the SIFT features have been extended
to 3D as well (Allaire et al. 2008).

A faster variant to SIFT is SURF (speeded-up robust features; Bay et al. 2006). It
uses essentially the same mechanism, except for the fact that the slow convolutions
in SIFT are replaced by faster approximations. The methodology is patented in the
United Stated and is claimed by the author of not only being faster but also more
robust than the SIFT features.

5.6 MSER Features

Locations, such as the center of gravity, generated from maximally stable extremal
regions (MSER) were presented by Matas et al. (2002). The key concept of this
approach is to separate an image into local homogeneous regions with maximum
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Fig. 5.13 The instability
measure rates the size change
of a region for some threshold
variation against the region
size. It is minimal for a
maximally stable extremal
region

contrast. Opposed to SIFT and SURF features, this detector defines key points based
on intensity and not on gradients.

The definition for an MSER can be found in Matas et al. (2002). It can be de-
scribed informally as follows.
• A region rt is any connected set of scene elements s with intensity f (s) > t ,

where t is an arbitrary threshold.
• An instability measure s�(rt , t) (see Fig. 5.13) rates the size change of rt when

the threshold is varied by some value �

s�(rt , t) = |rt+� − rt−�|/|rt |, (5.14)

where | · | indicates computing the volume of the respective region.
• A region rt is maximally stable if s�(rt , t) is minimum for t .

Centers of maximally stable extremal regions serve as key points and features
of the regions can be used as key point attributes. Compared to the computation
of SIFT features the generation of MSER features is very fast (O(n logn) with n

being the number of scene elements, see Matas et al. 2002). Several ways for an
even more efficient computation have been proposed (Donoser and Bischof 2006a;
Nistér and Stewénius 2008).

Although MSER has been first presented for 2D applications it easily extends
to 3D since the definition does not depend on the dimension of the scene. Maxi-
mally stable regions in 3D have been used for the segmentation of medical images
(Donoser and Bischof 2006b). Since MSER features have been applied in feature-
based correspondence analysis for stereo vision (Matas et al. 2002), they could be
used for registration as well although we are currently not aware of such an applica-
tion in medical image analysis. In Forssen and Lowe (2007), MSER were combined
with SIFT features. SIFT features were computed at the locations of a maximally
stable extremal region and provided a richer description than the original features.

5.7 Key-Point-Independent Features

The features mentioned so far are meant to characterize key point locations at
boundaries or in regions in an image. However, features may also be generated from
sampling the boundary or a region-of-interest. Two popular examples will be de-
scribed in the following.
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Fig. 5.14 Local shape context is represented by 2D histograms for points that contain frequency
of occurrences of other points. The histogram is binned in a log-polar grid. It can be seen that shape
contexts of similar point locations result in similar histograms

Local shape context (Belongie et al. 2002) describes an object by boundary fea-
tures that need not be—and in most case will not be—key points. The purpose of
using local shape context is to be able to match two structures based on the shape
context information. Local shape context is defined on boundary points that stem
from sampling boundaries of an object-of-interest that are generated by an edge de-
tection procedure such as the Canny edge detector. The boundary needs not to be
closed. However, edge detection of two similar objects should result in similar sets
of boundary parts. Sampling may be arbitrary, but in the absence of further knowl-
edge it should generate point locations distributed evenly over the boundary parts.

A structure is then represented by a sequence of points P = {p1, . . . , pN }. For
each point, shape context is computed by comparing its position to the position
of all other points. It results in a set of direction vectors Di = {di,1, . . . , di,N−1},
where each direction is a vector from pi to some other point pj , j �= i. The di-
rections are binned in a log-polar coordinate system. In Belongie et al. (2002), five
distance ranges and 12 sectors were used to determine the bin size. The histogram
now gives the number of occurrences of other points with respect to the pi per bin
(see Fig. 5.14). The feature is translation-invariant as it defines the context with
respect to the location of pi . It can be made scale-invariant by normalizing the dis-
tances with the average distance of all points pj to pi . If necessary, it can be made
rotation-invariant by computing the histogram based on a coordinate system that is
fixed to the tangent direction at pi .

Given the shape context for every point pi of P , a match to points qj of some
other figure Q is computed by finding a permutation j = π(i) such that the sum of
local similarities S(π) = ∑

i=0,N S(i,π(i)) is maximal. The local similarity mea-
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sure of Belongie et al. (2002) compares histograms hi and hπ(i) using the X2 metric

S
(
i, π(i)

) = 1

2

K∑
k=1

(hi(k) − hπ(i)(k))2

hi(k) + hπ(i)(k)
. (5.15)

In a later publication (Moni et al. 2005), the authors used a slightly different
feature descriptor where similarity was computed using the L2-norm. For each bin,
an average direction was computed from all directions falling into this bin. The
components of each average direction (x- and y-component for a 2D image) are
concatenated to for the feature vector.

The optimal permutation can be found in polynomial time using the Hungarian
method (Papadimitriou and Stieglitz 1982) or, as in Belongie et al. (2002), the faster
method of Jonker and Volgenant (1987).

Shape matching using local shape context can be made robust with respect to
outliers if a certain number of dummy points are introduced in the shape represen-
tation. A dummy point of P has fixed matching cost for all points of Q (and vice
versa for dummy points of Q). If the similarity of all points in P to a point qj in Q

is worse than the matching cost for the dummy point then qj is matched to the next
free dummy point. Hence, a fixed number of points in P and Q are allowed to have
no counterpart.

Given the match, a transformation between the two scenes that contain P and Q

can be interpolated so that not only P and Q, but also the two scenes are registered
with respect to each other (for further details on registration see Chap. 10).

Although shape context does not attempt to find key points it still requires parts
of object boundaries to be found. This may be unwanted if a boundary is difficult to
detect because of insufficient image contrast or artefacts. The histogram of gradients
(HOG) (Dalal and Triggs 2005) is a feature detector that does not rely on boundaries
as it samples a dense gradient texture map and uses this to generate the features.
Hence, HOG features are always computed from a gridded region of interest that is
assumed be mostly occupied by the structure to be analyzed.

A HOG cell is defined at each gridline intersection. The authors suggest two
types of cells. R-HOG cells have a rectangular shape while C-HOG cells have a
circular shape. Gradients are computed for each pixel. Each pixel within a cell votes
for a direction in a binned histogram of gradient directions. The vote is weighted
with the strength of the gradient.

To make the response insensitive to intensity variation, cells are grouped into
larger blocks. The gradient strength is normalized with the average gradient in this
block.

The authors used the HOG features for accurately detecting pedestrians in images
using cell sizes of 4×4 to 12×12 pixels and block sizes of 1×1 to 4×4 cells with
the best results with block sizes between 2 × 2 and 3 × 3 and cell sizes between
6 × 6 and 8 × 8. They reported that the method was most successful when using
the simplest gradient operator and no smoothing of the data, although this may be
different when using HOG features on medical images with its higher noise levels.
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5.8 Saliency and Gist

Saliency and gist are image features, which are different to the features discussed
above that pertain to structures in the image. Image features are not immediately
useful for the analysis of objects. However, as they characterize the image, they
may be used to guide image analysis in application such as a feature-based search
in an image data base.

Saliency is an attribute that guides the attention of human vision to certain loca-
tions in the image. Focusing on certain parts in an image is an integral part of the
perception process of a human operator who searches, recognizes, and categorizes
structures in an image as it allows the operator to single out subsets of the image and
focus on attributes of this subset. A salient location in an image is a region where
features differ significantly from features in the vicinity. Since saliency is a concept
of biologically inspired computer vision, features are those perceived at early stages
of visual perception. Examples are image intensity, image color, and local orienta-
tion. A biologically plausible method for computing saliency has been presented by
Itti et al. (1998). Several other methods exist as well.

Computer vision techniques use saliency in the same manner for quickly direct-
ing attention to subparts of an image which may contain objects that are searched.
Such rapid scene analysis is seldom the goal when working with medical images,
but the distribution, extent, and properties of salient locations characterize images
in a way that can be useful for search and comparison tasks between images. This
is even more so considering the fact that occlusion problems—which change such
configuration—do not occur if the images are 3D.

The gist of an image is an overall categorization of an image (e.g., by character-
izing an image as a CT image of a head depicting a subdural hemorage). In human
vision, deriving the gist of an image allows to pick a constraining category for fur-
ther analysis. Being able to compute the gist of an image can substantially speed
up image analysis as it reduces the number of possible explanations for depicted
objects. Since gist summarizes information from all parts of the image to come
up with an overall categorization, methods to compute gist are integrations from
feature values everywhere in the image. Computer-based methods to compute gist
sometimes assign to rather broad categories (Torralba et al. 2003), but combining
gist and saliency computation has been shown to provide differentiation between
quite similar but different categories (Siagian and Itti 2007).

Using gist features will probably be of little use for analyzing medical images
where the gist is usually known. As with the case of saliency, gist features may
help in the automatic categorization of images in a data basis of medical images.
Here, meta-information may describe the gist of the image only in the context of the
clinical or research question that gave rise to the production of the image.

5.9 Bag of Features

When features such as the ones discussed above will be used to detect objects they
need to be combined to some kind of a superstructure since the semantic of a single
feature is usually insufficient for representing the object characteristics. A simple
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way to arrive at a higher level semantic is to just collect features (points, edges, tex-
tures) from a region that shall be recognized. Feature collection is done by picking
regularly or randomly distributed patches from the region and computing feature
attributes in these region (Nowak et al. 2006).

Each patch is assumed to be a “visual word” making up the visual sentence de-
scribing the image. It is a bag of features that represents the (main) meaning of the
region from which the features are taken. Since the content of the bag is not spa-
tially ordered, the representation is invariant with respect to translation and, if the
feature values are invariant to rotation or scale, invariant with respect to these two
transformations as well.

The feature values of the different elements in the bag will all be different and
their frequency of occurrence will characterize the region recognition is possible,
if the expected feature occurrences for different objects has been trained from the
examples.

The bag of feature approach is attractive for search in image data bases and has
been successfully applied to solve content-based image retrieval tasks for medical
images by Caicedo et al. (2009) and Wang et al. (2011).

5.10 Concluding Remarks

Feature detection is an intermediate step for generating semantics from an im-
age. Computing such features changes the attribute representation from an image-
centered to an object-centered reference system. Since features are defined on image
attributes, this has to be taken with a grain of salt, however. Feature computation of-
ten assumes that object attributes can be defined based on local image attributes in
an invariant fashion. In reality, object attributes visible in an image may well be
different for the same type of object.

Feature computation always consists of two parts. First, attributes are computed
and then a criterion is applied to find locations where attributes are assumed to be
relevant. The latter should be applied with care as well. Since the definition of fea-
ture attributes will not exactly separate object features from image artefacts, setting
a strong relevancy criterion might remove the necessary object features. This can be
critical if the subsequent steps are automatic so that input to a later analysis mod-
ule is not verified by user input (a search for an object boundary may fail if the
edge-tracking step removed too many of the potential boundary parts).

5.11 Exercises

• What is the purpose of the two thresholds used in edge tracking by the Canny
edge detector? What guidelines should be followed when setting the thresholds?

• Name situations or problems for which edge tracking is a useful preprocessing
step.

• What would happen if the size of the accumulator cells of the Hough transform
were made smaller? Under what circumstance would it be an advantage?
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• Describe the steps of finding lines by the Hough transform?
• Explain strategies to speed up the Hough transform. Why is the Hough transform

generally advantageous in a real-time environment?
• What are the underlying assumptions for a corner detector?
• What features of the Harris matrix are used for corner detection? How are they

used for corner detection?
• What is the difference of the features used by the SUSAN corner detector com-

pared to the Harris corner detector?
• What filters can be used for blob detection?
• How is the blob detector made scale-invariant?
• Describe an algorithmic sketch for detecting blobs of unknown size in an image.

What kind of prior information is needed to parametrize the method?
• Describe the steps that lead to SIFT key points.
• How are the SIFT features made rotation-invariant?
• What kind of features represent a SIFT key point?
• How are the SIFT made (approximately) invariant to illumination changes? Un-

der what circumstance is invariance with respect to intensity changes no longer
given? Why?

• Describe the condition that needs to be met for a point being the center of an
MSER (maximally stable extremal region).

• Why can it be expected that MSER centers do not (not even approximately) co-
incide with SIFT key points?

• What are the potential applications of using SIFT key points or MSER centers in
a medical image analysis method? What would be their purpose?

• What differences are between SIFT features and shape context features?
• Explain the strategy by which shape context is made insensitive to feature points

that cannot be matched.
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6Segmentation: Principles and Basic Techniques

Abstract
The purpose of image segmentation is to generate pixel agglomerations from an
image that constitute parts of the depicted objects. In medical imaging, segmenta-
tion often refers to the delineation of specific structures. Hence, it includes parts
of classification as well. Segmentation strategies in medical imaging combine
data knowledge with domain knowledge to arrive at the result. Data knowledge
refers to assumptions about continuity, homogeneity, and local smoothness of im-
age features within segments. Domain knowledge represents information about
the objects to be delineated.
In this chapter, basic strategies for integrating the two types of knowledge into the
segmentation process will be discussed. We will also describe basic segmentation
methods that are popular in medical image analysis.

Concepts, notions and definitions introduced in this chapter

› Data features: intensity and texture
› The role of homogeneity, smoothness, and continuity in segmentation
› Using object localization and appearance as domain knowledge
› The role of interaction
› Basic segmentation techniques: thresholding, region merging techniques,

region growing, watershed transform, live wire

The quantitative analysis of a medical image requires objects or object features in
the image to be identified and delineated. First, the image is segmented into re-
gions that are possible candidates of objects. This is followed by assigning meaning
to these regions. For analyzing a digital photograph, this segmentation task would
group pixels to regions that may belong to (parts of) objects based on the attributes
of these regions. Hence, the segmentation of images is similar to creating phonemes
in speech or detecting syllables in a written text as it creates basic semantic entities
from images.
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Fig. 6.1 Finding a general solution for a segmentation task would be very difficult even if only
the houses depicted in the four examples would need to be segmented correctly

However, it is difficult to apply domain knowledge about objects in an image to
segmentation. The purpose of segmentation is to create semantic entities in the first
place. Ideally, object-independent criteria help to partition an image into segments.
After segmentation, every pixel is assigned to exactly one segment since every lo-
cation in an image carries just one meaning.

There is a problem with this. The appearances of objects in some image—
consider a picture of a landscape with a house in the foreground, some trees and
mountains in the background—may be very different within and between object
classes (see, e.g., Fig. 6.1). A house may consist of visible surfaces of homoge-
neous color requiring a homogeneity criterion on color, a tree may be characterized
by its natural texture and color, which requires the texture to be included in the cri-
terion, and the depiction of the mountains in the background is mostly characterized
by intensity and the faded color of distant objects. A uniform segmentation criterion
for all of these objects will be difficult to find. Regions found by a simple criterion
such as homogeneous color may segment some regions correctly but may fail in
other regions.

For the segmentation of medical images, the situation is somewhat less grave, as
a medical image represents (ideally) the measurement of a diagnostically relevant
entity that is measured in the same way everywhere in the body. Consider CT, for
instance, where x-ray attenuation is measured on the normalized Hounsfield scale.
Attenuation should not vary with location but only with density and atomic number.

External influences such as shading or object-specific signal degradation still add
an object- or location-dependent component to the measured and reconstructed sig-
nal. Furthermore, measured values are not unique for a specific object class. Hence,
data-driven segmentation will almost always result in a collection of regions that
in some cases will separate an object of interest into several segments and in other
cases will fuse different objects into a single segment.

6.1 Segmentation Strategies

There are several ways to deal with the missing information without sacrificing the
assumption that a low-level segmentation criterion is valid everywhere in the image.
• Foreground segmentation (Fig. 6.2) focuses on a single object in the image. Seg-

mentation criteria create a good partitioning of foreground objects, whereas the
quality of partitioning the background is irrelevant. Later analysis is carried out
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Fig. 6.2 If only the liver needs to be separated from the CT, a segmentation would be successful
irrespective of any errors in regions outside the liver. A foreground segmentation that only incor-
porates information as to what differentiates liver from all other tissues would be sufficient

solely on foreground segments. The strategy requires some model knowledge to
be applied after segmentation for separating foreground segments from the back-
ground. A simple way to introduce model knowledge would be to let the user
point out foreground segments.

• Hierarchical segmentation (Fig. 6.3) applies a multiresolution concept for gradual
refinement. A first segmentation creates segments that are smaller than the small-
est object. It is assumed that a common criterion (in most cases a homogeneity
criterion) can be found at this scale. The result is sometimes called oversegmen-
tation. At the next level, some of these segments are merged into larger segments
according to domain knowledge about object appearance. The successful appli-
cation of this strategy requires that meaningful segments can be defined by a
common criterion at a single but unknown scale. This scale is found by analyzing
levels of the segmentation hierarchy.

• Multilayer segmentation (Fig. 6.4) is another multiresolution technique. It is as-
sumed that a common segmentation criterion exists but that its scale may vary
throughout the image (like a structured texture of objects in a photograph of which
the scale varies with the distance of the object to the camera). Segmentation is car-
ried out at different scales producing layers of segments. Later analysis will have
to estimate local scales and patch segments according to it. It is more general than
the previous strategy as the scale of a criterion often varies for different structures
in an image. The analysis of segments is more difficult because an appropriate
scale for every segment has to be established independently from other segments.
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Fig. 6.3 In hierarchical segmentation, the first segmentation step provides little more than super-
pixels. Two examples from segmenting (a) can be seen in (b) and (c), where slightly different
homogeneity constraints lead to different sizes. The next hierarchy level attempts to combine su-
perpixels to higher semantic units

Fig. 6.4 In multilayer segmentation, segmentations at different levels of resolution are created
and evaluated in parallel. In this example, the boundary between gray matter and CSF is captured
quite well in the low resolution segmentation, while the boundary between fat and bone is captured
better in the high resolution image

In medical imaging, different semantics stem from the intentional choice of the
acquisition technique. The pixel value in a medical image is much more directly
related to the diagnostic question than a pixel value of a photograph to the meaning
of some outdoor scene. The acquisition technique has been chosen for the very
reason that it is known to offer insight into some diagnostic question. This domain
knowledge can be incorporated into the segmentation process. It becomes especially
apparent for slice images. In some images, such as x-ray CT, function value, and
membership to an organ class are related (see Fig. 6.5 and the Hounsfield Table 2.1
in Chap. 2). A segmentation criterion on pixel values may be sufficient for assigning
class membership to a segment. Hence, segmentation and classification may mix in
medical image analysis.

The search for occurrences of a specific structure by segmentation causes fore-
ground segmentation to be more frequent in medical image analysis than in other
image analysis tasks. Since it may involve a detection task, a model-driven approach
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Fig. 6.5 In medical imaging there is often a much more direct relationship between pixel intensity
and semantics compared to photographic pictures (although it is by no means a unique mapping)

then discriminates the structure from the background. Model knowledge may be
integrated into the algorithm or supplemented interactively. Popular segmentation
techniques, such as the various region growing techniques, the application of im-
plicit or explicit active contours and surfaces, or active shape models use such a
model-driven approach.

The use of domain knowledge from the acquisition technique and the reduction
of segmentation to the search of foreground objects helps to solve the segmentation
problem to an extent which exceeds the support of segmentation in general image
processing. Furthermore, segmentation is often carried out in slice images with the
consequence that occlusion does not have to be dealt with. On the other hand, the
computer-assisted analysis of medical images is virtually impossible without seg-
mentation.

6.2 Data Knowledge

Continuity in space and time are the two main data properties that are used for seg-
mentation. An observable object is assumed to stand out in an image by some homo-
geneous intensity or texture in a region. Segmentation based on spatial continuity
partitions a 2D or 3D image such that homogeneity within segments is larger than
between the adjacent segments. It assumes that the course of the segment boundary
does not change abruptly (see, e.g., Fig. 6.6a).

Temporal continuity can be used in the same fashion by treating time as the fourth
dimension. Often, temporal continuity is exploited by computing a segmentation
result at one time step and using it to constrain or initialize the segmentation at the
next time step.
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Fig. 6.6 Continuity in space is used, for instance, when the fairly smooth course of the boundary
of the hip bone is segmented using a spline curve (a), or when predicting vessel locations in the
sequence of slices in (b) by using the location from the previous slice for initialization

The strategy is sometimes applied as well for segmenting a sequence of 2D im-
ages of a 3D scene. Segmentation is carried out in a 2D slice. The result is then prop-
agated into the next slice to initialize the segmentation in this slice (see Fig. 6.6b).

The propagation of segmentation constraints along the time axis or a spatial axis
makes the result dependent on the initial segmentation. A developer should make
sure that this initialization is a good as possible. This may be achieved by the fol-
lowing.
• Letting the user flip through slices or time steps for selecting the best starting

point. Segmentation is then carried out from this initialization in both directions
along the time or spatial axes.

• Starting the segmentation from several initialization points and selecting the best-
rated segmentation from this. It requires a quality measure for segmentation re-
sults.

• Letting the process go several times back and forth through the data, improving
the segmentation until a stable state of segmentation is reached.
Carrying out n-dimensional segmentation by imposing continuity constraints be-

tween adjacent segmentations in (n − 1)-dimensional space reduces the subsequent
segmentation to a registration task if a 1-to-1 correspondence exists between seg-
ments in adjacent segmentations (see Fig. 6.6b). The task is simpler than registration
in general since continuity assumptions predict that the corresponding segments are
close to each other and have a similar shape. Such a situation often arises in 4D
segmentation, where objects neither vanish nor are created between time steps. It
is sometimes true for 3D segmentation from 2D slices as well, although this is not
guaranteed. However, even if topology changes between slices, segments on the pre-
vious slice can be used to constrain the possible locations of an unknown number of
segments with the same label in the current slice.
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Fig. 6.7 Although contrast between tissues is good the image contains a substantial amount of
noise that can be seen in a plot of intensities of one line in the image

6.2.1 Homogeneity of Intensity

Spatial and temporal continuity can be characterized by homogeneous local appear-
ance. This refers in the simplest case to the homogeneity of intensity which is given
by the intensity variance within a segment. Other approximations such as comput-
ing the difference between the brightest and the darkest pixels of a segment can be
used as well.

Pixel or voxel intensities of a structure of interest often vary little throughout the
segment. In consequence, intensity-based segmentation schemes are quite popular.
However, a number of artefacts have to be accounted for. The best-known is noise.
Segmentation in a noisy environment is more difficult than it seems since noise
reduction capabilities of the human visual system are quite effective. A human may
see a visible difference between neighboring segments long before homogeneity-
based segmentation would separate the segments (see Fig. 6.7).

Noise is often modeled as Gaussian with zero mean value and a variance accord-
ing to the SNR. Noise may be reduced during preprocessing, but this may cause
small details to be removed (see Fig. 6.8). Noise reduction may be included into
segmentation as well (e.g., by applying a multiresolution strategy). A multiresolu-
tion approach such as a Gaussian pyramid creates a sequence of images at different
resolutions by repeated low-pass filtering and subsampling. Segmentation is car-
ried out at a low resolution because of the noise-reducing effects of the low-pass
filter. Low-pass filtering also reduces the boundary detail and may remove small
segments. Hence, the segmentation of a low-resolution image is transferred to the
next higher resolution by applying the expanded operation of the Gaussian pyra-
mid to the segmentation (which is essentially an interpolation). The expanded result
constrains segmentation at the higher resolution in much the same way as the spa-
tial constraints imposed in the sequential segmentation of temporal sequences (see
Fig. 6.9).

Shading is another artefact that sometimes influences intensity-based segmenta-
tion. It usually stems from image acquisition. Examples are shading in an MRI due
to field inhomogeneities or shading in ultrasound images due to acoustical shad-



178 6 Segmentation: Principles and Basic Techniques

Fig. 6.8 Noise reduction prior to segmentation may cause loss of detail which is most critical if
small structures are to be extracted by segmentation

Fig. 6.9 Applying a multi-resolution strategy to segmentation: segmentation in a low resolution
image is used as initialization on the next higher resolution

ows. If the shading effects are less pronounced than segment homogeneity, they can
be removed during preprocessing. Multiple sclerosis lesion segmentation in MRI
presented in Chap. 1, for instance, estimates shading based on a segmentation of
white matter. White matter is highly contrasted against the background and thus
easy to segment without shading correction. As white matter should have constant
intensity, any intensity variation is attributed to shading, which is then extrapolated
for every location in the image. Alternatively, intensity-based segmentation may be
carried out locally if intensity variation per unit distance is smaller than the con-
trast between segments. The image is partitioned into subregions and segmentation
is carried out separately for every subregion.
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Some of the problems from shading can be resolved when resorting to boundary
criteria instead of region criteria. If a segment is contrasted against neighboring seg-
ments, high intensity gradients indicate the boundaries between segments. Bound-
aries are either localized by tracking zero crossings of the second derivative of the
intensity function or by computing local maxima of the gradient length. Gradient-
based segmentation is simplest if the gradient length (i.e., the intensity difference
between adjacent segments) is approximately equal throughout the image or if all
nonzero gradient lengths are caused by segment boundaries. The former is rarely the
case and the latter is never the case since images are not noise-free. Hence, many
edge-based segmentation schemes include a significance threshold on the gradient
strength that needs to be exceeded for a pixel to be accepted as part of the segment
boundary. It may remove parts of the true boundary that fall below the significance
threshold. This information has to be added as part of the domain knowledge for cre-
ating a segmentation (e.g., by requiring closed boundaries or by enforcing a shape
prior).

Compared to region-based segmentation, a major disadvantage of edge-based
segmentation is the sensitivity to noise. Hence, noise reduction as part of gradient
computation is mandatory. Using a multiresolution strategy such as in region-based
segmentation is possible. It requires registering boundaries from the expanded im-
ages with the edges in the original image.

6.2.2 Homogeneity of Texture

Continuity may refer to the texture of structures. Textures are difficult to define, as
they are a kind of microstructure in a structured world (samples from the Brodatz
textures in Fig. 6.10 show some of the variety of different textures). Just where
an entity stops being a structure and starts to be a microstructure is a matter of
viewpoint. The fabric of a curtain, for instance, may be called a texture, but at close
inspection a thread of the fabric may be a structure itself having a texture from its
constituting filaments.

Textures have two properties in common.
1. A texture has a repeating pattern. It may be an exact repetition as in manufactured

surfaces or a repetition with a random component as in many textures of natural
objects.

2. The computation of texture features requires a texture-specific minimal size of
the window in which all scene elements belong to the same texture.
Deterministic texture patterns on an object are usually found on manufactured

objects. The representation of such textures is by their constituting, deterministic
texture elements (texels). In medical imaging applications, textures on objects are
caused by the structure of the organs imaged. Constituting elements certainly exist
but they are usually much smaller than the imaging resolution. Visible textures are
caused from the interaction between the measured signal and these structures. The
textures can be described statistically in the spatial or the frequency domain.

It has been shown that three properties are necessary for differentiating adjacent
regions by texture.
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Fig. 6.10 Samples from the Brodatz textures. It can be seen that it will be difficult to define feature
sets that capture the characteristics of all these textures

1. Texture orientation can best be explained in frequency space. Textures possess-
ing one or more pronounced orientations will have most of the energy in fre-
quency space in sectors along those orientations.

2. Texture periodicity relates to the smallest region necessary to represent all prop-
erties of a texture.

3. Texture complexity relates to the composition of it. A texture that is composed
of basic elements of the same size is less complex than one that consists of basic
elements of different sizes. A texture that consists of white noise is less complex
than one consisting of colored noise.
Textures of distinguishable, adjacent segments need to be different in at least one

of the three aspects.
Segmentation by texture plays a minor role in medical image analysis, as most

properties from differently textured organs are too subtle to be exploited. Examples
for exemptions are as follows.
• MRI, where artefacts from tissue-specific magnetic field inhomogeneities con-

tribute to noise.
• Ultrasound, where tissue-specific refraction artefacts influence the signal.
• Photographic images of the skin, where, e.g., scars exhibit macroscopic textures.
• Microscopic images, where cell textures can be spatially resolved.
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A multitude of different texture measures exists, but in view of the rather limited
use of texture as a feature we will list just some that are exemplary for different
ways of measuring the statistical properties of texture.
• Haralick’s features of the co-occurrence matrix measure second-order statistical

attributes of the gray level co-occurrence matrix (GLCM). GLCM features were
presented in Haralick et al. (1973). Later experiments confirmed that second-
order statistical features are important for object discrimination (Julesz 1975,
1981).

• Spectral features are created from integrating amplitudes over a partitioning of the
texture representation in the frequency domain. They are a direct measure of the
orientation and periodicity of a texture in the frequency or spatial domain (e.g.,
He and Wang 1991). Gabór filters are a specific variant of this as they combine
spatial and frequency characteristics by a bank of differently oriented, windowed
frequency transforms (Grigorescu et al. 2002).

• Law’s filter masks are a set of orthogonal convolution kernels to measure the
periodicity and orientation of textures in the spatial domain.
The attributes of textures can be determined in many ways and some research

has been devoted to estimate the quality of such features (e.g., du Buf et al. 1990
who presented a framework for testing textures). A comparative study for determin-
ing the discriminative power of 15 types of texture measures including the above-
mentioned three measures in Wagner (1999), which was carried out on six very
different types of textures ranging from the Brodatz textures to textures in micro-
scopic cell images, found no significant difference between the measures. It was
found, however, that different measures excelled in the six classes. This corrobo-
rates a strategy of carefully selecting a texture measure based on the characteristics
of the texture to be differentiated.

The reliability of a computed texture feature depends on the size of the region
from which it is computed. This is apparent for Haralick’s GLCM features. The
measure of co-occurrence in some neighborhood of a pixel is just an estimate whose
reliability depends on neighborhood size. The dependency on neighborhood size ex-
ists for other texture measures as well because the texture of a pixel is always defined
by intensity variation in some neighborhood. Hence, regions from which textures are
computed should be large. However, texture-based segmentation implicitly assumes
that an image contains at least two different textures to be separated. Texture com-
putation at unknown segment boundaries becomes unreliable if pixels of more than
one segment contribute to the texture measure. This would point to selecting the
smallest possible neighborhood for texture computation.

There are three strategies to deal with this problem.
1. Texture measures are chosen that require only a small number of pixels for com-

puting reliable features. Unreliability at segment boundaries is neglected or may
even be used as a characteristic for finding a boundary. An example is Lorigo et
al. (1998) who segmented MR knee images by a geodesic active contour, which
used local variance as a textural feature.

2. Segmentation is carried out iteratively. At initialization, the neighborhood around
a pixel of a given texture is assumed to contain only pixels of that texture. At a
second step, regions for texture computation are refined using edge information
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Fig. 6.11 Different kinds of domain knowledge can be used to guide an analysis process

from the first step. An example is the work of Pitiot et al. (2002) on MR images.
They used features of the co-occurrence matrix and estimated segment bound-
aries using Gabòr filters. Another example for iterative segmentation is the work
of Reyes-Aldasoro and Bhalerao (2003) who used spectral features and com-
bined them with a multiresolution approach.

3. Segmentation is carried out in a multiresolution framework. Low-reliability re-
sults computed at a low resolution initialize the segmentation at higher resolu-
tion. This requires that textures be computed at different levels of resolution and
that resolution-dependent reliability can be computed. An example is the work
of Muzzolini et al. (1993) on texture-based segmentation of ultrasound images.
It has already been mentioned that texture-based segmentation includes compo-

nents of classification. Texture-based classification without segmentation is more
widespread in medical image analysis than texture-based segmentation. In classifi-
cation, a sample region with homogeneous texture is already computed. The prob-
lem of computing regions with homogeneous texture does not exist.

6.3 Domain Knowledge About the Objects

Detecting an object requires additional information about what to segment. While
the underlying model in data-driven segmentation is simple (homogeneity of inten-
sity or texture), further knowledge may be entered through an explicit description of
the properties of boundaries in a segmentation or about a foreground object. Domain
knowledge consists of information about (see Fig. 6.11) the following:
1. the appearance of boundaries between segments,
2. the location of an object within an image,
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3. the orientation and size of the object with respect to the scanner coordinate sys-
tem,

4. spatial relationships (location, orientation, or relative sizes) of the object with
respect to other objects in the image,

5. the shape and appearance of the object.
Most of the attributes relate to foreground segmentation where an object shall be

separated from the background. Just what information is used depends on the spe-
cific segmentation task. To be useful, domain knowledge for describing a foreground
object should be
• discriminative, i.e., the object and background must have different properties with

respect to the feature;
• generalizable, i.e., the property must be true for all possible instances of the ob-

ject of interest in all possible images within the field of intended use;
• efficiently computable with sufficient reliability.

The efficiency of computation is not mandatory, but domain knowledge should
not contain unnecessary information. If, for instance, bone segmentation in CT im-
ages using a simple threshold for discriminating bone from the less dense back-
ground materials delivers sufficient accuracy, it is not efficient to require an addi-
tional shape model for describing a specific type of bone.

6.3.1 Representing Domain Knowledge

Domain knowledge may be introduced to a segmentation method via an adjustable
model that is included in the segmentation method or interactively at run-time. Us-
ing incorporated domain knowledge allows predicting the behavior of the method
for a given data set.

If a method operates fully automatically based on data and a priori information,
the failure on the part of the model indicates that the domain knowledge does not
conform to the reality in the data. Validation will determine whether and to what
extent segmentation errors may be attributed to incomplete or wrong assumptions
about the objects. It will thus support improving a segmentation method by improv-
ing the descriptive power of the incorporated domain knowledge. This is not true
if knowledge is introduced interactively since human behavior cannot be exactly
predicted.

Validation will be discussed further in Chap. 13, but it should be noted that the
consequences of validation will be different if domain knowledge is supplied inter-
actively as compared to automatic segmentation using an incorporated model.

Each of the five types of domain knowledge listed above can be represented by
the following.
• A parameterized description such as the representation of a segment orientation

by a vector in scanner space.
• A sampled description such as the representation of shape by a sequence of

boundary points.
• An implicit description such as the representation of a shape by a function on

image domain describing its boundary.
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A parameterized description reduces a property to a set of parameters. The pa-
rameters can usually be represented with arbitrary precision. Other aspects corre-
sponding to the same property are excluded. Describing the shape of an approx-
imately oval object by the center as well as the length and orientation of its two
major axes, for instance, fails to represent any deviation of the true object from the
elliptical shape.

The properties described by samples require a sufficiently high sampling rate.
The almost oval shape in the example above could be described by a finite number
of boundary points. The number and distribution of these points determines the
accuracy with which actual shapes are described.

The properties described implicitly as a function of the image domain require a
number of base functions on this domain, which can be combined to describe the
object boundary. The description accuracy depends on the number and complexity
of the base functions.

The property values of any of the descriptions may be combined in a property
vector describing the expected features of a segment.

6.3.2 Variability of Model Attributes

Domain knowledge about objects in images describes the properties of a class of
objects. Incorporating it into a segmentation method has to include known variation
among instances of a class. Variation is specified by a range of permissible property
values in the property vector. Information about acceptable variance within a class
may be obtained from expert information or from training.

The reliability of expert information depends on the expert and on the kind of
knowledge. Many implicit knowledge representations use simple assumptions about
the local smoothness of object boundaries which can be readily assumed for most
structures occurring in medical imaging. Apart from a few parameters governing
the influence of intensities or their derivatives on the model, no further informa-
tion has to be introduced prior to applying a model-driven segmentation technique.
The strategy may have limited success in the case of artefacts or an insufficient re-
lationship between image information and object appearance. Nonetheless, a very
popular segmentation paradigm is based on the implicit representation of local do-
main knowledge. An implicit representation, called level set representation, inte-
grates many aspects of low-level knowledge about segments in a common concept
and will be detailed in Chap. 9 on active contours and surfaces.

High-level knowledge characterizing class membership and the variation of
shape and appearance of an object is more difficult to acquire. An expert (a radiol-
ogist, a surgeon, etc.) certainly has vast experience about the possible appearances
of structures that are of interest to him or her. This experience by far surpasses the
capabilities of the computer-based representation of it. However, the expert uses the
knowledge as needed and may never have to express it a priori in an unambiguous
fashion.
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The type of domain knowledge also influences the ease with which a description
may be created. It is, for instance, easy to establish the average size and position of
the heart in x-ray CT. It is much more difficult to describe its expected shape and
shape variation.

Resorting to training solves some of the problems mentioned above. Training
samples are usually taken from the same kind of images that are to be segmented
later. The transfer from human knowledge to the representation of domain knowl-
edge in a segmentation method takes place when a human operator prepares the
training samples.

Training is time-consuming and may also suffer from lack of samples. If, e.g., the
property vector of the parameterized description of oval shapes contains just five el-
ements (x- and y-coordinates of the center, angle of the long axis with respect to the
x-axis, lengths of long and short axes), training the expected value and variance in
this 5D space from, say, 25 samples would not be very reliable. Asserting reliability
gets worse if the size of the property vector increases.

Automated training may facilitate the acquisition of training samples. Still, a suf-
ficient number of images must exist for training. Furthermore, an analysis module is
needed to retrieve property values from these images. Developing the analysis mod-
ule may require so much domain knowledge about the objects to be segmented that
it solves the segmentation problem altogether. Automatic training from segmenta-
tion with an adjustable model component can still make sense because it may be
used as a learning component, which causes performance to improve with continu-
ous training.

Segmentation employs such descriptive a priori information by producing seg-
ments whose properties resemble properties as predicted by the model. Probability
is sometimes computed using a Bayesian formulation where the domain knowledge
is part of the a priori model. Often, probability is used much more informally and
segments are chosen with properties that are in some defined way closest to an av-
erage appearance predicted by the model.

6.3.3 The Use of Interaction

The interactive incorporation of domain knowledge has the advantage of being flex-
ible because an expert user decides about the necessary input at segmentation time.
If the system responds immediately to interaction, knowledge incorporation at run-
time also delivers cues about potential input errors.

Interactive input may happen directly on the image or it may be an adjustment of
segmentation parameters. The former is attractive to most users as it allows them to
directly interact with the medium that they want to segment. However, the interac-
tion on the image can be tedious if
• it is required for a prolonged time,
• interaction devices are inappropriate,
• the relation between interaction and consequence for the result is not intuitive.
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Fig. 6.12 The five different kinds of interaction that may happen during image analysis

This may affect the quality of segmentation or reduce the acceptance of the
method. If tiresome interaction cannot be avoided, small input errors need to be tol-
erated and corrected automatically while large errors should be detected. Depicting
structures instead of requiring their delineation is to be preferred because the de-
piction is less sensitive to input errors than delineation. If delineation is necessary,
the cues from the image—often delineation should follow high gradient curves—
and from the underlying assumption about the depicted object—the boundaries are
often smooth and not ragged—should be used to detect and correct potential errors.

Interaction by parameter setting is often more robust with respect to erroneous
interaction, but the effects on the segmentation are less intuitive. A way to cope with
the semantic gap between the abstract parameter setting and its effect is to produce
an immediate result. The user learns the dependencies between parameter settings
and segmentation result from immediate experience.

In any case, an explanation of the mode of operation of a parameter should be
available on request by the user. The seemingly complex behavior of parameter
adjustment should be described by example and be available to the user as well
(e.g., in a documentation or an online tutorial).

Interaction in a segmentation algorithm may come in one of five varieties (see
Fig. 6.12).
1. In a priori parameterization the user is requested to enter parameter values of an

adjustable segmentation algorithm. Once parameters are set—such as indicating
the location of an object of interest or setting thresholds of the expected intensity
range of the object—the segmentation algorithm proceeds automatically until it
produces the result.

2. Through segmentation guidance the user supports the segmentation until a satis-
factory result is generated. An example would be the entering of boundary points
in a user-guided delineation of an organ boundary.

3. Feedback happens after segmentation has been carried out. The user varies pa-
rameters or changes the way of guidance to improve the quality of the result. An
example is the threshold variation in threshold segmentation. Feedback requires
the recomputation of the segmentation.

4. Correction changes the segmentation result according to user expectation. An
example would be the removal of parts of a segment that do not belong to the
object of interest. Correction usually implies positive confirmation.

5. Confirmation is the process by which the user accepts or rejects a result.
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Fig. 6.13 It depends on the image (and information and artefacts contained in it) whether a certain
interaction component is useful and efficient or not

Parameterization is often required. Adapting parameters will be successful in ap-
plications that follow the underlying assumptions of the segmentation method and
which can be characterized by a proper parameter setting. The limitation of param-
eterization is that interactively added knowledge can only specify but not extend or
counteract the knowledge implemented in the segmentation method.

Using guiding interaction is more powerful but at the cost of reduced control
about the result. A very general and very simple segmentation tool using guidance
would draw a boundary of a foreground object according to interactive mouse input
from the user. This method would be able to segment any object that the user recog-
nizes in the image. It also puts the burden of retrieving and using domain knowledge
on the user.

Guidance may also counteract an inappropriate segmentation model. One could
imagine, for instance, guiding an edge-tracking method in an ultrasound image.
Since most of the high gradients stem from noise and artefacts the user will con-
stantly have to correct tracking errors that are due to the false hypothesis of high
gradients being mainly caused by object boundaries (see Fig. 6.13).

However, a similar edge tracking could be very suitable for some CT image with
its high contrast. Tracking will only occasionally loose the boundary. It may be
easier to let the user enter the information on the spot instead of providing a model
that covers those rare cases. Hence, guidance can be an efficient and effective means
to support segmentation if its use is justifiable. It should not be an excuse for a poor
model of domain knowledge.

Feedback differs from guidance in that is does not interfere with the segmen-
tation process itself but offers the user the chance to repeat the segmentation with
refined parameters. It is less susceptible to misuse in the case of an inappropriate
segmentation method because feedback cannot change the segmentation model.1

The advantageous use of feedback requires the expert to understand the underlying

1If the model is mainly based on its parameterization and requires frequent feedback, it again would
indicate a poor design of the segmentation model. This should not happen in practice, because in
such case the success of segmentation would vary substantially with different parameter settings
making segmentation time-consuming and awkward to use.
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a priori model of the segmentation method. The expert, who knows what a suc-
cessful segmentation should look like, can then decide based on current results how
parameterization should be changed.

Receiving feedback can be a frustrating experience, however, if the change of
parameter values leads to unexpected behavior because the consequences of the
segmentation result are not intuitive. Sometimes, understanding about proper pa-
rameterization can be gained by observing the behavior of a segmentation algorithm
even if the correspondence between the segmentation result and parameter setting is
not straightforward. Gaining experience from the feedback of the method improves
with the speed with which the results are computed.

Interaction through correction is another powerful tool because discrepancies be-
tween the expected and computed results can be removed. However, correcting seg-
mentation results hints at deficiencies of the incorporated domain knowledge. An
example for interaction through correction is the combination of thresholding with
subsequent correction because object intensity does not differ everywhere from the
background intensity.

The use of correction should be limited to cases where the inclusion of the miss-
ing domain knowledge is inefficient because costs exceed benefits. Correction that
is required regularly for creating a valid segmentation indicates an inappropriate
segmentation method.

Interaction by confirmation does not extend the bandwidth of the applications
of a given segmentation method directly. It may be used, however, to adapt a seg-
mentation method to some application. Every time that a user accepts or rejects a
result new information is given. Some segmentation algorithms are able to profit
from confirmation by adapting the automatic parameter setting accordingly. Con-
firmation also assures that the final decision as to whether a segmentation result is
correct belongs to the expert user.

6.4 Interactive Segmentation

The algorithmically simplest way of segmentation is to completely rely on user
guidance to outline the boundary of a foreground structure. Employing some input
device such as a mouse, a trackball, or an electronic stylus on a graphical tablet, the
user traces the boundary on a rendition of a 2D scene. The method can be applied to
arbitrary 2D scenes assuming that the user has all the necessary domain knowledge.
Interactive segment delineation by an expert often provides a reference for a semi-
automatic or automatic segmentation scheme. The underlying assumption is that a
domain expert provides proper model knowledge.

The main problem of interactive segmentation is that it can neither be guaranteed
that a user really possesses all the necessary information for a perfect segmentation
of an image nor that this information is applied correctly during segmentation. In-
teractive segmentation as a validation tool hence requires some modeling of human
error when segmenting an image. As no analytical model of this kind exists, it is es-
timated from an assumed error distribution based on the input from several different
observers.
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Fig. 6.14 Interactive delineation is supported if the user has only to click at few boundary points
and if positions selected by user input are automatically corrected by displacing them towards the
position with locally highest gradient

If interactive delineation is used in routine segmentation, these accuracy prob-
lems may occur as well. Delineating boundaries in data is tedious and time-
consuming. The performance of a user depends on individual experience, on stress,
on tiredness, and similar factors. Hence, interaction is often supported by low-level
techniques borrowed from image enhancement or data-driven segmentation. Exam-
ples are as follows.
• The boundaries to be delineated are highlighted by displaying the intensity gra-

dient instead of the original image. Edge contrast is increased by noise removal
techniques such as edge-preserving smoothing.

• Just a small number of boundary points are provided by the user (see Fig. 6.14).
They are connected by automatically generated line segments (straight lines or
curves).

• User input is corrected automatically by offsetting the boundary orthogonal to its
tangent toward the nearest highest gradient (see Fig. 6.14).

• The user is allowed to correct a delineated boundary. This is most efficient if the
boundary does not consist of a sequence of neighboring pixels, but of a sequence
of points connected by curve segments. User correction of a single point then
induces a corresponding correction of its two incident line segments.
Segmenting 3D data sets using interactive delineation requires the successive

delineation on a sequence of 2D slices. The process can be simplified by projecting
results from the previous slice to the current slice and letting the user correct it.
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Fig. 6.15 Thresholding can be done interactively and separates the image into different regions.
Valleys in the histogram indicate potentially useful threshold values

6.5 Thresholding

Medical images are made on purpose. Often, the object of interest stands out by
having intensity values higher or lower than the background. Hence, thresholding
is an often-used tool in segmenting medical images (a survey of early thresholding
methods can be found in Sahoo et al. 1988). Segmentation s of an image f by
threshold t at a pixel or voxel v is given by

s(v) =
{

1, if f (v) > t,

0, otherwise.
(6.1)

Thresholding produces a separation of image pixels into foreground pixels
(s = 1) and background pixels (s = 0). If more than one threshold is chosen, sepa-
ration into several different regions is possible as well (see Fig. 6.15).

Sometimes, the result already separates the object-of-interest from the back-
ground (e.g., if thresholding was used on contrast-enhanced images such as digital
subtraction images). If not all foreground regions are part of the object-of-interest, a
connected component analysis (CCA) follows, which labels all foreground regions.
Regions forming the object-of-interest are then identified by the user.

Thresholding can be done interactively. The user selects a threshold and seg-
mented structures are displayed. The threshold is varied until the segmented struc-
ture meets the expectations of the user. This kind of interaction should be avoided
if it is difficult to display the segmentation result (e.g., if data are 3D or 4D) or if it
can be expected that the result will include too much user-caused variation.

Automatic thresholding techniques attempt to use the underlying assumptions of
thresholding. Since it is assumed that foreground pixels have a different value than
background pixels, the histogram of the image should have two peaks (a so-called
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Fig. 6.16 An iteration step
of Otsu’s method to find a
threshold: The new threshold
is halfway between the
expected values of the two
distributions separated by the
old threshold

bimodal histogram). The threshold should be somewhere between the two peaks.
Since distributions forming a bimodal histogram usually overlap, the threshold is
found at a location between the peaks that produces the smallest number of wrong
label assignments.

However, noise will cause the histogram to have several local maxima and min-
ima. Otsu (1978) presented an iterative procedure to find an optimal threshold for
a histogram h with bimodal distribution. It is based on the assumption that the dis-
tribution characteristics for foreground and background pixels are approximately
equal except for their expected value. It finds a threshold based on an initial esti-
mate t as average between these expected values (see Fig. 6.16 and the algorithmic
sketch in Fig. 6.17).

The initial estimate for t is computed as the local minimum of a smoothed his-
togram. If the histogram is too noisy, a first estimate can be taken as t = 0.5 · gmax.
The method has been extended to separate more than two classes by applying it
recursively on the foreground or background pixels (Cheriet et al. 1998).

A similar approach uses the fuzzy set theory to iteratively determine thresholds
(Tobias and Seara 2002). The authors defined two subsets of gray values that belong
to the foreground and the background and a third subset of gray values between
the two of which membership is initially unknown. Gray values from this set are
assigned fuzzy memberships that depend on the histogram of the foreground and
background pixels and on that of the nonclassified region. The final threshold is
then found at the location where the two fuzziness functions for foreground and
background intersect.

Finding the threshold minimum can be difficult if the number of foreground pix-
els is small compared to the number of background pixels. The peak for foreground
pixels is then in the range of noise variation and it may be impossible to determine.
A solution for finding the threshold in such a case has been given by the algorithm
of Zack et al. (1977) (see Fig. 6.18).
• Compute a line between the two local maxima of the two distributions.
• Compute the distance dL(h) for each entry h of the histogram to this line.
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tnew = ∞,
t = tinit,
while |t − tnew| > eps do
compute the expected values of the two distributions separated by t :

m(0, t) = 1

t + 1

t∑
g=0

g · h(g),

m(t, gmax) = 1

gmax − t + 1

gmax∑
g=t

g · h(g),

tnew = 0.5 · (m(0, t) + m(t, gmax)
)

end_while.

Fig. 6.17 Sketch of the loop of Otsu’s algorithm to determine a threshold in a bimodal histogram
given some initial threshold tinit

Fig. 6.18 The algorithm of Zack defines the threshold as the location where the distance of a
curve through the histogram from a line through the two maxima is maximum

• Convolve dL with a smoothing kernel to remove the effects from noise.
• The threshold is hmax for which dL(hmax) is maximum.

The algorithm of Zack is a good, albeit heuristic, approximation of an optimal so-
lution under a Bayesian assumption. Under this assumption, the histogram would be
the combination of two probability distributions Pf (v|g) for v being a foreground
pixel given its gray value g and Pb(v|g) for it being a background pixel weighed
by their a priori probabilities (i.e., the two a posteriori distributions). The optimal
threshold producing the smallest number of false classifications would then be the
intersection of the two distributions. This is not always the minimum of the his-
togram. If the variance of one of the two distributions is smaller than that of the
other, the algorithm of Zack moves the threshold toward the former, which is qual-
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Fig. 6.19 For relaxation labeling, initial foreground and background reliabilities are computed by
evaluating the distance of each pixel intensity from the threshold

itatively similar to what happens for the optimal threshold under the Bayesian as-
sumption.

Thresholding may not work, although the contrast between the foreground and
background is seemingly high, if underlying shading distorts the image. This hap-
pens in MR imaging when the coil used for inducing the imaging signal does not
produce a constant signal within the scene (see Hou 2006; Vovk et al. 2007 for re-
views). Microscopy is another field where shading complicates the threshold-based
segmentation (see Tomazevic et al. 2002 for a review). If shading correction is im-
possible during image generation, it can be done retrospectively if the knowledge
exists at least in parts of the image to separate shading effects from other intensity
variations.

Another adverse influence stems from noise. Mainly at segment boundaries,
many of the pixels may be assigned to the wrong segment. A simple way to deal
with this is a morphological postprocessing (opening or closing) to remove arte-
facts. Alternatively, Rosenfeld and Smith (1981) presented a variant of relaxation
labeling which takes into account a measure of certainty of segment membership
when correcting segment labels.

Initial reliabilities p and q are computed for each pixel v belonging to the fore-
ground or background based on some threshold t (see Fig. 6.19):

p(v) = 1

2
+ 1

2

g(v) − t

gmax − t
, (6.2)

q(v) = 1

2
+ 1

2

t − g(v)

t − gmin
. (6.3)

Reliability values are iteratively updated based on the foreground and back-
ground membership of surrounding elements w. At some iteration k, support values
Sf and Sb for v belonging to the foreground or background are then computed from
the eight neighbor pixels w ∈ Nb(v)

Sf (v) = 1

8

∑
w∈Nb(v)

C
[
pk(v) > qk(w)

]
pk(v) − C

(
pk(v) < qk(w)

)
qk(w), (6.4)
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Fig. 6.20 Example for
computing support values in
an 8-neighborhood

Sb(v) = 1

8

∑
w∈Nb(v)

−C
[
pk(v) > qk(w)

]
pk(v) + C

(
pk(v) < qk(w)

)
qk(w),

(6.5)

where C() is an indicator function that is 1 if the expression in the brackets is true
and 0 otherwise (see Fig. 6.20).

Given the support from neighboring pixels the segment membership reliabilities
are now updated:

pk+1(v) = pk(v)[1 + Sk
f (v)]

pk(v)[1 + Sk
f (v)] + qk(v)[1 + Sk

b(v)] , (6.6)

qk+1(v) = qk(v)[1 + Sk
b(v)]

pk(v)[1 + Sk
f (v)] + qk(v)[1 + Sk

b(v)] . (6.7)

This process continues until the change in reliability values falls below some
prespecified minimum.

Thresholding is more difficult if multichannel functions are to be segmented
since it requires the specification of a region in multidimensional feature space.
For more than two channels, the feature space needs to be projected on 2D space.
Thresholds are defined interactively in several different projections. Backprojection
of threshold boundaries from the different 2D spaces to the original feature space
produces the multidimensional region boundary. Interacting with such a system for
correcting the initial guesses of thresholds can be very demanding. Each projec-
tion restricts the set of definable threshold boundaries. Finding good thresholds will
require manipulation in the projections as well as manipulation of the projection
directions.2

Thresholding is a simple technique that is fast, easy to implement, and easy
to understand. It may be extended to separate several different classes in images
with multimodal histograms. Finding thresholds automatically may become unsta-
ble when it becomes difficult to find reliable criteria for differentiating between true
and false local maxima in the histogram.

2Thresholding is essentially a classification in feature space as it finds a decision boundary. If
the feature space is multi-dimensional, the user should resort to classification techniques that are
described in Chaps. 7 and 12.
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Fig. 6.21 Schematic view at the region merging process. At each iteration the two most similar
regions are merged until such merging would violate the similarity criterion for pixels belonging
to the same region

6.6 Homogeneity-Based Segmentation

Segmentation based on local intensity homogeneity does not require an absolute
threshold but a local variance criterion that is valid for all pixels within a segment.
The goal is to separate an image into the smallest number of segments so that for
each of the segments this criterion is fulfilled. Examples for homogeneity criteria
are the variance of pixel values, maximum deviation between pixel intensities, or
the probability that all pixels belong to the same probability distribution.

Two basic segmentation algorithms for this are region merging and the split-and-
merge algorithm. Both are not guaranteed to produce an optimal result, as they only
ensure the homogeneity criterion and not that the smallest number of segments is
found.

The following are the steps for computing a segmentation by region merging (see
Fig. 6.21).
• Initially, each pixel is considered to be its own region.
• Map regions to a region adjacency graph (RAG) in which nodes represent regions

and adjacent regions are connected by an edge.
• Compute the homogeneity value for each edge for a region that consists of the

two regions connected by the edge.
• As long as there exists at least one edge of which the homogeneity value fulfills

the homogeneity criterion,
– merge the two most similar regions and
– update the RAG accordingly.
The result is a segmentation where each region fulfills the homogeneity criterion.

It is not necessarily optimal because the greedy strategy always merges the most
similar regions without considering the influence of this merge with respect to adja-
cent regions. Region merging should be implemented using efficient data structures
for accessing RAG nodes and for sorting elements after a merge step. Otherwise,
the method will be slow because the naïve approach has a O(N2) computation cost
with N being the initial number of regions (which can be very large if for instance
3D data sets are segmented). There are a number of strategies to get around this.
• Compute an oversegmented image on which region merging is to be carried out

so that N is small.
• Use the fact that only few changes in the sorting order take place when two re-

gions are merged and use an appropriate data structure.
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Fig. 6.22 During the first phase of the split-and-merge algorithm, regions are split into subregions
until each subregion fulfills the homogeneity criterion. The split procedure is documented in a
quadtree

• Change the selection order in a way that does not require a new sort after each
merge.
All of these strategies have been used. Using an already partially segmented im-

age is, for instance, done when combining region merging with a prior region split-
ting process by the split-and-merge algorithm. It starts with the complete image
being a single region and keeps splitting the image until each region fulfills the
homogeneity criterion. The split part has the following steps (see Fig. 6.22).
• Initially the complete image is a single region.
• As long as a region exists that does not fulfill the homogeneity criterion

– split this region in four quarters (for a 2D image) or eight subvolumes (for a
3D volume) and

– document the split in an appropriate data structure (quadtree or octtree).
If no further regions need to be split, the current segmentation is turned into a

RAG on which a region merging is carried out to merge regions that were acci-
dentally split. Even when using naïve representations and sorting techniques the
combination with the split step will reduce the computation time substantially as
splitting should result in much fewer regions then there are pixels or voxels in the
image.

For computing initial regions, other segmentation techniques can be used as well.
An example is the watershed transformation (WST) that is discussed in the next
section. Although the WST criteria are different from the homogeneity criteria dis-
cussed here, the oversegmentation, which is usually the result of applying WST,
results in homogeneous segments. Combining this with a merging step, hence, is
more efficient than just using region merging alone.

In Haris et al. (1998), the method was sped up further by using a priority queue
for keeping the ordered list of RAG edges. The gain in speed results from the fact
that merging requires removing and adding only a few edges from the list instead
of having to sort the whole list again. Another way to increase the performance
of the merging process is to avoid resorting altogether (Nock and Nielsen 2004).
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This is an approximate solution which is possible based on an external model about
pixels belonging to the same region. The predicate for this criterion is computed and
ordered only once and region merging proceeds by this order.

6.7 The Watershed Transform: Computing Zero-Crossings

Intensity edges defining segment boundaries are somewhat complementary to the
homogeneity of intensity-defining segments. There is a difference, however. Inten-
sity edges may still be discernable and can be used for separating segments even
if intensity variation from shading makes definition of a homogeneity criterion im-
possible. On the other hand, relying on edge information is inherently less robust
with respect to noise since computing derivatives of the intensity information also
enhances noise. Hence, many edge-based segmentation schemes require that noise
reduction takes place either in a preprocessing step or as part of the edge-based
segmentation method.

The watershed transform (WST) is a popular way to use edge information as cri-
terion to separate segments (an excellent review of WST techniques can be found in
Roerdink and Meijster 2000). If the WST is carried out on the gradient lengths of the
intensity gradient, it is equal to defining segment boundaries by the zero crossings of
the Laplacian of the intensity function. For twice differentiable functions on a real
domain the locations of the zero crossings are closed, non-overlapping boundaries.
For images defined on a discrete domain this is only approximately true, but it is a
very nice parameter-free way of image segmentation with the appeal that zero cross-
ings have been shown to be important features for analysis by human vision (Marr
and Hildreth 1980). The watershed transform to compute the segments is defined as
follows.
• The scene is treated as a landscape in which function values (i.e., the gradient

length) represent height.
• Each local minimum in this landscape is a sink.
• Watersheds in this landscape are boundaries in the terrain which separate regions

that drain into different sinks.
Given this description, an image will decompose in as many segments as there

are sinks. If the sinks are local minima of the gradient length, every local mini-
mum, maximum, or saddle point in the original intensity image will be a center of
a segment. If the image contains noise it will produce a severe over-segmentation.
Using the WST for segmentation, therefore, requires either noise reduction before
applying the WST, or noise reduction included into the WST, or intentional use as
presegmentation to be further processed by some other process that merges WST
segments.

Computing the watershed transform can be done by flooding where sinks are
treated as sources (see Fig. 6.23 and the sketch of the algorithm in Fig. 6.24).

If noise in the image is not dealt with during preprocessing and if the number
of segments shall be reduced, the WST can be applied in a hierarchical fashion
(Beucher 1994). In this case, the segments of the first WST are superpixels for an-
other WST. Gradients can be estimated by computing average intensity differences
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Fig. 6.23 The watershed transform can be carried out by flooding the scene from sources at local
minima in the image

set the initial flood level for an image f to l = minv(f (v))

while l < maxv(f (v)) do
Detect all pixel vl that are newly flooded at level l

if a pixel vl is connected to pixels which all have a segment label L then
segment L is extended by vl .

if a pixel vl is not connected to any pixel that has a segment label then
this is the first pixel of a new segment: label it Lnew.

if a pixel vl is connected to at least two pixels with different labels then
label the pixel W(for watershed)

l = l + 1
end_while

Fig. 6.24 Sketch of the flooding algorithm for the watershed transform

to neighboring segments weighted by the size of the neighboring segments. The hi-
erarchical WST reduces the number of segments, but it also increases the size of the
watershed (super)pixels. It can be avoided when watersheds are not pixels but pixel
boundaries. The waterfall algorithm of Beucher does exactly this. Different basins
are merged if their watersheds are lower than those to surrounding basins. The hi-
erarchy of merging basins can be used to assign a saliency measure to the segments
(Najman and Schmitt 1996). Saliency is higher when a merge happens later.

It is not guaranteed that a hierarchical WST produces more meaningful seg-
ments than the original WST. The hierarchical WST transforms the segmentation
into scale-space and the underlying assumption is that there is an optimal scale for
the complete image. In reality, however, there is certainly an optimal scale for ob-
jects or parts of objects, but this scale varies within the image. Hence, for each object
the optimal segment is found on a different scale. Unless the existence of an optimal
scale can be predicted a priori, the only way to deal with this is to include expert
knowledge into the segmentation that comprises information about the appropriate
scale.

The watershed transform can be combined with user interaction by providing a
picking component (Meyer and Beucher 1990; Vincent 1993). Oversegmentation
from standard WST arises because the underlying model for segments (each local
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Fig. 6.25 Marker-based WST proceeds in a similar fashion than the original WST, except for the
fact that flooding occurs only from marker positions. Regions that are not connected to a mark-
er-labeled region receive a provisional label “unknown”

minimum in the map of gradient lengths is a segment) does not describe what is
wanted (i.e., the separation of organs in a medical image). The marker-based WST
(mWST) adds information about objects to be segmented by replacing local minima
as a source for flooding by prespecified marker positions (see Fig. 6.25).

At least one marker needs to be placed into any foreground or background re-
gion to be differentiated. The watershed transform still increases the water level.
However, regions that are not flooded from a marker position become a provisional
label “unknown.” If a region with this label merges with a marker-labeled region it
receives the label from the latter. By providing markers the number of segments is
predefined (it cannot be larger than the number of markers). A region may be rep-
resented by more than one marker if they have the same label. Marker positions can
be set manually or may be computed by a detection process (e.g., Grau et al. 2004
where marker positions are computed from skeletonized probability maps).

6.8 Seeded Regions

Region growing combines data-driven constraints with interactively added domain
knowledge (Zucker 1976). The user points out an object that needs to be separated
from the background by specifying a seed point in the object. A homogeneity cri-
terion characterizes the appearance of the region to be segmented. Region growing
detects all pixels or voxels that can be reached from the seed point by paths of adja-
cent pixels or voxels for which the homogeneity criterion applies.

Pointing out a structure in an image is much easier than delineating its bound-
ary. It requires the user to recognize at least one location that surely belongs to the
foreground object. The underlying assumption is that the homogeneity criterion is
independent of the seed point location so that different seed point locations deliver
the same result (this assumption needs to be tested in a later validation).

In Fig. 6.26 a sketch of the region growing algorithm is given that is started on
an image f (x) with seed point xseed and homogeneity predicate hom(f (x)). The
function “neighbor(x, i)” is assumed to return the ith neighbor of x.
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Algorithm Region_growing_segmentation (xseed)
begin

Label_field[] = not_visited
Region_grow(xseed)

end
Algorithm Region_grow(x)
begin

if label_field[x] = not_visited and hom(f (x)) then
begin

label_field[x] = visited
for i = 1, nbs do

region_grow(neighbor(x, i))
end

end

Fig. 6.26 A simple region growing algorithm

Fig. 6.27 Finding the best homogeneity criterion is often done by trial-and-error and can be diffi-
cult in region growing

Homogeneity needs to be computable for a single pixel or voxel. It is often the
variance of the intensity function f (x) around some expected value. This corre-
sponds to the assumption that the foreground object can be separated by a lower and
an upper threshold from the background.

It can be challenging to define the homogeneity criterion. Often, it is assumed
that the intensity of the seed point corresponds to the expected value in the fore-
ground region. The variance is entered by the user and is found by trial and error
(see Fig. 6.27).

While finding a good homogeneity criterion can be done interactively in 2D,
controlling results in 3D by visual feedback is much more difficult. Homogeneity
may then be found automatically in a two-pass process assuming that the object
is well contrasted against the background (Pohle and Toennies 2001). In the first
pass, a seed point is set and homogeneity is computed based on an estimate of the
expected value and variance. This estimate is based on the number of elements in
the region already found and the current variance among these elements.

Initially, since the region has only a few elements, the variance is assumed to
be underestimated and corrected accordingly. With continuing growth, the homo-
geneity criterion approaches current estimates of the expected value and variance of



6.8 Seeded Regions 201

Fig. 6.28 The homogeneity criterion can be found in adaptive region growing by gathering infor-
mation in a first path starting at the seed point. Region growing is then repeated with the same seed
point when homogeneity has been determined

intensity. Growing terminates when no further scene elements can be included that
follow the current estimate of the homogeneity criterion. The process is repeated
with the same seed point, but with the homogeneity criterion computed in the first
pass.

