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A mathematician, like a painter or a poet,
is a maker of patterns.

If his patterns are more permanent than theirs,
it is because they are made with ideas.

G.H. Hardy

To my teacher, Prof. Hanfried Lenz



Preface to the Fourth
Edition

Welcome back, my friends,
to the show that never ends....
Emerson, Lake & Palmer

Once again, the new edition has been thoroughly revised, even though the
changes are less extensive than for the third edition. (Well, one does hope for
some sort of convergence of the writing process.)

In particular, I have again added some further material: more on NP-
completeness (especially on dominating sets), a section on the Gallai-
Edmonds structure theory for matchings, and about a dozen additional
exercises—as always, with solutions. Moreover, the section on the 1-factor
theorem has been completely rewritten: it now presents a short direct proof
for the more general Berge-Tutte formula.

I have also used this opportunity to discuss several recent research de-
velopments and added quite a few references. Finally, smaller changes and
corrections—mainly to typographical errors—have been made.

As always, I am indebted to my students and assistants for their attention
and interest. Special thanks are due to Dr. Matthias Tinkl who was in charge
of the examples classes for a couple of lecture courses based on this text
and also contributed several improved figures, and to one of our students,
Alexander Müller, for his careful reading and helpful suggestions.

Dieter JungnickelAugsburg
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Preface to the Third
Edition

The show must go on.
Ira Gershwin

This new third edition has again been thoroughly revised, even though the
changes are not as extensive as in the second edition. Of course, the general
aims of the book have remained the same.

In particular, I have added some additional material, namely two new
sections concerning graphical codes (which provides a less obvious area of
application and, as I hope, might also interest the reader in the important
field of coding theory) and about two dozen further exercises (as usual, with
solutions). I have also discussed and referenced recent developments, espe-
cially for the travelling salesman problem, where truly impressive new world
records have been achieved. Moreover, the presentation of the material has
been improved in quite a few places, most notably in the chapters on shortest
paths and colorings. In addition to this, many smaller changes and correc-
tions have been made, and the proofs of several theorems have been rewritten
to make them more transparent, or more precise.

Again, I thank my students and assistants for their attention and interest
as well as the input they provided. Moreover, I am indebted to several readers
who alerted me to some (fortunately, more or less minor) problems; and I am,
of course, also grateful for the encouraging comments I have received.

Dieter JungnickelAugsburg
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Preface to the Second
Edition

Change is inevitable...
Change is constant.
Benjamin Disraeli

When the first printing of this book sold out in a comparatively short time,
it was decided to reprint the original edition with only small modifications:
I just took the opportunity to correct a handful of minor mistakes and to
provide a few updates to the bibliography. In contrast, the new second edi-
tion has been thoroughly revised, even though the general aims of the book
have remained the same. In particular, I have added some new material,
namely a chapter on the network simplex algorithm and a section on the five
color theorem; this also necessitated some changes in the previous order of
the presentation (so that the numbering differs from that of the first edi-
tion, beginning with Chap. 8). In addition to this, numerous smaller changes
and corrections have been made and several recent developments have been
discussed and referenced. There are also several new exercises.

Again, I thank my students and assistants for their attention and interest
as well as the input they provided. Moreover, I am particularly grateful to
two colleagues: Prof. Chris Fisher who read the entire manuscript and whose
suggestions led to many improvements in the presentation; and Priv.-Doz.
Dr. Bernhard Schmidt who let me make use of his lecture notes on the network
simplex algorithm.

Dieter JungnickelAugsburg
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Preface to the First
Edition

The algorithmic way of life is best.
Hermann Weyl

During the last few decades, combinatorial optimization and graph theory
have—as the whole field of combinatorics in general—experienced a partic-
ularly fast development. There are various reasons for this fact; one is, for
example, that applying combinatorial arguments has become more and more
common. However, two developments on the outside of mathematics may
have been more important: First, a lot of problems in combinatorial optimiza-
tion arose directly from everyday practice in engineering and management:
determining shortest or most reliable paths in traffic or communication net-
works, maximal or compatible flows, or shortest tours; planning connections
in traffic networks; coordinating projects; solving supply and demand prob-
lems. Second, practical instances of those tasks which belong to operations
research have become accessible by the development of more and more effi-
cient computer systems. Furthermore, combinatorial optimization problems
are also important for complexity theory, an area in the common intersec-
tion of mathematics and theoretical computer science which deals with the
analysis of algorithms. Combinatorial optimization is a fascinating part of
mathematics, and a lot of its fascination—at least for me—comes from its
interdisciplinarity and its practical relevance.

The present book focuses mainly on that part of combinatorial optimiza-
tion which can be formulated and treated by graph theoretical methods;
neither the theory of linear programming nor polyhedral combinatorics are
considered. Simultaneously, the book gives an introduction into graph the-
ory, where we restrict ourselves to finite graphs. We motivate the problems
by practical interpretations wherever possible.1 Also, we use an algorithmic
point of view; that is, we are not content with knowing that an optimal so-
lution exists (this is trivial to see in most cases anyway), but we are mainly

1Most of the subjects we treat here are of great importance for practical applications, for
example for VLSI layout or for designing traffic or communication networks. We recom-
mend the books [Ber92, KorLP90], and [Len90].

xiii



xiv Preface to the First Edition

interested in the problem of how to find an optimal (or at least almost opti-
mal) solution as efficiently as possible. Most of the problems we treat have a
good algorithmic solution, but we also show how even difficult problems can
be treated (for example by approximation algorithms or complete enumera-
tion) using a particular hard problem (namely the famous travelling salesman
problem) as an example. Such techniques are interesting even for problems
where it is possible to find an exact solution because they may decrease the
amount of calculations needed considerably. In order to be able to judge the
quality of algorithms and the degree of difficulty of problems, we introduce
the basic ideas of complexity theory (in an informal way) and explain one
of the main open problems of modern mathematics (namely the question
P=NP? ). In the first chapters of the book, we will present algorithms in a
rather detailed manner but turn to a more concise presentation in later parts.
We decided not to include any explicit programs in this book; it should not
be too difficult for a reader who is used to writing programs to transfer the
given algorithms. Giving programs in any fixed programming language would
have meant that the book is likely to be obsolete within a short time; more-
over, explicit programs would have obscured the mathematical background
of the algorithms. However, we use a structured way of presentation for our
algorithms, including special commands based on PASCAL (a rather usual
approach). The book contains a lot of exercises and, in the appendix, the
solutions or hints for finding the solution. As in any other discipline, combi-
natorial optimization can be learned best by really working with the material;
this is true in particular for understanding the algorithms. Therefore, we urge
the reader to work on the exercises seriously (and do the mere calculations
as well).

The present book is a translation of a revised version of the third edition of
my German text book Graphen, Netzwerke und Algorithmen. The translation
and the typesetting was done by Dr. Tilla Schade with my collaboration.

The text is based on two courses I gave in the winter term 1984/85 and in
the summer term 1985 at the Justus-Liebig-University in Gießen. As the first
edition of the book which appeared in 1987 was received quite well, a sec-
ond edition became necessary in 1990. This second edition was only slightly
changed (there were only a few corrections and some additions made, includ-
ing a further appendix and a number of new references), because it appeared
a relatively short time after the first edition. The third edition, however, was
completely revised and newly typeset. Besides several corrections and rear-
rangements, some larger supplements were added and the references brought
up to date. The lectures and seminars concerning combinatorial optimization
and graph theory that I continued to give regularly (first at the University
of Gießen, then since the summer term 1993 at the University of Augsburg)
were very helpful here. I used the text presented here repeatedly; I also took
it as the basis for a workshop for high school students organized by the Verein
Bildung und Begabung. This workshop showed that the subjects treated in
this book are accessible even to high school students; if motivated sufficiently,



Preface to the First Edition xv

they approach the problems with great interest. Moreover, the German edi-
tion has been used regularly at various other universities.

I thank my students and assistants and the students who attended the
workshop mentioned above for their constant attention and steady interest.
Thanks are due, in particular, to Priv.-Doz. Dr. Dirk Hachenberger and Prof.
Dr. Alexander Pott who read the entire manuscript of the (German) third
edition with critical accuracy; the remaining errors are my responsibility.

Dieter JungnickelAugsburg
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Chapter 1
Basic Graph Theory

It is time to get back to basics.
John Major

Graph theory began in 1736 when Leonhard Euler (1707–1783) solved the
well-known Königsberg bridge problem [Eul36].1 This problem asked for a
circular walk through the town of Königsberg (now Kaliningrad) in such a
way as to cross over each of the seven bridges spanning the river Pregel once,
and only once; see Fig. 1.1 for a rough sketch of the situation.

When trying to solve this problem one soon gets the feeling that there is no
solution. But how can this be proved? Euler realized that the precise shapes
of the island and the other three territories involved are not important; the
solvability depends only on their connection properties. Let us represent the
four territories by points (called vertices), and the bridges by curves joining
the respective points; then we get the graph also drawn in Fig. 1.1. Trying
to arrange a circular walk, we now begin a tour, say, at the vertex called a.
When we return to a for the first time, we have used two of the five bridges
connected with a. At our next return to a we have used four bridges. Now we
can leave a again using the fifth bridge, but there is no possibility to return
to a without using one of the five bridges a second time. This shows that the
problem is indeed unsolvable. Using a similar argument, we see that it is also
impossible to find any walk—not necessarily circular, so that the tour might
end at a vertex different from where it began—which uses each bridge exactly
once. Euler proved even more: he gave a necessary and sufficient condition for
an arbitrary graph to admit a circular tour of the above kind. We will treat
his theorem in Sect. 1.3. But first, we have to introduce some basic notions.

The present chapter contains a lot of definitions. We urge the reader to
work on the exercises to get a better idea of what the terms really mean.
Even though this chapter has an introductory nature, we will also prove a
couple of nontrivial results and give two interesting applications. We warn
the reader that the terminology in graph theory lacks universality, although
this improved a little after the book by Harary [Har69] appeared.

1See [Wil86] and [BigLW76].
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2 1 Basic Graph Theory

Fig. 1.1 The Königsberg bridge problem

1.1 Graphs, Subgraphs and Factors

A graph G is a pair G= (V,E) consisting of a finite2 set V �= ∅ and a set E of
two-element subsets of V . The elements of V are called vertices. An element
e = {a, b} of E is called an edge with end vertices a and b. We say that a
and b are incident with e and that a and b are adjacent or neighbors of each

other, and write e= ab or a
e
— b.

Let us mention two simple but important series of examples. The complete
graph Kn has n vertices (that is, |V |= n) and all two-element subsets of V
as edges. The complete bipartite graph Km,n has as vertex set the disjoint
union of a set V1 with m elements and a set V2 with n elements; edges are
all the sets {a, b} with a ∈ V1 and b ∈ V2.

We will often illustrate graphs by pictures in the plane. The vertices of a
graph G= (V,E) are represented by (bold type) points and the edges by lines
(preferably straight lines) connecting the end points. We give some examples
in Fig. 1.2. We emphasize that in these pictures the lines merely serve to
indicate the vertices with which they are incident. In particular, the inner
points of these lines as well as possible points of intersection of two edges (as
in Fig. 1.2 for the graphs K5 and K3,3) are not significant. In Sect. 1.5 we
will study the question which graphs can be drawn without such additional
points of intersection.

Let G= (V,E) be a graph and V ′ be a subset of V . By E|V ′ we denote
the set of all edges e ∈ E which have both their vertices in V ′. The graph

2In graph theory, infinite graphs are studied as well. However, we restrict ourselves in this

book—like [Har69]—to the finite case.
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Fig. 1.2 Some graphs

Fig. 1.3 Subgraphs

(V ′,E|V ′) is called the induced subgraph on V ′ and is denoted by G|V ′.
Each graph of the form (V ′,E′) where V ′ ⊂ V and E′ ⊂ E|V ′ is said to be
a subgraph of G, and a subgraph with V ′ = V is called a spanning subgraph.
Some examples are given in Fig. 1.3.

Given any vertex v of a graph, the degree of v , deg v, is the number of edges
incident with v. We can now state our first—albeit rather simple—result:

Lemma 1.1.1 In any graph, the number of vertices of odd degree is even.

Proof Summing the degree over all vertices v, each edge is counted exactly
twice, once for each of its vertices; thus

∑
v deg v = 2|E|. As the right hand

side is even, the number of odd terms deg v in the sum on the left hand side
must also be even. �
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Fig. 1.4 A factorization

of K6

If all vertices of a graph G have the same degree (say r), G is called a
regular graph, more precisely an r-regular graph. The graph Kn is (n− 1)-
regular, the graphKm,n is regular only ifm= n (in which case it is n-regular).
A k-factor is a k-regular spanning subgraph. If the edge set of a graph can
be divided into k-factors, such a decomposition is called a k-factorization
of the graph. A 1-factorization is also called a factorization or a resolution.
Obviously, a 1-factor can exist only if G has an even number of vertices.
Factorizations of K2n may be interpreted as schedules for a tournament of
2n teams (in soccer, basketball etc.). The following exercise shows that such
a factorization exists for all n. The problem of setting up schedules for tour-
naments will be studied in Sect. 1.7 as an application.

Exercise 1.1.2 We use {∞,1, . . . ,2n− 1} as the vertex set of the complete
graph K2n and divide the edge set into subsets Fi for i= 1, . . . ,2n− 1, where
Fi = {∞i} ∪ {jk : j + k ≡ 2i (mod 2n − 1)}. Show that the Fi form a fac-
torization of K2n. The case n = 3 is shown in Fig. 1.4. Factorizations were
first introduced by [Kir47]; interesting surveys are given by [MenRo85] and
[Wal92].

Let us conclude this section with two more exercises. First, we introduce
a further family of graphs. The triangular graph Tn has as vertices the two-
element subsets of a set with n elements. Two of these vertices are adjacent
if and only if their intersection is not empty. Obviously, Tn is a (2n − 4)-
regular graph. But Tn has even stronger regularity properties: the number of
vertices adjacent to two given vertices x, y depends only on whether x and y
themselves are adjacent or not. Such a graph is called a strongly regular graph,
abbreviated by SRG. These graphs are of great interest in finite geometry;
see the books [CamLi91] and [BetJL99]. We will limit our look at SRG’s in
this book to a few exercises.

Exercise 1.1.3 Draw the graphs Tn for n = 3,4,5 and show that Tn has
parameters a = 2n − 4, c = n − 2 and d = 4, where a is the degree of any
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vertex, c is the number of vertices adjacent to both x and y if x and y are
adjacent, and d is the number of vertices adjacent to x and y if x and y are
not adjacent.

For the next exercise, we need another definition. For a graph G= (V,E),
we will denote by

(
V
2

)
the set of all pairs of its vertices. The graph G =

(V,
(
V
2

)
\E) is called the complementary graph. Two vertices of V are adjacent

in G if and only if they are not adjacent in G.

Exercise 1.1.4 Let G be an SRG with parameters a, c, and d having n
vertices. Show that G is also an SRG and determine its parameters. Moreover,
prove the formula

a(a− c− 1) = (n− a− 1)d.

Hint: Count the number of edges yz for which y is adjacent to a given vertex
x, whereas z is not adjacent to x.

1.2 Paths, Cycles, Connectedness, Trees

Before we can go on to the theorem of Euler mentioned in Sect. 1.1, we have
to formalize the idea of a circular tour. Let (e1, . . . , en) be a sequence of
edges in a graph G. If there are vertices v0, . . . , vn such that ei = vi−1vi for
i= 1, . . . , n, the sequence is called a walk ; if v0 = vn, one speaks of a closed
walk . A walk for which the ei are distinct is called a trail , and a closed walk
with distinct edges is a closed trail . If, in addition, the vj are distinct, the
trail is a path. A closed trail with n≥ 3, for which the vj are distinct (except,
of course, v0 = vn), is called a cycle. In any of these cases we use the notation

W : v0
e1

v1
e2

v2 · · · vn−1

en
vn

and call n the length of W . The vertices v0 and vn are called the start vertex
and the end vertex of W , respectively. We will sometimes specify a walk
by its sequence of vertices (v0, . . . , vn), provided that vi−1vi is an edge for
i= 1, . . . , n. In the graph of Fig. 1.5, (a, b, c, v, b, c) is a walk, but not a trail;
and (a, b, c, v, b, u) is a trail, but not a path. Also, (a, b, c, v, b, u, a) is a closed
trail, but not a cycle, whereas (a, b, c,w, v, u, a) is a cycle. The reader might
want to consider some more examples.

Exercise 1.2.1 Show that any walk with start vertex a and end vertex b,
where a �= b, contains a path from a to b. Also prove that any closed walk
of odd length contains a cycle. What do closed walks not containing a cycle
look like?
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Fig. 1.5 An example for

walks

Two vertices a and b of a graph G are called connected if there exists a walk
with start vertex a and end vertex b. If all pairs of vertices of G are connected,
G itself is called connected . For any vertex a, we consider (a) as a trivial walk
of length 0, so that any vertex is connected with itself. Thus connectedness is
an equivalence relation on the vertex set of G. The equivalence classes of this
relation are called the connected components of G. Thus G is connected if
and only if its vertex set V is its unique connected component. Components
which contain only one vertex are also called isolated vertices. Let us give
some exercises concerning these definitions.

Exercise 1.2.2 Let G be a graph with n vertices and assume that each
vertex of G has degree at least (n− 1)/2. Show that G must be connected.

Exercise 1.2.3 A graph G is connected if and only if there exists an edge
e= vw with v ∈ V1 and w ∈ V2 whenever V = V1

.
∪ V2 (that is, V1 ∩ V2 = ∅)

is a decomposition of the vertex set of G.

Exercise 1.2.4 If G is not connected, the complementary graph G is con-
nected.

If a and b are two vertices in the same connected component of a graph G,
there has to exist a path of shortest length (say d) between a and b. (Why?)
Then a and b are said to have distance d= d(a, b). The notion of distances
in a graph is fundamental; we will study it (and a generalization) thoroughly
in Chap. 3.

In the remainder of this section, we will investigate the minimal connected
graphs. First, some more definitions and an exercise. A graph is called acyclic
if it does not contain a cycle. For a subset T of the vertex set V of a graph G
we denote by G \ T the induced subgraph on V \ T . This graph arises from
G by omitting all vertices in T and all edges incident with these vertices. For
a one-element set T = {v} we write G \ v instead of G \ {v}.
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Exercise 1.2.5 Let G be a graph having n vertices, none of which are iso-
lated, and n−1 edges, where n≥ 2. Show that G contains at least two vertices
of degree 1.

Lemma 1.2.6 A connected graph on n vertices has at least n− 1 edges.

Proof We use induction on n; the case n = 1 is trivial. Thus let G be a
connected graph on n ≥ 2 vertices. Choose an arbitrary vertex v of G and
consider the graph H = G \ v. Note that H is not necessarily connected.
Suppose H has connected components Zi having ni vertices (i = 1, . . . , k),
that is, n1 + · · ·+ nk = n− 1. By induction hypothesis, the subgraph of H
induced on Zi has at least ni − 1 edges. Moreover, v must be connected in
G with each of the components Zi by at least one edge. Thus G contains at
least (n1 − 1) + · · ·+ (nk − 1) + k = n− 1 edges. �

Lemma 1.2.7 An acyclic graph on n vertices has at most n− 1 edges.

Proof If n= 1 or E = ∅, the statement is obvious. For the general case, choose
any edge e= ab in G. Then the graph H =G \ e has exactly one more con-
nected component than G. (Note that there cannot be a path in H from a
to b, because such a path together with the edge e would give rise to a cycle
in G.) Thus, H can be decomposed into connected, acyclic graphs H1, . . . ,Hk

(where k ≥ 2). By induction, we may assume that each graph Hi contains at
most ni−1 edges, where ni denotes the number of vertices of Hi. But then G
has at most

(n1 − 1) + · · ·+ (nk − 1) + 1 = (n1 + · · ·+ nk)− (k− 1)≤ n− 1

edges. �

Theorem 1.2.8 Let G be a graph with n vertices. Then any two of the
following conditions imply the third:

(a) G is connected.
(b) G is acyclic.
(c) G has n− 1 edges.

Proof First let G be acyclic and connected. Then Lemmas 1.2.6 and 1.2.7
imply that G has exactly n− 1 edges.

Next let G be a connected graph with n− 1 edges. Suppose G contains a
cycle C and consider the graph H =G \ e, where e is some edge of C. Then
H is a connected with n vertices and n−2 edges, contradicting Lemma 1.2.6.

Finally, let G be an acyclic graph with n− 1 edges. Then Lemma 1.2.7
implies that G cannot contain an isolated vertex, as omitting such a vertex
would give an acyclic graph with n− 1 vertices and n− 1 edges. Now Exer-
cise 1.2.5 shows that G has a vertex of degree 1, so that G \ v is an acyclic
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graph with n− 1 vertices and n− 2 edges. By induction it follows that G \ v
and hence G are connected. �

Exercise 1.2.9 Give a different proof for Lemma 1.2.6 using the technique
of omitting an edge e from G.

A graph T for which the conditions of Theorem 1.2.8 hold is called a
tree. A vertex of T with degree 1 is called a leaf . A forest is a graph whose
connected components are trees. We will have a closer look at trees in Chap. 4.

In Sect. 4.2 we will use rather sophisticated techniques from linear algebra
to prove a formula for the number of trees on n vertices; this result is usually
attributed to Cayley [Cay89], even though it is essentially due to Borchardt
[Bor60]. Here we will use a more elementary method to prove a stronger
result—which is indeed due to Cayley. By f(n, s) we denote the number of
forests G having n vertices and exactly s connected components, for which s
fixed vertices are in distinct components; in particular, the number of trees
on n vertices is f(n,1). Cayley’s theorem gives a formula for the numbers
f(n, s); we use a simple proof taken from [Tak90a].

Theorem 1.2.10 One has f(n, s) = snn−s−1.

Proof We begin by proving the following recursion formula:

f(n, s) =

n−s∑

j=0

(
n− s

j

)

f(n− 1, s+ j − 1), (1.1)

where we put f(1,1) = 1 and f(n,0) = 0 for n≥ 1. How can an arbitrary forest
G with vertex set V = {1, . . . , n} having precisely s connected components
be constructed? Let us assume that the vertices 1, . . . , s are the specified
vertices which belong to distinct components. The degree of vertex 1 can
take the values j = 0, . . . , n− s, as the neighbors of 1 may form an arbitrary
subset Γ (1) of {s+ 1, . . . , n}. Then we have—after choosing the degree j of
1—exactly

(
n−s
j

)
possibilities to choose Γ (1). Note that the graph G \ 1 is

a forest with vertex set V \ {1}= {2, . . . , n} and exactly s+ j − 1 connected
components, where the vertices 2, . . . , s and the j elements of Γ (1) are in
different connected components. After having chosen j and Γ (1), we still
have f(n− 1, s+ j− 1) possibilities to construct the forest G \ 1. This proves
the recursion formula (1.1).

We now prove the desired formula for the f(n, s) by using induction on n.
The case n= 1 is trivial. Thus we let n≥ 2 and assume that

f(n− 1, i) = i(n− 1)n−i−2 holds for i= 1, . . . , n− 1. (1.2)
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Using this in equation (1.1) gives

f(n, s) =
n−s∑

j=0

(
n− s

j

)

(s+ j − 1)(n− 1)n−s−j−1

=

n−s∑

j=1

j

(
n− s

j

)

(n− 1)n−s−j−1

+ (s− 1)
n−s∑

j=0

(
n− s

j

)

(n− 1)n−s−j−1

= (n− s)

n−s∑

j=1

(
n− s− 1

j − 1

)

(n− 1)n−s−j−1

+ (s− 1)
n−s∑

j=0

(
n− s

j

)

(n− 1)n−s−j−1

=
n− s

n− 1

n−s−1∑

k=0

(
n− s− 1

k

)

(n− 1)(n−s−1)−k × 1k

+
s− 1

n− 1

n−s∑

j=0

(
n− s

j

)

(n− 1)n−s−j × 1j

=
(n− s)nn−s−1 + (s− 1)nn−s

n− 1
= snn−s−1.

This proves the theorem. �

Note that the rather tedious calculations in the induction step may be

replaced by the following—not shorter, but more elegant—combinatorial ar-

gument. We have to split up the sum we got from using equation (1.2) in

(1.1) in a different way:

f(n, s) =
n−s∑

j=0

(
n− s

j

)

(s+ j − 1)(n− 1)n−s−j−1

=

n−s∑

j=0

(
n− s

j

)

(n− 1)n−s−j

−
n−s−1∑

j=0

(
n− s

j

)

(n− s− j)(n− 1)n−s−j−1.
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Now the first sum counts the number of words of length n − s over the
alphabet V = {1, . . . , n}, as the binomial coefficient counts the number of
possibilities for distributing j entries 1 (where j has to be between 0 and
n− s), and the factor (n−1)n−s−j gives the number of possibilities for filling
the remaining n− s− j positions with entries �= 1. Similarly, the second sum
counts the number of words of length n−s over the alphabet V = {0,1, . . . , n}
which contain exactly one entry 0. As there are obvious formulas for these
numbers, we directly get

f(n, s) = nn−s − (n− s)nn−s−1 = snn−s−1.

Borchardt’s result is now an immediate consequence of Theorem 1.2.10:

Corollary 1.2.11 The number of trees on n vertices is nn−2.

It is interesting to note that nn−2 is also the cardinality of the set W of
words of length n− 2 over an alphabet V with n elements, which suggests
that we might prove Corollary 1.2.11 by constructing a bijection between W
and the set T of trees with vertex set V . This is indeed possible as shown by
Prüfer [Pru18]; we will follow the account in [Lue89] and construct the Prüfer
code πV :T→W recursively. As we will need an ordering of the elements of
V , we assume in what follows, without loss of generality, that V is a subset
of N.

Thus let G= (V,E) be a tree. For n= 2 the only tree on V is mapped to
the empty word; that is, we put πV (G) = (). For n≥ 3 we use the smallest
leaf of G to construct a tree on n− 1 vertices. We write

v = v(G) =min
{
u ∈ V : degG(u) = 1

}
(1.3)

and denote by e= e(G) the unique edge incident with v, and by w = w(G)
the other end vertex of e. Now let G′ = G \ v. Then G′ has n− 1 vertices,
and we may assume by induction that we know the word corresponding to
G′ under the Prüfer code on V ′ = V \ {v}. Hence we can define recursively

πV (G) =
(
w,πV ′

(
G′)). (1.4)

It remains to show that we have indeed constructed the desired bijection. We
need the following lemma which allows us to determine the minimal leaf of a
tree G on V from its Prüfer code.

Lemma 1.2.12 Let G be a tree on V . Then the leaves of G are precisely
those elements of V which do not occur in πV (G). In particular,

v(G) =min
{
u ∈ V : u does not occur in πV (G)

}
. (1.5)

Proof First suppose that an element u of V occurs in πV (G). Then u was
added to πV (G) at some stage of our construction; that is, some subtree H
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of G was considered, and u was adjacent to the minimal leaf v(H) of H . Now
if u were also a leaf of G (and thus of H), then H would have to consist only
of u and v(G), so that H would have the empty word as Prüfer code, and u
would not occur in πV (G), contradicting our assumption.

Now suppose that u is not a leaf. Then there is at least one edge incident
with u which is discarded during the construction of the Prüfer code of G,
since the construction only ends when a tree on two vertices remains of G.
Let e be the edge incident with u which is omitted first. At that point of the
construction, u is not a leaf, so that the other end vertex of e has to be the
minimal leaf of the respective subtree. But then, by our construction, u is
used as the next coordinate in πV (G). �

Theorem 1.2.13 The Prüfer code πV : T→W defined by equations (1.3)
and (1.4) is a bijection.

Proof For n = 2, the statement is clear, so let n ≥ 3. First we show that
πV is surjective. Let w = (w1, . . . ,wn−2) be an arbitrary word over V , and
denote by v the smallest element of V which does not occur as a coordinate
in w. By induction, we may assume that there is a tree G′ on the vertex set
V ′ = V \ {v} with πV ′(G′) = (w2, . . . ,wn−2). Now we add the edge e = vw1

to G′ (as Lemma 1.2.12 suggests) and get a tree G on V . It is easy to verify
that v = v(G) and thus πV (G) =w. To prove injectivity, let G and H be two
trees on {1, . . . , n} and suppose πV (G) = πV (H). Now let v be the smallest
element of V which does not occur in πV (G). Then Lemma 1.2.12 implies
that v = v(G) = v(H). Thus G and H both contain the edge e= vw, where
w is the first entry of πV (G). Then G′ and H ′ are both trees on V ′ = V \{v},
and we have πV ′(G′) = πV ′(H ′). Using induction, we conclude G′ =H ′ and
hence G=H . �

Note that the proof of Theorem 1.2.13 together with Lemma 1.2.12 gives
a constructive method for decoding the Prüfer code.

Example 1.2.14 Figure 1.6 shows some trees and their Prüfer codes for n= 6
(one for each isomorphism class, see Exercise 4.1.6).

Exercise 1.2.15 Determine the trees with vertex set {1, . . . , n} corre-
sponding to the following Prüfer codes: (1,1, . . . ,1); (2,3, . . . , n − 2, n − 1);
(2,3, . . . , n− 3, n− 2, n− 2); (3,3,4, . . . , n− 3, n− 2, n− 2).

Exercise 1.2.16 How can we determine the degree of an arbitrary vertex
u of a tree G from its Prüfer code πV (G)? Give a condition for πV (G) to
correspond to a path or a star (where a star is a tree having one exceptional
vertex z which is adjacent to all other vertices).
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Fig. 1.6 Some trees and their Prüfer codes

Exercise 1.2.17 Let (d1, . . . , dn) be a sequence of positive integers. Show
that there is a tree on n vertices having degrees d1, . . . , dn if and only if

d1 + · · ·+ dn = 2(n− 1), (1.6)

and construct a tree with degree sequence (1,1,1,1,2,3,3). Hint: Use the
Prüfer code.

We remark that the determination of the possible degree sequences for
arbitrary graphs on n vertices is a considerably more difficult problem; see,
for instance, [SieHo91] and [BarSa95].

We have now seen two quite different proofs for Corollary 1.2.11 which il-
lustrate two important techniques for solving enumeration problems, namely
using recursion formulas on the one hand and using bijections on the other.
In Sect. 4.2 we will see yet another proof which will be based on the appli-
cation of algebraic tools (like matrices and determinants). In this text, we
cannot treat the most important tool of enumeration theory, namely gen-
erating functions. The interested reader can find the basics of enumeration
theory in any good book on combinatorics; for a more thorough study we
recommend the books by Stanley [Sta86, Sta99] or the extensive monograph
[GouJa83], all of which are standard references.

Let us also note that the number f(n) of forests on n vertices has been
studied several times; see [Tak90b] and the references given there. Takács
proves the following simple formula which is, however, not at all easy to
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derive:

f(n) =
n!

n+ 1

�n/2�∑

j=0

(−1)j
(2j + 1)(n+ 1)n−2j

2jj!(n− 2j)!
.

Finally, me mention an interesting asymptotic result due to Rényi [Ren59]
which compares the number of all forests with the number of all trees:

lim
n→∞

f(n)

nn−2
=
√
e≈ 1.6487.

1.3 Euler Tours

In this section we will solve the Königsberg bridge problem for arbitrary
graphs. The reader should note that Fig. 1.1 does not really depict a graph
according to the definitions given in Sect. 1.1, because there are pairs of
vertices which are connected by more than one edge. Thus we generalize our
definition as follows. Intuitively, for a multigraph on a vertex set V , we want
to replace the edge set of an ordinary graph by a family E of two-element
subsets of V . To be able to distinguish different edges connecting the same
pair of vertices, we formally define a multigraph as a triple (V,E,J), where V
and E are disjoint sets, and J is a mapping from E to the set of two-element
subsets of V , the incidence map. The image J(e) of an edge e is the set {a, b}
of end vertices of e. Edges e and e′ with J(e) = J(e′) are called parallel . Then
all the notions introduced so far carry over to multigraphs. However, in this
book we will—with just a few exceptions—restrict ourselves to graphs.3

The circular tours occurring in the Königsberg bridge problem can be
described abstractly as follows. An Eulerian trail of a multigraph G is a trail
which contains each edge of G (exactly once, of course); if the trail is closed,
then it is called an Euler tour.4 A multigraph is called Eulerian if it contains
an Euler tour. The following theorem of [Eul36] characterizes the Eulerian
multigraphs.

Theorem 1.3.1 (Euler’s theorem) Let G be a connected multigraph. Then
the following statements are equivalent:

(a) G is Eulerian.
(b) Each vertex of G has even degree.

3Some authors denote the structure we call a multigraph by graph; graphs according to
our definition are then called simple graphs. Moreover, sometimes even edges e for which
J(e) is a set {a} having only one element are admitted; such edges are then called loops.
The corresponding generalization of multigraphs is often called a pseudograph.

4Sometimes one also uses the term Eulerian cycle, even though an Euler tour usually
contains vertices more than once.
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(c) The edge set of G can be partitioned into cycles.

Proof We first assume that G is Eulerian and pick an Euler tour, say C. Each
occurrence of a vertex v in C adds 2 to its degree. As each edge of G occurs
exactly once in C, all vertices must have even degree. The reader should work
out this argument in detail.

Next suppose that (b) holds and that G has n vertices. As G is connected,
it has at least n−1 edges by Lemma 1.2.6. Since G does not contain vertices of
degree 1, it actually has at least n edges, by Exercise 1.2.5. Then Lemma 1.2.7
shows that there is a cycle K in G. Removing K from G we get a graph
H in which all vertices again have even degree. Considering the connected
components of H separately, we may—using induction—partition the edge
set of H into cycles. Hence, the edge set of G can be partitioned into cycles.

Finally, assume the validity of (c) and let C be one of the cycles in the
partition of the edge set E into cycles. If C is an Euler tour, we are finished.
Otherwise there exists another cycle C ′ having a vertex v in common with
C. We can w.l.o.g. use v as start and end vertex of both cycles, so that CC ′

(that is, C followed by C ′) is a closed trail. Continuing in the same manner,
we finally reach an Euler tour. �

Corollary 1.3.2 Let G be a connected multigraph with exactly 2k vertices of
odd degree. Then G contains an Eulerian trail if and only if k = 0 or k = 1.

Proof The case k = 0 is clear by Theorem 1.3.1. So suppose k �= 0. Similar to
the proof of Theorem 1.3.1 it can be shown that an Eulerian trail can exist
only if k = 1; in this case the Eulerian trail has the two vertices of odd degree
as start and end vertices. Let k = 1 and name the two vertices of odd degree a
and b. By adding an (additional) edge ab to G, we get a connected multigraph
H whose vertices all have even degree. Hence H contains an Euler tour C by
Theorem 1.3.1. Omitting the edge ab from C then gives the desired Eulerian
trail in G. �

Exercise 1.3.3 Let G be a connected multigraph having exactly 2k vertices
of odd degree (k �= 0). Then the edge set of G can be partitioned into k trails.

The line graph L(G) of a graph G has as vertices the edges of G; two edges
of G are adjacent in L(G) if and only if they have a common vertex in G. For
example, the line graph of the complete graph Kn is the triangular graph Tn.

Exercise 1.3.4 Give a formula for the degree of a vertex of L(G) (using the
degrees in G). In which cases is L(Km,n) an SRG?

Exercise 1.3.5 Let G be a connected graph. Find a necessary and sufficient
condition for L(G) to be Eulerian. Conclude that the line graph of an Eulerian
graph is likewise Eulerian, and show that the converse is false in general.
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Fig. 1.7 The Icosian

game

Finally we recommend the very nice survey [Fle83] which treats Eule-
rian graphs and a lot of related questions in detail; for another survey, see
[LesOe86]. A much more extensive treatment of these subjects can be found
in two monographs by Fleischner [Fle90, Fle91]. For a survey of line graphs,
see [Pri96].

1.4 Hamiltonian Cycles

In 1857 Sir William Rowan Hamilton (1805–1865, known to every mathe-
matician for the quaternions and the theorem of Cayley–Hamilton) invented
the following Icosian game which he then sold to a London game dealer in
1859 for 25 pounds; it was realized physically as a pegboard with holes. The
corners of a regular dodecahedron are labelled with the names of cities; the
task is to find a circular tour along the edges of the dodecahedron visiting
each city exactly once, where sometimes the first steps of the tour might also
be prescribed. More about this game can be found in [BalCo87]. We may
model the Icosian game by looking for a cycle in the corresponding dodecahe-
dral graph which contains each vertex exactly once. Such a cycle is therefore
called a Hamiltonian cycle. In Fig. 1.7 we give a solution for Hamilton’s
original problem.

Although Euler tours and Hamiltonian cycles have similar definitions, they
are quite different. For example, there is no nice characterization of Hamil-
tonian graphs; that is, of those graphs containing a Hamiltonian cycle. As
we will see in the next chapter, there are good reasons to believe that such a
good characterization cannot exist. However, we know many sufficient con-
ditions for the existence of a Hamiltonian cycle; most of these conditions are
statements about the degrees of the vertices. Obviously, the complete graph
Kn is Hamiltonian.
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We first prove a theorem from which we can derive several sufficient con-
ditions on the sequence of degrees in a graph. Let G be a graph on n vertices.
If G contains non-adjacent vertices u and v such that degu+ deg v ≥ n, we
add the edge uv to G. We continue this procedure until we get a graph
[G], in which, for any two non-adjacent vertices x and y, we always have
degx + deg y < n. The graph [G] is called the closure of G. (We leave it
to the reader to show that [G] is uniquely determined.) Then we have the
following theorem due to Bondy and Chvátal [BonCh76].

Theorem 1.4.1 A graph G is Hamiltonian if and only if its closure [G] is
Hamiltonian.

Proof If G is Hamiltonian, [G] is obviously Hamiltonian. As [G] is derived
from G by adding edges sequentially, it will suffice to show that adding just
one edge—as described above—does not change the fact whether a graph
is Hamiltonian or not. Thus let u and v be two non-adjacent vertices with
degu+deg v ≥ n, and let H be the graph which results from adding the edge
uv to G. Suppose that H is Hamiltonian, but G is not. Then there exists
a Hamiltonian cycle in H containing the edge uv, so that there is a path
(x1, x2, . . . , xn) in G with x1 = u and xn = v containing each vertex of G
exactly once. Consider the sets

X = {xi : vxi−1 ∈E and 3≤ i≤ n− 1}

and

Y = {xi : uxi ∈E and 3≤ i≤ n− 1}.

As u and v are not adjacent in G, we have |X|+ |Y |= degu+deg v−2≥ n−2.
Hence there exists an index i with 3 ≤ i ≤ n − 1 such that vxi−1 as well
as uxi are edges in G. But then (x1, x2, . . . , xi−1, xn, xn−1, . . . , xi, x1) is a
Hamiltonian cycle in G (see Fig. 1.8), a contradiction. �

In general, it will not be much easier to decide whether [G] is Hamiltonian.
But if, for example, [G] is a complete graph, G has to be Hamiltonian by
Theorem 1.4.1. Using this observation, we obtain the following two sufficient
conditions for the existence of a Hamiltonian cycle due to Ore and Dirac
[Ore60, Dir52], respectively.

Corollary 1.4.2 Let G be a graph with n≥ 3 vertices. If degu+ deg v ≥ n
holds for any two non-adjacent vertices u and v, then G is Hamiltonian.

Corollary 1.4.3 Let G be a graph with n≥ 3 vertices. If each vertex of G
has degree at least n/2, then G is Hamiltonian.
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Fig. 1.8 Proof of Theorem 1.4.1

Bondy and Chvátal used their Theorem 1.4.1 to derive further sufficient
conditions for the existence of a Hamiltonian cycle; in particular, they ob-
tained the earlier result of Las Vergnas [Las72] in this way. We also refer
the reader to [Har69, Ber73, Ber78, GonMi84, Chv85] for more results about
Hamiltonian graphs.

Exercise 1.4.4 Let G be a graph with n vertices and m edges, and assume
m≥ 1

2 (n− 1)(n− 2)+ 2. Use Corollary 1.4.2 to show that G is Hamiltonian.

Exercise 1.4.5 Determine the minimal number of edges a graph G with six
vertices must have if [G] is the complete graph K6.

Exercise 1.4.6 If G is Eulerian, then L(G) is Hamiltonian. Does the con-
verse hold?

We now digress a little and look at one of the oldest problems in recre-
ational mathematics, the knight’s problem. This problem consists of moving a
knight on a chessboard—beginning, say, in the upper left corner—such that it
reaches each square of the board exactly once and returns with its last move
to the square where it started.5 As mathematicians tend to generalize every-
thing, they want to solve this problem for chess boards of arbitrary size, not
even necessarily square. Thus we look at boards having m×n squares. If we
represent the squares of the chessboard by vertices of a graph G and connect

5It seems that the first known knight’s tours go back more than a thousand years to the

Islamic and Indian world around 840–900. The first examples in the modern European

literature occur in 1725 in Ozanam’s book [Oza25], and the first mathematical analysis of

knight’s tours appears in a paper presented by Euler to the Academy of Sciences at Berlin

in 1759 [Eul66]. See the excellent website by Jelliss [Jel03]; and [Wil89], an interesting

account of the history of Hamiltonian graphs.
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Fig. 1.9 A knight’s cycle

two squares if the knight can move directly from one of them to the other,
a solution of the knight’s problem corresponds to a Hamiltonian cycle in G.
Formally, we may define G as follows. The vertices of G are the pairs (i, j)
with 1≤ i≤m and 1≤ j ≤ n; as edges we have all sets {(i, j), (i′, j′)} with
|i− i′|= 1 and |j − j′|= 2 or |i− i′|= 2 and |j − j′|= 1. Most of the vertices
of G have degree 8, except the ones which are too close to the border of the
chess-board. For example, the vertices at the corners have degree 2. In our
context of Hamiltonian graphs, this interpretation of the knight’s problem
is of obvious interest. However, solving the problem is just as well possible
without looking at it as a graph theory problem. Figure 1.9 gives a solu-
tion for the ordinary chess-board of 8 × 8 = 64 squares; the knight moves
from square to square according to the numbers with which the squares are
labelled. Figure 1.9 also shows the Hamiltonian cycle in the corresponding
graph.

The following theorem of Schwenk [Schw91] solves the knight’s problem
for arbitrary rectangular chessboards.

Result 1.4.7 Every chessboard of size m×n (where m≤ n) admits a knight’s
cycle, with the following three exceptions:

(a) m and n are both odd;
(b) m= 1,2 or 4;
(c) m= 3 and n= 4,6 or 8.

The proof (which is elementary) is a nice example of how such problems
can be solved recursively, combining the solutions for some small sized chess-
boards. Solutions for boards of sizes 3× 10, 3× 12, 5× 6, 5× 8, 6× 6, 6× 8,
7× 6, 7× 8 and 8× 8 are needed, and these can easily be found by computer.
The version of the knight’s problem where no last move closing the cycle is
required has also been studied; see [ConHMW92, ConHMW94].
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Exercise 1.4.8 Show that knight’s cycles are impossible for the cases (a)
and (b) in Theorem 1.4.7. (Case (c) is more difficult.) Hint: For case (a) use
the ordinary coloring of a chessboard with black and white squares; for (b)
use the same coloring as well as another appropriate coloring (say, in red and
green squares) and look at a hypothetical knight’s cycle.

We close this section with a first look at one of the most fundamental
problems in combinatorial optimization, the travelling salesman problem (for
short, the TSP). This problem will later serve as our standard example of a
hard problem, whereas most of the other problems we will consider are easy.6

Imagine a travelling salesman who has to take a circular journey visiting
n cities and wants to be back in his home city at the end of the journey.
Which route is—knowing the distances between the cities—the best one? To
translate this problem into the language of graph theory, we consider the cities
as the vertices of the complete graph Kn; any circular tour then corresponds
to a Hamiltonian cycle inKn. To have a measure for the expense of a route, we
give each edge e a weight w(e). (This weight might be the distance between
the cities, but also the time the journey takes, or the cost, depending on
the criterion subject to which we want to optimize the route.) The expense
of a route then is the sum of the weights of all edges in the corresponding
Hamiltonian cycle. Thus our problem may be stated formally as follows.

Problem 1.4.9 (Travelling salesman problem, TSP) Consider the complete
graph Kn together with a weight function w :E →R

+. Find a cyclic permu-
tation (1, π(1), . . . , πn−1(1)) of the vertex set {1, . . . , n} such that

w(π) :=
n∑

i=1

w
({

i, π(i)
})

is minimal. We call any cyclic permutation π of {1, . . . , n} as well as the
corresponding Hamiltonian cycle

1 π(1) · · · πn−1(1) 1

in Kn a tour . An optimal tour is a tour π such that w(π) is minimal among
all tours.

Note that looking at all the possibilities for tours would be a lot of work:
even for only nine cities we have 8!/2 = 20160 possibilities. (We can always
take the tour to begin at vertex 1, and fix the direction of the tour.) Of course
it would be feasible to examine all these tours—at least by computer. But for

6The distinction between easy and hard problems can be made quite precise; we will
explain this in Chap. 2.
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20 cities, we already get about 1017 possible tours, making this brute force

approach more or less impossible.

It is convenient to view Problem 1.4.9 as a problem concerning matrices,

by writing the weights as a matrix W = (wij). Of course, we have wij =

wji and wii = 0 for i = 1, . . . , n. The instances of a TSP on n vertices thus

correspond to the symmetric matrices in (R+)(n,n) with entries 0 on the main

diagonal. In the following example we have rounded the distances between the

nine cities Aachen, Basel, Berlin, Dusseldorf, Frankfurt, Hamburg, Munich,

Nuremberg and Stuttgart to units of 10 kilometers; we write 10wij for the

rounded distance.

Example 1.4.10 Determine an optimal tour for

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Aa Ba Be Du Fr Ha Mu Nu St

Aa 0 57 64 8 26 49 64 47 46

Ba 57 0 88 54 34 83 37 43 27

Be 64 88 0 57 56 29 60 44 63

Du 8 54 57 0 23 43 63 44 41

Fr 26 34 56 23 0 50 40 22 20

Ha 49 83 29 43 50 0 80 63 70

Mu 64 37 60 63 40 80 0 17 22

Nu 47 43 44 44 22 63 17 0 19

St 46 27 63 41 20 70 22 19 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

An optimal tour and a tour which is slightly worse (obtained by replacing the

edges MuSt and BaFr by the edges MuBa and StFr) are shown in Fig. 1.10.

We will study the TSP in Chap. 15 in detail, always illustrating the various

techniques which we encounter using the present example.

Even though the number of possible tours grows exponentially with n,

there still might be an easy method to solve the TSP. For example, the

number of closed trails in a graph may also grow very fast as the number of

edges increases; but, as we will see in Chap. 2, it is still easy to find an Euler

tour or to decide that no such tour exists. On the other hand, it is difficult to

find Hamiltonian cycles. We will return to these examples in the next chapter

to think about the complexity (that is, the degree of difficulty) of a problem.
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Fig. 1.10 Two tours for

the TSP on 9 cities

1.5 Planar Graphs

This section is devoted to the problem of drawing graphs in the plane. First,

we need the notion of isomorphism. Two graphs G= (V,E) and G′ = (V ′,E′)

are called isomorphic if there is a bijection α : V → V ′ such that we have

{a, b} ∈ E if and only if {α(a), α(b)} ∈ E′ for all a, b in V . Let E be a set

of line segments in three-dimensional Euclidean space and V the set of end

points of the line segments in E. Identifying each line segment with the two-

element set of its end points, we can consider (V,E) as a graph. Such a graph

is called geometric if any two line segments in E are disjoint or have one of

their end points in common.

Lemma 1.5.1 Every graph is isomorphic to a geometric graph.

Proof Let G= (V,E) be a graph on n vertices. Choose a set V ′ of n points

in R
3 such that no four points lie in a common plane (Why is that possible?)

and map V bijectively to V ′. Let E′ contain, for each edge e in E, the line

segment connecting the images of the vertices on e. It is easy to see that

(V ′,E′) is a geometric graph isomorphic to G. �

As we have only a plane piece of paper to draw graphs, Lemma 1.5.1 does

not help us a lot. We call a geometric graph plane if its line segments all
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lie in one plane. Any graph isomorphic to a plane graph is called planar .7

Thus, the planar graphs are exactly those graphs which can be drawn in the
plane without additional points of intersection between the edges; see the
comments after Fig. 1.2. We will see that most graphs are not planar; more
precisely, we will show that planar graphs can only contain comparatively
few edges (compared to the number of vertices).

Let G= (V,E) be a planar graph. If we omit the line segments of G from
the plane surface on which G is drawn, the remainder splits into a number
of connected open regions; the closure of such a region is called a face. The
following theorem gives another famous result due to Euler [Eul52/53].

Theorem 1.5.2 (Euler’s formula) Let G be a connected planar graph with
n vertices, m edges and f faces. Then n−m+ f = 2.

Proof We use induction on m. For m= 0 we have n= 1 and f = 1, so that the
statement holds. Now let m �= 0. If G contains a cycle, we discard one of the
edges contained in this cycle and get a graph G′ with n′ = n, m′ =m− 1 and
f ′ = f−1. By induction hypothesis, n′−m′+f ′ = 2 and hence n−m+f = 2.
If G is acyclic, then G is a tree so that m= n−1, by Theorem 1.2.8; as f = 1,
we again obtain n−m+ f = 2. �

Originally, Euler’s formula was applied to the vertices, edges and faces of
a convex polyhedron; it is used, for example, to determine the five regular
polyhedra (or Platonic solids, namely the tetrahedron, octahedron, cube,
icosahedron and dodecahedron); see, for instance, [Cox73]. We will now use
Theorem 1.5.2 to derive bounds on the number of edges of planar graphs.
We need two more definitions. An edge e of a connected graph G is called a
bridge if G \ e is not connected. The girth of a graph containing cycles is the
length of a shortest cycle.

Theorem 1.5.3 Let G be a connected planar graph on n vertices. If G is
acyclic, then G has precisely n− 1 edges. If G has girth at least g, then G

can have at most g(n−2)
g−2

edges.

Proof The first claim holds by Theorem 1.2.8. Thus let G be a connected
planar graph having n vertices, m edges and girth at least g. Then n≥ 3.
We use induction on n; the case n = 3 is trivial. Suppose first that G con-
tains a bridge e. Discard e so that G is divided into two connected induced
subgraphs G1 and G2 on disjoint vertex sets. Let ni and mi be the numbers
of vertices and edges of Gi, respectively, for i= 1,2. Then n= n1 + n2 and
m=m1 +m2 + 1. As e is a bridge, at least one of G1 and G2 contains a

7In the definition of planar graphs, one often allows not only line segments, but curves as
well. However, this does not change the definition of planarity as given above, see [Wag36].
For multigraphs, it is necessary to allow curves.
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cycle. If both G1 and G2 contain cycles, they both have girth at least g, so
that by induction

m=m1 +m2 + 1≤ g((n1 − 2) + (n2 − 2))

g− 2
+ 1<

g(n− 2)

g− 2
.

If, say, G2 is acyclic, we have m2 = n2 − 1 and

m=m1 +m2 + 1≤ g(n1 − 2)

g− 2
+ n2 <

g(n− 2)

g− 2
.

Finally suppose that G does not contain a bridge. Then each edge of G is
contained in exactly two faces. If we denote the number of faces whose border
is a cycle consisting of i edges by fi, we get

2m=
∑

i

ifi ≥
∑

i

gfi = gf,

as each cycle contains at least g edges. By Theorem 1.5.2, this implies

m+ 2= n+ f ≤ n+
2m

g
and hence m≤ g(n− 2)

g− 2
. �

In particular, we obtain the following immediate consequence of Theo-
rem 1.5.3, since G is either acyclic or has girth at least 3.

Corollary 1.5.4 Let G be a connected planar graph with n vertices, where
n≥ 3. Then G contains at most 3n− 6 edges.

Example 1.5.5 By Corollary 1.5.4, the complete graph K5 is not planar, as
a planar graph on five vertices can have at most nine edges. The complete
bipartite graph K3,3 has girth 4; this graph is not planar by Theorem 1.5.3,
as it has more than eight edges.

Exercise 1.5.6 Show that the graphs which arise by omitting one edge e
from either K5 or K3,3 are planar. Give plane realizations for K5 \ e and
K3,3 \ e which use straight line segments only.

For the sake of completeness, we will state one of the most famous re-
sults in graph theory, namely the characterization of planar graphs due to
Kuratowski [Kur30]. We refer the reader to [Har69, Tho81] or [Die10] for
the elementary but rather lengthy proof. Again we need some definitions.
A subdivision of a graph G is a graph H which can be derived from G by
applying the following operation any number of times: replace an edge e= ab
by a path (a,x1, . . . , xk, b), where x1, . . . , xk are an arbitrary number of new
vertices; that is, vertices which were not in a previous subdivision. For con-
venience, G is also considered to be a subdivision of itself. Two graphs H
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Fig. 1.11 K3,3, a subdivision and a contraction

and H ′ are called homeomorphic if they are isomorphic to subdivisions of the
same graph G. Figure 1.11 shows a subdivision of K3,3.

Exercise 1.5.7 Let (V,E) and (V ′,E′) be homeomorphic graphs. Show that
|E| − |V |= |E′| − |V ′|.

Result 1.5.8 (Kuratowski’s theorem) A graph G is planar if and only if it
does not contain a subgraph which is homeomorphic to K5 or K3,3.

In view of Example 1.5.5, a graph having a subgraph homeomorphic to K5

orK3,3 cannot be planar. For the converse we refer to the sources given above.
There is yet another interesting characterization of planarity. If we identify
two adjacent vertices u and v in a graph G, we get an elementary contraction
of G; more precisely, we omit u and v and replace them by a new vertex w
which is adjacent to all vertices which were adjacent to u or v before;8 the
resulting graph is usually denoted by G/e, where e = uv. Figure 1.11 also
shows a contraction of K3,3. A graph G is called contractible to a graph H if
H arises from G by a sequence of elementary contractions. For the proof of
the following theorem see [Wag37, Aig84], or [HarTu65].

Result 1.5.9 (Wagner’s theorem) A graph G is planar if and only if it does
not contain a subgraph which is contractible to K5 or K3,3.

Exercise 1.5.10 Show that the Petersen graph (see Fig. 1.12, cf. [Pet98]) is
not planar. Give three different proofs using 1.5.3, 1.5.8, and 1.5.9.

Exercise 1.5.11 Show that the Petersen graph is isomorphic to the com-
plement of the triangular graph T5.

The isomorphisms of a graph G to itself are called automorphisms; clearly,
they form a group, the automorphism group of G. In this book we will not
study automorphisms of graphs, except for some comments on Cayley graphs

8Note that we introduce only one edge wx, even if x was adjacent to both u and v, which is

the appropriate operation in our context. However, there are occasions where it is actually

necessary to introduce two parallel edges wx instead, so that a contracted graph will in

general become a multigraph.
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Fig. 1.12 The Petersen

graph

in Chap. 9; we refer the reader to [Yap86, Har69], or [CamLi91]. However,
we give an exercise concerning this topic.

Exercise 1.5.12 Show that the automorphism group of the Petersen graph
contains a subgroup isomorphic to the symmetric group S5. Hint: Use Exer-
cise 1.5.11.

Exercise 1.5.13 What is the minimal number of edges which have to be
removed from Kn to get a planar graph? For each n, construct a planar
graph having as many edges as possible.

The final exercise in this section shows that planar graphs have to contain
many vertices of small degree.

Exercise 1.5.14 Let G be a planar graph on n vertices and denote the
number of vertices of degree at most d by nd. Prove

nd ≥
n(d− 5) + 12

d+ 1

and apply this formula to the cases d = 5 and d = 6. (Hint: Use Corol-
lary 1.5.4.) Can this formula be strengthened?

Much more on planarity (including algorithms) can be found in the mono-
graph by [NisCh88].

1.6 Digraphs

For many applications—especially for problems concerning traffic and
transportation—it is useful to give a direction to the edges of a graph, for
example to signify a one-way street in a city map. Formally, a directed graph
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Fig. 1.13 (Directed) multigraphs

or, for short, a digraph is a pair G= (V,E) consisting of a finite set V and a
set E of ordered pairs (a, b), where a �= b are elements of V . The elements of
V are again called vertices, those of E edges; the term arc is also used instead
of edge to distinguish between the directed and the undirected case. Instead
of e= (a, b), we again write e= ab; a is called the start vertex or tail , and b
the end vertex or head of e. We say that a and b are incident with e, and call
two edges of the form ab and ba antiparallel . To draw a directed graph, we
proceed as in the undirected case, but indicate the direction of an edge by
an arrow. Directed multigraphs can be defined analogously to multigraphs;
we leave the precise formulation of the definition to the reader.

There are some operations connecting graphs and digraphs. Let G= (V,E)
be a directed multigraph. Replacing each edge of the form (a, b) by an undi-
rected edge {a, b}, we obtain the underlying multigraph |G|. Replacing parallel
edges in |G| by a single edge, we get the underlying graph (G). Conversely,
let G= (V,E) be a multigraph. Any directed multigraph H with |H|=G is
called an orientation of G. Replacing each edge ab in E by two arcs (a, b) and

(b, a), we get the associated directed multigraph
→
G; we also call

→
G the com-

plete orientation of G. The complete orientation of Kn is called the complete
digraph on n vertices. Figure 1.13 illustrates these definitions.

We can now transfer the notions introduced for graphs to digraphs. There
are some cases where two possibilities arise; we only look at these cases ex-
plicitly and leave the rest to the reader. We first consider trails. Thus let
G= (V,E) be a digraph. A sequence of edges (e1, . . . , en) is called a trail if
the corresponding sequence of edges in |G| is a trail. We define walks, paths,
closed trails and cycles accordingly. Thus, if (v0, . . . , vn) is the corresponding
sequence of vertices, vi−1vi or vivi−1 must be an edge of G. In the first case,
we have a forward edge, in the second a backward edge. If a trail consists of
forward edges only, it is called a directed trail ; analogous definitions can be
given for walks, closed trails, etc. In contrast to the undirected case, there
may exist directed cycles of length 2, namely cycles of the form (ab, ba).

A directed Euler tour in a directed multigraph is a directed closed trail
containing each edge exactly once. We want to transfer Euler’s theorem to
the directed case; this requires some more definitions. The indegree din(v) of
a vertex v is the number of edges with head v, and the outdegree dout(v) of
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v is the number of edges with tail v. A directed multigraph is called pseu-
dosymmetric if din(v) = dout(v) holds for every vertex v. Finally, a directed
multigraph G is called connected if |G| is connected. We can now state the
directed analogue of Euler’s theorem. As the proof is quite similar to that of
Theorem 1.3.1, we shall leave it to the reader and merely give one hint: the
part (b) implies (c) needs a somewhat different argument.

Theorem 1.6.1 Let G be a connected directed multigraph. Then the following
statements are equivalent:

(a) G has a directed Euler tour.
(b) G is pseudosymmetric.
(c) The edge set of G can be partitioned into directed cycles.

For digraphs there is another obvious notion of connectivity besides simply
requiring that the underlying graph be connected. We say that a vertex b of
a digraph G is accessible from a vertex a if there is a directed walk with
start vertex a and end vertex b. As before, we allow walks to have length 0
so that each vertex is accessible from itself. A digraph G is called strongly
connected if each vertex is accessible from every other vertex. A vertex a from
which every other vertex is accessible is called a root of G. Thus a digraph is
strongly connected if and only if each vertex is a root.

Note that a connected digraph is not necessarily strongly connected. For
example, a tree can never be strongly connected; here, of course, a digraph
G is called a tree if |G| is a tree. If G has a root r, we call G a directed tree,
an arborescence or a branching with root r. Clearly, given any vertex r, an
undirected tree has exactly one orientation as a directed tree with root r.

We now consider the question which connected multigraphs can be oriented
in such a way that the resulting graph is strongly connected. Such multigraphs
are called orientable. Thus we ask which connected systems of streets can be
made into a system of one-way streets such that people can still move from
each point to every other point. The answer is given by the following theorem
[Rob39].

Theorem 1.6.2 (Robbins’ theorem) A connected multigraph is orientable if
and only if it does not contain any bridge.

We will obtain Theorem 1.6.2 by proving a stronger result which allows
us to orient the edges one by one, in an arbitrary order. We need some
more terminology. A mixed multigraph has edges which are either directed or
undirected. (We leave the formal definition to the reader.) A directed trail in
a mixed multigraph is a trail in which each oriented edge is a forward edge,
but the trail might also contain undirected edges. A mixed multigraph is
called strongly connected if each vertex is accessible from every other vertex
by a directed trail. The theorem of Robbins is an immediate consequence of
the following result due to Boesch and Tindell [BoeTi80].
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Theorem 1.6.3 Let G be a mixed multigraph and e an undirected edge of G.
Suppose that G is strongly connected. Then e can be oriented in such a way
that the resulting mixed multigraph is still strongly connected if and only if e
is not a bridge.

Proof Obviously, the condition that e is not a bridge is necessary. Thus sup-
pose that e is an undirected edge of G for which neither of the two possible
orientations of e gives a strongly connected mixed multigraph. We have to
show that e is a bridge of |G|. Let u and w be the vertices incident with e,
and denote the mixed multigraph we get by omitting e from G by H . Then
there is no directed trail in H from u to w: otherwise, we could orient e from
w to u and get a strongly connected mixed multigraph. Similarly, there is no
directed trail in H from w to u.

Let S be the set of vertices which are accessible from u in H by a directed
trail. Then u is, for any vertex v ∈ S, accessible from v in H for the following
reason: u is accessible in G from v by a directed trail W ; suppose W contains
the edge e, then w would be accessible in H from u, which contradicts our
observations above. Now put T = V \ S; as w is in T , this set is not empty.
Then every vertex t ∈ T is accessible from w in H , because t is accessible
from w in G, and again: if the trail from w to t in G needed the edge e, then
t would be accessible from u in H , and thus t would not be in T .

We now prove that e is the only edge of |G| having a vertex in S and a
vertex in T , which shows that e is a bridge. By definition of S, there cannot
be an edge (s, t) or an edge {s, t} with s ∈ S and t ∈ T in G. Finally, if G
contained an edge (t, s), then u would be accessible in H from w, as t is
accessible from w and u is accessible from s. �

Mixed multigraphs are an obvious model for systems of streets. However,
we will restrict ourselves to multigraphs or directed multigraphs for the rest
of this book. One-way streets can be modelled by just using directed multi-
graphs, and ordinary two-way streets may then be represented by pairs of
antiparallel edges.

We conclude this section with a couple of exercises.

Exercise 1.6.4 Let G be a multigraph. Prove that G does not contain a
bridge if and only if each edge of G is contained in at least one cycle. (We
will see another characterization of these multigraphs in Chap. 7: any two
vertices are connected by two edge-disjoint paths.)

Exercise 1.6.5 Let G be a connected graph all of whose vertices have even
degree. Show that G has a strongly connected, pseudosymmetric orientation.

Some relevant papers concerning (strongly connected) orientations of
graphs are [ChvTh78, ChuGT85], and [RobXu88].
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Exercise 1.6.6 Prove that any directed closed walk contains a directed cy-
cle. Also show that any directed walk W with start vertex a and end vertex
b, where a �= b, contains a directed path from a to b.

Hint: The desired path may be constructed from W by removing directed
cycles.

We will be frequently concerned with digraphs throughout this book. They
constitute an extremely important part of Graph Theory, both from a the-
oretical and an applied point of view. Thus it is a bit surprising that there
are almost no books concentrating on digraphs. However, we can recommend
one book, namely the truly comprehensive monograph by Bang-Jensen and
Gutin [BanGu09].

1.7 An Application: Tournaments and Leagues

We conclude this chapter with an application of the factorizations mentioned
before, namely setting up schedules for tournaments.9 If we want to design
a schedule for a tournament, say in soccer or basketball, where each of the
2n participating teams should play against each of the other teams exactly
once, we can use a factorization F= {F1, . . . , F2n−1} of K2n. Then each edge
{i, j} represents the match between the teams i and j; if {i, j} is contained
in the factor Fk, this match will be played on the k-th day; thus we have
to specify an ordering of the factors. If there are no additional conditions on
the schedule, we can use any factorization. At the end of this section we will
make a few comments on how to set up balanced schedules.

Of course, the above method can also be used to set up a schedule for
a league (like, for example, the German soccer league), if we consider the
two rounds as two separate tournaments. But then there is the additional
problem of planning the home and away games. Look at the first round first.
Replace each 1-factor Fk ∈ F by an arbitrary orientation Dk of Fk, so that
we get a factorization D of an orientation of K2n—that is, a tournament as
defined in Exercise 7.5.5 below. Then the home and away games of the first
round are fixed as follows: if Dk contains the edge ij, the match between the
teams i and j will be played on the k-th day of the season as a home match
for team i. Of course, when choosing the orientation of the round of return
matches, we have to take into account how the first round was oriented; we
look at that problem later.

Now one wants home and away games to alternate for each team as far as
possible. Hence we cannot just use an arbitrary orientation D of an arbitrary
factorization F to set up the first round. This problem was solved by de Werra

9This section will not be used in the remainder of the book and may be skipped during
the first reading.
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[deW81] who obtained the following results. Define a (2n× (2n− 1))-matrix
P = (pik) with entries A and H as follows: pik =H if and only if team i has a
home match on the k-th day of the season; that is, if Dk contains an edge of
the form ij. De Werra calls this matrix the home-away pattern of D. A pair
of consecutive entries pik and pi,k+1 is called a break if the entries are the
same; that is, if there are two consecutive home or away games; thus we want
to avoid breaks as far as possible. Before determining the minimal number
of breaks, an example might be useful.

Example 1.7.1 Look at the case n= 3 and use the factorization of K6 shown
in Fig. 1.4; see Exercise 1.1.2. We choose the orientation of the five factors
as follows: D1 = {1∞,25,43}, D2 = {∞2,31,54}, D3 = {3∞,42,15}, D4 =
{∞4,53,21} and D5 = {5∞,14,32}. Then we obtain the following matrix P :

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A H A H A
H A H A H
H A A H A
A H H A H
H A H A A
A H A H H

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the lines and columns are ordered ∞,1, . . . ,5 and 1, . . . ,5, respectively.
Note that this matrix contains four breaks, which is best possible for n= 3
according to the following lemma.

Lemma 1.7.2 Every oriented factorization of K2n has at least 2n−2 breaks.

Proof Suppose D has at most 2n− 3 breaks. Then there are at least three
vertices for which the corresponding lines of the matrix P do not contain any
breaks. At least two of these lines (the lines i and j, say) have to have the
same entry (H , say) in the first column. As both lines do not contain any
breaks, they have the same entries, and thus both have the form

H A H A H . . .

Then, none of the factors Dk contains one of the edges ij or ji, a contra-
diction. (In intuitive terms: if the teams i and j both have a home match or
both have an away match, they cannot play against each other.) �

The main result of de Werra shows that the bound of Lemma 1.7.2 can
always be achieved.

Theorem 1.7.3 The 1-factorization of K2n given in Exercise 1.1.2 can al-
ways be oriented in such a way that the corresponding matrix P contains
exactly 2n− 2 breaks.
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Sketch of proof We give an edge {∞, k} of the 1-factor Fk of Exercise 1.1.2
the orientation k∞ if k is odd, and the orientation ∞k if k is even. Moreover,
the edge {k+ i, k− i} of the 1-factor Fk is oriented as (k+ i, k− i) if i is odd,
and as (k− i, k+ i) if i is even. (Note that the orientation in Example 1.1.3
was obtained using this method.) Then it can be shown that the orientated
factorization D of K2n defined in this way has indeed exactly 2n− 2 breaks.
The lines corresponding to the vertices ∞ and 1 do not contain any breaks,
whereas exactly one break occurs in all the other lines. The comparatively
long, but not really difficult proof of this statement is left to the reader.
Alternatively, the reader may consult [deW81] or [deW88]. �

Sometimes there are other properties an optimal schedule should have. For
instance, if there are two teams from the same city or region, we might want
one of them to have a home game whenever the other has an away game.
Using the optimal schedule from Theorem 1.7.3, this can always be achieved.

Corollary 1.7.4 Let D be the oriented factorization of K2n with exactly
2n− 2 breaks which was described in Theorem 1.7.3. Then, for each vertex i,
there exists a vertex j such that pik �= pjk for all k = 1, . . . ,2n− 1.

Proof The vertex complementary to vertex ∞ is vertex 1: team ∞ has a
home game on the k-th day of the season (that is, ∞k is contained in Dk) if
k is even. Then 1 has the form 1 = k− i for some odd i, so that 1 has an away
game on that day. Similarly it can be shown that the vertex complementary
to 2i (for i= 1, . . . , n− 1) is the vertex 2i+ 1. �

Now we still have the problem of finding a schedule for the return round
of the league. Choose oriented factorizations DH and DR for the first and
second round. Of course, we want D=DH ∪DR to be a complete orientation
of K2n; hence ji should occur as an edge in DR if ij occurs in DH . If this is
the case, D is called a league schedule for 2n teams. For DH and DR, there
are home-away patterns PH and PR, respectively; we call P = (PHPR) the
home-away pattern of D. As before, we want a league schedule to have as
few breaks as possible. We have the following result.

Theorem 1.7.5 Every league schedule D for 2n teams has at least 4n− 4
breaks; this bound can be achieved for all n.

Proof As PH and PR both have at least 2n− 2 breaks by Lemma 1.7.2, P
obviously contains at least 4n− 4 breaks. A league schedule having exactly
4n − 4 breaks can be obtained as follows. By Theorem 1.7.3, there exists
an oriented factorization DH = {D1, . . . ,D2n−1} of K2n with exactly 2n− 2
breaks. Put DR = {E1, . . . ,E2n−1}, where Ei is the 1-factor having the oppo-
site orientation as D2n−i; that is, ji ∈Ei if and only if ij ∈D2n−i. Then PH

and PR each contain exactly 2n− 2 breaks; moreover, the first column of PR
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corresponds to the factor E1, and the last column of PH corresponds to the

factor D2n−1 which is the factor with the opposite orientation of E1. Thus,

there are no breaks between these two columns of P , and the total number

of breaks is indeed 4n− 4. �

In reality, the league schedules described above are unwelcome, because

the return round begins with the same matches with which the first round

ended, just with home and away games exchanged. Instead, DR is usually

defined as follows: DR = {E1, . . . ,E2n−1}, where Ei is the 1-factor oriented

opposite to Di. Such a league schedule is called canonical . The following

result can be proved analogously to Theorem 1.7.5.

Theorem 1.7.6 Every canonical league schedule D for 2n teams has at least

6n− 6 breaks; this bound can be achieved for all n.

For more results about league schedules and related problems we refer to

[deW80, deW82, deW88] and [Schr80]. In practice, one often has many addi-

tional secondary restrictions—sometimes even conditions contradicting each

other—so that the above theorems are not sufficient for finding a solution. In

these cases, computers are used to look for an adequate solution satisfying

the most important requirements. As an example, we refer to [Schr92] who

discusses the selection of a schedule for the soccer league in the Netherlands

for the season 1988/89. Another actual application with secondary restric-

tions is treated in [deWJM90], while [GriRo96] contains a survey of some

European soccer leagues.

Back to tournaments again! Although any factorization of K2n can be

used, in most practical cases there are additional requirements which the

schedule should satisfy. Perhaps the teams should play an equal number of

times on each of the n playing fields, because these might vary in quality.

The best one can ask for in a tournament with 2n− 1 games for each team

is, of course, that each team plays twice on each of n− 1 of the n fields and

once on the remaining field. Such a schedule is called a balanced tournament

design. Every schedule can be written as an n× (2n− 1) matrix M = (mij),

where the entry mij is given by the pair xy of teams playing in round j on

field i. Sometimes it is required in addition that, for the first as well as for

the last n columns of M , the entries in each row of M form a 1-factor of K2n;

this is then called a partitioned balanced tournament design (PBTD) on 2n

vertices. Obviously, such a tournament schedule represents the best possible

solution concerning a uniform distribution of the playing fields. We give an

example for n= 5, and cite an existence result for PBDT’s (without proof)

which is due to Lamken and Vanstone [LamVa87, Lam87].
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Example 1.7.7 The following matrix describes a PBTD on 10 vertices:

⎛

⎜
⎜
⎜
⎜
⎝

94 82 13 57 06 23 45 87 91
83 95 46 02 17 84 92 05 63
56 03 97 81 42 67 01 93 85
12 47 80 96 53 90 86 14 72
07 16 25 43 98 15 37 26 04

⎞

⎟
⎟
⎟
⎟
⎠

.

Result 1.7.8 Let n ≥ 5 and n /∈ {9,11,15,26,28,33,34}. Then there exists
a PBTD on 2n vertices.

Finally, we recommend the interesting survey [LamVa89] about tour-
nament designs, which are studied in detail in the books of Anderson
[And90, And97].



Chapter 2
Algorithms and Complexity

If to do were as easy as to know what were good to do. . .

William Shakespeare

In Theorem 1.3.1 we gave a characterization for Eulerian graphs: a graph G
is Eulerian if and only if each vertex of G has even degree. This condition is
easy to verify for any given graph. But how can we really find an Euler tour
in an Eulerian graph? The proof of Theorem 1.3.1 not only guarantees that
such a tour exists, but actually contains a hint how to construct such a tour.
We want to convert this hint into a general method for constructing an Euler
tour in any given Eulerian graph; in short, into an algorithm. In this book
we generally look at problems from the algorithmic point of view: we want
more than just theorems about existence or structure. As Lüneburg once said
[Lue82], it is important in the end that we can compute the objects we are
working with. However, we will not go as far as giving concrete programs,
but describe our algorithms in a less formal way. Our main goal is to give an
overview of the basic methods used in a very large area of mathematics; we
can achieve this (without exceeding the limits of this book) only by omitting
the details of programming techniques. Readers interested in concrete pro-
grams are referred to [SysDK83] and [NijWi78], where programs in PASCAL
and FORTRAN, respectively, can be found.

Although many algorithms will occur throughout this book, we will not
try to give a formal definition of the concept of algorithms. Such a definition
belongs to both mathematical logic and theoretical computer science and
is given, for instance, in automata theory or in complexity theory; we refer
the reader to [HopUl79] and [GarJo79]. For a general treatment, we also
recommend the books [AhoHU74, AhoHU83] and, in particular, [CorLRS09],
one of the standard text books on algorithms.

In this chapter, we will try to show in an intuitive way what an algorithm
is and to develop a way to measure the quality of algorithms. In particular,
we will consider some basic aspects of graph theoretic algorithms such as,
for example, the problem of how to represent a graph. Moreover, we need a
way to formulate the algorithms we deal with. We shall illustrate and study
these concepts quite thoroughly using two specific examples, namely Euler
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Algorithms and Computation in Mathematics 5,
DOI 10.1007/978-3-642-32278-5 2, © Springer-Verlag Berlin Heidelberg 2013

35



36 2 Algorithms and Complexity

tours and acyclic digraphs. At the end of the chapter we introduce a class of
problems (the so-called NP-complete problems) which plays a central role in
complexity theory; we will meet this type of problem over and over again in
this book.

2.1 Algorithms

First we want to develop an intuitive idea what an algorithm is. Algorithms
are techniques for solving problems. Here the term problem is used in a very
general sense: a problem class comprises infinitely many instances having a
common structure. For example, the problem class ET (Euler tour) consists
of the task to decide—for any given graph G—whether it is Eulerian and,
if this is the case, to construct an Euler tour for G. Thus each graph is an
instance of ET . In general, an algorithm is a technique which can be used to
solve each instance of a given problem class.

According to [BauWo82], an algorithm should have the following proper-
ties:

(1) Finiteness of description: The technique can be described by a finite text.
(2) Effectiveness: Each step of the technique has to be feasible (mechanically)

in practice.1

(3) Termination: The technique has to stop for each instance after a finite
number of steps.

(4) Determinism: The sequence of steps has to be uniquely determined for
each instance.2

Of course, an algorithm should also be correct, that is, it should indeed solve
the problem correctly for each instance. Moreover, an algorithm should be
efficient , which means it should work as fast and economically as possible.
We will discuss this requirement in detail in Sects. 2.5 and 2.7.

Note that—like [BauWo82]—we make a difference between an algorithm
and a program: an algorithm is a general technique for solving a problem
(that is, it is problem-oriented), whereas a program is the concrete formula-
tion of an algorithm as it is needed for being executed by a computer (and
is therefore machine-oriented). Thus, the algorithm may be viewed as the
essence of the program. A very detailed study of algorithmic language and
program development can be found in [BauWo82]; see also [Wir76].

1It is probably because of this aspect of mechanical practicability that some people doubt if

algorithms are really a part of mathematics. I think this is a misunderstanding: performing

an algorithm in practice does not belong to mathematics, but development and analysis

of algorithms—including the translation into a program—do. Like Lüneburg, I am of the

opinion that treating a problem algorithmically means understanding it more thoroughly.

2In most cases, we will not require this property.
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Now let us look at a specific problem class, namely ET . The following
example gives a simple technique for solving this problem for an arbitrary
instance, that is, for any given graph.

Example 2.1.1 Let G be a graph. Carry out the following steps:

(1) If G is not connected3 or if G contains a vertex of odd degree, STOP:
the problem has no solution.

(2) (We now know that G is connected and that all vertices of G have even
degree.) Choose an edge e1, consider each permutation (e2, . . . , em) of the
remaining edges and check whether (e1, . . . , em) is an Euler tour, until
such a tour is found.

This algorithm is correct by Theorem 1.3.1, but there is still a lot to be said
against it. First, it is not really an algorithm in the strict sense, because it does
not specify how the permutations of the edges are found and in which order
they are examined; of course, this is merely a technical problem which could
be dealt with.4 More importantly, it is clear that examining up to (m− 1)!
permutations is probably not the most intelligent way of solving the problem.
Analyzing the proof of Theorem 1.3.1 (compare also the directed case in 1.6.1)
suggests the following alternative technique going back to Hierholzer [Hie73].

Example 2.1.2 Let G be a graph. Carry out the following steps:

(1) If G is not connected or if G contains a vertex of odd degree, STOP: the
problem has no solution.

(2) Choose a vertex v0 and construct a closed trail C0 = (e1, . . . , ek) as fol-
lows: for the end vertex vi of the edge ei choose an arbitrary edge ei+1

incident with vi and different from e1, . . . , ei, as long as this is possible.
(3) If the closed trail Ci constructed is an Euler tour: STOP.
(4) Choose a vertex wi on Ci incident with some edge in E \Ci. Construct a

closed trail Zi as in (2) (with start and end vertex wi) in the connected
component of wi in G \Ci.

(5) Form a closed trail Ci+1 by taking the closed trail Ci with start and end
vertex wi and appending the closed trail Zi. Continue with (3).

This technique yields a correct solution: as each vertex of G has even degree,
for any vertex vi reached in (2), there is an edge not yet used which leaves vi,
except perhaps if vi = v0. Thus step (2) really constructs a closed trail. In (4),
the existence of the vertex wi follows from the connectedness of G. The above
technique is not yet deterministic, but that can be helped by numbering the

3We can check whether a graph is connected with the BFS technique presented in Sect. 3.3.

4The problem of generating permutations of a given set can be formulated in a graph

theoretic way, see Exercise 2.1.3. Algorithms for this are given in [NijWi78] and [Eve73].
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vertices and edges and—whenever something is to be chosen—always choos-
ing the vertex or edge having the smallest number. In the future, we will not
explicitly state how to make such choices deterministically. The steps in 2.1.2
are still rather big; in the first few chapters we will present more detailed
versions of the algorithms. Later in the book—when the reader is more used
to our way of stating algorithms—we will often give rather concise versions
of algorithms. A more detailed version of the algorithm in Example 2.1.2 will
be presented in Sect. 2.3.

Exercise 2.1.3 A frequent problem is to order all permutations of a given set
in such a way that two subsequent permutations differ by only a transposition.
Show that this problem leads to the question whether a certain graph is
Hamiltonian. Draw the graph for the case n= 3.

Exercise 2.1.4 We want to find out in which cases the closed trail C0 con-
structed in Example 2.1.2 (2) is already necessarily Eulerian. An Eulerian
graph is called arbitrarily traceable from v0 if each maximal trail beginning
in v0 is an Euler tour; here maximal means that all edges incident with the
end vertex of the trail occur in the trail. Prove the following results due to
Ore (who introduced the concept of arbitrarily traceable graphs [Ore51]) and
to [Bae53] and [ChaWh70].

(a) G is arbitrarily traceable from v0 if and only if G \ v0 is acyclic.
(b) If G is arbitrarily traceable from v0, then v0 is a vertex of maximal

degree.
(c) If G is arbitrarily traceable from at least three different vertices, then G

is a cycle.
(d) There exist graphs which are arbitrarily traceable from exactly two ver-

tices; one may also prescribe the degree of these vertices.

2.2 Representing Graphs

If we want to execute some algorithm for graphs in practice (which usually
means on a computer), we have to think first about how to represent a graph.
We do this now for digraphs; an undirected graph can then be treated by
looking at its complete orientation.5 Thus let G be a digraph, for example
the one shown in Fig. 2.1. We have labelled the vertices 1, . . . ,6; it is common
practice to use {1, . . . , n} as the vertex set of a graph with n vertices. The
easiest method to represent G is to list its edges.

5This statement refers only to the representation of graphs in algorithms in general. For

each concrete algorithm, we still have to check whether this substitution makes sense. For

example, we always get directed cycles by this approach.
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Fig. 2.1 A digraph G

Definition 2.2.1 (Edge lists) A directed multigraph G on the vertex set
{1, . . . , n} is specified by:

(i) its number of vertices n;
(ii) the list of its edges, given as a sequence of ordered pairs (ai, bi), that is,

ei = (ai, bi).

The digraph G of Fig. 2.1 may then be given as follows.

(i) n= 6;
(ii) 12,23,34,15,52,65,46,64,41,63,25,13,

where we write simply ij instead of (i, j). The ordering of the edges was
chosen arbitrarily.

A list of m edges can, for example, be implemented by two arrays [1 . . .m]
(named head and tail) of type integer; in PASCAL we could also define a
type edge as a record of two components of type integer and then use an
array[1 . . .m] of edge to store the list of edges.

Lists of edges need little space in memory (2m places for m edges), but
they are not convenient to work with. For example, if we need all the vertices
adjacent to a given vertex, we have to search through the entire list which
takes a lot of time. We can avoid this disadvantage either by ordering the
edges in a clever way or by using adjacency lists.

Definition 2.2.2 (Incidence lists) A directed multigraph G on the vertex
set {1, . . . , n} is specified by:

(1) the number of vertices n;
(2) n lists A1, . . . ,An, where Ai contains the edges beginning in vertex i.

Here an edge e= ij is recorded by listing its name and its head j, that
is, as the pair (e, j).

The digraph of Fig. 2.1 may then be represented as follows:
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(1) n= 6;
(2) A1 : (1,2), (4,5), (12,3); A2 : (2,3), (11,5); A3 : (3,4); A4 : (7,6), (9,1);

A5 : (5,2); A6 : (6,5), (8,4), (10,3),

where we have numbered the edges in the same order as in Definition 2.2.1.

Note that incidence lists are basically the same as edge lists, given in a
different ordering and split up into n separate lists. Of course, in the undi-
rected case, each edge occurs now in two of the incidence lists, whereas it
would have been sufficient to put it in the edge list just once. But working
with incidence lists is much easier, especially for finding all edges incident
with a given vertex. If G is a digraph or a graph (so that there are no parallel
edges), it is not necessary to label the edges, and we can use adjacency lists
instead of incidence lists.

Definition 2.2.3 (Adjacency lists) A digraph with vertex set {1, . . . , n} is
specified by:

(1) the number of vertices n;
(2) n lists A1, . . . ,An, where Ai contains all vertices j for which G contains

an edge (i, j).

The digraph of Fig. 2.1 may be represented by adjacency lists as follows:

(1) n= 6;
(2) A1 : 2,3,5; A2 : 3,5; A3 : 4; A4 : 1,6; A5 : 2; A6 : 3,4,5.

In the directed case, we sometimes need all edges with a given end vertex
as well as all edges with a given start vertex; then it can be useful to store
backward adjacency lists, where the end vertices are given, as well. For im-
plementation, it is common to use ordinary or doubly linked lists. Then it
is easy to work on all edges in a list consecutively, and to insert or remove
edges.

Finally, we give one further method for representing digraphs.

Definition 2.2.4 (Adjacency matrices) A digraph G with vertex set
{1, . . . , n} is specified by an (n× n)-matrix A = (aij), where aij = 1 if and
only if (i, j) is an edge of G, and aij = 0 otherwise. A is called the adjacency
matrix of G. For the digraph of Fig. 2.1 we have

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 0 1 0
0 0 1 0 1 0
0 0 0 1 0 0
1 0 0 0 0 1
0 1 0 0 0 0
0 0 1 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.



2.3 The Algorithm of Hierholzer 41

Adjacency matrices can be implemented simply as an array [1 . . . n,1 . . . n].
As they need a lot of space in memory (n2 places), they should only be
used (if at all) to represent digraphs having many edges. Though adjacency
matrices are of little practical interest, they are an important theoretical tool
for studying digraphs.

Unless stated otherwise, we always represent (directed) multigraphs by
incidence or adjacency lists. We will not consider procedures for input or
output, or algorithms for treating lists (for operations such as inserting or
removing elements, or reordering or searching a list). These techniques are
not only used in graph theory but belong to the basic algorithms (searching
and sorting algorithms, fundamental data structures) used in many areas.
We refer the reader to the literature, for instance, [AhoHU83, Meh84], and
[CorLRS09]. We close this section with two exercises about adjacency matri-
ces.

Exercise 2.2.5 Let G be a graph with adjacency matrix A. Show that the
(i, k)-entry of the matrix Ah is the number of walks of length h beginning
at vertex i and ending at k. Also prove an analogous result for digraphs and
directed walks.

Exercise 2.2.6 Let G be a strongly regular graph with adjacency matrix A.
Give a quadratic equation for A. Hint: Use Exercise 2.2.5 with h= 2.

Examining the adjacency matrix A—and, in particular, the eigenvalues
of A—is one of the main tools for studying strongly regular graphs; see
[CamLi91]. In general, the eigenvalues of the adjacency matrix of a graph are
important in algebraic graph theory; see [Big93] and [SchwW78] for an intro-
duction and [CveDS80, CveDGT87] for a more extensive treatment. Eigen-
values have many noteworthy applications in combinatorial optimization as
well; the reader might want to consult the interesting survey [MohPo93].

2.3 The Algorithm of Hierholzer

In this section, we study in more detail the algorithm sketched in Exam-
ple 2.1.2; specifically, we formulate the algorithm of Hierholzer [Hie73] which
is able to find an Euler tour in an Eulerian multigraph, respectively a directed
Euler tour in a directed Eulerian multigraph. We skip the straightforward
checking of the condition on the degrees.

Throughout this book, we will use the symbol ← for assigning values:
x ← y means that value y is assigned to variable x. Boolean variables can
have values true and false.
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Algorithm 2.3.1 Let G = (V,E) be a connected Eulerian multigraph, di-
rected or not, with V = {1, . . . , n}. Moreover, let s be a vertex of G. We
construct an Euler tour K (which will be directed if G is) with start ver-
tex s.

1. Data structures needed

(a) incidence lists A1, . . . ,An; for each edge e, we denote the end vertex by
end(e);

(b) lists K and C for storing sequences of edges forming a closed trail. We
use doubly linked lists; that is, each element in the list is linked to its
predecessor and its successor, so that these can be found easily;

(c) a Boolean mapping used on the vertex set, where used(v) has value true
if v occurs in K and value false otherwise, and a list L containing all
vertices v for which used(v) = true holds;

(d) for each vertex v, a pointer e(v) which is undefined at the start of the
algorithm and later points to an edge in K beginning in v;

(e) a Boolean mapping new on the edge set, where new(e) has value true if
e is not yet contained in the closed trail;

(f) variables u, v for vertices and e for edges.

2. Procedure TRACE(v,new;C)
The following procedure constructs a closed trail C consisting of edges not

yet used, beginning at a given vertex v.

(1) If Av = ∅, then return.
(2) (Now we are sure that Av �= ∅.) Find the first edge e in Av and delete e

from Av .
(3) If new(e) = false, go to (1).
(4) (We know that new(e) = true.) Append e to C.
(5) If e(v) is undefined, assign to e(v) the position where e occurs in C.
(6) Assign new(e)← false and v← end(e).
(7) If used(v) = false, append v to the list L and set used(v)← true.
(8) Go to (1).

Here return means that the procedure is aborted: one jumps to the end of
the procedure, and the execution of the program continues with the procedure
which called TRACE. As in the proof of Theorem 1.6.1, the reader may check
that the above procedure indeed constructs a closed trail C beginning at v.

3. Procedure EULER(G,s;K).

(1) K,L←∅, used(v)← false for all v ∈ V , new(e)← true for all e ∈E.
(2) used(s)← true, append s to L.
(3) TRACE(s, new; K);
(4) If L is empty, return.
(5) Let u be the last element of L. Delete u from L.
(6) C ←∅.
(7) TRACE(u, new; C).
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(8) Insert C in front of e(u) in K.
(9) Go to (4).

In step (3), a maximal closed trail K beginning at s is constructed and all
vertices occurring in K are stored in L. In steps (5) to (8) we then try,
beginning at the last vertex u of L, to construct a detour C consisting of
edges that were not yet used (that is, which have new(e) = true), and to
insert this detour into K. Of course, the detour C might be empty. As G is
connected, the algorithm ends only if we have used(v) = true for each vertex
v of G so that no further detours are possible. If G is a directed multigraph,
the algorithm works without the function new; we can then just delete each
edge from the incidence list after it has been used.

We close this section with a somewhat lengthy exercise; this requires a few
definitions. Let S be a given set of s elements, a so-called alphabet . Then
any finite sequence of elements from S is called a word over S. A word of
length N = sn is called a de Bruijn sequence if, for each word w of length n,
there exists an index i such that w = aiai+1 . . . ai+n−1, where indices are taken
modulo N . For example, 00011101 is a de Bruijn sequence for s= 2 and n= 3.
These sequences take their name from [deB46]. They are closely related to
shift register sequences of order n, and are, particularly for s= 2, important
in coding theory and cryptography; see, for instance, [Gol67, MacSl77], and
[Rue86]; an extensive chapter on shift register sequences can also be found
in [Jun93]. We now show how the theorem of Euler for directed multigraphs
can be used to construct de Bruijn sequences for all s and n. However, we
have to admit loops (a, a) as edges here; the reader should convince himself
that Theorem 1.6.1 still holds.

Exercise 2.3.2 Define a digraph Gs,n having the sn−1 words of length n−1
over an s-element alphabet S as vertices and the sn words of length n (over
the same alphabet) as edges. The edge a1 . . . an has the word a1 . . . an−1 as
tail and the word a2 . . . an as head. Show that the de Bruijn sequences of
length sn over S correspond to the Euler tours of Gs,n and thus prove the
existence of de Bruijn sequences for all s and n.

Exercise 2.3.3 Draw the digraph G3,3 with S = {0,1,2} and use Algo-
rithm 2.3.1 to find an Euler tour beginning at the vertex 00; where there
is a choice, always choose the smallest edge (smallest when interpreted as a
number). Finally, write down the corresponding de Bruijn sequence.

The digraphs Gs,n may also be used to determine the number of de Bruijn
sequences for given s and n; see Sect. 4.8. Algorithms for constructing de
Bruijn sequences can be found in [Ral81] and [Etz86].
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2.4 How to Write Down Algorithms

In this section, we introduce some rules for how algorithms are to be de-
scribed. Looking again at Algorithm 2.3.1, we see that the structure of the
algorithm is not easy to recognize. This is mainly due to the jump com-
mands which hide the loops and conditional ramifications of the algorithm.
Here the comments of Jensen and Wirth [JenWi85] about PASCAL should
be used as a guideline: “A good rule is to avoid the use of jumps to express
regular iterations and conditional execution of statements, for such jumps
destroy the reflection of the structure of computation in the textual (static)
structures of the program.” This motivates us to borrow some notation from
PASCAL—even if this language is by now more or less outdated—which is
used often in the literature and which will help us to display the structure
of an algorithm more clearly. In particular, these conventions emphasize the
loops and ramifications of an algorithm. Throughout this book, we shall use
the following notation.

Notation 2.4.1 (Ramifications)

if B then P1;P2; . . . ;Pk else Q1;Q2; . . . ;Ql fi

is to be interpreted as follows. If condition B is true, the operations P1, . . . , Pk

are executed; and if B is false, the operations Q1, . . . ,Ql are executed. Here
the alternative is optional so that we might also have

if B then P1;P2; . . . ;Pk fi

In this case, no operation is executed if condition B is not satisfied.

Notation 2.4.2 (Loops)

for i= 1 to n do P1; . . . , Pk od

specifies that the operations P1, . . . , Pk are executed for each of the (integer)
values the control variable i takes, namely for i= 1, i= 2, . . . , i= n. One may
also decrement the values of i by writing

for i= n downto 1 do P1; . . . ;Pk od.

Notation 2.4.3 (Iterations)

while B do P1; . . . ;Pk od

has the following meaning. If the condition B holds (that is, if B has Boolean
value true), the operations P1, . . . , Pk are executed, and this is repeated as
long as B holds. In contrast,

repeat P1; . . . ;Pk until B

requires first of all to execute the operations P1, . . . , Pk and then, if condition
B is not yet satisfied, to repeat these operations until finally condition B
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holds. The main difference between these two ways of describing iterations is
that a repeat is executed at least once, whereas the operations in a while
loop are possibly not executed at all, namely if B is not satisfied. Finally,

for s ∈ S do P1; . . . ;Pk od

means that the operations P1, . . . , Pk are executed |S| times, once for each
element s in S. Here the order of the elements, and hence of the iterations,
is not specified.

Moreover, we write and for the Boolean operation and and or for the
Boolean operation or (not the exclusive or). As before, we shall use ← for
assigning values. The blocks of an algorithm arising from ramifications, loops
and iterations will be shown by indentations. As an example, we translate
the algorithm of Hierholzer into our new notation.

While we need a few more lines than in Algorithm 2.3.1 to write down the
algorithm, the new notation reflects its structure in a much better way. Of
course, this is mainly useful if one uses a structured language (like PASCAL or
C) for programming, but even for programming in a language which depends
on jump commands it helps first to understand the structure of the algorithm.

Example 2.4.4 Let G be a connected Eulerian multigraph, directed or not,
having vertex set {1, . . . , n}. Moreover, let s be a vertex of G. We construct
an Euler tour K (which will be directed if G is) with start vertex s. The data
structures used are as in Algorithm 2.3.1. Again, we have two procedures.

Procedure TRACE(v,new;C)

(1) while Av �= ∅ do
(2) delete the first edge e from Av ;
(3) if new(e) = true
(4) then append e at the end of C;
(5) if e(v) is undefined
(6) then assign the position where e occurs in C to e(v)
(7) fi
(8) new(e)← false, v← end(e);
(9) if used(v) = false
(10) then append v to L; used(v)← true
(11) fi
(12) fi
(13) od

Procedure EULER(G,s;K)

(1) K ←∅, L←∅;
(2) for v ∈ V do used(v)← false od
(3) for e ∈E do new(e)← true od
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(4) used(s)← true, append s to L;
(5) TRACE(s,new;K);
(6) while L �= ∅ do
(7) let u be the last element of L;
(8) delete u from L;
(9) C ←∅;

(10) TRACE(u, new; C);
(11) insert C in front of e(u) in K
(12) od

We will look at a further example in detail in Sect. 2.6. First, we shall
consider the question of how one might judge the quality of algorithms.

2.5 The Complexity of Algorithms

Complexity theory studies the time and memory space an algorithm needs as
a function of on the size of the input data; this approach is used to compare
different algorithms for solving the same problem. To do this in a formally
correct way, we would have to be more precise about what an algorithm is; we
would also have to make clear how input data and the time and space needed
by the algorithm are measured. This could be done using Turing machines
which were first introduced in [Tur36], but that would lead us too far away
from our original intent.

Thus, we will be less formal and simply use the number of vertices or edges
of the relevant (directed) multigraph for measuring the size of the input data.
The time complexity of an algorithm A is the function f , where f(n) is the
maximal number of steps A needs to solve a problem instance having input
data of length n. The space complexity is defined analogously for the memory
space needed. We do not specify what a step really is, but count the usual
arithmetic operations, access to arrays, comparisons, etc. each as one step.
This does only make sense if the numbers in the problem do not become
really big, which is the case for graph-theoretic problems in practice (but
usually not for arithmetic algorithms).

Note that the complexity is always measured for the worst possible case for
a given length of the input data. This is not always realistic; for example, most
variants of the simplex algorithm in linear programming are known to have
exponential complexity although the algorithm works very fast in practice.
Thus it might often be better to use some sort of average complexity. But then
we would have to set up a probability distribution for the input data, and
the whole treatment becomes much more difficult.6 Therefore, it is common
practice to look at the complexity for the worst case.

6How difficult it really is to deal with such a distribution can be seen in the probabilistic
analysis of the simplex algorithm, cf. [Bor87].
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In most cases it is impossible to calculate the complexity f(n) of an algo-
rithm exactly. We are then content with an estimate of how fast f(n) grows.
We shall use the following notation. Let f and g be two mappings from N

to R
+. We write

• f(n) =O(g(n)), if there is a constant c > 0 such that f(n)≤ cg(n) for all
sufficiently large n;

• f(n) =Ω(g(n)), if there is a constant c > 0 such that f(n)≥ cg(n) for all
sufficiently large n;

• f(n) =Θ(g(n)), if f(n) =O(g(n)) and f(n) =Ω(g(n)).

If f(n) =Θ(g(n)), we say that f has rate of growth g(n). If f(n) =O(g(n))
or f(n) = Ω(g(n)), then f has at most or at least rate of growth g(n), re-
spectively. If the time or space complexity of an algorithm is O(g(n)), we say
that the algorithm has complexity O(g(n)).

We will usually consider the time complexity only and just talk of the
complexity . Note that the space complexity is at most as large as the time
complexity, because the data taking up memory space in the algorithm have
to be read first.

Example 2.5.1 For a graph G we obviously have |E|=O(|V |2); if G is con-
nected, Theorem 1.2.6 implies that |E|=Ω(|V |). Graphs with |E|=Θ(|V |2)
are often called dense, while graphs with |E| = Θ(|V |) are called sparse.
Corollary 1.5.4 tells us that the connected planar graphs are sparse. Note
that O(log |E|) and O(log |V |) are the same for connected graphs, because
the logarithms differ only by a constant factor.

Example 2.5.2 Algorithm 2.3.1 has complexity Θ(|E|), because each edge is
treated at least once and at most twice during the procedure TRACE; each
such examination of an edge is done in a number of steps bounded by a
constant, and constants can be disregarded in the notation we use. Note that
|V | does not appear because of |E|=Ω(|V |), as G is connected.

If, for a problem P , there exists an algorithm having complexity O(f(n)),
we say that P has complexity at most O(f(n)). If each algorithm for P has
complexity Ω(g(n)), we say that P has complexity at least Ω(g(n)). If, in
addition, there is an algorithm for P with complexity O(g(n)), then P has
complexity Θ(g(n)).

Example 2.5.3 The problem of finding Euler tours has complexity Θ(|E|):
we have provided an algorithm with this complexity, and obviously each
algorithm for this problem has to consider all the edges to be able to put
them into a sequence forming an Euler tour.

Unfortunately, in most cases it is much more difficult to find lower bounds
for the complexity of a problem than to find upper bounds, because it is
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Table 2.1 Rates of growth

f(n) n= 10 n= 20 n= 30 n= 50 n= 100

n 10 20 30 50 100

n2 100 400 900 2,500 10,000

n3 1,000 8,000 27,000 125,000 1,000,000

n4 10,000 160,000 810,000 6,250,000 100,000,000

2n 1,024 1,048,576 ≈109 ≈1015 ≈1030

5n 9,765,625 ≈1014 ≈1021 ≈1035 ≈1070

hard to say something non-trivial about all possible algorithms for a problem.
Another problem with the above conventions for the complexity of algorithms
lies in disregarding constants, as this means that the rates of growth are only
asymptotically significant—that is, for very large n. For example, if we know
that the rate of growth is linear—that is O(n)—but the constant is c =
1,000,000, this would not tell us anything about the common practical cases
involving relatively small n. In fact, the asymptotically fastest algorithms for
integer multiplication are only interesting in practice if the numbers treated
are quite large; see, for instance, [AhoHU74]. However, for the algorithms we
are going to look at, the constants will always be small (mostly ≤ 10).

In practice, the polynomial algorithms—that is, the algorithms of complex-
ity O(nk) for some k—have proved to be the most useful. Such algorithms
are also called efficient or—following Edmonds [Edm65b]—good . Problems
for which a polynomial algorithm exists are also called easy , whereas problems
for which no polynomial algorithm can exist are called intractable or hard .
This terminology may be motivated by considering the difference between
polynomial and exponential rates of growth. This difference is illustrated in
Table 2.1 and becomes even more obvious by thinking about the consequences
of improved technology. Suppose we can at present—in some fixed amount
of time, say an hour—solve an instance of size N on a computer, at rate of
growth f(n). What effect does a 1000-fold increase in computer speed then
have on the size of instances we are able to solve? If f(n) is polynomial,
say nk, we will be able to solve an instance of size cN , where c= 103/k; for
example, if k = 3, this still means a factor of c= 10. If the rate of growth is
exponential, say ac, there is only an improvement of constant size: we will be
able to solve instances of size N + c, where ac = 1000. For example, if a= 2,
we have c≈ 9.97; for a= 5, c≈ 4.29.

We see that, from a practical point of view, it makes sense to consider
a problem well solved only when we have found a polynomial algorithm for
it. Moreover, if there is a polynomial algorithm, in many cases there is even
an algorithm of rate of growth nk with k ≤ 3. Unfortunately, there is a very
large class of problems, the so-called NP-complete problems, for which not
only is no polynomial algorithm known, but there is good reason to believe
that such an algorithm cannot exist. These questions are investigated more
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thoroughly in complexity theory; see [GarJo79, Pap94, Sip06] or [AroBa09].
Most algorithms we study in this book are polynomial. Nevertheless, we will
explain in Sect. 2.7 what NP-completeness is, and show in Sect. 2.8 that de-
termining a Hamiltonian cycle and the TSP are such problems. In Chap. 15,
we will develop strategies for solving such problems (for example, approx-
imation or complete enumeration) using the TSP as an example; actually,
the TSP is often used as the standard example for NP-complete problems.
We will encounter quite a few NP-complete problems in various parts of this
book.

It has to be admitted that most problems arising from practice tend to be
NP-complete. It is indeed rare to be able to solve a practical problem just
by applying one of the polynomial algorithms we shall treat in this book.
Nevertheless, these algorithms are very important, since they are regularly
used as sub-routines for solving more involved problems.

2.6 Directed Acyclic Graphs

In this section, we provide another illustration for the definitions and nota-
tion introduced in the previous sections by considering an algorithm which
deals with directed acyclic graphs, that is, digraphs which do not contain
directed closed trails. This sort of graph occurs in many applications, for ex-
ample in the planning of projects (see 3.7) or for representing the structure of
arithmetic expressions having common parts, see [AhoHU83]. First we give
a mathematical application.

Example 2.6.1 Let (M,	) be a partially ordered set , for short, a poset. This
is a set M together with a reflexive, antisymmetric and transitive relation 	.
Note that M corresponds to a directed graph G having vertex set M and the
pairs (x, y) with x≺ y as edges; because of transitivity, G is acyclic.

A common problem is to check whether a given directed graph is acyclic
and, if this is the case, to find a topological sorting of its vertices. That is, we
require an enumeration of the vertices of G (labelling them with the numbers
1, . . . , n, say) such that i < j holds for each edge ij. Using the following
lemma, we shall show that such a sorting exists for every directed acyclic
graph.

Lemma 2.6.2 Let G be a directed acyclic graph. Then G contains at least
one vertex with din(v) = 0.

Proof Choose a vertex v0. If din(v0) = 0, there is nothing to show. Otherwise,
there is an edge v1v0. If din(v1) = 0, we are done. Otherwise, there exists
an edge v2v1. As G is acyclic, v2 �= v0. Continuing this procedure, we get a
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sequence of distinct vertices v0, v1, . . . , vk, . . .. As G has only finitely many
vertices, this sequence has to terminate, so that we reach a vertex v with
din(v) = 0. �

Theorem 2.6.3 Every directed acyclic graph admits a topological sorting.

Proof By Lemma 2.6.2, we may choose a vertex v with din(v) = 0. Consider
the directed graph H =G \ v. Obviously, H is acyclic as well and thus can
be sorted topologically, using induction on the number of vertices, say by la-
belling the vertices as v2, . . . , vn. Then (v, v2, . . . , vn) is the desired topological
sorting of G. �

Corollary 2.6.4 Each partially ordered set may be embedded into a linearly
ordered set.

Proof Let (v1, . . . , vn) be a topological sorting of the corresponding directed
acyclic graph. Then vi ≺ vj always implies i < j, so that v1 ≺ · · · ≺ vn is a
complete linear ordering. �

Next we present an algorithm which decides whether a given digraph is
acyclic and, if this is the case, finds a topological sorting. We use the same
technique as in the proof of Theorem 2.6.3, that is, we successively delete
vertices with din(v) = 0. To make the algorithm more efficient, we use a list
of the indegrees din(v) and bring it up to date whenever a vertex is deleted;
in this way, we do not have to search the entire graph to find vertices with
indegree 0. Moreover, we keep a list of all the vertices having din(v) = 0. The
following algorithm is due to Kahn [Kah62].

Algorithm 2.6.5 Let G be a directed graph with vertex set {1, . . . , n}. The
algorithm checks whether G is acyclic; in this case, it also determines a topo-
logical sorting.

Data structures needed

(a) adjacency lists A1, . . . ,An;
(b) a function ind, where ind(v) = din(v);
(c) a function topnr, where topnr(v) gives the index of vertex v in the topo-

logical sorting;
(d) a list L of the vertices v having ind(v) = 0;
(e) a Boolean variable acyclic and an integer variable N (for counting).

Procedure TOPSORT (G; topnr,acyclic)

(1) N ← 1, L←∅;
(2) for i= 1 to n do ind(i)← 0 od
(3) for i= 1 to n do
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(4) for j ∈Ai do ind(j)← ind(j) + 1 od
(5) od
(6) for i= 1 to n do if ind(i) = 0 then append i to L fi od
(7) while L �= ∅ do
(8) delete the first vertex v from L;
(9) topnr(v)←N ; N ←N + 1;

(10) for w ∈Av do
(11) ind(w)← ind(w)− 1;
(12) if ind(w) = 0 then append w to L fi
(13) od
(14) od
(15) if N = n+ 1 then acyclic ← true else acyclic ← false fi

Theorem 2.6.6 Algorithm 2.6.5 determines whether G is acyclic and con-
structs a topological sorting if this is the case; the complexity is O(|E|) pro-
vided that G is connected.

Proof The discussion above shows that the algorithm is correct. As G is
connected, we have |E|=Ω(|V |), so that initializing the function ind and the
list L in step (2) and (6), respectively, does not take more than O(|E|) steps.
Each edge is treated exactly once in step (4) and at most once in step (10)
which shows that the complexity is O(|E|). �

When checking whether a directed graph is acyclic, each edge has to be
treated at least once. This observation immediately implies the following
result.

Corollary 2.6.7 The problem of checking whether a given connected digraph
is acyclic or not has complexity Θ(|E|).

Exercise 2.6.8 Show that any algorithm which checks whether a digraph
given in terms of its adjacency matrix is acyclic or not has complexity at
least Ω(|V |2).

The above exercise shows that the complexity of an algorithm might de-
pend considerably upon the chosen representation for the directed multi-
graph.

Exercise 2.6.9 Apply Algorithm 2.6.5 to the digraph G in Fig. 2.2, and give
an alternative drawing for G which reflects the topological ordering.

In the remainder of this book, we will present algorithms in less detail.
In particular, we will not explain the data structures used explicitly if they
are clear from the context. Unless stated otherwise, all multigraphs will be
represented by incidence or adjacency lists.
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Fig. 2.2 A digraph

2.7 An Introduction to NP-completeness

Up to now, we have encountered only polynomial algorithms; problems which
can be solved by such an algorithm are called polynomial or—as in Sect. 2.5—
easy . Now we turn our attention to another class of problems. To do so, we
restrict ourselves to decision problems, that is, to problems whose solution is
either yes or no. The following problem HC is such a problem; other decision
problems which we have solved already are the question whether a given
multigraph (directed or not) is Eulerian, and the problem whether a given
digraph is acyclic.

Problem 2.7.1 (Hamiltonian cycle, HC) Let G be a given connected graph.
Does G have a Hamiltonian cycle?

We will see that Problem 2.7.1 is just as difficult as the TSP defined in
Problem 1.4.9. To do so, we have to make an excursion into complexity theory.
The following problem is arguably the most important decision problem.

Problem 2.7.2 (Satisfiability, SAT) Let x1, . . . , xn be Boolean variables:
they take values true or false. We consider formulae in x1, . . . , xn in con-
junctive normal form, namely terms C1C2 . . .Cm, where each of the Ci has
the form x′

i + x′
j + · · · with x′

i = xi or x′
i = xi; in other words, each Ci is a

disjunction of some, possibly negated, variables.7 The problem requires de-
ciding whether any of the possible combinations of values for the xi gives
the entire term C1 . . .Cm the value true. In the special case where each of

7We write p for the negation of the logical variable p, p+ q for the disjunction p or q, and
pq for the conjunction p and q. The x′i are called literals, the Ci are clauses.
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the Ci consists of exactly three literals, the problem is called 3-satisfiability
(3-SAT).

Most of the problems of interest to us are not decision problems but opti-
mization problems: among all possible structures of a given kind (for example,
for the TSP considered in Sect. 1.4, among all possible tours), we look for the
optimal one with respect to a certain criterion (for example, for the shortest
tour). We shall solve many such problems: finding shortest paths, minimal
spanning trees, maximal flows, maximal matchings, etc.

Note that each optimization problem gives rise to a decision problem in-
volving an additional parameter; we illustrate this using the TSP. For a given
matrix W = (wij) and every positive integer M , the associated decision prob-
lem is the question whether there exists a tour π such that w(π)≤M . There
is a further class of problems lying in between decision problems and opti-
mization problems, namely evaluation problems; here one asks for the value
of an optimal solution without requiring the explicit solution itself. For ex-
ample, for the TSP we may ask for the length of an optimal tour without
demanding to be shown this tour. Clearly, every algorithm for an optimiza-
tion problem solves the corresponding evaluation problem as well; similarly,
solving an evaluation problems also gives a solution for the associated decision
problem. It is not so clear whether the converse of these statements is true.
But surely an optimization problem is at least as hard as the corresponding
decision problem, which is all we will need to know.8

We denote the class of all polynomial decision problems by P (for poly-
nomial).9 The class of decision problems for which a positive answer can be
verified in polynomial time is denoted by NP (for non-deterministic polyno-
mial). That is, for an NP-problem, in addition to the answer yes or no we
require the specification of a certificate enabling us to verify the correctness
of a positive answer in polynomial time. We explain this concept by consid-
ering two examples, first using the TSP. If a possible solution—for the TSP,
a tour—is presented, it has to be possible to check in polynomial time

• whether the candidate has the required structure (namely, whether it is
really a tour, and not, say, just a permutation with several cycles)

8We may solve an evaluation problem quite efficiently by repeated calls of the associated

decision problem, if we use a binary search. But in general, we do not know how to find an

optimal solution just from its value. However, in problems from graph theory, it is often

sufficient to know that the value of an optimal solution can be determined polynomially.

For example, for the TSP we would check in polynomial time whether there is an optimal

solution not containing a given edge. In this way we can find an optimal tour by sequentially

using the algorithm for the evaluation problem a linear number of times.

9To be formally correct, we would have to state how an instance of a problem is coded

(so that the length of the input data could be measured) and what an algorithm is. This

can be done by using the concept of a Turing machine introduced by [Tur36]. For detailed

expositions of complexity theory, we refer to [GarJo79, LewPa81], and [Pap94].
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• and whether the candidate satisfies the condition imposed (that is, whether
the tour has length w(π)≤M , where M is the given bound).

Our second example is the question whether a given connected graph is not
Eulerian. A positive answer can be verified by giving a vertex of odd degree.10

We emphasize that the definition of NP does not demand that a negative
answer can be verified in polynomial time. The class of decision problems for
which a negative answer can be verified in polynomial time is denoted by
Co-NP.11

Obviously, P ⊂ NP ∩ Co-NP, as any polynomial algorithm for a decision
problem even provides the correct answer in polynomial time. On the other
hand, it is not clear whether every problem from NP is necessarily in P or
in Co-NP. For example, we do not know any polynomial algorithm for the
TSP. Nevertheless, we can verify a positive answer in polynomial time by
checking whether the certificate π is a cyclic permutation of the vertices,
calculating w(π), and comparing w(π) with M . However, we do not know
any polynomial algorithm which could check a negative answer for the TSP,
namely the assertion that no tour of length ≤M exists (for an arbitrary M ).
In fact, the questions whether P = NP or NP = Co-NP are the outstanding
questions of complexity theory. As we will see, there are good reasons to
believe that the conjecture P �= NP (and NP �= Co-NP) is true. To this end,
we consider a special class of problems within NP.

A problem is called NP-complete if it is in NP and if the polynomial
solvability of this problem would imply that all other problems in NP are
solvable in polynomial time as well. More precisely, we require that any given
problem in NP can be transformed in polynomial time to the specific problem
such that a solution of this NP-complete problem also gives a solution of the
other, arbitrary problem in NP. We will soon see some examples of such
transformations. Note that NP-completeness is a very strong condition: if
we could find a polynomial algorithm for such a problem, we would prove
P =NP. Of course, there is no obvious reason why any NP-complete problems
should exist. The following celebrated theorem due to Cook [Coo71] provides
a positive answer to this question; for the rather technical and lengthy proof,
we refer to [GarJo79, PapSt82] or [KorVy12]. A nice introductory discussion
of NP-completeness including a sketch of proof for Cook’s theorem can also
be found in [CorLRS09].

Result 2.7.3 (Cook’s theorem) SAT and 3-SAT are NP-complete.

10Note that no analogous certificate is known for the question whether a graph is not

Hamiltonian.

11Thus, for NP as well as for Co-NP, we look at a kind of oracle which presents some

(positive or negative) answer to us; and this answer has to be verifiable in polynomial

time.
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Once a first NP-complete problem (such as 3-SAT) has been found, other
problems can be shown to be NP-complete by transforming the known NP-
complete problem in polynomial time to these problems. Thus it has to be
shown that a polynomial algorithm for the new problem implies that the given
NP-complete problem is polynomially solvable as well. As a major example,
we shall present a (quite involved) polynomial transformation of 3-SAT to
HC in Sect. 2.8. This will prove the following result of Karp [Kar72] which
we shall use right now to provide a rather simple example for the method of
transforming problems.

Theorem 2.7.4 HC is NP-complete.

Theorem 2.7.5 TSP is NP-complete.

Proof We have already seen that TSP is in NP. Now assume the existence
of a polynomial algorithm for TSP. We use this hypothetical algorithm to
construct a polynomial algorithm for HC as follows. Let G = (V,E) be a
given connected graph, where V = {1, . . . , n}, and let Kn be the complete
graph on V with weights

wij :=

{
1 for ij ∈E,
2 otherwise.

Obviously, G has a Hamiltonian cycle if and only if there exists a tour π
of weight w(π) ≤ n (and then, of course, w(π) = n) in Kn. Thus the given
polynomial algorithm for TSP allows us to decide HC in polynomial time;
hence Theorem 2.7.4 shows that TSP is NP-complete. �

Exercise 2.7.6 (Directed Hamiltonian cycle, DHC) Show that it is NP-
complete to decide whether a directed graph G contains a directed Hamilto-
nian cycle.

Exercise 2.7.7 (Hamiltonian path, HP) Show that it is NP-complete to
decide whether a given graph G contains a Hamiltonian path (that is, a path
containing each vertex of G).

Exercise 2.7.8 (Longest path) Show that it is NP-complete to decide
whether a given graph G contains a path consisting of at least k edges.
Prove that this also holds when we are allowed to specify the end vertices of
the path. Also find an analogous results concerning longest cycles.

Hundreds of problems have been recognized as NP-complete, including
many which have been studied for decades and which are important in prac-
tice. Detailed lists can be found in [GarJo79] or [Pap94]. For none of these
problems a polynomial algorithm could be found in spite of enormous efforts,
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which gives some support for the conjecture P �= NP.12 In spite of some theo-
retical progress, this important problem remains open, but at least it has led
to the development of structural complexity theory ; see, for instance, [Boo94]
for a survey. Anyway, proving that NP-complete problems are indeed hard
would not remove the necessity of dealing with these problems in practice.
Some possibilities how this might be done will be discussed in Chap. 15.

Unfortunately, even well-solved problems admitting an efficient (perhaps
even a linear time) algorithm can become NP-complete as soon as one adds
further restrictions—which is often necessary in practical applications. We
shall see several examples for this phenomenon when we consider spanning
trees of restricted type in Sect. 4.7. On the positive side, NP-complete prob-
lems like the TSP can become polynomial in interesting special cases; we
refer the reader to the surveys [Bur97] and [BurDDW98] for this topic.

Finally, we introduce one further notion. A problem which is not necessar-
ily in NP, but whose polynomial solvability would nevertheless imply P =NP
is called NP-hard . In particular, any optimization problem corresponding to
an NP-complete decision problem is an NP-hard problem.

2.8 Five NP-complete Problems

In this section (which is somewhat more technical and may be skipped dur-
ing the first reading) we discuss five important graph theoretical problems
and show that they are all NP-complete. In particular, we will prove Theo-
rem 2.7.4 and establish the NP-completeness of HC (the problem of decid-
ing whether or not a given graph contains a Hamiltonian circuit). Following
[GarJo79], our proof of this result makes a detour via another very impor-
tant NP-complete graph theoretical problem, namely “vertex cover (VC)”; a
proof which transforms 3-SAT directly to HC can be found in [PapSt82]. The
other three problems to be discussed are closely related to VC. We begin by
defining the relevant graph theoretic concepts.

Definition 2.8.1 Let G= (V,E) be a graph. A vertex cover of G is a subset
W of V such that each edge of G is incident with at least one vertex in W .
A dominating set for G is a is a subset D of V such that each vertex is in
D or adjacent to some vertex in D. Finally, an independent set (or a stable
set) is a subset S of V such that no two vertices in U are adjacent, whereas
a clique is a subset C of V such that all pairs of vertices in C are adjacent.

Problem 2.8.2 (Vertex cover, VC) Let G = (V,E) be a graph and k a
positive integer. Does G admit a vertex cover W with |W | ≤ k?

12Thus we can presumably read NP also as non-polynomial. However, one also finds the
opposite conjecture P = NP (along with some incorrect attempts at proving this claim)
and the suggestion that the problem might be undecidable.
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Obviously, the problem VC is in NP. We prove a further important result
of Karp [Kar72] and show that VC is NP-complete by transforming 3-SAT
polynomially to VC and applying Result 2.7.3. The technique we employ is
used often for this kind of proof: we construct, for each instance of 3-SAT,
a graph consisting of special-purpose components combined in an elaborate
way. This strategy should become clear during the proofs of Theorem 2.8.3
and Theorem 2.7.4.

Theorem 2.8.3 VC is NP-complete.

Proof We want to transform 3-SAT polynomially to VC. Thus let C1 . . .Cm

be an instance of 3-SAT, and let x1, . . . , xn be the variables occurring in
C1, . . . ,Cm. For each xi, we form a copy of the complete graph K2:

Ti = (Vi,Ei) where Vi = {xi, xi} and Ei = {xixi}.

The purpose of these truth-setting components is to determine the Boolean
value of xi. Similarly, for each clause Cj (j = 1, . . . ,m), we form a copy
Sj = (V ′

j ,E
′
j) of K3:

V ′
j = {c1j , c2j , c3j} and E′

j = {c1jc2j , c1jc3j , c2jc3j}.

The purpose of these satisfaction-testing components is to check the Boolean
value of the clauses. The m+n graphs constructed in this way are the special-
purpose components of the graph G which we will associate with C1 . . .Cm;
note that they merely depend on n and m, but not on the specific structure
of C1 . . .Cm. We now come to the only part of the construction of G which
uses the specific structure, namely connecting the Sj and the Ti by further
edges, the communication edges. For each clause Cj , we let uj , vj , and wj be
the three literals occurring in Cj and define the following set of edges:

E′′
j = {c1juj , c2jvj , c3jwj}.

Finally, we define G= (V,E) as the union of all these vertices and edges:

V :=

n⋃

i=1

Vi ∪
m⋃

j=1

V ′
j and E :=

n⋃

i=1

Ei ∪
m⋃

j=1

E′
j ∪

m⋃

j=1

E′′
j .

Clearly, the construction of G can be performed in polynomial time in n
and m. Figure 2.3 shows, as an example, the graph corresponding to the
instance

(x1 + x3 + x4)(x1 + x2 + x4)

of 3-SAT. We now claim that G has a vertex cover W with |W | ≤ k = n+2m
if and only if there is a combination of Boolean values for x1, . . . , xn such
that C1 . . .Cm has value true.
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Fig. 2.3 An instance of VC

First, let W be such a vertex cover. Obviously, each vertex cover of G
has to contain at least one of the two vertices in Vi (for each i) and at least
two of the three vertices in V ′

j (for each j), since we have formed complete
subgraphs on these vertex sets. Thus W contain at least n+2m= k vertices,
and hence actually |W |= k. But then W has to contain exactly one of the
two vertices xi and xi and exactly two of the three vertices in Sj , for each
i and for each j. This fact allows us to use W to define a combination w of
Boolean values for the variables x1, . . . , xn as follows. If W contains xi, we set
w(xi) = true; otherwise W has to contain the vertex xi, and we set w(xi) =
false.

Now consider an arbitrary clause Cj . As W contains exactly two of the
three vertices in V ′

j , these two vertices are incident with exactly two of the
three edges in E′′

j . As W is a vertex cover, it has to contain a vertex incident
with the third edge, say c3jwj , and hence W contains the corresponding
vertex in one of the Vi—here the vertex corresponding to the literal wj , that
is, to either xi or xi. By our definition of the truth assignment w, this literal
has the value true, making the clause Cj true. As this holds for all j, the
formula C1 . . .Cm also takes the Boolean value true under w.

Conversely, let w be an assignment of Boolean values for the variables
x1, . . . , xn such that C1 . . .Cm takes the value true. We define a subset W ⊂ V
as follows. If w(xi) = true, W contains the vertex xi, otherwise W contains
xi (for i= 1, . . . , n). Then all edges in Ei are covered. Moreover, at least one
edge ej of E′′

j is covered (for each j = 1, . . . ,m), since the clause Cj takes the
value true under w. Adding the end vertices in Sj of the other two edges of
E′′

j to W , we cover all edges of E′′
j and of E′

j so that W is indeed a vertex
cover of cardinality k. �

Exercise 2.8.4 Prove that the following two problems are NP-complete by
relating them to the problem VC.



2.8 Five NP-complete Problems 59

(a) Independent set (IS). Does a given graph G contain an independent
set of cardinality ≥ k?

(b) Clique. Does a given graph G contain a clique of cardinality ≥ k?

While the solution of Exercise 2.8.4 is very simple, dominating sets re-
quire a bit more thought. Let us first give a formal definition of the relevant
problem.

Problem 2.8.5 (Dominating set, DS) Let G = (V,E) be a graph and k a
positive integer. Does G admit a dominating set D with |D| ≤ k?

The following result and the subsequent exercise are mentioned in
[GarJo79]. We present the standard proof found in many sources, for in-
stance, in the nice lecture notes of Khuller [Khu12].

Theorem 2.8.6 DS is NP-complete.