The algorithm is successful if the estimate of the region characteristics is reliable
before the region boundary is encountered for the first time. Hence, the user is asked
to place the seed point in the center of the foreground object. The neighborhood
order in the for loop is changed at random producing a kind of random walk (see
Fig. 6.28).

A variant to make the region growing process independent of parameters except
for the seeds is seeded region growing that turns region growing into an mWST-
like segmentation procedure (Adams and Bischof 1994). In seeded region growing
the user specifies a number of seeds that separate the image in as many segments.
Initially, each seed forms its own segment and the labels of all other pixels are
unknown. Unlabeled neighbors of all labeled segments are ordered by some appro-
priate homogeneity criterion (e.g., intensity difference). The most similar unlabeled
pixel is then selected to be labeled. If this pixel is adjacent to labeled pixels which
all have the same label, it receives this label. Otherwise, it receives the label of the
segment to which it is most similar (see Fig. 6.29).

It is often required that inclusion criteria for region growing depend on features at
the seed location as this allows to implicit a definition of homogeneity by selecting
just the right location for placing a seed. It does mean, however, that the results
depend on the seed point location. If this is critical, symmetric region growing (Wan
and Higgins 2003) may be used, which was shown by the authors to produce results
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Fig. 6.29 In seeded region growing, each region receives a seed. Since always the most similar
pixel is added to one of the regions, homogeneous sets of pixels will have been added to the regions
before a pixel at the boundary of two regions is selected (e.g., the white circle). Pixels neighbored
to two or more regions are added to the one region to which they are the most similar

Fig. 6.30 Interactively adding an artificial boundary is a simple way to prevent region growing to
leak into parts that do not belong to the object to be segmented

independent of the seed point location as long as the seed is placed into the segment.
The algorithm requires a symmetric inclusion criterion (i.e., if this criterion allows
a region to grow from some point A to some other point B, then the same criterion
should allow growing from B to A).

Region growing sometimes leaks into the background because of noise, artefacts,
or the approximating nature of the homogeneity criterion. Preventing leakage can be
done either by interactively adding boundaries that must not be crossed by the grow-
ing process (see Fig. 6.30) or by using several seed points and creating the segment
as the union of regions from these seed points. The former is suitable if—because
of noise or other objects close by with a similar appearance—the leak happens only
at a few isolated locations. The latter is appropriate when the image has a well con-
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Fig. 6.31 The live wire
segmentation produces
boundary segments as
optimal paths between
user-specified start and end
points

trasted foreground object with shading. Selecting several seed points then assumes
that the expected value of the intensity is at least locally constant.

6.9 Live Wire

If it is impossible to give a homogeneity criterion to separate an object from the
background, it may still be possible to define its boundary given interactive input.
There are a number of methods to do interactive edge tracking, but by far the most
popular in medical image analysis is the live wire method (Mortensen et al. 1992;
Barrett and Mortensen 1997; Falcão et al. 1998), also known as intelligent scis-
sors (Mortensen and Barrett 1995). The concept is simple. The user selects a start
point on the boundary, then minimum cost paths according to some optimality cri-
terion are computed to all other points and the user selects the most appropriate end
point among those (see Fig. 6.31). This becomes the start point for the next contour
segment. The procedure continues until the first boundary point is reached and the
boundary around the object of interest is closed.

The methodology is popular because interaction is easy and the response to in-
teraction is fast. To understand the behavior of the live wire algorithm it is helpful
to know some of its details. Several components govern the behavior of a live wire
contour.
• The optimality criterion is a local criterion that can be evaluated at each pixel site

and decreases with the increasing likelihood of this site being part of the contour.
• The distance between the start and end points indicates the maximum distance

between sites where the optimality criterion overrides user input.
• Preprocessing separates artefactual influences from true edge information in the

local optimality criterion.
Optimality is a combination of local pixel attributes and the boundary length. In

other words, in the absence of local attributes the optimal boundary between two
points is a straight line.
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Fig. 6.32 Choosing maximal gradient length for live wire segmentation would not produce the
desired result for segmenting the liver boundary. Using the gradient at the start point as training
sample should be more successful

The image is turned into a graph by making nodes out of every pixel and by
connecting two nodes by an edge if two pixels are neighbored (four- or eight-
neighborhood). Nonnegative local costs are attributed to the nodes of the graph.
An example for node costs c(i, j) for a pixel (i, j) with function value f (i, j) is

c(i, j) = (∥∥∇f (i, j)
∥∥ − ḡ

)2
, (6.8)

where ḡ is the expected gradient length for pixels belonging to the boundary. This
cost function assumes that the average strength ḡ along the boundary is known and
penalizes deviations from it.

Given the cost function for the nodes, the optimal boundary between (istart, jstart)

and (iend, jend) can be computed as the minimum cost path using Dijkstra’s algo-
rithm. This algorithm keeps a list of the active nodes and associated path costs for
reaching this node. Initially, it contains only the start node of the path. The path cost
is the node cost. Then, the node with the lowest path cost is selected and removed
from the active node list. Path costs of nodes that are connected to the selected
node by an edge are computed. These nodes are added to the active node list. The
algorithm terminates when the end node is selected from the active node list. The
minimum cost path is generated backtracking the path from the end node to the start
node.

The value of ḡ needs to be predefined. It could be the largest gradient in the
image. In this case, a boundary with the strongest gradients is searched. It could
be the gradient at the start point, which is then taken as a model for the boundary
(see Fig. 6.32). It could also be computed in a training phase, where representa-
tive boundaries are delineated manually and an average gradient is computed along
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Fig. 6.33 Live wire is an interactive procedure. (a) After selecting a start point path, costs are
computed for arbitrary end points and the user selects a point on the boundary where the minimum
cost path still follows the object boundary. (b) Even if the path follows the boundary, noise in the
image causes a rugged path instead of the expected smooth object boundary

these boundaries. The latter two solutions are especially useful when the optimal
boundary does not contain the strongest edges in the image.

Given the cost function, optimal paths from the start pixels to all pixels can be
computed at O(N2) costs, where N is the number of pixels. Backtracking from pend

can be done with cost O(n), where n is the number of pixels along the boundary
between pstart and pend. Since n is small, this computation is possible in real time.
Hence, after fixing the start point, path costs can be computed to every possible
location in the image (the termination criterion is then that the list of active nodes
is empty). The user may then move with the mouse over the image and the method
will immediately produce the optimal boundary curve to the current mouse position
(see Fig. 6.33). This makes interaction attractive as it allows the simple selection of
appropriate start and end points for computing boundary sections.

The method has some features that a user should be aware of.
• The path costs are a combination of a local cost (usually dependent on the gradi-

ent) and the path length. The second of these may lead to unexpected behavior.
A path may be preferred that consists of a small number of pixels although the
gradients along the pixels do not resemble the expected gradient. An extreme
case would be a start point that is also the endpoint of a boundary. The minimum
coast path will always consist only of this point, no matter how well defined the
boundary is.

• Delivering the shortest possible connection between the start and end points is a
useful property in cases where part of the boundary is missing (i.e., not recogniz-
able by a pronounced gradient). Noise, however, which is present in most medical
images and which also leads to nonzero gradients, may cause the path to follow
the noise pattern (see Fig. 6.33b). This happens even if the noise amplitude is so
small that it is not visible to the user. Setting closely spaced boundary points in
such regions can be a frustrating experience. It is better to let the user switch to an
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alternative segmentation mode in low gradient regions (in the simplest case this
would be just straight lines between boundary points).

• Using gradient characteristics of the start point for defining node costs can lead
to unexpected results if the user has not placed the start point directly on the
boundary. There are two ways to avoid this.
– Start point selection may be followed by an automatic correction step that

searches for a high gradient location in the vicinity of the start point location.
– Alternatively, the user may be asked to select a model gradient from a choice

of precomputed boundary gradients of different strengths.
Because of its simple and in most cases intuitive behavior, live wire segmentation

is found in many software packages for medical workstations. Its main disadvantage
is that—opposed to the mWST and to region growing—it is a 2D technique. It can be
extended to 3D by using sequential processing. A 3D slice stack is segmented with
results in previously segmented slices providing constraints for the segmentation in
the current slice (Schenk et al. 2001). However, this makes only little use of the
shape information orthogonal to the slice orientation.

The work of Falcão and Udupa (2000) takes 3D shape information into account
by defining a two-pass procedure on a sequence of slices. In the first path, bound-
aries are generated using live wire on a number of slices orthogonal to the original
slice direction. The intersections of these boundaries with the original slices are then
starting points for a boundary search in the slices. Although it extends the method
to 3D, the separation into two passes makes it less intuitive compared to the original
live wire method.

6.10 Concluding Remarks

Segmentation in medical image analysis often attempts to delineate specific objects
of interest. Hence, segmentation methods require additional domain knowledge. It
can be included by the parameterization of a method. Since this may be too complex
to be captured by a simple parameter estimation step, many of the basic segmenta-
tion techniques include an interactive component where a domain expert supplies
missing information.

Basic segmentation techniques from general image analysis have been adapted
accordingly, resulting in methods such as region growing or marker-based water-
shed transformation where the user points out the objects to be delineated. Other
alternatives are the various live wire methods where the user directly indicates lo-
cations on the object boundary. While such interactively guided procedures can be
very effective, its interaction should not be used to correct poorly applied model or
data knowledge.

6.11 Exercises

• How can assumptions about continuity in time be used to support thresholding a
time sequence of body CT images to segment the spine?
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• How can 3D region growing based on a single seed point in a slice be realized?
Discuss the potential problems of such an approach and give possible solutions
for those problems.

• Give examples for the five types of interaction when used for a threshold segmen-
tation of bone in CT images.

• What are the potential problems that could make homogeneity assumptions for
intensity in a segment invalid?

• What is the difference between a hierarchical segmentation strategy and a mul-
tilayer segmentation strategy? What would an image look like where the latter
would be preferred?

• What is the main problem when using the homogeneity constraint to guide a
texture-based segmentation?

• Which of the segmentation methods presented in this chapter uses knowledge
about the appearance of object boundaries as domain knowledge? How is it used
in this method?

• How can knowledge about the location of an object be integrated into a threshold
segmentation?

• Why is it necessary that domain knowledge must be generalizable?
• How could knowledge about the object size and acceptable size variance be gath-

ered? How can it be used in threshold segmentation?
• Interactive boundary delineation of 3D data sets is tedious since it has to be re-

peated for every slice. What would be the appropriate means to support the user?
Discuss the potential problems of the suggested method and how to deal with
them.

• Discuss reasons for using Otsu’s method for automatic threshold determination
in threshold segmentation. What needs to be initialized and how is this done?

• What method could be used for threshold determination if the two local maxima
of the bimodal distribution differ to a large degree? Why is that so?

• What is the reason for using relaxation labeling in threshold segmentation? What
is the underlying assumption about the segments which must be true for relaxation
labeling to succeed?

• How could a gradual refinement technique (hierarchical multiscale segmentation)
be used to support segmentation by region merging? What would be the benefits
of such a method?

• Explain why and under what circumstances segmentation by watershed transform
is equal to segmentation by finding zero crossings of the second derivative in the
image.

• How is the watershed transform extended to include a gradual refinement tech-
nique?

• Why is it not useful to maximize the sum of gradient lengths for a boundary as
criterion in live wire segmentation?

• What are the potential problems that a user may encounter when using the live
wire method for boundary delineation?

• How can the live wire approach be extended to 3D? Explain the kind of user
interaction in this case.
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7Segmentation in Feature Space

Abstract
Selection of an image acquisition technique is intentional in medical imaging.
It can be assumed that pixel or voxel values in a medical image cover more
semantics with respect to object class membership than intensity in a photograph.
Hence, image segmentation can be done as classification in feature space where
image intensities are the features.
The dimensionality of feature space is usually low and the number of samples
characterizing object classes is high. Typical classifiers discussed in this chapter
take this into account and estimate likelihood functions from samples. Classifi-
cation is then done by computing a posteriori probabilities for each object class.
Clustering in feature space will be discussed as well. Without requiring train-
ing, clustering may directly lead to a segmentation. Even if this is not the case,
clustering may be used to reduce the workload for producing the training data.

Concepts, notions and definitions introduced in this chapter

› Classification of pixels and voxels
› Bayesian classification
› Computation of likelihood functions
› Kernel density estimators
› Gaussian mixture models
› Clustering in dense, low-dimensional feature spaces
› Association networks and Kohonen networks

Thresholding presented in the previous chapter is actually a solution of the segmen-
tation problem as a classification task in feature space (see Fig. 7.1). In thresholding,
scene elements are assigned to one of two classes—foreground or background—
based on their intensity value. This assumes that some function exists that relates
class membership probability to the intensity of the scene element. This is part of
a Bayesian formulation of a classification problem. Solving segmentation in this
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Fig. 7.1 Segmenting the image based on threshold implies underlying a posteriori probabilities
for the different classes of which the histogram shows a non-normalized sum

way is adequate for many kinds of medical images where a relationship between
measured intensity value and tissue type can be assumed. Methods to solve the clas-
sification task will be discussed in this chapter.

Segmentation is rather specific compared to other classification tasks. It makes
some methods more appropriate than others. Typically, the dimension of the fea-
ture vector is low. It may consist of a single scalar (such as the image intensity
in Fig. 7.1), of low-dimensional multichannel data (e.g., a triple of proton density,
T1, and T2 relaxation in MRI imaging), or of a combination of intensity informa-
tion with spatial information such as the coordinates of a scene element. Hence,
the dimensionality of a feature vector is somewhere between 1 and 5. The number
of samples is high since every scene element is a sample. The situation is almost
opposite to a regular classification task, where few samples in high-dimensional
feature space represent the probability density functions that are needed to estimate
the a posteriori probability of an unknown sample. In segmentation, methods are
preferred that rely on parameter estimation to compute the a posteriori probability
of a scene element to belong to some object class.

If the number of features per scene element is high, classification techniques for
sparse sample distributions in high-dimensional space need to be employed. These
techniques will be discussed in Chap. 12.

7.1 Segmentation by Classification in Feature Space

Given an intensity f (v) at some scene element v and two different classes—
foreground fg and background bg—the optimal solution that minimizes the number
of wrong decisions would be to assign the class with highest a posteriori probability
P(v ∈ fg|f (v)) or P(v ∈ bg|f (v)), respectively, to v. According to the Bayesian
theorem the a posteriori probabilities can be computed from the a priori probabil-
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Fig. 7.2 Sometimes the
probability distributions
intersect twice. Threshold t1
is then disregarded, as it
occurs at a location where
probability for either of the
two classes is low

ities P(v ∈ fg) and P(v ∈ bg)1 and the likelihood functions p(f (v)|v ∈ fg) and
p(f (v)|v ∈ bg):

P
(
v ∈ fg|f (v)

) = p(f (v)|v ∈ fg)P (v ∈ fg)

P (v ∈ fg)P (v ∈ bg)
, (7.1)

P
(
v ∈ bg|f (v)

) = p(f (v)|v ∈ bg)P (v ∈ bg)

P (v ∈ fg)P (v ∈ bg)
. (7.2)

The denominator is the same in both equations and can be omitted for finding
the most likely class membership. Sometimes, the two a posteriori probabilities in-
tersect only at one location. This is then the threshold value where the decision
should switch from foreground to background. Otherwise, a priori probabilities and
likelihood functions have to be evaluated for each value f (v).

The two curves may intersect more than once (see Fig. 7.2). The extra intersec-
tion can be disregarded if it occurs at a location with low probability values. This
would indicate a low reliability of the approximation of the true likelihood. It is,
for instance, the case when Gaussian distributions with different mean and variance
approximate the likelihood function. The second intersection of such distributions
is usually out of the range of permissible values for f (v). Even if it is within the
range of values for f (v), this intersection is assumed to be due to an inaccurate
approximation of the likelihood function by the Gaussian function.

The a priori probability and likelihood function have to be generated from train-
ing data. It should be representative for the problem so that its feature values reflect
the true likelihood function. If the appearance of the foreground and background
may change for different patients (or even for the same patient if imaged several
times), training data should come from several different image sequences. Individ-
ual variation of tissue characteristics, image artefacts that vary with different pa-
tients such as shading artifacts or weight-dependent contrast, or the use of imaging
devices from different manufacturers or with different parameterization are reasons
why such variation can be expected.

1The a priori probability is also called marginal probability, since P is marginalized over all pos-
sible feature values of v.
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Fig. 7.3 Estimates for foreground and background probability can be generated from a represen-
tative sample. In the example above, vessels from 3D reconstructed DSA are to be separated from
the background. It can be seen by inspection of the histograms that the background is well-approx-
imated by a Gaussian while this is not true for the foreground

Fig. 7.4 (a) Noise in the sample data can be reduced by smoothing the histogram using a kernel
density estimator. (b) The same technique can be used when the number of samples is too small
for providing a reliable estimate for the probability distribution

7.1.1 Computing the Likelihood Function

Given classified training data, the estimate of the likelihood function for the two
classes are normalized histograms hn

fg and hn
bg of the intensity values of scene ele-

ments belonging either to the foreground or the background. The histograms can be
taken directly as likelihood functions (see Fig. 7.3) if the number of samples is high
enough to cancel out the effects from noise.

Using a kernel density estimator (also known as Parzen window) helps to reduce
unwanted effects from undersampling (see Fig. 7.4). It is based on the assumption
that each sample value f (v) is representative for a range of values in the vicinity of
f (v). Hence, f (v) is assumed to be the mean of some unknown density function
d(). A new estimate for the likelihood function is then computed by convolving the
normalized histograms with the density functions dfg and dbg :

p() = hn
fg ∗ dfg, (7.3)
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and

p() = hn
bg ∗ dbg. (7.4)

Since dfg and dbg are usually unknown, they are approximated by Gaussian dis-
tributions (based on the central limit theorem). The variance of the Gaussian is set
based on the average sampling density in the normalized histograms and noise char-
acteristics. If the number of histogram bins is small compared to the number of
samples, a low variance should be chosen while a higher variance should be se-
lected otherwise.

It is well possible that different variances are appropriate for foreground like-
lihood and background likelihood functions. The number of foreground samples
from the training data may be much smaller than that of background samples. Fur-
thermore, the range of intensity values in the foreground may be different to that in
the background.

It may be necessary to constrain the likelihood function even further. If it is as-
sumed that in a noise-free environment the foreground or the background has homo-
geneous intensity, the only reason for the variation of intensity values is noise. Noise
is often assumed to be normally distributed with zero mean. The likelihood function
is then a Gaussian with the mean value μ representing the expected foreground or
background intensity and variance σ 2 representing measurement noise:

N(f ;μ,σ) = 1√
2πσ

exp

(
−1

2

(f − μ)2

σ 2

)
. (7.5)

A number of reasons may speak against using a Gaussian distribution (compare
the distributions for the foreground and background in Fig. 7.3). The most notably
non-Gaussian deviation is caused by the partial volume effect (PVE). If a bright
foreground object is to be segmented from a dark background, some of the vari-
ation from the mean is not caused from normally distributed noise, but from the
PVE between bright and dark scene elements. The intensity is no longer normally
distributed and not even symmetric with respect to the mean. Another example is
a projection image when using a contrast agent. In DSA imaging the ideal image
should have a constant white background with vessels of varying degrees of black
depending on the vessel thickness along the projection ray. Foreground variation
from varying vessel thickness is non-Gaussian and a substantial cause for observed
intensity variation.

Sometimes, it is known beforehand that the intensity distribution is actually a
combination of several distributions. An example would be a foreground object that
consists of different tissue types (see Fig. 7.5). The characteristic is captured by the
normalized histogram with or without Parzen windowing. However, if the number
of samples is too low for computing a reliable estimate without a model for the
function, a mixture of Gaussians can be assumed with different means, variances,
and a priori probabilities. It is a particularly appropriate model if the class that is to
be described consists of a mixture of several substances with different appearance.
The individual likelihood functions are allowed to overlap to a large extent since the
classification of the substances is not the goal.
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Fig. 7.5 Sometimes, the intensity distribution of a histogram has to be modeled as a mixture of
several distributions with unknown parameters

A Gaussian mixture model Θ for one-dimensional distributions consists of a set
of K Gaussian distributions N(μi, σi) with mean μi and standard deviation σi so
that the probability of some event to have the value xj is a weighted sum of the
probabilities N(μi, σi):

P(xj |Θ) =
K∑

i=1

aiN(xj ;μi,σi). (7.6)

The weights ai are the a priori probabilities for each distribution. For our ap-
plication, the values xj are the intensity values of the scene elements v. The un-
known mixture model needs to be estimated from samples. Obviously, the most
fitting model for a set of sample values X = {xj } would be the one for which the
probability P(X|Θ) is maximum, i.e.,

Θmax = arg max
Θ

P (X|Θ). (7.7)

There exists no analytical solution. However, a number of iterative techniques
arrive at Θmax given some initial estimate. A popular approach is to use the ex-
pectation maximization algorithm (EM). Expectation maximization is an iterative
procedure to estimate a maximum a posteriori solution such as the one in (7.6).
A detailed look at this technique can be found in McLachlan and Krishnan (1996).

The application of the EM algorithm in this case requires the number K of Gaus-
sians to be known. It consists of two steps, which are repeated until convergence is
reached. In the E-step expectations yij of samples xj belonging to distribution i are
computed given the current estimates for μi , σi and ai :

yij = aiN(xj ;μi,σi)∑K
i=1 aiN(xj ;μi,σi)

. (7.8)

In the M-step, these expectations are used to compute new estimates. The new es-
timate for the a priori probability is simply the average of expectations for this class:

a′
i = 1

N

N∑
j=1

yij . (7.9)
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The estimates for the means and variances are then

μ′
i =

∑N
j=1 yij xj∑N
j=1 yij

, (7.10)

and

σ ′
i =

√√√√
∑N

j=1 yij (xj − μ′
i )

2

∑N
j=1 yij

. (7.11)

The process converges to a local optimum. Since this may be far away from
the global optimum, selecting good starting values is paramount. If these cannot
be found easily, the search for the mixture model may be preceded by a clustering
step (see Sect. 7.2) where K clusters are searched in the data. Cluster centers and
within-class scatter are then the initial estimates for the mean and average deviation.

7.1.2 Multidimensional Feature Vectors

Computation does not change much if the feature is not a scalar but a vector. It is
particularly easy if the features can be assumed to be independent of each other.
The likelihood function for a feature vector f is then the product of the likelihood
functions of the elements f1, . . . , fM of the vector:

p(f|v ∈ fg) =
M∏

m=1

p(fm|v ∈ fg). (7.12)

The estimation of the likelihood functions can be done individually in the same
way as for scalar features.

The likelihood function becomes a function of M values if independence cannot
be assumed and probabilities need to be estimated in multidimensional feature space
(see Fig. 7.6). This is again not different to the case discussed in the previous section
except for the density of samples. While in 1D the number of samples even from a
single segmented image is high compared to the number of bins in the histograms,
this changes dramatically if the feature vector has two, three, or more dimensions.

Let us assume that we have taken a single segmented slice with 512 × 512 pixels
for training to illustrate this by an example. If 64.000 pixels of the total of 218

pixels belong to the foreground and the intensity ranges from 0 to 4000, of which
the foreground object occupies a range of 400 gray values, we have on average 160
samples (i.e., 64.000/400) per bin. Unless the image is very noisy, this would allow
for using the sampled, normalized histogram directly as the likelihood function.
However, if we had the same situation, but the image consisted of three channels
(e.g., T1, T2, and proton density in MRI) where the foreground object spanned the
range of 400 gray levels in each channel, the average number of samples would
be down to 0.001 per bin, which is clearly insufficient even for applying a kernel
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Fig. 7.6 Feature space becomes multi-dimensional if more than one feature describes the data

density estimator. Even if we used sequences from 50 patients with each sequence
having 20 slices in which the foreground object is visible, the average number of
samples would still be only one per bin.

Parametric distribution functions are therefore often used for estimating a multi-
dimensional likelihood function. Based on the central limit theorem, a normal dis-
tribution is used as a model. Since features are not independent, the variances for
each element of the feature vector have to be replaced by the covariances. The co-
variance matrix Σ for an M-dimensional feature vector consists of entries σij that
can be estimated from K sample features fk by

σij ≈ 1

K − 1

K∑
k=1

(
f k

i − μi

)(
f k

j − μj

)
, (7.13)

where μ = (μ1μ2, . . . ,μM) is the estimated mean for features fk . For real-valued
feature values the covariance matrix is symmetric and has the size K2 for a K-
dimensional feature vector (see Fig. 7.7). Given a 3D feature vector, in total nine
parameters (three entries for the mean μ and six independent values of the 3 × 3
covariance matrix) have to be estimated. Hence, the 64.000 samples in this example
would be more than sufficient.

The multidimensional normal distribution N(f;μ,Σ) for a feature vector f is
then

N(f;μ,Σ) = 1√
(2π)M det(Σ)

exp

(
−1

2
(f − μ)TΣ−1(f − μ)

)
, (7.14)

where Σ−1 denotes the inverse of Σ and ()T the transpose of a vector.
In principle, it is possible to compute a multidimensional threshold for a feature

vector. Different methods will be presented in the chapter on classification since it is
particularly appropriate when the sampling density is too sparse for computing reli-
able estimates for the parameters. In segmentation, the parameterized function can
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Fig. 7.7 The covariance matrix Σ in 2d feature space is a 2 × 2 matrix. The high value of off–
diagonal entries compared to the variances in the diagonal show that there is a lot of covariance
between the two features. The redundancy, which is causing the co-variance, is indicated by the
dashed line in the 2d histogram

often be used directly. A posteriori probabilities of class membership (foreground
and background) are computed from features of a scene element v, and v is then
assigned to the class with highest probability.

7.1.3 Computing the A Priori Probability

A priori probabilities represent knowledge about the objects irrespective of the data.
The simplest kind of a priori knowledge for a segmentation between the foreground
and background is an estimate of the ratio of foreground to background pixels. This
can be computed from the training data that were used to compute the likelihood
functions. It is important that this reflects the correct ratio. If, for instance, segmen-
tation based on the classification of scene elements is carried out as part of a process
chain where first an approximate region of interest (ROI) is computed, ratios have
to be computed from the ROIs.

A priori knowledge may also include neighbor information because segment
membership is spatially correlated. The necessary model would predict that it is
more likely that neighboring scene elements belong to the same class. This can be
represented by a Markov Random Field (MRF). The model is similar to the one
used in image enhancement (Chap. 4). If we assume a normal distribution for the
likelihood function this is done by replacing the likelihood function of (4.47) by the
term derived in (7.5) resulting in

P(f|g) ∝ P(g|f) · P(f) = 1

Z1
exp

(
− (f (v) − μ)

2σ 2

)
· 1

Z2
exp

(−U(ω)
)
. (7.15)
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Fig. 7.8 Examples for clique potentials according to the work of Held et al. (1997). The potential
decreases sharply in regions with different labels in the neighborhood. Further optimization will
change labels at these locations if the likelihood from image is low. This is true for the smaller
structures cut by the line

For segmentation, Geman and Geman (1984) suggested the generalized Ising
model to model clique potentials Vc that make up U(ω)

Vc =
{

ξc, if all sites of the clique have the same label,

−ξc, otherwise.
(7.16)

The potential ξc is specific to the clique type.
Instead of explicitly computing clique potentials U from all cliques in a given

neighborhood, an approximation of U can be defined that describes the desired seg-
mentation properties. Since segmentation should produce as few segments as possi-
ble, the a priori probability can simply decrease with the number of different labels
in the neighborhood of v. This has been used for MRF-based MRI brain segmenta-
tion by Held et al. (1997) (see Fig. 7.8)

P(f) = 1

Z2
exp

(
−

∑
w∈Nb(v)

δ
(
f (v) �= f (w)

))
, (7.17)

where δ is the delta function

δ(x) =
{

1, if x = 0,

0, otherwise.
(7.18)

Iterative optimization of the MRF is then done using simulated annealing
or other means [e.g., ICM (Besag 1986), mean-field optimization (Zhang 1992;
Celeux et al. 2003), graph cuts (Boykov et al. 2001)] or by introducing a hidden
measure model (Marroquin et al. 2003), see also Sect. 14.1 on MRFs and their
optimization). A good initialization (e.g., by optimizing the function without con-
sidering the a priori knowledge using an EM algorithm) helps to arrive at acceptable
computation times.
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Another option for fast MRF computation is to use multiresolution MRFs. In
Bouman and Shapiro (1994) and Cheng and Bouman (2001) a system of Markov
Random Fields is developed and parameterized, which defines neighbor systems on
a multiscale representation of the image. Results at each scale are included as a pri-
ori knowledge in the segmentation of the next scale. The segmentation is initial-
ized by computing a labeling at the coarsest scale and then proceeding through the
scales. It allows to define a small neighborhood system since dependencies across
larger ranges are captured at coarser scales. It also speeds up computation since the
initialization from the previous scale is a good predictor for the optimal result at the
current scale.

7.1.4 Extension to More than Two Classes

Likelihood functions and a priori probabilities can be computed for more than two
classes if the scene shall be segmented into several different objects. Segmentation
is then given by classification to the most probable class.

7.2 Clustering in Feature Space

So far, segmentation required the classes to be known to which scene elements
should be assigned. This type of segmentation is actually a combination of segmen-
tation and object detection since scene elements are assigned a meaning. Segmenta-
tion in feature space, however, is possible without having to make this assumption.
This is particularly useful if it is not known a priori into how many and which classes
scene elements should be grouped.

The process is called clustering. The underlying assumption is that scene ele-
ments from the same object have more similar features than those that belong to
different objects. Similar to classification, clustering is a generic methodology that
is able to group features of any kind. It makes sense to differentiate between clus-
tering techniques for low-dimensional densely populated features spaces and those
for high-dimensional sparsely populated features spaces. Hence, we will discuss the
topic twice (here and in Chap. 12).

Clustering for segmentation works in low-dimensional feature space. In 2D fea-
ture space (and with some difficulty in 3D as well), the simplest way of clustering
is to do it interactively. The 2D distribution is displayed and the user points out or
delineates clusters. The resulting segmentation is then displayed and clustering may
then be corrected (see Fig. 7.9). However, since this process is highly subjective, it
may be more appropriate for a quick first look at the data and should be replaced by
some automatic clustering if a series of data sets is to be analyzed.
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Fig. 7.9 If feature space is low-dimensional (in this case d = 2), clustering may be done interac-
tively in the histogram and results are immediately displayed

Fig. 7.10 Partitional clustering starts with initial cluster centers to which samples are assigned
according to distance. New cluster centers are computed after the assignment phase. The process
is repeated until there are no changes in cluster membership

7.2.1 Partitional Clustering and k-Means Clustering

The objective of a partitional clustering method is to find cluster centers CC =
{c1, . . . , cK} in feature space such that the distance of all samples to their center is
minimal:

CCmin = arg min
CC

dCC(f) = arg min
CC

M∑
i=1

∥∥fi − c(fi )
∥∥, (7.19)

where c(fi ) delivers the cluster center ck that is closest to fi .
A heuristic strategy is employed for finding optimal cluster centers. First, clus-

ter centers are fixed and samples are assigned to clusters that minimize dCC given
the cluster centers. Then, a new center cc is defined for each cluster c that mini-
mizes

∑
fi∈cc

‖fi − ck‖. The process is repeated until no further change of cluster
assignment takes place (see Fig. 7.10).

Partitional clustering is initialized by assigning the K cluster centers to K ar-
bitrary samples in the data set and by minimizing

∑
fi∈cc

‖fi − ck‖ for the initial
centers. The process is heuristic since the assignment to clusters (the first step) and
determination of new cluster centers (the second step) are optimized separately al-
though they depend on each other. The procedure may not produce the optimal re-
sult and is not guaranteed to converge. Providing a good initial guess for the cluster
centers is advisable.
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Fig. 7.11 First pass of the k-means clustering algorithm. Samples are selected at random and
assigned to the nearest cluster center. After each assignment, cluster center locations are updated

Fig. 7.12 Second phase in
k-means clustering. Given the
estimates for cluster centers
from the first step, all samples
are analyzed according to
their distance to the nearest
cluster center and potentially
re-assigned

As opposed to partitional clustering k-means clustering (Duda et al. 2000) al-
ways terminates, as it requires just two iterations. The objective remains the same.
However, instead of assigning all samples to the current estimate for cluster cen-
ters before computing a new cluster center, the two objectives are interleaved by
computing new cluster centers after each assignment of a feature to a cluster.

The method is initialized similarly to partitional clustering by selecting K sam-
ples to act as initial cluster centers. Again, the results will improve when the initial
guess is close to the true location of the cluster centers. The process iterates once
through the complete data set (including the samples that were chosen to represent
the initial cluster centers) by randomly removing samples from it. The selected sam-
ple is assigned to its closest cluster center. This cluster now has a new member so
that its center has to be moved to the centroid of all samples (see Fig. 7.11).

The process is repeated until all samples have been chosen once. After that, the
final cluster center locations are assumed to have been found. Initial uncertainties
stemming from a small number of samples determining a cluster center have been
compensated by the later addition of samples from the data base. Uncertainty about
cluster center locations at an early stage may have led to unreliable early cluster
assignments. Hence, in a second iteration, cluster centers are kept constant and sam-
ples are assigned according to their distance to these centers (see Fig. 7.12).

Knowing the number of clusters and a good initialization for cluster center po-
sitions are necessary to employ k-means clustering successfully for segmentation.
The number of clusters is often assumed to be larger than the number of different
segment classes expected in the image. The main reason for this lies in the nature of
clustering algorithms. Clusters are groups of samples that are close together in fea-
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Fig. 7.13 The diversity measure D rates the closest distance dc
min of the new center to all other

centers with respect to the furthest distance of the new center to any of the unassigned samples

ture space. It is possible that a segment consists of different tissues with a different
appearance in the image. These different tissues may fall into different clusters. If
the number of clusters is set to the expected number of segments, clusters separat-
ing different segments may be merged if they are closer to each other than clusters
representing the different segments.

Since such characteristics are often unknown—otherwise the more direct classifi-
cation approach of Sect. 7.1 could be pursued—segmentation by k-mean clustering
is often a trial-and-error procedure. The user starts with a first guess about the num-
ber of clusters, visualizes the members of the computed clusters, and then varies
(increases or decreases) k until an acceptable solution is reached.

The results of k-means clustering depend on a good initialization for cluster cen-
ters. Since distribution in feature space is usually unknown, random selection is
used to start the procedure. The simplest way is to separate the feature space into
K compartments at random and compute the centers of gravity from the samples in
each compartment. Peña et al. (1999) compared four methods and found that this
simple random selection had a similar performance as a nonrandom procedure sug-
gested by Kaufman and Rousseeuw (2005) that took the distribution characteristics
into account. The latter did, however, terminate less likely in a bad partitioning.

The method of Kaufman and Rousseeuw (2005) started with sample locations,
but they selected the samples according to a heuristic diversity criterion. Iteratively,
a sample is selected as new cluster center that maximizes this diversity measure until
K clusters have been selected. The diversity measure D rates the distance of the
newly selected cluster center Cnew to all already selected centers C1, . . . ,Ck , k < K

with respect to distances of Cnew to all nonselected samples si in the following way
(see also Fig. 7.13):

dc
min = min

k

(‖Cnew − Ck‖
)
, (7.20)

D = max
i

(
0, dc

min − ‖Cnew − si‖
)
. (7.21)

A different strategy was presented by Bradley and Fayyad (1998) who used
modes of an estimated density function for improving a given set of initial clus-
ter centers. The samples in feature space are assumed to approximate a mixture of
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probability density functions (similar to the Gaussian mixture used in Sect. 7.1.1 to
represent a likelihood function). The modes of this mixture are then the local max-
ima of the density and are assumed to be potential cluster centers. Searching for
the modes is the subject of mean shift clustering described in the next section. The
approach of Bradley and Fayyad (1998) does not require all modes to be detected,
but moves the initially selected cluster centers closer to the likely locations of the
modes.

K-means clustering can be used as a preprocessing step to segmentation. The
number of possible cluster centers is then set high to segment the scene into many
regions (which may be thought of as a kind of superpixel). These are then postpro-
cessed for the final segmentation. The method is less sensitive to the selection of
cluster centers compared to a direct attempt of doing classification via clustering. It
has been used, for instance, by Ng et al. (2006) for providing a watershed transform
with large enough regions so that noise removal can be done by intensity averaging
in the superpixels.

7.2.2 Mean-Shift Clustering

K-means clustering requires the number of clusters to be known. Misjudging the
number of different clusters may lead to unwanted results. Mean-shift clustering is
an alternative that does not require this kind of information (Fukunagu and Hostetler
1975; Comaniciu and Meer 2002). Instead, mean-shift clustering attempts to find all
possible cluster centers in feature space. The samples are assumed to stem from a
density function, which is a mixture of an unknown number of probability density
functions. Each of the probability functions describes the probability of a sample
to belong to one cluster. Ideal clustering would identify the probability functions of
the mixture model and then assign cluster membership based on this probability.

Determining parameters of an unknown number of probability functions of an
unknown type will be difficult or even impossible. In mean-shift clustering, heuris-
tics are employed to arrive at a feasible solution. The following conditions are as-
sumed.
• The probability density functions of the mixture model have only one maximum

and that this maximum represents the mean of the function.
• Combining the probability functions in the mixture model preserves the maxima,

so that the local maxima of the mixture function represent the means of the un-
derlying probability functions. The local maxima are the modes of the density
function.

• The local minima of the mixture model segment the feature space so that each
segment contains only one of the local maxima.
Finding the local maxima of the mixture model under these assumptions pro-

duces the clusters in feature space. The mean shift algorithm proceeds as follows.
• For each location in feature space a marker is shifted toward the next local maxi-

mum by applying a gradient ascent algorithm.
• If a local maximum has been found and it has no cluster label, it is labeled.
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Fig. 7.14 The gradient at some location in feature space is approximated by interpolation over a
predefined neighborhood using a suitable kernel function

• Irrespective of whether the local maximum has been labeled at this step or pre-
viously, the location from which it has been found receives the label as cluster
label.
Gradient ascent requires computing a gradient of the density function. Since the

density function is only approximated by a distribution of samples, the gradient
can only be approximated as well (see Fig. 7.14). This is done by a kernel win-
dow estimator. If the feature space is isotropic, the kernel is rotationally symmetric
(Comaniciu and Meer 2002):

k(x) = k
(‖x‖2), (7.22)

where k is a one-dimensional function on distance such as the Gaussian k(x) =
exp(−x2/2). The kernel density estimation for some location x in d-dimensional
feature space with samples x1, . . . ,xN is then

fh,K(x) = cK,d

Nhd

N∑
i=1

k

(‖x − xi‖2

h

)
. (7.23)

The value of h determines the width of the kernel and cK,d is a normalizing
constant. If k is differentiable and g is the derivative of −k, the gradient is

∇fh,K(x) = cK,d

Nhd+2

N∑
i=1

g

(‖x − xi‖2

h

)[ ∑N
i=1 g(

‖x−xi‖2

h
)∑N

i=1 xig(
‖x−xi‖2

h
)

− x
]
. (7.24)

The gradient consists of two parts with different meanings. The first part is a
kernel estimator using the derivative g instead of the original function k, and the
second represents the error between the actual position x and its estimate by the
kernel estimator. The latter is called the mean shift mh,G(x) of x.

The parts can be separated if a new normalizing constant cG,d for g is introduced
and the parts are rearranged:

∇fh,K(x) = cG,d

Nhd

N∑
i=1

g

(‖x − xi‖2

h

)
cK,d

cG,dh2

[ ∑N
i=1 g(

‖x−xi‖2

h
)∑N

i=1 xig(
‖x−xi‖2

h
)

− x

]
. (7.25)
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Fig. 7.15 The mean-shift algorithm starts moving from every position in feature space towards
the local maxima in the function

The kernel estimator is then

∇fh,G(x) = cG,d

Nhd

N∑
i=1

g

(‖x − xi‖2

h

)
(7.26)

and the mean shift is

mh,G(x) = cK,d

cG,dh2

[ ∑N
i=1 g(

‖x−xi‖2

h
)∑N

i=1 xig(
‖x−xi‖2

h
)

− x
]
. (7.27)

Starting with some initial position x the algorithm proceeds by repeatedly chang-
ing the position by the mean shift until the gradient length is zero and a local max-
imum is reached. If this is done for all sample points and cluster labels are created
and assigned as described above, it results in finding all modes in feature space and
assigning each location in feature space to its corresponding mode (see Fig. 7.15).

In Comaniciu and Meer (2002), 2D images were segmented using color informa-
tion and the pixel coordinates as features. Since the mean-shift algorithm is a very
general method, it has found many applications. Its biggest advantage is that it is
parameter-free. The determination of the number of clusters and of the clustering
itself does not depend on user input.

Such a data-driven decision has disadvantages, however. Segmentation by mean-
shift often results in oversegmented images since every local maximum in feature
space forms its own cluster (Tuzel et al. 2008). In Tuzel et al. (2009) additional
constraints in feature space were used to override the decision of the mean-shift
procedure (the so-called must-link constraints that forced cluster elements to stay
bound together).
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Fig. 7.16 Topology of a
Kohonen network

Computing the mean shift for each location in feature space is time-consuming if
the dimension is high. However, this is not critical for segmentation with its usually
low-dimensional feature space. For high-dimensional space, variants such as median
shift (Shapira et al. 2009) have been developed.

7.2.3 Kohonen’s Self-organizing Maps

Neural networks may be used for unsupervised clustering as well. Clustering is done
by the association of a feature vector to a model cluster vector using a similarity
measure.

A well-known network of this kind is Kohonen’s self-organizing map (SOM
or Kohonen network; Kohonen 1995). The network shares some similarities with
mean-shift clustering discussed in the previous section in that it attempts to clus-
ter data based on some inherent attributes. In an SOM this attribute is the similar-
ity between feature vectors. Furthermore, an SOM also assumes some underlying
structure between different clusters and attempts to find this structure as well. The
structure information can be used to steer the clustering procedure.

The network consists of a single output layer that is fully connected to all nodes
in the input layer (see Fig. 7.16). Each node in the input layer represents a feature
in feature space. Each node in the output layer corresponds to a potential cluster.

The network is called self-organizing as it learns feature patterns and the orga-
nization of the feature distribution without supervision. Feature patterns are repre-
sented by weight vectors wj = (w1jw2j , . . . ,wNj )

T leading to output nodes j . The
organization of the feature distribution is represented by connecting output nodes to
a one- or two-dimensional map and letting output at a node j influence the adjacent
nodes in some neighborhood Nδ(j). In its simplest form, the neighborhood between
output nodes is Nδ(j) = 0 (i.e., there is no influence between output nodes). In this
case, the network is a simple association network.

Given that the feature vector has components i = 1, . . . ,N to be assigned to
j = 1, . . . ,C clusters, N ·C edges connect the input nodes with the output layer with
weights wij . The activation signal fj (f) at an output node j is the norm of the differ-
ence between the feature vector and the vector of nodes wj = (w1jw2j , . . . ,wNj )

T
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connecting input nodes with the output node

fj (f) = ‖f − wj‖ =
√√√√ N∑

i=1

(fi − wij )2. (7.28)

The output of an association network is not fj but the index of the node which
has the highest value. If weights wij are set properly so that wj is the center of a
cluster cj , the result will be the index of that cluster.

Training the network seeks to move cluster centers wj closer to the feature vec-
tors. As training is unsupervised, the true cluster centers and the true clusters are not
known. It is called reinforcement learning or competitive learning. The weights are
initially set to random values. Feature vectors from samples are then fed to the net-
work. The winning neuron in the output layer is determined. Weights leading to the
winning neuron are adapted so that it becomes more similar to the feature vector:

w(n+1)
j = w(n)

j + α(f − wj ), (7.29)

where α is the learning rate. The value of α must be less than 1 to let the net-
work memorize previous activations (α = 1 would cause a perfect adaptation of the
weight vector wj to the pattern presented by f, and the network “forgets” enforce-
ments due to other vectors presented earlier). Initial values for α between 0.25 and
0.5 are quite common.

Another variant of it (the one that was originally introduced by Kohonen) re-
quires normalization of the weights and gradually reduces the angle between wj

and f:

w(n+1)
j = w(n)

j + αf

‖w(n)
j + αf‖

. (7.30)

Training is done for all samples. Since the neuron j wins for which f is most
similar to wj , correction is done only for those weights that need the minimum
amount of change. If samples are clustered in feature space, different output neurons
will win for different samples causing a gradual separation of the weights of the
weight vectors leading to the different output neurons. Hence, the weight vectors
learn feature patterns that are present in the data.

The process is repeated several times (called epochs) until a stable state is reached
(i.e., weight change falls below some threshold). The learning rate decreases with
time so as to enable major corrections in the beginning of the process and increasing
the influence of “memory” with time.

Several influences may affect the convergence of the system.
• The selection of the first samples has a much stronger influence on weight

changes and cluster assignment than later training. If several artificial cluster cen-
ters for a single cluster are generated that are similar to each other, it leads to
weak reinforcement of these clusters, as later samples will change only one of
these centers.
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Fig. 7.17 Different neighborhood activation schemes for the same number of nodes in the output
layer make different assumptions about relations between the clusters

• If the number of cluster centers does not match the true number of centers some
of the weight vectors wj will only receive weak enforcement either because su-
perfluous centers divert reinforcement or because some cluster centers actually
represent two or more true clusters.

• The initial random distribution of weights may inadvertently have produced pat-
terns that misguide the pattern search, as this represents inappropriate a priori
knowledge introduced into the system.
The remedy for slow convergence, convergence to a false optimum, or no con-

vergence is to stop the training if the improvement of clustering indicates problems
and to repeat it with a new set of randomly selected weights and a new random order
of selecting samples.

The success of clustering using an association network depends very much on
a good initialization and a correctly selected number of clusters. By Kohonen’s in-
troduction of the neighborhood activation a different representation of patterns in
the data is achieved (see Fig. 7.17 for examples of neighborhood systems). It ac-
knowledges possible relations between patterns of different clusters. A Kohonen
network arranges output neurons in a line or in a regular grid so that every neuron
is connected to two or four other neurons.

Reinforcement learning with the consideration of neighboring neurons does not
vary much from the strategy stated above. The difference is that—besides updating
the weights of the winning neuron j—also those of neurons in the neighborhood
Nδ(j) of j are updated. If, e.g., δ = 5,Nδ(j) contains all neurons that are less than
five neurons away from j (using the maximum norm).

Training a Kohonen network produces a feature map that does not associate sam-
ples to cluster centers, but maps out regions in the grid of output neurons. Hence,
the number of output neurons in a Kohonen network must be larger than the num-
ber of clusters expected. Essentially, the Kohonen network detects clusters in high-
dimensional feature space by mapping it to the low-dimensional space of node con-
nectivity in the network.

Separation into clusters is a separate step after training the network. It requires
some supervision. Representative samples from different clusters are mapped to the
network. The response points out representative regions for the clusters. They are
either found interactively by displaying the network response (which is much eas-
ier than displaying a potential high-dimensional feature distribution) or segmented
automatically by observing the activation difference for samples from different clus-
ters.
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Training is not guaranteed to converge to an optimal clustering. Techniques to
recognize and remedy convergence problems that were suggested for association
networks apply here as well. However, introducing the concept of possible interde-
pendency between clusters by connecting output neurons and being able to represent
clusters by more than a single neuron simplifies the choice of the number of output
nodes.

The number of nodes depends on the complexity of the cluster boundaries to be
represented. The reduction of dimensionality from feature space to a self-organizing
map requires that all attributes that characterize a certain class in feature space must
be representable by the map. Hence, if the map is too small, different patterns in
feature space may not be separable in the map. On the other hand, the map also
generalizes cluster attributes. A large map does not only require too much time to
train, but it may also learn how to represent the noise in the sample data.

The neighborhood distance usually decreases with time. Initially, δ is set to
a large value. It may comprise half the size of the output grid since—in the
beginning—the optimal dimensionality reduction for clusters in feature space to the
Kohonen network is unknown. Neighborhood size is decreased with time because a
large neighborhood inhibits the separation of regions in different clusters.

Kohonen networks have been used for similar applications as clustering ap-
proaches (e.g., for segmenting MR brain images using intensity with Jiang et al.
2003 and without spatial features Reddick et al. 1997).

7.3 Concluding Remarks

Segmentation as the classification of scene elements solves two problems at the
same time. It detects an object and it delineates its boundary. It requires discrim-
inating features of the scene elements such as intensity or a vector of intensities
from different imaging channels (e.g., color channels or T1- and T2-weighted im-
ages in MRI). If discriminating features exist, classification is simple and leads to
an automatic segmentation method. All necessary parameters can be learned from
the training data.

Compared to classification in general, the dimension of feature space is low and
the sample density of training data is high. This allows estimation of the likelihood
functions from training data and consequently classification by computing condi-
tional a posteriori probabilities. Clustering techniques may even relieve the user
from the tedious manual delineation of objects in the training data.

Problems arise when the contrast between different structures (e.g., different or-
gans) is low or if the noise level is too high. Training data should be selected care-
fully to assure their representativeness for the classification problem.

7.4 Exercises

• Why is it not always appropriate to assume a Gaussian distribution for the likeli-
hood function? Give examples for cases where this is unjustified.
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• What is the goal when using a kernel density estimator? What criteria influence
the selection of the kernel? Why is it reasonable to consider different kernels for
different classes?

• Consider the CT image in Fig. 7.1. How can training data be generated to separate
the bone structures from the background for these kinds of images?

• What are the requirements for computing the parameters of a Gaussian mixture
model? Sketch a situation or give an example where a Gaussian mixture model is
the appropriate means.

• What are the parameters that have to be computed for a multidimensional Gaus-
sian distribution?

• What kind of information can be represented by the a priori probability term?
How is it parameterized for the different kinds of information?

• What kind of knowledge is encoded when the segmentation is defined as the
probability of a Markov Random Field?

• How does clustering differ from classification? What roles can clustering play as
part of image segmentation? Please give examples.

• What kind of criterion is attempted to be optimized by partional clustering? Why
is the result not necessarily optimal?

• How does k-means clustering differ from partitional clustering? What are the
advantages of this difference?

• What needs to be initialized for k-means clustering? How can this initialization be
carried out so that knowledge about the distributions of samples in feature space
is included?

• What is the major difference between mean-shift clustering and k-means cluster-
ing?

• What is meant by “mean shift” and how is this used in the clustering method?
• Explain why mean shift clustering is slow when feature space is high.
• What is the purpose of an association network and how can it be used for cluster-

ing?
• How is an association network trained?
• How does a Kohonen network differ from an association network? What are the

consequences when the two network types are used for clustering?
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8Segmentation as a Graph Problem

Abstract
2D and 3D images can be mapped on a graph where scene elements are nodes and
neighborhood is expressed by edges connecting the nodes. Assigning weights to
edges that represent local properties of a good segmentation allows finding a
segmentation using optimization methods on graphs.
Two such techniques that have been used for segmentation are minimum cost
graph cuts and minimum cost paths. Methodology, parameterization, advantages,
and problems for algorithms that are based on either of the two techniques are
discussed in this chapter.

Concepts, notions and definitions introduced in this chapter

› Interactive graph cuts
› Graph cuts to optimize a Markov Random Field
› Normalized graph cuts
› Fuzzy connectedness and its mapping to a minimum cost path problem
› The image foresting transform
› Random walks

A number of segmentation techniques that were discussed in Chap. 6 treat the image
as a graph. Examples are region merging techniques, region growing, or live wire
segmentation. While the former two use a graph as convenient way to represent
the segmentation process, live wire employs a simple graph theoretic concept to
compute a result that is guaranteed to be optimal with respect to some criterion.
Representing segmentation as an optimization task on a graph taps into the multitude
of efficient methods for computing the desired result. Two types of strategies from
this field have been specialized to compute a segmentation.
• Graph cuts are a way for automatic or semi-automatic segmentations based on

region, boundary, and external attributes.
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• Optimal paths on graphs can be used to associate scene elements to seeds repre-
senting different segments.
For the two strategies, various methods will be presented and discussed in the

following sections. All solutions apply to images of an arbitrary dimension. How-
ever, for increased readability, we will discuss the methods at the example of 2D
images with pixels as scene elements.

8.1 Graph Cuts

A graph cut creates two or more disconnected subgraphs by removing edges from
a connected graph. Graph cuts can be applied to many areas in image processing
and image understanding of which segmentation is just one. Representing a seg-
mentation of an image by a graph cut is straightforward (Boykov and Jolly 2001;
Boykov et al. 2001). Pixels are represented by nodes, and pairs of nodes represent-
ing neighboring pixels are connected by edges. The graph cut consists of a set of
edges that specify the segments. The concept is powerful because of its versatility
and generality. Graph cuts can be computed for scenes of any dimension and—at
least in principle—for any neighborhood system between scene elements.

While cutting a graph into more than two subgraphs is difficult, expensive, and
not yet fully understood, simple and fast algorithms exist for producing the cut of a
graph into two subgraphs. Each of these two subgraphs may consist of several dis-
connected components, but each of the components of a subgraph will be associated
to the same label. Hence, graph cuts are well suited to solve a foreground segmen-
tation problem. Nodes of the graph then represent pixels and edges represent the
adjacencies between pixels. If a scene shall be separated into subgraphs with more
than two labels, graph cuts are either employed hierarchically by cutting a subgraph
again or they are used to correct an existing multilabel segmentation that has been
created by some other means.

8.1.1 Graph Cuts for Computing a Segmentation

A minimum cost graph cut consists of a set of edges so that the sum of edge weights
in the cut is minimal for all possible cuts. In the case of segmentation, edge costs
will be defined in a way so as to let the minimum cost cut represent a good fore-
ground segmentation. The criterion for an interactive graph cut will combine user
knowledge (“this node belongs to the foreground”) and local image attributes.

Finding the minimum cut is solved as a maximum flow problem (see Fig. 8.1).
Each edge is assigned a flow capacity. All nodes p ∈ P representing pixels are con-
nected to two special nodes, the source S and the sink T , via terminal links (t-links).
Edges connecting neighboring pixels are called neighbor links (n-links). The set of
all n-links is N . Let us now presume that water is flowing from the source through
the graph to the sink.
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Fig. 8.1 Graph cuts for image segmentation: All pixels are connected to their neighbors via
n-links and to a source and a sink via t -links. The cut separates the source from the sink. All
t -links that are part of the cut indicate association of a pixel either to foreground (t -link to the
source) or to the background

If the segmentation would be known, the weights for all links can be preset to de-
scribe the desired segmentation. Terminal links from the source to foreground pixels
and from the sink to background pixels are attributed a “0,” the remaining t-links
are attributed a “1.” Neighbor links connecting foreground or background pixels are
attributed a “1” and n-links connecting a foreground pixel with a background pixel
receive a “0” as an attribute.

The optimal cut consists of all t-links and n-links that have a value of “0” since
the total cost of all edges in this case is 0. The set of edges of the cut consists of
all edges connecting the foreground pixels with the source, all edges connecting
the background pixels with the sink, and all edges at region boundaries between
the foreground and background pixels. Hence, edges to one of the terminal nodes
in the cut define the segment label of the segmentation. Edges of the cut that are
n-links represent the boundary between segments. Note that neither foreground nor
background pixels need to be a single connected component.

Computing a segmentation that is already known is not particularly useful, but
the strategy outlined above can be employed as well if the assignment of a pixel
to the foreground or background is less clear. Instead of attributing pixels with the
certainty of belonging to the foreground, Rp(“frg”) = 0, Rp(“bkg”) = 1, or back-
ground, Rp(“frg”) = 1 and Rp(“bkg”) = 0, the probabilities of a pixel of belonging
to the foreground or background are used to assign weights to the t-links. If these
probabilities P for some pixel p with coordinates (p1,p2, . . . , ) are P(p ∈ “frg”)
and P(p ∈ “bkg”), then a possible measure suggested by the inventors of foreground
graph cuts for segmentation (Boykov and Jolly 2001) is

Rp (“frg”) = − lnP (p ∈ “frg”) and Rp (“bkg”) = − lnP (p ∈ “bkg”) . (8.1)

The probabilities P are specified based on domain knowledge (such as “bone”
in CT has a range of 60, . . . ,3000 HU) or they can be estimated from histogram
analysis from training data. The value of this measure is close to zero if the prob-
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Fig. 8.2 Flow values from source to pixels (foreground) and from pixels to sink (background) are
inversely proportional to the probability of these pixels belonging to the foreground or background

ability of a pixel belonging to the foreground or background is high and increases
with decreasing probability (see Fig. 8.2).

If nothing else about the segment membership is known, all n-links would receive
a constant weight, and the application of a graph cut algorithm would be similar to
histogram-based thresholding. The power of graph cut algorithms, however, stems
from combining this local region attribute with boundary attributes.

Generally, segment boundaries are indicated by the change of intensity, texture,
or color. Given that a function f (p) exists for each pixel p that combines these three
attributes in a proper manner for the segmentation, the difference ‖f (p)−f (q)‖ for
two pixels p and q being connected by an n-link may serve as a weight for this link.
Boykov and Jolly (2001) suggested the following measure (see Fig. 8.3):

Bp,q = exp

[
−‖f (p) − f (q)‖2

2σ 2

]
· 1

‖p − q‖ . (8.2)

The function resembles a nonnormalized Gaussian distribution. The value of σ is
set so that it separates the high frequency and high amplitude noise from true edge
variation. The latter is assumed to have a lower amplitude in the high frequency
range than the noise.

If the n-link weights are used with all t-links having the same weights, the
method produces results similar to the watershed transform (which finds all bound-
aries at zero crossings). However, combining the two measures compensates the
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Fig. 8.3 The boundary term depends on the local intensity difference and a smoothing parame-
ter σ . A large value for σ means that small intensity differences are counted as noise and do not
receive a low flow value

Table 8.1 Weights for
t -links and n-links for
computing a segmentation by
graph cuts

Edge type Weights Edges

n-link Bp,q = exp
[−‖f (p)−f (q)‖2

2σ 2

] · 1
‖p−q‖ all (p, q) ∈ N

t-link R(p, S) = λ · (− lnP (p ∈ “frg”)) all (S,p),p ∈ P

t-link R(p, T ) = λ · (− lnP (p ∈ “bkg”)) all (T ,p),p ∈ P

Fig. 8.4 Interactive input for foreground and background produces two distributions that overlap
to such a large extent that a segmentation based on intensity alone will not produce the desired
grouping into a single foreground object surrounded from background

deficiencies of one of the measures by the other measure. The weights for all the
links are summarized in Table 8.1.

Finding a cut C separating S and T that minimizes the cost of all edges in C

minimizes

E (C) = λ ·
(∑

p∈Sc

R (p, S) +
∑

p∈Tcc

R (p, T )

)
+

∑
(p,q)∈NC

Bp,q . (8.3)

Here, NC is the subset of all edges in N that are part of the cut C, and SC and TC

are subsets of edges (p, S) and (p, T ), respectively, that are part of C. The value of λ

governs the relative influence of the boundary term with respect to the region term.
A small value for λ would be selected if the probability distributions of the region
attribute overlap or if they are very flat (see Fig. 8.4). The segmentation could be
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Fig. 8.5 An intermediate range of values for λ results in the desired segmentation (sketch of
results that can be achieved using the method presented in Boykov and Jolly 2001)

still successful if a sufficiently high number of n-links on the segment boundary have
low values. This behavior has been nicely demonstrated by an example presented
in Boykov and Jolly (2001) (Fig. 8.5 shows a sketch of the behavior for different
values of λ).

Graph cuts have been extended further to include a priori knowledge about region
membership. If the foreground or background membership of some pixels is known,
their t-link weights can be set accordingly so as to ensure that the minimum cost cut
does cut the corresponding link. The t-link weight for the known foreground pixels
pfrg and background pixels pbkg are

R(pfrg, S) = 0 ∧ R(pfrg, T ) = 1 + max
p∈P

( ∑
q:(p,q)∈N

Bp,q

)
(8.4)

and

R(pbkg, T ) = 0 ∧ R(pbkg, S) = 1 + max
p∈P

( ∑
q:(p,q)∈N

Bp,q

)
. (8.5)

It will always be costlier to cut the t-link from T to a pfrg or from S to a pbkg
than to cut any n-link leading to pixel pfrg or pbkg, respectively.

Introducing the known foreground and background pixels enables user interac-
tion at runtime. Histograms of interactively specified f (pfrg) and f (pbkg) may be
used to estimate region membership probabilities.

The computation of the minimum cut is done by computing the maximum flow
between the source and sink. The flow from source to sink will be limited by a set
of edges that are saturated with flow. This set of edges forms a closed boundary
separating the source from the sink1 irrespective of the dimension of the scene that
is represented by the graph.

The iterative Floyd–Fulkerson algorithm computes the maximum flow. It aug-
ments flow until saturation (see Fig. 8.6). The algorithm keeps a copy Gresidual of the
graph G = {V,E} with nodes V = {vi} and edges E = {ej }. The weights wres(ei)

1If the boundary is not closed, at least one non-saturated edge between source and sink would exist.
Flow could be increased until this edge is saturated as well.
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Fig. 8.6 The Ford–Fulkerson
algorithm finds a sequence of
edges with maximal flow
capacity at each step. Total
flow is increased accordingly
and remaining capacity is
reduced

Fig. 8.7 Computation of the path with maximal remaining capacity is done by computing a mini-
mum cost path on the capacity

of edges in Gresidual are the residual flow capacity, which, at initialization, is equal
to the capacity w(ei) of edges in G.

At each iteration, the minimum cost path from S to T is determined in Gresidual
(see Fig. 8.7). The flow from S to T is augmented by the capacity of the edge with
smallest weight wmin along this path. Residual capacity along the edges of the path
is reduced by wmin. Edges E with wres(e) = 0 are removed and are part of the graph
cut.2 The process continues until T becomes unreachable from S. The set of edges
removed from the residual capacity graph constitute the minimum cost graph cut.

The algorithm above is efficient in worst-case analysis for arbitrary graphs. The
average performance for computing graph cuts for segmentation can be improved,
however, if the specific structure of graphs from images is taken into account (i.e.,
that all pixels are connected by t-links to S and T and that all n-links are local)
(Boykov and Kolmogorov 2004).

The essence of Boykov’s algorithm is the reuse of information from a path search
between the source and sink instead of starting the path search at each iteration
after a flow augmentation from scratch. The disadvantage of this approach is that

2It is possible that edges between two neighboring pixels are removed by this procedure which
may make a pixel unreachable from S and T . This corresponds to segmentation boundaries that
are broader than a pixel in methods such as the watershed transform. If this is undesirable, sim-
ilar strategies as in WST have to be followed for assigning these pixels either to foreground or
background.
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paths are not necessarily minimum cost paths. It does not change the optimality of
the solution, but increases the computational costs in the worst case. However, on
average, the method is faster than the Floyd–Fulkerson algorithm.

For the initial augmentation, Boykov’s method searches a minimum cost path by
simultaneously carrying out a breadth-first search from source S and sink T . If the
two search trees meet, a minimum cost path is found and flow is augmented.

The method differs from the Floyd–Fulkerson algorithm in the next step. Instead
of initiating a new minimum cost path search on the updated residual capacity graph
Gresidual, it reuses the net of the two search trees. Since augmentation will have
caused at least one edge to be removed because of saturation, at least one of the
search trees will be broken at this edge. The nodes that are no longer connected to
S or T will be called orphan nodes.

In a restoration step, there will be an attempt to be reconnect orphan nodes to
the one search tree to which they originally belonged. Hence, a new flow between
the source and sink has been restored although the minimum cost property is not
necessarily given. Again, the bottleneck edge along this path is determined, flow is
augmented, and Gresidual is updated accordingly. The process terminates when no
path can be determined (i.e., when orphan nodes remain unconnected in the restora-
tion step).

The algorithms above assume that weights along edges are positive, which can
be easily assured and which is true for the weighting scheme given by (8.2) to (8.5).

For a given image, the computation of a graph cut needs to be repeated from
scratch when the weights are changed. This may happen, for instance, if the user
adds foreground or background pixels because the current segmentation result is
unsatisfactory.

The complete recomputation of maximum flow can be avoided using a simple
trick. This will be demonstrated by the example of adding new foreground nodes
pfrg,1, . . . ,pfrg,N . It changes the flow capacity at edges (S,pfrg,i ) by the positive
value (K − λ) · Rbkg(pfrg,i ). It also changes the flow capacity at edges (T ,pfrg,i )

by the negative value −λ · Rfrg(pfrg,i ). Computing maximum flow can be continued
using the previous result in the residual capacity graph Gresidual instead of starting
with G if the residual capacities of edges (S,pfrg,i ) and (T ,pfrg,i ) are changed ac-
cordingly. If one of these edges no longer exists in Gresidual because it was saturated,
it has to be included again.

Updating the residual capacity graph as explained above may assign negative
weights to some edges. This is remedied by computing wmin = mine∈Gres w(e) and
subtracting it from all edge weights. It changes the maximum flow by a constant but
does not change the set of edges in C (see Fig. 8.8).

8.1.2 Graph Cuts to Approximate a Bayesian Segmentation

The graph cut technique outlined above can also be used as part of a segmentation
procedure that optimizes label classification based on a Markov random field model
presented in Sect. 7.1.3. In Boykov et al. (2001) the problem is defined as an energy
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Fig. 8.8 Adding a foreground node after a cut requires updating the capacities to this node from
source and sink accordingly. Since this may result in edges with negative weight, a constant factor
is added to all edges (including those removed because they are saturated)

minimization task, which makes it conceptually similar to some of the active contour
segmentation schemes presented in the next chapter.
• Interaction costs V (f (p), f (q)) represent what is the a priori probability term

of the MRF formulation and what is called internal energy in active contours.
Interaction costs are a smoothing term that is assumed to be minimal if labels
f (p) of a pixel p and those of its neighbors q are equal. The neighborhood for
the set of neighbor pairs N can be defined in an arbitrary manner.

• Data costs D(f (p)) represent what the likelihood function is in the MRF formu-
lation and what is the external energy in active contours. The value of D(f (p))

is assumed to be minimal if the features of pixels p ∈ G having some label are
similar to the feature values expected for this kind of segment.
The goal of segmentation is to find a labeling Sopt that minimizes a weighted

combination of internal and external energies:

Sopt = arg min
S

E(S) =
∑

(p,q)∈N

V
(
f (p), f (q)

) + γ
∑
p∈G

D
(
f (p)

)
. (8.6)

The weight γ depends on the kind of image and has to be specified by the user.
Data costs are weighted high if data are reliable (high contrast, low noise), while
otherwise interaction costs are weighted higher. Data costs D(f (p)) can be any
nonnegative function of f (p). It could be, for instance, the difference of the ac-
tual value of p compared to an expected value Ef (p) for pixels belonging to a
segment labeled with f . Interaction costs need to be a metric or a semimetric on
the labels l. It is a reasonable constraint that requires nonnegativity, symmetry, and
V (f (p), f (p)) = 0. If it is a metric, the triangle inequality must hold as well.

Automatic segmentation by graph cut requires some initial labeling that assigns
a segment label to each pixel. In principle, this labeling can be arbitrary. There are
two reasons why segmentation should be initiated with a good guess nonetheless.
• Most optimization schemes are iterative local relabeling procedures that are not

guaranteed to terminate in the global minimum.
• It is not guaranteed that the global minimum really is the desired segmentation.

Hence, the initial labeling should be as close as possible to the desired final result.
Such an initial segmentation can be created by first omitting the interaction term V .
The initial label f (p) for a scene element p is then the label of which the expected
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Fig. 8.9 Automatic
segmentation requires an
initialization. This could be a
segmentation based on the
data term, since it can be
assumed that this will be a
noisy version of the unknown
true segmentation

Fig. 8.10 An α–β swap finds an optimal label swap between all sites labeled with α and β . Other
regions are not changed. An α-expansion expands the region labeled with a into all other regions

feature vector is closest to the feature vector observed at p. It is a reasonable strategy
since the interaction costs serve as a smoothness constraint to reduce the effects of
noise on the segmentation (see Fig. 8.9 for a schematic view). If the omission of the
smoothness constraint does not produce a good initial segmentation, the noise level
is so high that the final segmentation is mainly influenced by the a priori knowledge.
In such a case, using such a simple model of a priori knowledge is inappropriate
altogether and a different segmentation strategy should be employed.

Given the initialization, graph cut optimizes the labeling according to the interac-
tion term enforcing equal labels between neighboring scene elements and to the data
term given by the likelihood function. Two different methods have been presented
to achieve this goal (Boykov et al. 2001, see also Fig. 8.10).
• α–β swap moves find an optimal swap of labels between all scene elements hav-

ing the labels α and β .
• α-expansion moves expand regions labeled with α into all regions with other

labels.
If the scene is separated into two different regions (e.g., foreground and back-

ground) both methods produce optimal results. If the scene has more than two differ-
ent segment types, it has been shown by Boykov et al. (2001) that the α-expansion
moves produces a result of which the total energy is at most twice the minimum
energy that is searched. No such assertion can be made for α–β swap moves.

A segmentation can be achieved by either iterating several times through all pos-
sible α–β swap moves for all label combinations (α,β) or by repeatedly carrying
out α-expansion moves. A set of moves through all possible (α,β) combinations for
α–β swaps or through all possible labels α for α-expansions is called a cycle. The
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Fig. 8.11 Graph of all nodes
currently labeled α or β for
an α–β-swap move

Table 8.2 Weights for an α–β swap

Edge type Weight Edges

e(p,q) V (f (p), f (q)) All (p,q) ∈ Pα,β , (p,q) ∈ N

t(p, α)
∑

q∈Np,q /∈Pα,β
V (f (p), f (q)) + γD(f (p)) All p ∈ Pα,β

t (p, β)
∑

q∈Np,q /∈Pα,β
V (f (p), f (q)) + γD(f (p)) All p ∈ Pα,β

iterative procedure stops when iterating through a cycle does not reduce the total
energy E(S). Termination after a fixed number of cycles is guaranteed since D is
nonnegative and V is at least a semimetric.

Although it sounds as if α-expansion moves should be preferred to swap moves
this should be taken with a grain of salt. Assuring that the energy of the final labeling
is at most twice as high as the minimal energy tells little about the actual labeling
error (i.e., the number and location of mislabeled scene elements).

For computing each move (swap move or expansion move) a graph has to be
created from the scene. The nodes in this graph represent a subset of the scene
elements. Two nodes are connected by an edge if the corresponding scene elements
are neighbors by some neighborhood definition. The neighborhood could be the
usual four- or eight-neighborhood for pixels (6- or 26-neighborhood for voxels), but
in general, every kind of neighborhood is admissible.

The graphs for α–β swap moves and for α-expansion moves are different from
each other. The graph for an α–β swap move consists of the subset of all nodes
{pα} ∪ {pβ} representing scene elements labeled with f (p) = α or f (p) = β and
two terminal nodes α and β . Nodes p,q ∈ {pα} ∪ {pβ} are connected by an edge
e(p,q) if they are neighbors. All nodes p are connected with the two terminal links
by edges t (p,α) and t (p,β), respectively (see Fig. 8.11). Table 8.2 lists the weights
given to the edges.

This table has some similarities to the table for interactive graph cuts. Again, for
all edges in the graph, interaction costs V are computed. The main difference is in
the definition of the cost for the edges to the two terminals. Additionally to the data
cost D of scene element p, interaction costs are added from neighboring nodes that
are labeled neither α nor β . This is necessary because a cut that results in a relabeling
also changes potential relabeling costs to other nodes (the interaction cost between
label α and another label γ may be different to the cost between labels β and γ ). The
set of edges in the graph cut contains edges connecting pixel nodes with terminal
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Table 8.3 Weights for an α-expansion move

Edge type Weight Edge

t (p, ᾱ) ∞ All p ∈ Pα

t (p, ᾱ) γD(f (p)) All p �∈ Pα

t (p,α) γD(α) All p ∈ P

e(p,a) V (f (p),α) All (p,q) ∈ N,f (p) �= f (q)

e(a,q) V (α, f (q))

t (a, ᾱ) V (f (p), f (q))

e(p,q) V (f (p),α) All (p,q) ∈ N , f (p) �= f (q)

Fig. 8.12 The graph for an
α-expansion consists of all
nodes whether being labeled
α or not, plus auxiliary nodes
between neighboring nodes
with label α and some other
label

label nodes. Pixels are assigned the label of these terminal nodes. It has been shown
in Boykov et al. (2001) that relabeling nodes according to the minimum cut on this
graph using the edge costs from Table 8.2 maximally decreases the total energy with
respect to the two labels. It is not the global optimum, however, since the swap does
not consider the costs from pixels with other labels γ .

The graph for an α-expansion consists of all nodes representing pixels in the
scene and two terminal nodes α and ᾱ. Auxiliary nodes a are introduced between
each pair of nodes p and q that have different labels f (p) �= f (q) (see Fig. 8.12).
These auxiliary nodes are connected by edges to nodes p and q via edges e(p,a) and
e(a,q) and to the terminal node ᾱ via t (a, ᾱ). The introduction of auxiliary nodes
is necessary to represent the costs that incur when a label change takes place. Edge
costs for all edges are listed in Table 8.3.

Similar to the α–β swap, it can be shown that computing a minimum cut using
the graph with edge weights as given above and relabeling nodes according to the
links to either α or ᾱ produces the maximum decrease in total energy that can be
achieved by expanding the α-labels into all other pixels. The graph changes after
every step since the number, placement, and weights of the auxiliary nodes change.
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Fig. 8.13 The blob
constraint penalizes cutting
through edges between pixels
the more the orientation
varies from the orientation of
a line between the blob center
and the pixel. In this example,
cutting the edge depicted in
(a) is cheaper than cutting the
edge depicted in (b)

8.1.3 Adding Constraints

Basic graph cut segmentation produces segments based on homogeneity in the seg-
ments and boundary length. Its performance can be enhanced if additional domain
knowledge is integrated into the cost function.

A blob component has been used (Funka-Lea et al. 2006) to separate the heart
from the background in CT images. The blob component is realized by adding a
term to (8.6) that penalizes the direction deviations of a line segment pq of a cut
to a line from a prespecified blob center c to the location of p (see Fig. 8.13). This
is a way to promote convex structures around a prespecified blob center (which in
this case is a location in the center of the heart specified by the user). The approach
has been generalized by Veksler (2008) who extended the approach to use arbitrary
star-convex shapes around a selected center. It allows to include a variety of generic
shape constraints into the graph cut formulation.

The segmentation of line-like extrusions of a structure has been made possible
by a method presented by Vicente et al. (2008). Such extrusions are cut by regular
graph cut segmentation, as it requires too many edges to be part of the cut. In Vicente
et al. (2008) an additional user-specified constraint augments an existing segmen-
tation (e.g., from graph cut segmentation) to add missing extrusions to the result.
The required user input consists of placing seed points into extremal points of the
missing extrusion. The constraint then requires these points to be connected to the
existing segmentation. Different kinds of conditions are given for this connection.
A heuristic solution is presented that combines the graph cut with a Dijkstra-like
path searching algorithm to connect the seeds with the original segmentation.

Priors can be more specific than the ones here if a model predicts a specific shape.
This will be discussed in Chap. 11 on the use of shape models.

8.1.4 Normalized Graph Cuts

Graph cuts sometimes produce undesired results because the minimum-cut-maxi-
mum-flow tends to cut as few edges as possible (see Fig. 8.14). In interactive graph
cuts it may produce segments with boundaries very close to the foreground or back-
ground seed points. This is particularly so if the data terms for the foreground and
background have very different characteristics (e.g., when one of them has to allow
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Fig. 8.14 A graph cut segmentation may stop too early because the inhomogeneous foreground
on the right results in a weak data constraint. Hence, smoothness overtakes, which causes a short
boundary close to the initialization

for a much higher variation of feature values than the other). In such a case, it can
be helpful to add a size constraint into the equation that requires segments to have
a similar size. It makes sense if the goal of segmentation is not to extract a specific
object—of which the size may be very different from that of the background—but
to produce agglomerations of pixels that shall be further processed for analysis.
Normalizing the segmentation by segment size is comparable with similar segmen-
tation methods such as the watershed transform or region merging, however, with
the difference that it optimizes a criterion that includes both region and boundary
terms.

In Shi and Malik (2000) a method is suggested that incorporates such a normal-
ization criterion into the graph cut procedure. The normalized graph cut segments
an image into regions with one of two labels, a or b, with minimal costs. The costs
consist of the original graph cut costs cut(a,b) weighted by association costs as-
soc(a,v) and assoc(b,v) between nodes of a segment to all nodes v in the scene. The
total cost of a normalized cut is then

NCut(a,b) = cut(a,b)

assoc(a,v)
+ cut(a,b)

assoc(b,v)
. (8.7)

Unfortunately, computing the optimal cut is NP-complete. Hence, Shi and Malik
(2000) presented an approximation of the result. The problem is mapped on a linear
equation system representing the graph as a matrix and the unknown labeling by an
indicator vector. The indicator vector x for nodes N = {n1, . . . ,nM} in the graph has
elements xi as follows:

xi =
{

1, if ni ∈ A,

−1, if ni ∈ B.
(8.8)
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An M ×M weight matrix W denotes the costs of the edge between nodes ni and
nj . The value of an element wij is

wij =
{

e (i, j) , if ni and nj are connected by an edge,
0, otherwise.

(8.9)

Furthermore, a diagonal matrix D is created with entries dii representing the
association costs of a node ni to all other nodes:

dii =
∑

j=1,M

wij . (8.10)

The cost function can then be rewritten as

NCut (A,B) = NCut(x) =
∑

{(i,j)},xi>0,xj <0 −wijxixj∑
{i},xi>0 dii

+
∑

{(i,j)},xi<0,xj >0 −wijxixj∑
{i},xi<0 dii

. (8.11)

Introducing a cost ratio k for the association costs of scene elements with label a
to the total association cost

k =
∑

{i},xi>0 dii∑
i dii

(8.12)

and setting

y = (1 + x) − k

1 − k
(1 − x) (8.13)

it can be shown (Shi and Malik 2000) that the cost of a cut specified by an indicator
vector x is given by

NCut (x) = yT (D − W)y
yT Dy

. (8.14)

Finding an optimal cut requires finding a vector y that minimizes NCut(x). Solv-
ing the associated eigenproblem can generate solutions for

(D − W)y = λDy. (8.15)

The solution for the second largest eigenvalue (i.e., the associated eigenvector)
produces the vector y and consequently the vector x to create the labeling. The result
only approximates the optimal solution since x may contain values that are neither
1 nor −1. In a final step, the real-valued vector is mapped onto an indicator vector.
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Fig. 8.15 Fuzzy
connectedness between two
pixels is defined by the
maximal local affinity of all
paths between the two pixels

The NCut algorithm can be extended to separate an image into more than two
labels in two ways. Further separations can be generated by repeated subdivision if
the NCut algorithm is applied again on a labeled scene. This is the most stable, but a
rather slow solution for multilabel segmentation. Another option is to use eigenvec-
tors associated to smaller eigenvalues. Due to the way to approximate eigenvalues
and due to the fact that the result is only an approximation of the true optimal de-
composition, this is much less stable, however. Alternative ways to solve the multi-
label segmentation problem were proposed (e.g., by Ng et al. 2002 and Tolliver and
Miller 2006).

8.2 Segmentation as a Path Problem

Instead of using graph cuts, segmentation can also be modeled as a minimum cost
path problem. This is the underlying principle of the live wire method of Sect. 6.9,
where part of a segment boundary has been modeled as a path in a graph represent-
ing a 2D scene. It has been extended to segmentations based on regional attributes in
several ways, which will be presented below. Common to all approaches is that there
is no restriction on the number of dimensions of the scene to be segmented. Another
common aspect is that all approaches require seed elements similar to seeded region
growing. Segmentation is then solved as a minimum cost path problem between
each pixel and the seed elements. A pixel receives the label of a seed pixel, which
can be reached with the lowest cost.

8.2.1 Fuzzy Connectedness

Fuzzy connectedness is an old concept to describe the connectivity between sets
that have a spatial component so that the neighborhood between elements of the set
can be defined. The concept has been exploited for image segmentation by relating
connectedness to segmentation goals (Udupa and Samarasekera 1996). An exact,
but rather mathematical description can be found in Udupa and Saha (2003).

Fuzzy connectedness between two scene elements is given by local affinity values
a of a path between the two elements. The affinity of a path is given by the smallest
local affinity between neighboring elements along the path. Fuzzy connectedness μ
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between two elements pj and pk is then the minimum affinity of the strongest path
between the elements (see Fig. 8.15):

μ(pj ,pk) = max
p(pj ,pk)∈P(pj ,pk)

[
min

(ps1,ps2)∈p(pj ,pk)
a (ps1,ps2)

]
, (8.16)

where P() is the set of all paths between two pixels, p() is a path, and (ps1,ps2) are
adjacent pixels under some adjacency relationship.

The affinity value a between two pixels is a local property that depends on the
distance between the two pixels, on the homogeneity of the feature values of the two
pixels, and on the deviation of the feature values from the expected values. Affinity
decreases with increasing distance, inhomogeneity, and dissimilarity of the features
to the expected features.

In principle, any reasonable measure for distance, homogeneity, and dissimilarity
to some expected value can be used to measure affinity. In Udupa and Saha (2003),
however, an elegant way was presented to relate homogeneity and dissimilarity to
the expected semantics. Details can be found in Udupa and Saha (2003), but the
essence of the argumentation is that inhomogeneity can be caused by two effects:
random fluctuation and the fact that the two pixels pj and pk belong to different
objects. Since only the latter is relevant in terms of the affinity measure, the authors
• estimated homogeneous regions of interest around the two scene elements,
• computed measures of deviation under two different hypotheses (pj is brighter

than pk or pk is brighter than pj ),
• made the assumption that the higher of the two deviation measures (dmax, dmin)

depends on random variation plus any variation caused by pj and pk belonging to
different objects, while the other represent just variation by random noise (which
simply means that the SNR should be better than 1),

• and finally used the difference dmax −dmin for computing a homogeneity measure.
A similar approach is used for computing the dissimilarity from the expected

feature values. The main difference is that the weighting does not depend on the
relative difference in appearance at pj and pk , but on a probability given some
expected intensity distribution functions.

Given the affinity measure, fuzzy connectedness can be used to associate pixels
to user-specified seed elements. In Herman and Carvalho (2001) it was shown that
computing fuzzy connectedness for every pixel with respect to given seed pixels
can be done efficiently by applying Dijkstra’s algorithm to compute a minimum
cost path.

Fuzzy connectivity for segmentation can be applied in an absolute and a rel-
ative manner (see Fig. 8.16). Absolute connectivity is specified if a threshold on
fuzzy connectivity can be given that is required for all pixels of a segment. Given a
seed pixel, all pixels are detected that fulfill this criterion with respect to the seed.
This bears some similarity to region growing methods such as those presented in
Chap. 6. However, different to those, fuzzy connectivity is not heuristic and guar-
antees to optimize a (fuzzy) membership function. Furthermore, region growing
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Fig. 8.16 Segmentation using absolute fuzzy connectedness puts the segment boundary between
pixels of which fuzzy connectedness falls below some pre-specified threshold. In relative fuzzy
connectedness, connectedness for each pixel to a set of seed pixels is computed. Pixels receive the
label of the seed to which the connectedness is maximal

works only with a simple neighborhood relationship and homogeneity features can-
not be defined. The latter leads to serious problems when the implicit homogeneity
assumption of region growing (the region has a constant intensity value) is not true.

As a relative method, segmentation using fuzzy connectedness is even more ver-
satile. In this case, fuzzy connectivity of a pixel to each of K different seed pixels
is computed. The pixel receives the label of the one seed to which it has the highest
fuzzy connectedness. The segmentation produces as many connected segments as
there are seed pixels and does not require a predefined threshold on fuzzy connect-
edness.

8.2.2 The Image Foresting Transform

Using the image foresting transform (IFT) (Falcao et al. 2004) for segmentation
bears some similarity to segmentation by interactive graph cut segmentation. The
IFT creates a segmented image by finding minimum cost paths in a graph with
nodes representing pixels and edges representing the neighborhood between pixels.
The IFT allows separation of a scene into an arbitrary number of differently labeled
segments. Minimum cost paths to each pixel may originate at arbitrary pixels, but
specific seed locations may be selected by proper definition of the initial path costs
at every pixel. The result is a forest of trees. Pixels being roots of a tree connect to
all nodes of the graph that can be reached from this root by a minimum cost path
(see Fig. 8.17).

The graph G = {V,E}, for which the IFT is computed, consists of nodes
V = {p1,p2, . . .} representing pixels and edges E = {e1, e2, . . .} connecting adja-
cent pixels. Adjacency may be defined such that two pixels are adjacent if they
share a common corner, edge, or surface. Other adjacency relationships are possible
as well (similar to graph cuts). An edge ej connecting pj,1 with pj,2 carries a cost
c(ej ) = c(pj,1,pj,2). If region-based segmentation is the objective, this cost is re-
lated to the likelihood of pj,1 and pj,2 belonging to the same region. Furthermore,
nodes p carry a cost h(p), which is called the node load. In region-based segmen-
tation, the node load reflects the likelihood of this node being a potential seed of a
segment. Given a scene represented by a graph, the IFT will compute the shortest
path from one of the seeds to every node in the graph. The method for computing
the IFT is a modified and optimized version of Dijkstra’s method for computing
minimum cost paths.
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Fig. 8.17 The image foresting transform computes minimum cost path from seed pixels to all
other pixels. Segmentation is then given by assigning labels from the seed which can be reached
with lowest costs. The method bears similarity to segmentation using fuzzy connectedness, how-
ever, the length of the path influences computed costs

Fig. 8.18 Sketch of path cost computation according to (8.17)

Path costs π(proot,pcur) between a root node proot and the current node pcur
are defined by an accumulation function πacc[π(proot, pprev), c(pprev,pcur)] of the
path cost π(proot,pprev) to the parent node pprev of node pcur and the edge cost
c(e) = c(pprev,pcur) of an edge connecting pprev with pcur (see Fig. 8.18). Various
definitions of the path cost function πacc are possible such as

πacc
[
π(proot,pprev), c(pprev,pcur)

] = π(proot,pprev) + c(pprev,pcur), (8.17)

which adds the edge cost to the cost of the path from proot to pprev, or

πacc
[
π(proot,pprev), c(pprev,pcur)

] = max
[
π(proot,pprev), c(pprev,pcur)

]
, (8.18)

which computes the maximum edge cost along the path. Any accumulation function
that fulfills

π(proot,pcur) ≥ π(proot,pprev) (8.19)

is acceptable. If (8.19) is violated, a minimum cost path of finite length does not
always exist.

Using the concept for segmentation is straightforward. Each node is assigned a
label and labels are propagated from the root of each tree in the forest to all children.
After computing the IFT, labels are interpreted as segment membership.

Selecting appropriate node loads and path cost accumulation functions produces
a variety of different segmentation methods. Additive path costs defined by (8.17)
are useful for representing a seeded region growing by a minimum cost path search.
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In this case, a set of seeds s with labels ls have to be predefined. Seed elements s
receive a load h(s) reflecting the homogeneity in a local neighborhood around s. All
other nodes p receive loads h(p) = ∞, which excludes them from being roots of the
IFT. Path costs between two nodes (p1,p2) depend on local intensity differences
or on the difference of f (p2) to the function value at the root to which (p1,p2) is
added as path.

After carrying out the IFT, pixels have been labeled according to the root label
of the minimum cost path leading to the corresponding node in the graph. The seg-
mentation depends on the homogeneity along paths from the seed pixels to all pixels
of a segment and on the length of the path.

The latter is often a desired behavior in interactive segmentation, as it allows
the user to place seeds of different labels close to each other at subregions that
belong—according to user knowledge—to different segments, but where there is no
visible difference in the appearance of the object. If the dependence on path length
is unwanted, the accumulation function can be replaced by (8.18). In such a case,
the method resembles fuzzy connectedness computation, as the path cost depends
on the most inhomogeneous part of the most homogeneous path between two pixels.

Equation (8.18) can also be used for computing the watershed transform. For
a watershed transform with markers, the above-mentioned seeds play the role of
markers. The cost function is the intensity at the seeds. The IFT will find a path to
the marker with lowest intensity. For a WST without markers, loads for each pixel
are set to infinity so that pixels become a source of a water basin if they are local
minima.

The IFT can be thought of as a generalization of the concepts that underlie the
live wire and the fuzzy connectedness approaches presented earlier, as the authors
have shown that many of the graph-oriented methods can be seen as special cases
of the IFT. It is different from the graph cut strategy, as the assignment of seeds
(whether explicitly or implicitly by being roots in the IFT forest) predetermines
the topology of segments, whereas in graph cut segmentation pixels with the same
label may belong to several different components. Whether graph cut or IFT is the
appropriate strategy when representing a segmentation problem as path search in a
graph depends on the domain knowledge about the desired kind of segmentation.

8.2.3 Random Walks

An effective and almost parameter-free variant to apply seeded segmentation on a
graph are random walks (Grady 2006). Given seed pixels with labels l1, . . . , lK , the
algorithm computes for each unseeded pixel p the probability Pk(p) that a random
walk reaches the seed with label lk first. Random walks define the desired segmen-
tation similar to segmentation based on fuzzy connectedness or the image foresting
transform (see Fig. 8.19). However, the search strategy goes from unlabeled pixels
to the seeds instead of starting from the seeds. At first sight, this appears to be less
efficient since the walk to the seed is governed by probabilities to walk along edges
of the path between pixel and seed. Indeed, sampling random walks starting from
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Fig. 8.19 Random walk segmentation computes for each start pixel the probability of reaching
each of the seeds given the probability wij of walking from pixel pi to pixel pj

every pixel would be unfeasible. Fortunately, the probability of reaching a seed from
an unlabeled pixel can be directly computed without having to carry out the walk.

The walk is governed by probabilities to reach a pixel pi from a neighboring
pixel pj . This constitutes the data term. The probability is higher the more likely
the two pixels belong to the same segment. A probability function suggested by
Grady (2006) for the data term is

wij = exp
(−β

(
f (pi ) − f (pj )

)2)
, (8.20)

where f is the intensity of the pixel. The parameter β influences how quickly the
probability decreases with increasing intensity differences. The function is similar
to Boykov’s term for interactive graph cuts (8.2), except for the fact that the spatial
distance between neighbors is not accounted for.

Segmentation by random walks first computes the probabilities for each pixel
and each seed. Pixels are assigned a label that corresponds to the seed in which the
random walk most likely ends. It is guaranteed that all pixels of a segment with label
lk are connected to the seed pixel with label lk .

Computing the probabilities is associated to other equilibrium problems that can
be calculated directly by solving a system of linear equations, as was shown by
Grady (2006). The strategy to solve the problem is similar to that used in the com-
putation of normalized cuts by expressing the optimization task on the graph as
an optimization task on matrices. However, the optimized entity is completely dif-
ferent. As opposed to the Normalized Graph Cut algorithm, the result is not an
approximation since its domain is the solution space.

In Grady (2006) it was shown that finding the probabilities for a walk starting at
some pixel to arrive at some seed pixel is related to minimizing

D (x) = 1

2

∑
eij ∈E

wij (xi − xj ) = 1

2
xT Lx, (8.21)
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where L is a symmetric, positive semidefinite, sparse matrix with entries

Lij =
⎧⎨
⎩

di, if i = j

−wij , if vi and vj are adjacent nodes
0, otherwise.

(8.22)

The nodes V are regrouped into a subset VM of marked nodes and a subset VU of
unmarked nodes. The list of nodes is reordered so that the first nodes are the marked
ones and the remaining ones are the unmarked nodes. The matrix L is reordered ac-
cordingly consisting now of two submatrices LM and LU , which represent edge
weights among the marked and unmarked nodes, and a submatrix B containing
weights between the marked and unmarked nodes. The equation to minimize reads
now (see Grady 2006 for details):

D (x) = 1

2

(
xT
M xT

U

)(
LM B
BT LU

)(
xM

xU

)

= 1

2

(
xT
MLMxM + 2xT

U BT xM + xT
U LU xU

)
. (8.23)

Since this needs to be minimized with respect to the unknown xU , the equation
is differentiated with respect to xU , yielding

∂

[
1

2

(
xT
MLMxM + 2xT

U BT xM + xT
U LU xU

)]/
∂xU = 1

2

(
2BT xM + 2LU xU

)
. (8.24)

This is set to zero for finding the minimum of D, which results in a system of
linear equations

BT xM + LU x = 0 ⇔ LU x = −BT xM. (8.25)

For determining probabilities to reach some seed location xs , the potential for
the marked nodes xM is set to 1 for the location xs and 0 for all other locations,
resulting in a vector ms with elements ms

j

ms
j =

{
1, if node j has the label s,

0, otherwise.
(8.26)

The equation system to be solved for this label is then

LU x = −BT ms . (8.27)

Instead of solving for a single seed, the solution can be found for all seeds when
a matrix M is created from all possible vectors ms and a matrix X is created by
duplicating x for every seed. Now, the equation system reads

LU X = −BT M. (8.28)
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The complete algorithm then consists of the following four steps.
1. Create a graph from the image and compute the edge weights based on the image

intensities.
2. Generate a list of k seed nodes (interactively or by some automatic analysis).
3. Solve the equation system for the first k − 1 seeds (since probabilities are com-

puted, the probability p(k) for the kth seed is 1 − ∑
i=1...k−1 p(i)).

4. Assign a label to each pixel that belongs to the seed that is most likely reached
from this pixel.
The code for this algorithm can be obtained from the web page of the author

(www.cns.bu.edu/~lgrady/random_walker.matlab_code.zip).
Random walks have been applied to medical image segmentation for brain and

cardiac MRI (Grady and Funka-Lea 2004) and have been shown to have a good
performance on natural images (Duchenne et al. 2008). Similar to all other methods
presented in this chapter, random walks are independent of the dimension of the
data. A fast GPU implementation has been presented in Grady et al. (2005).

8.3 Concluding Remarks

Mapping an image on a graph is straightforward as are the definitions of global
and local criteria for a good segmentation as node costs. The methods presented in
this chapter show different ways to compute an optimal segmentation based on cost
functions using (sometimes adapted) standard algorithms on graphs. The beauty of
using graphs as a representation lies in the independence from dimensionality and in
the versatility to define different cost functions that represent different segmentation
goals. The behavior of all segmentation methods presented here can be changed by
parameterization. The basic algorithm always remains the same.

The selection of cost functions requires some insight into the underlying problem
that is solved by the optimization procedure. A good example for this is the use of
graph cuts to solve an MRF minimization problem. It shows the common features
between two segmentation strategies that, at first sight, appear to be very different.
However, coming up with this solution will be difficult for a domain expert (e.g., a
radiologist), unless he or she also possesses expert knowledge about the underlying
principles of these two approaches. Hence, the potential versatility will be of more
interest to the developer, who may generate a toolbox of different segmentation
methods by reusing the representational power of a graph for characterizing the
various attributes of different segmentation strategies. The paper of Kolmogorov
and Zabih (2004) is a helpful resource as far as graph cut segmentation is concerned
as it addresses energy functions and the graphs to construct for their minimization
for binary problems such as foreground segmentation.

8.4 Exercises

• What kind of information is introduced by defining source and sink nodes in
graph cut segmentation? How is it introduced?

http://www.cns.bu.edu/~lgrady/random_walker.matlab_code.zip
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• How is the influence of noise implicitly reduced in interactive graph cut segmen-
tation?

• Explain the strategy that is used to avoid the complete recomputation of the max-
imum flow when additional foreground or background nodes are specified in in-
teractive graph cuts.

• How is an initial labeling created for graph-cut-based automatic segmentation?
Why is it important that this labeling is a good approximation of the final result?

• What are the differences in using swap moves and expansion moves? Given a
three-label-segmentation, which of the two moves would be faster? Explain why.

• Why is it impossible to estimate the quality of a swap move optimization with
respect to the unknown optimal solution?

• What would be the characteristics of a segmentation problem where regular graph
cuts would be preferred to normalized graph cuts?

• What is meant by normalization in normalized graph cuts?
• At what step and how does it become apparent that the solution for finding an

optimal normalized graph cut is approximate?
• Why is fuzzy connectedness an appropriate criterion to characterize a good seg-

mentation? How is it used for this characterization?
• What is the difference between relative and absolute fuzzy connectedness? How

is this reflected in segmentation methods based on fuzzy connectedness?
• Explain how the concept of fuzzy connectedness is related to the image foresting

transform.
• What are the similarities and what are the differences between image foresting

transform and interactive graph cuts? Characterize a segmentation problem where
the IFT would be preferred over interactive graph cuts.

• Explain how the foresting transform can be used to produce a watershed trans-
form.

• How does a random walker differ from the image foresting transform?
• How is information about the smoothness of segment boundaries represented in

a segmentation by a random walker?
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9Active Contours and Active Surfaces

Abstract
Active contours and active surfaces are means of model-driven segmentation.
Their use enforces closed and smooth boundaries for each segmentation irrespec-
tive of the image content. They are particularly useful if such properties cannot
be derived everywhere from the data.
In this chapter, we will discuss explicit and implicit active contours, their defi-
nition, parameterization, and properties. Different fitting methods for active con-
tours will be presented in detail since their understanding is necessary to under-
stand parameterization and stability issues.

Concepts, notions and definitions introduced in this chapter

› Explicit active contours and surfaces
› Snakes
› Intrinsic and extrinsic attributes of active contours
› Optimization of explicit active contours
› Constraints for the evolution of explicit active contours
› Implicit active contours in the level set framework
› Stationary and dynamic level sets
› Level set evolution by front propagation
› Geodesic active contours, variational level sets

The Bayesian formulation of the segmentation problem and its solution as a graph
problem are examples for a data-driven segmentation. The underlying model for
most of these methods is that objects in an image appear homogeneous. The use
of active contours and active surfaces (i.e., active boundaries) is model-driven. The
model predicts properties of an ideal segment, which are imposed on the data. In
the case of active contours or surfaces, the attributes of the outline of an ideal object
boundary are predicted. The boundary is assumed to be smooth and closed. This
kind of domain knowledge allows a successful segmentation of objects even if they
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DOI 10.1007/978-1-4471-2751-2_9, © Springer-Verlag London Limited 2012

261

http://dx.doi.org/10.1007/978-1-4471-2751-2_9


262 9 Active Contours and Active Surfaces

Fig. 9.1 Finding the segment boundary between the two points will be very difficult if additional
information about the smoothness and closedness of the course of the boundary cannot be included
in the procedure

are only partially contrasted against the background (see Fig. 9.1). Since the model
does not predict the shape or appearance of an object, it may be applied to a wide
variety of different objects (and not just, e.g., to livers in ultrasound images).

Using such a model of an ideal segment is best suited for foreground segmen-
tation. It requires the representation of a deformable ideal segment that balances
model attributes against data information. The importance of the model with respect
to the data is usually parameterizable so that it can be set according to assumptions
about the reliability of data and model. Since model-driven segmentation is a fitting
process, the quality of a given estimate for the true segment boundary needs to be
computable. Furthermore, a process is required to determine the best fit.

The model can either be represented explicitly or implicitly. An explicit repre-
sentation describes the boundary as a parameterizable curve or surface in space.
Locations in space that are not on the boundary are not defined by this representa-
tion. An implicit representation describes the boundary as a function of the space in
which it is embedded. Hence, locations that are not part of the boundary are defined
as well as the inner or outer points.

An explicit representation is often more intuitive than an implicit representation
because the searched boundary is explicitly described. It has the disadvantage that
the behavior of an evolving instance of such representation, when being fitted to the
data, is difficult to control. A location to which a boundary may move is defined
in terms of the representation only when the boundary is placed on this location.
This is different for an implicit representation. Each location in space is part of
the representation at any time. Evolving boundaries may change their topology if
necessary.

In the next section, explicit representations of active contours will be discussed.
They are based on the snake model presented by Kass et al. (1988). This is followed
by a discussion on implicit active contours presented by Osher and Sethian (1988).

9.1 Explicit Active Contours and Surfaces

Active contours were first presented by Kass et al. (1988) who called their model a
snake. The snake is a curve that is fitted to the data while retaining certain smooth-
ness properties. The goal is to find a contour that separates (part of) an object from
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Fig. 9.2 A snake is a
deformable curve r(s) with
points 0 ≤ s ≤ 1 that is placed
into an image

the background. The course of the snake smoothly follows high intensity gradients
if the gradients reliably reflect the object boundary. Otherwise, a smooth boundary
is generated bridging regions of noisy data or missing gradients. Such an active con-
tour is particularly well suited to segment an object instance in an image where the
data are distorted by noise or artefacts.

The extent of regions with missing or distorted gradient information should be
relatively small because otherwise the smooth boundary completion by the active
contour may not reflect the true course of the object boundary.

9.1.1 Deriving the Model

An active contour is a deformable curve r(s), 0 ≤ s ≤ 1 that is placed into a 2D
image (see Fig. 9.2). The vector r(s) contains the (x, y) coordinates of points s

on the curve. The model enforces smoothness by minimizing the first and second
derivatives along the curve:

Einternal
(
r(s)

) = w1
∂r(s)
∂s

+ w2
∂2r(s)
∂s2

= min, w1,w2 > 0. (9.1)

The term Einternal models the internal energy of a linear-elastic band. It behaves
similarly to a rubber band, except in extreme situations (a rubber band close to
rupture no longer stretches linearly with the exerted force).

The first derivative in Einternal is the elasticity and the second derivative is the
stiffness of the rubber band. The weights w1 and w2 rate stiffness against elasticity
and balance this term against an external energy Eexternal from the image. External
energy is often related to the image gradient for causing the active contour to follow
high gradients in the image. An example is

Eexternal
(
r(s)

) = −∥∥∇f
(
r(s)

)∥∥ = min, (9.2)



264 9 Active Contours and Active Surfaces

Fig. 9.3 The smooth snake curve defined everywhere on the curve is approximated by a finite
sequence of curve points si with derivatives estimated from finite differences

where f (r(s)) is the image intensity at position r(s). Finding the optimal curve now
requires minimization of the two energies along s:

∫ 1

0
Einternal

(
r(s)

) + Eexternal
(
r(s)

)
ds = min. (9.3)

Using variational calculus (see Sect. 14.2) to find a function r(s) that minimizes
the functional in (9.3) leads to the following Euler–Lagrange equation:

−w1
1

∂s

(
∂r(s)
∂s

)
+ w2

1

∂s2

(
∂2r(s)
∂s2

)
+ ∇Eexternal

(
r(s)

) = 0. (9.4)

The derivative of the external force (e.g., the gradient length as in (9.2)) will be
zero at the maxima of Eexternal. Hence, it is an influence vector field that points to
the closest feature in the data. Minimizing (9.4) simulates placing an elastic band in
this vector field. The band then moves to the closest features while trying to achieve
an energy-minimal state.

In the absence of an external energy, this state is either a straight line or a point to
which the curve shrinks. It is a straight line when the boundary conditions of (9.4)
are given by two separate end points of the curve. It shrinks to a point when the
boundary conditions are given by a closed curve (i.e., a periodic function r(s)).

In practice, the curve r(s) is defined only at a finite number of locations 0 ≤ s1 <

s2 < · · · < sn ≤ 1 (see Fig. 9.3). Derivatives through the curve are approximated by
finite differences:

∂r(si)
∂s

≈ r(si) − r(si−1)

h
, (9.5)

∂2r(si)
∂s2

≈ r(si+1) − 2r(si) + r(si−1)

h2
, h = ∥∥r(si) − r(si−1)

∥∥. (9.6)
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Differentiating this according to (9.4) we arrive at the following expressions for
the terms of the Euler–Lagrange equation:

−
(

w1
∂r(si)

∂s

)′
≈ w1

h

((
r(si) − r(si−1)

) − (
r(si+1) − r(si)

))

= w1

h

(−r(si−1) + 2r(si) − r(si+1)
)
, (9.7)

(
∂2r(si)

∂s2

)′′
≈ w2

h2

[(
r(si−2)−2r(si−1)+ r(si)

) − 2
(
r(si−1)−2r(si)+ r(si+1)

)

+ (
r(si) − 2r(si+1) + r(si+2)

)]
. (9.8)

The derivative of the external energy ∇E = [∂E/∂x ∂E/∂y]T is approximated
by differences as well.

The results are two linear equation systems, one for each coordinate

Ax + ∂E(s)
∂x

= 0, x = (
x1 . . . xN

)
,

∂E(s)
∂x

=
(

∂E(s1)

∂x
. . .

∂E(sN)

∂x

)

(9.9)

Ay + ∂E(s)
∂x

= 0, y = (
y1 . . . yN

)
,

∂E(s)
∂y

=
(

∂E(s1)

∂y
. . .

∂E(sN)

∂y

)

(9.10)

where 0 is the zero vector. The matrix A is a band matrix. It contains the weights
from (9.7) and (9.8):

A =

⎛
⎜⎜⎜⎜⎝

−2w1 + 6w2 w1 − 4w2 w2 . . . 0
w1 − 4w2 −2w1 + 6w2 w1 − 4w2 . . .

w2 w1 − 4w2 −2w1 + 6w2 w2
. . . . . . . . . . . . w1 − 4w2
0 0 0 . . . −2w1 + 6w2

⎞
⎟⎟⎟⎟⎠ .

(9.11)

Equations (9.9) and (9.10) can be solved analytically by inverting A. It can be
done in O(N) time since A is pentadiagonal. If weights w1 and w2 are kept constant,
the matrix does not change and the inversion does not need to be repeated.

Given A, an iterative scheme for the displacement of the active contour over time
can be developed. If node positions r(s) vary with time, their location at time t

is r(t)(s) with r(t)(s) = (x(t) y(t)). The active contour will stop moving if a local
minimum of the energy function has been found. In the local minimum, x(t+1) −
x(t) = 0 and y(t+1) −y(t) = 0 must hold. This can be plugged in into (9.9) and (9.10),
yielding

Ax(t) + ∂E(s(t))

∂x
= γ

(
x(t+1) − x(t)

)
(9.12)
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Fig. 9.4 The energy function has many local minima. Hence, the snake will find the contour only
if placed close enough to the boundary

and

Ay(t) + ∂E(s(t))

∂y
= γ

(
y(t+1) − y(t)

)
. (9.13)

Resolving this for the node locations at time t +1 results in the following iteration
step

x(t+1) = (A − γ I)−1
(

x(t) − ∂E(s(t))

∂x

)
(9.14)

and

y(t+1) = (A − γ I)−1
(

y(t) − ∂E(s(t))

∂y

)
, (9.15)

where I is the identity matrix and γ is a parameter that controls the step size. The
matrix (A + γ I) is still pentadiagonal and does not change for given values of w1,
w2, and γ . Hence, it can be inverted with an O(N) computational cost and does not
need to be inverted again as long as the parameters do not change.

Unfortunately, the energy function has many local minima. It is not guaranteed
that the iterative procedure fits the active contour to the desired object boundary.
Hence, most active contour methods require the user to place the model contour
sufficiently close to the object to be segmented (see Fig. 9.4).

9.1.2 The Use of Additional Constraints

Several variants of the active contour for boundary representation in 2D and 3D
exist. The balloon model presented as an active contour in 2D (Cohen 1991) and in
3D (Cohen and Cohen 1993) adds an additional inflating force that causes a closed
active contour or surface to move away from its initial position (see Fig. 9.5). The
inflation force is included as additional external force

fexternal
(
r(s)

) = k1n(s) − k2
∇Eexternal(r(s))

‖∇Eexternal(r(s))‖ . (9.16)

The vector n(s) is normal to the curve r(s) at a point s. The two external in-
fluences are weighted with respect to each other by k1 and k2 using application-
specific weights. The inflation force causes the curve to move beyond spurious



9.1 Explicit Active Contours and Surfaces 267

Fig. 9.5 A balloon force is an additional force for a closed active contour that drives the contour
outward or inward. In this example, an inward driving force was chosen that lets the contour move
towards the boundary when placed around the structure of interest

Fig. 9.6 Gradient vector flow (Xu and Prince 1998) drives a contour from everywhere in the image
to the segment boundary

gradients caused by noise. Balloon forces have been used in many applications
in medical image analysis (McInerney and Terzopoulos 1995a; Honea et al. 1999;
Ladak et al. 2000) since their behavior is intuitive and often effective.

Another strategy to influence the behavior of an active contour is the introduction
of gradient vector flow, as presented by Kichenassamy et al. (1995) and Xu and
Prince (1998). An introduction and examples can be found at the authors’ webpage
at http://www.iacl.ece.jhu.edu/static/gvf/. The method is available as Matlab code.

The authors observed that displacement, as defined by the gradient of external
forces, vanishes if the active contour is too far away from image features (such as
high gradients). They defined a static, smooth attraction field that is defined every-
where in the image. This field is called gradient vector flow (GVF) and it replaces
the gradient of external energy ∇Eexternal in (9.4).

A gradient vector field v(x) = v(x1, x2) = [u(x1, x2)v(x1, x2)] in a 2D image
with locations x = (x1x2) is computed by minimizing (see Fig. 9.6 for an example)

ε =
�

λ

[(
∂u

∂x1

)2

+
(

∂u

∂x2

)2

+
(

∂v

∂x1

)2

+
(

∂v

∂x2

)2]
+‖∇f ‖2‖v−∇f ‖2 dx1 dx2,

(9.17)

http://www.iacl.ece.jhu.edu/static/gvf/
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where f is the image function and ∇f (x) the desired image feature. A GVF func-
tion that minimizes ε produces values v(x) that are close to ∇f (x) if ∇f (x) is
large. Otherwise, the first term of (9.17) enforces a smooth variation of v in space.
The weight λ is application-specific. If the data contain noise, high values for λ will
result in a smoothly varying gradient vector field that is not influenced by spurious
gradients in the data.

The GVF needs to be computed only once. It is done by discretizing (9.17) and
then arriving at an iterative procedure for estimating v. At each location x, the cur-
rent estimate for v is adapted as to minimize the difference of v(x) to v(xnb) in
neighboring locations xnb . Simultaneously, the difference between the current esti-
mate of v(x) to the image gradient ∇f (x) is minimized.1

The use of a GVF as opposed to inflation forces finds the true object boundary
by image-driven means. It may still require initializing the active contour close to
the object instance in the image because data information may be insufficient for
guiding the contour evolution.

The two strategies to guide an active contour are probably the most often cited
examples for including additional information in the process. Other methods are to
restrict the search space by specifying end points of the curve (Cohen and Kimmel
1997), by adding a preceding edge detection step (Park and Keller 2001), or by
introducing continuity constraints from already found structures (Davatzikos and
Prince 1995; Neuenschwander et al. 1997).

9.1.3 T-snakes and T-surfaces

A constraint that sometimes inhibits a good segmentation is the preservation of
topology. Although it is most welcome when the topology is known, it makes seg-
mentation by active contours cumbersome when the segment consists of an un-
known number of regions with smooth boundaries. In such a case, topology-adaptive
snakes (T-snakes) presented by McInerney and Terzopoulos (1995b) and McInerney
and Terzopoulos (2000) can be applied.

T-snakes receive their ability of topological adaptation by a combination of an ex-
plicit active curve representation with an implicit representation of the curve. Hence,
they behave somewhat similarly to the implicit active contours to be described in the
next section.

A T-snake is a closed active contour together with an implicit representation,
by which space is separated into interior and exterior scene elements. The T-snake
develops in a sequence of deformation steps. Within a deformation step the contour
behaves like a regular snake but additionally updates the implicit representation
(see Fig. 9.7). The update step between two deformation steps uses the implicit
representation for splitting the enclosed regions into two or more regions or for
merging regions.

1The procedure is similar to optical flow computation by simultaneous minimization of the error
for the Horn–Schunck constraint and the difference between neighboring displacement vectors.
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Fig. 9.7 A T-snake moves as an explicit representation but it includes an update step where an ad-
ditional implicit representation is used to decide whether the explicit topology needs to be changed

Fig. 9.8 For ease of computation the griding is a simple grid. Grid elements are either interior,
exterior or boundary elements depending on the location of simplex node inside or outside of the
object

The snake evolution is governed by an inflation or deflation force. During a defor-
mation step, the contour either shrinks or grows, but may alternate between growing
and shrinking from step to step.

The T-snake differs from a regular snake in the existence of the implicit repre-
sentation and reparameterization after each deformation step. These two aspects are
now described in more detail.

The implicit representation for a T-snake is a list of element features of a cell
enumeration representation. A cell enumeration representation decomposes a finite
space into a finite number of elements. Every point in space belongs to exactly one
of the elements. Pixel and voxel representations are examples for 2D and 3D cell
enumeration representations.

Although the T-snakes can be defined on a pixel or a voxel representation, it is
easier to work with simplexes.2 In 2D this is a representation by triangles, in 3D it
is a representation by tetrahedrons (the representation is then called a T-surface).

To make things not overly complicated, simplex cells are usually similar to each
other and arranged in a simple grid (such as the one shown in Fig. 9.8). A simplex
is fully inside or outside of an active contour if all its boundary nodes are interior
or exterior nodes. The active contour is passing through the simplex if some of
the simplex nodes are interior and some of them are exterior. Hence, the implicit

2The advantage over using a pixel or voxel grid is that unique surface representations for a surface
passing the cell exist. This is important for an active contour because it is a surface in 2D or 3D.
Using a pixel or voxel grid requires an additional mechanism to resolve ambiguities, which are
known, for instance, from the Marching Cube algorithm on a voxel grid.
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representation consists of a list of simplexes s with labels fs

fs(s) =

⎧⎪⎨
⎪⎩

−1 if s ∈ “exterior”

0 if s ∈ “boundary”

1 if s ∈ “interior”.

(9.18)

A similar function exists for all nodes n of the simplex

fn(n) =
{

−1 if n ∈ “exterior”

1 if n ∈ “interior”.
(9.19)

An edge connecting two nodes is interior or exterior if the two nodes are both in-
terior nodes or both exterior nodes, respectively. Otherwise, the T-snake must cross
the edge: The edge is then a boundary edge.

The T-snake is initially defined by a vertex sequence with all vertices lying on the
boundary edges. The evolution of the T-snake will cause snake vertices no longer
to lie on boundary nodes. Hence, the intersection points of the evolved T-snake
with grid edges are computed during reparameterization and denoted potential snake
vertices. Given the T-snake, nodes of the cell representation are tested as to whether
their label (interior or exterior) should change.

The update may be ambiguous if a T-snake intersects itself or is intersected by
other T-snakes. In such a case, a cell node may be exterior with respect to one part
of the T-snake and interior with respect to another part. The ambiguity is resolved
by assuming that a T-snake either shrinks or grows. If it grows, then a node once
being interior can never be declared exterior. The opposite is true for a shrinking
T-snake.

After updating cell nodes, labels of cells and cell edges are updated accordingly.
In the next step it is tested whether all vertices of the updated T-snake are still on

boundary edges. If a part of the T-snake intersects interior edges because the T-snake
intersected itself or touched other T-snakes, the respective vertices are removed and
the T-snakes are merged. A T-snake vertex may also lie on an exterior edge. In this
case, the vertices are removed resulting in two separate T-snakes.

If T-snakes are extended to T-surfaces on a 3D grid, the algorithm does not
change except for the fact that the grid now consists of nodes, edges, faces, and
cells and the computation time increases with the amount of data.

9.2 The Level Set Model

T-snakes already show the advantage of an implicit boundary representation. How-
ever, T-snakes use different representations for different tasks. The implicit repre-
sentation of a T-snake consists of an enumeration of function values in discrete
space. Derivatives, curvatures, and other smoothness properties cannot be repre-
sented in this space. It requires changing between a discrete, implicit representation
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Fig. 9.9 The level set model can be thought of a function representing waves moving over time.
A specific wave front represents the current estimate of the segment boundary

and a continuous, explicit representation during the evolution of the active con-
tour.

The level set model integrates smoothness properties, correspondence to the data,
and evolution of a representation of interior and exterior points in a common, con-
tinuous implicit representation (Sethian 1998; Osher and Paragios 2003). The level
set model is an implicit function of image space x = (x1, x2, . . . , xN). Every loca-
tion in space can be uniquely assigned a label “interior,” “exterior,” or “boundary.”
Self-intersections, which may happen in an explicit representation, are impossible.
Topological changes during the adaptation of a level set representation to the data
may happen. The goal of a level set representation in segmentation is to define a
continuous, smooth representation of a segment boundary and let it evolve so that
it adapts to boundary locations in the image in some optimal fashion. Just what
is optimal is defined similarly to the criteria used for explicit active contours and
surfaces.

The level set function can be thought of as a wave (see Fig. 9.9). Wave prop-
agation guides a specific wave front to the segment boundary. To represent this
propagation in time, the level set model embeds an implicit N -dimensional active
contour in (N + 1)-dimensional space. The first N dimensions represent locations
x = (x1, x2, . . . , xN) in the image. The additional dimension is the time t .

An initial level set function φ(x, t0) at time t0 is given by the user. Its level
φ(x, t0) = k(t0) describes the initial guess of the segment boundary. It usually does
not coincide with the true object boundary. The level set function is then evolved
toward the object while maintaining the smoothness of the wave front.



272 9 Active Contours and Active Surfaces

Fig. 9.10 The level set function φ is chosen in such a way that φ(x, t) = k indicates the current
estimate of the segment boundary

9.2.1 Level Sets

Wave propagation in the level set framework does not rely on the specific shape
of a wave. Hence, a wave function φ is selected so that the position of a wave
front is given by all points having a specific value (see Fig. 9.10). A k-level set
of a function φ(x) consists of all points x for which φ(x) = k. For differentiable
functions φ, which are defined on a real number domain, the level set consists of
closed boundaries separating φ(x) > k from φ(x) < k.

A level set is said to be the interface between two sets of points. If used to rep-
resent a segmentation, discretized values of x denote coordinates of scene elements
(e.g., pixels, voxels) and φ(x) = k is the segment boundary. Since the level k is
arbitrary, it is usually the 0-level set that is evolved.

The level set method evolves the interface based on its intrinsic properties, ex-
trinsic image properties, and domain knowledge. An intrinsic property could, for
instance, enforce a smooth segment boundary. Extrinsic properties (e.g., related to
the intensity gradient) cause the 0-level set to terminate on segment boundaries. An
example for domain knowledge is the placement of the initial level set.

Level sets are in many respects similar to the snakes introduced in the previous
section. Hence, the terms active contour and active surface apply to level sets as
well. A number of differences should be noted, however.
• Snakes represent curves explicitly. Changing the topology during snake evolution

is impossible unless the representation is transferred to an implicit representation
(such as in T-snakes). The level set definition is an implicit representation by
some function φ(x) without having this restriction (see Fig. 9.11).

• Snake-like representations can be defined for arbitrary dimensions only if the
explicit representation is adapted accordingly (and possibly also the optimization
scheme). The level set formulation is independent of the dimension.

• Snakes are discretized in terms of the explicit representation which may require
reparameterization if adjacent nodes become too far apart in image space. This is
not necessary for level sets, as they are defined—and will be evolved—in contin-
uous space.
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Fig. 9.11 Level sets are implicitly defined on f . Hence, topology of the explicit boundary may
change (in the example above, this happens for φ(x, t) = 2)

These are good reasons to consider an implicit active contour for segmentation.
It does not mean, however, that explicit active contours should be disregarded in
any case. If, for instance, the topology of a segmentation is known, this is already
represented in an explicit formulation.

The great advantage of the level set representation is its generality. It enables
solutions for many different applications under the same concept.

Before applying level sets to segmentation, several questions need to be an-
swered.
• What is an appropriate function φ for representing the interface?
• How can interface motion be represented in a parameterizable fashion so that

different evolving interfaces can be generated by changing parameters?
• Which parameters are useful to let the interface evolve toward the segment bound-

aries?
The level set function and the evolution methods will be discussed in the next

section. This is then followed by a treatment of techniques to speed up the compu-
tation. Finally, we will explain strategies to parameterize the level set method.

9.2.2 Level Sets and Wave Propagation

The evolution of a level set is the propagation of a wave φ. The current estimate of
segment boundaries at some time t consists of all locations x for which φ(x, t) = 0.
The wave φ can be defined as the level set function:

φ(x, t) =
{

d(x,C(t)), if x is inside the segment,

−d(x,C(t)), otherwise.
(9.20)

The function C(t) is the set of points in the 0-level set at time t , and d(x,C(t))

is the shortest distance of x to this curve. In other words, the level set function is a
signed distance function (see Fig. 9.12).
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Fig. 9.12 Given some initial position for the level set, the level set function can be generated as
distance transform for the distance from this initial boundary

Fig. 9.13 Level sets propagate orthogonal to the wave front. Stationary level sets either move
outward or inward. Dynamic level sets may change the propagation direction

The wave is propagated orthogonal to the wave front. Domain knowledge about
expected segment properties and a data term influence the propagation speed at each
point. Ideally, the interface stops (at least it slows down) at the segment boundary.
Interface motion can be of two kinds (see Fig. 9.13).
• A stationary level set is a function of arrival times for a level set for each location

x. Being a function, a point x in image space never gets reached twice. Hence, the
interface is either moving to the inside or the outside starting from the initial level
set. A segmentation is then a set of points which are reached at the same time.

• A dynamic level set defines the level set as function of x and time t . The interface
may change direction during its evolution and may cross a point x several times.
A segmentation is the location of the interface at some point in time.
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Fig. 9.14 Level set evolution
of a dynamic level set over
time

Computing the propagation of stationary level sets is simple. Given a speed F the
arrival time T (x) at some location x uses the fact that traveled distance dx during
time interval dT equals speed multiplied by dT . In one dimension this gives

F · dT = dx ⇔ F · dT

dx
= 1, (9.21)

and for spaces of arbitrary dimensions it is

F · |∇T | = 1, with T = 0 on the initial segment boundary Γ. (9.22)

The gradient ∇T is inverse to the velocity vector. Computing the level set evolu-
tion requires finding arrival times T for every scene element such that the condition
in (9.21) is fulfilled. The speed F is a function of locations x. F(x) will be based
on internal and external properties. Internal properties guarantee, for instance, the
smoothness of the interface. External properties cause the interface to slow down at
potential segment boundaries. Examples for different speed functions will be given
in Sect. 9.2.6. If the speed function is defined properly, the segment boundary is
found if progression per time interval falls below some threshold.

However, using stationary level sets for segmentation severely restricts their ap-
plicability. They behave similarly to region growing. Dynamic level sets are required
if the active contours should be able to reverse the propagation direction when, for
instance, stretching modeled by internal energies causes a currently expanding front
to shrink.

The wave front of a dynamic level set is represented by embedding the level set
function for an N -dimensional image into an (N + 1)-dimensional space, with time
being the additional dimension. The 0-level set φ(x, t) = 0 represents the current
segment boundary at time t . Level set evolution traces changes dφ/dt of φ over
time (see Fig. 9.14).

The equation governing dynamic level set evolution bears some similarity to
(9.21) for stationary level sets. It is

φt = −F |∇φ|, (9.23)

where φt is the derivative of φ at any point x over time.
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Fig. 9.15 Definitions for the level set curve C and its evolution over time

The evolution of an initial level set function φ consists of repeatedly solving
an initial value problem using the current level set function φ(x, t) as initial value
and solving for φ(x, t + �t) using the derivative in (9.23). It requires some care
in the selection of appropriate differences to approximate the differential and in the
selection of the step size. This will be detailed in the next section. First, however,
we will need to derive (9.23) to understand the meaning of its components.

For arriving at (9.23), an abstract formulation of all points on the level set is
defined, plugged into the level set term, and then differentiated with respect to time t

(see Fig. 9.15):
• The level set function at time t is φ(x, t);
• The set of points p on the level set interface C at time t = 0 is C(p,0) =

{x|φ(x,0) = 0};
• The set of points p on the level set interface C at time t is C(p, t) = {x|

φ(x, t) = t};
• All points on the interface at time t are C(t) = φ−1(t).

The definitions are used to differentiate the level set equation φ(x, t) = 0 ⇔
φ(C(t), t) = 0:

dφ(C(t), t)

dt
= 0. (9.24)

Applying the chain rule3 results in

∂φ(C(t), t)

∂t
= ∂φ(C(t), t)

∂C(t)

∂C(t)

∂t
+ ∂φ(x, t)

∂t
. (9.25)

The different terms on the left-hand side describe the propagation of the in-
terface. Since C(t) are the points on the interface at time t , the expression
∂φ(C(t), t)/∂C(t) is the partial derivative of the level set function with respect to

3The chain rule for a function g of several functions f1, f2, . . . , fn is

d[g(f1(t), f2(t), . . . , fn(t))]
dt

= dg

df1

df1

dt
+ dg

df2

df2

dt
+ · · · + dg

dfn

dfn

dt
.
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the interface. This is just the gradient of the level set function. It is abbreviated by

∇φ(x, t) = ∂φ(C(t), t)

∂C(t)
. (9.26)

The reference to the domain is often omitted. The term is referred to as ∇φ.
The term ∂C(t)/∂t is the derivative of the interface with respect to time. It de-

scribes the (intended) propagation speed of the evolving interface. This term will
be the container of curve- and image-dependent information that governs interface
evolution.

Finally, the term ∂φ(x, t)/∂t describes the change of the level set function over
time. Since this entity needs to be computed to evolve the level set, the equation is
rearranged accordingly. With setting φt = ∂φ(x, t)/∂t (again omitting the domain
variable), the evolution equation is compactly written as

φt = −∇φ
∂C(t)

∂t
. (9.27)

Level set evolution is orthogonal to the interface. With unit vector ∇φ/|∇φ|,
which is orthogonal to C, the speed F of the curve evolution ∂C(t)/∂t in this direc-
tion is

F = ∂C(t)

∂t

∇φ

|∇φ| ⇔ ∂C(t)

∂t
= F

|∇φ|
∇φ

. (9.28)

Hence, speed F can be included in (9.27) arriving at the formulation φt =
−F |∇φ| of (9.23).

Given an appropriate speed function F , (9.23) is the base for computing a level
set segmentation. Internal and external properties will be defined for F so that the
interface slows down at the segment boundaries. The decrease in speed can be used
for terminating the evolution.

The formulation of the level set evolution in (9.21) and (9.23) is attractive be-
cause it separates considerations for stable computation (how to set �t for approxi-
mating the update of the level set function, how to approximate ∇φ) from definitions
of segmentation constraints in F . Hence, given an appropriate implementation of the
approximation scheme, a user can change segmentation characteristics without hav-
ing to worry about stability issues. It is worthwhile to understand the approximation
nonetheless since the selection of a speed function F may influence the speed of
interface progression.

9.2.3 Schemes for Computing Level Set Evolution

Level set evolution can be computed explicitly or implicitly. Although implicit com-
putation is by far the most often applied solution, we will begin with a short char-
acterization of an explicit level set evolution. It is very similar to the evolution of
explicit active contours and shares its advantages and disadvantages. The method is
called a Lagrangian solution or marker particle solution. The latter describes the
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Fig. 9.16 In the marker
particle solution, markers on
the 0-level set are tracked
over time

approach pretty well (see Fig. 9.16). The current location of the interface is dis-
cretized by uniform sampling. Each sample point is a marker particle that is tracked
over time. Since evolution is orthogonal to the interface, normals are estimated and
evolved according to the speed function. The solution is easy to implement but has
some problems.
• Changes of topology are difficult to deal with. The Lagrangian solution defines

topology explicitly by initial adjacencies between marker particles. An extra rule
is needed that produces a change of topology.

• Particle tracking requires regular resampling since the evolution of the interface
will change the density of the distribution of marker particles along the level set.
Hence, the marker particle solution is only appropriate when the initial level set

placement is already close to the expected final result, so that neither of the two
problems arises.

The implicit solution (called the Eulerian solution) computes the value of the
level set function φ at each point in time at each location x in the scene. Hence,
the level set function is represented instead of the interface. Sampling depends on
image resolution and not on marker locations on the interface. The topology of the
interface is a result of evaluating φ(x, t) = 0.

A detailed derivation of the Eulerian solution is given in Sethian (1998). We will
highlight aspects that relate to the robustness of the evolution process.

Given the level set equation φt = −F |∇φ |, the evolution process for φ(t) is

φ(t + �t) = φ(t) + �t · φt = φ(t) − �t · F |∇φ|. (9.29)

An appropriate step size for the time step �t needs to be found and an appropriate
approximation for the gradient ∇φ has to be computed. It will turn out that the
gradient approximation depends on the local propagation of the interface resulting
in a so-called upwind scheme. The step size will depend on the fastest propagation
speed in the domain.

To illustrate this, we will follow the explanation in Sethian (1998) and discuss the
solution in a 1D domain. We will begin with a simple 1D wave u(x, t) that travels
with constant unity speed in direction of the positive x-axis (see Fig. 9.17). Given
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Fig. 9.17 Example of a simple wave f (x) propagating with constant speed from left to right

Fig. 9.18 For computing the
level set propagation,
differentials need to be
approximated by differences
in x- and t -direction

an initialization u(x,0) = f (x), the solution for this propagation is

u(x, t) = f (x − t) (9.30)

and the representation by a differential equation is

ux = −ut ⇔ ux + ut = 0, (9.31)

where the subscripts denote differentiation with respect to x and t , respectively.
If u(x,0) = f (x) is the initial placement of a level set, the speed function for this

process would be F = 1. For computing the evolution, the two differentials have to
be approximated (see Fig. 9.18). There is one possible solution for ut :

ut ≈ D+t u ≡ ut (x, t) = u(x, t + k) − u(x, t)

k
, (9.32)

where k is the step size along the time axis.
Since the function is evolved along t , the approximation of the differential in x

can be in arbitrary direction, resulting in the following three possible solutions:

ux ≈ D+xu ≡ ux(x, t) = u(x + h, t) − u(x, t)

h
, (9.33)

ux ≈ D−xu ≡ ux(x, t) = u(x, t) − u(x − h, t)

h
, (9.34)

ux ≈ D0xu ≡ ux(x, t) = u(x + h, t) − u(x − h, t)

2h
, (9.35)

where h is the step size along the x axis.
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Fig. 9.19 In this example, D−x is the difference in upwind direction. It would produce the correct
estimate u(5, t + k) = 4. Choosing D+x would produce u(5, t + k) = 5 and choosing D0x would
result in u(5, t + k) = 4.5

Fig. 9.20 The step size for the time steps has to be chosen so that estimates of derivatives in
upwind direction result in an interpolation. In the example, step k1 would be unstable, while k2
and k3 would result in a stable estimate

It depends on the wave propagation which of the three differences should be
taken. The wave in this example does not change its shape. Hence, the differential
at time t travels along the propagation direction to another position at time t + k.
Estimating the differential by a difference should therefore interpolate at time t over
an interval that contains the location of the differential ux(x, t + k). D+x must be
chosen, if the wave propagates from right to left, and D−x otherwise (see Fig. 9.19
for an example).