Proof Obviously, the problem DS is in NP. We show that DS is NP-complete
by transforming VC polynomially to DS and applying Theorem 2.8.3. Thus
let G be a given graph and k a specified integer; we have to decide if G has
a vertex cover W of size at most k. Clearly, G may be assumed to have no
isolated vertices, as otherwise no vertex cover exists—and this can be checked
in linear time (if G is given via adjacency lists).

We now define a new graph H which arises from G by replacing each edge
of G with a triangle. Formally, for each edge e = uv of G, we introduce a
new vertex xe and add the two new edges uxe and vxe. Clearly, this is a
polynomial transformation of G to H . It now suffices to check that G has a
vertex cover W of size at most k if and only if H has a dominating set D of
size at most k.

We first note that any vertex cover W of G is also a dominating set for H .
To see this, consider an arbitrary vertex of H ; there are two cases. If we deal
with a vertex u already contained in G, it is not isolated by our first remark.
Thus there exists an edge e= uv in G, and W has to contain at least one of
the two vertices u and v. For a new vertex xe, the associated edge e of G has
to have at least one of its two end vertices in W , and xe is adjacent to both
of these by construction.

Conversely, let D be any dominating set for H . If D consists of vertices
in G only, it is also a vertex cover for G: for any edge uv of G, u /∈D forces
v ∈D, by the definition of a dominating set. Thus assume that D contains
some new vertex xe, and let e= uv. As xe is adjacent only to u and v in H ,
we may replace xe by either u or v and obtain a new dominating set, without
increasing the size of the set (it might even decrease, if u or v was already
in D). Continuing in this way, we can construct from D a dominating set D′

which consists of vertices in G only, and hence D′ is a vertex cover for G of
size at most |D|. �
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Fig. 2.4 Cover-testing

component

Exercise 2.8.7 (Connected dominating set, CDS) Let G= (V,E) be a graph
and k a positive integer. Does G admit a dominating set D with |D| ≤ k such
that the induced subgraph G|D is connected? Prove that this variation of DS
is likewise NP-complete.

Hint: Modify the argument given in the proof of Theorem 2.8.6 by intro-
ducing suitable additional edges in H .

In Appendix A, we will present a short list of NP-complete problems,
restricting ourselves to problems which either were mentioned—or are closely
related to subjects treated—in this book. A much more extensive list can be
found in Garey and Johnson [GarJo79].

We conclude this section with the promised proof of Theorem 2.7.4 via a
reduction to Theorem 2.8.3. That is, we transform VC polynomially to HC
and thus establish the NP-completeness of HC; again, we follow [GarJo79].
Let G = (V,E) be a given instance of VC, and k a positive integer. We
have to construct a graph G′ = (V ′,E′) in polynomial time such that G′ is
Hamiltonian if and only ifG has a vertex cover of cardinality at most k. Again,
we first define some special-purpose components. There are k special vertices
a1, . . . , ak called selector vertices, as they will be used to select k vertices
from V . For each edge e= uv ∈ E, we define a subgraph Te = (V ′

e ,E
′
e) with

12 vertices and 14 edges as follows (see Fig. 2.4):

V ′
e :=

{
(u, e, i) : i= 1, . . . ,6

}
∪
{
(v, e, i) : i= 1, . . . ,6

}
;

E′
e :=

{{
(u, e, i), (u, e, i+ 1)

}
: i= 1, . . . ,5

}

∪
{{

(v, e, i), (v, e, i+ 1)
}
: i= 1, . . . ,5

}

∪
{{

(u, e,1), (v, e,3)
}
,
{
(u, e,3), (v, e,1)

}}

∪
{{

(u, e,4), (v, e,6)
}
,
{
(u, e,6), (v, e,4)

}}
.
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Fig. 2.5 Traversing a cover-testing component

This cover-testing component Te will make sure that the vertex set W ⊂ V
determined by the selectors a1, . . . , ak contains at least one of the vertices
incident with e. Only the outer vertices (u, e,1), (u, e,6), (v, e,1) and (v, e,6)
of Te will be incident with further edges of G′; this forces each Hamiltonian
cycle of G′ to run through each of the subgraphs Te using one of the paths
shown in Fig. 2.5, as the reader can (and should) easily check.

Now we describe the remaining edges of G′. For each vertex v ∈ V , we
label the edges incident with v as ev1, . . . , evdeg v and connect the deg v cor-
responding graphs Tevi

by the following edges:

E′
v :=

{{
(v, evi,6), (v, evi+1,1)

}
: i= 1, . . . ,deg v− 1

}
.

These edges create a path in G′ which contains precisely the vertices (x, y, z)
with x= v, see Fig. 2.6.

Finally, we connect the start and end vertices of all these paths to each of
the selectors aj :

E′′ :=
{{

aj , (v, ev1,1)
}
: j = 1, . . . , k

}
∪
{{

aj , (v, evdeg v,6)
}
: j = 1, . . . , k

}
.

Then G′ = (V ′,E′) is the union of all these vertices and edges:

V ′ := {a1, . . . , ak} ∪
⋃

e∈E

V ′
e and E′ :=

⋃

e∈E

E′
e ∪

⋃

v∈V

E′
v ∪E′′.

Obviously, G′ can be constructed from G in polynomial time. Now suppose
that G′ contains a Hamiltonian cycle K. Let P be a trail contained in K
beginning at a selector aj and not containing any further selector. It is easy
to see that P runs through exactly those Te which correspond to all the edges
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Fig. 2.6 The path associated with the vertex v

incident with a certain vertex v ∈ V (in the order given in Fig. 2.6). Each of

the Te appears in one of the ways shown in Fig. 2.5, and no vertices from

other cover-testing components Tb (not corresponding to edges f incident

with v) can occur. Thus the k selectors divide the Hamiltonian cycle K into

k trails P1, . . . , Pk, each corresponding to a vertex v ∈ V . As K contains all

the vertices of G′ and as the vertices of an arbitrary cover-testing component

Tf can only occur in K by occurring in a trail corresponding to one of the
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vertices incident with f , the k vertices of V determined by the trails P1, . . . , Pk

form a vertex cover W of G.
Conversely, let W be a vertex cover of G, where |W | ≤ k. We may assume

|W |= k (because W remains a vertex cover if arbitrary vertices are added to
it). Write W = {v1, . . . , vk}. The edge set of the desired Hamiltonian cycle K
is determined as follows. For each edge e= uv of G we choose the thick edges
in Te drawn in one of the three graphs of Fig. 2.5, where our choice depends
on the intersection of W with e as follows:

• if W ∩ e= {u}, we choose the edges of the graph on the left;
• if W ∩ e= {v}, we choose the edges of the graph on the right;
• if W ∩ e= {u, v}, we choose the edges of the graph in the middle.

Moreover, K contains all edges in E′
vi

(for i= 1, . . . , k) and the edges

{
ai,

(
vi, (evi)1,1

)}
for i= 1, . . . , k;

{
ai+1,

(
vi, (evi)deg vi ,6

)}
for i= 1, . . . , k− 1; and

{
a1,

(
vk, (evk)deg vk

,6
)}

.

The reader may check that K is indeed a Hamiltonian cycle for G′.



Chapter 3
Shortest Paths

So many paths that wind and wind. . .

Ella Wheeler Wilcox

One of the most common applications of graphs in everyday life is represent-
ing networks for traffic or for data communication. The schematic map of the
German motorway system in the official guide Autobahn Service, the railroad
or bus lines in some public transportation system, and the network of routes
an airline offers are routinely represented by graphs. Therefore it is obviously
of great practical interest to study paths in such graphs. In particular, we
often look for paths which are good or even best in some respect: sometimes
the shortest or the fastest route is required, sometimes we want the cheapest
path or the one which is safest—for example, we might want the route where
we are least likely to encounter a speed-control installation. Thus we will
study shortest paths in graphs and digraphs in this chapter; as we shall see,
this is a topic whose interest extends beyond traffic networks.

3.1 Shortest Paths

Let G= (V,E) be a graph or a digraph on which a mapping w :E →R is de-
fined. We call the pair (G,w) a network ; the number w(e) is called the length
of the edge e. Of course, this terminology is not intended to exclude other
interpretations such as cost, duration, capacity, weight, or probability; we
will encounter several examples later. For instance, in the context of study-
ing spanning trees, we usually interpret w(e) as the weight of the edge e. But
in the present chapter the reader should keep the intuitive interpretation of
distances in a network of streets in mind. This naturally leads to the following
definition. For each walk W = (e1, . . . , en), the length of W is

w(W ) :=w(e1) + · · ·+w(en),

where, of course, W has to be directed for digraphs. It is tempting to define
the distance d(a, b) between two vertices a and b in G as the minimum over
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Fig. 3.1 A network

all lengths of walks with start vertex a and end vertex b. However, there are
two difficulties with this definition: first, b might not be accessible from a,
and second, a minimum might fail to exist. The first problem is solved by
putting d(a, b) =∞ if b is not accessible from a. The second problem arises
from the possible existence of cycles of negative length. For example, in the
network shown in Fig. 3.1, we can find a walk of arbitrary negative length
from a to b by using the cycle (x, y, z, x) as often as needed. In order to avoid
this problem, one usually restricts attention to paths.

Thus we formally define the distance d(a, b) between two vertices a and b
in (G,w) as follows:

d(a, b) =

⎧
⎪⎨

⎪⎩

∞ if b is not accessible

from a,

min{w(W ) :W is a path from a to b} otherwise.

(3.1)
Most of the networks we will deal with will not contain any cycles of negative
length; then the distance between two vertices is well-defined even if we would
allow walks in the definition. Any path W (directed in the case of digraphs)
for which the minimum in equation (3.1) is achieved is called a shortest path
from a to b.

Note that always d(a, a) = 0, since an empty sum is considered to have
value 0, as usual. If we talk of shortest paths and distances in a graph (or a di-
graph) without giving any explicit length function, we always use the length
function which assigns length w(e) = 1 to each edge e.

The reader might wonder why negative lengths are allowed at all and
whether they occur in practice. The answer is yes, they do occur, as the
following example taken from [Law76] shows; this also provides a first example
for another interpretation of the length of an edge.

Example 3.1.1 A trading ship travels from port a to port b, where the route
(and possible intermediary ports) may be chosen freely. The routes are repre-
sented by trails in a digraph G, and the length w(e) of an edge e= xy signifies
the profit gained by going from x to y. For some edges, the ship might have
to travel empty so that w(e) is negative for these edges: the profit is actually
a loss. Replacing w by −w in this network, the shortest path represents the
route which yields the largest possible profit.
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Clearly, the practical importance of the preceding example is negligible.
We will encounter genuinely important applications later when treating flows
and circulations, where the existence of cycles of negative length—and finding
such cycles—will be an essential tool for determining an optimal circulation.

We now give an example for an interpretation of shortest paths which
allows us to formulate a problem (which at first glance might seem completely
out of place here) as a problem of finding shortest paths in a suitable graph.

Example 3.1.2 In many applications, the length of an edge signifies the prob-
ability of its failing—for instance, in networks of telephone lines, or broad-
casting systems, in computer networks, or in transportation routes. In all
these cases, one is looking for the route having the highest probability for not
failing. Let p(i, j) be the probability that edge (i, j) does not fail. Under the—
not always realistic—assumption that failings of edges occur independently of
each other, p(e1) . . . p(en) gives the probability that the walk (e1, . . . , en) can
be used without interruption. We want to maximize this probability over all
possible walks with start vertex a and end vertex b. Note first that the max-
imum of the product of the p(e) is reached if and only if the logarithm of the
product, namely log p(e1)+ · · ·+log p(en), is maximal. Moreover, log p(e)≤ 0
for all e, since p(e) ≤ 1. We now put w(e) = − log p(e); then w(e) ≥ 0 for
all e, and we have to find a walk from a to b for which w(e1) + · · ·+w(en)
becomes minimal. Thus our problem is reduced to a shortest path problem.
In particular, this technique solves the problem mentioned in our introduc-
tory remarks—finding a route where it is least likely that our speed will be
controlled by the police—provided that we know for all edges the probability
of a speed check.

In principle, any technique for finding shortest paths can also be used
to find longest paths: replacing w by −w, a longest path with respect to w
is just a shortest path with respect to −w. However, good algorithms for
finding shortest paths are known only for the case where G does not contain
any cycles of negative length. In the general case we basically have to look
at all possible paths. Note that replacing w by −w in general creates cycles
of negative length.

Exercise 3.1.3 (Knapsack problem) Consider n given objects, each of which
has an associated weight aj and also a value cj , where both the aj and the cj
are positive integers. We ask for a subset of these objects such that the sum
of their weights does not exceed a certain bound b and such that the sum of
their values is maximal. Packing a knapsack provides a good example, which
explains the terminology used. Reduce this problem to finding a longest path
in a suitable network. Hint: Use an acyclic network with a start vertex s, an
end vertex t, and b+ 1 vertices for each object.
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3.2 Finite Metric Spaces

Before looking at algorithms for finding shortest paths, we want to show that
there is a connection between the notions of distance and metric space. We
recall that a metric space is a pair (X,d) consisting of a set X and a mapping
d :X2 →R

+
0 satisfying the following three conditions for all x, y, z ∈X :

(MS1) d(x, y)≥ 0, and d(x, y) = 0 if and only if x= y;
(MS2) d(x, y) = d(y,x);
(MS3) d(x, z)≤ d(x, y) + d(y, z).

The value d(x, y) is called the distance between x and y; the inequality in
(MS3) is referred to as the triangle inequality . The matrix D = (d(x, y))x,y∈X

is called the distance matrix of (X,d).
Now consider a network (G,w), where G is a graph and w is a positive

valued mapping w : E → R
+. Note that a walk with start vertex a and end

vertex b which has length d(a, b)—where the distance between a and b is
defined as in Sect. 3.1—is necessarily a path. The following result states that
our use of the term distance in this context is justified; the simple proof is
left to the reader.

Lemma 3.2.1 Let G = (V,E) be a connected graph with a positive length
function w. Then (V,d) is a finite metric space, where the distance function
d is defined as in Sect. 3.1.

Lemma 3.2.1 suggests the question whether any finite metric space can be
realized by a network. More precisely, let D be the distance matrix of a finite
metric space (V,d). Does a graph G = (V,E) with length function w exist
such that its distance matrix with respect to w agrees with D? Hakimi and
Yau [HakVa64] answered this question as follows.

Proposition 3.2.2 Any finite metric space can be realized by a network with
a positive length function.

Proof Let (V,d) be a finite metric space. Choose G to be the complete graph
with vertex set V , and let the length function w be the given distance func-
tion d. By d′ we denote the distance in the network (G,w) as defined in
Sect. 3.1; we have to show d = w = d′. Thus let W = (e1, . . . , en) be a trail
with start vertex a and end vertex b. For n ≥ 2, an iterative application of
the triangle inequality yields:

w(W ) =w(e1) + · · ·+w(en) = d(e1) + · · ·+ d(en)≥ d(a, b).

As the one edge path a—b has length d(a, b), we are finished. �

Exercise 3.2.3 Find a condition under which a finite metric space can be
realized by a graph, that is, by a network all of whose edges have length 1;
see [KayCh65].
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Fig. 3.2 Two realizations

of a distance matrix

We have only considered the case where a metric space (V,d) is realized
by a network on the vertex set V . More generally, we could allow a network
on a graph G = (V ′,E) with V ⊂ V ′, where the distance dG(a, b) in G for
two vertices a, b of V is the same as their distance d(a, b) in the metric
space. Such a realization is called optimal if the sum of all lengths of edges is
minimal among all possible realizations. It is not obvious that such optimal
realizations exist, but they do; see [Dre84] and [ImrSZ84].

Example 3.2.4 The following simple example shows that the realization given
in the proof of Proposition 3.2.2 is not necessarily optimal. Let d(a, b) =
d(b, c) = 4 and d(a, c) = 6. Note that the realization on K3 has total length 14.
But there is also a realization on four vertices with total length just seven;
see Fig. 3.2.

Realizations of metric spaces by networks have been intensively studied.
In particular, the question whether a given metric space can be realized on a
tree has sparked considerable interest; such a realization is necessarily optimal
[HakVa64]. Bunemann [Bun74] proved that a realization on a tree is possible
if and only if the following condition holds for any four vertices x, y, z, t of
the given metric space:

d(x, y) + d(z, t)≤max
(
d(x, z) + d(y, t), d(x, t) + d(y, z)

)
.

A different characterization (using ultra-metrics) is due to [Ban90]. We also
refer the reader to [Sim88] and [Alt88]. The problem of finding an optimal
realization is difficult in general: it is NP-hard [Win88].

3.3 Breadth First Search and Bipartite Graphs

We now turn to examining algorithms for finding shortest paths. All tech-
niques presented here also apply to multigraphs, but this generalization is of
little interest: when looking for shortest paths, out of a set of parallel edges
we only use the one having smallest length. In this section, we consider a
particularly simple special case, namely distances in graphs (where each edge
has length 1). The following algorithm was suggested by Moore [Moo59] and



70 3 Shortest Paths

is known as breadth first search, or, for short, BFS. It is one of the most
fundamental methods in algorithmic graph theory.

Algorithm 3.3.1 (BFS) Let G be a graph or digraph given by adjacency
lists Av . Moreover, let s be an arbitrary vertex of G and Q a queue.1 The
vertices of G are labelled with integers d(v) as follows:

Procedure BFS(G,s;d)

(1) Q←∅; d(s)← 0;
(2) append s to Q;
(3) while Q 
= ∅ do
(4) remove the first vertex v from Q;
(5) for w ∈Av do
(6) if d(w) is undefined
(7) then d(w)← d(v) + 1; append w to Q
(8) fi
(9) od

(10) od

Theorem 3.3.2 Algorithm 3.3.1 has complexity O(|E|). At the end of the
algorithm, every vertex t of G satisfies

d(s, t) =

{
d(t) if d(t) is defined,
∞ otherwise.

Proof Obviously, each edge is examined at most twice by BFS (in the directed
case, only once), which yields the assertion about the complexity. Moreover,
d(s, t) =∞ if and only if t is not accessible from s, and thus d(t) stays unde-
fined throughout the algorithm. Now let t be a vertex such that d(s, t) 
=∞.
Then d(s, t) ≤ d(t), since t was reached by a path of length d(t) from s.
We show that equality holds by using induction on d(s, t). This is trivial for
d(s, t) = 0, that is, s= t. Now assume d(s, t) = n+ 1 and let (s, v1, . . . , vn, t)
be a shortest path from s to t. Then (s, v1, . . . , vn) is a shortest path from
s to vn and, by our induction hypothesis, d(s, vn) = n = d(vn). Therefore
d(vn) = d(s, vn)< d(s, t) = d(t), and thus BFS deals with vn before t during
the while-loop. On the other hand, G contains the edge vnt so that BFS
certainly reaches t when examining the adjacency list of vn (if not earlier).
This shows d(t)≤ n+ 1 and hence d(t) = n+ 1. �

Corollary 3.3.3 Let s be a vertex of a graph G. Then G is connected if and
only if d(t) is defined for each vertex t at the end of BFS(G,s;d).

1Recall that a queue is a data structure for which elements are always appended at the end,
but removed at the beginning (first in—first out). For a discussion of the implementation
of queues we refer to [AhoHU83] or [CorLRS09].
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Fig. 3.3 A digraph G

Fig. 3.4 BFS-tree for G

Note that the statement analogous to Corollary 3.3.3 for directed graphs is
not true. If we want to check whether a given digraph is connected, we should
apply BFS to the corresponding graph |G|. Applying BFS(G,s;d) for each
vertex s of a digraph allows us to decide whether G is strongly connected;
clearly, this holds if and only if BFS(G,s;d) always reaches all vertices t and
assigns values to d(t). However, this method is not very efficient, as it has
complexity O(|V ||E|). In Chap. 8, we will see a much better technique which
has complexity O(|E|).

For an example, let us consider how BFS runs on the digraph G drawn
in Fig. 3.3. To make the algorithm deterministic, we select the vertices in
alphabetical order in step (5) of the BFS. In Figs. 3.4 and 3.5, we illustrate
the output of BFS both for G and the associated graph |G|. To make things
clearer, we have drawn the vertices in levels according to their distance to s;
also, we have omitted all edges leading to vertices already labelled. Thus all
we see of |G| is a spanning tree, that is, a spanning subgraph of G which is
a tree. This kind of tree will be studied more closely in Chap. 4. Note that
distances in G and in |G| do not always coincide, as was to be expected.
However, we always have dG(s, t)≥ d|G|(s, t).
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Fig. 3.5 BFS-tree for |G|

Exercise 3.3.4 Design a BFS-based algorithm COMP(G) which determines
the connected components of a graph G.

Next we consider a particularly important class of graphs, namely the
bipartite graphs. As we shall see soon, BFS gives an easy way to decide
whether or not a graph belongs to this class. Here a graph G= (V,E) is said
to be bipartite if there is a partition V = S

.
∪ T of its vertex set such that

the sets of edges E|S and E|T are empty, that is, each edge of G is incident
with one vertex in S and one vertex in T . The following theorem gives a very
useful characterization of these graphs.

Theorem 3.3.5 A graph G is bipartite if and only if it does not contain any
cycles of odd length.

Proof First suppose that G is bipartite and let V = S
.
∪ T be the correspond-

ing partition of its vertex set. Consider an arbitrary closed trail in G, say

C: v1 v2 · · · vn v1.

We may assume v1 ∈ S. Then

v2 ∈ T, v3 ∈ S, v4 ∈ T, . . . , vn ∈ T, v1 ∈ S,

as there are no edges within S or T . Hence n must be even.
Conversely, suppose that G does not contain any cycles of odd length.

We may assume that G is connected. Choose some vertex x0. Let S be the
set of all vertices x having even distance d(x,x0) from x0, and let T be the
complement of S. Now suppose that there is an edge xy in G with x, y ∈ S.
Let Wx and Wy be shortest paths from x0 to x and y, respectively. By our
definition of S, both these paths have even length. Let us denote the last
common vertex of Wx and Wy by z (traversing both paths starting at x0),
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and call their final parts (leading from z to x and y, respectively) W ′
x and W ′

y .
Then it is easily seen that

x
W ′

x
z

W ′
y

y
xy

x

is a cycle of odd length in G, a contradiction. Similarly, G cannot contain an
edge xy with x, y ∈ T . Hence S

.
∪ T is a partition of V such that there are no

edges within S or T , and G is bipartite. �

The proof of Theorem 3.3.5 shows how we may use the distances d(s, t)
in G (from a given start vertex s) for finding an appropriate partition of
the vertex set of a given bipartite graph G. These distances can be deter-
mined using BFS; of course, we should modify Algorithm 3.3.1 in such a
way that it detects cycles of odd length, in case G is not bipartite. This
is actually rather simple: when BFS examines an edge e for the first time,
a cycle of odd length containing e is created if and only if e has both its
vertices in the same level. This gives us the desired criterion for checking
whether G is bipartite or not; moreover, if G is bipartite, the part of G de-
termined by s consists of those vertices which have even distance from s.
These observations lead to the following algorithm and the subsequent theo-
rem.

Algorithm 3.3.6 Let G be a connected graph and s a vertex of G.

Procedure BIPART(G,s;S,T,bip)

(1) Q←∅, d(s)← 0, bip← true, S ←∅;
(2) append s to Q;
(3) while Q 
= ∅ and bip = true do
(4) remove the first vertex v of Q;
(5) for w ∈Av do
(6) if d(w) is undefined
(7) then d(w)← d(v) + 1; append w to Q
(8) else if d(v) = d(w) then bip← false fi
(9) fi

(10) od
(11) od
(12) if bip = true
(13) then for v ∈ V do
(14) if d(v)≡ 0 (mod2) then S ← S ∪ {v} fi
(15) od
(16) T ← V \ S
(17) fi
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Theorem 3.3.7 Algorithm 3.3.6 checks with complexity O(|E|) whether a
given connected graph G is bipartite; if this is the case, it also determines the
corresponding partition of the vertex set.

Exercise 3.3.8 Describe a BFS-based algorithm which finds with complex-
ity O(|V ||E|) a shortest cycle in—and thus the girth of—a given graph G.

The problem of finding a shortest cycle was extensively studied by Itai and
Rodeh [ItaRo78] who also treated the analogous problem for directed graphs.
The best known algorithm has a complexity of O(|V |2); see [YusZw97]. BFS
can also be used to find a shortest cycle of even or odd length, respectively;
see [Mon83].

3.4 Shortest Path Trees

We now turn to the problem of determining shortest paths in a general net-
work; actually, all known algorithms for this problem even find a shortest
path from the start vertex s to each vertex t which is accessible from s.
Choosing t in a special way does not decrease the (worst case) complexity of
the algorithms.

In view of the discussion in Sect. 3.1, we will always assume that the given
network (G,w) does not contain any cycles of negative length, so that the
length of a shortest walk between two specified vertices always equals their
distance. Moreover, we assume from now on that G is a directed graph so
that all paths involved also have to be directed.2 We will always tacitly use
these assumptions, even if they are not stated explicitly.

In the present section, we will not yet provide any algorithms but deal
with some theoretical results first. We start with a simple but fundamental
observation.

Lemma 3.4.1 Let W be a shortest path from s to t in the network (G,w),
and let v be a vertex on W . Then the subpath of W from s to v is a shortest
path from s to v.

Proof Denote the subpaths of W from s to v and from v to t by W1 and W2,
respectively. Let us assume the existence of a path W ′

1 from s to v which is
shorter than W1. Then W ′ =W ′

1W2 is a walk from s to t which is shorter
than W . But W ′ contains a path W ′′ from s to t, which may be constructed
from W ′ by removing cycles; see Exercise 1.6.6. By our general hypothesis,

2For nonnegative length functions, the undirected case can be treated by considering the

complete orientation
→
G instead of G. If we want to allow edges of negative length, we need

a construction which is considerably more involved, see Sect. 14.6.
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(G,w) does not contain any cycles of negative length, and hence W ′′ has to
be shorter than W , a contradiction. �

Our next result characterizes the shortest paths with start vertex s in
terms of the distances d(s, v):

Theorem 3.4.2 Let P be a path from s to t in G. Then P is a shortest path
if and only if each edge uv ∈ P satisfies the condition

d(s, v) = d(s,u) +w(uv). (3.2)

Proof First, let P be a shortest path from s to t. By Lemma 3.4.1, the
subpaths of P from s to u and from s to v are likewise shortest paths. Thus
P has to satisfy condition (3.2).

Conversely, let P be a path satisfying condition (3.2), say P = (v0, . . . , vk),
where v0 = s and vk = t. Then

d(s, t) = d(s, vk)− d(s, v0)

=
(
d(s, vk)− d(s, vk−1)

)
+
(
d(s, vk−1)− d(s, vk−2)

)

+ · · ·+
(
d(s, v1)− d(s, v0)

)

=w(vk−1vk) +w(vk−2vk−1) + · · ·+w(v0v1)

=w(P ),

so that P is indeed a shortest path from s to t. �

Theorem 3.4.2 leads to a very efficient way of storing a system of shortest
paths with start vertex s. We need a definition: a spanning arborescence with
root s (that is, of course, a spanning subdigraph which is a directed tree
with root s) is called a shortest path tree for the network (G,w) if, for each
vertex v, the unique path from s to v in T has length d(s, v); we will often
use the shorter term SP-tree. The following characterization of SP-trees is an
immediate consequence of Theorem 3.4.2.

Corollary 3.4.3 Let T be a spanning arborescence of G with root s. Then T
is a shortest path tree if and only if each edge uv ∈ T satisfies condition (3.2).

In Exercise 3.4.5, we will provide an alternative characterization of SP-
trees which does not involve the distances in the network (G,w). It remains
to prove the existence of SP-trees:

Theorem 3.4.4 Let G be a digraph with root s, and let w :E →R be a length
function on G. If the network (G,w) does not contain any directed cycles of
negative length, then there exists an SP-tree with root s for (G,w).
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Proof As s is a root for G, we can reach any other vertex v of G via a shortest
path, say Pv . Let E′ be the union of the edge sets of all these paths. Then
the digraph G′ = (V,E′) still has s as a root, and hence contains a spanning
arborescence with root s, say T . By Theorem 3.4.2, all edges of all the paths
Pv satisfy condition (3.2). Hence all edges in E′—and, in particular, all edges
of T—satisfy that condition. By Corollary 3.4.3, T has to be an SP-tree for
(G,w). �

Exercise 3.4.5 Let (G,w) be a network which does not contain any directed
cycles of negative length, let s be a root of G, and assume that the distances
d(s, v) are already known. Outline an algorithm capable of computing with
complexity O(|E|) an SP-tree.

Exercise 3.4.6 Let T be a spanning arborescence with root s in a network
(G,w) which does not contain any directed cycles of negative length. Show
that T is an SP-tree if and only if the following condition holds for each edge
e= uv of G:

dT (s, v)≤ dT (s,u) +w(uv), (3.3)

where dT (s,u) denotes the distance from s to u in the network (T,w|T ).

Exercise 3.4.7 Show by example that the condition that no cycles of neg-
ative length exist is necessary for proving Theorem 3.4.4: if this condition
is violated, then (G,w) may not admit any SP-trees. Also give an exam-
ple where an SP-tree exists, even though (G,w) contains a directed cycle of
negative length.

3.5 Bellman’s Equations and Acyclic Networks

In this section, we first continue our theoretical discussion by deriving a
system of equations which has to be satisfied by the distances d(s, v) from a
specified start vertex s. For acyclic networks, these equations will lead to a
linear time algorithm for actually computing the distances.

Again, we assume that the given network (G,w) does not contain any
cycles of negative length. Without loss of generality, we let G have vertex
set V = {1, . . . , n}. Let us write wij := w(ij) if G contains the edge ij, and
wij =∞ otherwise. Furthermore, let ui denote the distance d(s, i), where s
is the start vertex; in most cases, we will simply take s= 1.

Now any shortest path from s to i has to contain a final edge ki, and
deleting this edge yields a shortest path from s to k, by Lemma 3.4.1. Hence
the distances ui have to satisfy the following system of equations due to
Bellman [Bel58], where we assume for the sake of simplicity that s= 1.
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Proposition 3.5.1 (Bellman’s equations) Let s= 1. Then

(B) u1 = 0 and ui =min{uk +wki : i 
= k} for i= 2, . . . , n.

As usual, we shall assume that each vertex is accessible from s= 1. Unfor-
tunately, our standard hypothesis—namely, that (G,w) does not contain any
cycles of negative length—is not strong enough to ensure that the distances
d(s, j) are the only solution to (B):

Exercise 3.5.2 Give an example of a network which contains no cycles of
negative length but cycles of length 0, such that the system of equations
(B) has at least two distinct solutions. Try to find a general construction
providing infinitely many examples for this phenomenon.

We will now prove that the system of equations (B) does have a unique
solution—namely the distances d(1, j)—under the stronger assumption that
(G,w) contains only cycles of positive length. To this purpose, we first con-
struct a spanning arborescence T with root 1 satisfying the condition

dT (1, i) = ui for i= 1, . . . , n (3.4)

from any given solution (u1, . . . , un) of (B). Let us choose some vertex j 
= 1.
We want to construct a path of length uj from 1 to j. To do so, we first
choose some edge ij with uj = ui +wij , then an edge hi with ui = uh +whi,
etc. Let us show that this construction cannot yield a cycle. Suppose, to the
contrary, we were to get a cycle, say

C: v1 v2 · · · vk v1.

Then we would have the following equations which imply w(C) = 0, a con-
tradiction to our assumption that G contains cycles of positive length only:

uv1
= uvk

+wvkv1

= uvk−1
+wvk−1vk

+wvkv1

= · · ·= uv1
+wv1v2

+ · · ·+wvkv1

= uv1
+w(C).

Thus our construction can only stop at the special vertex 1, yielding a path
from 1 to j. A similar computation shows that, for each vertex i occurring on
this path, the part of the path leading to i has length ui. Continuing in this
way for all other vertices not yet occurring in the path(s) constructed so far—
where we construct a new path backward only until we reach some vertex
on one of the paths constructed earlier—we obtain a spanning arborescence
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with root 1 satisfying equation (3.4), say T .3 Let us check that T is actually
an SP-tree, so that the uj are indeed the distances d(1, j). It suffices to verify
the criterion of Exercise 3.4.6. But this is easy: consider any vertex i 
= 1. As
the uj solve (B) and as (3.4) holds,

dT (s, i) = ui ≤ uk +wki = dT (s, k) +w(ki)

for every edge ki of G. This already proves the desired uniqueness result:

Theorem 3.5.3 If 1 is a root of G and if all cycles of G have positive length
with respect to w, then Bellman’s equations have a unique solution, namely
the distances uj = d(1, j).

In view of the preceding results, we would now like to solve the system
of equations (B). We begin with the simplest possible case, where G is an
acyclic digraph. As we saw in Sect. 2.6, we can find a topological sorting of G
in O(|E|) steps. After having executed TOPSORT, let us replace each vertex
v by its number topnr(v). Then every edge ij in G satisfies i < j, and we
may simplify Bellman’s equations as follows:

u1 = 0 and ui =min{uk +wki : k = 1, . . . , i− 1} for i= 2, . . . , n.

Obviously, this system of equations can be solved recursively in O(|E|) steps
if we use backward adjacency lists, where each list contains the edges with a
specified head. This proves the following result.

Theorem 3.5.4 Let N be a network on an acyclic digraph G with root s.
Then one can determine the distances from s (and hence a shortest path tree
with root s) in O(|E|) steps.

Mehlhorn and Schmidt [MehSc86] found a larger class of graphs (contain-
ing the acyclic digraphs) for which with complexity O(|E|) it is possible to
determine the distances with respect to a given vertex.

Exercise 3.5.5 Show that, under the same conditions as in Theorem 3.5.4,
we can also with complexity O(|E|) determine a system of longest paths from
s to all other vertices. Does this yield an efficient algorithm for the knapsack
problem of Exercise 3.1.3? What happens if we drop the condition that the
graph should be acyclic?

3In particular, we may apply this technique to the distances in G, since they satisfy Bell-

man’s equations, which again proves the existence of SP-trees (under the stronger assump-

tion that (G,w) contains only cycles of positive length).
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3.6 An Application: Scheduling Projects

We saw in Exercise 3.5.5 that it is easy to find longest paths in an acyclic
digraph. We will use this fact to solve a rather simple instance of the prob-
lem of making up a schedule for a project. If we want to carry out a com-
plex project—such as, for example, building a dam, a shopping center or
an airplane—the various tasks ought to be well coordinated to avoid loss
of time and money. This is the goal of network planning, which is, accord-
ing to [Mul73] ‘the tool from operations research used most.’ [Tah92] states
that these techniques ‘enjoy tremendous popularity among practitioners in
the field’. We restrict ourselves to the simple case where we have restric-
tions on the chronological sequence of the tasks only: there are some tasks
which we cannot begin before certain others are finished. We are interested
in the shortest possible time the project takes, and would like to know the
points of time when each of the tasks should be started. Two very similar
methods to solve this problem, namely the critical path method (CPM) and
the project evaluation and review technique (PERT) were developed between
1956 and 1958 by two different groups, cf. [Tah92] and [Mul73]. CPM was
introduced by E.I. du Pont de Nemours & Company to help schedule con-
struction projects, and PERT was developed by Remington Rand for the
U.S. Navy to help schedule the research and development activities for the
Polaris missile program. CPM-PERT is based on determining longest paths
in an acyclic digraph. We shall use a formulation where the activities in the
project are represented by vertices; alternatively, one could also represent
them by arcs, cf. [Tah92].

First, we assign a vertex i ∈ {1, . . . ,N} of a digraph G to each of the N
tasks of our project. We let ij be an edge of G if and only if task i has to be
finished before beginning task j. The edge ij then has length wij = di equal
to the time task i takes. Note that G has to be acyclic, because otherwise the
tasks in a cycle in G could never be started. As we have seen in Lemma 2.6.2,
G contains at least one vertex v with din(v) = 0 and, analogously, at least
one vertex w with dout(w) = 0. We introduce a new vertex s (the start of
the project) and add edges sv for all vertices v with din(v) = 0; similarly, we
introduce a new vertex z (the end of the project) and add edges wz for all
vertices w with dout(w) = 0. All the new edges sv have length 0, whereas the
edges wz are given length dw. In this way we get a larger digraph H with
root s; by Theorem 2.6.3, we may assume H to be topologically sorted.

Now we denote the earliest possible point of time at which we could start
task i by ti. As all the tasks immediately preceding i have to be finished
before, we get the following system of equations:

(CPM) ts = 0 and ti =max{tk +wki : ki an edge in H}.

This system of equations is analogous to Bellman’s equations and describes
the longest paths in H , compare Exercise 3.5.5. As in Theorem 3.5.3, (CPM)
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has a unique solution which again is easy to calculate recursively, since H is
topologically sorted and thus only contains edges ij with i < j. The minimal
amount of time the project takes is the length T = tz of a longest path from
s to z. If the project is actually to be finished at time T , the latest point of
time Ti where we can still start task i is given recursively by

Tz = T and Ti =min{Tj −wij : ij an edge in H}.

Thus Tz − Ti is the length of a longest path from i to z. Of course, we
should get Ts = 0, which is useful for checking our calculations. The difference
mi = Ti − ti between the earliest point of time and the latest point of time
for beginning task i is called float or slack . All tasks i having float mi = 0
are called critical , because they have to be started exactly at the point of
time Ti = ti, as otherwise the whole project would be delayed. Note that each
longest path from s to z contains critical tasks only; for that reason each such
path is called a critical path for H . In general, there will be more than one
critical path.

In practice, H will not contain all edges ij for which i has to be finished
before j, but only those edges for which i is an immediate predecessor of j
so that there are no intermediate tasks between i and j.

Example 3.6.1 As an example, let us consider a simplified schedule for build-
ing a house. First, we need a list of the tasks, the amount of time they take,
and which tasks have to be finished before which other tasks; this information
can be found in Table 3.1. The corresponding digraph is shown in Fig. 3.6.
We have drawn the edges as undirected edges to make the figure somewhat
simpler: all edges are to be considered as directed from left to right.

The way the digraph is drawn in Fig. 3.6, it is not necessary to state a
topological sorting of the vertices explicitly; see Exercise 3.6.3. Using (CPM),
we calculate consecutively

ts = 0, t1 = 0, t2 = 0, t3 = 3, t4 = 5, t5 = 7, t8 = 7,

t6 = 14, t11 = 14, t13 = 17, t7 = 17, t9 = 18, t10 = 18,

t12 = 20, t14 = 22, t15 = 25, t16 = 28, T = tz = 33.

Similarly, we compute the Ti and the floats mi:

Tz = 33, mz = 0; T16 = 28, m16 = 0; T15 = 25, m15 = 0;

T12 = 29, m12 = 9; T14 = 22, m14 = 0; T9 = 27, m9 = 9;

T10 = 21, m10 = 3; T7 = 20, m7 = 3; T13 = 17, m13 = 0;

T6 = 17, m6 = 3; T11 = 14, m11 = 0; T5 = 7, m5 = 0;

T8 = 18, m8 = 11; T4 = 5, m4 = 0; T3 = 3, m3 = 0;

T1 = 0, m1 = 0; T2 = 1, m2 = 1; Ts = 0, ms = 0.



3.6 An Application: Scheduling Projects 81

Fig. 3.6 Digraph for the project of building a house

Table 3.1 Project of building a house

Vertex Task Amount of time Preceding tasks

1 Prepare the building site 3 –

2 Deliver the building material 2 –

3 Dig the foundation-hole 2 1, 2

4 Build the foundation 2 3

5 Build the walls 7 4

6 Build the roof supports 3 5

7 Cover the roof 1 6

8 Connect the water pipes to the house 3 4

9 Plasterwork outside 2 7, 8

10 Install the windows 1 7, 8

11 Put in the ceilings 3 5

12 Lay out the garden 4 9, 10

13 Install inside plumbing 5 11

14 Put insulation on the walls 3 10, 13

15 Paint the walls 3 14

16 Move 5 15

Thus the critical tasks are s,1,3,4,5,11,13,14,15,16, z, and they form (in
this order) the critical path, which is unique for this example.

Further information on project scheduling can be found in the books
[Tah92] and [Mul73], and in the references given there. Of course, there is
much more to scheduling than the simple method we considered. In practice
there are often further constraints that have to be satisfied, such as scarce
resources like limited amounts of machinery or restricted numbers of workers
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Table 3.2 Project of building a new production facility

Vertex Task Amount of time Preceding tasks

1 Ask for offers, compare and order 25 –

2 Take apart the old facility 8 –

3 Remove the old foundation 5 2

4 Plan the new foundation 9 1

5 Term of delivery for the new facility 21 1

6 Build the new foundation 9 3, 4

7 Install the new facility 6 5, 6

8 Train the staff 15 1

9 Install electrical connections 2 7

10 Test run 1 8, 9

11 Acceptance test and celebration 2 10

at a given point of time. For a good general overview of scheduling, the reader
is referred to [LawLRS93]. We close this section with a couple of exercises;
the first of these is taken from [Mul73].

Exercise 3.6.2 A factory wants to replace an old production facility by a
new one; the necessary tasks are listed in Table 3.2. Draw the corresponding
network and determine the values ti, Ti, and mi.

Exercise 3.6.3 Let G be an acyclic digraph with root s. The rank r(v) of
a vertex v is the maximal length of a directed path from s to v. Use the
methods introduced in this chapter to find an algorithm which determines
the rank function.

Exercise 3.6.4 Let G be an acyclic digraph with root s, given by adjacency
lists Av . Show that the following algorithm computes the rank function on G,
and determine its complexity:

Procedure RANK(G,s; r)

(1) create a list S0 whose only element is s;
(2) r(s)← 0; k← 0;
(3) for v ∈ V do d(v)← din(v) od
(4) while Sk 
= ∅ do
(5) create a new list Sk+1;
(6) for v ∈ Sk do
(7) for w ∈Av do
(8) if d(w) = 1
(9) then append w to Sk+1; r(w)← k+ 1; p(w)← v
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(10) fi
(11) d(w)← d(w)− 1
(12) od
(13) od
(14) k← k+ 1
(15) od

How can d(w) be determined? How can a longest path from s to v be
found? Can RANK be used to find a topological sorting of G?

3.7 The Algorithm of Dijkstra

In this section, we consider networks having all lengths nonnegative. In this
case Bellman’s equations can be solved by the algorithm of Dijkstra [Dij59],
which is probably the most popular algorithm for finding shortest paths.

Algorithm 3.7.1 Let (G,w) be a network, where G is a graph or a digraph
and all lengths w(e) are nonnegative. The adjacency list of a vertex v is
denoted by Av . We want to calculate the distances with respect to a vertex s

Procedure DIJKSTRA(G,w, s;d)

(1) d(s)← 0, T ← V ;
(2) for v ∈ V \ {s} do d(v)←∞ od
(3) while T 
= ∅ do
(4) find some u ∈ T such that d(u) is minimal;
(5) T ← T \ {u};
(6) for v ∈ T ∩Au do d(v)←min(d(v), d(u) +w(uv)) od
(7) od

Theorem 3.7.2 Algorithm 3.7.1 determines with complexity O(|V |2) the dis-
tances with respect to some vertex s in (G,w). More precisely, at the end of
the algorithm

d(s, t) = d(t) for each vertex t.

Proof Obviously, d(t) = ∞ if and only if t is not accessible from s. Now
assume d(t) 
=∞. Then d(s, t)≤ d(t), as the algorithm reaches t via a directed
path of length d(t) from s to t. We will show the converse inequality d(t)≤
d(s, t) by using induction on the order in which vertices are removed from T .
The first vertex removed is s; trivially d(s) = 0 = d(s, s). Now suppose that
the inequality is true for all vertices t that were removed from T before u.
We may assume that d(u) is finite. Moreover, let

s= v0
e1

v1
e2

· · ·
en

vn = u
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be a shortest path from s to u. Then

d(s, vh) =
h∑

j=1

w(ej) for h= 0, . . . , n.

Choose i as the maximal index such that vi was removed from T before u.
By the induction hypothesis,

d(s, vi) = d(vi) =

i∑

j=1

w(ej).

Let us consider the iteration where vi is removed from T in thewhile loop. As
vi+1 is adjacent to vi, the inequality d(vi+1)≤ d(vi) +w(ei+1) is established
during this iteration. But d(vi+1) cannot be increased again in the subsequent
iterations and, hence, this inequality still holds when u is removed. Thus

d(vi+1)≤ d(vi) +w(ei+1) = d(s, vi) +w(ei+1) = d(s, vi+1)≤ d(s,u). (3.5)

Suppose first vi+1 
= u, that is, i 
= n − 1. By equation (3.5), d(s,u) < d(u)
would imply d(vi+1)< d(u); but then vi+1 would have been removed from T
before u in view of the selection rule in step (4), contradicting the fact that
we chose i to be maximal. Hence indeed d(u)≤ d(s,u), as asserted. Finally,
for u= vi+1, the desired inequality follows directly from equation (3.5). This
establishes the correctness of Dijkstra’s algorithm. For the complexity, note
that in step (4) the minimum of the d(v) has to be calculated (for v ∈ T ),
which can be done with |T | − 1 comparisons. In the beginning of the algo-
rithm, |T |= |V |, and then |T | is decreased by 1 with each iteration. Thus we
need O(|V |2) steps altogether for the execution of (4). It is easy to see that
all other operations can also be done in O(|V |2) steps. �

The following simple example shows that the algorithm of Dijkstra may
fail if there are negative weights in the network, even if no cycles of negative
length exist. Note that the estimate in equation (3.5) does not hold any more
if w(ei+1) < 0. An algorithm which works also for negative weights can be
found in Exercise 3.7.10.

Example 3.7.3 Consider the network given in Fig. 3.7 with vertex set V =
{s,u, v, t}. Then the algorithm of Dijkstra yields d(u) = 1, d(t) = 2 and d(v) =
3, whereas d(s, t) =−1.

Exercise 3.7.4 Modify Dijkstra’s algorithm in such a way that it actually
gives a shortest path from s to t, not just the distance d(s, t). If s is a root
of G, construct an SP-tree for (G,w).
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Fig. 3.7 A network

Example 3.7.5 Consider the network given in Fig. 3.8 with vertex set V =
{1, . . . ,8}. With s= 1, Algorithm 3.7.1 is executed as follows, where the final
values for d is indicated in bold face:

start values: d(1) = 0, d(i) =∞ for i= 2, . . . ,8, T = V.

Iteration I: u= 1, T = {2, . . . ,8}, d(2) = 28, d(3) = 2,d(5) = 1;

Iteration II: u= 5, T = {2,3,4,6,7,8}, d(2) = 9,d(3) = 2, d(6) = 27;

Iteration III: u= 3, T = {2,4,6,7,8},d(2) = 9, d(6) = 26, d(8) = 29;

Iteration IV: u= 2, T = {4,6,7,8},d(4) = 18, d(6) = 19;

Iteration V: u= 4, T = {6,7,8},d(6) = 19, d(7) = 26, d(8) = 25;

Iteration VI: u= 6, T = {7,8},d(8) = 20;

Iteration VII: u= 8, T = {7},d(7) = 26;

Iteration VIII: u= 7, T = ∅.

Exercise 3.7.6 Calculate the distances with respect to s= 1 for the under-
lying undirected network.

Let us return to the complexity of Dijkstra’s algorithm. Initializing the
variables in (1) and (2) takes O(|V |) steps. During the entirewhile loop, each

Fig. 3.8 A network
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edge e= uv is considered exactly once, namely during the iteration where u
is removed from T . Thus step (6) contributes only O(|E|) to the complexity
of the algorithm, which is—at least for sparse graphs—much better than
O(|V |2). Therefore it makes sense to try to reduce the number of comparisons
in step (4) by using an appropriate data structure.

Recall that a priority queue (sometimes also called a heap) is a data struc-
ture consisting of a number of elements each of which is associated with a
real number, its priority . Permissible operations include inserting elements
according to their priority as well as determining and removing the ele-
ment with the smallest priority; the latter operation is usually referred to
as DELETEMIN. As shown in computer science, a priority queue with n
elements can be implemented in such a way that each of these two opera-
tions can be executed with complexity O(logn); we need a refinement of this
standard implementation which enables us also to remove a given element or
reduce its priority with the same complexity O(logn). We do not go into any
details here but refer the reader to [AhoHU83], [CorLRS09] or [MehSa08].
Using these results, we put the vertex set of our digraph into a priority queue
T in Dijkstra’s algorithm, with d as the priority function. This leads to the
following modified algorithm.

Algorithm 3.7.7 Let (G,w) be a given network, where G is a graph or a
digraph and all lengths w(e) are nonnegative. We denote the adjacency list
of v by Av . Moreover, let T be a priority queue with priority function d. The
algorithm calculates the distances with respect to a vertex s.

Procedure DIJKSTRAPQ(G,w, s;d).

(1) T ←{s}, d(s)← 0;
(2) for s ∈ V \ {s} do d(v)←∞ od
(3) while T 
= ∅ do
(4) u := min T ;
(5) DELETEMIN(T );
(6) for v ∈Au do
(7) if d(v) =∞
(8) then d(v)← d(u) +w(uv);
(9) insert v with priority d(v) into T

(10) else if d(u) +wuv < d(v)
(11) then change the priority of v to d(v)← d(u) +w(uv)
(12) fi
(13) fi
(14) od
(15) od

As noted before, each of the operations during the while loop can be per-
formed in O(log |V |) steps, and altogether we need at most O(|E|) +O(|V |)
such operations. If G is connected, this gives the following result.
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Theorem 3.7.8 Let (G,w) be a connected network, where w is nonnega-
tive. Then Algorithm 3.7.7 (the modified algorithm of Dijkstra) has complexity
O(|E| log |E|).

The discussion above provides a nice example for the fact that sometimes
we can decrease the complexity of a graph theoretical algorithm by selecting
more appropriate (which usually means more complex) data structures. But
this is not a one-way road: conversely, graph theory is a most important tool
for implementing data structures. For example, priority queues are usually
implemented using a special types of trees (for instance, so-called 2-3-trees).
A nice treatment of the close interplay between algorithms from graph theory
and data structures may be found in [Tar83].

Exercise 3.7.9 Let s be a vertex of a planar network with a nonnegative
length function. What complexity does the calculation of the distances with
respect to s have?

Using even more involved data structures, we can further improve the re-
sults of Theorem 3.7.8 and Exercise 3.7.9. Implementing a priority queue ap-
propriately (for instance, as a Fibonacci Heap), inserting an element or reduc-
ing the priority of a given element can be done in O(1) steps; DELETEMIN
still requires O(logn) steps. Thus one may reduce the complexity of Algo-
rithm 3.7.7 to O(|E|+ |V | log |V |); see [FreTa87]. The best theoretical bound
known at present is O(|E| + (|V | log |V |)/(log log |V |)); see [FreWi94]. This
algorithm, however, is of no practical interest as the constants hidden in the
big-O notation are too large. If all lengths are relatively small (say, bounded
by a constant C), one may achieve a complexity of O(|E|+ |V |(logC)1/2);
see [AhuMOT90]. For the planar case, there is an algorithm with complexity
O(|V |(log |V |)1/2); see [Fre87]. A short but nice discussion of various algo-
rithmic approaches of practical interest is in [Ber93]. More information about
practical aspects may be found in [GalPa88] and [HuDi88].

Finally, we present an algorithm which can also treat instances where
negative lengths occur, as long as no cycles of negative length exist. This is
due to Ford [For56] and Bellman [Bel58].

Exercise 3.7.10 Let (G,w) be a network without cycles of negative length.
Show that the following algorithm calculates the distances with respect to a
given vertex s and determine its complexity:

Procedure BELLFORD(G,w, s;d)

(1) d(s)← 0;
(2) for v ∈ V \ {s} do d(v)←∞ od
(3) repeat
(4) for v ∈ V do d′(v)← d(v) od
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(5) for v ∈ V do d(v)← min(d′(v), min{d′(u) +w(uv): uv ∈E}) od
(6) until d(v) = d′(v) for all v ∈ V

Apply this algorithm to Example 3.7.5, treating the vertices in the order
1, . . . ,8.

3.8 An Application: Train Schedules

In this section, we discuss a practical problem which can be solved using the
algorithm of Dijkstra, namely finding optimal connections in a public trans-
portation system.4 Such a system consists of several lines (of trains or buses)
which are served at regular intervals. Typical examples are the German In-
tercity network or the American Greyhound bus lines. If someone wants to
use such a system to get from one point to another in the network, it may
be necessary to change lines a couple of times, each time having to wait for
the connection. Often there might be a choice between several routes; we
are interested in finding the fastest one. This task is done in practice by
interactive information systems, giving travellers the optimal routes to their
destinations. For example, the state railway company of the Netherlands uses
such a schedule information system based on the algorithm of Dijkstra, as
described in [SikTu89]. We now use a somewhat simplified example to illus-
trate how such a problem can be modelled so that the algorithm of Dijkstra
applies. For the sake of simplicity, we restrict our interpretation to train lines
and train stations, and we have our trains begin their runs at fixed intervals.
Of course, any set of events occurring at regular intervals can be treated
similarly.

We begin by constructing a digraph G= (V,E) which has the train stations
as vertices and the tracks between two stations as edges. With each edge e,
we associate a travel time f(e); here parallel edges might be used to model
trains going at different speeds. Edges always connect two consecutive points
of a line where the train stops, that is, stations a train just passes through
do not occur on this line. Thus lines are just paths or cycles5 in G. With
each line L, we associate a time interval TL representing the amount of time
between two consecutive trains of this line. For each station v on a line L, we
define the time cycle tL(v) which specifies at which times the trains of line
L leave station v; this is stated modulo TL. Now let

L: v0
e1

v1 · · · vn−1

en
vn

4I owe the material of this section to my former student, Dr. Michael Guckert.

5Remember the Circle line in the London Underground system!
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be a line. Clearly, the time of departure at station vi is the sum of the time
of departure at station vi−1 and the travelling time f(ei) from vi−1 to vi,
taken modulo TL.

6 Hence the values tL(vi) are determined as follows:7

tL(v0) := sL (modTL);

tL(vi) := tL(vi−1) + f(ei) (modTL) for i= 1, . . . , n.
(3.6)

The schedule of line L is completely determined by (3.6): the trains depart
from station vi at the time tL(vi) (modulo TL) in intervals of length TL.

Next we have to calculate the waiting times involved in changing trains.
Let e = uv and e′ = vw be edges of lines L and L′, respectively. A train of
line L′ leaves the station v at the times

tL′(v), tL′(v) + TL′ , tL′(v) + 2TL′ , . . .

and a train of line L reaches station v at the times8

tL(v), tL(v) + TL, tL(v) + 2TL, . . . .

Now assume that L and L′ have different time cycles. Then the waiting time
depends not only on the time cycles, but also on the precise point of time
modulo the least common multiple T of TL and TL′ . Let us illustrate this
by an example. Suppose the time cycle of line L is 12 minutes, while that
of L′ is 10 minutes so that T = 60. For tL(v) = 0 and tL′(v) = 5 we get the
following schedules at v:

Line L: 0 12 24 36 48

Line L′: 5 15 25 35 45 55

Thus the waiting time for the next train of line L′ varies between one minute
and nine minutes in this example. To simplify matters, we now assume that
all time cycles are actually the same. Then the waiting time at station v is
given by

w(vLL′) = tL′(v)− tL(v) (modT ).

This even applies in case L= L′: then we do not have to change trains.

6We will neglect the amount of time a train stops at station vi. This can be taken into

account by either adding it to the travelling time f(ei) or by introducing an additional

term wL(vi) which then has to be added to tL(vi−1) + f(ei).

7Note that we cannot just put tL(v0) = 0, as different lines may leave their start stations

at different times.

8More precisely, the trains of line L leave station v at these times, that is, they reach v a

little bit earlier. We assume that this short time interval suffices for the process of changing

trains, so that we can leave this out of our considerations as well.
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Exercise 3.8.1 Reduce the case of different time cycles to the special case
where all time cycles are equal.

We now construct a further digraph G′ = (V ′,E′) which will allow us to
find an optimal connection between two stations directly by finding a shortest
path. Here a connection between two vertices v0 and vn in G means a path

P : v0
e1

v1 · · ·
en

vn

in G together with the specification of the line Li corresponding to edge ei
for i= 1, . . . , n, and the travelling time for this connection is

f(e1) +w(vL1L2) + f(e2) +w(vL2L3) + · · ·+w(vLn−1Ln) + f(en). (3.7)

This suggests the following definition of G′. For each vertex v ∈ V and each
line L serving station v, we have two vertices (v,L)in and (v,L)out in V ′; for
each edge e= vw contained in some line L, there is an edge (v,L)out(w,L)in
in E′. Moreover, for each vertex v contained in both lines L and L′, there is an
edge (v,L)in(v,L

′)out. Then a directed path from v0 to vn in G′ corresponds in
fact to a connection between v0 and vn, and this even includes the information
which lines to use and where to change trains. In order to obtain the travelling
time (3.7) as the length of the corresponding path in G′, we simply define a
weight function w′ on G′ as follows:

w′((v,L)out(w,L)in
)
:= f(vw),

w′((v,L)in
(
v,L′)

out

)
:=w(vLL′).

Now our original problem is solved by applying Dijkstra’s algorithm to the
network (G′,w′). Indeed, we may find all optimal connections leaving station
v by applying this algorithm (modified as in Exercise 3.7.4) starting from all
vertices in (G′,w′) which have the form (v,L)out.

In this context, let us mention some other problems concerning the design
of a schedule for several lines having fixed time cycles, that is, the problem
of how to choose the times of departure sL for the lines L for given time
cycles TL. In general, we might want the desired schedule to be optimal with
respect to one of the following objectives.

• The longest waiting time (or the sum of all the waiting times) should be
minimal.

• The shortest time interval between the departure of two trains from a
station should be maximal; that is, we want a safety interval between suc-
cessive trains.

• The sum of all travelling times between any two stations should be minimal;
we might also give each of the routes a weight in this sum corresponding
to its importance, maybe according to the expected number of travellers.
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These problems are considerably more difficult; in fact, they are NP-hard in
general, although polynomial solutions are known when the number of lines
is small. We refer to the literature; in particular, for the first two problems
see [Gul80], [Bur86], and [BruBH90]. The last problem was studied in detail
by Guckert [Guc96], and the related problem of minimizing the sum of the
waiting times of all travellers was treated by Domschke [Dom89]. Both these
authors described and tested various heuristics.

3.9 The Algorithm of Floyd and Warshall

Sometimes it is not enough to calculate the distances with respect to a certain
vertex s in a given network: we need to know the distances between all pairs
of vertices. Of course, we may repeatedly apply one of the algorithms treated
before, varying the start vertex s over all vertices in V . This results in the
following complexities, depending on the specific algorithm used.

algorithm of Moore: O
(
|V ||E|

)
;

algorithm of Dijkstra: O
(
|V |3

)
or O

(
|V ||E| log |E|

)
;

algorithm of Bellman and Ford: O
(
|V |2|E|

)
.

These complexities could even be improved a bit according to the remarks
at the end of Sect. 3.7. Takaoka [Tak92] presented an algorithm with com-
plexity O(|V |3(log log |V |/ log |V |)1/2). In the planar case one can achieve a
complexity of O(|V |2); see [Fre87].

In this section, we study an algorithm for this problem which has
just the same complexity as the original version of Dijkstra’s algorithm,
namely O(|V |3). However, it offers the advantage of allowing some lengths
to be negative—though, of course, we cannot allow cycles of negative length.
This algorithm is due to Floyd [Flo62], see also Warshall [War62], and works
by determining the distance matrix D = (d(v,w))v,w∈V of our network.

Algorithm 3.9.1 (Algorithm of Floyd and Warshall) Let (G,w) be a net-
work not containing any cycles of negative length, and assume V = {1, . . . , n}.
Put w(ij) =∞ if ij is not an edge in G.

Procedure FLOYD(G,w;d)

(1) for i= 1 to n do
(2) for j = 1 to n do
(3) if i 
= j then d(i, j)←w(ij) else d(i, j)← 0 fi
(4) od
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(5) od

(6) for k = 1 to n do

(7) for i= 1 to n do

(8) for j = 1 to n do

(9) d(i, j)←min(d(i, j), d(i, k) + d(k, j))

(10) od

(11) od

(12) od

Theorem 3.9.2 Algorithm 3.9.1 computes the distance matrix D for (G,w)

with complexity O(|V |3).

Proof The complexity of the algorithm is obvious. Let D0 = (d0ij) denote the

matrix defined in step (3) and Dk = (dkij) the matrix generated during the

k-th iteration in step (9). Then D0 contains all lengths of paths consisting

of one edge only. Using induction, it is easy to see that (dkij) is the shortest

length of a directed path from i to j containing only intermediate vertices

from {1, . . . , k}. As we assumed that (G,w) does not contain any cycles of

negative length, the assertion follows for k = n. �

Exercise 3.9.3 Modify Algorithm 3.9.1 so that it not only calculates the

distance matrix, but also determines shortest paths between any two vertices.

Example 3.9.4 For the network shown in Fig. 3.9, the algorithm of Floyd and

Warshall computes the accompanying matrices.

Exercise 3.9.5 Apply Algorithm 3.9.1 to the network in Fig. 3.10 [Law76].

In Sect. 2.6, we looked at acyclic digraphs associated with partially ordered

sets. Such a digraph G is transitive: if there is a directed path from u to v,

then G has to contain the edge uv. Now let G be an arbitrary acyclic digraph.

Let us add the edge uv to G for each pair of vertices (u, v) such that v is

accessible from u, but uv is not already an edge. This operation yields the

transitive closure of G. Clearly, the transitive closure of an acyclic digraph is

again acyclic and thus corresponds to a partially ordered set. By definition,

two vertices u and v have distance d(u, v) 
=∞ if and only if uv is an edge of

the transitive closure of G. Hence the algorithm of Floyd and Warshall can

be used to compute transitive closures with complexity O(|V |3).
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Fig. 3.9 A network

D0 =

⎛

⎜
⎜
⎜
⎜
⎝

0 2 4 ∞ 3
2 0 8 ∞ 1
6 2 0 4 3
1 ∞ ∞ 0 5
∞ ∞ ∞ 1 0

⎞

⎟
⎟
⎟
⎟
⎠

D1 =

⎛

⎜
⎜
⎜
⎜
⎝

0 2 4 ∞ 3
2 0 6 ∞ 1
6 2 0 4 3
1 3 5 0 4
∞ ∞ ∞ 1 0

⎞

⎟
⎟
⎟
⎟
⎠

,

D2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 2 4 ∞ 3
2 0 6 ∞ 1
4 2 0 4 3
1 3 5 0 4
∞ ∞ ∞ 1 0

⎞

⎟
⎟
⎟
⎟
⎠

D3 =

⎛

⎜
⎜
⎜
⎜
⎝

0 2 4 8 3
2 0 6 10 1
4 2 0 4 3
1 3 5 0 4
∞ ∞ ∞ 1 0

⎞

⎟
⎟
⎟
⎟
⎠

,

D4 =

⎛

⎜
⎜
⎜
⎜
⎝

0 2 4 8 3
2 0 6 10 1
4 2 0 4 3
1 3 5 0 4
2 4 6 1 0

⎞

⎟
⎟
⎟
⎟
⎠

D5 =

⎛

⎜
⎜
⎜
⎜
⎝

0 2 4 4 3
2 0 6 2 1
4 2 0 4 3
1 3 5 0 4
2 4 6 1 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Exercise 3.9.6 Simplify Algorithm 3.9.1 for computing the transitive clo-
sure by interpreting the adjacency matrix of an acyclic digraph as a Boolean
matrix; see [War62].

Let us mention a further way of associating an acyclic digraph to a partially
ordered set. More generally, consider any acyclic digraph G. If uv is an edge
in G and if there exists a directed path of length ≥ 2 from u to v in G,
we remove the edge uv from G. This operation yields a digraph called the
transitive reduction Gred of G. If G is the digraph associated with a partially
ordered set as in Sect. 2.6, Gred is also called the Hasse diagram of G. If
we want to draw a Hasse diagram, we usually put the vertices of equal rank
on the same horizontal level. Figure 3.11 shows the Hasse diagram of the
partially ordered set of the divisors of 36. The orientation of the edges is not
shown explicitly: it is understood that all edges are oriented from bottom to
top. As an exercise, the reader might draw some more Hasse diagrams.
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Fig. 3.10 A network

Fig. 3.11 Hasse diagram
of the divisors of 36

Exercise 3.9.7 Design an algorithm for constructing the reduction of an
acyclic digraph with complexity O(|V |3) and show that G and Gred have the
same transitive closure. Hint: Modify the Floyd and Warshall algorithm so
that it may be used here to determine longest paths.

For more about the transitive closure and the transitive reduction of an
acyclic digraph see [Meh84]. Schnorr [Schn78] gave an algorithm for con-
structing the transitive closure with an average complexity of O(|E|).

Let us consider a final application of the algorithm of Floyd and Warshall.
Sometimes we are interested in finding the center of some network.9 Let

9It is obvious how this notion could be applied in the context of traffic or communication
networks.
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(G,w) be a network not containing any cycles of negative length. Then the
eccentricity of a vertex v is defined as

ε(v) =max
{
d(v,u): u ∈ V

}
.

A center of a network is a vertex having minimal eccentricity. The centers
of a given network can be determined easily using the algorithm of Floyd
and Warshall as follows. At the end of the algorithm, ε(i) simply is the
maximum of the i-th row of the matrix D = (d(i, j)), and the centers are
those vertices for which this maximum is minimal. For example, the vertices of
the network of Example 3.9.4 have eccentricities ε(1) = 4, ε(2) = 6, ε(3) = 4,
ε(4) = 5 and ε(5) = 6, so that 1 and 3 are centers of the network. It is obvious
that the complexity of the additional operations needed—namely finding the
required maxima and minima—is dominated by the complexity O(|V |3) of
the algorithm of Floyd and Warshall. Thus we have the following result.

Theorem 3.9.8 Let N be a network without cycles of negative length. Then
the centers of N can be determined with complexity O(|V |3).

If we take all edges in a given graph (directed or not) to have length 1, the
above definition yields the eccentricities of the vertices and the centers of the
graph in the graph theory sense. Sometimes we are interested in the maximal
eccentricity of all vertices of a graph. This value is called the diameter of
the graph; again, this is a notion of interest in communications networks,
see [Chu86]. For more on communication networks, we also refer to [Bie89]
and [Ber92]. It is a difficult (in fact, NP-hard) problem to choose and assign
centers for networks under the restrictions occurring in practical applications,
see [BarKP93].

To close this section, we briefly discuss the dynamic variant of the problem
of determining shortest paths between any two vertices in a network. Suppose
we have found a solution for some optimization problem, using an appropriate
algorithm. For some reason, we need to change the input data slightly and
find an optimal solution for the modified problem. Can we do so using the
optimal solution we know already, without having to run the whole algorithm
again? For our problem of finding shortest paths, this means keeping up to
date the distance matrix D as well as information needed for constructing
shortest paths (as, for example, the matrix P = (p(i, j)) used in the solution
of Exercise 3.9.3) while inserting some edges or reducing lengths of edges.
Compare this procedure with calculating all the entries of the matrices D
and P again. If all lengths w(e) are integers in the interval [1,C], it is obvious
that at most O(Cn2) such operations can be performed because an edge may
be inserted at most once, and the length of each edge can be reduced at
most C times. While a repeated application of the algorithm of Floyd and
Warshall for a sequence of such operations would need O(Cn5) steps, it is also
possible to solve the problem with complexity just O(Cn3 lognC), using an
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adequate data structure. If we are treating an instance with graph theoretic
distances, that is, for C = 1, a sequence of O(n2) insertions of edges needs
only O(n3 logn) steps. We refer the reader to [AusIMN91] for this topic.

3.10 Cycles of Negative Length

Later in this book (when treating flows and circulations in Chap. 10), we
will need a method to decide whether a given network contains a directed
cycle of negative length; moreover, we should also be able to find such a cycle
explicitly. We shall now modify the algorithm of Floyd and Warshall to meet
these requirements. The essential observation is as follows: a network (G,w)
contains a directed cycle of negative length passing through the vertex i if
and only if Algorithm 3.9.1 yields a negative value for d(i, i).

Algorithm 3.10.1 Let (G,w) be a network with vertex set V = {1, . . . , n}.

Procedure NEGACYCLE(G,w;d, p,neg,K)

(1) neg ← false, k← 0;
(2) for i= 1 to n do
(3) for j = 1 to n do
(4) if i 
= j then d(i, j)←w(ij) else d(i, j)← 0 fi
(5) if i= j or d(i, j) =∞ then p(i, j)← 0 else p(i, j)← i fi
(6) od
(7) od
(8) while neg = false and k < n do
(9) k← k+ 1;

(10) for i= 1 to n do
(11) if d(i, k) + d(k, i)< 0
(12) then neg ← true; CYCLE(G,p, k, i;K)
(13) else for j = 1 to n do
(14) if d(i, k) + d(k, j)< d(i, j)
(15) then d(i, j)← d(i, k) + d(k, j); p(i, j)← p(k, j)
(16) fi
(17) od
(18) fi
(19) od
(20) od

Here CYCLE denotes a procedure which uses p for constructing a cycle
of negative length containing i and k. Note that p(i, j) is, at any given point
of the algorithm, the predecessor of j on a—at that point of time—shortest
path from i to j. CYCLE can be described informally as follows. First, set
v0 = i, then v1 = p(k, i), v2 = p(k, v1), etc., until va = k = p(k, va−1) for some



3.11 Path Algebras 97

index a. Then continue with va+1 = p(i, k), va+2 = p(i, va+1), etc., until an
index b is reached for which va+b = v0 = i = p(i, va+b−1). Now the cycle we
have found uses each edge in the direction opposite to its orientation, so that
(va+b = v0, va+b−1, . . . , v1, v0) is the desired directed cycle of negative length
through i and k. It can then be stored in a list K. We leave it to the reader
to state this procedure in a formally correct way.

If (G,w) does not contain any directed cycles of negative length, the vari-
able neg has value false at the end of Algorithm 3.10.1. In this case, d contains
the distances in (G,w) as in the original algorithm of Floyd and Warshall.
The matrix (p(i, j)) may then be used to find a shortest path between any
two given vertices; this is similar to the procedure CYCLE discussed above.
Altogether, we get the following result.

Theorem 3.10.2 Algorithm 3.10.1 decides with complexity O(|V |3) whether
or not a given network (G,w) contains cycles of negative length; in case it
does, such a cycle is constructed. Otherwise, the algorithm yields the distance
matrix (d(i, j)) for (G,w).

Exercise 3.10.3 Let G be a digraph on n vertices having a root s, and let
w be a length function on G. Modify the algorithm of Bellman and Ford
(see Exercise 3.7.10) so that it determines whether (G,w) contains a cycle of
negative length. If there is no such cycle, the algorithm should determine an
SP-tree with root s using a procedure SPTREE. Write down such a procedure
explicitly.

Exercise 3.10.4 Modify the algorithm of Floyd and Warshall so that it
determines the shortest length of a directed cycle in a network not containing
any cycles of negative length.

3.11 Path Algebras

Let (G,w) be a network without cycles of negative length. According to
Bellman’s equations (Proposition 3.5.1), the distances ui with respect to a
vertex i then satisfy the conditions

(B) u1 = 0 and ui =min{uk +wki : i 
= k} for i= 2, . . . , n.

In this section, we consider the question whether such a system of equations
might be solved using methods from linear algebra. In fact, this is possible
by introducing appropriate algebraic structures called path algebras. We only
sketch the basic ideas here; for details we refer to the literature, in particular
[Car71, Car79, GonMi84, Zim81].10

10This section is included just to provide some more theoretical background. As it will not
be used in the rest of the book, it may be skipped.
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We begin with a suitable transformation of the system (B). Recall that we
put wij =∞ if ij is not an edge of our network; therefore we extend R to
R=R∪ {∞}. Moreover, we introduce two operations ⊕ and ∗ on R:

a⊕ b := min(a, b) and a ∗ b := a+ b,

where, as usual, we define a+∞ to be ∞. Obviously, (B) can be written as

u1 =min
(
0,min{uk +wk1 : k 
= 1}

)
and

ui =min
(
∞,min{uk +wki : k 
= i}

)
,

since (G,w) does not contain any cycles of negative length. Using the oper-
ations introduced above, we get the system of equations

(
B′) u1 =

n⊕

k=1

(uk ∗wk1)⊕ 0, ui =

n⊕

k=1

(uk ∗wki)⊕∞,

where we set wii = ∞ for i = 1, . . . , n. We can now define matrices over R

and apply the operations ⊕ and ∗ to them in analogy to the usual definitions
from linear algebra. Then (B′) (and hence (B)) can be written as a linear
system of equations:

(
B′′) u= u ∗W ⊕ b,

where u= (u1, . . . , un), b= (0,∞, . . . ,∞) and W = (wij)i,j=1,...,n.
Thus Bellman’s equations may be viewed as a linear system of equations

over the algebraic structure (R,⊕,∗). Then the algorithm of Bellman and
Ford given in Exercise 3.7.10 admits the following interpretation. First set

u(0) = b and then recursively u(k) = u(k−1) ∗W ⊕ b,

until the sequence eventually converges to u(k) = u(k−1), which in our case
occurs for k = n or earlier. Hence the algorithm of Bellman and Ford is
analogous to the Jacobi method from classical linear algebra over R; see, for
instance, [Str88].

These observations lead to studying algebraic structures which satisfy the
same conditions as (R,⊕,∗). A path algebra or dioid is a triple (R,⊕,∗)
such that (R,⊕) is a commutative monoid, (R,∗) is a monoid, and both
distributive laws hold; moreover, the neutral element o of (R,⊕) satisfies the
absorption law. This means that the following axioms hold, where e denotes
the neutral element for (R,∗):

(1) a⊕ b= b⊕ a;
(2) a⊕ (b⊕ c) = (a⊕ b)⊕ c;
(3) a⊕ o= a;
(4) a ∗ o= o ∗ a= o;
(5) a ∗ e= e ∗ a= a;
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(6) a ∗ (b ∗ c) = (a ∗ b) ∗ c;
(7) a ∗ (b⊕ c) = (a ∗ b)⊕ (a ∗ c);
(8) (b⊕ c) ∗ a= (b ∗ a)⊕ (c ∗ a).

Exercise 3.11.1 Show that (R,⊕,∗) is a path algebra with e= 0 and o=∞.

Exercise 3.11.2 Let (R,⊕,∗) be a path algebra. We define a relation � on
R by

a� b ⇐⇒ a= b⊕ c for some c ∈R.

Show that � is a preordering (that is, it is reflexive and transitive). If ⊕ is
idempotent (that is, a⊕a= a for all a ∈R), then � is even a partial ordering
(that is, it is also antisymmetric).

Exercise 3.11.3 Let (G,w) be a network without cycles of negative length.
Give a matrix equation for the distance matrix D = (d(i, j)).

We now transfer the notions developed in the special case of (R,⊕,∗) to
arbitrary path algebras. For the remainder of this section, a network means
a pair (G,w) such that G is a digraph, w : E →R is a length function, and
(R,⊕,∗) is a path algebra. The length of a path P = (v0, v1, . . . , vn) is defined
as

w(P ) :=w(v0v1) ∗w(v1v2) ∗ · · · ∗w(vn−1vn).

The AP-problem (short for algebraic path problem) requires calculating the
sums

w∗
ij =⊕w(P ) (where P is a directed path from i to j)

and finding a path P from i to j such that w(P ) = w∗
ij (if the above sum

and such a path exist). For the case (R,⊕,∗), the AP-problem reduces to
the familiar SP-problem (shortest path problem) of determining the distances
and shortest paths.

As before, we introduce a matrix W = (wij) whose (i, j)-entry is the length
w(ij) if ij is an edge of G. We set wii = o for i = 1, . . . , n and wij = o if
i 
= j and ij is not an edge in G. Note that, for the special case (R,⊕,∗)
above, we looked at the matrix W ′ =W ⊕E; see Exercise 3.11.5 below. Here
E denotes the unit matrix, that is, eii = e for i = 1, . . . , n and eij = o for
i 
= j. As usual, we write Ak for the k-th power of A; moreover, we define
A(k) :=E ⊕A⊕A2 ⊕ · · · ⊕Ak.

Lemma 3.11.4 The (i, j)-entry of the matrix W k or of W (k) is the sum
⊕w(P ) over all directed walks from i to j consisting of exactly k edges for
the former, and of at most k edges for the latter.
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Proof Use induction on k. �

We look again at the special case of the SP-problem. In a network (G,w)
not containing cycles of negative length, distances can always be realized
by paths, so that we need at most n− 1 edges. Thus we have D =W (n−1);
moreover, W (n−1) =W (n) = · · · . It is easy to see that W (n−1) indeed satisfies
the matrix equation given in the solution to Exercise 3.11.3:

W (n−1) ∗W ⊕E =
(
E ⊕W ⊕ · · · ⊕W n−1

)
∗W ⊕E

= E ⊕W ⊕ · · · ⊕Wn−1 ⊕Wn =W (n) =W (n−1).

An element a with a(p) = a(p+1) for some p is called a stable element; this
notion is important also for general path algebras. In fact, the matrix W ∗ =
(w∗

ij) of the AP-problem is an infinite sum ⊕W k =E⊕W ⊕W 2⊕ . . ., that is,

it is the limit of the matrices W (k) for k→∞. If W is stable, these formulas
make sense: if W (p) = W (p+1), then W ∗ = W (p). That is the reason why
criteria for stability play an important part in the theory of path algebras;
see [Zim81]. For the theory of convergence, see also [KuiSa86].

Exercise 3.11.5 Let (R,⊕,∗) be a path algebra such that ⊕ is idempotent.
For every matrix A, we put A′ :=E⊕A. Show (A′)k =A(k) and use this fact
to find a technique for calculating A(n); also discuss its complexity.

Now suppose that W is stable; we call W ∗ = W (p) = W (p+1) the quasi-
inverse of W . As in the special case R=R above, we have

W ∗ =W ∗ ∗W ⊕E =W ∗W ∗ ⊕E.

Thus, for an arbitrary matrix B, the matrices Y :=W ∗ ∗B and Z :=B ∗W ∗,
respectively, are solutions of the equations

Y =W ∗ Y ⊕B and Z = Z ∗W ⊕B. (3.8)

In particular, we can choose a column or row vector b for B and obtain a
linear system of equations analogous to the system (B′′).

Exercise 3.11.6 Let (R,⊕,∗) be an arbitrary path algebra. Show that the
(n× n)-matrices over R also form a path algebra and define a preordering
(or, in the idempotent case, a partial ordering) on this path algebra; see
Exercise 3.11.2. Prove that W ∗ ∗ B and B ∗ W ∗ are minimal solutions of
equation (3.8) and that the system (3.8) has a unique minimal solution in
the idempotent case.

Equations having the same form as (3.8) can be solved using techniques
analogous to the well-known methods of linear algebra over R. We have al-
ready seen that the algorithm of Bellman and Ford corresponds to the Jacobi
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method; this technique can also be used for the general case of a stable matrix
W over any path algebra R. Similarly, it can be shown that the algorithm
of Floyd and Warshall corresponds to the Gauss-Jordan elimination method.
For more on this result and other general algorithms for solving (3.8), we
refer to [GonMi84] and [Zim81].

We conclude this section with some examples which will show that the
abstract concept of path algebras makes it possible to treat various interesting
network problems with just one general method. However, the SP-problem
is still the most important example; here the case of positive lengths—that
is, the path algebra (R+,min,+)—was already studied by [Shi75]. Similarly,
longest paths can be treated using the path algebra (R ∪ {−∞},max,+)
instead.

Example 3.11.7 Consider the path algebra ({0,1},max,min)—that is, the
Boolean algebra on two elements—and put wij = 1 for each edge of G. Then
Lemma 3.11.4 has the following interpretation. There exists a directed walk
from i to j consisting of exactly k edges if and only if the (i, j)-entry of
W k is 1, and of at most k edges if and only if the (i, j)-entry of W (k) is 1.
Moreover, the matrix W ∗ =W (n−1) is the adjacency matrix of the transitive
closure of G; see Exercise 3.9.6.

Example 3.11.8 Consider the path algebra (R+,max,min) and think of the
length w(ij) of an edge ij as its capacity. Then w(P ) is the capacity of the
path P ; that is, w(P ) is the minimum of the capacities of the edges contained
in P . Here the (i, j)-entry of W k is the largest capacity of a walk from i to
j with exactly k edges, while for W (k) it is the largest capacity of a walk
from i to j with at most k edges. Hence W ∗ =W (n−1) and w∗

ij is the largest
capacity of a walk from i to j; see [Hu61].

Example 3.11.9 Consider the path algebra (N0,+, ·), where each edge of G
has length w(ij) = 1. Then W is just the adjacency matrix of G. The (i, j)-
entry of W k and of W (k) represent the number of walks from i to j consisting
respectively of precisely and at most k edges; see Exercise 2.2.5. Note that
W ∗ does not exist in general, as there might be infinitely many walks from i
to j. If G is an acyclic digraph, W ∗ is well-defined; in this case W ∗ =W (n−1)

and w∗
ij is the number of all directed walks from i to j.

Exercise 3.11.10 Find a path algebra which is suitable for treating the
problem of Example 3.1.2, where w(i, j) is the probability p(i, j) described
in Example 3.1.2; see [Kal60].

Exercise 3.11.11 Any commutative field (K,+, ·) is obviously also a path
algebra. Show that A is stable over K if G is acyclic, and give a formula for
A∗ under this condition. Does the converse hold?
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The reader can find a lot of further examples for path algebras in the
literature quoted above, in particular in [GonMi84] and in [Zim81]; see also
[KuiSa86] for applications in automata theory. Finally, let us also mention a
practical example from operations research.

Example 3.11.12 We construct a digraph G whose vertices are the single
parts, modules, and finished products occurring in an industrial process. We
want the edges to signify how many single parts or intermediary modules
are needed for assembling bigger modules or finished products. That is, we
assign weight w(i, j) to edge ij if we need w(i, j) units of part i for assem-
bling product j. G is called the gozinto graph. In most cases, the modules and
products are divided into levels of the same rank, where the finished products
have highest rank, and basic parts (which are not assembled from any smaller
parts) lowest rank; that is, the products and modules are divided into dispo-
sition levels. The notion of ranks used here is the same as in Exercise 3.6.3;
it can be calculated as in Exercise 3.6.4. Often the gozinto graph is taken to
be reduced in the sense of Sect. 3.9, that is, it contains an edge ij only if part
i is used directly in assembling module j, without any intermediate steps.
Note that the reduced graph Gred can be determined as in Exercise 3.9.7, as
we always assume G to be acyclic.11

Now suppose that we have a gozinto graph which is reduced already. Some-
times one wants to know how much of each part is needed, no matter whether
directly or indirectly. For this purpose, we consider the path algebra (N0,+, ·)
and the given weights w(ij). As G is acyclic, there are only finitely many di-
rected paths from vertex i to vertex j; thus the matrix W ∗ (=W (n−1)) exists.
Now it is easily seen that the entry w∗

ij is just the total number of units of
i needed for the assembly of j. The matrix W ∗ may, for example, be de-
termined using the algorithm of Bellman and Ford—that is, the generalized
Jacobi method—or the analogue of the algorithm of Floyd and Warshall;
see [Mul69].

More about gozinto graphs can be found in the book by Müller-Merbach
[Mul73] as well as in his two papers already cited. Note that the entries
of a column of W ∗ give the numbers of parts and modules needed for the
corresponding product, whereas the entries in the rows show where (and how
much of) the corresponding part or module is needed.

11This assumption does not always hold in practice. For instance, gozinto graphs containing
cycles are quite common in chemical production processes; see [Mul66].



Chapter 4
Spanning Trees

I think that I shall never see

A poem lovely as a tree.

Joyce Kilmer

In this chapter, we will study trees in considerably more detail than in the in-
troductory Sect. 1.2. Beginning with some further characterizations of trees,
we then present another way of determining the number of trees on n vertices
which actually applies more generally: it allows us to compute the number of
spanning trees in any given connected graph. The major part of this chapter
is devoted to a network optimization problem, namely to finding a span-
ning tree for which the sum of all edge lengths is minimal. This problem has
many applications; for example, the vertices might represent cities we want
to connect to a system supplying electricity; then the edges represent the
possible connections and the length of an edge states how much it would cost
to build that connection. Other possible interpretations are tasks like estab-
lishing traffic connections (for cars, trains or planes: the connector problem)
or designing a network for TV broadcasts. Finally, we consider Steiner trees
(these are trees where it is allowed to add some new vertices) and arbores-
cences (directed trees).

4.1 Trees and Forests

We defined a tree to be a connected acyclic graph and gave some equivalent
conditions in Theorem 1.2.8. The following lemma provides further charac-
terizations for trees.

Lemma 4.1.1 Let G be a graph. Then the following four conditions are
equivalent:

(1) G is a tree.
(2) G does not contain any cycles, but adding any further edge yields a

(unique) cycle.
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(3) Any two vertices of G are connected by a unique path.
(4) G is connected, and every edge of G is a bridge.

Proof First let G be a tree. We add any new edge, say e = uv. Since G is
connected, there is a path W from v to u. Then

v
W

u
e

v

is a cycle. As G itself is acyclic by definition, condition (1) implies (2).
Next assume the validity of (2) and let u and v be any two vertices of G.

Suppose there is no path between u and v. Then u and v are not adjacent;
also, adding the edge uv to G cannot yield a cycle, contradicting (2). Thus
G must be connected. Now suppose that G contains two different paths W
and W ′ from u to v. Obviously, following W from u to v and then W ′ (in
reverse order) from v to u would give a closed walk in G. But then G would
have to contain a cycle, a contradiction. Hence condition (2) implies (3).

Now assume the validity of (3) and let e= uv be any edge in G. Suppose
e is not a bridge so that G \ e is still connected. But then there exist two
disjoint paths from u to v in G. This contradiction establishes (4).

Finally, assume the validity of (4). Suppose G contains a cycle C. Then
any edge of C could be omitted from G, and the resulting graph would still be
connected. In other words, no edge of C would be a bridge. This contradiction
proves (1). �

Exercise 4.1.2 A connected graph is called unicyclic if it contains exactly
one cycle. Show that the following statements are equivalent [AndHa67]:

(1) G is unicyclic.
(2) G \ e is a tree for a suitable edge e.
(3) G is connected, and the number of vertices is the same as the number of

edges.
(4) G is connected, and the set of all edges of G which are not bridges forms

a cycle.

Exercise 4.1.3 Prove that every tree has either exactly one center or exactly
two centers; see Sect. 3.9. Discuss the relationship between the eccentricity
and the diameter of a tree.

Exercise 4.1.4 Let G be a forest with exactly 2k vertices of odd degree.
Prove that the edge set of G is the disjoint union of k paths.

Exercise 4.1.5 Let T be a tree, and suppose that the complementary graph
T is not connected. Describe the structure of T and show that these graphs
T are precisely the disconnected graphs with the maximal number of edges.
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Table 4.1 Number tn of isomorphism classes for trees on n vertices

n 4 5 6 7 8 9 10

tn 2 3 6 11 23 47 106

n 11 12 13 14 15 16 17

tn 235 551 1301 3159 7741 19320 48629

n 18 19 20 21 22 23 24

tn 123867 317955 832065 2144505 5623756 14828074 39299897

Exercise 4.1.6 Determine all isomorphism classes of trees on six vertices and
calculate the number of trees in each isomorphism class, as well as the number
of all trees on six vertices. Moreover, find the corresponding automorphism
groups.

We note that the number tn of isomorphism classes of trees on n vertices
grows very rapidly with n, a phenomenon illustrated by Table 4.1 which is
taken from [Har69]; for n = 1,2,3, trivially tn = 1. Harary also develops a
remarkable formula for the tn which is due to Otter [Ott48]; as this uses the
method of generating functions, it is beyond the scope of the present book.

We refer the reader to [CamRa91] for an interesting exposition of the
problem of checking whether or not two given rooted trees are isomorphic.
Here a rooted tree is just a tree T with a distinguished vertex r which is called
the root of T ; this terminology makes sense as T has a unique orientation so
that r indeed becomes the root of the resulting directed tree.

4.2 Incidence Matrices

In this section we consider a further matrix associated with a given digraph.
This will be used for yet another characterization of trees and for finding a
formula for the number of spanning trees of an arbitrary connected graph.

Definition 4.2.1 Let G be a digraph with vertex set V = {1, . . . , n} and
edge set E = {e1, . . . , em}. Then the n×m matrix M = (mij), where

mij =

⎧
⎨

⎩

−1 if i is the tail of ej ,
1 if i is the head of ej ,
0 otherwise,

is called the incidence matrix of G.

Of course, M depends on the labelling of the vertices and edges of G; thus
it is essentially only determined up to permutations of its rows and columns.
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For example, the digraph of Fig. 2.1 has the following incidence matrix, if we
number the vertices and edges as in Definition 2.2.1:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1 0 0 −1 0 0 0 0 1 0 0 −1
1 −1 0 0 1 0 0 0 0 0 −1 0
0 1 −1 0 0 0 0 0 0 1 0 1
0 0 1 0 0 0 −1 1 −1 0 0 0
0 0 0 1 −1 1 0 0 0 0 1 0
0 0 0 0 0 −1 1 −1 0 −1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that each column of an incidence matrix contains exactly two non-
zero entries, namely one entry 1 and one entry −1; summing the entries −1 in
row i gives dout(i), whereas summing the entries 1 yields din(i). The entries
0,1 and −1 are often considered as integers, and the matrix M is considered
as a matrix over Z, Q or R. We could also use any other ring R as long as
1 �=−1, that is, R should have characteristic �= 2.

Lemma 4.2.2 Let G be a digraph with n vertices. Then the incidence matrix
of G has rank at most n− 1.

Proof Adding all the rows of the incidence matrix gives a row for which all
entries equal 0. �

We will soon determine the precise rank of the incidence matrix. To this
end, we first characterize the forests among the class of all digraphs; of course,
a digraph G is called a forest if the undirected version |G| is a forest, as in
the special case of trees.

Theorem 4.2.3 A digraph G with incidence matrix M is a forest if and
only if the columns of M are linearly independent.

Proof We have to show that G contains a cycle if and only if the columns of
M are linearly dependent. Suppose first that

C = v0
e1

v1
e2

· · ·
ek

vk

is a cycle in G, and let s1, . . . , sk be the columns of M corresponding to the
edges e1, . . . , ek. Moreover, let xi = 1 if ei is a forward edge, and xi =−1 if
ei is a backward edge in C (for i= 1, . . . , k). Then x1s1 + · · ·+ xksk = 0.

Conversely, let the columns of M be linearly dependent. Then there are
columns s1, . . . , sk and integers x1, . . . , xk �= 0 such that x1s1+ · · ·+xksk = 0.
Let E′ be the set of edges corresponding to the columns s1, . . . , sk and V ′

the set of vertices of G incident with the edges contained in E′, and write
G′ = (V ′,E′). Note that every vertex of the associated graph |G′| has degree
at least 2. Now Exercise 1.2.5 shows that no connected component of |G′| is
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a tree. Hence all components of |G′| contain cycles, so that |G| cannot be a
forest. �

Theorem 4.2.4 Let G be a digraph with n vertices and p connected compo-
nents. Then the incidence matrix M of G has rank n− p.

Proof According to Theorem 4.2.3, the rank of M is the number of edges of
a maximal forest T contained in |G|. If p = 1, T is a tree and has exactly
n− 1 edges; thus M has rank n− 1 = n− p in this case.

Now suppose p �= 1. Then G can be partitioned into its p connected com-
ponents, that is, T is the disjoint union of p trees. Suppose that these trees
have n1, . . . , np vertices, respectively. Then the incidence matrix of G has
rank (n1 − 1) + · · ·+ (np − 1) = n− p. �

Next we want to show that the incidence matrix of a digraph has a very
special structure. We require a definition. A matrix over Z is called totally
unimodular if each square submatrix has determinant 0, 1 or −1. These ma-
trices are particularly important in combinatorial optimization; for example,
the famous theorem about integral flows in networks1 is a consequence of the
following result; see also [Law76], §4.12.

Theorem 4.2.5 Let M be the incidence matrix of a digraph G. Then M is
totally unimodular.

Proof Let M ′ be any square submatrix of M , say with k rows and columns.
We shall use induction on k. Trivially, M ′ has determinant 0, 1 or −1 if k = 1.
So let k �= 1. If M ′ contains a 0-column, detM ′ = 0. Next let us assume that
each column of M ′ contains two non-zero entries. Then the rows and columns
of M ′ define a digraph G′ with k vertices and k edges. By Theorem 1.2.7, |G′|
cannot be acyclic, so that G′ is not a forest. By Theorem 4.2.3, the columns of
M ′ are linearly dependent, and again detM ′ = 0. Finally assume that there is
a column ofM ′ with exactly one entry �= 0. We may calculate the determinant
of M ′ by expanding it with respect to such a column. Then we obtain a factor
±1 multiplied with the determinant of a square ((k− 1)× (k− 1))-submatrix
M ′′, and the assertion follows by induction. �

Corollary 4.2.6 Let G be a digraph with n vertices and n− 1 edges. Let B
be the matrix which arises from the incidence matrix M of G by deleting an
arbitrary row. If G is a tree, then detB = 1 or detB = −1, and otherwise
detB = 0.

1We will treat this result in Chap. 6. Actually we shall use a different proof which is not

based on Theorem 4.2.5.
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Proof Note that the row deleted from M is a linear combination of the re-
maining rows. By Theorem 4.2.4, B has rank n− 1 if and only if G is a tree.
Now the assertion is an immediate consequence of Theorem 4.2.5. �

Next we use the incidence matrix to determine the number of spanning
trees of a digraph G. Of course, a spanning tree of G is just a directed
subgraph T of G such that |T | is a spanning tree for |G|.

Theorem 4.2.7 (Matrix tree theorem) Let B be the matrix arising from
the incidence matrix of a digraph G by deleting an arbitrary row. Then the
number of spanning trees of G is detBBT .

Proof Let n be the number of vertices of G. For any set S of n− 1 column
indices, we denote the matrix consisting of the n−1 columns of B correspond-
ing to S by BS . Now the theorem of Cauchy and Binet (see, for instance,
[Had61]) implies

detBBT =
∑

S

detBSB
T
S =

∑

S

(detBS)
2.

By Corollary 4.2.6, detBS �= 0 if and only if the edges of G corresponding to S
form a tree; moreover, in this case, (detBS)

2 = 1. This proves the assertion. �

Theorem 4.2.7 is contained implicitly in [Kirh47]. Not surprisingly, this
result may also be used to determine the number of spanning trees of a graph
G by considering the incidence matrix of any orientation of G. We need the
following simple lemma; then the desired result is an immediate consequence
of this lemma and Theorem 4.2.7.

Lemma 4.2.8 Let A be the adjacency matrix of a graph G and M the in-
cidence matrix of an arbitrary orientation H of G, where the same ordering
(v1, . . . , vn) of the vertices is used for numbering the rows and columns of both
matrices. Then MMT = diag(deg v1, . . . ,deg vn)−A.

Proof The (i, j)-entry of MMT is the inner product of the i-th and the j-th
row of M . For i �= j, this entry is −1 if ij or ji is an edge ofH and 0 otherwise.
For i= j, we get the degree deg vi. �

Theorem 4.2.9 Let A be the adjacency matrix of a graph G with respect to
the ordering (v1, . . . , vn) of the vertices, and put

A′ =−A+diag(deg v1, . . . ,deg vn).

Then the number of spanning trees of G is the common value of all minors
of A′ which arise by deleting a row and the corresponding column from A′.
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In Sect. 4.8, we will give a different proof for Theorem 4.2.9 which avoids
using the theorem of Cauchy and Binet. The matrix A′ is called the degree
matrix or the Laplacian matrix of G. As an example, let us consider the case
of complete graphs and thus give a third proof for Corollary 1.2.11.

Example 4.2.10 In Corollary 1.2.11, we have encountered a formula for the
number Tn of all trees on n vertices; note that Tn counts the different trees,
not the isomorphism classes of trees. Subsequently, we presented a construc-
tive proof for this result using the Prüfer code. We now use Theorem 4.2.9
to give a third proof. Obviously, the degree matrix of Kn is A′ = nI − J ,
where J is the n× n matrix with all entries equal to 1. By Theorem 4.2.9,
the number of trees on n vertices is the value of a minor of A′, that is

Tn =

∣
∣
∣
∣
∣
∣
∣
∣

n− 1 −1 . . . −1
−1 n− 1 . . . −1
. . . . . . . . . . . .
−1 −1 . . . n− 1

∣
∣
∣
∣
∣
∣
∣
∣

,

where the determinant has size (n− 1)× (n− 1). Using elementary row and
column transformations, this determinant is easily evaluated as follows:

Tn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

n− 1 −n −n . . . −n
−1 n 0 . . . 0
−1 0 n . . . 0
. . . . . . . . . . . . . . .
−1 0 0 . . . n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 . . . 0
−1 n 0 . . . 0
−1 0 n . . . 0
. . . . . . . . . . . . . . .
−1 0 0 . . . n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= nn−2.

The following exercise concerns a similar application of the matrix tree
theorem; see [FieSe58]. A simple direct proof can be found in [Abu90] where
this result is also used to give yet another proof for Corollary 1.2.11.

Exercise 4.2.11 Use Theorem 4.2.9 to show that the number of spanning
trees of the complete bipartite graph Km,n is mn−1nm−1.

Note that we can also define incidence matrices for graphs: the matrix M
has entry mij = 1 if vertex i is incident with edge ej , and mij = 0 otherwise.
But the statements analogous to Lemma 4.2.2 and Theorem 4.2.3 do not hold;
for example, the three columns of a cycle of length 3 are linearly independent
over Z. However, the situation changes if we consider the incidence matrix
M as a matrix over Z2.

Exercise 4.2.12 Prove the analogues of Lemma 4.2.2 through Theorem 4.2.4
for graphs, where M is considered as a binary matrix.

The incidence matrix M of a graph—considered as a matrix over the
integers—is not unimodular in general, as the following exercise shows. More-
over, it provides a further important characterization of bipartite graphs.
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Exercise 4.2.13 Let G be a graph with incidence matrix M . Show that G
is bipartite if and only if M is totally unimodular as a matrix over Z.

Hint: The proof that unimodularity of M is necessary is similar to the
proof of Theorem 4.2.5. The converse can be proved indirectly.

Exercise 4.2.14 Let e be an edge of Kn. Determine the number of spanning
trees of Kn \ e.

Exercise 4.2.15 Let G be a forest with n vertices and m edges. How many
connected components does G have?

The final exercise of this section is a somewhat more demanding applica-
tion of Theorem 4.2.9.

Exercise 4.2.16 Let F be a perfect matching of G =K2n. Determine the
number of spanning trees of G \ F .

Hint: A direct evaluation of the appropriate determinant is rather unpleas-
ant. A more elegant argument can be given by determining the eigenvalues
for the matrix in question, that is, by finding a suitable set of linearly inde-
pendent eigenvectors. Most of these are in fact rather obvious, only the final
two eigenvectors are more difficult to find.

Sometimes, a list of all spanning trees of a given graph is needed, or an
arbitrary choice of some spanning tree of G (a random spanning tree). These
tasks are treated in [ColDN89]; in particular, it is shown that the latter
problem can be solved with complexity O(|V |3).

4.3 Minimal Spanning Trees

In this section, we consider spanning forests in networks. Thus let (G,w) be
a network. For any subset T of the edge set of G, we define the weight of T
by

w(T ) =
∑

e∈T

w(e).

A spanning forest of G is called a minimal spanning forest if its weight is min-
imal among all the weights of spanning forests; similarly, a minimal spanning
tree has minimal weight among spanning trees. We restrict ourselves to span-
ning trees; the general case can be treated by considering a minimal spanning
tree for each connected component of G. Thus, we now assume G to be con-
nected.

Minimal spanning trees were first considered by Boruvka [Bor26a, Bor26b].
Shortly after 1920, electricity was to be supplied to the rural area of Southern
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Moravia; the problem of finding as economical a solution as possible for the
proposed network was presented to Boruvka. He found an algorithm for con-
structing a minimal spanning tree and published it in the two papers cited
above. We will present his algorithm in the next section. Boruvka’s papers
were overlooked for a long time; often the solution of the minimal spanning
tree problem is attributed to Kruskal and Prim [Kru56, Pri57], although both
of them quote Boruvka; see the interesting article [GraHe85] for a history of
this problem. There one also finds references to various applications reaching
from the obvious examples of constructing traffic or communication networks
to more remote ones in classification problems, automatic speech recognition,
image processing, etc.

As the orientation of edges is insignificant when looking at spanning trees,
we may assume that G is a graph. If the weight function w should be constant,
every spanning tree is minimal; then such a tree can be found with complex-
ity O(|E|) using a BFS, as described in Sect. 3.3. For the general case, we
shall give three efficient algorithms in the next section. Corollary 1.2.11 and
Exercise 4.2.11 show that the examination of all spanning trees would be a
method having non-polynomial complexity.

But first we characterize the minimal spanning trees. Let us introduce the
following notation. Consider a spanning tree T and an edge e not contained
in T . By Lemma 4.1.1, the graph arising from T by adding e contains a unique
cycle; we denote this cycle by CT (e). The following result is of fundamental
importance.

Theorem 4.3.1 Let (G,w) be a network, where G is a connected graph.
A spanning tree T of G is minimal if and only if the following condition
holds for each edge e in G \ T :

w(e)≥w(f) for every edge f in CT (e). (4.1)

Proof First suppose that T is minimal. If (4.1) is not satisfied, there is an
edge e in G\T and an edge f in CT (e) with w(e)<w(f). Removing f from T
splits T into two connected components V1 and V2, since f is a bridge. If we
add the path CT (e)\{f} to T \{f}, the components V1 and V2 are connected
again. Hence CT (e) \ {f} has to contain an edge connecting a vertex in V1

to a vertex in V2, and this edge can only be e. Thus adding e to T \ f gives a
new spanning tree T ′. As w(e)<w(f), this tree has smaller weight than T ,
contradicting the minimality of T .

Conversely, suppose that T satisfies (4.1). We choose some minimal span-
ning tree T ′ and show w(T ) =w(T ′), so that T is minimal as well. To do so,
we use induction on the number k of edges in T ′ \ T . The case k = 0 (that
is, T = T ′) is trivial. Thus let e′ be an edge in T ′ \ T . We remove e′ from
T ′, so that T ′ splits into two connected components. Similar arguments as
before show that the path CT (e

′) \ {e′} has to contain an edge e connecting
the two components. Note that e cannot be an edge of T ′, because otherwise
T ′ \ {e′} would still be connected.
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By the first part of the proof, the minimal spanning tree T ′ satisfies con-
dition (4.1), and thus w(e)≥ w(e′). On the other hand, as T likewise satis-
fies condition (4.1), also w(e′) ≥ w(e), and hence w(e′) = w(e). This shows
w(T ′′) =w(T ′), so that T ′′ is again a minimal spanning tree. Since T ′′ has one
more edge in common with T than T ′, we conclude w(T ) = w(T ′′) = w(T ′),
using induction. �

Next we give another characterization of minimal spanning trees. To do
so, we need two definitions. Let G be a graph with vertex set V . A cut is
a partition S = {X,X ′} of V into two nonempty subsets. We denote the set
of all edges incident with one vertex in X and one vertex in X ′ by E(S)
or E(X,X ′); any such edge set is called a cocycle. We will require cocycles
constructed from trees:

Lemma 4.3.2 Let G be a connected graph and T a spanning tree of G. For
each edge e of T , there is exactly one cut ST (e) of G such that e is the only
edge which T has in common with the corresponding cocycle E(ST (e)).

Proof If we remove e from T , the tree is divided into two connected compo-
nents and we get a cut ST (e). Obviously, the corresponding cocycle contains
e, but no other edge of T . It is easy to see that this is the unique cut with
the desired property. �

Theorem 4.3.3 Let (G,w) be a network, where G is a connected graph.
A spanning tree T of G is minimal if and only if the following condition
holds for each edge e ∈ T :

w(e)≤w(f) for every edge f in E
(
ST (e)

)
. (4.2)

Proof First let T be minimal. Suppose that there is an edge e in T and an
edge f in E(ST (e)) with w(e) > w(f). Then, by removing e from T and
adding f instead, we could construct a spanning tree of smaller weight than
T , a contradiction.

Conversely, suppose that (4.2) is satisfied. We want to reduce the statement
to Theorem 4.3.1; thus we have to show that condition (4.1) is satisfied. Let
e be an edge in G \ T and f �= e an edge in CT (e). Consider the cocycle
E(ST (f)) defined by f . Obviously, e is contained in E(ST (f)); hence (4.2)
yields w(f)≤w(e). �

Exercise 4.3.4 Let (G,w) be a network, and let v be any vertex. Prove that
every minimal spanning tree has to contain an edge incident with v which
has smallest weight among all such edges.

Exercise 4.3.5 Let (G,w) be a network, and assume that all edges have dis-
tinct weights. Show that (G,w) has a unique minimal spanning tree [Bor26a].
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Exercise 4.3.6 Let (G,w) be a network. Show that all minimal spanning
trees of (G,w) have the same weight sequence [Kra07].

Hint: Review the proof of Theorem 4.3.1.

4.4 The Algorithms of Prim, Kruskal and Boruvka

In this section, we will treat three popular algorithms for determining minimal
spanning trees, all of which are based on the characterizations given in the
previous section. Let us first deal with a generic algorithm which has the
advantage of allowing a rather simple proof. The three subsequent algorithms
are special cases of this general method which is due to Prim [Pri57].

Algorithm 4.4.1 Let G= (V,E) be a connected graph with vertex set V =
{1, . . . , n} and w :E →R a weight function for G. The algorithm constructs
a minimal spanning tree T for (G,w).

Procedure MINTREE(G,w;T )

(1) for i= 1 to n do Vi ←{i}; Ti ←∅ od
(2) for k = 1 to n− 1 do
(3) choose Vi with Vi �= ∅;
(4) choose an edge e= uv with u ∈ Vi, v /∈ Vi, and w(e)≤w(e′)

for all edges e′ = u′v′ with u′ ∈ Vi, v
′ /∈ Vi;

(5) determine the index j for which v ∈ Vj ;
(6) Vi ← Vi ∪ Vj ; Vj ←∅;
(7) Ti ← Ti ∪ Tj ∪ {e}; Tj ←∅;
(8) if k = n− 1 then T ← Ti fi
(9) od

Theorem 4.4.2 Algorithm 4.4.1 determines a minimal spanning tree for the
network (G,w).

Proof We use induction on t := |T1|+ · · ·+ |Tn| to prove the following claim:

For t= 0, . . . , n− 1, there exists a minimal spanning tree T

of G containing T1, . . . , Tn.
(4.3)

For t = n− 1, this claim shows that the algorithm is correct. Clearly, (4.3)
holds at the beginning of the algorithm—before the loop (2) to (9) is executed
for the first time—since t= 0 at that point. Now suppose that (4.3) holds for
t= k−1, that is, before the loop is executed for the k-th time. Let e= uv with
u ∈ Vi be the edge which is constructed in the k-th iteration. If e is contained
in the minimal spanning tree T satisfying (4.3) for t= k− 1, there is nothing
to show. Thus we may assume e /∈ T . Then T ∪{e} contains the unique cycle
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C =CT (e); obviously, C has to contain another edge f = rs with r ∈ Vi and
s /∈ Vi. By Theorem 4.3.1, w(e)≥ w(f). On the other hand, by the choice of
e in step (4), w(e)≤w(f). Hence w(e) =w(f), and T ′ = (T ∪ {e}) \ {f} is a
minimal spanning tree of G satisfying (4.3) for t= k. �

Of course, we cannot give the precise complexity of Algorithm 4.4.1: this
depends both on the choice of the index i in step (3) and on the details of the
implementation. We now turn to the three special cases of Algorithm 4.4.1
mentioned above. All of them are derived by making steps (3) and (4) in
MINTREE precise. The first algorithm was favored by Prim and is generally
known as the algorithm of Prim, although it was already given by Jarńık
[Jar30].

Algorithm 4.4.3 Let G be a connected graph with vertex set V = {1, . . . , n}
given by adjacency lists Av , and let w :E →R be a weight function for G.

Procedure PRIM(G,w;T )

(1) g(1)← 0, S ←∅, T ←∅;
(2) for i= 2 to n do g(i)←∞ od
(3) while S �= V do
(4) choose i ∈ V \ S such that g(i) is minimal; S ← S ∪ {i};
(5) if i �= 1 then T ← T ∪ {e(i)} fi
(6) for j ∈Ai ∩ (V \ S) do
(7) if g(j)>w(ij) then g(j)←w(ij); e(j)← ij fi
(8) od
(9) od

Theorem 4.4.4 Algorithm 4.4.3 determines with complexity O(|V |2) a min-
imal spanning tree T for the network (G,w).

Proof It is easy to see that Algorithm 4.4.3 is a special case of Algorithm 4.4.1
(written a bit differently): if we always choose V1 in step (3) of MINTREE,
we get the algorithm of Prim. The function g(i) introduced here is just used
to simplify finding a shortest edge leaving V1 = S. Hence the algorithm is
correct by Theorem 4.4.2; it remains to discuss its complexity. The while-
loop is executed |V | times. During each of these iterations, the comparisons
in step (4) can be done in at most |V |− |S| steps, so that we get a complexity
of O(|V |2). As G is simple, this is also the overall complexity: in step (6),
each edge of G is examined exactly twice. �

Example 4.4.5 Let us apply Algorithm 4.4.3 to the undirected version of
the network of Fig. 3.5, where we label the edges as follows: e1 = {1,5}, e2 =
{6,8}, e3 = {1,3}, e4 = {4,5}, e5 = {4,8}, e6 = {7,8}, e7 = {6,7}, e8 = {4,7},
e9 = {2,5}, e10 = {2,4}, e11 = {2,6}, e12 = {3,6}, e13 = {5,6}, e14 = {3,8},
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Fig. 4.1 The network considered in Example 4.4.5

Table 4.2 The algorithm of Prim applied to the network in Fig. 4.1

Iteration 1: i= 1, S = {1}, T = ∅, g(2) = 28, e(2) = e15, g(5) = 1, e(5) = e1, g(3) = 2,
e(3) = e3

Iteration 2: i= 5, S = {1,5}, T = {e1}, g(2) = 8, e(2) = e9, g(4) = 5, e(4) = e4,
g(6) = 26, e(6) = e13

Iteration 3: i= 3, S = {1,5,3}, T = {e1, e3}, g(6) = 24, e(6) = e12, g(8) = 27, e(8) = e14

Iteration 4: i= 4, S = {1,5,3,4}, T = {e1, e3, e4}, g(7) = 8, e(7) = e8, g(8) = 7, e(8) = e5

Iteration 5: i= 8, S = {1,5,3,4,8}, T = {e1, e3, e4, e5}, g(6) = 1, e(6) = e2, g(7) = 7,
e(7) = e6

Iteration 6: i= 6, S = {1,5,3,4,8,6}, T = {e1, e3, e4, e5, e2}
Iteration 7: i= 7, S = {1,5,3,4,8,6,7}, T = {e1, e3, e4, e5, e2, e6}
Iteration 8: i= 2, S = {1,5,3,4,8,6,7,2}, T = {e1, e3, e4, e5, e2, e6, e9}

e15 = {1,2}. Thus the edges are ordered according to their weight. We do not
really need this ordering for the algorithm of Prim, but will use it later for the
algorithm of Kruskal. The algorithm of Prim then proceeds as summarized in
Table 4.2; the resulting minimal spanning tree is indicated by the bold edges
in Fig. 4.1.

Exercise 4.4.6 Let (G,w) be a network. The algorithm of Prim could pro-
ceed in many different ways: we might vary the start vertex (which we took
to be the vertex 1 in Algorithm 4.4.3), and we might have a choice of the
next edge to be added during an iteration (if there are edges of the same
minimal weight available). To avoid the latter problem, we simply specify
a tiebreaking rule between edges of the same wight (by putting them into a
definite order). Show that then always the same minimal spanning tree arises,
regardless of the start vertex used [Kra07]. Hint: Use a suitably perturbed
weight function and apply Exercise 4.3.5.
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Now we turn to the second special case of Algorithm 4.4.1; this is due to
Kruskal [Kru56]. We first give a somewhat vague version.

Algorithm 4.4.7 Let G= (V,E) be a connected graph with V = {1, . . . , n},
and let w :E →R be a weight function. The edges of G are ordered according
to their weight, that is, E = {e1, . . . , em} with w(e1)≤ · · · ≤w(em).

Procedure KRUSKAL(G,w;T )

(1) T ←∅;
(2) for k = 1 to m do
(3) if ek does not form a cycle together with some edges of T

then append ek to T fi
(4) od

Note that the algorithm of Kruskal is the special case of MINTREE where
Vi and e are chosen in such a way that w(e) is minimal among all edges
which are still available: that is, among all those edges which do not have
both end vertices in one of the sets Vj and would therefore create a cycle.
Again, Theorem 4.4.2 shows that the algorithm is correct. Alternatively, we
could also appeal to Theorem 4.3.1 here: in step (3), we choose the edge which
does not create a cycle with the edges already in the forest and which has
minimal weight among all edges with this property. Thus the set T of edges
constructed satisfies (4.1), proving again that T is a minimal spanning tree.

Let us consider the complexity of Algorithm 4.4.7. In order to arrange the
edges according to their weight and to remove the edge of smallest weight,
we use the data structure priority queue already described in Sect. 3.7. Then
these operations can be performed in O(|E| log |E|) steps. It is more difficult
to estimate the complexity of step (3) of the algorithm: how do we check
whether an edge creates a cycle, and how many steps does this take? Here it
helps to view the algorithm as a special case of Algorithm 4.4.1. In step (1),
we begin with a (totally) disconnected forest T on n = |V | vertices which
consists of n trees without any edges. During each iteration, an edge is added
to the forest T if and only if its two end vertices are contained in different
connected components of the forest constructed so far; these two connected
components are then joined by adding the edge to the forest T . Therefore we
may check for possible cycles by keeping a list of the connected components;
for this task, we need a data structure appropriate for treating partitions.
In particular, operations like disjoint unions (MERGE) and finding the com-
ponent containing a given element should be easy to perform. Using such
a data structure, we can write down the following more precise version of
Algorithm 4.4.7.

Algorithm 4.4.8 Let G= (V,E) be a connected graph with V = {1, . . . , n},
and let w :E →R be a weight function on G. We assume that E is given as
a list of edges.
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Procedure KRUSKAL (G,w;T )

(1) T ←∅;
(2) for i= 1 to n do Vi ←{i} od
(3) put E into a priority queue Q with priority function w;
(4) while Q �= ∅ do
(5) e := DELETEMIN(Q);
(6) find the end vertices u and v of e;
(7) find the components Vu and Vv containing u and v, respectively;
(8) if Vu �= Vv then MERGE(Vu, Vv); T ← T ∪ {e} fi
(9) od

Now it is easy to determine the complexity of the iteration. Finding and
removing the minimal edge e in the priority queue takes O(log |E|) steps.
Successively merging the original n trivial components and finding the com-
ponents in step (7) can be done with a total effort of O(n logn) steps; see
[AhoHU83], [CorLRS09] or [MehSa08]. As G is connected, G has at least n−1
edges, so that the overall complexity is O(|E| log |E|). We have established
the following result.

Theorem 4.4.9 The algorithm of Kruskal (as given in Algorithm 4.4.8) de-
termines with complexity O(|E| log |E|) a minimal spanning tree for (G,w).

For sparse graphs, this complexity is much better than the complexity of
the algorithm of Prim. In practice, the algorithm of Kruskal often contains
one further step: after each merging of components, it is checked whether
there is only one component left; in this case, T is already a tree and we may
stop the algorithm.

Example 4.4.10 Let us apply the algorithm of Kruskal to the network of
Fig. 4.1. The edges e1, e2, e3, e4, e5, e6 and e9 are chosen successively, so that
we obtain the same spanning tree as with the algorithm of Prim (although
there the edges were chosen in a different order). This has to happen here,
since our small example has only one minimal spanning tree. In general,
however, the algorithms of Prim and Kruskal will yield different minimal
spanning trees.

Exercise 4.4.11 Let (G,w) be a network, and let T be the set of all spanning
trees of (G,w). Put

W (T ) := max
{
w(e) : e ∈ T

}
for T ∈ T .

Prove that all minimal spanning trees minimize the function W over T .

Let us turn to our third and final special case of Algorithm 4.4.1; this
is due to Boruvka [Bor26a] and requires that all edge weights are distinct.
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Then we may combine several iterations of MINTREE into one larger step:
we always treat each nonempty Vi and add the shortest edge leaving Vi. We
shall give a comparatively brief description of the resulting algorithm.

Algorithm 4.4.12 Let G = (V,E) be a connected graph with V =
{1, . . . , n}, and let w : E → R be a weight function for which two distinct
edges always have distinct weights.

Procedure BORUVKA(G,w;T )

(1) for i= 1 to n do Vi ←{i} od
(2) T ←∅; M ←{V1, . . . , Vn};
(3) while |T |< n− 1 do
(4) for U ∈M do
(5) find an edge e= uv with u ∈ U , v /∈ U and w(e)<w(e′)

for all edges e′ = u′v′ with u′ ∈ U , v′ /∈ U ;
(6) find the component U ′ containing v;
(7) T ← T ∪ {e};
(8) od
(9) for U ∈M do MERGE(U,U ′) od
(10) od

Theorem 4.4.13 The algorithm of Boruvka determines a minimal spanning
tree for (G,w) in O(|E| log |V |) steps.

Proof It follows from Theorem 4.4.2 that the algorithm is correct. The con-
dition that all edge weights are distinct guarantees that no cycles are created
during an execution of the while-loop. As the number of connected compo-
nents is at least halved in each iteration, the while-loop is executed at most
log |V | times. We leave it to the reader to give a precise formulation of steps
(5) and (6) leading to the complexity of O(|E| log |V |). (Hint: For each vertex
v, we should originally have a list Ev of the edges incident with v.) �

Example 4.4.14 We apply the algorithm of Boruvka to the network shown
in Fig. 4.2. When the while-loop is executed for the first time, the edges
{1,2}, {3,6}, {4,5}, {4,7} and {7,8} (drawn bold in Fig. 4.2) are chosen
and inserted into T . That leaves only three connected components, which are
merged during the second execution of the while-loop by adding the edges
{2,5} and {1,3} (drawn bold broken in Fig. 4.2).

Exercise 4.4.15 Show that the condition that all edge weights are distinct
is necessary for the correctness of the algorithm of Boruvka.

Exercise 4.4.16 Table 4.3 gives the distances (in units of 100 miles) between
the airports of the cities London, Mexico City, New York, Paris, Peking and
Tokyo: Find a minimal spanning tree for the corresponding graph [BonMu76].
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Fig. 4.2 A network

Table 4.3 Distance table
for 6 cities L MC NY Pa Pe To

L – 56 35 2 51 60

MC 56 – 21 57 78 70

NY 35 21 – 36 68 68

Pa 2 57 36 – 51 61

Pe 51 78 68 51 – 13

To 60 70 68 61 13 –

Exercise 4.4.17 The tree graph T (G) of a connected graph G has the span-
ning trees for G as vertices; two of these trees are adjacent if they have |V |−2
edges in common. Prove that T (G) is connected. What can be said about the
subgraph of minimal spanning trees (for a given weight function w)?

The complexity of the algorithms discussed in this section can often be
improved by using appropriate data structures. Implementations for the al-
gorithms of Prim and Kruskal with complexity O(|E| log |V |) are given in
[Joh75] and [CheTa76]. Using Fibonacci heaps, the algorithm of Prim can be
implemented with complexity O(|E|+ |V | log |V |); see [AhuMO93]. Boruvka’s
algorithm (or appropriate variations) can likewise be implemented with com-
plexity O(|E| log |V |); see [Yao75] and [CheTa76]. Almost linear bounds are
in [FreTa87] and [GabGST86]; finally, an algorithm with linear complexity
was discovered by Fredman and Willard [FreWi94]; of course, this supposes
that the edges are already sorted according to their weights. Unfortunately,
the best theoretical algorithms tend to be of no practical interest because
of the large size of the implicit constants. There is a simple algorithm with
complexity O(|V |) for planar graphs; see [Mat95].
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The problem of finding a new minimal spanning tree if we change the
weight of an edge and know a minimal spanning tree for the original graph
already is discussed in [Fre85] and [Epp94]. On the average, an update may
be done in O(log |V |) steps (under suitable assumptions). Finally, it can be
verified in linear time (that is, with complexity O(|E|)) whether a given
spanning tree is minimal. A similar result holds for the sensitivity analysis of
minimal spanning trees; this is the problem how much the weight of a given
edge e can be increased without changing the minimal spanning tree already
known. For the latter two problems, see [DixRT92].

4.5 Maximal Spanning Trees

For some practical problems, it is necessary to consider maximal spanning
trees: we want to determine a spanning tree whose weight is maximal among
all spanning trees for a given network (G,w). Obviously, a spanning tree T
for (G,w) is maximal if and only if T is minimal for (G,−w). Hence we
can find a maximal spanning tree by replacing w by −w and using one of the
algorithms of Sect. 4.4. Alternatively, we could also stay with w and adapt the
algorithms of Prim, Kruskal and Boruvka accordingly: for instance, we need
to replace minimum by maximum, < by > etc. In particular, in Kruskal’s
Algorithm, we then have to order the edges according to decreasing weight.

Let us describe some situations where maximal spanning trees occur. Our
first example is taken from [Chr75].

Example 4.5.1 Consider the problem of sending confidential information to n
persons. We define a graph G with n vertices corresponding to the n persons;
two vertices i and j are adjacent if it is possible to send information directly
from i to j. For each edge ij, let pij denote the probability that the informa-
tion sent is overheard; we suppose that these probabilities are independent
of each other. Now we replace pij by qij = 1− pij , that is, by the probability
that the information is sent without being overheard. In order to send the
information to all n persons, we are looking for a spanning subgraph of G
for which the product of the qij (over the edges occurring in the subgraph)
is maximal. Replacing qij by w(ij) = log qij , we have reduced our problem to
finding a spanning tree of maximal weight.

Problem 4.5.2 (Network reliability problem) Let us consider the vertices in
Example 4.5.1 as the nodes of a communication network, and let us interpret
pij as the probability that the connection between i and j fails. Then a max-
imal spanning tree is a tree which maximizes the probability for undisturbed
communication between all nodes of the network. This interpretation—and
its algorithmic solution—is already contained in [Pri57].
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Problem 4.5.3 (Bottleneck problem) Let (G,w) be a network, where G is
a connected graph, and let

W = v0
e1

v1
e2

v2 · · ·
en

vn,

be any path. Then c(W ) = min {w(ei) : i = 1, . . . , n} is called the capacity
or the inf-section of W . (We may think of the cross-section of a tube in a
supply network or the capacity of a road.) For each pair (u, v) of vertices of
G, we want to determine a path from u to v with maximal capacity.

The following theorem due to Hu [Hu61] reduces Problem 4.5.3 to finding a
maximal spanning tree. Thus the algorithms of Prim, Kruskal, and Boruvka—
modified for determining maximal spanning trees—can be used to solve the
bottleneck problem.

Theorem 4.5.4 Let (G,w) be a network on a connected graph G, and let T
be a maximal spanning tree for G. Then, for each pair (u, v) of vertices, the
unique path from u to v in T is a path of maximal capacity in G.

Proof Let W be the path from u to v in T , and e some edge of W with
c(W ) = c(e). Suppose there exists a path W ′ in G having start vertex u and
end vertex v such that c(W ′) > c(W ). Let ST (e) be the cut of G defined
in Lemma 4.3.2 and E(ST (e)) the corresponding cocycle. As u and v are in
different connected components of T \ e, the path W ′ has to contain some
edge f of E(ST (e)). As c(W

′)> c(W ), we must have w(f)>w(e). But then
(T ∪ {f}) \ {e} would be a tree of larger weight than T . �

Exercise 4.5.5 Determine a maximal spanning tree and the maximal ca-
pacities for the network of Fig. 4.1.