If the waves were real ocean waves, this direction would be against the direction
of the wind that drives the waves. Hence, it is called an upwind scheme. Taking
the downwind difference instead would always extrapolate the differential, which
would make the solution unstable.

Choosing the upwind scheme does not automatically guarantee that the approx-
imation is always interpolating. Extrapolation is avoided only if a step size k is
chosen such that the wave propagation does not exceed the propagation h of the
wave everywhere on the line x (see Fig. 9.20).

In the example of (9.31), the direction toward the origin is upwind since the wave
moves to the right. Thus, D−x is the difference to select. Since the wave is moving
with constant speed everywhere, the appropriate step size must ensure that k ≤ h.



9.2 The Level Set Model 281

Fig. 9.21 If the direction of
propagation depends on
location, the upwind direction
has to be selected accordingly

The evolution of the wave ux + ut = 0 is then approximated by

u(x, t + k) − u(x, t)

k
+ u(x, t) − u(x − h, t)

h
= 0, (9.36)

leading to the following iteration step

u(x, t + k) = u(x, t) − kD−xu(x, t) = u(x, t) − k

h

[
u(x, t) − u(x − h, t)

]
. (9.37)

There is not much change if propagation is a function of x or u(x) that may be
positive at some locations x and negative at others (see Fig. 9.21). For an arbitrary
propagation a(x), selecting a switch function

∇u = max
(
0, a(x)

)
D−xu − min

(
0, a(x)

)
D+xu (9.38)

always chooses the upwind direction.

9.2.4 Computing Stationary Level Set Evolution

Stationary level set evolution uses the upwind scheme for stable estimates of arrival
times. It will be explained for 2D level sets but easily extends to 3D. Arrival times
T (x, y) need to be computed at every location (x, y) given an initial level set based
on (9.21). Resolving (9.21) with respect to arrival times results in

∣∣∇T (x, y)
∣∣ = 1

F(x, y)
⇒

√(∇T (x, y)
)2 = 1

F(x, y)
(9.39)

for a given speed function F . The approximation |∇T | by upwind differences is
then

[
max

(
D−xT (x, y),0

)2 + min
(
D+xT (x, y),0

)2 + max
(
D−yT (x, y),0

)2

+ min
(
D+yT (x, y),0

)2] 1
2 = 1

F(x, y)
. (9.40)

This is a set of nonlinear equations where T (x, y) are the unknowns. It is solved
by the following iterative algorithm.
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Fig. 9.22 The major
difference between Fast
Marching and Dijkstra’s
minimum cost path algorithm
is that the latter always
proceeds along edges,
whereas the former estimates
costs in the correct direction
of propagation

• Initialize T with T (x, y) = 0 for all locations on the initial boundary Γ and
T (x, y) = ∞ for all other locations.

• Correct all equations of the equation system iteratively.
• Terminate the process when the change of all T ’s falls below some threshold.

The method requires several runs since the equations are dependent on each other
via the difference operators D (hence, correcting one equation will change T -values
in other equations).

Computing arrival times in this fashion is stable but very slow. In the first runs,
only pixels in the immediate vicinity of the boundary Γ will converge quickly to
their true values. Far away pixels correct T -values based on equally wrong T -values
in their vicinity.

It is more efficient to restrict updates to those pixels that are neighbored by pixels
of which the correct arrival time is known. This is done by the fast marching method
of Sethian (1996). The initial level set Γ can be an infinitesimal circle indicating the
location of the structure to be segmented or it may already roughly approximate the
true object boundary.

Since the level set function is stationary, the speed can be computed in advance
for each location x. The shortest arrival times are then computed by turning the
problem into a shortest path computation. Local costs at a location x depend on the
speed with which the moving front passes x.

This is similar to Dijkstra’s minimum cost path algorithm used (e.g., for the im-
age foresting transform). However, Dijkstra’s algorithm computes the shortest con-
nections along edges between two locations x1 and x2. This is not necessarily the
shortest connection in the underlying continuous Euclidean space of the level set
function (see Fig. 9.22). Thus, the fast marching algorithm computes arrival times
by propagating the front in Euclidean space.

The fast marching algorithm for computing arrival times from a set of start pixels
X0 = {x0,i} keeps (see Fig. 9.23)
• a list of known nodes for which arrival times have already been computed and

which are completely surrounded by other known nodes,
• a list of far nodes to which arrival times have not yet been computed,
• a list of trial nodes to which arrival times have been computed and which are

adjacent to at least one far node.
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Fig. 9.23 The Fast Marching
Method proceeds by
extending the wave front from
nodes with known arrival
times into trial nodes that are
adjacent to known nodes

Fig. 9.24 The two different cases for computing arrival time: (a) the two closest nodes are oppo-
site from each other. (b) The two closest nodes are at a 90° angle

Initially, all nodes except those in X0 are far nodes. The nodes in X0 are known
nodes if they are completely surrounded by other nodes in X0. Otherwise, they are
trial nodes. The algorithm iteratively selects the a trial node xmin with the short-
est arrival time, removes it from the trial set, puts it into the known-node set, and
computes the propagation into the adjacent nodes of xmin.

Computing arrival times for a node x neighboring xmin requires the estimation
of the front passing known nodes in the vicinity of xmin. Two cases have to be
differentiated (see Fig. 9.24).
1. The two nodes xn1 and xn2 with the lowest arrival time u(xn1) and u(xn2) of

all four neighbors of x are opposite to each other. In this case, the front is
moving from xclosest = argmin(u(xn1), u(xn2)). The arrival time at x is u(x) =
u(xclosest) + c(x).

2. The two nodes xn1 and xn2 are at a 90◦ angle with respect to x. The front has
passed through these nodes. The propagation direction is computed under the
assumptions that
– the front moves orthogonal to its boundary,
– that this boundary can be approximated by a straight line between xn1 and xn2,

and
– that the speed does not accelerate between xmin and x.
Iterative propagation is stopped when the current level set best approximates the

object boundary. The stopping criterion depends on the evolution of the front. Since
local propagation speed (the speed term) is usually defined in a way so that the speed
is low when the gradient is high, the front should move slowly when reaching the
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object boundary. A slow propagation speed is indicated by a fast increase of arrival
times. This is a criterion for stopping the propagation.

9.2.5 Computing Dynamic Level Set Evolution

The upwind scheme for computing dynamic level set evolution represented by φt =
−F |∇φ| needs to consider that the sign of φ is unknown. Hence, the switch has to
be applied first to select the correct upwind direction depending on the sign of φ. For
the simple case of F = 1, (9.23) simplifies to φt + |∇φ| = 0 ⇒ φt + √

(∇φ)2 = 0
resulting in the following iteration step for a 1D level set

φt+1(x) = φt (x) + �t

√
max

(
D−xφt (x),0

)2 + min
(
D+xφt (x),0

)2
. (9.41)

If F = 1 and its sign is unknown, the switch has to be applied again, resulting in
the final upwind scheme for 1D level sets with arbitrary F

φt+1(x) = φt (x) + �t
[
max

(
F(x),0

)√
max

(
D−xφt (x),0

)2 + min
(
D+xφt (x),0

)2

+ min
(
F(x),0

)√
max

(
D+xφt (x),0

)2+min
(
D−xφt (x),0

)2]
. (9.42)

Changing the dimension does not change much in this scheme, except that the
upwind direction has to be selected based on the gradient direction ∇φ in multi-
dimensional space. For a 3D space, for instance, the upwind scheme is

φt+1(x, y, z) = φt (x, y, z) + �t
[
max

(
F(x, y, z),0

)√∇+

+ min
(
F(x, y, z),0

)√∇−]
(9.43)

with

∇+ = [
max

(
D−xφt (x, y, z),0

)2 + min
(
D+xφt (x, y, z),0

)2

+ max
(
D−yφt (x, y, z),0

)2 + min
(
D+yφt (x, y, z),0

)2

+ max
(
D−zφt (x, y, z),0

)2 + min
(
D+zφt (x, y, z),0

)2] (9.44)

and

∇− = [
max

(
D+xφt (x, y, z),0

)2 + min
(
D−xφt (x, y, z),0

)2

+ max
(
D+yφt (x, y, z),0

)2 + min
(
D−yφt (x, y, z),0

)2

+ max
(
D+zφt (x, y, z),0

)2 + min
(
D−zφt (x, y, z),0

)2]
. (9.45)

Given appropriate time differences �t , this scheme can be repeatedly applied to
update the level set function. However, the computation would be very slow since
the equation has to be evaluated for every time step and every location. Further-
more, since the step size is restricted by the fastest progress anywhere in the scene,
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Fig. 9.25 The narrow band method computes the level set function only in a narrow band around
the 0-level set. The boundary locations of the narrow band are labeled “land mines.” Hitting a land
mine with the 0-level set requires re-computing the level set function in the narrow band around
the current 0-level set

progress can be slow when the interface slowly reaches the segment boundary but φ

is changing very fast somewhere else in the image.
The narrow band method (Adalsteinsson and Sethian 1995) makes use of the

fact that the state of φ is only of interest close to the 0-level set. The time-
consuming computation of the level set everywhere is replaced by a method where
φ is computed only for positions x that are close to the current level set (i.e., where
φ(x, t) = 0, see Fig. 9.25). The computation is still slower than fast marching be-
cause φ has to be updated in a band |φ(x, t0)| < kmax around the initial level set
φ(x, t0) = 0 instead of just propagating a front φ(x). It surpasses fast marching ca-
pabilities in that it computes a dynamic level set in the band, hence enabling a front
that shrinks and grows according to the data information as long as the level set
φ(x, t) = 0 does not exceed the initial band |φ(x, t0)| < kmax.

Pixel sites in the narrow band are labeled alive since their correct level set value
is known and can be used for level set propagation. Sites at the border of the narrow
band are called land mines. If the level set hits a land mine at some time te, the
level set function φ(x, te) = k(te) has to be computed for all values k(te) since the
function φ has not been evolved outside the band and derivatives there are not valid.
The time te is constant for φ(x, te) = k(te) and may be rewritten as φte(x) = kte.
Since φte(x) does not depend on t , it can be computed using the fast marching
method. Then, a new band |φ(x, te)| < k(te) is defined and the algorithm proceeds.

9.2.6 Segmentation and Speed Functions

The initial placement of the level set at time t0 introduces position information into
the segmentation. A boundary described by a level set is placed somewhere close
to an object in an image. The object may consist of several segments. If forces
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Fig. 9.26 Curvature is the change of surface orientation per unit length. Curvature of the boundary
can be positive (in locally convex parts) or negative (in locally concave parts)

Fig. 9.27 A negative
curvature term in the speed
function will smoothen the
boundary and keep it from
developing sharp corners

attract the level set towards an object boundary and pushes it away from interior
or exterior points (e.g., by using intensity gradient information), the level set will
evolve into several closed boundaries following the gradients in the vicinity of the
initial placement. Using the curvature term lets the level set disregard small regions
with high gradients caused by noise.

The level set approach can also be used for a nonlocalized search. The initial
level set (possibly representing boundaries of several disconnected objects) is then
placed in such a way that it encloses the whole image. The level set will still evolve
in a set of smooth boundaries close to high gradient regions.

The speed function is the only parameterizable entity, which influences the result
of a level set segmentation. It encodes interface properties and data-driven proper-
ties. A simple speed function is

F = Fimg(ν − εκ). (9.46)

The term ν is an advection force. It drives the interface either to the outside (pos-
itive advection, ν > 0) or to the inside (negative advection, ν < 0). It is a necessary
component if segmentation shall be started from some seed element, which is so far
away from the segment that the data term cannot guide the evolution of the interface.

The second term relates level set evolution to curvature κ weighted by ε (see
Fig. 9.26). It keeps the interface from developing local high curvature details if
the curvature term increases with negative curvature. High curvature details may
eventually develop into sharp corners (see Fig. 9.27). Since this is unwanted in most
applications in the medical field (there are few structures in the human body with
sharp corners), the curvature term is used almost always in this fashion.

Curvature in 2D is the second derivative of the curve. The solution is more dif-
ficult in higher dimensions since infinitely many curves pass a point on a surface.
An average curvature for interfaces in arbitrary dimensions can be defined using the
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Fig. 9.28 Divergence
characterizes the flow of a
vector field

Fig. 9.29 The divergence of
the normal of the 0-level set is
the curvature of this level set

divergence of surface normals. The divergence ∇ • f of a vector field f describes the
degree of dispersion of the field at source (positive divergence) and the degree of
concentration at sinks (negative divergence) (see Fig. 9.28). Divergence is

∇ • f =
n∑

i=1

∂

∂x
fi. (9.47)

The divergence of the normal of a 0-level set is positive at convex locations and
negative at concave locations (see Fig. 9.29). Using the definition above, the diver-
gence for a 2D level set is

κ2d = ∇ • n = ∇ ∇φ

|∇φ| =
∂[ φx

(φ2
x+φ2

y)
]

∂x
+

∂[ φy

(φ2
x+φ2

y)
]

∂y
= −φxx − 2φxφyφxy + φyy

(φ2
x + φ2

y)
3
2

.

(9.48)

Computing curvature in higher dimensions follows the same structure adding
derivatives of the derivative of the level set function with respect to all directions.

To some extent, the curvature term may even be used to fill in missing informa-
tion. If salient image features are missing in some parts of the image but the shape of
objects is known and simple, curvature can represent this shape. An example would
be the segmentation of circles or spheres of unknown size. The curvature of a sphere
is constant and the reciprocal of its radius. Penalizing deviation from this expecta-
tion will cause a level set to evolve into circles or spheres if no image information is
present. Hence, if such a circle is partially visible by having high gradients only at
parts of its boundary, the level set will evolve into a boundary following these high
gradient regions as long as the curvature is close to the expected curvature. If this is
not true because the gradients do not represent the circle boundary, the level set will
follow the circular shape instead.
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In principle, this can be extended to describe arbitrary expected shapes. How-
ever, including shape information becomes increasingly difficult when shapes be-
come complex. In such a case, it is easier to integrate explicit shape knowledge as
prior information into the model (Leventon et al. 2000; Rousson and Paragios 2002;
Paragios 2003).

Data knowledge is introduced by the last term Fimg. Since the interface should
stop at segment boundaries, a force that is inversely proportional to the intensity
gradient is a good candidate for Fimg. Examples suggested in the literature are

Fimg(x) = 1

1 + α|∇(Gσ ∗ I (x))| , (9.49)

and

Fimg(x) = exp
(−α

∣∣∇(
Gσ ∗ I (x)

)∣∣). (9.50)

In both cases, α controls the strength with which the speed is influenced by this
term and Gσ denotes a convolution of the intensity function I with a Gaussian with
standard deviation σ .

On inspection, it becomes obvious that the image term will never be 0 and con-
sequently the propagation according to (9.46) will never be 0 as well. Keeping the
image term from stopping the propagation is intentional as it is usually not known
beforehand what the exact gradient strength is at a boundary and whether this is a
unique feature for the segment boundary (otherwise segmentation would be trivial).

Since the level set evolution will not stop automatically, a termination criterion
has to be given. Commonly used criteria are to stop evolution if the average or
maximum evolution speed falls below some threshold or if an evolution step does
not change the current pixel labeling (i.e., no foreground pixels become background
or vice versa).

9.2.7 Geodesic Active Contours

The minimization problem for computing a snake can be formulated in the level set
framework. It is not dependent on the dimension of the active contours and allows
topology changes during evolution of the active contour.

The approach received its name because the problem is formulated as finding
a locally shortest contour in a non-Euclidean space. For doing this, the original
snake is altered by removing the second derivative from the minimization equation.
Caselles et al. (1997) showed that this does not substantially influence the smooth-
ness constraint of the curve.

The condition for an ideal curve C(p) is then to minimize

E(C) =
∫ 1

0

∣∣C′(p)
∣∣2

dp+λ

∫ 1

0
g
(∣∣∇I

(
C(p)

)∣∣2)
dp = Einternal(C)+λEexternal(C),

(9.51)
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Fig. 9.30 If the strength of the gradient is used as 3rd dimension for the embedding of a 2d object
in 3d space, locally shortest curves on this surface (the geodesics) are the segment boundaries that
are found by geodesic active contours (which may change topology if needed)

where p = p(x) are locations on the curve, I is the image function, ∇I its gradient,
g an arbitrary function that strictly decreases with the gradient, and λ is a parameter
that controls the influence of the internal energy versus the external energy of C.

Caselles et al. showed that this corresponds to a search for a minimum length
curve in a Riemannian space that is induced by the image information (see
Fig. 9.30). Riemannian space is a curved space that may be thought as being embed-
ded in a higher-dimensional Euclidean space. Distances are computed on the curved
manifold. Hence, they depend on the distance traveled along the manifold and on
the local curvature. This may sound a bit complicated but representing the energy
minimization problem of active contours as a shortest path problem in well-defined
non-Euclidean space provides a simple solution to the optimization problem. It en-
ables us to make use of theorems about shortest distances in this space. It can be
shown that the solution to (9.51) is to evolve the curve in time t in the following
manner4

∂C(t)

∂t
(p) = [

g
(
I (p)

)
κ − (∇g(p) • n

)]
n, (9.52)

where κ is the curvature of the curve and n is normal to the curve pointing inward.
Hence, the curve will move toward high gradient areas, where g is small, while
attempting to smooth out its course by minimizing the curvature.

The explicit evolution of C, however, may pose a problem when optimization
requires a change of topology. Hence, the optimization is formulated using the level
set approach. The curve C(t) is taken as the 0-level set of a level set function
f (x, t). Optimization is not by wave propagation, but by using variational calcu-
lus (see Sect. 14.2) to minimize (9.51). Hence, level sets of this kind are referred to
as variational level sets.

4It is a solution under some specializing assumptions that are necessary to define a unique optimum
because the formulation contains a free parameter. Details are described in Caselles et al. (1997).
It does not restrict the use of this formalism to find an optimal active contour.
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The Euler–Lagrange equation

dE

df
= d

dx

∂F

∂f ′ − ∂F

∂f
= 0 (9.53)

for a functional of the form F(f (x), f ′(x), x) is created if we substitute f (x) by
φ(x) and consequently f ′(x) by ∇φ(x). In Caselles et al. (1997) the authors showed
in Appendixes B and C that this derivative results in the following evolution of
φ(x(t), t) with respect to time

∂φ

∂t
(x) = |∇φ|div

(
g
(
I (x)

) ∇φ(x)

|∇φ(x)|
)

= g
(
I (x)

)∣∣∇φ(x)
∣∣κ(x) + ∇g

(
I (x)

)∇φ(x). (9.54)

The function φ(x(0),0) at t = 0 is the signed distance function, which is evolved
according to (9.54). It has been shown that the choice of the initial function does
not influence the result. Given its initial placement, the level set will evolve in a
shortest distance curve in a Riemannian space that is defined by image attributes.
The function g is

g(x) = 1

1 + |∇[I (x) ∗ s(x)]|p , (9.55)

where s is a smoothing kernel with which I is convolved and p = 1,2.
The energy Einternal in (9.51) is a smoothness term that makes the active contour

insensitive with respect to noise. In Westin et al. (2000), a variant of the geodesic
active contour has been presented that can be made—based on prior knowledge—
locally adaptive to enforce smoothness in some parts of the image while following
image detail in other parts.

The energy Eexternal is intended to attract the geodesic active contour toward
salient image features. Paragios et al. (2004) showed that using gradient vector flow
(see Sect. 9.1.2) as external energy improves the speed of convergence.

9.2.8 Level Sets and the Mumford–Shah Functional

The Mumford–Shah functional describes a segmentation based on regional and
boundary image attributes (Mumford and Shah 1989). Segmentation by minimiz-
ing the Mumford–Shah functional is based on reasonable generic attributes for an
optimal segmentation. Hence, numerous schemes have been developed to define a
segmentation for various specializations of this functional. It has been shown that
level set segmentation can be defined in a way that optimizes a specific variant of
the Mumford–Shah functional.

In foreground segmentation, a segmentation is a function fseg(x) which is 1 for
scene elements x that belong to the segment and 0 otherwise. Since many func-
tions follow this definition, additional constraints based on the desired attributes of
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Fig. 9.31 An optimal segmentation according to the Mumford–Shah functional is a description of
an image by a non-overlapping set of smooth functions with local support and minimal boundary
length. It essentially creates a cartoon-like mapping of the original image with smoothed bound-
aries

a segment are needed. The Mumford–Shah functional

E(c1, c2,Γ ) = α

∫
Ωi

(
u(x) − c1

)2
dx + β

∫
Ωei

(
u(x) − c2

)2
dx + γ

∫
p

∣∣Γ (p)
∣∣dp
(9.56)

provides these constraints (Tsai et al. 2001). The equation is a specialization of the
general functional of Mumford and Shah (1989) that allows for an arbitrary number
of segments (see Fig. 9.31).

The first two terms of (9.56) describe the deviation of intensity u(x) of interior el-
ements x ∈ Ωi and exterior elements x ∈ Ωe from the expected (average) intensities
c1 and c2 in the interior and exterior regions, respectively. Similar to the Bayesian
formulation in Sect. 7.1, they ensure that the optimal segmentation separates the
scene into interior and exterior elements so that they closely follow the expected
characteristics of foreground and background elements.

The last term is the derivative of the curve Γ at points p along the curve. It en-
forces smoothness of the boundary between interior and exterior points. The effect
of this term is similar to that of the internal energy terms of an active contour. It
takes into account that the observable boundary in the image may be distorted by
noise or may be partially missing. The parameters α, β , and γ govern the influence
of the different terms on the desired optimal segmentation.

Finding a foreground segmentation requires to find a function that minimizes
(9.56) given an image. Including the region attributes of (9.56) in a level set form
has first been presented by Chan and Vese (1999). The method is known as active
contours without edges since the data term controlling the level set evolution is
based on region attributes and not on edges.

For separating the foreground from background, the two regions Ωi and Ωe have
to be found. This can be conveniently expressed by a level set function φ(x), which
is defined in the complete domain of x, if the Heaviside function

H(z) =
{

1, z ≥ 0

0, z < 0
(9.57)
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is used. The foreground elements are now all elements for which H(φ(x)) = 1, and
background elements are those for which H(φ(x)) = 0. With these definitions the
Mumford–Shah functional simplifies to (now using the weighting variables λ1, λ2,
and ν of Chan and Vese 1999)

E(φ, c) = λ1

∫
R

(
u(x) − c1

)2
H

(
φ(x)

)
dx

+ λ2

∫
R

(
u(x) − c2

)2(1 − H
(
φ(x)

))
dx

+ ν

∫
R

∣∣∇H
(
φ(x)

)∣∣. (9.58)

The optimal segmentation is a function φ(x) that minimizes E (see Fig. 9.32 for
an example). Similar to geodesic active contours, the optimal level set is computed
using variational calculus (see Sect. 14.2). It is a matter of applying standard differ-
entiation rules (and remembering that the derivative of the Heaviside function is the
delta function δ) to arrive at the following Euler–Lagrange equation for the level set
minimization

∂E

∂φ
= δ(x)

[
λ1

(
u(x) − c1

)2 − λ2
(
u(x) − c2

)2 − ν∇ ∇φ(x)

|∇φ(x)|
]
, (9.59)

which gives the update rule

∂φ

∂t
= δ(x)

[
−λ1

(
u(x) − c1

)2 + λ2
(
u(x) − c2

)2 + ν∇ ∇φ(x)

|∇φ(x)|
]
. (9.60)

Since the Heaviside function and its derivative, the δ-function, are inherently
unstable, they are replaced by a differentiable approximation such as the sigmoid
function.

In (9.58), c1 and c2 approximate the appearance in the foreground and back-
ground region. This could be, for instance, the average intensity of the enclosed re-
gions. If domain knowledge exists about the expected appearance in the foreground
and background, this could be used as well. The two parameters λ1 and λ2 represent
the expected reliability of the approximation by c1 and c2. The parameter ν enforces
short and therefore smooth boundaries.

The regional terms determine the behavior of the level set. If, for instance, the
level set is in the background, the variation of (u(x)− c1)

2 in the current foreground
should be larger than that of (u(x) − c2)

2 in the current background. Since the two
terms are minimized, the level set will move inward toward the true foreground-to-
background boundary.

Sometimes, the average intensity is not a very good predictor to determine fore-
ground or background membership of a scene element. Knowledge about the loca-
tion of the segment boundary—included in active contour approaches—cannot be
included in the original formulation of Chan and Vese (2001). If this information is



9.2 The Level Set Model 293

Fig. 9.32 Active contours without edges for the segmentation of vessels in a projection image:
segmentation is fairly independent of the initial level set. The result is influenced by the homo-
geneity term. This can be seen for the smaller vessels at the periphery where the signal difference
is too small for a good segmentation

present, the approach can be extended to an active geodesic regions method (Para-
gios 2002). Given probabilities Pint and Pext of a scene element belonging to the
interior and exterior of a segment, the level set evolution is

∂φ

∂t
= α

(
log

(
Pint

Pext

))
|∇φ| + (1 − α)

(
g(PC)κ|∇φ| + ∇φ∇g(PC)

)
, (9.61)

where g decreases with the probability PC of points of a curve C belonging to the
true boundary.

The evolution of variational level sets will always result in the minimum if the
functional to be optimized is convex (such as the one above). Hence, the result is
independent from the initial level set as long as the initial boundary has nonzero
length (see, e.g., Fig. 9.32). This is different to the evolution using the narrow band
technique. The latter is just a local optimization of the level set function, where the
global optimum may not even be the wanted segment boundary. The desirable be-
havior of variational level sets comes at a cost, however. The minimization can no
longer be seen independently of the forces that drive the level set evolution. While it
is possible to define almost arbitrary speed functions for narrow band level set evo-
lution, adding or changing terms in variational level set requires a new optimization
of the equation.
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Fig. 9.33 Topology
preserving level set evolution
stops before the front moves
over non-simple points

9.2.9 Topologically Constrained Level Sets

Compared to the parametrically defined active contours presented in Sect. 9.1, level
sets have the advantage that their topology may change during evolution. An initial
level set may be a simple, closed curve. This curve will split and merge during
evolution according to image properties.

This may be unwanted, if the topology of an object is known a priori. Level sets
can be adapted to prohibit such change of topology. Han et al. (2003) suggested
additional constraints based on digital topology to control the level set evolution.
Digital topology defines the closeness and connectedness for a discrete sampling of
continuous space. A connected component of a discrete scene consists of all scene
elements between which a path exists. A path exists between two scene elements s0
and sN if a sequence s0, s1, s2, . . . , sN exists so that every pair si , si+1 is adjacent
and a given homogeneity criterion is true for all pairs.

Adjacency depends on the dimension of the scene. Pixels in a 2D scene can be
four-adjacent if they share a common edge, or eight-adjacent if they share a common
point. Voxels may be 6-, 18-, or 26-adjacent. Homogeneity in its simplest version
requires equal function values, but can be any other attribute that is definable on
pairs of scene elements. For topologically constrained level sets, a pair of scene
elements fulfills the homogeneity criterion, if the pair is completely inside or outside
of the boundary defined by the current 0-level set.

When adding or removing a scene element, it is of interest whether this action
changes the topology.
• Removing a scene element may split a connected component into several compo-

nents.
• Adding a scene element may merge two or more components.

If a label of a scene element can be switched between foreground and background
without altering the topology, it is called a simple point (see Fig. 9.33). Whether a
point is simple or not changes after each label change and has to be continuously
monitored.

The speed term of the evolving level set is now supplemented by a term that pre-
vents a front from moving into nonsimple points. The evolving front is mapped on
the discrete image after each iteration step. Subsequently, the points of the discrete
scene are classified into simple and nonsimple points. The speed is reduced to zero
if a nonsimple point is to be passed.



9.3 Concluding Remarks 295

9.3 Concluding Remarks

Active contours fit a parameterizable model of a segment to the data by finding an
optimal location for a model instance. Since the global and local constraints of the
active contour are always asserted, they are particularly well suited if data alone do
not provide this information.

The major difference between the two types of active contours is the representa-
tion. While an explicit representation is inherently topology-preserving and fast to
optimize, implicit representations are defined independent of dimension and oper-
ate in continuous space. A preference of one of the two kinds should be given to the
methodology which best fits an actual segmentation problem.

9.4 Exercises

• Sketch a segmentation problem where active contours (defined explicitly or im-
plicitly) would be the appropriate segmentation strategy. Explain the reasons why
it would be appropriate.

• What kind of information is represented by the internal energy term of an explicit
active contour? What could be the possible adverse effects if this term is weighted
too strongly in the equation?

• Why is it important to initialize an active contour close to the searched segment
boundary?

• How can balloon forces be used for relieving the user from having to place the
active contour close to its final position? Discuss the disadvantages of the strategy.

• What are the features that are used to compute the gradient in gradient vector
flow?

• What would be the image properties that will cause the gradient vector flow to
fail leading an active contour to the segment boundary?

• How can active contours be constructed so that topological changes are accom-
modated?

• How is the current segment boundary represented in the level set framework?
• Explain why it is not important how the level set function looks like.
• What is the difference for the wave propagation if represented by stationary ver-

sus dynamic level sets?
• Why is it necessary for dynamic level sets to embed the n-dimensional level set

function into (n + 1)-dimensional space?
• What is the meaning of the speed function? Explain the three different compo-

nents of the speed function.
• How is boundary smoothness represented in the level set framework?
• What is meant by an “upwind scheme” and why is it necessary to use an upwind

scheme?
• What conditions have to be met for guaranteeing the stable computation of the

level set evolution?
• Explain why the fast marching algorithm is less time consuming than naive com-

putation of arrival times for stationary level set.
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• What is the difference between the fast marching approach and Dijkstra’s shortest
path algorithm?

• Why is the narrow band technique faster than the regular propagation of a dy-
namic level set? What are the potential disadvantages of this technique?

• Why has using the narrow band technique also been an advantage regarding the
step size of the time step compared to regular propagation of the level set func-
tion?

• What are the properties that determine the size of the band in the narrow band
technique?

• What is minimized when optimizing geodesic active contours under the level set
framework?

• Explain how region information can be included in level set segmentation for
“active contours without edges.”

• What are the assumptions that are made so that variational level sets optimize the
Mumford–Shah functional?

• Why is it necessary to replace the Heaviside function for variational level sets?
What are the desired properties of the function that replaces the Heavidside func-
tion?

• How can the level set evolution be modified to constrain topology? Compare
this strategy with the introduction of topological variability for explicit active
contours. What do the two approaches have in common?
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10Registration and Normalization

Abstract
Information about an object from different sources can be combined if a transfor-
mation allows mapping data from one source to data of the other source. In med-
ical imaging, the two sources are image acquisition systems. If the two sources
depict the same subject, this process is called registration. If they depict different
subjects, it is called normalization. The mapping is a geometric transformation
that accounts for the different positioning of a patient in two image acquisition
systems.
Determining a registration or normalization transformation requires redundant
information in the two images, a suitable restriction of acceptable transforma-
tions, and, for iterative schemes, a criterion that rates the quality of a given trans-
formation. Various ways to compute a registration or normalization transforma-
tion from medical images will be discussed in this chapter.

Concepts, notions and definitions introduced in this chapter

› Rigid and nonrigid registration
› Normalization
› Similarity criteria: average distance, Procrustes distance, intensity difference,

correlation and covariance, stochastic and deterministic sign change, mutual
information

› Analytic solution for rigid registration
› Constraints for iterative registration: elasticity, viscosity, splines, similarity of

displacement vectors

Fusing information from different sources produces synergy by spatially relating
data from the sources with respect to each other. Registration and normalization are
the processes to find an appropriate mapping for the fusion.

Registration computes and carries out a transformation between two or more
pictorial representations of the same subject. If the two scenes have the same di-
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Fig. 10.1 Registration finds a transformation to map two different images of the same patient onto
each other

mensionality and dimensions correspond—e.g., when comparing a 3D MRI data
set with a 3D CT data set (see Fig. 10.1)—topology will often be preserved by the
transformation. Hence, adjacent locations prior to registration will remain adjacent.
It is a useful constraint for determining the registration transformation.

Normalization is the operation to compare images from two or more different
subjects. It differs from registration in that topology is not always preserved. The
use of the term normalization refers to the mapping of images of different sub-
jects onto some common norm image. In the medical sciences it probably originates
from functional imaging where normalization is routinely used for group studies.
Normalization also happens, when a geometric model of shape and appearance is
mapped to an image. This is also called matching referring to a use in general image
analysis (e.g., template matching). It is used extensively to describe atlas-based seg-
mentation (one of the first publications was R. Bajcy’s work on 2D and 3D elastic
matching; Bajcy et al. 1983; Bajcy and Kovacic 1989).

Registration and normalization are sometimes subsumed under the common no-
tation registration, but different requirements and constraints justify the discrimina-
tion by name even though many normalization algorithms borrow from registration.
Surveys on registration algorithms in all areas of digital image processing and anal-
ysis have been published by Brown (1992) and Zitova and Flusser (2003) (the latter
is intended to be an update of the former). The two surveys may also serve as tuto-
rials on basic requirements and characteristics in registration. The characterization
of the methods used in medical applications can be found in the extensive survey of
Maintz and Viergever (1998). A good introduction into numerical issues of registra-
tion is Modersitzki (2003).

Finding the appropriate transformation between two scenes f and g depends on
four aspects (Brown 1992).
• The feature space determines features F in f and g that will be used for corre-

spondence.
• The similarity criterion S defines what is meant by correspondence between two

registered scenes.
• The search space contains all possible transformations T among which an opti-

mal transformation is searched.
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Fig. 10.2 For finding the registration transformation, redundant information must exist that de-
fines the mapping at least at some locations (such as the landmark positions indicated in this ex-
ample)

• The search strategy tells how—given some transformation producing some
similarity—the next transformation is found.
Finding correspondence between two scenes f and g requires at least some re-

dundancy between image features F(f ) and F(g) so that a sufficiently large number
of locations x1 and x2 in the two images exist, for which the local feature similar-
ity s(F (f (x1)),F (g(x2), T ) can be defined (see Fig. 10.2). To make the search for
the correct registration function a minimization task, the similarity measure is often
defined such that it is low when feature locations correspond given some transfor-
mation T .

In this chapter, we will discuss techniques and their limitations to solve the prob-
lems based on registration. The concluding sections will address differences of nor-
malization and matching methods with respect to registration.

10.1 Feature Space and Correspondence Criterion

Establishing correspondences between two scenes f and g requires finding a mea-
sure by which equivalence between locations in the two scenes is quantified. Two
points in the two images are assumed to be equivalent if they have the same location
with respect to some unknown patient coordinate system. The relation between the
known scanner coordinate system and the patient coordinate system is influenced
• by different positioning of the patient in the scanner,
• by distortions caused by the imaging system,
• by any movements of organs due to physiology,
• by changes caused from interventions taking place between creating f and g.

Equivalent locations in the two images are assumed to have a similar appearance.
This does not imply that unlike locations have different appearances. Correspon-
dence criteria will often only apply to a subset of locations in f and g where simi-
larity either uniquely identifies pairs of correspondent points in patient coordinates
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Fig. 10.3 Examples for intrinsic and extrinsic markers. Markers do not have to be points but the
same structure should be visible in two scenes to be registered

(this is the case for labeled landmarks) or where at least the number of possible
correspondence pairs is reduced (this is the case when, e.g., landmark curves are
used).

Features commonly used for measuring correspondence in medical image regis-
tration are as follows:
• Extrinsic markers;
• Intrinsic features: landmark points, curves, or regions;
• Voxel intensities or gradients.

Extrinsic or intrinsic features are model-based features (see Fig. 10.3), whereas
voxel intensities or gradients are image-based features (see Fig. 10.4). Model-based
features are selected intentionally according to the assumption that they provide
essential information for computing the registration transformation. Using image-
based features assumes that low-level operations on an image suffice for producing
the necessary correspondence information. The number of locations x for which cor-
respondence may be established—i.e., the domain for which local correspondence
c is defined—is generally smaller in model-based registration than in image-based
registration, but their accuracy is often better.

Extrinsic and intrinsic markers are assumed to be describable by a finite set of
feature points that are distinguishable in the two scenes. Local correspondence may
be computed only for feature points in the two scenes. A feature function F assigns
the label 1 to feature points and the label 0 to all other locations in the image. Feature
similarity cc simply notes the incidence of coinciding feature points with the same
label

cc

[
F

(
f (x1)

)
,F

(
g(x2)

)
, T

] =

⎧⎪⎨
⎪⎩

1, if F(f (x1)) = F(g(T (x2))) > 0

and x1 = T (x2)

0, otherwise.

(10.1)



10.1 Feature Space and Correspondence Criterion 303

Fig. 10.4 Image-based features are generated by some filtering process from the image. Since the
two images to be registered are usually not equal, image-based features do not necessarily have
direct correspondence. It is assumed, however, that most features are visible in both scenes

The similarity S between scenes f and g after transforming g by some transfor-
mation T would be the inverse of the sum of local correspondences

Sc(F,f,g,x1,x2, T ) =
[

1

|M|
∑

(x1,x2)∈M

cc

[
F

(
f (x1)

)
,F

(
g(x2)

)
, T

]]−1

, (10.2)

where M is the set of feature point pairs in f and g with x1 = T (x2), and |M| is
the number of elements of M . Normalization by |M| makes transformations T with
different numbers of corresponding markers comparable to each other. Removing
the normalization constant may make sense if transformations with few matching
feature points shall be penalized.

The mapping is not unique (i.e., more than one transformation T may exist that
minimizes S). A unique mapping is achieved if F assigns a unique non-zero label
to every feature point such that corresponding features have equal labels.

The similarity criterion above counts the number of matched feature points. Its
underlying assumption is that the computation of feature points is exact and a suit-
able transformation exists with x1 = T (x2) for all feature point pairs (x1,x2) of the
registration transformation T .

It is possible and even likely that this is not true because the marker positions have
not been determined accurately or they do not match exactly. Local correspondence
can be relaxed by introducing some minimum distance ε that must not be exceeded
for declaring two feature point positions to be equal:

cε

[
F

(
f (x1)

)
,F

(
g(x2)

)
, T

] =

⎧⎪⎨
⎪⎩

1, if F(f (x1)) = F(g(T (x2)))

> 0 ∧ |x1 − T (x2)| < ε

0, otherwise.

(10.3)
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Using cε still counts the number of correspondences between feature points. The
similarity criterion for a transformation T is

Sε(F,f,g,x1,x2, T )

=
[

1

|M|
∑

M={(x1,x2)|x1=CP(T (x2))}
cε

[
F

(
f (x1)

)
,F

(
g(x2)

)
, T

]]−1

, (10.4)

where CP() ensures that T (x2) is the closest of all marker points to x1. This is
necessary for ensuring that any feature point in f may only be mapped to exactly
one feature point in g.

A unique relationship between feature points in the two scenes may not exist
so that counting correspondences is not suitable. If, for instance, feature points in
the two images describe the same structure (e.g., the skin surface of the head, but
no specifically labeled positions on the skin surface are identified), similarity must
attempt to minimize the average distance between two sets of feature points. A suit-
able definition for local correspondence between feature points of f and g could
be the distance between two matching feature points x1 and x2 such that the trans-
formed x2 is closest to x1:

cd

[
F

(
f (x1)

)
,F

(
g(x2)

)
, T

] =

⎧⎪⎨
⎪⎩

‖x1 − T (x2)‖, if F(f (x1)) > 0 ∧ F(g(T (x2)))

> 0 ∧ x1 = CP(T (x2))

0, otherwise.

(10.5)

The registration similarity Sd is:

Sd(F,f,g,x1,x2, T ) = 1

|M|
√ ∑

M={(x1,x2)|x1=CP(T (x2))}
cd

[
F

(
f (x1)

)
,F

(
g(x2)

)
, T

]
.

(10.6)

Sd is called the Procrustes distance1 (see Fig. 10.5). Local similarity using the
Procrustes distance between markers can also be used for matching markers by re-
quiring F(f (x1)) = F(g(T (x2))) > 0 instead of F(f (x1)) > 0 ∧F(g(T (x2))) > 0.

Similarity can be computed for feature points from extrinsic and intrinsic mark-
ers. Extrinsic markers are artificially attached markers to the body such as skin
markers or markers on a stereotactic frame. Marker materials must be clearly visible
in the two images. Appropriate materials depend on the imaging technique. Plastic,
for instance, is barely visible in CT and not visible at all in MR. Any visible material
that does not emit photons will not be detected by nuclear imaging techniques.

1Sometimes the square root is not taken.
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Fig. 10.5 The Procrustes
distance between two sets of
points is the distance from
points of one of the sets to
closest counterparts in the
other set

Fig. 10.6 Minimizing the Procrustes distance for a set of points produces the optimal transfor-
mation only at these points. Transformations at other locations can be arbitrary unless the set of
permissible transformations is suitably restricted. Any of the three regions depicted on the right
optimize the Procrustes distance in the same way

Markers should be small for simplifying the computation of the feature point lo-
cation from a segmented marker region. They should be opaque with respect to the
imaging technique and produce a high-contrast signal. The accuracy with which fea-
ture point locations can be determined varies with the type of marker and the noise
level and different spatial resolution of the imaging device. Hence, the computation
of a registration transformation from feature point locations may be inaccurate.

A registration transformation based on matching feature point positions is valid
only at these positions (see Fig. 10.6). The registration of other positions in the
scene requires the space of acceptable transformations to be suitably constrained
so that matching feature point positions uniquely determine a transformation for
the complete image. Even for finding a rigid transformation, this can be difficult
because the relation between the extrinsic markers and the patient may be nonrigid.
Skin markers, for instance, may move in some nonrigid fashion with respect to the
bone.

Intrinsic landmarks are feature points of an anatomical or geometrical nature.
They are identifiable locations in the scenes to be registered and may be used in
the same fashion as extrinsic markers. Anatomical landmarks are locations used
in anatomy for providing spatial reference information. Examples are the anterior
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Fig. 10.7 Anatomic
landmarks such as the
anterior and posterior
commissural (ac, pc) or
geometric landmarks such as
locations of high curvature on
object boundaries can be used
for registration

and posterior commissura (AC and PC) used for the intersubject normalization of
human brains (see Fig. 10.7). Anatomic landmarks are often identified interactively.
An expert user will know their definition and how to find them in the images. The
name of an anatomic landmark may serve as a unique label for the feature point.

Geometrical landmarks are feature points that can be found geometrically, but
do not necessarily have an anatomic label (see Fig. 10.7). An example would be
the set of local curvature maxima on some defined surface. The landmarks can be
computed automatically if their geometric definition is computable. Geometrical
landmarks are generally not unique, as the geometric definition of a landmark is
nonunique (e.g., there will be many local curvature maxima). However, using ge-
ometric features, such as SIFT, SURF, MSER, or local shape context, presented in
Chap. 5 provide a rich description that allows a substantial reduction of the potential
counterpart of feature locations in the other image.

Still, noise, different spatial resolution between image scenes, and other artefacts,
can cause an identifiable geometric landmark in one scene not to be detected in the
other scene.

Computing a registration transformation from anatomic or geometric landmarks
requires similar constraints than the use of extrinsic markers. The spatial relation-
ship between landmarks and the scenes to be registered need to be known and should
be simple for inferring a scene registration transformation from landmark registra-
tion. If, for instance, the vertebra in a preoperative CT scan shall be registered with
an intraoperative scan, the transformation will be rigid. If, however, some of the
landmarks were on other vertebrae, the relation between the object of interest and
the landmarks may no longer be rigid and too complex to be accounted for.

Inaccurate interactive depiction or automatic computation of anatomical or geo-
metrical landmarks results in displacement errors, which affects the accuracy of the
transformation between landmark positions.

Geometrical landmarks may also be curves or regions (e.g., the ridges on some
surface or the surface itself; see Fig. 10.8). The mapping will be nonunique because
there is no unique identification of locations within such curves or regions. Using
curve or region points requires a similarity criterion such as Sd , which does not
require point-to-point correspondence. The criterion needs to be adapted so that
points in one scene that do not have a counterpart are not included into the similarity
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Fig. 10.8 If ridges are used as landmarks, the distance between two ridges is an average of dis-
tances of points on one ridge to closest points on the other ridge

measure. This can be done by using the ε of the cε measure to exclude feature points
for which |x1 − CP(T (x2))| > ε.

Intrinsic features define the mapping for a selected subset of locations in the
image similar to extrinsic features. Computing the scene registration transformation
again requires a suitably constrained transformation space. However, registering two
scenes does not always require equal accuracy everywhere in the scene. Often, some
region of interest needs to be analyzed. Intrinsic landmarks are then placed closely
to this region, which reduces adverse influences from placement inaccuracies there.

If the number of landmark locations is small, if their localization is unreliable,
or if the search space for a transformation is complex, such as in non-rigid regis-
tration, landmark-based registration may not be suitable. Image-based registration
features can provide a denser map of corresponding locations x. Features do not
require prior identification. They are computed using low-level image processing
techniques. Features may not be reliable everywhere in the scene, but on average
the number of reliable feature locations is larger than in landmark-based feature
computation. Image-based features are not unique, though because the values of
low-level features cannot serve as a unique label.

In the simplest case, intensity may serve as a feature. Using intensities requires
equal objects having equal brightness in the two images. An example is the regis-
tration of two images from the same patient made at different times with the same
modality under the same protocol. The local correspondence criterion cintensity is the
intensity difference between voxel locations x

cintensity(x, f, g;T ) = ∥∥f (x) − T ◦ g(x)
∥∥. (10.7)

T ◦ g(x) indicates that function g was transformed by T prior to computing the
difference. The similarity of two registered scenes is then the sum of all local corre-
spondences. Using the intensity difference may be hampered by noise, especially if
the contrast in the image is low.
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Fig. 10.9 Sign changes increase if two images (in this case 1d functions) are in registration in (a)
compared to the non-registered images in (b)

Computing sign changes instead is a more stable criterion (see Fig. 10.9). The
criterion was introduced by Venot and Leclerc (1984) and has been used for 2D im-
age registration (a newer application is Maglogiannis 2004). The two images f (x)

and T ◦ g(x) are subtracted from each other to yield d(x) = f (x) − T ◦ g(x).
If images are in perfect registration and contain zero-mean noise, the number of

sign changes between neighboring pixels in d depends only on the noise characteris-
tics. The number of sign changes decreases if images are misregistered. A similarity
criterion Ssign_change to be minimized that is based on sign changes is

Ssign_change(T ) = −
∑

x

∑
xn∈Nbs(x)

∣∣sgn
(
d(x) − d(xn)

)∣∣, (10.8)

where sgn() is the signum function and Nbs(x) contains the neighbors of x. The
authors called the criterion stochastic sign change criterion. It requires the images to
contain noise. Its success is based on the assumption that the noise level is lower than
the signal as well as that spatial frequency of noise is higher than that of the signal.
High-frequency details of objects will not contribute to the registration success but
lead to its deterioration. If images are noise-free, a synthetic noise-like pattern may
be added to both images prior to their subtraction. This is called the deterministic
sign change criterion.

If voxel intensities for the same object are different in the two scenes f and g,
and if no simple mapping for making them equal exists, the measures above cannot
be used. However, if at least some of the objects are visible in the two images,
commonness between features still relates to the boundary between objects. This
can be exploited in several ways.

A straightforward strategy is to use the intensity gradient as feature. Feature
computation requires an extra segmentation step for identifying boundary pixels
by means of the gradient properties (see Fig. 10.10). Boundary segments are treated
as landmark curves or landmark regions for which the average distances between
closest points are to be minimized. Gradients, however, are sensitive to noise and
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Fig. 10.10 Gradient information from the images can be exploited for segmentation if an addi-
tional edge detection step uses gradient strength for finding edges (in the case above by using the
Canny edge detector)

artefacts. Artefact edges may erroneously be treated as boundary edges, localization
of edges may contain displacement errors, and boundary edges may not be found in
both images.

Gradient information is employed indirectly if a multiple threshold segmentation
of the two images is created, which is then registered using the deterministic sign
criterion. Multiple thresholds produce segments in which some of the boundaries
should coincide with object boundaries. Summing sign changes over the image re-
duces the influence of noise and artefacts from segmentation boundaries that are not
object boundaries.

If segmentation is not suitable as preprocessing step, the influence of noise at the
edges can be reduced by employing a better edge model. Assuming ideal step edges,
the correlation coefficient in a δ-neighborhood Nδ(x) around some location x can
be used as local correspondence criterion cedge:

cedge(x, f, g;T ) = ccδ

(
f (x), T ◦ g(x)

)

=
1

|Nδ(x)|
∑

xi∈Nδ(x)(f (xi ) − f̄ (x))(T ◦ g(xi ) − ḡ(xi ))∑
xi∈Nδ(x)(f (xi ) − f̄ (x))2

∑
xi∈Nδ(x)(T ◦ g(xi ) − ḡ(xi ))2

,

(10.9)

where f̄ (x) and ḡ(x) are estimates of the expected value in f and g in Nδ(x). If the
contrast in the two images to be registered may be reversed (i.e., a dark object in
f may be bright in g) the absolute value of cedge is taken. Scene similarity Sedge is
computed by summing up voxel correspondences at all boundary locations.

If explicit edge detection has not been carried out, scene similarity may be com-
puted by summing over all voxels in the scene. It reduces sensibility to registration
errors since the correlation between two voxels with constant brightness in their
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neighborhood is always maximal. The problem can be remedied to some extent by
weighting local similarity with the negative gradient length.

Using local correlation takes advantage of the fact that the local neighborhood
parallel to an edge should be smooth while this is not true for noise. Another strat-
egy to make use of this would be to use low pass filtering before computing the
gradient. This has been done, for instance, by Bajcy et al. (1983) but it is sensitive
to the gradient strength at an edge. Solutions are preferred where the edges of equal
strength are mapped onto each other requiring contrast in f and g to be similar.

An alternative for using the correlation, which is not sensitive to contrast differ-
ences between f and g, is the computation of the mutual information between two
scenes. Similar to correlation, mutual information measures brightness correspon-
dence in the two images. It is high when brightness changes in the two registered
images coincide. The measure of coincidence is less restrictive than correlation, as it
does not require the pixel-wise linear relationship to be constant for every intensity
level.

Mutual information I (f, g) of a pair of images f and g is related their joint
entropy E(f,g) in the following way

I (f, g) = E(f ) + E(g) − E(f,g), (10.10)

where E(f ) and E(g) are the entropies of f and g as defined in Sect. 4.1.2. The
joint entropy E(f,g) is given by

E(f,g) =
N−1∑
i=0

N−1∑
j=0

p(i, j) log2 p(i, j). (10.11)

The quantity p(i, j) is the joint probability of intensities i and j occurring at the
same location x in f and g. It is estimated from the normalized joint histogram of f

and g. The intensity of the two images is assumed to range from 0 to N − 1. Mutual
information measures how good intensity values in image g at some location x may
be predicted by intensity values in image f at the same location. If the two images
are in perfect registration, this predictability is at its maximum if at least some of the
information in f is also depicted in g (see Fig. 10.11 for an example for translation
and Fig. 10.12 for an example for rotation).

Mutual information can be used as a local correspondence criterion at any loca-
tion x as well by computing it from some predefined neighborhood region around
x. Small local neighborhoods, however, may produce unreliable estimates of I from
the underlying estimates of the probability distributions p.

If applied as a global estimate, the different domains of the two images have to
be considered. If transformation T is applied to g, some locations x for which f

is defined may become undefined for the transformed g and vice versa. Since the
region in x for which f and g are defined changes with T , the similarity measure
needs to be adapted to account for the different number of locations from which the
underlying joint probabilities are estimated.
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Fig. 10.11 Mutual information for differently shifted MR images (proton density and
T2-weighted). Although the two images are quite dissimilar, mutual information shows a pro-
nounced minimum, if registration is perfect

Fig. 10.12 Mutual information for differently rotated versions of the images from Fig. 10.11.
Again, there is a pronounced maximum if registration is perfect
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Fig. 10.13 Rigid registration accounts for a different position of the patient in the scanner, as-
suming that there exists a patient coordinate system in which semantically equivalent points in the
two scenes to be registered have the same coordinates. Transformation from scanner coordinates
in image coordinates involves scaling and potentially mirroring both of which are usually known
before

Mutual information has been used in numerous registration schemes (for a survey
see Pluim et al. 2003). Its great popularity is probably due to its ability to include
all image information into the similarity and its simplicity of use. Furthermore, an
extensive investigation about the accuracy of registration methods has found mutual
information to deliver the best results (West et al. 1997; Fitzpatrick et al. 1998).
Since the quality of the measure deteriorates with increasing noise, images are often
preprocessed for noise removal.

10.2 Rigid Registration

Finding a registration transformation means to minimize the similarity criterion. The
registration problem has a number of properties that have to be accounted for.
• In most cases, the similarity measure is an estimate based on data with noise and

artefacts and a model that overly simplifies reality.
• An infinitely large number of transformations exist, but only a finite number of

information pieces constrain the transformation.
• The optimization functions listed in the previous chapter have an image-

dependent number of local minima.
Rigid registration extremely reduces the search space by assuming that the dif-

ferences between patient and scanner coordinates can be represented by rotation
and translation only. A number of cases exist, notably the registration of cranial
3D images, where the difference between the two scenes to be registered can be
represented by a rigid transformation.

Rigid registration models patient geometry as a rigid body and accounts for dif-
ferent positioning of the patient in the scanner (see Fig. 10.13). Comparing CT, MR,
and PET images of the head, which may be treated as a rigid body, were among the
first applications for rigid registration. Registration of other bone structures such as
the vertebrae may be represented by rigid registration as well.
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Fig. 10.14 The naive
registration algorithm would
compute the transformation
by solving a linear equation
system from coordinates
(x, y, z) from four pairs of
landmarks (p,q)

Registration usually does not account for scaling (which happens when trans-
forming from scanner coordinates to image coordinates), as most 3D imaging de-
vices provide information about the size of a voxel.

The unknown transformation can be described by

⎛
⎝y1

y2
y3

⎞
⎠ = R ×

⎛
⎝x1

x2
x3

⎞
⎠ + t with R =

⎛
⎝r11 r21 r31

r12 r22 r32
r13 r23 r33

⎞
⎠ and t =

⎛
⎝d1

d2
d3

⎞
⎠ ,

(10.12)

where R is a rotation matrix and t a translation vector. Solving the task amounts
to solving linear equations with a total of 12 unknowns (9 for the rotation and 3
for the translation). A straightforward solution would be to determine pairs of four
extrinsic or intrinsic markers {p1,p2,p3,p4} and {q1,q2,q3,q4} such that pi should
map onto qi for i = 1, . . . ,4 (see Fig. 10.14). Using the coincidence correspondence
criterion cc the registration transformation can be found by equating corresponding
landmarks via the transformation in (10.12) and solving for the unknowns.

The result would be unsatisfactory because the landmark positions will not be
exact. A better solution would be to require a larger number of corresponding land-
marks and solving the overdetermined equation system using a minimum norm strat-
egy. It corresponds to using the average minimum distance similarity Sd .

This would still not be satisfactory because the computed matrix R may not be
a rotation matrix introducing unwanted shear and scaling into the registration. The
nine coefficients of the rotation matrix are not independent of each other, as a ro-
tation has only three degrees of freedom: two angles for describing an axis around
which rotation takes place and the rotation angle around this axis. A matrix is a
rotation matrix if it is orthonormal with a determinant of 1.

A closed-form solution for a large number of correspondence pairs of landmarks
that ensures orthonormality of R has been presented by Arun et al. (1987). Two sets
pi , and qi , I = 1,N of corresponding pairs of points—called paired landmarks—
shall be registered with respect to each other using rotation and translation. The
Procrustes distance of the similarity criterion Sd is to be used for minimizing the
average distance between corresponding locations after registration.
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In the first step, the translation vector is found by computing the expected values
for the two sets of points

p̄ = 1

N

N∑
i=1

pi , q̄ = 1

N

N∑
i=1

qi . (10.13)

The translation is accounted for by forming new point sets p′ and q′ with p′ =
p − p̄ and q′ = q − q̄.

Finding the rotation R between p′ and q′ that minimizes the average distance
between registered landmarks is then a minimization task

Ropt = arg min
R

N∑
i=1

‖p′
i −q′

i ·R‖2 =
n∑

i=1

p′T
i ·p′

i +q′T
i ·q′

i −2 · (p′T
i ·R ·q′

i

)
. (10.14)

The term
∑N

i=1 ‖p′
i −q′

i ·R‖2 is sometimes called fiducial registration error. The
landmarks to be matched are called fiducial markers.

Minimizing (10.14) means maximizing
∑N

i=1 p′T
i · R · q′

i since the other terms
do not depend on R. Arun showed that this rotation matrix can be found from a
singular value decomposition of D = U�VT = ∑N

i=1 p′
i · q′T

i . The rotation matrix is
R = VUT. The matrix is orthonormal, but may have a determinant with value −1
in which case the transformation is a rotation that is mirrored at the origin. This
should be checked because it indicates severe displacement errors of landmarks or
a distribution of landmarks that allows for several different mappings with similar
similarity values.

Horn (1987) presented another closed-form solution for registering point sets p
and q using unit quaternions for representing the rotation. A quaternion has one
real and three imaginary parts and is denoted by q = r + a · i + b · j + c · k with
i, j, k being the three imaginary parts. Quaternions may also be written as vectors
q = (r a b c). Unit quaternions (i.e., quaternions qr with ‖qr‖ = 1) have only three
independent variables and can be used for representing rotations in 3D space. A 3D
rotation of a vector (x1 x2 x3) in quaternion algebra requires the vector to be repre-
sented as quaternion (0 x1 x2 x3). Rotation around a vector r with angle α is then

⎛
⎜⎜⎝

0
y1
y2
y3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
x1
x2
x3

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

cosα/2
r1 sinα/2
r2 sinα/2
r3 sinα/2

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

0
−x1
−x2
−x3

⎞
⎟⎟⎠ . (10.15)

For given sets of points p′ and q′ that are corrected for translation and scaling,
Horn showed that the optimal rotation minimizing the average displacement error
has components of the eigenvector corresponding to the largest eigenvalue of a 4×4
matrix Q that is computed as follows:

Q(Spq) =
(

tr(Spq) �T
pq

�pq Spq + ST
pq − tr(Spq) · I3×3

)
, (10.16)
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Fig. 10.15 Principal axes generated from landmarks can act as a patient coordinate system, if the
landmark distribution is sufficiently anisotropic. Otherwise, the axes orientation may depend on
small changes of landmark positions (which may be caused from localization errors)

where

Spq =
⎛
⎝s11 s21 s31

s12 s22 s32
s13 s23 s33

⎞
⎠ =

n∑
i=1

p′
i · q′T

i and �pq = (s23 s31 s12)
T, (10.17)

and tr() is the trace of a matrix. I3×3 is a 3 × 3 identity matrix.
The use of quaternions avoids the ambiguity of orthonormal rotation matrices

that may or may not include a mirroring at the origin. It has the disadvantage that it
can only be applied for 3D scenes.

The methods of Arun and Horn require paired landmarks. If this cannot be guar-
anteed, another strategy using principal component analysis (PCA, see Sect. 14.3)
can be used for producing the average minimum distance between registered land-
marks (Toennies et al. 1990). The idea is quite simple. If landmarks represent a
structure of a suitably irregular shape, the origin and principal axes of the landmark
distribution represent a unique patient-specific coordinate system with respect to
some common world coordinate system (in this case, the scanner coordinate system,
see Fig. 10.15). The registration transform is given by first translating the landmarks
into the origin of the world coordinate system and then rotating them according to
the principal axes.

The translation between the two systems is given as in the previously described
method of Arun et al. (1987). Given a matrix of eigenvectors Ep and Eq from the
PCA of the two points sets p and q the rotation is then

Ropt = EpEq, (10.18)

assuming that eigenvalues in �p and �q correspond. This should be the case if the
point distributions of p and q represent the same shape.

Using the PCA decomposition does not require paired landmarks, which makes
it also applicable in cases where landmark curves or landmark surfaces shall be reg-
istered. It comes at a price, however. PCA-based registration will fail if the shape
of the point distribution is approximately spherical. In such case, all three eigenval-
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Fig. 10.16 Potential outliers can be detected by a variant of the leaving-one-out technique. The
predicted position of the left-out landmark with respect to all other landmarks is measured and
compared with the true position. If the difference is too large, the landmark pair is marked as
potential outliers

ues will be approximately equal and orientation from eigenvectors will mainly be
governed by noise and artefacts.

The strategies described above rely on two sets of corresponding points among
which a transformation shall be found. If the number of points is small, noise and
outliers may affect the result. If paired landmarks are to be registered, the influence
of noise may be estimated by computing the average and maximum distances be-
tween corresponding points of the two data sets after registration. If the PCA is used,
noise influence can be estimated from differences of corresponding eigenvalues.

Outliers (i.e., landmarks with grossly wrong locations) should also be accounted
for. They may remain undetected in automatic landmark computation as their detec-
tion requires the two scenes to be registered. Outliers may be found by comparing
distances between registered landmark pairs. The distance between corresponding
landmarks, of which one is an outlier, should substantially vary from the distance
between other pairs of landmarks. Outlier pairs should be removed.

Outlier detection for paired landmarks can also be done using a variant of the
leaving-one-out technique in classification. A pair of landmarks is removed from the
two landmark distributions and a registration transformation is computed without it.
The resulting transformation is applied to the removed pair of landmarks and the
distance between the two landmarks after registration is measured (see Fig. 10.16).
It is marked for removal if the distance exceeds some threshold. After repeating this
procedure for all pairs, those marked for removal are eliminated.

Outlier detection for unpaired landmarks can also be done using the leaving-
one-out technique. In this case, single landmarks are removed before registration
and the registration transformation is applied to this landmark. Its distance to the
closest point in the other set of landmarks is computed. The landmark is marked as
outlier, if the distance exceeds some maximum distance. The process is less reliable
if distances between adjacent landmarks within a set of landmarks vary widely.

Outlier detection and removal should be iterated until no further outliers are de-
tected or the number of landmarks is too small for a reliable registration.

If it is known that objects in the two scenes f and g to be registered have the same
intensity (e.g., when images from the same scanner taken at different times shall be
registered), rigid registration for 2D scenes may also be carried out in the frequency
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Fig. 10.17 The image on the right has been rotated by 20° and translated by 20 pixels in
x-direction. Only the rotation shows up in the spectrum in frequency space

domain (Reddy and Chatterji 1996). Translating an object changes the phase but not
the spectrum (amplitude) of the signal in frequency domain. The rotation around the
origin in the spatial domain corresponds to a rotation in the frequency domain (see
Fig. 10.17). 2D registration in frequency space thus first estimates the rotation com-
ponent. The signal is transferred into polar coordinates. The rotation in Cartesian
coordinates around the origin corresponds to a translation along the angular axis in
polar coordinates. The rotation angle is found by 1D cross correlation along this
axis. If objects have different intensities in the two images but are visible in both,
the approach also works if the gradient length image instead of the intensity image
is transformed.

Computing the translation is then done either by comparing phases after rotation-
ally registering the images in the frequency domain or by just computing displace-
ments of intensity or gradient length in the spatial domain.

The previous methods solved the registration problem in one step. They do pro-
vide an optimal solution based on the landmarks and within the model that they
use. Pelizarri’s registration method for registering CT, MRI, and PET images is an
alternative that registers surfaces with respect to each other based on point distances
(Pelizzari et al. 1989). Compared with registering patient-specific coordinate sys-
tems from the principal axes of point distributions, the method has the advantage
that local point distances directly influence the result. The method requires segmen-
tation of a surface that is visible in the scenes to be registered and which is related
to the objects to be registered in a rigid fashion.

In its original version the method was applied to register cranial images using the
skin surface of the head. The method is also known as head-hat registration. The
skin of the two scenes f and g to be registered is segmented using thresholding.
The skin surface of the first scene is represented by a sequence of boundary curves
in slices. It is taken as “head” of the registration algorithm. The skin of the other
surface (the “hat”) is represented by a dense map of surface points to be fitted to the
head.
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Fig. 10.18 The ICP algorithm repetitively computes point correspondences based on distances
and then a registration transformation based on pairs of corresponding points. In this example, one
of the correspondences is wrong at the first iteration resulting in a small registration error, which
is then corrected in the second iteration where all correspondences are correct

Fitting is done iteratively using Powell’s method (Press et al. 1992). Given some
initial registration transformation, a new transformation is found by iteratively min-
imizing the distances between surface points of g to the surface f . The distances are
computed by intersecting rays from points in g to the center of inertia of the surface
f with f .