Exercise 4.5.6 Prove the following converse of Theorem 4.5.4. Let T be a
spanning tree and assume that, for any two vertices u and v, the unique path
from u to v in T is a path of maximal capacity in the network (G,w). Then
T is a maximal spanning tree for (G,w).

The following problem is closely related to the bottleneck problem.

Problem 4.5.7 (Most uniform spanning tree) Let G be a connected graph
and w : E → R a weight function for G. We ask for a spanning tree T for
which the difference between the largest and the smallest edge weights is
minimal. This problem can be solved using a modification of the algorithm
of Kruskal with complexity O(|V ||E|); using a more elaborate data structure,
one may even achieve a complexity of O(|E| log |V |). We refer the reader to
[CamMMT85] and [GalSc88].
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We remark that analogous problems for digraphs are also of interest. For
example, given a digraph having a root, we might want to determine a di-
rected spanning tree of minimal (or maximal) weight. We will return to this
problem briefly in Sect. 4.8.

Exercise 4.5.8 Show that a directed spanning tree of maximal weight in a
network (G,w) on a digraph G does not necessarily contain paths of maximal
capacity (from the root to all other vertices).

4.6 Steiner Trees

Assume that we are faced with the problem of connecting n points in the
Euclidean plane by a network of minimal total length; for a concrete example
we may think of connecting n cities by a telephone network. Of course, we
might just view the given points as the vertices of a complete graph and
determine a minimal spanning tree with respect to the Euclidean distance.
However, Example 3.2.4 suggests that it should be possible to do better if
we are willing to add some new vertices—in our concrete example, we might
introduce some switch stations not located in any of the n cities. A plane
tree which is allowed to contain—in addition to the n given vertices—an
arbitrary number of further vertices, the so-called Steiner points, is called
a Steiner tree. The Euclidean Steiner problem (called the geometric Steiner
tree problem in [GarJo76]) is the problem of finding a minimal Steiner tree
for the given n vertices.2

In the last century Jacob Steiner, among others, studied this problem,
which accounts for its name. Actually, the Steiner tree problem for n = 3
goes back to Fermat.3 A fundamental paper on Steiner trees is due to Gilbert
and Pollak [GilPo68]; these authors suggested the problem of finding a lower
bound ρ for the ratio between the total length of a minimal Steiner tree
and the total length of a minimal spanning tree for a given set of vertices.
They were able to show ρ≥ 1

2
—a result we will prove in Theorem 15.4.9—

and suggested the Steiner ratio conjecture: ρ≥
√
3/2. This bound is optimal,

as can be seen rather easily by considering an equilateral triangle; it was
finally shown to be correct by Du and Hwang [DuHw90a, DuHw90b]. Thus
a minimal Steiner tree for a given set of n vertices is at most (roughly) 14 %

2Beware: some authors use the term Steiner tree for what we call a minimal Steiner tree.

As an exercise, the reader might try to settle the geometric Steiner tree problem for the

vertices of a unit square: here one gets two Steiner points, and the minimal Steiner tree

has length 1 +
√
3. See [Cox61], Sect. 1.8, or [CouRo41], p. 392.

3Here is an exercise for those who remember their high school geometry. Prove that the

Fermat point of a triangle in which no angle exceeds 120◦ is the unique point from which

the three sides each subtend a 120◦ angle. See, for example, [Cox61], Sect. 1.8.
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better than a minimal spanning tree. We note that minimal Steiner trees are
difficult to determine: the Euclidean Steiner tree problem is NP-complete, see
[GarGJ77]. In contrast, it is easy to find minimal spanning trees. For practical
applications, one will therefore be satisfied with minimal spanning trees or
with better, but not necessarily minimal, Steiner trees. A relatively good
algorithm for determining minimal Steiner trees can be found in [TriHw90];
heuristics for finding good Steiner trees are in [DuZh92].

The Steiner problem has also been studied extensively for other metric
spaces. In this section, we consider a graph theoretic version, the Steiner
network problem. Here one is given a network (G,w) with a positive weight
function w, where the vertex set V of G is the disjoint union of two sets
R and S. Now a minimal Steiner tree is a minimal spanning tree T for an
induced subgraph whose vertex set has the form R ∪ S′ with S′ ⊂ S. The
vertices in S′ are again called Steiner points.

Note that the Steiner network problem is a common generalization of two
problems for which we have already found efficient solutions: the case S = ∅
is the problem of determining a minimal spanning tree; and for |R|= 2, the
problem consists of finding a shortest path between the two given vertices.
Nevertheless, the general Steiner network problem is NP-hard, a result due
to [Kar72]. [Law76] gave an algorithm whose complexity is polynomial in
the cardinality s of S but exponential in the cardinality r of R. Before pre-
senting this algorithm, we prove a further result due to [GilPo68]: one needs
only a relatively small number of Steiner points, provided that we are in the
metric case, where G is complete and w satisfies the triangle inequality (met-
ric Steiner network problem). Then we will show how to reduce the general
Steiner network problem to the metric case.

Lemma 4.6.1 Let G = (V,E) be a complete graph whose vertex set is the
disjoint union V =R

.
∪ S of two subsets. Moreover, let w be a positive weight

function on E satisfying the triangle inequality. Then there is a minimal
Steiner tree for the network (G,w) which contains at most |R| − 2 Steiner
points.

Proof Write r = |R|, and let T be a minimal Steiner tree for (G,w) with
exactly p Steiner points. Let us denote the average degree of a vertex of R in
T by x; similarly, y denotes the average degree of a vertex of S′ in T . Then
the number of all edges in T satisfies

r+ p− 1 =
rx+ py

2
.

Trivially, x ≥ 1. As w satisfies the triangle inequality, we may assume that
any Steiner point in T is incident with at least three edges, hence y ≥ 3. This
gives r+ p− 1≥ (r+ 3p)/2; that is, p≤ r− 2. �

Lemma 4.6.2 Let G = (V,E) be a graph whose vertex set is the disjoint
union V =R

.
∪ S of two subsets. Moreover, let w be a positive weight function
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on E and d the distance function in the network (G,w). Then the weight of
a minimal Steiner tree for the network (KV , d) is the same as the weight of
a minimal Steiner tree for the original network (G,w).

Proof First let T be any Steiner tree for (G,w). Since each edge e= uv of T
has weight w(uv)≥ d(u, v), the minimal weight of a Steiner tree for (KV , d)
is at most w(T ). Now let us replace each edge uv in a minimal Steiner tree T ′

for (KV , d) by the edges of a shortest path from u to v in G. We claim that
this yields a Steiner tree T ′′ of the same weight for (G,w), which will prove
the assertion. To justify our claim, we just note that no edge can occur twice
and that there cannot be a cycle after replacing the edges, because otherwise
we could obtain a Steiner tree from T ′′ by discarding superfluous edges. As
we would have to discard at least one edge, this would give an upper bound
<w(T ′) for the weight of a minimal Steiner tree for (KV , d) by the first part
of our argument, contradicting the minimality of T ′. �

Algorithm 4.6.3 Let G = (V,E) be a connected graph with a positive
weight function w :E →R, where the vertex set V = {1, . . . , n} is the disjoint
union V = R

.
∪ S of two subsets. Write |R|= r. The algorithm constructs a

minimal Steiner tree T for R in (G,w).

Procedure STEINER(G,R,w;T )

(1) W ←∞; T ←∅; H ←Kn;
(2) FLOYD(G,w;d, p);
(3) for i= 1 to r− 2 do
(4) for S′ ⊂ S with |S′|= i do
(5) PRIM(H|(R ∪ S′), d;T ′, z);
(6) if z <W then W ← z; T ← T ′ fi
(7) od
(8) od
(9) for e= uv ∈ T do

(10) if e /∈E or w(e)> d(u, v)
(11) then replace e in T by the edges of a shortest path from

u to v in G
(12) fi
(13) od

Here FLOYD is a modified version of the procedure given in Sect. 3.9 which
uses a function p (giving the predecessor as in Algorithm 3.10.1) to deter-
mine not only the distance between two vertices, but a shortest path as well.
We need this shortest path in step (11). Similarly, the procedure PRIM is
modified in an obvious way to compute not only a minimal spanning tree,
but also its weight.
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Theorem 4.6.4 Algorithm 4.6.3 constructs a minimal Steiner tree for
(G,R;w) with complexity O(|V |3 + 2|S||R|2).

Proof In view of Lemma 4.6.1, Lemma 4.6.2 and its proof, and the correctness
of the procedures FLOYD and PRIM, Algorithm 4.6.3 is correct. The pro-
cedure FLOYD called in step (2) has complexity O(|V |3) by Theorem 3.9.2.
Each call of the procedure PRIM in step (5) has complexity O(|R|2) by
Theorem 4.4.4; note here that PRIM is applied to O(|R|) vertices only, by
Lemma 4.6.1. The number of times PRIM is called is obviously

r−2∑

i=0

(
|S|
i

)

≤ 2|S|.

This establishes the desired complexity bound. �

In particular, Theorem 4.6.4 shows that Algorithm 4.6.3 is polynomial
in |V | for fixed s. However, the estimate for the complexity given in the
proof of Theorem 4.6.4 is rather bad if we assume r to be fixed; in that case
the number of calls of PRIM should better be estimated as about |V |r−2.
Thus Algorithm 4.6.3 is polynomial for fixed r as well. Altogether, we have
proved the following result which generalizes the fact that the Steiner network
problem can be solved efficiently for the cases r = 2 and s= 0, as noted above.

Corollary 4.6.5 For fixed r or for fixed s the Steiner network problem can
be solved with polynomial complexity.

We conclude this section with some recommendations for further reading.
A version of the Steiner network problem for digraphs is considered in the
survey [Mac87], and an extensive exposition of the various Steiner problems
can be found in the book [HwaRW92]; more recent books on the subject
are [Cie98, Cie01] and [ProSt02]; there is also an interesting collection of ar-
ticles [DuSR00]. Steiner trees have important applications in VLSI layout;
see [KorPS90], [Len90], or [Mar92]. In this context, one is particularly inter-
ested in good heuristics; for this topic, we refer to [Vos92], [DuZh92], and
[BerRa94]. As this by no means exhaustive collection of references shows,
Steiner trees constitute a large and very active area of research.

4.7 Spanning Trees with Restrictions

In reality, most of the problems one encounters cannot be solved by determin-
ing just any (minimal) spanning tree; usually, the solution will have to satisfy
some further restrictions. Unfortunately, this often leads to much harder—
quite often even to NP-hard—problems. In this section, we state some of
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these problems without discussing any possible strategies for solving them
(like heuristics); this will be done in Chap. 15 for the TSP as a prototypical
example. Even if there is no weight function given, certain restrictions can
make the task of finding an appropriate spanning tree NP-hard. The following
five problems are all NP-complete; see [GarJo79].

Problem 4.7.1 (Degree constrained spanning tree) Let G be a connected
graph and k a positive integer. Is there a spanning tree T for G with maximal
degree Δ≤ k?

Problem 4.7.2 (Maximum leaf spanning tree) Let G be a connected graph
and k a positive integer. Is there a spanning tree for G having at least k
leaves?

Problem 4.7.3 (Minimum leaf spanning tree) Let G be a connected graph
and k a positive integer. Is there a spanning tree for G having at most k
leaves?

Problem 4.7.4 (Isomorphic spanning tree) Let G be a connected graph
and T a tree (both defined on n vertices, say). Does G have a spanning tree
isomorphic to T ?

Problem 4.7.5 (Shortest total path length spanning tree) Let G be a con-
nected graph and k a positive integer. Is there a spanning tree T such that
the sum of all distances d(u, v) over all pairs of vertices {u, v} is ≤ k?

Four of the preceding five problems reduce easily to results already ob-
tained in this book, and so we will include their proofs.

Theorem 4.7.6 Problems 4.7.1 through 4.7.4 are NP-complete.

Proof Problems 4.7.1, 4.7.3 and 4.7.4 all contain the Hamiltonian path prob-
lem HP as a special case. To see this, just note that a spanning tree T is a
Hamiltonian path if and only if one (and then all) of the following conditions
holds:

• All vertices have degree 1 or 2 in T .
• T has exactly two leaves.
• T is a path.

Hence these three problems are indeed NP-complete by Exercise 2.7.7.
Finally, Problem 4.7.2 can be reduced to the connected dominating set

problem CDS, which is NP-complete by Exercise 2.8.7. Thus let G= (V,E)
be a given graph. It suffices to show that G has a connected dominating set
of size at most k if and only if G has a spanning tree with at least |V | − k
leaves.
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First let D be a connected dominating set of G with size at most k. As
G|D is connected, this induced subgraph has a spanning tree TD . We extend
TD to a spanning tree T of G as follows. By definition, any vertex u /∈D has
a neighbour v ∈D; we add the corresponding edge eu = uv to TU . Doing so
for all u /∈D results in a spanning tree T for G, and all these vertices u are
leaves of T by construction. Thus G indeed has a spanning tree with at least
|V | − k leaves.

Conversely, let T be a spanning tree for G with at least |V | − k leaves. We
choose D as the set of all vertices which are not leaves of T , so that |D| ≤ k.
Also, D is a dominating set, as each leaf of T is adjacent to a non-leaf, since
we may assume that G has at least three vertices. Obviously, TD is a spanning
tree for G|D, so that D is indeed a connected dominating set. �

We can neither expect to solve such problems efficiently by some algo-
rithm nor to find a nice formula for the value in question—for example, for
the maximal number of leaves which a spanning tree of G might have. Never-
theless, it is often still possible to obtain interesting partial results, such as,
for example, lower or upper bounds for the respective value. We illustrate this
for Problem 4.7.2 and quote a result due to Kleitman and West [KleWe91]
which shows that a connected graph with large minimal degree has to contain
a spanning tree with many leaves.

Result 4.7.7 Let l(n,k) be the largest positive integer m such that each
connected graph with n vertices and minimal degree k contains a spanning
tree with at least m leaves. Then

(1) l(n,k)≤ n− 3 n
�k−1� + 2;

(2) l(n,3)≥ n
4 + 2;

(3) l(n,4)≥ 2n+8
5 ;

(4) l(n,k) ≥ n(1− b lnk
k ) for sufficiently large k, where b is a constant with

b≥ 5
2 .

We will not include the relatively long (though not really difficult) proof
and refer the reader to the original paper instead. The proof given in
[KleWe91] consists of an explicit construction of a spanning tree with the
desired number of leaves, and thus also implies an efficient algorithm for ap-
proximating a solution to the optimisation version of Problem 4.7.2, that is,
to the problem of finding a spanning tree with the maximal number of leaves.
We shall consider approximation algorithms for hard problems in Chap. 14,
using the specific paradigm of the TSP.

We remark that the maximum leaf spanning tree problem remains NP-
complete even if we restrict our attention to cubic graphs, that is, to regular
graphs of degree 3; this result is due to Lemke [Lem88]. A recent paper of
Bonsma and Zickfeld [BonZi11] contains an efficient approximation algorithm
which always yields a spanning tree with at least two thirds as many leaves
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as an optimal solution. Their algorithm uses connected dominating sets and
also yields an efficient approximation algorithm for the minimum connected
dominating set problem in cubic graphs.

Let us now turn to some weighted problems with restrictions.

Problem 4.7.8 (Bounded diameter spanning tree) Let G be a connected
graph with a weight function w :E →N, and let d and k be two positive inte-
gers. Does G contain a spanning tree T with weight w(T )≤ k and diameter
at most d?

According to [GarJo79], this problem is NP-complete. Hence it is NP-hard
to find among all minimal spanning trees one having the smallest possible
diameter. This remains true even if the weight function is restricted to the
values 1 and 2 only; however, it is easy to solve the case where all weights
are equal.

Exercise 4.7.9 Give a polynomial algorithm for determining a spanning tree
whose diameter is at most 1 larger than the smallest possible diameter. Hint:
Look at Theorem 3.9.8 and Exercise 4.1.3.

A variation of Problem 4.7.8 was studied in [HoLC91]: one asks for a
spanning tree satisfying w(T ) ≤ k and d(u, v) ≤ d for all u, v ∈ V , where
d(u, v) is the distance in the network (G,w). This variation is NP-complete
as well. However, in a Euclidean graph (that is, the vertices are points in a
space R

m and the weights w(u, v) are given by the Euclidean distance), it
is possible to find a spanning tree such that the maximum of the d(u, v) is
minimal with complexity O(|V |3).

Problem 4.7.10 (Minimal cost reliability ratio spanning tree) Let G be
a connected graph with both a weight function w : E → N and a reliability
function r :E → (0,1]; we interpret r(e) as the probability that edge e works,
and w(e) as the cost of using e. Now let T be a spanning tree. As usual,
w(T ) is the sum of all w(e) with e ∈ T , whereas r(T ) is defined to be the
product of the r(e) for e ∈ T . Thus w(T ) is the total cost of T , and r(T ) is
the probability that no edge in the tree fails; see Problem 4.5.2. We require
a spanning tree T for which the ratio w(T )/r(T ) is minimal.

Problem 4.7.10 is one of the few restricted problems for which a polynomial
algorithm is known: if we count all arithmetic operations as one step each, it
can be solved in O(|E|5/2 log log |V |) steps;4 see [ChaAN81] and [ChaTa84].

Our final example involves two functions on E as well. But this time,
the two functions are coupled non-linearly, and our goal is to minimize the
resulting function.

4As some of the arithmetic operations concerned are exponentiations, this estimate of the
complexity might be considered a little optimistic.



4.7 Spanning Trees with Restrictions 129

Problem 4.7.11 (Optimum communication spanning tree) Let G be a

connected graph with a weight function w:E → N0 and a request function

r :
(
V
2

)
→N0, and let k be a positive integer. Denote the distance function in

the network (T,w) by d; thus d(u, v) is the sum of the weights w(e) of all

edges occurring in the unique path from u to v in T . Does G have a spanning

tree T satisfying

∑

{u,v}∈(V2)

d(u, v)× r(u, v)≤ k?

In practice, d(u, v) signifies the cost of the path from u to v, and r(u, v) is the

capacity we require for communication between u and v—for example, the

number of telephone lines needed between cities u and v. Then the product

d(u, v)r(u, v) is the cost of communication between u and v, and we want to

minimize the total cost.

Problem 4.7.11 is NP-complete even if the request is the same for all edges

(optimum distance spanning tree); see [JohLR78]. However, the special case

where all weights are equal can be solved in polynomial time; see [Hu74] for an

algorithm of complexity O(|V |4). But even this special case of Problem 4.7.11

(optimum requirement spanning tree) is much more difficult to solve than the

problem of determining a minimal spanning tree, and the solution is found by

a completely different method. We shall return to this problem in Sect. 12.4.

The general problem of finding spanning trees which are optimal with

respect to several functions is discussed in [HamRu94].

We conclude this section with another difficult variation on the MST prob-

lem, where we want to span not the entire graph, but only a given number

of vertices:

Problem 4.7.12 (k-minimal spanning tree problem) Let G be a connected

graph with a non-negative weight function w :E →R, and let k be a positive

integer. Find a sub-tree T of G with minimal weight such that T spans at

least (or exactly) k vertices.

Some authors prefer to work with the rooted version of Problem 4.7.12,

where one also prescribes a special vertex r which must be included in the

solution; we can then think of the admissible trees as rooted at r. Clearly,

the unrooted version above can be reduced to the rooted one by simply

considering the rooted case for every possible choice of r.

Problem 4.7.12 is NP-hard by a result of Fischetti et al. [FisHJM94], even

for points in the Euclidean plane. However, there are good approximation

algorithms available; see [AroKa06] and the references given there.



130 4 Spanning Trees

4.8 Arborescences and Directed Euler Tours

In this section, we treat the analogue of Theorem 4.2.9 for the directed case
and give an application to directed Euler tours. We begin with a simple
characterization of arborescences which we used in Sect. 3.5 already.

Lemma 4.8.1 Let G be an orientation of a connected graph. Then G is a
spanning arborescence with root r if and only if

din(v) = 1 for all v �= r and din(r) = 0. (4.4)

Proof Condition (4.4) is clearly necessary. Thus assume that (4.4) holds.
Then G has exactly |V | − 1 edges. As |G| is connected by hypothesis, it is a
tree by Theorem 1.2.8. Now let v be an arbitrary vertex. Then there is a path
W in G from r to v; actually, W is a directed path, as otherwise din(r)≥ 1
or din(u)≥ 2 for some vertex u �= r on W . Thus r is indeed a root for G. �

In analogy to the degree matrix of a graph, we now introduce the in-
degree matrix D = (dij)i,j=1,...,n for a digraph G = (V,E) with vertex set
V = {1, . . . , n}, where

dij =

⎧
⎨

⎩

din(i) for i= j,
−1 for ij ∈E,
0 otherwise.

We denote the submatrix of D obtained by deleting the i-th row and the
i-th column by Di. The following analogue of Theorem 4.2.9 is due to Tutte
[Tut48].

Theorem 4.8.2 Let G= (V,E) be a digraph with indegree matrix D. Then
the r-th minor detDr is equal to the number of spanning arborescences of G
with root r.

Proof We may assume r = 1. Note that it is not necessary to consider edges
with head 1 if we want to construct spanning arborescences with root 1, and
that the entries in the first column of D do not occur in the minor detD1.
Thus we may make the following assumption which simplifies the remainder
of the proof considerably: G contains no edges with head 1, and hence the
first column of D is the vector having all entries 0. If there should be a vertex
i �= 1 with din(i) = 0, G cannot have any spanning arborescence. On the other
hand, the i-th column of D then has all entries equal to 0, so that detD1 = 0.
Thus our assertion is correct for this case, and we may from now on assume
that the condition

din(i)≥ 1 for each vertex i �= 1 (4.5)



4.8 Arborescences and Directed Euler Tours 131

holds. We use induction on m := din(2) + · · ·+ din(n); note m= |E|, because
of our assumption din(1) = 0. The more difficult part of the induction here
is the induction basis, that is, the case m= n− 1. We have to verify that G
is an arborescence (with root 1) if and only if detD1 = 1. First let G be an
arborescence; then condition (4.4) holds for r = 1. As G is acyclic, G has a
topological sorting by Theorem 2.6.3. After a suitable permutation, we may
assume i < j for all edges ij in E. (Note that we have to apply the same
permutation to both the rows and columns of D, so that no sign change will
occur for the determinant.) Then the matrix D becomes an upper triangular
matrix with diagonal (0,1, . . . ,1) and detD1 = 1.

Conversely, suppose detD1 �= 0; we have to show that G is an arborescence
(and therefore, actually detD1 = 1). It follows from condition (4.5) and m=
n− 1 that din(i) = 1 for i= 2, . . . , n. Thus G satisfies condition (4.4), and by
Lemma 4.8.1 it suffices to show that |G| is connected. In view of Theorem
1.2.8, we may check instead that |G| is acyclic. By way of contradiction,
suppose that |G| contains a cycle, say

C : i1 i2 · · · ik i1.

Let us consider the submatrix U of D1 which consists of the columns corre-
sponding to i1, . . . , ik. As each of the vertices i1, . . . , ik has indegree 1, U can
have entries �= 0 only in the rows corresponding to i1, . . . , ik. Moreover, the
sum of all columns of U is the zero vector, so that U has rank ≤ k− 1. Thus
the columns of U , and hence also the columns of D1, are linearly dependent;
but this implies detD1 = 0, contradicting our hypothesis. Hence the assertion
holds for m= n− 1.

Now let m≥ n. In this case, there has to be a vertex with indegree ≥ 2,
say

din(n) = c≥ 2. (4.6)

For each edge e of the form e= jn, let D(e) denote the matrix obtained by
replacing the last column of D by the vector ve =−ej + en, where ek is the
k-th unit vector; thus ve has entry −1 in row j, entry 1 in row n, and all other
entries 0. Then D(e) is the indegree matrix for the graph G(e) which arises
from G by deleting all edges with head n except for e. Because of (4.6), G(e)
has at most m− 1 edges; hence the induction hypothesis guarantees that the
minor detD(e)1 equals the number of spanning arborescences of G(e) with
root 1. Obviously, this is the number of spanning arborescences of G which
have root 1 and contain the edge e. Therefore the number of all spanning
arborescences of G with root 1 is the sum

detD(e1)1 + · · ·+detD(ec)1,

where e1, . . . , ec are the c edges of G with head n. On the other hand, the last
column of D is the sum ve1 + · · ·+vec of the last columns of D(e1), . . . ,D(ec).
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Thus the multilinearity of the determinant implies

detD1 = detD(e1)1 + · · ·+detD(ec)1,

and the assertion follows. �

Theorem 4.8.2 can be used to obtain an alternative proof for Theo-
rem 4.2.9. Even though this proof is not shorter than the proof given in
Sect. 4.2, it has the advantage of avoiding the use of the theorem of Cauchy
and Binet (which is not all that well-known).

Corollary 4.8.3 Let H = (V,E) be a graph with adjacency matrix A and
degree matrix D = diag(deg 1, . . . ,degn)− A. Then the number of spanning
trees of H is the common value of all minors detDr of D.

Proof Let G be the complete orientation of H . Then there is a one-to-one
correspondence between the spanning trees of H and the spanning arbores-
cences of G with root r. Moreover, the degree matrix D of H coincides with
the indegree matrix of G. Thus the assertion follows from Theorem 4.8.2. �

Now let G be a directed Eulerian graph; then G is a connected pseudo-
symmetric digraph by Theorem 1.6.1. The following theorem of de Bruijn and
van Aardenne-Ehrenfest [deBA51] gives a connection between the spanning
arborescences and the directed Euler tours of G.

Theorem 4.8.4 Let G= (V,E) be an Eulerian digraph. For i= 1, . . . , n, let
ai denote the number of spanning arborescences of G with root i. Then the
number eG of directed Euler tours of G is given by

eG = ai ×
n∏

j=1

(
din(j)− 1

)
!, (4.7)

where i may be chosen arbitrarily.

Sketch of proof Let A be a spanning arborescence of G with root i. For each
vertex j �= i, let ej denote the unique edge in A with head j, and choose ei
as a fixed edge with head i. Now we construct a cycle C in G by the method
described in the algorithm of Hierholzer, using all edges backward (so that
we get a directed cycle by reversing the order of the edges in C). That is,
we leave vertex i using edge ei; and, for each vertex j which we reach by
using an edge with tail j, we use—as long as this is possible—some edge
with head j not yet used to leave j again. In contrast to the algorithm of
Hierholzer, we choose ej for leaving j only after all other edges with head j
have been used already. It can be seen as usual that the construction can only
terminate at the start vertex i, since G is pseudo-symmetric. Moreover, for
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each vertex j, all edges with head j—and hence all the edges of G—are used
exactly once, because of the restriction that ej is chosen last. Thus we indeed
get an Euler tour. Obviously, whenever we have a choice of an edge in our
construction, different choices will give different Euler tours. But the choice
of the edges with head j leads to altogether (din(j)− 1)! possibilities, so that
the product in (4.7) gives the number of distinct Euler tours of G which can
be constructed using A. It is easy to see that distinct arborescences with root
i also lead to distinct Euler tours. Conversely, we may construct a spanning
arborescence with root i from any directed Euler tour in a similar way. �

Corollary 4.8.5 Let G be an Eulerian digraph. Then the number of spanning
arborescences of G with root i is independent of the choice of i.

From Exercise 2.3.2 we know that the de Bruijn sequences of length N = sn

over an alphabet S of cardinality s correspond bijectively to the directed
Euler tours of the digraph Gs,n defined there. Combining Theorems 4.8.2
and 4.8.4, we can now determine the number of such sequences, a result due
to de Bruijn [deB46]. See also [vanLi74]; a similar method can be found in
[Knu67].

Theorem 4.8.6 The number of de Bruijn sequences of length N = sn over
an alphabet S of cardinality s is

bs,n = s−n(s!)s
n−1

. (4.8)

Sketch of proof As each vertex of Gs,n has indegree s, Theorem 4.8.4 yields

bs,n = a
(
(s− 1)!

)sn−1

, (4.9)

where a is the common value of all minors of the indegree matrix D of Gs,n.
Thus it remains to show

a= ss
n−1−n. (4.10)

To do this, Theorem 4.8.2 is used. (We have to be a bit careful here, be-
cause Gs,n contains loops. Of course, these loops should not appear in the
matrix D.) As the technical details of calculating the determinant in question
are rather tedious, we will not give them here and refer to the literature cited
above. �

We conclude this chapter with some references for the problem of deter-
mining an arborescence of minimal weight in a network (G,w) on a digraph G.
This problem is considerably more difficult than the analogous problem of
determining minimal spanning trees in the undirected case; for this reason,
we have not treated it in this book. A minimal arborescence can be deter-
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mined with complexity O(|V |2) or O(|E| log |V |); the respective algorithms
were found independently by Chu and Liu [ChuLi65] and Edmonds [Edm67b].
For an implementation, see [Tar77] and [CamFM79], where some details of
Tarjan’s paper are corrected, or [GonMi84]. The best result up to now is due
in [GabGST86], where Fibonacci heaps are used to achieve a complexity of
O(|V | log |V |+ |E|).



Chapter 5
The Greedy Algorithm

Greed is good. Greed is right. Greed works.
From ‘Wall Street’

In this chapter we study a generalization of the algorithm of Kruskal, the
so-called greedy algorithm. This algorithm can be used for maximization on
independence systems—in the case of the algorithm of Kruskal, the system of
spanning forests of a graph. The greedy strategy is rather short-sighted: we
always select the element which seems best at the moment. In other words,
among all the admissible elements, we choose one whose weight is maximal
and add it to the solution we are constructing. In general, this simple strategy
will not work, but for a certain class of structures playing an important
part in combinatorial optimization, the so-called matroids, it indeed leads to
optimal solutions. Actually, matroids may be characterized by the fact that
the greedy algorithm works for them, but there are other possible definitions.
We will look at various other characterizations of matroids and also consider
the notion of matroid duality.

Following this, we shall consider the greedy algorithm as an approximation
method for maximization on independence systems which are not matroids.
We examine the efficiency of this approach, that is, we derive bounds for the
ratio between the solution given by the greedy algorithm and the optimal
solution. We also look at the problem of minimization on independence sys-
tems. Finally, in the last section, we discuss some further generalizations of
matroids and their relationship to the greedy algorithm.

5.1 The Greedy Algorithm and Matroids

Let us begin by recalling the algorithm of Kruskal for determining a maximal
spanning tree or forest. Thus let G= (V,E) be a simple graph and w :E →R

a weight function. We order the edges according to decreasing weight and
treat them consecutively: an edge is inserted into the set T if and only if
it does not form a cycle with the edges which are already contained in T .
At the end of the algorithm, T is a maximal spanning forest—or, if G is
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connected, a maximal spanning tree. We may describe this technique on a
slightly more abstract level as follows. Let S be the set of all subsets of E
which are forests. Then the edge e which is currently examined is added to
T if and only if T ∪{e} is also in S. Of course, we may apply this strategy—
namely choosing the element e ∈E which is maximal among all elements of
E satisfying a suitable restriction—also to other systems (E,S). We need
some definitions.

An independence system is a pair (E,S), where E is a non-empty set and
S is a non-empty subset of the power set of E closed under inclusion: A ∈ S
and B ⊂A imply B ∈ S. The elements of S are called independent sets. We
associate an optimization problem with (E,S) as follows. For a given weight
function w :E →R

+
0 , we ask for an independent set A with maximal weight

w(A) :=
∑

e∈A

w(e).

(Note that the restriction to nonnegative weight functions ensures that there
is a maximal independent set among the independent sets of maximal weight.
We may drop this condition and require A to be a maximal independent
set instead; see Theorem 5.5.1.) For example, determining a maximal span-
ning forest for a graph G = (V,E) is the optimization problem associated
with (E,S), where S is the independence system of all edge sets constitut-
ing forests. We can now generalize the algorithm of Kruskal to work on an
arbitrary independence system.

Algorithm 5.1.1 (Greedy algorithm) Let (E,S) be an independence system
and w :E →R

+
0 a weight function.

Procedure GREEDY(E,S,w;T )

(1) order the elements of E according to their weight:
E = {e1, . . . , em} with w(e1)≥w(e2)≥ · · · ≥w(em);

(2) T ←∅;
(3) for k = 1 to m do
(4) if T ∪ {ek} ∈ S then T ← T ∪ {ek} fi
(5) od

By Theorem 4.4.9, the greedy algorithm solves the optimization problem
associated with the system of forests of a graph. For arbitrary independence
systems, however, the simple strategy—Always take the biggest piece!—of this
algorithm does not work. We call an independence system (E,S) a matroid if
the greedy algorithm solves the associated optimization problem correctly.1

Then we may restate Theorem 4.4.9 as follows.

1Originally, Whitney [Whi35] and van der Waerden [vandW37] (see also [vandW49] for
an English edition) introduced matroids as an abstract generalization of the notions of
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Theorem 5.1.2 Let G = (V,E) be a graph, and let S be the set of those
subsets of E which are forests. Then (E,S) is a matroid.

The matroid described above is called the graphic matroid of the graph G.2

Next we treat a class of matroids arising from digraphs.

Theorem 5.1.3 Let G = (V,E) be a digraph, and let S be the set of all
subsets A of E for which no two edges of A have the same head. Then (E,S)
is a matroid, the head-partition matroid of G.3

Proof Obviously, an independent set of maximal weight can be found by
choosing, for each vertex v of G with din(v) 	= 0, the edge with head v having
maximal weight. Thus the greedy algorithm solves the corresponding opti-
mization problem. �

Next we give an example where it is absolutely trivial that the greedy
algorithm works correctly.

Example 5.1.4 Let E be a set, and let S be the set of all subsets X ⊆E with
|X| ≤ k, where 1≤ k ≤ |E|. Then (E,S) is called a uniform matroid of degree
k. For k = |E|, we also speak of the free matroid on E.

Exercise 5.1.5 Let G be a graph. A matching in G is a set of edges which
do not have any vertices in common; we will study this notion in detail later.
Show that the matchings in a graph G do not form a matroid in general,
even if G is bipartite. The independence system of matchings in G will be
investigated in Sect. 5.4.

5.2 Characterizations of Matroids

We begin with two characterizations of matroids which show that these struc-
tures can be viewed as generalizations of the notion of linear independence.

Theorem 5.2.1 Let M = (E,S) be an independence system. Then the fol-
lowing conditions are equivalent:

linear and algebraic independence, respectively. In the next section, we give some other
possible definitions. The generalization of the algorithm of Kruskal to matroids was found
independently by [Gal68], [Wel68] and—actually a bit earlier—by Edmonds; see [Edm71].
Early forms of the underlying ideas go back even to [Bor26a] and [Rad57].

2The construction of graphic matroids admits an obvious generalization to multigraphs.
While this observation may, at first glance, not seem very interesting, it will be important
in the context of duality.

3The tail-partition matroid is defined analogously.
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(1) M is a matroid.
(2) For J,K ∈ S with |J |= |K|+1, there always exists some a ∈ J \K such

that K ∪ {a} is also in S.
(3) For every subset A of E, all maximal independent subsets of A have the

same cardinality.

Proof Suppose first that M is a matroid for which (2) is not satisfied. Then
there are J,K ∈ S with |J |= |K|+ 1 such that, for every a ∈ J \K, the set
K ∪ {a} is not in S. Let k = |K|, and define a weight function w as follows:

w(e) :=

⎧
⎨

⎩

k+ 2 for e ∈K,

k+ 1 for e ∈ J \K,

0 otherwise.

Note that K is not the solution of the associated optimization problem:
w(K) = k(k + 2) < (k + 1)2 ≤ w(J). On the other hand, the greedy algo-
rithm first chooses all elements of K, because they have maximal weight.
Afterwards, the weight of the solution cannot be increased any more: all re-
maining elements e either have w(e) = 0 or are in J \K, so that K ∪ {e} is
not in S, according to our assumption above. Thus M is not a matroid, a
contradiction. Hence (1) implies (2).

Now let A be an arbitrary subset of E and J and K two maximal in-
dependent subsets contained in A; thus there is no independent subset of
A containing J or K, except J or K itself, respectively. Suppose we have
|K| < |J |. As S is closed under inclusion, there is a subset J ′ of J with
|J ′|= |K|+ 1. By (2), there exists an element a ∈ J ′ \K such that K ∪ {a}
is independent, contradicting the maximality of K. Thus (2) implies (3).

Finally, suppose that M is not a matroid, but satisfies condition (3). Then
the greedy algorithm does not work for the corresponding optimization prob-
lem. Thus we may choose a weight function w for which Algorithm 5.1.1
constructs an independent set K = {e1, . . . , ek}, even though there exists an
independent set J = {e′1, . . . , e′h} of larger weight. We may assume that the
elements of J and K are ordered according to decreasing weight and that
J is a maximal independent subset of E. By construction, K is maximal
too. Then (3), with A= E, implies h= k. We use induction on m to estab-
lish the inequality w(ei) ≥ w(e′i) for i = 1, . . . ,m; the instance m = k then
gives a contradiction to our assumption w(K)<w(J). Now the greedy algo-
rithm chooses e1 as an element of maximal weight; thus the desired inequality
holds for m= 1. Now suppose that the assertion holds for m≥ 1 and assume
w(em+1)<w(e′m+1). Consider the set

A=
{
e ∈E :w(e)≥w

(
e′m+1

)}
.

We claim that S = {e1, . . . , em} is a maximal independent subset of A. To
see this, let e be any element for which {e1, . . . , em, e} is independent. Then
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w(e) ≤ w(em+1) < w(e′m+1), since the greedy algorithm chose the element
em+1 after having chosen em; hence e /∈A so that S is indeed a maximal sub-
set of A. But {e′1, . . . , e′m+1} is also an independent subset of A, contradicting
condition (3). Thus (3) implies (1). �

Note that condition (2) of Theorem 5.2.1 is analogous to a well-known
result from linear algebra, the Steinitz exchange theorem; therefore (2) is
usually called the exchange axiom. Similarly, condition (3) is analogous to
the fact that all bases of a linear subspace have the same cardinality. In fact,
Theorem 5.2.1 immediately gives the following result.

Theorem 5.2.2 Let E be a finite subset of a vector space V , and let S be
the set of all linearly independent subsets of E. Then (E,S) is a matroid.

A matroid constructed as in Theorem 5.2.2 is called a vectorial matroid
or a matric matroid . The second name comes from the fact that a subset E
of a vector space V can be identified with the set of columns of a suitable
matrix (after choosing a basis for V ); then the independent sets are the
linearly independent subsets of this set of columns. An abstract matroid is
called representable over F , where F is a given field, if it is isomorphic to a
vectorial matroid in a vector space V over F . (We leave it to the reader to
give a formal definition of the term isomorphic.)

Exercise 5.2.3 Prove that every graphic matroid is representable over F
for every field F . Hint: Use the incidence matrix of an arbitrary orientation
of the underlying graph.

Exercise 5.2.4 Let G= (V,E) be a graph. A set A⊆E is called a k-forest
of G if it splits into a forest F and at most k edges not in F . Prove that the
set of all k-forests of G forms a matroid Mk(G). Hint: Use Theorem 5.2.1
and reduce the assertion to the case k = 0, where the matroid in question is
just the graphic matroid.

Exercise 5.2.5 Let G = (V,E) be a connected graph which is not a tree.
Prove that the subsets of E which contain at most one cycle form a matroid
on E. Does the analogous result hold if we choose as independent sets all
subsets of E containing at most two cycles?

Let us introduce some more terminology chosen in analogy to that used
in linear algebra. The maximal independent sets of a matroid M = (E,S)
are called its bases. The rank ρ(A) of a subset A of E is the cardinality of
a maximal independent subset of A. Any subset of E not contained in S is
called dependent .

Exercise 5.2.6 Let ρ be the rank function of a matroid M = (E,S). Show
that ρ has the following properties.
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(1) ρ(A)≤ |A| for all A⊂E;
(2) ρ is monotonic, that is, A⊂B implies ρ(A)≤ ρ(B) (for all A,B ⊂E);
(3) ρ is submodular , that is, ρ(A ∪ B) + ρ(A ∩ B) ≤ ρ(A) + ρ(B) for all

A,B ⊂E.

Conversely, matroids can be defined using their rank function. Let E be a
set and ρ a function from the power set of E to N0 satisfying conditions (1),
(2), and (3) above. Then the subsets X of E satisfying ρ(X) = |X| are the
independent sets of a matroid on E; for example, see [Wel76]. Submodular
functions are important in combinatorial optimization and matroid theory;
see, for instance, [PymPe70], [Edm70], [FraTa88], [Qi88], and the monograph
by [Fuj91].

To solve Exercise 5.2.6, we need a result worth noting explicitly, although
it is a direct consequence of condition (2) of Theorem 5.2.1.

Theorem 5.2.7 (Basis completion theorem) Let J be an independent set of
the matroid M = (E,S). Then J is contained in a basis of M .

We will now use the rank function to introduce another important concept;
this rests on the following simple observation.

Lemma 5.2.8 Let J be an independent set of the matroid (E,S), and let
X,Y ⊆E. If J is a maximal independent set of X as well as of Y , then J is
also a maximal independent set of X ∪ Y .

Theorem 5.2.9 Let M = (E,S) be a matroid and A a subset of E. Then
there is a unique maximal set B containing A such that ρ(A) = ρ(B), namely

B =
{
e ∈E : ρ

(
A∪ {e}

)
= ρ(A)

}
.

Proof First let C be an arbitrary superset of A satisfying ρ(A) = ρ(C). Then
ρ(A ∪ {e}) = ρ(A) holds for each e ∈ C: otherwise we would have ρ(C) ≥
ρ(A∪ {e})> ρ(A). Thus we only need to show that the set B defined in the
assertion satisfies the condition ρ(A) = ρ(B). Let J be a maximal independent
subset of A; then J is also a maximal independent subset of A∪{e} for each
e ∈B. By Lemma 5.2.8, J is also a maximal independent subset of B. �

The set B defined in Theorem 5.2.9 is called the span of A and is denoted
by σ(A). By analogy with the terminology of linear algebra, a generating set
of M is a set A with E = σ(A). A set A satisfying σ(A) =A is called a closed
set , and a hyperplane is a maximal closed proper subset of E. Matroids
may be characterized by systems of axioms using the notion of span or of
hyperplane; we refer again to [Wel76]. Let us pose some exercises concerning
the concepts just introduced.
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Exercise 5.2.10 Let M = (E,S) be a matroid. Then the span operator σ
has the following properties:

(1) X ⊂ σ(X) for all X ⊂E;
(2) Y ⊂X ⇒ σ(Y )⊂ σ(X) for all X,Y ⊂E;
(3) σ(σ(X)) = σ(X) for all X ⊂E;
(4) If y /∈ σ(X) and y ∈ σ(X ∪ {x}), then x ∈ σ(X ∪ {y}).

Property (3) explains why the sets σ(A) are called closed ; property (4) is
again called the exchange axiom because it is basically the same as condi-
tion (2) of Theorem 5.2.1. Conversely, the conditions given above can be used
for an axiomatic characterization of matroids by the span operator.

Exercise 5.2.11 Show that the bases of a matroid are precisely the minimal
generating sets.

Exercise 5.2.12 Let (E,S) be a matroid. Prove the following assertions:

(a) The intersection of closed sets is closed.
(b) σ(X) is the intersection of all closed sets containing X .
(c) X is closed if and only if ρ(X ∪ {x}) = ρ(X) + 1 for some x ∈E \X .

Exercise 5.2.13 Let (E,S) be a matroid of rank r, that is, ρ(E) = r). Show
that (E,S) contains at least 2r closed subsets.

Let us introduce one further notion, this time generalizing a concept from
graph theory. A circuit in a matroid is a minimal dependent set—by analogy
with a cycle in a graph. We have the following result; the special case of a
graphic matroid should be clear from the preceding discussion.

Theorem 5.2.14 Let M = (E,S) be a matroid, J an independent set of M ,
and e any element of E \ J . Then either J ∪ {e} is independent, or J ∪ {e}
contains a unique circuit.

Proof Suppose that J ∪ {e} is dependent, and put

C =
{
c ∈E :

(
J ∪ {e}

)
\ {c} ∈ S

}
.

Note C 	= ∅, since e ∈C by definition. Also, C is dependent, because otherwise
it could be completed to a maximal independent subset K of J ∪{e}. As J is
independent itself, we would have |K|= |J |, so that K = (J ∪ {e}) \ {d} for
some element d. But then d would have to be an element of C, a contradiction.
It is easy to see that C is even a circuit: if we remove any element c, we get
a subset of (J ∪{e}) \ {c} which is, by definition of C, an independent set. It
remains to show that C is the only circuit contained in J ∪{e}. Thus let D be
any circuit contained in J ∪ {e}. Suppose there exists an element c ∈C \D.
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Then D is a subset of (J ∪ {e}) \ {c} which is an independent set. Therefore
C ⊂D, and hence C =D. �

We conclude this section by characterizing matroids in terms of their cir-
cuits. We begin with a simple observation.

Lemma 5.2.15 Let (E,S) be a matroid. A subset A of E is dependent if
and only if ρ(A)< |A|. Moreover, ρ(A) = |A| − 1 for every circuit A.

Theorem 5.2.16 Let M = (E,S) be a matroid, and let C be the set of all
circuits of M . Then C has the following properties:

(1) If C ⊂D, then C =D for all C,D ∈C;
(2) For all C,D ∈C with C 	=D and for each x ∈C ∩D, there always exists

some F ∈C with F ⊂ (C ∪D) \ {x}.

Conversely, assume that a set system (E,C) satisfies the preceding two circuit
axioms. Then there is a unique matroid (E,S) having C as its set of circuits.

Proof First, let C be the set of circuits of M . As circuits are minimal de-
pendent sets, condition (1) is trivial. The submodularity of ρ yields, together
with Lemma 5.2.15,

ρ(C ∪D) + ρ(C ∩D)≤ ρ(C) + ρ(D) = |C|+ |D| − 2 = |C ∩D|+ |C ∪D| − 2.

As C and D are minimal dependent sets, C ∩D is independent; therefore
ρ(C ∩D) = |C ∩D|, and hence

ρ
(
(C ∪D) \ {x}

)
≤ ρ(C ∪D)≤ |C ∪D| − 2<

∣
∣(C ∪D) \ {x}

∣
∣.

By Lemma 5.2.15, (C ∪D) \ {x} is dependent and hence contains a circuit.
Conversely, suppose C satisfies the conditions (1) and (2). If there exists

a matroid (E,S) with set of circuits C, its independent sets are given by

S= {J ⊂E : J does not contain any element of C}.

Obviously, S is closed under inclusion, and it suffices to show that (E,S)
satisfies condition (2) of Theorem 5.2.1. Suppose that this condition is not
satisfied, and choose a counterexample (J,K) such that |J ∪K| is minimal.
Let J \K = {x1, . . . , xk}. Note k 	= 1, because otherwise |J |= |K|+ 1 would
imply that K is a subset of J , and hence J =K∪{x1} would be independent.
Our assumption meansK∪{xi} /∈ S for i= 1, . . . , k. In particular, there exists
C ∈C with C ⊂K ∪ {x1}; as K is independent, x1 must be in C. As J is
independent, there is an element y ∈K \J which is contained in C. Consider
the set Z = (K \ {y}) ∪ {x1}. If Z is not in S, then there exists D ∈ C
with D ⊂ Z and x1 ∈D, and the circuit axiom (2) yields a set F ∈C with
F ⊂ (C ∪D)\{x1} ⊂K, contradicting K ∈ S. Hence Z must be independent.
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Note that |Z ∪ J | < |K ∪ J |. As we chose our counterexample (J,K) to be
minimal, (J,Z) has to satisfy condition (2) of Theorem 5.2.1. Thus there
exists some xi, say x2, such that Z ∪ {x2} ∈ S. But K ∪ {x2} /∈ S, so that
there is a circuit C ′ ∈C with C ′ ⊂K ∪{x2}. We must have x2 ∈C′, because
K is independent; and (K \ {y}) ∪ {x1, x2} ∈ S yields y ∈ C′. Thus C ′ 	= C,
and y ∈ C ∩C′. Using the circuit axiom (2) again, there exists a set F ′ ∈C
with F ′ ⊂ (C ∪ C ′) \ {y} ⊂ (K \ {y}) ∪ {x1, x2} ∈ S. This contradicts the
definition of S. Therefore M = (E,S) is indeed a matroid, and clearly C is
the set of circuits of M . �

Exercise 5.2.17 Show that the set C of circuits of a matroid (E,S) actu-
ally satisfies the following stronger version of the circuit axiom (2) in Theo-
rem 5.2.16 [Leh64]:

(2′) For all C,D ∈C, for each x ∈C ∩D, and for each y ∈C \D, there exists
a set F ∈C with y ∈ F ⊂ (C ∪D) \ {x}.

5.3 Matroid Duality

In this section we construct the dual matroid M∗ of a given matroid M .
We stress that the notion of duality of matroids differs from the duality
known from linear algebra: the dual matroid of a finite vector space is not
the matroid formed by the dual space. Matroid duality has an interesting
meaning in graph theory; see Result 5.3.5 below. The following construction
of the dual matroid is due to Whitney [Whi35].

Theorem 5.3.1 Let M = (E,S) be a matroid. Put M∗ = (E,S∗), where

S∗ = {J ⊂E : J ⊂E \B for some basis B of M}.

Then M∗ is a matroid as well, and the rank function ρ∗ of M∗ is given by

ρ∗(A) = |A|+ ρ(E \A)− ρ(E). (5.1)

Proof Obviously, S∗ is closed under inclusion. By Theorem 5.2.1, it suffices to
verify the following condition for each subset A of E: all maximal subsets of
A which are independent with respect to S∗ have the cardinality ρ∗(A) given
in (5.1). Thus let J be such a subset of A. Then there exists a basis B of M
with J = (E \B)∩A; moreover, J is maximal with respect to this property.
This means that B is chosen such that A \ J =A \ ((E \B)∩A) =A ∩B is
minimal with respect to inclusion. Hence K := (E \A) ∩B is maximal with
respect to inclusion. Thus K is a basis of E \A in the matroid M and has
cardinality ρ(E \A). Therefore the minimal subsets A∩B all have cardinality

|B| − |K|= |B| − ρ(E \A) = ρ(E)− ρ(E \A);
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and all maximal subsets J ∈ S∗ of A have cardinality

|J |= |A| − |A \ J |= |A| − |A∩B|= |A|+ ρ(E \A)− ρ(E). �

The matroid M∗ constructed in Theorem 5.3.1 is called the dual matroid
of M . The bases of M∗ are the cobases of M ; the circuits of M∗ are the
cocircuits of M . According to Exercise 5.2.11, the independent sets of M∗ are
precisely the complements of generating sets of M . This implies the following
result.

Corollary 5.3.2 Let M = (E,S) be a matroid. Then the independent sets of
M∗ are the complements of the generating sets of M . In particular, the bases
of M∗ are the complements of the bases of M . Hence (M∗)∗ =M .

Example 5.3.3 Let M =M(G) be the matroid corresponding to a connected
graph G. Then the bases of M are the spanning trees of G, and the bases
of M∗ are the cotrees, that is, the complements of the spanning trees. More
generally, a set S is independent in M∗ if and only if its complement S
contains a spanning tree of G, that is, if and only if S is connected. By
definition, the circuits of a matroid are the minimal dependent sets. Thus
the circuits of M are the cycles in G, and the circuits of M∗ are the minimal
sets C for which the complement C is not connected. In other words, the
circuits of M∗ are the simple cocycles of G—all those cocycles which are
minimal with respect to inclusion.

In the general case, if G has p connected components, n vertices, and
m edges, then M(G) has rank n− p and M(G)∗ has rank m− (n− p), by
Theorem 4.2.4.

Exercise 5.3.4 Let C be a circuit of a matroid M = (E,S). Show that
E \ C is a hyperplane of the dual matroid M∗. Hint: Use condition (c) in
Exercise 5.2.11 to show that E \ C is a closed set, and then determine the
rank of E \C in M∗.

We now state an important theorem due to Whitney [Whi33] which clar-
ifies the role of matroid duality in graph theory; a proof can be found in
[Wel76] or [Oxl92].

Result 5.3.5 A graph G is planar if and only if the dual matroid M(G)∗ is
graphic.

Remark 5.3.6 While a proof of Result 5.3.5 is beyond the scope of this book,
let us at least give a rough idea how the dual matroid of a planar graph G
can be seen to be graphic; to simplify matters, we shall assume that each
edge lies in a cycle. Suppose G is drawn in the plane. Construct a multigraph
G∗ = (V ∗,E∗) whose vertices correspond to the faces of G, by selecting a
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Fig. 5.1 A geometric dual

of K5 \ e

point vF in the interior of each face F ; two such points are connected by as
many edges as the corresponding faces share in G.

More precisely, assume that the boundaries of two faces F and F ′ share
exactly k edges, say e1, . . . , ek. Then the corresponding vertices vF and vF ′

are joined by k edges e′1, . . . , e
′
k drawn in such a way that the edge e′i crosses

the edge ei but no other edge of the given drawing of G. This results in a plane
multigraph G∗, and one may show M(G)∗ ∼=M(G∗). The planar multigraph
G∗ is usually called a geometric dual of G.4 See Fig. 5.1 for an example of the
construction just described, using G=K5 \ e, which was shown to be planar
in Exercise 1.5.6; here we actually obtain a graph. The reader might find
it instructive to draw a few more examples, for instance using G=K3,3 \ e
(where a multigraph arises).

Exercise 5.3.7 Let M = (E,S) be a matroid, and let A and A∗ be two
disjoint subsets of E. If A is independent in M and if A∗ is independent in
M∗, then there are bases B and B∗ of M and M∗, respectively, with A⊂B,
A∗ ⊂B∗, and B ∩B∗ = ∅. Hint: Note ρ(E) = ρ(E \A∗).

Exercise 5.3.8 Let M = (E,S) be a matroid. A subset X of E is a basis of
M if and only if X has nonempty intersection with each cocircuit of M and
is minimal with respect to this property.

Exercise 5.3.9 Let C be a circuit and C∗ a cocircuit of the matroid M .
Prove |C ∩C∗| 	= 1. Hint: Use Exercise 5.3.7 for an indirect proof.

This result plays an important role in characterizing a pair (M,M∗) of
dual matroids by the properties of their circuits and cocircuits; see [Min66].

Exercise 5.3.10 Let x and y be two distinct elements of a circuit C in a
matroid M . Then there exists a cocircuit C∗ in M such that C ∩C∗ = {x, y}.

4If edges not lying in a cycle—that is, edges belonging to just one face F—are allowed,
one has to associate such edges with loops in the construction of G∗. It should also be
noted that a planar graph may admit essentially different plane embeddings and, hence,
nonisomorphic geometric duals.
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Hint: Complete C \ {x} to a basis B of M and consider B∗ ∪ {y}, where
B∗ =E \B is a cobasis.

We will return to matroids several times throughout this book. For a thor-
ough study of matroid theory we recommend the book by Welsh [Wel76],
which is still a standard reference. We also mention the monographs [Tut71],
[Rec89], and [Oxl92]; of these, Oxley’s book is of particular interest as it also
includes applications of matroids. A series of monographs concerning matroid
theory was edited by White [Whi86, Whi87, Whi92].

5.4 The Greedy Algorithm as an Approximation
Method

In this section we investigate independence systems M = (E,S) which are not
matroids. By definition, the greedy algorithm then does not (always) yield
an optimal solution for the optimization problem

(P) determine max
{
w(A) :A ∈ S

}
,

where w : E → R
+
0 is a given weight function. Of course, we may apply the

greedy algorithm nevertheless, in the hope of obtaining a reasonably good ap-
proximate solution in this way. We shall examine the quality of this approach
by deriving bounds for the term

f(M) =min

{
w(Tg)

w(T0)
:w :E →R

+
0

}

,

where Tg runs over all solutions for (P) which may be constructed by the
greedy algorithm, whereas T0 is an optimal solution.5 We follow Korte and
Hausmann [KorHa78] in this section; similar results were also obtained by
Jenkyns [Jen76].

First we introduce some useful parameters for independence systems. For
any subset A of E, the lower rank of A is

lr(A) =min
{
|I| : I ⊂A,I ∈ S, I ∪ {a} /∈ S for all a ∈A \ I

}
.

Similarly, we define the upper rank of A as

ur(A) =max
{
|I| : I ⊂A,I ∈ S, I ∪ {a} /∈ S for all a ∈A \ I

}
.

5Note that the greedy algorithm can yield different solutions Tg for different orderings of

the elements of E (which may occur if there are distinct elements having the same weight).

Hence we indeed have to minimize over all Tg .



5.4 The Greedy Algorithm as an Approximation Method 147

Moreover, the rank quotient of M is

rq(M) =min

{
lr(A)

ur(A)
:A⊂E

}

;

here terms 0
0 might occur; such terms are considered to have value 1. Note

that Theorem 5.2.1 immediately yields the following result.

Lemma 5.4.1 An independence system M = (E,S) is a matroid if and only
if rq(M) = 1.

As we will see, the rank quotient indicates how much M differs from a
matroid. Below, we will get an interesting estimate for the rank quotient
confirming this interpretation. But first, we prove the following theorem of
[Jen76] and [KorHa78],6 which shows how the quality of the solution found
by the greedy algorithm depends on the rank quotient of M .

Theorem 5.4.2 Let M = (E,S) be an independence system with a weight
function w :E →R

+
0 . Moreover, let Tg be a solution of problem (P) found by

the greedy algorithm, and T0 an optimal solution. Then

rq(M)≤ w(Tg)

w(T0)
≤ 1.

Proof The second inequality is trivial. To prove the first inequality, we in-
troduce the following notation. Suppose the set E is ordered according to
decreasing weight, say E = {e1, . . . , em} with w(e1) ≥ w(e2) ≥ · · · ≥ w(em).
We put w(em+1) = 0 and write

Ei = {e1, . . . , ei} for i= 1, . . . ,m.

Then we get the following formulae, which the reader should check in detail:

w(Tg) =

m∑

i=1

|Tg ∩Ei|
(
w(ei)−w(ei+1)

)
; (5.2)

w(T0) =

m∑

i=1

|T0 ∩Ei|
(
w(ei)−w(ei+1)

)
. (5.3)

Now T0 ∩Ei is an independent subset of Ei, and thus |T0 ∩Ei| ≤ ur(Ei). By
definition of the greedy algorithm, Tg∩Ei is a maximal independent subset of

6This result was conjectured or even proved somewhat earlier by various other authors;

see the remarks in [KorHa78].
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Ei, and therefore |Tg ∩Ei| ≥ lr(Ei). Using these two observations, we obtain

|Tg ∩Ei| ≥ |T0 ∩Ei| ×
lr(Ei)

ur(Ei)
≥ |T0 ∩Ei| × rq(M).

Using (5.2) and (5.3) yields

w(Tg) =

m∑

i=1

|Tg ∩Ei|
(
w(ei)−w(ei+1)

)

≥ rq(M)×
m∑

i=1

|T0 ∩Ei|
(
w(ei)−w(ei+1)

)

= rq(M)×w(T0). �

As w and Tg were chosen arbitrarily in Theorem 5.4.2, we conclude
rq(M)≤ f(M). The following result shows that we actually have equality.

Theorem 5.4.3 Let M = (E,S) be an independence system. Then there exist
a weight function w :E →R

+
0 and a solution Tg for problem (P) obtained by

the greedy algorithm such that

w(Tg)

w(T0)
= rq(M),

where T0 denotes an optimal solution for (P).

Proof Choose a subset A of E with rq(M) = lr(A)/ur(A), and let Il and Iu
be maximal independent subsets of A satisfying |Il|= lr(A) and |Iu|= ur(A).
Define the weight function w by

w(e) :=

{
1 for e ∈A,

0 otherwise

and order the elements e1, . . . , em of E such that

Il = {e1, . . . , elr(A)}, A \ Il = {elr(A)+1, . . . , e|A|}, E \A= {e|A|+1, . . . , em}.

Then Il is the solution for (P) found by the greedy algorithm with respect to
this ordering of the elements of E, whereas Iu is an optimal solution. Hence

w(Il)

w(Iu)
=

|Il|
|Iu|

=
lr(A)

ur(A)
= rq(M). �

As Theorems 5.4.2 and 5.4.3 show, the rank quotient of an independence
system gives a tight bound for the weight of the greedy solution in comparison
to the optimal solution of (P); thus we have obtained the desired measure for
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the quality of the greedy algorithm as an approximation method. Of course,
this leaves us with the nontrivial problem of determining the rank quotient
for a given independence system M . The following result provides an example
where it is possible to determine this invariant explicitly.

Theorem 5.4.4 Let G = (V,E) be a graph and M = (E,S) the indepen-
dence system given by the set of all matchings of G; see Exercise 5.1.5. Then
rq(M) = 1 provided that each connected component of G is isomorphic either
to a complete graph Ki with i≤ 3 or to a star. In all other cases, rq(M) = 1

2
.

Proof Assume first that each connected component of G is isomorphic either
to a complete graph Ki with i ≤ 3 or to a star. Then lr(A) = ur(A) for all
A⊂ E, so that rq(M) = 1. In all other cases, G contains a subgraph (U,A)
isomorphic to a path P3 of length 3. Then lr(A) = 1 and ur(A) = 2, so that
rq(M)≤ 1

2 .
It remains to prove rq(M)≥ 1

2
. Thus we need to show

lr(A)

ur(A)
≥ 1

2
for all A⊂E.

Let I1 and I2 be two maximal independent subsets of A, that is, two maximal
matchings contained in A. Obviously, it suffices to show |I1| ≥ 1

2
|I2|. We define

a mapping α : I2 \ I1 → I1 \ I2 as follows. Let e be any edge in I2 \ I1. As
I1 ∪{e} ⊂A and as I1 is a maximal independent subset of A, I1 ∪{e} cannot
be a matching. Thus there exists an edge α(e) ∈ I1 which has a vertex in
common with e. As I2 is a matching, we cannot have α(e) ∈ I2, so that
we have indeed defined a mapping α : I2 \ I1 → I1 \ I2. Clearly, each edge
e ∈ I1 \ I2 can share a vertex with at most two edges in I2 \ I1, so that e has
at most two preimages under α. Therefore

|I1 \ I2| ≥
∣
∣α(I2 \ I1)

∣
∣≥ 1

2
|I2 \ I1|

and hence

|I1|= |I1 \ I2|+ |I1 ∩ I2| ≥
1

2
|I2 \ I1|+

1

2
|I1 ∩ I2|=

1

2
|I2|.

This establishes the theorem. �

Let us mention a further similar result without proof; the interested reader
is referred to [KorHa78].

Result 5.4.5 Let G = (V,E) be the complete graph on n vertices, and let
M = (E,S) be the independence system whose independent sets are the sub-
sets of Hamiltonian cycles of G. Then

1

2
≤ rq(M)≤ 1

2
+

3

2n
.
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By definition, the maximal independent sets of an independence system as
in Result 5.4.5 are precisely the Hamiltonian cycles of G. Thus the greedy al-
gorithm provides a good approximation to the optimal solution of the problem
of finding a Hamiltonian cycle of maximal weight in Kn for a given weight
function w : E → R

+
0 . Note that this is the problem opposite to the TSP,

where we look for a Hamiltonian cycle of minimal weight.
The above examples suggest that the greedy algorithm can be a really good

approximation method. Unfortunately, this is not true in general. As the fol-
lowing exercise shows, it is easy to construct an infinite class of independence
systems whose rank quotient becomes arbitrarily small.

Exercise 5.4.6 Let G be the complete digraph on n vertices, and let
M = (E,S) be the independence system determined by the acyclic directed
subgraphs of G, that is,

S= {D ⊂E :D does not contain any directed cycle}.

Then rq(M)≤ 2/n, so that limn→∞ rq(M) = 0.

Our next aim is to derive a useful estimate for the rank quotient of an
independence system. We need a lemma first.

Lemma 5.4.7 Every independence system M = (E,S) can be represented as
the intersection of finitely many matroids on E.

Proof We have to show the existence of a positive integer k and matroids
M1 = (E,S1), . . . ,Mk = (E,Sk) satisfying S=

⋂k
i=1Si. Let C1, . . . ,Ck be the

minimal elements of the set {A ⊂ E : A /∈ S}, that is, the circuits of the
independence system M . It is easily seen that

S=

k⋂

i=1

Si, where Si := {A⊆E :Ci �A}.

Thus we want to show that all Mi = (E,Si) are matroids. So let A be an
arbitrary subset of E. If Ci is not a subset of A, then A is independent in
Mi, so that A itself is the only maximal independent subset of A in Mi. Now
suppose Ci ⊆A. Then, by definition, the maximal independent subsets of A
in Mi are the sets of the form A \ {e} for some e ∈ Ci. Thus all maximal
independent subsets of A have the same cardinality |A| − 1 in this case. This
shows that Mi satisfies condition (3) of Theorem 5.2.1, so that Mi is indeed
a matroid. �

Theorem 5.4.8 Let the independence system M = (E,S) be the intersection
of k matroids M1, . . . ,Mk on E. Then rq(M)≥ 1/k.
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Proof Let A be any subset of E, and let I1, I2 be any two maximal indepen-
dent subsets of A. Obviously, it suffices to show k|I1| ≥ |I2|. For i= 1, . . . , k
and j = 1,2, let Ii,j be a maximal independent subset of I1 ∪ I2 containing
Ij (in Mi). Suppose there exists an element e ∈ I2 \ I1 with e ∈ Ii,1 \ I1 for
i= 1, . . . , k. Then

I1 ∪ {e} ⊆
k⋂

i=1

Ii,1 ∈ S,

contradicting the maximality of I1. Hence each e ∈ I2 \ I1 can be contained
in at most k− 1 of the sets Ii,1 \ I1; this implies

(∗)
k∑

i=1

|Ii,1| − k|I1|=
k∑

i=1

|Ii,1 \ I1| ≤ (k− 1)|I2 \ I1| ≤ (k− 1)|I2|.

As all the Mi are matroids, we have |Ii,1|= |Ii,2| for i= 1, . . . , k and hence,
using (∗),

|I2| ≤ |I2|+
k∑

i=1

|Ii,2 \ I2| =
k∑

i=1

|Ii,2| − (k− 1)|I2|

=
k∑

i=1

|Ii,1| − (k− 1)|I2| ≤ k|I1|. �

For each positive integer k, there exists an independence system for which
the bound of Theorem 5.4.8 is tight. Unfortunately, equality does not hold in
general; for instance, Result 5.4.5 provides a family of counterexamples. The
interested reader is referred to [KorHa78].

Example 5.4.9 Let G = (V,E) be a strongly connected digraph, and let M
be the intersection of the graphic matroid and the head-partition matroid
of G. Then the independent sets of maximal cardinality in M are precisely
the spanning arborescences of G. Note that M may admit further maximal
independent sets, as an arbitrary arborescence does not necessarily extend to
a spanning arborescence: in general, M is not a matroid.

Exercise 5.4.10 Let G be a digraph. Find three matroids such that each
directed Hamiltonian path in G is an independent set of maximal cardinality
in the intersection of these matroids.

In the situation of Example 5.4.9, the greedy algorithm constructs an ar-
borescence whose weight is at least half of the weight of a maximal arbores-
cence, by Theorems 5.4.8 and 5.4.2. As mentioned at the end of Sect. 4.8, a
maximal arborescence can be found with complexity O(|E| log |V |), using a
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considerably more involved method. The following result about the intersec-
tion of two arbitrary matroids is interesting in this context.

Result 5.4.11 Consider an independence system M = (E,S) which is the
intersection of two matroids M1 = (E,S1) and M2 = (E,S2), and let w :E →
R

+
0 be a weight function on M . Assume that we may check in polynomial time

whether a set is independent in either M1 or M2. Then it is also possible to
find an independent set of maximal weight in M in polynomial time.

For a situation as described in Result 5.4.11, we say that the two matroids
M1 and M2 are given by oracles for independence; this just means that it is
somehow possible to check whether a given set is independent in polynomial
time. Then Result 5.4.11 states that a maximal independent set in M can be
found in oracle polynomial time, that is, by using both oracles a polynomial
number of times; see [HauKo81] for more on oracles representing matroids
and independence systems. Result 5.4.11 is very important in combinatorial
optimization. We have decided to omit the proof because the corresponding
algorithms as well as the proofs for correctness are rather difficult—even
in the case without weights—and use tools from matroid theory which go
beyond the limits of this book. The interested reader may consult [Law75],
[Edm79], and [Cun86]; or the books [Law76] and [Whi87].

Of course, one may also consider the analogous problems for the inter-
section of three or more matroids; we will just state the version without
weights. Unfortunately, these problems are presumably not solvable in poly-
nomial time, as the next result indicates.

Problem 5.4.12 (Matroid intersection problem, MIP) Let three matroids
Mi = (E,Si), i= 1,2,3, be given, and let k be a positive integer. Does there
exist a subset A of E with |A| ≥ k and A ∈ S1 ∩ S2 ∩ S3?

Theorem 5.4.13 MIP is NP-complete.

Proof Exercise 5.4.10 shows that the question whether a given digraph con-
tains a directed Hamiltonian path is a special case of MIP. This problem
(directed Hamiltonian path, DHP) is NP-complete, as the analogous prob-
lem HP for the undirected case is NP-complete by Exercise 2.7.7, and as HP
can be transformed polynomially to DHP by replacing a given graph by its
complete orientation. Hence the more general MIP is NP-complete, too. �

Theorem 5.4.13 indicates that the results presented in this chapter really
are quite remarkable: even though the problem of determining a maximal
independent set in the intersection of k ≥ 3 matroids is NP-hard (maximal
either with respect to cardinality or a more general weight function), the
greedy algorithm gives a quite simple polynomial method for finding an ap-
proximate solution which differs at most by a fixed ratio from the optimal
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solution. This result is by no means trivial, as there are many optimization
problems for which even the question whether an approximate solution with
a performance guaranty exists is NP-hard; we will encounter an example for
this phenomenon in Chap. 15.

5.5 Minimization in Independence Systems

In this section we consider the minimization problem for independence sys-
tems, that is, the problem of finding a maximal independent set of minimal
weight; this turns out to be easy for matroids. We first show that the greedy
algorithm actually works for arbitrary weight functions on a matroid.

Theorem 5.5.1 Let M = (E,S) be a matroid, and let w : E → R be any
weight function on M . Then the greedy algorithm finds an optimal solution
for the problem

(BMAX) determine max
{
w(B) :B is a basis of M

}
.

Proof By definition, the assertion holds if all weights are nonnegative. Oth-
erwise, we put

C =max
{
−w(e) : e ∈E,w(e)< 0

}

and consider the weight function w′ :E →R
+
0 defined by

w′(e) =w(e) +C for all e ∈E.

Now all bases of M have the same cardinality, say k. Let B be a basis; then
the weights w(B) and w′(B) differ just by the constant kC. In particular,
every basis of maximal weight for w′ also has maximal weight for w. Hence
we may use the greedy algorithm to find a basis B0 of maximal weight for
w′ which is also a solution for the original problem (BMAX). Obviously, the
greedy algorithm runs for w exactly as for w′; hence it yields the correct
solution B0 also when applied to the original function w. �

Theorem 5.5.2 Let M = (E,S) be a matroid, and let w : E → R be any
weight function on M . Then the greedy algorithm finds an optimal solution
for the problem

(BMIN) determine min
{
w(B) :B is a basis of M

}
,

provided that step (1) in Algorithm 5.1.1 is replaced as follows:

(1′) order the elements of E according to their weight: E = {e1, . . . , em}
with w(e1)≤w(e2)≤ · · · ≤w(em).
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Proof This follows immediately from Theorem 5.5.1 by considering the weight
function −w instead of w. �

As an application, we investigate the behavior of the greedy algorithm
in the context of duality. Suppose we are given a matroid M = (E,S) and a
weight function w :E →R

+
0 . Obviously, a basis B of M has maximal weight if

and only if the corresponding cobasis B∗ =B \E of M∗ has minimal weight.
Now we use the greedy algorithm, modified as described in Theorem 5.5.2, to
determine a basis B∗ of M∗ with minimal weight. Consider the moment when
we investigate the element ek. Then ek is added to the current solution—that
is, the independent subset T ∗ constructed so far—if and only if T ∗ ∪ {ek}
is independent in M∗. Viewing this situation within M , we may as well
say that ek is removed from the current solution T = E \ T ∗, as the (final)
solution of the maximization problem for M is precisely the complement of
the solution of the minimization problem for M∗. These considerations lead
to the following dual version of the greedy algorithm, formulated in terms of
the primal matroid M .

Algorithm 5.5.3 (Dual greedy algorithm) Let (E,S) be a matroid, and let
w :E →R

+
0 be a weight function.

Procedure DUALGREEDY(G,w;T )

(1) order the elements of E according to their weight:
E = {e1, . . . , em} with w(e1)≤w(e2)≤ · · · ≤w(em);

(2) T ←E;
(3) for k = 1 to m do
(4) if (E \ T )∪ {ek} does not contain a cocircuit
(5) then remove ek from T
(6) fi
(7) od

Note that the condition in step (4) is satisfied if and only if T ∗ ∪ {ek}=
(E \ T ) ∪ {ek} is independent in M∗; hence the correctness of the greedy
algorithm immediately implies the following theorem.

Theorem 5.5.4 Let M = (E,S) be a matroid, and let w : E → R
+
0 be a

nonnegative weight function on M . Then the dual greedy algorithm computes
a basis B of M = (E,S) with maximal weight.

Example 5.5.5 Let M =M(G) be a graphic matroid, where G is connected.
The dual greedy algorithm investigates the edges of G in the order given by
increasing weight. Initially, T =E. When an edge e is examined, it is removed
from the current solution T if and only if it does not form a cocycle with the
edges already removed, that is, if removing e does not disconnect the graph
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(E,T ). This special case of Algorithm 5.5.3 was already treated by Kruskal
[Kru56].

In the remainder of this section, we look at the greedy algorithm as a pos-
sible approximation method for the problems described in Theorems 5.5.1
and 5.5.2 when M = (E,S) is an arbitrary independence system, not neces-
sarily a matroid. Unfortunately, this will not work well. Even for the max-
imization problem, the quotient of the weight of a solution found by the
greedy algorithm and the weight of an optimal solution—which we used as a
measure for the quality of approximation in Sect. 5.4—does not make sense if
negative weights occur. Still, there is one positive result: Theorem 5.4.2 car-
ries over to the case of arbitrary weight functions if we consider the problem
(P) of Sect. 5.4, that is, if we require not a basis but only an independent set
of maximal weight and terminate the greedy algorithm as soon as an element
of negative weight would be chosen.

Let us now turn to the question whether there is a performance guarantee
for applying the greedy algorithm to the minimization problem

(PMIN) determine min
{
w(A) :A is a maximal independent set in S

}
,

where w :E →R
+
0 is a nonnegative weight function. Here the reciprocal quo-

tient

g(M) =min

{
w(T0)

w(Tg)
:w :E →R

+
0

}

should be used for measuring the quality of approximation, where again Tg

denotes a solution constructed by the greedy algorithm and T0 an optimal
solution for (PMIN). Clearly, the matroids are precisely the independence
systems with g(M) = 1. Unfortunately, no result analogous to Theorem 5.4.2
can be proved; this was first shown in [KorHa78] via a rather trivial series of
counterexamples, namely a path of length 2 with various weight functions. We
will exhibit a class of considerably more interesting examples due to Reingold
and Tarjan [ReiTa81].

Example 5.5.6 Let us denote the complete graph on 2t vertices by Gt =
(Vt,Et). For each of these graphs, we define a weight function wt satisfying
the triangle inequality as follows. First we choose, for all t≥ 2, a Hamiltonian
cycle Ct of Gt; for t= 1, we take C1 as the only edge of G1. We define wt on
Ct as indicated in Fig. 5.2, where the edges not marked explicitly with their
weight are understood to have weight 1.

For every edge e= uv in Et \Ct, the weight wt(e) is defined as the distance
dt(u, v) in the network (Ct,wt). Since the largest weight occurring in Ct is
precisely the sum of the weights of all other edges of Ct (so that w(Ct) =
2 · 3t−1), it is easy to see that wt indeed satisfies the triangle inequality.
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Fig. 5.2 A family of networks

Now put Mt = (Et,St), where St is the set of all matchings of Gt. Thus we
consider the problem of finding a maximal matching—that is, a 1-factor—
of minimal weight for (Gt,wt). It is easy to see that the greedy algorithm
computes, for the cases t= 1,2,3,4 shown in Fig. 5.2, the 1-factors Ft drawn
bold there, provided that we order edges of the same weight in a suitable
manner; these 1-factors have weight 1, 4, 14, and 46, respectively. In the
general case of an arbitrary t, one may show that a 1-factor Ft of Gt of
weight

wt(Ft) = 2× 3t−1 − 2t−1

results; this formula for the weight of Ft can be derived from the rather
obvious recursion

wt+1(Ft+1) = 2wt(Ft)− 3t−1 + 3t,

where w1(F1) = 1. We leave the details to the reader. On the other hand, there
is a 1-factor F ′

t of Gt, for t≥ 2, of weight 2t−1 which consists of the edges not
drawn bold in Fig. 5.2: F ′

t = Ct \ Ft. Thus the quality of the approximation
found by the greedy algorithm is only

2t−1

2× 3t−1 − 2t−1
→ 0 (for t→∞).

Example 5.5.6 shows that the greedy algorithm may yield an arbitrarily
bad solution for (PMIN). By Theorem 5.4.4, the rank quotient of the inde-
pendence system (Et,St) formed by the matchings in Gt has value 2 for all
t≥ 2. Hence in the case of minimization, the rank quotient does not guarantee
a corresponding quality of approximation—a rather disappointing result.
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It was shown in [ReiTa81] that the bound for w(T0)/w(Tg) given in Ex-
ample 5.5.6 is essentially worst possible. Indeed, for any weight function on
the complete graph Kn satisfying the triangle inequality,

w(Tg)

w(T0)
≤
(

3θ

2θ+1 − 1
− 1

)

× 4

3
nlog

3
2 ,

where θ = �logn�− logn. For the rather involved proof, we refer to the original
paper.

Determining a 1-factor of minimal weight with respect to a weight func-
tion w on a complete graph satisfying the triangle inequality will be a tool
for solving the Chinese postman problem in Chap. 14; this problem has in-
teresting practical applications—for example, drawing large graphs with a
plotter.

Exercise 5.5.7 Show that it is not possible to change the weight function wt

in Example 5.5.6 such that the quotient F ′
t/Ft becomes smaller. Also, for an

arbitrary weight function (not necessarily satisfying the triangle inequality),
it is not possible to give any measure (as a function of n) for the quality of
a 1-factor in a complete graph found by the greedy algorithm.

5.6 Accessible Set Systems

We conclude this chapter with a brief report on further generalizations of the
greedy algorithm from independence systems to even more general systems
of sets. As the methods used are rather similar to the methods we have been
using (although more involved), we shall skip all proofs and refer the reader
to the original literature instead.

A set system is simply a pair M = (E,S), where E is a finite set and S is a
nonempty subset of the power set of E. The elements of S are called feasible
sets of M ; maximal feasible sets will again be called bases. As the greedy
algorithm always chooses single elements and adds them one by one to the
feasible set under construction, it would not make sense to consider entirely
arbitrary set systems. At the very least, we have to ensure that every feasible
set can be obtained by successively adding single elements to the empty set.
Formally, we require the following accessibility axiom:

(A) For each nonempty feasible set X ∈ S, there exists an element x ∈ X
such that X \ {x} ∈ S.

In particular, the empty set is contained in S, as S 	= ∅. A set system M
satisfying axiom (A) is called an accessible set system. Any independence
system is an accessible set system, but axiom (A) is a much weaker condition
than the requirement of being closed under inclusion. Given an accessible
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set system M and a weight function w : E → R, we consider the following
optimization problem:

(BMAX) determine max
{
w(B) :B is a basis of M

}
.

This generalizes the corresponding problem for independence systems. We
also need to modify the greedy algorithm 5.1.1 so that it applies to accessible
set systems.7 This can be done as follows.

Algorithm 5.6.1 Let M = (E,S) be an accessible set system with a weight
function w :E →R.

Procedure GREEDY(E,S,w;T )

(1) T ←∅; X ←E;
(2) while there exists x ∈X with T ∪ {x} ∈ S do
(3) choose some x ∈X with T ∪ {x} ∈ S and

w(x)≥w(y) for all y ∈X with T ∪ {y} ∈ S;
(4) T ← T ∪ {x}; X ←X \ {x}
(5) od

Of course, we want to characterize those accessible set systems for which
Algorithm 5.6.1 always finds an optimal solution for (BMAX). Before describ-
ing this result, we consider a special class of accessible set systems introduced
by Korte and Lovász [KorLo81].

An accessible set system M satisfying the exchange axiom (2) of Theo-
rem 5.2.1 is called a greedoid . Greedoids have been studied intensively because
many interesting objects in combinatorics and optimization are greedoids. In
particular, the so-called antimatroids are greedoids. Antimatroids constitute
a combinatorial abstraction of the notion of convexity; they play an impor-
tant role in convexity, partially ordered sets, and graph theory. Greedoids
occur as well in the context of matchings and of Gauß elimination. We will
not go into detail here, but recommend that the reader consult the exten-
sive survey [BjoZi92] or the monograph [KorLS91]. Unfortunately, the greedy
algorithm does not find an optimal solution of (BMAX) for all greedoids.8

However, Korte and Lovász were able to characterize those greedoids for

7Note that it does not make sense to apply the original version of the greedy algorithm if

S is not closed under inclusion: in this case, it might happen that an element x cannot be

added to the feasible set T constructed so far, because T ∪{x} is not feasible; nevertheless,

it might be permissible to add x at some later point to the set T ′ = T ∪A. If w(x)>w(y) for

some y ∈A, the original greedy algorithm 5.1.1 would fail in this situation, as the element

x would already have been dismissed. To avoid this, we simply keep the strategy of always

selecting the largest available element; all that is required is a different formulation.

8Characterizing greedoids in terms of the greedy algorithm requires the use of certain

non-linear objective functions; see [KorLS91].
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which the greedy algorithm works. There is a simpler characterization due to
Bryant and Brooksbank [BruBr92], which uses the following strong exchange
axiom. We note that this condition holds for every matroid, but not for all
greedoids.

(SE) For J,K ∈ S with |J |= |K|+1, there always exists some a ∈ J \K such
that K ∪ {a} and J \ {a} are in S.

Result 5.6.2 Let M = (E,S) be a greedoid. Then the greedy algorithm 5.6.1
finds an optimal solution of (BMAX) for all weight functions w : E → R if
and only if M satisfies axiom (SE).

We need some further preparations to be able to formulate the charac-
terization of those accessible set systems M = (E,S) for which the greedy
algorithm computes an optimal solution. Given a feasible set A, we write

ext(A) :=
{
x ∈E \A :A∪ {x} ∈ S

}
.

Now there are some situations where the greedy algorithm does not even
construct a basis, but stops with some feasible set which is not maximal.
This happens if there exists a basis B with a proper feasible subset A⊂ B
such that ext(A) = ∅. In this case, we may define a weight function w by

w(x) :=

⎧
⎨

⎩

2 for x ∈A,
1 for x ∈B \A,
0 otherwise;

then the greedy algorithm constructs A, but cannot extend A to the optimal
basis B. The accessibility axiom (A) is too weak to prevent such situations:
it merely ensures that a basis B can be obtained somehow by adding single
elements successively to the empty set, but not necessarily by adding ele-
ments to a given feasible subset of B. To avoid this, we require the following
extensibility axiom:

(E) For every basis B and every feasible subset A ⊂ B with A 	= B, there
exists some x ∈B \A with A∪ {x} ∈ S.

Note that this axiom is satisfied for all greedoids. We need one more definition.
For any set system M = (E,S), define

S := {X ⊆E : there is A ∈ S with X ⊆A},

and call M := (E,S) the hereditary closure of M . Now we require the follow-
ing closure congruence axiom:

(CC) For every feasible set A, for all x, y ∈ ext(A), and for each subset X ⊆
E \ (A∪ ext(A)), A∪X ∪ {x} ∈ S implies A∪X ∪ {y} ∈ S.
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Exercise 5.6.3 Show that an accessible set system M = (E,S) for which
the greedy algorithm works correctly has to satisfy axiom (CC).

One may show that axiom (CC) is independent of the exchange axiom,
even if we only consider accessible set systems satisfying the extensibility
axiom. In fact, there are greedoids not satisfying (CC); on the other hand,
independence systems always satisfy (CC), because the only choice for X is
X = ∅. We need one final axiom:

(ME) The hereditary closure M of M is a matroid.

(ME) is called the matroid embedding axiom. Now we can state the following
characterization due to Helman, Mont and Shapiro [HelMS93]:

Result 5.6.4 Let M = (E,S) be an accessible set system. Then the following
statements are equivalent:

(1) M satisfies axioms (E), (CC) and (ME).
(2) For every weight function w : E → R, the optimal solutions of (BMAX)

are precisely those bases of M which are found by the greedy algo-
rithm 5.6.1 (given an appropriate order of the elements of equal weight).

(3) For every weight function w :E →R, the greedy algorithm 5.6.1 yields an
optimal solution of (BMAX).

The reader might try to fill in the missing parts of the proof; this is a more
demanding exercise, but can be done using the methods we have presented.
Alternatively, we recommend a look at the original paper [HelMS93], which
contains some further interesting results. In particular, the authors consider
bottleneck problems, that is, problems of the form

(BNP) Maximize min
{
w(x) : x ∈B

}
over all bases B of M

for a given weight function w : E → R. The greedy algorithm constructs an
optimal solution for (BNP) in the situation of Result 5.6.4. In fact, this
holds even under considerably weaker conditions. We need one further axiom,
namely the strong extensibility axiom:

(SE) For every basis B and each feasible set A with |A|< |B|, there exists
x ∈B \A with A∪ {x} ∈ S.

Then the following characterization holds [HelMS93]:

Result 5.6.5 Let M = (E,S) be an accessible set system. The greedy algo-
rithm 5.6.1 constructs an optimal solution for (BNP) for all weight functions
w :E →R if and only if M satisfies axiom (SE).

For partially ordered set systems, the greedy algorithm was studied by
Faigle [Fai79] who obtained characterizations analogous to Results 5.6.4
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and 5.6.5. Further characterizations of related structures by the greedy algo-
rithm (or appropriately modified versions) can be found in [Fai85], [Goe88],
and [BoyFa90], where ordered languages, greedoids of Gauß elimination, and
antimatroids are studied, respectively. There are further important general-
ization of the notion of a matroid such as oriented matroids. We will not con-
sider these structures here, but refer the reader to the monographs [BacKe92]
and [BjoLSW92].



Chapter 6
Flows

What need you flow so fast?
Anonymous

In this chapter, we investigate flows in networks: How much can be trans-
ported in a network from a source s to a sink t if the capacities of the
connections are given? Such a network might model a system of pipelines, a
water supply system, or a system of roads. With its many applications, the
theory of flows is one of the most important parts of combinatorial optimiza-
tion. In Chap. 7 we will encounter several applications of the theory of flows
within combinatorics, and flows and related notions will appear again and
again throughout the book. The once standard reference, Flows in Networks
by Ford and Fulkerson [ForFu62], is still worth reading; an extensive, more
recent treatment is provided in [AhuMO93].

6.1 The Theorems of Ford and Fulkerson

In this chapter, we study networks of the following special kind. Let
G= (V,E) be a digraph, and let c : E → R

+
0 be a mapping; the value c(e)

will be called the capacity of the edge e. Moreover, let s and t be two special
vertices of G such that t is accessible from s.1 Then N = (G,c, s, t) is called
a flow network with source s and sink t. An admissible flow or, for short, a
flow on N is a mapping f :E →R

+
0 satisfying the following two conditions:

(F1) 0≤ f(e)≤ c(e) for each edge e;
(F2)

∑
e+=v f(e) =

∑
e−=v f(e) for each vertex v �= s, t, where e− and e+

denote the start and end vertex of e, respectively.

Thus the feasibility condition (F1) requires that each edge carries a nonneg-
ative amount of flow which may not exceed the capacity of the edge, and

1Some authors require in addition din(s) = dout(t) = 0. We do not need this condition here;
it would also be inconvenient for our investigation of symmetric networks and the network
synthesis problem in Chap. 12.
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the flow conservation condition (F2) means that flows are preserved: at each

vertex, except for the source and the sink, the amount that flows in also flows

out. It is intuitively clear that the total flow coming out of s should be the

same as the total flow going into t; let us provide a formal proof.

Lemma 6.1.1 Let N = (G,c, s, t) be a flow network with flow f . Then

∑

e−=s

f(e)−
∑

e+=s

f(e) =
∑

e+=t

f(e)−
∑

e−=t

f(e). (6.1)

Proof Trivially,

∑

e−=s

f(e) +
∑

e−=t

f(e) +
∑

v �=s,t

∑

e−=v

f(e)f(e)

=
∑

e

=
∑

e+=s

f(e) +
∑

e+=t

f(e) +
∑

v �=s,t

∑

e+=v

f(e).

Now the assertion follows immediately from (F2). �

The quantity in equation (6.1) is called the value of f ; it is denoted

by w(f). A flow f is said to be maximal if w(f) ≥ w(f ′) holds for every

flow f ′ on N . The main problem studied in the theory of flows is the deter-

mination of a maximal flow in a given network. Note that, a priori, it is not

entirely obvious that maximal flows always exist; however, we will soon see

that this is indeed the case.

Let us first establish an upper bound for the value of an arbitrary flow.

We need some definitions. Let N = (G,c, s, t) be a flow network. A cut of N

is a partition V = S
.
∪ T of the vertex set V of G into two disjoint sets S

and T with s ∈ S and t ∈ T ; thus cuts in flow networks constitute a special

case of the cuts of |G| introduced in Sect. 4.3. The capacity of a cut (S,T ) is

defined as

c(S,T ) =
∑

e−∈S,e+∈T

c(e);

thus it is just the sum of the capacities of all those edges e in the corresponding

cocycle E(S,T ) which are oriented from S to T . The cut (S,T ) is said to be

minimal if c(S,T )≤ c(S′, T ′) holds for every cut (S′, T ′). An edge e is called

saturated if f(e) = c(e), and void if f(e) = 0.

The following lemma shows that the capacity of a minimal cut gives the

desired upper bound on the value of a flow; moreover, we can also characterize

the case of equality in this bound.
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Lemma 6.1.2 Let N = (G,c, s, t) be a flow network, (S,T ) a cut, and f a
flow. Then

w(f) =
∑

e−∈S,e+∈T

f(e)−
∑

e+∈S,e−∈T

f(e). (6.2)

In particular, w(f) ≤ c(S,T ); equality holds if and only if each edge e with
e− ∈ S and e+ ∈ T is saturated, whereas each edge e with e− ∈ T and e+ ∈ S
is void.

Proof Summing equation (F2) over all v ∈ S gives

w(f) =
∑

v∈S

( ∑

e−=v

f(e)−
∑

e+=v

f(e)

)

=
∑

e−∈S,e+∈S

f(e) +
∑

e−∈S,e+∈T

f(e)−
∑

e+∈S,e−∈S

f(e)−
∑

e+∈S,e−∈T

f(e).

Note that the first and third terms cancel. Moreover, f(e)≤ c(e) for all edges
e with e− ∈ S and e+ ∈ T , and f(e) ≥ 0 for all edges e with e+ ∈ S and
e− ∈ T . This implies the desired inequality and also the assertion on the case
of equality. �

The main result of this section states that the maximal value of a flow
always equals the minimal capacity of a cut. But first we characterize the
maximal flows. We need a further definition. Let f be a flow in the network
N = (G,c, s, t). A path W from s to t is called an augmenting path with re-
spect to f if f(e)< c(e) holds for every forward edge e ∈W , whereas f(e)> 0
for every backward edge e ∈W . The following three fundamental theorems
are due to Ford and Fulkerson [ForFu56].

Theorem 6.1.3 (Augmenting path theorem) A flow f on a flow network
N = (G,c, s, t) is maximal if and only if there are no augmenting paths with
respect to f .

Proof First let f be a maximal flow. Suppose there is an augmenting path W .
Let d be the minimum of all values c(e)−f(e) (taken over all forward edges e
in W ) and all values f(e) (taken over the backward edges in W ). Then d > 0,
by definition of an augmenting path. Now we define a mapping f ′ :E →R

+
0

as follows:

f ′(e) =

⎧
⎨

⎩

f(e) + d if e is a forward edge in W,

f(e)− d if e is a backward edge in W,

f(e) otherwise.

It is easily checked that f ′ is a flow on N with value w(f ′) =w(f)+d > w(f),
contradicting the maximality of f .
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Conversely, suppose there are no augmenting paths in N with respect to f .
Let S be the set of all vertices v such that there exists an augmenting path
from s to v (including s itself), and put T = V \S. By hypothesis, (S,T ) is a
cut of N . Note that each edge e= uv with e− = u ∈ S and e+ = v ∈ T has to
be saturated: otherwise, it could be appended to an augmenting path from
s to u to reach the point v ∈ T , a contradiction. Similarly, each edge e with
e− ∈ T and e+ ∈ S has to be void. Then Lemma 6.1.2 gives w(f) = c(S,T ),
so that f is maximal. �

Let us note the following useful characterization of maximal flows con-
tained in the preceding proof:

Corollary 6.1.4 Let f be a flow on a flow network N = (G,c, s, t), denote
by Sf the set of all vertices accessible from s on an augmenting path with
respect to f , and put Tf = V \ Sf . Then f is a maximal flow if and only if
t ∈ Tf . In this case, (Sf , Tf ) is a minimal cut: w(f) = c(Sf , Tf ).

Theorem 6.1.5 (Integral flow theorem) Let N = (G,c, s, t) be a flow network
where all capacities c(e) are integers. Then there is a maximal flow on N such
that all values f(e) are integral.

Proof By setting f0(e) = 0 for all e, we obtain an integral flow f0 on N with
value 0. If this trivial flow is not maximal, then there exists an augmenting
path with respect to f0. In that case the number d appearing in the proof
of Theorem 6.1.3 is a positive integer, and we can construct an integral flow
f1 of value d as in the proof of Theorem 6.1.3. We continue in the same
manner. As the value of the flow is increased in each step by a positive
integer and as the capacity of any cut is an upper bound on the value of the
flow (by Lemma 6.1.2), after a finite number of steps we reach an integral
flow f for which no augmenting path exists. By Theorem 6.1.3, this flow f is
maximal. �

Theorem 6.1.6 (Max-flow min-cut theorem) The maximal value of a flow
on a flow network N is equal to the minimal capacity of a cut for N .

Proof If all capacities are integers, the assertion follows from Theorem 6.1.5
and Corollary 6.1.4. The case where all capacities are rational can be reduced
to the integral case by multiplying all numbers by their common denominator.
Then real-valued capacities may be treated using a continuity argument, since
the set of flows is a compact subset of R|E| and since w(f) is a continuous
function of f . A different, constructive proof for the real case is provided by
the theorem of Edmonds and Karp [EdmKa72], which we will treat in the
next section. �

Theorem 6.1.6 was obtained in [ForFu56] and, independently, in [EliFS56].
In practice, real capacities do not occur, as a computer can only represent
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(a finite number of) rational numbers anyway. From now on, we mostly re-
strict ourselves to integral flows. Sometimes we also allow networks on di-
rected multigraphs; this is not really more general, because parallel edges can
be replaced by a single edge whose capacity is the sum of the corresponding
capacities of the parallel edges.

The remainder of this chapter deals with several algorithms for finding
a maximal flow. The proof of Theorem 6.1.5 suggests the following rough
outline of such an algorithm:

(1) f(e)← 0 for all edges e;
(2) while there exists an augmenting path with respect to f do
(3) let W = (e1, . . . , ek) be an augmenting path from s to t;
(4) d←min({c(ei)− f(ei) : ei is a forward edge in W}

∪ {f(ei) : ei is a backward edge in W});
(5) f(ei)← f(ei) + d for each forward edge ei;
(6) f(ei)← f(ei)− d for each backward edge ei;
(7) od

Of course, we still have to specify a technique for finding augmenting paths.
We will apply a modified breadth first search (BFS), where edges may be used
regardless of their orientation as long as they satisfy the necessary condition
f(e) < c(e) or f(e) > 0. Note that we not only have to decide whether t is
accessible from s by an augmenting path, but we also need to find the value
for d and change the values f(e) accordingly. In view of these additional
requirements, it makes sense to use a labelling technique; moreover, this will
also allow us to find a minimal cut easily.

Algorithm 6.1.7 (Labelling algorithm of Ford and Fulkerson) Let N =
(G,c, s, t) be a flow network.

Procedure FORDFULK(N ;f,S,T )

(1) for e ∈E do f(e)← 0 od
(2) label s with (−,∞);
(3) for v ∈ V do u(v)← false; d(v)←∞ od
(4) repeat
(5) choose a vertex v which is labelled and satisfies u(v) = false;
(6) for e ∈ {e ∈E : e− = v} do
(7) if w = e+ is not labelled and f(e)< c(e) then
(8) d(w)←min{c(e)− f(e), d(v)}; label w with (v,+, d(w)) fi
(9) od

(10) for e ∈ {e ∈E : e+ = v} do
(11) if w = e− is not labelled and f(e)> 0 then
(12) d(w)←min{f(e), d(v)}; label w with (v,−, d(w)) fi
(13) od
(14) u(v)← true;
(15) if t is labelled
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(16) then let d be the last component of the label of t;
(17) w← t;
(18) while w �= s do
(19) find the first component v of the label of w;
(20) if the second component of the label of w is +
(21) then set f(e)← f(e) + d for e= vw
(22) else set f(e)← f(e)− d for e=wv
(23) fi
(24) w← v
(25) od
(26) delete all labels except for the label of s;
(27) for v ∈ V do d(v)←∞; u(v)← false od
(28) fi
(29) until u(v) = true for all vertices v which are labelled;
(30) let S be the set of vertices which are labelled and put T ← V \ S

Using the proofs we gave for Theorems 6.1.3 and 6.1.5, we immediately get
the following theorem due to Ford and Fulkerson [ForFu57].

Theorem 6.1.8 Let N be a network whose capacity function c takes only
integral (or rational) values. Then Algorithm 6.1.7 determines a maximal flow
f and a minimal cut (S,T ), so that w(f) = c(S,T ) holds.

Algorithm 6.1.7 may fail to terminate for irrational capacities, if the vertex
v in step (5) is chosen in an unfortunate way. An example for this phenomenon
(on a network with 10 vertices and 48 edges) can be found in [ForFu62], p. 21,
where the algorithm actually converges, but to a value which is only 1/4 of the
maximal possible flow value. The smallest network for which the algorithm
fails to terminate has only 6 vertices and 8 edges; see [Zwi95].

Moreover, while Algorithm 6.1.7 terminates in the important special case
of integer capacities, it is unfortunately not polynomial: the number of aug-
mentations does not only depend on |V | and |E|, but also on the capacities.
For example, if we use the paths

s a b e f t and

s d e b c t

alternately as augmenting paths for the network in Fig. 6.1 (which the algo-
rithm will do if vertex v in step (5) is chosen suitably), the value of the flow
will only be increased by 1 in each step, so that we need 2n iterations. Of
course, this can be avoided by choosing the paths appropriately; with

s a b c t and

s d e f t,
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Fig. 6.1 A flow network

we need only two iterations. In the next section, we will see that the aug-
menting paths can always be chosen efficiently. Then we shall also apply the
resulting algorithm to an example and show the computations in detail. We
close this section with some exercises.

Exercise 6.1.9 Let N = (G,c, s, t) be a flow network for which the vertex
capacities are likewise restricted: there is a further mapping d : V →R

+
0 , and

the flows f have to satisfy the additional restriction

(F3)
∑

e+=v f(e)≤ d(v) for v �= s, t.

For instance, we might consider an irrigation network where the vertices are
pumping stations with limited capacity. Reduce this problem to a problem
for an appropriate ordinary flow network and generalize Theorem 6.1.6 to
this situation; see [ForFu62], §1.11.

Exercise 6.1.10 How can the case of several sources and several sinks be
treated?

Exercise 6.1.11 Let N = (G,c, s, t) be a flow network, and assume that N
admits flows of value �= 0. Show that there exists at least one edge e in N
whose removal decreases the value of a maximal flow on N . An edge e is called
most vital if the removal of e decreases the maximal flow value as much as
possible. Is an edge of maximal capacity in a minimal cut necessarily most
vital?

Exercise 6.1.12 By Theorem 6.1.5, a flow network with integer capacities
always admits an integral maximal flow. Is it true that every maximal flow
has to be integral?

Exercise 6.1.13 Let f be a flow in a flow network N . The support of f is
supp f = {e ∈E : f(e) �= 0}. A flow f is called elementary if its support is a
path. The proof of Theorem 6.1.6 and the algorithm of Ford and Fulkerson
show that there exists a maximal flow which is the sum of elementary flows.
Can every maximal flow be represented by such a sum?

Exercise 6.1.14 Modify the process of labelling the vertices in Algo-
rithm 6.1.7 in such a way that the augmenting path chosen always has max-
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imal possible capacity (so that the value of the flow is always increased as
much as possible).

Hint: Use an appropriate variation of the algorithm of Dijkstra.

Exercise 6.1.15 Let N = (G,c, s, t) be a flow network, and assume that
both (S,T ) and (S′, T ′) are minimal cuts for N . Show that (S ∩ S′, T ∪ T ′)
and (S ∪ S′, T ∩ T ′) are likewise minimal cuts for N .

Exercise 6.1.16 Let f be any maximal flow. Show that the set Sf defined
in Corollary 6.1.4 is the intersection over all sets S for which (S,V \ S) is a
minimal cut. In particular, Sf does not depend on the choice of the maximal
flow f .

6.2 The Algorithm of Edmonds and Karp

As we have seen in the previous section, the labelling algorithm of Ford and
Fulkerson is, in general, not polynomial. We now consider a modification of
this algorithm due to Edmonds and Karp [EdmKa72] for which we can prove
a polynomial complexity, namely O(|V ||E|2). As we will see, it suffices if we
always use an augmenting path of shortest length—that is, having as few
edges as possible—for increasing the flow. To find such a path, we just make
step (5) in Algorithm 6.1.7 more specific: we require that the vertex v with
u(v) = false which was labelled first is chosen. Then the labelling process
proceeds as for a BFS; compare Algorithm 3.3.1. This principle for selecting
the vertex v is also easy to implement: we simply collect all labelled vertices in
a queue—that is, some vertex w is appended to the queue when it is labelled
in step (8) or (12). This simple modification is enough to prove the following
result.

Theorem 6.2.1 Replace step (5) in Algorithm 6.1.7 as follows:

(5′) among all vertices with u(v) = false, let v be the vertex which was
labelled first.

Then the resulting algorithm has complexity O(|V ||E|2).

Proof We have already noted that the flow f is always increased using an
augmenting path of shortest length, provided that we replace step (5) by (5′).
Let f0 be the flow of value 0 defined in step (1), and let f1, f2, f3, . . . be the
sequence of flows constructed subsequently. Denote the shortest length of
an augmenting path from s to v with respect to fk by xv(k). We begin by
proving the inequality

xv(k+ 1)≥ xv(k) for all k and v. (6.3)
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By way of contradiction, suppose that (6.3) is violated for some pair (v, k);
we may assume that xv(k + 1) is minimal among the xw(k + 1) for which
(6.3) does not hold. Consider the last edge e on a shortest augmenting path
from s to v with respect to fk+1. Suppose first that e is a forward edge, so
that e = uv for some vertex u; note that this requires fk+1(e) < c(e). Now
xv(k+1) = xu(k+1)+1, so that xu(k+1)≥ xu(k) by our choice of v. Hence
xv(k+1)≥ xu(k) + 1. On the other hand, fk(e) = c(e), as otherwise xv(k)≤
xu(k) + 1 and xv(k + 1)≥ xv(k), contradicting the choice of v. Therefore e
was as a backward edge when fk was changed to fk+1. As we have used
an augmenting path of shortest length for this change, we conclude xu(k) =
xv(k) + 1 and hence xv(k + 1)≥ xv(k) + 2, a contradiction. The case where
e is a backward edge can be treated in the same manner. Moreover, similar
arguments also yield the inequality

yv(k+ 1)≥ yv(k) for all k and v, (6.4)

where yv(k) denotes the length of a shortest augmenting path from v to t
with respect to fk.

When increasing the flow, the augmenting path always contains at least
one critical edge: the flow through this edge is either increased up to its
capacity or decreased to 0. Let e= uv be a critical edge in the augmenting
path with respect to fk; this path consists of xv(k) + yv(k) = xu(k) + yu(k)
edges. If e is used the next time in some augmenting path (with respect to
fh, say), it has to be used in the opposite direction: if e was a forward edge
for fk, it has to be a backward edge for fh, and vice versa.

Suppose that e was a forward edge for fk. Then xv(k) = xu(k) + 1 and
xu(h) = xv(h)+1. By (6.3) and (6.4), xv(h)≥ xv(k) and yu(h)≥ yu(k). Hence
we obtain

xu(h) + yu(h) = xv(h) + 1+ yu(h)≥ xv(k) + 1+ yu(k) = xu(k) + yu(k) + 2.

Thus the augmenting path with respect to fh is at least two edges longer
than the augmenting path with respect to fk. This also holds for the case
where e was a backward edge for fh; to see this, exchange the roles of u and
v in the preceding argument. Trivially, no augmenting path can contain more
than |V |−1 edges. Hence each edge can be critical at most (|V |+1)/2 times,
and thus the flow can be changed at most O(|V ||E|) times. (In particular,
this establishes that the algorithm has to terminate even if the capacities are
non-rational.) Each iteration—finding an augmenting path and updating the
flow—takes only O(|E|) steps, since each edge is treated at most three times:
twice during the labelling process and once when the flow is changed. This
implies the desired complexity bound of O(|V ||E|2). �

Remark 6.2.2 As the cardinality of E is between O(|V |) and O(|V |2), the
complexity of the algorithm of Edmonds and Karp lies between O(|V |3) for
sparse graphs (hence, in particular, for planar graphs) and O(|V |5) for dense
graphs.
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Fig. 6.2 A flow network

Examples for networks with n vertices and O(n2) edges for which the al-
gorithm of Edmonds and Karp actually needs O(n3) iterations may be found
in [Zad72, Zad73b]; thus the estimates used in the proof of Theorem 6.2.1 are
best possible. Of course, this by no means precludes the existence of more
efficient algorithms. One possible approach is to look for algorithms which
are not based on the use of augmenting paths; we will see examples for this
approach in Sects. 6.4 and 6.6 as well as in Chap. 11. Another idea is to com-
bine the iterations in a clever way into larger phases; for instance, it turns
out to be useful to consider all augmenting paths of a constant length in one
block; see Sects. 6.3 and 6.4. Not surprisingly, such techniques are not only
better but also more involved.

Example 6.2.3 We use the algorithm of Edmonds and Karp to determine a
maximal flow and a minimal cut in the network N given in Fig. 6.2. The
capacities are given there in parentheses; the numbers without parentheses
in the following figures always give the respective values of the flow. We
also state the labels which are assigned at the respective stage of the algo-
rithm; when examining the possible labellings coming from some vertex v
on forward edges (steps (6) through (9)) and on backward edges (steps (10)
through (13)), we consider the adjacent vertices in alphabetical order, so
that the course of the algorithm is uniquely determined. The augmenting
path used for the construction of the next flow is drawn bold.

We start with the zero flow f0, that is, w(f0) = 0. The vertices are labelled
in the order a, b, f, c, d, t as shown in Fig. 6.3; e is not labelled because t is
reached before e is considered. Figures 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10,
6.11, and 6.12 show how the algorithm proceeds. Note that the final aug-
menting path uses a backward edge, see Fig. 6.11. In Fig. 6.12, we have also
indicated the minimal cut (Sf , Tf ) associated with the maximal flow f = f9
according to Corollary 6.1.4.
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Fig. 6.3 w(f0) = 0

The alert reader will have noted that many labels were not changed from
one iteration to the next. As all the labels are deleted in step (26) of the
algorithm after each change of the flow, this means that we performed many
unnecessary calculations. It is possible to obtain algorithms of better com-
plexity by combining the changes of the flow into bigger phases. To do this,
a blocking flow is constructed in some appropriate auxiliary network. This
important approach will be treated in Sects. 6.3 and 6.4.

Exercise 6.2.4 Show that the flow network N = (G,c, s, t) in Fig. 6.2 admits
two distinct integral maximal flows. Decide whether or not N contains two
distinct minimal cuts. Hint: Recall Exercise 6.1.16.

We mention that Edmonds and Karp have also shown that the flow has to
be changed at most O(logw) times, where w is the maximal value of a flow
on N , if we always choose an augmenting path of maximal capacity. Even
though we do not know w a priori, the number of steps necessary for this
method is easy to estimate, as w is obviously bounded by

W =min

{ ∑

e−=s

c(e),
∑

e+=t

c(e)

}

.

Note that this approach does not yield a polynomial algorithm, since the
bound depends also on the capacities. Nevertheless, it can still be better for
concrete examples where W is small, as illustrated by the following exercise.

Exercise 6.2.5 Determine a maximal flow for the network of Fig. 6.2 by
always choosing an augmenting path of maximal capacity.
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Fig. 6.4 w(f1) = 2

Fig. 6.5 w(f2) = 3

Exercise 6.2.6 Apply the algorithm of Edmonds and Karp to the network
shown in Fig. 6.13 (which is taken from [PapSt82]).

It can be shown that it is theoretically possible to obtain a maximal flow in
a given network in at most |E| iterations, and that this may even be achieved
using augmenting paths which contain no backward edges; see [Law76, p. 119]
and Exercise 7.1.3. However, this result is of not of any practical interest, as
no algorithm is known which works with such paths only.

We conclude this section with three exercises showing that we can change
several capacities in a given network and find solutions for the corresponding
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Fig. 6.6 w(f3) = 10

Fig. 6.7 w(f4) = 17

new problem without too much effort, if we know a solution of the original

problem.

Exercise 6.2.7 Suppose we have determined a maximal flow for a flow net-

work N using the algorithm of Edmonds and Karp, and realize afterwards

that we used an incorrect capacity for some edge e. Discuss how we may use

the solution of the original problem to solve the corrected problem.
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Fig. 6.8 w(f5) = 19

Fig. 6.9 w(f6) = 20

Exercise 6.2.8 Change the capacity of the edge e = ac in the network of
Fig. 6.2 to c(e) = 8, and then to c(e) = 12. How do these modifications change
the value of a maximal flow? Give a maximal flow for each of these two cases.

Exercise 6.2.9 Change the network of Fig. 6.2 as follows. The capacities of
the edges ac and ad are increased to 12 and 16, respectively, and the edges
de and ct are removed. Determine a maximal flow for the new network.
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Fig. 6.10 w(f7) = 28

Fig. 6.11 w(f8) = 30

6.3 Auxiliary Networks and Phases

Let N = (G,c, s, t) be a flow network with a flow f . We define a further flow
network (G′, c′, s, t) as follows. G′ has the same vertex set as G. For each
edge e= uv of G with f(e)< c(e), there is an edge e′ = uv in G′ with c′(e′) =
c(e)− f(e); for each edge e= uv with f(e) �= 0, G′ contains an edge e′′ = vu
with c′(e′′) = f(e). One calls N ′(f) = (G′, c′, s, t) the auxiliary network with
respect to f .

Note that the labelling process in the algorithm of Ford and Fulkerson—
as given in steps (6) to (9) for forward edges and in steps (10) to (13) for
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Fig. 6.12 w(f9) = 31 = c(Sf , Tf )

Fig. 6.13 A network

backward edges—uses only those edges e of G for which G′ contains the edge
e′ or e′′, and a (possibly undirected) augmenting path W with respect to f in
G corresponds to a uniquely determined directed path W ′ from s to t in G′.
Moreover, the value of d computed in Algorithm 6.1.7 is just the capacity of
W ′ in N ′(f), as defined in Problem 4.5.3. Finally, augmenting f along W
corresponds to “adding” the elementary flow of value d on W ′ to f ; this will
be made more precise—and generalized—in Lemma 6.3.3 below.

In particular, we may use G′ to decide whether f is maximal and, if this
is not the case, to find an augmenting path. The next lemma should now be
clear: it is just a translation of Theorem 6.1.3.

Lemma 6.3.1 Let N = (G,c, s, t) be a flow network with a flow f , and let
N ′ be the corresponding auxiliary network. Then f is maximal if and only if
t is not accessible from s in G′.
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Fig. 6.14 Auxiliary network for Example 6.3.2

Example 6.3.2 Consider the flow f = f3 of Example 6.2.3; see Fig. 6.6. The
corresponding auxiliary network is given in Fig. 6.14.

We now show how one may use any flow in N ′—not just an elementary
flow as given by an augmenting path—to augment f when constructing a
maximal flow on N , and that maximal flows on N ′(f) actually correspond
to maximal flows on N . The following two results make these ideas precise.

Lemma 6.3.3 Let N = (G,c, s, t) be a flow network with a flow f , and let
N ′ be the corresponding auxiliary network. Moreover, let f ′ be a flow on N ′.
Then there exists a flow f ′′ of value w(f ′′) =w(f) +w(f ′) on N .

Proof For each edge e= uv of G, let e′ = uv and e′′ = vu. If e′ or e′′ is not
contained in N ′, we set f ′(e′) = 0 or f ′(e′′) = 0, respectively. We put f ′(e) =
f ′(e′)− f ′(e′′);2 then we may interpret f ′ as a (possibly non-admissible) flow
on N : f ′ satisfies condition (F2), but not necessarily (F1). Obviously, the
mapping f ′′ defined by

f ′′(e) = f(e) + f ′(e′
)
− f ′(e′′

)

also satisfies condition (F2). Now the definition of N ′ shows that the con-
ditions 0 ≤ f ′(e′) ≤ c(e)− f(e) and 0 ≤ f ′(e′′) ≤ f(e) hold for each edge e,
so that f ′′ satisfies (F1) as well. Thus f ′′ is a flow, and clearly w(f ′′) =
w(f) +w(f ′). �

2Note that the minus sign in front of f ′(e′′) is motivated by the fact that e′ and e′′ have
opposite orientation.
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Theorem 6.3.4 Let N = (G,c, s, t) be a flow network with a flow f , and let
N ′ be the corresponding auxiliary network. Denote the value of a maximal
flow on N and on N ′ by w and w′, respectively. Then w =w′ +w(f).

Proof By Lemma 6.3.3, w ≥ w′ +w(f). Now let g be a maximal flow on N
and define a flow g′ on N ′ as follows: for each edge e of G, set

g′
(
e′
)
= g(e)− f(e) if g(e)> f(e);

g′
(
e′′
)
= f(e)− g(e) if g(e)< f(e).

Note that e′ and e′′ really are edges of N ′ under the conditions given above
and that their capacities are large enough to ensure the validity of (F1). For
every other edge e∗ in N ′, put g′(e∗) = 0. It is easy to check that g′ is a flow
of value w(g′) =w(g)−w(f) on N ′. This shows w′ +w(f)≥w. �

Exercise 6.3.5 Give an alternative proof for Theorem 6.3.4 by proving that
the capacity c′(S,T ) of a cut (S,T ) in N ′ is equal to c(S,T )−w(f).

Remark 6.3.6 Note that the graph G′ may contain parallel edges even if G
itself—as we always assume—does not. This phenomenon occurs when G
contains antiparallel edges, say d = uv and e = vu. Then G′ contains the
parallel edges d′ and e′′ with capacities c′(d′) = c(d)−f(d) and c′(e′′) = f(e),
respectively, where d is not saturated and e is not void. For the validity of the
preceding proofs and the subsequent algorithms, it is important that parallel
edges of G′ are not identified (and their capacities not added). Indeed, if
we identified the edges d′ and e′′ above into a new edge e∗ with capacity
c′(e∗) = c(d)− f(d) + f(e), it would no longer be obvious how to distribute
a flow value f ′(e∗) when defining f ′′ in the proof of Lemma 6.3.3: we would
have to decide which part of f ′(e∗) should contribute to f ′′(d) (with a plus
sign) and which part to f ′′(e) (with a minus sign). Of course, it would always
be possible to arrange this in such a manner that a flow f ′′ satisfying the
feasibility condition (F1) arises, but this would require some unpleasant case
distinctions. For this reason, we allow G′ to contain parallel edges.3

However, when actually programming an algorithm using auxiliary net-
works, it might be worthwhile to identify parallel edges of G′ and add the
necessary case distinctions for distributing the flow on N ′ during the augmen-
tation step. In addition, one should also simplify things then by cancelling
flow on pairs of antiparallel edges in such a way that only one edge of such a
pair carries a non-zero flow.

We have seen that it is possible to find a maximal flow for our original
network N by finding appropriate flows in a series of auxiliary networks

3Alternatively, we could forbid G to contain antiparallel edges; this might be achieved, for
instance, by always subdividing one edge of an antiparallel pair.
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N1 =N ′(f0), N2 =N ′(f1), . . . Note that the labelling process in the algorithm
of Ford and Fulkerson amounts to constructing a new auxiliary network after
each augmentation of the flow. Thus constructing the auxiliary networks
explicitly cannot by itself result in a better algorithm; in order to achieve an
improvement, we need to construct several augmenting paths within the same
auxiliary network. We require a further definition. A flow f is called a blocking
flow if every augmenting path with respect to f has to contain a backward
edge. Trivially, any maximal flow is blocking as well. But the converse is false:
for example, the flow f8 of Example 6.2.3 displayed in Fig. 6.11 is blocking,
but not maximal.

There is yet another problem that needs to be addressed: the auxiliary
networks constructed so far are still too big and complex. Indeed, the auxiliary
network in Example 6.3.2 looks rather crowded. Hence we shall work with
appropriate sub-networks instead. The main idea of the algorithm of Dinic
[Din70] is to use not only an augmenting path of shortest length, but also
to keep an appropriate small network N ′′(f) basically unchanged—with just
minor modifications—until every further augmenting path has to have larger
length.

For better motivation, we return once more to the algorithm of Edmonds
and Karp. Making step (5) of Algorithm 6.1.7 more precise in step (5′) of
Theorem 6.2.1 ensures that the labelling process on the auxiliary network
N ′ =N ′(f) runs as a BFS on G′; thus the labelling process divides G′ into
levels or layers of vertices having the same distance to s; see Sect. 3.3. As we
are only interested in finding augmenting paths of shortest length, N ′ usually
contains a lot of superfluous information: we may omit

• all vertices v �= t with d(s, v)≥ d(s, t) together with all edges incident with
these vertices;

• all edges leading from some vertex in layer j to some vertex in a layer i≤ j.

The resulting network N ′′ =N ′′(f) = (G′′, c′′, s, t) is called the layered auxil-
iary network with respect to f .4 The name layered network comes from the
fact that G′′ is a layered digraph: the vertex set V of G′′ is the disjoint union
of subsets V0, . . . , Vk, and all edges of G′′ have the form uv with u ∈ Vi and
v ∈ Vi+1 for some index i.

Example 6.3.7 Consider the flow f = f3 in Example 6.2.3 and the corre-
sponding auxiliary network N ′ displayed in Fig. 6.14. The associated layered
auxiliary network N ′′ is shown in Fig. 6.15. Here the capacities are written
in parentheses; the other numbers are the values of a blocking flow g on N ′′

which arises from the three augmenting paths displayed in Figs. 6.6, 6.7,
and 6.8. Note that all three paths of length four in Example 6.2.3 can now

4Strictly speaking, both N ′ and N ′′ should probably only be called networks if t is ac-
cessible from s, that is, if f is not yet maximal—as this is part of the definition of flow
networks. But it is more convenient to be a bit lax here.
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Fig. 6.15 Layered auxiliary network

be seen in the considerably clearer network N ′′. Note that g is blocking but
not maximal: the sequence (s, a, d, e, c, f, t) determines an augmenting path
containing the backward edge ce.

We remark that even N ′′ might still contain superfluous elements, for
example vertices from which t is not accessible. But as such vertices cannot
be determined during the BFS used for constructing N ′′, we will not bother
to find and remove them.

Exercise 6.3.8 How could vertices v in N ′′ from which t is not accessible
be removed?

Exercise 6.3.9 Draw N ′ and N ′′ for the flow f7 displayed in Fig. 6.10 and
determine a blocking flow for N ′′.

We will treat two algorithms for determining maximal flows. Both algo-
rithms can take a given flow f , construct a blocking flow g in the correspond-
ing layered auxiliary network N ′′(f), and then use g to augment f . Note
that any flow f ′ of value w(f ′) on N ′′(f) may indeed be used to augment the
given flow f to a flow of value w(f)+w(f ′) on N : as N ′′(f) is a sub-network
of N ′, we may view g as a flow on N ′(f) by assigning value 0 to all edges
contained in N ′(f), but not in N ′′(f). Then we can indeed construct a flow
h on N from f and g as in Lemma 6.3.3.

Exercise 6.3.10 Show that Theorem 6.3.4 does not carry over to N ′′(f).

Thus we begin with some starting flow f0, usually the zero flow, construct a
blocking flow g0 in N ′′(f0), use this flow to augment f0 to a flow f1 of value
w(g0), construct a blocking flow g1 in N ′′(f1), and so on. The algorithm
terminates when we reach a flow fk for which the sink t is not accessible
from s in N ′′(fk). Then t is not accessible from s in N ′(fk) either; hence
fk is maximal, by Lemma 6.3.1. Each construction of a blocking flow gi,
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together with the subsequent augmentation of fi to fi+1, is called a phase
of the algorithm. We postpone the problem of determining blocking flows to
the next section. Now we derive an estimate for the number of phases needed
and write down an algorithm for constructing the layered auxiliary network.

Lemma 6.3.11 Let N = (G,c, s, t) be a flow network with a flow f , and let
N ′′(f) be the corresponding layered auxiliary network. Moreover, let g be a
blocking flow on N ′′(f), h the flow on N of value w(f) + w(g) constructed
from f and g as in Lemma 6.3.3, and N ′′(h) the layered auxiliary network
with respect to h. Then the distance from s to t in N ′′(h) is larger than
in N ′′(f).

Proof As noted before, we may view g as a flow on N ′ := N ′(f) and then
construct a flow h on N from f and g as in Lemma 6.3.3. It is not difficult
to see that N ′(h) is essentially—that is, up to identifying parallel edges—
the auxiliary network for N ′ with respect to g, so that N ′′(h) is the layered
auxiliary network for N ′ with respect to g.5 We will check this assertion for
just one of the possible cases and leave all other cases to the reader.

We shall check the case where the edge e= uv of G is not void for f and
where its antiparallel edge in N ′ is not void for g (which, of course, means
using e as a backward edge when augmenting f according to g). Let us also
assume that e is not saturated for f . Then N ′ contains the antiparallel edges
e′ = uv and e′′ = vu with capacities c′(e′) = c(e) − f(e) and c′(e′′) = f(e),
respectively. By our assumption, e′′ carries a flow of amount g(e′′). We may
assume that e′ is void for g, as there is no need to send flow through both edges
of an antiparallel pair. By the construction in Lemma 6.3.3, we obtain h(e) =
f(e)− g(e′′), so that N ′(h) contains the edge e′ = uv with capacity c(e)−
f(e) + g(e′′) (and also the antiparallel edge e′′ with capacity f(e) − g(e′′),
unless this value is 0). On the other hand, the auxiliary network N∗ of N ′

with respect to g contains the edge e′ = uv with capacity c′(e′) = c(e)− f(e),
since we have assumed g(e′) = 0. But N∗ also contains an edge parallel to e′

with capacity g(e′′), which arises as the antiparallel edge to the edge e′′ = vu
of N ′ carrying the flow g(e′′). Identifying these two parallel edges in N∗, we
obtain an edge uv in N∗ with capacity c∗(uv) = c(e)− f(e) + g(e′′), which
indeed agrees with the situation in N ′(h).