Powell’s method is known to get stuck in local minima. Several strategies can
be used to overcome this. A simple solution would be to provide a rough registra-
tion interactively. This can be done by interactively aligning 2D projections of the
skin surfaces of f and g into the xy-, xz-, and yz-planes (Grimson et al. 1996).
There have also been several approaches to replace Powell’s method by another
minimization method, which is less sensitive to the initial transformation (Xu and
Dony 2004).

The iterative closest point (ICP) algorithm of Besl and McKay (1992) is more
general than the method described above (see Fig. 10.18). Rigid registration can
be applied to point sets, implicit and parametric curves and surfaces, as well as to
faceted surfaces. The two scenes f and g may be surfaces or volumes. The scene
f is called the data to which the model g has to be fitted. Fitting minimizes the
distances of data points to the model that may be described by a variety of different
representations.

Algorithms for computing the distance of a data point to the model need to be
given for various model representations. If the model is a point, it is simply the
Euclidian distance; if it is a cloud of points, then it is the distance to its closest
point. If it is a parametric surface (e.g., a spline), distance computation depends on
the type of surface. A closed-form solution may no longer exist. The distance for
some implicit surfaces may be computed by inserting the point coordinates into the
surface equation. For each of the measures a method has to be given to return the
closest point CP(pi ,qj ) in the model component qj to a data point pi .

Given CP(pi ,qj ), an initial transformation T (0) has to be defined. The iterative
loop proceeds as follows.
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• Given a transformation T (n) at iteration n, this transformation is applied to the
data points pi .

• Compute the set of all qi = CP(pi , T
(n) ◦ qj ) for the transformed data points.

• Find optimal rotation and translation of T (n+1) using either the method of Arun
et al. (1987) or Horn (1987) above.
The algorithm terminates when the improvement in the result quality falls below

some preset threshold. The quality of the result depends on the initial transforma-
tion and on the distribution of the landmark points or regions. Even though Arun et
al. (1987) and Horn (1987) provided optimal solutions, this is only true for paired
landmarks. The ICP algorithm iterates through different configurations of corre-
spondence pairs and it is not guaranteed that it terminates with a correct pairing. If
landmarks are distributed on some irregular surface or if the initial transformation
is close to the desired result, it is less likely that the process terminates in a local
minimum.

The ICP algorithm for iterative rigid registration is the most general of all regis-
tration algorithms presented so far and numerous adaptations using different similar-
ity criteria, optimization criteria, and preprocessing routines have been published.
A survey about the various adaptations can be found in Rusinkiewicz and Levoy
(2001).

10.3 Registration of Projection Images to 3D Data

Although the majority of computer-assisted image analysis is carried out on data
with three or more dimensions, the majority of images created in clinical routines
are still projection images. Registering, say, a 2D fluoroscopy taken during a sur-
gical intervention to a 3D x-ray CT scan from preoperative planning poses some
additional problems because of the information reduction from 3D to 2D.

As there is no information about localization along the projection ray in a pro-
jection image, the registration attempts to find a projection P(f ) of the 3D image
f such that P(f ) registers with the projection image g. The artificial projection
P(f ) is called digitally reconstructed radiograph (DRR). All possible DRRs can
be assigned to locations on a sphere. This location can be specified by two an-
gles (θ, τ ) (see Fig. 10.19). Registration has to find a location (θ, τ )min such that
DRR((θ, τ )min) produces the most similar image to g. Similarity criteria can be the
Procrustes distance between landmark points or curves in P(f ) and g or an intensity
criterion.

Using a landmark such as the curves of Lavallée and Szelinski (1995) has the ad-
vantage that it is fast. Only segmented curves or points need to be projected instead
of creating the complete DRR. Furthermore, the similarity measure is independent
of the appearance of a projected point. It does, however, require segmentation, which
may be tedious or even impossible to integrate into the workflow of a surgical inter-
vention.
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Fig. 10.19 Registration of a projection image to a 3d scene requires finding a projection of the 3d
scene that matches the projection image

Fig. 10.20 Two views of registering 3d reconstructed DSA with projection DSA. The registra-
tion was necessary to map flow information from dynamic projection images to static 3d images
(Hentschke et al. 2010)

Using similarities based on intensities such as intensity correlation, gradient cor-
relation, mean absolute difference, or mutual information relieves the user from
providing segmented scenes.2 If the two scenes f and g are created using the same
kind of measurement signal (e.g., CT and fluoroscopy), all of the criteria mentioned
above should produce good results (see Fig. 10.20 for an example of registering
DSA with 3D reconstructed digital angiography). However, two influences may
contribute to the degradation of the criterion.
• Noise will affect gradient-based criteria more than intensity averaging criteria

such as mutual information or intensity correlation.
• The depiction of surgical instruments in an intervention scenario will typically

have a high contrast. As these instruments may not have been present at the pre-
operative scan, they are artefacts to the similarity criterion. Moreover, as they may

2Different similarity measures in 2d to 3d registration have been compared in Penney et al. (1998).
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move during intervention, they cannot be easily accounted for by some preopera-
tive calibration step.
If the images are from different types of acquisition systems (e.g., when compar-

ing an MRI with a fluoroscopic image, criteria should be based on intensity edges
rather than on intensities). It may still be unsuccessful if the two scenes do not pos-
sess enough common object boundaries. A pattern-based criterion, which covers the
matching quality only in a region of interest, may solve this problem partially if this
region is visible in the two scenes. Such a criterion was presented by Weese et al.
(1997) who assumed that a segmentation in a preoperative scan—in their application
it was a CT scan of the vertebrae—has been carried out that separated a structure of
interest—a vertebra in their case—from the background. The DRR is created from
the structure of interest. The matching criterion is applied only to this region. Given
a region (x, y) ∈ O of a projected structure and a neighborhood Nr with radius r

around every pixel, the pattern intensity criterion is

Spattern =
∑

(x,y)∈O

∑
(u,v)∈N

σ 2

σ 2 + ([P(f )(x, y) − g(x, y)] − [P(f )(u, v) − g(u, v)])2
.

(10.19)

The criterion measures the amount of variation in the difference image
P(f )(x, y) in some neighborhood Nr . According to the authors, a neighborhood
radius of three to five pixels was a good compromise between suppressing noise and
saving computation time. The parameter σ 2 controls the influence of local contrast
on the result. It should be higher than the noise variance and lower than the contrast
between edges and texture within the structure of interest.

Creating the projection images from the 3D scene is time-consuming, although
this has improved with the use of efficient light field techniques borrowed from
computer graphics (Russakoff et al. 2003).

Searching the parameter space (θ, τ ) may be difficult because the closeness of
projection parameters does not necessarily imply similar values of the similarity cri-
terion. This applies for the projection of curves as well as for intensity projections.
On the other hand, widely different projection angles may produce similar images.
This is the case when objects have a regular shape such as a sphere or when projec-
tions along opposite directions are compared. The former requires the initial guess
of the projection direction to be close to the true projection direction. The latter may
cause a projection direction not to be found even if the initial guess is good.

Several strategies exist to deal with this problem. A multiresolution semi-
exhaustive search has been applied by Cyr et al. (2000). They borrowed from aspect
graph techniques used for 3D object recognition from 2D views. Projections of f

are treated as aspects of f of which one registers with g. Initially, the sphere of
projection direction is sampled at a coarse resolution and projections are computed
for each of the sampled directions. The projection images are compared with g and
directions along which projections are in good agreement with g are sampled at a
finer rate. The process terminates when no further improvement is observed.
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Fig. 10.21 For non-rigid registration, displacement vectors d are computed at selected locations.
A smoothness constraint enforces similarity between neighboring displacement vectors and allows
to interpolate displacement at locations, where no vector has been computed

Computing a matching quality based on intensity is only suitable if an assumed
projection direction is close to the searched projection direction. Otherwise, the
quality criterion may not hint toward the kind of change necessary for improving the
registration transformation. Selecting landmarks solves this problem, but it requires
their segmentation in f and g. This may be difficult for the projection image g. The
solution of Cyr et al. (2000) is based on concepts of shape recognition. They use the
shock graphs of segmented regions in the projection images P(f ) and g. A shock
graph is a kind of medial axis representation where region boundaries are described
by shock waves originating at the axis. A hierarchy of shocks of increasing order
encodes various levels of detail of the region boundary. Similarity is computed by
comparing shock graphs derived from P(f ) and g. It is not a simple process as it
involves assigning shocks to each other in some optimal fashion and has been solved
by a stochastic optimization technique similar to simulated annealing described in
Sect. 14.1.

10.4 Search Space and Optimization in Nonrigid Registration

If rigidity cannot be assumed, the search space for a possible registration increases
drastically. The problem is virtually unsolvable if nothing can be assumed about the
transformation, except that a displacement field d(x) exists for every point x that
maps f (x) to its corresponding g(x + d(x)). Even if some similarity criterion exists
for confirming correspondence, it does not uniquely identify a displacement field.
Surveys about nonrigid registration can be found in Dawant (2002) and Lester and
Arridge (1999).

The necessary information for solving a nonrigid registration problem comes
from the reasonable assumption that topology is preserved by the displacement field.
It introduces a smoothness constraint for computing d (see Fig. 10.21). Various
types of smoothness have been introduced.
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• A linear elastic model enforces the smoothness of displacement that is propor-
tional to the displacement (Bajcy et al. 1983; Rexilius et al. 2001).

• A viscous fluid model enforces smoothness that depends on the evolution of dis-
placement (Lester et al. 1999).

• Registration can be modeled as free form deformation of different kinds of splines
(Rueckert et al. 1999; Chui and Rangarajan 2003).

• Displacement vector similarity globally minimizes an arbitrary penalizing term
for local similarity (Brox et al. 2004).
In elastic registration the scene is modeled as elastic surface or space that may

be deformed but not cut by external forces. Deforming a scene by attraction from
some external force is counteracted by forces toward the rest configuration of the
elastic scene. External forces impose local similarity constraints between image f

and the deformed registered image g. Elastic matching in 2D and 3D has been pro-
posed for atlas-based segmentation by Bajcy et al. (1983) and Bajcy and Kovacic
(1989) and has been used in various registration applications. The elastic model bal-
ances the image force iforce against displacement d depending on the gradient of the
divergence of d and the local Laplacian ∇2 of d:

μ · ∇2d(x) + (μ + β) · ∇(∇ · d(x)
) = iforce(x). (10.20)

The parameters μ and β are Lamé’s constants representing the elasticity and
stiffness with high values for μ indicating strong elasticity.

A viscous fluid model constrains deformation differently allowing for inhomo-
geneous displacement changes. It is particularly appropriate if some deformation
should be varying (e.g., when a nonrigid registration should model organ displace-
ment due to surgical intervention). In the viscous fluid model current velocity v(x)

is driving the deformation

μ · ∇2v(x) + (μ + β) · ∇(∇ · v(x)
) = iforce(x). (10.21)

Current velocity at some time t has to be computed from the change of displace-
ment vectors making the computation more costly than that of the elasticity model.

Using either of the physical models has the advantage that optimization can be
done by solving the differential equation iteratively. For a given displacement field
and a given model, the force at every point x is derived from the mismatch of internal
and external forces. Their difference is a vector along which a point x is moving.
The iterative procedure is continued until equilibrium is reached.

Using free-form deformation employs a smoothness model given by a differen-
tiable free-form surface or volume that may deform under an external influence
from the image. Model smoothness is given by minimizing the second derivative
across the surface. Image influence is a similarity criterion S such as mutual infor-
mation, which is defined locally around the control points of the free-form surface
or volume. Given a smoothness constraint D, the registration problem is to find a
displacement field dmin so that

dmin = arg min
d

S
(
f (x), g

(
x + d(x)

)) + γD(x). (10.22)
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Fig. 10.22 Displacement vector computation is usually restricted to some locations such as
equally sampled node locations (a) or feature locations (b)

The parameter γ governs the influence of the smoothness constraint D(x). Min-
imizing the function is done iteratively starting from a good initial guess usually
provided by a preceding rigid registration.

Neighborhood similarity of displacement vectors (Brox et al. 2004) does not de-
pend on a physical model. Apart from this, it is similar to the previous strategy. It
minimizes an arbitrary function penalizing nonsmoothness. This can be an inter-
polating function such as in the classical optical flow formulation of Horn (1986),
where the square of the differences between adjacent displacements is minimized,
or a strictly noninterpolating function such as (4.52) presented in Sect. 4.3.4. Opti-
cal flow techniques may be supported by local heuristics such as the block matching
proposed in Ourselin et al. (2000).

In principle, displacement vectors can be computed for every point in discrete
space. To speed up the process, similarity computation may be constrained to a sub-
set of locations (see Fig. 10.22). These may either be created from a subsampling of
the data (as was done in early methods like Bajcy and Kovacic 1989) or they may
be selected at locations of interest such as edges. The transformation between sam-
ple locations is then predicted from sample point transformations and the particular
smoothness model.

Optimizing (10.22) as well as optimization from applying a physical model suf-
fers from the many local minima of the function as well as from the fact that the
smoothness term may not adequately reflect the true displacement variation in the
vicinity of some point. It is advisable to begin the registration with a rigid registra-
tion that produces an initial estimate for dmin(x), which is done by most authors.

Parameters for elasticity or viscosity in the methods described above are homo-
geneous throughout the scene. This may be adequate if displacements are small.
Additional information is needed to model inhomogeneous displacement if larger
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displacements between f and g are expected. This has been done for modeling dis-
placement fields in preoperative and intraoperative MR scans in computer-assisted
surgery (e.g., Lester et al. 1999; Rexilius et al. 2001; du Bois d’Aische et al. 2005)
and for registering 2D images from different modalities (du Bois d’Aische et al.
2005). Information about organ boundaries can be used to assign an inhomogeneous
material field as input for registration.

10.5 Normalization

Registration as described in the previous sections refers to the comparison of infor-
mation of the same subject obtained from different modalities or taken at different
times. Smoothness and similarity constraints imposed on the registration transfor-
mation are justified since topology can be assumed to be preserved. This is no longer
true if images of different subjects are to be matched. The two main reasons neces-
sitating intersubject matching are as follows.
• Images are taken from a group of subjects, and statistical analysis shall be carried

out on variation of appearance in the images of some medically relevant feature.
• A scene f shall be mapped onto an atlas g containing model information for

interpreting f .
The term normalization stems from the former. To carry out spatially re-

solved statistical analysis across patients, the anatomy is mapped onto some “norm
anatomy,” which provides a reference system. Atlas mapping can be seen as a nor-
malization task as well with the difference that the norm is already given (the at-
las) and mapping has to be found by which a scene can be mapped onto the norm
anatomy.

The reasonable assumptions in registration that corresponding points exist in the
two scenes, that correspondence is unique and complete, and that topology is pre-
served do not apply to normalization. It may even be difficult to establish what is
meant by correspondence. The purpose of normalization in intersubject studies is
to study functional behavior in itself and with respect to anatomy. Hence, the same
function should be performed at corresponding locations in f and g. In functional
brain imaging, however, which is one of the major applications of normalization,
it is known that anatomy is quite different for different individuals. Defining cor-
responding locations by means of the morphology and appearance of anatomy is
not necessarily successful. Even if there would be common architecture of anatomy
in all humans, its appearance is related to the cell level which cannot be depicted
by most imaging devices. Regarding the functional architecture of the brain, it has
been found that correspondences at the cell level do not necessarily infer shape cor-
respondence on the level of sulci and gyrii (Roland et al. 1997).

The normalization of human brain anatomy based on similarity of appearance
usually neglects this knowledge, assuming that function and morphology coin-
cide at a coarse level of spatial resolution. Under this assumption, normalization
is a transformation into Talairach coordinates. The coordinate system (depicted
in Fig. 10.23)—also called stereotaxic coordinate system—was established by Ta-
lairach and Tournoux (1988) for a normalized localization of functional Brodman
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Fig. 10.23 The Talairach coordinate system is defined by the ac-pc line and the mid-sagittal plane
that separates the two brain hemispheres (the picture on the left uses a version of plate 720 of Gray’s
Anatomy as published in Wikimedia under Creative Commons licence)

areas. The origin of the Talairach coordinate system is the anterior point of the brain
commissura (AC point). The y-axis of the system points to the posterior point of the
commissura, its x-axis from left to right, and its z-axis from the ventral to dorsal
(up-down) direction. The transformation into stereotaxic coordinates can be carried
out by an affine transformation for which identification of origin, axes, and length
of axes are sufficient.

The Talairach transformation is only accurate at a low spatial resolution. Human
brain mapping of Brodman areas using Talairach coordinates has been used for the
localization of functional areas in the brain as part of stereotactic surgery planning
as well as for acquiring statistical information about human brain function from PET
images.

The method has been used for normalizing functional MRI images as well, how-
ever, with increased spatial resolution it is no longer deemed adequate as sole means
of normalization. To improve the accuracy of normalization, three different strate-
gies are followed.
• Probabilistic Talairach coordinates comprise the correspondence uncertainty of

the affine Talairach transformation (Mazziotta et al. 1995).
• The application of nonrigid registration methods increases the range of acceptable

transformations.
• ROI-based registration reduces the normalization to a region-of-interest.

The use of probabilistic coordinates acknowledges the uncertainty in the Ta-
lairach transformation, but it does not offer a solution. It will improve statistical
analysis, however, if the statistical base for estimated probabilities is less biased or
more reliable than data from experiments on a possibly small number of subjects.

Using nonrigid registration methods based on a smoothness model about the dis-
placement field would truly solve the normalization problem. This is the method of
choice when normalization is used for atlas-based classification and segmentation.
The atlas provides a spatial label distribution, which is then mapped on the patient
data (it is a kind of backward normalization).
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Fig. 10.24 Partial normalization of Heschl’s gyrus based on non-rigid registration with a de-
formable model (see Engel et al. 2005)

However, nonrigid registration requires that a correspondence criterion is estab-
lished and that the smoothness constraint on the displacement field reflects the
true displacement characteristics. Both conditions are difficult to assert for nor-
malization. Describing correspondence and smoothness in atlas matching is prob-
ably easier than for functional brain mapping, as the atlas consists of a rela-
tively uniform distribution of labels. It may not matter to what location a cer-
tain boundary point in the atlas is mapped in the image as long as it is mapped
on the boundary of the same object. The goal is not to map equally function-
ing cells onto each other, but only to assign correct labels and delineate cor-
rect boundaries. Any of the criterions based on intensities discussed in the previ-
ous sections should be sufficient, provided that the general conditions such as a
good first guess are met. Hence, image analysis based on matched atlas data ap-
plied nonrigid registration techniques quite successfully (Sandor and Leahy 1997;
Cootes et al. 1999).

Using nonrigid registration for normalizing functional brain images has been at-
tempted as well and is known as brain warping (Toga 1999). The accuracy of ap-
plying a criterion that is based on image intensity and smoothness to normalize
brain structures is, however, limited. The findings of Roland et al. (1997) and oth-
ers suggested that model-based constraints are required since cytoarchitecture is not
adequately reflected in the images. Such a model would be difficult to create in view
of the still limited knowledge about the functional architecture of the brain. Hence,
the third strategy is to restrict normalization to a region of interest for which such a
model might be easier to establish and use. ROI-based normalization is often carried
out on surface maps of the boundary between gray matter and white matter because
surfaces may be displayed for letting the user enter the model knowledge interac-
tively. The methods for the automatic finding of functional regions of interest have
been published as well (Engel et al. 2005; see Fig. 10.24). The advantage of select-
ing a region of interest is that expert knowledge about a single region is often more
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readily available—often with the very same people carrying out the investigation—
than generalizable knowledge about the functional architecture of the whole brain.

10.6 Concluding Remarks

Registration generates synergy from fusing two or more 2D or 3D images of the
same subject that show different attributes. It computes a mapping transformation
for making image fusion possible. The amount of information gained from the fused
images increases with decreasing redundancy between them. Redundant informa-
tion is necessary, however, for computing the registration transformation.

Missing correspondence information may be replaced by domain knowledge, but
care should be exercised to make sure that domain knowledge does not pre-dominate
the registration result. Often, domain knowledge enforces a similar appearance be-
tween registered images. Hence, the result may look visually pleasing, but does not
reflect the true spatial relation between locations in the two registered scenes.

The reliance of a good registration on sufficient and trustworthy redundant infor-
mation between the two scenes to be registered has resulted in several attempts to
combine segmentation with registration. If the same segment has been identified in
the fixed and the moving image, it provides ample redundancy for registration. On
the other hand, combining registered images may improve the information neces-
sary to carry out the segmentation. For optimizing registration transformation and
segmentation simultaneously, a probability is maximized to create a specific seg-
mentation result given a transformation.

The problem is formulated as an MRF to represent domain knowledge about
the expected spatial continuity for each image and between registered locations.
Examples can be found in Flach et al. (2002), who described their approach from
an application perspective, and in Wyatt and Noble (2003) and Pohl et al. (2006),
who developed generic models that are then demonstrated by means of specific
applications. The last two papers discussed the performance of the strategy and the
validity of incorporated a priori knowledge as well as the potential dependencies
between a priori knowledge, optimization performance, and quality of the results.

10.7 Exercises

• Consider registering CT and MR images of the head from the same patient. What
kind of registration transformation would be necessary? What similarity criterion
could be used and what could be used to evaluate it on the data?

• How can similarity between curves be measured if the curves are used for mea-
suring the correspondence of the two scenes to be registered?

• Why is it unwise to assume that landmarks are in perfect correspondence after
successful registration? Please give a similarity criterion that allows relaxing this
condition.

• What is meant by the Procrustes distance and how is it computed?
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• What are the advantages of using anatomical landmarks instead of geometrical
landmarks? What are the disadvantages?

• Why should a rigid registration transform not be computed by taking the mini-
mum number of corresponding points and solving the associated linear equation
system?

• What is the advantage of using quaternions for computing a rigid registration
transformation? What is a disadvantage?

• How can point correspondence be created from two sets of landmarks of which
pairwise correspondence is not known? What are the assumptions that have to be
met so that this approach is successful?

• How can a rigid registration be computed from two sets of landmarks without
requiring their pairwise correspondence? When and why does this method fail?

• Describe a method to detect outliers for landmark-based registration.
• What feature describes the mutual information criterion? How does it differ from

the stochastic sign change criterion?
• What kind of constraints can be used for making nonrigid registration solveable?

What assumption is made about the data by these constraints? Describe a situation
where this assumption is not true.

• How can the iterative nonrigid registration be initialized with a good guess?
• What is the result of a registration of a projection image (such as an x ray) with a

3D scene?
• Usually, registering a projection image with a 3D scene requires a good initial

guess. What could be the reasons for this?
• What is the goal of normalization? How does it differ from registration?
• Which problem may arise if a nonrigid registration technique is applied for a

normalization task? How could this problem be dealt with?
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11Detection and Segmentation by Shape
and Appearance

Abstract
Object detection in medical image analysis can be modeled as a search for an
object model in the image. The model describes attributes such as shape and the
appearance of the object. The search consists of fitting instances of the model to
the data. A quality-of-fit measure determines whether one or several objects have
been found.
Generating the model for a structure of interest can be difficult. It has to in-
clude knowledge about the acceptable variation of attributes within an object
class while remaining suitably discriminative.
Several techniques to generate and use object models will be presented in this
chapter. Information about acceptable object variation in these models is either
generated from training or it is part of the model prototype.

Concepts, notions and definitions introduced in this chapter

› Representation of shape and appearance
› Template matching and Hough transform
› Quadrics and superellipsoids
› Medial axis representation
› Active shape and active appearance models
› Mass spring models
› Finite element models

Instances of an object may be searched explicitly if a model of the object’s outline or
appearance exists. The search may be carried out automatically. Found instances are
reported together with a quality of fit between model representation and data. User
interaction may be allowed or required for model creation as well as for the correc-
tion of search results. Ideally, a model is defined such that interaction supporting the
search can be incorporated into the model.

K.D. Toennies, Guide to Medical Image Analysis,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-2751-2_11, © Springer-Verlag London Limited 2012
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Fig. 11.1 A shape pattern as model can be used to search for possible occurrences of this pattern
in an image by placing an instance of this pattern at arbitrary positions in the image an comparing
the correlation of the pattern with the local appearance at this location

The power of a model to describe variants of a class of objects increases with
the number of degrees of freedom that exist for describing shape or appearance. Pa-
rameters need to be specified, however, before the model can be used for searching
object instances. For simplicity, we will call all these models shape models. It should
be understood that shape comprises the outline of a figure as well as the expected
appearance of the region that is enclosed by the outline.

A model in the engineering sciences abstracts or approximates a real-world en-
tity. Its purpose is to describe or simulate this entity in a more accessible fashion. In
image processing and computer vision the use of the term model is similar, although
its purpose is slightly different. It is used for searching, detecting, or identifying ob-
jects depicted in an image. Models in computer vision share some similarities with
the geometric models used in computed geometry and computer-aided design. In
computer-aided geometry, a model is a system of rules and entities to describe rigid
or nonrigid objects. A representation is a specific way to describe such a model.
An instance of a model representation (or short: model instance) is a parameter-
ized representation. We will use the term shape model to describe a model and its
representation and model instance to describe a specific instance.

A shape model is a powerful constraint for foreground segmentation as well. Fit-
ting model instances to the data singles out locations where a foreground object
of known outline and appearance may be found (see Fig. 11.1). The accuracy with
which this happens depends on the kind of model. Simple models only report a
potential site of an object instance and make a rough approximation of its actual
shape. A postprocessing step is needed for segmentation that uses this as a spatial
constraint for a local boundary search. More advanced models include shape varia-
tion and may deliver a fairly accurate description of the true object boundary. Using
such a model is sometimes the only automatic way to achieve a segmentation since
noise or missing or false boundaries in the data can make it impossible to generate
a data-driven delineation of object boundaries.
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11.1 Shape Models

Using shape models has a long history in image analysis. They help to search in-
stances of a class of objects described by shape, and they support the classification of
segments based on outline and appearance attributes. Surveys on deformable shape
models in image analysis are found in Terzopoulos and Fleischer (1988) and Cheung
et al. (2002).

The two different goals do not necessarily lead to the same kind of model.
• If object instances are searched, regions containing the shape need to be separated

from those that do not. The number of different object instances is unknown. The
data need to be expressed in terms of the model. A quality-of-fit measure (QoF)
rates the correspondence between model instance and data. It guides the search
and decides on acceptable deviations in the data from predictions by the model.
Stopping criteria are required to decide whether a search has been successful
(shape detection) and to decide to which extent the model instance is similar to
the instance in the image (shape deviation). The two criteria may be different.

• If an object shall be classified by means of its shape, a descriptor of a detected
object instance is generated. The perceived similarity within classes should map
to the represented similarity in the descriptor. The model and instances of its
representation do not need to describe the exact shape or appearance of the object
as long as the representation suffices for differentiation between shape classes.
Some models and representations such as the active shape model (ASM) (Cootes

and Taylor 1992) may be applicable for both of the two purposes. However, most
models may be categorized into one of the two classes listed above.

Within this chapter, we will focus on the first kind and its use for segmentation
and object detection. Object recognition that can also be carried out using a shape
model will be discussed only briefly. Object recognition techniques in general are
surveyed in Edelman (1997). The review in Riesenhuber and Poggio (2000) contains
a brief description of the underlying theories for model-based object recognition.

There is potential for confusion in the use of the terms segmentation and registra-
tion when discussing the use of shape models. Using a shape model in segmentation
requires the model instance to be registered with an object instance in the image.
The registered model instance segments the scene because it provides an estimate
of the object’s boundary. Hence, registration is the method to find an object instance
in the scene resulting in a foreground segmentation if the detection has been suc-
cessful. Shape models used for the search and delineation of object boundaries will
be discussed in this chapter under the term segmentation.

For successful shape matching, attributes of an object instance in an image should
be characteristic to make it different from other regions in the image. The shape rep-
resentation needs to describe these characteristics and permissible ranges of varia-
tion. Shape representations do this in different ways.
• A constant shape representation (such as the one in Fig. 11.1) describes the ex-

pected appearance of an object instance. The locations of object instances are
found by correlating the representation with the image. Object variation is cap-
tured by the correlation measure. The criteria for shape detection and shape devia-
tion are not separable since both have an impact on the correlation. Segmentation
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Fig. 11.2 A variable shape
representation includes
(constrained) variation of the
object shape

requires postprocessing since the representation has usually too few parameters
for exactly representing the object’s outline. Models of this kind are presented in
Sect. 11.2.

• A deformable representation includes some or all of the object-specific varia-
tion (see Fig. 11.2). Representations of such models can differentiate between
the foreground and background with potentially arbitrary accuracy. Deformable
models and representations may be differentiated by the way variation is repre-
sented.
– Implicit models describe objects as functions of the domain in which the im-

age is defined. Variation is implicitly given by the variation of the function
parameters. It enables an arbitrarily exact adaptation of the function to the ob-
ject’s shape and appearance, given that the parameter set of the function is rich
enough. Implicit models will be described in Sect. 11.3.

– Explicit models describe objects by a finite number of object details. Variation
is defined explicitly on these details and is directly related to variation in the
object’s appearance. It may be difficult to find a finite number of attributes that
capture object appearance and its variation sufficiently well. Various kinds of
explicit models will be described in Sects. 11.4 through 11.6.

From a Bayesian point of view, shape representations are estimates of the a priori
term in the Bayesian equation. The estimate is particularly simple for a constant
representation. The a priori probability of an object instance is 1 for objects that
have a similar appearance and boundary than the model instance. The threshold for
similarity is user-specified. Otherwise the probability is 0.

A better approximation of the a priori term is achieved by a deformable shape
representation. Shape deformation incurs a cost that should be closely related to
the usually unknown probabilities. Several strategies exist for establishing the link
between the cost of variation and a priori probability. For the ASMs described in
Sect. 11.5 this is straightforward because probability distributions are learned from
samples. Proper training of the distribution, however, may require too many sam-
ples. Separating shape variation in a predefined high-level part and a trainable low-
level part is a strategy for keeping probability distributions simple. An example for
this is the medial axis representation (Sect. 11.4) where only local variation needs
to be trained from the samples. Variation may also be derived from the composition
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Fig. 11.3 Geon theory states
that the semantics of a
depicted structure mainly
stems from the decomposition
of it into its constituent parts

Fig. 11.4 Application of a shape decomposition strategy: providing a simplified structure of ex-
pected image content will enable identification of structures based on their configuration. The
model does not have to be accurate as long as the spatial relationship between shape components
is correct

of a shape model from simple subunits without further training. This is the case for
physically based shape models such as a finite element model (FEM, Sect. 11.6).

All strategies for acquiring a priori knowledge need to deal with the problem that
sufficient reliable information is seldom present. Again, there are a number of ways
to deal with this.
• Shape decomposition: This strategy relates to the Geon theory (Biederman 1985;

Rivlin et al. 1995) (see Fig. 11.3) and the fact that objects are often recognized
based on context (Toussaint 1978). In short, the theory states that objects are rec-
ognized by their composition rather than by the deformation of the constituting
components. In consequence, a proper, user-defined decomposition of a shape
into subunits provides a representation with few parameters that are easy to esti-
mate (see Fig. 11.4 for an example).

• Scale space: This relates to a theory that different levels of importance for ob-
ject features are assumed to be represented at different levels of spatial resolution
(e.g., Mokhtarian and Mackworth 1986; Jackway and Deriche 1996 for an appli-
cation for shape detection and Lindeberg 1994 for an introduction and review).
The shape representation is scaled and applied to an image that is scaled accord-
ingly. Examples for scale space operators are the Gaussian pyramid (see Fig. 11.5)
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Fig. 11.5 Three stages of a multi-scale representation (up-sampled to the original size). Represen-
tation of semantics will be different at different scales. In this example, the fact that the ventricles
consist of a left and a right ventricle is representable only at scales depicted in (a) and (b) while
the fact that the ventricles are in the center of the brain is representable at the lowest scale depicted
in (c)

or the wavelet transform. The segmentation at a given resolution may be used as
domain knowledge for a subsequent segmentation at a higher resolution.

• Shape hierarchy: The strategy is also rooted in the Geon theory. It is similar to
shape decomposition and may be combined with it. The underlying assumption
is the idea of a semantic scale space (i.e., that shape components can be ordered
in a way that the most important shape attributes are described at the highest
level). Less important detail may be neglected for segmentation. Defining se-
mantic scales requires user intervention since specifying importance is highly
application-dependent and requires high-level knowledge.
Some or all of these strategies have been employed by most of the representations

being described in the following sections.

11.2 Simple Models

If shape can be described by few parameters with values in a finite range, finding
an object instance can be done by sampling the parameter space and evaluating a
quality-of-fit measure. Two often-used models are rigid templates and the Hough
transform.

11.2.1 Template matching

A rigid template t (x) is defined on a domain 0 ≤ x ≤ xmax. Values of t describe
the outline and appearance of an object in an image f (x) by assuming that a QoF
measure dQoF(f (x), t (x + �x)) exists that is minimal if an object instance can be
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Fig. 11.6 Template matching with two different circular templates: the smaller template generates
strong responses for the small objects in the image while the larger template generates the strongest
response for the large object on the lower left in the original image although its shape is not circular

found at position �x in f . Often-used quality-of-fit measures are the mean square
distance

dMSD (f, t,�x) =
√ ∑

{x|0≤x≤xmax }

(
f (x + �x) − t (x)

)2 (11.1)

or the correlation coefficient

dcorr(f, t,�x) = 1 − σf,t

σ 2
f σ 2

t

= 1 −
∑

{x|0≤x≤xmax}(f (x + �x) − f̄ )(t (x) − t̄ )∑
{x|0≤x≤xmax}(f (x + �x) − f̄ )2

∑
{x|0≤x≤xmax}(t (x) − t̄ )2

,

(11.2)

where f̄ is the expected value of f in the region overlapped by the template and t̄

is the expected value of the template (see Fig. 11.6 for an example).
The QoF function in (11.1) requires the intensities of f and t to be equal if the

template overlaps an object instance. The QoF function in (11.2) only requires the
template intensities to be linearly correlated to the intensities of an object instance
in f . If covariance dcov is used instead of correlation, template matching can be
computed quickly in the frequency domain

dcov (f, t,�x) = FT−1(FT (f ) · (FT (t)
)∗)

(�x) , (11.3)

where FT and FT−1 are the Fourier transform and its inverse and FT(t)∗ is the
conjugate complex of FT(t). The method requires t to be defined over the domain
of f . Since the template domain is usually much smaller, unknown values for t

outside its original domain are filled with zeros and the template is created such that
its expected value is t̄ = 0. The difference between the zeros in the template and the
true intensities in f degrade the matching result.
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Fig. 11.7 The Hough transform for circles votes for circles of a given size

Template matching assumes that exact outline, appearance, orientation, and scale
of an object are known. Small variations may be tolerated as long as the response
of the QoF function in the background regions is still different from that of a true
match. Defining the threshold can be difficult.

Variation of an object’s orientation and scale quickly degrades the QoF measure.
In this case, a bank of templates at different scales and orientations needs to be
applied to the scene. The result of the matching is the optimum response from all
these templates.

Template matching may be accelerated by introducing a multiscale strategy. Tem-
plates are applied first at a coarser resolution. The acceptance of potential object
sites is generous at this stage and serves to restrict the search space at finer resolu-
tions.

11.2.2 Hough Transform

The Hough transform already introduced in Sect. 5.2 can be extended to arbitrarily
parameterizable boundaries without changing the principles of the method. A partic-
ularly simple variant is the search for circular objects (Davies 1998). The parametric
equation is

r (c1, c2) = (x1 − xc1)
2 + (x2 − xc2)

2 . (11.4)

The 3D parameter space (c1, c2, r) requires every edge point to vote for all cen-
ters and radii of circles containing this edge point as a boundary point. If the radius
is known, the problem becomes 2D with every edge point voting for potential circle
centers (see Fig. 11.7).

With increasing dimension of parameter space the average number of votes per
accumulator cell may become so small that the voting result is no longer reliable. If
too many parameters are required to describe a shape or if no parametric description
of the shape exists, the parametric Hough transform can be replaced by the general-
ized Hough transform (GHT), which uses lookup tables to represent shape instead
of an analytic equation. A review of the different ways to compute the GHT can be
found in Kassim et al. (1999).
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Fig. 11.8 Tabulation of
(r,α) values with respect to
φ: If the shape is concave,
there may be several entries
for the same value of φ

For the GHT, an arbitrary reference point xr = (xr,1 xr,2) is chosen that represents
a 2D shape described by boundary points X = {x1,x2, . . . ,xN) with coordinates
xi = (xi,1 xi,2). The spatial relation of each boundary point to the reference point is
given by

xr,1 = xi,1 + ri sinαi, xr,2 = xi,2 + ri cosαi, (11.5)

where αi is the angle of a line from xi to xr with the x1-axis (see Fig. 11.8). A bound-
ary point is characterized by its orientation as given by the angle φ of the tangent at
xi with the x1-axis. Pairs (r, α) are now tabulated with respect to φ.

For carrying out the Hough transform in an edge image, first the angle φ of the
gradient with the x2 axis is computed. This angle corresponds to the angle between
the edge tangent and x1 axis. Then, (r, α)-values corresponding to this angle are
taken from the r-table and are used to compute the potential locations of reference
points. The edge point votes for all these locations. There will be more than one
entry in the r-table for a given angle φ if the shape of the model is concave.

The GHT, as described above, is actually a special case of the GHT since the
orientation and scale of the shape need to be known. If the rotation around some
angle θ and scaling are unknown, the dimension of the Hough space is increased by
these two variables. A vote for an edge at location (xi,1xi,2) is given for the cells
H(xr,1, xr,2, θ, s), fulfilling

xr,1 = xi,1 + s · ri(xi,1 cos θ + xi,2 sin θ),

xr,2 = xi,2 + s · ri(−xi,1 sin θ + xi,2 cos θ).
(11.6)

The angle α of the orientation of the edge gradient is no longer needed because
the rotation between the model and object instance in the image is unknown.

11.3 Implicit Models

An implicit model is a function m(x) = 0 of image space describing the outline
of object instances that it may contain. Implicit models are commonly restricted
to boundary descriptions, although appearance models are possible as well. Simple
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implicit models contain only a few parameters restricting the range of representable
objects in a similar way as the models described in the previous sections. An exam-
ple for a simple implicit model describing object boundaries in 3D is the quadric
Q(x)

Q(x) = xT Qx = 0 with Q =

⎛
⎜⎜⎝

a e f g

e b h j

f h c k

g j k d

⎞
⎟⎟⎠ , (11.7)

where x = (x1 x2 x3 1) is represented in homogeneous coordinates and Q is the
parameter matrix of the quadratic equation

ax2
1 + bx2

2 + cx2
3 + 2ex1x2 + 2f x1x3 + 2hx2x3 + 2gx1 + 2jx2 + 2kx3 + d2 = 0.

(11.8)

A quadric may describe a large number of regular boundaries, which are all sym-
metric with respect to the origin of the coordinate system. Used as a shape model,
parameter ranges describe the expected object shapes.

Fitting requires a QoF measure that connects the model with the data. Since the
model describes boundaries, the QoF measures the probability of locations x of
being boundary points for which Q(x) = 0 holds. This can be done by computing
the average gradient strength in an image weighted by the inverse distance to the
boundary Q(x) = 0:

QOF (Qi) =
∑

x∈D(x)

∇f (x)

|Qi (x)|n + 1
, (11.9)

where D(x) is the domain of x and n controls how the quality decreases with in-
creasing distance to the expected boundary. Optimization may be carried out by
gradient ascent in parameter space that includes transformation parameters and the
shape parameters of the quadric.

A different implicit representation are the superellipsoids presented by Barr
(1992), which are defined by

(|x1| 2
e + |x2| 2

e
) e

k + |x3| 2
k = 1. (11.10)

For e = k = 1, (11.10) describes a sphere that is inscribed in a cube with sides
parallel to the axes of the coordinate system. Increasing the value of parameters e

and k creates soft edges parallel to these axes (Fig. 11.9 shows several variants that
can be created by varying e and k). The curvature of edges increases with n (k → ∞
lets the boundaries approach the enclosing cube). The ratio e/k determines the ratio
of curvatures parallel to and orthogonal to the x3-axis. Using the superellipsoid
equation, scaling along the three axes has to be determined from optimizing the
QoF measure.



11.4 The Medial Axis Representation 343

Fig. 11.9 Various shapes can
be generated by varying the
two parameters of the super
ellipsoid equation

Implicit shape representations as simple as the ones described above are not
suited for describing the rather intricate shapes of many anatomic objects. Hence,
the representation is either combined with an explicit shape model, which uses the
fitted implicit model for initialization, or it is replaced by a model offering more
degrees of freedom for shape variation.

Complex shapes can be constructed by combining superellipsoids (Chevalier et
al. 2001), but this is probably more appropriate if artificial objects shall be rep-
resented. For biological structures, the implicit model can be combined with an
explicit model by adding free-form deformations of an adapted superellipsoid (Ter-
zopoulos and Metaxas 1991; Bardinet et al. 2003; Gong et al. 2004). First, a su-
perellipsoid is fitted to the data. The resulting shape is then enclosed by a box that
is aligned with the axes of the fitted superellipsoid. Control points pi,j,k for a spline
representation of the ellipsoidal surface are defined on the box surface

f (u, v,w) =
∑
i,j,k

pi,j,kBi (u)Bj (v)Bk (w) , (11.11)

where points f(u, v,w) are surface locations on the superellipsoid. The location and
number of control points may be changed in a subsequent optimization process that
adapts the model instance to potential surface locations in the image.

11.4 The Medial Axis Representation

Using the medial axis of an object for shape representation is motivated by inves-
tigations about carriers of semantics in shape (Blum 1967). The notion of a shape
descriptor consisting of a supporting curve-like structure in the center of a shape that
may possibly contain branches was among others adopted from research results in
human vision by D. Marr (1983). He claimed that humans recognize the nature and
shape of a 3D figure from supporting center curves, their branches, and a hypothe-
sis about circles with varying radius perpendicular to the center curves. Circle radii
are derived from the apparent radii of the visible silhouette of the figure. Hence, a
suitable representation of shape that efficiently separates important shape features
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Fig. 11.10 The medial axis
is the set of points that are
centers of maximal circles
inscribed in the figure

Fig. 11.11 Computation of the medial axis from a binary image. Pruning attempts to remove
small branches from the axis but may also remove much of the central axis

from negligible features, noise, and artefacts should be a representation by a graph
of curves with varying radii (called generalized cylinders, see Binford 1987).

11.4.1 Computation of the Medial Axis Transform

The medial axis transform presented by Blum (1967) creates such a curve from a
given shape. It provides the means to analyze given shapes and to synthesize new
shapes. The medial axis is computed from local data information, yet resulting in
a high-level representation of relevant shape detail. This is, of course, only true in
cases where the desired high-level shape description is buried in the outline of the
object in question. A major part of the research regarding medial axis-based repre-
sentations has been devoted to establishing such a relationship between an object
outline and a meaningful medial axis (see, e.g., Giblin and Kimia 2004).

The medial axis consists of a set of points that are centers of maximal hyper-
spheres (circles for 2D shapes, spheres for 3D shapes) filling a bounded object (see
Fig. 11.10). A hypersphere is maximal if it is fully contained in the object and if
no hypersphere with the same center exists that has a larger radius and is still fully
contained in the object. The point set forms connected curves if objects are defined
in continuous space. For discrete space objects, several approximations of the me-
dial axis transform exist that use various definitions of connectivity between pixels
or voxels and various distance metrics.

The computation of the medial axis is done by a thinning algorithm (see
Fig. 11.11; for a discussion of thinning algorithms see Lam et al. 1992). These algo-
rithms initially treat the complete figure as the medial axis. Scene elements (pixels
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or voxels) are then iteratively removed until no element can be removed without
violating the connectivity constraint. A simple thinning algorithm is the iterative
application of a series of hit-or-miss operators.

A hit-or-miss operator (HOM operator) finds the known figures in an image by
combining morphological erosion on a binary image with one on the inverse image.
The two erosion operators model the shape of the figure and its background. The
HOM operator combines the result of these two operations by a Boolean “and”
and returns locations where the figure on the expected background are found in the
scene.

Thinning by the hit-or-miss operator is carried out by searching boundary ele-
ments in the scene that can be removed without disconnecting the remaining figure.
Boundary elements can be grouped by their angle with respect to the image co-
ordinate system. Eight different types (0◦,45◦,90◦, . . . ,315◦) exist. The two HOM
operators for 0◦ and 45◦ boundary elements in the usual notation for such operators1

are
⎛
⎝ 0 0 0

X 1 X
1 1 1

⎞
⎠ and

⎛
⎝ 0 0 X

0 1 1
X 1 1

⎞
⎠ .

The remaining HOM operators are generated by rotating these two operators by
multiples of 90◦.

Thinning is carried out by applying all eight operators to the binary image, mark-
ing elements found by the HOM operator and removing them. The process ends
when no further elements can be removed. The remaining elements are the medial
axis (sometimes also called the skeleton) of the figure. A distance transform is ap-
plied to the original image. Distances at medial axis elements are the radii of the
maximal hyperspheres centered at those elements.

11.4.2 Shape Representation by Medial Axes

The medial axis does not always describe the shape appropriately for object detec-
tion. The main problem stems from the fact that every intrusion or protrusion of the
boundary spawns a new branch of the medial axis system. Although some of these
branches may be important shape attributes, others represent detail pertaining to a
specific object instance, but not to the object class in general.

There are several ways to deal with this. The application of the multiscale theory
is one of these ways (Pizer et al. 1987). Medial axes are created in scale space
(e.g., computed on images of a Gaussian pyramid). If scale space correlates with

1The notation is the usual shorthand notation for HOM operators combining the two structuring
elements in a single operator. The ‘0’s represent the erosion structuring element that is applied to
the inverted binary image and the ‘1’ represent the erosion structuring element that is applied to
the original binary image.
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the importance of the figure detail, the scale space representation can be used for
shape analysis. If figure details, which are relevant for the intended application,
manifest themselves at a known scale, the medial axis at this scale will be chosen
for representation. The strategy often helps to separate noise effects from true shape
details.

The hierarchy induced by scale space does not always coincide with a semantic
hierarchy. Spatial scale for some detail of an object may vary within an object. If,
for instance, the palm and fingers of the hand are assumed to be at the same level
of a semantic hierarchy, a higher spatial resolution may be required to represent the
fingers than the hand. In such a case, it is more appropriate to define a semantic scale
space by imposing hierarchy levels by the user, as has been suggested recently for
using a medial axis representation (called m-rep) in segmentation and registration
(Pizer et al. 1999; Joshi et al. 2002). The authors suggested that a hierarchy of
representations is to be created that consists of four different levels.
1. Object level: Primitives at this level are subfigures. Each subfigure has its own

medial axis representation. It may interact with other subfigures by changing the
relative position, orientation, or scale with respect to each other. Subfigures are
ordered hierarchically and represented as an acyclic, directed graph. Relations
may be differentiated into those between subfigures at the same level (typically
different details of a shape or group of shapes) and those between a (sub)figure
and its descendent child figures (typically the relationship between two subse-
quent levels in the scale space defined by the subfigure hierarchy).

2. Figural level: Primitives at this level are medial axis representations describing
the specific shape of a subfigure.

3. Medial axis primitive level: Interactions between elements of the medial axis are
represented at this level. The medial axis representation consists of a sequence
of nodes representing a sampling of the medial axis. Nodes are attributed with
their positional relation to neighboring axis nodes, and with the orientation and
distance to their two closest boundary points of the subfigure that they represent.

4. Boundary primitive level: The medial axis primitives are meant to represent the
shape variation of a class of shapes. The position of boundary points of an actual
object instance may differ from this because of influences from data acquisition
or within-class shape variation.
If the m-rep is applied to segmentation, it provides domain knowledge. Devi-

ation of a model instance m from the expected shape is permitted, but incurs a
penalty C(m). The penalty term is assumed to be related to the a priori likelihood
of the model to take this particular shape. The authors of the m-rep present a geo-
metric term for estimating C, but claim that replacing this by a trained probability
distribution is possible.

C(m) is combined with a cost term C(x,m) related to the likelihood of obtain-
ing an image x given the model instance m. In Joshi et al. (2002), this is again a
geometric term based on the distance between the expected and data appearances.
If nodes are boundary nodes this is related to the gradient length in the image.
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Fig. 11.12 Principle of an active shape model: a shape and acceptable variation taken from a
sufficiently large training data set is used to find instances of the object in an image

Segmentation using an m-rep is carried out by placing the model in the image
and letting it deform to maximize C(m) + C(x,m). It produces a MAP estimate of
an optimal segmentation if C(m) and C(x,m) are assumed to be the logarithms of
the a priori probability P(m) and the likelihood function P(x|m), respectively.

11.5 Active Shape and Active Appearance Models

The active shape model (ASM) represents the shape of an object by an expected
shape and permissible variations (see Fig. 11.12). It was presented by Cootes and
Taylor (1992) and Cootes et al. (1995) and has found numerous applications since
then. It is a point distribution model (PDM) representing the attributes of boundary
points. The distribution is estimated from feature vectors of sample instances. The
concept is simple and very attractive. Variation is directly related to the Bayesian
formulation of image segmentation. Observed variation from a training phase is
used to predict variation for unknown objects.

An active shape model describes a K-dimensional shape that is represented by
L boundary points in a shape feature vector s = (s0, s1, . . . , sN ) = (x1,1x1,2, . . . ,

x1,Lx2,1x2,2, . . . , x2,L, . . . , xK,1, . . . , xK,L), where xk,l is the kth component of the
lth boundary point xl . Elements of the shape vector are treated as random variables.
The density function for each random variable is assumed to be Gaussian with un-
known mean and variance.

The concept can be easily applied to any dimension K . However, increasing
the dimension of the shape vector will require more samples in feature space to
compute a reliable estimate of the distribution. The dimension of feature space is
large, even for 2D objects. An outline in 2D that is represented by 50 boundary
points spans a 100-dimensional feature space. If the features were truly independent,
it would require a very large number of samples for computing reliable estimates
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for the mean and variance of the Gaussians than is usually available.2 Fortunately,
it can be safely assumed that point locations are highly correlated. Samples will
occupy a much lower-dimensional subspace. Decorrelating the data using principal
component analysis will result in a small number of uncorrelated components of
which parameters can be estimated independently of each other.

11.5.1 Creating an ASM

The probability density function of the ASM is meant to reflect deformation within
an object class. The position or orientation of an object instance in some external
reference system such as a world coordinate system shall not be represented. This
would only make sense if this reference system is somehow object-specific (such
as a patient coordinate system). Training from samples hence requires the proper
alignment of training shapes.

Computing the density functions of an active shape model from training samples
consists of several steps.
• In landmark selection, a number of points on the object boundary are to be identi-

fied in all samples. Cootes and Taylor (1995) suggested a hierarchy of landmarks.
– Primary landmarks are anatomical landmarks (see Fig. 11.13a). The semantic

equivalence between different exemplars of the training set is assured. How-
ever, it may be difficult to detect primary landmark locations based on local
image characteristics.

– Secondary landmarks are locations of extrema of some local image features
such as curvature (see Fig. 11.13b). Since they are defined on local image fea-
tures, it is possible to detect them automatically. However, semantic equiva-
lence cannot be assured. A secondary landmark may not even be present in all
data sets of the training data. Hence, the validity of the assumption needs to be
tested that a secondary landmark indicates semantically equivalent locations in
different exemplars of the training data.

– Tertiary landmarks are equally spaced landmarks that fill the gap between
uniquely identifiable primary or secondary landmarks (see Fig. 11.14). Their
purpose is to represent the curvature properties of regions without other land-
marks.

• Landmarks are aligned with respect to a common, shape-specific coordinate sys-
tem by minimizing distances between corresponding landmarks.

• The estimated covariance matrix is decorrelated by applying the PCA transform.
New, uncorrelated features s′ = �s are generated from the matrix � containing
the eigenvectors of the covariance matrix.

2A rule of thumb borrowed from statistical pattern recognition for estimating likelihood functions
from samples predict for a 100-dimensional feature space that at least 2100 samples would be
needed.
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Fig. 11.13 Primary landmarks are named anatomical locations, while secondary landmarks are
geometrically identifiable locations such ridge intersections

Fig. 11.14 Tertiary landmarks are used to represent curvature of the shape boundary. Sampling
may depend on local curvature (left) or it may be an even sampling (right)

• The feature space is reduced by removing the axes for which the corresponding
eigenvalues indicate the insignificant feature variance. The selection of significant
modes of variation is commonly done by thresholding the accumulated variance.
Modes are kept as long as the sum of variances is below some percentage of the
total variance in the training data.
Several aspects should be kept in mind when creating the probabilistic shape

model. They can influence the performance since landmark selection assumes that a
set of semantically equivalent locations can be identified on each shape. Apart from
the fact that it is difficult to define what is meant by semantic equivalence, it is often
impossible to find a sufficient number of them. Interactive landmark selection re-
quires human interaction, which is seldom feasible in a medical environment. Con-
sequently, landmark detection is based on local attributes such as curvature (Brett
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Fig. 11.15 Alignment based on invalid assumptions about the object-specific intrinsic coordinate
system may lead to wrongly estimated shape variation

and Taylor 1999) or by introducing high-level knowledge such as registering the
shape with an atlas containing known landmarks (Frangi et al. 2001). Geometric
shape features such as the ones described in Chap. 5 could be used as well. These
attributes may not always capture the full meaning of semantic equivalence. Using
tertiary landmarks may fail to describe equivalent positions if the shape variation
between primary or secondary landmarks is large.

Alignment is not simple because neither the mean shape nor the shape specific
coordinate system is known in advance. Finding the mean shape is commonly done
iteratively. A sample s0 is selected from the training data and declared to be the
mean shape s̄. All other samples are aligned to this shape. Then, a new estimate for
the mean shape is computed. The process is repeated if the new mean deviates from
the old mean by more than some threshold value.

The transformation between the world and shape coordinate systems is assumed
to be rigid. Hence, shapes are translated with their center of gravity into the center of
gravity of the mean shape. A rotation is then searched that minimizes the Procrustes
distance ‖s − s̄‖. For taking scaling into account, Cootes et al. (1995) suggested to
normalize all shape vectors s such that ‖s‖ = 1.

The problems from alignment arise when the assumptions about the mean shape
and the transformation are not true (see Fig. 11.15). Using centers of gravity for
finding the translation vector implies that these centers of gravity are semantic land-
marks. It may not be true if object instances of a class vary widely. Accounting for
scaling, whether by normalization of the shape vector or by other means, may be in-
appropriate as well, if part of the scaling is due to object-specific variation. Hence,
often some of the variation in the model will be due to alignment errors.

The often-limited number of samples for training from which the probability
distribution is estimated may decrease the significance of the estimate. As pointed
out above, the relatively small number of samples used for training is justified by
the assumption that the actual number of uncorrelated components describing shape
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variation is much smaller than the number of elements in the shape vector. This
is certainly true, but it is unknown how many uncorrelated components (modes)
describe the shape variation. It is computed from a covariance estimate from a few
samples in the original, high-dimensional space.

The representation of the density functions by a multivariate Gaussian may
not approximate reality very well. It implicitly assumes that the local variation is
Gaussian—which may be true as it is mainly influenced by noise—and that global
shape variation can be represented as sum of spatially distributed Gaussians with
different variances. This may not be true if the variation between different object
parts has deterministic components. Employing a decomposition strategy solves this
problem at the expense of user-supplied knowledge. The shape is decomposed into
a group of subshapes that are represented as ASM. Relations between subshapes
such as relative orientation and scale are defined and modeled as a high-level ASM
(Al-Zubi and Toennies 2003).

11.5.2 Using ASMs for Segmentation

The ASM approach is useful for image segmentation because many of the problems
listed above relate to classification issues rather than to matching issues. Deforming
an ASM instance that is placed in the vicinity of some object instance so that it
takes its most probable shape will often deliver a good approximation of the true
boundary even though the a priori probability of the deformed ASM instance in the
image may not reflect the true a priori probability.

Using an ASM in segmentation requires a method to align and deform the shape
such that it fits a potential shape instance in the image. Given a truncated M × N

matrix �′ consisting of the first M eigenvectors (i.e., the first M modes of variation)
of �, boundary points of a shape are approximated by

s̃ (b) = s̄ + �′b, (11.12)

where b is a feature vector that describes deviation from the mean shape s̄. Since
modes are uncorrelated, the a priori probability to belong to a shape class can be
approximated from multiplying the underlying feature probabilities

Ps(b) ≈
M∏
i=1

1

2πσi

exp

(
− bi

σ 2
i

)
. (11.13)

Given potential boundary points in a scene (e.g., from edge detection), the objec-
tive is to find transformation parameters and values for b that maximize this proba-
bility given the data information.

The search for pose parameters is independent of the search for shape features
b since transformation parameters were excluded during generation of the ASM.
Hence, the mean shape with b = 0 is registered with the image using a rigid regis-
tration algorithm (see Chap. 10 and Fig. 11.16).
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Fig. 11.16 The first step of segmentation with an ASM is to register the shape model with the
data accounting for attributes not captured by the ASM such as position, orientation and scale of
the model instance

Fig. 11.17 Local
deformation is done after the
average shape has been
registered

The result is a pose estimate T for which a deformation vector b is computed
that minimizes logPsT(b) + logPsT(f |b) given the data (see Fig. 11.17). The
log-likelihood function logPsT(f |b) can be computed by summing likelihoods of
boundary points belonging to the true boundary. Similar to optimization for m-reps,
this can be done by measuring the gradient length at presumed boundary locations.
The deformed shape is used as a new estimate for computing the next pose estimate.
The process is repeated until convergence.

11.5.3 The Active Appearance Model

The ASM can be extended to an active appearance model (AAM) comprising in-
tensity and texture information at points of the PDM (Cootes et al. 1998). A shape
vector s, which after decorrelation is reduced to Ms modes of variation from a mean
shape s̄, is concatenated with an appearance vector a. The latter may contain inten-
sity or texture values for each point of the PDM being measured in the vicinity of
the corresponding point.
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Appearances are initially trained separately from shape features. They are decor-
related as well resulting in Ma modes describing appearance variation. The two
aspects of an object are then combined by

b̂ =
(

baWa

bs

)
, (11.14)

where Wa is a diagonal matrix which may contain weights to rate the importance
of appearance features. The resulting feature vector is decorrelated again to remove
any linear correlation that may exist between shape and appearance features. This
results in the final feature vector b that represents mode variations for integrated
shape and appearance. The AAM is matched with the image in a similar way than
the ASM.

11.6 Physically Based Shape Models

It has been noted by the authors of the ASM that the amount of training data is
sometimes insufficient for providing a reliable estimate for the shape model. They
suggested to apply an FEM for generating sufficient samples from its deformation
(Cootes and Taylor 1995). As the number of training samples increases, the influ-
ence of the FEM part should decrease. FEMs are an example of a physically based
deformable shape model (DSM) in its own right. The main difference to ASMs is
that deformation is not trained but uses domain knowledge.

A DSM is a nonrigid, explicit model with a priori constrained shape variation.
Physically based constraints have been presented (e.g., by Terzopoulos et al. 1987
and Pentland and Sclaroff 1991) and have been used in modeling anatomical objects
(e.g., by Hamarneh et al. 2001). It should be noted that using a DSM for computer
vision purposes poses two problems that do not exist, if it is used for simulation of a
true physical entity such as, for example, the modeling of cloth described in Provot
(1995).
• If used for the search of object instances, a DSM needs to be attracted by image

features. Attraction forces have to be defined based on the image data. They can
be thought of as a gravitational force in some strange world. The developer of
such a model needs to ensure that the behavior of a model instance in this world
is still perceived as being somewhat natural.

• If model deformation shall capture variation between different object instances,
this needs to be parameterized as part of the model based on domain knowledge.
Parameterization may be difficult because variation among shapes of the same
class is not caused by a physically induced deformation (consider a model of a
person: shape differences of different persons are not due to some force exerted
on a basic shape).
In view of the inaccuracies to be expected in model parameterization, applying

a DSM for registering a model instance with an object instance requires sufficient
redundancy between the model and data. Inaccuracies in the model are then overrid-
den by data information. This is required for any deformation model. It can never be
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assured that a model with a finite number of elements, components, or parameters
captures all details that characterize an object in an image. Even if these details were
captured, their exact description by the model representation cannot be guaranteed.

If DSMs are so difficult to use, it is fair to ask why it should be used at all.
A major reason is that such models allow the explicit specification of shape variation
of an object without prior training. It restricts the efficient use3 of such a model to
those objects whose variation is mainly described by decomposition into simpler
model components. Adding the ability for variation without training is difficult—
as it would be for a statistical model as well—but in a first approximation it can
be done by overly relaxing variation constraints (for a statistical model this would
translate into assuming a flat distribution function). Low image forces would cause
large object deformations. Such a model is successful if the image information is
“strong” enough to counteract overly relaxed variation constraints.

Some user involvement will always be necessary because user input extends the
generalization ability of the model. A fully automatically acting model requires def-
inition and parameterization that describes shape and appearance variation of all
possible object instances completely and unambiguously. If this were possible at
all, such a representation would be very specific to some application.

User involvement, as in all vision applications, should not merely accept or cor-
rect a result. Each interaction can be interpreted as additional information to the
a priori knowledge about the object and should be included into the model.

The correction of a wrong result as well as training or teaching the model can be
very straightforward in a DSM. A physically based DSM, despite the strangeness
of the world of forces created by an image, reacts in a way that is familiar to the
viewer. If a result is not satisfactory or if the behavior while searching for the result
is not correct, this familiarity allows the user to pinpoint elements of the model that
should behave differently.

11.6.1 Mass Spring Models

A mass spring model is a DSM that receives its shape by physical constraints from
springs between mass points [used, for instance, for shape modeling in surgical
simulation (Paloc et al. 2002) or for searching object instances in an image (Bergner
et al. 2004), see Fig. 11.18a]. The DSM can be represented as a graph. Nodes with
coordinates specified by vectors ni are assumed to have masses mi . Its edges are
represented by springs sij connecting two mass points ni and nj . The model—if
placed in an image—moves toward an object of interest while keeping its shape
controlled by external forces fext

i and internal forces fint
i . External forces attract the

3Each of the models presented here can be essentially extended such that it can replace any of the
other models. However, each of the models has been built with some idea about the objects to be
described and the way necessary knowledge is to be gathered. It works most efficiently if objects
or scenes to which it is applied follow this idea.
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Fig. 11.18 (a) A mass-spring model consists of masses connected by springs. (b) Placed in an
image, masses are attracted by image forces while springs are responsible for controlling the shape
deformation

model toward image features while internal forces act between nodes and cause the
model to retain its shape and size.

The net force acting on every node ni is a weighted combination of external and
internal forces

fi = αfext
i + (1 − α) fint

i . (11.15)

The weight 0 ≤ α ≤ 1 indicates the importance of shape preservation and it is
application-dependent. The behavior of a model instance over time t can be com-
puted if node locations are made dependent on t . At time t = 0, every node has an
initial location ni (0) with velocity vi (0) = 0. Usually, initial node locations are set
in such a way that internal forces are zero. The shape described by such a configu-
ration is the prototype of the model instance and represents the average shape of the
object instance in the scene.

Given node locations ni (t) and velocities vi (t), node locations at time t +�t are

ni (t + �t) = ni (t) + �t · vi (t) . (11.16)

Acceleration ai at node ni is computed from node mass mi and force fi as ai =
fi/mi . New velocities can now be computed:

vi (t + �t) = vi (t) + �t · ai (t) . (11.17)

The time step �t is application-specific. Small time steps increase the accuracy
of the approximation of the differential equation. They also increase the number of
iterations needed for the model to approach the object of interest.

To prevent oscillations, the acceleration of nodes may be multiplied by a damping
factor d which decreases with time t such as d(t) = exp(−�t).
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Fig. 11.19 A force field is a vector field that is computed from the gradient of image features.
Masses of a model instance placed in the image will be attracted in direction of the force field
vectors

External forces are directed toward attraction points in an image. They may be
thought of as gravitational forces toward inert masses. Attraction forces acting on a
node of the DSM should decrease with the increasing distance of the node from the
attraction point (see Fig. 11.18b).

Every location x in an image may attract a model instance. Whether and to which
extent it will be attracted by a particular location in the image depends on the image
attribute a(x) at this location. The length of the intensity gradient can be such an
attribute, if the model nodes shall be attracted by the object boundaries.

The force acting at x can be precomputed by convolving a(x) with a force kernel,
of which the magnitude increases with decreasing distance, for example,

k(x) =
{

w

‖x‖2 , if ‖x‖ �= 0

0, otherwise.
(11.18)

The value of w is a scale factor. The force vector for the external force fext exerted
at location x is computed by convolving the force kernel with the attribute map and
taking the gradient

fext(x) = ∇(
a(x)∗k(x)

)
. (11.19)

The gradient vector field presented by Kichenassamy et al. (1995) and Xu and
Prince (1998) detailed in Sect. 9.1.2 could be used as well.