As g is a blocking flow on N ′′, there is no augmenting path from s to t
in N ′′ consisting of forward edges only. Hence each augmenting path in N ′

with respect to g has to contain a backward edge or one of those edges which
were omitted during the construction of N ′′. In both cases, the length of this
path must be larger than the distance from s to t in N ′′. Thus the distance
from s to t in the layered auxiliary network for N ′ with respect to g—that
is, in N ′′(h)—is indeed larger than the corresponding distance in N ′′. �

5The analogous claim for N ′′ =N ′′(f) instead of N ′(f) does not hold, as Exercise 6.3.13
will show.
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Corollary 6.3.12 Let N be a flow network. Then the construction of a max-
imal flow on N needs at most |V | − 1 phases.

Proof Let f0, f1, . . . , fk be the sequence of flows constructed during the al-
gorithm. Lemma 6.3.11 implies that the distance from s to t in N ′′(fk) is
at least k larger than that in N ′′(f0). Thus the number of phases can be at
most |V | − 1. �

Exercise 6.3.13 Let f be the flow f3 in Example 6.2.3 and g the blocking
flow on N ′′(f) in Example 6.3.7. Draw the layered auxiliary networks with
respect to g on N ′(f) and on N ′′(f). What does the flow h determined by f
and g on N look like? Convince yourself that N ′′(h) is indeed equal to the
layered auxiliary network with respect to g on N ′(f).

The following procedure for constructing the layered auxiliary network
N ′′ = N ′′(f) corresponds to the labelling process in the algorithm of Ford
and Fulkerson with step (5) replaced by (5′)—as in Theorem 6.2.1. During
the execution of the BFS, the procedure orders the vertices in layers and
omits superfluous vertices and edges, as described in the definition of N ′′. The
Boolean variable max is assigned the value true when f becomes maximal
(that is, when t is no longer accessible from s); otherwise, it has value false.
The variable d+ 1 gives the number of layers of N ′′.

Algorithm 6.3.14 Let N = (G,c, s, t) be a flow network with a flow f .

Procedure AUXNET(N,f ;N ′′,max, d)

(1) i← 0, V0 ←{s}, E′′ ←∅, V ′′ ← V0;
(2) repeat
(3) i← i+ 1, Vi ←∅;
(4) for v ∈ Vi−1 do
(5) for e ∈ {e ∈E : e− = v} do
(6) if u= e+ /∈ V ′′ and f(e)< c(e)
(7) then e′ ← vu, E′′ ←E′′ ∪ {e′}, Vi ← Vi ∪ {u},

c′′(e′)← c(e)− f(e) fi
(8) od
(9) for e ∈ {e ∈E : e+ = v} do
(10) if u= e− /∈ V ′′ and f(e) �= 0
(11) then e′′ ← vu, E′′ ←E′′ ∪ {e′′}, Vi ← Vi ∪ {u},

c′′(e′′)← f(e) fi
(12) od
(13) od
(14) if t ∈ Vi then remove all vertices v �= t together with all

edges e satisfying e+ = v from Vi fi
(15) V ′′ ← V ′′ ∪ Vi

(16) until t ∈ V ′′ or Vi = ∅;
(17) if t ∈ V ′′ then max ← false; d← i else max ← true fi
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We leave it to the reader to give a formal proof for the following lemma.

Lemma 6.3.15 Algorithm 6.3.14 constructs the layered auxiliary network
N ′′ =N ′′(f) = (G′′, c′′, s, t) on G′′ = (V ′′,E′′) with complexity O(|E|).

In the next section, we will provide two methods for constructing a blocking
flow g on N ′′. Let us assume for the moment that we already know such a
procedure BLOCKFLOW(N ′′;g). Then we want to use g for augmenting f .
The following procedure performs this task; it uses the construction given in
the proof of Lemma 6.3.3. Note that N ′′ never contains both e′ and e′′.

Algorithm 6.3.16 Let N = (G,c, s, t) be a given flow network with a flow
f , and suppose that we have already constructed N ′′ =N ′′(f) and a blocking
flow g.

Procedure AUGMENT(f, g;f)

(1) for e ∈E do
(2) if e′ ∈E′′ then f(e)← f(e) + g(e′) fi
(3) if e′′ ∈E′′ then f(e)← f(e)− g(e′′) fi
(4) od

We can now write down an algorithm for determining a maximal flow:

Algorithm 6.3.17 Let N = (G,c, s, t) be a flow network.

Procedure MAXFLOW(N ;f)

(1) for e ∈E do f(e)← 0 od
(2) repeat
(3) AUXNET(N,f ;N ′′,max, d);
(4) if max = false
(5) then BLOCKFLOW(N ′′;g); AUGMENT(f, g;f) fi
(6) until max = true

Remark 6.3.18 The only part which is still missing in Algorithm 6.3.17 is a
specific procedure BLOCKFLOW for determining a blocking flow g on N ′′.
Note that each phase of Algorithm 6.3.17 has complexity at least O(|E|),
because AUGMENT has this complexity. It is quite obvious that BLOCK-
FLOW will also have complexity at least O(|E|); in fact, the known algo-
rithms have even larger complexity. Let us denote the complexity of BLOCK-
FLOW by k(N). Then MAXFLOW has a complexity of O(|V |k(N)), since
there are at most O(|V |) phases, by Corollary 6.3.12.

Exercise 6.3.19 Modify Algorithm 6.3.17 in such a way that it finds a
minimal cut (S,T ) as well.
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6.4 Constructing Blocking Flows

In this section, we fill in the gap left in Algorithm 6.3.17 by presenting
two algorithms for constructing blocking flows. The first of these is due to
Dinic [Din70]. The Dinic algorithm constructs, starting with the zero flow,
augmenting paths of length d in the layered auxiliary network N ′′ (where
d + 1 denotes the number of layers) and uses them to change the flow g
until t is no longer accessible from s; then g is a blocking flow. Compared
to the algorithm of Edmonds and Karp, it has two advantages. First, using
N ′′ = N ′′(f) means that we consider only augmenting paths without any
backward edges in N ′, since a path containing a backward edge has length at
least d+2. Second, when we update the input data after an augmentation of
the current flow g on N ′′, we only have to decrease the capacities of the edges
contained in the respective augmenting path and omit vertices and edges that
are no longer needed. In particular, we do not have to do the entire labelling
process again.

Algorithm 6.4.1 Let N = (G,c, s, t) be a layered flow network with layers
V0, . . . , Vd, where all capacities are positive, and assume that t is accessible
from s in N .

Procedure BLOCKFLOW(N ;g)

(1) for e ∈E do g(e)← 0 od
(2) repeat
(3) v← t; a←∞;
(4) for i= d downto 1 do
(5) choose some edge ei = uv;
(6) a← min {c(ei), a}; v← u
(7) od
(8) for i= 1 to d do
(9) g(ei)← g(ei) + a; c(ei)← c(ei)− a;
(10) if c(ei) = 0 then omit ei from E fi
(11) od
(12) for i= 1 to d do
(13) for v ∈ Vi do
(14) if din(v) = 0
(15) then omit v and all edges e with e− = v fi
(16) od
(17) od
(18) until t /∈ Vd

Theorem 6.4.2 Algorithm 6.4.1 determines a blocking flow on N with com-
plexity O(|V ||E|).
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Proof By definition of a layered auxiliary network, each vertex is accessible
from s at the beginning of the algorithm. Thus there always exists an edge
ei with end vertex v which can be chosen in step (5), no matter which edges
ed, . . . , ei+1 were chosen before. Hence the algorithm constructs a directed
path P = (e1, . . . , ed) from s to t. At the end of the loop (4) to (7), the
variable a contains the capacity a of P , namely a= min {c(ei) : i= 1, . . . , d}.
In steps (8) to (11), the flow constructed so far (in the first iteration, the
zero flow) is increased by a units along P , and the capacities of the edges
e1, . . . , ed are decreased accordingly. Edges whose capacity is decreased to 0
cannot appear on any further augmenting path and are therefore discarded.
At the end of the loop (8) to (11), we have reached t and augmented the
flow g. Before executing a further iteration of (4) to (11), we have to check
whether t is still accessible from s. Even more, we need to ensure that every
vertex is still accessible from s in the modified layered network. This task is
performed by the loop (12) to (17). Using induction on i, one may show that
this loop removes exactly those vertices which are not accessible from s as
well as all edges beginning in these vertices. If t is still contained in N after
this loop has ended, we may augment g again so that we repeat the entire
process. Finally, the algorithm terminates after at most |E| iterations, since
at least one edge is removed during each augmentation; at the very latest,
t can no longer be in Vd when all the edges have been removed. Obviously,
each iteration (4) to (17) has complexity O(|V |); this gives the desired overall
complexity of O(|V ||E|). �

Using Remark 6.3.18, we immediately obtain the following result due to
Dinic.

Corollary 6.4.3 Assume that we use the procedure BLOCKFLOW of Al-
gorithm 6.4.1 in Algorithm 6.3.17. Then the resulting algorithm calculates a
maximal flow on a given flow network N with complexity O(|V |2|E|).

Note that the algorithm of Dinic has a complexity of O(|V |4) for dense
graphs, whereas the algorithm of Edmonds and Karp needs O(|V |5) steps
in this case. Using another, more involved, method for constructing blocking
flows, we may reduce the complexity to O(|V |3) for arbitrary graphs. But
first, let us work out an example for the algorithm of Dinic.

Example 6.4.4 Consider again the flow f = f3 in Example 6.2.3. The corre-
sponding layered auxiliary network N ′′ was displayed in Fig. 6.15. We apply
Algorithm 6.4.1 to N ′′. In step (5), let us always choose the edge uv for which
u is first in alphabetical order, so that the algorithm becomes deterministic.
Initially, it constructs the path s a c e t with capacity 7. The cor-
responding flow g1 is shown in Fig. 6.16; the numbers in parentheses give the
new capacities (which were changed when the flow was changed). The edge
et, which is drawn broken, is removed during this first iteration.
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Fig. 6.16 w(g1) = 7

Fig. 6.17 w(g2) = 9

In the second iteration, we obtain the path s a c f t in the
network of Fig. 6.16; it has capacity two. Figure 6.17 shows the new network
with the new flow g2. Note that the edge ac has been removed.

Finally, using the network in Fig. 6.17, the third iteration constructs the
path s b c f t with capacity one, and we obtain the flow g3 dis-
played in Fig. 6.18. During this iteration, the algorithm removes first the edge
sb, the vertex b, and the edge bc; then the vertex c, and the edges ce and cf ;
the vertex f , and the edge ft; and finally t itself; see Fig. 6.18. Hence g3 is a
blocking flow—actually, the blocking flow previously displayed in Fig. 6.15.

Exercise 6.4.5 Use Algorithm 6.4.1 to determine a blocking flow on the
layered network shown in Fig. 6.19 [SysDK83].

We now turn to a completely different method for constructing blocking
flows, which is due to Malhotra, Kumar and Mahaswari [MalKM78] and has
complexity O(|V |2). This algorithm does not use augmenting paths and tries
instead to push as big a flow as possible through the network. We need some
notation. Let N = (G,c, s, t) be a layered flow network. For each vertex v,
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Fig. 6.18 Blocking flow g3 with w(g3) = 10

Fig. 6.19 A layered network

the flow potential p(v) is defined by

p(v) =min

{ ∑

e−=v

c(e),
∑

e+=v

c(e)

}

;

thus p(v) is the maximal amount of flow which could possibly pass through v.
A vertex u is called a minimal vertex—and its flow potential the minimal
potential—if p(u)≤ p(v) holds for all vertices v.

Intuitively, it should be possible to construct a flow g of value w(g) = p(u)
by pushing the flow from u forward to t and pulling it back from u to s. This
is the main idea of the following algorithm for constructing a blocking flow
on N .

Algorithm 6.4.6 Let N = (G,c, s, t) be a layered flow network with layers
V1, . . . , Vd, where all capacities are positive.
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Procedure BLOCKMKM(N ;g)

(1) for e ∈E do g(e)← 0 od
(2) for v ∈ V do
(3) if v = t then p−(v)←∞ else p−(v)←

∑
e−=v c(e) fi

(4) if v = s then p+(v)←∞ else p+(v)←
∑

e+=v c(e) fi
(5) od
(6) repeat
(7) for v ∈ V do p(v)←min{p+(v), p−(v)} od
(8) choose a minimal vertex w;
(9) PUSH(w,p(w));

(10) PULL(w,p(w));
(11) while there exists v with p+(v) = 0 or p−(v) = 0 do
(12) for e ∈ {e ∈E : e− = v} do
(13) u← e+, p+(u)← p+(u)− c(e);
(14) remove e from E
(15) od
(16) for e ∈ {e ∈E : e+ = v} do
(17) u← e−, p−(u)← p−(u)− c(e);
(18) remove e from E
(19) od
(20) remove v from V
(21) od
(22) until s /∈ V or t /∈ V

Here, PUSH is the following procedure for pushing a flow of value p(w) to t:

Procedure PUSH(y, k)

(1) let Q be a queue with single element y;
(2) for u ∈ V do b(u)← 0 od
(3) b(y)← k;
(4) repeat
(5) remove the first element v from Q;
(6) while v �= t and b(v) �= 0 do
(7) choose an edge e= vu;
(8) m←min{c(e), b(v)};
(9) c(e)← c(e)−m; g(e)← g(e) +m;
(10) p+(u)← p+(u)−m; b(u)← b(u) +m;
(11) p−(v)← p−(v)−m; b(v)← b(v)−m;
(12) append u to Q;
(13) if c(e) = 0 then remove e from E fi
(14) od
(15) until Q= ∅

The procedure PULL for pulling a flow of value p(w) to s is defined in an
analogous manner; we leave this task to the reader.
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Theorem 6.4.7 Algorithm 6.4.6 constructs a blocking flow g on N with
complexity O(|V |2).

Proof We claim first that an edge e is removed from E only if there exists no
augmenting path containing e and consisting of forward edges only. This is
clear if e is removed in step (14) or (18): then either p+(v) = 0 or p−(v) = 0
(where e− = v or e+ = v, respectively) so that no augmenting path containing
v and consisting of forward edges only can exist. If e is removed in step
(13) during a call of the procedure PUSH, we have c(e) = 0 at this point;
because of step (9) in PUSH, this means that g(e) has reached its original
capacity c(e) so that e cannot be used any longer as a forward edge. A similar
argument applies if e is removed during a call of PULL. As each iteration
of BLOCKMKM removes edges and decreases capacities, an edge which can
no longer be used as a forward edge with respect to g when it is removed
cannot be used as a forward edge at a later point either. Hence, there cannot
exist any augmenting path consisting of forward edges only at the end of
BLOCKMKM, when s or t have been removed. This shows that g is blocking;
of course, it still remains to check that g is a flow in the first place.

We now show that g is indeed a flow, by using induction on the number
of iterations of the repeat-loop (6) to (22). Initially, g is the zero flow. Now
suppose that g is a flow at a certain point of the algorithm (after the i-th it-
eration, say). All vertices v which cannot be used any more—that is, vertices
into which no flow can enter or from which no flow can emerge any more—are
removed during the while-loop (11) to (21), together with all edges incident
with these vertices. During the next iteration—that is, after the flow poten-
tials have been brought up to date in step (7)—the algorithm chooses a vertex
w with minimal potential p(w); here p(w) �= 0, since otherwise w would have
been removed before during the while-loop. Next, we have to check that
the procedure PUSH(w,p(w)) really generates a flow of value p(w) from the
source w to the sink t. As Q is a queue, the vertices u in PUSH are treated
as in a BFS on the layers Vk, Vk+1, . . . , Vd, where w ∈ Vk. During the first
iteration of the repeat-loop of PUSH, we have v = w and b(v) = p(w); here
b(v) contains the value of the flow which has to flow out of v. During the
while-loop, the flow of value b(v) is distributed among the edges vu with
tail v. Note that the capacity of an edge vu is always used entirely, unless
b(v)< c(e). In step (9), the capacity of vu is reduced—in most cases, to 0, so
that vu will be removed in step (13)—and the value of the flow is increased
accordingly. Then we decrease the value b(v) of the flow which still has to
leave v via other edges accordingly in step (11), and increase b(u) accordingly
in step (10); also the flow potentials are updated by the appropriate amount.
In this way the required value of the flow b(v) is distributed among the ver-
tices of the next layer; as we chose w to be a vertex of minimal potential, we
always have b(v)≤ p(w)≤ p(v), and hence it is indeed possible to distribute
the flow. At the end of procedure PUSH, the flow of value p(w) has reached
t, since Vd = {t}. An analogous argument shows that the subsequent call of
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Fig. 6.20 w(g1) = 1

the procedure PULL(w,p(w)) yields a flow of value p(w) from the source s to
the sink w; of course, PULL performs the actual construction in the opposite
direction. We leave the details to the reader. Hence g will indeed be a flow
from s to t after both procedures have been called.

Each iteration of the repeat-loop of BLOCKMKM removes at least one
vertex, since the flow potential of the minimal vertex w is decreased to 0
during PUSH and PULL; hence the algorithm terminates after at most |V |−1
iterations. We now need an estimate for the number of operations involving
edges. Initializing p+ and p− in (3) and (4) takes O(|E|) steps altogether.
As an edge e can be removed only once, e appears at most once during the
for-loops (12) to (19) or in step (13) of PUSH or PULL. For each vertex v
treated during PUSH or PULL, there is at most one edge starting in v which
still has a capacity �= 0 left after it has been processed—that is, which has
not been removed. As PUSH and PULL are called at most |V | − 1 times
each, we need at most O(|V |2) steps for treating these special edges. But
O(|V |2) dominates O(|E|); hence the overall number of operations needed
for treating the edges is O(|V |2). It is easy to see that all other operations
of the algorithm need at most O(|V |2) steps as well, so that we obtain the
desired overall complexity of O(|V |2). �

The algorithm arising from Algorithm 6.3.17 by replacing BLOCKFLOW
with BLOCKMKM is called the MKM-algorithm. As explained in Re-
mark 6.3.18, Theorem 6.4.7 implies the following result.

Theorem 6.4.8 The MKM-algorithm constructs with complexity O(|V |3) a
maximal flow for a given flow network N .

Example 6.4.9 Consider again the layered auxiliary network of Exam-
ple 6.3.7. Here the flow potentials are as follows: p(s) = 31, p(a) = 15, p(b) = 1,
p(c) = 32, p(d) = 1, p(e) = 7, p(f) = 24, p(t) = 32. Let us choose b as mini-
mal vertex in step (8). After the first iteration, we have the flow g1 shown in
Fig. 6.20; the vertex b as well as the edges sb and bc have been removed. Next,
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Fig. 6.21 w(g2) = 2

Fig. 6.22 w(g3) = 8

we have flow potentials p(s) = 30, p(a) = 15, p(c) = 9, p(d) = 1, p(e) = 7,
p(f) = 23, p(t) = 31, so that d is the unique minimal vertex. After the second
iteration, we have constructed the flow g2 in Fig. 6.21; also, d, ad, and de
have been removed.

In the following iteration, p(s) = 29, p(a) = 9, p(c) = 9, p(e) = 6, p(f) = 23
and p(t) = 30. Hence the vertex e is minimal and we obtain the flow g3 shown
in Fig. 6.22; note that e, ce, and et have been removed.

Now the flow potentials are p(s) = 23, p(a) = 3, p(c) = 3, p(f) = 23, p(t) =
24. We select the minimal vertex a and construct the flow g4 in Fig. 6.23, a
blocking flow with value w(g4) = 11; all remaining elements of the network
have been removed. Note that g4 differsfrom the blocking flow constructed
in Example 6.4.4.

Exercise 6.4.10 Use Algorithm 6.4.6 to find a blocking flow for the layered
auxiliary network of Exercise 6.4.5.

We have now seen three classical algorithms for constructing maximal
flows. Note that these algorithms have quite different complexities for the
case of dense graphs, that is, for |E|=O(|V |2). As this case shows, the MKM-
algorithm is superior to the other two algorithms; however, it is clearly also
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Fig. 6.23 w(g4) = 11

considerably more involved. In Sect. 6.6, we will present a more recent algo-
rithm due to Goldberg and Tarjan which achieves an even better complexity;
moreover, it is quite intuitive and comparatively easy to implement. Before
doing so, we will consider a special class of flow networks in the next section.

6.5 Zero-One Flows

In this section, we concentrate on a special case occurring in many combi-
natorial applications of flow theory,6 namely integral flows which take the
values 0 and 1 only. In this special case, the complexity estimates we have
obtained so far can be improved considerably; it will suffice to use the algo-
rithm of Dinic for this purpose. We need some terminology. A 0-1-network
is a flow network N = (G,c, s, t) satisfying c(e) = 1 for all edges e. A flow f
on a network N is called a 0-1-flow if f takes values 0 and 1 only. We begin
with the following important lemma taken from [EveTa75].

Lemma 6.5.1 Let N = (G,c, s, t) be a 0-1-network. Then

d(s, t)≤ 2|V |√
M

, (6.5)

where M is the maximal value of a flow on N . If, in addition, each vertex v
of N except for s and t satisfies at least one of the two conditions din(v)≤ 1
and dout(v)≤ 1, then even

d(s, t)≤ 1 +
|V |
M

. (6.6)

6We will discuss a wealth of such applications in Chap. 7.
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Proof Write D = d(s, t), and let Vi be the set of all vertices v ∈ V with
d(s, v) = i, for i= 0, . . . ,D. Vertices with a larger distance to s might exist,
but play no role in our arguments; to simplify notation, we may assume that
there are no such vertices. Then

(Si, Ti) = (V0 ∪ V1 ∪ · · · ∪ Vi, Vi+1 ∪ · · · ∪ VD)

is a cut, for each i < D. As every edge e with e− ∈ Si and e+ ∈ Ti satisfies
e− ∈ Vi and e+ ∈ Vi+1 and as N is a 0-1-network, Lemma 6.1.2 implies

M ≤ c(Si, Ti)≤ |Vi| × |Vi+1| for i= 0, . . . ,D− 1.

Thus at least one of the two values |Vi| or |Vi+1| cannot be smaller than
√
M .

Hence at least half of the layers Vi contain
√
M or more vertices. This yields

D

√
M

2
≤ |V0|+ · · ·+ |VD| ≤ |V |,

and hence (6.5) holds. Now assume that N satisfies the additional condition
stated in the assertion. Then the flow through any given vertex cannot exceed
one, and we get the stronger inequality

M ≤ |Vi| for i= 1, . . . ,D− 1.

Now

M(D− 1)≤ |V1|+ · · ·+ |VD−1| ≤ |V |,

proving (6.6). �

Using estimates which are a little more accurate, (6.5) can be improved
to d(s, t)≤ |V |/

√
M . We will not need this improvement for the complexity

statements which we will establish later in this section; the reader might
derive the stronger bound as an exercise.

Lemma 6.5.2 Let N = (G,c, s, t) be a layered 0-1-network, and assume that
t is accessible from s in N . Then one can determine a blocking flow g on N
with complexity O(|E|).

Proof The reader may easily check that the following modification of Algo-
rithm 6.4.1 determines a blocking flow g on a given 0-1-network N .

Procedure BLOCK01FLOW(N,g)

(1) L←∅;
(2) for v ∈ V do ind(v)← 0 od
(3) for e ∈E do g(e)← 0; ind(e+)← ind(e+) + 1 od
(4) repeat
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(5) v← t;
(6) for i= d downto 1 do
(7) choose an edge e= uv and remove e from E;
(8) ind(v)← ind(v)− 1; g(e)← 1;
(9) if ind(v) = 0
(10) then append v to L;
(11) while L �= ∅ do
(12) remove the first vertex w from L;
(13) for {e ∈E : e− =w} do
(14) remove e from E; ind(e+)← ind(e+)− 1;
(15) if ind(e+) = 0 then append e+ to L fi
(16) od
(17) od
(18) fi
(19) v← u
(20) od
(21) until ind(t) = 0

Obviously, each edge e is treated—and then removed—at most once
during the repeat-loop in this procedure, so that the complexity of
BLOCK01FLOW is O(|E|). �

Theorem 6.5.3 Let N = (G,c, s, t) be a 0-1-network. Then the algorithm
of Dinic can be used to compute a maximal 0-1-flow on N with complexity
O(|V |2/3|E|).

Proof In view of Lemma 6.5.2, it suffices to show that the algorithm of
Dinic needs only O(|V |2/3) phases when it runs on a 0-1-network. Let us
denote the maximal value of a flow on N by M . As the value of the flow
is increased by at least 1 during each phase of the algorithm, the asser-
tion is trivial whenever M ≤ |V |2/3; thus we may suppose M > |V |2/3. Con-
sider the uniquely determined phase where the value of the flow is increased
to a value exceeding M − |V |2/3, and let f be the 0-1-flow on N which
the algorithm had constructed in the immediately preceding phase. Then
w(f)≤M − |V |2/3, and therefore the value M ′ of a maximal flow on N ′(f)
is given by M ′ =M −w(f)≥ |V |2/3, by Theorem 6.3.4. Obviously, N ′ is like-
wise a 0-1-network, so that the distance d(s, t) from s to t in N ′(f) satisfies
the inequality

d(s, t)≤ 2|V |√
M ′

≤ 2|V |2/3,

by Lemma 6.5.1. Now Lemma 6.3.11 guarantees that the distance between
s and t in the corresponding auxiliary network increases in each phase, and
hence the construction of f can have taken at most 2|V |2/3 phases. By our
choice of f , we reach a flow value exceeding M − |V |2/3 in the next phase,
so that at most |V |2/3 phases are necessary to increase the value of the flow
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step by step until it reaches M . Hence the number of phases is indeed at
most O(|V |2/3). �

In exactly the same manner, we get a further improvement of the com-
plexity provided that the 0-1-network N satisfies the additional condition of
Lemma 6.5.1 and hence the stronger inequality (6.6). Of course, this time
the threshold M used in the argument should be chosen as |V |1/2; also note
that the 0-1-network N ′(f) likewise satisfies the additional hypothesis in
Lemma 6.5.1. We leave the details to the reader and just state the final
result.

Theorem 6.5.4 Let N = (G,c, s, t) be a 0-1-network. If each vertex v �= s, t
of N satisfies at least one of the two conditions din(v) ≤ 1 and dout(v) ≤ 1,
then the algorithm of Dinic can be used to determine a maximal 0-1-flow on
N with complexity O(|V |1/2|E|).

We close this section with an example and two exercises outlining some
applications of 0-1-flows; they touch some very interesting questions which
we will study in considerably more detail later. We shall also present several
further applications of 0-1-flows in Chap. 7.

Example 6.5.5 Given a bipartite graph G= (S
.
∪ T,E), we seek a matching of

maximal cardinality in G; see Exercise 5.1.5. Let us show that this problem
is equivalent to finding a maximal 0-1-flow on an appropriate flow network.
We define a digraph H by adding two new vertices s and t to the vertex set
S∪T of G. The edges of H are all the sx for x ∈ S, all the xy for which {x, y}
is an edge of G with x ∈ S, and all the yt for y ∈ T . All edges are assigned
capacity 1. This defines a 0-1-network N .

Note that the edges {xi, yi} (i= 1, . . . , k) of an arbitrary matching of car-
dinality k for G induce a flow of value k on N : put f(e) = 1 for all edges
e= sxi, e= xiyi, and e= yit (for i= 1, . . . , k). Conversely, a 0-1-flow of value
k yields a matching consisting of k edges: select the k edges of the type xy
which actually carry a non-zero flow.

The problem transformation just described directly leads to an efficient
algorithm for determining maximal matchings in bipartite graphs: by The-
orem 6.5.4, a maximal 0-1-flow on N can be determined with complexity
O(|V |1/2|E|); thus the complexity is at most O(|V |5/2). More precisely, we
may use the following algorithm:7

7Note that backward edges may occur during the algorithm. This does not interfere with

the final solution, because c(sv) = c(wt) = 1 holds for all v and w, so that at most one edge

of the form vw incident with v or w, respectively, can carry a non-zero flow.
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Procedure MATCH(G;K)

(1) let s and t be two new vertices; V ′ ← S ∪ T ∪ {s, t};
(2) for e ∈E do if e= {x, y} with x ∈ S then e′ = xy fi od
(3) E′ ←{sx : x ∈ S} ∪ {e′ : e ∈E} ∪ {yt : y ∈ T};
(4) for e ∈E′ do c(e)← 1 od
(5) H ← (V ′,E′), N ← (H,c, s, t), K ←∅;
(6) MAXFLOW(N ;f);
(7) for e ∈E do if f(e′) = 1 then K ←K ∪ {e} fi od

Of course, in order to achieve the desired complexity O(|V |1/2|E|),
MAXFLOW in step (6) should be specified according to the results of the
present section, using BLOCK01FLOW in Algorithm 6.3.17.

The method for finding a maximal matching described in Example 6.5.5 is
basically due to Hopcroft and Karp [HopKa73], who used a rather different
presentation; later, it was noticed by Evan and Tarjan [EveTa75] that this
method may be viewed as a special case of the MAXFLOW-algorithm. We
will meet maximal matchings quite often in this book: the bipartite case will
be treated in Sect. 7.2, and the general case will be studied in Chaps. 13
and 14.

Exercise 6.5.6 A prom is attended by m girls and n boys. We want to
arrange a dance where as many couples as possible should participate, but
only couples who have known each other before are allowed. Formulate this
task as a graph theoretical problem.

Exercise 6.5.7 Let G= (S
.
∪ T,E) be a bipartite graph. Show that the set

system (S,S) defined by

S=
{
X ⊂ S: there exists a matching M with X =

{
e− : e ∈M

}}

is a matroid; here e− denotes that vertex incident with e which lies in S. Hint:
Use the interpretation via a network given in Exercise 6.5.5 for a constructive
proof of condition (3) in Theorem 5.2.1.

The result in Exercise 6.5.7 becomes even more interesting when seen in
contrast to the fact that the set M of all matchings does not form a matroid
on E; see Exercise 5.1.5.

6.6 The Algorithm of Goldberg and Tarjan

In this section, we present a rather different type of algorithm for finding
maximal flows. The algorithm in question is due to Goldberg and Tarjan
[GolTa88] and is probably the algorithm most widely used currently. Note
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that the three algorithms we have presented so far all construct a maximal
flow—usually starting with the zero flow—by augmenting the flow iteratively,
either along a single augmenting path or in phases where blocking flows in
appropriate auxiliary networks are determined.

The algorithm of Goldberg and Tarjan is based on a completely different
concept: it uses preflows. These are mappings for which flow excess is allowed:
the amount of flow entering a vertex may be larger than the amount of flow
leaving it. This preflow property is maintained throughout the algorithm; it is
only at the very end of the algorithm that the preflow becomes a flow—which
is then already maximal.

The main idea of the algorithm is to push flow from vertices with excess
flow toward the sink t, using paths which are not necessarily shortest paths
from s to t, but merely current estimates for such paths. Of course, it might
occur that excess flow cannot be pushed forward from some vertex‘v; in this
case, it has to be sent back to the source on a suitable path. The choice
of all these paths is controlled by a certain labelling function on the vertex
set. We will soon make all this precise. Altogether, the algorithm will be
quite intuitive and comparatively simple to analyze. Moreover, it needs a
complexity of only O(|V |3), without using any special tricks. By applying
more complicated data structures, it can even be made considerably faster,
as we have already noted at the end of Sect. 6.4.

Following [GolTa88], we define flows in this section in a formally different—
although, of course, equivalent—way; this notation was first introduced in the
Ph.D. thesis of Sleator [Sle80] and allows a considerably simpler presentation
of the algorithm.

First, it will be convenient to consider c and f also as functions from V ×V
to R. Thus we do not distinguish between f(e) and f(u, v), where e= uv is an
edge of G; we put f(u, v) = 0 whenever uv is not an edge of G; and similarly
for c. Then we drop the condition that flows have to be nonnegative, and
define a flow f : V × V →R by the following three requirements:

(1) f(v,w)≤ c(v,w) for all (v,w) ∈ V × V
(2) f(v,w) =−f(w,v) for all (v,w) ∈ V × V
(3)

∑
u∈V f(u, v) = 0 for all v ∈ V \ {s, t}.

The anti-symmetry condition (2) makes sure that only one of the two edges
in a pair vw and wv of antiparallel edges in G may carry a positive amount
of flow.8 Condition (2) also simplifies the formal description in one impor-
tant respect: we will not have to make a distinction between forward and
backward edges anymore. Moreover, the formulation of the flow conservation

8In view of condition (2) we have to assume that G is a symmetric digraph: if vw is an

edge, wv must also be an edge of G. As noted earlier, there is no need for positive amounts

of flow on two antiparallel edges: we could simply cancel flow whenever such a situation

occurs.



200 6 Flows

condition (3) is easier. The definition of the value of a flow becomes a little
easier, too:

w(f) =
∑

v∈V

f(v, t).

For an intuitive interpretation of flows in the new sense, the reader should
consider only the nonnegative part of the flow function: this part is a flow
as originally defined in Sect. 6.1. As an exercise, the reader is asked to use
the antisymmetry of f to check that condition (3) is equivalent to the earlier
condition (F2).

Now we define a preflow as a mapping f : V × V → R satisfying condi-
tions (1) and (2) above and the following weaker version of condition (3):

(3′)
∑

u∈V f(u, v)≥ 0 for all v ∈ V \ {s}.

Using the intuitive interpretation of flows, condition (3′) means that the
amount of flow entering a vertex v �= s no longer has to equal the amount
leaving v; it suffices if the in-flow is always at least as large as the out-flow.
The value

e(v) =
∑

u∈V

f(u, v)

is called the flow excess of the preflow f in v.
As mentioned before, the algorithm of Goldberg and Tarjan tries to push

flow excess from some vertex v with e(v)> 0 forward towards t. We first need
to specify which edges may be used for pushing flow. This amounts to defining
an auxiliary network, similar to the one used in the classical algorithms;
however, the algorithm itself does not involve an explicit construction of this
network. Given a preflow f , let us define the residual capacity rf : V ×V →R

as follows:

rf (v,w) = c(v,w)− f(v,w).

If an edge vw satisfies rf (v,w) > 0, we may move some flow through this
edge; such an edge is called a residual edge. In our intuitive interpretation,
this corresponds to two possible cases. Either the edge vw is a forward edge
which is not yet saturated: 0 ≤ f(v,w) < c(v,w); or it is a backward edge,
that is, the antiparallel edge wv is non-void: 0< f(w,v)≤ c(w,v), and hence
f(v,w) = −f(w,v) < 0 ≤ c(v,w). The residual graph with respect to f is
defined as

Gf = (V,Ef ), where Ef =
{
vw ∈E : rf (v,w)> 0

}
.

As the intuitive interpretation shows, Gf really corresponds to the auxiliary
network N ′(f) used in the classical algorithms. Now we may also introduce
the labelling function mentioned before. A mapping d : V → N0 ∪ {∞} is
called a valid labelling with respect to a given preflow f if the following two
conditions hold:
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(4) d(s) = |V | and d(t) = 0;
(5) d(v)≤ d(w) + 1 for all vw ∈Ef .

The algorithm of [GolTa88] starts with some suitable preflow and a corre-
sponding valid labelling. Usually, one saturates all edges emanating from s,
and puts d(s) = |V | and d(v) = 0 for all v ∈ V \{s}. More precisely, the initial
preflow is given by f(s, v) = −f(v, s) = c(s, v) for all v �= s and f(v,w) = 0
for all v,w �= s.

Then the algorithm executes a series of operations which we will specify
later. These operations change either the preflow f (by pushing the largest
possible amount of flow along a suitable residual edge) or the labelling d (by
raising the label of a suitable vertex); in both cases, the labelling will always
remain valid. As mentioned before, d is used to estimate shortest paths in the
corresponding residual graph; see Lemma 6.6.4. In particular, d(v) is always
a lower bound for the distance from v to t in Gf provided that d(v)< |V |;
and if d(v) ≥ |V |, then t is not accessible from v, and d(v)− |V | is a lower
bound for the distance from v to s in Gf . The algorithm terminates as soon
as the preflow has become a flow (which is then actually a maximal flow).

We need one more notion to be able to write down the algorithm in its
generic form. A vertex v is called active provided that v �= s, t; e(v)> 0; and
d(v)<∞.

Algorithm 6.6.1 Let N = (G,c, s, t) be a flow network on a symmetric
digraph, where c : V × V →R

+
0 ; that is, for (v,w) /∈E we have c(v,w) = 0.

Procedure GOLDBERG(N ;f)

(1) for (v,w) ∈ (V \ {s})× (V \ {s}) do f(v,w)← 0; rf (v,w)← c(v,w) od
(2) d(s)← |V |;
(3) for v ∈ V \ {s} do
(4) f(s, v)← c(s, v); rf (s, v)← 0;
(5) f(v, s)←−c(s, v); rf (v, s)← c(v, s) + c(s, v);
(6) d(v)← 0;
(7) e(v)← c(s, v)
(8) od
(9) while there exists an active vertex v do
(10) choose an active vertex v and execute an admissible operation
(11) od

In (10), any one of the following operations may be used, provided that it is
admissible:

Procedure PUSH(N,f, v,w;f)

(1) δ← min (e(v), rf (v,w));
(2) f(v,w)← f(v,w) + δ; f(w,v)← f(w,v)− δ;
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(3) rf (v,w)← rf (v,w)− δ; rf (w,v)← rf (w,v) + δ;
(4) e(v)← e(v)− δ; e(w)← e(w) + δ

Procedure RELABEL(N,f, v, d;d)

(1) d(v)←min{d(w) + 1 : rf (v,w)> 0}
Here the procedure PUSH(N,f, v,w;f) is admissible provided that v is active,
rf (v,w)> 0, and d(v) = d(w)+1; and the procedure RELABEL(N,f, v, d;d)
is admissible provided that v is active and rf (v,w) > 0 always implies
d(v)≤ d(w).9

We now look more closely at the conditions for admissibility. If we want
to push some flow along an edge vw, three conditions are required. Two of
these requirements are clear: the start vertex v has to be active, so that there
is positive flow excess e(v) available which we might move; and vw has to be
a residual edge, so that it has capacity left for additional flow. It is also not
surprising that we then push along vw as much flow as possible, namely the
smaller of the two amounts e(v) and rf (v,w).

The crucial requirement is the third one, namely d(v) = d(w)+1. Thus we
are only allowed to push along residual edges vw for which d(v) is exactly one
unit larger than d(w), that is, for which d(v) takes its maximum permissible
value; see (5) above. We may visualize this rule by thinking of water cascading
down a series of terraces of different height, with the height corresponding to
the labels. Obviously, water will flow down, and condition (5) has the effect
of restricting the layout of the terraces so that the water may flow down only
one level in each step.

Now assume that we are in an active vertex v—so that some water is
left which wants to flow out—and that none of the residual edges leaving
v satisfies the third requirement. In our watery analogy, v would be a sort
of local sink: v is locally on the lowest possible level, and thus the water is
trapped in v. It is precisely in such a situation that the RELABEL-operation
becomes admissible: we miraculously raise v to a level which is just one unit
higher than that of the lowest neighbor w of v in Gf ; then a PUSH becomes
permissible, that is, (some of) the water previously trapped in v can flow down
to w. Of course, these remarks in no way constitute a proof of correctness;
nevertheless, they might help to obtain a feeling for the strategy behind the
Goldberg-Tarjan algorithm.

Now we turn to the formal proof which proceeds via a series of auxiliary
results. This will allow us to show that Algorithm 6.6.1 constructs a maximal
flow on N in finitely many steps, no matter in which order we select the
active vertices and the admissible operations. This is in remarkable contrast
to the situation for the algorithm of Ford and Fulkerson; recall the discussion

9The minimum in (1) is defined to be ∞ if there does not exist any w with rf (v,w)> 0.
However, we will see that this case cannot occur.
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in Sect. 6.1. To get better estimates for the complexity, however, we will have
to specify appropriate strategies for the choices to be made.

We begin by showing that the algorithm is correct under the assumption
that it terminates at all. Afterwards, we will estimate the maximal number of
admissible operations executed during the while-loop and use this result to
show that the algorithm really is finite. Our first lemma is just a simple but
important observation; it states a result which we have already emphasized
in our informal discussion.

Lemma 6.6.2 Let f be a preflow on N , d a valid labelling on V with respect
to f , and v an active vertex. Then either a PUSH-operation or a RELABEL-
operation is admissible for v.

Proof As d is valid, we have d(v) ≤ d(w) + 1 for all w with rf (v,w) > 0. If
PUSH(v,w) is not admissible for any w, we must even have d(v)≤ d(w) for
all w with rf (v,w)> 0, as d takes only integer values. But then RELABEL
is admissible. �

Lemma 6.6.3 During the execution of Algorithm 6.6.1, f always is a preflow
and d always is a valid labelling (with respect to f ).

Proof We use induction on the number k of admissible operations already
executed. The assertion holds for the induction basis k = 0: obviously, f is
initialized as a preflow in steps (4) and (5); and the labelling d defined in (2)
and (6) is valid for f , since d(v) = 0 for v �= s and since all edges sv have
been saturated in step (4); also, the residual capacities and the flow excesses
are clearly initialized correctly in steps (4), (5), and (7).

For the induction step, suppose that the assertion holds after k operations
have been executed. Assume first that the next operation is a PUSH(v,w).
It is easy to check that f remains a preflow, and that the residual capacities
and the flow excesses are updated correctly. Note that the labels are kept
unchanged, and that vw and wv are the only edges for which f has changed.
Hence we only need to worry about these two edges in order to show that
d is still valid. By definition, vw ∈ Ef before the PUSH. Now vw might be
removed from the residual graph Gf (which happens if it is saturated by
the PUSH); but then the labelling stays valid trivially. Now consider the
antiparallel edge wv. If this edge already is in Gf , there is nothing to show.
Thus assume that wv is added to Gf by the PUSH; again, d stays valid, since
the admissibility conditions for the PUSH(v,w) require d(w) = d(v)− 1.

It remains to consider the case where the next operation is a RELABEL(v).
Then the admissibility requirement is d(v) ≤ d(w) for all vertices w with
rf (v,w) > 0. As d(v) is increased to the minimum of all the d(w) + 1, the
condition d(v)≤ d(w) + 1 holds for all w with rf (v,w)> 0 after this change;
all other labels remain unchanged, so that the new labelling d is still valid
for f . �
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Our next lemma is a simple but very useful observation. As mentioned be-
fore, the valid labelling d allows us to estimate distances in the corresponding
residual graph:

Lemma 6.6.4 Let f be a preflow on N , let d be a valid labelling with respect
to f , and let v and w be two vertices of N such that w is accessible from v
in the residual graph Gf . Then d(v)− d(w) is a lower bound for the distance
of v and w in Gf :

d(v)− d(w)≤ d(v,w).

Proof Let

P : v = v0 v1 · · · vk =w

be a shortest path from v to w in Gf . Since d is a valid labelling,

d(vi)≤ d(vi+1) + 1 for i= 0, . . . , k− 1.

As P has length k = d(v,w), we obtain the desired inequality. �

Corollary 6.6.5 Let f be a preflow on N and d a valid labelling with respect
to f . Then t is not accessible from s in the residual graph Gf .

Proof Assume otherwise. Then d(s)≤ d(t)+d(s, t), by Lemma 6.6.4. But this
contradicts d(s) = |V |, d(t) = 0, and d(s, t)≤ |V | − 1. �

Theorem 6.6.6 If Algorithm 6.6.1 terminates with all labels finite, then the
preflow f constructed is in fact a maximal flow on N .

Proof By Lemma 6.6.2, the algorithm can only terminate when there are
no more active vertices. As all labels are finite by hypothesis, e(v) = 0 has
to hold for each vertex v �= s, t; hence the preflow constructed by the final
operation is indeed a flow on N . By Corollary 6.6.5, there is no path from s
to t in Gf , so that there is no augmenting path from s to t with respect to f .
Now the assertion follows from Theorem 6.1.3. �

It remains to show that the algorithm indeed terminates and that the
labels stay finite throughout. We need several further lemmas.

Lemma 6.6.7 Let f be a preflow on N . If v is a vertex with positive flow
excess e(v), then s is accessible from v in Gf .

Proof We denote the set of vertices accessible from v in Gf (via a directed
path) by S, and put T := V \ S. Then f(u,w)≤ 0 for all vertices u,w with
u ∈ T and w ∈ S, since

0 = rf (w,u) = c(w,u)− f(w,u)≥ 0 + f(u,w).
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Using the antisymmetry of f again, we get

∑

w∈S

e(w) =
∑

u∈V,w∈S

f(u,w)

=
∑

u∈T,w∈S

f(u,w) +
∑

u,w∈S

f(u,w)

=
∑

u∈T,w∈S

f(u,w)≤ 0.

Now the definition of a preflow requires e(w)≥ 0 for all w �= s. But e(v)> 0,
and hence

∑
w∈S e(w)≤ 0 implies s ∈ S. �

Lemma 6.6.8 Throughout Algorithm 6.6.1, d(v)≤ 2|V | − 1 for all v ∈ V .

Proof Obviously, the assertion holds after the initialization phase in steps
(1) to (8). The label d(v) of a vertex v can only be changed by an opera-
tion RELABEL(v), and such an operation is admissible only if v is active.
In particular, v �= s, t, so that the claim is trivial for s and t; moreover,
e(v)> 0. By Lemma 6.6.7, s is accessible from v in the residual graph Gf .
Now Lemma 6.6.4 gives

d(v)≤ d(s) + d(v, s)≤ d(s) + |V | − 1 = 2|V | − 1. �

Lemma 6.6.9 During the execution of Algorithm 6.6.1, at most 2|V | − 1
RELABEL-operations occur for any given vertex v �= s, t. Hence the total
number of RELABEL-operations is at most (2|V | − 1)(|V | − 2)< 2|V |2.

Proof Each RELABEL(v) increases d(v). Since d(v) is bounded by 2|V | − 1
throughout the entire algorithm (see Lemma 6.6.8), the assertion follows. �

It is more difficult to estimate the number of PUSH-operations. We need
to distinguish two cases: a PUSH(v,w) will be called a saturating PUSH
if rf (v,w) = 0 holds afterwards (that is, for δ = rf (v,w) in step (1) of the
PUSH), and a non-saturating PUSH otherwise.

Lemma 6.6.10 During the execution of Algorithm 6.6.1, fewer than |V ||E|
saturating PUSH-operations occur.

Proof By definition, any PUSH(v,w) requires vw ∈Ef and d(v) = d(w) + 1.
If the PUSH is saturating, a further PUSH(v,w) can only occur after an
intermediate PUSH(w,v), since we have rf (v,w) = 0 after the saturating
PUSH(v,w). Note that no PUSH(w,v) is admissible before the labels have
been changed in such a way that d(w) = d(v)+1 holds; hence d(w) must have
been increased by at least 2 units before the PUSH(w,v). Similarly, no further



206 6 Flows

PUSH(v,w) can become admissible before d(v) has also been increased by
at least 2 units. In particular, d(v) + d(w) has to increase by at least 4 units
between any two consecutive saturating PUSH(v,w)-operations.

On the other hand, d(v)+d(w)≥ 1 holds as soon as the first PUSH from v
to w or from w to v is executed. Moreover, d(v), d(w)≤ 2|V | − 1 throughout
the algorithm, by Lemma 6.6.8; hence d(v) + d(w) ≤ 4|V | − 2 holds when
the last PUSH-operation involving v and w occurs. Therefore there are at
most |V | − 1 saturating PUSH(v,w)-operations, so that the total number of
saturating PUSH-operations cannot exceed (|V | − 1)|E|. �

Lemma 6.6.11 During the execution of Algorithm 6.6.1, there are at most
2|V |2|E| non-saturating PUSH-operations.

Proof Let us introduce the potential

Φ=
∑

v active

d(v)

and investigate its development during the course of Algorithm 6.6.1. After
the initialization phase, Φ= 0; and at the end of the algorithm, we have Φ= 0
again.

Note that any non-saturating PUSH(v,w) decreases Φ by at least one
unit: because rf (v,w) > e(v), the vertex v becomes inactive so that Φ is
decreased by d(v) units; and even if the vertex w has become active due to
the PUSH, Φ is increased again by only d(w) = d(v)− 1 units, as the PUSH
must have been admissible. Similarly, any saturating PUSH(v,w) increases10

Φ by at most 2|V |−1, since the label of the vertex w—which might again have
become active due to this PUSH—satisfies d(w)≤ 2|V | − 1, by Lemma 6.6.8.

Let us put together what these observations imply for the entire algorithm.
The saturating PUSH-operations increase Φ by at most (2|V |−1)|V ||E| units
altogether, by Lemma 6.6.10; and the RELABEL-operations increase Φ by at
most (2|V | − 1)(|V | − 2) units, by Lemma 6.6.8. Clearly, the value by which
Φ is increased over the entire algorithm must be the same as the value by
which it is decreased again. As this happens for the non-saturating PUSH-
operations, we obtain an upper bound of (2|V | − 1)(|V ||E| + |V | − 2) for
the total number of non-saturating PUSH-operations. Now the bound in the
assertion follows easily, using that G is connected. �

The preceding lemmas combine to give the desired result:

Theorem 6.6.12 Algorithm 6.6.1 terminates after at most O(|V |2|E|) ad-
missible operations (with a maximal flow).

10Note that a saturating PUSH may actually even decrease Φ.
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Exercise 6.6.13 Let f be a maximal flow on a flow network N with n
vertices which has been obtained from Algorithm 6.6.1, and let d be the
associated valid labelling. Show the existence of some i with 1 ≤ i ≤ n − 1
such that S = {v ∈ V : d(v)> i} and T = {w ∈ V : d(w)< i} form a minimal
cut.

The precise complexity of Algorithm 6.6.1 depends both on the way the
admissible operations are implemented and on the order in which they are
applied in the while-loop. In any case, the running time will be polynomial.
We shall treat two variants which lead to particularly good results; they
differ only in the manner in which they select the active vertex in step (10).
Both variants use the obvious strategy not to change the active vertex v
unnecessarily, but to stick with v until

• either e(v) = 0,
• or all edges incident with v have already been used for a PUSH(v,w), as
far as this is possible, and a RELABEL(v) has occurred afterwards.

To implement this strategy, we use incidence lists. For each vertex v, there
always is a distinguished current edge in its incidence list Av (which may be
implemented via a pointer). Initially, this edge is just the first edge of Av; thus
we assume Av to have a fixed order. In the following algorithm, the active
vertices are selected according to the rule first in first out—which explains
its name.

Algorithm 6.6.14 (FIFO preflow push algorithm) Let N = (G,c, s, t) be a
flow network, where G is a symmetric digraph given by incidence lists Av.
Moreover, Q denotes a queue and rel a Boolean variable.

Procedure FIFOFLOW(N ;f)

(1) for (v,w) ∈ (V \ {s})× (V \ {s}) do f(v,w)← 0; rf (v,w)← c(v,w) od
(2) d(s)← |V |; Q←∅;
(3) for v ∈ V \ {s} do
(4) f(s, v)← c(s, v); rf (s, v)← 0;
(5) f(v, s)←−c(s, v); rf (v, s)← c(v, s) + c(s, v);
(6) d(v)← 0; e(v)← c(s, v);
(7) make the first edge in Av the current edge;
(8) if e(v)> 0 and v �= t then append v to Q fi
(9) od
(10) while Q �= ∅ do
(11) remove the first vertex v from Q; rel ← false;
(12) repeat
(13) let vw be the current edge in Av ;
(14) if rf (v,w)> 0 and d(v) = d(w) + 1
(15) then PUSH(N,f, v,w;f);
(16) if w /∈Q and w �= s, t then append w to Q fi
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(17) fi
(18) if e(v)> 0 then
(19) if vw is not the last edge in Av

(20) then choose the next edge in Av as current edge
(21) else RELABEL(N,f, v, d;d); rel ← true;
(22) make the first edge in Av the current edge
(23) fi
(24) fi
(25) until e(v) = 0 or rel = true;
(26) if e(v)> 0 then append v to Q fi
(27) od

The reader may show that Algorithm 6.6.14 is indeed a special case of
Algorithm 6.6.1; this amounts to checking that RELABEL(v) is called only
when no PUSH along an edge starting in v is admissible. By Theorem 6.6.12,
the algorithm terminates with a maximal flow on N . The following result
giving its complexity is due to Goldberg and Tarjan [GolTa88].

Theorem 6.6.15 Algorithm 6.6.14 determines with complexity O(|V |3) a
maximal flow on N .

Proof Obviously, the initialization phase in steps (1) to (9) has complex-
ity O(|E|). In order to analyze the complexity of the while-loop, we divide
the course of the algorithm into phases.11 Phase 1 consists of the execution
of the repeat-loop for those vertices which were originally appended to Q,
that is, when Q was initialized in step (8). If phase i is already defined, phase
i + 1 consists of the execution of the repeat-loop for those vertices which
were appended to Q during phase i. We claim that there are at most O(|V |2)
phases.

By Lemma 6.6.9, there are at most O(|V |2) phases involving a RELABEL.
It remains to establish the same bound for phases without a RELABEL. For
this purpose, we take the same approach as in the proof of Lemma 6.6.11:
we define a potential and investigate its development during the course of
the algorithm. This time, we let Φ be the maximum value of the labels d(v),
taken over all active vertices v. Let us consider how Φ changes during a
phase not involving any RELABEL-operations. Then, for each active vertex
v, excess flow is moved to vertices w with label d(v)−1 until we finally reach
e(v) = 0, so that v ceases to be active. Of course, Φ cannot be increased by
these operations; and at the end of such a phase—when all originally active
vertices v have become inactive—Φ has actually decreased by at least one
unit. Hence, if Φ remains unchanged or increases during a phase, at least
one RELABEL-operation must occur during this phase; we already noted

11In the original literature, the phases are called passes over Q, which seems somewhat
misleading.
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that there are at most O(|V |2) phases of this type. As Φ = 0 holds at the
beginning as well as at the end of the algorithm, at most O(|V |2) decreases
of Φ can occur. Hence there are indeed at most O(|V |2) phases not involving
a RELABEL.

We can now estimate the number of steps required for all PUSH-
operations; note that an individual PUSH needs only O(1) steps. Hence
we want to show that there are only O(|V |3) PUSH-operations. In view of
Lemma 6.6.10, it suffices to consider non-saturating PUSH-operations. Note
that the repeat-loop for a vertex v is aborted as soon as a non-saturating
PUSH(v,w) occurs; see step (25). Clearly, at most O(|V |) vertices v are in-
vestigated during a phase, so that there are at most O(|V |) non-saturating
PUSH-operations during each phase. Now our result on the number of phases
gives the assertion.

It remains to estimate how often each edge is examined during the while-
loop. Consider the edges starting in a specified vertex v. During a repeat-loop
involving v, the current edge e runs through (part of) the incidence list Av

of v. More precisely, the pointer is moved to the next edge whenever treating
e leaves v with flow excess e(v)> 0; and the pointer is returned to the first
edge only when a RELABEL(v) occurs. By Lemma 6.6.9, each vertex v is
relabeled at most 2|V |−1 times, so that the incidence list Av of v is examined
only O(|V |) times during the entire algorithm. (Note that this estimate also
includes the complexity of the RELABEL-operations: each RELABEL(v) also
amounts to looking through all edges in Av.) Hence we obtain altogether
O(|V ||Av|) examinations of the edges starting in v; summing this over all
vertices shows that the edge examinations and the RELABEL-operations
only contribute O(|V ||E|) to the complexity of the algorithm. �

Examples which show that the FIFO-algorithm might indeed need O(|V |3)
steps are provided in [CheMa89].

We now turn to our second variation of Algorithm 6.6.1. This time, we
always choose an active vertex which has the maximal label among all the
active vertices. To implement this strategy, we use a priority queue with
priority function d instead of an ordinary queue. This variant was likewise
suggested by Goldberg and Tarjan [GolTa88].

Algorithm 6.6.16 (Highest label preflow push algorithm) Let N =
(G,c, s, t) be a flow network, where G is a symmetric digraph given by inci-
dence lists Av. Moreover, let Q be a priority queue with priority function d,
and rel a Boolean variable.

Procedure HLFLOW(N ;f)

(1) for (v,w) ∈ (V \ {s})× (V \ {s}) do f(v,w)← 0; rf (v,w)← c(v,w) od
(2) d(s)← |V |; Q←∅;
(3) for v ∈ V \ {s} do
(4) f(s, v)← c(s, v); rf (s, v)← 0;



210 6 Flows

(5) f(v, s)←−c(s, v); rf (v, s)← c(v, s) + c(s, v);
(6) d(v)← 0; e(v)← c(s, v);
(7) make the first edge in Av the current edge;
(8) if e(v)> 0 and v �= t then insert v into Q with priority d(v) fi
(9) od
(10) while Q �= ∅ do
(11) remove a vertex v of highest priority d(v) from Q; rel ← false;
(12) repeat
(13) let vw be the current edge in Av ;
(14) if rf (v,w)> 0 and d(v) = d(w) + 1 then
(15) PUSH(N,f, v,w;f);
(16) if w /∈Q and w �= s, t then insert w into Q

with priority d(w) fi
(17) fi
(18) if e(v)> 0 then
(19) if vw is not the last edge in Av

(20) then choose the next edge in Av as current edge;
(21) else RELABEL(N,f, v, d;d); rel ← true;
(22) make the first edge in Av the current edge;
(23) fi
(24) fi
(25) until e(v) = 0 or rel = true;
(26) if e(v)> 0 then insert v into Q with priority d(v) fi
(27) od

Goldberg and Tarjan proved that Algorithm 6.6.16 has a complexity of
at most O(|V |3); this estimate was improved by Cheriyan and Maheshwari
[CheMa89] as follows.

Theorem 6.6.17 Algorithm 6.6.16 determines with complexity O(|V |2|E|1/2)
a maximal flow on N .

Proof 12 As in the proof of Theorem 6.6.15, the main problem is to establish
the necessary bound for the number of non-saturating PUSH-operations; all
other estimates can be done as before. Note here that O(|V ||E|)—that is,
the bound for the saturating PUSH-operations provided by Lemma 6.6.10—
is indeed dominated by O(|V |2|E|1/2).

As in the proof of Theorem 6.6.15, we divide the algorithm into phases;
but this time, a phase consists of all operations occurring between two con-
secutive RELABEL-operations. The length li of the i-th phase is defined as
the difference between the values of dmax at the beginning and at the end

12As the proof of Theorem 6.6.17 is rather technical, the reader might decide to skip it at

first reading. However, it does involve a useful method, which we have not seen before.
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of the phase, where dmax denotes the maximal label d(v) over all active ver-
tices v. Note that dmax decreases monotonically during a phase; immediately
after the end of the phase, when a RELABEL-operation is executed, dmax

increases again.
We claim that the sum of the lengths li over all the phases is at most

O(|V |2). To see this, it suffices to show that the increase of dmax during the
entire algorithm is at most O(|V |2). But this is an immediate consequence of
Lemma 6.6.8, since the label d(v) increases monotonically for each vertex v
and is always bounded by 2|V | − 1.

The basic idea of the proof is to partition the non-saturating PUSH-
operations in a clever way. For this purpose, we call a non-saturating
PUSH(u, v)-operation special13 if it is the first PUSH-operation on the edge
uv following a RELABEL(u)-operation.

Now consider a non-saturating, nonspecial PUSH-operation PUSH(z,w).
We try to construct (in reverse order) a directed path Tw with end ver-
tex w which consists entirely of edges for which the last non-saturating
PUSH-operation executed was a nonspecial one. Suppose we have reached
a vertex u �= w, and let the last edge constructed for Tw be uv. Thus the
last PUSH(u, v) was a non-saturating nonspecial PUSH. Before this PUSH-
operation was executed, we had e(u)> 0. We want to consider the last PUSH-
operation PUSH(y,u) executed before this PUSH(u, v). It is possible that no
such PUSH-operation exists;14 then we simply end the construction of Tw

at the vertex u. We also terminate the construction of Tw at u if the last
PUSH(y,u) was saturating or special. Otherwise we replace u by y and con-
tinue in the same manner.

Note that our construction has to terminate provided that Tw is indeed
a path, which just amounts to showing that no cycle can occur during the
construction. But this is clear, as PUSH-operations may only move flow to-
wards vertices with lower labels; hence no cycle can arise, unless a RELABEL
occurred for one of the vertices that we have reached; and this is not possible
by our way of construction. We call the sequence of non-saturating PUSH-
operations corresponding to such a path Tw a trajectory with originating
edge xy, if xy is the unique edge encountered at the end of the construction
of Tw for which either a saturating or a special PUSH had been executed
(so that the construction was terminated at y); in the exceptional case men-
tioned above, we consider the edge su to be the originating edge of Tw . By
definition, the originating edge is not a part of Tw : the trajectory starts at
the head of this edge.

We claim that the whole of the nonspecial non-saturating PUSH-
operations can be partitioned into such trajectories. Actually we require

13In the original paper, the term non-zeroing is used instead.

14Note that this case occurs if and only if the entire flow excess in u comes directly from

s, that is, if it was assigned to u during the initialization phase.
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a somewhat stronger statement later: two trajectories containing PUSH-
operations on edges which are current edges simultaneously (in different
adjacency lists) cannot have any vertices in common, with the exception of
possible common end vertices. We may assume w.l.o.g. that the two trajec-
tories correspond to paths Tw and Tw′ for which (at a certain point of the
algorithm) both e(w)> 0 and e(w′)> 0 hold. Let xy and x′y′ be the origi-
nating edges of the two trajectories. Now suppose that u is a common vertex
contained in both trajectories, where u �= y, y′,w,w′. We may also choose
u to be the last such vertex. Let uv and uv′ be the edges occurring in Tw

and Tw′ , respectively. We may assume that PUSH(u, v) was executed before
PUSH(u, v′); note that v �= v′ by our choice of u. Then PUSH(u, v′) can only
have been executed after some flow excess was moved to u again by some
PUSH(z,u)-operation. Then the condition d(z) = d(u) + 1 must have been
satisfied; this means that there must have been a RELABEL(z)-operation
executed before, since the active vertex is always a vertex having a maximal
label and u was already active before z. Thus the PUSH(z,u)-operation was
a special PUSH and the construction of Tw′ should have been terminated
at the vertex u with the originating edge zu, contradicting the choice of u.
Hence any two trajectories are always disjoint, establishing our claim.

Let us call a trajectory short if it consists of at most K operations; here
K is a parameter whose value we will fix later in an optimal manner. As the
originating edge of any trajectory comes from a saturating or a special PUSH-
operation or—in the exceptional case—from the initialization of the preflow,
the number of short trajectories can be bounded by O(|V ||E|) as follows.
By Lemma 6.6.10, there are at most O(|V ||E|) saturating PUSH-operations.
Also, there are at most O(|V ||E|) special PUSH-operations, since there are
at most O(|V |) RELABEL-operations per vertex by Lemma 6.6.9 and since
a special PUSH(u, v) has to be preceded by a RELABEL(u). Hence all the
short trajectories together may contain at most O(K|V ||E|) non-saturating
PUSH-operations.

Now we have to examine the long trajectories, that is, those trajecto-
ries which contain more than K operations. Recall that any two trajectories
containing PUSH-operations on edges which are current simultaneously can-
not contain any common vertices (excepting the end vertices). Hence, at
any point during the course of the algorithm, there are at most |V |/K long
trajectories which contain a PUSH-operation current at this point. In par-
ticular, there are at most |V |/K long trajectories meeting a given phase of
the algorithm. By definition, no phase contains a RELABEL-operation, and
PUSH(u, v) can only be executed for d(u) = d(v) + 1. Hence there can be
only li non-saturating PUSH-operations per trajectory in any given phase of
length li, as li is the difference between the values of dmax at the beginning
and at the end of phase i: if PUSH-operations have been executed on a path
of length c during phase i, the maximal label must have been decreased by
c at least. As we already know that the sum of all lengths li is O(|V |2), all
the long trajectories together may contain at most O(|V |3/K) non-saturating
PUSH-operations.



6.6 The Algorithm of Goldberg and Tarjan 213

Altogether, the entire algorithm uses at most O(K|V ||E|) + O(|V |3/K)
non-saturating PUSH-operations. Now we get the optimal bound on the com-
plexity by balancing these two terms, that is, by choosing K in such a way
that K|V ||E| = |V |3/K. This gives K = |V ||E|−1/2 and leads to the com-
plexity stated in the assertion. �

Balancing techniques as in the proof above are a useful tool for analyzing
the complexity of algorithms. Cheriyan and Maheshwari have also shown
that the bound in Theorem 6.6.17 is best possible: there exist families of
networks for which Algorithm 6.6.16 indeed needs O(|V |2|E|1/2) steps. From
a practical point of view, Algorithm 6.6.16 is one of the best methods known
for determining maximal flows; see the empirical studies mentioned at the
end of Sect. 6.4.

Example 6.6.18 Let us apply Algorithm 6.6.16 to the flow network of Fig. 6.2;
compare Example 6.2.3. Where a choice has to be made, we use alphabetical
order, as usual. In each of the following Figs. 6.24, 6.25, 6.26, 6.27, 6.28,
and 6.29, we summarize several operations, namely at least one RELABEL-
operation together with all PUSH-operations following it; sometimes we even
display two or three shorter phases in one figure. We will not draw pairs of
antiparallel edges: we include only those edges which carry a nonnegative flow,
in accordance with the intuitive interpretation discussed at the beginning of
this section; this simplifies the figures.

Moreover, we give the capacities in parentheses only in the first figure
(after the initialization phase). The numbers in the subsequent figures always
give the values as they are after the last operation executed. So the number
written on some edge e is the value f(e) of the current preflow f ; here all
new values coming from a saturating PUSH-operation are framed, whereas
all new values coming from a non-saturating PUSH-operation are circled.
Additionally, the vertices v are labelled with the pair (d(v), e(v)); that is, we
display the valid label and the flow excess in v. For the vertices s and t, only
the (never changing) valid label is given; by definition, these two vertices are
never active.

Below each figure, we also list the RELABEL- and PUSH-operations which
have occurred. The queue Q containing the active vertices is not listed after
each operation, but only before either a new vertex of highest priority is
selected from the queue in Step (11) of Algorithm 6.6.16 or after a RELABEL
has been executed; note that, for the letter case, the same vertex is selected
in Step (11) as in the previous iteration of the while-loop.

We also remark that the maximal flow constructed by HLFLOW given
in Fig. 6.30 differs from the maximal flow of Fig. 6.12: the edge ct does not
carry any flow, and the value of the flow on the edges cf and ft is larger
accordingly.

Exercise 6.6.19 Apply Algorithm 6.6.14 to the flow network of Fig. 6.2
(with the usual convention about alphabetical order), and compare the num-
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Fig. 6.24 Initialization: Q= (a, b, f)

ber of RELABEL- and PUSH-operations necessary with the corresponding
numbers for Algorithm 6.6.16; see Example 6.6.18.

For a discussion of the implementation of various PUSH- and RELABEL-
algorithms, see [CheGo95]. The algorithm of Goldberg and Tarjan can also
be used to solve the parametrized flow problem, where the capacities of the
edges incident with s and t depend monotonically on some real parame-
ter; interestingly, the complexity will only change by a constant factor, see
[GalGT89].

6.7 Further Reading

In this chapter, we have presented four of the most important algorithms
for determining maximal flows. The max-flow problem is one of the central
topics in combinatorial optimisation and has been studied extensively. In this
final section, we give a selection of references for further study.

Further algorithms with complexity O(|V |3) were presented in [Kar74] and
[Tar84]. An algorithm with complexity O(|V ||E| log |V |) was given in [Sle80];
see also [SlaTa83]. In the paper [AhuOr89], there is an algorithm of complexity
O(|V ||E|+ |V |2 logU), where U denotes the maximum of all capacities c(e)
occurring in the problem. This result may be improved somewhat: the term
logU can be replaced by (logU)1/2; see [AhuOT89].

A probabilistic algorithm was proposed by [CheHa89]. Later, several au-
thors gave deterministic variants of this algorithm; see [Alo90], [KinRT94],
and [CheHa95]. For instance, for graphs satisfying |V |(log |V |)2 ≤ |E| ≤
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Fig. 6.25 RELABEL(a), Q= (a, b, f), PUSH(a, b), PUSH(a, c), PUSH(a, d)

Fig. 6.26 RELABEL(a), Q = (a, b, c, d, f), PUSH(a, s), RELABEL(b), Q = (b, c, d, f),

PUSH(b, c), Q= (c, d, f)

|V |5/3 log |V |, one obtains a complexity of only O(|V ||E|). An algorithm with
complexity O(|V |3/ log |V |) can be found in [CheHM96].

A further new idea for solving the max-flow problem emerged in a paper by
Karger [Kar99], who proceeds by computing approximately minimal cuts and
uses these to compute a maximum flow, thus reversing the usual approach.
His algorithm has an improved complexity with high probability; however,
this did not turn out to be of great practical importance.
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Fig. 6.27 RELABEL(c), Q = (c, d, f), PUSH(c, e), PUSH(c, f), Q = (d, e, f),
RELABEL(d), Q= (d, e, f), PUSH(d, e), PUSH(d, t), RELABEL(d)

Fig. 6.28 Q = (d, e, f), PUSH(d, b), RELABEL(d), Q = (d, b, e, f), PUSH(d,a),

Q= (a, b, e, f), PUSH(a, s), Q= (b, e, f)

A recent paper of Hochbaum [Hoc08] is of particular interest, as she works
with an even more general concept than preflows: she uses pseudoflows, where
also flow deficits—that is, vertices for which the excess is negative—are al-
lowed. Moreover, flows are not generated explicitly. Instead, one directly
solves a problem equivalent to the minimum-cut problem, namely the max-
imum blocking-cut problem. Once a solution for this is available, the addi-
tional complexity required to find the respective maximum-flow is merely
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Fig. 6.29 RELABEL(b), Q = (b, e, f), PUSH(b, c), Q = (c, e, f), PUSH(c, f), Q = (e, f),

RELABEL(e), Q= (e, f), PUSH(e, t), RELABEL(e)

Fig. 6.30 Q = (e, f), PUSH(e, c), Q = (c, f), PUSH(c, f), Q = (f), RELABEL(f),
Q= (f), PUSH(f, t), Q= ()

O(|E| log |V |). Thus Hochbaum also reverses the usual approach, by first
computing a minimal cut.

Hochbaum’s paper contains several variants of her pseudo flow algorithm,
including a parametric one, which can all be performed with the same com-
plexity, namely O(|V ||E| log |V |). A computational study [ChaHo09] indicates
that these new algorithms are at least competitive, and often even more ef-
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ficient than the algorithm of Goldberg and Tarjan. However, the Goldberg-
Tarjan approach is certainly far more intuitive.

Another approach to the problem of finding a maximal flow is to use
the well-known simplex algorithm from linear programming and specialize
it to treat flow networks; the resulting algorithm actually works for a more
general problem. It is called the network simplex algorithm and is of eminent
practical interest; we will devote Chap. 11 to this topic. Hochbaum [Hoc08]
also gives a simplex variant of her pseudoflow algorithm.

We also mention three good surveys dealing with some of the more im-
portant algorithms: [GolTT90] and [AhuMO89, AhuMO91]. For an exten-
sive treatment of flow theory and related topics, we refer to the monograph
[AhuMO93].

For planar graphs, one may construct a maximal flow with complexity
O(|V | 32 log |V |); see [JohVe82]. If s and t are in the same face of G, even a
complexity of O(|V | log |V |) suffices; see [ItaSh79]. In the undirected case—
that is, in planar symmetric flow networks, see Sect. 12.1—the max flow
problem can be solved with complexity O(|V | log2 |V |); see [HasJo85].

For flow networks on bipartite graphs, fast algorithms can be found in
[GusMF87] and in [AhuOST94]; these algorithms are particularly interesting
if one of the two components of the bipartition is very small compared to the
other component.

For symmetric flow networks with unit capacities (as in Sect. 6.5), one can
achieve a complexity of O(|E|1/2min(|E|, |V |3/2)); see [GolRa99].

Finally, let us mention some references discussing the practical efficiency
of various flow algorithms: [Che80], [Gal81], [Ima83], [GolGr88], [DerMe89],
[AhuKMO92] and [ChaHo09]. There are also several relevant papers in the
collection [JohMcG93].



Chapter 7
Combinatorial Applications

Everything flows.
Heraclitus

In this chapter, we use the theorems of Ford and Fulkerson about maximal
flows to prove some central results in combinatorics. In particular, transver-
sal theory can be developed from the theory of flows on networks; this ap-
proach was first suggested in the book by Ford and Fulkerson [ForFu62]
and is also used in the survey [Jun86]. Compared with the usual approach
[Mir71b] of taking Philip Hall’s marriage theorem [Hal35]—which we will
treat in Sect. 7.3—as the starting point of transversal theory, this way of
proceeding has a distinct advantage: it also yields algorithms for explicit
constructions. We shall study disjoint paths in graphs, matchings in bipar-
tite graphs, transversals, the combinatorics of matrices, partitions of directed
graphs, partially ordered sets, parallelisms, and the supply and demand the-
orem.

7.1 Disjoint Paths: Menger’s Theorem

The theorems treated in this section are variations of one of the most widely
known results in graph theory, namely Menger’s theorem. All these theorems
deal with the number of disjoint paths joining two vertices of a graph or
a digraph. There are two possible definitions of what disjoint means here.
Let G be a graph and s and t two vertices of G. Then a set of paths in
G with start vertex s and end vertex t is called edge disjoint if no two of
these paths share an edge, and vertex disjoint if no two of the paths have
a vertex other than s and t in common. A subset A of E is called an edge
separator for s and t if each path from s to t contains some edge from A.
Similarly, a subset X of V \ {s, t} is called a vertex separator for s and t if
each path from s to t meets X in some vertex. If G is a digraph, we use
the same terminology but assume the paths in question to be directed. The
following theorem—although quite similar to the original theorem of Menger
[Men27]—was published much later; see [ForFu56] and [EliFS56]; we shall
derive it from the max-flow min-cut theorem.

D. Jungnickel, Graphs, Networks and Algorithms,
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Theorem 7.1.1 (Menger’s theorem, edge version) Let G be a graph or di-
graph, and let s and t be two vertices of G. Then the maximal number of
edge disjoint paths from s to t is equal to the minimal cardinality of an edge
separator for s and t.

Proof First let G be a digraph. We may assume that t is accessible from
s; otherwise, the assertion is trivial. Let us consider the network N on G
where each edge has capacity c(e) = 1, and let k denote the maximal number
of edge disjoint directed paths from s to t. Obviously, any system of such
paths yields a flow f of value k by putting f(e) = 1 if e occurs in one of the
paths, and f(e) = 0 otherwise. Hence the maximal value of a flow on N is
some integer k′ ≥ k. The proof of Theorem 6.1.5 shows that we can construct
an integral maximal flow by beginning with the zero flow and then using k′

augmenting paths of capacity 1. Note that these paths are not necessarily
directed, as backward edges might occur. Nevertheless, it is always possible
to find k′ augmenting paths without backward edges: suppose that e = uv
is a backward edge occurring in the path W ; then there has to exist a path
W ′ which was constructed before W and which contains e as a forward edge.
Thus the paths W and W ′ have the form

W = s
W1

v
e

u
W2

t

and

W ′ = s
W ′

1
u

e
v

W ′
2

t.

Now we may replace the paths W and W ′ by the paths W1W
′
2 and W ′

1W2 and
thus eliminate the edge e. We may assume that e is the backward edge which
occurred first; then W1, W

′
2 and W ′

1 contain forward edges only (whereas
W2 might still contain backward edges). Repeating this construction as often
as necessary, we obtain k′ augmenting paths which consist of forward edges
only, that is, directed paths from s to t in G. Any two augmenting paths
consisting of forward edges have to be edge disjoint, as all edges have unit
capacity. This implies k′ ≤ k, and hence k = k′.

Thus the maximal number of edge disjoint paths from s to t in G is
equal to the maximal value of a flow on N and hence, by Theorem 6.1.6,
to the capacity of a minimal cut in N . It remains to show that the minimal
cardinality of an edge separator for s and t is equal to the capacity of a
minimal cut in N . Obviously, any cut (S,T ) in N yields an edge separator
of cardinality c(S,T ):

A=
{
e ∈E : e− ∈ S, e+ ∈ T

}
.

Conversely, let A be a given minimal edge separator for s and t. Denote
the set of those vertices v which are accessible from s by a directed path
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containing no edges of A by SA, and put TA = V \ SA. Then (SA, TA) is a
cut in N . Looking at the definition of the sets SA and TA, it is clear that
each edge e with e− ∈ SA and e+ ∈ TA has to be contained in A. As A is
minimal, A consists of exactly these edges and is therefore induced by a cut.
This proves the theorem for the directed case.

Now let G be a graph. We reduce this case to the directed case by consid-

ering the complete orientation
→
G of G. Obviously, a system of edge disjoint

paths in G induces a corresponding system of edge disjoint directed paths

in
→
G. The converse also holds, provided that the edge disjoint directed paths

in
→
G do not contain any pair of antiparallel edges. But such pairs of edges

can be eliminated, similar to the elimination of backward edges in the first
part of the proof. Now let k be the maximal number of edge disjoint directed

paths in G and hence also in
→
G. Then there exists an edge separator

→
A in

→
G of cardinality k; the corresponding set of edges in G is an edge separator
for s and t in G of cardinality ≤ k. As the minimal cardinality of an edge
separator for s and t has to be at least as large as the maximal number of
disjoint paths from s to t, we obtain the assertion. �

The proof of Theorem 7.1.1 shows that we may use the algorithm of Dinic
to construct a maximal 0-1-flow (of value k, say), and then find k edge dis-
joint paths from s to t by eliminating backward edges. The algorithm should
be modified for this task so that it immediately eliminates a backward edge
whenever such an edge occurs. The reader is asked to provide such a modifi-
cation and convince himself that this does not increase the complexity of the
algorithm. In view of Theorems 7.1.1 and 6.5.3, we get the following result.

Corollary 7.1.2 Let G be a (directed) graph and s and t two vertices of G.
Then the maximal number of (directed) edge disjoint paths from s to t (and
a system of such paths) can be determined with complexity O(|V |2/3|E|).

Exercise 7.1.3 Let N be any flow network. Show that one may construct
a maximal flow using augmenting paths which consist of forward edges only;
do so for the flow network of Example 6.2.3. Hint: Apply a method similar
to that used in the proof of Theorem 7.1.1.

Now we turn to vertex disjoint paths. The analogue of Theorem 7.1.1 is
the following well-known result due to Menger [Men27].

Theorem 7.1.4 (Menger’s theorem, vertex version) Let G be a graph or
digraph, and let s and t be any two non-adjacent vertices of G. Then the
maximal number of vertex disjoint paths from s to t is equal to the minimal
cardinality of a vertex separator for s and t.

Proof We assume that G is a digraph; the undirected case can be treated in a
similar manner. In order to reduce the assertion to Theorem 7.1.1, we define



222 7 Combinatorial Applications

a new digraph G′ as follows. Loosely speaking, we split each vertex different
from s and t into two parts joined by an edge; this will result in transforming
vertex disjoint paths into edge disjoint paths.

Formally, the vertices of G′ are s, t, and, for each vertex v �= s, t of G, two
new vertices v′ and v′′. For every edge sv or vt in G, G′ contains the edge sv′

or v′′t, respectively; and for every edge uv in G, where u, v �= s, t, G′ contains
the edge u′′v′. Finally, G′ also contains all edges of the form v′v′′, where v is
a vertex of G with v �= s, t. It is clear that vertex disjoint paths in G indeed
correspond to edge disjoint paths in G′.

By Theorem 7.1.1, the maximal number of edge disjoint paths from s to t
in G′ equals the minimal cardinality of an edge separator for s and t, say A.
Of course, A might contain edges not of the form v′v′′, in which case it would
not immediately correspond to a vertex separator in G. However, if some
edge u′′v′ occurs in A, we may replace it by u′u′′ and obtain again a minimal
edge separator. Hence we may restrict our considerations to minimal edge
separators in G′ which only contain edges of the form v′v′′ and therefore
correspond to vertex separators in G. �

Corollary 7.1.5 Let G be a graph or digraph, and let s and t be any two
non-adjacent vertices of G. Then the maximal number of vertex disjoint paths
from s to t—and a system of such paths—can be determined with complexity
O(|V |1/2|E|).

Proof We may assume w.l.o.g. that all vertices of G are accessible from s.
Then the digraph G′ constructed in the proof of Theorem 7.1.4 has O(|V |)
vertices and O(|E|) edges. The assertion follows in the same way as Corol-
lary 7.1.2 did, taking into account that the network defined on G′ (with
capacity 1 for all edges) satisfies the condition of Theorem 6.5.4. �

The existence of disjoint paths plays an important role for questions of
network reliability : if there are k vertex disjoint paths from s to t, the con-
nection between s and t can still be maintained even if k − 1 vertices fail,
and similarly for edges. Such considerations are important for computer net-
works, for example.1 This suggests measuring the strength of connectivity
of a connected graph by the number of vertex disjoint paths (or edge dis-
joint paths) between any two given vertices. Menger’s theorem leads to the
following definition.

Definition 7.1.6 The connectivity κ(G) of a graph G= (V,E) is defined as
follows. If G is a complete graph Kn, then κ(G) = n− 1; otherwise

κ(G) =min
{
|T |: T ⊂ V and G \ T is not connected

}
.

G is called k-connected if κ(G)≥ k.

1For more on network reliability, we recommend [Col87].
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We will consider questions of connectivity in Chap. 8 in detail; now we
just pose three exercises.

Exercise 7.1.7 (Whitney’s theorem) Show that a graph G is k-connected if
and only if any two vertices of G are connected by at least k vertex disjoint
paths [Whi32a]. (Hint: Note that Menger’s theorem only applies to non-
adjacent vertices s and t.)

Exercise 7.1.8 Use Exercise 1.5.14 to show that a planar graph can be at
most 5-connected. Moreover, find a 4-connected planar graph on six vertices;
also, show that a 5-connected planar graph has at least 12 vertices, and give
an example on 12 vertices.

Exercise 7.1.9 We have proved the vertex version of Menger’s theorem
(Theorem 7.1.4) by reducing it to the edge version (Theorem 7.1.1). How-
ever, it is also possible to go the opposite way and deduce Theorem 7.1.1
from Theorem 7.1.4. Do so in the undirected case. Hint: The required trans-
formation is similar to the construction of the line graph in Sect. 1.3.

Exercise 7.1.10 Let S and T be two disjoint subsets of the vertex set V of
a graph G= (V,E). Show that the minimal cardinality of a vertex separator
X for S and T (that is, every path from some vertex in S to some vertex in
T has to contain some vertex in X) is equal to the maximal number of paths
from S to T such that no two of these paths have any vertex in common (not
even one of the end vertices!).

Finally, let us emphasize that also in the area of disjoint paths too specific
requirements often result in NP-complete problems. Here we mention just
two examples for this phenomenon; see Appendix A for more details and
references.

Problem 7.1.11 (Disjoint paths) Let G = (V,E) be a graph, s and t be
two vertices of G, and k and c be two positive integers. Does G contain k
vertex disjoint paths of length at most c from s to t?

This problem is NP-complete for each fixed k ≥ 5, but polynomial for fixed
k ≤ 4.

Problem 7.1.12 (Disjoint connecting paths) Let G be a graph, k an integer,
and (s1, t1), . . . , (sk, tk) pairs of vertices (usually called terminals). Are there
disjoint paths P1, P2, . . . , Pk such that Pi connects si with ti?

This problem is NP-complete as stated (both for edge disjoint and vertex
disjoint paths), but polynomial for every fixed k.
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Fig. 7.1 A matching

which cannot be extended

7.2 Matchings: König’s Theorem

Recall that a matching in a graph G is a set M of edges no two of which
have a vertex in common. In this section, we consider matchings in bipartite
graphs only; the general case will be dealt with in Chap. 13. The following
result was already proved in Example 6.5.5.

Theorem 7.2.1 Let G be a bipartite graph. Then a matching of maximal
cardinality in G can be determined with complexity O(|V |5/2).

It is common usage to call a matching of maximal cardinality a maximal
matching . This is really quite misleading, as the term maximal suggests that
such a matching cannot be extended to a larger matching; however, an un-
extendable matching (sometimes also called a maximum matching) does not
necessarily have maximal cardinality, as the example in Fig. 7.1 shows. Still,
we will often accept such ambiguity, as this unfortunate terminology is firmly
established.

Exercise 7.2.2 Let G be an arbitrary (not necessarily bipartite) graph, and
denote the maximal cardinality of a matching in G by k. Find a lower bound
for the number of edges of an unextendable matching.

Note that Theorem 7.2.1 is a special case of Corollary 7.1.5. To see this,
let G = (S

.
∪ T,E) be the given bipartite graph. We define a new graph H

which has, in addition to the vertices of G, two new vertices s and t and
whose edges are the edges of G plus all edges sx for x ∈ S and all edges yt
for y ∈ T . Obviously, the edges of a matching M in G correspond to vertex
disjoint paths from s to t in H : associate the path s x y t with the
edge xy in G, where x ∈ S and y ∈ T . Of course, for determining a maximal
matching in practice, we should not use Corollary 7.1.5 (and the graphs used
there) but work with H itself as described in Example 6.5.5.

Let us apply Theorem 7.1.4 to the graph H just defined and interpret
this result within G. As noted above, vertex disjoint paths in H correspond
to matchings in G. Also, a vertex separator for s and t in H is a set X of
vertices in G such that each edge of G has at least one of its end vertices
in X ; that is, X is a vertex cover for G. It is usual to denote the maximal
cardinality of a matching by α′(G), and the minimal cardinality of a vertex
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cover by β(G). Using this notation, Theorem 7.1.4 immediately implies the
following major result [Koe31, Ege31]: α′(G) = β(G).2 We shall provide a
second proof taken from [Riz00] which does not rely on Menger’s theorem and,
hence, on the theory of network flows; this also provides a nice illustration
for a further important method in discrete mathematics: proof by minimal
counterexample.

Theorem 7.2.3 (König’s theorem) Let G be bipartite graph. Then the maxi-
mal cardinality of a matching in G equals the minimal cardinality of a vertex
cover: α′(G) = β(G).

Proof By definition, no vertex can be incident with more than one edge in a
given matching. Hence one direction of the assertion is obvious: α′(G)≤ β(G).
Thus we only need to prove the reverse inequality.

Now let us assume to the contrary that α′(G) < β(G). Among all bipar-
tite graphs violating the theorem, we choose G = (S

.
∪ T,E) as a minimal

counterexample: G has the smallest possible number of vertices, say n; and
among all counterexamples on n vertices, G also has the minimal number of
edges. Then G is connected. Also, G cannot be a cycle or a path, since bi-
partite graphs of this type clearly satisfy the theorem. Hence we may choose
a vertex u with degu ≥ 3. Let v be adjacent to u, and consider the graph
G \ v. Since G was chosen as a minimal counterexample, G \ v satisfies the
theorem: α′(G \ v) = β(G \ v).

Now assume α′(G \ v) < α′(G). Then we may adjoin v to a vertex cover
W of G \ v with cardinality α′(G \ v) to obtain a vertex cover for G. This
implies β(G)≤ α′(G \ v)+ 1≤ α′(G), and G satisfies the theorem after all, a
contradiction.

Hence we must have α′(G\v) = α′(G). Then there exists a maximal match-
ing M of G for which no edge in M is incident with v. In view of degu≥ 3,
we may choose an edge e /∈M which is incident with u, but not with v. Be-
cause of the minimality of G, the subgraph G \ e satisfies the theorem, and
we obtain α′(G) = α′(G \ e) = β(G \ e). Let W ′ be a vertex cover of G \ e
with cardinality α′(G). As no edge in M is incident with v, we must have
v /∈W ′. Hence W ′ has to contain the other end vertex u of the edge uv �= e
and is therefore actually a vertex cover for G. Again, G satisfies the theorem
after all; this final contradiction establishes the theorem. �

Exercise 7.2.4 Use the problem transformation described in Example 6.5.5
to derive Theorem 7.2.3 directly from Theorem 6.1.6, without the detour via
Menger’s theorem made before.

Hint: Consider a maximal flow and a minimal cut determined by the la-
belling algorithm, and study the interaction of the cut with the associated
maximal matching.

2Quite often, this result is stated in the language of matrices instead; see Theorem 7.4.1
below.
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Obviously, the maximal cardinality of a matching in a bipartite graph
G= (S

.
∪ T,E) is bounded by min{|S|, |T |}. A matching of this cardinality is

called a complete matching . The following theorem due to Philip Hall [Hal35]
characterizes the bipartite graphs which admit a complete matching.3

Theorem 7.2.5 Let G= (S
.
∪ T,E) be a bipartite graph with |S| ≥ |T |. For

J ⊂ T , let Γ (J) denote the set of all those vertices in S which are adjacent
to some vertex in J . Then G admits a complete matching if and only if the
following condition is satisfied:

(H)
∣
∣Γ (J)

∣
∣≥ |J | for all J ⊂ T.

Proof To see that condition (H) is necessary, let M be a complete matching
of G and J any subset of T . Denote the set of edges contained in M which
are incident with a vertex in J by E(J). Then the end vertices of the edges
in E(J) which are contained in S form a subset of cardinality |J | of Γ (J).
Conversely, suppose that condition (H) is satisfied and that the maximal
cardinality of a matching in G is less than |T |. Then Theorem 7.2.3 yields the
existence of a vertex cover X = S′ .

∪ T ′ with S′ ⊂ S, T ′ ⊂ T , and |S′|+ |T ′|<
|T |. But then the end vertices u of those edges uv for which v is one of the
|T | − |T ′| vertices in T \ T ′ are all contained in S′, so that

∣
∣Γ

(
T \ T ′)∣∣≤

∣
∣S′∣∣< |T | −

∣
∣T ′∣∣=

∣
∣T \ T ′∣∣,

a contradiction. �

For |S| = |T |, a complete matching is precisely a 1-factor of G; in this
case, we also speak of a perfect matching . An important consequence of The-
orem 7.2.5 is the following sufficient condition for the existence of perfect
matchings. We need a further definition: a regular bipartite graph is a bipar-
tite graph G = (S

.
∪ T,E) for which all vertices have the same degree �= 0.

Note that this implies |S|= |T |.

Corollary 7.2.6 Let G = (S
.
∪ T,E) be a regular bipartite graph. Then G

has a perfect matching.

Proof By Theorem 7.2.5, it is sufficient to show that G satisfies condition (H).
Let r be the degree of the vertices of G. If J is a k-subset of T , there are
exactly kr edges of the form st with t ∈ J and s ∈ S. As each vertex in S
is incident with exactly r edges, these kr edges have to be incident with at
least k distinct vertices in S. �

Corollary 7.2.7 A bipartite graph G has a 1-factorization if and only if it
is regular.

3This theorem is likewise often stated in different language; see Theorem 7.3.1.
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Proof Obviously, the regularity of G is necessary. Using induction, Corol-
lary 7.2.6 shows that this condition is also sufficient. �

Exercise 7.2.8 Show that an r-regular non-bipartite graph does not neces-
sarily admit a 1-factorization, even if it has an even number of vertices. Hint:
Consider the Petersen graph.

The following—somewhat surprising—application of Corollary 7.2.7 is due
to Petersen [Pet91].

Theorem 7.2.9 Every 2k-regular graph (where k �= 0) has a 2-factorization.

Proof Let G be a 2k-regular graph and assume w.l.o.g. that G is connected.
By Theorem 1.3.1, G contains an Euler tour C. Let H be an orientation of G
such that C is a directed Euler tour for H . Now we define a regular bipartite
graph G′ as follows. For each vertex v of H , let G′ have two vertices v′ and
v′′; and for every edge uv of H , let G′ contain an edge u′v′′. Then G′ is
k-regular, and hence G′ has a 1-factorization, by Corollary 7.2.7. It is easy
to see that each 1-factor of G′ corresponds to a 2-factor of G, so that we get
a 2-factorization for G. �

We close this section with some exercises concerning factorizations.

Exercise 7.2.10 Let G be a graph on 3n vertices. A 2-factor of G is called a
triangle factor or a �-factor if it is the disjoint union of n cycles of length 3.
Show that it is possible to decompose the graph K6n into one �-factor and
6n− 3 1-factors. Hint: View the vertex set as the union of three sets R,S,T
of cardinality 2n each, and consider regular bipartite graphs on all pairs of
these sets. Furthermore, use Exercise 1.1.2.

�-factors are used in finite geometry; for example, Exercise 7.2.10 is used
in [JunLe87] for constructing certain linear spaces. The general problem of
decomposing K6n into c �-factors and d 1-factors was studied by Rees
[Ree87]. It is always possible to decompose K6n into a 1-factor and 3n− 1
�-factors yielding a so-called near-Kirkman triple system; see [BakWi77] and
[HuMR82].

The most popular problem in this context is the case of Kirkman triple
systems, which are decompositions of K6n+3 into �-factors. The name comes
from a famous problem in recreational mathematics, namely Kirkman’s school
girl problem, which was posed in [Kir50] as follows:

Fifteen young ladies in a school walk out three abreast for seven days in succession;

it is required to arrange them daily, so that no two will walk twice abreast.

If we represent the school girls by 15 vertices and join two of them by an edge
if they walk abreast, then a daily arrangement corresponds to a �-factor of
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Fig. 7.2 A solution of

Kirkman’s school girl
problem

K15, and the seven �-factors for the seven days form a decomposition into
�-factors. A solution of this problem is given in Fig. 7.2, where only one
�-factor is drawn. The other �-factors in the decomposition are obtained by
rotating the given factor around the vertex ∞ so that the set {p0, . . . , p6} is
left invariant; there are seven ways to do so, including the identity mapping.
The general problem of decomposing the graph K6n+3 into �-factors was
only solved 120 years later by Ray-Chaudhuri and Wilson [RayWi71]; see
also [BetJL99], § IX.6.

Exercise 7.2.11 Decompose the graph K9 into �-factors. Hint: There is no
cyclic decomposition as in Fig. 7.2.

Exercise 7.2.12 Decompose the graph K6n−2 into 3-factors. Hint: Use The-
orem 7.2.9.

Readers interested in seeing more results on 1-factorizations and graph de-
compositions in general should consult the monographs [Bos90] and [Wal97].

7.3 Partial Transversals: The Marriage Theorem

This section presents the basic theory of transversals. We begin with some
definitions. Let A = (A1, . . . ,An) be a family of subsets of a (finite) set S.
Then any family (a1, . . . , an) with aj ∈Aj for j = 1, . . . , n is called a system
of representatives for A. If, in addition, ai �= aj holds whenever i �= j, then
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(a1, . . . , an) is called a system of distinct representatives (SDR) for A, and
the underlying set {a1, . . . , an} is called a transversal of A.4

Let us construct a bipartite graph G with vertex set S
.
∪ T , where T =

{1, . . . , n}, which has an edge st whenever s ∈ At. Then, for J ⊂ T , the set
Γ (J) defined in Theorem 7.2.5 is the union of all sets At with t ∈ J ; and a
perfect matching of G is the same as an SDR for A. Therefore Theorem 7.2.5
translates into the following result.

Theorem 7.3.1 (Marriage theorem) Let A = (A1, . . . ,An) be a family of
subsets of a finite set S. Then A has a transversal if and only if the following
condition is satisfied:

(
H′)

∣
∣
∣
∣

⋃

j∈J

Aj

∣
∣
∣
∣≥ |J | for all J ⊂ {1, . . . , n}.

The marriage theorem was first proved by Philip Hall [Hal35] in terms
of set families; as explained above, this is equivalent to using the setting of
bipartite graphs. The name marriage theorem is due to the following inter-
pretation of the theorem. Let S be a set of girls, and view the index set T
as a set of boys; the set At is the set of girls which boy t would be willing to
marry. Then the marriage theorem gives a necessary and sufficient condition
for the existence of an arrangement of marriages so that each boy marries
some girl of his choice. Of course, the roles of boys and girls may be ex-
changed. For more symmetry, it is also possible to assume |S| = |T | and to
put only those girls into At who are actually prepared to accept a proposal
from boy t. Then the marriage theorem gives us a criterion if all boys and
girls may get a partner of their choice. Thus condition (H′) can be put into
everyday language as follows: if nobody is too choosy, everybody can find
someone!

Theorem 7.3.1 is often considered to be the root of transversal theory,
which then appears as a sequence of specializations and applications of this
theorem. In particular, the theorems of König, Menger, and Ford and Fulk-
erson can all be derived from the marriage theorem. The book [Mir71b] uses
this approach; let us give two exercises in this direction.

Exercise 7.3.2 Give a direct proof for Theorem 7.3.1 using induction on n.
Hint: Use a case distinction depending on the existence of a critical subfamily
of A, that is, a subfamily (Aj)j∈J with |

⋃
j∈J Aj |= |J |.

4For an intuitive interpretation, we might think of the Ai as certain groups of people

who each send a representative ai into a committee. Then the SDR property means that

no committee member is allowed to represent more than one group, and the transver-

sal {a1, . . . , an} just is the committee. Another interpretation will be given below, after

Theorem 7.3.1.
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Exercise 7.3.3 Derive Theorem 7.2.3 from Theorem 7.3.1.

In the remainder of this section, we use the marriage theorem to prove
a small selection of further results from transversal theory. We need some
definitions first. An SDR for a subfamily (Aj)j∈J of A= (A1, . . . ,An) is said
to be a partial SDR forA, and the underlying set {aj : j ∈ J} is called a partial
transversal . The marriage theorem only distinguishes between families of sets
having a transversal and those without transversals. A finer measure for the
representability of a family of sets is the transversal index t(A); that is, the
maximal cardinality of a partial transversal of A. The deficiency of a partial
transversal of cardinality k is the number n− k; hence the transversal index
equals n minus the minimal deficiency of a partial transversal. The following
condition of [Ore55] for the existence of a partial transversal with a given
deficiency follows easily from the marriage theorem.

Theorem 7.3.4 (Deficiency version of the marriage theorem) Let A =
(A1, . . . ,An) be a family of subsets of a finite set S. Then A has a par-
tial transversal of cardinality k (that is, with deficiency d= n−k) if and only
if the following condition holds:

∣
∣
∣
∣

⋃

j∈J

Aj

∣
∣
∣
∣≥ |J |+ k− n for all J ⊂ {1, . . . , n}. (7.1)

Proof Let D be an arbitrary d-set disjoint from S, and define a family A′ =
(A′

1, . . . ,A
′
n) of subsets of S ∪D by putting A′

i =Ai ∪D. By Theorem 7.3.1,
A′ has a transversal if and only if it satisfies condition (H); that is, if and
only if (7.1) holds for A. Now every transversal T of A′ yields a partial
transversal for A of cardinality at least k, namely T \D. Conversely, each
partial transversal of cardinality k of A can be extended to a transversal of
A′ by adding the elements of D. �

Corollary 7.3.5 The minimal deficiency of a partial transversal of A is

d(A) =max

{

|J | −
∣
∣
∣
∣

⋃

j∈J

Aj

∣
∣
∣
∣ : J ⊂ {1, . . . , n}

}

,

and the transversal index is t(A) = n− d(A).

Exercise 7.3.6 Translate Corollary 7.3.5 into the language of bipartite
graphs.

Theorem 7.3.7 Let A= (A1, . . . ,An) be a family of subsets of a finite set S.
Then a subset X of S is a partial transversal of A if and only if the following
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condition holds:

∣
∣
∣
∣

⋃

j∈J

Aj ∩X

∣
∣
∣
∣≥ |J |+ |X| − n for all J ⊂ {1, . . . , n}. (7.2)

Proof Obviously, X is a partial transversal of A if and only if it is a partial
transversal of A′ = (Ai ∩ X)i=1,...,n; that is, if and only if A′ has a par-
tial transversal of cardinality |X|. This observation reduces the assertion to
Theorem 7.3.4. �

The partial transversals characterized in the preceding theorem are the
independent sets of a matroid, a result due to Edmonds and Fulkerson
[EdmFu65]:

Theorem 7.3.8 Let A= (A1, . . . ,An) be a family of subsets of a finite set
S, and let S be the set of partial transversals of A. Then (S,S) is a matroid.

Proof Consider the bipartite graph G corresponding to A as explained at the
beginning of this section. Then the partial transversals of A are precisely the
subsets of the form {e− : e ∈M} of S, where M is a matching of G. Hence
the assertion reduces to Exercise 6.5.7. �

The matroids described in Theorem 7.3.8 are called transversal matroids.
Theorems 7.3.8 and 5.2.7 together imply the following result; a constructive
proof for this result is given in the solution to Exercise 6.5.7.

Corollary 7.3.9 Let A be a family of subsets of a finite set S, and assume
that A has a transversal. Then every partial transversal of A can be extended
to a transversal.

Corollary 7.3.9 is generally attributed to Hoffmann and Kuhn [HofKu56].
Marshall Hall [Hal56] should also be mentioned in this context; he gave the
first algorithm for determining an SDR, and this algorithm yields a construc-
tive proof for Corollary 7.3.9. We note that the solution to Exercise 6.5.7
given in the appendix yields a considerably simpler proof: Hall’s algorithm
is much harder to understand than the determination of a maximal partial
SDR—that is, more precisely, of a maximal matching in the corresponding
bipartite graph—using network flows. Moreover, Hall’s algorithm does not
have polynomial complexity.

Edmonds and Fulkerson also proved a more general version of Theo-
rem 7.3.8 which uses matchings in arbitrary graphs for constructing matroids;
we will present this theorem in Sect. 13.6. The special case above suffices to
solve the following exercise:
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Exercise 7.3.10 Let E =A1

.
∪ · · ·

.
∪Ak be a partition of a finite set E, and

let d1, . . . , dk be positive integers. Then (E,S) is a matroid, where

S=
{
X ⊂E : |X ∩Ai| ≤ di for i= 1, . . . , k

}
.

Matroids of this type are called partition matroids. If we choose E as the
edge set of a digraph G, Ai as the set of all edges with end vertex i, and
di = 1 (i= 1, . . . , |V |), we get the head-partition matroid of Theorem 5.1.3.

The following strengthening of Corollary 7.3.9 is due to Mendelsohn and
Dulmage [MenDu58].

Theorem 7.3.11 Let A = (A1, . . . ,An) be a family of subsets of a finite
set S. In addition, let A′ be a subfamily of A and S′ a subset of S. Then the
following statements are equivalent:

(1) A′ has a transversal, and S′ is a partial transversal of A.
(2) There exist a subset S′′ of S containing S′ and a subfamily A′′ of A

containing A′ for which S′′ is a transversal of A′′.

While it is possible to give a direct proof of Theorem 7.3.11 using the
methods of transversal theory, it will be simpler and more intuitive to trans-
late the result in question into the language of bipartite graphs; moreover,
the symmetry of this result—between subsets of S and subfamilies of A—is
much more transparent in graph theoretic terms. To do so, we need the fol-
lowing definition. Let M be a matching in a graph G= (V,E). We say that
M covers a subset X of V if each vertex in X is incident with some edge
of M . We shall now prove the following result equivalent to (the nontrivial
direction of) Theorem 7.3.11.

Theorem 7.3.12 Let G= (S
.
∪ T,E) be a bipartite graph, S′ a subset of S,

and T ′ a subset of T . If there exist matchings MS and MT in G covering S′

and T ′, respectively, then there also exists a matching covering S′ ∪ T ′.

Proof Consider the bipartite subgraph G′ of G determined by the edges in
MS ∪MT . Note that the vertex set V ′ of G′ consist precisely of those vertices
of G which are covered by MS or MT (so that W := S′ ∪ T ′ ⊆ V ′), and that
each vertex of G′ has degree 1 or 2. Moreover, a vertex v with degree 2 has
to be incident with precisely one edge of MS and one edge of MT . Therefore
the connected components of G′ are either cycles of even length, where edges
of MS and MT alternate, or paths formed by such alternating sequences of
edges. We will use these observations to define a matching M of G′—and
hence of G—covering W .

Thus consider any connected component C of G′. If C is an (alternating)
cycle, we put all edges in C ∩MS into M ; this will cover all vertices in C.5

5Of course, we might as well choose the edges in C ∩MT .



7.3 Partial Transversals: The Marriage Theorem 233

If C is an (alternating) path of odd length, the first and the last edge of C
have to belong to the same matching, say to M ′ ∈ {MS ,MT }; again, we put
all edges in C ∩M ′ into M and cover all vertices in C. Finally, let C be an
(alternating) path of even length. Note that the two end vertices of C have to
belong to the same part of the bipartition of G, say to S. As C is alternating,
one of these two vertices is not covered by MS (and hence is not contained
in S′), since exactly one of the two end edges of C belongs to MS . Again, we
may select all edges in C ∩MS ; while this leaves one of the two end vertices
exposed, it does cover all the vertices of C contained in W . �

Theorem 7.3.11 now follows by applying Theorem 7.3.12 to the bipartite
graph associated with the family A = (A1, . . . ,An). Nevertheless, a direct
proof is a useful exercise:

Exercise 7.3.13 Give a direct proof of Theorem 7.3.11 using the methods
of transversal theory. Hint: Consider the auxiliary family B consisting of the
sets A1, . . . ,Ak,Ak+1∪D, . . . ,An∪D and m times the set (S \S′)∪D, where
D is an arbitrary set of cardinality n which is disjoint to S.

Exercise 7.3.14 Let A = (At)t∈T be a finite family of subsets of a finite
set S. Show that A induces a matroid on T as well.

The following result of [Hal35] is a further application of the marriage
theorem. It gives a criterion for the existence of a common system of repre-
sentatives for two families of sets.

Theorem 7.3.15 Let A = (A1, . . . ,An) and B = (B1, . . . ,Bn) be two fam-
ilies of subsets of a finite set S. Then A and B have a common system of
representatives if and only if the following condition holds:

∣
∣
∣
∣

{

i:Bi ∩
(⋃

j∈J

Aj

)

�= ∅
}∣
∣
∣
∣≥ |J | for all J ⊂ {1, . . . , n}. (7.3)

Proof A andB have a common system of representatives if and only if there is
a permutation π of {1, . . . , n} such that Ai ∩Bπ(i) �= ∅ for i= 1, . . . , n. Define
the family C = (C1, . . . ,Cn) by Cj := {i : Aj ∩ Bi �= ∅}; then the condition
above reduces to the existence of a transversal of C. It is easily seen that
condition (H′) for C is equivalent to (7.3), and thus the assertion follows
from Theorem 7.3.1. �

The following two results of [vandW27] and [Mil10], respectively, are im-
mediate consequences of Theorem 7.3.15.

Corollary 7.3.16 Let M = A1

.
∪ · · ·

.
∪ An = B1

.
∪ · · ·

.
∪ Bn be two parti-

tions of a finite set M into subsets of cardinality k. Then (A1, . . . ,An) and
(B1, . . . ,Bn) have a common transversal.
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Corollary 7.3.17 Let H be any subgroup of a finite group G. Then the
families of right and left cosets of H in G necessarily have a common system
of representatives.

We have proved Theorems 7.3.4, 7.3.7, 7.3.11, and 7.3.15 by applying the
marriage theorem to a suitable auxiliary family of sets. Thus, in some sense,
the marriage theorem is a self-strengthening result, as pointed out by Mirsky
[Mir69a]. A further result which can be proved in the same manner is left to
the reader as an exercise; see [HalVa50].

Exercise 7.3.18 (Harem theorem) Let A= (A1, . . . ,An) be a family of sub-
sets of a finite set S, and (p1, . . . , pn) a family of positive integers. Show that
a family of pairwise disjoint sets (X1, . . . ,Xn) with Xi ⊂Ai and |Xi|= pi for
i= 1, . . . , n exists if and only if the following condition holds:

∣
∣
∣
∣

⋃

i∈J

Ai

∣
∣
∣
∣≥

∑

i∈J

pi for all J ⊂ {1, . . . , n}.

We close this section with some remarks. Network flow theory can be used
to prove many more results about (partial) transversals and systems of rep-
resentatives; we refer to [ForFu58b, ForFu62]. In particular, it is possible to
derive a criterion for when two families of sets have a common transversal.
However, this result follows more easily from a generalization of the mar-
riage theorem to matroids due to Rado [Rad42], who gave a criterion for the
existence of transversals which are independent in the matroid. It turns out
that the theory of matroids is the natural structural setting for transversal
theory; we refer to the books [Mir71b, Wel76], to the survey [Mir69b], and
to [MirPe67].

7.4 Combinatorics of Matrices

This section treats some combinatorial theorems concerning matrices. We
begin by translating Theorem 7.2.3 into the language of matrices. Let A =
(aij)i=1,...,m;j=1,...,n be a matrix where a certain subset of the cells (i, j) is
marked as admissible—usually, the cells (i, j) with aij �= 0. A set C of cells
is called independent if no two cells of C lie in the same row or column
of A. The term rank or scatter number ρ(A) is the maximal cardinality of an
independent set of admissible cells of A. Corresponding to A, we construct
a bipartite graph G with vertex set S

.
∪ T , where S = {1, . . . ,m} and T =

{1′, . . . , n′}, and where G contains an edge st′ if and only if the cell (s, t) is
admissible. Then the matchings of G correspond to the independent sets of
admissible cells of A; moreover, vertex covers of G correspond to those sets of
rows and columns which contain all the admissible cells. Hence Theorem 7.2.3
translates into the following result.
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Theorem 7.4.1 The term rank ρ(A) of a matrix A is equal to the minimal
number of rows and columns of A which contain all the admissible cells of A.

From now on, we restrict our attention to square matrices. We want to
derive a criterion of Frobenius [Fro12] which tells us when all terms in the
sum representation of the determinant of a matrix are equal to 0. Again,
we need some definitions. If A is an n× n matrix, any set of n independent
cells is called a diagonal . A diagonal is said to be a non-zero diagonal or a
positive diagonal if each of its cells has entry �= 0 or > 0, respectively. The
width of an r × s matrix is r + s. Now we mark the cells having entry �= 0
as admissible and define a bipartite graph G corresponding to A, as before.
Then a non-zero diagonal of A corresponds to a perfect matching of G. We
get the following result equivalent to Theorem 7.2.5.

Lemma 7.4.2 Let A be a square matrix of order n. Then A has a non-zero
diagonal if and only if the non-zero entries in a set of k columns of A always
belong to at least k different rows.

Theorem 7.4.3 Let A be an n×n matrix. Then each diagonal of A contains
at least one entry 0 if and only if A has a zero submatrix of width n+ 1.

Proof By Lemma 7.4.2, every diagonal of A contains an entry 0 if and only if
there are k columns of A which have all their non-zero entries in r < k rows.
Then these k columns have entry 0 in the remaining n− r > n− k rows, and
we obtain a zero submatrix of width n− r+ k ≥ n+ 1. �

Note that the diagonals of A correspond precisely to the terms in the sum
representation of the determinant of A, so that Theorem 7.4.3 gives the de-
sired criterion. Next, we consider an important class of matrices which always
have a positive diagonal. An n× n matrix with nonnegative real entries is
called doubly stochastic if the row sums and the column sums always equal 1.
The next three results are due to König [Koe16].

Lemma 7.4.4 Every doubly stochastic matrix has a positive diagonal.

Proof For doubly stochastic matrices, a positive diagonal is the same as a
non-zero diagonal. Thus we may apply Lemma 7.4.2. Now suppose that all
non-zero entries of a given set of k columns belong to r < k rows. Denote the
matrix determined by these k columns and r rows by B. Then the sum of all
entries of B is = k (when added by columns) as well as ≤ r (when added by
rows), a contradiction. �

We will see that there is a close relationship between doubly stochastic ma-
trices and permutation matrices, that is, square matrices which have exactly
one entry 1 in each row and column, and all other entries 0.
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Theorem 7.4.5 (Decomposition theorem) Let A be an n × n matrix with
nonnegative real entries for which all row sums and all column sums equal
some constant s. Then A is a linear combination of permutation matrices
with positive real coefficients.6

Proof Dividing all entries of A by s yields a doubly stochastic matrix A′.
By Lemma 7.4.4, A′ (and hence A) has a positive diagonal D. Let P be the
permutation matrix corresponding to D (that is, P has entry 1 in the cells
of D), and let c be the minimum of the entries in D. Then B = A− cP is
a matrix with nonnegative real entries and constant row and column sums
as well. But B has at least one more entry 0 than A, so that the assertion
follows using induction. �

Let us state a simple consequence of our proof of the decomposition
theorem, which the reader should compare with Corollary 7.2.6. It—and
some generalizations—are important tools in finite geometry, more precisely
for the recursive construction of incidence structures; see, for example, the
survey[Jun79b].

Corollary 7.4.6 (König’s lemma) Let A be a square matrix with entries 0
and 1 for which all row sums and all column sums equal some constant k.
Then A is the sum of k permutation matrices.

Proof The assertion follows immediately from the proof of Theorem 7.4.5: in
this case, we always have c= 1. �

A further immediate consequence of Theorem 7.4.5 is the following classical
result due to Birkhoff [Bir46]. We need to recall a fundamental concept from
Euclidean geometry: the convex hull of n vectors x1, . . . , xn in a real vector
space is the set of all linear combinations x1c1 + · · ·+xncn with nonnegative
coefficients ci satisfying c1 + · · ·+ cn = 1.

Theorem 7.4.7 The convex hull of the permutation matrices in R
(n,n) is

the set of doubly stochastic matrices.

Further theorems from combinatorial matrix theory can be found in the
books [Mir71b] and [ForFu62]. Let us mention an interesting strengthening
of Lemma 7.4.4 without proof; see [MarMi65].

Result 7.4.8 Every doubly stochastic n × n matrix A has a diagonal for
which the product of its n entries is at least n−n.

6A strong generalization of Theorem 7.4.5 is proved in [LewLL86].
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The matrix with all entries 1/n shows that the bound of Result 7.4.8 is
best possible. Summing the products of the entries in D over all diagonals
D of a square matrix A gives the permanent perA.7 The van der Waerden
conjecture [vandW26] suggested a considerably stronger result than 7.4.8;
this conjecture remained open for more than fifty years until it was finally
proved independently by Egoritsjev and Falikman [Ego81, Fal81]. Proofs can
also be found in [Knu81, Hal86, Min88], and [vanLiWi01].

Result 7.4.9 (Van der Waerden conjecture) Every doubly stochastic n× n
matrix A satisfies per A ≥ n!/nn, with equality only for the matrix with all
entries 1/n.

The permanent plays an important role in determining the number of
SDR’s of a family of sets, and in determining the number of complete match-
ings of a bipartite graph; see [Mir71b, Hal86], and [Min78]. As an example,
we mention the following interesting application of Result 7.4.9.

Theorem 7.4.10 Let G be a k-regular bipartite graph with |S| = |T | = n.
Then G admits at least n!kn/nn different perfect matchings.

Proof Let A be the 0-1-matrix corresponding to G; that is, aij = 1 if and
only if ij is an edge of G. Then the perfect matchings of G correspond to
the positive diagonals of A. As 1

k
A is a doubly stochastic matrix, we have

per( 1kA)≥ n!/nn. Now each diagonal of 1
kA has product 0 or 1/kn, so that

there have to be at least n!kn/nn positive diagonals of A. �

Theorem 7.4.10 and its generalizations (see Exercise 7.4.15) are interesting
tools in finite geometry; see [Jun79a, Jun79b]. Next we mention two impor-
tant optimization problems for matrices.

Example 7.4.11 (Bottleneck assignment problem) Suppose we are given an
n × n matrix A = (aij) with nonnegative real entries. We want to find a
diagonal of A such that the minimum of its entries is maximal. A possible
interpretation of this abstract problem is as follows. We need to assign workers
to jobs at an assembly line; aij is a measure of the efficiency of worker i when
doing job j. Then the minimum of the entries in a diagonal D is a measure
for the efficiency arising from the assignment of workers to jobs according
to D.

Problem 7.4.11 can be solved using the above methods as follows. Start
with an arbitrary diagonal D whose minimal entry is m, say, and declare all

7Note that this function differs from the determinant of A only by the signs of the terms
appearing in the sum. Although there exist efficient algorithms for computing determinants,
evaluating the permanent of a matrix is NP-hard by a celebrated result of Valiant [Val79a].
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cells (i, j) with aij >m admissible. Obviously, there will be some diagonal
D′ with minimal entry m′ >m if and only if there is an admissible diagonal
for A. This can be checked with complexity O(|V |5/2) by determining the
cardinality of a maximal matching in the corresponding bipartite graph G.
Note that the problem will be solved after at most O(n2) such steps.8 The
following famous problem—which will be studied extensively in Chap. 14—
can be treated in a similar way.

Example 7.4.12 (Assignment problem) Let A be a given square matrix with
nonnegative real entries. We require a diagonal of A for which the sum of all
its entries is maximal (or minimal). We could interpret this problem again as
finding an assignment of workers to jobs or machines (which are, this time,
independent of one another), where the entries of A give the value of the
goods produced (or the amount of time needed for a given number of goods
to be produced).

As we will see in Chap. 14, the assignment problem can be solved with
complexity O(n3). The Hungarian algorithm of Kuhn [Kuh55], which is often
used for this task, is based on finding maximal matchings in appropriate
bipartite graphs. We close this section with a few exercises, some of which
are taken from [MaRe59, Jun79a], and [FarMi60].

Exercise 7.4.13 Translate Corollary 7.4.6 into the terminology of bipartite
graphs.

Exercise 7.4.14 Let A be a doubly stochastic matrix of order n. Then A
has a diagonal whose entries have sum at least 1. Hint: Use Result 7.4.8 and
the inequality between the arithmetic mean and the geometric mean.

Exercise 7.4.15 Let A be an m × n 0-1-matrix having row sums tr and
column sums ≤ r. Then A is the sum of r matrices Ai having row sums t and
column sums ≤ 1. Hint: Use induction on r by determining an appropriate
transversal for the family of sets which contains t copies of each of the sets
Ti = {j ∈ {1, . . . , n}: aij = 1} for i= 1, . . . ,m.

Exercise 7.4.16 Let A be a 0-1-matrix for which all row and columns sums
are at most r. Show that A is the sum of r 0-1-matrices for which all row
and columns sums are at most 1. Hint: Translate the claim into the language
of bipartite graphs and use Corollary 7.3.12 for a proof by induction.

Exercise 7.4.17 Show that the subspace of R(n,n) generated by the permu-
tation matrices has dimension n2 − 2n+ 2; see Theorem 7.4.7.

8This problem was generalized by Gabow and Tarjan, [GabTa88] who also gave an algo-

rithm with complexity O((|V | log |V |)1/2|E|). For our classical special case, this yields a
complexity of O((log |V |)1/2|V |5/2).
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7.5 Dissections: Dilworth’s Theorem

In this section we deal with decomposition theorems for directed graphs and
partially ordered sets. Again, we begin with a definition. Let G be a graph
or a digraph. A subset X of the vertex set of G is called independent or
stable if no two vertices in X are adjacent; cf. Exercise 2.8.4. The maximal
cardinality α(G) of an independent set of G is called the independence number
of G.9 Obviously, the complement of an independent set is a vertex cover;
this implies the following lemma.

Lemma 7.5.1 Let G be a graph or a digraph. Then α(G) + β(G) = |V |.

For the remainder of this section, let G= (V,E) be a digraph. A dissection
of G is a set of directed paths in G such that the sets of vertices on these
paths form a partition of the vertex set V . One denotes the minimal possible
number of paths contained in a dissection by Δ(G). We have the following
major result due to Dilworth [Dil50].

Theorem 7.5.2 Let G be a transitive acyclic digraph. Then the maximal
cardinality of an independent set equals the minimal number of paths in a
dissection: α(G) =Δ(G).

Proof Since G is transitive, a directed path can meet an independent set in
at most one vertex, and hence α(G) ≤ Δ(G). We shall reduce the reverse
inequality to Theorem 7.2.3, an approach introduced in [Ful56]. To this end,
we replace each vertex v of G by two vertices v′, v′′ and construct a bipartite
graph H with vertex set V ′ .

∪ V ′′, where H contains the edge v′w′′ if and
only if vw is an edge of G.

Let M = {v′iw′′
i : i = 1, . . . , k} be any matching of cardinality k of H ; we

claim that M can be used to construct a dissection of G into n− k paths,
where n= |V |. Note that v1w1, . . . , vkwk are edges of G, and that all vertices
v1, . . . , vk as well as all vertices w1, . . . ,wk are distinct. However, vi = wj is
possible; in this case, we may join the paths viwi and vjwj to form a larger
path vj wj = vi wi. By continuing in this manner (that is, joining paths

having the same start or end vertex), we finally obtain c paths whose vertex
sets are pairwise disjoint. Suppose these paths have lengths x1, . . . , xc. The
remaining n − ((x1 + 1) + · · · + (xc + 1)) vertices are then partitioned into
trivial paths of length 0. Altogether, this yields the desired dissection of G
into n− (x1 + · · ·+ xc) = n− k paths.

9Note that independent sets are the vertex analogue of matchings, which may be viewed as

independent sets of edges; hence the notation α′(G) in Sect. 7.2 for the maximal cardinality

of a matching.



240 7 Combinatorial Applications

Fig. 7.3 A digraph with

α= 4 and Δ= 2

In particular, we may choose M as a maximal matching of H , that is,
k = α′(H). By Theorem 7.2.3, α′(H) = β(H); obviously, β(H) ≥ β(G); and
by Lemma 7.5.1, α(G) = n− β(G). Hence G can be dissected into

n− α′(H) = n− β(H)≤ n− β(G) = α(G)

paths, proving Δ(G)≤ α(G). �

Dilworth proved Theorem 7.5.2 in the setting of partially ordered sets.
Thus let (M,) be a poset and G the corresponding transitive acyclic di-
graph; see Example 2.6.1. Then a directed path in G corresponds to a chain
in (M,); that is, to a subset of M which is linearly ordered: for any two
distinct elements a, b of the subset, a≺ b or b≺ a. Similarly, an independent
set in G corresponds to an antichain of (M,); that is, to a subset of M
consisting of incomparable elements: for any two distinct elements a, b of the
subset, neither a≺ b nor b≺ a holds. Then Theorem 7.5.2 translates into the
following result stated by Dilworth.

Theorem 7.5.3 (Dilworth’s theorem) Let (M,) be a partially ordered set.
Then the maximal cardinality of an antichain of M is equal to the minimal
number of chains into which M can be partitioned.

The parameter defined in Theorem 7.5.3 is called the Dilworth number of
(M,). Before considering some consequences of Theorem 7.5.3, we return
to the proof of Theorem 7.5.2. Obviously, the inequality Δ(G)≤ α(G) carries
over to arbitrary acyclic digraphs.10 Gallai and Milgram [GaMi60] showed
that the graph does not even have to be acyclic for this inequality to hold;
however, there is no proof known for this result which uses flow networks or
matchings. We leave the proof to the reader as a more demanding exercise:

Exercise 7.5.4 (Gallai-Milgram theorem) Let G be an arbitrary directed
graph. Prove the inequality Δ(G) ≤ α(G). Hint: Consider a minimal coun-
terexample.

10However, the reverse inequality does not hold for this more general case, as the example

in Fig. 7.3 shows.
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Exercise 7.5.5 (Redéi’s theorem) A tournament is an orientation of a com-
plete graph.11 Prove that every tournament contains a Hamiltonian path.
This result is due to Redéi [Red34].

As promised, we now derive some consequences of Theorem 7.5.3.

Corollary 7.5.6 Let (M,) be a partially ordered set with at least rs+ 1
elements. Then M contains a chain of cardinality r + 1 or an antichain of
cardinality s+ 1.

Proof If M does not contain an antichain of cardinality s+ 1, then M can
be partitioned into s chains by Theorem 7.5.3. At least one of these chains
has to contain at least r+ 1 elements. �

Corollary 7.5.6 yields a simple proof for the following result originally
proved by Erdős and Szekeres [ErdSz35].

Theorem 7.5.7 Let (ai)i=1,...,n be a sequence of real numbers, and assume
n≥ r2 + 1. Then there exists a monotonic subsequence of length r+ 1.

Proof Put M = {(i, ai) : i = 1, . . . , n} and define a partial ordering  on M
as follows:

(i, ai) (j, aj) ⇐⇒ i≤ j and ai ≤ aj .