The vector field can be precomputed for every attribute field. The external force
that pulls a node ni is now (see Fig. 11.19)

fext
i = fext (ni) . (11.20)

If a model instance is placed into a scene, each node will start to move toward
its attractors. Since a moving mass possesses kinetic energy, it will pass the main
attraction zone and will move away from it until the external forces start acting
against the kinetic forces pulling the mass back toward the object.
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Fig. 11.20 Spring forces and torsion forces govern the behavior of a mass-spring model. Spring
forces act along the springs. They mainly restrict the change of scale. Torsion forces are angular
forces with respect to a local, global or external coordinate system and restrict the deformation of
the model instance

Moving further than the attraction point is intentional as it enables the model
instance to find potentially better suited locations in the image. The damping factor
mentioned above will cause the model instance to reach equilibrium after some
oscillations.

Two kinds of internal forces govern the behavior of a stable mass-spring model:
spring forces and torsion forces (see Fig. 11.20). The former mainly controls size
changes of the model (Terzopoulos et al. 1987) and the latter restricts shape variation
(Dornheim et al. 2005).

For computing spring forces, a rest length s0
ij needs to be assigned to each spring

sij . It is the length of a spring if the shape model takes its prototypical shape. If the
distance between two nodes ni and nj along the spring sij deviates from the rest
length, it creates a spring force fsij acting in the direction of sij (this is under the
assumption that mi = 1 for each mass point)

fsij = [
kij

(
s0
ij − ∥∥ni − nj

∥∥)] sij

‖sij‖ . (11.21)

The parameter kij is the spring constant that describes the spring’s stiffness. An
effective net force acting on a node ni is a sum of forces from all K(i) springs
sik, k = 1,K(i) that are connected to ni :

fsi =
K(i)∑
k=1

fsik. (11.22)

Mass-spring models using spring forces to control the model shape do not neces-
sarily prevent deformations. A mass-spring model usually has many stable states of
which the prototype shape is just one. Hence, the kinetic energy of a moving model
may cause a model instance to converge to any of the other stable states. Adding sta-
bilizing and almost rigid springs can solve this problem, but will result in a heavily
connected model whose behavior will not be easily predictable.
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Fig. 11.21 Model deformation without and with torsion forces (based on the work of Dornheim
et al. 2005)

Stiffness control can be explicitly added as an additional force to the node net-
work. The force inhibits the relative rotation between nodes and controls the spatial
relationship between all springs connected to a single node. It is called torsion force
and restricts the twisting movement by rotating nodes into the rest location (see
Fig. 11.21). This local force is implicitly defined by the shape prototype.

The introduction of the torsion force reduces the number of stable states of the
model to just the one that corresponds to the prototype shape. To compute and ap-
ply the torsion force, springs connected to a node ni need to be defined in a node
coordinate system that may be one of three kinds (see Fig. 11.20).
• A fixed external coordinate system keeps the orientation of the model stable. This

is simply the world coordinate system that is assigned to every node.
• A global model coordinate system keeps the shape of the object stable but allows

for object rotations. It needs to be rotated appropriately after each iteration.
• A local point coordinate system has similar properties as a global model coor-

dinate system, but allows for local variation of acceptable twisting of the model
instance. It is computed from spring directions that are incident to a mass point.
Given a node coordinate system, a spring vector sij in world coordinates can

also be represented as a vector si
ij in the node coordinates of node ni . If the model

has its prototypical shape, all spring directions in node coordinates attain their rest
directions si,0

ij . If the shape is deformed, actual spring directions si
ij may vary from

their rest directions. The torsion force acting on node ni is then a rotational force
relative to the node nj that attempts to rotate spring sij around nj back to its rest
orientation. It is defined as

ftij = tij · �si
ij

‖�si
ij‖

, (11.23)

where tij depends on the angle between rest position and actual position of the
spring and �si

ij determines the direction of the force. The value of tij is

tik = ti ·∠(
si
ik, si,0

ik

)
. (11.24)
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The factor ti is a torsion constant governing the local stiffness at node ni . The
direction in which the force is acting is given by

�si
ij = s

i,0
ij − si

ij

(
si
ij • s

i,0
ij

‖si
ij‖ · ‖si,0

ij ‖
)

, (11.25)

where “•” is the inner product.
To compute node displacement due to torsion, the sum of torsion forces of all

springs k = 1,K(i) that are connected to ni has to be computed:

fti =
K(i)∑
k=1

f0
ik. (11.26)

Since si,0
ij remains constant with respect to the local coordinate system of node

ni , but varies with respect to the world coordinate system, it has to be computed
after each iteration. The rotation of the node coordinate system with respect to the
world coordinate system can be determined by averaging the rotations caused by all
springs that are connected to this node. Combining spring forces and torsion forces
results in an effective internal force fint

i acting on each node i:

fint
i = (1 − β) fsi + βfti . (11.27)

The factor β with 0 ≤ β ≤ 1 governs the relative influence of spring and torsion
forces.

External forces attracting a model instance to object boundaries create a complex
world of attractions because nonzero intensity gradients exist almost everywhere in
the image. A model instance may only be attracted to the “correct” location (i.e., by
the object instance in a search) if it is placed close to this location. For automatic
segmentation by a DSM the most likely location of the object instance needs to be
determined beforehand.

If the shape or appearance of other objects differs substantially from that of the
object instance a correlation measure between the average model instance and image
may be used. Otherwise, a stochastic search may be enacted where model instances
are placed at several locations in the image. Decisions as to whether such an instance
has found an object will be based on a quality-of-fit measure of the fitted model
instance. This could be, for instance, the magnitude of the sum of internal forces in
the model (i.e., a deformation cost) or the magnitude of the sum of external forces
(i.e., the support by the image), or a combination of the two. Successful candidates
of the stochastic search may spawn new model instances in their vicinity until the
average QoF of the population of model instances no longer increases.
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Fig. 11.22 A mass-spring
model transfers forces only
along springs, while an FEM
is a continuous space model
where forces are defined
everywhere in the elements

11.6.2 Finite Element Models

Finite element models (FEMs, see, e.g., Zienkiewics et al. 2005; Petyt 1998 for
an introductory treatment) are an alternative way to solve the equilibrium problem
when placing a deformable shape model instance into an image and letting it deform
according to external forces (Sclaroff and Pentland 1995). The conceptual difference
between a mass-spring model and an FEM is that the FEM is a continuous space
model that may be defined for each location x in the model whereas the mass-spring
model is only defined at the mass points (see Fig. 11.22).

Finite element models are often used in the material sciences. They approximate
the behavior of a continuous physical entity by means of a finite number of elements.
Each element is bounded by nodes. The behavior of the represented entity under the
influence of forces is reduced to the influence at these nodes. Elements of an FEM
may be 1D, 2D, or 3D and they may be embedded in 2D or 3D space. It should be
kept in mind that the FEM controls the degrees of freedom of shape deformation
only within its elements. If, for instance, the boundary of a 3D object is represented
by a 2D FEM, this restricts the shape of the bounded object only in a very indirect
fashion.4 However, if the dimensionality of the elements equals that of the space in
which they are embedded, the FEM represents physical behavior at any location x
in a bounded region covered by the elements. Shape deformation is controlled by
the decomposition into elements and their physical attributes.

FEMs have been used to represent a deformable object boundary (Delingette et
al. 1992; Mandal et al. 1998) and to describe deformable object shapes (Ferrant et al.
2000; Engel and Toennies 2010). The former is a topological constraint restricting
the number of closed boundaries, while the latter constrains object shapes. We will
restrict our discussion to FEMs constraining the object shape.

Given an element of the FEM and external forces acting on it, it deforms until
the potential energy of the element (strain and stress) and external forces balance.
Strain and stress within the element are interpolated by shape functions such that
they result in a continuous displacement field for this element (see Fig. 11.23). In-
terpolation guarantees that displacement at node locations does not depend on other
nodes. This is necessary for a continuous displacement field of a mesh of connected
elements.

4A FEM may be defined in a similar fashion than the mass-spring model by letting 1D springs
being the elements. In such case, a bounded 2D or 3D object may be represented by a dense mesh
of springs restricting shape variation.
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Fig. 11.23 (a) Shape functions N(x,y) describe the influence of forces acting at some node on all
other places in the element. The example in (a) shows a linear shape function for node n1. (b) The
deformation of the element is then computed from the influence of forces acting on all nodes

Potential energy usually describes the element as an elastically deformable ob-
ject. This imposes a smoothness constraint on element deformation. Together with
the continuity of a displacement field, it ensures a kind of stability of the shape
representation that is similar to that achieved by torsion forces in the mass-spring
model.

The following is a more detailed explanation of this application using a triangular
grid as example. A triangular grid would be appropriate to represent shape and its
variations of a 2D figure. The triangle as basic element of this FEM consists of three
bounding nodes n1, n2, n3 with coordinates (xi,1, xi,2), i = 1,3. A force acting on
a node ni is represented by a 2D vector fi = (f2i , f2i+1). It causes displacement of
ni by ui = (u2i , u2i+1) until internal forces from elasticity of the material and stress
caused by the deformation balance the external force.5 This can be expressed by the
following relationship for an element e:

u(e)K(e) + f(e) = 0. (11.28)

The (e) customarily indicates that we are talking about a single element of an
FEM.

The matrix K(e) is called a stiffness matrix. It summarizes material-specific elas-
ticity and stress components. The equation above only defines a displacement for
nodes. Displacement for all other locations within the element is interpolated using
shape functions φ(x) for which φ(ni ) = ui must be true.

If finite elements are combined to a mesh, a common stiffness matrix has to be
assembled from the element matrices. The following two conditions must hold for
the assemblage of any two elements of a mesh to keep displacements within the
mesh continuous.
1. The displacements at a common node of two elements must be the same for each

element.

5Node values and force values of all nodes of an element (and later of the complete FEM mesh)
are combined in a single vector. Hence, values for a node with index i in 2D have indices 2i and
2i + 1 in the displacement vector u and the external force vector f.
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Fig. 11.24 Example for an assemblage. A common matrix of the size of the total number of nodes
is created and entries from the element matrices are set at the appropriate positions in the common
matrix

2. The sum of all forces exerted from elements meeting at a common node must
balance the external force at this node.
The two conditions can be guaranteed by the following, simple assemblage step.

If the components of all N nodes in an assembled mesh are indexed from 1 to 2N

and node features of an element e of this mesh have indices n1, n2, . . . , n6 with a
corresponding 6×6 stiffness matrix K(e), an extended stiffness matrix K(ext) of size
2N × 2N is created with

K
(ext)
k,l =

{
K

(e)
i,j if k = ni ∧ l = nj ∧ i, j = 1,2,3,4,5,6,

0 otherwise.
(11.29)

This is done for all element matrices (see Fig. 11.24). The extended matrices are
added. The result is an assembled stiffness matrix K for the mesh6 fulfilling the two
conditions above.

The displacement of nodes of an FEM mesh requires the solution of the linear
equation system uK = f for the displacement vector u. Additional constraints are
needed, however, because the mesh may still freely move in the 2D space. These
constraints are called essential boundary conditions and natural boundary condi-
tions in the FEM literature. Essential boundary conditions restrict the displacement
vector u (e.g., by stating that (u2i , u2i+1) = 0 for some nodes ni ). Natural boundary
conditions restrict the force vector. Given a sufficiently constrained problem, the
displacement of an FEM mesh under an external force can be computed by solving
the linear equation system for u.

So far, the FEM is static. The concept is extended to include dynamics for mod-
eling external image forces attracting a model instance to depicted objects (see
Fig. 11.25). The influence of external forces depends on the current placement of the
model in the scene. Since it changes while the model instance moves, displacement
u and forces f are made time-dependent. External forces in the dynamic FEM attract

6This kind of assemblage becomes costly for the sparse matrix K if N is large. Faster methods
to carry out this operation exist but the operation itself stays the same. For application in medical
image analysis, however, the size of N is usually small (i.e., N � 100.000) and model creation
does not happen often.
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Fig. 11.25 A dynamic FEM deforms depending on external image forces towards the sought
object

the nodes to image regions of relevance, and are balanced against the topology-
preserving internal mesh forces. This is represented by the linear dynamic model

Mü (t) + Du̇ (t) + Ku (t) + f (t) = 0. (11.30)

The nodal displacements u(t) depend on time t . The terms u̇ and ü are the first
and second derivatives of the displacement with respect to time (i.e., velocity and
acceleration). Acceleration depends on a mass-specific inertia represented by the
mass matrix M. The matrix D models velocity-dependent damping.7 If the viscosity
of the modeled material is unknown, the damping matrix D can be taken as Raleigh
damping D = αM +βK. K is the stiffness matrix already known from static FEMs.

The mass and stiffness matrices restrict the variation of the DSM. Hence, these
material properties encode the domain knowledge about the object variance. Using
an FEM to describe intersubject variation of organs and structures does not require
the description of a specific material since this is not a simulation that describes
real deformation processes. Material properties represent an abstract deformation
concept.

Stiffness K(e) of an element e is computed from the following:
• a stress matrix B(e),
• an elasticity matrix C(e),
• the element thickness k,
• the area A of the element.

For an element of constant thickness (which is usually assumed when using finite
elements in object detection and segmentation) stiffness is

K(e) = kA
(
B(e)

)TC(e)B(e). (11.31)

7A dynamic system can be modeled without damping but damping prevents oscillation.
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Fig. 11.26 The Poisson ratio
n describes the deformation
orthogonal to the direction of
the incident force

Stress represents the deformation under (initial) forces such as a shrinking due
to a change in temperature. The influence of stress can be computed for arbitrary
directions by a stress tensor that describes translation and shearing forces. For a 2D
element, this is

ε = Su =

⎡
⎢⎢⎣

∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x

⎤
⎥⎥⎦

(
u

v

)
≈ SNũ(e) = B(e)ũ(e). (11.32)

Hence, the stress matrix results from the shape functions in N and the shape of
the elements. Since shape functions are usually fixed and simple when using FEM
to model a DSM, the component is not used to vary deformation constraints for
the DSM. This is different for elasticity. Elasticity describes the deformation of the
element under some external force. For a linear-elastic homogeneous body, elasticity
can be described by the elasticity modulus E and the Poisson ratio ν. It is

C(e) = E

1 − ν2

⎡
⎣1 ν 0

ν 1 0
0 0 (1 − ν) /2

⎤
⎦ . (11.33)

The Poisson ratio is the ratio ν = −e/e⊥ by which an object expands or shrinks
orthogonal to the direction of the impacting force (see Fig. 11.26). In other words,
it tells how much of the acting force is transferred sideways. The Poisson ratio may
vary between −1 and 0.5. It is positive for most materials (a negative Poisson ra-
tio would mean that a force causing a shrinking in one direction would also cause
shrinking in directions orthogonal to it).

The elasticity modulus E describes how much permanent deformation is caused
by an acting force. A sufficient description for isotropic materials is the use of
Young’s modulus, which is a single scalar value and assumes that the deformation
is independent of the direction in which the force acts on the material.
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The mass matrix M is the second component that describes the behavior of the
FEM. It describes the inertia of the system with respect to external forces. The
mass matrix M(e) of an element e depends on the material density ρ and the shape
functions N

mi,j =
∫

Ωe

NT
i ρNj dΩe. (11.34)

The mass matrix for a 2D element with area A, thickness k, material density ρ,
and linear shape functions is

M(e) = ρkA

12

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (11.35)

Given mass, damping, and stiffness matrices concatenated from their respective
element matrices, external forces cause the model to move and deform. The global
force vector f(t) contains dynamic loads that attract the FEM toward image features.
Similar to the use of mass-spring models for segmentation and registration, these
features need to be attributes a(x) that are correlated to features of sought objects.
Examples are the image gradient or image intensity. The external force at time t

exerted on nodes ni , i = 1, . . . ,N with current position xi (t) is

fi (x, t) = λ (t)∇a
[
x (t)

]
, (11.36)

where λ(t) is a weighting factor that prevents oscillation similarly to the damping
factor in a mass-spring model.

Dynamic displacement can be computed by solving the system of partial differ-
ential equations iteratively, given that initial displacement and displacement speed
are known. A standard solution technique is the Newmark-β algorithm. The general
principles behind this algorithm are as follows.
• Differentials are approximated by differences in a sequence u1,u2, . . . ,un,

un+1, . . . that are �t apart.
• The state of the system at time tn+1 is given by a Taylor approximation of u at

time tn+1.
• The remainder term of the Taylor series is replaced by a weighted difference

between differentials at tn and tn+1 (the weight is the name-giving β).
• The second derivative of u is computed first, then it is used to compute the first

derivative, which in turn is used to compute u at time tn+1.
To derive the Newmark-β algorithm we follow the argumentation of Zienkiewics

et al. (2005) and start with a simplified FEM without mass matrix M (which de-
scribes a so-called transient field used, e.g., to describe heat conduction). The solu-
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Fig. 11.27 The finite
difference solution is
inherently instable, as it
extrapolates the displacement
un+1 from known values un

at time tn

Fig. 11.28 Using derivatives
at time tn and tn+1 produces a
more stable solution for
estimating un+1

tion will then be extended to a complete FEM without detailed derivation. A tran-
sient field is given by

Du̇ (t) + Ku (t) + f (t) = 0. (11.37)

Approximating u by a Taylor approximation (see Fig. 11.27) results in the finite
difference solution un+1 = un + �t · u̇n. However, this extrapolates the function
based on an extrapolation of the derivative. The error from omitting the remainder
term of the Taylor series is not accounted for. If the function u(t) is sufficiently
differentiable, a ratio between u̇n and u̇n+1 exists that exactly represents the average
derivative between tn and tn+1. Hence, interpolation of this value produces a more
stable solution than extrapolating from tn (see Fig. 11.28). The value of un+1 is now
approximated by

un+1 = un + �t
[
(1 − β) u̇n + βu̇n+1

]
, (11.38)

where β is a weighting parameter that has to be set. Approximating (11.37) results
in

Du̇n+1 + Kun+1 + fn+1 = 0,

Kun+1 = K
(
un + �t

[
(1 − β) u̇n + βu̇n+1

])
⇒ Du̇n+1 + K

(
un + �t

[
(1 − β) u̇n + βu̇n+1

]) + fn+1 = 0.

(11.39)

Except for fn+1, u̇n+1 only depends on quantities that are known at time tn. If
fn+1 is approximated by forward differencing, un+1 is given by rearranging the
terms and resolving for u̇n+1:

u̇n+1 = − (D + �tβK)−1 [
K

(
un + �t (1 − β) u̇n

) + fn+1
]
. (11.40)
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From u̇n+1 the value for un+1 can be computed based on (11.38).
The system is not self-starting (i.e., Du̇0 +Ku0 + f0 = 0 needs to be guaranteed).

The values of the external forces fn+1 need to be computable (e.g., by another Taylor
approximation).

The choice of β influences the behavior of the algorithm. Choosing β = 0 results
in a finite difference approximation. In the absence of domain knowledge β = 0.5
is a usual choice. Since the stability of the solution cannot be guaranteed without
knowledge about the difference between the chosen β and the unknown optimal β ,
the time step �t should be rather small.

The Newmark-β algorithm can be extended to FEMs with mass matrix. The
derivation strategy is the same except for the fact that the expression gets longer.
The resulting scheme for computing u and its derivatives at time tn+1 is

ün+1 = A−1
(

D
[
u̇n + (1 − β1)�t ün

] + K
[

un + �t u̇n

+ 1

2
(1 − β2)�t2ün

]
+ fn+1

)
, (11.41)

with

A = M + β1�tD + 1

2
β2�t2K, (11.42)

u̇n+1 = u̇n + (1 − β1)�t ün + β1�t ün+1, (11.43)

un+1 = un + �t u̇n + 1

2
(1 − β2)�t2ün + 1

2
β2�t2ün+1. (11.44)

An alternative to the direct solution is to decouple the equations by transforming
it from the space of displacements u into the space of free vibration modes v. Free
vibration modes are the solution of a free vibration problem without damping. In
such a case

Mü (t) + Ku (t) = 0 (11.45)

for t > 0. The equation system describes the observed motion of an FEM mesh that
is put into motion by an impulse at t = 0. Being a homogeneous linear differen-
tial equation system, solutions must be a sum of weighted periodic functions (see
Fig. 11.29):

u (t) =
2N∑
j=1

vj exp(iωj t). (11.46)

Replacing u(t) in (11.45) by (11.46) and computing the second derivative ü re-
sults in
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Fig. 11.29 Free vibration of
an FEM

M
2N∑
j=1

−ω2
i vj exp(iωj t) + K

2N∑
j=1

vj exp(iωj t) = 0

⇔
2N∑
j=1

Kvj exp(iωj t) =
2N∑
j=1

−ω2
i Mvj exp(iωj t). (11.47)

Comparing factors on both sides and noting that the periodic term exp(iωit) is
always nonzero, it can be seen that 2N solutions of pairs (ω,v) to the following
equation

Kv = ω2Mv ⇔ M−1Kv = ω2v (11.48)

are searched. Hence, the 2N solutions are the eigenvectors of M−1K and the corre-
sponding eigenvalues ω2.

This does not only solve the free vibration problem of (11.45). It also provides
the means to solve (11.30) by a set of decoupled partial differential equations, if
Raleigh damping D = αM + βK is assumed. In this case, diagonalization of M and
K also diagonalizes all linear combinations.

The equation is transformed into the space of vibration modes. A matrix Ω , con-
taining eigenvectors that are normalized such that ΩTMΩ = I, is created. Eigenval-
ues ω2

i are the values of a diagonal matrix �. Transformation in the vibration modes
produces a new system of decoupled equations

M̂v̈(t) + D̂v̇(t) + K̂v(t) = Q(t), (11.49)

with the diagonal matrices

M̂ = ΩTMΩ = I, (11.50)

K̂ = ΩTKΩ = �, (11.51)

D̂ = αI + β�, (11.52)

and the transformed force vector Q(t) = ΩTf(t).
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The now decoupled equations can be brought in the following standard form for
differential equations

v̈i + 2ωiςi v̇i + ω2
i vi + fi = 0 (11.53)

by dividing each equation by the transformed mass factor m̂i and letting

2ωiςi = ĉi

m̂i

, ω2
i = k̂i

m̂i

, fi = − qi

m̂i

. (11.54)

The analytical solution for this differential equation is

yi(t) = exp(−ξiωit)

[
ẏi (0) + ξiωiyi(0)

ω̄j

sin ω̄i t + yi(0) cos ω̄i t

]

+ 1

ω̄i

∫ t

0
exp

(−ξiωi(t − τ)
)

sin ω̄i(t − τ)fi(τ ) dτ, (11.55)

with

ω̄j = ωj

√
1 − ξ2

j (ξ is a damping constant) (11.56)

and initial conditions yi(0) = vT
i Mui (0) and ẏi (0) = vT

i Du̇i (0).
The solution does not contain derivatives and the approximation of the integrals

can be done using numerically stable methods. Hence, this solution is preferred if
instabilities can be expected because computing time constraints require long time
intervals or if the system is meant to be simulated over a long time.

The representation of the deformation by a set of uncorrelated modes of vibra-
tions is similar to the representation of shape variation by uncorrelated modes of
variation in ASMs (Sect. 11.5.1). The major difference is that variation modes are
derived from trained variation, whereas vibration modes result from material prop-
erties and decomposition of a shape.

Material properties are often set constant throughout the figure described by
the FEM. As already mentioned earlier, the FEM can be combined with an ASM
(Cootes and Taylor 1995). A shape model is constructed as an FEM that “produces”
training data for an ASM. Thus, the modes of variation of the initial model are ac-
tually modes of the vibration of the FEM. If the model is used for some application,
each confirmed segmentation result is considered to be a training sample. The FEM
behavior is gradually replaced by the trained statistics of an ASM.

Vibration modes are object-specific symmetries that represent the intrinsic prop-
erties of the object. This was used by Sclaroff and Pentland (1995) to create an
object-specific intrinsic coordinate system for registering instances of the same ob-
ject class. Vibration modes are ordered according to their variance (the eigenvalues)
and separated into three groups. The lowest-variance modes represent rigid trans-
formations (since the largest total displacement from a given external force is that
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by a rigid transformation). In the case of 2D models these are the first three modes
representing translation in x and y as well as rotation around the origin. They do not
carry information about object-specific deformation.8 The next lowest set of modes
is then used to represent intrinsic object-class variation. Vibration modes with high
eigenvalues are not considered. Most likely they are severely influenced by inaccu-
racies from model generation.

The differences between two shapes that are represented by different deforma-
tions of the same FEM can now be modeled by modal displacement in the trun-
cated eigenspace (i.e., without the rigid transformation components and low-order
modes). The corresponding locations for producing the match in the original space
can be reconstructed by projecting the modal amplitudes back using the truncated
matrix of eigenvectors.

Similar to ASMs, the deformation in modal amplitudes provides an estimate of
the similarity of an object instance with the model. In object detection, the quality
of fit of an FEM instance is defined by the deformation. Together with a data term
that rates the local appearance in the vicinity of an FEM instance in the image, a
weighted QoF measure can be computed.

This can be used for a stochastic search and detection algorithm. FEM instances
are placed with arbitrary pose parameters into the image. They are allowed to de-
form and displace under image forces. The QoF is computed after the instance no
longer moves. Pose parameters of the best fitting instances are varied and the pro-
cess is repeated until the average quality-of-fit of the population no longer improves.
Instances with QoF values exceeding some threshold are then detections of object
instances. In conjunction with a hierarchical model (see below), this approach has
been shown to be very successful for object detection of single objects (Engel and
Toennies 2010) or an unknown number of objects (Engel and Toennies 2009).

In classification, a similar strategy is employed. Instead of using a single model,
FEMs for different classes are used for the search. Classification is then done by
comparing the QoF values of different FEMs.

Almost any kind of shape variation under external forces can be modeled by
appropriately varying the material attributes of the underlying physical model, but
this puts a heavy burden on the developer of the model. Furthermore, the model has
to be adapted for every object class. Hence, the original objective for introducing
a physically based model—to replace training by a less costly procedure—is no
longer achieved.

If the expected shape variation is too complex, a solution is to resort to shape
hierarchies (Engel and Toennies 2010). Similarly to a hierarchical ASM described
in Sect. 11.5.1, a shape is decomposed into subunits. Each subunit is modeled by
an FEM mesh. Relationships among subunits are modeled by a higher-level FEM.
This FEM describes subunits by a number of nodes that are sufficient to represent
relationships among subunits (see Fig. 11.30).

8These modes are not contained in an ASM, since influence from rotation and translation is re-
moved during normalization of the training data.
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Fig. 11.30 Different kinds of second-layer FEMs represent different kinds of spatial relationships
between components (a: distance, b: approximate parallelism)

If, for instance, two subunits are related to each other by an expected average dis-
tance between them, a single node per subunit is sufficient to represent the location
of the subunit. If the relationships are more complex (e.g., if subunits are supposed
to be nearly parallel to each other with an expected distance between them) this
can be represented as well. High-level nodes representing subunits are related to the
FEM representation at the lower level via essential boundary conditions (i.e., the
low-level FEM restricts the displacement of its high-level representation).

11.7 Shape Priors

Shape models, such as ASM or other deformable models, may be used for segmen-
tation if part of the data knowledge is misleading. Ideally, the boundary of a fitted
model instance already sits on the segment boundary (see Heimann et al. 2006 and
Okada et al. 2007 for two different uses of an active shape model to segment the liver
in CT). However, the result may be unsatisfactory. Delineation of the object bound-
ary can be inaccurate in locations where the data are reliable. A shape model will
have just as many degrees of freedom as are necessary to describe the object charac-
teristics. Object detail may not be representable with sufficient accuracy. Increasing
the number of adaptable parameters is not a good solution since the restriction is
intentional to train or set shape variation from limited information. A more flexible
deformable model may be able to adapt to the object boundary, but it fails to fulfill
the original goal for using a shape model. The model is no longer able to predict
object shape and adapts to image detail irrespective of whether this detail is reliable
or not.

The solution to this dilemma lies in separating the two issues into two steps. The
result of fitting a model instance to the data is used as a priori information for a
subsequent segmentation by a method that is not driven by shape. This will have
little effect in locations, where data are unreliable, but it will drive the segment
boundary from its shape-based estimate toward the true boundary in a region where
strong and reliable boundary information is present in the data.
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One such solution is the combination of a shape model with variational level sets
(see Sect. 9.2.8) as suggested, among others, by Chan and Zhu (2005) and Cremers
et al. (2006). The level set equation in (9.57) is extended by a shape distance func-
tion that measure distance between a reference level set φref and the actual level
set φ

d2(φ,φref) =
∫

Ω

(
H

(
φ(x)

) − H
(
φref(x)

))2
dx. (11.57)

In this equation, H() is the Heaviside function that is later relaxed to a differen-
tiable function to allow stable estimation. Instead of using (11.57), various alterna-
tives are listed by Cremers et al. (2006) that make the measure independent of the
size of the region Ω .

The reference level set is generated by a signed distance transform from a shape
instance that estimates the object of interest (this could be a fitted ASM instance or
any other suitable deformable model). It also initializes the level set evolution since
it is already a good first guess of the final segmentation. The level set evolution will
now fit the level set to features in the data while deviations from the reference shape
will be penalized. It will leave the initial boundary estimate unchanged in regions
where there is no data support, while it will guide the level set to the true boundary
in locations where image intensity indicates that the current boundary estimate does
not agree with the data.

The shape distance term is weighted against the other terms in the level set equa-
tion. The weight reflects assumptions about the reliability of the shape prior and
the data information. Shape priors for a level set computation are particularly useful
when parts of the boundary are missing because of poor contrast between the object
and background. The intensity terms of the variational level set will then be either
of little use, since intensities in foreground and background overlap, or they will
result in segmentation errors because part of the background is assumed to be the
foreground. The shape prior will add just the missing information, as it has been
shown, for instance, for liver segmentation in MRI (Gloger et al. 2011).

Shape information can also be added to graph cut segmentation (Vu and Manju-
nath 2008; Freedman and Zhang 2005). To make shape distance exploitable to graph
cuts, the shape deviation penalty has to be assigned to pixel sites. This is realized in
Freedman and Zhang (2005) by generating an unsigned distance function φ̄ of the
reference shape and by using this to adapt the n-link energy of Boykov et al. (2001),
see Sect. 8.1.2, by a shape distance (see Fig. 11.31)

d2 (p,q) = φ̄

(
p + q

2

)
. (11.58)

Similar to (11.57), this term needs to be weighted against the other terms in
the equation, which in this case is the n-link energy Bp,q that decreases with the
increasing gradient between the two pixels p and q. The effects will be similar to
the application of shape priors in level set segmentation. In the absence of strong
gradients, the boundary will be defined by the shape prior.
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Fig. 11.31 The difference between shape prior and actual shape may be integrated into a graph cut
algorithm by weighting the n-links between neighboring pixels or by penalizing t -links between
pixels and source or sink node

Fig. 11.32 Shape priors can be used in data with very strong artefacts if the final segmentation
method (active contours in this case) is optimized only locally (Engel and Toennies 2008)

In Vu and Manjunath (2008) an overlap difference between actual shape and
reference shape has been used as shape distance. The shape prior predicts whether a
pixel belongs to the foreground or to the background. A weighted penalty is added
to each t-link that depends on whether pixels should be foreground or background
(see Fig. 11.31). This will increase the cost of the cut when the difference between
reference shape and the produced segmentation gets larger.

If artefacts in images are too strong, global optimization based on the shape prior
may fail since the data contain too many false object boundaries. Using a shape
instance as prior still makes sense since it can initialize a local search for the seg-
ment boundary. This was done by Engel and Toennies (2008), who used a shape
model to detect an object of interest using a global shape search followed by a lo-
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cally restricted adaptation of an active contour for segmenting the sustantia nigra in
transcranial ultrasound images (see Fig. 11.32).

11.8 Concluding Remarks

Models of object attributes are a powerful constraint system to find and segment
objects when discriminating among objects is impossible based on data alone. This
may be the case if the data are severely distorted by artefacts (e.g., in an ultrasound)
or if adjacent, different objects have the same intensity in the image (which is the
case for many soft tissues in MR or CT images). The object model introduces the
necessary a priori knowledge for finding and extracting the object nonetheless.

It is mandatory that shape attributes are part of the object model since low-
contrast or high-noise images require shape information to separate the object from
surrounding structures. Appearance information supports detection and it may also
help to stabilize shape information at object boundaries.

The biggest problem using object models is to capture and represent acceptable
variation within an object class. Training from samples and user-specified decom-
position of objects into simpler parts are two strategies to support acquisition of this
information. Object variation can be represented implicitly by accepting a certain
degradation of the quality-of-fit measure, or explicitly by including variation into
the model.

Although a shape model can be necessary to produce a segmentation at all, re-
strictions of its deformation may require postprocessing that allows a fitting of seg-
ment boundaries to the data at locations where image information is reliable.

11.9 Exercises

• When would a shape model be advisable for supporting a segmentation?
• How is an active shape model used if an object is to be segmented? How could

one deal with the fact that the ASM probably would not represent enough shape
detail for the segment delineation?

• How could template matching be used to estimate the kidney position (of a
healthy kidney) in MRI? Please explain what information is needed and how it
could be gathered and represented by the template.

• Assume that the Hough transform is used to find the spherical microorganisms
in Fig. 11.7. What would be a strategy to differentiate between bad fits (but mi-
croorganisms are found) and wrong detections? Please explain under which as-
sumption your criterion works.

• How could the GHT be used to find the typical shape of the ventricles in Fig. 11.4,
given that some shape and size variance has to be expected?

• What is the difference between using normalized cross correlation (see (11.2))
and covariance (see (11.3)) for template matching? What would be a situation
where (11.2) should be preferred?
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• Why does the medial axis transform not always represent major shape attributes
properly? With what kind of strategy can the problem be solved?

• What is the advantage of the hierarchical structure of the medial axis represen-
tation? Please explain how the domain knowledge for each of the levels can be
acquired if the m-rep were used to detect vertebrae in CT image sequences.

• How is variability encoded in an ASM and how is this information acquired?
• Why could it produce problems when training data for a 2D ASM consisting of

50 boundary points consists of 100 samples?
• What kinds of landmarks are used for representing an ASM? What kind of infor-

mation about the shape is encoded by the different types of landmarks?
• What influence on the trained ASM does it have when the alignment of the train-

ing samples was incorrect? What is the influence if landmark positions are inex-
act?

• Please explain how alignment is carried out? Under which assumptions will this
alignment be successful?

• Why can it safely be assumed that the true dimension of the feature space of an
ASM is much lower than the number of degrees of freedom given by the boundary
points?

• Why should the dimensionality be further reduced than the dimension that is
spanned by the features from the samples?

• What are the stages necessary to fit an ASM to the image?
• How can the ASM be extended to carry appearance information? Why is shape

and appearance first trained separately?
• How is shape variability represented by a mass-spring model? How can this vari-

ability be changed if necessary?
• What is the purpose of introducing torsion forces in the mass-spring model?
• How is a mass-spring model fitted to the data? How is the influence from the data

represented?
• What is the difference of a shape representation by a mass-spring model and a

finite element model?
• How can appearance information be represented in a mass-spring-model or a fi-

nite element model?
• What role do Poisson ratio and elasticity modulus play when defining a finite

element model for detecting objects in an image?
• What is meant with natural and essential boundary conditions of a finite element

model? Why are such conditions needed?
• What is the advantage of computing free vibration modes for an FEM when com-

puting the motion of a dynamic finite element model? When would it be preferred
instead of a direct computation of the displacement?

• How can the transformation into free vibration modes be used to compute a
quality-of-fit measure?

• What are the similarities and what are the differences between vibration modes
of finite element models and variation modes of ASMs?

• How can finite element models be used to support training of an ASM? Why can
this be assumed to be successful (what does it say about the data)?
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12Classification and Clustering

Abstract
Assigning semantics to segments is required if segmentation has not been com-
bined with object detection. Classification is then based on evaluating segment
attributes such as shape and appearance. The dimension of feature space is often
high (>10) and the number of samples to train a classifier or to deduce a clus-
tering is low. Methods are different compared to classification or clustering of
pixels or voxels. For the most part, likelihood functions are not estimated and the
classification criterion is directly based on the training data.
Feature reduction techniques, classifiers, and clustering methods that focus on
analysis in sparse feature spaces are the topic of this chapter. These methods
complement the methodology presented in Chap. 7.

Concepts, notions and definitions introduced in this chapter

› Feature reduction: PCA, ICA, Fisher’s discriminant analysis
› Distance-based classification: minimum distance classifier, kNN classifier
› Decision boundaries: linear decision boundaries, backpropagation networks,

support vector machines
› Discriminant functions
› Agglomerative clustering
› Fuzzy clustering

Structures of interest in an image may be divided into different classes based on
their segment properties. In medical image analysis, classification and segmenta-
tion sometimes mix since class membership may also be assigned based on pixel
attributes (see Chap. 7). Classification discussed in this chapter relates to the assign-
ment of class membership to samples—which could be segments— based on their
features. The major difference to classification integrated in segmentation is that the
number of samples is often smaller and the number of features per sample is often
larger. This has consequences for the classification strategy. If pixels are treated as
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samples, their large number and the low dimension of feature space result in a fairly
accurate estimate of underlying probabilities. Training becomes more difficult when
the dimensionality of feature space is high and few training samples exist. Classifi-
cation resorts to strategies that do not estimate the probability distribution functions
for the complete feature space but
• compute a posteriori probabilities only for those feature values of samples to be

classified, or
• compute the boundary at which two a posteriori probability functions have the

same values (i.e., the boundary where class label assignment changes).
This will be discussed in the following sections. It will be followed by a treatment

of clustering techniques that merely detect patterns in the data that may be influen-
tial for classification. Often clustering is a first step to analyze the significance of
features.

12.1 Features and Feature Space

A segment may be characterized by different types of attributes that make up the
feature space.
• Average gray values or—as it is the case of some MR images—a vector of average

gray values from different channels represent a (possibly known) relationship
between measurement and membership to an object class.

• Second- or higher-order statistics such as gray level variance within the segment
represent possible object-specific variations of the measurement value within an
object class or object-specific measurement artefacts.

• Texture features of the gray level distribution in the segment represent tissue char-
acteristics. They may also be important attributes for differentiating between dif-
ferent states of an organ’s class (such as healthy organs versus pathologic varia-
tions).

• Shape features such as size and elongation of a segment, or ASM mode variation
may typify a segment as well. If the segment represents the complete object (and
not a part of it), shape features may help to determine the type of object.
The first three types of features may be reliable, even if the segment comprises

only a part of the object to be classified as long as it is mainly located within the
object. Shape features are only reliable if the segment boundary closely follows the
object boundary.

In general, any feature that contributes to the characterization of a segment may
be included in the feature vector. Not all of the features may be necessary and some
redundancy will be included in such a representation.

12.1.1 Linear Decorrelation of Features

Features f1, . . . , fN of a vector f = (f1f2, . . . , fN) in N -dimensional feature space
are initially assumed to be independent of each other. The dimensionality of fea-
ture space is often much higher than the two or three dimensions that can easily be
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Fig. 12.1 If the number of samples per feature is high, it is easy to reliably estimate a probability
distribution from samples

Fig. 12.2 It is difficult to
approximate an unknown
distribution from samples if
the histogram shows few
occurrences in a
high-dimensional feature
space

rendered by some visualization technique. Thus, interactive techniques that display
a feature distribution of samples and ask the user to identify classes based on visi-
ble clustering are difficult to implement. Sample distributions in feature space can
be projected on 2D subspaces and then displayed, but assessing distributions in N

dimensions from a series of 2D projections is very difficult for N � 2.
The high dimensionality of feature space complicates automatic classification as

well because most techniques rely on applying the Bayesian Theorem. The neces-
sary probability distributions are often not known in advance and need to be es-
timated from classified samples. This training of the classifier requires a certain
density of sample distribution for delivering reliable estimates (see Fig. 12.1).

For a given number of samples in the training database the density decreases with
the increasing number of feature dimensions. In such a case, estimates from a feature
histogram may be difficult to generate (see Fig. 12.2). However, initial feature selec-
tion often accumulates all computable attributes of a segment that may contribute to
the identification of the object class. The initial assumption of uncorrelated features
may not be true.1

1Consider, for instance, Haralick’s texture features from the co-occurrence matrix. Many of the
features measure quantities which may behave similar for a class of segments. The same may be
true for shape features. E.g., the size of a segment may be closely related to its elongatedness if
segments are cells in a microscopic image of two types of which the small ones are mostly circular
while the larger ones are not.
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Fig. 12.3 Feature reduction from original space (a) can be done by simply removing features with
the least discriminative power (b) or by first de-correlating the data and then apply reduction in the
de-correlated space (c)

Fig. 12.4 PCA produces an axis system that decorrelates the data. It is oriented along the data
distribution in feature space. Features of this new coordinate system may be removed, if projection
on the remaining axes produces only a small error

The simplest way to reduce the dimensionality of the feature space is a repeated
removal of features that produces the least increase of the classification error. Fea-
ture reduction is more efficient if features are decorrelated first and the dimension
of feature space is reduced afterward (see Fig. 12.3).

Linear decorrelation and subsequent feature reduction can be carried out by prin-
cipal component analysis (PCA) in feature space (see Sect. 14.3, a detailed treat-
ment can be found in Abdi and Williams 2010). If features are correlated, the distri-
bution of samples in feature space actually occupies a lower-dimensional subspace.
The PCA produces an orthogonal transformation in feature space such that all co-
variance values between features are zero. Coordinate axes after transformation are
aligned or orthogonal to this subspace (see Fig. 12.4). Features corresponding to
orthogonal axes to the subspace can be identified and removed.

12.1.2 Linear Discriminant Analysis

Using PCA for feature reduction can be tricky because the decomposition does not
tell anything about class separability after reduction. This would require knowledge
on class membership from a set of classified training samples. A simple strategy is
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Fig. 12.5 The within-class
scatter matrix is computed
from adding co-variance
matrices of the different
classes weighted by their a
priori probability

Fig. 12.6 The between-class
scatter matrix is computed
from the vectors from class
centers f̄i to the center f̄ of all
classes

to select features such that the within-class scatter is minimized and the between-
class scatter is maximized for some distribution of samples in feature space. The
technique is known as linear discriminant analysis (LDA) or Fisher’s discriminant
analysis (Fisher 1936).

The within-class scatter matrix ΣW is defined as (see Fig. 12.5)

ΣW =
K∑

k=1

P(k) · Σk, (12.1)

where P(k) is the a priori probability of a sample belonging to class k and Σk is
the covariance matrix for the distribution of samples of class k in feature space. The
a priori probabilities can be estimated from the ratio of samples belonging to class k

to the number of all samples. The covariance matrix can be estimated as above, but
now including only feature values of samples of class k.

The between-class scatter matrix ΣB is defined as (see Fig. 12.6)

ΣB =
K∑

k=1

P(k)(f̄k − f̄)(f̄k − f̄)T, f =
K∑

k=1

P(k)fk. (12.2)

It measures the scatter of average feature vectors f̄k for the different classes k

with respect to the average feature vector f of the whole data set.
Feature reduction should produce new features f′ with improved class separabil-

ity by maximizing the between-class scatter and minimizing the within-class scatter.
A new set of orthogonal feature axes is selected so that the combined variances of
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Fig. 12.7 Opposed to PCA, ICA produces a system of linear independent features. No prediction
about the value of one feature can be made based on the value of another feature

ΣB and the inverse of ΣW given by the sum of diagonal elements of their product
tr(Σ−1

W ΣB) (the trace of the matrix) are maximal. Hence, using a similar argumen-
tation than for computing the PCA, eigenvectors, and eigenvalues of Σ−1

W ΣB are
computed. Eigenvectors are the new basis onto which features f are projected yield-
ing f′. Features with large eigenvalues are selected for subsequent classification.

12.1.3 Independent Component Analysis

Transformation in feature space, as discussed above, mainly attempts to reduce re-
dundancy in the data for the purpose of assigning classes to samples. Sometimes,
however, each sample may contain a mixture of two or more components. No class
assignment is desired. Instead, the ratio of this mixture shall be determined. This
scenario may arise, for example, in time signal analysis describing organ function.
Functional units are often much smaller than the image resolution and informa-
tion carriers would be subpixels. As they cannot be measured, analysis attempts to
decompose the measured signal into its unknown components. This is possible if
the different components are independent and some additional assumptions hold.
The procedure is called independent component analysis (ICA) (Hyvärinen and Oja
2000; Hyvärinen et al. 2009), see Fig. 12.7.

As opposed to PCA, a closed-form solution for computing the independent com-
ponents does not exist. ICA methods are iterative optimization methods that are not
guaranteed to find the global optimum. Independent component analysis assumes
that
• a feature vector f consists of a number of independent components fc1, . . . , fcn,
• the number of components is known,
• their distribution is non-Gaussian.
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Fig. 12.8 The distribution of dependent components (a) resembles a Gaussian, whereas truly
independent data (b) does not

The procedure consists of two steps. First, independent components are com-
puted from the feature distribution in some data set. Then, each feature vector is
projected on the independent components to determine the composition in every
sample.

The computation of independent components from observed feature values fi

is done by finding feature axes f ′ that minimize the Gaussianity of the decom-
posed data set. The underlying assumption is a general observation about proba-
bility. A probability distribution of some stochastic process approaches a Gaussian
distribution if the number of independent causes for the process increases.2 In re-
verse, a distribution is less Gaussian, if it consists of fewer independent components
(see Fig. 12.8). ICA estimates Gaussianity of the current set of axes and rotates one
of the axes so that Gaussianity is minimized. This process is repeated until conver-
gence. Gaussianity can be measured, for instance, by computing the absolute value
of kurtosis excess γ2 (Hyvärinen and Oja 2000)

γ2 = E((f − f̄ )4)

E((f − f̄ )2)2
− 3, (12.3)

which measures the peakedness of a distribution. A distribution with high peak is
called leptokurtic and has values of γ2 < 0, one with a flat peak is called platykurtic
with γ2 > 0. The Gaussian distribution is mesokurtic with γ2 = 0. Maximizing |γ2|
therefore minimizes Gaussianity. Another option for computing Gaussianity is to

2The central limit theorem states that the probability density function of a sum of independent
random variables having the same but unknown distribution characteristics will approximately be
a Gaussian function, if the variance for each variable is finite.
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use entropy since entropy is minimal for a Gaussian distribution. (Further measures
to be used in ICA can be found, e.g., in Blanco and Zazo 2003.)

12.2 Bayesian Classifier

Given features of a sufficient number of samples, the Bayesian Theorem can be
directly used for computing class membership. Stated in the Bayesian framework
the conditional probability P(ck|f) that a sample belongs to class ck given its feature
values f depends on the likelihood P(f|ck) of obtaining f for a member of class ck

and the a priori probability P(ck) of a member of class ck being present:

P
(
ck|f

) = P(f |ck)P (ck)

P (f)
. (12.4)

The normalizing probability P(f), also called marginal probability, may be
dropped for classification since P(f) is independent of ck . The classification of a
sample with feature vector f requires to choose the class copt with

copt = arg max
ck

P (ck|f) = arg max
ck

P (f |ck)P (ck). (12.5)

The likelihood function and the a priori probability have to be estimated from
training data or specified using expert knowledge.

The normalized multidimensional histogram of binned feature values generated
from classified training samples may be used as estimate for P(f|ck). A rule of
thumb says that the number b of bins along an axis in N -dimensional feature space
should relate to the number of available samples M by

b = M
1

N+1 . (12.6)

Even if feature space is reduced, the number of classified samples may still not
be adequate for a reliable estimate of the likelihood function.

Various techniques exist for constraining the range of possible likelihood func-
tions without being overly restrictive. If the number of classified samples is rather
large, it can be assumed that every sample represents the expected value of a Gaus-
sian distribution of known variance in feature space. This corresponds to convolv-
ing the histogram with a Gaussian kernel with zero mean and this variance. This is
a special case of a kernel density estimator (Rosenblatt 1956; Sarle 1994), which
computes a likelihood function fh(x) from samples xi , I = 1, . . . ,N that are drawn
from this distribution by convolving the samples with a kernel function K

fh(x) = 1

nh

n∑
i=1

K

(
x − xi

h

)
. (12.7)
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Fig. 12.9 Convolving the histogram of a feature distribution with Gaussian kernels with increas-
ing variance produces an increasingly smoother estimate of the underlying distribution

In the case of the Gaussian kernel (see Fig. 12.9) this function is given by

K

(
x − xi

h

)
= 1√

2πh
exp

(
−

(
x − xi

h

)2)
. (12.8)

If it is known that features are uncorrelated (e.g., after carrying out PCA analy-
sis and transforming the feature space3), the estimation of the likelihood function
becomes much easier. In this case, P(f |ck) = ∏N

i=1 P(fi |ck) and the 1D likelihood
functions can be computed separately for each feature.

Often, however, the likelihood function is constrained even more by assuming
that it is a multivariate Gaussian distribution. Variation of feature values can often
be assumed to be caused by a number of independent influences with appropriate
properties so that we can make use of the Central Limit Theorem again. Assuming
Gaussian distributions reduces necessary estimations to the computation of the ex-
pected value f̄ and the covariance matrix Σ of f. The problem is further simplified
if features are uncorrelated so that only their variances have to be estimated.

Computing the a priori probabilities P(ck) is usually easier. If it can be assumed
that the samples in the training data set are representative for the population, the ratio
of the number of samples of class ck to the total number of samples estimates P(ck).

12.3 Classification Based on Distance to Training Samples

The number of training samples may not suffice for a good estimate of the fea-
ture likelihood function. On the other hand, in most regions of the feature space
the difference between the most probable class assignment and its next competitor
is very large. Estimation errors will not affect the classification result. Hence, sev-
eral methods directly estimate the a posteriori probability using some simplifying
assumptions.

Minimum distance classification requires univariate Gaussian feature likelihood
functions with equal variances for each class. The a posteriori probability of a sam-
ple with feature vector f belonging to some class copt is maximized by selecting the

3It should be remembered that the PCA is based on an estimate of the covariance matrix. The reli-
ability of this estimate depends on the dimensionality of feature space and the number of samples.
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Fig. 12.10 The minimum
distance classifier assigns a
class to an unknown sample,
of which the distance to the
class center (the expected
value) is closest

class with average feature vector f̄k to which it is the closest (see Fig. 12.10):

copt = arg min
ck

‖f − f̄k‖. (12.9)

Computing the minimum distance classifier is slightly more costly than Bayesian
decision-making as the computational cost increases linearly with the number of
class centers. However, it does not require estimates of the likelihood function. The
estimates for average values f̄k may be improved when newly classified samples are
added to the training database.

Requiring univariate Gaussians with equal variances is rather restrictive, how-
ever, considering scatterplots of most distributions. A more accurate estimate for
the a posteriori probability can be generated when the actual distribution of train-
ing samples is taken into account. To approximate the probability density function
for some class ck at a location f in feature space, the function is assumed to be lo-
cally constant in some vicinity fδ around f. Using fδ as bin size, the normalized
histogram serves as estimate for P(ck|f).

Samples may be distributed so sparsely that the size of fδ needs to be large and
constancy can no longer be assumed. Hence, classification schemes adapt neighbor-
hood size according to local density of training samples.

The nearest-neighborhood classifier uses the smallest possible neighborhood
size (see Fig. 12.11). The neighborhood around some sample f is the smallest hy-
persphere that contains the closest training sample to f. If the class of the nearest
sample is cnear, the estimate of P(cnear|f) is 1 and P(c|f) = 0 for all other classes c.
Class cnear is assigned to the sample with features f.

Using the nearest neighbor is a fairly rough estimate of the true probabilities and
may deliver wrong results if the likelihood functions for the different classes have
a complex shape. Hence, the adaptive neighborhood can be increased to include the
first k samples. This is the k-nearest-neighborhood (kNN) classifier (see Fig. 12.12).
Given that kk of the k training samples belong to class ck , the estimate of its prob-
ability is P(ck|f) = kk/k. The kNN classifier is a voting mechanism where each of
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Fig. 12.11 The Nearest
Neighborhood classifier
computes the closest
classified sample to a sample
with unknown class and
classifies the sample
accordingly

Fig. 12.12 The kNN
classifier classifies an
unknown sample according to
the class memberships of the
k nearest neighbors (shown
here for k = 3)

the k samples votes for a certain class. The class receiving the most votes is assigned
to the sample with feature vector f.

The quality of the estimate improves with the density of samples and the num-
ber k of voting samples. Better estimates let the classification error approach that of
Bayesian classification with known a priori probabilities and known feature likeli-
hood functions.

Computing the result of a kNN classifier can be time-consuming. To find the
nearest neighbors to a given sample, distances to all samples in the training database
have to be computed. Many efficient schemes exist [e.g., the branch-and-bound
strategy in Jiang and Zhang (1993), the precomputation of a distance transform
in Warfield (1996), or the approximation in the wavelet domain in Hwang and
Wen (1998)], but the computational cost still increases with the size of the training
database. This can be critical if the accuracy of the computation is to be improved
by including classified samples into the database. The error rate may drop with time
as the average density of samples in feature space increases, but the computation
time increases. This is particularly disturbing when the user is not aware of the un-
derlying reasons since the system seems to slow down with age.
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Fig. 12.13 (a) Newly classified samples are only added to the data base, if they are close to the
class boundary. (b) Votes can be weighted with distance in order to account for their reliability
with respect to the classification decision

Continued training can be achieved at a lesser cost if density is increased se-
lectively. The strategy is based on the observation that accuracy does not need to be
equal everywhere in feature space. A sample is included in the training database, but
it is marked as passive if its classification was by unanimous vote (see Fig. 12.13a).
The kNN classifier only uses active training samples. The strategy increases the
sampling density at decision boundaries between classes where votes are seldom
unanimous. Passive samples have to be reviewed from time to time after new sam-
ples have been added to the active training database.

As the kNN classifier uses a distance metric to compute the number of votes for a
class, it may be necessary to normalize feature values with their standard deviation
before computing nearest neighbors. However, if a high variance of a feature value
indicates a higher importance of this feature, normalization should not be carried
out.

Classification based on feature values may be unreliable if
• the data values are too small,
• the vote difference is too small, or
• the sample is too far away from any classified samples in the training data.

This reliability can be measured and if it is too low, a sample may be rejected.
Votes can also be weighted with the distance to the sample, which automatically
causes reliability to be low if a sample is too far away from any classified sample
(see Fig. 12.13b).

12.4 Decision Boundaries

We already observed that estimates for a posteriori probabilities have to be most ac-
curate at decision boundaries. In fact, the decision boundary alone, that is, the curve
of equal a posteriori probability for at least two classes suffices if a method exists
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for determining on which side of such a boundary the feature vector of an unknown
sample is located. Techniques for finding and applying decision boundaries will be
discussed in this section. Most of the discussion will be based on a so-called two-
class problem (i.e., the assignment of an unknown sample to one of two classes).
Extensions to more than two classes will be discussed where appropriate.

All of the methods described below have in common that the search for a decision
boundary is formulated as an optimization task that is usually solved iteratively. In
general, the solution strategy does not guarantee that the global minimum (i.e., the
optimal decision boundary) is found. This makes the use of decision boundaries
sometimes inferior to the methods described in the previous section. The major
advantages of decision boundaries are
• that their computation considers the need for increased accuracy at the boundary

between two class regions,
• that the classification is faster requiring only constant computational cost once

the decision boundary is defined.

12.4.1 Adaptive Decision Boundaries

If classes are well separated in feature space, linear adaptive decision boundaries
may serve as classifier. A single linear decision boundary solves a two-class prob-
lem. It is represented by a linear equation in feature space

D(f,w,w0) = wTf + w0, (12.10)

where w = (w1,w2, . . . ,wN) and w0 are weights determining the position of the
hyperplane D(f,w,w0) = 0 that separates the two classes. The constant w0 is
called the bias term. It is proportional to the distance of f to the hyperplane, if
D(f,w,w0) �= 0. D(f,w,w0) is positive, if f is on the side of the hyperplane to
which its normal points. Otherwise it is negative.

Classification into two classes requires weights to be found such that classified
training samples are separated by the hyperplane. The iterative algorithm depicted
in Fig. 12.14 will compute the hyperplane if it exists (i.e., if the classes are linearly
separable; see Fig. 12.15 for an illustration).

Restricting the number of iterations irrespective of the current classification error
is necessary because of several reasons.
• The samples may not be linearly separable. In this case, no hyperplane exists and

the algorithm will only stop after the maximum number of iterations is reached.
• The correction factors c and k are set too high. The hyperplane oscillates around

the correct solution because most correction steps are pushing the hyperplane too
far in the opposite direction.

• The correction factors are set too low. The convergence to the solution is too slow
and may not reach convergence after the maximum number of iterations.
Finding c and k is critical, and it is even more so the narrower the range of

acceptable hyperplanes is (i.e., the closer the two classes are to each other).
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initialize weights w0, . . . ,wM with small random values
repeat until classification is perfect, average error is smaller than εmin or maximum number of
steps is executed

select sample f from training set and compute D(f,w,w0)

if class(f) �= sgn(D(f,w,w0)) then; with c, k > 0
wi := wi + c · class(f) · fi

w0 := w0 + c · class(f) · k
end_if

end_repeat

class(f) returns −1 if the sample belongs to the first and +1 if it belongs to the second class
sgn() is the signum function.

Fig. 12.14 Sketch of the loop for computing weights of a linear decision boundary

Fig. 12.15 If a selected
sample is not classified
correctly, the decision
boundary is moved towards
the incorrectly classified
sample

Fig. 12.16 A quadratic
decision boundary may
separate classes that are not
linearly separable

If classes are not linearly separable, they may be separated by a nonlinear
boundary. However, computing distances to a nonlinear boundary is much more
complex than computing the distance to the hyperplane. It gets simpler if the non-
linear boundary can be embedded in a higher-dimensional space in such a way
that the problem becomes linear. An example is a quadratic decision surface (see
Fig. 12.16) in two-dimensional feature space where the embedding is

D(f,w,w0) = w0 + w1u1 + w2u2 + w3u3 + w4u4 + w5u5, (12.11)

with

u1 = f1, u2 = f2, u3 = f1f2, u4 = f 2
1 , u5 = f 2

2 . (12.12)

Similar embeddings can be created for other polynomial surfaces, but the di-
mensionality of feature space increases rapidly. Hence, embeddings are usually re-
stricted to a low-dimensional feature space and polynomials of low order.
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Decision boundaries can solve multiple class problems. A decision boundary
Dij needs to be trained for every pair of classes i and j . An unknown sample is
inserted into all equations. It is classified as the one class that is not ruled out by
any of the equations. The number of decision boundaries increases with the square
of the number of classes. Furthermore, regions exist where all classes are ruled out.
Samples in such a region are either classified as undecided or submitted to a second
classifier (e.g., by computing the distance to the closest outruling class boundary).

12.4.2 The Multilayer Perceptron

Backpropagation neural networks deal with nonlinear decision boundaries and with
multiple class problems more efficiently than the decision boundaries described
above. They are also called multilayer perceptrons (MLP) as they consist of a se-
quence of perceptrons.

Perceptrons were introduced early in computer science (Rosenblatt 1958). They
are a single layer neural network with all input nodes connected to a single output
node. They model a linear decision boundary. Nevertheless, they introduce the con-
cept of a neural network and will be described in more detail before continuing to
the discussion of multilayer networks.

Any neural network can be represented by a graph with nodes—the cell body
of the artificial neural network—and edges connecting the nodes—the dendrites.
A great introduction into neural networks in general and their use for pattern recog-
nition is Bishop (1995).

A neural network is hierarchical if it does not allow cycles in the graph. A hier-
archical network is layered if nodes are organized in layers so that each node of a
given layer is only connected to nodes of the previous layer—from which it receives
input—and to nodes of the next layer—to which it gives input (see Fig. 12.17a). The
input nodes of a perceptron are connected to a single output neuron.

Nodes “fire,” that is, they give a signal through all their outgoing edges to nodes
of the next layer based on input that they receive and based on a node-specific acti-
vation function f (see Fig. 12.17b).

To mimic the behavior of a nerve cell, this firing can be implemented as a thresh-
old on the input. The input is produced by a gathering function g that integrates
input received from other nodes. Input originates from firing nodes in the previous
layer. The signal is weighted by edge-specific weights connecting the firing nodes
with the receiving node. If we label nodes by layer l and their position k in the layer
and if we assume a fully connected network, gathering is

g(nl,k) =
K(l−1)∑

i=0

wl−1,if (nl−1,i ). (12.13)
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Fig. 12.17 (a) Structure of a layered neural network. (b) Nodes fire, if the gathered signal exceeds
some threshold defined by the activation function

The number of nodes at layer l − 1 is K(l − 1). The input from nodes nl−1,0 is a
constant representing the bias. Firing is

f (nl,k) =
{

1, if g(nl,k) > t,

0, otherwise,
(12.14)

where t is a threshold that determines when to fire. Node layers are counted from 1
to L with L being the output layer. The layer L = 0 receives input from the feature
vector f

g(n1,k) =
K(0)∑
i=0

w0,ifi, (12.15)

where fi , i = 1,K(0) is the ith feature of f with length K(0) and f0 = 1 is the input
bias.

It is now easy to see that, with firing threshold t = 0, a perceptron is a linear
decision boundary. It is trained in the same fashion and solves the same kind of
classification problems.

If a sequence of perceptrons is coupled, the capability of representing various
decision boundaries increases dramatically (see Fig. 12.18). If the first layer feeds in
several nodes and a second layer is added with a single node, the decision surface at
the second layer is a convex, not necessarily closed polyhedron. Each of its bounding
surfaces is determined by the output of one of the nodes in the previous layer. By
increasing the number of nodes in the previous layer, the bounding polyhedron can
approximate any convex surface with arbitrary precision. If several classes are to
be separated, extra nodes per class representing their own decision boundary are
created in the second layer.
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Fig. 12.18 (a) A single layer enables linear separation in feature space. (b) Adding nodes in an
additional (hidden) layer, arbitrary convex decision boundaries can be represented. (c) With two
hidden layers, convex figures can be combined to represent arbitrary concave decision boundaries

Arbitrary concave decision boundaries can be represented by adding a third layer.
By addition and subtraction of the convex figures from the previous layer any de-
cision boundary can be approximated with arbitrary precision, provided that the
number of nodes in the first and second layers is arbitrarily large.

The middle layer of a three-layer perceptron is called the hidden layer. Although
it can be shown that three layers suffice to approximate any decision boundary, mul-
tilayer perceptrons may contain more than one hidden layer. This accommodates
different views on the data since each new layer adds a level of abstraction to the
description of the decision boundary. The first layer separates space by hyperplanes,
the second layer combines hyperplanes to convex figures, the third combines these
to convex or concave figures, the fourth combines concave figures, and so on. In-
creasing the number of nodes within a layer adds capabilities to describe details of
the decision boundary at the current level of abstraction. If a problem is known to
be separable by a sequence of decisions, it is often advisable to choose a number of
layers that corresponds to the number of hierarchy levels of this sequence.

Let us assume that the K(L) nodes of the last layer L of a multilayer perceptron
represent classes into which samples in feature space shall be sampled. These nodes
could code the classification result in any convenient way. One could, for instance,
use a binary code so that class membership to some class k would be a node pattern
of the output nodes, which is the binary code of k. A simpler way would be that
the desired output for a training sample belonging to class k is a vector y with
K(L) elements yi such that yi = 1 if i = k and yi = 0 otherwise. If the network
is untrained, the output from an input feature vector x will differ from the desired
pattern y. The task is to find weights wl,k that minimize ‖y − x‖2 for all samples of
the training data set.

Nothing has been said so far about the training of a multilayer perceptron. The
simple algorithm for linear decision boundaries is not applicable. In turns out, how-
ever, that a generic method exists that computes a gradient descent on the weights
for an arbitrary multilayer perceptron. It requires that the error function is differen-
tiable. Hence, the thresholding in the activation function is replaced by the sigmoid
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Fig. 12.19 Replacing a threshold-based activation function by the differentiable sigmoid function
enables training of the backpropagation by gradient descend

function (see Fig. 12.19)

f (nl,k) = 1

1 + exp(c · g(nl,k))
. (12.16)

It introduces fuzziness into the decision process. The function asymptotically
approaches 0 for f () → −∞ and it approaches 1 for f () → ∞. The rate of change
is fastest at the origin. The steepness at the origin is controlled by c. The derivative
of the sigmoid function is

f ′(nl,k) = f (nl,k)
(
1 − f (nl,k)

)
. (12.17)

It has been shown that the partial derivatives of the error function with respect to
the weights can be computed by backpropagating the error from the output nodes
into the network.4 Iterative minimization starts with a feedforward step at each itera-
tion n. It produces the output vector x(n) using the current weights. Backpropagation
then distributes the error correction, beginning at the output layer, back into the net-
work. First, the derivative of the error ‖x(n) −y‖ with respect to the weights between
the previous and last layers is computed. These weights are corrected accordingly
and used to propagate the error into the previous layer. Error correction at this layer
is again done by computing and applying partial derivatives of the error. The weight
update of the current iteration terminates when the input layer is reached. For all but
the last layer, the computation of the derivative requires the computation of deriva-
tives in the higher layers. A sketch of the algorithm is depicted in Fig. 12.20.