Now suppose that M contains an antichain with r + 1 elements and let
i1 < i2 < · · ·< ir+1 be the first coordinates of these elements. Then the corre-
sponding second coordinates form a strictly decreasing subsequence of length
r+1. If there is no such antichain, M has to contain a chain of length r+1, by
Corollary 7.5.6; then the second coordinates form an increasing subsequence
of length r+ 1. �

The following well-known result due to Sperner [Spe28] has become the
starting-point for a large area of research concerning partially ordered sets:
Sperner Theory ; see the survey [GreKl78] as well as [Gri88] and the mono-
graph [Eng97]. We shall deduce this result by using Dilworth’s theorem.

Theorem 7.5.8 (Sperner’s lemma) Let the power set 2M of a finite set M
be partially ordered with respect to inclusion; then the maximal cardinality of
an antichain is N =

(
n

�n/2�
)
, where n= |M |.

11The term tournament becomes clear by considering a competition where there are no

draws: for example, tennis. Assume that each of n players (or teams, as the case may be)

plays against every other one, and that the edge {i, j} is oriented as ij if i wins against j.
Then an orientation of Kn indeed represents the outcome of a (complete) tournament.
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Proof Obviously, the subsets of cardinality �n/2� form an antichain of cardi-
nality N . To show that there is no antichain having more elements, consider
the digraph G with vertex set 2M corresponding to (2M ,⊆). By Theorem
7.5.2, it suffices to partition G into N directed paths. Note that the vertex
set of G is partitioned in a natural way into n+1 sets, namely all subsets of
M having the same cardinality i for i= 0, . . . , n.

Consider the bipartite graph Gk induced by G on the subsets of M of
cardinality k or k + 1, where k = 0, . . . , n− 1. We claim that each of the Gk

has a complete matching; we may assume k+1≤ n/2. Consider an arbitrary
collection of j k-subsets of M and note that these subsets are incident with
j(n− k) edges in Gk. As each (k+1)-subset is on exactly k+ 1≤ n/2 edges
in Gk, these j(n− k) edges have to be incident with at least j(n− k)/k +
1≥ j distinct (k + 1)-subsets. By Theorem 7.2.5, Gk indeed has a complete
matching. Finally, the edges of the complete matchings of the bipartite graphs
Gk (k = 0, . . . , n−1) can be joined to form the desired directed paths in G. �

A further interesting application of Theorem 7.5.2 treating distributive
lattices is given in [Dil50]; we refer to [Aig97] for this so-called coding theorem
of Dilworth. We pose two more exercises; the first of these is due to Mirsky
[Mir71a].

Exercise 7.5.9 Let (M,) be a partially ordered set. Show that the maximal
cardinality of a chain in (M,) equals the minimal number of antichains into
which M can be partitioned. This result is dual to Dilworth’s theorem, but
its proof is much easier than the proof of Theorem 7.5.2. Hint: Consider the
set of maximal elements.

Exercise 7.5.10 Use Dilworth’s theorem to derive the marriage theorem.

We remark that our proof of Theorem 7.5.2 is also interesting from an
algorithmic point of view, since it allows to calculate the Dilworth number
of G by determining a maximal matching in the bipartite graph H , because
of Δ= n− α′(H). Thus Theorem 7.5.2 implies the following result (and its
translation to posets which we will leave to the reader).

Corollary 7.5.11 Let G= (M,E) be a transitive acyclic digraph. Then the
maximal cardinality of an independent set of vertices in G—that is, the min-
imal number of paths in a dissection of G—can be calculated with complexity
O(|M |5/2).

We note that the proof of the theorem of Gallai and Milgram given in the
solution for Exercise 7.5.4 is not applicable algorithmically. As this result is
stronger than Dilworth’s theorem, it would be interesting from the algorith-
mic point of view to find an alternative proof using the theory of flows, or to
reduce the general case to the special case of acyclic digraphs. It is an open
problem whether or not such a proof exists.
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7.6 Parallelisms: Baranyai’s Theorem

This section contains an application of the integral flow theorem in finite
geometry, namely the theorem of Baranyai [Bar75]. Let X be a given finite
set of cardinality n; the elements of X will be called points. We denote the set
of all t-subsets of X by

(
X
t

)
. A parallelism of

(
X
t

)
is a partition of

(
X
t

)
whose

classes are themselves partitions of X ; the classes are called parallel classes.
Note that a parallelism satisfies the usual Euclidean axiom for parallels: for
every point x ∈X and for each t-subset Y of X , there is exactly one t-subset
Y ′ which is parallel to Y (that is, contained in the same parallel class as Y )
and contains x. Obviously, a parallelism can exist only if t is a divisor of n. It
was already conjectured by Sylvester that this condition is sufficient as well.
For t = 3, the conjecture was proved by Peltesohn [Pel36]; the general case
remained open until Baranyai’s work. His main idea was to use induction on
n; the crucial fact is that this approach requires dealing with an assertion
which is much stronger than Sylvester’s conjecture (which does not allow an
inductive proof), as we shall see later. In fact, Baranyai proved the following
result.

Theorem 7.6.1 (Baranyai’s theorem) Let X be a set with n elements, and
A= (aij)i=1,...,r;j=1,...,s a matrix over Z

+
0 . Moreover, let t1, . . . , tr be integers

such that 0≤ ti ≤ n for i= 1, . . . , r. Then there exist subsets Aij of the power
set 2X of X with cardinality aij satisfying the following two conditions:

(1) For each i, {Ai1, . . . ,Ais} is a partition of
(
X
ti

)
.

(2) For each j, A1j ∪ · · · ∪Arj is a partition of X .

if and only if A satisfies the two conditions

(3) ai1 + · · ·+ ais =
(
n
ti

)
for i= 1, . . . , r,

(4) t1a1j + · · ·+ trarj = n for j = 1, . . . , s.

Proof Trivially, conditions (1) and (2) imply (3) and (4). So suppose con-
versely that (3) and (4) are satisfied; we have to construct appropriate
sets Aij . We do this using induction on n; the induction basis n= 1 is trivial.
So let n �= 1 and suppose the statement has already been proved for n−1. We
sketch the idea of the proof first: suppose we have already found the desired
sets Aij . Then, removing some point x0 ∈X from all subsets of X for each i

yields partitions of
(
X′

ti

)
and

(
X′

ti−1

)
, where X ′ :=X \ {x0}. Note that x0 will

be removed, for fixed j, from exactly one of the Aij . We want to invert this
procedure, which is easier said than done.

Let us define a network N = (G,c, q, u) as follows: G has vertices q (the
source); u (the sink); x1, . . . , xr; and y1, . . . , ys. The edges of G are all the
qxi, with capacity c(qxi) =

(
n−1
ti−1

)
; all the yju, with capacity 1; and all the

xiyj , with capacity 1 or 0 depending on whether aij �= 0 or aij = 0. Now let
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f be a flow on N . Then f can have value at most c(y1u) + · · ·+ c(ysu) = s.
We show that a rational flow with this value exists. Note

c(qx1) + · · ·+ c(qxr) =

(
n− 1

t1 − 1

)

+ · · ·+
(
n− 1

tr − 1

)

= s;

this follows from

s∑

j=1

(t1a1j + · · ·+ trarj) = ns=

r∑

i=1

ti

(
n

ti

)

= n

r∑

i=1

(
n− 1

ti − 1

)

,

which in turn is a consequence of (3) and (4). Now we define f by

f(qxi) =

(
n− 1

ti − 1

)

, f(yju) = 1 and f(xiyj) =
tiaij
n

for i = 1, . . . , r and j = 1, . . . , s. Condition (4) yields tiaij/n ≤ 1 = c(xiyj),
whenever aij �= 0. Moreover, if f really is a flow, it obviously has value w(f) =
s. It remains to check the validity of condition (F2) for f :

∑

e−=xi

f(e) =
s∑

j=1

f(xiyj) =
s∑

j=1

tiaij
n

=

(
n

ti

)
ti
n
=

(
n− 1

ti − 1

)

= f(qxi)

and

∑

e+=yj

f(e) =
r∑

i=1

f(xiyj) =
r∑

i=1

tiaij
n

= 1= f(yju);

these identities follow using (3) and (4), respectively. Summing up, f is indeed
a maximal flow on N . By Theorem 6.1.5, there also exists a maximal integral
flow f ′ on N ; such a flow obviously has to have the form

f ′(qxi) = f(qxi) =

(
n− 1

ti − 1

)

, f ′(yju) = f(yju) = 1,

f ′(xiyj) =: eij ∈ {0,1}

for i= 1, . . . , r and j = 1, . . . , s. Moreover, the eij have to satisfy the following
conditions which follow from (F2):

(5) ei1 + · · ·+ eis =
(
n−1
ti−1

)
for i= 1, . . . , r

and

(6) e1j + · · ·+ erj = 1 for j = 1, . . . s.

Now we put

t′i =

{
ti for i= 1, . . . r,
ti−r − 1 for i= r+ 1, . . .2r
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and

a′ij =

{
aij − eij for i= 1, . . . , r,
ei−r,j for i= r+ 1, . . .2r

for j = 1, . . . s. The condition 0≤ t′i ≤ n− 1 holds except if ti = n or ti−r = 0.
But these two cases are trivial and may be excluded, as they correspond to
partitions of {X} and {∅}. Note a′ij ≥ 0 for all i, j.

Now we use (5) and (6) to check that the t′i and the matrix A′ = (a′ij)
satisfy conditions (3) and (4) with n− 1 instead of n:

a′i1 + · · ·+ a′is = (ai1 + · · ·+ ais)− (ei1 + · · ·+ eis)

=

(
n

ti

)

−
(
n− 1

ti − 1

)

=

(
n− 1

t′i

)

for i= 1, . . . r;

a′i1 + · · ·+ a′is = ei−r,1 + · · ·+ ei−r,s =

(
n− 1

ti−r − 1

)

=

(
n− 1

t′i

)

for i= r+ 1, . . .2r; and

a′1jt
′
1 + · · ·+ a′2r,jt

′
2r =

(
(a1j − e1j)t1 + · · ·+ (arj − erj)tr

)

+
(
e1j(t1 − 1) + · · ·+ erj(tr − 1)

)

= (a1jt1 + · · ·+ arjtr)− (e1j + · · ·+ erj) = n− 1

for j = 1, . . . , s. Hence the induction hypothesis guarantees the existence of
subsets A′

ij (for i = 1, . . . ,2r and j = 1, . . . , s) of 2X
′
satisfying conditions

analogous to (1) and (2). For each j, exactly one of the sets A′
r+1,j , . . . ,A

′
2r,j

is nonempty, because of (6). Then this subset contains exactly one (ti−1)-set,
say Xj . We put

Aij =

{
A′

ij for eij = 0,
A′

ij ∪ {Xj ∪ {x0}} for eij = 1

for i= 1, . . . , r and j = 1, . . . , s. It remains to show that these sets Aij satisfy
conditions (1) and (2). Trivially, Aij has cardinality aij . Moreover, for fixed

i, {Ai1, . . . ,Ais} is a partition of
(
X
ti

)
. To see this, let Y be any ti-subset

of X . If Y does not contain x0, then Y occurs in exactly one of the sets
A′

ij . If Y contains x0, then Y ′ = Y \ {x0} occurs in exactly one of the sets
A′

r+1,j , . . . ,A
′
2r,j , say in A′

i+r,j ; then Y occurs in Aij . Thus (1) holds. Finally,
for each j, the set A′

1j ∪ · · · ∪A′
2r,j is a partition of X ′; and as x0 was added

to exactly one of these sets (namely to Xj), condition (2) has to be satisfied
as well. �
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If we choose r = 1, t1 = t, s =
(
n−1
t−1

)
, and a1j = n/t (for all j) in Theo-

rem 7.6.1, we obtain the conjecture of Sylvester mentioned at the beginning
of this section.

Corollary 7.6.2 (Sylvester’s conjecture) Let X be an n-set and t a positive
integer. Then

(
X
t

)
has a parallelism if and only if t divides n.

The proof of Theorem 7.6.1 actually yields a method for constructing a
parallelism of

(
X
t

)
recursively. However, this approach would not be very effi-

cient because the number of rows of the matrix A doubles with each iteration,
so that the complexity is exponential. For t= 2, a parallelism is the same as
a 1-factorization of the complete graph on X ; here Exercise 1.1.2 provides
an explicit solution. Beth [Bet74] gave parallelisms for t= 3 and appropriate
values of n (using finite fields); see also [BetJL99], §VIII.8. No such series
of parallelisms are known for larger values of t. The interesting monograph
[Cam76] about parallelisms of complete designs (those are exactly the par-
allelisms defined here) should be mentioned in this context. Also, we remark
that in finite geometry, parallelisms are studied for several other kinds of inci-
dence structures, for example in Kirkman’s school girl problem (see Sect. 7.2);
we refer the reader to [BetJL99].

7.7 Supply and Demand: The Gale-Ryser Theorem

In the final section of this chapter, we consider a further application of net-
work flow theory in optimization, namely the supply and demand problem.12

Let (G,c) be a network, and let X and Y be disjoint subsets of the vertex
set V . The elements x of X are considered to be sources, and the vertices y
in Y are interpreted as sinks. With each source x, we associate a supply a(x),
and with each sink y a demand d(y)—intuitively, we may think of companies
producing a certain product and customers who want to buy it. A feasible
flow on (G,c) is a mapping f :E →R

+
0 satisfying the following conditions:

(ZF 1) 0≤ f(e)≤ c(e) for all e ∈E;

(ZF 2)
∑

e−=x

f(e)−
∑

e+=x

f(e)≤ a(x) for all x ∈X;

(ZF 3)
∑

e+=y

f(e)−
∑

e−=y

f(e) = d(y) for all y ∈ Y ;

(ZF 4)
∑

e+=v

f(e) =
∑

e−=v

f(e) for all v ∈ V \ (X ∪ Y ).

12A somewhat more general problem will be the subject of Chap. 11.
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Thus the amount of flow coming out of a source cannot be larger than the
corresponding supply a(x), and the amount of flow going into a sink has to
equal the corresponding demand d(y). For all other vertices (which are often
called intermediate nodes or transshipment nodes), the amount of flow going
into that vertex has to be the same as the amount of flow coming out of it;
this agrees with the flow conservation condition (F2). We have the following
result due to Gale [Gal57].

Theorem 7.7.1 (Supply and demand theorem) For a given supply and de-
mand problem (G,c,X,Y, a, d), there exists a feasible flow if and only if the
following condition is satisfied:

c(S,T )≥
∑

y∈Y ∩T

d(y)−
∑

x∈X∩T

a(x) for each cut (S,T ) of G. (7.4)

(In contrast to our former definition, S = ∅ or T = ∅ are allowed here.)

Proof We reduce the existence problem for feasible flows to usual network
flows. To this end, we add two new vertices to G, namely the source s and
the sink t; and we also add all edges sx (for x ∈X) with capacity c(sx) = a(x),
and all edges yt (for y ∈ Y ) with capacity c(yt) = d(y). This yields a standard
flow network N . It is easy to see that the original problem admits a feasible
flow if and only if there exists a flow on N which saturates all edges yt; that
is, if and only if the maximal value of a flow on N equals the sum w of the
demands d(y). Using Theorem 6.1.6, this means that there exists a feasible
flow if and only if each cut in N has capacity at least w. Note that a cut in
N has the form (S ∪ {s}, T ∪ {t}), where (S,T ) is a cut in G. Hence we get
the condition

c
(
S ∪ {s}, T ∪ {t}

)
= c(S,T ) +

∑

x∈X∩T

a(x) +
∑

y∈Y ∩S

d(y)≥
∑

y∈Y

d(y),

and the assertion follows. �

Exercise 7.7.2 Suppose we are given a supply and demand problem where
the functions c, a, and d are integral, and assume the existence of a feasible
flow. Show that then even an integral feasible flow exists.

Let us apply Theorem 7.7.1 to derive necessary and sufficient conditions
for the existence of a bipartite graph G with vertex set V = S

.
∪ T and given

degree sequences (p1, . . . , pm) for the vertices in S, and (q1, . . . , qn) for the
vertices in T . We may assume q1 ≥ q2 ≥ · · · ≥ qn; we will see that this as-
sumption is quite helpful. An obvious necessary condition for the existence
of such a graph is p1 + · · ·+ pm = q1 + · · ·+ qn; however, this condition is not
sufficient.
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Exercise 7.7.3 Show that there is no bipartite graph with degree sequences
(5,4,4,2,1) and (5,4,4,2,1).

The following theorem of Gale [Gal57] and Ryser [Rys57] gives the desired
criterion:

Theorem 7.7.4 (Gale-Ryser theorem) Let (p1, . . . , pm) and (q1, . . . , qn) be
two sequences of nonnegative integers satisfying the conditions

q1 ≥ q2 ≥ · · · ≥ qn and p1 + · · ·+ pm = q1 + · · ·+ qn.

Then there exists a bipartite graph G with vertex set V =X
.
∪ Y and degree

sequences (p1, . . . , pm) on X and (q1, . . . , qn) on Y if and only if the following
condition holds:

m∑

i=1

min(pi, k)≥
k∑

j=1

qj for k = 1, . . . , n. (7.5)

Proof Let X = {x1, . . . , xm} and Y = {y1, . . . , yn}. We define a supply and
demand problem as follows. The network (G,c) contains all edges xiyj with
capacity c(xiyj) = 1. Moreover, with xi we associate the supply a(xi) = pi,
and with yj we associate the demand d(yj) = qj . Obviously, the existence of a
feasible (0,1)-flow for (G,c) is equivalent to the existence of a bipartite graph
with vertex set V =X

.
∪ Y having the prescribed degree sequences: the edges

with non-zero flow in the network are precisely the edges of G. Thus we need
to check that condition (7.4) in Theorem 7.7.1 is equivalent to (7.5).

For each subset U of V , put U ′ = {i : xi ∈ U} and U ′′ = {j : yj ∈ U}. Then
c(S,T ) = |S′||T ′′|, where T := V \ S. First, suppose there exists a feasible
flow. Then (7.4) implies

∣
∣S′∣∣

∣
∣T ′′∣∣≥

∑

j∈T ′′

qj −
∑

i∈T ′

pi for all S ⊂ V. (7.6)

Choosing S = {xi : pi > k} ∪ {yk+1, . . . , yn}, (7.6) becomes

k×
∣
∣{i : pi > k}

∣
∣≥

k∑

j=1

qj −
∑

pi≤k

pi.

This implies (7.5) noting the following fact: for pi ≤ k, we have pi =min(pi, k);
and for pi > k, we have k =min(pi, k).

Conversely, suppose that condition (7.5) is satisfied, and let S be an arbi-
trary subset of V . Consider the cut (S,T ), where T = V \ S. With k = |T ′′|,
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we get

c(S,T ) =
∑

i∈S′

k ≥
∑

i∈S′

min(pi, k)≥
k∑

j=1

qj −
∑

i∈T ′

min(pi, k)

≥
∑

j∈T ′′

qj −
∑

i∈T ′

pi =
∑

y∈Y ∩T

d(y)−
∑

x∈X∩T

a(x).

Thus (7.5) indeed implies (7.4). �

Actually, Ryser stated and proved Theorem 7.7.4 in the language of 0-1-
matrices. With any bipartite graph G= (X

.
∪ Y,E), we associate—as usual—

a matrix M = (mxy)x∈X,y∈Y , where mxy = 1 if xy ∈ E and mxy = 0 other-
wise. Conversely, each 0-1-matrix yields a bipartite graph. Then the degree
sequence on X corresponds to the sequence of row sums of M , and the de-
gree sequence on Y corresponds to the sequence of column sums of M . In this
way, Theorem 7.7.4 translates into the following criterion for the existence of
a 0-1-matrix with given row and column sums.

Theorem 7.7.5 Let (p1, . . . , pm) and (q1, . . . , qn) be two sequences of non-
negative integers satisfying the conditions q1 ≥ q2 ≥ · · · ≥ qn and q1 + · · · +
qn = p1 + · · · + pm. Then there exists an m × n 0–1-matrix with row sums
(p1, . . . , pm) and column sums (q1, . . . , qn) if and only if condition (7.5) in
Theorem 7.7.4 holds.

A different proof of Theorems 7.7.4 and 7.7.5 using the methods of
transversal theory can be found in [Mir71b].



Chapter 8
Connectivity and Depth First Search

How beautiful the world would be if there were a rule for

getting around in labyrinths.

Umberto Eco

We have already encountered the notions of connectivity, strong connectivity,
and k-connectivity; and we know an efficient method for determining the con-
nected components of a graph: breadth first search. In the present chapter, we
mainly treat algorithmic questions concerning k-connectivity and strong con-
nectivity. To this end, we introduce a further important strategy for searching
graphs and digraphs (besides BFS), namely depth first search. In addition, we
present various theoretical results, such as characterizations of 2-connected
graphs and of edge connectivity.

8.1 k-connected Graphs

In Sect. 7.1, we defined the connectivity κ(G) of a graph and introduced
k-connected graphs. As Exercise 7.1.7 shows, these notions are intimately
related to the existence of vertex disjoint paths. This suggests a further def-
inition: for any two vertices s and t of a graph G, we denote by κ(s, t) the
maximal number of vertex disjoint paths from s to t in G. By Menger’s the-
orem, κ(s, t) equals the minimal cardinality of a vertex separator for s and t
whenever s and t are non-adjacent. Using this notation, we may re-state the
result in Exercise 7.1.7 as follows.

Theorem 8.1.1 (Whitney’s theorem) A graph G is k-connected if and only
if κ(s, t)≥ k for any two vertices s and t of G. Hence

κ(G) =min
{
κ(s, t): s, t ∈ V

}
. (8.1)

Exercise 8.1.2 Show that a k-connected graph on n vertices contains at
least �kn/2� edges. (Note that this bound is tight; see [Har62].)
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Exercise 8.1.3 Let G= (V,E) be a k-connected graph, T a k-subset of V ,
and s ∈ V \T . Show that there exists a set of k paths with start vertex s and
end vertex in T for which no two of these paths share a vertex other than s.

We will soon present an algorithm which determines the connectivity of
a given graph. First we apply Exercise 8.1.3 to the existence problem for
Hamiltonian cycles; the following sufficient condition is due to Chvátal and
Erdös [ChvEr72].

Theorem 8.1.4 Let G be a k-connected graph, where k ≥ 2. If G contains no
independent set of cardinality k+ 1—that is, if α(G)≤ k—then G is Hamil-
tonian.

Proof As G is 2-connected, G has to contain cycles.1 Let C be a cycle of
maximal length m. Assume m≤ k. Then G is also m-connected, and we can
apply Exercise 8.1.3 to the vertex set of C (as the set T ) and an arbitrary
vertex s /∈ T . Replacing one edge e= uv of C with the resulting vertex disjoint
paths from s to u and v, respectively, we obtain a cycle of length >m. This
contradiction shows m> k.

Now suppose that C is not a Hamiltonian cycle. Then there exists a vertex
s /∈ C. Again by Exercise 8.1.3, there exist k paths Wi (i = 1, . . . , k) with
start vertex s and end vertex ti on C which are pairwise disjoint except for
s. Moreover, we may assume that ti is the only vertex Wi has in common
with C. Now consider C as a directed cycle—the choice of the orientation
does not matter—and denote the successor of ti on C by ui. If s is adjacent
to one of the vertices ui, we may replace the edge tiui of C by the path from
ti to s followed by the edge sui. Again, this yields a cycle of length > m,
a contradiction. Hence s cannot be adjacent to any of the vertices ui. As
α(G) ≤ k, the (k + 1)-set {s,u1, . . . , uk} cannot be independent, and hence
G contains an edge of the form uiuj . Then, by replacing the edges tiui and
tjuj of C by the edge uiuj and the paths from s to ti and from s to tj , we
get a cycle of length >m once again. This final contradiction shows that C
has to be a Hamiltonian cycle. �

Corollary 8.1.5 Assume that the closure [G] of a graph G satisfies the con-
dition α([G])≤ κ([G]). Then G is Hamiltonian.

Proof This follows immediately from Theorems 1.4.1 and 8.1.4. �

Exercise 8.1.6 Show that Theorem 8.1.4 is best possible by constructing
(for each choice of κ(G)) a graph G with α(G) = κ(G) + 1 which is not
Hamiltonian.

1For the time being, we leave it to the reader to prove this claim; alternatively, see Theo-
rem 8.3.1.
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Now we turn to the problem of efficiently determining the connectivity of a
given graph. By Theorem 8.1.1, it suffices to determine the maximal number
of vertex disjoint paths between any two vertices of G. Corollary 7.1.5 states
that this can be done with complexity O(|V |1/2|E|) for an arbitrary pair
of vertices, so that we have a total complexity of O(|V |5/2|E|). If G is not
a complete graph, we actually need to examine only non-adjacent pairs of
vertices, as we will see in the proof of Theorem 8.1.9. We shall present a
simple algorithm due to Even and Tarjan [EveTa75] which achieves a slightly
better complexity.

Exercise 8.1.7 Design an algorithm for determining the maximal value of a
flow on a 0-1-network (MAX01FLOW); and an algorithm for calculating the
maximal number of vertex disjoint paths between two given vertices s and t
in a graph or digraph (PATHNR). Hint: Use the results of Sects. 6.5 and 7.1.

Algorithm 8.1.8 Let G= (V,E) be a graph on n vertices. The algorithm
calculates the connectivity of G.

Procedure KAPPA(G; kappa)

(1) n← |V |; k← 0; y← n− 1; S ← V ;
(2) repeat
(3) choose v ∈ S and remove v from S;
(4) for w ∈ S \Av do PATHNR(G,v,w;x); y←min{y,x} od
(5) k← k+ 1
(6) until k > y;
(7) kappa ← y

Theorem 8.1.9 Let G= (V,E) be a connected graph. Then Algorithm 8.1.8
calculates with complexity O(|V |1/2|E|2) the connectivity of G.

Proof If G is a complete graph Kn, the algorithm terminates (after having
removed all n vertices) with kappa = y = n− 1. Now assume that G is not
complete. During the repeat-loop, vertices v1, v2, . . . , vk are chosen one by
one until the minimum γ of all values κ(vi,wi) is less than k, where wi runs
through the vertices which are not adjacent to vi; then k ≥ γ+1≥ κ(G)+ 1.
By definition, there exists a vertex separator T for G of cardinality κ(G).
As k ≥ κ(G) + 1, there is at least one vertex vi /∈ T . Now G \ T is not
connected; hence there exists a vertex v in G \ T so that each path from
v to vi meets the set T . In particular, vi and v cannot be adjacent; thus
γ ≤ κ(vi, v) ≤ |T | = κ(G), so that γ = κ(G). This shows that the algorithm
is correct. The complexity is O(κ(G)|V |3/2|E|): during each of the κ(G) it-
erations of the repeat-loop, the procedure PATHNR is called O(|V |) times,
and each of these calls has complexity O(|V |1/2|E|). Trivially, κ(G)≤ deg v
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for each vertex v. Using the equality
∑

v deg v = 2|E|, we get

κ(G)≤min{deg v : v ∈ V } ≤ 2|E|/|V |,

which yields the desired complexity O(|V |1/2|E|2). �

As we have seen, it takes a considerable amount of work to determine
the exact value of κ(G). In practice, one is often satisfied with checking
whether G is at least k-connected. For k = 1, this can be done with complex-
ity O(|E|) using BFS; see Sect. 3.3. For k = 2, we shall present an algorithm
in Sect. 8.3 which also has complexity O(|E|). Even for k = 3, it is possible
to achieve a complexity of O(|E|), albeit with considerably more effort; see
[HopTa73]. There is an algorithm having complexity O(k|V ||E|) provided
that k ≤ |V |1/2, see [Eve77, Eve79]; in particular, it is possible to check with
complexity O(|V ||E|) whether a graph is k-connected when k is fixed. This
problem is also treated in [Gal80] and in [LinLW88], where an unusual ap-
proach is used.

For the purpose of designing communication networks it is of interest to
find a k-connected subgraph of minimal weight in a directed complete graph;
for this problem, we refer to [BieBM90] and the references given there. An-
other problem of both theoretical and practical interest is the question of
how many edges are needed to increase the connectivity of a given graph by
a prescribed number. This is a quite difficult problem, even if one wants to
increase κ(G) just by 1; only recently a polynomial time algorithm for this
case (relying on a min-max formula for the necessary number of additional
edges) was obtained; see [Veg11]. The corresponding problem for digraphs
was solved much earlier, see [FraJo95].

8.2 Depth First Search

In this section we treat an important method for searching graphs and di-
graphs, which will be used repeatedly throughout the present chapter. Recall
that the BFS in Algorithm 3.3.1 examines a graph G in a breadth–first fash-
ion: vertices which have larger distance to the start vertex s are examined
later than those with smaller distance to s. In contrast, depth first search fol-
lows paths as far as possible: from a vertex v already reached, we proceed to
any vertex w adjacent to v which was not yet visited; then we go on directly
from w to another vertex not yet reached etc., as long as this is possible.
(If we cannot go on, we backtrack just as much as necessary.) In this way,
one constructs maximal paths starting at some initial vertex s. This idea
seems to go back to M. Tremaux who suggested it in 1882 as a method to
traverse mazes; see [Luc82] and [Tar95]. The following version is taken from
the fundamental paper by Tarjan [Tar72].
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Algorithm 8.2.1 (Depth first search, DFS) Let G= (V,E) be a graph and
s a vertex of G.

Procedure DFS(G,s;nr, p)

(1) for v ∈ V do nr(v)← 0; p(v)← 0 od
(2) for e ∈E do u(e)← false od
(3) i← 1; v← s; nr(s)← 1;
(4) repeat
(5) while there exists w ∈Av with u(vw) = false do
(6) choose some w ∈Av with u(vw) = false; u(vw)← true;
(7) if nr(w) = 0 then p(w)← v; i← i+ 1; nr(w)← i; v←w fi
(8) od
(9) v← p(v)

(10) until v = s and u(sw) = true for all w ∈As

Note that the algorithm labels the vertices with numbers nr according to
the order in which they are reached; p(w) is the vertex from which w was
accessed.

Theorem 8.2.2 Each edge in the connected component of s is used exactly
once in each direction during the execution of Algorithm 8.2.1. Hence Algo-
rithm 8.2.1 has complexity O(|E|) for connected graphs.

Proof We may assume that G is connected. First, we give a more precise
meaning to the assertion by showing that the DFS constructs a walk in G
beginning in s. In step (6), an edge e = vw (where initially v = s) is used
to move from v to w; if nr(w) = 0, v is replaced by w. If nr(w) �= 0, e is
used immediately in the opposite direction to backtrack from w to v, and the
algorithm proceeds (if possible) with another edge incident with v which was
not yet used. If there is no such edge available—that is, if all edges incident
with v have been used at least once—the edge p(v)v which was used to reach
v from p(v) is traversed in the opposite direction to backtrack again, and v
is replaced by p(v). Thus the algorithm indeed constructs a walk in G.

Now we show that no edge can be used twice in the same direction so that

the walk is in fact a trail in
→
G. Suppose this claim is false; then there is an

edge e= vw which is used twice in the same direction. We may assume that e
is the first such edge and that e is used from v to w. As each edge is labelled
true in step (6) when it is used first, u(e) must have value true when e is
used the second time; hence this event occurs during an execution of step
(9). But then w = p(v), and all edges incident with v have to be labelled true
already, because of the condition in (5). Thus the walk must have left v at
least deg v times before e is used for the second time. This means that the
walk must have arrived at v at least deg v + 1 times; therefore some edge of
the form uv must have been used twice from u to v before, a contradiction.
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The preceding considerations imply that the algorithm terminates. It re-
mains to show that each edge of G is used in both possible directions. Let S
be the set of all vertices v for which each edge incident with v is used in both
directions. When the algorithm terminates, it must have reached a vertex v
with p(v) = 0 for which there is no edge incident with v which is labelled
with false (because of (10)). This can only happen for v = s; moreover, all
edges incident with s must have been used to move from s to their other end
vertex. But then all these deg s edges must also have been used to reach s,
since none of them was used twice in the same direction. This means s ∈ S.

We now claim S = V . Suppose otherwise. As G is connected, there exist
edges connecting S to V \S. Let e= vw be the edge with v ∈ S and w ∈ V \S
which is used first during the algorithm. Note that every edge connecting
some vertex of S and some vertex of V \S is used in both directions, by the
definition of S. As we reach vertex w for the first time when we use e from
v to w, nr(w) = 0 at that point of time. Then, in step (7), we set v = p(w),
and e is labelled true. Now we can only use e again according to step (9),
that is, from w to v. At that point, all edges incident with w must have been
labelled true. As each edge incident with w can only be used at most once in
each direction, each of these edges must have been used in both directions,
so that w ∈ S, a contradiction. �

Theorem 8.2.2 shows that depth first search is indeed a possible strategy
for finding the exit of a maze, provided that it is possible to label edges—that
is, paths in the maze—which have been used already; see Exercise 8.2.6. In the
next section, we shall use a refined version of DFS for studying 2-connected
graphs. Now we give a much simpler application.

Theorem 8.2.3 Let G be a connected graph and s a vertex of G. Determine
the function p by a call of DFS(G,s;nr, p). Then the digraph on V with edges
p(v)v is a spanning arborescence for G with root s.

Proof Denote the digraph in question by T . As each vertex v of G is reached
for the first time during the DFS via the edge p(v)v, |T | is obviously con-
nected. More precisely, the sequence v = v0, v1, v2, . . . with vi+1 = p(vi) for
vi �= s yields a path from s to v in T . Thus s is a root of T . Moreover, T
contains exactly |V |−1 edges (note that p(s) = 0 is not a vertex of G). Hence
|T | is a tree by Theorem 1.2.8. �

Hence we may use either BFS (as in Chap. 3.3) or DFS to check with
complexity O(|E|) whether a given graph G is connected and—if this is the
case—to construct a spanning tree rooted at s.

The edges p(v)v contained in the spanning arborescence of Theorem 8.2.3
are called tree edges, whereas all other edges of G are called back edges; the
next result will explain this terminology. Let us call a vertex u in a directed
tree an ancestor of some other vertex v if there exists a directed path from
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Fig. 8.1 A graph G

u to v in T ; similarly, u is a descendant of v if there is a directed path from
v to u.

Lemma 8.2.4 Let G be a connected graph, and let T be a spanning arbores-
cence of G determined by a call of DFS(G,s;nr, p). Moreover, let e= vu be
a back edge of G. Then u is an ancestor or a descendant of v in T .

Proof We may assume nr(v) < nr(u); that is, during the DFS u is reached
after v. Note that all edges incident with v have to be traversed starting from
v and then labelled true (in step (5)) before the algorithm can backtrack from
v according to step (9); in particular, this holds for e. As u is not a direct
descendant of v (because otherwise v = p(u) so that e would be a tree edge),
u must have been labelled before e was examined. This means that u is an
indirect descendant of v. �

Example 8.2.5 We consider the graph G of Fig. 8.1 and perform a DFS
beginning at s. To make the algorithm deterministic, we choose the edges
in step (6) according to alphabetical order of their end vertices. Then the
vertices are reached in the following order: s, a, b, c, d, e, f, g. After that, the
algorithm backtracks from g to f , to e, and then to d. Now h is reached and
the algorithm backtracks to d, c, b, a, and finally to s. The directed tree T
constructed by the DFS is shown in Fig. 8.2.

In comparison, the BFS algorithm of Sect. 3.3 treats the vertices in the or-
der s, a, b, c, d, e, f, h, g; the corresponding tree T ′ was already given in Fig. 3.5.
Note that the distance d(s,x) in T ′ is equal to the corresponding distance
in G, whereas this is not true in T : here vertex g has distance 7 from s (the
maximal distance from s occurring in T ). This illustrates the phenomenon
that the DFS indeed tries to move as deeply into the graph as possible.

Exercise 8.2.6 Describe a way of associating a graph with a given maze
which allows us to find a path through the maze via a depth first search.
Apply this approach to the maze depicted in Fig. 8.3. This task is somewhat
lengthy, but rather instructive.
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Fig. 8.2 DFS tree for G

Fig. 8.3 A maze

8.3 2-connected Graphs

A cut point or articulation point of a graph G is a vertex v such that G \ v
has more connected components than G. According to Definition 7.1.6, a
connected graph with at least three vertices either contains a cut point or is
2-connected. A connected graph containing cut points is said to be separable.
The maximal induced subgraphs of a graph G which are not separable are
called the blocks or biconnected components of G.

Recall that the connected components of a graph form a partition of its
vertex set. The analogous statement for blocks does not hold in general. For
example, the graph given in Fig. 8.1 has blocks {s, a, b, c, d, e, f, g} and {d,h}.
If c is a cut point of a connected graph G, then V \ c can be partitioned into
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sets V1

.
∪ · · ·

.
∪ Vk such that two vertices a and b are in the same part of the

partition if and only if they are connected by a path not containing c. Thus
no block can contain vertices from more than one of the Vi; in particular, two
blocks intersect in at most one vertex, and this vertex has to be a cut point.
Let us mention another useful observation: every cycle has to be contained
in some block.

We now give some conditions equivalent to 2-connectedness; these are due
to Whitney [Whi32b].

Theorem 8.3.1 Let G be a graph with at least three vertices and with no
isolated vertices. Then the following conditions are equivalent:

(1) G is 2-connected.
(2) For every pair vertices of G, there exists a cycle containing both of them.
(3) For each vertex v and for each edge e of G, there exists a cycle containing

both v and e.
(4) For every pair of edges of G, there exists a cycle containing both of them.
(5) For every pair of vertices {x, y} and for each edge e of G, there exists a

path from x to y containing e.
(6) For every triple of vertices (x, y, z) of G, there exists a path from x to y

containing z.
(7) For every triple of vertices (x, y, z) of G, there exists a path from x to y

not containing z.

Proof
(1)⇔ (2): If G is 2-connected, Theorem 8.1.1 implies that any two vertices
are connected by two vertex disjoint paths; the union of these paths yields
the desired cycle containing both vertices. Conversely, a graph satisfying con-
dition (2) obviously cannot contain any cut points.
(1)⇒ (3): Let e= uw; we may assume v �= u,w. We subdivide e by a new
vertex x; that is, we replace e by the edges ux and xw to get a new graph
G′; compare Sect. 1.5. As G satisfies (2) as well, G′ cannot contain any cut
points, that is, G′ is likewise 2-connected. Hence G′ satisfies (2), and there
is a cycle containing v and x in G′; then the corresponding cycle in G has to
contain v and e.
(3) ⇒ (2): Let u and v be two vertices of G. As G does not contain any
isolated vertices, there exists an edge e incident with u. If (3) holds, there
exists a cycle containing e and v; this cycle also contains u and v.
(1)⇒ (4): Similar to (1)⇒ (3).
(4)⇒ (2): Similar to (3)⇒ (2).
(1)⇒ (5): Let G′ be the graph we get by adding an edge e′ = xy to G (if x
and y are not adjacent in G in the first place). Obviously G′ is 2-connected
as well, so that (4) implies the existence of a cycle in G′ containing e and e′.
Removing e′ from this cycle yields the desired path in G.
(5)⇒ (6): Choose an edge e incident with z. By (5), there is a path from x
to y containing e—and then z as well, of course.
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(6)⇒ (7): As (6) holds for any three vertices of G, there exists a path from
x to z containing y. The first part of this path (the part from x to y) is the
desired path.
(7)⇒ (1): If (7) holds, G can obviously not contain any cut points. �

Exercise 8.3.2 Let G be a connected graph with at least two vertices. Show
that G contains at least two vertices which are not cut points. Is this bound
tight?

Exercise 8.3.3 This exercise deals with some results due to Gallai [Gal64a].
Given any graph G, we define the block-cutpoint graph bc(G) as follows. The
vertices of bc(G) are the blocks and the cut points of G; a block B and a cut
point c of G are adjacent in bc(G) if and only if c is contained in B. Show
that the following assertions hold.

(a) If G is connected, bc(G) is a tree.
(b) For each vertex v of G, let b(v) denote the number of blocks containing v.

Moreover, let b(G) be the number of blocks of G, and denote the number
of connected components of G by p. Then

b(G) = p+
∑

v

(
b(v)− 1

)
.

(c) For each block B, let c(B) be the number of cut points contained in B,
and let c(G) be the number of all cut points of G. Then

c(G) = p+
∑

B

(
c(B)− 1

)
.

(d) b(G)≥ c(G) + 1.

Exercise 8.3.4 Let G be a connected graph with r cut points. Show that G
has at most

(
n−r
2

)
+ r edges, and construct a graph where this bound is tight

[Ram68]. Hint: Use the number k of blocks of G and part (d) of Exercise 8.3.3;
also, derive a formula for the sum of the cardinalities of the blocks from part
(b) of Exercise 8.3.3.

For the remainder of this section, let G = (V,E) be a connected graph.
Suppose we have constructed a spanning arborescence T for G with root s
by a call of DFS(G,s;nr, p); see Theorem 8.2.3. We will use the functions nr
and p for determining the cut points of G (and hence the blocks). We also
require a further function L (for low point) defined on V : for a given vertex v,
consider all vertices u which are accessible from v by a path (possibly empty)
which consists of a directed path in T followed by at most one back edge;
then L(v) is the minimum of the values nr(u) for all these vertices u.
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Fig. 8.4 Labels assigned during the DFS and function L

Example 8.3.5 Let G be the graph of Example 8.2.5; see Fig. 8.1. In Fig. 8.4,
the vertices of G are labelled with the numbers they are assigned during the
DFS; the numbers in parentheses are the values of the function L. The thick
edges are the edges of the directed tree constructed by the DFS.

Note that the easiest way of computing the values L(i) is to begin with the
leaves of the tree; that is, to treat the vertices ordered according to decreasing
DFS numbers. In Algorithm 8.3.8, we will see how the function L may be
calculated during the DFS. The following result of Tarjan [Tar72] shows why
this function is important.

Lemma 8.3.6 Let G be a connected graph, s a vertex of G, and T the span-
ning arborescence of G determined by a call of DFS(G,s;nr, p). Moreover, let
u be a vertex of G distinct from s. Then u is a cut point if and only if there
is a tree edge e= uv satisfying L(v)≥ nr(u), where L is the function defined
above.

Proof First suppose that u is a cut point of G. Then there is a partition
V \u= V1

.
∪ · · ·

.
∪ Vk (where k ≥ 2) for which all paths connecting two vertices

in distinct components of the partition have to pass through u. We may
assume s ∈ V1. Let e be the first tree edge of the form e = uv traversed
during the DFS for which v /∈ V1 holds, say v ∈ V2. As there are no edges
connecting a vertex in V2 with a vertex in V \ (V2 ∪ {u}) and as all vertices
which are accessible from v by tree edges are again in V2 (and are therefore
reached at a later point of the algorithm than u), we conclude L(v)≥ nr(u).

Conversely, let e= uv be a tree edge with L(v)≥ nr(u). Denote the set of
all vertices on the path from s to u in T by S (including s, but not u), and
let T ′ be the part of T having root v; that is, T ′ consists of the descendants
of v. By Lemma 8.2.4, there cannot be an edge connecting a vertex of T ′

with a vertex of V \ (S ∪ T ′ ∪ {u}). Moreover, there are no edges of the form
xy with x ∈ T ′ and y ∈ S: such an edge would be a back edge, implying the
contradiction L(v) ≤ nr(y) < nr(u) (because of the path from v to x in T ′
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followed by the edge xy). Hence each path connecting a vertex in T ′ with a
vertex in S has to contain u, so that u is a cut point. �

Lemma 8.3.7 Under the assumptions of Lemma 8.3.6, s is a cut point if
and only if s is on at least two tree edges.

Proof First, let s be a cut point and V1

.
∪ · · ·

.
∪ Vk (with k ≥ 2) a partition of

V \s for which all paths connecting two vertices in distinct components of the
partition have to pass through s. Moreover, let e= sv be the first (tree) edge
traversed during the DFS; say v ∈ V1. Then no vertex outside V1 is accessible
from v in T , so that s has to be incident with at least one further tree edge.

Conversely, let sv and sw be tree edges, and let T ′ be the part of T which
has root v. By Lemma 8.2.4, there are no edges connecting a vertex of T ′ to
a vertex in V \ (T ′∪{s}). As the set V \ (T ′∪{s}) is nonempty by hypothesis
(it contains w), s is a cut point. �

Obviously, the only cut point in Example 8.3.5 is the vertex 5, in agree-
ment with Lemmas 8.3.6 and 8.3.7. We now want to design a variant of
Algorithm 8.2.1 which also computes the function L and determines both
the cut points and the blocks of G. Let us first consider how L could be
calculated. We set L(v) := nr(v) when v is reached for the first time. If v is
a leaf of T , the definition of L implies

L(v) =min
{
nr(u): u= v or vu is a back edge in G

}
. (8.2)

Thus we replace L(v) by min {L(v), nr(u)} as soon as the algorithm uses a
back edge vu—that is, as soon as nr(u) �= 0 during the examination of vu in
step (6) or (7) of the DFS. When the algorithm backtracks from v to p(v) in
step (9), all back edges have been examined, so that L(v) has obtained its
correct value (8.2). Similarly, if v is not a leaf,

L(v) =min
({

nr(u): u= v or vu a back edge
}
∪
{
L(u): vu ∈ T

})
; (8.3)

in this case, we have to replace L(v) by min {L(v),L(u)} as soon as a tree edge
vu is used for the second time, namely from u to v. Then the examination of
u is finished and L(u) has its correct value, as may be shown by induction.

Now we are in a position to state the algorithm of Tarjan [Tar72]. It will be
convenient to use a stack S for determining the blocks.2 The reader should
note that Algorithm 8.3.8 has precisely the same structure as the DFS in
Algorithm 8.2.1 and therefore also the same complexity O(|E|).

2Recall that a stack is a list where elements are appended at the end and removed at the end
as well (last in—first out), in contrast to a queue where elements are appended at the end,
but removed at the beginning (first in—first out). For a more detailed discussion of these
data structures (as well as for possible implementations), we refer to [AhoHU74, AhoHU83]
or to [CorLRS09].
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Algorithm 8.3.8 Let G be a connected graph and s a vertex of G. The
algorithm determines the set C of cut points of G and the blocks of G and,
thus, the number k of blocks of G).

Procedure BLOCKCUT(G,s;C,k)

(1) for v ∈ V do nr(v)← 0; p(v)← 0 od

(2) for e ∈E do u(e)← false od
(3) i← 1; v← s; nr(s)← 1; C ←∅; k← 0; L(s)← 1;
(4) create a stack S with single element s;
(5) repeat
(6) while there exists w ∈Av with u(vw) = false do
(7) choose some w ∈Av with u(vw) = false; u(vw)← true;
(8) if nr(w) = 0
(9) then p(w)← v; i← i+ 1; nr(w)← i;

L(w)← i; append w to S; v←w
(10) else L(v)← min {L(v), nr(w)}
(11) fi
(12) od
(13) if p(v) �= s
(14) then if L(v)< nr(p(v))
(15) then L(p(v))← min {L(p(v)),L(v)}
(16) else C ←C ∪ {p(v)}; k← k+ 1;
(17) create a list Bk containing all vertices of S up to v (including

v) and remove these vertices from S; append p(v) to Bk

(18) fi
(19) else if there exists w ∈As with u(sw) = false then C ←C ∪ {s} fi
(20) k← k+ 1; create a list Bk containing all vertices of S up to v

(including v) and remove these vertices from S; append s to Bk

(21) fi
(22) v← p(v)
(23) until p(v) = 0 and u(vw) = true for all w ∈Av

Theorem 8.3.9 Algorithm 8.3.8 determines the cut points and the blocks of
a connected graph G with complexity O(|E|).

Proof As in the original DFS, each edge is used exactly once in each direction
(see Theorem 8.2.2); moreover, for each edge a constant number of steps is
executed. Hence Algorithm 8.3.8 has complexity O(|E|). The considerations
above show that L(v) has the correct value given in (8.2) or (8.3), as soon as
the algorithm has finished examining v (because the condition in step (6) is
no longer satisfied). A formal proof of this fact may be given using induction
on nr(v) (in decreasing order). Note that the edge vw chosen in step (7) is a
back edge if and only if nr(w) �= 0 holds, and that the tree edge p(v)v is used
in step (15) for updating the value of L(p(v)) after L(v) has been determined
(unless this updating is redundant because of L(v)≥ nr(p(v))≥ L(p(v))).



264 8 Connectivity and Depth First Search

Fig. 8.5 A connected graph G

It remains to show that the cut points and the blocks are determined
correctly. After the algorithm has finished examining the vertex v (according
to the condition in (6)), it is checked in (14) or (19) whether p(v) is a cut point.
First suppose p(v) �= s. If the condition in (14) is satisfied, the (correct) value
of L(v) is used to update L(p(v)) (as explained above); otherwise, p(v) is a
cut point by Lemma 8.3.6. In this case, p(v) is added to the set C of cut points
in step (16). The vertices in S up to v (including v) are descendants of v in T ,
where T is the arborescence determined by the DFS. Now these vertices are
not necessarily all the descendants of v: it is possible that descendants of cut
points were removed earlier; there might have been cut points among these
vertices. However, it can be shown by induction that no proper descendants
of such cut points are contained in S any more. (The induction basis—for
leaves of T—is clear.) Therefore, the set Bk in step (17) is indeed a block.

Next, suppose p(v) = s. If the condition in step (19) holds, s is a cut
point by Lemma 8.3.7. It can be shown as above that Bk is a block of G. In
particular, s is added to C if and only if not all the edges incident with s
were treated yet when p(v) = s occurred for the first time.

In both cases, v is replaced at this point by its predecessor p(v). By Lem-
mas 8.3.6 and 8.3.7, all cut points have been found when the algorithm ter-
minates (after all edges have been used in both directions). �

Exercise 8.3.10 Execute Algorithm 8.3.8 for the graph displayed in Fig. 8.5.
If there are choices to be made, proceed in alphabetical order.

8.4 Depth First Search for Digraphs

In this section we discuss how the DFS given in Algorithm 8.2.1 should be
performed for a digraph G. For this purpose, all edges vw are to be interpreted
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as directed from v to w (for example, in step (5) of the algorithm). In every
other respect, the algorithm is executed as before, so that the only difference
compared to the undirected case is that edges with u(e) = false may be used
in one direction only, namely as forward edges.

Even if G is connected, we will in general not reach all vertices of G. In
fact, DFS(G,s;nr, p) reaches exactly those vertices which are accessible from
s by a directed path. We shall often assume that these are all the vertices of
G; otherwise, DFS may be executed again for a vertex s′ not accessible from
s, etc. Basically, Theorem 8.2.2 remains valid: all those edges whose start
vertex is accessible from s are used exactly once in each direction. Edges of
the form p(v)v are again called tree edges. If all vertices of G are accessible
from s, the tree edges form a spanning arborescence of G with root s, as
in Theorem 8.2.3; in the general case, we will obtain a directed spanning
forest. All proofs proceed in complete analogy to the corresponding proofs
for the undirected case given in Sect. 8.2, and will therefore be omitted. The
following theorem summarizes these considerations.

Theorem 8.4.1 Let G be a digraph and s a vertex of G. Moreover, let S
be the set of vertices of G which are accessible from s. Then DFS(G,s;nr, p)
reaches all the vertices of S and no other vertices (that is, nr(v) �= 0 if and
only if v ∈ S \ {s}); moreover, the tree edges p(v)v form a spanning arbores-
cence on S. The complexity of the algorithm is O(|E|).

In the undirected case, there were only tree edges and back edges (see
Lemma 8.2.4). For a digraph, we have to distinguish three kinds of edges
beside the tree edges:

(1) Forward edges: these are edges of the form e = vu such that u is a de-
scendant of v, but not v = p(u). In this case, we have nr(u)> nr(v).

(2) Back edges: these are edges of the form e= vu such that u is an ancestor
of v; here, nr(u)< nr(v).

(3) Cross edges: these are edges of the form e= vu such that u is neither an
ancestor nor a descendant of v. In particular, each edge connecting two
distinct directed trees (if not all vertices of G are accessible from s) is
a cross edge. Cross edges may also exist within a single directed tree; in
that case, we have nr(u)< nr(v).

Example 8.4.2 Let G be the digraph shown in Fig. 8.6. Then a call of
DFS(G,a;nr, p) followed by DFS(G,f ;nr, p) yields the result drawn in
Fig. 8.7, where choices are made in alphabetical order (as usual). Tree edges
are drawn bold, cross edges broken, and all other edges are in normal print.
The only back edge is eb.

Exercise 8.4.3 Consider a digraph G= (V,E). Let u and v be two vertices
in a tree found by a call of DFS(G,s;nr, p), and assume nr(u)> nr(v) and
e= vu ∈E. Show that e is indeed a forward edge.
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Fig. 8.6 A digraph G

Fig. 8.7 The result of a DFS on G

Exercise 8.4.4 Let G= (V,E) be a digraph and T1, . . . , Tk a directed span-
ning forest partitioning V , found by repeated execution of DFS on G. Show
that G is acyclic if and only if G does not contain any back edges.

8.5 Strongly Connected Digraphs

In analogy with the notion of blocks in a graph, the vertex set S of any
maximal, strongly connected, induced subdigraph of a digraph G is called
a strong component of G. Thus each vertex in S has to be accessible from
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each other vertex in S, and S is maximal with respect to this property. For
example, the vertices b, c, d, e of the digraph shown in Fig. 8.6 form a strong
component; the remaining strong components of this digraph are singletons.
Our first result collects some rather obvious equivalent conditions for strong
connectedness; the proof is left to the reader.

Theorem 8.5.1 Let G be a digraph with at least three vertices and with no
isolated vertices. Then the following conditions are equivalent.

(1) G is strongly connected.
(2) For each pair of vertices of G, there exists a directed closed walk contain-

ing both of them.
(3) For each vertex v and for each edge e of G, there exists a directed closed

walk containing both v and e.
(4) For each pair of edges of G, there exists a directed closed walk containing

both of them.
(5) For each pair of vertices (x, y) and for each edge e of G, there exists a

directed walk from x to y containing e.
(6) For each triple of vertices (x, y, z), there exists a directed walk from x to

y containing z.

Exercise 8.5.2 The reader will have noticed that the properties stated in
Theorem 8.5.1 are similar to those given in Theorem 8.3.1 for 2-connected
graphs; however, it uses walks instead of cycles or paths. Show by giving
counterexamples that the analogous statement to (7) of Theorem 8.3.1 does
not hold, and that the conditions in Theorem 8.5.1 do not hold if we replace
closed walks and walks by cycles and paths, respectively.

Note that the underlying graph |G| of a strongly connected digraph G is
not necessarily 2-connected. On the other hand, a 2-connected graph cannot
contain any bridges and is therefore orientable by Theorem 1.6.2.

Exercise 8.5.3 Let G be a connected digraph. Show that G is strongly
connected if and only if every edge of G is contained in a directed cycle.

Our next aim is an algorithm for determining the strong components of a
digraph G. The algorithm which we will present is taken from the book of
Aho, Hopcroft and Ullman [AhoHU83]; it consists of performing a DFS both
for G and for the digraph having opposite orientation.3 A further algorithm
for this task was given by Tarjan [Tar72]; his algorithm requires to execute
a DFS only once, but needs—similar to Algorithm 8.3.8—the function L(v).
Tarjan’s algorithm can also be found in the book [Eve79]. The basic concept

3This means replacing each edge uv of G by vu.
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of the algorithm we give below is considerably simpler; as both methods lead
to the same complexity, we have chosen the simpler one. First we need to
modify the DFS algorithm slightly: we will require a second labelling Nr(v)
of the vertices, according to the order in which the examination of the vertices
is finished.

Algorithm 8.5.4 Let G= (V,E) be a digraph and s a root of G.

Procedure DFSM(G,s;nr,Nr, p)

(1) for v ∈ V do nr(v)← 0; Nr(v)← 0; p(v)← 0 od
(2) for e ∈E do u(e)← false od
(3) i← 1; j ← 0; v← s; nr(s)← 1; Nr(s)← |V |;
(4) repeat
(5) while there exists w ∈Av with u(vw) = false do
(6) choose some w ∈Av with u(vw) = false; u(vw)← true;
(7) if nr(w) = 0 then p(w)← v; i← i+ 1; nr(w)← i; v←w fi
(8) od
(9) j ← j + 1; Nr(v)← j; v← p(v)

(10) until v = s and u(sw) = true for each w ∈As

Using this procedure, we can write down the algorithm of Aho, Hopcroft
and Ullman for determining the strong components of G. We may assume
that each vertex of G is accessible from s.

Algorithm 8.5.5 Let G be a digraph and s a root of G. The algorithm
determines the strong components of G.

Procedure STRONGCOMP(G,s;k)

(1) DFSM(G,s;nr,Nr, p); k← 0;
(2) let H be the digraph with the opposite orientation of G;
(3) repeat
(4) choose the vertex r in H for which Nr(r) is maximal;
(5) k← k+ 1; DFS(H,r;nr′, p′); Ck ←{v ∈H : nr′(v) �= 0};
(6) remove all vertices in Ck and all the edges incident with them (note

that the resulting digraph is still denoted by H)
(7) until the vertex set of H is empty

Theorem 8.5.6 Let G be a digraph with root s. Then Algorithm 8.5.5 cal-
culates with complexity O(|E|) the strong components C1, . . . ,Ck of G.

Proof The complexity of Algorithm 8.5.5 is clear. We have to show that the
directed forest on the vertex sets C1, . . . ,Ck determined by the second DFS
during the repeat-loop indeed consists of the strong components of G.
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Fig. 8.8 Directed graph H with Nr -labels

Thus let v and w be two vertices in the same strong component of G. Then
there exist directed paths from v to w and from w to v in G, and hence also
in H as well. We may suppose that v is reached before w during the DFS on
H . Moreover, let Ti be the directed tree containing v, and x the root of Ti.
As w is accessible from v in H and was not examined before, w has to be
contained in Ti as well: Theorem 8.4.1 implies that w is reached during the
execution of the DFS with root x.

Conversely, let v and w be two vertices contained in the same directed tree
Ti (on Ci). Again, let x be the root of Ti; we may suppose v �= x. As v is a
descendant of x in Ti, there exists a directed path from x to v in H and hence
a directed path from v to x in G. Now v was not yet examined when the
DFS on H with root x began, so that Nr(v)<Nr(x) because of (4). Thus
the examination of v was finished earlier than the examination of x during
the DFS on G; see step (9) in Algorithm 8.5.4. But as x is accessible from v
in G, v cannot have been reached earlier than x during the DFS on G. This
means that the entire examination of v was done during the examination of
x, so that v has to be a descendant of x in the spanning tree T for G. Hence
there also exists a directed path from x to v in G, and x and v are contained
in the same strong component. Similarly, w has to be contained in the same
strong component. �

Example 8.5.7 We apply Algorithm 8.5.5 to the digraph G of Fig. 8.6. As a
is not a root of G, we have to modify the algorithm slightly or apply it twice
(from a and from f ). Figure 8.8 shows the digraph H and the result of the
DFS on G modified as in Algorithm 8.5.4. All edges of H have orientation
opposite to the orientation they have in G; the numbers given are the values
Nr(v) calculated by calls of DFSM(G,a;nr, p) and DFSM(G,f ;nr, p). The
cross edges connecting the two directed trees are omitted. In Fig. 8.9, the
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Fig. 8.9 Result of the DFS on H and strong components

strong components as determined by Algorithm 8.5.5 are drawn; to make the
figures simpler, we leave out all the edges connecting distinct strong compo-
nents. Note that a DFS on H using a different order of the start vertices—
beginning at e, for example—would yield an incorrect result.

Exercise 8.5.8 Determine the strong components of the digraph displayed
in Fig. 3.3.

Exercise 8.5.9 Let C1, . . . ,Ck be the strong components of a digraph G.
We define a digraph G′, the condensation of G, as follows: the vertices of G′

are C1, . . . ,Ck; CiCj is an edge of G′ if and only if there exists an edge uv in
G with u ∈Ci and v ∈Cj . Show that G′ is acyclic and determine G′ for the
digraph of Fig. 3.3; compare Exercise 8.5.8.

Exercise 8.5.10 Give a definition of the term strongly k-connected for di-
graphs and investigate whether the main results of Sect. 8.1 carry over.

8.6 Edge Connectivity

We finish this chapter by considering notions of connectivity which arise from
replacing vertex separators and vertex disjoint paths by edge separators and
edge disjoint paths, respectively. Let G be a graph or a digraph, and let
u and v be two distinct vertices of G. By λ(u, v) we denote the minimal
cardinality of an edge separator for u and v. By Theorem 7.1.1, λ(u, v) is
also the maximal number of edge disjoint paths (directed if G is a digraph)
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Fig. 8.10 A graph with

κ= 2, λ= 3, and δ = 4

from u to v. The edge connectivity λ(G) is defined as

λ(G) =min
{
λ(u, v) : u, v ∈ V

}
.

G is called m-fold edge connected4 if λ(G)≥m. Moreover, δ(G) denotes the
minimal degree of a vertex of G if G is a graph, and the minimum of all
din(v) and all dout(v) if G is a digraph. We have the following simple result;
see [Whi32a].

Theorem 8.6.1 Let G be a graph or a digraph. Then κ(G)≤ λ(G)≤ δ(G).

Proof We consider only the undirected case; the directed case is similar. Let
v be a vertex with deg v = δ(G). Removing all edges incident with v obviously
yields a disconnected graph, so that λ(G)≤ δ(G). If λ(G) = 1, G contains a
bridge e= uv. Then G cannot be 2-connected, because removing u from G
yields either a K1 or a disconnected graph. If λ(G) = k ≥ 2, removing k − 1
edges e2, . . . , ek of an edge separator from G results in a graph H containing a
bridge e1 = uv. Therefore, if we remove from G one of the end vertices of each
of the ei distinct from u and v (for i= 2, . . . , k), we get either a disconnected
graph or a graph where e1 is a bridge (so that removing u makes the graph
disconnected). In either case, κ(G)≤ k = λ(G). �

The graph in Fig. 8.10 shows that the inequalities of Theorem 8.6.1 may
be strict. This graph arises from a considerably more general construction
[ChaHa68]:

Exercise 8.6.2 Fix integers k, d, and m with 0< k ≤m≤ d. Find a graph
with κ(G) = k, λ(G) =m, and δ(G) = d. Hint: Distinguish the cases k = d
and k �= d.

Exercise 8.6.3 Let G be a graph with n vertices. Show λ(G) = δ(G) pro-
vided that δ(G)≥ n/2. Is this bound tight? See [Cha66].

4Some authors use the terms line connectivity and line connected instead.
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The following lemma, due to Schnorr [Schn79], is useful for computing
λ(G) because it allows one to determine min{λ(u, v): u, v ∈ V } by calculating
λ(u, v) for only a few pairs (u, v).

Lemma 8.6.4 Let G be a graph or a digraph with vertex set V = {v1, . . . , vn}.
Then, with vn+1 = v1:

λ(G) =min
{
λ(vi, vi+1): i= 1, . . . , n

}
.

Proof Let u and v be vertices of G satisfying λ(G) = λ(u, v), and let T be
an edge separator of cardinality λ(u, v) for u and v. Denote the set of all
vertices w for which there is a path (directed if G is a digraph) from u to w
not containing any edge of T by X ; similarly, Y denotes the set of all vertices
w for which each path (directed if G is a digraph) from u to w contains some
edge from T . Then (X,Y ) is a cut of G, with u ∈X and v ∈ Y . Now T is an
edge separator for x and y for each pair of vertices with x ∈X and y ∈ Y :
otherwise, there would be a path from u to y not containing any edges from T .
Hence |T |= λ(G)≤ λ(x, y)≤ |T |; that is, λ(x, y) = λ(G). Obviously, there has
to exist an index i such that vi ∈X and vi+1 ∈ Y ; then λ(G) = λ(vi, vi+1) for
this i. �

The reader is invited to explore why an analogous argument for vertex
separators does not work. By Corollary 7.1.2, each λ(u, v) can be determined
with complexity O(|V |2/3|E|). Hence Lemma 8.6.4 immediately yields the
following result.

Theorem 8.6.5 The edge connectivity λ(G) of a graph or a digraph G can
be determined with complexity O(|V |5/3|E|).

With a little more effort, one may improve the complexity bound of Theo-
rem 8.6.5 to O(|V ||E|); see [Mat87] and [ManSc89]. Next, we mention two in-
teresting results concerning edge connectivity; proofs can be found in [Eve79]
or in the original papers [Edm73] and [EveGT77].

Result 8.6.6 Let G be a digraph and u a vertex of G. Then there exist k
edge disjoint directed spanning trees of G with common root u, where k =
min{λ(u, v): v �= u}.

Result 8.6.7 Let G be a digraph with λ(G) ≥ k. For each pair of vertices
(u, v) and for every m with 0≤m≤ k, there are m directed paths from u to
v and k−m directed paths from v to u, all of which are edge disjoint.

We refer to [Bol78] for a treatment of extremal cases; a typical problem
of this sort is the determination of the structure of 2-connected graphs for
which removing any edge destroys the 2-connectedness.
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Finally, as in the case of vertex connectivity, the question of how many
edges are needed to increase the edge connectivity of a given graph by a
prescribed number has found considerable interest. For the undirected ver-
sion of the problem, an efficient algorithm was given in [WatNa87], and the
corresponding problem for digraphs was solved in [Fra92].



Chapter 9
Colorings

More delicate than the historians’ are the map-makers’

colors.

Elizabeth Bishop

This chapter treats a subject occurring quite often in graph theory: colorings.
We shall prove the two fundamental major results in this area, namely the
theorems of Brooks on vertex colorings and the theorem of Vizing on edge
colorings. As an aside, we explain the relationship between colorings and
partial orderings, and briefly discuss perfect graphs. Moreover, we consider
edge colorings of Cayley graphs; these are graphs which are defined using
groups. Finally, we turn to map colorings: we shall prove Heawood’s five
color theorem and report on the famous four color theorem. Our discussion
barely scratches the surface of this vast area; for a detailed study of coloring
problems we refer the reader to the monograph [JenTo95].

9.1 Vertex Colorings

In this section we prove some basic results about the chromatic number χ(G)
of a graph G. We need some definitions: a coloring of a graph G = (V,E)
assigns a color to each of its vertices so that adjacent vertices always have
different colors.1 More formally, we have a map c : V → C into some set C
which we interpret as the set of colors, and we require c(v) �= c(w) for every
edge vw ∈ E. The chromatic number χ(G) is the minimal number of colors
needed in a coloring of G.

To obtain a feeling for these concepts, let us give a simple example and an
illuminating exercise:

1Sometimes an arbitrary assignment of colors to the vertices is called a coloring. Then

colorings for which adjacent vertices always have different colors are called admissible

colorings.

D. Jungnickel, Graphs, Networks and Algorithms,
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Fig. 9.1 The icosahedral graph

Example 9.1.1 Obviously, a graph G has chromatic number 2 if and only if
its vertex set can be partitioned into two subsets S and T so that no edge
has both its end vertices in one of S or T . Thus the graphs G with χ(G) = 2
are precisely the (nonempty) bipartite graphs.

Exercise 9.1.2 Show that the icosahedral graph G (see Fig. 9.1) has chro-
matic number χ(G) = 4 by

• proving that G cannot be colored with three colors, and

• displaying a coloring with four colors.

How could we actually color a given graph? An obvious approach is pro-
vided by the following greedy-type algorithm. We may assume that the colors
used are the positive integers 1,2, . . . . Given any ordering v1, . . . , vn of the
vertices of G, we color the vertices one by one, where we always use the
smallest available color. Here is a formal version of this idea:

Algorithm 9.1.3 Let G = (V,E) be a graph given by adjacency lists Ai,
and let v = (v1, . . . , vn) be an ordering of the vertices of G. The algorithm
constructs a coloring c of G with colors 1,2, . . . .

Procedure COLOR(G,v; c).

(1) c(v1)← 1;
(2) for i= 2 to n do
(3) c(vi)←min{j : c(vh) �= j for all h= 1, . . . , i− 1 with h ∈Ai}
(4) od
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The quality of the preceding procedure will depend on the ordering of
the vertices. Nevertheless, even an arbitrary ordering leads to a pretty good
bound:

Lemma 9.1.4 Let G be a graph. Then χ(G)≤Δ(G)+1, where Δ(G) denotes
the maximal degree of a vertex of G.

Proof Let v1, . . . , vn be an arbitrary ordering of the vertices of G. Now vi
has at most Δ(G) adjacent predecessors when it is colored in step (3) of
Algorithm 9.1.3; hence there are at mostΔ(G) colors which are not admissible
for coloring vi so that c(vi)≤Δ(G) + 1. �

Example 9.1.5 There are graphs for which equality holds in Lemma 9.1.4,
namely complete graphs and cycles of odd length: χ(Kn) = n =Δ(Kn) + 1
and χ(C2n+1) = 3 =Δ(C2n+1)+1. On the other hand, χ(C2n) = 2 =Δ(C2n).

Using an appropriate ordering of the vertices, we can prove the following
stronger bound; its main interest lies in the subsequent corollary.

Lemma 9.1.6 Let G= (V,E) be a graph. Then:

χ(G)≤ 1 +max
{
δ(H) :H is an induced subgraph of G

}
,

where δ(H) denotes the minimal degree of a vertex of H .

Proof Denote the maximum defined above by k; by hypothesis, k ≥ δ(G).
Thus we may choose a vertex vn with deg vn ≤ k. Now look at the induced
subgraphH =Hn−1 :=G\vn and choose a vertex vn−1 having at most degree
k in H . We continue in this manner until we get a graph H1 consisting of
only one vertex, namely v1. This determines an ordering v1, . . . , vn of V ;
we apply Algorithm 9.1.3 with respect to this ordering. Then each vertex vi
has at most k adjacent predecessors, because deg vi ≤ k holds in Hi. Thus
Algorithm 9.1.3 needs at most k+ 1 colors for coloring G. �

Corollary 9.1.7 Let G be a connected graph, and assume that G is not
regular. Then χ(G)≤Δ(G).

Proof Write k =Δ(G) and suppose χ(G)> k. Then G has to have an induced
subgraph H with δ(H) = k, by Lemma 9.1.6. As k is the maximal degree
in G, H must be a k-regular subgraph which is not connected to any vertex
outside of H . Since G is connected, we conclude G=H , so that G has to be
k-regular. �

We now come to the major result of this section, namely the theorem of
Brooks [Bro41]: with the obvious exceptions mentioned in Example 9.1.5,
χ(G)≤Δ(G).
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Theorem 9.1.8 (Brooks’ theorem) Let G be a connected graph which is
neither complete nor a cycle of odd length. Then χ(G)≤Δ(G).

Proof In view of Corollary 9.1.7, we may assume that G is regular of degree
k =Δ(G). Now k = 2 means that G is a cycle, and we know the chromatic
number of a cycle from Example 9.1.5. Hence we may assume k ≥ 3. First
suppose that G is not 2-connected. Then there exists a vertex v such that
G \ v is not connected; see Definition 7.1.6. Let V1, . . . , Vl be the connected
components of G \ v. Using induction on the number of vertices, we may
assume that the subgraph of G induced on Vi ∪ {v} can be colored with k
colors. Then G can obviously be colored using k colors as well. Thus we may
from now on assume that G is 2-connected.

The assertion follows easily if we can find three vertices v1, v2, and vn
such that the graph H =G \ {v1, v2} is connected, and G contains the edges
v1vn and v2vn, but no edge joining v1 to v2. Suppose we have already
found such vertices; then we may order the remaining vertices as follows:
for i= n− 1, . . . ,3, we choose (in decreasing order, beginning with i= n− 1)
a vertex vi ∈ V \ {v1, v2, vi+1, . . . , vn} adjacent to at least one of the vertices
vi+1, . . . , vn; note that this is indeed possible, since H is connected. Now we
apply Algorithm 9.1.3 using this ordering of the vertices. Then we first get
c(v1) = c(v2) = 1, as v1 and v2 are not adjacent. Furthermore, each vertex vi
with 3≤ i≤ n− 1 has at most k− 1 adjacent predecessors: vi is adjacent to
at least one vertex vj with j > i. Finally, vn is adjacent to the vertices v1
and v2 which have the same color. Therefore, the algorithm needs at most k
colors.

It remains to show that G contains vertices v1, v2, and vn satisfying the
above conditions. First suppose that G is even 3-connected. Then we may
choose an arbitrary vertex for vn. Note that the set Γ (vn) of vertices adjacent
to vn has to contain two non-adjacent vertices v1 and v2. (Otherwise the
k + 1 vertices in Γ (vn) ∪ {vn} form a complete graph Kk+1; because of the
connectedness and the k-regularity of G, this graph would have to be G
itself, which contradicts the hypothesis of the theorem.) As G is 3-connected,
H must still be connected.

Finally, we turn to the case where G is 2-connected but not 3-connected.
Here we may choose a vertex separator {v, vn}. Let V1, . . . , V� be the con-
nected components of G \ {v, vn} and put Gi = G|(Vi ∪ {v, vn}). Then the
graphs Gi are connected; moreover, vn has to have some neighbor �= v in
each of the Gi, as otherwise G \ v would not be connected. Now we choose
two neighbors v1 ∈G1 and v2 ∈G2 of vn such that v1, v2 �= v. Then v1 and
v2 are not adjacent and H :=G \ {v1, v2} is still connected which is seen as
follows. Let x be any vertex of H . It suffices to show that v is still accessible
from x in H . Now G is 2-connected, so that there are two vertex disjoint
paths from x to v in G by Theorem 7.1.4; obviously, H contains at least one
of these paths. This shows that H is connected and concludes the proof of
the theorem. �
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Let us make some remarks about the theorem of Brooks. The bound
χ(G) ≤ Δ(G) may be arbitrarily bad: for bipartite graphs, χ(G) = 2; and
Δ(G) can take any value ≥ 2. In general, determining χ(G) is an NP-hard
problem; see [Kar72]. If P �= NP holds, then there is not even a polyno-
mial algorithm producing an approximate solution which always needs less
than 2χ(G) colors; see [GarJo76]. However, there is an algorithm of com-
plexity O(|V |+ |E| logk) which, with probability almost 1, colors any given
k-colorable graph with k colors [Tur88].

Exercise 9.1.9 Determine the chromatic number of the Petersen graph,
using a theoretical argument. Also produce an explicit coloring confirming
your result.

In the context of colorings, there are two important conjectures concerning
the structure of k-colorable graphs. The first of these is one of the most fa-
mous open problems in graph theory: Hadwiger’s conjecture [Had43] asserts
that G contains a subgraph contractible to Kn provided that χ(G)≥ n. This
conjecture has been proved for n ≤ 6; for n ≤ 4, the proof can be found in
Theorem 5.13 of [Aig84]. By a result of Wagner [Wag60], the case n = 5 is
equivalent to the four color theorem (see Sect. 9.5) and is therefore proved
as well. Finally, the case n= 6 was established by Robertson, Seymour and
Thomas [RobST93]. The general case remains open; see [Tof96] for a sur-
vey. The second important conjecture sounds similar but is in fact stronger.
Hajós’ conjecture [Haj61] asserts that every graph with χ(G)≥ n contains a
subdivision of Kn. However, Catlin [Cat79] found a counterexample for n= 8
(and hence for all n ≥ 8), so that this conjecture is false in general. (Note
that a subdivision of Kn can be contracted to Kn.) Hajós’ conjecture is true
for n≤ 4; for n= 5,6,7 it remains open; see [Aig84].

For more profound studies of the chromatic number, algebraic tools—in
particular, the chromatic polynomial—are needed. This is one of the central
topics in algebraic combinatorics; we refer the interested reader to [Tut84],
[God93] or [GodRo01].

9.2 Comparability Graphs and Interval Graphs

In this section, we will apply the results of Sect. 7.5 to study the chromatic
number and related parameters for two particularly interesting classes of
graphs. We have already associated an acyclic directed graph with a given
partial ordering in Sect. 2.6; now we also associate an undirected graph with
a given poset. Thus let (M,	) be a partially ordered set. We define a graph
G with vertex set M by choosing all those sets {x, y} (where x �= y) as edges
of G for which x and y are comparable: x≺ y or y ≺ x holds. Any such graph
G is called a comparability graph. Note that a graph G is a comparability
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graph if and only if it has a transitive orientation. It is possible to check with
complexity O(|V |5/2) whether some given graph belongs to this class, and
such a graph can be oriented with complexity O(|V |2); see [Spi85].

We require two more definitions. The maximal cardinality of a clique in a
graph G= (V,E) is called the clique number and will be denoted by ω(G).
The clique partition number θ(G) is the minimal number of cliques in a
partition of V into cliques. Let us note some simple relations between the
independence number α defined Sect. 7.5 and the parameters ω, θ, and χ of
a graph G and its complementary graph G.

Lemma 9.2.1 Let G= (V,E) be a graph. Then:

χ(G)≥ ω(G); α(G)≤ θ(G); α(G) = ω(G); θ(G) = χ(G).

Proof The first inequality holds, since the vertices of a clique obviously have
to have distinct colors. Similarly, the vertices of an independent set have to
be in distinct cliques, which yields the second inequality. Finally, independent
sets in G are precisely the cliques in G, and a coloring of G is equivalent to
a partition of V into independent sets. �

Theorem 9.2.2 Let G be a comparability graph or the complement of such
a graph. Then α(G) = θ(G) and ω(G) = χ(G).

Proof Let G be a comparability graph. Then the cliques in G are precisely
the chains of the corresponding partially ordered set (M,	), and the inde-
pendent sets in G are the antichains of (M,	). Hence Theorem 7.5.3 implies
α(G) = θ(G), and Exercise 7.5.9 yields ω(G) = χ(G). The assertion for G
then follows using Lemma 9.2.1. �

Let us have a closer look at the complements of comparability graphs.
Let M1, . . . ,Mn be intervals of real numbers, and G the graph on {1, . . . , n}
whose edges are precisely the sets {i, j} with Mi ∩Mj �= ∅. Such a graph is
called an interval graph.

Lemma 9.2.3 Every interval graph is the complement of a comparability
graph.

Proof Let M1, . . . ,Mn be intervals of real numbers and G the corresponding
interval graph. We define a partial ordering 	 on {1, . . . , n} by

i≺ j :⇐⇒ x < y for all x ∈Mi and all y ∈Mj .

The reader should check that this indeed yields a partial ordering. Obviously,
{i, j} is an edge in the comparability graph corresponding to 	 if and only
if Mi ∩Mj = ∅; that is, iff {i, j} is not an edge of G. �
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Exercise 9.2.4 Show that every interval graph is chordal (or triangulated):
each cycle of length at least 4 has a chord , that is, an edge of G which
connects two non-consecutive vertices of the cycle.

Conversely, every chordal graph whose complement is a comparability
graph has to be an interval graph; see [GilHo64]. Also, a graph G is a com-
parability graph if and only if every closed trail (not necessarily a cycle)
(v0, v1, . . . , v2n, v2n+1 = v0) of odd length has a chord of the form vivi+2;
see [Gho62] and [GilHo64]. Proofs for these results can also be found in
[Ber73], Chap. 16; further characterizations are given in [Gal67]. The pa-
per [Fis85] contains more about interval graphs; algorithms for recognizing
interval graphs are in [BooLu76] and [KorMo89].

Corollary 9.2.5 Let G be an interval graph or the complement of such a
graph. Then α(G) = θ(G) and ω(G) = χ(G).

Example 9.2.6 One often encounters interval graphs in practical applications,
where the intervals are time intervals needed for performing certain tasks.
A coloring of such a graph with as few colors as possible then corresponds
to an optimal assignment of the given set of jobs to the minimum possible
number of workers (or teams). As a concrete example, we mention scheduling
flights to available planes and/or crews. Of course, practical applications
usually involve many additional constraints. In particular, the scheduling of
flights is a very important but also highly complex problem; see, for instance,
[Yu98]. Applications of interval graphs in biology are described in [MirRo84].

Note that a coloring of an interval graph G is given by a partition of the
associated comparability graph—the complement of G—into as few cliques
as possible; that is, using the theorem of Dilworth, by a partition of the cor-
responding partial ordering into chains (compare the proof of Lemma 9.2.3).
As mentioned at the end of Sect. 7.5, such a partition can be determined
using a flow network. An explicit algorithm avoiding the use of flows can be
found in [ForFu62], §II.9.

Comparability graphs and interval graphs are special instances of a very
important class of graphs which we can only discuss briefly. A graph G is
called perfect if the condition α(H) = θ(H) holds for every induced subgraph
H of G. Equivalently, G is perfect if and only if every induced subgraphH sat-
isfies ω(H) = χ(H). The fact that these two conditions are equivalent was first
conjectured by Berge [Ber61] and finally proved by Lovász [Lov72]; see also
[Gas96] for a considerably simpler proof. Alternatively, using Lemma 9.2.1,
the result can also be formulated as follows:

Result 9.2.7 (Perfect graph theorem) The complement of a perfect graph is
likewise perfect.
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Obviously, an induced subgraph of a comparability graph is again a com-
parability graph, so that we can summarize the results of this section as
follows.

Theorem 9.2.8 Comparability graphs, interval graphs, and the complements
of such graphs are perfect.

Exercise 9.2.9 Show that bipartite graphs are perfect.

More about perfect graphs can be found in [Ber73], Chap. 16; for example,
it is shown that every chordal graph is perfect. A stronger conjecture also
posed by Berge [Ber61] remained unsolved for about 40 years before it was
turned into a theorem in 2002 by Chudnovsky, Robertson, Seymour and
Thomas [ChuRST02]; see also [ChuRST03] for background and an outline
of the proof.

Result 9.2.10 (Strong perfect graph theorem) A graph is perfect if and only
if neither G nor G contain a cycle of odd length ≥ 5 as an induced subgraph.

Note that determining α, θ, ω, and χ is an NP-hard problem for graphs in
general. Hence it is quite likely that no good algorithm exists for this problem;
see [GarJo79]. However, all these parameters can be found in polynomial
time for perfect graphs; see [GroLS84]. Thus perfect graphs are particularly
interesting from an algorithmic point of view as well. This result and further
interesting papers can be found in [BerCh84] which is devoted entirely to
perfect graphs; see also [Gol80] and Chap. 9 of [GroLS93].

9.3 Edge Colorings

In this section we treat edge colorings; this means we assign a color to each
edge so that any two edges having a vertex in common have distinct colors.
The smallest possible number of colors needed for an edge coloring of a graph
G is called the chromatic index or the edge chromatic number ; it is denoted
by χ′(G). Note χ′(G) = χ(L(G)), where L(G) is the line graph of G. The
counterpart of the theorem of Brooks about vertex colorings is the theorem
of Vizing [Viz64]. There is a remarkable difference, though: while the bound
for χ(G) in Brooks’ theorem can be arbitrarily bad, the theorem of Vizing
guarantees that χ′(G) can only take one of two possible values, namely either
Δ(G) or Δ(G) + 1.

Exercise 9.3.1 Prove χ′(G) =Δ(G) for bipartite graphs G. Hint: Use Ex-
ercise 7.4.16.
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Fig. 9.2 A cycle in G

Theorem 9.3.2 (Vizing’s theorem) Let G be a graph. Then either
χ′(G) =Δ(G) or χ′(G) =Δ(G) + 1.

Proof The inequality χ′(G)≥Δ(G) is obvious. Using induction on m= |E|,
we prove χ′(G)≤Δ(G)+1. The induction basis m= 1 is trivial. Now choose
any edge e1 = uv of G and assume that G \ e1 has already been colored using
Δ(G) + 1 colors; we will use this coloring of G \ e1 to construct a coloring
of G. We need more notation. For any two colors α and β, let G(α,β) be the
subgraph of G whose edges are precisely those edges of G which have color
α or β. Obviously, the connected components of G(α,β) are paths or cycles
of even length whose edges are alternately colored with α and β. Note that
interchanging the two colors α and β in some of the connected components
of G(α,β) yields a valid coloring again.

As each vertex v has degree at most Δ(G), there is at least one color
γ missing at v in the coloring of G \ e1: none of the edges incident with v
has been assigned the color γ. If the same color is missing at u and at v1,
we may assign this color to the edge e1. Now suppose that this is not the
case; say color α is missing at u, and color β1 �= α is missing at v1. Also, we
may assume that some edge incident with v1 is colored with α, and some
edge e2 = uv2 is colored with β1. We change the given coloring as follows: we
assign color β1 to edge e1 and leave edge e2 without a color for the moment.
If α is the color missing at v2, we may color e2 with α. So suppose that α
is assigned to some edge incident with v2. If u, v1, and v2 are not in the
same connected component of G(α,β1), we can exchange the colors α and
β1 in the component containing v2, so that α is then missing at v2 (and α is
still missing at u); then we may assign α to e2. Otherwise, u, v1, and v2 are
contained in the same connected component of G(α,β1), which means that
there is a path from u to v2 alternately colored with α and β1. This path
together with the (not yet colored) edge e2 forms a cycle; see Fig. 9.2.

Now suppose that the color missing at v2 is β2 �= β1. We may also assume
that this color occurs at u (for otherwise we might assign β2 to e2 and obtain
the desired valid coloring); let e3 = uv3 be the edge colored with β2. We
change the given coloring as follows: we assign β2 to e2 and leave e3 without
a color for the moment. As before, we may assume that α occurs at v3 and
that u, v2, and v3 lie in the same connected component ofG(α,β2) (otherwise,
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Fig. 9.3 Two cycles in G

it would be possible to find a color for e2 and finish the coloring as above).
Thus there is a path from u to v3 colored alternately with α and β2, and this
path together with the (not yet colored) edge e3 forms a cycle.

We have now found two alternating cycles as shown in Fig. 9.3. We con-
tinue to change the coloring in the same manner, until we reach some vertex
vk adjacent to u for which the edge ek = uvk is not yet colored and one of
the following two cases occurs. Either some color βk �= βk−1 is missing at
vk, and this color is also missing at u; in this case, ek may be assigned this
color. Or some color βi with i ≤ k − 2 is missing at vk. (Note that one of
these alternatives has to occur at some point, because we can find at most
degu≤Δ(G) neighbors of u.) As before, u, vi, and vi−1 are contained in the
same connected component of G(α,βi). This component is a path P from u
to vi+1 alternately colored with α and βi, and this path does not contain vk,
since βi is missing at vk. Thus the component C of G(α,βi) containing vk
is disjoint from P ; see Fig. 9.4. Now we exchange the colors α and βi in C;
then we may assign α to ek to finish our coloring. �

A short proof for a generalization of Vizing’s theorem can be found in
[BerFo91]; this also provides an alternative proof of Theorem 9.3.2.

As we saw in Exercise 9.3.1, bipartite graphs always have chromatic in-
dex χ′(G) =Δ(G). As a consequence of Vizing’s theorem, we can now also
determine χ′(G) for all regular graphs.

Corollary 9.3.3 Let G be a k-regular graph with n vertices. Then χ′(G) =
k + 1 whenever n is odd. If n is even, χ′(G) = k if and only if G admits a
1-factorization.

Proof First let n be odd, say n= 2m+1. Then a given color can be assigned
to at most m edges. As G contains k(2m + 1)/2 > mk edges, χ′(G) = k is
impossible; hence χ′(G) = k+ 1, by Theorem 9.3.2.
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Fig. 9.4 Concluding the proof of Theorem 9.3.2

Now let n be even, say n= 2m. By a similar argument, χ′(G) = k if and
only if each color is assigned to exactly m edges, which happens iff the color
classes of edges form a 1-factorization. �

Exercise 9.3.4 Determine the chromatic index of the Petersen graph and
display a corresponding edge coloring.

We refer to the monograph [Yap86] for an extensive discussion of edge
colorings. Shannon [Sha49a] proved that multigraphs have chromatic index
χ′(G) ≤ 3Δ(G)/2. Some further results in this direction can be found for
example in [And77] and [HilJa87] who proved that χ′(G) ≤ Δ(G) + 1 still
holds if all edges occurring more than once in G form a matching.

Even though Vizing’s theorem restricts the chromatic index of a graph G
to only two possible values, determining χ′(G) is an NP-hard problem. Holyer
[Hol81] proved that this continues to hold when G is restricted to the class of
3-regular graphs. There are fast algorithms with complexity O(|E| log |E|) for
the bipartite case; see, for example, [GabKa82] or [ColHo82]. For the general
case, an algorithm can be found in [HocNS86].

Sometimes the coloring we are looking for does not need to be optimal,
but might be slightly worse; then the proof of Vizing’s Theorem given above
yields an algorithm which with complexity O(|V ||E|) finds an edge coloring
using just Δ(G) + 1 colors.

9.4 Cayley Graphs

This section is devoted to a class of graphs which admit a particularly inter-
esting automorphism group. A graph G= (V,E) is called a Cayley graph if
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it has an automorphism group H which operates regularly (or sharply transi-
tively) on V : for any two vertices v and w, there is exactly one automorphism
h ∈ H which maps v to vh = w.2 We have two reasons for studying these
graphs in this section: first, we want to prove something nontrivial about
automorphisms of graphs at least once in this book; and second, we will be
able to give an interesting application of Vizing’s theorem.

Usually, Cayley graphs are defined by an explicit description as follows.
Let H be some finite group (written multiplicatively, with unit element 1),
and let S be a subset of H having the following properties:

1 /∈ S and S = S−1 :=
{
s−1 : s ∈ S

}
. (9.1)

Then we define a graph G=G(H,S) with vertex set V =H and edge set

E =E(H,S) =
{
{x, y} : xy−1 ∈ S

}
.

Note that this indeed yields a graph: xy−1 ∈ S is equivalent to yx−1 ∈ S−1,
and S = S−1 holds by (9.1). Now H operates on G by right translation: h ∈H
maps x to xh := xh. Thus G is a Cayley graph with respect to H . (Note that
h ∈H maps an edge {x, y} to the edge {xh, yh}, since xy−1 ∈ S is equivalent
to (xh)(yh)−1 ∈ S.) In fact, every Cayley graph can be written in this form.

Lemma 9.4.1 A graph G = (V,E) is a Cayley graph with respect to the
automorphism group H if and only if G is isomorphic to a graph of the form
G(H,S).

Proof We have already seen that the condition in the assertion is sufficient.
Conversely, let G be a Cayley graph with respect to H . Choose an arbitrary
vertex c in G as base vertex, and identify each vertex v with the unique
element h of H for which ch = v holds. In particular, c is identified with the
unit element 1. Now we define S by

S =
{
h ∈H : {1, h} ∈E

}
.

If {x, y} is an edge of G, then {xy−1,1}= {xy−1, yy−1} is likewise an edge,
as H is an automorphism group of G, and as h ∈H maps a vertex z = 1z to
zh = (1z)h. Thus {x, y} ∈ E is equivalent to xy−1 ∈ S. If {1, h} is an edge,
then {h−1,1} is an edge as well, so that S = S−1. As G does not contain any
loops, 1 /∈ S is also satisfied, and G is isomorphic to G(H,S). �

Next we determine the connected components of a Cayley graph.

2We denote the image of a vertex v under some automorphism h by vh; this is common

usage in algebra as well as in finite geometry. Also note that we do not require H =AutG:

H is just some subgroup of AutG.
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Lemma 9.4.2 The connected components of G=G(H,S) are precisely the
right cosets of the subgroup U of H generated by S.

Proof By definition of a Cayley graph, {xi, xi+1} is an edge if and only if
si = xix

−1
i+1 ∈ S (for i= 1, . . . ,m− 1). Therefore (x1, . . . , xm) is the sequence

of vertices of a walk in G if and only if x1x
−1
m = s1 . . . sm−1 is an element

of U ; that is, iff x1 ∈ Uxm. �

Let us consider the problem when the chromatic index of a Cayley graph
G(H,S) is equal to Δ(G). Note that a Cayley graph G(H,S) is always regu-
lar. Hence Corollary 9.3.3 and Lemma 9.4.2 imply a necessary condition for
χ′(G) =Δ(G): the subgroup U of G generated by S has to have even order.
Then an edge coloring using Δ(G) colors is the same as a 1-factorization
of G. As we will see, there are reasons to believe that this condition is also
sufficient.

Conjecture 9.4.3 A Cayley graph G(H,S) has a 1-factorization if and only
if the subgroup U of H generated by S has even order.

Stern and Lenz [SteLe80] proved that this conjecture holds for cyclic
graphs, that is, Cayley graphs G(H,S) for which H is a cyclic group. Later,
Stong [Sto85]—who apparently was not aware of the paper of Stern and
Lenz—obtained stronger results; we shall present the most important ones.
The proof we give is a somewhat simplified variation of the proofs given by
these authors; all known proofs rely heavily on Vizing’s theorem. The follow-
ing result gives a general construction for 1-factorizations in certain Cayley
graphs, which we will use to prove Conjecture 9.4.3 for three specific classes
of groups.3

Theorem 9.4.4 Let G = G(H,S) be a Cayley graph, and suppose that the
group H has a normal subgroup N of index 2.4 Then G has a 1-factorization
provided that S satisfies one of the following two conditions:

(1) G∗ =G(N,S ∩N) has a 1-factorization.

(2) There is an element d ∈ S \N such that s ∈ S∩N implies dsd−1 ∈ S∩N .

Proof If (1) holds, we may assume w.l.o.g. that S is not contained in N ,
so that we can choose some element d ∈ S \ N ; and if (2) holds, let d be

3For the (elementary) statements and definitions concerning groups which we use in the

remainder of this section, we refer the reader to [Hup67] or [Suz82].

4This condition holds for large classes of groups as it suffices that all elements of odd order

form a normal subgroup of H . For example, this is true if the 2-Sylow subgroups of H are

cyclic. A simple ad hoc proof of this statement is given in Lemma X.12.1 of [BetJL99]. For

a stronger result in this direction, we refer to [Hup67, Satz IV.2.8].
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an element as described there. In either case we have H \ N = dN = Nd.
Consider the cocycle C in G defined by the cut (N,dN):

C =
{
{x, y} ∈E : x ∈N and y ∈ dN

}
.

Since the subgroup N of H operates regularly (by right translation) both
on N and on dN , the orbits of N on C have to be 1-factors, say F1, . . . , Fr.
We may assume F1 = {{n,dn} : n ∈ N}, as n(dn)−1 is in S. Deleting the
remaining Fi (i= 2, . . . , r) from G yields a regular graph G′. If we delete F1

as well, we get a disconnected graph G′′ which is the disjoint union of the
two isomorphic graphs G∗ =G(N,S ∩N) and G∗d induced by G on N and
on dN = Nd, respectively. (Here G∗d denotes the image of G∗ under right
translation by d.)

Now it suffices to find a 1-factorization of either G′ or G′′. If condition (1)
is satisfied, G∗ (and hence also G∗d) has a 1-factorization, which yields a
1-factorization of G′′.

Finally, suppose that condition (2) is satisfied. We denote the degree of
the vertices of the regular graph G∗ (and hence also of G∗d) by t; then G′ is
(t+ 1)-regular. Using Vizing’s theorem, we may color the edges of G∗ with
t + 1 colors. Note that the mapping n �→ dn induces an isomorphism from
G∗ to G∗d: {m,n} is an edge of G∗ if and only if mn−1 ∈ S ∩ N holds;
that is—because of (2)—iff d(mn−1)d−1 = (dm)(dn)−1 ∈ S ∩N . Now this is
equivalent to {dm,dn} being an edge of G, and hence also of G∗d. We use
this isomorphism to define an edge coloring of G∗d with t+1 colors: an edge
{dm,dn} of G∗d is assigned the color of the edge {m,n} of G∗. Since both
G∗ and G∗d are t-regular, there is exactly one color c(v) missing at each of
the vertices v of G′. By construction, we have c(n) = c(dn) for all n ∈ N .
Thus we may color the edge {n,dn} of F1 using the color c(n) (for each n).
In this way, we get an edge coloring of G′ with t+1 colors; this edge coloring
is equivalent to the desired 1-factorization of G′. �

We can now prove Conjecture 9.4.3 for three large classes of groups.

Theorem 9.4.5 Let H be an Abelian group, a 2-group, or a generalized
dihedral group. Then the Cayley graph G=G(H,S) has a 1-factorization if
and only if the subgroup u of H generated by S has even order.

Proof If H is a 2-group (that is, |H|= 2a for some a), then H has a normal
subgroup N of index 2. Using induction on a, we may assume that we know a
1-factorization for G(N,S ∩N) already. Then condition (1) of Theorem 9.4.4
holds, so that G itself has a 1-factorization.

Next suppose that H is Abelian. We may assume that G is connected;
then H = U , and H has even order. Again, H has a normal subgroup of
index 2. As G is connected, there exists an element d ∈ S \N . Now condition
(2) of Theorem 9.4.4 is satisfied because H is Abelian, so that G has a
1-factorization.
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Finally, suppose that H is a generalized dihedral group: H has even order
2n and is the semi-direct product of an Abelian group N of order n with
the cyclic group of order 2 (which we write multiplicatively as {1, b} here);
moreover, the relation bab= a−1 holds for all a ∈N .5 As every subgroup of
H is either Abelian or a generalized dihedral group again, we may assume
that G is connected: H = U . Again, there exists an element d ∈ S \N , say
d= ba with a ∈N . Then s ∈ S ∩N implies

dsd−1 = (ba)s
(
a−1b

)
= bsb= s−1 ∈ S ∩N.

Hence condition (2) of Theorem 9.4.4 holds, and G has a 1-factorization. �

Unfortunately, the results we know so far do not suffice to prove Conjec-
ture 9.4.3 for, say, all nilpotent groups. However, the conjecture is true for
this case if S is a minimal generating set for H ; see [Sto85]. Theorem 9.4.5
shows that the Petersen graph is not a Cayley graph: by Exercise 7.2.8, it
does not have a 1-factorization, and the only groups of order 10 are the cyclic
group and the dihedral group.

Cayley graphs are of considerable interest; in particular, the conjecture of
Lovász [Lov70a] that any connected Cayley graph contains a Hamiltonian cy-
cle has been studied by many authors. This conjecture is still open, although
it has been proved for several specific classes of groups; for example, it holds
for all Abelian groups. A proof of this result—and more on Cayley graphs
and automorphism groups of graphs—can be found in the interesting book
[Yap86]. It is also of great interest to examine the strongly regular Cayley
graphs; for a nice survey of this subject, see [Ma94]. We conclude this section
with a basic exercise.

Exercise 9.4.6 Prove that a Cayley graph G(H,S) is strongly regular with
parameters (v, k,λ,μ) if and only if both the following conditions are satis-
fied:

(1) |H|= v and |S|= k.
(2) The list of quotients cd−1 with c, d ∈ S and c �= d contains each element

h �= 1 of H either λ or μ times, depending on whether or not h belongs
to S.

The set S is then called a partial difference set , since H is usually written
additively in this context so that (2) turns into a condition on differences.

5The classical dihedral groups are the ones where N is cyclic; see, for example, I.9.15 in

[Hup67]. The generalized dihedral groups play an important role in reflection geometry;

see [Bac89].
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9.5 The Five Color Theorem

Let us imagine the plane (or a sphere, which makes no difference topologi-
cally) dissected by a net of curves in such a way that no point can belong to
more than three of the resulting regions; we speak of an (admissible) map,
borders, and states. Thus we rule out the possibility of four or more states
meeting in a common border point, as is the case for Utah, Arizona, New
Mexico, and Colorado. Now let us choose five different colors and paint our
map in such a way that no two states with the same color share a common
border; then we have an (admissible) map coloring . Can this always be done?
The answer is yes, by the five color theorem of Heawood [Hea90] which we
will prove in this section.

Let us translate the map coloring problem into the language of graph
theory. To this end, we use our map to define a graph G= (V,E) with the
states as vertices; two vertices (that is, two states) will be adjacent if and
only if they share a common border. It is easy to see that G is a planar
graph; to be explicit, we may choose for each state a suitable point in its
interior, and realize adjacency by line segments. Obviously, any admissible
map coloring corresponds to a coloring of G and, hence, Heawood’s five color
theorem becomes the assertion that every planar graph G satisfies χ(G)≤ 5.

Example 9.5.1 As a warmup exercise, we shall prove the analogous six color
theorem. Let G be a planar graph. By Exercise 1.5.14, there is a vertex v of
degree at most 5. Using induction, we may assume that G \ v can be colored
with six colors. This leaves at least one color which does not yet occur at
one of the neighbors of v. Hence the given coloring extends to an admissible
coloring for G.

The shortest and most elegant proof of the five color theorem is due to
Thomassen [Tho94] and actually establishes quite a bit more. We need some
further definitions. An (admissible) list coloring of a graph G= (V,E) again
assigns a color to each of its vertices such that adjacent vertices always have
different colors; but now each vertex v has its own list of colors C(v) from
which we have to choose its color c(v). The graph G is called k-choosable if
it admits a list coloring for every choice of lists C(v) of cardinality ≥ k each.
The choosability or list coloring number of G is the smallest k for which G
is k-choosable; this parameter is denoted by ch(G). Clearly, ch(G) ≥ χ(G);
however, in general, the chromatic number and the list coloring number do
not agree, as the following simple example shows.

Example 9.5.2 Consider the bipartite graph K3,3 which has chromatic num-
ber 2 by Example 9.1.1. Let us assign to the three points in each of the two
classes forming the partition of V the color lists {1,2}, {1,3}, and {2,3};
then there is no coloring using these lists, as the reader may easily check.
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Fig. 9.5 The two cases in the proof of Theorem 9.5.4

Exercise 9.5.3 Prove that in fact ch(K3,3) = 3. Hint: Use a case distinction
according to whether or not two color lists for vertices in the same part of
the bipartition have a color in common.

By a result of [ErdRT80], there are bipartite graphs with an arbitrarily
large choosability; thus k-choosability can indeed be a much stronger require-
ment than k-colorability. This makes Thomassen’s generalization of the five
color theorem to list colorings even more remarkable.

Theorem 9.5.4 Let G be a planar graph. Then ch(G)≤ 5.

Proof By assumption, every vertex v of G is associated with a color list C(v)
of cardinality ≥ 5. We may assume G to be drawn in the plane. Let

C: v1 v2 v3 · · · vp−1 vp = v1

be the cycle forming the boundary of the unique infinite face—the outer
face—of the given planar realization of G. If there is an inner face whose
boundary is a cycle of length at least 4, we may add new edges to obtain a
graph for which all inner faces are bounded by triangles; clearly, it suffices
to prove the result in this (possibly harder) case. We make our problem even
more difficult by also prescribing the colors c(v1) and c(v2), and by requiring
merely |C(v)| ≥ 3 for all v ∈C \ {v1, v2}. This trick will allow us to prove the
result by induction on n= |V |.

The starting case p= n= 3 (and thus G=C) is trivial, as at least one of
the colors in C(v3) has not yet been used for v1 or v2. Now let n ≥ 4. We
shall distinguish two cases; see Fig. 9.5 for an illustration.

First, we assume that C has a chord e= vw. Then C∪{e} contains exactly
two cycles C1 and C2 sharing the edge e; we may assume v1v2 ∈ C1. Now
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we apply the induction hypothesis to C1 and obtain a list coloring c1 of the
subgraph with boundary C1 so that v1 and v2 take the prescribed colors.
Then we apply the induction hypothesis once again to find a list coloring c2
of the subgraph with boundary C2 so that v and w take the same colors as
under c1. Altogether, this gives the desired list coloring of G.

It remains to consider the case where C has no chords. Let us label
the neighbors of vp in their natural order around vp (say clockwise) as
v1, u1, . . . , uk, vp−1; then the ui lie in the interior of C. As all inner faces
of G are bounded by triangles,

P : v1 u1 u2 · · · uk vp−1

has to be a path in G. Since C has no chords, C∗ := P ∪ (C \ {vp}) is the
boundary cycle of the subgraph G \ vp. We choose two colors distinct from
c(v1) in C(vp) and discard them from all color lists C(ui) (i= 1, . . . , k); this
leaves shortened color lists of at least three colors each. Now we may apply
the induction hypothesis to C∗ and the shortened color lists to find a list
coloring c of the subgraph G \ vp with boundary C∗ for which v1 and v2 take
the prescribed colors. Finally, we may choose an admissible color for vp, since
at least one of the two colors previously selected in C(vp) for discarding has
to be distinct from c(vp−1). �

We now state the most interesting consequence of Theorem 9.5.4.

Corollary 9.5.5 (Five color theorem) Let G be a planar graph. Then
χ(G)≤ 5.

For more than one hundred years, the most famous open problem in graph
theory was the question if four colors suffice for coloring planar graphs (four
color conjecture, 4CC ). This problem was first posed in October 1852 by
Francis Guthrie; the first written reference occurs in a letter by Augustus
de Morgan to Sir William Rowan Hamilton. In 1878, Arthur Cayley pre-
sented the problem to the London Mathematical Society, making it more
widely known. A year later, the English lawyer and mathematician Alfred
Bray Kempe published a proof for the correctness of the 4CC, see [Kem79];
a decade after that, Heawood [Hea90] discovered a fundamental error in
Kempe’s arguments. Nevertheless, he managed to modify these arguments
to obtain the five color theorem. Subsequently, many important mathemati-
cians worked on the 4CC, among them Heffter, Birkhoff, Ore, and Heesch.

The conjecture was finally proved—more than a century after it had been
posed—by Appel and Haaken [AppHa77, AppHK77] with the help of a com-
puter, after a series of theoretical reductions based on the ideas of Kempe
and Heesch (unavoidable configurations). There was some controversy about
the validity of this proof, because of its extraordinary length and complex-
ity as well as the huge amount of computer time needed for establishing the
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result. In response to this, Appel and Haaken presented a 741 page algo-
rithmic treatment [AppHa89], where they also corrected several minor errors
in their original proof. Finally, a much simplified proof (though still using
the same basic approach) was given by Robertson, Sanders, Seymour and
Thomas [RobSST97]; this also provides an independent verification. For a
sketch of this new proof and a discussion of relations between the 4CC and
other branches of mathematics, see [Tho98]. A nice account of the 4CC and
its solution may be found in the book [Wil2002]. To sum up, the 4CC is now
firmly established and may be stated as the following theorem.

Result 9.5.6 (Four color theorem) Every planar graph satisfies χ(G)≤ 4.

One might hope to prove this result by establishing a strengthening to list
colorings, in analogy with Theorem 9.5.4. Unfortunately, this is impossible,
as there are planar graphs which are not 4-choosable; the first example for
this phenomenon is in [Voi93].

The coloring problem has also been considered (and indeed solved) for
maps drawn on other types of surfaces; for this topic, where the fundamental
work is due to Gerhard Ringel, we refer the reader to [MohTh01].

We also remark that Thomassen’s Theorem 9.5.4 has recently be strength-
ened in two ways. On the one hand, the result does not only hold for planar
graphs, but remains valid for graphs which may be drawn in the plane with
at most two crossings; see [DvoLS11]. And on the other hand, the theo-
rem remains valid for graphs which do not admit K5 as a minor, a class of
graphs which is more general than that of planar graphs by Wagner’s the-
orem (Result 1.5.9); see [Sre98] and, for a proof not relying on Wagner’s
characterisation of this class of graphs, [WooLi10].

We conclude with two further references. For a good survey on list color-
ings, see [Woo01]. Finally, an interesting (German language) textbook [Aig84]
develops graph theory motivated by the four color conjecture and the at-
tempts to solve it.



Chapter 10
Circulations

Round and round the circle. . .

T. S. Eliot

In Chap. 6, we introduced the simplest kind of flow problems, namely the
determination of maximal flows in a network; and in Chap. 7, we studied

various applications of this theory. The present chapter deals with general-
izations of the flows we worked with so far. For example, quite often there are
also lower bounds on the capacities of the edges given, or a cost function on
the edges. To solve this kind of problem, it makes sense to remove the excep-
tional role of the vertices s and t by requiring the flow preservation condition

(F2) of Chap. 6 for all vertices, including s and t. This leads to the notion
of circulations on directed graphs. As we will see, there are many interesting
applications of this more general concept. To a large part, these cannot be
treated using the theory of maximal flows as presented before; nevertheless,

the methods of Chap. 6 will serve as fundamental tools for the more general
setting.

10.1 Circulations and Flows

Let G = (V,E) be a digraph; in general, we tacitly assume that G is con-
nected. A mapping f : E → R is called a circulation on G if it satisfies the
flow conservation condition

(Z1)
∑

e+=v f(e) =
∑

e−=v f(e) for all v ∈ V .

In addition, let b : E → R and c : E → R be two further mappings, where
b(e)≤ c(e) for all e ∈ E. One calls b(e) and c(e) the lower capacity and the

upper capacity of the edge e, respectively. Then a circulation f is said to be
feasible or legal (with respect to the given capacity constraints b and c) if

(Z2) b(e)≤ f(e)≤ c(e) for all e ∈E.
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Fig. 10.1 A digraph not

admitting any feasible
circulation

Finally, let γ : E → R be a further mapping called the cost function. Then
the cost of a circulation f (with respect to γ) is defined as

γ(f) =
∑

e∈E

γ(e)f(e).

A feasible circulation f is called optimal or a minimum cost circulation if
γ(f)≤ γ(g) holds for every feasible circulation g.

It is quite possible that no feasible circulations exist: the capacity restric-
tions may be contradictory, as the simple example in Fig. 10.1 shows, where
each edge e is labelled b(e), c(e). We shall obtain a criterion for the existence
of feasible circulations in the next section.

We now introduce several interesting problems involving circulations. Let
us first show that the flows studied in Chap. 6 may be viewed as special types
of circulation.

Example 10.1.1 (Max-flow problem) Let N = (G,c, s, t) be a flow network
with a flow f of value w(f), and let G′ be the digraph obtained by adding
the edge r = ts to G.1 We extend the mappings c and f to G′ as follows:2

c(r) =∞ and f(r) =w(f).

Then f is a circulation on G′ by (F2) and Lemma 6.1.1. Setting b(e) = 0
for all edges e of G′, f is even feasible. Conversely, every feasible circulation
f ′ on G′ yields a flow of value f(r) on G. The edge r is often called the
return arc of N . In order to characterize the maximal flows on N in our new
terminology, we define a cost function on G′ as follows:

γ(r) =−1 and γ(e) = 0 otherwise.

Then a flow f on N is maximal if and only if the corresponding circulation has
minimal cost with respect to γ: maximal flows on N = (G,c, s, t) correspond
to optimal circulations for (G′, b, c, γ).

1We may assume, without loss of generality, that ts is not an edge of G; otherwise, we

could subdivide ts into two edges.

2As usual, ∞ stands for a sufficiently large number, for example
∑

e−=s c(e).
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It is not surprising that removing the exceptional role of s and t will allow
us to treat circulations in a considerably more elegant manner than flows.
For example, it is clear that the set of all circulations on a digraph G′ forms
a vector space; we will make use of this observation in Sect. 10.3. Moreover,
the fact that circulations are a considerably more general concept enables us
to solve a large number of additional problems.

Example 10.1.2 (Flows with lower capacity bounds) Let N = (G,c, s, t) be
a flow network, and let b : E → R be an additional mapping satisfying the
condition b(e) ≤ c(e) for every edge e. We look for a maximal flow f with
value w(f)≥ 0 on N which satisfies the condition

(F1′) b(e)≤ f(e)≤ c(e) for all e ∈E,

instead of condition (F1) of Chap. 6. We use the same transformation as in
Example 10.1.1: we add the return arc r (with c(r) = ∞) and define γ as
before. Moreover, we extend the given function b to G′ by setting b(r) = 0.
Again, maximal flows on N correspond to optimal circulations on G′. As
before, the problem will be unsolvable should no feasible circulation exist.3

Example 10.1.3 (Optimal flow problem) Let N = (G,c, s, t) be a given flow
network, with an additional cost function γ :E →R. The cost of a flow f is
defined as for circulations: γ(f) =

∑
γ(e)f(e); in other words, γ(e) is the cost

resulting from one unit of flow flowing through the edge e. Suppose that the
maximal value of a flow through N is w. We require an optimal flow , that is,
a flow of value w having minimal cost.

In order to formulate this problem in the terminology of circulations, we
again introduce the return arc r = ts, and put c(r) = b(r) = w and γ(r) = 0.
If there is a lower bound b on the capacities in N (as in Example 10.1.2),
we have specified all the necessary data; otherwise, we put b(e) = 0 for all
edges of G. Now a feasible circulation corresponds to a flow of value w, since
b(r) = c(r) = w. As γ(r) = 0, an optimal circulation is the extension of an
optimal flow.

Example 10.1.4 (Assignment problem) We will show that the assignment
problem defined in Example 7.4.12 may be reduced to an optimal flow prob-
lem. Let A= (aij) be an n×nmatrix with nonnegative real entries; we require
a diagonal D of A for which the sum of the entries in D is minimal. Con-
struct a bipartite digraph G with vertex set S

.
∪ T , where S = {1, . . . , n} and

T = {1′, . . . , n′}, and adjoin two additional vertices s and t. The edges of G

3The requirement b(r) = 0 guarantees that only flows with a non-negative value correspond

to feasible circulations. Note that we need to add the condition w(f)≥ 0 to the definition

in terms of flows, as trivial examples show. We certainly do not want to consider flows with
a negative value, as these would (intuitively) correspond to a flow in the reverse direction,

namely from t to s.
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are all the (s, i), all the (i, j′), and all the (j′, t) with i ∈ S and j′ ∈ T ; all edges
have capacity c(e) = 1. Finally, define the cost function by γ(s, i) = γ(j′, t) = 0
and γ(i, j′) = aij . Then the optimal integral flows (with value n) correspond
to the solutions of the assignment problem.

As the diagonals of A correspond to the complete matchings of the bi-
partite graph on S

.
∪ T , the assignment problem can also be formulated as a

problem concerning weighted matchings; we will study the assignment prob-
lem from this point of view in Chap. 14. In Sect. 10.10, we will look at some
generalizations of the assignment problem.

Before concluding this introductory section with two exercises, we see that
even the determination of shortest paths may be formulated in the framework
of circulations.

Example 10.1.5 (Shortest path problem) Let G be a network where γ(e) is
the length of the edge e; we require a shortest path from s to t. Interpreting
γ as the cost function and assigning capacity c(e) = 1 to each edge, a shortest
path from s to t is the same as an integral flow of value 1 with minimal cost,
so that the problem is a special case of the optimal flow problem. Of course,
problems concerning paths are not solved in this way in practice; on the
contrary, determining shortest paths is often used as a tool for constructing
optimal circulations.

Exercise 10.1.6 Let G be a connected mixed multigraph where each vertex
is incident with an even number of edges. Reduce the question whether an
Euler tour exists in G (note that all directed edges have to be used according
to their direction in such a tour!) to the determination of a feasible circulation
in an appropriate digraph; see [ForFu62].

Exercise 10.1.7 (Caterer problem) The owner of some restaurant needs
fresh napkins every day, say r1, . . . , rN napkins for N consecutive days. He
can either buy new napkins (paying some price α for each napkin) or use
washed ones; here, the laundry service offers two possibilities: a fast service
(the napkins are returned clean after m days at a cost of β per napkin) and a
standard service (taking n days at a price of δ for each napkin). All napkins
have to be bought before the first day. Formulate the task of supplying the
required napkins at the lowest possible cost as an optimal flow problem.
The caterer problem has its origin in the practical task of either servicing or
buying new engines for airplanes; see [ForFu62], § III.8.

10.2 Feasible Circulations

In this section we consider the problem of finding a feasible circulation for
a given digraph G with capacity constraints b and c, or to prove the nonex-
istence of such a circulation. This problem can be solved using the methods
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of Chap. 6 by considering an appropriate flow network [ForFu62, BerGh62].
To simplify the presentation somewhat, we assume b(e) ≥ 0 for all edges
e; the general, more technical case can be treated in a similar manner; see
Exercise 10.2.3. For many practical applications, the additional condition is
satisfied, as indicated by the examples of the previous section.

Let G= (V,E) be a digraph with nonnegative capacity constraints b and c.
We add two new vertices s and t and all edges of the form sv or vt to G
(where v ∈ V ) and denote the resulting larger digraph by H . Now we define
a capacity function c′ on H as follows:

c′(e) = c(e)− b(e) for all e ∈E;

c′(sv) =
∑

e+=v

b(e) for all v ∈ V ;

c′(vt) =
∑

e−=v

b(e) for all v ∈ V.

This defines a flow network N = (H,c′, s, t). Obviously, c′(e)≥ 0 for each edge
of H . Hence the methods of Chap. 6 can be used to determine a maximal
flow on N ; let f ′ be such a flow. Note that the value of f ′ is at most

W =
∑

v∈V

c′(sv) =
∑

e∈E

b(e) =
∑

v∈V

c′(vt).

Moreover, w(f ′) =W holds if and only if f ′ saturates every edge ofH incident
with s or t: f ′(sv) = c′(sv) and f ′(vt) = c′(vt) for all v ∈ V . We now show
that there exists a feasible circulation on G if and only if f ′ achieves this
bound.

Theorem 10.2.1 Let G= (V,E) be a digraph with nonnegative capacity con-
straints b and c, and let N = (H,c′, s, t) be the flow network defined above.
Then there exists a feasible circulation on G if and only if the maximal value
of a flow on N is W =

∑
e∈E b(e).

Proof First let f ′ be a flow of value w(f ′) =W on N . We define a function f
on E by

f(e) = f ′(e) + b(e) for all e ∈E. (10.1)

By definition, f ′ satisfies the condition 0≤ f ′(e)≤ c′(e) = c(e)−b(e); hence f
satisfies condition (Z2). It remains to check that f also satisfies (Z1). Thus
let v be any vertex of G. As f ′ is a flow on N , (F2) implies

f ′(sv) +
∑

e+=v

f ′(e) = f ′(vt) +
∑

e−=v

f ′(e). (10.2)
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Fig. 10.2 A digraph with capacity constraints

As w(f ′) =W , all edges of H incident with s or t are saturated, so that

f ′(sv) =
∑

e+=v

b(e) and f ′(vt) =
∑

e−=v

b(e). (10.3)

Now (10.1), (10.2) and (10.3) imply (Z1):

∑

e+=v

f(e) =
∑

e−=v

f(e). (10.4)

Conversely, let f be a feasible circulation on G. Then we can define a
mapping f ′ on the edge set of H using (10.1) and (10.3). As f is feasible,
we have 0≤ f ′(e)≤ c′(e) for each edge e of G. For edges of the form sv and
vt, we have c′(sv) = f ′(sv) and c′(vt) = f ′(vt), respectively. Thus all edges
incident with s are saturated, and therefore w(f ′) =W . Then f ′ is indeed a
flow, as (10.1), (10.3), and (10.4) imply (10.2). �

Example 10.2.2 Let G be the digraph given in Fig. 10.2 with capacity con-
straints b and c. We require a feasible circulation on G. By Theorem 10.2.1,
we have to determine a maximal flow for the network N shown in Fig. 10.3.
In general, we would use one of the algorithms of Chap. 6 for such a task; for
this simple example, the desired maximal flow can be found by inspection.

As we know that all edges incident with s or t have to be saturated if
there exist feasible circulations, we define the value of the flow on these edges
accordingly. (The values of f ′ are printed in bold face in Fig. 10.3.) Then
(F2) holds for the vertices u, v, and w. As (F2) has to hold for x as well, we
put f ′(zx) = 3; finally, with f ′(yz) = 1 (F2) holds also for y and z.
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Fig. 10.3 The corresponding flow network

From f ′ we obtain the feasible circulation f on G given in Fig. 10.4.
Note that f may be interpreted as a feasible flow from x to z having value
w(f) = 3. This is not yet a maximal feasible flow from x to z: we can increase
the value of the flow to 3 on the path x y z, and to 2 on the path
x u v w z. In this way we obtain a flow of value 5; in view of the
capacities of the edges xy and xu this is the maximal possible flow value.

Exercise 10.2.3 Modify the construction of the flow network N for Theo-
rem 10.2.1 so that it applies also to negative lower capacity constraints b(e).

Note that the proof of Theorem 10.2.1 is constructive. Together with Ex-
ercise 10.2.3, we obtain the following algorithm for checking if feasible circu-
lations exist, and for determining such a circulation (if possible).

Algorithm 10.2.4 Let G be a digraph with capacity constraints b and c.
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Fig. 10.4 A feasible circulation

Procedure LEGCIRC(G,b, c; legal, f)

(1) V ′ ← V ∪ {s, t}; E′ ←E ∪ {sv : v ∈ V } ∪ {vt : v ∈ V };
(2) for e ∈E do c′(e)← c(e)− b(e) od

(3) for v ∈ V do c′(sv)←
∑

e+=v,b(e)>0 b(e)−
∑

e−=v,b(e)<0 b(e);

c′(vt)←
∑

e−=v,b(e)>0 b(e)−
∑

e+=v,b(e)<0 b(e) od

(4) H ← (V ′,E′); N ← (H,c′, s, t);
(5) FIFOFLOW (N ;f ′);
(6) if f ′(sv) = c′(sv) for all v ∈ V then legal ← true else legal ← false fi
(7) if legal=true then
(8) for e ∈E do f(e)← f ′(e) + b(e) od
(9) fi

Corollary 10.2.5 Algorithm 10.2.4 decides with complexity O(|V |3) whether
there exists a feasible circulation on G; in this case, it also constructs such a
circulation.

Proof Theorem 10.2.1 and Exercise 10.2.3 show that the algorithm is correct.
As the network N has O(|V |) vertices, a maximal flow f ′ on N can be
constructed with complexity O(|V |3) by Theorem 6.6.15. All the remaining
operations in Algorithm 10.2.4 have complexity O(|E|). �

Clearly, we may replace FIFOFLOW in Algorithm 10.2.4 by any other
algorithm for finding a maximal flow on N ; of course, we then also get
the corresponding—in general different—complexity. For example, we may
achieve a complexity of O(|V |2|E|1/2); see Theorem 6.6.17.
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Exercise 10.2.6 Describe an algorithm which decides whether a given flow
network with lower capacity constraint b has a feasible flow and, if possible,
constructs a maximal feasible flow; also, discuss the complexity of such an
algorithm.

Note that there exists a completely different algorithm for constructing a
feasible circulation. We begin with any circulation (for example f = 0) and
change this circulation successively until we either get a feasible circulation or
realize that no such circulation exists. We refer the reader to [ForFu62], §11.3.
The algorithm described there has the disadvantage that it is not possible
to give a polynomial bound for the complexity, even for integral capacity
constraints b and c: the complexity depends on the values b and c take.

Next we give a criterion for the existence of a feasible circulation which
may be viewed as a generalization of the max-flow min-cut theorem. We need
some notation. Let G be a digraph with nonnegative capacity constraints b
and c. A cut of G is a partition V = S

.
∪ T of the vertex set of G. The capacity

of the cut (S,T ) is given by

c(S,T ) =
∑

e−∈S,e+∈T

c(e)−
∑

e+∈S,e−∈T

b(e).

Now consider the flow network N = (H,c′, s, t) constructed on G as in The-
orem 10.2.1. Then (S′, T ′) with S′ = S ∪ {s} and T ′ = T ∪ {t} is a cut of N
with capacity

c′
(
S′, T ′)=

∑

e−∈S′,e+∈T ′

c′(e),

where e runs through all the edges of H . By definition of c′, we obtain the
following identity, where the sums now run over the edges e of G only:

c′
(
S′, T ′) =

∑

v∈T

c′(sv) +
∑

v∈S

c′(vt) +
∑

e−∈S,e+∈T

c′(e)

=
∑

e+∈T

b(e) +
∑

e−∈S

b(e) +
∑

e−∈S,e+∈T

(
c(e)− b(e)

)

=
∑

e−∈S,e+∈T

c(e)−
∑

e+∈S,e−∈T

b(e) +
∑

e

b(e)

= c(S,T ) +W.

Note that every cut (S′, T ′) of N arises from a cut (S,T ) of G in this way.
By Theorem 10.2.1, there exists a feasible circulation on G if and only if the
maximal value of a flow on N is equal to W ; and by Theorem 6.1.6, the
maximal value of a flow on N equals the minimal capacity of a cut (S′, T ′).
Thus we get the condition c′(S′, T ′)≥W for all (S′, T ′); that is, c(S,T )≥ 0
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for all cuts (S,T ) of G. We have proved the following fundamental result due
to Hoffman [Hof60].

Theorem 10.2.7 (Circulation theorem) Let G be a digraph with nonnegative
capacity constraints b and c. Then there exists a feasible circulation on G if
and only if each cut (S,T ) of G has nonnegative capacity, which means

∑

e−∈S,e+∈T

c(e)≥
∑

e+∈S,e−∈T

b(e)

for every cut (S,T ) of G.

We may use Theorem 10.2.7 to characterize the maximal value of a fea-
sible flow on a flow network N = (G,c, s, t) with a lower capacity b; cf. Ex-
ample 10.1.2 and Exercise 10.2.6. Again, we add the return arc r = ts to G
and put b(r) = v and c(r) =∞. Then the feasible circulations correspond to
feasible flows on N with value ≥ v. According to Theorem 10.2.7, such a
circulation exists if the condition c(S,T )≥ 0 holds for every cut (S,T ) of G.
If t ∈ S and s ∈ T , the term c(r) =∞ occurs in c(S,T ), so that the condition
clearly holds for such cuts. If s ∈ S and t ∈ T , the term −b(r) =−v occurs in
c(S,T ) which yields the condition

∑

e−∈S,e+∈T

c(e)−
∑

e+∈S,e−∈T

b(e)≥ v.

In the remaining cases—that is, for s, t ∈ S or s, t ∈ T—we get conditions
which do not involve the value v of the flow, since the return arc r does
not occur in the sum for c(S,T ); these conditions are needed to ensure the
existence of some feasible flow. Thus we get the maximal value for a flow—
assuming that there actually exist feasible flows on N—if v is the minimal
capacity of an ordinary cut of N : a cut with s ∈ S and t ∈ T . Here, of course,
we have to define the capacity c(S,T ) as before:

c(S,T ) =
∑

e−∈S,e+∈T

c(e)−
∑

e+∈S,e−∈T

b(e). (10.5)

We have proved the following result.

Theorem 10.2.8 Let N = (G,b, c, s, t) be a flow network with a nonnegative
lower capacity b. The following is a necessary and sufficient condition for the
existence of feasible flows on N :

c(X,Y )≥ 0 for all partitions V =X
.
∪ Y with t /∈X or s /∈ Y. (10.6)

If (10.6) holds, the maximal value of a feasible flow equals the minimum of
the capacities c(S,T ) (defined as in (10.5)) over all cuts (S,T ).
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In the special case of ordinary flows (that is, for b ≡ 0), the existence of
feasible flows is trivial, and Theorem 10.2.8 reduces to the max-flow min-cut
theorem.

Exercise 10.2.9 Let G be a mixed multigraph. Find necessary and sufficient
conditions for the existence of an Euler tour in G; cf. Exercise 10.1.6.

Exercise 10.2.10 Let N = (G,b, c, s, t) be a flow network with a nonnegative
lower capacity b. Describe a technique for determining aminimal feasible flow
on N (that is, a feasible flow of minimum value), and discuss its complexity.
Moreover, give a description for the value of such a minimal feasible flow
analogous to Theorem 10.2.8. (Note that this problem is irrelevant for the
ordinary flows treated in Chap. 6: trivially, the zero flow is a minimal feasible
flow in that situation.)

Exercise 10.2.11 Let G be a connected digraph with capacity constraints
b and c, where b(e) is always positive and c(e) =∞ for all edges e. Show that
G has a feasible circulation if and only if it is strongly connected. Moreover,
give a criterion for the existence of a feasible flow if we also specify a source
s and a sink t. Hint: Use Exercise 8.5.3.

Feasible circulations on undirected and mixed graphs are studied in [Sey79]
and [ArkPa86], respectively.

10.3 Elementary Circulations

In this section, we consider the problem of decomposing a given circulation
into circulations which are as simple as possible. The results obtained will be
applied in Sects. 10.4 to 10.9 when we present three algorithms for determin-
ing optimal circulations.

We begin by translating the notion of a circulation into the terminology of
linear algebra. Let G be a (not necessarily connected) digraph with incidence
matrix M , say with vertex set V = {1, . . . , n} and edge set E = {e1, . . . , em}.
Every mapping f :E →R induces a vector f in R

m, namely

f =
(
f(e1), f(e2), . . . , f(em)

)T
.

Note that f satisfies condition (Z1) if and only if M f = 0; this follows by
recalling that the i-th row of M has entry +1 or −1 in those columns j for
which the edge ej has end vertex or start vertex i, respectively. Thus we have
the following simple but important result.

Lemma 10.3.1 Let G be a digraph with incidence matrix M . Then f :E →R

is a circulation if and only if M f = 0.



306 10 Circulations

In other words, the circulations are precisely the mappings which are as-
sociated with the elements in the kernel of the linear mapping from R

m

to R
n corresponding to the matrix M . These mappings form a vector space

of dimension m—rankM . By Theorem 4.2.4, rankM = n− p, where p is the
number of connected components of G. This gives the following result.

Theorem 10.3.2 Let G be a digraph with incidence matrix M . Then the
circulations on G form a vector space of dimension ν(G) =m− n+ p; here
m, n, and p denote, respectively, the number of edges, vertices, and connected
components of G.

Corollary 10.3.3 Let f be a circulation on the digraph G. If G is a tree,
then necessarily f = 0.

Proof For trees, p= 1 and m= n− 1, hence ν(G) = 0. �

Exercise 10.3.4 Let (S,T ) be a cut of G and f a circulation on G. Show
f(S,T ) = f(T,S), where

f(S,T ) =
∑

e−∈S,e+∈T

f(e).

Also prove—without using algebraic tools—that the support of a circulation
(compare Exercise 6.1.13) cannot contain any bridges.

Next we look for canonical bases for the vector space of circulations on G.
We need a definition. A circulation f 
= 0 is called elementary if its support is
minimal with respect to inclusion: there is no circulation g 
= 0 for which the
support of g is contained in, but not equal to, the support of f . The following
result shows that elementary circulations correspond to cycles.

Lemma 10.3.5 Let G be a digraph and f a circulation on G. Then f is
elementary if and only if the support of f is a cycle of G. For every cycle C
of G, there exists an elementary circulation with support C.

Proof Let C = (e1, . . . , ek) be any cycle. We first construct an elementary
circulation fC with support C: we set fC(e) = 0 for all edges e /∈ C and
fC(ei) = +1 or −1 (for i= 1, . . . , k), according as ei is a forward or a backward
edge of C. It is immediate that fC is a circulation on G. (This is merely the
first part of the proof of Theorem 4.2.3 put into different language.)

Now let g be a circulation whose support is strictly contained in the sup-
port of f . We may assume g(ek) = 0. As C is a cycle, the edges e1, . . . , ek−1

form a path; thus Corollary 10.3.3 implies g = 0. Hence fC is elementary.
Conversely, let f be any elementary circulation on G. As f 
= 0, the support
of f has to contain a closed trail and hence a cycle C. Since there exists
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a circulation having support C and as f is elementary by hypothesis, the
support of f has to be C itself. �

The next theorem shows that ν(G) equals the maximal number of linearly
independent cycles of G; this explains why this parameter is usually called
the cyclomatic number of G.

Theorem 10.3.6 Let G be a digraph with n vertices, m edges, and p con-
nected components. Then there exists a basis of the vector space V of circu-
lations on G which consists of ν(G) =m− n+ p elementary circulations.

Proof It suffices to prove the assertion for each connected component of G;
thus we may assume p = 1, so that G is connected. Let T be a spanning
tree for |G|. For each edge e of |G| \ T , let CT (e) be the unique cycle of |G|
containing e and edges of T only, as in Sect. 4.3. By Lemma 10.3.5, there
exists an elementary circulation fe on G having support CT (e). It remains to
show that the fe form a basis of V . In view of Corollary 10.3.2, it suffices to
check that the fe are linearly independent, since there are exactly m− n+1
edges e in |G| \ T . But this is clear: the support of fe contains just one edge
outside T , namely e. �

Exercise 10.3.7 Write an arbitrary circulation on G explicitly as a linear
combination of the elementary circulations fe constructed in the proof of
Theorem 10.3.6.

In view of Lemma 10.3.5 and Theorem 10.3.6, the vector space V of all
circulations on G is also called the cycle space of G.4 When weights are
assigned to the edges of G, a basis of V having smallest weight can be found
with complexity O(|V ||E|3); in the unweighted case, at most 3(n−1)(n−2)/2
edges are needed; see [Hor87]. However, determining a basis of V having
smallest weight and consisting of elementary cycles (that is, a basis as given
in the proof of Theorem 10.3.6) is an NP-hard problem; see [DeoPK82].

Exercise 10.3.8 Let G = (V,E) be a digraph having n vertices, m edges,
and p connected components. Let M be the incidence matrix of G, and let
q : V →R be a mapping which we call a potential . We define δq :E →R by

δq(xy) = q(y)− q(x) for xy ∈E.

Any mapping of the form δq is called a potential difference; this terminol-
ogy comes from electricity networks. Show the following results, which are
analogous to the preceding results about circulations:

4The cycle space of a graph is a special case of a more general construction assigning
certain modules to any geometry ; see [GhiJu90] and the references given there.
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(a) The potential differences form a vector space P corresponding to the row
space of M . Determine dim P .

(b) Given any cocycle of G, there exists a potential difference having this
cocycle as support.

(c) If G is connected, use a spanning tree T for constructing a basis of P .
Hint: Compare Lemma 4.3.2.

The vector space P is called the cocycle space or bond space of G, since
cocycles are sometimes also called bonds.

By Theorem 10.3.6, every circulation on a digraph G can be written as
a sum of elementary circulations. In the remainder of this section, we will
establish a stronger result: nonnegative circulations can be written as lin-
ear combinations of nonnegative elementary circulations with positive coef-
ficients. To this end, we first prove a lemma about colorings due to Minty
[Min66], which turns out to be very useful.

Theorem 10.3.9 (Painting lemma) Let G be a digraph whose edges are
colored arbitrarily with the colors black, red, and green; edges without color
are allowed as well. Moreover, let e0 be a black edge of G. Then we have one
(and only one) of the following alternatives:

(1) There exists a cycle K through e0 which contains no uncolored edges;
moreover, all black edges of K have the same orientation as e0, and all
green edges have opposite orientation.

(2) There exists a cocycle C through e0 which does not contain any red edges;
moreover, all black edges of C have the same orientation as e0, and all
green edges have opposite orientation.

Proof Let e0 = ts. We mark the vertices of G according to the following two
rules:

(a) s is marked.
(b) Suppose v is already marked. A vertex u not yet marked is marked if

and only if there exists a black or red edge vu, or a red or green edge uv.

This process terminates when no further vertices can be marked according
to rule (b). This can happen in two possible ways:

Case 1 : t has been marked. Then rule (b) implies the existence of a path from
s to t which contains no uncolored edges, and for which each black edge is a
forward edge and each green edge a backward edge. Adding the edge e0 = ts
yields a cycle as in alternative (1).

Case 2 : t has not been marked. Let S be the set of all vertices which have been
marked; then s ∈ S and t ∈ V \ S. Let C be the cocycle of G corresponding
to the cut (S,V \ S). By rule (b), C cannot contain any red edge, or any
black edge with start vertex in S, or any green edge with end vertex in S; for
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otherwise it would be possible to label a vertex of V \S. Thus C is a cocycle
as in alternative (2).

It remains to show that (1) and (2) cannot hold simultaneously. Suppose C
is a cocycle as in (2), and K is a cycle as in (1). As C and K both contain e0,
K has to contain a further edge e1 of C, because s and t are in different parts
of the cut (S,T ) defining C. We may assume—in case that C and K have
more than two edges in common—that e1 is the next edge in K which also
belongs to C, where we traverse K starting with e0 (in the direction given by
the orientation of e0). As e1 ∈ C ∩K, this edge cannot be red or uncolored.
Suppose first that e1 is black. Note that e1 ∈ C ∩K implies that e1 has the
same orientation as e0 both in K and in C. However, this is easily seen to
be a contradiction: our choice of e1 as the next edge in K which also belongs
to C implies that the orientation of e1 in C is opposite to that of e0. For
instance, if e0 is directed from S to T , then e1 has to be directed from T
to S. Finally, if e1 is green, we again obtain a contradiction, using a similar
argument. �

Coloring all edges of G black yields an interesting corollary. We need a
notation. Let C be the cocycle corresponding to the cut (S,T ). C is called
a directed cocycle or a cocircuit if all edges of C have the same orientation
(from S to T , say).

Corollary 10.3.10 Each edge of a digraph is either contained in a directed
cycle or in a directed cocycle.

We can now prove the promised result about nonnegative circulations:

Theorem 10.3.11 Let G be a digraph and f 
= 0 a circulation on G. Then f
is nonnegative (that is, f(e)≥ 0 for all edges e) if and only if f can be written
in the form f = λ1f1 + · · ·+ λkfk, where the fi are nonnegative elementary
circulations and the λi positive numbers.

Proof Obviously, the condition stated in the assertion is sufficient. Con-
versely, let f 
= 0 be a nonnegative circulation on G, and let G′ be the sub-
digraph of G defined by the support of f . As f satisfies condition (Z1), G′

cannot contain a directed cocycle. Hence Corollary 10.3.10 guarantees the
existence of a directed cycle C1 in G′. Let f1 be the elementary circulation
corresponding to C1; that is, f1(e) = 1 for all edges e in C1, and f1(e) = 0
otherwise. Put λ1 =min{f(e) : e ∈C1}> 0 and g = f −λ1f1. Then g is again
a nonnegative circulation on G. If g = 0, we are done; otherwise the support
of g contains at least one edge less than the support of f does, so that the
assertion follows by induction. �

Corollary 10.3.12 Let N = (G,c, s, t) be a flow network. Then any flow
can be written as a sum of elementary flows and nonnegative elementary
circulations.
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Proof Let G′ be the graph we obtain by adding the return arc r = ts to
G; see Example 10.1.1. We know that every flow f can be extended to a
circulation on G′ by defining f(r) :=w(f). As flows are nonnegative by defi-
nition, this circulation is likewise nonnegative. Now the assertion follows from
Theorem 10.3.11; note that all those elementary circulations fi on G′ whose
support contains r yield elementary flows on N . �

As shown in Exercise 6.1.13, one cannot avoid using elementary circulations—
and not just elementary flows—in Corollary 10.3.12.

We now translate the proof of Minty’s painting lemma into an algorithm
which constructs—given any coloring of a digraph with the colors black,
red, and green—a cycle K or a cocycle C as described in Theorem 10.3.9.
The Boolean variable cycle will have value true if and only if the algorithm
actually constructs a cycle.

Algorithm 10.3.13 Let G= (V,E) be a digraph; F a partial coloring of the
edges of G with the colors black, red, and green; and e0 ∈E a black edge.

Procedure MINTY(G,F, e0; cycle,K,C)

(1) for v ∈ V do u(v)← false od
(2) s← e+0 ; t← e−0 ; K ←∅; C ←∅; A←∅;
(3) label s with (−,−) and set A←A∪ {s};
(4) repeat
(5) choose a labelled vertex v with u(v) = false;
(6) for e ∈ {e ∈E : e− = v} do
(7) if w = e+ is not labelled and F (e) = red or F (e) = black
(8) then label w with (v,+); A←A∪ {w} fi
(9) od

(10) for e ∈ {e ∈E : e+ = v} do
(11) if w = e− is not labelled and F (e) = red or F (e) = green
(12) then label w with (v,−); A←A∪ {w} fi
(13) od
(14) u(v)← true;
(15) until t is labelled or u(v) = true for all v ∈A;
(16) if t is labelled
(17) then cycle ← true; K ←K ∪ {e0}; w← t;
(18) while w 
= s do
(19) find the first component v of the label of w;
(20) if the second component of the label of w is +
(21) then e← vw else e←wv fi
(22) K ←K ∪ {e}; w← v
(23) od
(24) else cycle ← false;
(25) C ←{e ∈E : e− ∈A,e+ ∈ V \A or e+ ∈A,e− ∈ V \A}
(26) fi

The following result is immediate from Theorem 10.3.9.
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Theorem 10.3.14 Algorithm 10.3.13 constructs with complexity O(|E|) a

cycle or a cocycle of G, as described in Theorem 10.3.9.

Example 10.3.15 Let us show that the labelling algorithm of Ford and Fulk-

erson (Algorithm 6.1.7) may be viewed as a special case of Algorithm 10.3.13.

We choose for e0 the return arc r = ts introduced in Example 10.1.1 and color

e0 black. The remaining edges e are colored as follows: black if e is void, green

if e is saturated, and red otherwise. It should be clear that case (1) of the

painting lemma then yields an augmenting path from s to t, whereas in case

(2) no such path exists. Then the cocycle constructed by the algorithm cor-

responds to a minimal cut of N (with capacity equal to the value of the

maximal flow f ).

As in the special situation of Chap. 6, it is advisable to make step (5) of

Algorithm 10.3.13 deterministic by always selecting the vertex v with u(v) =

false which was labelled first; to achieve this, the labelled vertices are put into

a queue. This guarantees that we obtain a shortest path from s to t in case

(1) of the painting lemma—that is, a cycle C of shortest length through e0.

Exercise 10.3.16 Let us sketch an alternative method—which is attributed

to Herz [Her67] in [GonMi84]—for determining a first legal circulation in the

case of integral capacities. Start with any circulation f . For every edge e

violating the feasibility condition, put

d(e) :=

{
b(e)− f(e) if f(e)< b(e),
f(e)− c(e) iff(e)> c(e)

and d(e) = 0 for all other edges; thus the sum D of all d(e) measures how

severely f violates the feasibility condition. In particular, this sum is 0 if and

only if f is feasible. As long as D > 0, we choose any edge e0 with d(e)> 0

and use the painting lemma to either find a better circulation, or to conclude

that there are no feasible circulations. Do so in case f(e) < b(e); the case

f(e)> c(e) is similar.

Hint: Leave all edges satisfying b(e) = f(e) = c(e) uncolored, and color the

remaining edges as follows: black, if f(e) ≤ b(e); green, if c(e) ≤ f(e); red,

if b(e)< f(e)< c(e). The first case in the painting lemma leads to a better

circulation, while in the second case no feasible circulations exist; to see this,

use Exercise 10.3.4 together with the necessary condition in the circulation

theorem 10.2.7.

Exercise 10.3.17 Use Exercise 10.3.16 to give a constructive proof for the

circulation theorem 10.2.7 in the case of integral capacities.
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10.4 The Algorithm of Klein

In the next few sections, we will present three algorithms for constructing
optimal circulations. We begin with a particularly simple algorithm which
is due to Klein [Kle67]. In the course of this algorithm, we have to examine
an appropriate auxiliary digraph and check whether it contains cycles of
negative length (and construct such a cycle); we will use Algorithm 3.10.1
(NEGACYCLE) for this purpose.

Algorithm 10.4.1 Let G be a digraph with capacity constraints b and c
and a cost function γ. The algorithm checks whether there exists a feasible
circulation; if this is the case, an optimal circulation is constructed.

Procedure KLEIN(G,b, c, γ; legal, f)

(1) LEGCIRC(G,b, c; legal, f);
(2) if legal = true then repeat
(3) E′ ←∅;
(4) for e= uv ∈E do
(5) if f(e)< c(e)
(6) then E′ ←E′ ∪ {e}; tp(e)← 1; c′(e)← c(e)− f(e);

w(e)← γ(e) fi
(7) if b(e)< f(e)
(8) then e′ ← vu; E′ ←E′ ∪ {e′}; tp(e′)← 2;

c′(e′)← f(e)− b(e); w(e′)←−γ(e)
(9) fi
(10) od
(11) H ← (V,E′);
(12) NEGACYCLE(H,w;d, p,neg,C);
(13) if neg = true
(14) then δ←min{c′(e) : e ∈C};
(15) for e ∈C do
(16) if tp(e) = 1 then f(e)← f(e) + δ else f(e)← f(e)− δ fi
(17) od
(18) fi
(19) until neg = false
(20) fi

It is usual to refer to a change of f along a cycle C as in steps (14) to (17)
above simply by saying that the cycle C is cancelled .

We now have to check whether Algorithm 10.4.1 is correct, and determine
its complexity. First, we show that the algorithm terminates if and only if
the circulation f constructed so far is optimal. Step (19) has the effect that
the algorithm terminates only if there is no cycle of negative length in the
auxiliary digraph H corresponding to f . Thus we have to prove the following
result.
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Lemma 10.4.2 Let G be a digraph with capacity constraints b and c and
a cost function γ. Moreover, let f be a feasible circulation on G. Then f is
optimal if and only if the auxiliary network (H,w) constructed in steps (3)
to (11) of Algorithm 10.4.1 does not contain any directed cycle of negative
length.

Proof It is clear that the condition given in the assertion is necessary: if
(H,w) contains a directed cycle C of negative length, then it is possible to
change the present feasible circulation f according to steps (14) to (17) so
that we get a new feasible circulation with smaller cost. Note that the cost
is changed by the following amount:

δ

( ∑

e∈C,tp(e)=1

γ(e)−
∑

e∈C,tp(e)=2

γ(e)

)

= δ
∑

e∈C

w(e)< 0.

Conversely, assume that the condition of the theorem is satisfied; we have to
show γ(g)≥ γ(f) for every feasible circulation g. To do so, we consider the
circulation g− f . This circulation induces a circulation h on H as follows:

• if c(e)≥ g(e)> f(e)≥ b(e), we set h(e) = g(e)− f(e);
• if c(e)≥ f(e)> g(e)≥ b(e), we define h(e′) = f(e)− g(e), where e= uv and
e′ = vu;

• for all other edges of H , we put h(e) = 0.

As h is a nonnegative circulation on H , we may apply Theorem 10.3.11:
there exist nonnegative elementary circulations h1, . . . , hk and positive num-
bers λ1, . . . , λk with h= λ1h1 + · · ·+ λkhk . Let w(h) denote the cost of the
circulation h on H with respect to the cost function w. Then

γ(g)− γ(f) =w(h) = λ1w(h1) + · · ·+ λkw(hk)≥ 0,

since (H,w) does not contain any directed cycles of negative length. Hence
γ(g)≥ γ(f), as claimed. �

In step (1) of Algorithm 10.4.1, we apply the procedure LEGCIRC. By
Corollary 10.2.5, either a feasible circulation is constructed, or the algorithm
terminates (because no such circulation exists so that the Boolean variable
legal takes the value false). We have already indicated that each iteration
of the repeat-loop changes the present feasible circulation so that the new
feasible circulation has smaller cost; we leave the details to the reader.

It remains to address the question under which conditions we can guar-
antee that the algorithm actually terminates (with an optimal circulation,
by Lemma 10.4.2). Let us assume that b and c are integral. Then the origi-
nal feasible circulation constructed by LEGCIRC is integral as well, because
MAXFLOW constructs an integral maximal flow whenever the given capac-
ity constraints are integral; compare Theorem 6.1.5. Therefore the capacity
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function c′ on E′ defined in steps (4) to (10) is integral, too, so that δ is
integral in step (14). It follows by induction that each feasible circulation
constructed during the course of the algorithm is integral. We also know that
changing the current circulation f in step (16) by cancelling a cycle C of neg-
ative length decreases the cost by |δw(C)|; see the proof of Lemma 10.4.2.
Thus, if we assume γ to be integral as well, the cost is decreased with each
iteration of the repeat-loop by a positive integer. Note that

m=
∑

e
γ(e)> 0

γ(e)b(e) +
∑

e
γ(e)< 0

γ(e)c(e)

is a lower bound on γ(f) for every feasible circulation f on G; hence the
algorithm has to terminate. This also applies in the case of rational values of
b, c, and γ, as these may be multiplied by their common denominator. We
have proved the following result.

Theorem 10.4.3 Let G be a digraph, and assume that the capacity con-
straints b and c as well as the cost function γ take rational values only. Then
Algorithm 10.4.1 determines an optimal circulation f on G. If b, c, and γ
are actually integral, f is integral as well.

The call of LEGCIRC in Algorithm 10.4.1 has complexity O(|V |3) by
Corollary 10.2.5. Moreover, each iteration of the repeat-loop likewise has
complexity O(|V |3), because NEGACYCLE has this complexity by Theo-
rem 3.10.2. Unfortunately, the entire algorithm is, in general, not polynomial:
the number of iterations depends on the values of the functions b, c, and γ.
However, the algorithm becomes polynomial provided that the cycles of neg-
ative length are chosen in an appropriate way; this result is due to Goldberg
and Tarjan [GolTa89] and will be proved in Sect. 10.9.

Exercise 10.4.4 Give an upper bound for the number of iterations of the
repeat-loop in Algorithm 10.4.1 if the functions b, c, and γ are integral.

For a long time, the most popular algorithm for determining an optimal
circulation was not the algorithm of Klein presented here, but the so-called
out-of-kilter algorithm; see [Ful61] and [Min60]. However, that algorithm is
considerably more involved; it is based on Minty’s painting lemma. We refer
the interested reader to [ForFu62, Law76], or [GonMi84] for a presentation
of the out-of-kilter algorithm. It is also not polynomial in our terminology:
its complexity likewise depends on the capacity constraints.5

5We note that the out-of-kilter algorithm is polynomial if we include the capacities in the

calculation of the size of the input data: for a natural number z, we may take log2 z as

a measure for the size of z. Algorithms which are polynomial in our sense (that is, their
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Using an appropriate scaling, a complexity of O(|E|2p) can be ob-
tained, where p = log2C and C is the maximum of the capacities c(e);
see [EdmKa72]. A particularly simple weakly polynomial algorithm is in
[BarTa89]; it is based on Theorem 7.5.2 and an idea of Weintraub [Wei74],
and uses several cycles of negative length simultaneously during each iter-
ation. The first algorithm which is polynomial in our sense was given by
Tardos [Tar85]; the complexity of her algorithm is O(|E|2T log |E|), where
T denotes the complexity of the MAXFLOW-routine used. This result
was improved and varied several times; we refer the interested reader to
[Fuj86, GalTa88, GabTa89, GolTa89, GolTa90, AhuGOT92, Orl93]. Alto-
gether, it is possible to reach a complexity of O(|V |4 log |V |). The algorithm
of Goldberg and Tarjan [GolTa90] will be presented in Sect. 10.7; it has a
complexity of O(|V |3|E| log |V |).

10.5 The Algorithm of Busacker and Gowen

In this section, we consider the special case where the lower capacity con-
straint on G is always 0. In this case, the zero circulation is feasible; if we
assume that G does not contain any directed cycles of negative length with
respect to γ, it is even optimal. If we consider the edge ts as the return arc,
the zero flow is a flow of minimal cost on the flow network (G \ ts, c, s, t). We
shall now solve the optimal flow problem of Example 10.1.3 by constructing
flows of minimal cost with increasing values, beginning with the zero flow.
This can be done by using a path of minimal cost for augmenting the flow,
as suggested by Busacker and Gowen [BurGo61].

The algorithm of Busacker and Gowen is basically the same as the algo-
rithm of Ford and Fulkerson of Sect. 6.1, only that each change of the flow is
made using an augmenting path of minimal cost. To determine such a path,
the auxiliary network introduced at the beginning of Sect. 6.3 is used. Let
N = (G,c, s, t) be a flow network with cost function γ which does not con-
tain any cycles of negative length. Also, let f be an optimal flow of value
w(f) =w on N ; that is, f has minimal cost γ(f) among all flows of value w.
Now consider the auxiliary network N ′ = (G′, c′, s, t) with respect to f and
define a cost function γ′ on N ′ as follows:

• for each edge e= uv of G with f(e)< c(e), the edge e′ = uv of G′ is assigned
cost γ′(e′) = γ(e) and capacity c′(e′) = c(e)− f(e);

complexity is independent of the capacity constraints and the cost function) are often called

strongly polynomial in the literature. For this property, all numbers occurring during the

algorithm have to be polynomial in the total size of the input data. This is trivially true

if the algorithm involves only additions, subtractions, comparisons, and multiplications or
divisions by a constant factor. We will sometimes call algorithms which are polynomial in

|E|, |V |, and the logarithm of the size of the input data weakly polynomial.
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• for each edge e= uv of G with f(e)> 0, the edge e′′ = vu of G′ is assigned
cost γ′(e′′) =−γ(e) and capacity c′(e′′) = f(e).

Moreover, we add the return arc r = ts to N ; put b(r) = c(r) = w, γ(r) = 0,
and f(r) =w; and b(e) = 0 for all other edges e. Then f becomes an optimal
circulation, and N ′ is the auxiliary network corresponding to this circulation.
As f is optimal, N ′ does not contain any directed cycles of negative length, by
Lemma 10.4.2. Therefore it is possible—assuming that f is not yet a maximal
flow—to find an augmenting path P of minimal cost among all augmenting
paths from s to t in N ′; for example, we may use the algorithm of Floyd and
Warshall for this task. Denote the capacity of P by δ; then we can use P to
construct a flow f ′ on N of value w(f ′) =w+ δ (as in Algorithm 6.1.7). We
will show that f ′ is an optimal flow for this value.

To this end, we consider both f ′ and f as circulations. Then f ′ − f is a
circulation whose support is a cycle C which contains the return arc r and
has minimal cost with respect to γ′, where γ′(r) = 0. Thus f ′ − f = δfC ,
where fC is the elementary circulation corresponding to the cycle C (as in
Theorem 10.3.5). Now suppose that g is any flow of value w + δ on N , and
consider g likewise as a circulation. By analogy to the proof of Lemma 10.4.2,
we can show that g−f induces a nonnegative circulation h on N ′—more pre-
cisely, on G′ with the return arc r added. By Theorem 10.3.11, we may write
h as a linear combination h = λ1h1 + · · ·+ λkhk of nonnegative elementary
circulations on N ′ with positive coefficients λi. We may assume that the hi

are numbered so that the supports of h1, . . . , hp contain the return arc r,
whereas the supports of hp+1, . . . , hk do not. Now g and f ′ have the same
value, and hence

λ1 + · · ·+ λp =w(h) =w(g)−w(f) =w
(
f ′)−w(f) = δ.

Moreover, γ′(hi)≥ γ′(fC) for i= 1, . . . , p, since C is a cycle of minimal cost
containing r. Finally, γ′(hi) ≥ 0 for i = p + 1, . . . , k, because there are no
directed cycles of negative cost with respect to γ′. Thus

γ′(g)− γ′(f) = γ′(h) = λ1γ
′(h1) + · · ·+ λkγ

′(hk)

≥ (λ1 + · · ·+ λp)γ
′(fC)

= δγ′(fC) = γ′(f ′)− γ′(f),

which yields γ′(g)≥ γ′(f ′), as desired. Thus we have established the following
fundamental result.

Theorem 10.5.1 Let N = (G,c, s, t) be a flow network with cost function γ,
and suppose that there are no directed cycles of negative cost with respect to γ.
Moreover, let f be an optimal flow of value w on N , and P an augmenting
path of minimal cost in the auxiliary network N ′ = (G′, c′, s, t) with respect
to the cost function γ′ defined above. If f ′ is the flow which results from
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augmenting f along P (with capacity δ), then f ′ is an optimal flow of value
w+ δ. If c, f , and γ are integral, then so is f ′.

Theorem 10.5.1 shows that the following algorithm is correct. As the algo-
rithm is merely a variation of the algorithm of Ford and Fulkerson, we only
give an informal description; the reader should have no difficulties in writing
out a detailed version.

Algorithm 10.5.2 Let N = (G,c, s, t) be a flow network, where the capacity
function c is integral, and let γ be a cost function such that G does not contain
any directed cycles having negative cost. The algorithm constructs an integral
optimal flow of value v on N (if possible).

Procedure OPTFLOW(G,c, s, t, γ, v;f, sol)

(1) for e ∈E do f(e)← 0 od
(2) sol← true; val← 0;
(3) while sol = true and val< v do
(4) construct the auxiliary network N ′ = (G′, c′, s, t) with

cost function γ′;
(5) if t is not accessible from s in G′

(6) then sol← false
(7) else determine a shortest path P from s to t in (G′, γ′);
(8) δ←min{c′(e): e ∈ P}; δ′ ←min(δ, v− val); val← val + δ′;
(9) augment f along P by δ′

(10) fi
(11) od

Here the Boolean variable sol indicates whether the problem has a solution
(that is, whether there exists a flow of value v on N ). If sol has value true
at the end of the algorithm, then f is an optimal flow of value v.

Note that at most v iterations of the while-loop are needed: the value val
of the flow is increased by at least 1 during each iteration. Constructing N ′

and augmenting f needs O(|E|) steps in each iteration. A shortest path with
respect to γ may be determined with complexity O(|V |3) using the algorithm
of Floyd and Warshall of Sect. 3.9. Then we get a (non-polynomial) overall
complexity of O(|V |3v) for Algorithm 10.5.2.

If we assume that γ is nonnegative, we may use Dijkstra’s algorithm in-
stead of the algorithm of Floyd and Warshall for determining a shortest path
from s to t in (G′, γ′) during the first iteration; this takes only O(|V |2) steps.
However, during the following iterations, negative values of γ′ always occur,
namely for backward edges. We shall now describe a trick due to Edmonds
and Karp [EdmKa72] which allows us to use Dijkstra’s algorithm in spite
of the negative values of γ′: we replace γ′ by an appropriate nonnegative
auxiliary function γ∗.
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Let f be an optimal flow on N of value w. Suppose that we have already
determined an augmenting path P of shortest length from s to t in (G′, γ′),
and also all distances d′(s,x) in (G′, γ′). As mentioned above, this is possi-
ble with complexity O(|V |2) for f = 0 if we use Dijkstra’s algorithm. Let us
denote the augmented optimal flow (obtained from P ) by f ′; the auxiliary
network corresponding to f ′, by N ′′ = (G′′, c′′, s, t) (this differs from our no-
tation of Chap. 6); and the new cost function, by γ′′. We require a shortest
path P ′ from s to t in (G′′, γ′′), and also all distances d′′(s,x) in (G′′, γ′′).
Now we replace γ′′(e) for each edge e= uv of G′′ by γ∗(e), where

γ∗(e) = γ′′(e) + d′(s,u)− d′(s, v), (10.7)

and denote the distances in (G′′, γ∗) by d∗(s,x). Note that (10.7) implies

γ∗(X) = γ′′(X)− d′(s,x)

for every path X from s to x in G′′; in particular, a shortest path from s to
x in G′′ with respect to γ∗ is also a shortest path with respect to γ′′. Thus
the distances

d′′(s,x) = d∗(s,x) + d′(s,x)

with respect to γ′′ can be calculated easily from those with respect to γ∗.
Hence we may use the function γ∗ in the algorithm instead of γ′′. To see
that γ∗ is indeed nonnegative, consider an arbitrary edge e = uv of G′′. If
e is not contained in the augmenting path P used for constructing f ′ or
if e is a forward edge of P , then e is an edge of G′ as well. In this case,
γ′′(e) = γ′(e) and hence d′(s,u)+γ′(e)≥ d′(s, v), by definition of the distance;
thus γ∗(e) ≥ 0. And if e = uv is a backward edge in P , then e′ = vu is an
edge of G′ and d′(s,u) = d′(s, v)+ γ′(e′), since P is a path of shortest length
with respect to γ′. Now γ′′(e) =−γ′(e′) shows γ∗(e) = 0 in this case.

Hence we may use Dijkstra’s algorithm for (G′′, γ∗) and determine the
distances and a shortest augmenting path P ′ with complexity O(|V |2) or
O(|E| log |V |); see Theorems 3.7.2 and 3.7.8. We have proved the following
result [EdmKa72]:

Theorem 10.5.3 Let N = (G,c, s, t) be a flow network with integral capacity
function c and nonnegative cost function γ. Then Algorithm 10.5.2 can be
used to determine an optimal flow of value v with complexity O(v|V |2) or
O(v|E| log |V |).

In Sect. 12.5, we will apply Algorithm 10.5.2 to an important class of
examples. A particular advantage of the algorithm is that it allows us to
construct optimal flows for all possible values recursively. We denote the cost
of an optimal flow of value v on N by γ(v). Then Algorithm 10.5.2 may be
used to find the cost curve of N : the function v → γ(v).
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Exercise 10.5.4 Discuss the properties of the cost curve of N = (G,c, s, t),
where the cost function γ is nonnegative and the capacity function c is inte-
gral. In particular, show that the cost curve is a convex function:

γ
(
λv+ (1− λ)v′

)
≤ λγ(v) + (1− λ)γ

(
v′
)

for all v, v′ and all λ with 0≤ λ≤ 1.

Exercise 10.5.5 Discuss the complexity of the assignment problem intro-
duced in Example 10.1.4.

10.6 Potentials and ε-optimality

This section provides the necessary foundation for the polynomial algorithms
of Goldberg and Tarjan [GolTa90] for determining optimal circulations (which
will be described in the subsequent sections). Similar to Sect. 6.6, we begin
by introducing a different presentation of circulations which will result in
some technical simplifications; see the footnote to Theorem 10.6.4. As it is
not quite as obvious as it was for flow networks that the new notation is
indeed equivalent to the original definitions, we shall treat the necessary
transformations in detail.

Construction 10.6.1 Let G= (V,E) be a digraph with capacity constraints
b and c. Our first step is to replace each pair of antiparallel edges by a single
edge (having either of the two possible orientations). Thus let e′ = uv and
e′′ = vu be any two antiparallel edges in G. We replace e′ and e′′ by the edge
e= uv with capacity constraints

b(e) = b
(
e′
)
− c

(
e′′
)

and c(e) = c
(
e′
)
− b

(
e′′
)
.

This definition makes sense: b(e′)≤ c(e′) and b(e′′)≤ c(e′′) immediately imply
b(e) ≤ c(e). If f is a feasible circulation for N = (G,b, c), then f remains
feasible after the above transformation of N if we put f(e) = f(e′)− f(e′′).
Conversely, let f be a feasible circulation on the transformed network N ′.
We need to consider what happens to a new edge e; as f is feasible,

b
(
e′
)
− c

(
e′′
)
≤ f(e)≤ c

(
e′
)
− b

(
e′′
)
. (10.8)

We now have to distribute f(e) into two parts f(e′) and f(e′′) so that f is also
feasible in the original network. Thus we look for values x and y satisfying

f(e) = x− y; b
(
e′
)
≤ x≤ c

(
e′
)
; and b

(
e′′
)
≤ y ≤ c

(
e′′
)
,

which is equivalent to

max
{
b
(
e′
)
, b
(
e′′
)
+ f(e)

}
≤ x≤min

{
c
(
e′
)
, c
(
e′′
)
+ f(e)

}
.
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It is easy to see that it is indeed possible to choose x appropriately; this
follows immediately from (10.8).6

Thus we may now assume that N = (G,b, c) does not contain any pair
of antiparallel edges. In our second step, we symmetrize G and f by re-
introducing antiparallel edges: for each edge e= uv, we add the antiparallel
edge e′ = vu and define b, c, and f as follows:

b
(
e′
)
=−c(e), c

(
e′
)
=−b(e), f

(
e′
)
=−f(e).

In this way, f becomes a feasible circulation for the new symmetric network,
since b(e) ≤ f(e) ≤ c(e) implies −c(e) ≤ −f(e) ≤ −b(e). Note that it is not
necessary to state lower bounds explicitly any more: the lower bound b(e)≤
f(e) follows from −f(e) = f(e′)≤ c(e′) =−b(e).

For convenience, we consider f also as a function from V ×V to R: we do
not distinguish between f(e) and f(u, v), where e= uv is an edge of G; and
we put f(u, v) = 0 whenever uv is not an edge of G. We proceed similarly
for c. Then the compatibility condition (Z2) for f is replaced by the condition

−f(v,u) = f(u, v)≤ c(u, v) for all (u, v) ∈ V × V. (10.9)

As in Sect. 6.6, we define

e(v) = ef (v) =
∑

u∈V

f(u, v);

again, the flow conservation condition (Z1) is now written as

ef (v) = 0 for all v ∈ V. (10.10)

From now on, we can restrict our attention to networks N = (G,c), where
c : V ×V →R may also take negative values.7 A (feasible) circulation on N is
a mapping f : V ×V →R satisfying conditions (10.9) and (10.10). A mapping
which satisfies condition (10.9) only is called a pseudoflow on N . We still have
to define a cost function γ : V × V → R to be able to consider optimality.
Now the antisymmetry conditions for circulations force us to require that γ
is likewise antisymmetric:8

γ(u, v) =−γ(v,u) for all (u, v) ∈ V × V.

6A similar argument shows that we do not need parallel edges; indeed, we have always
excluded parallel edges in our study of flows and circulations.

7Of course, c is not completely arbitrary: we should have −c(v,u) ≤ c(u, v); otherwise,
there are no feasible circulations on N .

8Note that the transformation we have described tacitly assumes that pairs of antiparallel
edges in the original digraph have the same cost; otherwise, the elimination technique used
makes no sense. While this assumption will be satisfied in many applications, we can use
the following little trick if it should be violated: for each pair of antiparallel edges with
different costs, we subdivide one of the edges into two edges and then assign to both new
edges the same capacities and half the cost of the original edge.
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Then the cost of a pseudoflow f is defined as

γ(f) =
1

2

∑

(u,v)

γ(u, v)f(u, v).

The factor 1/2 is introduced here since the cost of the flow is counted twice
for each edge uv of the original digraph G in the above sum; note that
γ(u, v)f(u, v) = γ(v,u)f(v,u). A pseudoflow or circulation of minimal cost
is called optimal . This finishes the transformation of our usual setup to the
definition of circulations used in [GolTa90].9

As in Sect. 6.6, we now introduce a residual graph Gf with respect to
a given pseudoflow f ; if f is a circulation, this graph corresponds to the
auxiliary network used in Sect. 10.4. Let us define the residual capacity rf :
V × V →R by

rf (v,w) = c(v,w)− f(v,w) for all (v,w) ∈ V × V.

If rf (v,w)> 0 for some edge vw, we may use this edge to move some extra
flow: in our intuitive interpretation, vw is a non-saturated edge. Such an edge
is called a residual edge. The residual graph with respect to f ,

Gf = (V,Ef ), where Ef =
{
(v,w) ∈ V × V : rf (v,w)> 0

}
,

corresponds to the auxiliary network introduced in the classical approach.

Exercise 10.6.2 Describe a procedure RESIDUAL for constructing the
residual graph.

Next we want to establish a further optimality criterion for circulations.
We need a definition and a lemma first. A potential or a price function on
the vertex set V is just a mapping p : V → R. For a given potential p and a
given cost function γ, the reduced cost function γp is defined by10

γp(u, v) = γ(u, v) + p(u)− p(v). (10.11)

The following lemma is easily verified and will be left to the reader; the
second part of this lemma is particularly important.

Lemma 10.6.3 Let (G,c) be a network with cost function γ, and let p be a
potential on V . Then one has

γp(P ) = γ(P ) + p(u)− p(v)

9For an intuitive interpretation of a circulation in the new sense, consider only its positive
part—which lives on a network without antiparallel edges.

10Note that the following transformation has the same form as the one used in Eq. (10.7).
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for every directed path P in G with start vertex u and end vertex v. In
particular, γp(C) = γ(C) for every directed cycle C in G.

Theorem 10.6.4 Let N = (G,c) be a network with cost function γ, and let
f be a circulation on N . Then the following four statements are equivalent:

(a) f is optimal.
(b) The residual graph Gf does not contain any directed cycles of negative

length (with respect to γ).
(c) There exists a potential p on V such that γp(u, v)≥ 0 for all uv ∈Ef .
(d) There exists a potential p on V which satisfies the condition

γp(u, v)< 0 =⇒ f(u, v) = c(u, v)

for all (u, v) ∈ V × V .11

Proof Conditions (a) and (b) are equivalent by Lemma 10.4.2. Moreover,
conditions (c) and (d) are obviously equivalent if we consider the definition
of the residual graph Gf . Thus it is sufficient to show that conditions (b) and
(c) are equivalent. First, let p be a potential satisfying condition (c). Then
all cycles in Gf have nonnegative length with respect to the reduced cost γp.
By Lemma 10.6.3, the analogous condition holds for γ; hence (b) is satisfied.

Conversely, suppose that condition (b) holds. We construct an auxiliary
graph Hf by adding a new vertex s and all edges sv (with v ∈ V ) to Gf .
By construction, s is a root of Hf . We extend γ to Hf by putting γ(sv) = 0
for all v ∈ V . As Gf (and hence Hf ) does not contain any cycles of negative
length, Theorem 3.4.4 yields the existence of an SP-tree T with root s for
Hf . We define a potential p by p(v) = dT (s, v), where dT (s, v) denotes the
distance of s from v in the network (T,γ). Then, by Exercise 3.4.6,

dT (s, v)≤ dT (s,u) + γ(u, v)

11This optimality criterion for potentials is one example for how the different way of

description used in this section simplifies the technical details of our presentation. Of

course, an analogous criterion can be proved using the standard notation for a network

(G,b, c). However, we would then need three conditions which have to be satisfied for all

edges uv ∈E:

f(u, v) = b(u, v) =⇒ cp(u, v)≥ 0,

f(u, v) = c(u, v) =⇒ cp(u, v)≤ 0,

b(u, v)< f(u, v)< c(u, v) =⇒ cp(u, v) = 0;

see [AhuMO93], p. 330. These conditions are called complementary slackness conditions;

they are a special case of the corresponding conditions used in linear programming. It

may be checked that the potentials p(v) correspond to the dual variables if the problem of

determining an optimal circulation is written as a linear program.
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for all edges uv of Gf ; hence

γp(u, v) = γ(u, v) + p(u)− p(v)≥ 0 for all uv ∈Ef ,

so that p satisfies condition (c). �

The basic idea of the algorithm of Goldberg and Tarjan is to construct a se-
quence of progressively improving circulations on (G,c). Theorem 10.6.4 sug-
gests the following weakening of the notion of optimality: a circulation—and,
more generally, a pseudoflow—f is called ε-optimal , where ε is a nonnegative
real number, if there exists a potential p on V satisfying the condition

γp(u, v)≥−ε for all uv ∈Ef . (10.12)

Obviously, (10.12) can also be written as

γp(u, v)<−ε =⇒ uv /∈Ef for all (u, v) ∈ V × V. (10.13)

By Theorem 10.6.4, 0-optimality is the same as optimality. The following sim-
ple result illustrates the importance of the notion of ε-optimality: at least for
integral cost functions, it suffices to determine an almost optimal circulation.

Theorem 10.6.5 Let N = (G,c) be a network with an integral cost function
γ : V × V → Z. Moreover, let ε > 0 be a real number satisfying the condition
ε|V |< 1. Then an ε-optimal circulation on N is already optimal.

Proof Let p be a potential satisfying condition (10.12), and let C be a directed
cycle in Gf . Then Lemma 10.6.3 implies

γ(C) = γp(C)≥−|C|ε≥−|V |ε >−1.

But γ is integral, and hence γ(C) ≥ 0. Thus (Gf , γ) does not contain any
directed cycles of negative length, so that f is optimal by Theorem 10.6.4. �

We now need a method for checking whether a given circulation is ε-
optimal and for constructing an associated potential satisfying condition
(10.12). This can be done using an argument similar to the proof of Theo-
rem 10.6.4; the corresponding result actually holds for pseudoflows in general.

Theorem 10.6.6 Let f be a pseudoflow on the network N = (G,c) with cost
function γ. For ε > 0, we define the function γ(ε) by

γ(ε)(u, v) = γ(u, v) + ε for all (u, v) ∈ V × V.

Then f is ε-optimal if and only if the network (Gf , γ
(ε)) does not contain

any directed cycles of negative length.
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Proof We define the graph Hf as in the proof of Theorem 10.6.4. Note that
all directed cycles in Hf actually lie in Gf , because s has indegree 0. We
extend γ(ε) to Hf by putting γ(ε)(sv) = 0 for all v ∈ V ; then we may check
the criterion given in the assertion for Hf (instead of Gf ). First suppose that
f is ε-optimal with respect to the potential p, and let C be a directed cycle
in Gf . Lemma 10.6.3 implies γ(C) = γp(C)≥−|C|ε and, hence, indeed

γ(ε)(C) = γ(C) + |C|ε≥ 0.

Conversely, suppose that (Gf , γ
(ε)) does not contain any directed cycles of

negative length. By analogy to the proof of Theorem 10.6.4, we may choose
an SP-tree T for (Hf , γ

(ε)) and define a potential p by p(v) = dT (s, v). Then

γ
(ε)
p (u, v)≥ 0 and thus γp(u, v)≥−ε for all (u, v) ∈Gf . �

The proof of Theorem 10.6.6 shows the validity of the following corollary,
which allows us, using Exercise 3.10.3, to construct with complexity O(|V ||E|)
the associated potential p satisfying condition (10.12) for a given ε-optimal
circulation.

Corollary 10.6.7 Let f be an ε-optimal pseudoflow on N = (G,c) with re-
spect to the cost function γ. Moreover, let T be an SP-tree with root s in
the auxiliary graph Hf with respect to γ(ε). Then the potential p defined by
p(v) = dT (s, v) satisfies condition (10.12).

Exercise 10.6.8 Write down a procedure POTENTIAL explicitly which
with complexity O(|V ||E|) determines a potential as in Corollary 10.6.7.

Remark 10.6.9 Note that every pseudoflow f—in particular, every circulation
—on (G,c) is ε-optimal (with respect to γ) for some value of ε. For example,
if C is the maximum of all values |γ(u, v)| and if the potential p is chosen as
the zero potential, f is trivially C-optimal.

Now the problem arises how we may determine the smallest ε such that
a given pseudoflow f is still ε-optimal; in this case, we say that f is ε-tight .
We need a further concept. Let (H,w) be a network. For every directed cycle
C in H ,

m(C) =
w(C)

|C|

is called the mean weight of C.12 Moreover,

12In our context, the terms mean cost or mean length would make more sense; however,

we do not want to deviate from common usage.
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μ(H,w) =min
{
m(C): C a directed cycle in (H,w)

}

is called the minimum cycle mean.

Theorem 10.6.10 Let f be a pseudoflow on (G,c) which is not optimal with
respect to the cost function γ. Then f is ε-tight, where ε=−μ(Gf , γ).

Proof Let C be a directed cycle in Gf , and denote by ε the real number
for which f is ε-tight. Then Theorem 10.6.6 implies (using the notation of
Theorem 10.6.6)

γ(ε)(C) = γ(C) + |C|ε≥ 0;

thus m(C) = γ(C)/|C| ≥ −ε. As this holds for every directed cycle, we con-
clude μ := μ(Gf , γ)≥−ε; hence ε≥−μ.

Conversely, every directed cycle C satisfies m(C) = γ(C)/|C| ≥ μ, by def-
inition. Therefore

γ(−μ)(C) = γ(C)− |C|μ≥ 0.

Again by Theorem 10.6.6, f is at least (−μ)-optimal, so that also ε≤−μ. �

It remains to address the question how the minimum cycle mean can be
determined efficiently. By a result of Karp [Kar78], this may be done with
complexity O(|V ||E|)—the same complexity as for determining an SP-tree,
or for checking whether any directed cycle of negative length exists (see Exer-
cise 3.10.3); of course, determining μ(H,w) also answers the latter question.
Karp’s algorithm is based on the following characterization of μ(H,w).

Theorem 10.6.11 Let (H,w) be a network on a digraph H = (V,E), and
suppose that H has a root s and contains directed cycles. For each vertex v
and each positive integer k, let Fk(v) denote the minimal length of a directed
walk from s to v consisting of exactly k edges; if no such walk exists, we put
Fk(v) =∞. Then, with n= |V |,

μ(H,w) =min
v∈V

max

{
Fn(v)− Fk(v)

n− k
: k = 1, . . . , n− 1

}

. (10.14)

Proof We first prove the desired identity for the special case μ(H,w) = 0.
Then (H,w) does not contain any directed cycles of negative length, so that
the shortest length of a path from s to v equals the shortest length of a walk
from s to v. Therefore

Fn(v)≥ d(s, v) =min
{
Fk(v) : k = 1, . . . , n− 1

}
,

and thus

Fn(v)− d(s, v) =max
{
Fn(v)− Fk(v) : k = 1, . . . , n− 1

}
≥ 0
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and

max

{
Fn(v)− Fk(v)

n− k
: k = 1, . . . , n− 1

}

≥ 0.

Hence it suffices to prove the existence of some vertex v with Fn(v) = d(s, v).
Let C be any cycle of weight 0 and u a vertex in C; moreover, let P be a
path of length d(s,u) from s to u. Now we may append C to P any number
of times to obtain a shortest walk W from s to u. Note that any part W ′

of W beginning in s and ending in v, say, has to be a shortest walk from s
to v. Obviously, we may choose v in such a way that W ′ consists of exactly n
edges; this vertex v satisfies Fn(v) = d(s, v).

It remains to consider the case μ(H,w) = μ 
= 0. We replace the given
weight function w with the function w′ defined by

w′(uv) =w(uv)− μ for all uv ∈E.

Then every cycle C in H satisfies w′(C) = w(C) − |C|μ, and therefore
m′(C) = m(C) − μ. In other words, replacing w by w′ results in reducing
the minimum cycle mean by μ, so that μ(H,w′) = 0. But we have already
established the assertion in this case, and therefore

μ
(
H,w′)= 0=min

v∈V
max

{
F ′
n(v)− F ′

k(v)

n− k
: k = 1, . . . , n− 1

}

.

On the other hand, every walk W in H satisfies w′(W ) = w(W )− |W |μ, so
that F ′

l (v) = Fl(v)− lμ. This implies

F ′
n(v)− F ′

k(v)

n− k
=

(Fn(v)− nμ)− (Fk(v)− kμ)

n− k
=

Fn(v)− Fk(v)

n− k
− μ,

and the assertion follows. �

Corollary 10.6.12 Let H = (V,E) be a connected digraph with weight func-
tion w :E →R. Then μ(H,w) can be determined with complexity O(|V ||E|).

Proof By Theorem 2.6.6, we may check with complexity O(|E|) whether H
is acyclic; in this case, μ(H,w) =∞. Otherwise we may, if necessary, add a
root s to H (as we did in the proof of Theorem 10.6.4) without introducing
any new directed cycles. Then Theorem 10.6.11 may be applied to the new
graph. The values Fk(v) can be calculated recursively using the initial values

F0(s) = 0, F0(v) =∞ for v 
= s,

and the identity

Fk(v) =min
{
Fk−1(u) +w(uv) : uv ∈E

}
;
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this obviously takes O(|V ||E|) steps. After we have calculated all the Fk(v),
we may determine μ(H,w) with O(|V |2) comparisons, by Theorem 10.6.10.
As H is connected, |V | is dominated by |E|, and the assertion follows. �

Exercise 10.6.13 Write down a procedure MEANCYCLE having the prop-
erties described in Corollary 10.6.12. In addition, your procedure should also
construct a cycle which has the minimum cycle mean as its mean weight.

There is also an algorithm with complexity O(|V |1/2|E| log(|V |C)) for de-
termining μ(H,w), where C is the maximum of the absolute values |γ(u, v)|;
see [OrlAh92]. Another efficient algorithm is in [YouTO91]; experiments with
random graphs suggest that its average complexity is O(|E|+ |V | log |V |).

Let us summarize the preceding results as follows:

Theorem 10.6.14 Let f be a circulation on a network N = (G,c) with cost
function γ. Then the number ε for which f is ε-tight can be determined with
complexity O(|V ||E|).

Proof We calculate μ= μ(Gf , γ); this can be done with the desired complex-
ity by Corollary 10.6.12. If μ≥ 0, Gf does not contain any directed cycles of
negative length with respect to γ, so that f is optimal by Theorem 10.6.4,
and hence ε= 0. Otherwise μ < 0 and f is not optimal. But then ε=−μ by
Theorem 10.6.10. �

Theorem 10.6.14 allows us to determine an optimal measure for the quality
of any given circulation on N . As hinted before, the algorithm of Goldberg
and Tarjan is based on finding a sequence of ε-optimal circulations for de-
creasing ε and finally applying Theorem 10.6.5 (in the integral case). We will
present their algorithm in the next section.

Exercise 10.6.15 Write down a procedure TIGHT explicitly which deter-
mines the number ε of Theorem 10.6.14 with complexity O(|V ||E|).

10.7 Optimal Circulations by Successive Approximation

In this section, we present a generic version of the polynomial algorithm
of Goldberg and Tarjan [GolTa90] for determining optimal circulations; this
rests on the ideas treated in the previous section. For the time being, we shall
assume that we have already designed an auxiliary procedure REFINE which
constructs from a given ε-optimal circulation f with associated potential p
an ε′-optimal circulation f ′ and a corresponding potential p′, where ε′ = ε/2;
an efficient version of REFINE will be derived in the next section. We always
assume that the network under consideration does not have any antiparallel
edges; we may do so in view of Construction 10.6.1.
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Algorithm 10.7.1 Let N = (G0, b, c) be a network with cost function γ,
where G0 = (V,E0) is a digraph without any pairs of antiparallel edges. The
algorithm constructs an optimal circulation f0 on N , or determines the non-
existence of feasible solutions.

Procedure OPTCIRC(G0, b, c, γ; legal, f0)

(1) LEGCIRC(G0, b, c; legal, f);
(2) if legal = true then
(3) E ←E0;
(4) for uv ∈E0 do
(5) E ←E ∪ {vu}; f(v,u)←−f(u, v);
(6) γ(v,u)←−γ(u, v); c(v,u)←−b(u, v)
(7) od
(8) G← (V,E);
(9) TIGHT (G,c, γ, f ; ε);

(10) while ε > 0 do
(11) POTENTIAL(G,c, γ, f, ε;p);
(12) REFINE(G,c, γ, f, ε, p;f);
(13) TIGHT(G,c, γ, f ; ε)
(14) od
(15) f0 ← f |E0

(16) fi

Theorem 10.7.2 Let N = (G0, b, c) be a network with an integral cost func-
tion γ, where G0 = (V,E0) is a digraph without any pairs of antiparallel edges,
and assume the existence of feasible circulations. Suppose that REFINE is a
procedure which constructs from an ε-optimal circulation f with associated
potential p an ε/2-optimal circulation and a corresponding potential. Then
Algorithm 10.7.1 determines in O(log(|V |C)) iterations an optimal circula-
tion f0 on N , where C =max{|γ(e)| : e ∈E0}.

Proof By Corollary 10.2.5, step (1) of the algorithm constructs a feasible
circulation f on N . Steps (3) to (8) determines the symmetrized form (G,c)
of the network (G0, b, c) as well as corresponding versions of the functions f
and γ, as in Construction 10.6.1. In step (9), the procedure TIGHT calculates
the value of ε for which f is ε-tight. If ε > 0—so that f is not yet optimal—
the algorithm constructs an associated potential p for f ; changes f to an
ε/2-optimal circulation again denoted by f ; and determines the precise value
of ε for which the new f is ε-tight. All this happens during the while-loop
(10) to (14); note that this while-loop terminates only if ε = 0 so that the
current f is an optimal circulation. As ε is decreased with each iteration of
the loop by at least a factor of 1/2 (note that ε may actually be smaller
than this bound guarantees!), and as the initial circulation is C-optimal by
Remark 10.6.9, an ε-optimal circulation with ε < 1/|V | is reached after at
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most O(log(|V |C)) iterations. By Theorem 10.6.5, this circulation is already
optimal—so that actually ε= 0, and the while-loop is terminated. Finally, in
step (15), f0 is assigned the values of the final optimal circulation on (G,c),
restricted to the original network. �

In the remainder of this section, we show that Algorithm 10.7.1 terminates
after at most O(|E| log |V |) iterations, even if γ is not integral. This requires
some more work; we begin by showing that the flow value f(e) on an edge e
cannot be further changed in subsequent iterations provided that the reduced
cost of e is sufficiently large.

Theorem 10.7.3 Let f be an ε-optimal circulation with associated potential
p on a network N = (G,c) with cost function γ, and assume ε > 0. Moreover,
suppose

∣
∣γp(u, v)

∣
∣≥ |V |(ε+ δ)

for some edge uv and some δ ≥ 0. Then every δ-optimal circulation g satisfies
g(u, v) = f(u, v).

Proof Because of the antisymmetry of f and γ, we may assume γp(u, v)≥ 0.
Now let g be any circulation with g(u, v) 
= f(u, v). Our hypothesis implies
γp(u, v)> ε, and hence γp(v,u)<−ε; thus, by (10.13), vu /∈ Ef . Using this,
we obtain

f(u, v) =−f(v,u) =−c(v,u)≤−g(v,u) = g(u, v).

In view of g(u, v) 
= f(u, v), we conclude g(u, v)> f(u, v). We now show that
g cannot be δ-optimal. For this purpose, we consider the digraph G> with
vertex set V and edge set

E> =
{
xy ∈E : g(x, y)> f(x, y)

}
.

Obviously, G> is a subdigraph of Gf containing the edge uv. We show first
that G> contains a directed cycle through uv. Consider the digraph H whose
edges are all the edges e ∈Ef satisfying h(e) := g(e)− f(e) 
= 0. We color the
edges of H either black or green, depending on whether h(e)> 0 or h(e)< 0.
By the antisymmetry of f and g, an edge e= xy is black if and only if the
antiparallel edge e′ = yx is green. By the painting lemma (Theorem 10.3.9),
there exists either a cycle K or a cocycle C containing e0 = uv so that all
its black edges have the same orientation as e0, whereas all its green edges
are oriented in the opposite direction. In the first case, we may replace all
green edges occurring in K by their corresponding antiparallel edges, so that
we get a directed cycle in G> containing e0. The second case leads to a
contradiction. To see this, let (S,T ) be the cut of H corresponding to C.
By Exercise 10.3.4, h(S,T ) = h(T,S). However, the properties of C given in
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the painting lemma together with e0 ∈C imply h(S,T )> 0 and h(T,S)< 0.
Hence this case cannot occur.

Thus G> indeed contains a directed cycle K through uv; note that all
edges of K are in Ef . Using Lemma 10.6.3 and the definition of ε-optimality,

γ(K) = γp(K)≥ γp(u, v)−
(
|K| − 1

)
ε

≥ |V |(ε+ δ)−
(
|V | − 1

)
ε

> |V |δ ≥ |K|δ.

Now let K be the cycle of G which we obtain by inverting the orientation
of all edges of K. Then K is contained in G<, where G< is the subdigraph
with edge set

E< =
{
xy ∈E : g(x, y)< f(x, y)

}
,

so that G< is likewise a subgraph of the residual graph Gg. The antisymmetry
of γ implies

γ(K) =−γ(K)<−|K|δ =−|K|δ

and hence

γ(δ)(K) = γ(K) + δ|K|< 0.

By Theorem 10.6.6, g cannot be δ-optimal. �

Let us call an edge uv ε-fixed if the value f(u, v) is the same for all ε-
optimal circulations f on (G,c) with respect to γ.

Corollary 10.7.4 Let f be an ε-optimal circulation with associated potential
p on (G,c) with respect to the cost function γ, where ε > 0. Then every edge
uv with |γp(u, v)| ≥ 2|V |ε is ε-fixed.

Lemma 10.7.5 Let f be an ε-tight circulation with ε 
= 0 on the network
N = (G,c) with respect to the cost function γ, and let p be a corresponding
potential. Moreover, let C be a directed cycle of minimum cycle mean in the
residual graph Gf . Then γp(u, v) =−ε for all uv ∈C.

Proof By hypothesis,

γp(u, v)≥−ε for all uv ∈Ef . (10.15)

On the other hand, μ(Gf , γ) =−ε by Theorem 10.6.10; note that this number
is negative because ε 
= 0. Then, by Lemma 10.6.3,

1

|C|
∑

uv∈C

γp(u, v) =
1

|C|
∑

uv∈C

γ(u, v) =m(C) =−ε.

Now (10.15) implies the assertion. �
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Lemma 10.7.6 Let N = (G,c) be a network with cost function γ, and denote
by Fε the set of all ε-fixed edges in G, where ε > 0. Also, assume the existence
of an ε-tight circulation f . Then the set Fε is a proper subset of Fδ for every
δ ≥ 0 with 2δ|V | ≤ ε.

Proof Trivially, Fε ⊆ Fδ. Thus we have to find some edge which is δ-fixed
but not ε-fixed. As f is an ε-tight circulation, there exists a directed cycle
C in the residual graph Gf of mean weight m(C) =−ε (with respect to γ),
by Theorem 10.6.10. Then we may increase f along C by a sufficiently small
amount and get a new feasible circulation f ′. We shall show that f ′ is likewise
ε-optimal, so that the edges of C cannot be contained in Fε.

Thus let p be a potential corresponding to f . Then γp(u, v) ≥ −ε for all
edges uv ∈Ef . The only edges uv ∈Ef ′ which are not necessarily contained
in Ef as well are those edges for which the antiparallel edge vu lies in C; note
that the cycle having opposite orientation to C indeed has to be contained
in Gf ′ . Because of vu ∈Ef and by Lemma 10.7.5, these edges satisfy

γp(u, v) =−γp(v,u) = ε > 0,

so that f ′ is ε-optimal with respect to the same potential p.
Next we show that at least one edge of C is contained in Fδ . Let g be any

δ-optimal circulation with associated potential p′. By the choice of C,

γp′(C) = γp(C) = γ(C) =−|C|ε,

where we have used Lemma 10.6.3 again. Therefore C has to contain an edge
uv with

γp′(u, v)≤−ε≤−2|V |δ.

Thus |γp′(u, v)| ≥ 2|V |δ; by Corollary 10.7.4, uv is contained in Fδ. �

Theorem 10.7.7 If N admits feasible circulations, Algorithm 10.7.1 deter-
mines an optimal circulation on N in O(|E| log |V |) iterations of the while-
loop, under the assumption that REFINE satisfies the requirements of Theo-
rem 10.7.2.

Proof Let f be an ε-optimal circulation calculated at some point of the algo-
rithm. By our assumptions regarding REFINE, we need at most O(log |V |)
iterations to construct a δ-tight circulation f ′ from f for some δ with
δ ≤ ε/2|V |. If δ = 0, the algorithm terminates. Otherwise, the set Fδ of δ-
fixed edges contains at least one more edge than Fε. Now the algorithm has
to terminate for sure if all edges are δ-fixed, which takes at most O(|E| log |V |)
iterations. �

Note that Algorithm 10.7.1 usually terminates earlier, since in most cases
not all edges are 0-fixed: it is very well possible that there are several different
optimal circulations. In the next section, we will show that the auxiliary
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procedure REFINE can be performed in O(|V |3) steps. The above results
then yield the following theorem [GolTa90].

Theorem 10.7.8 Let N = (G,b, c) be a network with cost function γ which
admits feasible circulations. Then Algorithm 10.7.1 determines with com-
plexity O(|E||V |3 log |V |) an optimal circulation on N . If the cost function
γ is integral, the complexity is also bounded by O(|V |3 log(|V |C)), where
C =max{|γ(u, v)| : uv ∈E}.

If G is not a dense graph, the complexity may be improved by using more
intricate data structures; in particular, there is a version of REFINE which
needs only O(|V ||E| log(|V |2/|E|)) steps; see [GolTa90].

10.8 A Polynomial Procedure REFINE

We still need to fill the gap left in the last section and provide an auxiliary
procedure REFINE with complexity O(|V |3). We shall present the procedure
of Goldberg and Tarjan [GolTa90], which is quite similar to Algorithm 6.6.1
for determining a maximal flow on a flow network, even as far as the proofs
are concerned. As in Sect. 6.6, we first give a generic version where the aux-
iliary operations used can be chosen in an arbitrary order. Afterwards, an
appropriate way of choosing these operations will lead to a rather good com-
plexity bound. Again, we call a vertex v active if its flow excess with respect
to f satisfies the condition ef (v)> 0.

Algorithm 10.8.1 Let (G,c) be a network as described in Construc-
tion 10.6.1 with cost function γ. Moreover, let f be an ε-optimal circulation
with corresponding potential p. The algorithm determines an ε/2-optimal
circulation and the corresponding potential.

Procedure REFINE(G,c, γ, f, ε, p;f)

(1) ε← ε/2;
(2) for uv ∈E do
(3) γp(u, v)← γ(u, v) + p(u)− p(v);
(4) if γp(u, v)< 0
(5) then f(u, v)← c(u, v); f(v,u)←−c(u, v);
(6) rf (u, v)← 0; rf (v,u)← c(v,u)− f(v,u)
(7) fi
(8) od
(9) for v ∈ V do e(v)←

∑
u f(u, v) od

(10) while there exist admissible operations do
(11) choose some admissible operation and execute it
(12) od

Here the possible admissible operations are:
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Procedure PUSH(f, v,w;f)

(1) δ←min(e(v), rf (v,w));
(2) f(v,w)← f(v,w) + δ; f(w,v)← f(w,v)− δ;
(3) rf (v,w)← rf (v,w)− δ; rf (w,v)← rf (w,v) + δ;
(4) e(v)← e(v)− δ; e(w)← e(w) + δ

The operation PUSH(f, v,w;f) is admissible if v is active, rf (v,w) > 0,
and γp(v,w)< 0.

Procedure RELABEL(f, v, p;f, p)

(1) Δ← ε+min{γp(v,w): rf (v,w)> 0};
(2) p(v)← p(v)−Δ;
(3) for w ∈ V \ {v} do
(4) γp(v,w)← γp(v,w)−Δ; γp(w,v)←−γp(v,w)
(5) od

The operation RELABEL(f, v, p;f, p) is admissible if v is active and if
γp(v,w) ≥ 0 holds whenever rf (v,w) > 0. Alternatively, we could describe
the modification of the value p(v) in RELABEL by the command

p(v) ← max
{
p(w)− γ(v,w)− ε : rf (v,w)> 0

}
,

as in the original paper.
As in Sect. 6.6, we first prove that Algorithm 10.8.1 is correct, provided

that it terminates. The following lemma is similar to Lemma 6.6.2 and equally
obvious.

Lemma 10.8.2 Let f be an ε-optimal pseudoflow on (G,c) with respect to
the cost function γ, and let p be a corresponding potential. Moreover, let v be
an active vertex. Then either RELABEL(v) is admissible, or there is an edge
vw for which PUSH(v,w) is admissible.

Lemma 10.8.3 Let f be an ε-optimal pseudoflow on (G,c) with respect to
the cost function γ, and let p be a corresponding potential. Moreover, let v be
an active vertex. Then the new pseudoflow which is obtained from a PUSH-
operation on some edge vw is still ε-optimal. A RELABEL(v)-operation de-
creases p(v) by at least ε; again, the pseudoflow remains ε-optimal after the
RELABEL-operation.

Proof To prove the first claim, note that a PUSH(v,w) does not change the
reduced cost of edges which already occur in Gf . If the edge wv is added
to Gf by the PUSH(v,w), the conditions for the admissibility of a PUSH-
operation yield γp(v,w)< 0, so that γp(w,v)> 0; hence the new residual edge
wv satisfies the condition for ε-optimality.
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Now consider a RELABEL(v)-operation. If this operation is admissible,
we must have γp(v,w)≥ 0 for all vw ∈Ef , so that

p(v)≥ p(w)− γ(v,w) for all vw ∈Ef

holds before RELABEL is performed. This implies

p′(v) =max
{
p(w)− γ(v,w)− ε : vw ∈Ef

}
≤ p(v)− ε

for the value p′(v) of the potential after the RELABEL operation. Therefore
p(v) is decreased by at least ε during the RELABEL(v)-operation. The only
edges whose reduced cost is changed by a RELABEL(v) are the edges which
are incident with v. For every edge of the form wv, γp(w,v) is increased by
at least ε; trivially, this does not change the ε-optimality. Now consider a
residual edge of the form vw. By definition of p′(v), such an edge satisfies

p′(v)≥ p(w)− γ(v,w)− ε

and hence

γp′(v,w) = γ(v,w) + p′(v)− p(w)≥−ε,

so that the condition for ε-optimality holds also in this case. �

Theorem 10.8.4 Assume that Algorithm 10.8.1 terminates. Then the final
pseudoflow f is an ε/2-optimal circulation.

Proof Note that the pseudoflow f constructed during the initialization phase
(2) to (8) is actually 0-optimal (as all edges with negative reduced cost are sat-
urated), so that it is for sure ε/2-optimal. Now Lemma 10.8.3 shows that the
pseudoflow remains ε/2-optimal throughout the algorithm. By Lemma 10.8.2,
the algorithm terminates only when there is no longer any active vertex. But
this means e(v)≤ 0 for all vertices v; hence

∑

v

e(v) =
∑

u,v

f(u, v) = 0

shows e(v) = 0 for all v. Thus the ε/2-optimal pseudoflow constructed during
the last iteration of the algorithm is indeed a circulation. �

In order to show that Algorithm 10.8.1 terminates, we have to find an
upper bound for the number of admissible operations executed during the al-
gorithm. As in Sect. 6.6, we distinguish saturating PUSH-operations, namely
those with δ = rf (v,w), from non-saturating PUSH-operations. We begin
by analyzing the RELABEL-operations. The following important lemma is
analogous to Lemma 6.6.7.
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Lemma 10.8.5 Let f be a pseudoflow and g a circulation on (G,c). For

each vertex v with ef (v) > 0, there exist a vertex w with ef (w) < 0 and a

sequence of distinct vertices v = v0, v1, . . . , vk−1, vk =w with vivi+1 ∈Ef and

vi+1vi ∈Eg for i= 0, . . . , k− 1.

Proof We define the directed graphs G> and G< as in the proof of Theo-

rem 10.7.3; then G> is a subdigraph of Gf , and G< is a subdigraph of Gg .

Moreover, xy ∈ E> if and only if yx ∈ E<, since pseudoflows are antisym-

metric. Hence it suffices to show the existence of a directed path

P : v0 = v v1 · · · vk =w

with ef (w)< 0 in G>. Denote the set of vertices which are accessible from v

in G> by S, and put S := V \ S. (The set S might be empty.) For each pair

(x, y) of vertices with x ∈ S and y ∈ S, we have g(x, y)≤ f(x, y) by definition.

As g is a circulation and as f and g are antisymmetric,

0 =
∑

y∈S

eg(y) =
∑

x∈V,y∈S

g(x, y)

=
∑

x∈S,y∈S

g(x, y)≤
∑

x∈S,y∈S

f(x, y)

=
∑

x∈S,y∈V

f(x, y) =−
∑

x∈S,y∈V

f(y,x) =−
∑

x∈S

ef (x).

However, v ∈ S and ef (v) > 0. Therefore S has to contain a vertex w with

ef (w)< 0, proving the assertion. �

Lemma 10.8.6 For each vertex v, at most 3|V | RELABEL(v)-operations

are performed during Algorithm 10.8.1. Thus there are altogether at most

O(|V |2) RELABEL-operations during the course of the algorithm.

Proof Note that the values of the potential can only decrease during the exe-

cution of REFINE, by Lemma 10.8.3. Now consider the situation immediately

after some RELABEL(v)-operation, and let f be the ε-optimal pseudoflow

with associated potential p at this point of time. Then ef (v) > 0. In what

follows, we denote the original ε-optimal circulation and the corresponding

potential—the input parameters of REFINE—by g and q. By Lemma 10.8.5,

there exist a vertex w with ef (w)< 0 and a directed path

P : v = v0 v1 · · · vk−1 vk =w
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with vivi+1 ∈Ef and vi+1vi ∈Eg for i= 0, . . . , k−1. Using the ε/2-optimality
of f and Lemma 10.6.3, we obtain

−εk

2
≤

k−1∑

i=0

γp(vi, vi+1) = p(v)− p(w) +
k−1∑

i=0

γ(vi, vi+1).

In the same way, the ε-optimality of the original circulation g yields

−εk ≤
k−1∑

i=0

γq(vi+1, vi) = q(w)− q(v) +

k−1∑

i=0

γ(vi+1, vi).

We add the preceding two inequalities and use the antisymmetry of the cost
function to obtain

−3εk

2
≤ p(v)− p(w) + q(w)− q(v).

Next we show p(w) = q(w): RELABEL can only be applied for vertices with
positive flow excess, so that the original value q(w) of the potential for a
vertex w with ef (w) < 0 cannot have changed unless the flow excess has
become positive at some point. However, once a vertex has positive flow
excess, it can never again acquire negative flow excess because of step (1) in
PUSH. Thus ef (w)< 0 indeed implies p(w) = q(w). From this we conclude

p(v)≥ q(v)− 3εk

2
≥ q(v)− 3ε|V |

2
.

By Lemma 10.8.3, each RELABEL(v)-operation decreases the original value
q(v) of the potential by at least ε/2, so that there cannot be more than 3|V |
such operations for a given vertex v. �

We can now also treat the saturating PUSH-operations.

Lemma 10.8.7 Algorithm 10.8.1 involves at most O(|V ||E|) saturating
PUSH-operations.

Proof Consider the saturating PUSH-operations for a given edge vw. Af-
ter such a PUSH(v,w) has been executed, rf (v,w) = 0, so that a fur-
ther PUSH on vw is possible only if a PUSH(w,v) is executed first. Now
the saturating PUSH(v,w) was admissible only if γp(v,w) < 0, whereas
a PUSH(w,v) requires the converse condition γp(w,v) < 0 and therefore
γp(v,w)> 0. Thus a RELABEL(v)-operation has to occur between any two
consecutive saturating PUSH-operations on vw, as this is the only way to
decrease γp(v,w) = γ(v,w) + p(v)− p(w). Now Lemma 10.8.6 shows that at
most O(|V |) saturating PUSH-operations may occur on vw during the course
of Algorithm 10.8.1. �



10.8 A Polynomial Procedure REFINE 337

As in Sect. 6.6, the non-saturating PUSH-operations play the crucial role
in the complexity of REFINE. We need a lemma to be able to analyze how
many non-saturating PUSH-operations occur. Let us call the edges vw of
the residual graph Gf which have negative reduced cost γp(v,w) admissible
edges, and denote the subdigraph of Gf which contains only the admissible
edges—the admissible graph—by GA =GA(f).

Lemma 10.8.8 The admissible graph GA is always acyclic during the course
of Algorithm 10.8.1.

Proof As mentioned in the proof of Theorem 10.8.4, the pseudoflow f
constructed during the initialization (2) to (8) is even 0-optimal, so that
the corresponding graph GA is empty (and hence trivially acyclic). Now
a PUSH(v,w) can only be executed if γp(v,w) < 0, so that γp(w,v) > 0.
Thus the antiparallel edge wv—which might be added to Gf—is definitely
not added to GA. Hence PUSH-operations do not add edges to GA, so
that GA stays acyclic. Finally, consider a RELABEL(v)-operation. Before
this operation is performed, γp(u, v) ≥ −ε/2 for all uv ∈ Gf . As we saw
in Lemma 10.8.3, RELABEL(v) decreases p(v) by at least ε/2, so that
γp(u, v) ≥ 0 holds after the RELABEL(v). Therefore GA does not contain
any edges with end vertex v, and GA is still acyclic after the RELABEL(v). �

We could now find an upper bound for the number of non-saturating
PUSH-operations, as in Sect. 6.6. However, we prefer to proceed by per-
forming the admissible operations in a particularly efficient order, and leave
the more general result to the reader as an exercise.

Exercise 10.8.9 Show that at most O(|V |2|E|) non-saturating PUSH- op-
erations occur during Algorithm 10.8.1. Hint: Consider the potential Φ =∑

v activeΦ(v), where Φ(v) is the number of vertices which are accessible
from v in the admissible graph GA.

We now follow [GolTa90] and present a special version of REFINE called
the first active method ; this is similar to the highest label preflow push algo-
rithm in Sect. 6.6. Again, we keep adjacency lists Av and distinguish a cur-
rent edge in each Av ; initially, this is always the first edge of Av . Moreover,
throughout the algorithm, we keep a topological sorting of V with respect to
the admissible graph GA in a list L. As GA is initially empty, the vertices
may be added arbitrarily to L during the initialization phase. Furthermore,
we need a current vertex : this is always the vertex for which we want to
perform the next admissible operation, preferably a PUSH(v,w), but if this
is not possible, then a RELABEL(v). Immediately after a RELABEL(v), v
is deleted from L and inserted again at the beginning of L. Note that v
has indegree 0 in GA at this point, as shown in the proof of Lemma 10.8.8.
Hence L remains a topological sorting for GA. In this case, v always stays
the current vertex. If v becomes inactive during a PUSH-operation, the next
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vertex in L is chosen as the current vertex; as L gives a topological sorting
of GA, there can be no active vertex in L before v. These considerations lead
to the following algorithm:

Algorithm 10.8.10 (First active method) Let (G,c) be a network with
cost function γ as described in Sect. 10.6, where G is given by adjacency
lists Av . Moreover, let f be an ε-optimal circulation with associated potential
p. Finally, let L be a list and rel a Boolean variable.

Procedure FAREFINE(G,c, γ, f, ε, p;f)

(1) ε← ε/2;
(2) for uv ∈E do
(3) γp(u, v)← γ(u, v) + p(u)− p(v);
(4) if γp(u, v)< 0
(5) then f(u, v)← c(u, v); f(v,u)←−c(u, v)
(6) rf (u, v)← 0; ef (v,u)← c(v,u)− f(v,u)
(7) fi
(8) od
(9) for v ∈ V do e(v)←

∑

u
f(u, v) od

(10) L← V ;
(11) let v be the first vertex in L;
(12) while there exists an active vertex do
(13) if e(v)> 0
(14) then rel← false; select the first edge in Av as the current edge;
(15) repeat
(16) let vw be the current edge in Av;
(17) if rf (v,w)> 0 and γp(v,w)< 0
(18) then PUSH(f, v,w;f );
(19) fi
(20) if e(v)> 0 then
(21) if vw is not the last edge in Av

(22) then choose the next edge in Av as the current edge
(23) else RELABEL(f, v, p;f, p); rel ← true;
(24) choose the first edge in Av as the current edge
(25) fi
(26) fi
(27) until e(v) = 0 or rel = true;
(28) if e(v) = 0
(29) then replace v by the next vertex in L
(30) else move v to the beginning of L
(31) fi
(32) else replace v by the next vertex in L
(33) fi
(34) od
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Theorem 10.8.11 Algorithm 10.8.10 constructs with complexity O(|V |3) an
ε/2-optimal circulation f on (G,c).

Proof As Algorithm 10.8.10 is a special version of Algorithm 10.8.1, Theo-
rem 10.8.4 implies that it is correct, provided that it terminates. By Lemma
10.8.6, there are at most O(|V |2) RELABEL-operations during the execu-
tion of the algorithm; each of them needs at most O(|V |) steps. Moreover,
by Lemma 10.8.7, there are at most O(|V ||E|) saturating PUSH-operations,
each of which takes only O(1) steps. Thus it suffices to show that there are
altogether at most O(|V |3) non-saturating PUSH-operations.

As noted before, the list L contains a topological sorting of the vertices
with respect to the admissible graph GA throughout the algorithm. By the
word phase we refer to the sequence of operations between two consecutive
RELABEL-operations, or between the beginning of the algorithm and the
first RELABEL-operation, or after the last RELABEL and the termination
of the algorithm. By Lemma 10.8.6, there are at most O(|V |2) phases. At the
beginning of each phase, v is always the first vertex of L—initially because of
(11), later because of (30). Of course, the algorithm may examine at most all
|V | vertices in L before either the next RELABEL-operation is performed or
the algorithm terminates. For each vertex v, there can be at most one non-
saturating PUSH-operation during a given phase: after such a PUSH, e(v) = 0
so that v is replaced by the next vertex in L. This yields the desired bound
of at most O(|V |) non-saturating PUSH-operations during each phase. �

Using the procedure FAREFINE above in Algorithm 10.7.1 instead of
REFINE, we get an algorithm which constructs an optimal circulation for a
given network with the complexity stated in Theorem 10.7.8.

10.9 The Minimum Mean Cycle Cancelling Algorithm

In this section, we shall return to the algorithm of Klein and show that
an appropriate specification yields a polynomial algorithm, a result due to
Goldberg and Tarjan [GolTa89]. The complexity one obtains is inferior to the
complexity achieved in Theorem 10.7.7; however, the modified algorithm of
Klein is particularly simple and intuitive.

In order to motivate the specification used by Goldberg and Tarjan, we
first consider a specialization of the algorithm of Klein to the flow networks
studied in Chap. 6. As explained in Example 10.1.1, we may transform any
given flow problem into the problem of finding an optimal circulation. With
the notation introduced there, a flow f of value w on N corresponds to
a circulation f ′ on G′ = G ∪ {r} with cost −w(f). Now let (H,w) be the
auxiliary network with respect to f ′, as constructed in Algorithm 10.4.1.
Obviously, the only cycles of negative length are cycles containing the return



340 10 Circulations

arc, and these cycles correspond precisely to the augmenting paths in G with
respect to f—that is, to paths from s to t in the auxiliary network N ′(f);
see Sect. 6.3. It is now easily seen that the algorithm of Klein reduces to the
labelling algorithm of Ford and Fulkerson (Algorithm 6.1.7) for determining
a maximal flow. As shown in Sect. 6.1, the algorithm of Klein is therefore not
polynomial even if all input data are integral.

As we have seen in Sect. 6.2, the algorithm of Ford and Fulkerson becomes
polynomial if the augmenting paths are chosen in a clever way: always select
an augmenting path P of shortest length in N ′(f). This suggests interpret-
ing this strategy in terms of the associated circulations, and then trying to
generalize it to arbitrary circulations. As already mentioned, P corresponds
to a cycle C of negative length in (H,w). Note that all these cycles have the
same length, namely w(C) =−1, which might be disappointing. Fortunately,
the length |P | of P is reflected in the mean weight m(C) of C:

m(C) =
w(C)

|C| =− 1

|P |+ 1
.

Thus an augmenting path of shortest length in N ′(f) corresponds to a cycle
with minimum cycle mean μ(H,w). This explains the strategy suggested by
Goldberg and Tarjan: always cancel a (negative) cycle of minimum cycle
mean in order to improve the present circulation f . (Recall that such a cycle
can be determined efficiently by the method of Karp described in Sect. 10.6.)
We will see that the resulting algorithm is indeed polynomial—but this will
require considerable effort.

Algorithm 10.9.1 (Minimum mean cycle canceling algorithm) Let G be a
digraph with capacity constraints b and c and a cost function γ. The algo-
rithm decides whether an admissible circulation exists; if this is the case, it
constructs an optimal circulation.

Procedure MMCC(G,b, c, γ; legal, f)

(1) LEGCIRC(G,b, c, γ; legal, f);
(2) if legal = true then repeat
(3) E′ ←∅;
(4) for e= uv ∈E do
(5) if f(e)< c(e)
(6) then E′ ←E′ ∪ {e}; tp(e)← 1; c′(e)← c(e)− f(e);

w(e)← γ(e) fi
(7) if b(e)< f(e)
(8) then e′ ← vu; E′ ←E′ ∪ {e′}; tp(e′)← 2;

c′(e′)← f(e)− b(e); w(e′)←−γ(e) fi
(9) od

(10) H ← (V,E′);
(11) MEANCYCLE (H,w;μ,C,acyclic);
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(12) if acyclic = false and μ < 0
(13) then δ←min{c′(e) : e ∈C};
(14) for e ∈C do
(15) if tp(e) = 1 then f(e)← f(e) + δ else f(e)← f(e)− δ fi
(16) od
(17) fi
(18) until acyclic = true or μ≥ 0
(19) fi

Here the procedure MEANCYCLE is the algorithm described in Exer-
cise 10.6.13. As usual, we refer to a change of f along a cycle C as in steps
(14) to (17) above as cancelling the cycle C.

The rest of this section is devoted to showing that Algorithm 10.9.1 is
indeed polynomial. We now think of the original network (G0, b, c) and the
corresponding circulations as transformed into the form (G,c) described in
Construction 10.6.1 and Algorithm 10.7.1, so that we may apply the results
of Sects. 10.6 and 10.7. Even though the MMCC-algorithm does not use the
technique of successive approximation, we nevertheless need the theory of
ε-optimality for analyzing it.

We saw in Sect. 10.6 that each circulation f is ε-tight for some value ε≥ 0;
let us denote this number by ε(f). The following lemma shows that cancelling
a cycle of minimum cycle mean does not increase this parameter.

Lemma 10.9.2 Let f be an ε-tight circulation on (G,c) with respect to the
cost function γ, where ε > 0. Moreover, let C be a directed cycle of minimum
cycle mean in the residual graph Gf . Then the circulation g obtained by
cancelling C satisfies ε(g)≤ ε(f) = ε.

Proof Let p be a potential corresponding to f . Then, by Lemma 10.7.5,

γp(u, v) =−ε for all uv ∈C. (10.16)

We obtain the residual graph Gg from Gf by deleting some edges of C and
adding some edges which are antiparallel to edges of C. Now (10.16) implies

γp(v,u) =−γp(u, v) = ε > 0

for edges uv ∈C, so that the condition γp(u, v)≥−ε also holds for all edges
uv in Gg . Hence g is ε-optimal with respect to the potential p, and therefore
ε(g)≤ ε= ε(f). �

Now it is possible that cancelling C does not lead to an improvement of
the tightness: ε(g) = ε(f) in Lemma 10.9.2 may occur. However, the next
lemma shows that this cannot happen too often.
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Lemma 10.9.3 Let f be a circulation on (G,c) which is ε-tight with respect
to the cost function γ. Suppose g is a circulation obtained from f by cancelling
|E| cycles of minimum cycle mean. Then

ε(g)≤
(

1− 1

|V |

)

ε.

Proof Let p be a potential corresponding to f :

γp(u, v)≥−ε for all uv ∈Ef .

As we saw in the proof of Lemma 10.9.2, all edges added to Gf when can-
celling a cycle of minimum cycle mean have positive reduced cost γp(u, v).
On the other hand, at least one edge e (for which the minimum in step (14)
of Algorithm 10.9.1 is achieved) is deleted from Gf . Also note that p always
remains unchanged. Now we distinguish two cases.

Case 1 : All |E| cycles which were cancelled to obtain g consist of edges e
with γp(e)< 0 only. Then all edges added to Gf by these cancellations have
positive reduced cost. As at least one edge with negative reduced cost is
deleted for each cancellation, only edges with nonnegative reduced cost can
remain in the residual graph after these |E| cancellations. Therefore, g is
optimal: ε(g) = 0, and the assertion holds.

Case 2 : At least one of the cycles cancelled contains some edge with nonneg-
ative reduced cost with respect to p. Let C be the first cancelled cycle with
this property. All edges e added to Gf before C was cancelled have positive
reduced cost γp(e). Hence we have

γp(e)≥−ε for all e ∈C and γp(e0)≥ 0 for some edge e0 ∈C.

Therefore

m(C) =
1

|C|
∑

e∈C

γ(e) =
1

|C|
∑

e∈C

γp(e)

≥ −(|C| − 1)ε

|C| ≥ −
(

1− 1

|V |

)

ε.

Let h denote the circulation which has been changed by cancelling C. Then

μ(Gh, γ) =m(C)≥−
(

1− 1

|V |

)

ε,

and hence, by Theorem 10.6.10,

ε(h) =−μ(Gh, γ)≤
(

1− 1

|V |

)

ε.
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Repeated application of Lemma 10.9.2 yields ε(g)≤ ε(h), which implies the
assertion. �

We need one further simple lemma.

Lemma 10.9.4 Let m be a positive integer, and let (yk)k∈N be a sequence of
nonnegative reals satisfying the condition

yk+1 ≤
(

1− 1

m

)

yk for all k ∈N.

Then yk+m ≤ yk/2 for all k ∈N.

Proof By hypothesis,

yk ≥ yk+1 +
yk+1

m− 1
for all k,

so that

yk ≥ yk+1 +
yk+1

m− 1

≥
(

yk+2 +
yk+2

m− 1

)

+
yk+1

m− 1
≥ yk+2 +

2yk+2

m− 1

≥ · · · ≥ yk+m +
myk+m

m− 1
≥ 2yk+m. �

Theorem 10.9.5 Algorithm 10.9.1 determines in O(|V ||E|2 log |V |) itera-
tions an optimal circulation on (G,b, c).

Proof Put k = |V ||E|�log |V |+1� and divide the iterations of Algorithm 10.9.1
into phases of k successive cancellations. We claim that at least one further
edge of G becomes ε-fixed (for some appropriate ε) during each phase. This
yields the assertion, because the algorithm has to terminate at the latest
after all edges have become ε-fixed.

Now let f0 and fk be the circulations constructed directly before the first
cancellation and directly after the last cancellation of some phase, respec-
tively. Put ε = ε(f0) and ε′ = ε(fk), and let p be a potential corresponding
to fk:

γp(v,w)≥−ε′ for all vw ∈Gfk .

By Lemma 10.9.3, any |E| successive cancellations decrease ε(f) by at least
a factor of 1− 1/|V |. Using Lemma 10.9.4, this implies that any |V ||E| suc-
cessive cancellations decrease ε(f) by at least a factor of 1/2. Therefore,

ε′ ≤ ε×
(
1

2

)�log |V |+1�
≤ ε

2|V | ,
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so that

−ε≤−2|V |ε′. (10.17)

Now let C be the cycle which is used first during the phase under considera-
tion: f0 is changed cancelling C. Then, by Theorem 10.6.10,

m(C) =−ε in (Gf0 , γ).

By Lemma 10.6.3, also m(C) = −ε in (Gf0 , γp), and hence C contains an
edge e with γp(e)≤−ε. Then (10.17) yields γp(e)≤−2|V |ε′, and e is ε′-fixed
by Corollary 10.7.4. On the other hand, e was not ε-fixed, as e is contained
in the cycle C which was cancelled when f0 was changed. Thus at least one
further edge becomes δ-fixed (for some appropriate value of δ) during each
phase. �

Exercise 10.9.6 Assume that the cost function γ is integral. Show that
Algorithm 10.9.1 terminates after O(|V ||E| log(|V |C)) iterations, where

C =max
{∣
∣γ(u, v)

∣
∣ : uv ∈E

}
.

Using Exercise 10.6.13, Theorem 10.9.5, and Exercise 10.9.6 yields the
following result.

Theorem 10.9.7 Algorithm 10.9.1 determines in O(|V |2|E|3 log |V |) steps
an optimal circulation on (G,b, c). If γ is integral, the complexity is also
bounded by O(|V |2|E|2 log(|V |C)).

The reader may find a more detailed examination of the number of can-
cellations needed by Algorithm 10.9.1 in [RadGo91]. Using appropriate data
structures and making some modifications in the way the negative cycles
are chosen, the bounds of Theorem 10.9.7 can be improved: one may obtain
a complexity of O(|V ||E|2(log |V |)2); see [GolTa89]. There also exist poly-
nomial algorithms which work with cancellations of cuts: these algorithms
are—in the sense of linear programming—dual to the algorithms where cy-
cles are cancelled; see [ErvMcC93].

10.10 Some Further Problems

In this section, we discuss some further problems which can be dealt with
using optimal circulations or optimal flows. We will also mention some gen-
eralizations of the problems treated so far; however, we have to refer to the
literature for more information on most of these problems. An even more
general version of the following problem will be studied in detail in Chap. 11.
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Example 10.10.1 (Transshipment problem) Let G= (V,E) be a digraph with
a nonnegative capacity function c : E → R and a nonnegative cost function
γ : E → R. Moreover, let X and Y be disjoint subsets of V ; we call the
elements of X sources and the elements of Y sinks, as in Sect. 7.7. Again, we
associate with each source x a supply a(x) and with each sink y a demand
b(y), where the functions a and b are nonnegative. As in the supply and
demand problem of Sect. 7.7, we require a feasible flow13 on (G,c): a mapping
f : E → R satisfying conditions (ZF 1) to (ZF 4) of Sect. 7.7. Moreover, we
want to find an optimal flow among all feasible flows; that is, a flow of minimal
cost with respect to γ. This transshipment problem is the weighted version
of the supply and demand problem. Again, we add a new source s, a new
sink t, all edges sx with capacity c(sx) = a(x), and all edges yt with capacity
c(yt) = b(y). We also extend the cost function γ by putting γ(sx) = 0 and
γ(yt) = 0. Then an optimal flow of value

∑
b(y) on the resulting flow network

N gives a solution for our problem. To find such a solution, we may, for
example, use the algorithm of Busacker and Gowen presented in Sect. 10.5.

Example 10.10.2 (Transportation problem) A transshipment problem for
which V =X

.
∪ Y holds is called a transportation problem. In this case, there

are no intermediate nodes: each vertex of V is either a source or a sink. If G
is the complete bipartite graph on X

.
∪ Y , the problem is called a Hitchcock

problem; see [Hit41]. Note that the assignment problem of Example 10.1.4 is
a special Hitchcock problem: it is the case with |X|= |Y | where all capacities
and all the values a(x) and b(y) are equal to 1.

We have seen that the Hitchcock problem is a very special case of the
problem of finding optimal flows on a flow network. Conversely, it can be
shown that the general problem of finding optimal flows can be transformed
to a Hitchcock problem (even without capacity constraints) on an appropriate
bipartite graph; see, for example, [Law76, §4.14].

The transshipment problem (with or without capacity constraints) is often
solved in practice using a special version of the simplex algorithm of linear
programming, namely the so-called network simplex algorithm which we will
study in the next chapter. A very good presentation of this method can also
be found in part III of [Chv83], a book that is recommendable in general.14

Although the network simplex method can be rather bad when applied to
certain pathological networks [Zad73a], it is spectacularly successful in prac-
tice. As Chvátal puts it: ‘It takes just a few minutes to solve a typical problem
with thousands of nodes and tens of thousands of arcs; even problems ten

13Sometimes, there are upper bounds placed also on the capacities of the edges.

14The author of the present book thinks that the most intuitive way to become acquainted

with problems of combinatorial optimization is the presentation in a graph theory context;

however, the theory of linear programming is indispensable for further study.
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times as large are solved routinely.’ Meanwhile, polynomial variants of the
network simplex method have been found; see [OrlPT93, Orl97], and [Tar97].

Next, we mention some generalizations of the flow problems treated in this
book. In Sect. 12.2, we consider multiterminal problems, where we want to
determine the maximal flow values between all pairs of vertices; usually, the
graph underlying such a network is assumed to be undirected.

More about the following three generalizations can be found in the text-
books [ForFu62, GonMi84], and [AhuMO93].

First, for some practical problems, it makes sense to consider flows with
gains or losses: the quantity of flow entering an edge at vertex u is changed
by a factor mu while passing through that edge. This may serve as a model
for exchanging currencies,15 or for losses in a water supply system due to
evaporation. An early weakly polynomial algorithm for this problem can be
found in [GolPT91]; see also [GolJL02] and [ResWi07] for recent algorithms
based on the dual and primal simplex methods, respectively.

Second, one also considers networks on which different flows occur simul-
taneously without intermingling (multicommodity flows); see, for example,
[Lom85]. A first polynomial algorithm for this problem was given by Tar-
dos [Tar86]. See also [CosLR05] for a recent survey in the case of integer
capacities.

Last but not least, a problem of considerable practical interest is the study
of dynamic flows and, in particular, quickest flows: here transversal times are
assigned to the edges. This problem is obviously relevant for traffic networks.
It can be reduced to flows in the usual sense: flows over time are solved in
time-expanded networks that contain one copy of the original network for
each discrete time step; see [ForFu58a, ForFu62]. However, this reduction is
not at all efficient, because of the enormous size of the time-expanded net-
work. The search for more efficient methods is an interesting and active re-
search area. We mention just one more recent paper in this direction, namely
[FleSk07], where—among other results—fully polynomial-time approxima-
tion schemes for the NP-hard quickest min-cost and multicommodity flow
problems are obtained; this paper also contains an extensive list of further
references.

A detailed discussion how actual problems from the practice of opera-
tions research may be modelled as network problems is beyond the scope of
this book; at least, we have seen a few examples already. Modelling is an
extremely important—and by no means trivial—task, and it has to be ac-
complished before any of the mathematical algorithms presented in this book
can be applied. We recommend the monograph [GlKP92] for more about this
subject, and the references given there for further actual case studies. An
interesting more recent application is in [JarKR93]: two models for deciding
between delays and cancellations of flights when planes cannot be used as

15[Gro85, §8.2] shows an actual example where a chain of transactions resulting in a gain
occurs.
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scheduled. In particular, an optimal flow problem is solved in this context
using the algorithm of Busacker and Gowen.

10.11 An Application: Graphical Codes

We close this chapter with an application of the material covered in Sect. 10.3
to coding theory: the cycle space of a graph gives rise to an (often interest-
ing) binary code. Our presentation is based on the author’s tutorial paper
[JunVa96].

We begin with a brief introduction to codes; the interested reader may
consult any good text book on coding theory for more details; see, for in-
stance, [MacSl77, vanLi99] or [Bie05]. In the most general sense, a code of
length n is just a subset of some set of the form Sn, where S is any finite
set, the underlying alphabet. So we once again consider words of length n
over S, which are called codewords in this context. In most applications, one
uses binary codes, that is, the alphabet is S = {0,1}; we shall mostly restrict
ourselves to this case.16

The idea of coding is now quite simple: one first transforms the data to
be transmitted (or stored) into binary strings of a fixed length k. Let us
explain this via an example. Suppose we want to transmit (or store) an im-
age digitally. Then we would discretize the image by dividing it into small
squares called pixels and—in the simple case of black and white pictures—
associate with each pixel a value between, say, 0 and 63 measuring the dark-
ness of the pixel: 0 would stand for white, 63 for black. Each such value then
corresponds—in binary representation—to a 6-tuple over S = {0,1}, and we
can represent the entire image as a sequence of such 6-tuples.

However, just transmitting or storing these 6-tuples would not work. For
example, when transmitting an image from a satellite to earth, the weak

16In everyday language, a code usually means a way of secret communication: for instance,

one speaks of breaking a code. However, the corresponding part of mathematics is cryp-

tography, whereas coding theory deals with the problem of ensuring that information can
be recovered accurately after transmission or storage, in spite of possible loss or corrup-

tion of data; there is no aspect of secrecy involved. To use the words of Claude Shannon

[Sha48a, Sha48b], the founder of information theory (who, by the way, also put cryptog-

raphy onto a sound mathematical basis in his paper [Sha49b]), of which coding theory is

one part:

The fundamental problem of communication is that of reproducing at one point

either exactly or approximately a message selected at another point.

Codes in this sense constitute a spectacularly successful part of applied mathematics:

satellite images, CD’s, DVD’s, digital TV, mobile phones all need codes (to mention just a

few examples). In this context, we also recommend another introduction to coding theory,

namely [VanOo89], where the reader may find a nice description of the mathematical

principles underlying compact discs.
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signal received would certainly contain quite a few errors, and this would
be fatal. Just one error could, for instance, transform the 6-tuple (000000)
representing white into (100000) representing a medium dark gray! Of course,
similar problems arise in digital media such as compact discs, where dust and
scratches lead to incorrect readouts.

To cope with these problems, one needs to introduce redundancy. For this
purpose one chooses an injection α from S6 into S32, to give a concrete
example.17 The images of 6-tuples under α are the codewords. If one receives
a signal which is a codeword, it is decoded into its pre-image. If the received
word w is not a codeword, one chooses a codeword which differs from w in
the smallest possible number of entries and decodes w into its pre-image, as
it is more likely that a bit is transmitted correctly than that it is changed.
Clearly, it is now important to select the injection α in a clever way: any
two codewords should differ from one another in a large number of positions.
Formally, we arrive at the following definition.

Definition 10.11.1 Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be any two
words of length n over the alphabet S. Then the function d defined by

d(x,y) =
∣
∣{j = 1, . . . , n : xj 
= yj}

∣
∣

is called the Hamming distance on Sn. In case x ∈ C ⊆ Sn and d(x,y) = e,
we say that y arises from the codeword x by e errors and refer to the set
E = {j = 1, . . . , n : xj 
= yj} as the error pattern.18 Moreover, one calls the
distance d(x,0) of a word x from the zero vector 0 the weight w(x) of x.

Exercise 10.11.2 Verify that the Hamming distance indeed satisfies the
axioms in Sect. 3.2, so that (Sn, d) is a finite metric space.

It is usual to define the following parameters of a code C: the length n, the
cardinality M , the minimum distance d—that is, the minimal value d(x,y),
taken over all pairs of distinct codewords—and the size q of the underlying
alphabet S. One then speaks of an (n,M,d, q) code. The importance of the
parameter d is due to the following simple but fundamental result:

Lemma 10.11.3 Let C be a code with minimum distance d. Assume that
some codeword x is transmitted, and that the word y received arises from x
by e errors, where 2e+1≤ d. Then x can be recovered from y: it is the unique
codeword having minimal distance from y.

17This is precisely the approach used for transmitting pictures from one of the early satel-
lites, namely Mariner 9. The injection chosen in this case made it possible to correct up
to seven errors per codeword, which was sufficient to make an incorrect decoding very
unlikely; see [Pos69] for details.

18Note that we may reconstruct x uniquely from y and the error pattern E, provided that
we are in the binary case.
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Proof Assume otherwise. Then there exists a codeword z 
= x satisfying
d(z,y)≤ d(x,y). But then, by Exercise 10.11.2,

d(x,z)≤ d(x,y) + d(y,z)≤ 2d(x,y) = 2e < d,

a contradiction. �

In view of Lemma 10.11.3, a code with minimum distance d = 2t+ 1 or
d = 2t + 2 is also called a t-error correcting code. It is now clear that one
would like, for fixed values of n and q, say, to make both d and M large:
we want to be able to correct many errors, but we also want to be able to
encode many messages. Of course, these two goals are contradictory. Hence
it is of interest to study the function A(n,d, q) defined as the largest possible
size M of an (n,M,d, q) code; the determination of this function is one of the
major problems in coding theory. We will not deal with this problem here in
general, but restrict attention to a special class of codes which is of particular
practical importance.

A code is called linear if it is a linear subspace of a vector space V = F n,
where F is a finite field.19 In particular, a binary linear code is a subspace of
a vector space over Z2. If a code C of length n over GF (q) is a k-dimensional
subspace, it will consist of M = qk codewords; it is customary to denote
such a code as an [n,k, d; q] code. In the binary case, it is usual to omit the
parameter q and simply speak of an [n,k, d] code. Note that we may now
simplify the determination of the minimum distance d by just computing
the minimum weight instead, that is, the minimal value w(x), taken over all
codewords; this follows from the obvious fact d(x,y) =w(x− y).

As for arbitrary codes, we would like to find linear codes which, for fixed
n and q, have large k and d. Again, we cannot deal with this problem in any
systematic way; for instance, we will entirely ignore the fundamental problem
of finding upper bounds for k when we also fix d. What we will do is using
the cycle spaces of graphs to construct some interesting (and, often, actually
very good) binary linear codes.

Thus let G = (V,E) be a graph with n vertices and m edges. An even
subgraph of G (sometimes simply called an even graph if there is no danger
of confusion) is a spanning subgraph of G in which each vertex has even degree
(where degree 0 is allowed). Similarly, an odd subgraph of G is a spanning
subgraph in which each vertex has odd degree. It is easy to check that the

19Finite fields are an important tool in many applications, not just in coding theory,

but also in cryptography, signal processing, geometry, and design theory, as well as in
algebraic graph theory and matroid theory, to mention just some examples. It is known

that the cardinality of a finite field has to be a prime power q, and that there is—up to
isomorphism—exactly one finite field with q elements (for every prime power q), which is
usually denoted by GF (q). For background on finite fields, we refer the reader to the stan-

dard text book [LidNi94] or to [McEl87] for an introduction requiring very little algebraic
knowledge; both of these books also discuss some interesting applications.
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set of all even subgraphs of G is closed under the symmetric difference of
subgraphs, where spanning subgraphs are simply considered as subsets of E.
We will denote this set by CE(G) and consider it as a binary linear code.

To this purpose, we use an approach similar to that of Sect. 10.3 and view
the set of all spanning subgraphs of G as the binary vector space V (m,2)
of all m-tuples with entries from Z2: we consider the coordinate positions to
be indexed by the edges of G (in some fixed ordering); then each spanning
subgraph is associated with the corresponding binary characteristic vector
of length m which has an entry 1 in position e if and only if e belongs to
the given subgraph (and 0 otherwise). Note that CE(G) then corresponds
to a subspace of V (m,2), as the symmetric difference of spanning subgraphs
corresponds to the mod 2 addition of their incidence vectors; by abuse of
notation, we will denote this subspace again by CE(G). Thus CE(G) can
indeed be viewed as a binary linear code, an approach going back to work of
Bredeson and Hakimi [BreHa67, HakBr68].

One calls CE(G) the even graphical code associated with the graph G; for
the sake of simplicity, we will usually assume that G is connected. As it turns
out, it is not too difficult to determine the parameters of a graphical code.
We first observe that CE(G) is just the binary analogue of the cycle space
of G considered in Sect. 10.3, as any even subgraph H of G is the disjoint
union of Eulerian subgraphs on its connected components, by Theorem 1.3.1.
The reader should have no problem establishing the following analogue of
Theorem 10.3.6:

Exercise 10.11.4 Let G be a digraph with n vertices, m edges, and p
connected components. Show that the vector space CE(G) has dimension
ν(G) =m− n+ p.

Theorem 10.11.5 Let G be a connected graph with m edges on n vertices,
and let g be the girth of G. Then CE(G) is a binary [m,m− n+ 1, g]-code.

Proof In view of Exercise 10.11.4, it only remains to determine the minimum
distance d of CE(G). It is clear that the minimum weight of a vector in
CE(G) is the smallest cardinality of a cycle in G, that is the girth g of G.
(Recall that we have already seen this important graph theoretic parameter
in Sect. 1.5.) �

We remark that the dual of CE(G)—that is, the orthogonal complement in
V (m,2) with respect to the standard inner product—is the binary analogue
of the bond space of G studied in Exercise 10.3.8. Thus G also gives us a
second type of binary code; however, in general, such codes seems to be of
inferior quality, see [HakFr65].

Let us give a few examples illustrating the construction of binary codes
according to Theorem 10.11.5:
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Example 10.11.6 The complete graph Kn gives rise to a binary linear code
with parameters [n(n − 1)/2, (n − 1)(n − 2)/2,3]: we have m = n(n − 1)/2
edges, n vertices, and the girth is 3.

We shall return to these examples from time to time. However, our main
example will be the Petersen graph (see Fig. 1.12) and its code; this example
will be studied in more detail.

Example 10.11.7 Let G be the Petersen graph. Then P =CE(G) is a binary
linear [15,6,5] code: G has m= 15 edges, n= 10 vertices, and the girth is 5.

The Petersen code is in fact one of the standard examples of graphical
codes; it is also used in the book of van Lint and Wilson [vanLiWi01]. In
coding theory, one is often interested in the weight enumerator of a code,
which is defined as the polynomial

AC(x) =A0 +A1x+A2x
2 + · · ·+Anx

n,

where Ai is the number of codewords of weight i. We shall now determine
the weight enumerator of the Petersen code P .

Example 10.11.8 The Petersen code has weight enumerator

AP (x) = 1+ 12x5 + 10x6 + 15x8 + 20x9 + 6x10. (10.18)

We will establish this assertion by describing all codewords of P . To this end,
it is helpful to recall that the automorphism group of the Petersen graph G is
both vertex- and edge-transitive; see Exercise 1.5.12 and its solution. We shall
also make use of the representation of the Petersen graph given in Fig. B.4;
in particular, we recall that two vertices are adjacent if and only if their
labelling 2-subsets of {1, . . . ,5} are disjoint. We can now describe the words
in P .

The codewords of weight 5 are necessarily 5-cycles. One easily checks that
a fixed edge is in exactly four such cycles; hence we have altogether 4×15/5 =
12 codewords of weight 5. Two cycles through the edge {15,23} are indicated
in Fig. 10.5; a third one is obtained from the cycle having dashed edges by
symmetry, and the final one is the outer cycle. A similar argument shows that
there are exactly four 6-cycles through a fixed edge and hence altogether ten
6-cycles.

A codeword of weight eight has to be an 8-cycle, since there are no 4-
cycles; these can be constructed as follows. Given an edge e of G, select the
two edges disjoint to e for each of the four vertices adjacent to one of the
end vertices of e; see the heavy edges in Fig. 10.6, where e is the dashed
edge. These eight edges form an 8-cycle. As the automorphism group of G is
edge-transitive, we obtain exactly fifteen 8-cycles in this way.
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Fig. 10.5 5-cycles in the

Petersen graph

Fig. 10.6 8-cycles in the

Petersen graph

Similarly, a codeword of weight nine has to be a 9-cycle; these can be
described as follows. Given a vertex v of G, select the two edges not through
v for each of the three neighbors of v; see the heavy edges in Fig. 10.7,
where v is the fat vertex. These six edges can then be joined to a 9-cycle
in exactly two ways which are indicated by the dashed edges and the gray
edges, respectively. As the automorphism group of G is vertex-transitive, we
obtain exactly twenty 9-cycles in this way.

Finally, a codeword of weight 10 has to be the union of two disjoint 5-
cycles; each edge is in exactly four such codewords, giving altogether six
words of weight 10. For the edge {15,23}, the most obvious codeword of this
type is the union of the outer cycle with the inner pentagram. A less obvious
codeword of weight 10 through this edge is indicated in Fig. 10.8, and the
remaining two codewords of weight 10 through the edge {15,23} are obtained
via rotations.

Thus we have obtained 63 codewords in P ; the final one is, of course, the
empty subgraph.
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Fig. 10.7 9-cycles in the

Petersen graph

Fig. 10.8 Disjoint

5-cycles in the Petersen
graph

Next, we shall discuss a problem first investigated in [HakBr68], namely the

possibility of augmenting an even graphical code to a code of larger dimension

while keeping the minimum distance unchanged. More precisely, we shall be

interested in augmenting a code CE(G) by adjoining further subgraphs of

G which will give a particularly simple and intuitive way of achieving the

augmentation; any such code will be called a graphical code based on G. This

is the approach proposed in [JunVa97].

Since any subgraph not yet in CE(G) necessarily contains vertices of odd

degree, we first require information about the odd degree patterns of sub-

graphs of G. We may view these as binary vectors of length n as follows:

we label the coordinate positions of V (n,2) with the vertices of G (in an

arbitrary but fixed way) and put an entry 1 in position v if and only if v has

odd degree in the given subgraph. The following auxiliary result is simple but

fundamental for our problem.
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Lemma 10.11.9 Let G be a connected graph on n vertices. Then the odd
degree patterns of subgraphs of G form the subspace Ve(n,2) of V (n,2) con-
sisting of all even weight vectors in V (n,2).

Proof By Lemma 1.1.1, the number of vertices of odd degree in any given
graph is even; hence only even weight vectors can occur. Next, note that
the mod 2 sum of the odd degree patterns associated with two subgraphs H
and H ′ of G is just the odd degree pattern associated with the symmetric
difference of these subgraphs. Hence the odd degree patterns form a subspace
of V (n,2).

It remains to show that any subset W of even cardinality 2k of the vertex
set V can indeed serve as an odd degree pattern. To see this, split W into k
pairs, say {xi, yi} with i= 1, . . . , k, and select an arbitrary path Pi with end
vertices xi and yi for i= 1, . . . , k. Then the symmetric difference of these k
paths has odd degree pattern W . �

Of course, it is also of interest to exhibit an efficient method for actually
constructing a spanning subgraph with a prescribed odd degree pattern. This
can be easily done by first conducting a breadth first search on G, say with
start vertex s. As we saw in Sect. 3.3, this yields (in time O(m)) a spanning
tree for G such that, for any given vertex v, the unique path from v to s in
T is actually a shortest path from v to s in G. Now let W be any desired
odd degree pattern of cardinality 2k; then we may just take the symmetric
difference of the 2k paths in T joining the vertices in W to s to obtain a
subgraph S with the correct odd degree pattern.

After these preparations we can solve the problem of augmenting a given
even graphical code C = CE(G) with parameters [m,m− n+ 1, g] based on
a graph G about which we do not assume to have any further structural
information beyond the parameters n, m, and g. Let S be any subgraph of
G. We want to check if we may adjoin S to C without causing the minimum
distance of the code C∗ generated by C and S to decrease.

Let W be the odd degree pattern of S, and let w be the weight of W .
We require a bound on the weight w(H +S) of an arbitrary subgraph H +S
with H ∈C (which, of course, likewise has odd degree pattern W ). Note that
H +S might just consist of w/2 independent edges—that is, H +S might be
a matching of size w/2 in G—since we assume to have no extra knowledge
about G; this obviously gives the smallest conceivable weight w. Hence, if we
want to be certain that C∗ still has minimum weight g, we have to assume
the inequality w ≥ 2g. Clearly, this necessary condition on the choice of S is
also sufficient, proving the following result due to [JunVa97].

Lemma 10.11.10 Consider an even graphical code C =CE(G) with parame-
ters [m,m−n+1, g] based on the connected graph G. Then C can be extended
to a graphical code C∗ with parameters [m,m−n+2, g] provided that n≥ 2g.
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Fig. 10.9 A perfect

matching of the Petersen
graph

One may obtain such a code by adjoining to C any subgraph S with odd de-
gree pattern W of weight w ≥ 2g as a further generator. Thus the resulting
code consists of all even subgraphs of G together with all subgraphs with odd
degree pattern W .

Example 10.11.11 The Petersen graph satisfies the condition of Lem-
ma 10.11.10 with equality. In this simple case, an odd subgraph can be found
by inspection; for instance, we may take the perfect matching of consisting
of the five spoke edges, see Fig. 10.9. Alternatively, we might as well use all
of E, since all vertices have odd degree, namely 3.

Hence we may enlarge the Petersen code P to a [15,7,5] code P ∗ by
adjoining the complements of the subgraphs in P—that is, in terms of binary
vectors, by taking the subspace of V (15,2) generated by P and the all-one
vector. In view of Example 10.11.8, the weight enumerator of P ∗ is

AP∗(x) = 1+ 18x5 + 30x6 + 15x7 + 15x8 + 30x9 + 18x10 + x15; (10.19)

it would be a useful exercise for the reader to visualize the odd subgraphs in
P ∗ for himself.

Example 10.11.12 The complete graph on six vertices leads to a code C with
parameters [15,10,3]; see Example 10.11.6. Again, Lemma 10.11.10 applies,
and we may augment this code to a [15,11,3] code C∗.

It is now natural to try to go on augmenting the even graphical codes
by more than one dimension (say, by k dimensions). Again, Lemma 10.11.10
gives the key ingredient needed. Clearly, what is required is a suitable collec-
tion of k linearly independent subgraphs S1, . . . , Sk with odd degree patterns
of weight ≥ 2g as further generators. In order to be compatible with each
other, the sum of the odd degree patterns of any non-empty subset of these
k subgraphs should also have weight at least 2g, since their symmetric dif-
ference is a subgraph containing vertices of odd degree.
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Hence, if we write C∗ as the direct sum of C with the codeD of dimension k
generated by S1, . . . , Sk, the odd degree patterns of all non-empty subgraphs
in D should have weight at least 2g. In other words, the odd degree patterns
associated with the words in D should themselves form an (even) binary
code O with minimum distance ≥ 2g; one calls O the odd pattern code. We
have proved the following theorem likewise due to [JunVa97]:

Theorem 10.11.13 Consider an even graphical code C = CE(G) with pa-
rameters [m,m− n+ 1, g] based on the connected graph G. Then C can be
extended to a graphical code C∗ with parameters [m,m−n+k+1, g] provided
that there exists an even binary [n,k,2g] code O. One may obtain such a code
by adjoining to C any k linearly independent subgraphs S1, . . . , Sk with odd
degree patterns forming a basis for O as further generators.

Example 10.11.14 Let G be the complete graph on 16 vertices; then C =
CE(G) is a binary [120,105,3] code, by Example 10.11.6. To apply Theo-
rem 10.11.13, we require a (preferably large) even binary [16, k,6] code O.

We may obtain a suitable code by using the so-called parity check extension
of the code P ∗ constructed in Example 10.11.11. This standard construction
from coding theory proceeds as follows: we append a further coordinate to
a given binary code D with odd minimum distance, in this case to D = P ∗.
Then we extend the codewords of D by appending 0 to words of even weight,
and 1 to words of odd weight; thus the extended codewords all have even
weight. Note that this construction keeps the dimension of D, adds 1 to the
length, and raises the minimum distance by 1.

The code O constructed in this way from P ∗ has parameters [16,7,6].
Hence Theorem 10.11.13 implies the existence of a graphical [120,112,3]
code C∗. This example shows how graphical codes may be constructed re-
cursively by using smaller graphical codes (or parity check extensions of such
codes) for the required odd pattern code O.

It is not difficult to realize that a better graphical augmentation than that
guaranteed by Theorem 10.11.13 may be possible if one makes use of the
precise structure of G. For example, if an odd degree pattern W of weight w
is actually an independent subset of G, we obviously need at least w edges
to cover the w vertices in W (and to produce the given odd degree pattern
W ). This idea leads to the following result also proved in [JunVa97]; we shall
leave the details to the reader.

Theorem 10.11.15 Consider an even graphical code C = CE(G) with pa-
rameters [m,m− n+ 1, g] based on the connected graph G and assume that
V1, . . . , Vc is a partition of the vertex set V into independent sets with cardi-
nalities n1, . . . , nc, respectively. Then C can be extended to a graphical code
C∗ with parameters [m,m−n+1+(k1+ · · ·+kc), g] provided that there exist
even binary [ni, ki, g] codes Oi for i= 1, . . . , c. One may obtain such a code
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C∗ by adjoining to C (for i= 1, . . . , c) arbitrary sets of ki linearly indepen-
dent subgraphs of G with odd degree patterns contained in Vi and forming a
basis for Oi (when considered as binary vectors of length ni indexed with the
vertices in Vi) as further generators.

The main problem for applying Theorem 10.11.15 consists in finding a
suitable partition of the vertex set of G into independent sets. This may,
of course, be viewed as a coloring problem: color V in such a way that no
edge has both its end vertices colored with the same color. This requirement
severely restricts the applicability of Theorem 10.11.15, since it is well-known
that determining an optimal such partition—that is, finding the chromatic
number χ(G) of G—is an NP-hard problem for χ(G) ≥ 3; see [Kar72]. On
the other hand, the graphs with chromatic number 2 are just the bipartite
graphs, by Example 9.1.1; also, finding a bipartition is easy, by Theorem 3.3.7.
Accordingly, Theorem 10.11.15 is mainly useful for augmenting even graphical
codes based on bipartite graphs (which, of course, implies an even value of g).

Let us give an example related to a famous class of codes, the so-called ex-
tended binary Hamming codes. These are codes with parameters of the form
[2h,2h−h− 1,4]; they exist for every integer h≥ 2 and are actually uniquely
determined by their parameters (up to a permutation of the coordinate posi-
tions); moreover, they are the largest possible codes for the given length and
minimum distance 4.

Example 10.11.16 Consider the complete bipartite graph G = Kp,p, where
p = 2a. By Theorem 10.11.5, C = CE(G) is a [22a,22a − 2a+1 + 1,4] code.
We apply Theorem 10.11.15 with c = 2 and n1 = n2 = 2a. Then we may
use for both O1 and O2 the extended binary Hamming code with parameters
[2a,2a−a−1,4], resulting in a graphical code C∗ with parameters [22a,22a−
2a− 1,4]. By the remark above, C∗ is in fact the extended binary Hamming
code with these parameters. Hence the extended binary Hamming code with
parameters [2h,2h − h− 1,4] is graphical for all even values of h.

Exercise 10.11.17 Prove that the extended binary Hamming code with
parameters [2h,2h − h− 1,4] is graphical also for all odd values of h≥ 5, by
using a similar construction as in Example 10.11.16.

We remark that the constructions given in Theorems 10.11.13 and 10.11.15
generalize earlier constructions proposed by Hakimi and Bredeson [HakBr68].
However, it is not at all obvious from their paper whether or not the codes
constructed there are graphical; to see this requires some work. It turns out
that the methods of [HakBr68] produce exactly those codes which can be
obtained by recursive applications of Theorems 10.11.13 and 10.11.15 when
the odd pattern codes are restricted to even graphical codes and to smaller
graphical codes already constructed in this way; see [JunVa97] who have
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called such codes purely graphical . In this context, we mention another inter-
esting result obtained in [JunVa97], which actually provides an alternative
construction for the extended binary Hamming codes.