The learning rate λ controls the speed with which learning converges. Large
values for λ accelerate learning, but the probability of oscillation around a solution
increases as well. Since gradient descent may become stuck in a local minimum,
starting with a good guess for the weights improves the chances of convergence to
a satisfactory solution. In the absence of such knowledge, random values for the
weights should be chosen to avoid unwanted bias.

4The proof of this is a bit lengthy and will not be shown here. For a detailed treatment of backpropa-
gation networks see Bishop (1995). The reasons why backpropagation produces a gradient descent
are, briefly, the following: At each node, the gathering function sums up weighted results from the
previous node and the derivative of a sum of functions is the sum of its derivatives. Fortunately, for
computing the derivative of some weights, all previous weights can be treated as constants in the
derivation. Applying the activation function to the sum is the application of a function to another
function so that the chain rule applies to its derivative.
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Initialize all weights w
(0)
l,k to small random numbers

choose a positive constant λ (the learning rate)
for all samples do

set f0,1, . . . , f0,K(0) to feature values of selected sample
compute output vector x1, . . . , xK(L) at layer L with weights w

(n)
l,k

compute partial derivatives at L: δ
(n)
L,k = x

(n)
k (1 − x

(n)
k )(x

(n)
k − yk)

for all layers l = L − 1, . . . ,1 do

δ
(n)
L,k = f

(n)
l,k

(
1 − f

(n)
l,k

)K(l)∑
i=1

δ
(n)
l,i w

(n)
l,i

end_for
set w

(n+1)
l,k = w

(n)
l,k − λ · δ(n)

l,k f
(n)
l,k for all l, k

until weight change is insignificant

Fig. 12.20 Sketch of the backpropagation algorithm that realizes a gradient descent on the weights
in the network

Convergence may be slow, especially if the network consists of many layers.
Error distribution at every layer spreads the error more and more uniformly. Adding
a momentum term to the correction may improve convergence speed:

w
(n+1)
l,k = w

(n)
l,k − λ · δ(n)

l,k f
(n)
l,k + α

[
w

(n)
l,k − w

(n−1)
l,k

]
. (12.18)

The momentum term [w(n)
l,k −w

(n−1)
l,k ] weighted by α pushes the result toward the

direction of change from the previous iteration.
There are three kinds of failures that may happen when a backpropagation net-

work is trained.
• The data are not separable because the number of layers and nodes is too small

for an appropriate approximation of the decision boundary.
• A local minimum may be found that does not optimally classify the data. The

reason could be
– an inadequate network topology (relation of the number of layers to the number

of nodes in the layers),
– a learning rate that is too high or too low,
– an initialization that is too far from the global optimum.

• The decision boundary overadapts to the training data (see Fig. 12.21). It perfectly
separates training samples but fails to separate the test data. The reasons for this
are
– too many nodes and layers so that the network does not properly generalize,
– too many iterations in the optimization so that the boundaries approximate the

training samples too closely.
Iterative optimization is stopped based on the average error on the test data set.

The test error usually starts to increase while the training error still decreases which
signifies loss of generalization (see Fig. 12.22).
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Fig. 12.21 If training is
carried out for a prolonged
time, the large number of
degrees of freedom of a
backpropagation may cause
the system to over-adapt to
the training data

Fig. 12.22 The criterion for
stopping the learning should
be chosen based on the
classification error on the test
data

To find just the right number of nodes and layers for a proper generalization,
an initial network may be repeatedly changed by removing nodes. Convergence of
an optimally generalizing network can be further improved when edges are removed
that carry very low weights. These edges mostly contribute noise to the classification
result.

12.4.3 Support Vector Machines

More than one boundary may separate the samples of a classification problem. Sup-
port vector machines (SVM) are able to select among several possibilities the one
boundary that maximizes the distance to the samples (see Fig. 12.23 for the prin-
ciple). An introduction to SVMs is Steinwart and Christmann (2008), a detailed
in-depth view by two of the important contributors in the field is Schölkopf and
Smola (2002).

Maximizing sample distances from the decision boundary is a useful property
considering that training data only sample the true distribution. It reduces the chance
of misclassification.

Linear support vector machines solve a two-class problem. Consider the clas-
sification problem for linear decision boundaries in (12.10). The classifier can be
rewritten such that

D(f,w,w0) · d > 0, d = class(f) ∈ {−1,1}. (12.19)

This can be reformulated as

d · (wTf + w0
) ≥ 1, (12.20)
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Fig. 12.23 Different, perfect separations of the training data lead to different classifications of
unknown samples

Fig. 12.24 Support vector machines maximize the distance from the decision boundary. The sam-
ples that define the course of the decision boundary are the support vectors

since weights for strictly separable sample distributions can always be properly
scaled to make the minimum greater than one. The distance r of some sample f
from the hyperplane is

r = wTf + w0

‖w‖ . (12.21)

The minimum distance for all samples fi is then

μL = min
i

( |wTfi + w0|
‖w‖

)
. (12.22)

The training task is to find a hyperplane that maximizes μL. Given such a hyper-
plane, some samples fb will have exactly this distance μL to the hyperplane, that is,

rs =
⎧⎨
⎩

1
‖ws‖ , if db = +1,

−1
‖ws‖ , if db = −1.

(12.23)

These vectors fb are called the support vectors (see Fig. 12.24). Hence, no sam-
ples are in a corridor of width 2/‖w‖ implying that ‖w‖

2 = 1
2 wTw subject to the

constraint (
wTfi + w0

)
di ≥ 1 ⇒ (

wTfi + w0
)
di − 1 ≥ 0 (12.24)

has to be minimized for finding the optimal decision boundary.
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Using Lagrange multipliers α for solving a constrained optimization task delivers

J (w,w0,α) = 1

2
wTw −

N∑
i=1

αi

(
di

[
wTfi + w0

] − 1
)
. (12.25)

A series of operations is needed to arrive at this expression. Details can be found
in the literature about support vector machines (e.g., Schölkopf and Smola 2002).
The goal is to find a saddle point for J (w,w0, a). It is done by minimizing J with re-
spect to w and w0 keeping α fixed, hence, computing partial derivatives with respect
to w and w0 and setting them to 0. Equating the derivatives of w to zero delivers

w =
N∑

i=1

αidifi . (12.26)

The value of w is a weighted sum of the feature vectors. Actually, most of the
weights are zero and only the support vectors influence the results.

After computing w and w0, the values for α are determined. It requires mini-
mization of

Q(α) = −1

2

N∑
i=1

N∑
j=1

αiαjdidj

(
(fi )Tfj

) +
N∑

i=1

αi (12.27)

subject to the constraint that
∑N

i=1 αidi = 0 (resulting from minimization for w0)
and αi ≥ 0. This can be done using methods of linear algebra on constrained opti-
mization.

The result is then inserted into (12.26) for delivering w. The bias term w0 is
computed by choosing a support vector fb and computing

wTfs + w0 = 1 ⇔ w0 = 1 − wTfs . (12.28)

Although this sounds difficult, it is nothing but the application of standard linear
algebra techniques. Linear support vector machines have the advantage over linear
decision boundaries that they assert an optimal quality of the solution. This is prob-
ably the reason why they are popular, especially if few training samples exist (as it
is often the case in medical image analysis).

Nonlinear decision boundaries can be computed similarly to the strategy dis-
cussed earlier by embedding the nonlinear space in a higher-dimensional linear
space. However, the beauty of using support vector machines lies in (12.27) for
computing the Lagrange multipliers. If the original feature space is mapped on some
higher-dimensional space Φ(f) = u, the new equation to be optimized becomes

Q(α) = −1

2

N∑
i=1

N∑
j=1

αiαjdidj

(
(ui )

Tuj

) +
N∑

i=1

αi

= −1

2

N∑
i=1

N∑
j=1

αiαjdidj

(
Φ(fi )TΦ(fj )

) +
N∑

i=1

αi. (12.29)
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In other words, just the dot product Φ(fi )TΦ(fj ) has to be generated instead of
spanning the space itself. If a simple function K(fi , fj ) = Φ(fi )TΦ(fj ) exists, it
replaces the dot product in (12.29). This function is called a kernel function. It en-
ables to find a nonlinear decision boundary by embedding f in a higher-dimensional
space without actually carrying out the optimization in this space. This is sometimes
called the kernel trick.

A number of such kernel functions exist and are used for nonlinear support vector
machines. A polynomial surface with degree d is optimized using

K≤d(x, y) = Φ≤d(x) • Φ≤d(y) = (
1 + xTy

)d
. (12.30)

Hence, the quadratic would be given by

K≤2
(
(x1 x2 ), (y1 y2 )

) = (
1 + xTy

)2

= (1 + x1y1 + x2y2)
2

= 1 + x1y1 + x2y2 + x2
1y2

1

+ 2x1x2y1y2 + x2
2y2

2 . (12.31)

The dot product does not even have to be defined in Euclidean metrics. The
following kernel (also known as radial base functions with variance σ 2)

Kσ (x, y) = Φσ (x) • Φσ (y) = exp

(
−‖x − y‖2

2σ 2

)
(12.32)

uses the angle between support vectors as metrics. Samples are classified according
to their similarity to the support vectors. Results are somewhat similar to that of the
discriminant functions discussed in the next section and to the association networks
used for clustering, discussed in Sect. 7.2.3.

Originally, classification by support vector machines requires that training data
sets are separable. Otherwise, no decision boundary exists that can be optimized.
If some of the data are distorted so that features overlap in feature space, slack
variables ξi can be introduced that make the problem separable again and therefore
solvable.

Slack variables push the feature locations away from the boundary. This is done
by modifying (12.24) to (

wTfi + w0
)
di ≥ 1 − ξi . (12.33)

It was shown by Cortes and Vapnik (1995) that the introduction of slack variables
adds an extra term to (12.25) but does not change the kernel property of (12.27).

12.5 Classification by Association

Adaptive linear discriminant functions bear similarities to the minimum distance
classifier in that their classification criterion is based on the correspondence to a
model feature vector given by weights wk,0, . . . ,wk,N for a class k. Discriminant
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Fig. 12.25 Adaptive
discriminant functions can be
thought of as vectors in a
feature space, where an
additional feature f0 has been
added to represent the bias
term. Classification is then by
association to the most
similar discriminant function

initialize weights w0, . . . ,wM with small random values
repeat

select sample f from training set
compute all Dk(f)
if the sample of class Ci is erroneously classified as Cj then

for all features m = 1, . . . ,M do
wi,m := wi,m + c · fi,m

wi,0 := wi,0 + c · k
wj,m := wj,m − c · fi,m

wj,0 := wj,0 − c · k; with c, k > 0
end_for

end_if
until classification is perfect or average error < emin

or steps > max_steps

Fig. 12.26 Sketch of the algorithm to compute weights from training features for adaptive dis-
criminant functions

functions have to be defined for each class

Dk(f) = wk,0 + wk,1f1 + wk,2f2 + · · · + wk,NfN . (12.34)

The classification of an unknown sample with feature vector f happens by insert-
ing f in each of the K discriminant functions and selecting the class k for which
Dk(f) is maximal (see Fig. 12.25).

Training of a set of discriminant functions is similar to the training of decision
boundaries. Discriminant functions are evaluated for classified training samples. If
the incorrect class is assigned to a training sample, its corresponding discriminant
function is changed to deliver smaller values and the discriminant function of the
true class is changed to deliver higher values. A sketch of the algorithm is depicted
in Fig. 12.26.

The similarity to the minimum distance classifier is due to the fact that computing
the discriminant function is similar to measuring a non-Euclidean distance between
features f and the weight vector wk = (wk,1wk,2, . . . ,wk,N ) since

Dk(f) = (wk)
Tf + wk,0 = ‖wk‖ · ‖f‖ · cos(∠wk, f) + wk,0, (12.35)
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with cos(∠wk, f) being the distance measure. The bias can be integrated into the
feature vector and the weight vector by setting f′ = (1f1f2, . . . , fN) and w′

k =
(wk,0,wk,1,wk,2, . . . ,wk,N ).

The discriminant functions can be turned into a distance classifier if the feature
vectors and initial weights are normalized by letting fnorm = f′/‖f′‖ and wk,norm =
w′

k/‖w′
k‖. In this case, weights need to be normalized after each update. The trained

classifier then decides based on the angle between wk,norm and fnorm.
The result is similar to a decision on distance between f and a class center of

the minimum distance classifier presented earlier, except that the discriminant vec-
tor wk,norm is trained based on a sample distribution. It also bears similarities to
a support vector machine using radial base functions as explained in the previous
section.

A discriminant function may also be used in a different way. If some order with
respect to class membership can be assumed to be reflected in feature values of its
samples (e.g., classes that represent stages of some process), a single function may
suffice to discriminate between classes.

The approach is simple. Given V samples with N features, where the true class
of a sample fi = (fi1, fi2, . . . , fiN ) is represented by some number di , a function is
searched that minimizes the distance (D(fi ) − di)

2 for all samples

wopt = arg min
w

E(w, f) = arg min
w

V∑
i=1

(
D(fi ,w) − di

)2 (12.36)

with

D(fi ,w) = wTfi + w0. (12.37)

Since the function is quadratic and nonnegative, parameters can be computed
directly without requiring an iterative method and the result is guaranteed to be the
global minimum. The desired weights wi are those for which the partial derivative of
the error function E is 0. The classifier is called minimum square error discriminant
function.

It may seem that, if a single linear discriminant function solves the classifica-
tion problem, it should be the eigenvector with maximal eigenvalue of a PCA. This
is not necessarily the case because the PCA does not maximize class separability.
However, if PCA indicates that reduction of a high-dimensional feature space to
one or two dimensions covers most of the variance in the samples, it makes sense to
investigate whether a minimum square error discriminant function can be applied.

12.6 Clustering Techniques

Clustering is sometimes called class detection since it analyzes sample distribution
in feature space. Cluster members may be inspected after clustering and this may
help to detect classes. Many different clustering techniques exist (Jain and Dubes
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Fig. 12.27 Agglomerative clustering initially treats each sample as its own cluster. It then merges
always the two closest clusters until all clusters are merged. The merging process is represented in
a tree structure. The user then selects the desired number of clusters

1988; Xu and Wunsch 2005), of which some popular techniques for medical data
will be described in the following sections.

The clustering of data is carried out in a top-down or a bottom-up fashion on un-
classified samples. Examples of top-down clustering schemes have been presented
in Sect. 7.2. The k-means clustering described in Sect. 7.2.1 can also be applied
to high-dimensional sparse feature spaces, while mean-shift clustering (Sect. 7.2.2)
gets very slow with increased dimension of feature space.

In this chapter, we will describe two further clustering techniques that are partic-
ularly suitable if the number of samples is comparatively low.

If clustering is applied for class detection it is sometimes called unsupervised
classification and the process is called unsupervised training, as it does not require
assignment or checking the class membership of samples.

12.6.1 Agglomerative Clustering

Bottom-up clustering is also called agglomerative clustering. Initially, every sample
is its own cluster. The pairs of closest clusters are then merged until the expected
number of clusters is reached. If this is unknown, agglomeration continues until
a single cluster is generated. Merging is documented by a binary tree with leaves
being the initial clusters (see Fig. 12.27). A parent node is created from two nodes
in the tree if their corresponding clusters are merged.

Storing the history of agglomeration in the tree enables later analysis of generated
clusters. Some classes may fall into more than one cluster. Going up and down in
the agglomeration tree and selecting and inspecting members of clusters helps to
understand the true distribution of class members in clusters.
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Fig. 12.28 Different kinds of distance measures between clusters: (a) single linkage, (b) complete
linkage, (c) average linkage

Agglomerative clustering requires that the distance d(C1,C2) between two
clusters C1 and C2 can be computed. Different measures have been used (see
Fig. 12.28).
• Single linkage defines the distance between two classes by the distance between

its closest members.
• Complete linkage defines the distance by that of its furthest members.
• Average linkage defines the distance by the distance between centroids of two

clusters.
Agglomerative clustering does not always delivers as good results as

d(M(C1,C2),C3) �= d(C1,M(C2,C3)), where M() indicates the merging of two
clusters. Hence, final clustering depends on the early decisions.

12.6.2 Fuzzy c-Means Clustering

Since clustering for class detection is provisional, it may be appropriate to model
membership in a fuzzy way. Again, several different algorithms exist (see, e.g.,
Baraldi and Blonda 1999 for a survey) of which we present the base method.

A sample may belong to different clusters with different degrees of member-
ship. The method is known as fuzzy c-means clustering. The degree of membership
is given by the partition matrix U, where each entry uij determines the degree of
membership of a sample i of N samples with feature vector fi to cluster j of C

clusters (see Fig. 12.29). The membership degree is normalized to a range of [0,1]
so that the following two conditions must hold for the values uij in the partition
matrix.
• Total membership for each sample to clusters 1 to C:

∑C
j=1 uij = 1.

• No empty clusters: 0 < 1
N

∑N
i=1 uij < N .

The objective is to create a good partitioning with compact clusters based on a
compactness definition (see Fig. 12.30). Computing compactness requires a distance
metric d(fi , fj ) to exist (e.g., the Euclidean distance). Compact clusters are created
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Fig. 12.29 Example for a
partition matrix.
A membership degree is
assigned to each sample for
each class

Fig. 12.30 The goal of fuzzy clustering is to find a partitioning with compact clusters

if the average distance between fuzzy members of a cluster is minimal:

Uopt = arg min
U

C∑
j=1

∑N
k,l=1 u2

kj u
2
lj d(fk, fl )

2
∑N

i=1 u2
ij

. (12.38)

Computing a fuzzy clustering is particularly simple if compactness is defined by
the distance of a sample to its cluster center. A cluster center cj for a given partition
matrix U is the weighted sum of sample locations in features space. The weighting
w(uij ) is a function of the membership degree uij of a sample i to a cluster j :

cj = 1∑N
i=1 f (uij )

N∑
i=1

w(uij )fi . (12.39)

The iterative process starts with an initial partition matrix that could be generated,
for example, from smoothing a hard partitioning by a Gaussian kernel. The objective
is to find Uopt such that the sum of weighted distances uij‖fi −cj‖ between features
fi and cluster centers cj is minimal. The function to be minimized is now

Uopt = arg min
U

N∑
i=1

C∑
j=1

um
ij‖fi − cj‖2, 2 ≤ m < ∞. (12.40)

The parameter m controls the fuzziness of the distribution. With m approaching
infinity, the algorithm turns into hard clustering.
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The matrix Uopt can be found by gradient descent in the space of the uij . The
step for updating uij at iteration n is

u
(n+1)
ij = 1

∑C
k=1(

‖fi−c(n)
i ‖

‖fi−c(n)
k ‖ )

2
m−1

, (12.41)

where c(n)
j is a cluster center at iteration (n) defined by weighted clustering

c(n)
j = 1∑N

i=1(u
(n)
ij )m

N∑
i=1

(
u

(n)
ij

)mfi . (12.42)

Optimization terminates if the change between partition matrices of subsequent
iterations falls below some threshold. A matrix norm such as the maximum norm
on matrices may be used to compute the stopping criterion:

∥∥U(n) − U(n+1)
∥∥ < ε with

∥∥U(n) − U(n+1)
∥∥ = max

ij

∥∥u
(n)
ij − u

(n+1)
ij

∥∥. (12.43)

Fuzzy c-mean clustering is often intended to lead to a (fuzzy) classification of
the samples. Hence, the number of clusters usually corresponds to the number of
classes to be differentiated. Using gradient descent for optimization requires the
initial partition matrix to be close to the final result.

12.7 Bagging and Boosting

Classification based on training from examples can be difficult if the decision
boundary between classes is complex. The number of training samples may be insuf-
ficient to generate an appropriate classifier. Bagging and boosting are two techniques
to arrive at a good classifier nonetheless by applying a kind of divide-and-conquer
strategy. Instead of training a strong classifier that correctly classifies all samples, a
set of weak classifiers is searched where each sample in the training set is classified
by the majority of the classifiers. The advantage of combining weak classifiers lies
in the fact that the absolute accuracy that is requested from the strong classifier is
replaced by a relative accuracy of a combination of weak classifiers. A comparison
of the performance of bagging and boosting algorithms can be found in Bauer and
Kohavi (1999).

The main difference between bagging and boosting is that bagging generates a
voting scheme, where each classifier votes for a class and the class with the majority
of votes wins, while boosting generates a sequence of classifiers, where each classi-
fier learns from the previous classifier and votes are weighted according to classifier
quality. Both methods have in common that a given classification algorithm (e.g.,
kNN classification) is trained on a number of subsets of the training data producing
the different classifiers.
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Input: training set S of labeled pairs (si , li ), i = 1,N , classification scheme CS,
number of trials T

Output: combined classifier C∗

S′ = S

initialize weights w(si) = 1.0, i = 1,N

for i = 1, T do begin ; create weak classifiers
εi = 1.0
k = 0
while εi > 0.5 and k < 25 do begin ; classifiers must have a minimum quality

; try up to 25 times to achieve this
Ci = computeClassifier(S′,CS)

εi = 1

N

∑
sj ∈S′ :Ci (sj )�=lj

w(sj )

k = k + 1
endwhile
βi = εi/(1.0 − εi)

for j = 1,N do begin ; error-based sample weighting
if Ci(xj ) = lj then w(xj ) = w(xj )/(2εi)

else w(xj ) = w(xj )/(2(1.0 − εi))

endfor
endfor

C∗(x) = arg max
l∈L

∑
i:Ci (x)=l

log
1

βi

; final classifier

Fig. 12.31 Sketch of the AdaBoost algorithm (adapted from Freund and Schapire 1996 and Bauer
and Kohavi 1999)

Bagging (bootstrap aggregating), presented by Breiman (1996), repeatedly se-
lects subsets Si from the training set and trains a classifier Ci based on this subset.
The final classifier tries then all classifiers Ci on the unknown sample and assigns
the class to it that receives the most votes.

Boosting was introduced by Schapire (1990) and was extended to AdaBoost
(Adaptive Boosting) in Freund and Schapire (1996). AdaBoost, used in the con-
text of medical image analysis (e.g., by Pujol et al. 2003; Ochs et al. 2007; and
Takemura et al. 2010), trains each classifier on the complete training data. A sketch
of the algorithm is depicted in Fig. 12.31.

Different classifiers are generated by weighting the samples based on the training
error after a classifier has been trained. The weighted sample set is the submitted
to the next classifier and weighted again. Samples receive higher weights for the
next classifier if they were not classified correctly by the current classifier. Hence,
the next classifier will be trained to remove errors not corrected sufficiently by all
previous classifiers. The final classifier combines then, as in the case of bagging,
the weak classifiers and decides by majority vote. However, different to bagging,
classifier votes are weighted by their error rate.

While bagging may be carried out in parallel, AdaBoost is inherently sequential
since its classifiers learn from their predecessors. Other boosting algorithms exist
that define the search for the final classifier as an optimization task that can be solved
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in parallel. An example is LPBoosting (Demiriz et al. 2002) that defines boosting
for linear decision boundaries as a linear programming task and that has been used
to analyze cortical thickness from MRI for autism diagnosis (Singh et al. 2008).

12.8 Multiple Instance Learning

Although the scenario of multiple instance learning (MIL) is attractive and it is being
investigated by many groups, it has currently few applications in analysis tasks in
medical imaging such as Computer Aided Diagnosis, see Fung et al. (2006), Bi and
Liang (2007). Hence, it will be briefly described.

The first application domain for MIL was drug design (Dietterich et al. 1997;
Maron and Lozano-Péres 1997). It was investigated whether certain molecules bind
or not. Molecules may have different spatial configurations. The binding ability de-
pends not only on the molecule but also on the configuration. Hence, when observ-
ing relevant features of a molecule by some imaging technique, they may vary to a
great extent for the same kind of molecule.

Each of the observations is treated as an instance of the same type of molecule
that belongs to one of two classes (“binding” or “not binding”). Assigning this class
membership to the molecule type to create a training set would result in distribution
functions that overlap to a large extent as it is not part of the model that only some of
the instances of a binding molecule may actually bind. The problem is represented
better if all the instances of a molecule are treated as a bag of samples that is either
labeled “binding” or “not binding.” The former is known to contain at least one
binding instance while the latter does not contain any binding instance. The task is
to extract a decision boundary from a set of training bags that separates instances of
the one class from those of the other class.

The problem can be put in a more abstract form. Two types of bags B exist
in MIL: Positive bags B = 1 contain at least one sample s with class(s) = 1 and
negative bags B = −1 contain only samples s with class(s) = −1. Having positive
and negative bags is actually the key to solve the MIL problem. An optimal deci-
sion boundary will separate all samples from negative bags from positive samples
such that at least one member of all positive bags is separated from the negative
bags.

Since the positive samples in positive bags are unknown, different strategies can
be and are used to arrive at a solution under various a priori assumptions (see
Fig. 12.32). A decision boundary enclosing as many positive samples and as few
negative samples as possible is searched when positive bags are assumed to be
largely made up of positive samples. A nonoverfitting decision boundary enclosing
no negative samples but as many positive samples as possible is searched if nega-
tive samples are reliable. A decision boundary enclosing dense clusters of positive
samples is searched when it is assumed that only few feature value combinations
constitute the unknown positive range (which is the case in searching for binding
configurations).



410 12 Classification and Clustering

Fig. 12.32 In multiple instance learning, positive bags (circles) contain at least one positive in-
stance, while negative bags (squares) contain only negative instances. Finding a decision boundary
requires additional assumptions. Examples are to find the rectangle (dashed lines) that encloses
the most instance of positive bags without containing instances from negative bags or the smallest
region that contains at least one instance of each positive bag (gray region)

12.9 Concluding Remarks

Classification in sparse feature space mostly attempts to create a decision criterion
without estimating likelihood functions. The strategy is successful when suitable
features cluster well. Hence, errors in computing class membership will only result
from samples close to the decision boundary.

Since the reliability and speed of most classification methods increase with the
decreasing dimensionality of feature space, feature reduction should precede clas-
sification. This can be carried out with and without considering the distribution of
classified samples in feature space.

A classification technique should be chosen based on knowledge about distri-
bution characteristics in feature space. Simple techniques such as linear decision
boundaries or linear support vector machines generalize well and are less depen-
dent on initialization. Methods allowing for complex decision boundaries help to
deal with data that are difficult to classify. They may, however, have the tendency to
overadapt to training data.

12.10 Exercises

• Why is it difficult to derive a likelihood function from a sparsely populated feature
space? Why does it help when features are independent of each other?

• When is it a disadvantage to use PCA for feature reduction? Please explain how
training data can be used to arrive at a better feature reduction. Does this have
limitations? What are they?

• How can independent component analysis be used for classification? What con-
ditions must be met so that independent components can be found?
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• Develop a situation where a kNN classifier would be preferred over a linear de-
cision boundary. Discuss the attributes of this classification problem that lead to
the preference.

• How can a kNN classifier “learn” from confirmed results? What is a potential
disadvantage of this? And how can this be dealt with?

• What is the assumption under which a minimum distance classifier delivers the
correct Bayesian decision (i.e., delivers the same result than that from evaluating
the a posteriori probability)?

• Why is it useful to reject samples from classification by a kNN classifier? Which
samples are rejected?

• How is classification by linear decision boundary related to classification based
on the Bayesian theorem?

• How can the linear decision boundary approach be extended to nonlinear bound-
aries? What are the limitations of this approach?

• What kind of decision boundaries can be generated by a backpropagation network
with two layers (hence, without a hidden layer) if the number of node per layer is
not limited?

• Why is it necessary to use the sigmoid function as the activation function instead
of thresholding? What effect does this have on classification?

• What is the optimization goal when training a support vector machine? What are
the support vectors?

• What is meant by the “kernel trick”? How does it extend the capabilities of a
support vector machine?

• How can a support vector machine be made to simulate an association network?
• How can an SVM be extended to deal with overlapping training samples?
• Which strategy should be followed if the number of clusters is not known for

agglomerative clustering? How can clusters then be identified?
• How is fuzziness encoded in fuzzy clustering? What is the goal of finding an

optimal fuzzy clustering?
• What is the advantage of using bagging instead of a single trained classifier? In

what kind of distribution in feature space does bagging do particularly well?
• What is the main difference between bagging and boosting? Why should this be

advantageous for using boosting?

References

Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev: Comput Stat
2(4):433–459

Baraldi A, Blonda P (1999) A survey of fuzzy clustering algorithms for pattern recognition. Part
I+II. IEEE Trans Syst Man Cybern, Part B, Cybern 29(6):778–801

Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: bagging,
boosting and variants. Mach Learn 36:105–142

Bi J, Liang J (2007) Multiple instance learning of pulmonary embolism detection with geodesic
distance along vascular structure. In: IEEE conf computer vision and pattern recognition,
CVPR’07, pp 1–8

Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford



412 12 Classification and Clustering

Blanco Y, Zazo S (2003) New Gaussianity measures based on order statistics: application to ICA.
Neurocomputing 51:303–320

Breiman L (1996) Bagging predictors. Mach Learn 24:123–140
Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20(3):273–297
Demiriz A, Bennett KP, Shawne-Taylor J (2002) Linear programming boosting via column gener-

ation. Mach Learn 46(1–3):225–254
Dietterich TG, Lathrop RH, Lozano-Péres T (1997) Solving the multiple-instance problem with

axis-parallel rectangles. Artif Intell 89(1–2):31–71
Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–

188
Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Machine learning:

Proc of the 13th national conference, pp 148–156
Fung G, Dundar M, Krishnapuram B, Bharat Rao R (2006) Multiple instance learning for computer

aided diagnosis. In: Proc 19th ann conf advances in neural information processing, pp 425–432
Hwang WJ, Wen KW (1998) Fast kNN classification algorithm based on partial distance search.

Electron Lett 34(21):2062–2063
Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural

Netw 13(4–5):411–430
Hyvärinen A, Hurri J, Hoyer PO (2009) Independent component analysis. In: Natural image statis-

tics. Computational imaging and vision, vol 39, 2nd edn, pp 151–175
Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall, New York
Jiang Q, Zhang W (1993) An improved method for finding nearest neighbors. Pattern Recognit

Lett 14:531–535
Maron O, Lozano-Péres T (1997) A framework for multiple instance learning. In: Proc conf on

advances in neural information processing systems (NIPS), pp 570–576
Ochs RA, Goldin JG, Abtin F, Kim HJ, Brown K, Batra P, Roback D, McNitt-Gray MF, Brown

MS (2007) Automated classification of lung bronchovascular anatomy in CT using AdaBoost.
Med Image Anal 11(3):315–324

Pujol O, Rosales M, Radeva P, Nofrerias-Fernández E (2003) Intravascular ultrasound images
vessel characterization using AdaBoost. In: Functional imaging and modeling of the heart.
LNCS, vol 2674, pp 242–251

Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization
in the brain. Psychol Rev 65(6):386–408

Rosenblatt M (1956) Remarks on some non-parametric estimates of a density function. Ann Math
Stat 27:832–837

Sarle WS (1994) Neural networks and statistical models. In: Proc. 19th ann SAS users group intl
conf, pp 1–13

Schapire RL (1990) The strength of weak learnability. Mach Learn 5(2):197–227
Schölkopf B, Smola AJ (2002) Learning with kernels—support vector machines: regularization,

optimization and beyond. MIT Press, Cambridge
Singh, Mukherjee L, Chung MK (2008) Cortical surface thickness as a classifier: boosting for

autism classification. In: Medical image computing and computer-assisted intervention, MIC-
CAI 2008. LNCS, vol 5241, pp 999–1007

Steinwart I, Christmann A (2008) Support vector machines. Springer, Berlin
Takemura A, Shimizu A, Hamamoto K (2010) Discrimination of breast tumors in ultrasonic images

using an ensemble classifier based on the AdaBoost algorithm with feature selection. IEEE
Trans Med Imaging 29(3):598–609

Warfield S (1996) Fast k-NN classification for multichannel image data. Pattern Recognit Lett
17(7):713–721

Xu R, Wunsch D II (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–
678
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Abstract
Structures to be analyzed in medical images are usually inaccessible. The suffi-
ciency and correctness of employed domain knowledge cannot be proven. Hence,
validation of an analysis method estimates the correctness of results from tests
on a limited number of samples. For carrying out the validation suitable samples
need to be selected, comparison measures have to be chosen that reflect the qual-
ity of the result, and a norm is required against which the method is tested. These
aspects are realized differently for a delineation task, a detection task, or a regis-
tration task. Requirements, means, and limitations of validation will be discussed
in this chapter.

Concepts, notions and definitions introduced in this chapter

› Overlap and outlier measures for delineation tasks: oversegmentation and
undersegmentation, Dice and Jacard coefficient, Hausdorff distance

› The ROC curve
› Success in detection: type I and type II errors, sensitivity and specificity,

precision and recall rates
› Measuring registration errors
› Ground truth: manual delineation, hardware and software phantoms
› Training and test data
› Significance: t-test and Welsh test
› The p-value

An analysis method needs to be tested with respect to the quality with which results
are achieved. Unfortunately, a direct way to prove the quality does not exist since
the subjects of analysis are not accessible except by indirect means. It results in a
number of characteristics of a validation procedure.

K.D. Toennies, Guide to Medical Image Analysis,
Advances in Computer Vision and Pattern Recognition,
DOI 10.1007/978-1-4471-2751-2_13, © Springer-Verlag London Limited 2012
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• Validation is by statistical means because the quality of an analysis procedure is
tested on a number of sample cases. The outcome is assumed to be representative
for all cases.

• Validation is relative, as it gives information about the current method with re-
spect to some other way to generate the analysis results.

• Validation is indirect by comparing features that a correct analysis method should
produce instead of comparing analysis methodologies.
Even if validation shows success, the underlying assumptions of the validation

must not be forgotten. Validation by statistical means, for instance, requires a rep-
resentative set of data. It may be difficult to show to what extent a chosen set rep-
resents the totality of all data sets. A validation with respect to a reference method
may be inconclusive if this method is inferior to other methods for the same analysis
task. Finally, validation based on some criterion (e.g., the volume of a segment) may
not reflect the attributes that are needed for the application of the method. Hence,
the documentation of the validation scenario is an integral part of any validation.
It gives a potential user of a method the chance to judge whether the validation is
appropriate for his or her purpose.

For image-guided surgery that requires segmentation, registration, as well as ob-
ject detection, Jannin et al. (2002) presented a number of characteristics that should
be addressed and documented.
• Accuracy measures the deviation of results from the known ground truth.
• Precision and reproducibility measure the extent to which equal or similar input

produces equal or similar results.
• Robustness characterizes the change of analysis quality if conditions deviate from

assumptions made for analysis (e.g., when the noise level increases or if the object
appearance deviates from prior assumptions).

• Efficiency describes the effort necessary to achieve an analysis result.
• Fault detection is the ability to detect potential false results during the application

of an analysis method.
Except for the last, these attributes are also listed by Udupa et al. (2006) who

subsumed precision and robustness under the same heading.
Accuracy is measured by computing a measure of the quality (Udupa et al. 2006

coined the phrase figure of merit = FOM for this), comparing analysis results with
some ground truth. Useful measures of quality will be discussed in the next section
followed by ways to generate ground truth data.

Quality measures are required for estimating reproducibility as well. However,
ground truth is not necessarily required since only deviations of the results for the
same or slightly deviating input shall be determined. High reproducibility does not
differentiate between the correct or wrong results.

Robustness and reliability characterize reproducibility. They are similar in that
both judge the dependencies of results on changes in the input. The difference is in
the causes. A reliable method produces valid results within the range of expected
input variation (e.g., acceptable variation of any initialization, expected variation of
appearance of objects, etc.). A robust method is insensitive to variations outside of
the expected range of variation (e.g., unexpected levels of noise, wrong parameter-
ization, unexpected pathological variation, etc.). While reliability should be a given
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attribute of a method, robustness will always be limited. Data representing degrees
of acceptable variation used for computing reliability should be extended to repre-
sent degrees of unacceptable variation (e.g., by adding unusual amounts of noise or
by starting with an unacceptable initialization). Reliability and robustness estimates
depend on representative data, a question that will be discussed in a separate section.

Efficiency describes the effort that is necessary to produce an analysis result. It
seems to be easy to compute as it usually refers to the computational cost. However,
most of the methods discussed in the previous chapters require some kind of interac-
tion. Hence, Udupa et al. (2006) suggested including human operator time into the
efficiency estimate. Even this may by insufficient as the kind of human interaction
may influence other quality measures. For instance, expecting some difficult delin-
eation from the human observer at irregular time intervals will lead to a different
kind of operator fatigue than boredom from having to wait for giving some simple
input. Its assessment requires setting up a user’s study, which is often too expen-
sive to be done. Still, as part of the validation, the kind of information requested
through interaction, the kind of knowledge assumed from the human expert, and the
occasions when interaction is requested should be documented.

Fault detection is a highly desirable feature. It requires a method to estimate
the reliability of its own results. Fault detection can be realized by detecting faulty
input, faulty intermediate results, or faulty output, each of which require a model
of faultiness at the respective stage of processing. If the ranges of faulty behavior
can be given, the validation of fault detection capabilities requires the corresponding
ground truth data.

The documentation of the validation scenario builds on the description of the
analysis method as mentioned in Chap. 1. Given the intended use of an analysis
method and assumptions about the data, the description of a validation scenario
should contain the following information.
• Description of the data on which the validation is to be carried out.
• Description and justification of what is assumed to be the ground truth.
• Criteria by which the quality is to be measured.
• Definition and justification of what constitutes a successful validation.

The results from validation are samples nonetheless. Hence, this chapter is con-
cluded with a section on the computation of significance of a validation result.

13.1 Measures of Quality

Quality depends on the kind of analysis that has been carried out on the data. If
an object is delineated, it will be a correspondence measure between the delineated
object and some reference segmentation. If the task was object detection, it will be
a ratio between the correct and incorrect decisions. If it has been a registration, it
will be the deviation from the correct registration transformation. Since an analysis
task may involve combinations of these methods, the kind of validation procedure
will have to be selected based on the intended application.



416 13 Validation

Fig. 13.1 Validation of a delineation requires a measure of comparison between some reference
(the often so-called ground truth) and the delineated object

Let us illustrate this with an example. The delineation of an object boundary may
be done by registering a shape model to the image data which is then deformed
according to local image information. In this case, the quality of the desired result
should be measured by the correspondence of the deformed model instance with the
expected segmentation. The correctness of the registration transformation in itself
plays only a minor role and will probably not be an interesting part of the validation
for the user. However, since an incorrect registration will influence the performance
of the subsequent model adaptation to the image data, measuring the registration
error will tell something about the robustness of the method (the method may fail
completely if the registration part fails). This may be helpful for a developer who
wants to adapt this method.

In the following sections, measures for delineation tasks, object detection tasks,
and image registration tasks will be listed separately, although the necessity for
combining them should not be forgotten.

13.1.1 Quality for a Delineation Task

Measuring quality for a delineation task requires a measure of correspondence be-
tween the delineated structure f and some known, true reference delineation g (see
Fig. 13.1). Generating ground truth will be discussed in detail in the next section.
For now, let us assume that ground truth data exist. Hence, for an image consisting
of voxels or pixels v a function g is known with

g(v) =
{

1, if v belongs to the delineated object,

0, otherwise.
(13.1)

Correspondence can be measured in different ways.
• Volumetric measurements compute volume or area differences between f and g.
• Overlap measures compute the overlap between the object and background ele-

ments in f and g.
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Fig. 13.2 The volume difference is the simplest FOM for comparing a delineation with the ground
truth. It does, however, not account for shape differences

• Distance measurements compute the deviation between the boundaries of f

and g.
• Outlier measures compute the maximum deviation between f and g.

It is easily seen that these measures capture different aspects of correspondence.
A volumetric measurement only compares a property derived from the delineation.
An overlap measure computes an element-wise correspondence. Distance measure-
ments do the same with the corresponding boundary points. They may return sub-
stantially different results than an overlap measure since a large change of boundary
detail does not necessarily result in an equally large change of volume.

Finally, outlier measurements capture singular deviations between f and g. Se-
lecting a type of quality measure depends on the application. If a general quality
shall be established (e.g., for promoting a method for other applications apart from
that for which it has been developed) all types of quality measures should be used.

Volumetric measurements are easy to compute. They simply count the number
of elements |F | and |G| with F = {v|f (v) = 1} and G = {v|g(v) = 1} weighted by
the area or volume covered by each scene element (pixel or voxel) v (see Fig. 13.2).
They are also the most unreliable measure since equal volume does not mean that
the same object has been delineated. However, these or similar measures such as
expected diameter or the size of a bounding box enclosing the object are sometimes
the only way to get a quality measure at all when the exact delineation of the object
is unknown.

Overlap measures compute the amount of oversegmentation, undersegmentation,
or a combination of the two (see Fig. 13.3). Oversegmentation is simply the number
of elements v, for which g(v) = 0 and f (v) = 1, while undersegmentation is the
opposite (i.e., g(v) = 1 and f (v) = 0). To make these numbers comparable for ob-
jects of different size the amounts are usually given as a percent oversegmentation
or undersegmentation,

O = 100 · |{v|g(v) = 0 ∧ f (v) = 1}|
|G| (13.2)
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Fig. 13.3 Over- and under-segmentation as well as a combination of the two represent differences
in shape between ground truth and the segmentation to be tested

and

U = 100 · |{v|g(v) = 1 ∧ f (v) = 0}|
|G| . (13.3)

It makes sense to evaluate the two measures separately when the criticality of
oversegmentation is different than that of undersegmentation. However, for the com-
pactness of presentation, results from the two measures may be combined. Two
often-used quality measures are the Dice coefficient and the Jaccard coefficient
(Crum et al. 2006). They are borrowed from statistics, where they are used to rate
the similarity of data sets. The Dice coefficient (Dice 1945) is defined as

d = 2|F ∩ G|
|F | + |G| , (13.4)

where F ∩ G is the set of all elements v with f (v) = 1 and g(v) = 1. The coeffi-
cient is 1 if the correspondence is perfect and smaller than 1 otherwise. The Dice
coefficient was found to agree well with the perceived variability of results of a
segmentation in Zou et al. (2004).

The Jaccard coefficient (Jaccard 1912) is given by

j = |F ∩ G|
|F ∪ G| , (13.5)

where F ∪ G is the set of all elements v with f (v) = 1 or g(v) = 1. Again, this
coefficient is 1 if the correspondence is perfect and decreases otherwise. The Jaccard
coefficient is also known as the Tanimoto coefficient on sets.

Outliers cannot be measured by the criteria listed above, although they may be
sometimes critical. An example would be a task where organ boundaries are to be
delineated as part of access planning in minimally invasive surgery. In such a case,
the maximum deviation of the delineated boundary from the true boundary is an
important quality. It can be measured by the Hausdorff distance between the two
data sets F and G (used, e.g., in Chalana and Kim 1997; Gerig et al. 2001; see
Fig. 13.4). The Hausdorff distance h is the maximum of all minimal distances d



13.1 Measures of Quality 419

Fig. 13.4 The Hausdorff
distance is the maximum of
all shortest distances between
points of one set to the other
set

Fig. 13.5 The quantile Hausdorff distance for some quantile is computed from a quantile of a
histogram of distances from F to G and from G to F

between points in F and points in G:

h = max
(

inf
f ∈F

d(f,G), inf
g∈G

d(g,F )
)
. (13.6)

It describes the largest distance of all smallest distances of points in one of the
data sets to all points of the other data set. Since this measure is very sensitive
to artefacts, a modified version of the Hausdorff distance is sometimes used that
averages distances of the largest outliers. The quantile Hausdorff distance for the
quantile hq computes histograms of distances d(f,G) and d(g,F ). For each of the
histograms thresholds tq(d(f,G)) and tq(d(g,F )) are computed so that q% of all
distances are smaller than tq . The quantile Hausdorff distance is then (see Fig. 13.5)

hq = max
(
tq

(
d(f,G)

)
, tq

(
d(g,F )

))
. (13.7)
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Fig. 13.6 A detection task
may result in two different
kinds of error

If the ground truth data consist of the boundaries of delineated segments the
Hausdorff distance may still be computed. Using the Hausdorff distance is based
on the assumption that semantically corresponding points are determined by com-
puting the shortest distances between boundary points of f and g. If the quality of
a delineation result is not appropriately characterized by this, the average distances
between corresponding locations of f and g can be computed. Point-to-point cor-
respondences can be established using a shape registration algorithm (Chalana and
Kim 1997).

13.1.2 Quality for a Detection Task

Quality measures for a detection task are simpler than those for a delineation task.
An object to be detected can be found or not and a detection may be correct or not.
Given two sets T and F of objects in the ground truth data, where T consists of
objects to be detected and F consists of all other objects, and two types p and n of
decisions of the detector, where p is a positive decision that the object is detected
and n is the negative decision, four different cases arise (see Fig. 13.6).
• True positive detections TP are those belonging to T , which have been rightly

detected by a positive decision p.
• True negative detections TN are those belonging to F , which are rightly resulted

in a negative decision n.
• False positive results FP are those that do belong to F but resulted in a positive

decision p.
• False negative results FN are those belonging to T but were classified as n.

A good detection method would produce as many TP and TN as possible. How-
ever, since false positive results (e.g., a tumor is detected while no tumor is present)
and false negative results (e.g., a tumor is overlooked) may have wildly different
consequences, the two types of errors are measured separately. The former is called
a type-I error and the latter is a type-II error. Since the absolute numbers of FP or
FN detections do not carry much information, they are normalized with the num-
ber of cases tested. This is expressed by the sensitivity and specificity of a method.
Sensitivity Sv is defined as

Sv = TP

T
= TP

TP + FN
. (13.8)
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Fig. 13.7 The ROC curve rates sensitivity vs. specificity for different parameter settings of a de-
tection method. The method described by the curve on the right is inferior to the method described
by the curve on the left, since specificity decreases faster with increased sensitivity

It represents the rate of positive detections with respect to all elements of T .
Sensitivity tells how likely it is to miss a detection by the analysis method (in the
information retrieval community it is also called recall rate). The specificity Sp is
defined as

Sp = TN

N
= TN

TN + FP
. (13.9)

It represents the rate of negative decisions with respect to all elements of N .
Specificity tells how likely it is that the detection method produces a false alarm. In
the information retrieval community this is replaced by a different measure, called
precision rate Pr of the retrieval

Pr = TP

TP + FP
. (13.10)

It reflects a different view at the detection task as it measures the amount of
“noise” (the false positives), which is generated by the detection algorithm.

Often, a detection task can be parameterized to be more specific or more sensi-
tive. Hence, this tradeoff itself is an important characteristic for evaluating a method
(Popovic et al. 2007). A simple example would be a threshold classification where
decreasing the threshold would increase the number of positive detections. This
would increase the sensitivity since more elements of T would be included in TP,
but it also decreases the specificity since more elements of F would falsely be clas-
sified as belonging to T . The tradeoff is specific to the detection method and in-
dependent of the threshold. Since it measures the performance of a parametrizable
detector, it is also used as a quality measure for determining its performance. It is
called the receiver operator characteristic (ROC) and measures the ratio of sensi-
tivity versus specificity for each parameter setting α (see Fig. 13.7):

ROC(α) = (
Sv(α),1 − Sp(α)

)
. (13.11)
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Fig. 13.8 A ROC curve can
also be generated to measure
human operator performance
when several operators
performed the same task

A curve can be drawn in a graph with axes Sv and Sp where different parame-
terizations α produce curve locations. This ROC curve represents the performance
of the detector independent of the parameterization α. Hence, it is a way to com-
pare two different, parametrizable detectors. An ideal ROC curve would produce a
sensitivity and specificity of 100% irrespective of the value of α. Since the diagram
is normalized with Sv and 1 − Sp ranging from 0 to 1, the area under this ROC
curve would be 1.0. The worst result would be an ROC curve, where an increase of
Sv would cause an equal increase of 1 − Sv. This would mean that increasing the
number of correct answers would increase the number of false answers in the same
fashion. In this case, the ROC curve would be a diagonal and the area under the
curve would be 0.5. Computing the area under the ROC curve allows comparing
two different, parameterizable detectors.

Sometimes, the ROC curve cannot be generated for the ground truth. This would
be the case when the ground truth is provided by human operator decision (it will
be difficult to expect from an operator to be gradually more stringent in his or her
decisions). A ROC curve can be estimated if several different, independent detection
tasks were solved on the same data with the same detection system (e.g., by asking
several human operators to solve the same detection task). Each of the solutions
provides one point in the ROC diagram. Fitting a curve through these points gives
an estimate of the ROC curve for this detector class (see Fig. 13.8).

Sensitivity, specificity, and the ROC curve have been used to measure the quality
of a delineation task as well. In this case, the sets of T , F , p, and n are sets of pixels
or voxels inside and outside the delineated object in the ground truth data and the
data coming from the delineation method.

13.1.3 Quality for a Registration Task

The purpose of registration is to find a transformation that maps an n-dimensional
image onto another m-dimensional image. If dimensions n and m are different, the
transformation includes a projection step of the scene with higher dimension onto a
space with dimensions of the scene with lower dimension.
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Fig. 13.9 If the still and the moving image are exchanged for registration, the resulting transfor-
mations should be the inverse of each other

The quality of a registration task is measured by direct or indirect measurement of
the difference between true and computed registration transformation. A direct com-
parison requires the true transformation parameters to be known (which is some-
times possible when phantom data are used for providing the ground truth). The
average deviation of transformation parameters plus the detection of outliers is then
the appropriate means to describe how well the registration method succeeded. For
nonrigid registration, this transformation is given by a vector field defining local
displacements. Differences in the true and the computed vector field are then used
as a quality measure. For rigid transformations, differences in global rotation and
translation are used as a quality measure. Since rotation and translation represent
different kinds of transformation they should be measured separately.

If the true transformation is unknown, an indirect way to compute a quality mea-
sure is to exchange moving and still images (see Fig. 13.9). The transformation
should be the inverse and any deviations are taken as inaccuracies in the computa-
tion of the registration transformation. This way of validation should be used with
care, however. It implicitly assumes that criteria to find a registration transformation
from image A to image B are independent to that of finding a registration from B

to A. If this is not the case, the quality measure does not tell much about the inherent
quality of the registration method.

If the data sets to be registered are of the same kind (e.g., when comparing images
of the same patient using the same imaging device over time), the second image can
be generated from the first image by transforming and resampling the data. This
transformation is then compared with that of the registration transformation. Again,
this has to be used with care since neither deviation between the two images to be
registered nor resampling artefacts are considered.

An indirect way, which is often used for computing the validity of a registration
transformation, is to compute deviations of point locations after registration. If a
number of point pairs are known that represent semantically equivalent locations in
the two images, applying the registration transformation to these point locations in
one image should map them exactly on locations of their counterparts in the other
image. The point pairs are called fiducial markers. Of course, the point pair corre-
spondence must not have been used for computing the registration transformation.
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Fig. 13.10 Using fiducial markers to validate a registration may yield unexpected results, if the
markers are far away from the objects to be registered, if they have localization errors, or if they
are too few given the number of degrees of freedom for a registration. The optimal fit for fiducial
markers does then not automatically mean that the registration itself is optimal

Using fiducial markers has the advantage that it evaluates a property that is usu-
ally the reason for computing the registration transformation in the first place. One
has to be aware, however, that the quality of this mapping is evaluated only at the
locations of the fiducial markers (see Fig. 13.10). This may become a problem if
markers are placed in locations that are very different from those where a high ac-
curacy is required (e.g., when only using skin surface markers to test a registration
of brain images), or if the registration transformation has many degrees of freedom
and only few marker positions are used (e.g., when evaluating a nonrigid registration
transformation with few markers).

13.2 The Ground Truth

All measures to estimate the quality of an analysis procedure require a comparison
of the analysis result with the true information. The truth is difficult to come by
since the reason for producing images in the first place was to gather information
about the human body that cannot be accessed otherwise.

Ground truth is the true analysis result of data to which the analysis method is
applied. The data can be real or artificial. As we will see below, each of the strategies
is tainted (i.e., it is never completely sure whether the selected data really represent
the ground truth). An interesting suggestion to deal with this problem came from the
validation committee within the ITK consortium (Yoo et al. 2000). They suggested
a blind test. Independent observers evaluate analysis results of different data experts
(which also could be different established computer analysis methods) with respect
to a new method. The new method would be judged as accurate when no significant
difference can be found. For automated analysis, the observers will be replaced by
an automatic scoring system. Under the assumption that data experts produce un-
biased variations of an unknown ground truth (an assumption that also gave rise to
the STAPLE procedure, see Sect. 13.2.1 below), the method is able to rate a new
method correctly even if the exact ground truth is unknown.
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13.2.1 Ground Truth from Real Data

Ground truth from real data results from applying the currently established best
method to it. This is often difficult to determine, however. If an established method
exists at all, it may well be a different method for different kinds of image data, for
different image acquisition protocols, and for different analysis questions. Hence,
even if such a standard exists (e.g., to use active surfaces for liver segmentation in
CT or to use mutual information and spline-based nonrigid registration for register-
ing MR brain images), the developer will need to show that the conditions under
which this standard is applied are comparable to the ones under which this is an
established standard.

Another problem is that the implementation of the established state-of-the-art
method is not always available. This is changing because many researchers make
their code available and many of the state-of-the-art methods for segmentation and
registration have been included into the freely available ITK package (www.itk.org,
see Chap. 1).

If a currently best method does not exist, analysis by a human expert is an option
to produce ground truth data. It requires some effort on the developer’s side and a lot
more effort on the data expert’s side. The developer needs to provide an appropriate
interactive interface for analyzing the data. The required effort from the expert’s
side is much higher. First, the expert has to carry out the analysis interactively on
several data sets. In fact, the more data sets are analyzed, the easier it will be to
differentiate between significant and insignificant results. Significance will increase
further if the expert analyses the data several times. Intraobserver variability can
be estimated that describes variation of judgment by the same individual. A high
variability may indicate that the knowledge on which decisions are based is either
not very clear, not sufficient, or cannot be applied easily. This is a reason to provide
a good user interface since intraobserver variability should not rate the quality of
the input component.

Different experts may have different opinions about the content in the data.
Hence, interobserver variability should be measured as well by asking several ex-
perts to analyze the data. A good result for the automatic analysis method would be
one that is close to a result on which experts agree and within the range of variation
among experts. This requires a definition of what is meant by agreement among ex-
perts. It can be done using a voting system where each expert has a vote (Warfield et
al. 1995). Agreement can be reached by majority vote, by requiring total agreement,
or by something in between. The situation is less than ideal since each of the choices
for defining agreement makes assumptions about the expertise of the voters without
having the chance to validate these assumptions.

STAPLE (simultaneous truth and performance level estimation; Warfield et al.
2004) is an elegant way to solve this problem for delineation and object detection
tasks. The ground truth is assumed to be a set of labeled voxels and the input is
a labeling from different experts (or segmentation algorithms) whose reliability is
unknown. STAPLE defines the problem probabilistically and treats expert segmen-
tations as samples that deviate in an unknown fashion from the ground truth. It

http://www.itk.org
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reconstructs the most likely ground truth data given the samples. This, in turn, de-
fines the reliability of each sample. Hence, STAPLE is an application of a maximum
likelihood (ML) algorithm to the sample results.

The STAPLE method for a two-label-segmentation (e.g., foreground vs. back-
ground) presumes that a number of R segmentations exist that assign a binary label
to each of N scene elements. It estimates the true segmentation t = (t1, . . . , tN )

from the R segmentations dj , j = 1,R and dj = (dj,1, . . . , dj,N ). It further esti-
mates sensitivity p = (p1, . . . , pR) and specificity q = (q1, . . . , qR) for each of the
R segmentations. The sensitivity and specificity of STAPLE relates to the number of
classified voxels or pixels. If one of the R segmentations is new and shall be tested
against the other segmentations, the sensitivity and specificity of the new method
can be used to rate it against the other methods. Other quality measures such as the
Dice coefficient can be computed based on t.

Given an initial estimate of the sensitivities and specificities and an estimate for
the a priori probability P(ti) of ti being a foreground element, Warfield et al. (2004)
showed how to use an EM algorithm for optimizing p, q, and t. The E-step computes
the current expected probability w

(k)
i of an element i to have the label ti = 1 by

a
(k)
i = P(ti = 1)

∏
j∈{j |di,j =1}

p
(k)
j

∏
j∈{j |di,j =0}

(
1 − p

(k)
j

)
, (13.12)

b
(k)
i = (

1 − P(ti = 1)
) ∏

j∈{j |di,j =0}
q

(k)
j

∏
j∈{j |di,j =1}

(
1 − q

(k)
j

)
, (13.13)

w
(k)
i = a

(k)
i

(a
(k)
i + b

(k)
i )

. (13.14)

The terms in the products in (13.12) and (13.13) represent the conditional prob-
abilities of each segmentation j to arrive at a decision di,j given that the true
segmentation is either di = 1 or tj = 0, and the current estimates of sensitivity
and specificity. Together with the a priori probability P(ti = 1) and P(ti = 0) =
1 − P(ti = 1), these are the right-hand sides of the Bayesian Theorem for comput-
ing the a posteriori probability for ti = 1 or ti = 0, respectively, given the decisions
dj and the current estimates for p and q.

Computing the w
(k)
i requires that the different segmentations are independent

of each other since otherwise computing conditional probabilities by multiplying
probabilities from each segmentation j is not permissible. A priori probabilities for
segmentations where the result at some site i is independent of all other sites are the
ratio of foreground elements to all scene elements. This assumes that segmentations
j are also unbiased.

If a priori assumptions include information of spatial dependencies between
scene elements this can be represented by a Markov random field (see Sect. 14.1).
Optimization for the general case can be slow (e.g., simulated annealing) or may
require a good initial estimate (ICM or graph cuts). However, as shown in Chap. 9,
the graph cut solution is an efficient way to find the exact optimum if the number of
labels is two.
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Given the result of the E-step, the M-step of the EM algorithm updates sensitivity
and specificity values by

p
(k+1)
j =

∑
{i|di,j =1} w

(k)
i∑N

i=1 w
(k)
i

, (13.15)

q
(k+1)
j =

∑
{i|di,j =0}(1 − w

(k)
i )∑N

i=1(1 − w
(k)
i )

. (13.16)

The initial values for p and q use existing information about the performance of
the segmentation methods to be tested. In the absence of such information, Warfield
et al. (2004) suggested starting the system with very high values pj , qj < 1.

The STAPLE procedure can be extended to process multilabel segmentations,
however, at the cost that the optimization of a spatially correlated segmentation via
an MRF prior will become either slow or suboptimal.

If the comparison is carried out with the currently best method the burden of de-
tecting the truth has been passed to the validation of this method (be it an automatic
method or expert analysis). This is even true when elaborate reliability checks such
as STAPLE are applied since they still rely on some basic assumptions (in this case,
unbiased observers and a good initial estimate).

13.2.2 Ground Truth from Phantoms

Phantoms will exhibit varying degrees of realism. The more realistic a phantom
is, the less accessible is the information represented by the phantom. Selecting the
appropriate phantom is always a compromise. Based on the degree of realism, phan-
toms fall into four groups.
• Cadaver phantoms (human or animal).
• Artificial hardware phantoms constructed of material that is known to produce a

similar image signal as real data.
• Software phantoms representing the imaged measurement distribution.
• Software phantoms representing the reconstructed image.

In their survey on image segmentation methods in medical imaging, Pham et al.
(2000) classified phantoms of the first two kinds as physical phantoms and the latter
two as computational phantoms. The main difference is that a physical phantom is
imaged by the same imaging device as the patient data, while for the computational
phantoms influences from imaging have to be simulated.

A cadaver or an animal specimen has similar properties as real patient data. Since
image acquisition is equal to that generating patient data, the following attributes of
the imaging procedure are represented by the phantom:
• material properties,
• measurement properties,
• influences from image reconstruction, and
• shape properties of the imaged object.
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Fig. 13.11 CT and MRI slices and the imaged cytographic slices from the Visible Human
Project (created using a browser of from the visible human page of the University of Michigan
at http://vhp.med.umich.edu/)

To make the phantom data useful for validation analysis the results have to be
generated in the phantom. That means the following.
• For a detection task the number and locations of the objects to be detected have

to be specified.
• For a registration task fiducial markers have to be implanted that are visible in

the images, or that the phantom is fixed to a reference frame from which the
transformation parameters can be deduced.
Using a real phantom for a delineation task requires the object to be delineated in

the phantom in a way that makes it visible in the images. If only indirect quality mea-
sures such as the volume of an organ are needed for validation, real phantoms can
be used and the volume is measured afterward (requiring separation of the anatomic
object from the rest of the phantom). Otherwise, delineation information has to be
supplied from some other source. An example for this is the visible human project
(http://www.nlm.nih.gov/research/visible/visible_human.html) where a male and a
female cadaver were imaged by CT and MRI and specimen slices were then pho-
tographed (see Fig. 13.11). The information has been used to delineate anatomical
structures in the images (Toh et al. 1996; Spitzer et al. 1996).

Some problems may arise when using such a phantom for validation.
• Attributes of the image phantom may still vary in an unknown fashion from that

of the real data.
• Anatomical variability (normal as well as pathological) is not captured by the

phantom.

http://vhp.med.umich.edu/
http://www.nlm.nih.gov/research/visible/visible_human.html
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Fig. 13.12 Example of an artificial phantom. The picture shows a hardware phantom for the sim-
ulation of SPECT images of the heart. The phantom consists of several bottles of photon-emitting
fluids that have a similar characteristic than the organs that are simulated. The shape of the bottles
resemble (at the spatial resolution of SPECT imaging) the shape of the organs (with kind permis-
sion of Anna Celler, Department of Radiology, University of British Columbia, Vancouver)

Artificial hardware phantoms capture all but the material properties. Material
properties are simulated by selecting material that produces a similar signal as the
tissues to be imaged (see Fig. 13.12). Since the artificial structure is built on pur-
pose, aspects for validation (the extent of an object, specific landmarks, delineation
of object boundaries) are usually known and accessible. Simple hardware phantoms
just capture the local properties to be measured by the imaging system (e.g., con-
tainers of some fluid that emit photons to test nuclear imaging systems). They are
still appropriate to validate analysis methods if knowledge about the appearance
and shape of the objects or features of interest as well as information about spatial
relationships to surrounding tissues has not been used for the analysis. More real-
istic phantoms exist (e.g., for simulating imaging of vascular structures). Phantoms
are usually single instances so that anatomical variation cannot be modeled. How-
ever, they are well suited to compare the quality of different methods applied to the
same data such as the comparison of different image reconstruction algorithms (see
Fig. 13.13).

Software phantoms representing the measured image signal are the next level of
abstraction. The phantom consists of a 3D distribution of the signal to be measured
by the image acquisition system (e.g., x-ray absorption for an x-ray CT phantom).
The 3D signal distribution may be generated from interpreted image material (e.g.,
the MRI BrainWeb phantom; Collins et al. 1998). Creating the phantom requires
knowledge about the original material coefficients (e.g., T1, T2, and proton density
for the BrainWeb phantom). This information is taken from experiments. It is of-
ten idealized (e.g., by assuming that the material is homogeneous within an organ).
Noise and artefact models of image acquisition are required for simulating the mea-
surement. The effects from image reconstruction and shape properties of objects in
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Fig. 13.13 Different reconstruction algorithms from data acquired from the phantom depicted in
Fig. 13.12. The top row shows the measured emission and transmission data from the phantom, the
middle and the bottom rows show reconstruction results using the OSEM algorithm (see Chap. 2)
including various restoration techniques (AC: attenuation correction, RR: resolution recovery, SC:
scatter correction) presented in Shcherbinin et al. (2008) compared to standard reconstruction tech-
nique of the GE evolution scanner (with kind permission of Anna Celler, Department of Radiology,
University of British Columbia, Vancouver)

the image are part of the phantom. The advantage of a software phantom compared
to a hardware phantom is that it easily allows the inclusion of known anatomical
variation by creating several different shape phantoms. Also, the original proper-
ties of the objects to be represented are easily accessible. A number of software
phantoms of this kind exist.
• The BrainWeb phantom, www.bic.mni.mcgill.ca/brainweb/ (Cocosco et al. 1997;

Collins et al. 1998; Kwan et al. 1999) was created from a single subject. Although
not representing interpatient variability, it gives a realistic representation of the
typical appearance of brain structures (see Fig. 13.14). A simple user interface
allows various parameterizations to produce different simulations of MRI images.