Exercise 10.11.18 Prove that the extended binary Hamming codes are
purely graphical codes. Hint: Use Example 10.11.16 and Exercise 10.11.17
for a recursive construction of codes with the parameters in question.

The preceding result is some indication that graphical codes can have good
parameters; more evidence for this claim is given in [JunVa97]. Of course,
one needs suitable graphs to start the construction. Again, it is no trivial
task to find a graph on a desired number of edges with a large girth. For
instance, it is known that in a graph with minimum degree δ ≥ 3, the girth can
only be logarithmic in the number of vertices; we refer the reader to [Bol78,
Sect. III.1] for more information on this topic. Hence one should usually
start with graphs having (many) vertices of degree two. As an illuminating
exercise, the reader might try to devise a suitable construction method for
such graphs; an algorithm solving this problem may be found in [Hak66].

There is a further problem that needs to be addressed: if graphical codes
are ever to become practically competitive, one certainly needs an efficient
encoding and decoding procedure. It is not enough to just have a good code,
one needs to be able to actually do the necessary computations! As always
with linear codes, encoding can be done easily, using a so-called generator ma-
trix; we refer the reader to the text books on coding theory already cited. So
the crucial question is how to decode a graphical code. We note that decoding
an arbitrary linear code is an NP-hard problem, by a result of [BerMT94].
Fortunately, algorithmic graph theory and combinatorial optimization can
also be used to solve this problem for graphical codes. We will postpone this
to Chap. 14, as we do net yet have the relevant notions at our disposal.

Let us remark that the relationship between graph theory and coding
theory discussed in the present section is not a one-way street: it is also
possible to use this approach to obtain interesting results about graphs. By
viewing the cycle space and the bond space of a graph as binary linear codes,
one can obtain a very short and elegant proof of Read’s theorem [Rea62]
giving the generating function for the number of Eulerian graphs with n
vertices and an analogous theorem concerning bipartite Eulerian graphs; see
[JunVa95].

We conclude this section by noting that a similar approach can also be
used to construct non-binary linear codes. This is rather natural for the
ternary case: one may replace the graph G by a connected (but not necessarily
strongly connected) digraph and the even subgraphs of G by the ternary
circulations on that digraph. It is less obvious that this approach can also be
transferred to the q-ary case. Again, these ideas basically go back to Bredeson
and Hakimi [HakBr69, BobHa71]. Later, Jungnickel and Vanstone extended
their approach from [JunVa97] also to the ternary and the q-ary case; see
[JunVa99a, JunVa99b].



Chapter 11
The Network Simplex Algorithm

O sancta simplicitas!

John Huss

For practical applications, by far the most useful optimization algorithm for
solving linear programs is the celebrated simplex algorithm. With professional
implementation it has a remarkable performance: problems with ≈1000 vari-
ables and ≈1000 restrictions can be dealt with within 0.1 to 0.5 seconds.
This suggests trying to apply this algorithm also to problems from graph
theory. Indeed, the most important network optimization problems may be
formulated in terms of linear programs; this holds, for instance, for the de-
termination of shortest paths, maximal flows, optimal flows, and optimal
circulations.

Nevertheless, a direct application of the usual simplex algorithm would
make no sense, as the resulting linear programs would be unwieldy and highly
degenerate. These two problems are avoided by using a suitable graph theo-
retic specialization of the simplex algorithm, the network simplex algorithm.
This algorithm is usually formulated in terms of a standard problem which
we will introduce in the first section, namely the minimum cost flow prob-
lem; all other problems of practical interest admit easy transformations to
this problem.

For a long time, the existence of a provably efficient version of the net-
work simplex algorithm was one of the major open problems in complexity
theory, even though it was clearly the most efficient practical algorithm for
the minimum cost flow problem. This problem was finally solved by Orlin
[Orl97] who gave an implementation with complexity O(|V |2|E| log(|V |C)),
where C =max{|γ(e)| : e ∈E} is the maximum of the cost values appearing.
An improved complexity bound of O(|V ||E| log |V | log(|V |C)) was achieved
in [Tar97]. For more background, we also mention the books [Chv83] and
[BazJS10] as well as the papers [GolHa90], [GolHa91], and [GolGT91]; in
these papers, suitable dual versions of the network simplex algorithm were
shown to have polynomial running time—something of a breakthrough.

In this book, we have decided to emphasize the graph theoretical aspects of
combinatorial optimization while avoiding the theory of linear programming
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DOI 10.1007/978-3-642-32278-5 11, © Springer-Verlag Berlin Heidelberg 2013

359



360 11 The Network Simplex Algorithm

as much as possible. In view of this philosophy, it is very fortunate that
the network simplex algorithm may be dealt with entirely in graph theoretic
terms, with no need to appeal to linear programming. This will be done in
the present chapter, using many of the ideas and concepts we have already
met. Nevertheless, a working knowledge of the ordinary simplex algorithm
would, of course, be helpful, as it would provide additional motivation for
the notions to be introduced in this chapter.

11.1 The Minimum Cost Flow Problem

The minimum cost flow problem (MCFP) is arguably the most fundamen-
tal among the flow and circulation problems, as all such problems may be
transformed easily to the MCFP, and as this problem can be solved extremely
efficiently using the network simplex algorithm. The MCFP is a common gen-
eralization of the transshipment problem defined in Example 10.10.1 (where
additional lower capacity restrictions are added) and the minimum cost circu-
lation problem studied extensively in Chap. 10 (where the flow conservation
condition is replaced by a demand condition).

Definition 11.1.1 (Minimum cost flow problem) Let G= (V,E) be a con-
nected digraph, and let the following data be given:

• lower and upper capacity functions b :E →R and c :E →R, respectively;
• a cost function γ :E →R;
• a demand function d : V →R with

∑
v∈V d(v) = 0.

The minimum cost flow problem (MCFP) requires the determination of a
mapping f : E → R with minimal cost γ(f) =

∑
e∈E γ(e)f(e) subject to the

following two conditions:

(F1) b(e)≤ f(e)≤ c(e) for all e ∈E (capacity restrictions);
(F2)

∑
e+=v f(e)−

∑
e−=v f(e) = d(v) for all v ∈ V (demand restrictions).

Vertices with a negative demand (which we might also view as a supply , as
in the supply and demand problem studied in Sect. 7.7) are called sources,
and vertices with a positive demand are referred to as sinks; all other vertices
may again be considered as transshipment nodes. A flow is a map f :E →R

satisfying the demand restrictions for all v ∈ V ; if, in addition, the capacity
restrictions hold for all e ∈ E, one speaks of an admissible flow. Thus the
MCFP asks for an admissible flow of minimum cost.

In Table 11.1, we indicate how some other standard problems can be trans-
formed into MCFP’s. A small example of an MCFP is displayed in Fig. 11.1;
to keep the figure from looking too crowded, we have not labelled the ver-
tices, but instead put their respective demands inside the circles used here to
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Table 11.1 Some problem transformations

Problem Specifications

Shortest path from s to t
with respect to lengths w

b≡ 0; c≡ 1; γ =w; d(s) =−1; d(t) = 1; d(v) = 0 for
v �= s, t

Maximum flow for the flow
network N = (G,c1, s, t)

b≡ 0; c= c1; d(v) = 0 for v ∈ V ; γ(e) = 0 for e ∈E;
new return arc ts with γ(ts) =−1, b(ts) = 0,

c(ts) =
∑

e−=s c1(e)

Circulation problem d(v) = 0 for v ∈ V ; remaining data as given

Fig. 11.1 A minimum

cost flow problem

represent vertices. The edge labels have the form l|u|c and indicate the lower
capacity, the upper capacity, and the cost of the respective edge.

Before we can try to find a flow of minimum cost, we have to decide if there
are admissible flows at all. To this purpose, we shall generalize the supply and
demand Theorem 7.7.1 to the case where a lower capacity function appears;
this is similar to the transformation used in Sect. 10.2 to decide if there are
feasible circulations.

As in the context of circulations, a cut will just be a partition V = S
.
∪ T ,

and the capacity of such a cut is

c(S,T ) =
∑

e−∈S,e+∈T

c(e)−
∑

e+∈S,e−∈T

b(e).

We can now prove the following common generalization of Theorems 7.7.1
and 10.2.7.
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Theorem 11.1.2 An MCFP P as in Definition 11.1.1 allows an admissible
flow if and only if the following condition holds for every cut V = S

.
∪ T :

c(S,T )≥
∑

v∈T

d(v). (11.1)

Proof By Theorem 7.7.1, the assertion holds provided that b(e) = 0 for all
e ∈E. If this is not the case, we put

b′(e) = 0 for e ∈E,

c′(e) = c(e)− b(e) for e ∈E,

d′(v) = d(v) +
∑

e−=v

b(e)−
∑

e+=v

b(e) for v ∈ V,

and denote the resulting problem by P ′; the cost function is immaterial in
this context. One easily checks that a mapping f is an admissible flow for P
if and only if the mapping g defined by

g(e) = f(e)− b(e) for e ∈E

is an admissible flow for P ′. By Theorem 7.7.1, there is an admissible flow
for P ′—and hence also for P—if and only if the condition

c′(S,T )≥
∑

v∈T

d′(v) (11.2)

holds for every cut (S,T ). But

c′(S,T ) =
∑

e−∈S,e+∈T

(
c(e)− b(e)

)
= c(S,T ) +

∑

e+∈S,e−∈T

b(e)−
∑

e−∈S,e+∈T

b(e)

and
∑

v∈T

d′(v) =
∑

v∈T

d(v) +
∑

e−∈T,e+∈S

b(e)−
∑

e+∈T,e−∈S

b(e).

Because of these two equalities, (11.1) holds if and only if (11.2) holds. �

11.2 Tree Solutions

Consider an MCFP P on a digraph G, and let T be a spanning tree for G.
An admissible flow f is called a tree solution for P (with respect to T ) if
the flow value f(e) is either the lower capacity b(e) or the upper capacity
c(e) of e, whenever e is an edge outside of T . As we will see, the existence
of an admissible flow for P implies the existence of an optimal tree solution



11.2 Tree Solutions 363

for P . Moreover, a non-optimal tree solution may always be improved to a
better tree solution by exchanging just one edge, as in Sect. 4.3. The network
simplex algorithm uses operations of this type until an optimal tree solution
is reached. These exchange operations are much simpler and may also be
implemented much more efficiently than the cycle cancelling operations used
in Chap. 10; this is the major advantage of the network simplex algorithm.

Now let f be an admissible flow for P . We call an edge e free (with respect
to f ) provided that b(e)< f(e)< c(e). Thus f is a tree solution for P if and
only if there is some spanning tree T containing all the free edges. It should
be noted that we do not require that all edges of T be free: an admissible
flow f may be a tree solution with respect to different spanning trees. We
now prove the following fundamental result already mentioned above.

Theorem 11.2.1 Let P be an MCFP on a digraph G, as in Definition 11.1.1.
If P allows an admissible flow, then it also admits an optimal tree solution.

Proof We use a continuity argument as in the proof of Theorem 6.1.6. As
the set of admissible flows for an MCFP is a compact subset of R

|E| and
as the cost function is continuous, there exists some optimal solution f . We
may assume that the free edges with respect to f are not contained in a
spanning tree for G; otherwise, there is nothing to prove. Then there exists
an (undirected) cycle C in G consisting of free edges only; hence we may
augment f by cancelling this cycle; it is immaterial which of the two possible
orientations of C we use. (Cancelling a cycle is, of course, done exactly as
in Chap. 10 and formally described in Algorithm 10.4.1.) As in the case of
circulations, the cost of both orientations of C clearly has to be nonnegative
(and then actually 0), because of the optimality of f . After cancelling C, at
least one edge reaches either its lower or upper capacity bound, and therefore
is no longer free with respect to the resulting optimal flow f ′. Hence this
operation decreases the number of free edges by at least one. Continuing in
this way, we will eventually reach an optimal flow g such that the set F of
free edges with respect to g does not contain any cycle. As G is connected,
F is contained in a spanning tree for G, and hence g is an (optimal) tree
solution. �

Now let T be some spanning tree for G. In general, there will be many tree
solutions with respect to T , as each edge in E \ T may reach either its lower
or its upper capacity. Indeed, we can obtain a candidate for a tree solution
by prescribing a lower or upper capacity for each e ∈E \ T :

Lemma 11.2.2 Consider an MCFP P on a digraph G, let T be a spanning
tree for G, and let E \T = L

.
∪ U be any partition of E \T . Then there exists

a unique flow f satisfying f(e) = b(e) for all e ∈ L and f(e) = c(e) for all
e ∈ U .
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Proof Put

f(e) = b(e) for all e ∈ L and f(e) = c(e) for all e ∈ U. (∗)

Now let v be any leaf of T , and e the unique edge of T incident with v. Then
the demand restriction for v together with (∗) uniquely determines the flow
value f(e). The same reasoning may then be applied to each leaf of the tree
T \ e etc. In this way, one recursively defines the flow values f(e) for all edges
e ∈ T while simultaneously satisfying all demand restrictions. �

One calls a partition L
.
∪ U of E \ T a tree structure. Note that the flow

constructed in Lemma 11.2.2 (for a prescribed tree structure (T,L,U)) is not
necessarily admissible. Thus it makes sense to call (T,L,U) admissible or
optimal if the associated flow has the respective property.

We now prove an optimality criterion which will allow us to decide if a tree
solution is already optimal. Recall that a potential is just a map π : V → R,
and that the associated reduced cost function is defined by

γπ(uv) = γ(uv) + π(u)− π(v) for uv ∈E.

Theorem 11.2.3 An admissible tree structure (T,L,U) for an MCFP is
optimal if and only if there exists a potential π : V →R satisfying

γπ(e)

⎧
⎨

⎩

= 0 for all e ∈ T,

≥ 0 for all e ∈ L,

≤ 0 for all e ∈ U.

(11.3)

Proof Let g :E →R be any flow. Then

γπ(g) =
∑

uv∈E

g(uv)
(
γ(uv) + π(u)− π(v)

)

=
∑

uv∈E

g(uv)γ(uv) +
∑

u∈V

∑

e−=u

g(e)π(u)−
∑

v∈V

∑

e+=v

g(e)π(v)

= γ(g) +
∑

v∈V

π(v)

( ∑

e−=v

g(e)−
∑

e+=v

g(e)

)

= γ(g)−
∑

v∈V

π(v)d(v),

where we have used the demand restrictions in the final step. Thus γπ(g) and
γ(g) differ only by a constant which is independent of g. Hence an admissible
flow is optimal for the cost function γ if and only if it is optimal for γπ .

Let f :E →R be the admissible flow defined by an admissible tree struc-
ture (T,L,U) satisfying (11.3). By definition,

f(e) = b(e) for all e ∈ L and f(e) = c(e) for all e ∈ U. (11.4)
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Now let g be an arbitrary admissible flow. By (11.3) and (11.4),

γπ(g) =
∑

e∈T

g(e)γπ(e) +
∑

e∈L

g(e)γπ(e) +
∑

e∈U

g(e)γπ(e)

=
∑

e∈L

g(e)γπ(e) +
∑

e∈U

g(e)γπ(e)

≥
∑

e∈L

b(e)γπ(e) +
∑

e∈U

c(e)γπ(e)

=
∑

e∈E

f(e)γπ(e) = γπ(f).

Thus f is optimal for the reduced cost function γπ and hence also for γ. �

The potential in the optimality condition (11.3) has the property that
all edges of some spanning tree have reduced cost 0. The network simplex
algorithm uses potentials of this kind only. We next show that any spanning
tree T determines such a potential, which is unique up to prescribing one
value.

Lemma 11.2.4 Let (T,L,U) be a tree structure for an MCFP, and let x be
any vertex. Then there exists a unique potential π satisfying

π(x) = 0 and γπ(e) = 0 for all e ∈ T. (11.5)

Proof More explicitly, condition (11.5) requires

γ(uv) + π(u)− π(v) = 0 for each edge e= uv ∈ T. (∗)

Because of π(x) = 0, the values π(r) are determined by (∗) for every vertex r
adjacent to x. In the same way, π is then also determined for the neighbors of
these vertices etc. As T contains a unique path from x to every other vertex
of G, condition (∗) indeed yields a unique potential π with π(x) = 0. �

11.3 Constructing an Admissible Tree Structure

To start the network simplex algorithm, we need some admissible tree struc-
ture for the given MCFP. This can be achieved by a suitable transformation.

Theorem 11.3.1 Consider an MCFP P on a digraph G= (V,E) as in Def-
inition 11.1.1, and let the auxiliary MCFP P ′ be given by the data in Ta-
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Table 11.2 The auxiliary problem P ′

V ′ = V ∪ {x} (with x /∈ V )

d′(v) = d(v) for v ∈ V ; d′(x) = 0

E′ = E ∪ {xv : d(v) +
∑

e+=v b(e)−
∑

e−=v b(e)< 0}
∪{vx : d(v) +

∑
e+=v b(e)−

∑
e−=v b(e)≥ 0}

b′(e) = b(e) for e ∈E; b′(xv) = 0 for xv ∈E′; b′(vx) = 0 for vx ∈E′

c′(e) = c(e) for e ∈E

c′(xv) = d(v)−
∑

e+=v b(e) +
∑

e−=v b(e) + 1 for xv ∈E′

c′(vx) =−d(v) +
∑

e+=v b(e)−
∑

e−=v b(e) + 1 for vx ∈E′

γ′(e) = γ(e) for e ∈E γ′(xv) =M for xv ∈E′; γ′(vx) =M for vx ∈E′,
where M := 1 + 1

2
|V |max{|γ(e)| : e ∈E}

ble 11.2.1 Then there exists an optimal solution g for P ′. Moreover, we have
one of the following two alternatives:

• If g(xt)> 0 for some xt ∈E′, then there exists no admissible flow for P .

• If g(xv) = 0 for all xv ∈E′, then the restriction f of g to E is an optimal
flow for P .

Proof The map h defined by h(e) = b(e) for e ∈ E and h(e) = c′(e)− 1 for
e ∈E′ \E obviously satisfies the capacity restrictions for P ′. We check that
the demand restrictions are likewise satisfied. Let v be an arbitrary vertex in
V , and assume first xv ∈E′. Then

∑

e∈E′
e+=v

h(e)−
∑

e∈E′
e−=v

h(e) = h(xv) +
∑

e∈E

e+=v

b(e)−
∑

e∈E

e−=v

b(e)

= c′(xv)− 1 +
∑

e∈E

e+=v

b(e)−
∑

e∈E

e−=v

b(e)

= d(v) = d′(v).

Now assume vx ∈E′. Then

∑

e∈E′
e+=v

h(e)−
∑

e∈E′
e−=v

h(e) = −h(vx) +
∑

e∈E

e+=v

b(e)−
∑

e∈E

e−=v

b(e)

= −c′(vx) + 1+
∑

e∈E

e+=v

b(e)−
∑

e∈E

e−=v

b(e)

= d(v) = d′(v).

1The purpose of the constants +1 appearing in the definition of c′ is to make the auxiliary

problem nondegenerate.
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This proves the validity of the demand restrictions for all vertices in V . It
remains to check the new vertex x:

∑

e∈E′
e+=x

h(e)−
∑

e∈E′
e−=x

h(e) =
∑

vx∈E′

(
c′(vx)− 1

)
−

∑

xv∈E′

(
c′(xv)− 1

)

=
∑

v∈V

(

−d(v)−
∑

e∈E

e+=v

b(e) +
∑

e∈E

e−=v

b(e)

)

= −
∑

v∈V

d(v)−
∑

e∈E

b(e) +
∑

e∈E

b(e)

= 0 = d′(x).

Hence h is an admissible flow for P ′, and by Theorem 11.2.1 P ′ admits an
optimal flow, in fact even an optimal tree solution. Let us choose any optimal
flow g.

Case 1. g(xt)> 0 for some xt ∈E′.

We first claim that no cycle C in P ′ can contain two edges xv and wx
satisfying g(xv)> 0 and g(wx)> 0, and such that one may cancel C, where
we use the orientation of C opposite to that of xv. Assume otherwise. Note
that C contains at most |V | − 1 edges besides xv and wx and that

−2M +
(
|V | − 1

)
max

{∣
∣γ(e)

∣
∣ : e ∈E

}
<−2M + 2M = 0.

Therefore augmenting g by cancelling C would strictly decrease the cost,
which contradicts the optimality of g. This proves our auxiliary claim.

Now let us assume, by way of contradiction, that there exists an admissible
flow for P . Then every cut V = S

.
∪ T satisfies

c(S,T )≥
∑

v∈T

d(v), (11.6)

by Theorem 11.1.2. Choose a vertex t with g(xt)> 0, and let T denote the
set of all vertices v ∈ V for which one may be reach t via an augmenting
path for g.2 Assume g(vx)> 0 for some v ∈ T . Then we can construct a cycle
through xt and vx along which we may augment in the opposite direction
of xt: an augmenting path from v to t, followed by the backward edges xt
and vx. This contradicts our auxiliary claim above, and we conclude

g(vx) = 0 or vx /∈E′ for all v ∈ T. (11.7)

2By analogy with Chap. 6, a path W from v to t is called an augmenting path with respect

to g if g(e) < c(e) holds for every forward edge e ∈ W , and g(e) > b(e) holds for every

backward edge e ∈W .
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Now put S = V \ T . Then

g(e) =

{
c(e) if e− ∈ S, e+ ∈ T,

b(e) if e+ ∈ S, e− ∈ T ;
(11.8)

for otherwise we could reach t via an augmenting path from either e− ∈ S or
e+ ∈ S, contradicting the definition of T . Equation (11.8) implies

∑

e+∈T

g(e)−
∑

e−∈T

g(e) =
∑

e−∈S,e+∈T

g(e)−
∑

e+∈S,e−∈T

g(e)

=
∑

e−∈S,e+∈T

c(e)−
∑

e+∈S,e−∈T

b(e)

= c(S,T ).

Let us put g(xv) = 0 if xv /∈E′, and g(vx) = 0 if vx /∈E′. Using the preceding
equation together with (11.7) and g(xt)> 0, we compute

∑

v∈T

d(v) =
∑

v∈T

( ∑

e∈E′,e+=v

g(e)−
∑

e∈E′,e−=v

g(e)

)

=
∑

v∈T

(

g(xv)− g(vx) +
∑

e∈E,e+=v

g(e)−
∑

e∈E,e−=v

g(e)

)

=
∑

v∈T

g(xv) +
∑

e∈E,e+∈T

g(e)−
∑

e∈E,e−∈T

g(e)

=
∑

v∈T

g(xv) + c(S,T )> c(S,T ),

contradicting (11.6). Thus P does not allow an admissible flow, which proves
the assertion in Case 1.

Case 2. g(xv) = 0 for all xv ∈E′.

As d′(x) = 0, we must also have g(vx) = 0 for all vx ∈E′. Thus the restriction
f of g to E is an admissible flow for P . If P were also to admit a flow f ′

with strictly smaller cost, we could extend f ′ to an admissible flow for P ′

by putting f ′(e) = 0 for all e ∈E′ \E; but this flow would have smaller cost
than the optimal flow g, a contradiction. Hence f is indeed an optimal flow
for P . �

As we have seen, the auxiliary problem P ′ always allows an admissible
flow and hence, by Theorem 11.2.1, also an admissible tree structure. We
shall now exhibit one such structure explicitly.
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Lemma 11.3.2 Let P ′ be the auxiliary MCFP given by the data in Ta-
ble 11.2, and put

T =
{
xv : xv ∈E′}∪

{
vx : vx ∈E′}, L=E, and U = ∅.

Then (T,L,U) is an admissible tree structure for P ′.

Proof Since x is joined to each vertex in V by exactly one edge, T is in-
deed a spanning tree for G′ = (V ′,E′). Let g be the flow associated with
(T,L,U) according to Lemma 11.2.2. Then g(e) = b(e) for all e ∈ E. Now
the demand restrictions determine the values g(xv) and g(vx) uniquely, and
thus g agrees with the admissible flow defined in the first part of the proof
of Theorem 11.3.1. Hence (T,L,U) is indeed admissible for P ′. �

Exercise 11.3.3 Fill in the details of the proof of Lemma 11.3.2 and show
that g indeed agrees with the tree solution associated with (T,L,U).

It should also be noted that it is not absolutely necessary to introduce
the auxiliary problem P ′: there are other ways to determine an admissible
tree structure for P .3 One first constructs an arbitrary feasible solution; as
in the special case of circulations, this can be done efficiently. Then one
cancels free cycles as long as possible, and finally uses the remaining free
edges together with suitable other edges to determine an admissible tree
solution. In my group at the University of Augsburg, we have implemented
such an algorithm in the free software package GOBLIN which treats many
fundamental optimization problems for graphs and networks; GOBLIN is
available from the URL

http://goblin2.sourceforge.net/

Another implementation of the network simplex algorithm which may be
obtained free of charge for academic use is the MCFZIB-code; see

http://typo.zib.de/opt-long projects/Software/Mcf/

3The approach of Theorem 11.3.1 corresponds to the big-M method in linear programming.

There is a major difference, though: for an MCFP, we can explicitly select a reasonable

value of M , whereas for general linear programs M has to be taken really huge—which

automatically leads to numerical problems. For instance, with M = 1016 and a standard

floating point arithmetic accurate to 15 digits, computing a sum M+x with 0< x< 10 has

no meaning. In other words, the big-M method is of theoretical interest, but not suitable for

practical use. In contrast, the method in Theorem 11.3.1 also works very well in practice.

A value of M which is so large that it would lead to numerical instability could arise only

if some cost values differ by ≈1015/|V |, which is not the case in practical applications.
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11.4 The Algorithm

We can now describe the general structure of the network simplex algorithm,
though we will have to be more specific later to ensure termination. It will
simplify matters to deviate from our usual way of writing algorithms and just
give a very concise description split into appropriate blocks.

Algorithm 11.4.1 (Network simplex algorithm) Let P be an MCFP on
a digraph G as in Definition 11.1.1, and let P ′ be the associated auxiliary
MCFP P ′ with the data given in Table 11.2.

1. Initialization. Put

T =E′ \E; L=E; U = ∅;

f(e) = b(e) for e ∈E and f(e) = c′(e)− 1 for e ∈E′ \E;

π(x) = 0; π(v) =M for v ∈ V with xv ∈E′; and

π(v) =−M for v ∈ V with vx ∈E′.

2. Optimality test. If there is no e ∈ L∪U with either

e ∈ L and γπ(e)< 0 or e ∈ U and γπ(e)> 0 (∗)

stop: in case f(e)> 0 for some e ∈E′ \E, there is no admissible flow for P ;
otherwise, the restriction f of g to E is an optimal flow for P .

3. Pricing. Choose some e ∈ L ∪ U satisfying (∗) and determine the unique
cycle C contained in T ∪ {e}.

4. Augmenting. Consider C as oriented in the direction of e if e ∈ L, and as
oriented in the direction opposite to that of e if e ∈ U . Augment f (by an
amount of δ) by cancelling C, so that at least one edge of C reaches either
its upper or lower capacity bound. Choose such an edge a; here a= e is
only permissible in case δ > 0.

5. Update. Put

T =
(
T \ {a}

)
∪ {e},

L =

{
(L \ {e})∪ {a} if a reaches its lower capacity bound,
L \ {e} if a reaches its upper capacity bound,

U = E′ \ (T ∪L),

and compute the unique potential π associated with (T,L,U) satisfying
π(x) = 0, as outlined in the proof of Lemma 11.2.4. Go to Step 2.

Now consider an iteration taking place during the course of the algorithm.
The arc e selected in Step 3 is called the entering arc, and the unique cycle
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C ⊂ T ∪{e} the associated pivot cycle. The arc a selected in Step 4 is referred
to as the leaving arc.

As in the case of the labelling algorithm or the algorithm of Klein, the
generic version of the network simplex algorithm given above does not nec-
essarily terminate. The reason behind this phenomenon is the possibility of
degenerate tree structures: tree structures (T,L,U) where T does not con-
sist of free edges only. In this case, a proper augmentation along the cycle
determined in Step 3 may be impossible: we may have δ = 0 in Step 4. Even
though we do change the tree T (as the leaving arc a is distinct from the
entering arc e in this case), we might—after a series of updates—reach the
same tree structure (T,L,U) again. One says that the algorithm may cycle.
Indeed, this is a real danger, as it is not unusual in practical instances to have
90 % of all tree structures degenerate. However, cycling can be prevented by
choosing the leaving arc appropriately; fortunately, the extra effort required
to do so even tends to speed up the algorithm by cutting down the number
of iterations needed.

We shall now explain in detail how one may prevent cycling. To this end, we
first choose a fixed vertex w which we will use as the root of all the spanning
trees constructed during the course of the algorithm. Then an admissible
tree structure (T,L,U) will be called strongly admissible if, for every vertex
v �= w, the unique path from v to w in T is in fact an augmenting path for
the tree solution f canonically associated with (T,L,U). In particular, an
admissible tree structure (T,L,U) is strongly admissible provided that it is
nondegenerate; that is, if all edges of T are free.

In the initialization stage (Step 1), we choose w = x. Then the initial tree
structure (T,L,U) = (E′ \E,E,∅) is indeed strongly admissible for P ′: it is
admissible by Theorem 11.3.2, and we have g(xv) = c′(xv)−1> 0 for xv ∈E′

and g(vx) = c′(vx)− 1< c′(vx) for vx ∈E′, so that T is nondegenerate.
Now consider an iteration taking place during the course of the algorithm.

Let e be the entering arc selected in Step 3, and let C ⊂ T ∪ {e} be the
associated pivot cycle. We consider C as oriented in the direction of e if
e ∈ L, and as oriented in the direction opposite to that of e if e ∈ U . An arc
in C \ {e} will be called blocking if cancelling C results in a reaching either
its upper or its lower capacity bound. The unique vertex of C which is closest
to the root w of T is called the apex of C. We will show that the following
selection rule for the leaving arc preserves the strong admissibility of all tree
structures occurring during the course of the algorithm.

Rule of the last blocking arc: Starting with the apex of the pivot cycle
C, traverse C according to its orientation and select the last blocking arc
encountered as the leaving arc.

To illustrate the rule of the last blocking arc in Fig. 11.2, we have used
the following notation:

• W : The path from the apex to the last blocking arc, following the orienta-
tion of C. In Fig. 11.2, the apex is 2 and W = 2− 3− 5.
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Fig. 11.2 The rule of the

last blocking arc

• W ′: The path from the apex to the last blocking arc, following the opposite
orientation of C. In Fig. 11.2, W ′ = 2− 4− 6− 8− 10− 9− 7.

• The edge labels have the form f |c and indicate the current flow value and
the upper capacity of the respective edge; all lower capacities are 0.

Theorem 11.4.2 Let (T,L,U) be a strongly admissible tree structure, and let
e /∈ T . If the leaving arc a is selected in Step 4 of Algorithm 11.4.1 according
to the rule of the last blocking arc, then the resulting tree structure in Step 5
is again strongly admissible.

Proof Let f denote the tree solution associated with (T,L,U), and let g be
the admissible flow which results by cancelling C according to Step 4. It
remains to show that in the resulting spanning tree T ′ = (T ∪ {e}) \ {a} the
path leading from v to w is augmenting with respect to g (for every vertex
v �=w). We shall distinguish four cases.

Case 1. v is the apex of C. Then the paths from v to w in T ′ and T agree,
and the flow values have not been changed on the edges of this common
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path Q. As (T,L,U) was strongly admissible, Q is augmenting with respect
to f and hence also with respect to g.

Case 2. v is on W ′. As a is the last blocking arc encountered by traversing
C from its apex following its orientation, no edge in W ′ can be blocking.
Therefore the path from v to the apex of C in T ′ is augmenting with respect
to g. In view of Case 1, the path from v to w in T ′ is likewise augmenting
with respect to g.

Case 3. v is on W . Let δ ≥ 0 be the amount of augmentation as in Step 4.
In case δ > 0, the flow f was increased on the edges of W by δ; hence the
path opposite to W (which ends in the apex of C) is augmenting with respect
to g. In view of Case 1, the path from v to w in T ′ is likewise augmenting
with respect to g. Now assume δ = 0. As a is not on W , the paths from v
to w in T ′ and T agree, and the flow values have not been changed on the
edges of this common path Q (because of δ = 0). As (T,L,U) was strongly
admissible, Q is augmenting with respect to f and hence also with respect
to g.

Case 4. v is not on C. As (T,L,U) is strongly admissible, the path Z from
v to w in T is augmenting with respect to f . Assume first that Z and C are
disjoint. Then Z is also a path in T ′ which is augmenting also with respect
to g, as the flow values have not changed on Z. Otherwise let y be the first
vertex on Z which also belongs to C. Then the path from v to y in T ′ is
augmenting with respect to g (as before). By the previous three cases, the
same conclusion holds for the path from y to w in T ′. Hence the path from
v to w in T ′ is likewise augmenting with respect to g. �

We need a further auxiliary result for proving that the network simplex
algorithm terminates when using the rule of the last blocking arc.

Lemma 11.4.3 Let (T,L,U) be a tree structure occurring during the course
of Algorithm 11.4.1, and let π be the associated potential. Moreover, let a the
leaving arc and e= rs the entering arc, and denote the new potential (after
augmenting and updating) by π′. Finally, let T1 be the connected component
of T \ {a} containing w, and write T2 = V \ T1. Then

π′(v) =

⎧
⎨

⎩

π(v) if v ∈ T1,

π(v) + γπ(e) if v ∈ T2 and r ∈ T1,

π(v)− γπ(e) if v ∈ T2 and r ∈ T2.

Proof Write T ′ = (T ∪ {e}) \ {a}. Then, by the definition of π′,

γ(uv) + π′(u)− π′(v) = 0 for all uv ∈ T ′. (11.9)

Let v be any vertex in T1. Then the paths from v to w in T ′ and T agree,
and from π(w) = π′(w) = 0 we conclude π′(v) = π(v).
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Now assume r ∈ T1 and thus s ∈ T2. Then π′(r) = π(r) and hence π′(s) =
γ(rs)+π(r) = π(s)+ γπ(rs) by (11.9). Note that the paths from s to v in T ′

and T agree for every vertex v ∈ T2. Therefore π′(v) = π(v) + γπ(rs) for all
v ∈ T2.

Finally, assume r ∈ T2 and thus s ∈ T1. Then π′(s) = π(s) and therefore
π′(r) =−γ(rs) + π(s) = π(r)− γπ(rs) by (11.9). Note that the paths from r
to v in T ′ and T agree for every vertex v ∈ T2. Therefore π

′(v) = π(v)−γπ(rs)
for all v ∈ T2. �

In the following theorem, we assume that all data in our given MCFP are
rational. Of course, this is no real restriction from a practical point of view,
as we can represent rational numbers only in a computer anyway.

Theorem 11.4.4 Let P be an MCFP on a digraph G as in Definition 11.1.1,
and assume that all data b, c, d, γ are rational. Then the network simplex
Algorithm 11.4.1 terminates after finitely many steps provided that the rule
of the last blocking arc is used for choosing the leaving arcs.

Proof By multiplying all data by their lowest common denominator, we may
assume that the data are in fact integral. Then any augmentation by a posi-
tive value decreases the cost by at least 1 unit. But the cost of any admissible
flow is bounded from below, so that there are only finitely many augmenta-
tions with δ > 0. Hence it suffices to show that we can have only finitely many
consecutive augmentations with δ = 0.

Thus let us consider an augmentation with δ = 0, starting with a strongly
admissible tree structure (T,L,U). As usual, let C be the pivot cycle; e= rs
the entering and a the leaving arc; π the potential associated with (T,L,U),
and π′ the potential resulting after augmenting and updating. According to
Step 3 in Algorithm 11.4.1, we distinguish two cases.

Case 1. e ∈ L and γπ(e) < 0. In this case, the orientation of e agrees with
that of C. Then a lies between the apex of C and r when we traverse C
according to its orientation. This is intuitively clear; see Fig. 11.2. A formal
proof can be given as follows. Let Z be the path in T from the end vertex
s of e to the apex of C, following the orientation of C; in Fig. 11.2, Z =
10− 8− 6− 4− 2. As (T,L,U) is strongly admissible, Z is augmenting with
respect to the associated tree solution f . Because of δ = 0, no arc on Z can
be blocking. In particular, a indeed cannot lie on Z. This implies r ∈ T2, and
thus π′(v) = π(v)− γπ(rs)> π(v) for all v ∈ T2, by Lemma 11.4.3.

Case 2. e ∈ U and γπ(e) > 0. In this case, the orientation of e is opposite
to that of C. Now a lies between s and the apex of C when we traverse C
according to its orientation; this is similar to the corresponding argument
in the first case. Hence r ∈ T1, and thus π′(v) = π(v) + γπ(rs)> π(v) for all
v ∈ T2, by Lemma 11.4.3.
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Note π′(v) = π(v) for all v ∈ T1, again by Lemma 11.4.3. Hence the sum
of all potentials p(v) increases by at least 1 in both cases. As w always has
potential 0, no potential can exceed |V |C, where C =max{|γ′(e)| : e ∈ E′}.
Hence the sum of all the potentials is bounded from above by |V |2C, and
thus the number of consecutive augmentations with δ = 0 is always finite. �

11.5 Efficient Implementations

During each iteration of Algorithm 11.4.1, we need to compute the current
pivot cycle C, augment along C, and update the potentials. In order to do all
this efficiently, one requires information about the current spanning tree. One
possibility for an efficient implementation uses so-called tree indices which we
will now introduce.

Recall that we have selected a fixed vertex w which serves as the root for
all spanning trees constructed during the course of the algorithm. Let T be
one of these spanning trees. We define the following tree indices for T :

• predecessor index: For every vertex v �= w, p(v) is the predecessor of v on
the path from w to v in T .

• depth index: For every vertex v, d(v) is the distance between v and w in
T ; thus d(v) is the number of edges on the path from w to v in T . In
particular, d(w) = 0.

• thread index: Let w,v1, . . . , vn−1 be an ordering of the vertices according
to a depth first search on T with start vertex w. Then we put th(w) = v1,
th(vn−1) =w, and th(vi) = vi+1 for i= 1, . . . , n−2. Thus the thread indices
are used to describe a possible traversing of the vertex set according to a
DFS on T . Note that these indices are, in general, not uniquely determined
by T .

In Fig. 11.3, we have drawn a spanning tree T with root w = 0. Below, the
values p(v), d(v), and th(v) are listed (where the DFS on T runs from left to
right).

By adjoining the entering arc e to T , we create the pivot cycle C. With a
naive implementation, finding C would require a search of the entire tree T
and therefore cause a complexity of O(|V |). Using the predecessor and depth
indices, we only need O(|C|) instead. Practical experience shows that this
will often result in a speed-up by a factor of about n/ logn; thus we may
hope to find C about 1000 times faster for n= 10,000. Similar speed-ups can
be achieved for the potential updates to be discussed later.

The following procedure will determine the apex of C, the value of δ used
in cancelling C, and also the leaving arc a as determined by the rule of the
last blocking arc.

Algorithm 11.5.1 Let (T,L,U) be the current strongly admissible tree
structure, with tree indices p, d, th, entering arc e = rs and pivot cycle C.
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Fig. 11.3 Tree indices

For i �= w, denote the edge in T joining i and p(i) by e(i), and let r(i) be
the amount of flow which may still be sent through e(i) according to the
orientation of C.

Procedure PIVOTCYCLE(G,b, c, d, γ,T,L,U, e; apex, a, δ)

(1) δ←∞;
(2) if e ∈ L then i← r; j ← s else i← s; j ← r fi
(3) while i �= j do
(4) if d(i)> d(j)
(5) if r(i)< δ then δ← r(i); a← e(i) fi
(6) i← p(i)
(7) else
(8) if r(j)≤ δ then δ← r(j); a← e(j) fi
(9) j ← p(j)

(10) fi
(11) od
(12) apex ← i

Note that i and j have been defined in such a way that i is reached before
j when C is traversed according to its orientation. The vertices i and j
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run during the procedure through two disjoint subtrees of T which meet in
the apex of C. Thus we have reached the apex in the moment when i = j.
Then the procedure terminates, and i is the apex of C, the arc a is the
last blocking arc of C, and δ is the maximal amount which may be used
for augmenting along C according to its orientation (and thus the amount
involved in cancelling this cycle).

In order to augment the current tree solution f associated with (T,L,U),
it is necessary to traverse C once again. While this is somewhat unfortunate,
it does result in an extra benefit which will turn out to be useful in updating
the potentials: we can decide if the start vertex r of the entering arc e= rs
lies in the subtree T1 defined in Lemma 11.4.3, via the variable subtree.

Algorithm 11.5.2 Let (T,L,U) be the current strongly admissible tree
structure, with tree indices p, d, th, entering arc e = rs, and pivot cycle C.
Moreover, let the apex of C, the value δ involved in cancelling C, and the
leaving arc a (as determined by the rule of the last blocking arc) be computed
via Algorithm 11.5.1.

Procedure AUGMENT(G,b, c, d, γ,T,L,U, e,apex, a, δ; subtree)

(1) i← r; j ← s;
(2) while i �= apex do
(3) augment the flow value on e(i) by δ (in the direction of C);
(4) if e(i) = a then subtree ← T2 fi
(5) i← p(i)
(6) od
(7) while j �= apex do
(8) augment the flow value on e(j) by δ (in the direction of C);
(9) if e(j) = a then subtree ← T1 fi
(10) j ← p(j)
(11) od

Of course, augmenting the flow value on an edge means either increasing
or decreasing it by δ, according to whether the orientation of the edge under
consideration agrees or disagrees with that of C.

When we remove the leaving arc a= uv from T , the tree splits into the two
connected components T1 and T2. By Lemma 11.4.3, the current potential π
does not change on T1 when we switch to the new tree structure by adding the
entering arc; and on T2, the new potential differs from π only by a constant.
Note that u is in T1 if and only if d(u)< d(v). By Lemma 11.4.3, the following
procedure correctly updates the potential.

Algorithm 11.5.3 Let (T,L,U) be the current strongly admissible tree
structure, with associated potential π and tree indices p, d, th, and let e= rs
be the entering arc. Moreover, let the value of subtree be as computed by
Algorithm 11.5.2.
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Procedure PIUPDATE(G,b, c, d, γ,T,L,U, e, subtree;π)

(1) if subtree = T1 then y← v else y← u fi;
(2) if d(u)< d(v) then ε← γπ(e) else ε←−γπ(e) fi;
(3) π(y)← π(y) + ε, z ← th(y);
(4) while d(z)> d(y) do π(z)← π(z) + ε, z ← th(y) od

Finally, there remains the task of efficiently updating the tree indices; as
this is quite technical and involved, we will omit a discussion of this topic
and refer the reader to [BazJS10] instead.

We have also left another major step in the network simplex algorithm
unspecified: the selection of the entering arc in the pricing step (3). Actually
the selection strategy chosen for this task plays a decisive role in the overall
performance of the algorithm. Practical rules are heuristics: they do not lead
to a provably polynomial complexity. An example for a rule that works very
well in practice is provided by the multiple partial pricing rule employed in
the MCFZIB-code mentioned before.



Chapter 12
Synthesis of Networks

What thought and care to determine the exact site for a

bridge, or for a fountain, and to give a mountain road that

perfect curve which is at the same time the shortest. . .

Marguerite Yourcenar

Up to now, we have considered flows or circulations only on a given network.
But it is also quite interesting to study the reverse problem of designing a
network (as economically as possible) on which a flow meeting given require-
ments can be realized. On the one hand, we will consider the case where all
edges may be built with the same cost, and where we are looking for an undi-
rected network with lower bounds on the maximal values of a flow between
any two vertices. Both the analysis and design of such symmetric networks
use so-called equivalent flow trees; this technique has an interesting applica-
tion for the construction of certain communication networks which will be
the topic of Sect. 12.4. On the other hand, we shall address the question of
how one may increase the maximal value of the flow for a given flow network
by increasing the capacities of some edges by the smallest possible amount.

12.1 Symmetric Networks

Let G = (V,E) be a graph with a nonnegative capacity function c : E → R;
we will call N = (G,c) a symmetric network . If we want to treat N in the

usual manner, we may replace G with its complete orientation
→
G and define

c accordingly: then c(xy) = c(yx) for every edge xy. Let us assume that G is

connected, so that
→
G is strongly connected. Then any two distinct vertices s

and t of G define an ordinary flow network: Nst = (
→
G,c, s, t). We will denote

the maximal value of a flow on Nst by w(s, t). Note that w is a symmetric
function: w(s, t) = w(t, s). We call w : V × V → R the flow function of the
symmetric network N ; for the sake of simplicity, we put w(x,x) = 0 for x ∈ V .
In Sect. 12.3, we will consider the construction of symmetric networks for a
prescribed flow function. In the present section, we study the basic question of
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which symmetric functions w occur as flow functions. The following theorem
due to Gomory and Hu [GomHu61] gives a simple answer.

Theorem 12.1.1 Let V be a set with n elements, and let w : V ×V →R
+
0 be

a symmetric function. Then there exists a symmetric network N = (G,c) with
flow function w on an appropriate connected graph G= (V,E) if and only if
the following inequality holds whenever x, y, z are three distinct elements of V :

w(x, y)≥min
{
w(x, z),w(z, y)

}
. (12.1)

Proof First let N = (G,c) be an arbitrary symmetric network on the vertex
set V , and let x, y, z be any three distinct elements of V . By Theorem 6.1.6,
there exists a cut (S,T ) with x ∈ S and y ∈ T such that w(x, y) = c(S,T ). If
z is contained in S, we obtain w(z, y) ≤ c(S,T ) = w(x, y) by Lemma 6.1.2;
and if z is in T , we have w(x, z)≤ c(S,T ) =w(x, y). Thus condition (12.1) is
satisfied for every flow function w.

Conversely, let w be a symmetric function satisfying (12.1). We consider
the complete graph K on V with weight function w and choose a maximal
spanning tree T of (K,w), as in Sect. 4.5. Now let x, y be any two distinct
vertices. By Theorem 4.5.4, the unique path from x to y in T is a path
of maximal capacity with respect to w; we denote this capacity by q(x, y).
Then q(x, y)≥w(x, y), because the edge xy is also a path from x to y. Using
induction, (12.1) implies

w(x1, xk)≥min
{
w(x1, x2), . . . ,w(xk−1, xk)

}
(12.2)

for each k ≥ 3 and any k distinct vertices x1, . . . , xk. If we choose the vertices
on a path of maximal capacity from x to y for x1, . . . , xk, then (12.2) implies
w(x, y)≥ q(x, y), and hence equality holds. Now put c(e) =w(u, v) for every
edge e= uv of T , and choose G= T and N = (T, c). As the path Px,y from
x to y in T is uniquely determined, the maximal value of a flow from x to
y in N equals the capacity q(x, y) = w(x, y) of Px,y . Therefore w is the flow
function of the symmetric network (T, c). �

Corollary 12.1.2 Every flow function on a symmetric network can also be
realized on a tree. If the symmetric network N is defined on n vertices, the
flow function on N takes at most n− 1 distinct values.

Proof The first claim follows from the proof of Theorem 12.1.1. The second
claim is clear: as a tree on n vertices has exactly n− 1 edges, at most n− 1
distinct weights and hence at most n− 1 distinct capacities occur. �

The following further consequence of Theorem 12.1.1 will be used in the
next section.



12.1 Symmetric Networks 381

Fig. 12.1 A symmetric

network on a tree

Corollary 12.1.3 Let N be a symmetric network with flow function w. Then
the smallest two of the three values w(x, y), w(x, z), and w(y, z) coincide
whenever x, y, z are three distinct elements of V .

Proof We may assume that w(x, y) is the minimum of the three values in
question. Condition (12.1) shows that the two inequalities w(x, y)< w(x, z)
and w(x, y)<w(y, z) cannot hold simultaneously. �

Exercise 12.1.4 Let N = (G,c) be a symmetric network with flow function
w, and assume that G is a complete graph. Show that a spanning tree T of
G is an equivalent flow tree for N if and only if T is a maximal spanning tree
for the network (G,w). Here a tree T is called an equivalent flow tree for N
if the flow function of the symmetric network (T,w|T ) is equal to w.

Exercise 12.1.5 Show that every flow function may be realized on a path,
and give such a realization for the symmetric network of Fig. 12.1.

Hint: Consider a pair (x, y) of vertices such that w(x, y) is maximal, and
use induction on the number of vertices.

Now let r : V ×V →R
+
0 be a symmetric function which describes the flow

requirements for which we would like to construct a symmetric network: the
request function. We will allow the possibility that these flow requirements
do not satisfy the necessary condition (12.1) for a flow function, so that
it is not possible to realize these requirements exactly. This suggests the
following definitions. A network N = (G,c) on a connected graph G= (V,E)
on V is called feasible or a realization for a given request function r if the
condition w(x, y)≥ r(x, y) is satisfied all x, y ∈ V . A minimal network for r
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is a realisation for which the overall capacity

c(E) =
∑

e∈E

c(e)

is minimal among all feasible networks: we want to minimize the sum of the
capacities of all the edges we have to provide.

The preceding definition only makes sense when the cost of building an
edge merely depends linearly on the capacity we want to install, but not on
the specific edge. Of course, this assumption is not always realistic: in traffic
networks, for example, the cost of building an edge will usually depend both
on the terrain and on the distance between the start and the end vertex.
Hence a cost function of the form

∑
γ(e)c(e) would clearly be more useful; it

is possible to treat this case as well, albeit with considerably more effort; see
[GomHu62]. The special case we consider here admits a particularly elegant
solution which we shall present in Sect. 12.3. Before doing so, let us have a
closer look at analyzing symmetric networks and at the synthesis of equivalent
flow trees.

12.2 Synthesis of Equivalent Flow Trees

In this section, we provide an efficient way to analyze a given symmetric net-
work N = (G,c) on a graph G= (V,E)—that is, to determine its flow func-
tion w. Recall that we may calculate with complexity O(|V |3) the value of
the flow between any two given vertices, by Theorems 6.4.8 and 6.6.15. As the
number of pairs of vertices is |V |(|V | − 1)/2, the flow function can certainly
be determined with a complexity of O(|V |5): just run one of the standard
algorithms for all pairs of vertices. However, Corollary 12.1.2 suggests that
we ought to be able to do better, since there are at most |V | − 1 distinct flow
values. This is indeed possible: Gomory and Hu [GomHu61] proved that it
suffices to compute |V |−1 flow values on suitable (smaller) networks obtained
from N by condensing, which leads to a complexity of O(|V |4) for determin-
ing w. A detailed description of their rather complicated algorithm can be
found in §IV.3 of [ForFu62]. We present an alternative, considerably simpler
technique due to Gusfield [Gus90] which likewise works with computing just
|V | − 1 flow values.

As we saw in the proof of Theorem 12.1.1, there exist a spanning tree T on
V and a weight function w : T →R

+
0 such that the capacity of the path from x

to y is equal to the value w(x, y) of the flow function for all pairs x, y ∈ V . This
means that T is an equivalent flow tree for N .1 We shall present Gusfield’s

1Using this rather sloppy notation (that is, using the same symbol w for the weight function
on T as well as for the flow function on N) is justified, as w(x, y) = w(e) for each edge
e= xy of T .
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algorithm in a rather concise and informal way. The algorithm requires the
determination of a minimal cut (S,T ) for a flow network (G,c, s, t). Such a cut
may be found by applying a labelling procedure (see Corollary 6.1.4) after a
maximal flow has been found. More precisely, this task can be performed with
complexity O(|E|) if we apply the procedure AUXNET modified according to
Exercise 6.3.19. Therefore we may use any algorithm for determining maximal
flows as a subroutine for finding the required cuts in Gusfield’s algorithm.

Algorithm 12.2.1 Let N = (G,c) be a symmetric network on G= (V,E),
where V = {1, . . . , n}. The algorithm determines an equivalent flow tree
(B,w). It also calculates a function p; for i �= 1, p(i) is the predecessor of
i on a path from vertex 1 to vertex i in B; thus B consists of the edges
{p(i), i} for i= 2, . . . , n.

Procedure FLOWTREE(G,c;B,w)

(1) B ←∅;
(2) for i= 2 to n do p(i)← 1 od
(3) for s= 2 to n do
(4) t← p(s);
(5) calculate a minimal cut (S,T ) and the value w of a maximal

flow in the flow network (G,c, s, t);
(6) B ←B ∪ {st}; w(s, t)←w;
(7) for i= s+ 1 to n do
(8) if i ∈ S and p(i) = t then p(i)← s fi
(9) od

(10) od

Note that the function p in the procedure FLOWTREE defines a spanning
tree B on V throughout the algorithm: B is initialized in step (2) as a star
with center 1. During the s-th iteration, B is a tree for which all vertices i≥ s
are leaves, where p(i) gives the unique neighbor of i in B. The neighbor of s
is chosen as the sink t, and a minimal cut (S,T ) for the network with source s
and sink t is calculated. Then one assigns the maximal value of a flow from s
to t as weight w = c(S,T ) to the edge st. Finally, in steps (7) to (9), we cut off
all leaves i > s which satisfy p(i) = t and are contained in S, and re-connect
all these vertices to s as leaves. Before proving that B is indeed an equivalent
flow tree for the given weight function when the algorithm terminates, let us
give an example.

Example 12.2.2 Consider the network of Fig. 12.2, where the edge labels give
the capacities. Figure 12.3 shows the star with center 1 constructed during
the initialization and the tree resulting from the iteration for s= 2. During
this iteration, t= 1 and w(s, t) = 5 = c(S,T ) for the cut S = {2,3,5,6,7} and
T = {1,4}. (In this simple example, it is not necessary to appeal to a max-flow
algorithm: the values of the flow and a minimal cut can always be found by
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Fig. 12.2 A symmetric

network

inspection.) Now the leaves 3,5,6, and 7 are cut off from t= 1 and connected
to s= 2 instead, and the edge {1,2} is assigned weight 5.

During the next iteration, s = 3, t = 2, and w(S,T ) = 6 = c(S,T ) with
S = {1,3,4,6,7} and T = {2,5}. The leaves 6 and 7 are cut off from t= 2 and
connected to s= 3; edge {2,3} is assigned weight 6. This yields the tree on the
left hand side of Fig. 12.4. This tree is not changed during the two subsequent
iterations, but two more edges are assigned their weights. For s= 4, we have
t= 1 and w(s, t) = 5 = c(S,T ) with S = {4}, T = {1,2,3,5,6,7}; and for s= 5,
we have t= 2 and w(s, t) = 3 = c(S,T ) with S = {5} and T = {1,2,3,4,6,7}.

The next iteration yields a new tree: For s= 6 and t= 3, we get w(s, t) =
4 = c(S,T ) for S = {6,7} and T = {1,2,3,4,5}. Thus vertex 7 is cut off from
vertex 3 and connected to vertex 6, yielding the tree on the right hand side
of Fig. 12.4. This tree remains unchanged during the final iteration: for s= 7,
we have t= 6, w(s, t) = 3 = c(S,T ) with S = {7} and T = {1,2,3,4,5,6}. It
is easy to check that this final tree is indeed an equivalent flow tree.

Fig. 12.3 Initialization and iteration s= 2
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Fig. 12.4 Iterations s= 3,4,5 and s= 6,7

To show that Algorithm 12.2.1 is correct, we need some preliminaries. The
following lemma comes from [GomHu61].

Lemma 12.2.3 Let N = (G,c) be a symmetric network and (X,Y ) a min-
imal (x, y)-cut—that is, a minimal cut in the flow network (G,c,x, y)—for
two distinct vertices x and y of G. Moreover, let u and v be two vertices in
X and (U,V ) a minimal (u, v)-cut. If y ∈ U , then (U ∪ Y,V ∩X) is also a
minimal (u, v)-cut; and if y ∈ V , then (U ∩X,V ∪Y ) is a minimal (u, v)-cut.

Proof We may assume that none of the four sets

P =X ∩U, Q= Y ∩U, R=X ∩ V and S = Y ∩ V

is empty; otherwise the assertion is trivial. (For example, for Q= ∅, we have
U ∩X = U and V ∪ Y = V .) Then (X,Y ) and (U,V ) are said to be crossing
cuts. Thus our goal is to construct a minimal (u, v)-cut (U ′, V ′) such that
(X,Y ) and (U ′, V ′) are non-crossing cuts. Figure 12.5 illustrates the given
crossing cuts for the two possible cases for y. Using symmetry arguments, it
suffices to consider one of these two cases, say y ∈Q. Note that it does not
matter whether x ∈ U or x ∈ V .

As (P ∪R∪S,Q) is an (x, y)-cut and as (X,Y ) is a minimal (x, y)-cut, we
obtain

c(P,Q) + c(P,S) + c(R,Q) + c(R,S) = c(X,Y )

≤ c(P ∪R ∪ S,Q)

= c(P,Q) + c(R,Q) + c(S,Q)

and therefore

c(P,S) + c(R,S)≤ c(S,Q).
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Fig. 12.5 The crossing cuts in Lemma 12.2.3

Using the trivial inequality c(P,S)≥ 0, we conclude c(R,S)≤ c(S,Q), so that

c(P ∪Q∪ S,R) = c(P,R) + c(Q,R) + c(S,R)

≤ c(P,R) + c(Q,R) + c(Q,S) + c(P,S) = c(U,V ),

where we have used the symmetry of c. As (U,V ) is a minimal (u, v)-cut,
(P ∪Q∪ S,R) = (U ∪ Y,V ∩X) has to be a minimal (u, v)-cut as well. �

Corollary 12.2.4 Under the assumptions of Lemma 12.2.3, there exists a
minimal (u, v)-cut (U ′, V ′) with U ∩X = U ′∩X for which (X,Y ) and (U ′, V ′)
are non-crossing cuts.

We now turn to analyzing the procedure FLOWTREE. In each iteration,
we view the edge {s, t} treated in step (6) as oriented from s to t. Then the
tree B generated by the algorithm is oriented in such a way that s > t holds
for each edge st of B. Note that all directed paths in B are oriented towards
vertex 1; that is, B has the opposite orientation of a spanning arborescence
with root 1. For the tree of Example 12.2.2, the orientation is shown in
Fig. 12.6.

Lemma 12.2.5 Let B be a directed tree generated by Algorithm 12.2.1 for
a symmetric network N = (G,c). Moreover, let P = Pij be a directed path in
B with start vertex i and end vertex j, and let kj be an edge in B such that
k ≤ h holds for each vertex h �= j on P . Then, at the point of the algorithm
when a minimal (k, j)-cut (K,J) is constructed, i is adjacent to j in the
current tree. Moreover, i ∈K if and only if k is a vertex of P .

Proof After the initialization phase, each vertex h �= 1 is a leaf, with 1 as
its unique neighbor. Note that vertex h stays a leaf until iteration h. The
neighbor of h can change (from u to v, say) only if s= v and t= u in some
iteration. It is easy to see that the directed path Ph1 from h to 1 in the tree
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Fig. 12.6 Oriented flow

tree for Example 12.2.2

B consists precisely of those vertices which were the unique neighbor of h
at some point during the first h iterations of the algorithm. Now each path
Pij is part of the path Pi1; hence i, while it was still a leaf, must have been
adjacent to j at some point of time before iteration i was executed.

Assume that the neighbor of i was changed afterwards; necessarily, this
happened during the iteration s= h (where t= j) for the predecessor h of j
on Pij . However, k ≤ h holds by hypothesis, so that i must have been adjacent
to j during the iteration s= k, when the (k, j)-cut (K,J) was calculated. Now
if k is a vertex on the path P (that is, k = h is the predecessor of j on P ),
then i must have been contained in K, because otherwise it would not have
been cut off from j. Conversely, if i ∈K, then i is indeed cut off from j and
connected to k in step (8) of the algorithm; hence k ∈ P , as asserted. �

Theorem 12.2.6 Algorithm 12.2.1 determines an equivalent flow tree for
the symmetric network N .

Proof We introduce some notation first. For any two vertices x and y, let Pxy

be the unique path from x to y in the tree B determined by Algorithm 12.2.1.
Note that, in general, Pxy is not a directed path. Moreover, for any path
P in B, let k(P ) be the capacity of P in the network (B,w): k(P ) is the
minimum of the values w(xy) over all edges xy ∈ P . Thus the assertion is
equivalent to

k(Pxy) =w(x, y) for all x, y ∈ V, (12.3)

where w is the flow function on N . For each edge xy ∈ B (with x > y),
let (Sxy, Txy) denote the minimal (x, y)-cut which the algorithm calculates in
step (5) of the iteration where s= x and t= y; we always assume x ∈ Sxy and
y ∈ Txy . To prove (12.3), we distinguish four cases. Note that k(Pxy)≤w(x, y)
holds by Theorem 12.1.1.

Case 1 : xy is an edge of B, so that x > y. Then (12.3) holds trivially, because
xy has been assigned the value w(x, y) as weight in step (6) of the iteration
s= x in this case.



388 12 Synthesis of Networks

Case 2 : Pxy is a directed path from x to y; again, this means x > y. We
use induction on the length l of the path Pxy . The induction basis (l = 1)
was proved in Case 1. Thus assume l≥ 2, and let v be the immediate prede-
cessor of y on Pxy . Consider the cut (Svy, Tvy). By Lemma 12.2.5, x ∈ Svy .
Now Lemma 6.1.2 implies w(x, y) ≤ c(Svy, Tvy) = w(v, y). By the induction
hypothesis, w(x, v) = k(Pxv), so that

k(Pxy) =min
{
k(Pxv),w(v, y)

}
=min

{
w(x, v),w(v, y)

}
.

Now if we had w(x, y)> k(Pxy), Corollary 12.1.3 would imply

w(x, y)> k(Pxy) =w(x, v) =w(v, y),

contradicting w(x, y)≤w(v, y) above.

Case 3 : Pyx is a directed path. This case reduces to Case 2 by interchanging
the roles of x and y.

Case 4 : Neither Pxy nor Pyx is a directed path. Let z be the first common
vertex of the directed paths Px1 and Py1. Then Pxy is the union of the two
directed paths Pxz and Pyz . Denote the predecessors of z on Pxz and Pyz by
x′ and y′, respectively. We may assume x′ < y′, so that the cut (Sx′z, Tx′z) is
calculated at an earlier point than the cut (Sy′z, Ty′z). Then the cases treated
before imply

w(x, z) = k(Pxz) and w(y, z) = k(Pyz),

so that

k(Pxy) =min
{
w(x, z),w(y, z)

}
.

Now suppose w(x, y)> k(Pxy). Then Corollary 12.1.3 yields

k(Pxy) =w(x, z) =w(y, z).

Therefore Pxz contains some edge of weight k(Pxy); we choose e= uv as the
last edge with this weight on the directed path Pxz . Applying Lemma 12.2.5
to the path Pxv, we get x ∈ Suv. As we assumed w(x, y)> k(Pxy), we must
also have y ∈ Suv, because otherwise

w(x, y)≤ c(Suv, Tuv) =w(u, v) = k(Pxy),

a contradiction. Applying Lemma 12.2.5 to the path Pyz , we also get y /∈ Sx′z .
Hence uv �= x′z, as y ∈ Suv. Again using Lemma 12.2.5 (now applied to the
paths Pxz , Puz , and Pvz), we see that u, v, and x are all contained in Sx′z .
Thus the situation looks as shown in Fig. 12.7; the positions of u, v, x, and
y in one of the four quarters are uniquely determined, whereas there are two
possibilities for x′ and z. Depending on whether z ∈Q or z ∈ S holds, either
(R,P ∪Q ∪ S) or (P,Q ∪R ∪ S) is a minimal (u, v)-cut, by Lemma 12.2.3;
this yields the two cases of Fig. 12.7. We denote this cut by (U,V ).
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Fig. 12.7 Case 4

First consider the case z ∈Q. Then the cut (U,V ) separates the vertices
z and v, so that

w(v, z)≤ c(U,V ) = c(Suv, Tuv) =w(u, v) = k(Pxy).

On the other hand, the fact that the path Pvz is directed implies w(v, z) =
k(Pvz). By the choice of e, we must have k(Pvz)> k(Pxy), contradicting the
inequality above. Therefore, this case cannot occur and z must be in S. Now
the cut (U,V ) separates the vertices x and y and we obtain

w(x, y)≤ c(U,V ) = c(Suv, Tuv) =w(u, v) = k(Pxy),

that is, w(x, y) = k(Pxy). �

Corollary 12.2.7 Let N be a symmetric network on G= (V,E). Then one
may determine with complexity O(|V |3|E|1/2) an equivalent flow tree for N .

Proof The assertion follows immediately from Theorems 6.6.17 and 12.2.6, if
we use Algorithm 6.6.16 for determining a maximal flow and—as explained
at the beginning of this section—a minimal cut in step (5) of procedure
FLOWTREE. �

12.3 Synthesizing Minimal Networks

As promised at the end of Sect. 12.1, we now present the method of Gomory
and Hu [GomHu61] for solving the network synthesis problem, that is, for
constructing a minimal feasible network (N,c) for a given request function
r : V × V → R. To this end, we consider the complete graph K on V with
weight function r. In the present context, a maximal spanning tree T for
(K,r) will be called a dominant requirement tree for r. Such a tree T may be
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Fig. 12.8 A dominating tree

determined in O(|V |2) steps, using the algorithm of Prim (Algorithm 4.4.3)
modified for maximal spanning trees as in Sect. 4.5. Then we partition T
into uniform trees, where a graph with a weight function is called uniform
if all edges have the same weight. To do so, let m be the minimal weight
occurring in T , and choose as a first uniform tree the tree T ′ containing
the same edges as T , but each edge with weight m. Now delete all edges of
weight r(e) =m from T , and replace the weight r(e) of all other edges by
r(e)−m> 0. The result is a forest on V ; the trees contained in this forest
may then be partitioned into uniform trees using the same procedure.

Example 12.3.1 Let K be the graph in Fig. 12.8, where edges of weight
r(e) = 0 are not drawn. The fat edges form a dominant requirement tree T
which can be partitioned into uniform trees U1, . . . ,U6 as in Fig. 12.9. Note
that T is not uniquely determined: for instance, the edge gh of T could be
replaced by the edge bg.

Suppose that the dominant requirement tree T has been partitioned into
uniform trees U1, . . . ,Uk. For each tree Ui containing at least three vertices,
we form a cycle Ci on the vertices of Ui, in an arbitrary order; each edge in
this cycle is assigned weight ui/2, where ui is the weight of the edges in Ui.
Trees Ui consisting of one edge only are kept as Ci with unchanged weight.
Now consider the graph G= (V,E) whose edge set is the union of the edge
sets of C1, . . . ,Ck, where parallel edges are merged to form one edge with
weight the sum of the individual weights.

Example 12.3.2 For the partition of Fig. 12.9, we may use the cycles
C1, . . . ,C6 shown in Fig. 12.10 to obtain the symmetric network (G,c) shown
in Fig. 12.11.
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Fig. 12.9 Partitioning T into uniform trees

We claim that any symmetric network (G,c) constructed in this way is a
minimal feasible network for r. We first prove that N is feasible; it will suffice
to verify the following condition:

w(u, v)≥ r(u, v) for each edge uv of T. (12.4)

Clearly, this condition is necessary. On the other hand, for any two vertices x
and y, the unique path P in T from x to y is a path of maximal capacity in
K, by Theorem 4.5.4. Now (12.2) in the proof of Theorem 12.1.1 and (12.4)
imply

w(x, y)≥min
{
w(u, v) : uv ∈ P

}
≥min

{
r(u, v) : uv ∈ P

}
≥ r(x, y),

since xy is a path of capacity r(x, y) in K.
Thus we have to check that condition (12.4) is satisfied for the symmetric

network (G,c) defined above. But this is rather obvious: for each cycle Ci,
we may realize a flow of value ui between any two vertices of Ci. Now let
e= uv be an arbitrary edge of T . By summing the flows from u to v for all
Ci which contain both u and v, we obtain a flow from u to v which has the
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Fig. 12.10 The cycles corresponding to the trees of Fig. 12.9

Fig. 12.11 The corresponding symmetric network

required value
∑

i
u,v∈Ui

ui = r(u, v).
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It remains to show that N is a minimal network for r. For each vertex x, we
let u(x) denote the maximal value of flow required in x:

u(x) =max
{
r(x, y) : y �= x

}
.

As (x,V \x) is a cut (for simplicity, we write x instead of {x}), Theorem 6.1.6
yields c′(x,V \ x)≥ u(x) for every symmetric network N ′ = (G′, c′) which is
feasible for r. Summing this over all vertices x gives

∑

x,y∈V

c′(x, y)≥
∑

x∈V

u(x) =: u(V ), (12.5)

where c′(x, y) = 0 whenever xy is not an edge of G′. Therefore the sum of all
capacities in N ′ is at least u(V )/2. We will show that equality holds in (12.5)
for the network N constructed above, so that N is indeed minimal. To this
end, we define a function u′ on V by

u′(x) =max
{
r(x, y) : xy is an edge of T

}
;

trivially, u′(x) ≤ u(x) for all x.2 By construction of N , c(x,V \ x) = u′(x)
holds for every vertex x, so that in N

∑

x,y∈V

c(x, y) =
∑

x∈V

u′(x)≤ u(V ).

Thus equality holds in (12.5) for N ′ =N , as claimed.
Finally, let us discuss the complexity of this construction procedure. The

dominant requirement tree may be determined O(|V |2) steps if we use the
algorithm of Prim; see Theorem 4.4.4. As there are at most |V | − 1 distinct
weights, O(|V |2) steps also suffice to partition T into uniform trees. Finally,
constructing the network (G,c) from the uniform trees takes another O(|V |2)
steps. Thus we have proved the following result due to Gomory and Hu:

Theorem 12.3.3 Let r be a given symmetric request function on a vertex
set V . Then one can determine a minimal feasible symmetric network for r
in O(|V |2) steps.

We will not write down the preceding algorithm in a formal way; the
reader might do so as an exercise. As there are many different choices for the
dominant requirement tree T and for the order of the vertices in each of the
cycles Ci, there exist many different minimal networks for r. It is possible to
single out some of these networks according to a further optimality criterion,

2Actually u(x) = u′(x) for all x, but we do not need this for our proof.
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although this extra property may still be satisfied by several distinct net-
works. A minimal network for r will be called dominating if its flow function
w satisfies the condition

w(x, y)≥w′(x, y) for all x, y ∈ V,

whenever w′ is the flow function for some minimal network N ′ with respect to
the request function r. Gomory and Hu also proved that dominating networks
indeed exist:

Theorem 12.3.4 For every request function r on V , there exists a domi-
nating minimal network for r.

Proof We replace the given request function r on V by the function s defined
as follows:

s(x, y) =min
{
u(x), u(y)

}
,

where u is as before: u(x) = max{r(x, y) : y �= x}. The following inequalities
show that u can also be defined by using s instead of r:

u(x) ≥max
{
s(x, y) : y �= x

}
=max

{
min

{
u(x), u(y)

}
: y �= x

}

≥max
{
min

{
u(x), r(x,y)

}
: y �= x

}

=max
{
r(x, y) : y �= x

}
= u(x).

Hence indeed u(x) = max{s(x, y) : y �= x}. Now we construct a minimal fea-
sible network N for s. As

r(x, y)≤min
{
u(x), u(y)

}
= s(x, y)

for all x and y, the network N is also feasible for r. Let us show that in N all
flow requirements have to be satisfied with equality: w(x, y) = s(x, y) for all
x and y. Suppose otherwise so that w(x, y) > s(x, y) for some x, y ∈ V . We
may assume u(x)≤ u(y). Then Lemma 6.1.2 implies

c(x,V \ x)≥w(x, y)> s(x, y) = u(x).

As N is minimal for s, this contradicts the fact (established in the proof of
Theorem 12.3.3) that a minimal network has to satisfy inequality (12.5) with
equality. Since the function u is the same for r and s, N has to be a minimal
feasible network for r as well.

Finally, let N ′ be any minimal network for r, with capacity function c′

and flow function w′. Moreover, let x and y be any two vertices in V . Sup-
pose s(x, y) = w(x, y) < w′(x, y) and assume w.l.o.g. s(x, y) = u(x) ≤ u(y).
Applying Lemma 6.1.2 again yields

c′(x,V \ x)≥w′(x, y)>w(x, y) = u(x),
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so that equality cannot hold in (12.5) for N ′. This contradicts the minimality
of N ′ and finishes the proof. �

A dominating network is distinguished among all minimal networks for r
by the fact that the flow value is as large as possible for each pair of vertices,
subject to the condition that the overall cost has to be as small as possible.
Any further increase of the value of the flow for even just one pair of vertices
would require increasing the sum of the capacities as well, and therefore the
cost would increase. We shall discuss this type of problem in Sect. 12.5.

Exercise 12.3.5 Determine a dominating feasible network N for Exam-
ple 12.3.1 and check that there are pairs x, y of vertices for which the value of
the flow on N is larger than the flow value realized by the minimal network
shown in Fig. 12.11.

As usual, the case of integer capacities is of particular interest. In this case,
the Gomory-Hu algorithm obviously guarantees that the edge capacities in
the final network are half integral; usually they will not be integral, as seen in
Example 12.3.2. The integer network synthesis problem asks for an optimal
solution among all realizations with integral capacities. The exact integer
network synthesis problem in addition requires to decide if an exact realization
of r exists and to construct such a realization if possible; that is, for every
pair {x, y} of distinct vertices, the value of the maximum flow between x and
y should equal exactly r(x, y). These two problems can also be solved with
complexity O(|V |2); see [SriCh92] and [KabYDN08], respectively.

A more general problem of synthesizing a flow network is studied in
[GomHu64]. The problem we have discussed is the special case where, at
any point of time, there is only a single flow request for just one pair of ver-
tices; this case is called complete time-sharing ormulti-terminal network flow .
The other extreme case occurs if all requests r have to be satisfied simulta-
neously; this leads to multi-commodity flows; see [GonMi84] and [ForFu58c].
One may also treat the case where the flow requests are time-dependent; see
[GomHu64].

12.4 Cut Trees

In this section we consider a strengthening of the notion of equivalent flow
trees introduced in Sect. 12.2 and present an interesting application to the
construction of certain communication networks.

Let N = (G,c) be a symmetric network with flow function w, and let B be
an equivalent flow tree for N . Moreover, assume that the following condition
holds for each pair of vertices x and y:

(∗) The cut (U,V ) determined by an edge e= uv of minimal weight w(u, v)
on the path Pxy from x to y in B is a minimal (x, y)-cut.
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Fig. 12.12 A cut tree

Then B is called a cut tree for N . It is easy to see that it suffices to verify
condition (∗) for all edges xy of the equivalent flow T . The following example
shows that an equivalent flow tree for N is not necessarily a cut tree.

Example 12.4.1 Consider the symmetric network N of Example 12.2.2 and
the equivalent flow tree B constructed there—that is, the tree on the right
hand side of Fig. 12.4. Then the condition for a cut tree is satisfied for all
edges of B but one: the only exception is the edge e = {2,3}, where the
corresponding cut is S = {3,6,7}, T = {1,2,4,5} with capacity c(S,T ) = 7,
whereas w(2,3) = 6. However, modifying B slightly yields the cut tree B′ for
N shown in Fig. 12.12.

The rather involved method proposed by Gomory and Hu [GomHu61]
does in fact always construct not just an equivalent flow tree, but a cut tree.
Fortunately, an appropriate modification of the simpler Algorithm 12.2.1 can
be used for this purpose as well; the cut tree given in the preceding example
was obtained in this way.

Algorithm 12.4.2 Let N = (G,c) be a symmetric network on G= (V,E),
where V = {1, . . . , n}. The algorithm determines a cut tree (B,w) for N . It
also calculates a function p; for i �= 1, p(i) is the predecessor of i on a path
from vertex 1 to vertex i in B; thus B consists of the edges {p(i), i} for
i= 2, . . . , n.

Procedure CUTTREE(G,c;B,w)

(1) B ←∅;
(2) for i= 2 to n do p(i)← 1 od
(3) for s= 2 to n do
(4) t← p(s);
(5) determine a minimal cut (S,T ) and the value w of a maximal flow

in the flow network (G,c, s, t);
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(6) f(s)←w;
(7) for i= 1 to n do
(8) if i ∈ S \ {s} and p(i) = t then p(i)← s fi
(9) od

(10) if p(t) ∈ S then p(s)← p(t); p(t)← s; f(s)← f(t); f(t)←w fi
(11) od
(12) for i= 2 to n do
(13) w(i, p(i))← f(i);
(14) B ←B ∪ {{i, p(i)}}
(15) od

The main difference between Algorithms 12.2.1 and 12.4.2 is as follows:
during iteration s of Algorithm 12.2.1, only vertices in S satisfying i > s
are cut off from t and re-connected to s; here, in 12.4.2, this is done for
vertices i < s as well. When i < s, the weight of an edge it which was removed
has to be transferred to the new edge is. Moreover, the tree B does not
grow by adding edges one by one (as in Algorithm 12.2.1, step (6)), but it
might happen that edges {s, p(s)} previously constructed are changed again.
Thus the procedure CUTTREE is somewhat more involved, which makes the
proof of the following result more difficult; in view of its length and technical
complexity, we refer the reader to the original paper [Gus90].

Theorem 12.4.3 Let N = (G,c) be a symmetric network. Then Algo-
rithm 12.4.2 constructs a cut tree for N . By using Algorithm 6.6.16 in step
(5), one may achieve a complexity of O(|V |3|E|1/2).

A further algorithm for constructing |V | − 1 cuts corresponding to a cut
tree can be found in [CheHu92]; this algorithm is capable of dealing with an
arbitrary symmetric cost function for constructing the cuts—not necessarily
the capacity. Related problems are considered in [GusNa91].

Next we use cut trees for treating Problem 4.7.11 (optimum communi-
cation spanning tree). As already mentioned in Sect. 4.7, this problem is
NP-complete. However, Hu [Hu74] was able to give an efficient solution for
the special case where all edge weights are equal. Let us formulate this special
case explicitly.

Problem 12.4.4 (Optimum requirement spanning tree) Let G be a complete
graph on the vertex set V , and let r : V ×V →R

+
0 be a request function. We

look for a spanning tree T for G such that

γ(T ) =
∑

u,v∈V
u�=v

d(u, v)r(u, v)

is minimal, where d(u, v) denotes the distance of u and v in the tree T .
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Hu’s method for solving Problem 12.4.4 rests on finding a cut tree for
an appropriate symmetric network. For this purpose, the pair N = (G,r) of
Problem 12.4.4 is considered as a symmetric network on G with capacity
function r. We begin with the following auxiliary result.

Lemma 12.4.5 Let G be the complete graph on the vertex set V , and let
r : V × V →R

+
0 be a request function. Consider the symmetric network N =

(G,r). Then every spanning tree T of G satisfies

γ(T ) =
∑

e∈T

r
(
ST (e)

)
,

where ST (e) is the cut of G determined by e ∈ T as in Sect. 4.3, and where
r(ST (e)) denotes the capacity of this cut in N .

Proof The cost γ(T ) may be written as follows:

γ(T ) =
∑

u,v∈V
u�=v

∑

e∈Puv

r(u, v) =
∑

e∈T

∑

u,v∈V
u�=v, e∈Puv

r(u, v),

where Puv denotes the path from u to v in T . Therefore it suffices to show

∑

u,v∈V
u�=v, e∈Puv

r(u, v) = r
(
ST (e)

)
.

But this is rather obvious: the path Puv in T contains the edge e if and only
if u and v lie in different components of the cut ST (e). �

We need the preceding lemma to establish the following result due to Hu;
our proof is considerably simpler than the one in the original paper [Hu74].

Theorem 12.4.6 Let G be the complete graph on the vertex set V , and let
r : V ×V →R

+
0 be a request function. Then every cut tree T for the symmetric

network N = (G,r) is a solution of Problem 12.4.4.

Proof Let w be the flow function on N . As we saw in Exercise 12.1.4, every
maximal spanning tree B for (G,w) is an equivalent flow tree for N . Let us
denote the common weight of all these trees by β; we begin by showing the
following auxiliary claim:

γ(T )≥ β for every spanning tree T of G. (12.6)

For this purpose, we consider the weight function w′ on T defined by

w′(u, v) = r
(
ST (e)

)
for all e= uv ∈ T.
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We extend w′ to the flow function of the symmetric network (T,w′); using
Exercise 12.1.4 again, T is a maximal spanning tree for the network (G,w′).
Now (12.6) follows if we can show

w(x, y)≤w′(x, y) for all x, y ∈ V. (12.7)

Thus let x and y be any two vertices, and choose an edge e= uv of minimal
weight with respect to w′ on the path Pxy from x to y in T . Then indeed

w′(x, y) =w′(u, v) = r
(
ST (e)

)
≥w(x, y),

as ST (e) is an (x, y)-cut. This establishes (12.6), which allows us to restrict
our attention to equivalent flow trees for N . Let B be such a tree. Then

γ(B) =
∑

e∈B

r
(
SB(e)

)
≥

∑

e=uv∈B

w(u, v) =w(B) = β,

since SB(u, v) is a (u, v)-cut. Here equality holds if and only if SB(u, v) is a
minimal (u, v)-cut for all uv ∈B, which means that B is a cut tree for N . �

Theorems 12.4.3 and 12.4.6 immediately yield the following result.

Corollary 12.4.7 Algorithm 12.4.2 solves Problem 12.4.4 with complexity
O(|V |3|E|1/2).

Example 12.4.8 Let us interpret the capacity function of the symmetric net-
work N on V = {1, . . . ,7} shown in Fig. 12.8 as a request function for the
complete graph KV ; of course, we put r(u, v) = 0 for edges which are not
contained in N . Then the cut tree T displayed in Fig. 12.12 solves Prob-
lem 12.4.4 for this request function. The weights given in that figure are the
capacities of the cuts ST (e), so that

γ(T ) =
∑

e∈T

r
(
ST (e)

)
= 26.

For comparison, the equivalent flow tree B shown in Fig. 12.4 (which was
constructed using the simpler Algorithm 12.2.1) has cost

γ(B) =
∑

e∈B

r
(
SB(e)

)
= 27,

so that B is indeed not an optimal solution for Problem 12.4.4.

We conclude this section with an exercise taken from [Hu74].

Exercise 12.4.9 Determine an optimal solution for the following instance
of Problem 12.4.4: V = {1, . . . ,6} and r(1,2) = 10, r(1,6) = 8, r(2,3) = 4,
r(2,5) = 2, r(2,6) = 3, r(3,4) = 5, r(3,5) = 4, r(3,6) = 2, r(4,5) = 7, r(4,6) =
2, r(5,6) = 3.
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12.5 Increasing the Capacities

The final section of this chapter is devoted to the question of how one may
increase the maximal value of a flow on a flow network N = (G,c, s, t) as
economically as possible. More specifically, we ask how the capacities of the
given edges should be increased if we want to increase the maximal value w
of a flow on N by k units; note that we do not allow adding new edges. We
shall assume that the cost for increasing the capacity of an edge e by d(e)
units is proportional to d(e).

Thus let N = (G,c, s, t) be a flow network with an integral capacity func-
tion c, and let δ : E → N be an arbitrary mapping. For each v ∈ N, we look
for a mapping d= dv :E →N0 for which the network (G,c+ d, s, t) allows a
flow of value v; moreover, the sum

z(v) =
∑

e∈E

d(e)δ(e)

should be minimal under this condition. Thus the cost for realizing a flow of
value v on N in the prescribed manner is at least z(v), and the function dv
specifies how the capacities should be increased in an optimal solution.

Note that this approach also solves the parametric budget problem, where
we want to determine the maximal possible flow value which may be achieved
by installing extra capacity subject to a given budget b: we simply need to
find the largest value of v for which z(v)≤ b holds. In general, the bound b
will not be achieved with equality, as we assumed the capacities to be integral;
of course, equality may be obtained by interpolation. The parametric budget
problem was first considered by Fulkerson [Ful59]. As we will see, it may be
solved using the algorithm of Busacker and Gowen presented in Sect. 10.5;
this is notably simpler than Fulkerson’s method.

Let us define a further flow network on a digraph H which extends the
given digraph G as follows. Each edge e of G is also contained in H with
cost γ(e) = 0 and with its original capacity: c′(e) = c(e). Additionally, H
also contains a parallel edge e′ = uv with unlimited capacity c′(e′) =∞ and
costγ(e′) = δ(e).3 We claim that our problem can be solved by determining an
optimal flow f of value v on the flow network N ′ = (H,c′, s, t), with respect
to the cost function γ. This is seen as follows. Since f is optimal, f(e′) �= 0
can only hold if e is saturated: f(e) = c′(e). Then the desired function dv is
given by dv(e) = f(e′), and z(v) = γ(f).

Hence we may calculate dv and z(v) for every positive integer v using the
algorithm of Busacker and Gowen. Clearly, z(v) = 0 for v ≤w: in this case, we
do not have to increase any capacities. Hence we may start Algorithm 10.5.2
with a maximal flow f on N instead of the zero flow, a further simplification.
Let us look at an example.

3If desired, we may avoid parallel edges by subdividing e′.
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Fig. 12.13 Flow network with cost for capacity increase

Fig. 12.14 Maximal flow and minimal cut on N

Example 12.5.1 Consider again the flow network N of Example 6.2.3; see
Fig. 12.13, where we state the capacities in parentheses (as usual) and the
costs in brackets. In Example 6.2.3, we calculated a maximal flow f of value
w = 31; for the convenience of the reader, we display this flow again in
Fig. 12.14, where we have also drawn the minimal cut (S,T ) corresponding
to f . As explained above, we may use f as the initial flow in the algorithm
of Busacker and Gowen.

We now have to imagine G as being extended to H : for each edge e of
G, we have to add a parallel edge e′ with capacity ∞ and cost δ(e). Then
we should proceed by constructing the auxiliary network N∗ corresponding
to f . Unfortunately, the backward edges and parallel edges make this network
rather large and difficult to draw. Therefore we will omit all edges which are



402 12 Synthesis of Networks

Fig. 12.15 A path of minimal cost in N∗

not important for our purposes, since they cannot occur in a path of minimal
cost from s to t in N∗:

• edges with end vertex s or start vertex t;
• edges e′ for which e is not yet saturated;
• edges leading from T to S;4

• edges e which are saturated.

The interesting part of N∗ is shown in Fig. 12.15, where the path P consisting
of fat edges is a path of minimal cost from s to t. Again, we state the costs in
brackets and the capacities in parentheses (of course, now giving the values
in N∗).

Note that the path P has cost 2 and capacity 10. Thus we may increase
the existing maximal flow of value w = 31 by ε with cost 2ε to a flow of value
v = 31+ε for ε= 1, . . . ,10. The flow g of value 41 obtained for ε= 10 is shown
in Fig. 12.16; the fat edge ac is the edge whose capacity was increased. Should
we desire any further increase of the value of the flow, we just continue in
the same manner with the algorithm of Busacker and Gowen. If a budget b
is given, the procedure may be terminated as soon as we reach z(v)> b.

Exercise 12.5.2 Determine the cost function z(v) for all v for the flow
network of Example 12.5.1. Hint: Two more steps of Algorithm 10.5.2 are
needed.

In view of Exercise 10.5.4, it is clear that the cost function z(v) is always
a piecewise linear, monotonically increasing, convex function. Moreover, we

4Vertices in S can be reached from s by a path of cost 0, so that we want to direct our
path from S to T , not reversely.
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Fig. 12.16 An optimal flow of value 41

need at most |E| iterations of the algorithm of Busacker and Gowen to de-
termine z(v) for all v: in the worst case, we have to adjoin a parallel edge for
each edge of E to ensure that we reach a path of minimal cost from s to t
which has infinite capacity.

A survey of various problems and algorithms concerning the design of net-
works for communication or transport purposes can be found in [MagWo94].



Chapter 13
Matchings

And many a lovely flower and tree

Stretch’d their blossoms out to me.

William Blake

This chapter is devoted to the problem of finding maximal matchings in
arbitrary graphs; the bipartite case was treated in Sect. 7.2. In contrast to
the bipartite case, it is not at all easy to reduce the general case to a flow
problem.1 However, we will see that the notion of an augmenting path can
be modified appropriately.

We emphasize again that the term maximal matching means a matching
of maximal cardinality, and that an unextendable matching is not necessarily
maximal; see Sect. 7.2. The graphs for which every unextendable matching is
already maximal are characterized in [Men74]. An algorithmically satisfactory
solution is due to [LesPP84]: one can check in polynomial time whether a
graph is equimatchable.

13.1 The Berge-Tutte Formula

Clearly, the cardinality of a matching in a graph G = (V,E) cannot exceed
|V |/2, and a matching of this size exists if and only if |V | is even and G
has a 1-factor. As in the bipartite case, a 1-factor is also called a perfect
matching of G. The starting point of this section is the famous 1-factor
theorem of Tutte [Tut47] which characterizes the graphs having a perfect

1Kocay and Stone [KocSt93, KocSt95] showed that matchings may indeed be treated in

the context of flow theory by introducing special types of networks and flows which satisfy

certain symmetry conditions: balanced networks and balanced flows; related ideas can be

found in the pioneering work of Tutte [Tut67] and in [GolKa96]. Subsequently, Fremuth-

Paeger and Jungnickel provided a general theory based on this approach, including efficient

algorithms; see [FreJu99a, FreJu99b, FreJu99c, FreJu01a, FreJu01b, FreJu01c, FreJu02,

FreJu03]. We will not present this rather involved theory because that would take up far

too much space; instead, we refer the reader to the original papers.

D. Jungnickel, Graphs, Networks and Algorithms,

Algorithms and Computation in Mathematics 5,
DOI 10.1007/978-3-642-32278-5 13, © Springer-Verlag Berlin Heidelberg 2013
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matching. This result may be viewed as a generalization of Hall’s marriage
theorem (Theorem 7.3.1); see Exercise 13.1.4.

Let G= (V,E) be a graph, and let S be a subset of V . If G has a perfect
matching M , then at least one vertex of each odd component (that is, each
connected component of odd cardinality) of the graph G\S has to be incident
with an edge of M whose other vertex is contained in S; hence the number of
odd components in G \ S cannot exceed |S|. Tutte’s 1-factor theorem states
that this obvious necessary condition is actually sufficient:

Theorem 13.1.1 (1-factor theorem) Let G= (V,E) be a graph. Then G has
a perfect matching if and only if the following condition holds:

(T) o(S)≤ |S| for each subset S of V ,

where o(S) denotes the number of odd components of G \ S.

Theorem 13.1.1 follows from a stronger result due to Berge [Ber58] usually
called the Berge-Tutte formula. This result may be viewed as a deficiency
version of the 1-factor theorem, since it can be derived from Theorem 13.1.1—
in analogy with the deficiency version of the marriage theorem in Sect. 7.3;
see Exercise 13.1.3. The reader should convince himself that Theorem 13.1.1
is indeed the special case d= 0 of Theorem 13.1.2 below. A short proof for
the 1-factor theorem was given by Anderson [And71]. His proof was recently
adapted by West [Wes11] to the direct proof for the Berge-Tutte formula
which we will present below.

Before we can state Berge’s result, we have to introduce some more ter-
minology. Let M be a matching in the graph G = (V,E). Then a vertex v
which is not incident with any edge in M is called exposed (with respect to
M ), whereas vertices incident with some edge of M are called saturated or
covered . Given any saturated vertex v, we will refer to the unique vertex u
with uv ∈M as the mate of v.

Theorem 13.1.2 (Berge-Tutte formula) Let G= (V,E) be a graph, and let
M be a maximal matching of G. Then there are precisely

d=max
{
o(S)− |S| : S ⊂ V

}
(13.1)

exposed vertices, and hence M consists of (|V | − d)/2 edges.

Proof Let M be a matching of G with exactly e exposed vertices, and let S
be an arbitrary subset of V . Note that any odd component of G \ S has to
contain at least one exposed vertex, unless one of its vertices is the mate of
some vertex in S. Therefore, the number of odd components in G \S cannot
exceed |S| plus the total number of exposed vertices, that is,

o(S)− |S| ≤ e.
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As this holds for all choices of S, we see that e is at least the maximum d

defined in Equation (13.1).

We shall now use induction on the number n of vertices of G to show

that a matching with exactly d exposed vertices indeed exists. This is trivial

for n= 0, but the induction step takes some effort. In what follows, we will

abbreviate the quantity o(S)−|S| as d(S) and call it the deficiency of S. We

begin with a simple observation:

d(S) = o(S)− |S| ≡ |V | (mod 2) for each S ⊆ V. (13.2)

To see this, note that |V | equals the sum of |S| and the cardinalities of all

the connected components of G \ S, so that o(S) + |S| ≡ n (mod 2).

We now choose a maximal set R (with respect to inclusion) among all sets

S of maximum deficiency, that is, among all sets with d(S) = d. We claim

that each component of G \R has to be odd. Suppose otherwise, and let C

be an even component. Then we can add a leaf a of some spanning tree for

C to R to obtain a larger set with the same deficiency d, which contradicts

the maximality of R.

Now let R∗ be the set of all (necessarily odd) components of H =G \R,

and consider the bipartite graph B with vertex set R
.
∪R∗ for which a vertex

r in R and a component C in R∗ are adjacent if and only if there is an edge

rc in G with c ∈ C. We show that B has a complete matching, by verifying

condition (H) of Theorem 7.2.5. Thus let J ⊆R, and let T := Γ (J) be the set

of neighbors of J in B, that is, the set of components of H which are adjacent

to some vertex in J . Then the vertices in R∗ \ T form the (odd) components

of G \ (R \ J), since no component in R∗ \ T has a neighbor in J . Thus

d(R \ J) =
∣
∣R∗ \ T

∣
∣− |R \ J | ≤ d= d(R) =

∣
∣R∗∣∣− |R|,

which simplifies to |J | ≤ |Γ (J)|, as desired. Thus B indeed admits a matching

covering R.

Therefore, we may associate with each vertex y ∈R a vertex xy of G\R in

such a way that yxy always is an edge in G and that the xy belong to pairwise

distinct components of G\R. This yields a matching MR of G covering R and

avoiding exactly o(R)− |R| = d (odd) components of G \R. It now suffices

to show that, for each component C of G \ R and each vertex x of C, the

induced graph GC on the vertex set C \ x has a perfect matching MC . Then

the union of MR and all these matchings MC will yield the desired matching

of G with exactly d exposed vertices, provided we choose x= xy whenever a

component C contains one of these special vertices.

To this end, we verify condition (T) for GC , and then use the induction

hypothesis. For a subset S of C \ x, let d′(S) denote the deficiency of S with
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respect to the graph GC . Then

d
(
R ∪ S ∪ {x}

)
= o

(
G \

(
R ∪ S ∪ {x}

))
−
∣
∣R ∪ S ∪ {x}

∣
∣

= o(G \R) + o
((
C \ {x}

)
\ S

)
− 1−

(
|R|+ |S|+ 1

)

= d(R) + d′(S)− 2.

By the choice of R as a maximal set of maximum deficiency,

d(R) + d′(S)− 2 = d
(
R ∪ S ∪ {x}

)
< d(R). (13.3)

Note that d′(S) has to be even: this follows from (13.2) applied to GC , which
is a graph with an even number of vertices. Therefore (13.3) forces d′(S)≤ 0,
and hence (T) indeed holds for GC . �

Exercise 13.1.3 Let G= (V,E) be a graph. Derive the following result from
Theorem 13.1.1: G admits a matching with precisely d exposed vertices if and
only if the following condition holds:

d≡ |V | mod 2 and p(S)≤ |S|+ d for all S ⊂ V. (13.4)

Exercise 13.1.4 Let G = (S
.
∪ T,E) be a bipartite graph with |S| = |T |.

Show that condition (T) for the existence of a perfect matching in G reduces
to condition (H) of Theorem 7.2.5 in this case. Hint: Add the edges of the
complete graph on T to G, and consider the resulting graph H instead of G.

Exercise 13.1.5 Let G be a 3-regular graph without bridges. Show that
G has a perfect matching [Pet91]. Does this also hold for 3-regular graphs
containing bridges? Does a 3-regular graph without bridges necessarily have
a 1-factorization?

13.2 Augmenting Paths

In this section we use augmenting paths with respect to a given (not yet
maximal) matching M in a graph G = (V,E) for constructing a matching
M ′ of larger cardinality. Let us first consider the bipartite case again. In the
solution of Exercise 6.5.5, we determined a maximal matching of G by using
a maximal flow on an appropriate 0-1-network. We now want to describe the
augmenting paths occurring during this process within G. Thus let M be a
matching of cardinality k in G, and by f denote the corresponding 0-1-flow (as
in the solution of Exercise 6.5.5). Then an augmenting path looks as follows:

s−→ v1 −→ v2 ←− · · · −→ v2n−2 ←− v2n−1 −→ v2n −→ t,

where v1 and v2n are vertices which are not incident with any saturated edge
and where the edges v2iv2i+1 are backward edges (that is, they are saturated).
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Fig. 13.1 An augmenting path

Thus the vertices v1 and v2n are exposed with respect to M , and the edges
v2iv2i+1 are contained in M ; see Fig. 13.1, where fat edges are contained in
the matching M .

The bipartite case suggests the following way of defining augmenting paths
in general. Let M be a matching in an arbitrary graph G= (V,E). An alter-
nating path with respect to M is a path P for which edges contained in M
alternate with edges not contained in M . Such a path is called an augmenting
path if its start and end vertex are distinct exposed vertices.

Example 13.2.1 The fat edges in the graph G displayed in Fig. 13.2 form a
matching M . The vertices a, f , and y are exposed with respect to M , and
the sequences (a, b, c, d, e, f) and (a, b, c, u, v,w,x, y) define augmenting paths
P and P ′, respectively. Interchanging the roles of edges and non-edges of
M on the path P ′ yields the matching M ′ of cardinality |M |+ 1 exhibited
in Fig. 13.3; more formally, we replace M by M ⊕ P ′, where ⊕ denotes the
symmetric difference. Note that M ′ is a maximal matching of G, as there is
only one exposed vertex.

Example 13.2.1 illustrates the following simple but fundamental result due
to Berge [Ber57].

Theorem 13.2.2 (Augmenting path theorem) A matching M in a graph G
is maximal if and only if there is no augmenting path with respect to M .
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Fig. 13.2 Graph G with matching M

Fig. 13.3 Matching M ′ =M ⊕ P ′

Proof Assume first that M is maximal. If there exists an augmenting path
P in G, we may replace M by M ′ =M ⊕P , as in Example 13.2.1. Then M ′

is a matching of cardinality |M |+ 1, a contradiction.
Conversely, suppose that M is not maximal; we will show the existence of

an augmenting path with respect to M . Let M ′ be any maximal matching,
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and consider the subgraph H of G determined by the edges in M ⊕M ′. Note
that each vertex of H has degree at most 2; also, a vertex v having degree 2
has to be incident with precisely one edge of M and one edge of M ′. Therefore
a connected component of H which consists of more than one vertex has to
be either a cycle of even length (where edges of M and M ′ alternate) or a
path formed by such an alternating sequence of edges. As M ′ contains more
edges than M , there exists at least one such path P whose first and last edges
belong to M ′. Then P is an augmenting path with respect to M , since its
end vertices are obviously exposed. �

Theorem 13.2.2 is the basis of most algorithms for determining maximal
matchings in arbitrary graphs. The basic idea is obvious: we start with any
given matching—for example, the empty matching or just a single edge—and
try to find an augmenting path with respect to the present matching in order
to enlarge the matching until no such paths exist any more. To do so, we need
an efficient technique for finding augmenting paths; note that in general the
number of paths in a graph grows exponentially with the size of the graph.
It will be natural to use some sort of BFS starting at an exposed vertex; let
us first show that no exposed vertex needs to be examined more than once.

Lemma 13.2.3 Let G be a graph, M a matching in G, and u an exposed
vertex with respect to M . Moreover, let P be an augmenting path, and put
M ′ =M ⊕P . If there is no augmenting path with respect to M starting at u,
then there is no augmenting path with respect to M ′ starting at u either.

Proof Let v and w be the end vertices of P ; note u �= v,w. Suppose there
exists an augmenting path P ′ with respect to M ′ starting at u. If P and P ′

have no vertex in common, then P ′ is an augmenting path with respect to M
as well, which contradicts our assumption. Thus let u′ be the first vertex on
P ′ which is contained also in P , and let e be the unique edge of M ′ incident
with u′. Then u′ divides the path P into two parts, one of which does not
contain e. Let us call this part P1, and denote the part of P ′ from u to u′

by P ′
1. Then P1P

′
1 is an augmenting path with respect to M starting at u

(see Fig. 13.4),2 a contradiction. �

Now suppose we have some algorithm which constructs a maximal match-
ing step by step by using augmenting paths. We call each iteration of the
algorithm in which an augmenting path is determined and used for changing
the present matching according to Theorem 13.2.2 a phase. The following
result is an immediate consequence of Lemma 13.2.3.

2The edges of M ′ are drawn bold in Fig. 13.4; note that M ′ ∩P ′
1 =M ∩P ′

1 and M ′ ∩P1 ⊂
M ⊕ P1.
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Fig. 13.4 Proof of Lemma 13.2.3

Corollary 13.2.4 Assume that during some phase of the construction of a
maximal matching no augmenting path starting at a given exposed vertex u
exists. Then there is no such path in any of the subsequent phases either.

Exercise 13.2.5 Let G be a graph with 2n vertices, and assume either
deg v ≥ n for each vertex v, or |E| ≥ 1

2 (2n− 1)(2n− 2) + 2. Show that G has
a perfect matching. Hint: Derive these assertions from a more general result
involving Hamiltonian cycles.

Exercise 13.2.6 Let G be a connected graph, and assume that every match-
ing in G can be extended to a perfect matching; such a graph is called ran-
domly matchable. Prove that the only randomly matchable graphs on 2n
vertices are the graphs Kn,n and K2n; see [Sum79] and [LesPP84]. Hint:
Show first that G has to be 2-connected. If G is bipartite and contains non-
adjacent vertices s and t which are in different parts of G, consider a path
(of odd length) from s to t and construct a matching whose only exposed
vertices are s and t. Finally, assume that G is not bipartite. Prove that each
vertex is contained in a cycle of odd length and that any two vertices are
connected by a path of odd length; then proceed as in the bipartite case.

13.3 Alternating Trees and Blossoms

The first polynomial algorithm for determining maximal matchings is due
to Edmonds [Edm65b]; his algorithm is based on using augmenting paths
according to Theorem 13.2.2. Edmonds achieved a complexity of O(|V |4)
with his algorithm, although he did not state this formally. Later both Gabow
[Gab76] and Lawler [Law76] proved that one may reduce the complexity to
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just O(|V |3) by implementing the algorithm appropriately; we shall present
such a version of the algorithm in Sect. 13.4.

A faster (but considerably more involved) algorithm for finding maximal
matchings generalizes the method of Hopcroft and Karp [HopKa73] for the
bipartite case; it is due to Micali and Vazirani [MicVa80]. As in the bipartite
case, this results in a complexity of O(|V |1/2|E|). Although an extensive dis-
cussion of this algorithm was given in [PetLo88], a formal correctness proof
appeared only 14 years after the algorithm had been discovered; see Vazirani
[Vaz94]. The (theoretically) best algorithm known at present achieves a com-
plexity of O(|V |1/2|E| log(|V |2/|E|)/ log |V |) via graph compression. This is
due to Feder and Motwani [FedMo95] for the bipartite case; the general case
is in [FreJu03]. A quite different algorithm with complexity O(|V |1/2|E|) is
given in [GolKa04]. Empirical studies concerning the quality of various algo-
rithms for determining maximal matchings can be found in [DerHe80] and
[BalDe83]; for further advances concerning implementation questions we refer
to the monograph [JohMcG93].

Although it is possible to use the empty matching to initialize the construc-
tion of a maximal matching via augmenting paths, from a practical point of
view it is obviously advisable to determine a reasonably large initial match-
ing in a heuristic manner: we may expect this to result in a considerable
reduction of the number of phases required by the algorithm. We will give a
simple greedy method for finding such an initial matching.

Algorithm 13.3.1 Let G= (V,E) be a graph with vertex set V = {1, . . . , n}.
The algorithm constructs an unextendable matching M described by an array
mate: for ij ∈ M , mate(i) = j and mate(j) = i, whereas mate(k) = 0 for
exposed vertices k. The variable nrex denotes the number of exposed vertices
with respect to M .

Procedure INMATCH(G;mate,nrex)

(1) nrex ← n;
(2) for i= 1 to n do mate(i)← 0 od
(3) for k = 1 to n− 1 do
(4) if mate(k) = 0 and there exists j ∈Ak with mate(j) = 0
(5) then choose j ∈Ak with mate(j) = 0;
(6) mate(j)← k; mate(k)← j; nrex ← nrex −2
(7) fi
(8) od

Our next task is to design an efficient technique for finding augmenting
paths; this problem turns out to be more difficult than it might appear at
first sight. We begin by choosing an exposed vertex r (with respect to a given
matching M of G). If there exists an exposed vertex s adjacent to r, we can
extend M immediately by simply adding the edge rs. Of course, this case
cannot occur if M was constructed by Algorithm 13.3.1.
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Fig. 13.5 An alternating

tree

Otherwise, we take r as the start vertex for a BFS and put all vertices
a1, . . . , ap adjacent to r in the first layer; note that all these vertices are
saturated. As we are looking for alternating paths, we put only the ver-
tices bi =mate(ai) in the second layer. The next layer consists of all vertices
c1, . . . , cq which are adjacent to one of the bi, and where the connecting edge is
not contained in M . We continue in this manner; as we will soon see, certain
difficulties may arise.

If we should encounter an exposed vertex in one of the odd-numbered
layers, we have found an augmenting path. This motivates the following def-
inition: a subtree T of G with root r is called an alternating tree if r is an
exposed vertex and if every path starting at r is an alternating path. The
vertices in layers 0, 2, 4, . . . are called outer vertices, and the vertices in layers
1, 3, 5, . . . are inner vertices of T .3 Thus an alternating tree looks like the
tree shown in Fig. 13.5, where fat edges belong to M (as usual). Of course,
the purpose of constructing an alternating tree with root r is either to find an
exposed inner vertex—and thus an augmenting path—or to determine that
no such vertex exists.

Let us suppose that the layer 2i− 1 has already been constructed. If no
vertex in this layer is exposed, the next layer is easy to construct: simply
add the vertex w =mate(v) and the edge vw to T for each vertex v in layer
2i− 1. In contrast, difficulties may arise when constructing the subsequent
layer of inner vertices. Let x be a vertex in layer 2i, and let y �=mate(x) be
a vertex adjacent to x. There are four possible cases.

Case 1 : y is exposed (and not yet contained in T ). Then we have found an
augmenting path.

Case 2 : y is not exposed, and neither y nor mate(y) are contained in T . Then
we put y into layer 2i+ 1 and mate(y) into layer 2i+ 2.

3Some authors use the terminology even vertex or odd vertex instead.
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Fig. 13.6 Case 3

Fig. 13.7 Case 4

Case 3 : y is already contained in T as an inner vertex. Note that adding the
edge xy to T would create a cycle of even length in T ; see Fig. 13.6. As T
already contains an alternating path from r to the inner vertex y, such edges
should be redundant for our purposes. We shall show later that this is indeed
true, so that we may ignore this case.

Case 4 : y is already contained in T as an outer vertex. Note that adding the
edge xy to T would create a cycle of odd length 2k+1 in T for which k edges
belong to M ; see Fig. 13.7.

Such cycles are called blossoms; these blossoms—which of course cannot occur
in the bipartite case—cause the difficulties alluded to above: edges forming a
blossom with the tree constructed so far cannot just be ignored. For example,
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Fig. 13.8 A blossom

consider the blossom displayed in Fig. 13.8. Each of the vertices a, b, c, d, e, f
may be reached via two different alternating paths with start vertex r: for
one path, the vertex will be an outer vertex, and for the other path it will
be an inner vertex. For example, a is an inner vertex with respect to (r, a),
and an outer vertex with respect to (r, b, d, e, f, c, a). Now suppose that there
exists an edge ax for which x is exposed; then (r, b, d, e, f, c, a, x) will be an
augmenting path. If we would simply omit the edge fc when constructing T ,
it is quite possible that we will not find any augmenting path by our approach
(even though such a path exists); the graph G in Fig. 13.8 provides a simple
example for this phenomenon.4

The difficulties arising from Case 4 are avoided in the algorithm of Ed-
monds by shrinking blossoms to single vertices. At a later point of the algo-
rithm, blossoms which were shrunk earlier may be expanded again. We shall
treat this process in the next section.

In the bipartite case, constructing an alternating tree T presents no prob-
lems, as no cycles of odd length can occur. Hence there are no blossoms, and
it is clear for all vertices whether they have to be added as inner or as outer
vertices to T : with V = S

.
∪ S′ and r ∈ S (say), all vertices of S which are

accessible from r have to be outer vertices, and all vertices of S′ accessible
from r have to be inner vertices. Thus there exists an augmenting path start-
ing at r if and only if the corresponding alternating tree contains an exposed
inner vertex. For the sake of completeness, we now present an algorithm for

4It is tempting to proceed by using all vertices of a blossom both as inner and as outer
vertices, so that we cannot miss an augmenting path which uses part of a blossom. Indeed,
Pape and Conradt [PapCo80] proposed splitting up each blossom into two alternating
paths, so that the vertices of a blossom appear twice in the alternating tree T , both as
inner and as outer vertices. Unfortunately, a serious problem arises: it might happen that
an edge xy which was left out earlier in accordance with Case 3 (that is, an edge closing
a cycle of even length) is needed at a later point because it is also contained in a blossom.
The graph shown in Fig. 13.9 contains a unique augmenting path (between r and r′) which
is not detected by the algorithm of [PapCo80]; thus their algorithm is too simple to be
correct! This counterexample is due to Christian Fremuth-Paeger; see the first edition of
the present book for more details.
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Fig. 13.9 A graph with a unique augmenting path

constructing a maximal matching in a bipartite graph which uses this tech-
nique. Even though its complexity is worse than the complexity guaranteed
by Theorem 7.2.1, it is of some interest to have a method (which is, after
all, still quite good) which does not depend on network flows. Moreover, the
algorithm in question will also be the basis of the Hungarian algorithm to be
treated in Chap. 14.

Algorithm 13.3.2 Let G= (V,E) be a bipartite graph with respect to the
partition V = S

.
∪ S′, where S = {1, . . . , n} and S′ = {1′, . . . ,m′}; we assume

n ≤ m. The algorithm constructs a maximal matching M described by an
array mate. The function p(y) gives, for y ∈ S′, the vertex in S from which y
was accessed.

Procedure BIPMATCH(G;mate,nrex)

(1) INMATCH(G;mate,nrex);
(2) r← 0;
(3) while nrex ≥ 2 and r < n do
(4) r← r+ 1;
(5) if mate(r) = 0
(6) then for i= 1 to m do p(i′)← 0 od
(7) Q←∅; append r to Q; aug ← false;
(8) while aug = false and Q �= ∅ do
(9) remove the first vertex x of Q;
(10) if there exists y ∈Ax with mate(y) = 0
(11) then choose such a y;
(12) while x �= r do
(13) mate(y)← x; next ← mate(x); mate(x)← y;
(14) y← next; x← p(y)
(15) od
(16) mate(y)← x; mate(x)← y; nrex ← nrex−2; aug ← true
(17) else for y ∈Ax do
(18) if p(y) = 0 then p(y)← x; append mate(y) to Q fi
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(19) od
(20) fi
(21) od
(22) fi
(23) od

Of course, it is also possible to use the empty matching for initializing the
construction: simply replace (1) and (2) by

(1′) for v ∈ V do mate(x)← 0 od
(2′) r← 0; nrex ← n;

We leave it to the reader to prove the following result.

Theorem 13.3.3 Let G = (V,E) be a bipartite graph with respect to the
partition V = S

.
∪ S′. Then Algorithm 13.3.2 determines with complexity

O(|V ||E|) a maximal matching of G.

Balinsky and Gonzales [BalGo91] gave an algorithm for determining a
maximal matching of a bipartite graph which does not rely on augmenting
paths; their algorithm also has complexity O(|V ||E|).

13.4 The Algorithm of Edmonds

In this section, G = (V,E) is always a connected graph with a given initial
matching M ; we present the algorithm for constructing maximal matchings
due to Edmonds [Edm65b]. We begin by constructing an alternating tree T
with root r, as described in the previous section. Edges xy closing a cycle of
even length (Case 3 in Sect. 13.3) will be ignored. Whenever we encounter
an edge xy closing a blossom B (Case 4 in Sect. 13.3, see Fig. 13.7), we stop
the construction of T and shrink the blossom B. Formally, we may describe
this operation as contracting G with respect to B to a smaller graph G/B
which is defined as follows:

• The vertex set of G/B is V/B = (V \ B) ∪ {b}, where b is a new vertex
(that is, b /∈ V is a new symbol).

• The edge set E/B of G/B is derived from E by first removing all edges
uv ∈ E with u ∈ B or v ∈ B and then adding an edge ub for all those
u ∈ V \B which are adjacent in G to at least one vertex of B.5

To distinguish it from the original vertices, the new vertex b is called a pseu-
dovertex of G/B. Now we have to address the question how shrinking a

5Note that G/B is the result of a sequence of elementary contractions with respect to the
edges contained in the blossom B; see Sect. 1.5.
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Fig. 13.10 A graph G with an initial matching M

blossom B effects the construction of T . Note that the matching M of G in-
duces in a natural way a matching M/B of G/B. When we encounter an edge
xy closing a blossom B, we know just two vertices of B, namely x and y. The
whole blossom can be determined by following the paths from x and y to the
root r in T ; the first common vertex w of these two paths is called the base
of the blossom B. Note that w is an outer point of T . Then B is the union of
xy with the two paths Pwx and Pwy from the base w to the vertices x and y,
respectively. Omitting these two paths from T and replacing the base w by
the pseudovertex b yields an alternating tree T/B for G/B with respect to
the matching M/B. Now we proceed with our construction in G/B, using
T/B; here the next outer vertex we examine is the pseudovertex b. Of course,
further blossoms may arise, in which case we will have to perform a series of
shrinkings. Let us illustrate this procedure with an example.

Example 13.4.1 Let G be the graph shown in Fig. 13.10, where the fat edges
form an initial matching (constructed by INMATCH). Starting at the exposed
vertex r = 17, we construct an alternating tree as follows. We examine outer
vertices in the order in which they were reached (that is, we use a BFS-
type ordering) and use increasing order for the adjacency lists. Note that
the edge {6,3} is ignored (Case 3 in Sect. 13.3) when the outer vertex 6 is
examined, because it closes a cycle of even length. Similarly, the edge {8,9} is
ignored when we examine the vertex 8. We continue this process until we find
an edge which closes a blossom, which happens when we examine the edge
{8,10}. The alternating tree T at this point of the construction is displayed
in Fig. 13.11.
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Fig. 13.11 Alternating

tree T in G

The next edge {8,10} indeed closes a blossom, namely B = {4,7,8,9,10}.
This blossom has base 4 and is contracted to a pseudovertex b; we obtain
the graph G′ = G/B with the matching M ′ =M/B and the corresponding
alternating tree T/B shown in Fig. 13.12.

Continuing the construction with the outer vertex b (which is nearest to
the root r = 17), we obtain the alternating tree T ′ in Fig. 13.13. Here the
edge {b,15} is ignored in accordance with Case 3, whereas the edge {b,16}
closes a further blossom B′ = {b,2,3,5,6,15,16} with base 2; thus B′ has

Fig. 13.12 Contracted graph G/B with alternating tree T/B
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Fig. 13.13 Alternating

tree T ′ for G′

to be contracted to a second pseudovertex b′. Note that pseudovertices may

contain other pseudovertices which were constructed earlier. The result is the

graph G′′ = G′/B′ with the matching M ′′ =M ′/B′ and the corresponding

tree T ′′ = T ′/B′ in Fig. 13.14.

Now the outer vertex b′ is examined. This time we find an adjacent exposed

vertex, namely 18, which yields the augmenting path P ′′ : 18 b′ 1 17
in G′′. We want to use this path to determine an augmenting path P in G.

For this purpose, we trace P ′′ backwards from its end vertex 18 to the root

17 of T ′′. The first vertex we reach is the pseudovertex b′; thus there has to

be at least one vertex p in G′ which is adjacent to 18 and contained in the

blossom B′. In fact, there are two such vertices: 15 and 16. We choose one of

them, say p= 15. In the blossom B′, p is incident with a unique edge of M ′,

Fig. 13.14 Contracted graph G′/B′ with alternating tree T ′/B′
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Fig. 13.15 A perfect matching in G

namely the edge e= {15,16}. We trace the path from 15 to 16 and continue
in B′ until we reach the base 2 of B′.

Thus we have constructed an augmenting path P ′ in G′ from the aug-
menting path P ′′ in G′′:

P ′: 18 15 16 b 3 2 1 17

Similarly, we encounter the pseudovertex b when we trace P ′ backwards from
its end vertex 18 to the root 17 of T ′. Thus 16, the immediate predecessor
of b on P ′, has to be adjacent to at least one vertex of the blossom B; this
vertex is 10. The unique edge of M incident with 10 is {10,9}, so that we
traverse the blossom B from 10 to 9 and on to its base 4. This yields the
desired augmenting path in our original graph G:

P : 18 15 16 10 9 4 3 2 1 17

Finally, we augment our initial matching M using the path P , which yields
the perfect matching shown in Fig. 13.15.

Exercise 13.4.2 Use the method described in Example 13.4.1 to enlarge
the matching shown in the graph of Fig. 13.9. Take r as the root of the
alternating tree; if choices have to be made, use the vertices according to
increasing labels.

Hint: You can simplify this task by exploiting the inherent symmetry of
the graph in question, which allows you to consider its two halfs separately.
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The algorithm of Edmonds generalizes the method used in Example 13.4.1.
Before stating his algorithm explicitly, we ought to prove that the shrinking
process for blossoms always works correctly. It will suffice to show that the
graph G′ = G/B resulting from contracting the first blossom B which we
encounter contains an augmenting path with start vertex r (or b, if r should
be contained in B) if and only if the original graph G contains such a path.
(In the case r ∈B, the vertex r of G is replaced with the pseudovertex b in G′

by the shrinking process.) Then the general result follows by induction on the
number of blossoms encountered. We will prove our assertion by establishing
the following two lemmas.

Lemma 13.4.3 Let G be a connected graph with a matching M , and let r be
an exposed vertex with respect to M . Suppose that, during the construction of
an alternating tree T with root r (according to the rules described above), the
first blossom B is found when the edge e = xy is examined; here x denotes
the outer vertex which the algorithm examines at this time, and y is another
outer vertex of T . Let w be the base of B, and consider the contracted graph
G′ =G/B which results by replacing B with the pseudovertex b. If G contains
an augmenting path with respect to M starting at r, then G′ contains an
augmenting path with respect to the induced matching M ′ =M/B starting at
r (or at b, when r ∈B).

Proof Let P be an augmenting path in G with respect to M starting at r, and
denote the end vertex of P by s. As all vertices in P are saturated except for
r and s, we may actually assume that r and s are the only exposed vertices
of G. (Otherwise, we may remove all further exposed vertices together with
the edges incident with them from G.) Assume first that P and B do not
have any vertices in common. Then the assertion is obvious: P is also an
augmenting path in G′ with respect to M ′. Thus we may assume that P and
B are not disjoint. We distinguish two cases.

Case 1 : The root r is contained in the blossom B, so that r is the base
of B. We trace P from r to s. Let q be the first vertex of P which is not
contained in B, and denote its predecessor on P by p; thus p is the last vertex
of P contained in B. (Note that p= r is possible.) Then the edge pq is not
contained in B. Denote the part of P from r to p by P1, and the part from

q to s by P2; see Fig. 13.16. Clearly, P ′ = b q
P2 s is an augmenting path

in G′ with respect to M ′.

Case 2 : The root r of T is not contained in B, so that the base of B is an
outer vertex w �= r. Denote the alternating path of even length from r to w
in T by S; S is usually called the stem of the blossom B. This time it is not
quite obvious how the augmenting path P with respect to M interacts with
the blossom B. Therefore we will use a trick which allows us to reduce this
case to Case 1: we replace M by the matching M1 =M ⊕ S, which has the
same cardinality. Then w and s are the only exposed vertices with respect to
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Fig. 13.16 Case 1 of Lemma 13.4.3

M1, so that the blossom B (which has not been changed) has base w if we
begin constructing an alternating tree at vertex w; see Fig. 13.17. Thus the
situation for M1 is really as in Case 1.

As there exists an augmenting path in G with respect to M , M was not
maximal. Hence M1 is not maximal either; by Theorem 13.2.2, there exists
an augmenting path P1 with respect to M1 in G. According to Case 1, this
implies the existence of an augmenting path P ′

1 in G′ with respect to M1/B,
so that the matchingM1/B is not maximal. It follows that the matchingM/B
of G′ (which has the same cardinality as the matching M1/B) is not maximal
either; hence there must be an augmenting path in G′ with respect to M/B.
As r and s are the only exposed vertices in G′, the assertion follows. �

Lemma 13.4.4 Let G be a connected graph with a matching M , and suppose
that r is an exposed vertex with respect to M . Moreover, let B be a blossom
with base w and G′ =G/B the contracted graph where B is replaced with the
pseudovertex b. If G′ contains an augmenting path with respect to M ′ =M/B
starting at r (or at b, when r ∈B), then there exists an augmenting path in
G with respect to M starting at r.

Proof Assume first that the augmenting path P ′ in G′ does not contain the
pseudovertex b. Then P ′ is also a path in G, and the assertion is clear. Thus
suppose b ∈ P ′. We consider only the case r /∈ B; the case r ∈ B is similar
and actually even simpler. Let w be the base of B. First suppose that the
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Fig. 13.17 Case 2 of

Lemma 13.4.3

distance from r to b in P ′ is even. Then P ′ has the form

P ′ : r
P1

p b q
P3

s,

where P1 is the part of P ′ from r to p=mate(b). Now q must be adjacent to
a vertex q′ ∈B. Denote the alternating path of even length in B from w to
q′ by P2; note P2 = ∅ if w = q′. Then

P : r
P1

p w
P2

q′ q
P3

s

is an augmenting path in G with respect to M , where P3 denotes the part of
P ′ from q to s; see Fig. 13.18.

Finally, if the distance from r to b in P ′ is odd, the distance from s to b in
P ′ has to be even. Then we simply exchange the roles of r and s and proceed
as before. (This case may indeed occur, as the solution to Exercise 13.4.2
shows.) �

As the following exercise shows, the condition that the blossom B under
consideration must have been found during the construction of the alternating
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Fig. 13.18 Proof of Lemma 13.4.4

tree T is actually needed in Lemma 13.4.3, whereas no such condition on B
is required for Lemma 13.4.4.

Exercise 13.4.5 Consider the graph G with the matching M shown in
Fig. 13.19. Obviously, G contains a unique blossom. Show that the contracted
graph G′ does not contain an augmenting path with respect to M ′, even
though G contains an augmenting path with respect to M .

Now we are ready to state a version of the algorithm of Edmonds, which
more or less generalizes the method used in Example 13.4.1. There will be one
major difference, though: in order to achieve a better complexity, the graph
will not be contracted explicitly when a blossom B is encountered, as this
would require rather involved update operations and also a later re-expansion
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Fig. 13.19 Graph with a

blossom

of the contracted graph. Instead, the vertices in B will be declared inactive,
which is done with the help of a Boolean function a(v) on V .

Algorithm 13.4.6 (Algorithm of Edmonds) Let G= (V,E) be a graph on
the vertex set V = {1, . . . , n}, given by adjacency lists Av . The algorithm
constructs a maximal matching M of G described by an array mate and
determines the number of exposed vertices of G with respect to M .

The main procedure MAXMATCH uses the procedure INMATCH given in
Algorithm 13.3.1 to determine an initial matching as well as three further aux-
iliary procedures: BLOSSOM, CONTRACT, and AUGMENT. These three
procedures are described after MAXMATCH in a less formal way. In MAX-
MATCH, the function d describes the position of the vertices in the current
alternating tree T with root r: vertices which are not yet in the tree have
d(y) =−1; for all other vertices, d(y) is the distance between y and the root
r of T . In particular, vertices y for which d(y) is odd are inner vertices, and
vertices y for which d(y) is even are outer vertices. The outer vertices are
kept in a priority queue Q with priority function d.