• The Field II ultrasound simulation program (see Fig. 13.15), to be found at
server.electro.dtu.dk/personal/jaj/field/ (Jensen and Svendsen 1992; Jensen 1996,
2004), simulates the creation of ultrasound images from various input data. It is
available as Matlab software.

http://www.bic.mni.mcgill.ca/brainweb/
http://server.electro.dtu.dk/personal/jaj/field/
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Fig. 13.14 Images generated from the BrainWeb software phantom (Collins et al. 1998) look
very realistic. The simulation was done using the phantom that can be downloaded from
www.bic.mni.mcgill.ca/brainweb/

Fig. 13.15 Depiction of an ultrasound phantom and the simulated ultrasound image. The simu-
lated image was created using the Field II ultrasound simulation program of Jensen (1992, 1996,
2004)

• The group of Segars et al., http://www.bme.unc.edu/~wsegars/index.html and
http://dmip1.rad.jhmi.edu/xcat/, see Segars et al. (1999), Segars and Tsui (2009)
developed several phantoms for CT and Nuclear Medicine such as the dynamic
MCAT heart phantom simulating a moving heart, which is based on normal
anatomy and the spline-based interpolation of dynamics, the NCAT phantom that
has been extended to also include the upper airway tree and the lung lobes and
to simulate normal and pathological variations (Garrity et al. 2003; Veress et al.
2006), and its extension, the XCAT. MCAT and XCAT are created from parame-

http://www.bic.mni.mcgill.ca/brainweb/
http://www.bme.unc.edu/~wsegars/index.html
http://dmip1.rad.jhmi.edu/xcat/
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Fig. 13.16 Emission and transmission image of the NCAT phantom. Projections can be recon-
structed to simulate CT, SPECT or PET imaging. In this case, different reconstruction algorithms
for SPECT images are compared integrating attenuation correction (AC) and resolution recovery
(RR) in the OSEM reconstruction algorithm (see Shcherbinin et al. 2008 for details; with kind
permission of Anna Celler, Vancouver General Hospital)

terizable geometric primitives that model patient-specific anatomic variation. The
phantoms are used to validate SPECT and PET data (see Fig. 13.16).
Since material and measurement properties are often idealized, the images may

differ from the images of real objects even though they look realistic. Promising
results on phantom data can then be misleading since they seem not to agree with
the perceived performance on real data.

The highest level of abstraction is the use of a software phantom that models the
appearance of an imaged object. Only the shape of the object is part of the phan-
tom, while all other aspects that influence the appearance in the image need to be
simulated. The shape information either stems from the interpreted images (e.g.,
the MNI brain atlas of Collins et al. 1998 to represent variation of the human brain
anatomy) or—in an even more abstract fashion—it reflects just those shape proper-
ties that are assumed to be important for the analysis task. Artefacts from material,
measurement, or reconstruction are simulated. Observed distortions in the image are
modeled by the simulation model. The following are examples for artifacts that are
modeled.
• Detector and measurement noise are usually combined as zero-mean Gaussian

noise.
• Partial volume effects and the effects from the detector point spread function are

modeled by smoothing the data.
• Variation in signal strength is modeled by including artificial shading.
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The artefact model may be approximate, even if the images look similar to the
true images.

In summary, the phantoms listed above produce ground truth only to the ex-
tent to which influences on the image generation have correctly been accounted for.
Choosing a phantom is a compromise between the realism of the images generated
and accessibility to the ground truth. Ideally, the phantom itself would be validated
(i.e., to what extent the phantom data reflects the reality would be investigated).
Since this is usually not done, using a phantom for validating an analysis procedure
should include information as to what influences on the image content were simu-
lated, on what information the simulated properties were based, and on what kind
of information the analysis procedure relies. This gives others the chance to decide
on the validity of arguments for their own purposes.

13.3 Representativeness of Data

Validation will be based on statistical arguments (such as “in 99.2% of all cases,
volume deviated by less than 5% from the ground truth”). Hence, besides trusting
ground truth and the appropriateness of the quality measures, representativeness is
another issue for validation. Using representative data means that all data properties
potentially influencing the performance of the analysis method are reflected in the
test data. A couple of strategies strengthen the argument of representativeness.
• Separation between test and training data.
• Identification of sources of variation.
• Identification of outliers.
• Investigation of robustness with respect to parameter variation.

13.3.1 Separation Between Training and Test Data

The separation between training data and test data is self-evident if classification is
the goal of the analysis. However, other analysis tasks include training as well, for
instance, when optimal parameters have to be determined. Parameters are anything
that need to be fixed prior to carrying out the analysis. This could be a stopping
criterion for an iterative algorithm or a threshold for a decision component. As in
classification, it is not acceptable to validate a parameter-dependent segmentation
on ground truth data that have been used to compute the optimal parameter value.

Often, the set of data that can be used for training and testing is very small.
Separating it into two even smaller subsets would reduce the significance of the
results further. A work-around is to use the leaving-one-out technique (also called
jackknife technique, see Fig. 13.17 for an example). A data set of N elements, for
which the ground truth is known, is separated in a training set of N −1 elements and
a test set consisting of just one element. Parameter estimation is done on the training
set and the quality is then measured on the single test element. This is done for all N

subsets of (N − 1)-element training sets and 1-element test sets. The overall quality
is then computed by combining the N different test results.
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Fig. 13.17 Leaving-One-Out technique for a classification task. Repeatedly, a sample is left out
from training and the resulting decision boundary is tested on this sample. The test is to be carried
out using every sample as left-out sample

13.3.2 Identification of Sources of Variation and Outlier Detection

Representativeness means that the typical sources of variation in the data are cov-
ered by the ground truth data. To test the behavior in extreme cases outliers should
be identified. If data consist of patient data that have been analyzed by the current
best method or by a human expert, sources of variation and outliers can be found
with the help of an expert. The expert will be able to tell whether the images reflect
the “usual appearance” of the objects to be analyzed, but it will require some dis-
cussion between the data expert and method expert nonetheless. The reason is that
analysis methodology will act differently for different sources of variation. A de-
tection method that mainly relies on the detection of objects in the vicinity of other
objects will be insensitive to object variations, but very sensitive to variations in the
appearance of neighboring objects. A data expert will only perceive this as impor-
tant if it is a criterion for the expert’s decision as well.

Another source of misunderstanding regarding variation and outliers is the dif-
ference of the task for the expert and for a computer method. The expert often anal-
yses single cases with the correct output expected for this case while the computer-
assisted analysis method has to work in general for all potential cases. The expert
judges the single case using additional information from anamnesis and other diag-
nostic imaging or nonimaging information. The notions of “usual” or “outlier” may
be based on all this information and not on the image alone. To prevent this kind
of misunderstanding, it should be made very clear that the discussion is about the
appearance of an object in the image.

The discussion is usually easier for the engineer or computer scientist when
phantoms are the ground truth. The phantom is generated with keeping variation
with respect to appearance in the image in mind. Furthermore, if variable phantoms
have been created, the different sources of variation (noise, artifacts, patient-specific
changes in shape and appearance) have been identified and the ranges of normal and
abnormal variation have been defined. It may be difficult to establish whether all
sources of variation are covered, however. This is true for technical as well as for
anatomical sources of variation. For variation of technical parameters or models it
cannot often be proven that the model captures exactly the reality (e.g., when assum-
ing a certain kind of noise) and it is left to the developer to decide whether the model
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still produces a good validation scenario. For anatomical variation, certain simple
parameters (e.g., size or length-to-breadth ratio) are often measured, but it cannot be
guaranteed that these parameters reflect everything that is necessary for producing
a representative set of phantoms. Furthermore, pathological variations are often not
captured at all.

Given the remarks above, it seems that estimating normal and extraordinary vari-
ation is impossible. This is fortunately untrue since some sources of variation can
be captured with some accuracy. Using this information is preferable to using the
argumentation above for just choosing arbitrary data for validation. Disclosing as-
sumptions about sources of variation helps others to rate the validity of these argu-
ments.

Outliers can also be detected based on their very nature. If they are so different
from the rest of the cases, computable properties used as a priori knowledge for the
analysis method will exist that are different for these data sets as well. Hence, it will
be possible to predict the property of an outlier from nonoutlier data. This can be
used in cross-validation.

Given N data sets, cross-validation computes predictions of these properties from
all subsets of N − 1 elements and applies this prediction to the remaining data set.
The N − 1 elements would be a sufficiently high number to generate an estimate
of a likelihood function. If the property value of the left out N th element has a low
probability according to this likelihood function, the element is probably an outlier
and should be removed. Outlier removal continues until no further outliers can be
found, or if the data set becomes too small. In the latter case, the outliers actually
characterize the data. There are a number of reasons for this.
• The properties used as a priori knowledge are inappropriate for the analysis

method because the parameter settings have to be adapted for every single case.
• The data fall into several classes for which separate methods need to be found.
• The acquisition of ground truth data failed as the data are apparently not repre-

sentative for the totality of all data (if it were representative, outliers would not
occur this often).

13.3.3 Robustness with Respect to Parameter Variation

Given the argumentation above, it can be assumed that a developer or user will never
be completely sure that test data were representative. Any parameterization from
a training stage will have been generated from (slightly) nonrepresentative data.
Hence, parameters would be preferred where small changes do not cause a large
change in the analysis result. It simply means that the main power of the analysis is
in the method and combination of submethods rather than in the parameterization.

Finding parameters and testing the method with respect to changes of parameter
values can be costly because every possible combination of parameters needs to be
tested. It may become unfeasible if the number of parameters is large. Hence, it is
worthwhile to try to detect parameters that are most likely independent of each other.
Doing this by simply testing would be unfeasible again. However, if the analysis
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Fig. 13.18 The purpose of the student-t test is to determine how likely two distributions of ob-
servations belong to the same observation. It is often tested by estimating how likely the expected
value of one of the two distributions belongs to the other distribution

methodology has been developed with exact documentation about information that
is exploited for the analysis and about ways how this is used for carrying out the
analysis, it is usually possible to hypothesize which parameters may be independent.

This is especially the case when the method is organized as a sequence of pro-
cesses where each process has its own set of parameters and produces a well-defined
intermediate result. If the intermediate results can be predicted for the ground truth
data, parameters can be optimized and tested for each process independently. Even if
subsequent processes are able to correct erroneous intermediate results, the optimal
result for each step can be defined independent of the other steps.

13.4 Significance of Results

The results of an analysis may be satisfactory, but there is always the question
whether the number of samples was sufficiently high for having a predictive value
for the universe. Given a data set S = {s1, . . . , sN } reflecting the ground truth rep-
resented by a quality value qG(s) and test results qT (s), the question is how likely
they describe the same entity except for some error E(qG −qT ). Given ground truth,
an established method Te , and a new method Tn, the question is whether Tn really
produces better results.

The significance of a test result can be computed by estimating the probability
that it arose by chance. This percentage is the p-value that is used to describe the
significance of the outcome of an experiment. The statement “the results are sig-
nificant with p < 0.01” simply means that the probability that the results arose by
chance is less than 1%.

Intuitively, significance depends on the number of samples and on the amount
of similarity or dissimilarity between the two populations (ground truth vs. test or
method A vs. method B). Significance can be tested by the student-t-test (also called
t-test). It computes the probability whether quality measurements qnew from a new
method can be the result of some natural fluctuation of measurements qold that were
computed with an earlier method (see Fig. 13.18).

To formulate this as a problem of computing probabilities several aspects have to
be specified. First, a null hypothesis is formulated. A null hypothesis assumes that
nothing has happened. In our case, this means that the new method produces the
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same kind of results as the old method. A probability has to be computed that they
have been drawn from the same probability distribution.

The new method is significantly different if this is not likely. It is significantly
better if it is significantly different and the results are better. If the probability char-
acteristics of quality measures of both the new and the old methods were known this
would be easy. One could simply compute the probability with which the expected
value of the distribution of the new method is a value from the distribution of quality
measures of the old measure.

Probability distributions are usually unknown and can only be estimated from
the sample results from qnew and qold. The reliability of this computation depends
on the number of samples for these estimates. This is captured by the student-t test.
Many different variants of this t-test exist and the interested reader is referred to
Aron et al. (2004) for further details. Here, we will present two versions that are
often appropriate for computing the significance of the performance of an analysis
method compared to the performance of some previous method. They are called the
unpaired and paired t-test. It will be presented for normal distributed data where the
mean and variance are unknown.

Let us assume that we have samples X1,X2, . . . ,XN (e.g., some quality measure
with respect to ground truth) with mean μ and variance σ 2. The average of the
samples is

X̄N = (X1 + · · · + XN)/N. (13.17)

The estimated variance of the samples is then

S2
N = 1

N − 1

N∑
i=1

(Xi − X̄N)2. (13.18)

The following parameter is then normal-distributed with zero mean and normal-
ized variance

Z = X̄N − μ

σ/
√

N
. (13.19)

Now let us assume that we have an unknown sample w. How likely is it that this
sample is the mean of a distribution from which we have the N samples Xi? For
this, a confidence interval is computed. It is

∫ a

−a

Z(w)dw = p (13.20)

and defines an interval [−a, a] so that the probability for w is p. For example, the
90% confidence interval ∫ a

−a

Z(w)dw = 0.90 (13.21)
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defines an interval bounded by [−a, a] for which the probability is 90% that w

belongs to Z. In other words, if w is outside the interval, the probability is only
10% that w belongs to Z. If we restrict a to be positive (e.g., if our value of w

represents a change in quality and we are only interested in positive changes), then
the same a characterizes a 95% confidence interval.

To compute the confidence interval from the samples Z, w is transformed into
the normalized normal distribution

P(−a < w < a) = p

⇔ P

(
−a <

X̄N − μ

σ/
√

N
< a

)
= p (13.22)

⇔ P

(
X̄N − a

σ√
N

< μ < X̄N + a
σ√
N

)
= p.

This allows us to compute the value for a given the standard deviation σ . Since
σ is unknown, the distribution is replaced by the estimate from the samples (this is
the t-distribution)

P(−a < w < a) = p

⇔ P

(
−a <

X̄N − μ

SN/
√

N
< a

)
= p (13.23)

⇔ P

(
X̄N − a

SN√
N

< μ < X̄N + a
SN√
N

)
= p.

Hence, X̄N ± a
SN√
N

is the confidence interval with probability p that w is in Z.
The values for a are tabulated and tables and Excel sheets exist for given prob-
abilities p. When computing the t-test, one-sided and two-sided tests have to be
differentiated. A one-sided t-test assumes an interval [−∞, a] and w is outside the
interval if w > a. Hence, the 90% confidence interval of a two-sided t-test results in
the same value of a as the 95% confidence interval of the one-sided t-test.

In the t-test above, pairings between results from the old method and those from
the new method were not considered. This allows a comparison between methods
even if the samples were generated from different data sets, as long as they can be
assumed to be equally representative for the problem. However, since this cannot
always be shown (or even made plausible), tests are often carried out on the same
data set. Pairs of results (X1, Y1), . . . , (XN,YN) exist where X is the quality of the
old method and Y the result of the new method.

A paired t-test accounts for this using the mechanism above, but now with the
following distribution function

t = P̄D − μ

SD/
√

N
, (13.24)
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P̄D = 1

N

N∑
i=1

(Xi − Yi), (13.25)

SD = 1

N − 1

N∑
i=1

[
(Xi − Yi) − P̄D

]2
. (13.26)

The difference between the results of the old and new methods is taken as the
sample value. The null hypothesis would be μ = 0.

Since the t-test essentially tests the probability of the expected value of a distri-
bution to be a value of the distribution of the null hypothesis, it implicitly assumes
that the variances of the two distributions are equal. If this cannot be assured, the
Welch test (Welch 1947) is a variant that should be applied. The difference between
the t-test and the Welch test is that the t-distribution is now generated from the two
different sample distributions X1 and X2 by normalizing them with the estimated
variances s1 and s2 from both distributions, leading to

t = X̄1 − X̄2√
s2
1

N1
+ s2

2
N2

. (13.27)

This is then used in the same way for computing significance s the unpaired t-test
for the student-t distribution.

13.5 Concluding Remarks

Validation of an analysis method is a necessary prerequisite for introducing any new
analysis method to the scientific community since it cannot be verified that domain
knowledge is sufficient and correct for solving the analysis problem. Validation is
difficult because sufficiency and correctness have to be corroborated from results
on representative test data. An acceptable validation needs to show to what extent
tests are estimates for such a generalization. Furthermore, that quality measures and
comparison data really support the argumentation has to be made plausible.

Validation is often a hen-and-egg problem. Hence, a detailed description of the
validation scenario and a well-founded justification as to why which measures were
selected is mandatory. Even though this is still not a formal verification, it enables
the reader and potential future user of a method to investigate the validity of the
arguments used for setting up the validation scenario.

13.6 Exercises

• Why is it necessary to document the validation scenario and not just the results
from validation?
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• What are the major components of a validation scenario and what should be doc-
umented?

• Describe a situation where volume computation would be an appropriate criterion
for measuring the quality of a delineation task. When should it not be used?

• Under what conditions does it make sense to differentiate between oversegmen-
tation and undersegmentation?

• What information about delineation quality is revealed by the Hausdorff distance?
Please describe a scenario where this measure is important to rate a delineation
method.

• What information is captured by sensitivity and specificity? For what reason is
specificity needed to rate a detection method? Give an example.

• Imagine a registration method that has been developed to register preoperative
and postoperative CT scans. What are the options to be used as ground truth?
Discuss the advantages and disadvantages of the different options.

• What needs to be made sure when selecting test data for ground truth?
• Why is it necessary to carry out manual segmentation several times by different

people and by the same person if it shall be used for ground truth? How is the
information that is gained from these multiple segmentations used for rating the
performance of an algorithm?

• What is the difference between hardware phantoms and software phantoms?
What are the advantages of using a software phantom?

• Which kinds of influences from image acquisition be represented in a software
phantom?

• What are the limitations when representing anatomic variations by a software
phantom?

• What is meant by robustness with respect to parameter variation? Why is it im-
portant that a method is robust with respect to parameter variation?

• Give an example from segmentation where it is necessary to differentiate between
training and test data.

• What is the basic idea of STAPLE? What advantage does this have when validat-
ing a method?

• What is the meaning of “p-value”?
• Assume that the results of a method A on data AT and the results of method B on

data BT have been generated. It can be assumed that AT and BT are samples from
the same distribution of test data. What would be an appropriate null hypothesis
for a t-test?
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Abstract
The Appendix contains a detailed discussion of selected mathematical aspects
that are necessary for many of the methods presented in this book. In its three
sections Markov random fields and their optimization, a derivation of the solution
of a variational problem for a function of a single variable and a description of
the principal component analysis including a solution that is robust with respect
to outliers in the sample are presented.

Concepts, notions and definitions introduced in this chapter

› Markov random fields, neighborhood systems, simulated annealing,
mean-field annealing, iterated conditional modes

› Variational calculus, Euler–Lagrange equation
› Principal component analysis, robust PCA, outliers and outlyingness

14.1 Optimization of Markov Random Fields

14.1.1 Markov Random Fields

If a vector g is an observation of a random process with mean f, the relation between
g and f is given by the likelihood function p(g|f) of observing g, if the mean were f.
A priori knowledge about the nature of f is given by the a priori probability P(f)
of observing f. If the random process is assumed to be an artefact of the observa-
tion (which is the case when noise is distorting a deterministic f), restoration aims
to recover the expected value f given the observation g. This is expressed by the
Bayesian theorem

P (f |g ) = 1

P (g)
p (g |f ) · P (f) , (14.1)

where P(g) is the a priori probability of g and acts as a normalizing factor.
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Fig. 14.1 Neighbor sizes on a regular grid can be differentiated by the distance to the furthest
pixel, which is indicated by the rank

If f and g represent images, the a priori knowledge about f is often related to
local homogeneity (e.g., when predicting that it is likely that neighboring pixels
have the same gray value). Hence, neighborhood has to be defined among elements
of f. The probability p(f) must take this neighborhood information into account. It
can be expressed by defining the probability as a Markov random field (MRF). The
following is an overview about Markov random fields in their use for restoration
and segmentation. Further details and a detailed discussion of other types of MRFs
can be found in Li (2009). Details on the optimization of MRFs are also found in
the chapter on stochastic optimization in Duda et al. (2001).

A set of random variables f = {f1, f2, . . . , fi, . . . , fk, . . . , } is an MRF if the con-
ditional probability of an element fi only depends on the probabilities of elements
fk in some neighborhood of i. Neighborhood can be arbitrary but must be finite.
Variables and the neighborhood system constitute a graph with fi being the nodes
and neighboring nodes being connected by an edge.

For regular lattices representing images, neighborhood systems can be ranked by
the distance of neighboring elements to the center. A neighborhood of rank 1 of a
2D image would comprise the 4-neighbors, a rank-2 neighborhood would include
the 8-neighbors plus pixels in the x- and y-directions that are two pixels away, and
so on (see Fig. 14.1).

For a given neighborhood system, dependencies between nodes are defined by
clique potentials. A clique in a graph is a collection of nodes that is fully connected
(every node is connected to every other node, see Fig. 14.2 for rank-1 cliques). The
potential V determines the dependency between members of a clique.

The Hammersley–Clifford-Theorem states that for random variables ω, possess-
ing MRF quality, the probability distribution is a Gibbs distribution depending on
clique potentials

P (f = ω) = 1∑
ω exp (−U (ω))

exp
(−U (ω)

)

= 1∑
ω exp (−U (ω))

exp

(
−

∑
c∈C

Vc (ω)

)
, (14.2)
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Fig. 14.2 In a neighborhood of rank 1 several 1st, 2nd, and 3rd order cliques exist

where the potential U(ω) is the sum of all clique potentials Vc(ω) of cliques c ∈ C

for a given neighborhood system. The normalization factor sums potentials over
all possible configurations. If we assume that the likelihood function p(f|g) is a
Gaussian with mean vector f

p (g |f ) = 1

Z
exp

(
−1

2
(f − g)Σ (f − g)T

)
, (14.3)

this is the energy U for a clique of size 1. It can be integrated into the a priori
probability term so that the probability to maximize is

p (f |g ) = 1

P (g)
p (g |f ) · P (f) = 1∑

ω exp (−U (ω))
exp

(
−

∑
c∈C

Vc (ω)

)
. (14.4)

For maximizing p(f|g) using a maximum likelihood approach, it is necessary
to proceed from some configuration ω(n) to the next configuration ω(n+1) so that
the a posteriori probability of the configuration increases. It requires computation
of the normalizing constant in (14.4), which is called the partition function. This
is unfeasible, however, since it sums over all possible configurations and increases
exponentially with the number of nodes.

The partition function can be neglected if U(ω) is fixed. Given an appropriate
definition of the potentials V , maximizing (14.4) then means minimizing

e =
∑
c∈C

Vc (ω) . (14.5)

Optimization is still not simple since elements of f and g are dependent on each
other through the covariance matrix Σ and the neighborhood dependencies con-
tained in the definition of the clique potentials. Optimization is further complicated
by the fact that the landscape produced by the energy function has many local max-
ima. Finding the global maximum cannot be done by a simple gradient ascent.

Several methods have been presented to find an optimal f based on (14.5) of
which some of the established methods will be discussed in the following sections.

14.1.2 Simulated Annealing

Optimization for solving a restoration task by simulated annealing was presented
by Geman and Geman (1984). It is a stochastic optimization technique that iterates



446 14 Appendix

Fig. 14.3 The energy function is rather flat at high temperatures T . With decreasing temperature
the minima get more pronounced

through configurations of f. The term of the method refers to the simulation of an
annealing process of heated metal that—starting from an arbitrary configuration—
takes its energy-minimal configuration during the cooling process. Locally and glob-
ally minimal configurations are the local maxima of a parameterized Gibbs distribu-
tion where a temperature parameter T represents the actual state of cooling. Equa-
tion (14.2) now reads

P(f = ω) = 1∑
ω exp(−U(T ,ω))

exp

(
−U(ω)

T

)

= 1∑
ω exp(−U(T ,ω))

exp

(
−

∑
c∈C Vc(ω)

T

)
. (14.6)

If the temperature is very high, the distribution function is rather flat (see
Fig. 14.3). Moving through the configuration space by iterative maximization is
easy since the energy differences between configurations are small. Determining
the global maximum is difficult, however, since moving away from the maximum is
just as easy.

The maxima get more pronounced with decreasing temperatures. Finding a lo-
cal maximum becomes simpler, while moving out of a local maximum becomes
less likely. When the temperature approaches T = 0, only the local maxima have
nonzero probability.

The annealing process is simulated by gradually decreasing the temperature. At
each temperature level the process is allowed to search for the optimal configuration
for some time. The search is stochastic. Randomly chosen new configurations are
accepted unconditionally if the total energy decreases. The probability of accept-
ing an energy increase depends on the current temperature and the ratio between
energy before and after selecting the new configuration. Since the temperature re-
mains constant while iterating through the configurations, the partition function is
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set temperature T = T 0
set initial configuration ωcur
while T > ε do

while sites have not been polled several times do
select site i randomly from all sites
compute perturbed version ωnew of the current estimate ωcur

by selecting new site label Lnew(i) �= L(i)

compute change of potential between �U = U(ωcur) − U(ωnew)

if �U > 0 then
ωcur = ωnew

else
if exp(−�U/T ) > random(0,1) then ωcur = ωnew

end_while
reduce T according to cooling schedule

end_while

Fig. 14.4 Sketch of the annealing algorithm

constant as well and cancels out when computing the ratio. Hence, it does not need
to be computed. A sketch of the algorithm can be found in Fig. 14.4.

Geman and Geman (1984) showed that the algorithm produces the optimal so-
lution regardless of the initial configuration if the following annealing schedule is
applied

T (n) ≥ m · �
ln (t + 1)

, (14.7)

where m is the number of sites and � is the energy difference between the configu-
ration with highest energy and the one with lowest energy. Since m is usually large
and � (if it is known at all) is large as well, the procedure converges very slowly.
Hence, approximate schedules are often used such as (Geman and Geman 1984)

T (n) = C

ln (t + 1)
, (14.8)

where the parameter C is chosen based on domain knowledge, or (Kirkpatrick et al.
1983)

T (n) = κT (t−1), (14.9)

with parameter κ chosen based on domain knowledge. The selection of C or κ

depends on knowledge as to how close the initial configuration is to the optimal
result.

14.1.3 Mean Field Annealing

Mean field annealing (Peterson and Soderberg 1989; Zhang 1992) uses a different
approach to deal with the fact that computing the partition function is unreasonable.



448 14 Appendix

Instead of iterating through configurations by single state changes it tracks the mean
field

〈ω〉T =
∑
ω

ωiPT (ω) =
∑
ω

ωi

1∑
ω exp (−U (T ,ω))

exp

(
−U (ω)

T

)
. (14.10)

The mean approaches the optimal solution when the temperature reaches 0. The
advantage of this approach is that the mean reaches the optimal solution much faster
than by going through stochastic changes at single sites.

For computing the a posteriori probability the mean from neighboring sites is
used to estimate the a priori probability. Equation (14.6) is replaced by

P (f = ω) ≈
∏
i

1∑
ω exp(−UMF (T ,ω))

exp

(
−UMF (ωi)

T

)
, (14.11)

where UMF is the mean field local energy from neighboring sites. It is assumed to
be known.

Since the energy from interaction with neighboring sites is only an estimate based
on the current configuration, mean field annealing has to be iterated in a similar
fashion as simulated annealing. However, since the UMF estimates are constant for
the current iteration, all sites can be updated simultaneously.

Estimates from the mean interaction with neighboring sites are converging faster
to the true means than updates from stochastic interaction. Hence, the temperature
can be lowered faster than in simulated annealing. There is a heuristic component
involved, however, since minima in the mean field are only equal to those in the
original energy function if the temperature is zero.

14.1.4 Iterative Conditional Modes

Optimization is much faster using a strategy suggested by Besag (1986) which is
called iterative conditional modes (ICM). ICM is a greedy strategy that only accepts
improvements of the overall potential of a configuration. Hence, it requires a good
initial guess for f. As such, ICM is similar to simulated annealing with T = 0. The
initial guess is readily available if a maximum likelihood estimate is generated from
the distorted image without considering neighborhood dependencies of the MRF.

Optimal values for f are found by changing pixel values at one site fi at a time.
Given an image f(n) at iteration n, the next image at iteration (n + 1) is created by
maximizing

P
(
f

(n+1)
i

∣∣ f
(n)
S−i ,g

) = p (f |g ) · P (fi |fNbs )

= p (fi |gi ) · P (fi |fNbs )

= exp

(
− (fi − gi)

2

2σ 2
− β

K−1∑
k=0

uik

)
, (14.12)
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Fig. 14.5 The goal of
variational calculus is to find
a function f (x) that
minimizes a functional of F .
Such function is found when
any variation by an added test
function εη(x) increases the
value of the functional

where f
(k)
S−i includes all pixels except fi . Maximizing the probability means mini-

mizing the sum of clique potentials

f
(n+1)
i = − arg min

fi

[
(f

(n)
i − gi)

2

2σ 2
+ β

K−1∑
k=0

u
(n)
ik

]
. (14.13)

If the neighborhood influence is 0, it turns into a maximum likelihood estimator.
ICM computation can be parallelized if pixels are grouped into sets of nonadja-

cent pixels.

14.2 Variational Calculus

The goal of variational calculus is to find a minimizing function for a functional
(i.e., a function F of a function f ). The strategy is similar to the minimization of
a function f (x). While for the latter a value x is searched, where f (x + �x) >

f (x) for arbitrary changes �x, in variational calculus a function f (x) is searched
of which arbitrarily small changes ε · η(x) cause an increase of the value of the
functional F (see Fig. 14.5). The functional is a function of f and its derivatives.
How such test functions are applied to solve a general variational problem can be
found in textbooks on the calculus of variations (e.g., Weinstock 1974 or Gelfand
and Fomin 2003).

The derivation of the solution for the simple variational problem of the kind

E (x) =
∫ b

a

F
(
f (x) , f ′ (x) , x

)
dx, (14.14)

where f (x) is twice differentiable on the interval [a, b], will be presented here. It
covers the variational problems for the methods presented in this book. The strategy
in comparison to minimizing a function is depicted in Table 14.1.

To find a function f (x) that minimizes (14.14), small variations f (x) + ε · η(x)

are introduced. The function η(x) is twice differentiable on [a, b] with boundary
conditions

η(a) = 0, η(b) = 0. (14.15)
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Table 14.1 Comparison between the minimization of a function and that of a functional

Given f (x) F (f (x), f ′(x), x)

Searched x, for which f () is minimal f (x), for which
∫

F() is minimal

Solution x with f ′(x) = 0 f (x) with dE
df

= d
dx

∂F
∂f ′ − ∂F

∂f
= 0

Iteration x(n+1) = x(n) − f ′(x(n)) f (n+1)(x) = f (n)(x)−dE/df

Otherwise η(x) is arbitrary. Hence, a function is added to f (x) such that f (a) +
εη(a) = f (a) and f (b) + εη(b) = f (b) for arbitrary functions η(x) and arbitrary
values ε. The value of ε is now taken as variation parameter

Jf (x)(ε) =
∫ b

a

F
(
f (x) + εη(x), f ′(x) + εη′(x), x

)
dx. (14.16)

If f (x) is a minimum, any ε �= 0 will increase Jf (x)(ε). Hence, a necessary
condition for f (x) that minimizes E is

dJf (x)(ε)

dε

∣∣∣∣
ε=0

=
∫ b

a

d

dε

[
F

(
f (x) + εη(x), f ′(x) + εη(x), x

)]
dx = 0. (14.17)

Applying the chain rule (and dropping the arguments for clarity) results in

dJf (x) (ε)

dε

∣∣∣∣
ε=0

=
∫ b

a

dF

df
η + dF

df ′ η
′dx = 0. (14.18)

For using the Lagrangian symbolic of the solution, the following variable substi-
tution is made

δ (x) = εη (x) . (14.19)

Multiplying (14.18) with ε on both sides and making the substitution results in

δJ = ε
dJf (x) (ε)

dε

∣∣∣∣
ε=0

=
∫ b

a

∂F

∂f
δ + ∂F

∂f ′ δ
′ dx = 0. (14.20)

The partial integration1 of the second term in (14.18) delivers

δJ =
[
∂F

∂y
δ

]b

a

+
∫ b

a

[
∂F

∂f
− d

dx

(
∂F

∂f ′

)]
δ dx = 0. (14.21)

1Partial integration of an integral of the kind
∫
a..b

f ′g uses the multiplication rule from differenti-
ation to arrive at

∫
a..b

f ′g = [fg]a..b − ∫
a..b

fg′. In the case above f ′ := δ′ and g := ∂F/∂f ′.
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The first term vanishes since the boundary conditions require δ(a) = δ(b) = 0
resulting in

∫ b

a

[
∂F

∂f
− d

dx

(
∂F

∂f ′

)]
δ dx = 0 (14.22)

for arbitrary functions δ. The fundamental lemma of calculus states that

∫ b

a

f (x) · δ (x) dx = 0 (14.23)

for a continuous function f and arbitrary, twice differentiable functions δ obeying
the boundary conditions δ(a) = δ(b) = 0. This implies f (x) = 0 on [a, b].

The sketch of the proof is as follows. Since δ is arbitrary, it can be selected as
r(x) · f (x) with r(x) positive on ]a, b[, twice differentiable and r(a) = r(b) = 0
(e.g., r(x) = (x − a)(x − b)). It results in

∫ b

a

[
f (x)

]2 · r (x) dx = 0. (14.24)

Since r > 0 on ]a, b[, it is easily seen that f (x) = 0 must hold on ]a, b[ for
(14.24) to hold. Since f is continuous, f (x) = 0 must hold on [a, b] as well. Hence,
(14.22) is only true if

∂F

∂f
− d

dx

(
∂F

∂f ′

)
= 0. (14.25)

This condition is called the Euler–Lagrange equation giving rise to the iterative
solution scheme listed in Table 14.1.

14.3 Principal Component Analysis

Principal component analysis (PCA) is a way for linear decorrelation in feature
space (Abdi and Williams 2010). If many of the original features are correlated, the
distribution of samples in feature space actually occupies a lower-dimensional sub-
space. The PCA produces an orthogonal transformation in feature space such that all
covariance values between features are zero. Coordinate axes after transformation
are aligned or orthogonal to this subspace (see Fig. 14.6). Features corresponding to
axes orthogonal to the subspace can be identified and removed.
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Fig. 14.6 PCA produces an axis system that decorrelates the data. It is oriented along the data
distribution in feature space. Features of this new coordinate system may be removed if projection
on the remaining axes produces only a small error

14.3.1 Computing the PCA

The covariance matrix C of the original feature space can be estimated from sample
covariances

C =

⎛
⎜⎜⎝

c11 c21 cN1
c12

c1N cNN

⎞
⎟⎟⎠ ,

cij ≈ 1

K − 1

M∑
k=1

(
fik − f̄i

) (
fjk − f̄j

)
, f̄i ≈ 1

K

K∑
k=1

fik,

(14.26)

where K is the number of samples available, and fik is the ith feature of the kth
feature vector in the set of samples.

If features were (linearly) uncorrelated all off-diagonal elements should be zero.
If features are uncorrelated and occupy only a lower-dimensional subspace that is
aligned with features axes some of the variances in the diagonal should be zero as
well. Any location of a sample in feature space can still be exactly represented if
these features were removed.

Covariance between features usually exists. Hence, C will contain nonzero off-
diagonal elements. The PCA will create a set of new features f′ of which their ele-
ments are linear combinations of features of f

f ′
j =

N∑
i=1

fieij (14.27)

so that the covariance matrix of the sample distribution f′ no longer has nonzero off-
diagonal elements. The beauty of the method is that a closed-form solution exists
for computing weights eij , which we will describe below (see also Fig. 14.7).
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Fig. 14.7 The PCA solves
an Eigen problem for the
covariance matrix C. The
eigenvectors ei are the axes of
the new co-ordinate system
and the eigenvalues λi are
variances σ 2

i along these axes
(of which standard deviations
σi are shown in this picture)

Given an estimate of C, a new orthogonal system of feature axes f ′
1, . . . , f

′
N will

be computed with covariance matrix C′

C′ =

⎛
⎜⎜⎜⎝

σ 2
1 0 0

0 σ 2
2

0 σ 2
N

⎞
⎟⎟⎟⎠ , (14.28)

with σ 2
i being the variance of feature fi . Computing eigenvalues λi and eigenvectors

ei = (ei1 ei2 . . . eiN ) for C with

Cei = λiei ⇒ CE = E� ⇔ ETCE = �,

E = (
e1 e2 . . . eN

) =

⎛
⎜⎜⎝

e11 e21 eN1
e12 e22

. . .

e1N eNN

⎞
⎟⎟⎠

(14.29)

produces the decomposition immediately because

� = ETCE ≈ ET

[
1

K

K∑
k=1

(fk − f̄) × (fk − f̄)T

]
E

= 1

K

K∑
k=1

[
ET(fk − f̄)

] × [
(fk − f̄)TE

] = 1

K

K∑
k=1

f′k × (f′k)T. (14.30)

The matrix � is a diagonal matrix containing the eigenvalues of C. They cor-
respond to the feature variances of the covariance matrix C′ = � in a transformed
system where a new feature f ′

ik is computed by projecting the feature vector fk on
the ith eigenvector

f ′
ik = (ei )

T (
fk − f̄

)
. (14.31)
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Feature reduction can now be carried out by investigating the variances (i.e., the
eigenvalues of C). A feature f ′

i can be removed if its corresponding eigenvalue λi is
zero. Eigenvalues close to zero indicate high linear correlation. Corresponding fea-
tures may be removed as well since the uncorrelated contribution of those features
is often due to noise.

For determining which features are to be removed, features f′ are ordered ac-
cording to their variance. The accumulated variance σ 2

accum(n) = ∑n
i=1 σ 2

i is used
to determine the amount of feature reduction. A value of n < N is chosen such that
the percentage of pvar(n) = σ 2

accum(n)/σ 2
accum(N) of the total variance exceeds some

threshold (e.g., pvar(n) > 0.95 signifying that the first n features explain 95% of the
variance in feature space).

14.3.2 Robust PCA

Principal component analysis is often applied when the number of samples is low
and the dimension of the feature space is high. However, covariances in the matrix
C are estimated from the samples. Its reliability depends on the size K of the sample
set and the dimension of the feature vector. If the PCA is carried out, for instance, in
100-dimensional feature space using just 50 samples, the subspace spanned by the
samples will be at most 50-dimensional. Covariance estimates can then be unreliable
for two reasons (as has been already noted in Sect. 11.5).
• There is no redundant information about the variance. Hence, any influence from

measurement noise in the feature values is interpreted as legal co-variance. This
is unwanted when reduced features shall describe some class-specific variation.

• Any outlier in the feature values directly influences the variance estimates of the
data (see Fig. 14.8). This is unwanted, as the low probability of measuring an
outlier value is not reflected in the covariance estimation.
Several ways exist for a robust PCA that attempt to solve these issues (Wang and

Karhunen 1996; Li et al. 2002; Skočaj et al. 2002; Hubert et al. 2005) by assum-
ing that the number of degrees of freedom (i.e., the number of dimensions needed
to characterize class attributes by features) is substantially lower than the number
of samples. It is furthermore assumed that outliers can be detected by measuring
some distance from nonoutlying feature vectors. The main characteristic of a co-
variance matrix, which is not influenced by outliers, is therefore a low but nonzero
determinant. All of the methods work in an iterative fashion.

In the following, the robust PCA by Hubert et al. (2005) will be described
which combines several strategies of previous attempts. The method is available
as “robpca” in Matlab. It proceeds in three stages.

In the first stage, the dimension of the data is reduced to the subspace that is
spanned by the samples. If the number of samples is n and the original dimension of
the data is d , the subspace is d0 ≤ min(n,d). In other words, if—which is often the
case—the number of samples of n is lower than d , the dimension d0 can be at most n

(and may be lower if some of the samples are linear dependent on each other). The
result of this stage is the largest subspace in which variances can be estimated from
the sample data.
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Fig. 14.8 Error in the PCA
due to an outlier in the
samples

Fig. 14.9 The outlyingness
for some sample xi is
computed by comparing a
distance measure to arbitrary
directions v with distances of
all other samples xj to this
direction v

In the second stage, the h least outlying samples are searched. In Hubert et al.
(2005) it was shown that h must be larger than [(n+d0 +1)/2] and low enough as to
not include any outliers. In the absence of knowledge about the number of outliers
and of d0, the authors suggested selecting

h = max

(
αn,

n + dmax + 1

2

)
, (14.32)

where dmax is the maximum number of principal components that will be selected
as features and α is a control parameter with α = ]0,1].

Selecting α and dmax depends on domain knowledge about the data. Hence, it is
not advisable to use any default values from a given implementation. If dmax is too
small it may be that too much of the natural class-specific variance in the data is not
accounted for, and if it is set too high outliers may not be removed. The value of α

controls this behavior as well. A high value overrides a too conservatively chosen
maximum of dimensions, while a lower value will increase the robustness.

Given the number nonoutlying samples h, outlyingness will be computed for
each sample. This is essentially a distance measure between the sample in question
and all other samples. The main component of the measure (details can be found
in Hubert et al. 2005, see also Fig. 14.9) is a normalized sample distance to all
lines through pairs of other samples. Since distances are computed with respect to
other samples, they are independent of an external coordinate system. The outlying-
ness measure is a relative measure that rates this distance to the average normalized
distance of all samples for all possible directions. Only the h samples with lowest
outlyingness are kept for further processing. The first estimate of a robust covariance
matrix C(0) and a robust mean μ(0) are computed from these h samples.
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In the third stage, C(0) and μ(0) are used for computing a covariance matrix with
smallest determinant. Two different, nonoptimal methods for this computation are
applied. The covariance matrix that has the lowest determinant of the two is chosen.

The first method iteratively computes Mahalanobis distances for each sample to
the current mean using the current covariance matrix estimate. The h samples with
the smallest distance are selected to compute the next estimate. The process is re-
peated until convergence. It may happen that during the process the determinant
becomes zero, indicating that the h samples span a subspace of the d0-dimensional
space. In such a case d0 is reduced to this subspace and the process is contin-
ued. The result of this first method is a covariance matrix C(1) and the associated
mean μ(1).

The second method starts with the number of dimensions d1 ≤ d0 that is the
result of the first method and repeatedly and randomly selects (d1 + 1) samples and
computes a covariance and mean estimate from this subset. If the determinant is
nonzero and smaller than the current estimate, the new covariance matrix and mean
are kept. The results are estimates C(2) and μ(2). If det(C(2)) < det(C(1)) then the
current estimate C(3) is set to C(2). Otherwise C(1) is selected as the current estimate
C(3). The means are selected accordingly.

The covariance matrix C(3) is then used to compute distances between each sam-
ple and the estimated mean μ(3). Samples are weighted by the distances. The final
covariance matrix is then computed from the weighted samples. In Hubert et al.
(2005) a hard rejection (weights are 0 or 1) is applied depending on this distance,
but soft weighting would be possible as well if domain knowledge indicates that
outlier characterization by distance may not be reliable.
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0
0-level set, 272

α
α–β swap move, 244
α-expansion move, 244

A
A posteriori probability, 212

direct estimation, 387
A priori probability, 213

Bayesian image restoration, 141
estimation, 219

AAM, see Active appearance model
Absolute connectivity, 251
Absorption edge, 28
Accuracy, 414
Active appearance model, 352

combining shape and appearance, 353
Active contour, 262

external energy, 263
geodesic, 288
internal energy, 263
optimization, 264
without edges, 291

Active geodesic regions, 293
Active shape model, 347

alignment of landmarks, 350
combination with FEM, 369
decorrelation, 348
landmark selection, 348
modes of variation, 349
segmentation, 351
training, 348

AdaBoost, 408
Adaptive decision boundary, 391

bias term, 391
multiple class problem, 393
nonlinear, 392

Adaptive linear discriminant function, 401
Advection force, 286

Agglomerative clustering, 404
Algebraic reconstruction technique, 67
Analysis software, 8
Anatomical landmark, 305
Anger camera, 65
Angiography, 33
Anisotropic diffusion filtering, 134
Annealing schedule, 447
Anterior commissura, 306, 326
Application entity, 94
ART, 67
Artificial hardware phantom, 429
ASM, see Active shape model
Assemblage, 362
Association cost, 248
Association network, 228
Atlas mapping, 325
Attenuation coefficient, 37
Attenuation correction, 70
Attenuation

SPECT, 67
ultrasound imaging, 62
X-ray, 30

Average linkage, 405

B
Backpropagation, 396
Backpropagation network, see Multilayer

perceptron
Bag of features, 165
Bagging, 407
Balloon model, 266

inflation force, 266
Bayesian classifier, 386
Bayesian image restoration, 138
Bayesian theorem, 212, 443
Beam hardening, 27
Between-class scatter matrix, 383
Binomial filter, 128
Blackening curve, 32
Blob detection, 157
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Blood oxygen level dependency, 56
BOLD imaging, 56
Boundary condition

essential, 362
natural, 362

Boxcar filter, 128
BrainWeb, 430
Bremsstrahlung, 26
Butterworth filter, 130

C
Canny edge operator, 149
CAT, see Computed tomography
Cathode ray tube, 26, 30
Central slice theorem, 38
Chemical shift, 54
Classification

adaptive decision boundary, 391
adaptive linear discriminant function, 401
bagging, 407
Bayesian classifier, 386
Bayesian theorem, 212
kNN classifier, 388
minimum distance classifier, 387
multilayer perceptron, 393
nearest neighborhood classifier, 388
support vector machine, 398

Clinical study, 5
Clinical workflow, 5
Clique, 444
Clique potential, 444
Clustering, 221, 403

agglomerative, 404
fuzzy c-means, 405
interactive, 221
k-means, 223
mean shift, 225
self-organizing map, 228

Competitive learning, 229
Complete linkage, 405
Composite object, 92
Composite service, 92
Composite SOP class, 93
Compton scatter, 28
Computational phantom, 427
Computed tomography, 35
Computer-aided detection, 6
Computer-aided diagnosis, 6
Computer-assisted surgery, 6
Confidence interval, 437
Contrast, 113

GLCM, 116
global, 113
Michelson, 113

resolution, 112
rms, 114
root-mean-square, 114

Contrast enhancement, 119
linear, 119
windowing, 119
histogram equalization, 119

Convolution backprojection, 40
Corner detector, 155

Harris, 155
SUSAN, 157

Correlation coefficient, 309, 339
Correspondence criterion, 301

anatomical and geometrical landmarks, 302
image-based features, 307

Covariance, 339
Covariance matrix, 218, 452
Cross-validation, 435
CRT, 26
CT, 35
CT angiography, 43
CT artefacts

metal artefact, 42
motion, 42
noise, 41
partial volume effect, 41
step-ladder-artefact, 42
streak artefacts, 42

CTA, see CT angiography
Curvature from divergence, 287

D
Damping matrix, 363
Data dictionary, 98
Decision boundary, 390
Deformable curve, 263
Deformable model, 336
Deformable shape model, 353
Dermoscopy, 74
Deterministic sign change criterion, 308
Diagnosis support, 6
Dice coefficient, 418
DICOM, 91

application entity, 94
compression, 106
conformance statement, 96
connectivity, 96
file format, 98
service class, 92
service class provider, 94
service class user, 94
tag elements, 98
viewer, 105

DICOM message service element, 93
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Difference of Gaussians, 158
Diffusion filtering, 133
Diffusion imaging, 58
Diffusion tensor, 134
Diffusion tensor imaging, 58
Digital mammography, 34
Digital subtraction angiography, 33
Digitally reconstructed radiograph, 319
DIMSE, see DICOM message service element
Discriminant function minimum square error,

403
Display ACR recommendations, 103
Divergence, 287
DoG, see Difference of Gaussians
Domain knowledge, 7, 16

in MRF, 139
in segmentation, 172
medial axis representation, 346
representation, 183
segmentation, 182
training, 185
variability, 184

Doppler imaging, 62
DRR, 319
DSA, 33
DSM, 353
DTI, 58
Dynamic level set, 274

evolution, 275
stopping criterion, 288
upwind scheme, 284

E
Edge detection

Canny, 149
multi-resolution, 150

Edge enhancement, 123
Edge tracking, 148

multi-resolution, 151
Edge-preserving smoothing

Bayesian image restoration, 138
diffusion filtering, 133
median filter, 131

EEG, 76
Efficiency, 415
Elastic registration, 323
Elasticity, 263, 364

modulus, 364
Elasticity matrix, 363
Electroencephalogram, 76
Electromagnetic wave, 24
Electron volt, 25
Element matrix, 361

assemblage, 362

Endianity, 100
Entropy, 114
Essential boundary condition, 362
Euler–Lagrange equation, 451

active contour, 264
variational level sets, 290

Eulerian solution, 278
Evaluation, 7, 17
Expansion move, 244

graph, 246
Expectation maximization algorithm, 216
Explicit model, 336
External energy, 263
Extrinsic marker, 304

F
F-factor, 25
False negative, 420
False positive, 420
Fast marching algorithm, 282
Fault detection, 415
FBP, see Filtered backprojection
Feature linear decorrelation, 380
Feature reduction, 380, 454

by principal component analysis, 382
interactive, 381

Feature similarity, 302
Feature space

active shape model, 347
classification, 380
in registration, 301

Feature vector multi-dimensional, 217
FEM, see Finite element model
Fibre tracking (DTI), 58
FID, 47
Fiducial marker, 314, 423
Fiducial registration error, 314
Field II ultrasound simulation, 430
Field of view, 40
Figure of merit, 414
Filtered backprojection, 38
Finite element model, 360

acceleration, 363
combination with ASM, 369
dynamic, 362
external force, 365
searching model instances, 370
shape function, 360
static, 361
velocity, 363

Fisher’s discriminant analysis, see Linear
discriminant analysis

Flat panel detector, 32
Floyd-Fulkerson algorithm, 240
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Fluorescence microscopy, 75
Fluoroscopy, 32
fMRI, see Functional MRI
Focal spot (CRT), 30
FOM, 414
Foreground segmentation, 172
FOV, 40
Free induction decay, 47
Free vibration mode, 367
Free-form deformation, 323
Functional MRI, 56
Fuzzy c-means clustering, 405
Fuzzy connectedness, 250

connectivity, 251

G
Gabór filter, 127
Gamma camera, 65

collimator, 65
Gamma ray, 25
Gantry

CT, 38
MRI, 50

Gaussian filter, 128
Gaussian mixture model, 215

expectation maximization algorithm, 216
Gaussianity, 385
Generalized cylinder, 344
Generalized Hough transform, 340
Geodesic active contours, 288
Geometrical landmark, 306
Ghosting, 54
GHT, 340
Gibbs distribution, 444
Gist, 165
GLCM, see Grey-level co-occurrence matrix
Global contrast, 113
Gradient echo imaging, 53
Gradient histogram

HOG, 164
SIFT, 161

Gradient magnetic fields, 48
Gradient vector flow, 267
Graph cut, 236

a priori knowledge, 240
connecting extrusions, 247
data cost, 243
expansion move, 244
initialization, 243
interaction cost, 243
MRF optimization, 242
normalized, 247
shape prior, 247, 372
sink, 236

source, 236
swap move, 244
weights, 237

Grey-level co-occurrence matrix, 115, 181
Ground truth, 424

from human expert, 425
from phantoms, 427
from real data, 425
STAPLE, 425

GVF, 267
Gyromagnetic constant, 46

H
Hamming filter, 39, 130
Hann filter, 130
Harris corner detector, 155
Harris matrix, 155
Hausdorff distance, 418

quantile, 419
Head-hat registration, 317
Heaviside function, 291
Hessian matrix, 126

determinant, 158
Hidden layer, 395
Hierarchical FEM, 370
Hierarchical segmentation, 173
Hierarchical watershed transform, 197
HIS, 85
Histogram, 114
Histogram equalization, 119

adaptive, 120
Histogram of gradients, 164
Hit-or-miss operator, 345
HL7, 88

reference information model, 89
HOG, see Histogram of gradients
Homogeneous diffusion filtering, 133
Hospital information system, 85
Hough transform

accumulator cell, 153
circles, 340
generalized, 340
straight lines, 152

Hounsfield unit, 41
HU, 41

I
ICA, 384
ICM, 448
ICP algorithm, 318
Ideal low pass filter, 129
IDL, 9
IFT, see Image foresting transform
Image foresting transform, 252
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Image foresting transform (cont.)
node load, 252
path cost, 253
watershed transform, 254

Image intensifier, 31
pincushion distortion, 31
S-distortion, 31
vignetting, 31

Image-based features, 307
Implicit model, 336, 341
Incompatibility

DICOM, 97
HL7, 90

Independent component analysis, 384
Information object, 92
Information object description, 92
Inhomogeneous diffusion filtering, 134
Initialization graph cut, 243
Intelligent scissors, 203
Intensity gradient, 123, 148

in speed functions, 288
Interaction

confirmation, 186
correction, 186
feedback, 186
guidance, 186
guidelines, 186
parameterization, 186

Interactive delineation, 189
Interactive graph cut, 242
Internal energy, 263

elasticity, 263
stiffness, 263

Interobserver variability, 425
Intraobserver variability, 425
Intrinsic landmark, 305
Inversion recovery sequence, 52
IOD, see Information object description
Ionizing radiation, 25
Ising model, 220
Iterative closest point algorithm, 318
Iterative conditional modes, 448
ITK, 11

J
Jaccard coefficient, 418
Jackknife technique, 433
Joint entropy, 310

K
K-means clustering, 223

diversity criterion, 224
itialization, 224

K-nearest-neighborhood classifier, 388
K-space imaging, 50
Kernel density estimator, 214, 386
Kernel function support vector machine, 401
Kernel trick, 401
KNN classifier, 388

active and passive samples, 389
sample normalization, 390

Kohonen network, 228
clustering, 230
neighborhood activation, 230
training, 229

Kurtosis excess, 385

L
Lagrangian solution, 277
Laplace operator, 124
Laplacian of Gaussian, 125, 157
Larmor frequency, 46
LDA, see Linear discriminant analysis
Leaving-one-out technique, 433
Level (display), 41
Level set, 270

evolution computation, 277
evolution step size, 280
evolution upwind scheme, 278
function, 271
interface, 272
topologically constrained, 294
variational, 290

Light box, 101
Light microscopy, 75
Likelihood function, 213

estimation, 214
partial volume effect, 215

Line of response, 72
Line pairs per millimeter, 112
Linear discriminant analysis, 382
Linear discriminant function, 401
Linear support vector machine, 398
Live wire, 203

3D, 206
cost function, 204
noise, 205
optimality criterion, 203

Local affinity, 250
Local shape context, 163
LoG, see Laplacian of Gaussian
Longitudinal relaxation, 47
Lpmm, 112

M
M-rep, 346
Magnetic resonance, 45
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Magnetic resonance (cont.)
diffusion imaging, 58
longitudinal relaxation, 47
perfusion imaging, 57
T2∗ effect, 48
transverse relaxation time, 47
proton density, 47

Magnetic resonance imaging, 44
data acquisition times, 52
echoplanar imaging (EPI), 53
frequency encoding, 49
RARE sequence, 53
readout gradient, 49
slice selection, 48
techniques, 48

Magnetoencephalogram, 77
Mammography, 34

digital, 34
MAP-EM, 70
Marginal probability, 213
Marker particle solution, 277
Marker-based watershed transform, 199
Markov random field, 138, 443

graph cut optimization, 242
neighborhood, 444

Marr-Hildreth filter, 126
Mass matrix, 363
Mass spring model, 354

external force, 356
internal force, 357
node coordinate system, 358

Matching, 300
MatLab, 9
Maximally stable extremal regions, 161
Maximum a posteriori expectation

maximization, 70
Maximum flow, 240
Maximum likelihood expectation

maximization reconstruction, 68
MCAT heart phantom, 431
Mean field annealing, 447
Mean filter, 128
Mean shift clustering, 225

mean shift, 226
mode, 225

Mean square distance, 339
Mean transit time, 57
Medial axis, 343

representation, 346
scale space, 345
transform, 344

Median filter, 131
artefacts, 132

Medical workstation, 101
software, 104

MEG, 77
MevisLab, 9
Mexican hat filter, 126
Microscopy, 75
MIL, 409
Mincut maxflow, 240
Minimum cost graph cut, 236
Minimum distance classifier, 387
Mixture of Gaussians, 215
MLEM, 68
MLP, see Multilayer perceptron
Model, 334

explicit representation, 262
implicit representation, 262
instance, 334

Model-driven segmentation appearance model,
352

Model-driven segmentation
by active contours, 261
shape model, 335

Modes of variation, 349
Modulation transfer function, 117
MR angiography, 54

flow void, 54
phase contrast, 54
gadolinium-enhanced, 54

MR artefact
chemical shift, 54
ghosting, 54
noise, 54
partial volume effect, 54
shading, 54

MRA, see MR angiography
MRF, see Markov random field
MRI, see Magnetic resocance imaging
MSER, 161
MTF, 117
Mulitlayer perceptron momentum term, 397
Multi-resolution edge detection, 150
Multi-resolution edge tracking, 151
Multi-resolution MRF, 221
Multilayer perceptron, 393

for classification, 395
learning rate, 396
overadaptation, 397

Multilayer segmentation, 173
Multiple instance learning, 409
Mumford–Shah functional, 290
Mutual information, 310
mWST, 199
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N
N-link, 236
Narrow band method, 285
Natural boundary condition, 362
NCAT phantom, 431
NCut algorithm, 250
Nearest neighborhood classifier, 388
Neighbor link, 236
Neighborhood similarity, 324
Newmark-β algorithm, 365

computation, 367
Noise, 117

reduction, 127
Non-rigid registration, 322

initialization, 324
smoothness constraint, 322

Nonlinear decision boundary, 392
support vector machine, 400

Normalization, 300, 325
ROI-based, 327

Normalized graph cut, 247
approximation, 248
association cost, 248

Normalized histogram, 115
Normalized object, 92
Normalized service, 92
Normalized SOP class, 93
Nuclear imaging, 64
Null hypothesis, 436

O
One-sided t-test, 438
OpenCV, 11
Ordered subset expectation maximization, 70
OSEM, 70
OSI, 88
OSL algorithm, 70
Otsu’s method, 191
Outlier detection, 435

paired landmarks, 316
PCA, 454
unpaired landmarks, 316

Outlyingness, 455
Over-segmentation, 173, 197
Overlap measure, 417
Oversegmentation, 417

P
p-value, 436
PACS, 87
Pair production, 29
Paired landmarks, 313
Paired t-test, 438
Partial volume effect, 41

Partition function, 445
Partitional clustering, 222
Parzen window, 214
Pattern intensity criterion, 321
PCA, see Principal component analysis
PDM, 347
Peak SNR, 117
Perceptron, 393
Perfusion imaging, 57
PET, see Positron emission tomography
PET artefacts, 73
Phantom, 427
Photoelectric absorption, 28
Photon, 24
Physical phantom, 427
Picture archiving and communication system,

87
Pincushion distortion, 31
Point distribution model, 347
Poisson ratio, 364
Positron emission tomography, 72
Posterior commissura, 306, 326
Precision rate, 421
Primary landmarks, 348
Principal axis, 315
Principal component analysis, 382, 451

feature reduction, 454
for registration, 315

Probabilistic Talairach coordinates, 326
Procrustes distance, 304
Proton density, 47
Pull mode, 95
Push mode, 94
PVE, 41

Q
QoF, 335
Quadric, 342
Quality

delineation task, 416
detection task, 420
registration task, 422

Quality of fit, 335
Quantile Hausdorff distance, 419
Quaternion, 314

R
Radiation

characteristic, 26
excitation, 26
monochrome, 26
polychrome, 26

Radiation absorbed dose, 25
Radiation exposure, 25
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Radiology information system, 85
Radon transform, 36
RAG, 195
Raleigh damping, 363, 368
Raleigh scatter, 28
Random walk, 254

algorithm, 257
computation, 255
for segmentation, 255
probability function, 255

Recall rate, 421
Receiver operator characteristic, 421
Reference information model, 89
Region adjacency graph, 195
Region growing, 199

homogeneity, 200
leaking, 202
seeded, 201
symmetric, 201
two pass, 200

Region merging, 195
Registration, 299

components, 300
digitally reconstructed radiograph, 319
features, 302
pattern intensity criterion, 321
projection image, 319
with quaternions, 314
with segmentation, 328

Reinforcement learning, 229
Relative cerebral blood flow, 57
Relative cerebral blood volume, 57
Relative connectivity, 252
Relaxation labeling, 193
Reliability, 414
Representation, 334
Resolution enhancement, 120
Retina photography, 74
Rigid registration, 312

from paired landmarks, 313
in frequency domain, 317

RIS, 85
Robust PCA, 454
Robustness, 414, 435
ROC, 421
ROC curve, 422

area under the ROC curve, 422
Rotation

matrix, 313
with quaternions, 314

S
S-distortion, 31
Saliency, 165

Scale space, 337
Scale-invariant feature transform, 159
Scintigraphy, 65
SCP, 94
SCU, 94
Secondary landmarks, 348
Seeded region growing, 201
Segmentation

active contour, 262
by classification, 212
clustering, 221
data knowledge, 175
domain knowledge, 172, 182
finite element model, 360
fuzzy connectedness, 250
Gaussian pyramid, 177
geodesic active contours, 288
graph cut, 242
image foresting transform, 252
influence from noise, 177
interactive, 188
interactive graph cut, 236
kinds of interaction, 185
level sets, 285
live wire, 203
mass spring model, 354
normalized graph cut, 247
random walks, 254
region growing, 199
region merging, 195
shading, 177
split and merge, 196
texture, 179
thresholding, 190
variational level set, 290
watershed transform, 197
with active shape models, 351
with shape prior, 371

Self-organizing map, 228
clustering, 230
neighborhood activation, 230
training, 229

Sensitivity, 420
Service class provider, 94
Service class user, 94
Service object pair, 93
Shading, 54
Shadow groups, 99
Shape context, 163
Shape decomposition, 337
Shape descriptor, 343
Shape detection, 335
Shape deviation, 335
Shape distance, 372
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Shape feature vector, 347
Shape function, 360
Shape hierarchy, 338
Shape matching

dummy points, 164
with local shape context, 164

Shape model, 334
Shape prior, 247, 371
Shape representation, 335
Shape-based interpolation, 121
SIFT, 159

feature computation, 160
key point generation, 159
key point reduction, 159
matching, 161

Sigmoid function, 396
Signal-to-noise ratio, 117
Signed distance function level sets, 273
Significance, 436
Simple point, 294
Simulated annealing, 142, 445

optimal solution, 447
schedules, 447

Single linkage, 405
Single photon emission computed tomography,

71
Skeleton, see Medial axis
Slack variable, 401
Slice interpolation, 121
Smoothness constraint, 322
Snake, 262
SNR, 117
Sobel operator, 124
Software phantom, 429
SOM, see Self-organizing maps
Sonography, see Ultrasound imaging
SOP, 93
Spatial resolution, 112
Specificity, 421
Speckle artefact, 62
SPECT, 71
Speed function, 277, 285

advection force, 286
curvature, 286
data knowledge, 288
intensity gradient, 288

Speeded-up robust features, 161
Spin echo sequence, 51
Spin (of an atom), 44
Spin precession, 46
Spin-lattice-relaxation time, 47
Spin-spin-relaxation time, 47
Spiral scanner, 38
Split and merge, 196

Spring force, 357
STAPLE, 425

sensitivity and specificity estimation, 426
Stationary level set, 274

arrival time, 281
evolution, 275
upwind scheme, 281

Stereotaxic coordinate system, 325
Stiffness, 263
Stiffness matrix, 361
Stochastic sign change criterion, 308
Stopping criterion

dynamic level set, 288
stationary level set, 283

Stress matrix, 363
Student-t-test, 436
Superellipsoid, 342

with free-form deformation, 343
Support vector, 399
Support vector machine, 398

linear, 398
nonlinear decision boundary, 400
radial base functions, 401
slack variables, 401

SURF, 161
SUSAN corner detector, 157
SVM, see Support vector machine
Swap move, 244

graph, 245
Symmetric region growing, 201

T
T-distribution, 438
T-link, 236
T-snake, 268

evolution, 269
T-surface, 269
T-test, 436
T1-time, 47
T2∗ effect, 48
T2-time, 47
Talairach coordinates, 325
Tanimoto coefficient, 418
Template matching, 338
Terminal link, 236
Tertiary landmarks, 348
Texture, 179

Haralick’s features, 181
Law’s filter masks, 181
spectral features, 181

Thinning algorithm, 345
Thresholding, 190

connected component analysis, 190
Otsu’s method, 191
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Thresholding (cont.)
relaxation labeling, 193
shading correction, 193
using fuzzy memberships, 191
Zack’s algorithm, 191

Topologically constrained level sets, 294
Torsion force, 358
Transfer function, 119
Transverse relaxation, 47
Treatment planning, 6
True negative, 420
True positive, 420
Turbo spin echo sequence, 53
Two-sided t-test, 438

U
UID, 92
Ultrasound artefacts, 62
Ultrasound imaging, 60

A-scan, 61
B-scan, 61

Under-segmentation, 417
Unique identifier, 92
Upwind scheme, 278

V
Valence electron, 25
Validation, 413

documentation, 414
quality measures, 415
robustness, 435
sources of variation, 434

Variational calculus, 449
Variational level set, 290

with shape prior, 372
Variational level sets

active contours without regions, 292
active geodesic regions, 293

Euler–Lagrange equation, 290
geodesic active contour, 289

Vibration mode, 367
object-specific symmetry, 369

Viewer software, 8
Vignetting, 31
Viscous fluid model, 323
Visible human, 428

W
Watershed transform, 197

by image foresting transform, 254
flooding, 197
hierarchical, 197
marker-based, 199
over-segmentation, 197

Wave propagation, 273
Welch-test, 439
Window (display), 41
Within-class scatter matrix, 383
WST, see Watershed transform

X
X-ray, 24

attenuation, 27
contrast, 28
generation, 25
imaging, 29
tube, 27

XCAT phantom, 431

Y
Young’s modulus, 364

Z
Z message (HL7), 90
Zack’s algorithm, 191
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