The construction of the alternating tree T is always continued from the first
active vertex of Q. Initially, all vertices are active. Vertices become inactive
if they are contained in a blossom which is contracted. The examination of
the neighbors of an outer vertex x is done as described in Sect. 13.3, and
blossoms are contracted immediately when they are discovered.

As we need the original adjacency lists Av of G later for expanding the
augmenting paths (as in Example 13.4.1), these lists must not be changed
throughout the algorithm. Therefore we will use new adjacency lists CA(v)
for describing the contracted graphs. As mentioned before, the vertices of a
contracted blossom are not actually removed from the graph, but are just
declared to be inactive; of course, originally all vertices are active. For this
purpose, we use a Boolean function a: a vertex v remains active as long as
a(v) has the value true.

Finally, there are also Boolean variables aug and cont, which serve to
control the loop: the variable aug has the value false until an augmenting
path is found; and during the examination of an outer vertex x, cont has
value false until a blossom is found (and contracted).
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Procedure MAXMATCH(G;mate,nrex)

(1) INMATCH(G;mate,nrex);
(2) r← 0;
(3) while nrex ≥ 2 and r ≤ n− 2 do
(4) r← r+ 1;
(5) if mate(r) = 0
(6) then Q←∅; aug ← false; m← 0;
(7) for v ∈ V do
(8) p(v)← 0; d(v)←−1; a(v)← true;
(9) CA(v)←Av

(10) od
(11) d(r)← 0; append r to Q;
(12) while aug=false and Q �= ∅ do
(13) remove the first vertex x of Q;
(14) if a(x) = true
(15) then cont ← false
(16) for y ∈CA(x) do u(y)← false od
(17) repeat
(18) choose y ∈CA(x) with u(y) = false; u(y)← true;
(19) if a(y) = true
(20) then if d(y)≡ 0 (mod 2)
(21) then m←m+ 1;
(22) BLOSSOM (x, y;B(m),w(m));
(23) CONTRACT (B(m),m,w);
(24) else if d(y) =−1
(25) then if mate(y) = 0
(26) then AUGMENT(x, y)
(27) else z ← mate(y);
(28) p(y)← x; d(y)← d(x) + 1;
(29) p(z)← y; d(z)← d(y) + 1;
(30) insert z with priority d(z) into Q
(31) fi
(32) fi
(33) fi
(34) fi
(35) until u(y) = true for all y ∈CA(v) or aug = true

or cont = true
(36) fi
(37) od
(38) fi
(39) od

The following procedure BLOSSOM constructs a blossom B with base w.
This procedure is called by MAXMATCH if a further outer vertex y is dis-
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covered in CA(x) during the examination of an outer vertex x (according to
Case 4 in Sect. 13.3).

Procedure BLOSSOM(x, y;B,w)

(1) P ←{x}; P ′ ←{y}; u← x; v← y;
(2) repeat
(3) P ← P ∪ {p(u)}; u← p(u)
(4) until p(u) = r;
(5) repeat
(6) P ′ ← P ′ ∪ {p(v)}; v← p(v)
(7) until v = r;
(8) S ← P ∩ P ′;
(9) let w be the element of S for which d(w)≥ d(z) for all z ∈ S;

(10) B ← ((P ∪ P ′) \ S)∪ {w}

The procedure CONTRACT is used for contracting a blossom B, and the
adjacency lists CA(v) for the contracted graph are updated accordingly.

Procedure CONTRACT(B,m,w)

(1) b← n+m; a(b)← true;
(2) p(b)← p(w); d(b)← d(w); mate(b)← mate(w);
(3) insert b into Q with priority d(b);
(4) CA(b)←

⋃
z∈B CA(z);

(5) for z ∈CA(b) do CA(z)←CA(z)∪ {b} od
(6) for z ∈B do a(z)← false od
(7) for z ∈CA(b) do
(8) if a(z) = true and p(z) ∈B
(9) then d(z)← d(b) + 1; p(z)← b;

(10) d(mate(z))← d(z) + 1;
(11) fi
(12) od
(13) cont ← true

The final procedure AUGMENT serves to construct an augmenting path
(and to change the matching M accordingly) when an exposed vertex y is
encountered during the construction of the alternating tree T ; see step (25)
in MAXMATCH.

Procedure AUGMENT(x, y)

(1) P ←{y,x}; v← x;
(2) while p(v) �= 0 do
(3) P ← P ∪ {p(v)}; v← p(v)
(4) od
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(5) while there exists b ∈ P with b > n do
(6) choose the largest b ∈ P with b > n;
(7) B ←B(b− n); w←w(b− n); z ← mate(w);
(8) let q be the neighbor of b on P which is different from z;
(9) choose some q′ ∈B ∩CA(q);

(10) determine the alternating path B′ of even length in B from w to q′;
(11) replace b by w in P ;
(12) insert B′ into P between w and q
(13) od
(14) u← y; v← x;
(15) while v �= r do
(16) z ← mate(v); mate(v)← u; mate(u)← v;
(17) u← z; let v be the successor of z on P
(18) od
(19) mate(v)← u; mate(u)← v;
(20) nrex ← nrex −2; aug ← true

Theorem 13.4.7 Let G= (V,E) be a connected graph.Then Algorithm 13.4.6
determines a maximal matching of G. If the auxiliary procedures BLOS-
SOM, CONTRACT, and AUGMENT are implemented appropriately, one
may achieve an overall complexity of O(|V |3).

Proof The detailed discussion given when we derived Edmonds’ algorithm in
the present and the previous sections already shows that Algorithm 13.4.6 is
correct. Nevertheless, we will summarize the main points once again.

First, an initial matching M described by the array mate is constructed
via the procedure INMATCH. The subsequent outer while-loop in MAX-
MATCH comprises the search for an augmenting path with respect to M
with start vertex r: it constructs an alternating tree T with root r. Obvi-
ously, this search can only be successful if there are still at least two exposed
vertices; hence we require nrex ≥ 2. Moreover, we may restrict to r ≤ n−1 the
examination of exposed vertices r as start vertices for an augmenting path,
because an augmenting path with start vertex n would have been found ear-
lier when its end vertex was used as the root of an alternating tree. It follows
from Theorem 13.2.2 and Lemma 13.2.3 that it indeed suffices to examine
each exposed vertex at most once as the root of an alternating tree.

As already mentioned, the outer vertices of T are kept in the priority
queue Q and examined in a BFS-like fashion (provided that they are still
active). During the inner while-loop, the first active vertex x from Q is
chosen—as long as this is possible and no augmenting path has been found
yet. By examining the vertices adjacent to x, the construction of the tree T
is continued. Choosing x according to the priority function d(x) ensures that
the construction of T is always continued from a vertex which has smallest
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distance to the root r.6 Inner vertices y are ignored during the examination
of the vertices adjacent to x according to the conditions in steps (20) and
(24): in that case, the edge xy would close a cycle of even length, and y would
already be accessible from r by an alternating path of odd length in T . Note
that the function d(y) is used to decide whether y is already contained in T :
either d(y)> 0, and this value equals the distance between r and y in T ; or
y has not been added to the tree yet, in which case d(y) =−1.

If the condition on d(y) holds in step (20) (so that d(y) is even and hence
y is contained in T as an outer vertex), the edge xy closes a blossom B.
According to Lemmas 13.4.3 and 13.4.4, we may then continue with the
contracted graph G/B instead of G: there is an augmenting path with respect
to M in G if and only if G/B contains an augmenting path with respect to
the induced matching M/B. The first step in replacing G by G/B is to
construct the blossom B by calling the procedure BLOSSOM in step (22).
This procedure uses the predecessor function p defined in steps (28) and (29)
of the main procedure: p(v) is the predecessor of v on the unique path from
the root r to v in T . With the help of p, BLOSSOM determines the paths
P and P ′ from x and y, respectively, to the root r in the obvious manner.
Clearly, the intersection S of P and P ′ is the stem of B. As the function d
gives the distance of a vertex from the root r of T , the base of B is precisely
the vertex w of S for which d(w) is maximal. Therefore the blossom B is
indeed ((P ∪ P ′) \ S) ∪ {w} as stated in step (10) of BLOSSOM; thus this
procedure indeed constructs the blossom B as well as its base w.

Next, the procedure CONTRACT is called in step (23) of MAXMATCH
in order to replace the graph G with the contracted graph G/B and to
change M and T accordingly. The pseudovertex b to which B is contracted is
numbered as b= n+m, where m counts the number of blossoms discovered
up to this point (including B). This makes it easy to decide which vertices of
a contracted graph are pseudovertices: the pseudovertices are precisely those
vertices b with b > n. Steps (1) to (3) of CONTRACT label b as an active
vertex, insert it into Q, and replace the base w and all other vertices of B
by b in T : the predecessor of b is defined to be p(w), and the distance of
b from r is set to d(w); moreover, mate(b) is defined to be mate(w), as we
also need the induced matching M/B. Steps (4) to (6) contain the implicit
contraction: all vertices of B are labelled as inactive and all vertices adjacent
to some vertex of B are made neighbors of b by putting them into CA(b). In
steps (7) to (12), T is updated to T/B by defining b to be the predecessor
of all active vertices z whose predecessor p(z) was some vertex in B, and by
defining the distance of these vertices to the root r to be d(b)+1. The same is
done for the corresponding outer vertices mate(z). Finally, the variable cont

6In contrast to an ordinary BFS, we need the explicit distance function d(x) because con-
tractions of blossoms may change the distances in the current tree T : a new pseudovertex
b is, in general, closer to the root than some other active vertices which were earlier added
to T ; compare Example 13.4.1.
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is assigned the value true; this means that the examination of the vertex x
(which is no longer active) is stopped in MAXMATCH, and the construction
of T is continued with the active vertex in Q which has highest priority (that
is, smallest distance from r).

If a vertex y is not yet contained in T when the edge xy is examined (that
is, if d(y) =−1), we check in step (25) whether y is exposed. If this is not the
case, the vertices y and z =mate(y) are added to the tree T (as an inner and
an outer vertex, respectively) by appending the path x y z at x, and
by defining the predecessors and the distances of y and z to r accordingly
in steps (28) and (29); also, the new active outer vertex z is inserted into Q
with priority d(z) in step (30). Finally, if y is exposed, AUGMENT replaces
M with a larger matching according to Theorem 13.2.2.

Steps (1) to (4) of the procedure AUGMENT construct an augmenting
path P with respect to the present matching M ′ which is induced by M in
the graph G′ (the current, possibly multiply contracted graph). During the
first while-loop, the pseudovertices on this path (which are recognized by the
condition b > n) are expanded in decreasing order: the pseudovertices which
were constructed first (and thus have smaller labels) are expanded last. To
execute such an expansion, the neighbor q �=mate(b) of b is determined and
the edge {b, q} on P is replaced by the alternating path of even length from
the base w of the corresponding blossom to the vertex q′ ∈B adjacent to q;
compare the proof of Lemma 13.4.4. Therefore P is an augmenting path in
G with respect to M when the first while-loop is terminated; we view P as
being oriented from y to the root r. The second while-loop augments the
matching M along this path by updating the function mate appropriately.
In step (20) of AUGMENT, the number of exposed vertices is decreased by
2 and the variable aug is assigned value true; hence the construction of the
tree T is stopped in MAXMATCH according to step (12) or (35). Then the
outer while-loop of MAXMATCH starts once again, using the next exposed
vertex as the root r of a new alternating tree (if possible).

The repeat-loop in MAXMATCH (which comprises the search for an
exposed outer vertex from a fixed vertex x) is terminated according to step
(35) if either a contraction or an augmentation has been performed, or if
all currently active vertices y adjacent to x have been examined. The inner
while-loop terminates if either an augmenting path was found or if Q is
empty; in the latter case the construction of T terminates without finding an
augmenting path. In this case, we have constructed an alternating tree T ′ for
a (in general, multiply contracted) graph G′ in which all blossoms discovered
during the construction of the tree with root r were immediately contracted.
Therefore, as there is no augmenting path with start vertex r in G′, there
is no such path in G either—by Lemma 13.4.4. In both cases, the algorithm
continues with the next exposed vertex as the root of an alternating tree.
This process continues until the outer while-loop is terminated (as discussed
above), so that the then current matching M is maximal.

It remains to discuss the complexity of MAXMATCH. Obviously, there
are at most O(|V |) iterations of the outer while-loop; in other words, the
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algorithm has at most O(|V |) phases (where an alternating tree with root

r is constructed). Hence we want to show that each phase can be executed

in O(|V |2) steps, provided that the auxiliary procedures are implemented

suitably.

Note that each blossom contains at least three vertices and that each vertex

may be contracted (that is, made inactive) at most once, so that there are only

O(|V |) contractions during a given phase. To be more precise, at most |V |/2
pseudovertices may occur during the inner while-loop, which implies that

there are at most O(|V |) iterations of this loop. When the vertices y adjacent

to x are examined during the repeat-loop, at most O(|V |) edges are treated,
so that this whole process can take at most O(|V |2) steps—not counting

the complexity of the auxiliary procedures BLOSSOM, CONTRACT, and

AUGMENT. It is easily seen that one call of BLOSSOM takes at most O(|V |)
steps; since there are at most O(|V |) such calls in a phase, these operations

also contribute at most O(|V |2) steps.
We next show that the calls of CONTRACT during a given phase alto-

gether need at most O(|V |2) steps, provided that step (4) is implemented

appropriately: note that the construction of the adjacency list of the pseu-

dovertex b is the only part of CONTRACT whose complexity is not quite

obvious. Fortunately, it is possible to perform this construction efficiently by

using a labelling process: initially, all vertices are unlabeled; then we label

all vertices occurring in one of the adjacency lists of the vertices contained

in B; and finally, we define CA(b) to be the set of all labelled vertices. For

each blossom B, this labelling method requires O(|V |) steps plus the number

of steps we need for examining the adjacency lists of the vertices of B. Now

there are only O(|V |) vertices which might occur in one of the blossoms and

need to be examined then; hence these examinations—added over all calls of

CONTRACT—cannot take more than O(|V |2) steps altogether.
Finally, we have to convince ourselves that an eventual call of AUGMENT

has complexity at most O(|V |2). Obviously, there are at most O(|V |) itera-

tions of the first while-loop in AUGMENT. All operations during this loop

can be executed in O(|V |) steps, except possibly for the determination of a

vertex q′ in CA(q) in step (9) and the determination of an alternating path

from w to q′ in step (10) during the expansion of a pseudovertex b to a blos-

som B. However, the first of these two operations may be implemented via

a labelling process, which easily leads to a complexity of O(|V |): we label

the vertices in CA(q) and then look for a labelled vertex in B. The second

operation may also be performed in O(|V |) steps if we store the blossom B

in BLOSSOM not just as a set, but as a doubly linked list: then we simply

trace B from q′ in the direction given by mate(q′) until we reach the base w.

Therefore, AUGMENT likewise allows a complexity of O(|V |2).
Summing up, each phase of MAXMATCH may be performed in O(|V |2)

steps, so that the overall complexity is indeed O(|V |3). �
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It should be mentioned that actually implementing the procedures for
determining a maximal matching (as described above) is in fact a rather
demanding task. We close this section with an exercise.

Exercise 13.4.8 Let G be a bipartite graph with vertex set V = S
.
∪ T ,

where S = {1, . . . , n} and T = {1′, . . . , n′}. G is called symmetric if the ex-
istence of an edge ij′ in G always implies that also ji′ is an edge of G. A
matching of G is called symmetric if M does not contain any edge of the
form ii′ and if, for each edge ij′ ∈M , the edge ji′ is contained in M as well.
How could a maximal symmetric matching in a symmetric bipartite graph
be determined?

13.5 The Gallai-Edmonds Structure Theorem

In the final two sections, we return to theoretical considerations. Both sections
will not be used later, so that the reader might skip them.

The Berge-Tutte formula of Theorem 13.1.2 allows us to determine the
maximal size of a matching in an arbitrary graph G= (V,E): the number of
exposed vertices d then is just the maximal deficiency d(S) of any subset S of
V , so that the maximal matchings have size (|V | − d)/2. We will call any set
S with d(S) = d a Berge-Tutte set for G. In general, G will have more than
one Berge-Tutte set, and the natural question arises if there is a canonical
such set with particularly nice properties. Such a set indeed exists and is
provided by the structure theory for matchings due to Gallai [Gal64b] and
Edmonds [Edm65b]. In our proofs, we shall assume G to be connected; the
general case easily reduces to considering the connected components of G.

We need some definitions. The largest possible matchings in a graph G on
an odd number of vertices correspond to the case d = 1 in the Berge-Tutte
formula; such matchings are therefore called near-perfect . Moreover, G is said
to be factor-critical if, for each vertex v, there exists a near-perfect matching
leaving v exposed. Finally, we need to introduce the following partition of
the vertex set of an arbitrary graph G.

Definition 13.5.1 Let G= (V,E) be a graph. We define four subsets of V
as follows:

• B(G) is the set of all vertices which are saturated by every maximal match-
ing of G;

• D(G) is the complement of B(G), that is, D(G) is the set of all vertices
which are exposed for some maximal matching of G;

• A(G) is the set of all vertices in B(G) which are adjacent to some vertex
in D(G);

• C(G) is the complement of A(G) in B(G).
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The triple (A(G),C(G),D(G)) is called the Gallai-Edmonds decomposition
of G.

Example 13.5.2 Let us begin with a concrete example. Consider the graph
H arising from the graph G in Fig. 13.10 by deleting the vertex 18. Then
the initial matching of G drawn there becomes a near-perfect matching of
H leaving the vertex 17 exposed, and the perfect matching of G drawn in
Fig. 13.15 gives rise to a near-perfect matching of H leaving the vertex 15
exposed. By switching edges on alternating paths of even length with respect
to one of these near-perfect matchings, the reader may check that H is almost
factor-critical: 1 is the only vertex which does not arise as the exposed vertex
of some near-perfect matching of H . Hence here

A(H) = {1}, C(H) = ∅ and D(H) = {2, . . . ,17}.

As a more general example, we discuss the structure of those (connected)
graphs G= (V,E) which have A(G) = ∅. One possibility how this may happen
is D(G) = ∅. But then B(G) = V , that is, G has an even number of points
and admits a perfect matching. Now assume D(G) �= ∅. As G is connected,
this implies A(G) �= ∅, unless D(G) = V . In this case, G has an odd number of
points and is actually factor-critical; this is definitely not obvious, but follows
as a special case of the Gallai-Edmonds structure theorem—our next goal.

We now prove the following fundamental result about the Gallai-Edmonds
decomposition, using the Berge-Tutte formula. While this is not necessary,
it certainly simplifies the proof. West [Wes11] has given such a short proof,
building on his proof of the Berge-Tutte formula presented in Sect. 13.1. We
will use a similar approach which is essentially due to Kotlov [Kot00]; our
presentation also relies on the lecture notes [DeV12].

Theorem 13.5.3 (Gallai-Edmonds theorem) Let G= (V,E) be a graph, let
(A(G),C(G),D(G)) be its Gallai-Edmonds decomposition, and let M be any
maximal matching of G. Then:

(1) A(G) is a Berge-Tutte set for G;
(2) C(G) is the union of the even components of G \ A(G), and each such

component has a perfect matching;
(3) D(G) is the union of the odd components of G \ A(G), and each such

component is factor-critical;
(4) M covers C(G), matches A(G) into distinct components in D(G), and

restricts to a near-perfect matching on each component in D(G).

Proof We shall use induction on V (G). Among all Berge-Tutte sets for G,
we choose a set A subject to the following two conditions:
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(a) The number of components of G \A which are not factor-critical is min-
imal;

(b) |A| is minimal subject to (a).

Among other things, we will see that this ensures A=A(G). The proof now
proceeds in several steps.

Step 1. Every even component of G \A has a perfect matching.

Assume otherwise, and let C be an even component which does not have a
perfect matching. Denote the subgraph of G induced on C by H . By Tutte’s
condition (T), there exists a set S ⊆ C such that the number oH(S) of odd
components of H \ S satisfies oH(S)> |S|. Then A∪ S has larger deficiency
than A, contradicting the choice of A as a Berge-Tutte set.

Step 2. Every odd component of G \A is factor-critical.

Assume otherwise, and let C be an odd component which is not factor-
critical. Denote the subgraph of G induced on C by H , and choose a vertex
v ∈ C for which the graph H ′ := H \ v does not admit a perfect match-
ing. Using induction, we conclude that the set A′ := A(H ′) in the Gallai-
Edmonds decomposition of H ′ is a Berge-Tutte set for H ′, and that every
odd component of H ′ \A′ is factor-critical. In particular, the number oH′(A′)
of odd components of H ′ \A′ satisfies oH′(A′)> |A′|. Now consider the subset
S :=A∪A′ ∪ {v} of V and note d(S)≥ d(A). By the choice of A as a Berge-
Tutte set for G, we must have equality, so that S is likewise a Berge-Tutte
set for G. Note also that the component C has now been split up further,
and that all odd components arising from this split are factor-critical. Thus
G \ S has a smaller number of odd components which are not factor-critical
than G \A, which contradicts our choice of A subject to condition (a).

Step 3. For every non-empty subset J of A, the neighborhood Γ (J) contains
vertices in at least |J |+ 1 odd components of G \A.

Assume otherwise, and let J �= ∅ be a subset of A such that Γ (J) contains
vertices in at most |J | odd components of G \A. We first note that we must
have equality then: if Γ (J) would meet fewer than |J | odd components of
G \A, we would obtain the contradiction d(A \ J)> d(A). Thus Γ (J) meets
exactly J odd components of G \A, and hence A \ J is again a Berge-Tutte
set. Moreover, the number of components of G \ (A \J) which are not factor-
critical agrees with that for G \A, so that A \ J satisfies condition (a). But
A \ J is a proper subset of A, which contradicts condition (b).

Step 4. Let v be a vertex in an odd component C of G\A. Then v is exposed
for some maximal matching M of G.

By Step 1, we can begin the construction of M by selecting a perfect
matching for each even component of G \A. By Step 3, for every non-empty
subset J of A, the neighborhood Γ (J) contains vertices in at least |J | odd
components �= C. This allows us to apply Theorem 7.2.5—as in the proof
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of Theorem 13.1.2—to find a matching from the vertices y of A to vertices
xy in distinct odd components Cy �=C of G \A; we leave it to the reader to
provide the details for this argument. Finally, by Step 2, we may select perfect
matchings for C \ v and for each Cy \ xy , as well as arbitrary near-perfect
matchings for the remaining d− 1 odd components of G \A. The union of all
these small matchings gives the desired maximal matching M .

We can now easily finish the proof. Let D be the union of the odd com-
ponents of G \ A, and C the union of the even components. By Step 4,
D ⊆D(G). As A is a Berge-Tutte set, all vertices in A ∪ C have to be sat-
urated by every maximal matching of G. Hence indeed D =D(G) and then
also A = A(G) and C = C(G). Now all assertions follow from Steps 1, 2
and 3. �

Note that we do not yet have an efficient way of actually determining
the Gallai-Edmonds decomposition of a graph G, since Definition 13.5.1 uses
the set of all maximal matchings of G. Fortunately, there is an alternative
description of the Gallai-Edmonds decomposition which requires just one
maximal matching and makes it possible to determine the decomposition
efficiently by using the algorithm of Edmonds.

Theorem 13.5.4 Let G= (V,E) be a graph, let (A(G),C(G),D(G)) be its
Gallai-Edmonds decomposition, and let M be any maximal matching of G.
Denote the set of exposed vertices with respect to M by X , and partition V
into three subsets as follows:

• E is the set of all vertices which can be reached from some vertex in X via
an alternating path of even length (so that, in particular, X ⊆ E);

• O is the set of all vertices which can be reached from some vertex in X via
an alternating path of odd length, but not via any alternating path of even
length;

• U is the set of all vertices in B(G) which cannot be reached from any vertex
in X via any alternating path.

Then E =D(G), O =A(G), and U =C(G).

Proof Let us call the vertices in the three sets E , O and U even, odd and
unreachable, respectively.

We first show E =D(G). As X is a subset of both D(G) and E , we only
have to consider vertices v which are saturated by M . Thus let v be any even
saturated vertex, and choose an alternating path P of even length from some
vertex x ∈ X to v. Then the final edge of P belongs to M , and therefore
M ⊕ P is a maximal matching leaving v exposed. Hence all even vertices
belong to D(G).

Conversely, let v ∈ D(G) and choose a maximal matching M ′ leaving v
exposed. Then the matching M ⊕M ′ is the union of alternating paths and
cycles of even length; this is seen as in the proof of Theorem 13.2.2. (Note
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that alternating paths of odd length cannot arise here, since both matchings
are maximal.) As v is saturated by M but exposed for M ′, it cannot be in
an alternating cycle and hence has to be the end vertex of an alternating
path, say P ; also, the edge of P incident with v belongs to M . Since P has
even length, the other end vertex of P is incident with an edge of M ′ and
therefore exposed for M . Thus we have found the desired alternating path of
even length from X to v, and v is indeed even.

Now consider any edge of the form uv, where u is even and v does not
belong to E = D(G). Appending uv to an alternating path of even length
from X to v, we get an alternating walk W of (odd) length from X to v and
hence also an alternating path from X to v. Thus v is reachable from X and
therefore belongs to either E or O. But v /∈ E =D(G), so that v has to be
odd. This shows A(G)⊆O.

Conversely, let v be any odd vertex, and choose an alternating path P of
odd length from some vertex x ∈X to v. Then the predecessor u of v on P
is even, that is, u ∈D(G). Hence v ∈A(G), so that O⊆A(G).

We have now established E = D(G) and O = A(G). By definition, both
(A(G),C(G),D(G)) and (O,U ,E) are partitions of V , and hence we obtain
also U =C(G). �

Exercise 13.5.5 Let G = (V,E) be a (connected) graph, and let M be a
maximal matching of G constructed via the algorithm of Edmonds. Explain
how one may obtain the Gallai-Edmonds decomposition of G in this situation.

Hint: Apply Theorem 13.5.4 for M , and use the last shrunk graph con-
structed by the algorithm to determine the sets E and O.

Exercise 13.5.6 Apply the result of Exercise 13.5.5 to the graph H dis-
cussed in Example 13.5.2.

13.6 Matching Matroids

We conclude this chapter with the generalization of Theorem 7.3.8 due to
Edmonds and Fulkerson [EdmFu65] which was already mentioned in Sect. 7.3.

Theorem 13.6.1 Let G= (V,E) be a graph, and let S be the set of all those
subsets of vertices which are covered by some matching in G. Then (V,S) is
a matroid.

Proof Let A and A′ be two independent sets with |A|= |A′|+ 1, and let M
and M ′ be matchings in G which cover the vertices in A and A′, respectively.
If there exists a vertex a ∈A\A′ such that M ′ meets A′∪{a}, then condition
(2) of Theorem 5.2.1 is trivially satisfied. Otherwise let X be the symmetric
difference of M and M ′. Then X has to consist of alternating cycles and
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alternating paths (as in the proof of Theorem 13.2.2): X splits into cycles
and paths in which edges of M and M ′ alternate. As |A \A′|= |A′ \A|+ 1,
X has to contain a path P connecting a vertex x ∈A \A′ to a vertex y /∈A′.
Then M ′ ⊕ P is a matching meeting A′ ∪ {x}. Therefore condition (2) of
Theorem 5.2.1 is always satisfied, so that (V,S) is a matroid. �

Given any matroid (M,S) and any subset N of M , the restriction
(N,S|N), where S|N = {A ⊂ N : A ∈ S}, is again a matroid. Hence Theo-
rem 13.6.1 immediately implies the following result.

Corollary 13.6.2 Let G = (V,E) be a graph, and let W be a subset of V .
Moreover, let S be the set of all subsets of W consisting of vertices covered
by some matching of G. Then (W,S) is a matroid.

The matroids described in Corollary 13.6.2 are called matching matroids.

Exercise 13.6.3 Derive Theorem 7.3.8 from Corollary 13.6.2.

Exercise 13.6.4 Let G= (V,E) be a graph and A a subset of V . Assume
that there exists a matching M covering all vertices in A. Show that there
also exists a maximal matching covering A. In particular, each vertex which
is not isolated is contained in a maximal matching.

We close this chapter with some remarks. As we have seen, there are
efficient algorithms for determining a matching of maximal cardinality. In
contrast, determining a non-extendable matching of minimal cardinality is
an NP-hard problem—even for planar or bipartite graphs, and even in the
case of maximal degree at most 3; see [YanGa80].

The notion of a matching can be generalized as follows. Let G= (V,E) be
a graph with V = {1, . . . , n}, and let f : V → N0 be an arbitrary mapping.
A subgraph of G with deg v = f(v) for v = 1, . . . , n is called an f -factor . Tutte
generalized his Theorem 13.1.1 to a necessary and sufficient condition for the
existence of an f -factor; see [Tut52]. His general theorem may actually be
derived from the 1-factor theorem; see [Tut54]. Anstee [Ans85] gave an algo-
rithmic proof of Tutte’s theorem which allows one to determine an f -factor
with complexity O(n3) (or show that no such factor exists). The existence
question for f -factors can also be treated in the framework of flow theory, by
using the balanced networks already mentioned; see the footnote on page 405.
Further generalizations—where the degrees of the vertices are restricted by
upper and lower bounds—are considered in [Lov70b] and [Ans85]. A wealth
of results concerning matchings as well as an extensive bibliography can be
found in the important monograph [LovPl86].



Chapter 14
Weighted Matchings

What we know as fate is two neuroses knowing that

they’re a perfect match.

J. Arch, N. Ephron & D.S. Ward

In the previous chapter, we studied matchings of maximal cardinality (the

cardinality matching problem). The present chapter is devoted to weighted

matchings, in particular to the problem of finding a matching of maximal

weight in a network (G,w) (the weighted matching problem). In the bipar-

tite case, this problem is equivalent to the assignment problem introduced in

Example 10.1.4, so that the methods discussed in Chap. 10 apply. Neverthe-

less, we will give a further algorithm for the bipartite case, the Hungarian

algorithm, which is one of the best known and most important combinatorial

algorithms.

We proceed by explaining the connection between matching problems and

the theory of linear programming, even though we generally avoid linear pro-

grams in this book. We need this to see the deeper reason why the approach

used in the Hungarian algorithm works: its success is due to the particularly

simple structure of the corresponding polytope, and ultimately to the total

unimodularity of the incidence matrix of a bipartite graph. In this context,

the significance of blossoms will become much clearer, as will the reason why

the determination of maximal matchings (weighted or not) is considerably

more difficult for arbitrary graphs than for bipartite ones. It would make

little sense to describe an algorithm for the weighted matching problem in

general graphs without using more of the theory of linear programming; for

this reason, no such algorithm is presented in this book.

Nevertheless, we will include three interesting applications of weighted

matchings: the Chinese postman problem (featuring a postman who wants

an optimal route for delivering his mail); the determination of shortest paths

for the case where edges of negative weight occur; and the decoding of graph-

ical codes. We shall conclude with a few remarks about matching problems

with certain additional restrictions—a situation which occurs quite often in

practice; we will see that such problems are inherently more difficult.
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14.1 The Bipartite Case

Let G= (V,E) be a bipartite graph with weight function w :E →R. As usual,
the weight w(M) of a matching M of G is defined by

w(M) =
∑

e∈M

w(e).

A matching M is called a maximal weighted matching if w(M) ≥ w(M ′)
holds for every matching M ′ of G. Obviously, a maximal weighted matching
cannot contain any edges of negative weight. Thus such edges are irrelevant
in our context, so that we will usually assume w to be nonnegative; but even
under this assumption, a maximal weighted matching is not necessarily also
a matching of maximal cardinality. Therefore we extend G to a complete
bipartite graph by adding all missing edges e with weight w(e) = 0; then
we may assume that a matching of maximal weight is a complete matching.
Similarly, we may also assume |S| = |T | by adding an appropriate number
of vertices to the smaller of the two sets (if necessary), and by introducing
further edges of weight 0.

In view of the preceding considerations, we will restrict our attention to the
problem of determining a perfect matching of maximal weight with respect
to a nonnegative weight function w in a complete bipartite graph Kn,n. We
call such a matching an optimal matching of (Kn,n,w). If we should require
a perfect matching of maximal weight in a bipartite graph containing edges
of negative weight, we can add a sufficiently large constant to all weights first
and thus reduce this case to the case of a nonnegative weight function. Hence
we may also treat the problem finding a perfect matching of minimal weight,
by replacing w by −w.

Thus let w :E →R
+
0 be a weight function for the graph Kn,n. Suppose the

maximal weight of all edges is C. We define the cost of a perfect matching
M as follows:

γ(M) =
∑

e∈M

γ(e),

where the cost γ(e) of an edge e is given by γ(e) =C−w(e). Then the optimal
matchings are precisely the perfect matchings of minimal cost. Hence deter-
mining an optimal matching in G with respect to the weight function w is
equivalent to solving the assignment problem for the matrix A= (C −w(ij))
and thus to a special case of the optimal flow problem (compare Exam-
ples 10.1.3 and 10.1.4): we just need to find an optimal flow of value n in
the flow network described in Example 10.1.4. As this may be done using
the algorithm of Busacker and Gowen, Theorem 10.5.3 implies the following
result.

Theorem 14.1.1 Let w be a nonnegative weight function for Kn,n. Then an
optimal matching can be determined with complexity O(n3).
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Exercise 14.1.2 Design a procedure OPTMATCH which realizes the asser-
tion of Theorem 14.1.1.

The complexity O(n3) given above is, in fact, the best known result
for positive weight functions on complete bipartite graphs Kn,n. For non-
complete bipartite graphs, one may give a better complexity bound; this fol-
lows, for example, from Theorem 10.5.3, using the same approach as above;
see also [Tar83, p. 114]. The best known complexity for determining an op-
timal matching in a general bipartite graph is O(|V ||E|+ |V |2 log |V |), see
[FreTa87]; algorithms of complexity O(|V |1/2|E| log(|V |C)) are in [GabTa89]
and [OrlAh92]. A polynomial version of the network simplex algorithm spe-
cialized to the assignment problem can be found in [AhuOr92].

14.2 The Hungarian Algorithm

In this section, we present a further algorithm for finding an optimal matching
in a complete bipartite graph. This algorithm is due to Kuhn [Kuh55, Kuh56]
and is based on ideas of König and Egerváry, so that Kuhn named it the Hun-
garian algorithm. Even though his algorithm does not improve on the com-
plexity bound O(n3) reached in Theorem 14.1.1, it is presented here because
it is one of the best-known and (historically) most important combinatorial
algorithms.

Thus let G= (V,E) be the complete bipartite graph Kn,n with V = S
.
∪ T ,

where S = {1, . . . , n} and T = {1′, . . . , n′}, and with a nonnegative weight
function w described by a matrix W = (wij): the entry wij is the weight of
the edge {i, j′}. A pair of real vectors u= (u1, . . . , un) and v= (v1, . . . , vn) is
called a feasible node-weighting if the following condition holds:

ui + vj ≥wij for all i, j = 1, . . . , n. (14.1)

We will denote the set of all feasible node-weightings (u,v) by F and the
weight of an optimal matching by D. The following simple result is immediate
by summing (14.1) over all edges of the matching M .

Lemma 14.2.1 For each feasible node-weighting (u,v) and for each perfect
matching M of G, we have

w(M)≤D ≤
n∑

i=1

(ui + vi). (14.2)

If we can find a feasible node-weighting (u,v) and a perfect matching
M for which equality holds in (14.2), then M has to be optimal. Indeed,
it is always possible to achieve equality in (14.2); the Hungarian algorithm
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will give a constructive proof for this fact.1 We now characterize the case of
equality in (14.2). For a given feasible node-weighting (u,v), let Hu,v be the
subgraph of G with vertex set V whose edges are precisely those ij′ for which
ui + vj =wij holds; Hu,v is called the equality subgraph for (u,v).

Lemma 14.2.2 Let H =Hu,v be the equality subgraph for (u,v) ∈F. Then

n∑

i=1

(ui + vi) =D

holds if and only if H has a perfect matching. In this case, every perfect
matching of H is an optimal matching for (G,w).

Proof First let
∑

(ui+vi) =D and suppose that H does not contain a perfect
matching. For J ⊂ S, we denote by Γ (J) the set of all vertices j′ ∈ T which
are adjacent to some vertex i ∈ J (as usual). By Theorem 7.2.5, there exists
a subset J of S with |Γ (J)| < |J |. (Note that we exchanged the roles of S
and T compared to Theorem 7.2.5.) Put

δ =min
{
ui + vj −wij : i ∈ J, j′ /∈ Γ (J)

}

and define (u′,v′) as follows:

u′
i =

{
ui − δ for i ∈ J
ui for i /∈ J

and v′j =

{
vj + δ for j′ ∈ Γ (J)
vj for j′ /∈ Γ (J).

Then (u′,v′) is again a feasible node-weighting: the condition u′
i + v′j ≥ wij

might only be violated for i ∈ J and j′ /∈ Γ (J); but then δ ≤ ui + vj −wij , so
that wij ≤ (ui − δ) + vj = u′

i + v′j . We now obtain a contradiction:

D ≤
∑(

u′
i + v′j

)
=
∑

(ui + vj)− δ|J |+ δ
∣
∣Γ (J)

∣
∣=D− δ

(
|J | −

∣
∣Γ (J)

∣
∣
)
<D.

Conversely, suppose that H contains a perfect matching M . Then equality
holds in (14.1) for each edge of M , and summing (14.1) over all edges of
M yields equality in (14.2). This argument also shows that every perfect
matching of H is an optimal matching for (G,w). �

The Hungarian algorithm starts with an arbitrary feasible node-weighting
(u,v) ∈F; usually, one takes

v1 = · · ·= vn = 0 and ui =max{wij : j = 1, . . . , n} (for i= 1, . . . , n).

1This approach is not a trick appearing out of the blue; we will discuss its theoretical

background in the next section.
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If the corresponding equality subgraph contains a perfect matching, our prob-
lem is solved. Otherwise, the algorithm determines a subset J of S with
|Γ (J)| < |J | and changes the feasible node-weighting (u,v) in accordance
with the proof of Lemma 14.2.2. This decreases the sum

∑
(ui+vi) and adds

at least one new edge ij′ with i ∈ J and j′ /∈ Γ (J) (with respect to Hu,v) to
the new equality subgraph Hu′,v′ . This procedure is repeated until the partial
matching in H is no longer maximal. Finally, we get a graph H containing a
perfect matching M , which is an optimal matching of G as well. For extend-
ing the matchings and for changing (u,v), we use an appropriately labelled
alternating tree in H . In the following algorithm, we keep a variable δj for
each j′ ∈ T which may be viewed as a potential : δj is the current minimal
value of ui+ vj −wij . Moreover, p(j) denotes the first vertex i for which this
minimal value is obtained.

Algorithm 14.2.3 (Hungarian algorithm) Let G = (V,E) be a complete
bipartite graph with V = S

.
∪ T , where S = {1, . . . , n} and T = {1′, . . . , n′}

and where each edge ij′ of G has an associated nonnegative weight wij . The
algorithm determines an optimal matching in G described by an array mate
(as in Chap. 13). Note that Q denotes a set in what follows (not a queue).
Also, we will use a different procedure AUGMENT (compared to Chap. 13),
as we are in the bipartite case now.

Procedure HUNGARIAN(n,w;mate)

(1) for v ∈ V do mate(v)← 0 od
(2) for i= 1 to n do ui ←max{wij : j = 1, . . . , n}; vi ← 0 od
(3) nrex← n;
(4) while nrex 	= 0 do
(5) for i= 1 to n do m(i)← false; p(i)← 0; δi ←∞ od
(6) aug← false; Q←{i ∈ S : mate(i) = 0};
(7) repeat
(8) remove an arbitrary vertex i from Q; m(i)← true; j ← 1;
(9) while aug = false and j ≤ n do

(10) if mate(i) 	= j ′

(11) then if ui + vj −wij < δj
(12) then δj ← ui + vj −wij ; p(j)← i;
(13) if δj = 0
(14) then if mate(j′) = 0
(15) then AUGMENT(mate, p, j′; mate);
(16) aug ← true; nrex ← nrex− 1
(17) else Q←Q∪mate(j′)}
(18) fi
(19) fi
(20) fi
(21) fi
(22) j ← j + 1
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(23) od
(24) if aug = false and Q= ∅
(25) then J ←{i ∈ S :m(i) = true}; K ←{j′ ∈ T : δj = 0};
(26) δ←min{δj : j′ ∈ T \K};
(27) for i ∈ J do ui ← ui − δ od
(28) for j′ ∈K do vj ← vj + δ od
(29) for j′ ∈ T \K do δj ← δj − δ od
(30) X ←{j′ ∈ T \K : δj = 0};
(31) if mate(j′) 	= 0 for all j′ ∈X
(32) then for j′ ∈X do Q←Q∪ {mate(j′)} od
(33) else choose j′ ∈X with mate(j′) = 0;
(34) AUGMENT(mate, p, j ′; mate);
(35) aug ← true; nrex ← nrex − 1
(36) fi
(37) fi
(38) until aug = true
(39) od

Procedure AUGMENT(mate, p, j′;mate)

(1) repeat
(2) i← p(j); mate(j′)← i; next ← mate(i); mate(i)← j′;
(3) if next 	= 0 then j′ ← next fi
(4) until next = 0

Theorem 14.2.4 Algorithm 14.2.3 determines with complexity O(n3) an
optimal matching for (G,w).

Proof Let us call all the operations executed during one iteration of the
while-loop (4) to (39) a phase. First we show by induction on the phases
that the array mate always defines a matching in the current equality sub-
graph Hu,v. Because of step (1), this holds after the initialization. Now sup-
pose that our claim holds at the beginning of some phase. During the repeat-
loop, an alternating forest (that is, a disjoint union of alternating trees) B is
constructed in Hu,v. The outer vertices of this forest are all i ∈ S satisfying
m(i) = true, and the inner vertices of B are the vertices j′ ∈ T with δj = 0.
If the condition in (14) holds at some point, we have found an augmenting
path with end vertex j′ in B; then the current matching in Hu,v is replaced
by a larger matching using AUGMENT. As B is a subgraph of Hu,v, the new
matching is again contained in Hu,v.

We now turn to the case where the condition in (24) is satisfied, so that we
have reached Q= ∅ without finding an augmenting path in B. If this is the
case, subsets J ⊆ S and K ⊆ T are defined in (25) which satisfy K = Γ (J).
To see this, recall that the vertices in Γ (J) are precisely those vertices j′ for
which ui + vj = wij holds for some i ∈ J . Note that in step (8) all vertices
which were an element of Q at some point have been examined, so that
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(during the while-loop (9) to (23)) all vertices j′ ∈ Γ (J) were associated with
some vertex i= p(j) and δj was set to 0. Also, for each vertex j′ of K, the
vertex mate(j′) is contained in J because of (17) and (8). As J contains all the
exposed vertices as well (because of (6)), we must have |Γ (J)|< |J |. Therefore
it makes sense to proceed by changing the feasible node-weighting (u,v) as in
the proof of Lemma 14.2.2, and thus to decrease the sum

∑
(ui + vi). This is

done in steps (26) to (28); let us denote the updated vectors (for the moment)
by u′ and v′. Now (27) and (28) imply for each edge ij′ of Hu,v with i ∈ J
and j′ ∈K

u′
i + v′j = (ui − δ) + (vj + δ) =wij

(
as ij′ ∈Hu,v

)
,

so that all such edges of Hu,v are contained in Hu′,v′ as well. Moreover,
the condition u′

i + v′j ≥ wij still holds for all i and j; this is seen as in the
proof of Lemma 14.2.2. When we change u to u′ in step (27), the potential
δj also decreases by δ for all j′ ∈ T \K; the necessary adjustment is made
in step (29). Our definition of δ implies that this process yields at least one
j′ ∈ T \K satisfying δj = 0. Thus Hu′,v′ contains at least one edge ij′ with
i ∈ J and j′ /∈K, that is, an edge leaving J which was not contained in Hu,v.

2

In step (30), all vertices j′ /∈ K with δj = 0 are put into the set X . If
there exists an exposed vertex j′ ∈ X , we have found an augmenting path
in Hu′,v′ and the present matching is enlarged using AUGMENT (in steps
(33) to (35)). Otherwise, the vertex mate(j′) can be added to the alternating
forest B for each j′ ∈X , so that Q is no longer empty (step (32)); then the
construction of B in the repeat-loop continues. Note that the set cardinality
of K = Γ (J) strictly increases with each execution of steps (25) to (37), so
that an exposed vertex has to be reached after having changed (u,v) at most
n times. This shows also that each phase terminates with aug = true and
that the matching is extended during each phase.

Obviously, there are exactly n phases. As updating the feasible node-
weighting (u,v) and calling the procedure AUGMENT both need O(n) steps,
these parts of a phase contribute at most O(n2) steps altogether. Note that
each vertex is inserted into Q and examined in the inner while-loop at most
once during each phase. The inner while-loop has complexity O(n), so that
the algorithm consists of n phases of complexity O(n2), which yields a total
complexity of O(n3) as asserted. �

Note that each phase of Algorithm 14.2.3 boils down to an application of
Algorithm 13.3.2 to the equality subgraph Hu,v. Thus the determination of

2In general, Hu′,v′ does not contain Hu,v (as we will see in Example 14.2.5): there may be

edges ij′ with i /∈ J and j′ ∈K which are omitted from Hu,v . Fortunately, this does not

cause any problems because all vertices j′ ∈K are saturated by the matching constructed

so far; as mentioned above, mate(j′) is defined for all j′ ∈K (and is contained in J). Thus

Hu′,v′ still contains the current matching.
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an optimal matching can be reduced to the cardinality matching problem.
It is not uncommon that the weighted version of an optimization problem
reduces to several applications of the corresponding unweighted problem.

Example 14.2.5 We use Algorithm 14.2.3 for determining an optimal match-
ing of the graph (K5,5,w), where the weight function w is given by the fol-
lowing matrix W = (wij):

⎛

⎜
⎜
⎜
⎜
⎝

3 8 9 1 6
1 4 1 5 5
7 2 7 9 2
3 1 6 8 8
2 6 3 6 2

⎞

⎟
⎟
⎟
⎟
⎠

9
5
9
8
6

0 0 0 0 0 v\u

The numbers on the right-hand side of and below the matrix are the ui and
the vj , respectively, which the algorithm uses as initial values according to
step (2). To make the execution of the algorithm deterministic, we always
choose the smallest element of Q in step (8). This gives i = 1 in the first
phase. We obtain the following values of δj and p(j):

1′ 2′ 3′ 4′ 5′ j′

6 1 0 ∞ ∞ δj
1 1 1 − − p(j).

The vertex 3′ is exposed, so that {1,3′} is chosen as the first edge of the
matching. During the second phase, we have i = 2 and the edge {2,4′} is
added to the matching. During the third phase, Q = {3,4,5}; hence i = 3
and

1′ 2′ 3′ 4′ 5′ j′

2 7 2 0 7 δj
3 3 3 3 3 p(j).

As 4′ is already saturated, mate(4′) = 2 is added to Q. Then i= 2 is removed
from Q in step (8) and we get

2 1 2 0 0 δj
3 2 3 3 2 p(j).

Now 5′ is exposed and AUGMENT yields the new matching consisting of the
edges {2,5′}, {3,4′} and {1,3′}, since we had p(5) = 2, mate(2) = 4′, p(4) = 3
and mate(3) = 0 before. During the fourth phase, Q= {4,5}; then i= 4 and

5 7 2 0 0 δj
4 4 4 4 4 p(j).
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Fig. 14.1 Equality

subgraph with a matching

As the vertices 4′ and 5′ are both saturated, their mates 3 and 2 are inserted

into Q. With i= 2, i= 3, and i= 5 in step (8), we obtain the following values

for δj and p(j):

i= 2:
4 1 2 0 0
2 2 4 4 4

i= 3:
2 1 2 0 0
3 2 4 4 4

i= 5:
2 0 2 0 0
3 5 4 4 4.

Now both 2′ and p(2) = 5 are exposed, so that the edge {5,2′} is added to

the matching. This ends the fourth phase; up to now, we have found the

matching M = {{1,3′},{2,5′},{3,4′},{5,2′}} in the equality subgraph Hu,v;

see Fig. 14.1.

The fifth (and final) phase starts with Q= {4}; then i= 4 and the values

of δj and p(j) are

5 7 2 0 0
4 4 4 4 4.

Similar to the preceding phase, 2 and 3 are inserted into Q. Then the values

of δj and p(j) are changed for i= 2 and i= 3 as follows:

i= 2:
4 1 2 0 0
2 2 4 4 4

i= 3:
2 1 2 0 0
3 2 4 4 4.

Now we have reached Q= ∅ for the first time; thus the feasible node-weighting

(u,v) is changed in accordance with steps (27) and (28). With J = {2,3,4},
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Fig. 14.2 Second equality

subgraph

K = {4′,5′}, and δ = 1, we obtain

⎛

⎜
⎜
⎜
⎜
⎝

3 8 9 1 6
1 4 1 5 5
7 2 7 9 2
3 1 6 8 8
2 6 3 6 2

⎞

⎟
⎟
⎟
⎟
⎠

9
4
8
7
6

0 0 0 1 1 v\u

and the new equality subgraph given in Fig. 14.2. Note that the edge {5,4′}
was removed from the old equality subgraph, whereas the edge {2,2′} was

added. The resulting new equality subgraph is displayed in Fig. 14.2. Next

the δj are updated in step (29) as follows:

1 0 1 0 0
3 2 4 4 4.

Then X = {2′}; as 2′ is not exposed and mate(2′) = 5, we insert 5 into Q

and get (with i= 5):

1 0 1 0 0
3 2 4 4 4.

Again, Q = ∅. This time the feasible node-weighting (u,v) is changed as

follows (with J = {2,3,4,5}, K = {2′,4′,5′}, and δ = 1):

⎛

⎜
⎜
⎜
⎜
⎝

3 8 9 1 6
1 4 1 5 5
7 2 7 9 2
3 1 6 8 8
2 6 3 6 2

⎞

⎟
⎟
⎟
⎟
⎠

9
3
7
6
5

0 1 0 2 2 v\u
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Fig. 14.3 Third equality

subgraph with perfect
matching

The new equality subgraph is shown in Fig. 14.3: three edges have been added
and none removed. The δj are then changed to

0 0 0 0 0
3 2 4 4 4.

Now X = {1′,3′}; as 1′ is exposed, the matching can be enlarged. With
p(1) = 3, mate(3) = 4′, p(4) = 4, and mate(4) = 0 we obtain the optimal
matching M = {{1,3′},{2,5′},{3,1′},{4,4′},{5,2′}}, which is displayed in
Fig. 14.3 and which corresponds to the bold entries in the final matrix above;
note that w(M) = 35 indeed equals

∑
(ui+vi) for the feasible node-weighting

(u,v) indicated there.

Exercise 14.2.6 Determine an optimal matching of K9,9 with respect to
the following weight matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 31 24 80 62 39 24 41 42
31 0 0 34 54 5 51 45 61
24 0 0 31 32 59 28 44 25
80 34 31 0 65 45 25 44 47
62 54 32 65 0 38 48 66 68
39 5 59 45 38 0 8 25 18
24 51 28 25 48 8 0 71 66
41 45 44 44 66 25 71 0 69
42 61 25 47 68 18 66 69 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Hint: Even though the matrix is quite big, the algorithm works rather fast:
the first four phases are almost trivial.

Analyzing Algorithm 14.2.3 again, the reader will realize that the proof
actually works for nonnegative weights from an arbitrary ordered Abelian
group. (This remark seems to be due to Lüneburg.) Recall that an Abelian
group G is called ordered if a partial ordering  is specified which satisfies
the following condition:

x y ⇐⇒ x+ z  y+ z for all x, y, z ∈G.
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Using the ordered group (R+, ·), we may apply Algorithm 14.2.3 for weights
≥ 1 to determine a matching for which the product of the weights is maximal.
More generally, the algebraic assignment problem is the problem of finding
a perfect matching of maximal (or minimal) weight where the weights come
from an ordered commutative monoid; compare Sect. 3.11. For this problem,
we refer to [Zim81] and to [BurHZ77].

Exercise 14.2.7 Show that the bottleneck assignment problem defined in
Example 7.4.11 is a special case of the algebraic assignment problem; see
[Law76, §5.7] and [GabTa88] for that problem.

Exercise 14.2.8 Determine a product-optimal matching for the graph K5,5

with respect to the weight matrix of Example 14.2.5; that is, we seek a perfect
matching for which the product of the weights of its edges is maximal. Hint:
Apply the Hungarian algorithm within the group (Q+, ·); note that the zero
of this group is 1, and that the positive elements are the numbers ≥ 1.

Exercise 14.2.9 Consider the problem of finding a product-optimal match-
ing of Kn,n with respect to a weight matrix all of whose entries are positive
integers. Show that this problem is equivalent to determining an optimal
matching with respect to some other appropriate weight matrix. Would it be
better in practice to use this transformation and then apply Algorithm 14.2.3
directly?

Exercise 14.2.10 Is every optimal matching also product-optimal?

14.3 Matchings, Linear Programs, and Polytopes

The Hungarian algorithm presented in the previous section is an elegant
and efficient technique for determining an optimal matching in a weighted
bipartite graph. It also allows us to check the correctness of the final result
(a feature which is certainly useful when computing smaller examples by
hand): we need to check only whether the final vectors u and v are indeed
a feasible node-weighting and whether the weight of the matching which we
have computed is equal to

∑
(ui + vi); see Lemma 14.2.2.

However, we did not provide any motivation for considering feasible node-
weightings in the previous section. It is by no means a coincidence that this
approach works and even allows such an easy check of the correctness of the
final result. To understand this, we have to appeal to the theory of linear
programming, although it is our philosophy to avoid this as far as possible
in this book. Nevertheless, linear programming is indispensable for a deeper
treatment of combinatorial optimization. Thus we now present a detour into
this area; the material dealt with here will be used only rarely in later sections.
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A linear programming problem (or, for short, an LP) is an optimization
problem of the following kind: we want to maximize (or minimize, as the case
may be) a linear objective function with respect to some given constraints
which have the form of linear equalities or inequalities; note that any equality
can be replaced by two inequalities. Formally, one uses the following notation:

(LP) maximize x1c1 + · · ·+ xncn

subject to ai1x1 + · · ·+ ainxn ≤ bi (i= 1, . . . ,m),

xj ≥ 0 (j = 1, . . . , n).

Sometimes, (some of) the variables xi are also allowed to be nonrestricted.
Writing A= (aij), x= (x1, . . . , xn), and c= (c1, . . . , cn), we may write (LP)
more concisely:

(
LP′) maximize cxT

subject to AxT ≤ bT and x≥ 0.

For our purposes, A, b, and c are integral, but we allow x to have real values.
Indeed, the solutions of (LP) are in general not integral but rational. Adding
the condition that x should be integral to the LP, we get the corresponding
integer linear programming problem (or, for short, ILP).3 If we restrict x even
further by requiring xi ∈ {0,1} for i = 1, . . . , n, we have a zero-one linear
program (or, for short, ZOLP). Many of the most important problems of
combinatorial optimization can be formulated as a ZOLP; in particular, this
holds for optimal matchings.

Example 14.3.1 Let G = (V,E) be a complete bipartite graph with a non-
negative weight function w. Then the optimal matchings of G are precisely
the solutions of the following ZOLP:

3Note that the problem SAT treated in Sect. 2.7 may be viewed as a special case of the

problem ILP; see e.g. [PapSt82, Chap. 1]. This implies that ILP is NP-hard, which makes it

likely that it cannot be solved in polynomial time. In contrast, LP is a polynomial problem,

as the ellipsoid algorithm of Khachiyan [Kha79] shows (which is unfortunately of no use

for practical purposes); see also [PapSt82, Chap. 7]. A further polynomial algorithm for

LP—which is of considerable practical importance—is due to Karmarkar [Kar84]. We refer

to [BazJS10] for a nice presentation concerning the complexity of LP, including a detailed

description of the algorithm of Karmarkar; the reader will also find further references to

the literature there. The original paper of Karmarkar was the starting point for a very

large and active area of research. Actually his algorithm is best understood in the context

of nonlinear programming; a variation based on a barrier function approach is described

in [BazSS06, §9.5]. A good discussion of the so-called path-following methods can be found

in [Gon92] which includes a detailed reference list as well; we also recommend the first part

of the monograph [Ter96] on interior point methods.
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maximize
∑

e∈E

w(e)xe

subject to xe ∈ {0,1} for all e ∈E and
∑

e∈δ(v)

xe = 1 for all v ∈ V,

where δ(v) denotes the set of edges incident with v. An edge e is contained
in the corresponding perfect matching if and only if xe = 1. The constraints
above make sure that any solution x indeed corresponds to a perfect match-
ing. In this particular case, the vectors x satisfying the constraints (that is,
the admissible vectors) coincide with the admissible vectors for the corre-
sponding ILP, where the condition xe ∈ {0,1} is replaced by xe ≥ 0. Using
the incidence matrix A of G, we can write the ILP concisely as

maximize wxT subject to AxT = 1T and x≥ 0, (14.3)

where x= (xe)e∈E ∈ Z
E .

Exercise 14.3.2 Describe the problem of finding an optimal integral circu-
lation on a network (G,b, c) as an ILP. Also, describe the problem of finding a
maximal spanning tree for a network (G,w) as a ZOLP. Is this an interesting
approach to the problem?

As we wish to apply the theory of linear programming, we have to trans-
form the ILP of Example 14.3.1 into an ordinary LP. Some geometric con-
siderations will be useful here. If the set of all admissible vectors x ∈R

n for
a given LP is bounded and nonempty, then all these vectors form a polytope:
the convex hull (see Sect. 7.4) of a finite number of vectors in R

n. It is a
fundamental result that optimal solutions for the LP can always be found
among the vectors corresponding to vertices of the polytope (though there
may exist further optimal solutions); here the vertices of the polytope can be
defined as those points at which an appropriate objective function achieves
its unique maximum over the polytope.

It should now be clear that the incidence vectors of perfect matchings M of
G are vertices of the polytope in R

E defined by the constraints given in Exam-
ple 14.3.1. Assuming that all the vertices of the polytope actually correspond
to perfect matchings, the ZOLP of Example 14.3.1 would be equivalent to the
corresponding LP and could be solved—at least in principle—with one of the
known algorithms for linear programs.4 Fortunately, this assumption indeed
holds, as the following result of Hoffman and Kruskal [HofKr56] implies; see
also [PapSt82, Theorem 13.1].

4We note that this would not be a particularly efficient approach in practice, as the LP

under consideration is highly degenerate.
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Result 14.3.3 Let A be an integer matrix. If A is totally unimodular, then
the vertices of the polytope {x :AxT = bT ,x≥ 0} are integral whenever b is
integral.

As we assumed G to be bipartite, the incidence matrix A of G is indeed
totally unimodular; see Exercise 4.2.13. Hence Result 14.3.3 implies immedi-
ately that all vertices of the polytope defined by the LP of Example 14.3.1
are integral, and therefore correspond to perfect matchings of G.

Theorem 14.3.4 Let A be the incidence matrix of a complete bipartite graph
G= (V,E). Then the vertices of the polytope

P=
{
x ∈R

E :AxT = 1T ,x≥ 0
}

coincide with the incidence vectors of perfect matchings of G. Hence the opti-
mal matchings are precisely those solutions of the LP given in Example 14.3.1
which correspond to vertices of P (for a given weight function).

Theorem 14.3.4 is certainly interesting, but it does not explain yet why
the feasible node-weightings of the previous section work so efficiently. For
this purpose, we require also the notion of duality. For any linear program

(LP) maximize cxT subject to AxT ≤ bT and x≥ 0,

the dual LP is the linear program

(DP) minimize byT subject to ATyT ≥ cT and y≥ 0,

where y= (y1, . . . , ym). Then the following theorem holds.

Result 14.3.5 (Strong duality theorem) Let x and y be admissible vectors
for (LP) and (DP), respectively. Then one has

cxT ≤ byT

with equality if and only if x and y are actually optimal solutions for their
respective linear programs.

Example 14.3.6 Let us return to the situation of Example 14.3.1. As w is
nonnegative, we may consider the LP

maximize wxT subject to AxT ≤ 1T and x≥ 0 (14.4)

instead of the original LP given there; note that the LP (14.4) likewise yields
a polytope with integral vertices; see [PapSt82, Theorem 13.2]. Then the dual
linear program is as follows:

minimize 1yT subject to ATyT ≥wT and y≥ 0, (14.5)
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where y = (yv)v∈V . In view of G = Kn,n, it makes sense to use variables

u1, . . . , un and v1, . . . , vn corresponding to the partition V = S
.
∪ T of the

vertex set of G instead of the yv. Then (14.5) becomes

minimize

n∑

i=1

(ui + vi) subject to ui, vi ≥ 0 (i= 1, . . . , n) and

ui + vj ≥wi,j (i, j = 1, . . . , n).
(14.6)

Thus the admissible vectors y for the dual LP (14.5) correspond precisely to
the feasible node-weightings (u,v) in R

n×R
n. By Result 14.3.5, an arbitrary

perfect matching M of G and an arbitrary feasible node-weighting (u,v) have
to satisfy the condition

∑
(ui + vi)≥ w(M), and such a perfect matching is

optimal if and only if equality holds. This provides us with alternative, more
theoretical proofs for the results obtained in Lemmas 14.2.1 and 14.2.2. Thus
we have indeed found a deeper reason why the basic idea of the Hungarian
algorithm works.

We might now also suspect that the problem of finding optimal matchings
in the general case will be considerably harder: the incidence matrix of G
will no longer be totally unimodular (see Exercise 4.2.13), so that the linear
programming approach cannot possibly work as easily as before. This prob-
lem will be addressed in the next section. Note also that network flows and
circulations can be treated in a similar way (see Exercise 14.3.2), since the
incidence matrix of a digraph is always totally unimodular by Theorem 4.2.5.
In particular, Lemma 6.1.2 and Theorem 6.1.6 (max-flow min-cut) may also
be derived from Result 14.3.5; see e.g. [PapSt82, Sect. 6.1].

We hope that the material of this section has convinced the reader that the
theory of linear programming is well worth studying, even if one is interested
mainly in algorithms concerning graph theoretical problems. Nevertheless,
in my opinion, the first approach to combinatorial optimization should be
via graph theory, as this is much more intuitive. We recommend the books
[PapSt82], [Chv83], [Schr86], and [NemWo88] for further study.

Let us close this section with some remarks. The Hungarian algorithm
shows that we can restrict our attention to feasible node-weightings having
integer entries. Again, this is not just a coincidence. There is a simple the-
oretical explanation: if an integer matrix A is totally unimodular, so is AT .
In particular, another application of Result 14.3.3 shows that the dual pro-
gram (14.5) for the LP (14.4) of Example 14.3.6 again leads to a polytope
with integral vertices. We saw that the Hungarian algorithm simultaneously
calculates solutions of the linear program (14.4) and of the dual program
(14.5); in fact it can be viewed as a special case of the primal-dual algorithm
of [DanFF56], which does the same for any linear program (LP) and its dual
program (DP); see also [PapSt82]. Moreover, Dijkstra’s algorithm, the algo-
rithm of Ford and Fulkerson, and the out-of-kilter algorithm mentioned in
Chap. 10 are likewise special cases of the primal-dual algorithm.
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We also state a result which shows that the vertices of a polytope are
integral even under weaker conditions than the total unimodularity of the
matrix A; see [Hof74] and [EdmGi77].

Result 14.3.7 (Total dual integrality theorem) If the dual program (DP)
admits an optimal integral solution for every choice of the objective function
c of (LP), then the polytope

P=
{
x ∈R

n :AxT ≤ bT ,xT ≥ 0
}

has integral vertices.

Linear programs having the property described in Result 14.3.7 are called
totally dual integral .

Finally, we give a few more references. On the one hand, we recommend
four interesting surveys which treat the questions considered in this section
more thoroughly: [Hof79] for the role of unimodularity in combinatorial appli-
cations of linear inequalities; [Lov79] about integral programs in graph theory;
and [EdmGi84] and [Schr84] about total dual integrality. On the other hand
(and on a much deeper level), the reader may find an encyclopedic treatment
of the polyhedral approach to combinatorial optimization in [Schr03].

14.4 The General Case

In this section, we will discuss optimal matchings in arbitrary graphs and the
corresponding linear programs without giving any proofs. Let G = (V,E)
be a complete graph K2n with a nonnegative weight function w.5 As in
Example 14.3.1, the optimal matchings of (G,w) are precisely the solutions
of the integer linear program

maximize wxT subject to AxT = 1T and x≥ 0, (14.7)

where x= (xe)e∈E and where A is the incidence matrix of G. Unfortunately,
by Exercise 4.2.13, A is not totally unimodular in general, so that the meth-
ods used in the previous section cannot be transferred immediately. Indeed,
the linear program corresponding to (14.7) usually admits rational solutions:
the corresponding polytope may have vertices which are not integral. The
following simple example for this phenomenon is taken from [Edm67a].

5Using arguments similar to those employed in Sect. 14.1, one sees that determining a

matching of maximal weight—as well as determining a perfect matching of maximal weight,

or a perfect matching of minimal weight—in a non-bipartite graph reduces to the problem

of determining an optimal matching in a complete graph K2n.
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Fig. 14.4 An optimal

matching

Fig. 14.5 A better
rational solution

Example 14.4.1 Consider the graph G = K6 with the weights shown in
Fig. 14.4; edges which are missing in this figure have weight 0. It is easy
to check that the bold edges form an optimal matching M , which has weight
w(M) = 18. On the other hand, the rational values for xe shown in Fig. 14.5
lead to a better value for the objective function: wxT = 19; incidentally, this
is the optimal solution for the corresponding linear program.

One possible way to avoid this unpleasant situation would be to cut off the
non-integral vertices of the polytope P′ = {x : AxT = 1T ,x ≥ 0} by adding
further inequalities; this approach is quite common in integer linear program-
ming (cutting plane algorithms); see [PapSt82, Chap. 14].

Thus we add appropriate inequalities to the LP (14.7) until the enlarged
system of linear inequalities corresponds to a polytope which is the convex
hull of the incidence vectors of the perfect matchings of G (that is, of the
solutions of the ILP (14.7) for an appropriate function w). The following
result due to Edmonds [Edm65a] makes this more precise.

Result 14.4.2 Let G= (V,E) be a graph with an even number of vertices.
Then the polytope defined by (14.7) together with the system of additional
linear inequalities

∑

e∈E|S
xe ≤

|S| − 1

2
for each subset S of V of odd cardinality (14.8)
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is the convex hull P = P (G) of the incidence vectors of the perfect matchings
of G.

It is clear that the incidence vectors of perfect matchings satisfy (14.8).
The interesting part of Result 14.4.2 states that any vector in R

E which
satisfies both (14.7) and (14.8) necessarily is a convex combination of perfect
matchings.

Corollary 14.4.3 Let G be a complete graph K2n with incidence matrix A.
Given any nonnegative weight function w, the linear program

maximize wxT subject to (14.7) and (14.8)

has an optimal integral solution, which is the incidence vector x of an optimal
matching of (G,w).

Edmonds’ proof for Result 14.4.2 is constructive—that is, algorithmic.
Result 14.4.2 can also be derived by using the following result of Cunningham
and Marsh [CunMa78] together with Result 14.3.7.

Result 14.4.4 Let G= (V,E) be a graph with incidence matrix A. Then the
system of inequalities

AxT ≤ 1T , x≥ 0 and

∑

e∈E|S

xe ≤
|S| − 1

2
for each subset S of V of odd cardinality

is totally dual integral.

Again, the original proof for this result was algorithmic. Short combina-
torial proofs of Results 14.4.2 and 14.4.4 can be found in [Schr83a, Schr83b].

It should be clear that one may now proceed in analogy with the bipartite
case: replace the ILP (14.7) by the LP in Corollary 14.4.3 and apply an
appropriate special version of the primal-dual algorithm for solving it. In
fact, the algorithms most frequently used in practice use this approach. In
particular, this holds for the first solution of the ILP (14.7), which was given
by Edmonds [Edm65a]; his method has a complexity of O(n4), but this can
be improved to O(n3); see [Gab76] and [Law76]. A different algorithm with
complexity O(n3) is in [CunMa78].

The fastest algorithms known for determining a matching of maximal
weight in an arbitrary graph have complexity O(|V ||E| + |V |2 log |V |), as
in the bipartite case; see [Gab90]. A further fast algorithm (which takes the
maximal size of the weights into account) is due to [GabTa91]. An algorithm
treating the interesting special case where the weight function on a graph
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K2n is given by the distances between 2n points in the Euclidean plane can
be found in [Vai89]; this algorithm has a complexity of O(n5/2(logn)4).

All the algorithms for determining an optimal matching in K2n mentioned
above are considerably more involved than corresponding algorithms for the
bipartite case. This is not surprising if we consider the additional inequalities
needed in (14.8) for subsets of odd cardinality; note that these correspond to
the fact that blossoms may occur. As it seems almost impossible to give suf-
ficient motivation for an algorithm which does not explicitly use the methods
of linear programming, we decided not to treat any algorithm for the deter-
mination of optimal matchings in arbitrary graphs. Hence we just state the
following result for later use.

Result 14.4.5 It is possible to determine with complexity O(n3) an optimal
matching in K2n with respect to a given nonnegative weight function w.

For a proof of Result 14.4.5, we refer to [Law76] or [BalDe83]. In [PapSt82],
an algorithm with complexity O(n4) is derived from the primal-dual algo-
rithm. A method which avoids the explicit use of linear programming—and
which is, not surprisingly, less motivated—can be found in [GonMi84]. Fi-
nally, we also recommend the monograph [Der88].

We close this section with some remarks. The inequalities in Result 14.4.4
define the matching polytope M(G) of the graph G, whereas those in Corol-
lary 14.4.3 describe the perfect matching polytope P(G). These two polytopes
are the convex hulls of the incidence vectors of the matchings and the perfect
matchings of G, respectively. One might also wonder what the linear span of
the associated vectors in R

E is. This question is trivial for M(G): then any
edge forms a matching in G by itself, so that the linear span is all of RE .
However, the problem becomes interesting (and quite difficult) for P(G); a so-
lution can be found in [EdmLP82]. Lovász [Lov85] asked the related question
about the lattice generated by the incidence vectors of the perfect matchings
in Z

E (that is, the set of integral linear combinations of these vectors) and
derived interesting partial results. Let us pose two exercises regarding this
problem.

Exercise 14.4.6 Extend Corollary 7.2.7 to regular bipartite multigraphs.

Exercise 14.4.7 Let G be a bipartite graph, and let L(G) be the lattice in
Z
E generated by the incidence vectors of the perfect matchings of G, and

H(G) the linear span of L(G) in R
E . Show that L(G) =H(G)∩Z

E [Lov85].
Hint: Use Exercise 14.4.6.

The result of Exercise 14.4.7 does not extend to arbitrary graphs, as shown
by [Lov85]: the Petersen graph provides a counterexample. The general case
is treated in [Lov87]. Related problems can be found in [JunLe88, JunLe89]
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and [Rie91], where lattices corresponding to the 2-matchings of a graph and
lattices corresponding to the bases of a matroid are examined.

For some practical applications in which n is very large even algorithms for
determining an optimal matching with complexity O(n3) are not fast enough;
in this case, one usually resorts to approximation techniques. In general, these
techniques will not find an optimal solution but just a reasonable approxi-
mation; to make up for this, they have the advantage of being much faster.
We refer the interested reader to [Avi78, Avi83] and to [GriKa88]. Two alter-
natives to using heuristics for large values of n are either to use appropriate
LP-relaxations to determine minimal perfect matchings on suitable sparse
subgraphs, or to use post-optimization methods. We refer to [GroHo85] and
to [DerMe91]; one of the best practical methods at present seems to be the
one given in [AppCo93].

14.5 The Chinese Postman

This section is devoted to an interesting application of optimal matchings
in K2n. The following problem due to Kwan [Kwa62] concerns a postman
who has to deliver the mail for a (connected) system of streets: our postman
wants to minimize the total distance he has to walk by setting up his tour
suitably. This problem is nowadays generally known as the Chinese postman
problem.

Problem 14.5.1 (Chinese postman problem, CPP) Let G = (V,E) be a
connected graph, and let w :E →R

+
0 be a length function on G. We want to

find a closed walk C of minimal length w(C) which contains each edge of G
at least once.6

If G should be Eulerian, the solution of the CPP is trivial: any Euler tour
C will do the job. Recall that G is Eulerian if and only if each vertex of
G has even degree (Theorem 1.3.1) and that an Euler tour C can then be
constructed with complexity O(|E|) (Example 2.5.2).

If G is not Eulerian, we use the following approach. Let X be the set of
all vertices of G with odd degree. We add a set E′ of edges to G such that
the following three conditions are satisfied:

(a) Each edge e′ ∈ E′ is parallel to some edge e ∈ E; we extend w to E′ by
putting w(e′) =w(e).

6Note that we view the edges of our graph as (segments of) streets here, and the vertices
as intersections (or dead ends), so that each edge certainly needs to be traversed to deal
with the houses in this street; in this rather simplistic model we neglect the need for
having to cross the street to deliver the mail to houses on opposite sides. Hence it might
be more realistic to consider the directed case and use the complete orientation of G; see
Exercise 14.5.6.
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(b) In (V,E′), precisely the vertices of X have odd degree.
(c) w(E′) is minimal: w(E′)≤w(E′′) for every set E′′ satisfying (a) and (b).

Then (V,E
.
∪ E′) is an Eulerian multigraph, and any Euler tour induces a

closed walk of minimal length w(E) +w(E′) in G. It is rather obvious that
any solution of CPP can be described in this way. We now state—quite
informally—the algorithm of Edmonds and Johnson [EdmJo73] for solving
the CPP. Note that |X| is even by Lemma 1.1.1.

Algorithm 14.5.2 Let G= (V,E) be a connected graph with a length func-
tion w :E →R

+
0 .

Procedure CPP(G,w;C)

(1) X ←{v ∈ V : deg v is odd};
(2) Determine d(x, y) for all x, y ∈X .
(3) Let H be the complete graph on X with weight function d(x, y). Deter-

mine a perfect matching M of minimal weight for (H,d).
(4) Determine a shortest path Wxy from x to y in G and, for each edge in

Wxy , add a parallel edge to G (for all xy ∈M ). Let G′ be the multigraph
thus defined.

(5) Determine an Euler tour C ′ in G′ and replace each edge of C′ which is
not contained in G by the corresponding parallel edge in G. Let C be
the closed walk in G arising from this construction.

Step (2) can be performed using Algorithm 3.9.1; however, if |X| is small,
it might be better to run Dijkstra’s algorithm several times. Determining
shortest paths explicitly in step (4) can be done easily by appropriate modifi-
cations of the algorithms already mentioned; see Exercises 3.9.3 and 3.7.4. In
the worst case, steps (2) and (4) need a complexity of O(|V |3). Step (3) can
be executed with complexity O(|X|3) by Result 14.4.5; note that determining
a perfect matching of minimal weight is equivalent to determining an optimal
matching for a suitable auxiliary weight function; see Sect. 14.1. Finally, step
(5) has complexity O(|E′|) by Example 2.5.2. Thus we get a total complexity
of O(|V |3).

It still remains to show that the algorithm is correct. Obviously, the con-
struction in step (4) adds, for any matching M of H , a set E′ of edges to
G which satisfies conditions (a) and (b) above; the closed walk in G arising
from this construction has length w(E) + d(M), where d(M) is the weight
of M with respect to d. Thus it is reasonable to choose a matching M of
minimal weight in step (3). However, it is not immediately clear that there
cannot be some other set E′ of edges leading to a solution of even smaller
weight. We need the following lemma.

Lemma 14.5.3 Let G = (V,E) be a connected graph with length function
w : E → R

+
0 . Moreover, let H be the complete graph on a subset X of V of
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even cardinality; the edges of H are assigned weight d(x, y), where d denotes
the distance function in G with respect to w. Then, for each perfect matching
M of H with minimal weight and for each subset E0 of E for which any
two vertices of X have the same distance in G and in (V,E0), the inequality
d(M)≤w(E0) holds.

Proof Let M = {x1y1, . . . , xnyn} be a perfect matching with minimal weight
in H . Then d(M) = d(x1, y1) + · · · + d(xn, yn). Moreover, let Pi be a
shortest path from xi to yi in (V,E0) (for i = 1, . . . , n). By hypothesis,
w(Pi) = d(xi, yi). We claim that no edge e with w(e) 	= 0 can be con-
tained in more than one of the paths Pi; if we prove this claim, the as-
sertion of the lemma follows. Suppose our claim is wrong. Then we may
assume

P1 = x1

P ′
1

u
e

v
P ′′
1

y1 and P2 = x2

P ′
2

u
e

v
P ′′
2

y2,

which implies

d(x1, y1) + d(x2, y2) = d(x1, u) +w(e) + d(v, y1) + d(x2, u) +w(e) + d(v, y2)

> d(x1, u) + d(u,x2) + d(y1, v) + d(v, y2)

≥ d(x1, x2) + d(y1, y2).

But then replacing x1y1 and x2y2 by x1x2 and y1y2 in M would yield a
perfect matching of smaller weight, a contradiction. �

Theorem 14.5.4 Algorithm 14.5.2 calculates with complexity O(|V |3) a so-
lution of the CPP.

Proof We already know that Algorithm 14.5.2 yields a closed walk of length
w(E) + d(M) containing each edge of G, where d(M) is the minimal weight
of a perfect matching of (H,d).

Now suppose that E′ is an arbitrary set of edges satisfying conditions (a)
to (c). Then E′ induces a closed walk of weight w(E)+w(E′) which contains
all edges of G. We have to show w(E′) ≥ d(M). Suppose Z is a connected
component of (V,E′) containing at least two vertices. Then we must have
Z ∩X 	= ∅: otherwise, we could omit all edges of E′ which are contained in Z
and the remaining set of edges would still satisfy (a) and (b). As X is the set
of vertices of (V,E′) with odd degree, |Z∩X| has to be even by Lemma 1.1.1.
Thus the connected components of (V,E′) induce a partition X1, . . . ,Xk of
X into sets of even cardinality so that any two vertices in Xi are connected
by a path in E′.

Let x, y ∈Xi, and let Pxy be the path from x to y in E′. Then Pxy must
be a shortest path from x to y in G: otherwise, the edges of Pxy could be
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Fig. 14.6 A graph

replaced by the edges of a shortest path from x to y, which would yield a
set E′′ of edges satisfying (a) and (b) and w(E′′) < w(E′). Now, trivially,
Pxy is also a shortest path from x to y in (V,E′). Denote the connected
component of (V,E′) corresponding to Xi by Zi, and let E′

i be the set of
edges of E′ which have both end vertices in Zi. Moreover, let Hi be the
complete graph on Zi with weights d(x, y) (where d is the distance function
in G or in (Zi,E

′
i)). Then Lemma 14.5.3 yields d(Mi)≤w(E′

i) for each per-
fect matching Mi of minimal weight in Hi. Obviously, M1 ∪ · · · ∪Mk is a
perfect matching of H , and E′ =E′

1 ∪ · · · ∪E′
k. Hence we obtain the desired

inequality

w
(
E′)=w

(
E′

1

)
+ · · ·+w

(
E′

k

)
≥ d(M1) + · · ·+ d(Mk)≥ d(M). �

Example 14.5.5 Let G be the graph displayed in Fig. 14.6. Then X =
{x, y, z,w}, so that we get the complete graph H shown in Fig. 14.7. The
edges xw and yz form a perfect matching of minimal weight of H ; the
corresponding paths are (x,a,w) and (y,x, z). Hence we replace the corre-
sponding edges in G by two parallel edges each; this yields the multigraph
G′ in Fig. 14.8. Now it is easy to find an Euler tour in G′, for example
(x, y, b,w, c, z, x, y, a, x, a,w, a, z, x) with length 30 + 4 = 34.

Exercise 14.5.6 We consider the directed version of the CPP: let G be a
digraph with a nonnegative length function w; we want to find a directed
closed walk of minimal length containing each edge of G at least once. Hint:
Reduce this problem to the problem of determining an optimal circulation
[EdmJo73].

Theorem 14.5.4 and Exercise 14.5.6 (together with a corresponding al-
gorithm for determining an optimal circulation) show that there are good
algorithms for the CPP for directed graphs as well as for undirected graphs.
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Fig. 14.7 The complete

graph H

Fig. 14.8 The

corresponding Eulerian
multigraph

In contrast, the CPP for mixed graphs is NP-complete, so that most likely
there is no polynomial solution; see [Pap76] or [GarJo79]. A cutting plane
algorithm for the mixed CCP is in [NobPi96], and some applications of the
CPP are discussed in [Bar90].

The planning of actual postman tours is a problem of considerable (finan-
cial) importance, as even a small relative cost reduction can amount to tens
of millions of Euros in absolute annual savings. The interested reader can
find an interesting report on a practical study in Irnich’s paper [Irn08]. The
abstract of his paper gives some idea about such a real world approach:

The paper presents the results of a study performed by the Deutsche post endowed

chair of optimization of distribution networks in collaboration with Deutsche Post

World Net with the aim of improving the planning of letter mail delivery. Modelling

and solution methods for real-world postman problems are presented which extend

one of the most general postman problems studied in the literature, the windy rural

postman problem, with regard to several aspects. The discussed extensions include

turn and street crossing restrictions, cluster constraints, the option to have alterna-

tive service modes (including ‘zigzag deliveries’), and the use of public transport to

reach the postal district. The solution method is based on a transformation to the

asymmetric TSP and uses non-standard neighbourhood search techniques. Extensive

computational experiments show that the solution method clearly and consistently

outperforms standard TSP heuristics on real-world instances.
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14.6 Matchings and Shortest Paths

This section deals with applications of matchings to the problem of deter-
mining shortest paths in a network on an undirected graph without cycles
of negative length. We remind the reader that our usual transformation to
the directed case—replacing a graph G by its complete orientation—will not
work in this situation, because an edge e = {u, v} of negative weight w(e)
in (G,w) would yield a directed cycle u v u of negative length 2w(e)

in (
→
G,w), whereas all the algorithms given in Chap. 3 apply only to graphs

without such cycles. We describe a solution for this path problem below; it
is due to Edmonds [Edm67a].

The first step consists of transforming the given problem to the problem of
determining an f -factor in an appropriate auxiliary graph; this problem was
already mentioned at the end of Sect. 13.6. In our case, the only values f(v)
will take are 1 and 2; however, the auxiliary graph might contain loops. Note
that a loop {v, v} adds 2 to the degree deg v of a vertex v. In what follows,
we call a path from s to t an {s, t}-path.

Lemma 14.6.1 Let N = (G,w) be a network on a graph G = (V,E) with
respect to a weight function w :E → R, and assume that there are no cycles
of negative length in N . Let s and t be two vertices of G, and let G′ be the
graph which results from adding the loop {v, v} to G for each vertex v 	= s, t.
Extend the weight function w to G′ by putting w(v, v) = 0. Then each {s, t}-
path P in G may be associated with an f -factor F = F (P ) in G′, where f is
given by

f(s) = f(t) = 1 and f(v) = 2 for all v 	= s, t, (14.9)

so that the weight of P always equals that of the corresponding f -factor F .
Moreover, the problem of determining a shortest {s, t}-path in (G,w) is equiv-
alent to determining a minimal f -factor in (G′,w).

Proof Given an {s, t}-path P in G, put

F = P ∪
{
{v, v} : v is not contained in P

}
.

Obviously, F is an f -factor for G′, as the loop {v, v} increases the degree of v
in F to 2 whenever v is not contained in P . By our definition of w for loops,
w(F ) =w(P ).

Conversely, let F be an f -factor for G′; we want to construct an {s, t}-
path P from F . As s has degree 1 in F , there is exactly one edge sv1 in F .
Now v1 has degree 2 in F , so that there exists precisely one further edge in F
incident with v1, say v1v2; note that this edge cannot be a loop. Continuing
in this manner, we construct the edge sequence of a path P with start vertex
s in G. As the only other vertex of degree 1 in F is t, t must be the end
vertex of P .
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Note that it is quite possible that there are not only loops among the
remaining edges of F : these edges might contain one or more cycles. In other
words, in general we will have F 	= F (P ), so that the correspondence given
above is not a bijection. However, our assumption that there are no cycles of
negative length in (G,w) guarantees at least w(P )≤w(F ), which proves the
final assertion. �

Next we show how one may reduce the determination of a minimal f -factor
for the special case where f(v) ∈ {1,2} to the determination of a minimal per-
fect matching in an appropriate auxiliary graph whose size is polynomial in
the size of the original graph. As already mentioned in Sect. 13.6, the gen-
eral existence problem for arbitrary f -factors can be reduced to the general
existence problem for perfect matchings; see [Tut54].

Lemma 14.6.2 Let G= (V,E) be a graph (where loops are allowed), and let
f : V → N be a function with f(v) ∈ {1,2} for all v ∈ V . Then the f -factors
of G correspond to perfect matchings of a suitable auxiliary graph H with at
most 5|E| edges and at most 2|V | + 2|E| vertices. If there also is a weight
function w : E → R on G given, a weight function w on H can be defined
in such a way that the weight w(F ) of an f -factor F is always equal to the
weight w(M) of the corresponding perfect matching M .

Proof Our transformation consists of two steps. First, the given f -factor
problem for G is transformed to an equivalent problem for an auxiliary graph
H ′ for which each non-loop edge is incident with at least one vertex v satisfy-
ing f(v) = 1. Thus let e= uv ∈E be an edge with u 	= v and f(u) = f(v) = 2.
We subdivide e by introducing two new vertices ue, ve; replace the edge e by
the path

Pe: u ue ve v;

and extend f by putting f(ue) = f(ve) = 1. By performing this operation
for all edges e = uv with f(u) = f(v) = 2 and u 	= v, we obtain the desired
graph H ′. Now let F be an f -factor in G. Then F yields an f -factor F ′ in
H ′ as follows: we replace each edge e = uv ∈ F with f(u) = f(v) = 2 and
u 	= v by the edges uue and vve; moreover, we add for each edge e= uv with
f(u) = f(v) = 2 and u 	= v which is not in F the edge ueve to F ′. Under this
operation, each f -factor in H ′ actually corresponds to an f -factor in G. We
can also make sure that the weights of corresponding f -factors F and F ′ are
equal: for each edge e = uv with f(u) = f(v) = 2 and u 	= v, we define the
weights of the edges on Pe as

w(uue) =w(vve) =
w(e)

2
and w(ueve) = 0.
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In the second step of the transformation, we define a graph H which re-
sults from H ′ by splitting each vertex v with f(v) = 2 into two vertices:7 we
replace v by two vertices v′ and v′′; we replace each edge e= uv with u 	= v
by two edges e′ = uv′ and e′′ = uv′′; finally, each loop {v, v} with f(v) = 2 is
replaced by the edge v′v′′. These operations are well-defined because of the
transformations performed in the first step: H ′ does not contain any edges
e = uv with f(u) = f(v) = 2 and u 	= v. Let us denote the resulting graph
by H .

It is now easy to see that the f -factors F ′ of H ′ correspond to the perfect
matchings M of H . Note that at most one of the two parts of a split edge
e= uv (with f(v) = 2) can be contained in a perfect matching M of H , since
we must have f(u) = 1 in that case. Note that this correspondence between
f -factors and perfect matchings is, in general, not bijective: if F ′ contains
two edges e1 = u1v and e2 = u2v (where f(v) = 2 and f(u1) = f(u2) = 1),
M might contain either u1v

′ and u2v
′′ or u1v

′′ and u2v
′. Thus, in general,

there are several perfect matchings of H which correspond to the same f -
factor of H ′. However, the weights of corresponding f -factors and perfect
matchings agree if we put

w
(
e′
)
=w

(
e′′
)
=w(e)

for split edges e′ and e′′. �

By performing the transformations of Lemmas 14.6.1 and 14.6.2 succes-
sively, we obtain the desired reduction of the determination of a shortest
path between two vertices s and t in an undirected network (G,w) without
cycles of negative length to the determination of a perfect matching of min-
imal weight in an appropriate auxiliary graph H (with respect to a suitable
weight function). As the number of vertices of H is linear in the number of
edges of G, Result 14.4.5 yields the following conclusion.

Theorem 14.6.3 Let N = (G,w) be a network on a graph G= (V,E), where
w :E →R, and let s and t be two vertices of G. If N does not contain cycles
of negative length, one may determine with complexity O(|E|3) a shortest
path from s to t.

Example 14.6.4 Consider the network (G,w) given in Fig. 14.9. The bold
edges form a path

P : s c b t

of length w(P ) = 0, which corresponds to the f -factor

F =
{
{a, a}, sc, cb, bt

}

7Note that this condition can hold only for old vertices, that is, vertices which were con-
tained in G.
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Fig. 14.9 A path in G

of weight w(F ) = 0 in the graph G′ shown in Fig. 14.10, where f(a) = f(b) =
f(c) = 2 and f(s) = f(t) = 1. Again, F consists of the bold edges.

Now we perform the transformations of Lemma 14.6.2. First, when H ′ is
constructed, the edges e= ab and g = bc are divided into paths of length 3.
We obtain the auxiliary graph H ′ with the f -factor

F ′ =
{
{a, a}, sc, ccg, bbg, bt, aebe

}

corresponding to F , where f(a) = f(b) = f(c) = 2 and f(v) = 1 for all other
vertices v. Note that F ′ indeed has weight w(F ′) = 0. Figure 14.11 shows H ′

and F ′; as usual, F ′ consists of the bold edges.
Finally, in the second step of the transformation, the three vertices a, b, c

with f(a) = f(b) = f(c) = 2 are divided into two vertices each. This yields
the graph H shown in Fig. 14.12 and the perfect matching

K =
{
aa′, sc′, c′′cg, b

′′bg, b
′t, aebe

}

of weight w(K) = 0 corresponding to the f -factor F ′.

Exercise 14.6.5 Determine an {s, t}-path of shortest length as well as the
corresponding f -factors and a corresponding perfect matching of minimal
weight for the network of Example 14.6.4.

Exercise 14.6.6 Discuss the transformation method given above for the
case in which (G,w) contains cycles of negative length. What will go wrong
then?
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Fig. 14.10 The corresponding f -factor in G′

Fig. 14.11 The corresponding f -factor in H ′

Now consider a network (G,w) on a digraph G which does not contain
directed cycles of negative length. Then the problem of determining a shortest
directed path from s to t can be transformed to the problem of determining
a perfect matching of minimal weight in a bipartite graph—that is, to the
assignment problem; see [HofMa64] and also [AhuMO93, Chap. 12.7]. As we
have already seen two efficient algorithms for determining shortest paths for
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Fig. 14.12 A corresponding perfect matching in H

this case in Chap. 3, we will not present this transformation here. In practice,
the reverse approach is more common: the assignment problem is often solved
using the SP-problem (without negative weights) as an auxiliary procedure.

We conclude this section with one more application of matching theory to
a problem concerning shortest paths, which is taken from [Gro85]. Consider a
network N = (G,w) on a graph G, where w is a nonnegative weight function.
Let us call a path P in G odd if P contains an odd number of edges, so that
P has odd length in the graph theoretical sense; even paths contain an even
number of vertices.

We want to find a shortest odd path between two given vertices s and t.
This problem can be reduced to determining a perfect matching of minimal
weight in a suitable auxiliary graph G′, which again results from G by split-
ting vertices: each vertex v 	= s, t of G is replaced by two vertices v′ and v′′,
and an edge v′v′′ of weight w(v′v′′) = 0 is added to E. Moreover, each edge
of G of the form sv or tv is replaced by the edge sv′ or tv′, respectively; and
each edge uv with u, v 	= s, t is replaced by two edges u′v′ and u′′v′′. Using
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Fig. 14.13 A path of odd

length in G

similar arguments as for the proofs of Lemmas 14.6.1 and 14.6.2, one obtains

the following result; the details will be left to the reader as an exercise.

Theorem 14.6.7 Let N = (G,w) be a network on a graph G, where w is a

nonnegative weight function. Moreover, let s and t be two vertices of G, and

let G′ be the auxiliary graph described above. Then the odd {s, t}-paths P in

G correspond bijectively to the perfect matchings M in G′, and the length of

P is equal to the weight of the matching M corresponding to P under this

bijection. In particular, the shortest odd {s, t}-paths correspond bijectively to

the perfect matchings of minimal weight in G′.

Example 14.6.8 Let (G,w) be the network shown in Fig. 14.13, where all

edges e ∈E have weight w(e) = 1. Then the bold edges form an {s, t}-path

P : s u v t

of length 3, which corresponds to the perfect matching

K =
{
su′, u′′v′′, v′t, a′a′′, b′b′′, c′c′′

}

in theauxiliary graph G′; see Fig. 14.14.

Exercise 14.6.9 Find a transformation similarto the one used in Theo-

rem 14.6.7 which allows to find a shortest even {s, t}-path in (G,w) and

apply this transformation to Example 14.6.8.
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Fig. 14.14 The

corresponding perfect
matching in G′

14.7 Some Further Problems

In this section, we briefly mention some further problems concerning match-
ings, beginning with problems with side constraints. Such problems occur
in practice, for example, when planning the schedules for bus drivers, when
designing school time tables, or even when analyzing bio-medical pictures;
see [Bal85], [EveIS76], and [ItaRo78]. We restrict our attention to rather
simple—or at least seemingly simple—types of side constraints.

Problem 14.7.1 (Restricted perfect matching, RPM) Let G= (V,E) be a
graph, and let E1, . . . ,Ek be subsets of E and b1, . . . , bk be positive integers.
Does there exist a perfect matching M of G satisfying the conditions

|M ∩Ei| ≤ bi for i= 1, . . . , k? (14.10)

If we want to fix the number k of constraints, we use the notation RPMk.

Exercise 14.7.2 Show that RPM1 can be solved with complexity O(|V |3)
[ItaRo78]. Hint: Reduce the problem to the determination of an optimal
matching for the complete graph H on V with respect to a suitable weight
function.

In contrast to the result of Exercise 14.7.2, the general problem RPM (that
is, without restrictions on k) is NP-complete and thus probably not solvable
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in polynomial time; see [ItaRT78]. The following related problem is rather
interesting in this context.

Problem 14.7.3 (Exact perfect matching, EPM) Let G= (V,E) be a graph,
and let R be a subset of E and b a positive integer. Does there exist a perfect
matching M of G with |M ∩R|= b?

Exercise 14.7.4 Show that EPM is a special case of RPM2.

It is still unknown whether EPM (and RPM2, for that matter) admits
a polynomial algorithm. However, it is known that the problem is polyno-
mial at least for planar graphs; see Barahona and Pulleyblank [BarPu87].
Their algorithm is based on a result of Kasteleyn [Kas67] which allows one
to determine the number of perfect matchings in a planar graph efficiently.
It has been conjectured [PapYa82] that EPM is NP-complete for arbitrary
graphs. For a good survey on exact matching problems, see [Lec86]; further
information about EPM and various other problems with side constraints is
contained in [Lec87].

Finally, we mention a rather different, but equally interesting, optimality
criterion for perfect matchings: stability. In the bipartite case, the following
interpretation is commonly used (the stable marriage problem): suppose there
are n women and n men, who each rank the n persons of the opposite sex in
a list. We want to find a perfect matching (which may be interpreted as a set
of marriages) so that there is no unmarried couple consisting of a man and
a woman who would both prefer each other to the partners they are married
to according to the given matching.

Formally, we consider a weight function w on the complete orientation of
Kn,n for which the n edges having vertex v as tail are assigned a permutation
of the numbers 1, . . . , n as weights. We require a perfect matching M with
the following property: if xy is an edge not contained in M and if xy′ and
x′y are edges of M , then at least one of the two inequalities w(xy′)<w(xy)
and w(x′y)<w(xy) holds. Gale and Shapley [GalSh62] proved that, for each
n and for each w, such a stable matchings exists and that a solution can
be determined with complexity O(n2); see [Wil72], [Gus87], and [IrvLG87].8

Determining the number of all solutions, however, is an NP-hard problem;
see [IrvLe86].

8Stable matching problems—and some slight extensions, where one requires a prescribed

number of edges for each vertex in one part of the graph—are not just of theoretical

interest. Until recently, the Gale-Shapley algorithm was used to match medical students

to hospital residencies, a rather difficult task if all parties are to be reasonably happy with

the results (or, at the very least, to feel that they are subjected to a fair procedure); see the

brief but interesting articles [Rob03a, Rob03b]. That an optimization algorithm is correct

mathematically does, of course, not mean that it will achieve an end which is desirable from

a social or moral point of view: there always is the problem of what should be optimized.
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The analogous problem for the complete graph K2n (known as the stable
roommates problem) is more difficult; for example, it cannot be solved for
each choice of n and w. Irving [Irv85] gave an algorithm which decides with
complexity O(n2) whether there exists a solution and, if this is the case,
actually finds one; see also [Gus88]. We recommend the excellent monograph
[GusIr89] for further study of this type of problems; see also [BalRa97] for a
nice exposition.

14.8 An Application: Decoding Graphical Codes

In this final section, we consider an application of weighted matching, namely
the decoding of graphical codes. We saw in Sect. 10.11 that graphical codes
often are rather good binary codes, as far as their parameters are concerned.
As mentioned there, one also needs an efficient encoding and decoding pro-
cedure if one actually wants to use such a code. We are now in a position to
provide such a method. Again, we shall follow the tutorial paper [JunVa96].

We begin with the following efficient decoding algorithm for even graphical
codes. We shall assume that C =CE(G) is a t-error correcting code, that is,
t≤ (g− 1)/2. Let X be the received word, and assume that at most t errors
have occurred during transmission, so that X =C+S for some even subgraph
C of G and some subgraph S consisting of at most t edges. Note that S is
an acyclic subgraph of G, since the girth of G is at least 2t+ 1. Clearly, the
odd degree pattern W of S (and hence of X) has weight w ≤ 2t.

Thus we are faced with the following problem: given a set W consisting of
an even number of vertices of G, find a spanning forest T—that is, an acyclic
spanning subgraph—of G of smallest cardinality such that exactly the vertices
of W have odd degree in T . But this is essentially a Chinese postman problem
for the graph X ,9 and may thus be solved using the methods of Sect. 14.5.
This idea was first suggested in [NtaHa81], without giving any details. We
present the following explicit algorithm taken from [JunVa97].

Algorithm 14.8.1 Consider an even graphical code C = CE(G) with pa-
rameters [m,m−n+1, g] based on the connected graph G, where g ≥ 2t+1.
Let X be a word received and assume that at most t errors have occurred,
that is, X is a subgraph of G of the form X = C + S for some (unknown)
even subgraph C of G and some (unknown) subgraph S consisting of at most
t edges.

9Our problem differs a little bit from the standard CPP for X , since we may use edges

in G (and not only edges in X) to find a smallest subgraph with odd vertex pattern W .

On the other hand, it is somewhat simpler since no edge weights are given: all edges have

weight 1.
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Procedure DECEVGC(G,X;C)

(1) Find the odd degree pattern W of X (by computing the degrees of all
vertices in X); let |W |= 2w.

(2) For every pair {x, y} of vertices in W , compute the distance d(x, y) be-
tween x and y in G.

(3) Form the complete graph K on W .
(4) Find a minimum weight perfect matching M = {xiyi : i= 1, . . . ,w} of K

with respect to the weight function d computed in (2).
(5) Determine a path Pi of length d(xi, yi) between xi and yi in G (for

i= 1, . . . ,w).
(6) Let S be the symmetric difference of the paths P1, . . . , Pw.
(7) Output C =X + S.

Theorem 14.8.2 Algorithm 14.8.1 correctly decodes the even graphical code
CE(G) in O(tm+ t3) steps.

Proof The correctness of the decoding algorithm follows in a standard man-
ner, as for the usual CPP. In order to analyze the complexity of this method,
note w ≤ t. Stage (1) clearly needs O(m) steps. Applying breadth first search
repeatedly, we may perform Stage 2 in O(tm) steps; simultaneously, we may
record information needed to actually compute the shortest paths between a
given pair of vertices in W by storing suitable predecessor functions. Then
Stages (5), (6) and (7) can be performed in O(tm) steps. Finally, by Re-
sult 14.4.5, Stages (3) and (4) can be performed in O(t3) steps. �

If we consider t as fixed—which is quite usual in coding theory—
Algorithm 14.8.1 is linear in the length of the code. In comparison, the original
decoding algorithm suggested in [BreHa67] needed some precomputation and
then still had a complexity quadratic in the length of the code.

The crucial idea in Algorithm 14.8.1 is the use of the odd degree pattern
W of the subgraph X received for finding the error subgraph E, which just is
the spanning forest of least weight which has the same vertices of odd degree
as X . The general problem of finding a spanning forest of least weight with
2t prescribed vertices of odd degree is called the t-join problem. Note that
in our case the t-join is uniquely determined from the vertices of odd degree
(which does, of course, not hold in general). Hence it is conceivable that one
might find an even more efficient algorithm to determine E from W for the
special case we need, avoiding the costly CPP approach; this is still an open
problem.

Before giving an example, let us also discuss the problem of decoding a
general graphical code C∗ based on a graph G. Clearly, this will depend on the
odd pattern codes used in the constructions described in Theorems 10.11.13
and 10.11.15. For the sake of simplicity, we restrict ourselves to the method
of Theorem 10.11.13; the other case is handled in a similar way [JunVa97].
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Since we want to be able to correct up to t errors using C∗, we must
first recognize if a received word R actually belongs to a codeword in CE(G)
(possibly corrupted by up to t edges in error, resulting in an odd degree
pattern W ′ of weight up to 2t for R) or to a word of the form X = C + S
with C ∈ CE(G) and 0 	=W ∈ O, where W denotes the odd degree pattern
of X (again possibly corrupted by up to t edges in error, resulting in a word
R which has an odd degree pattern W ′ of a weight reduced by up to 2t in
comparison to that of W ). Note that O is a 2t-error correcting code, since
it has minimum distance 2g ≥ 4t+2 by the hypothesis of Theorem 10.11.13.
Hence we can in fact (somehow) decode the received odd degree pattern R′

into the correct odd degree pattern W =R′ +E′. We may then make R into
an even subgraph (using W and E) and decode this to determine C and
finally X . More formally, we obtain the following procedure from [JunVa97].

Algorithm 14.8.3 Let C∗ be a graphical [m,m− n+ 1+ k, g] code which
is obtained from an even graphical [m,m− n+1, g] code C =CE(G) (based
on the connected graph G) by using an even binary [n,k,2g] code O as odd
pattern code, where g ≥ 2t+ 1. Let R be a word received and assume that
at most t errors have occurred, so that R is subgraph of G of the form
R=C +S +E for some (arbitrary) even subgraph C of G, some (unknown)
subgraph S with odd degree pattern W in O, and some (unknown) subgraph
E consisting of at most t edges.

Procedure DECAUGGC(G,R;X)

(1) Find the received odd degree pattern R′ of R (by computing the degrees
of all vertices in R).

(2) Using the code O, decode R′ into the correct odd degree pattern W =
R′ +E′ ∈O.

(3) Let S be some subgraph of G corresponding to the odd degree pattern W .
(4) Put X ′ =R+ S and decode X ′ into a subgraph C ∈CE(G) using Algo-

rithm 14.8.1.
(5) Output X =C + S.

Theorem 14.8.4 Algorithm 14.8.3 correctly decodes the graphical code C∗ in
O(tm+ t3) + O(D) steps, where O(D) denotes the complexity of decoding O.

Proof We first show that the proposed decoding procedure is correct. By
hypothesis, the error subgraph E consists of at most t edges. Hence the
received odd degree pattern R′ has the form R′ =W +E′, where W is the
correct odd degree pattern of the word X =C+S transmitted and where E′

is the odd degree pattern of E. Since E′ has weight 2w for some integer w ≤ t
and since O is a 2t-error correcting code, we may indeed decode R′ uniquely.

We now compute some subgraph S of G with the correct odd degree
pattern W , e.g. by using the BFS-based procedure with complexity O(m)
outlined in Sect. 10.11; note that it is immaterial which specific choice of
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Fig. 14.15 An edge

labelling of the Petersen
graph

S is made. Since S belongs to C, the subgraph X ′ = R + S still has the
same error subgraph E, but its odd degree pattern is now simply E′. This
shows that X ′ actually is obtained from a codeword in C corrupted by E,
whence we have X ′ = C + E for some C ∈ CE(G). Since E consists of at
most t edges, Algorithm 14.8.1 can now be used to decode X ′ into C. The
identity R+S =C+E shows that Stage (5) indeed gives the correct codeword
X ∈C∗, proving the correctness of Algorithm 14.8.3.

Finally, the assertion on the complexity is clear in view of Theorem 14.8.2
and our remark concerning the realization of Stage (3). �

The quality of Algorithm 14.8.3 depends on the quality of the decoding
algorithm available for decoding the odd pattern code O used. For instance,
if we use an even graphical code for O, we can decode O itself by another
application of Algorithm 14.8.1. But Algorithm 14.8.3 can also be quite ef-
fective when other codes besides even graphical ones are used as odd pattern
codes. In particular, one might choose O as a BCH-code of length n.10

We conclude this section with an example for decoding the augmented
Petersen code P ∗ introduced in Example 10.11.11.

Example 14.8.5 We use the edge labelling of the Petersen graph given in
Fig. 14.15 for numbering the coordinate positions in the code P ∗ of Exam-
ple 10.11.11.11

10The BCH codes constitute one of the most famous classes of codes; they are also used in

many applications. We refer the reader to one of the standard text books in coding theory,

for instance, [MacSl77], [vanLi99], [Bla83] or [Bie05]. As is well-known, BCH-codes are

efficiently decodable, either by the Berlekamp-Massey algorithm or the extended Euclidean

algorithm. Considering t as fixed, a complexity of O(n logn) can be achieved, which is

comparable to our results when using an even graphical code as odd pattern code.

11This edge labelling was used in [JunVa96] to show that P ∗ is in fact isomorphic to a

well-known example from coding theory, namely the double-error correcting BCH-code of

length 15.
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Fig. 14.16 Decoding the

augmented Petersen code

Let us assume that we have received the word w = (111111110001001),
i.e. the subgraph R in Fig. 14.16 consisting of the bold edges; the four ver-
tices of R having odd degree are labelled and drawn fat. As we have more
even than odd vertices, the received word must belong to an even subgraph
of P . In our case, the minimum weight matching obviously is given by the
edges 4 = uv and 2 = xw, since both of these two pairs of points are at dis-
tance 1. Hence we decode w to the codeword (101011110001001), i.e. the
8-cycle {1,15,8,6,7,3,5,12}.

Exercise 14.8.6 Prove that the augmented Petersen code P∗ is actually a
cyclic code (provided that the coordinate positions are indexed by the edges
in a suitable manner): whenever x = (x1, . . . , x15) is a codeword, the cyclic
shift (x15, x1, . . . , x14) is also a codeword.

Hint: Use the edge labelling of the Petersen graph given in Fig. 14.15 for
indexing the coordinates, and note that it suffices to check that the cyclic
shifts of the codewords in some basis of P ∗ are again in P ∗.



Chapter 15
A Hard Problem: The TSP

Which way are you goin’. . .
Jim Croce

Up to now, we have investigated only those optimization problems which al-
low an efficient—that is, polynomial—algorithm. In contrast, this final chap-
ter will deal with a typical NP-complete problem: the travelling salesman
problem already introduced in Chap. 1. We saw in Chap. 2 that no efficient
algorithms are known for NP-complete problems, and that it is actually quite
likely that no such algorithms can exist. Now we address the question of how
such hard problems—which regularly occur in practical applications—might
be approached: one uses, for instance, approximation techniques, heuristics,
relaxations, post-optimization, local optima, and complete enumeration. We
shall explain these methods only for the TSP, but they are typical for dealing
with hard problems in general.

We will also briefly mention a further extremely important approach to
solving hard problems: polyhedral combinatorics. A detailed discussion of this
vast area of research would far exceed the limits of this book; as mentioned
before, the reader can find an encyclopedic treatment of the polyhedral ap-
proach to combinatorial optimization in [Schr03].

The travelling salesman problem is one of the most famous and important
problems in all of combinatorial optimization. It has been thoroughly studied
for more than 60 years, and there is an abundance of literature on the subject,
including quite a few books. Once again, our discussion can only scratch
the surface of a vast area. For a more detailed study, we recommend the
following three books: [LawLRS85, GusPa02], and [AppBCC06]; the last of
these opens with a very interesting chapter describing the origins and the
history of the TSP, followed by an equally interesting chapter surveying the
manyfold applications of the TSP in such diverse areas as logistics, genetics,
telecommunications, and neuroscience.

15.1 Basic Definitions

Let us start by recalling the formal definition of the TSP given in Sect. 1.4:

D. Jungnickel, Graphs, Networks and Algorithms,

Algorithms and Computation in Mathematics 5,
DOI 10.1007/978-3-642-32278-5 15, © Springer-Verlag Berlin Heidelberg 2013

481



482 15 A Hard Problem: The TSP

Problem 15.1.1 (Travelling salesman problem, TSP) Let w : E → R
+ be

a weight function on the complete graph Kn. We seek a cyclic permutation
(1, π(1), . . . , πn−1(1)) of the vertex set {1, . . . , n} such that

w(π) =
n∑

i=1

w
({

i, π(i)
})

is minimal. We call any cyclic permutation π of {1, . . . , n} as well as the
corresponding Hamiltonian cycle

1 π(1) · · · πn−1(1) 1

in Kn a tour ; if w(π) is minimal among all tours, π is called an optimal
tour . The weights of the edges will be given via a matrix W , as explained in
Sect. 1.4.

We shall use the following example also already introduced in Sect. 1.4 to
illustrate various methods for finding a good solution of the TSP, which are
the subject matter of this chapter.

Example 15.1.2 Determine an optimal tour for

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Aa Ba Be Du Fr Ha Mu Nu St

Aa 0 57 64 8 26 49 64 47 46

Ba 57 0 88 54 34 83 37 43 27

Be 64 88 0 57 56 29 60 44 63

Du 8 54 57 0 23 43 63 44 41

Fr 26 34 56 23 0 50 40 22 20

Ha 49 83 29 43 50 0 80 63 70

Mu 64 37 60 63 40 80 0 17 22

Nu 47 43 44 44 22 63 17 0 19

St 46 27 63 41 20 70 22 19 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We saw in Theorem 2.7.5 that the TSP is NP-complete, so that we cannot
expect to find an efficient algorithm for solving it. Nevertheless, this problem
is extremely important in practice, and techniques for solving—or at least
approximately solving—instances of considerable size are essential.

Indeed, there are many applications of the TSP which bear little resem-
blance to the original travelling salesman interpretation. To mention a simple
example, we might have to prepare the machines in a plant for n successive
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production processes. Let wij denote the setup cost arising if process j is
scheduled immediately after process i; then the problem of finding an order-
ing for the n processes which minimizes the total setup cost can be viewed as
a TSP. In [GroJR91] the reader can find an interesting practical case study,
which demonstrates the relevance of approximation techniques for solving
the TSP to some tasks arising in the production of computers. A further
impressive example is described in [BlaSh89]: applying the TSP in X-ray
crystallography resulted in dramatic savings in the amount of time a mea-
suring process takes. Many further applications are discussed in [LenRi75],
in [LawLRS85, Chap. 2], and in [AppBCC06, Chap. 2].

Note that the instance given in Example 15.1.2 has a rather special struc-
ture: the weights satisfy the triangle inequality wik ≤ wij + wjk. Of course,
this holds whenever the weights stand for distances in the plane, or in a
graph, and (more generally) whenever W corresponds to a metric space; see
Sect. 3.2. Hence the following definition.

Problem 15.1.3 (Metric travelling salesman problem, ΔTSP) Let W =
(wij) be a symmetric matrix describing a TSP, and assume that W satis-
fies the triangle inequality:

wik ≤wij +wjk for i, j, k = 1, . . . , n.

Then one calls the given TSP metric or, for short, a ΔTSP.

Note that the TSP used in the proof of Theorem 2.7.5 is clearly metric.
Hence we have the following result:

Theorem 15.1.4 ΔTSP is NP-complete.

Nevertheless, the metric property does make a difference in the degree of
complexity of a TSP: in the metric case, there always exists a reasonably
good approximation algorithm; most likely, this does not hold for the general
case, where the triangle inequality is not assumed; see Sect. 15.4.

Let us conclude this section with a brief discussion of three further variants
of the TSP.

Problem 15.1.5 (Asymmetric travelling salesman problem, ATSP) Instead
of Kn, we consider the complete directed graph on n vertices: we allow the
weight matrix W to be non-symmetric (but still with entries 0 on the main
diagonal). This asymmetric TSP contains the usual TSP as a special case,
and hence it is likewise NP-hard.

Example 15.1.6 We drop the condition that the travelling salesman should
visit each city exactly once, so that we now consider not only Hamiltonian
cycles, but also closed walks containing each vertex of Kn at least once. If
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Fig. 15.1 A TSP for

n= 4

the given TSP is metric, any optimal tour will still be an optimal solution.
However, this does not hold in general, as the example given in Fig. 15.1
shows: here (w,x, y, z, x,w) is a shortest closed walk (of length 6), but the
shortest tour (w,x, y, z,w) has length 8.

Given a matrix W = (wij) not satisfying the triangle inequality, we may
consider it as a matrix of lengths on Kn and then calculate the corresponding
distance matrix D = (dij). For example, we can use the algorithm of Floyd
and Warshall for this purpose; see Sect. 3.9. Of course, D satisfies the triangle
inequality and, hence, defines a metric TSP. It is easy to see that the optimal
closed walks with respect to W correspond to the optimal tours with respect
to D. Thus the seemingly more general problem described in Example 15.1.6
actually reduces to the metric TSP.

Finally, one may also consider an arbitrary connected graph G with some
length function w instead of Kn. Then it is not at all clear whether any tours
exist: we need to check first whether G is Hamiltonian. As proved in Sect. 2.8,
this feasibility question is already an NP-complete problem in itself.

15.2 Lower Bounds: Relaxations

From a practical point of view, it will often be necessary (and also sufficient)
to construct a reasonably good approximate solution instead of an optimal
tour. For example, it will suffice for most practical applications if we can
provide an efficient method for finding a solution which is at most 2 % worse
than the optimal tour: using a vast amount of resources for further improve-
ment of the quality of the solution would not make any economic sense. In
this context, note also that input data—distances, for example—always have
a limited accuracy, so that it might not even mean much to have a truly
optimal solution at our disposal.

In order to judge the quality of an approximate solution, we need lower
bounds on the length of a tour, and these bounds should not only be strong
but also easily computable—aims which are, of course, usually contradictory.
A standard approach is the use of suitable relaxations: instead of the original
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problem P, we consider a problem P′ containing P; this auxiliary (simpler)
problem is obtained by a suitable weakening of the conditions defining P.
Then the weight w(P′) of an optimal solution for P′ is a lower bound for the
weight w(P) of an optimal solution for P.1

Unfortunately, in many cases it is not possible to predict the quality of
the approximation theoretically, so that we have to use empirical methods:
for instance, comparing lower bounds found by relaxation with upper bounds
given by solutions constructed by some heuristic. We shall consider various
heuristics in Sect. 15.5; now we discuss several relaxations which have proved
useful for dealing with TSP’s. In this section, P is always a TSP on the
complete graph Kn on V = {1, . . . , n}, given by a weight matrix W = (wij).

The Assignment Relaxation

One choice for P′ is the assignment problem AP defined in Example 7.4.12
and studied in Chap. 14. Thus we seek a permutation π of {1, . . . , n} for
which w1,π(1) + · · · + wn,π(n) becomes minimal. In particular, we have to
examine all cyclic permutations π (each of which determines a tour); for
these permutations, the sum in question equals the length of the associated
tour. Therefore we can indeed relax TSP to AP.

Note that we ought to be a little more careful here, since we should not just
use the given matrix W to specify our AP: the diagonal entries wii = 0 would
yield the identity as an optimal solution, which would result in a completely
trivial lower bound: 0. As we are not interested in permutations with fixed
points for the TSP anyway, we can avoid this problem by simply putting
wii = ∞ for all i.2 Clearly, this modification guarantees that an optimal
solution of AP is a permutation without fixed points. If we should obtain a
cyclic permutation as the optimal solution of AP, this permutation actually
yields a solution of the TSP (by coincidence). Of course, in general, there is
no reason why this should happen.

It is also comparatively easy to determine the weight w(AP) of an optimal
solution for the relaxed problem: the Hungarian algorithm of Sect. 14.2 will
allow us to do so with complexity O(n3). Note that the Hungarian algorithm
actually determines maximal weighted matchings, whereas we want to find
a perfect matching of minimal weight for Kn,n (with respect to the weights
given by our modification of W ). However, this merely requires a simple
transformation, which was already discussed in Sect. 14.1.

1Our discussion refers to the TSP, but applies to minimization problems in general. Of

course, with appropriate adjustments, it can also be transferred to maximization problems.

2In practice, this is done by using a sufficiently large number M instead of ∞: for instance,

M =max{wij : i, j = 1, . . . , n}.
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It turns out that w(AP) is usually a reasonably good approximation to
w(TSP) in practice—even though nobody has been able to prove this. Balas
and Toth considered random instances for values of n between 40 and 100
and got an average of 82 % of w(TSP) for w(AP); see [LawLRS85, Chap. 10].
That the assignment relaxation has such good approximation properties is,
perhaps, to be expected, since the cyclic permutations form quite a big part
of all permutations without fixed points: the number of permutations without
fixed points in Sn is about n!/e, so that there is about one cyclic permutation
among n/e fixed point free permutations; see, for example, [Hal86].

Balas and Toth examined the assignment relaxation also for the ATSP,
using 400 problems randomly chosen in the range 50≤ n≤ 250. Here w(AP)
was on average 99,2 % of w(ATSP).

Example 15.2.1 Consider the TSP of Example 15.1.2, where we replace
the diagonal entries 0 in W by 88 (the maximum of the wij) to obtain
the matrix W ′ for an associated AP. In order to reduce this AP to the
determination of a maximal weighted matching, we consider the matrix
W ′′ = (88 − w′

ij) instead of W ′, as described in Sect. 14.1; note that W ′′

is the matrix given in Exercise 14.2.6. Then the Hungarian algorithm yields
a maximal weighted matching, which has value 603; see the solution to Ex-
ercise 14.2.6. Any optimal matching for W ′′ is a solution of the original AP;
hence w(AP) = 9× 88− 603 = 189. This gives the bound w(TSP)≥ 189. As
we will see, w(TSP) = 250, so that the assignment relaxation amounts to less
than 76 % in this case.

Exercise 15.2.2 Try to provide an explanation for the phenomenon that the
assignment relaxation tends to give much stronger bounds in the asymmetric
case.

The MST Relaxation

Now we use the problem MST of determining a minimal spanning tree of Kn

(with respect to the weights given by W ) as P′. Of course, a tour is not a
tree; but if we omit any edge from a tour, we indeed get a spanning tree,
which is even of a very special type: it is a Hamiltonian path. This shows
w(MST) ≤ w(TSP). An optimal solution for MST can be determined with
complexity O(n2), if we use the algorithm of Prim; see Theorem 4.4.4. We
will prove later that this type of relaxation is rather good for the ΔTSP,
whereas not much can be said for the general TSP; let us check how it works
for our running example.

Example 15.2.3 For the TSP of Example 15.1.2, we obtain the minimal span-
ning tree T with w(T ) = 186 shown in Fig. 15.2. This bound is slightly inferior
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Fig. 15.2 MST relaxation

to the one provided in Example 15.2.1, but determining a minimal spanning
tree is also much easier than solving an AP.

Note that the MST relaxation leaves out the weight of one of the edges
of the tour, and hence is unnecessarily weak. This observation motivates a
variation which we consider next.

The s-tree Relaxation

Let us choose a special vertex s ∈ V . An s-tree is a spanning tree for the
induced subgraph Kn \s together with two edges incident with s.3 Obviously,
every tour is a special s-tree; hence w(MsT)≤w(TSP), where MsT denotes
the problem of determining a minimal s-tree. Note that it is easy to solve this
problem: just determine a minimal spanning tree for Kn \ s, and add those
two edges incident with s which have smallest weight. Clearly, this can be
done in O(n2) steps; see Theorem 4.4.4. Of course, the resulting bound will

3In the literature, it is quite common to assume s= 1. Moreover, the term 1-tree is often

used for the general concept (no matter which special vertex is selected), even though this

is rather misleading.
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Fig. 15.3 s-tree

relaxation

usually depend on the choice of the special vertex s.4 As usual, let us apply
this relaxation to our running example.

Example 15.2.4 We choose s=Be in Example 15.1.2; this choice is motivated
by the fact that the sum of the two smallest edge weights is maximal for
this vertex. We obtain the s-tree B shown in Fig. 15.3; note that B is the
minimal spanning tree T given in Fig. 15.2, with the edge BeNu added.
Hence w(TSP)≥w(B) = 186 + 44 = 230.

Exercise 15.2.5 Determine a minimal s-tree for the TSP of Example 15.1.2
for the other possible choices of the special vertex s.

Exercise 15.2.6 Discuss the relation between minimal spanning trees and
minimal s-trees. In particular, find conditions on s which guarantee that a
given minimal spanning tree of Kn extends to a minimal s-tree or that a given
minimal spanning 1-forest is actually a minimal s-tree, respectively. Also show
that the strategy for selecting s which we have used in Example 15.2.4 does
not necessarily lead to a good bound.

Exercise 15.2.7 Discuss the relation between minimal s-trees and minimal
spanning 1-forests, cf. Exercise 5.2.6, and determine a minimal spanning 1-
forest for the TSP of Example 15.1.2.

4We might solve MsT for each choice of s to obtain the best possible bound, but this is
probably not worth the extra effort provided that we select s judiciously.
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Balas and Toth calculated the s-tree relaxation as well during their ex-
amination of the assignment relaxation. On average, w(MsT) was only 63 %
of w(TSP), which is considerably worse than w(AP). This may be explained
by the fact that the number of s-trees is much larger than the number of
permutations without fixed points.

Exercise 15.2.8 Determine the number of s-trees of Kn. Hint: Use Corol-
lary 1.2.11.

Exercise 15.2.9 For a vertex i, let s(i) and s′(i), respectively, denote
the smallest and second smallest weight of an edge incident with i. Show
w(TSP) ≥ 1

2

∑
(s(i) + s′(i)), and calculate the resulting bound for Exam-

ple 15.1.2.

A variation of the s-tree relaxation may be found in [LecRe89]. In the next
section, we will see that s-trees yield much better results when one also uses
so-called penalty functions.

The LP Relaxation

For the sake of completeness, we briefly discuss the relationship between the
TSP and linear programming. By analogy with Example 14.3.1, the assign-
ment relaxation of the TSP can be described by the following ZOLP:

Minimize

n∑

i,j=1

wijxij

subject to (15.1)

xij ∈ {0,1},
n∑

j=1

xij = 1 and

n∑

i=1

xij = 1 (for i, j = 1, . . . , n).

Then the admissible matrices (xij) correspond precisely to the permutations
in Sn. In order to restrict the feasible solutions to tours, we add the following
subtour elimination constraints:

∑

i,j∈S

xij ≤ |S| − 1 for all S ⊂ {1, . . . , n}. (15.2)

The inequalities (15.2) indeed have the effect that the path corresponding
to the permutation has to leave the subset S, so that no cycles of a length
smaller than n can occur.
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Now let P be the polytope defined by the feasible solutions of (15.1) and
(15.2); that is, the vertices of P correspond to the tours among the assign-
ments. In principle, it is possible to describe P by a system of linear inequal-
ities and solve the corresponding LP; unfortunately, the inequalities given
in (15.1) and (15.2) do not suffice for this purpose.5 Even worse, nobody
knows a complete set of corresponding inequalities, although large classes
of required inequalities (for example the clique tree inequalities) are known;
see [LawLRS85, Chap. 8] and [GusPa02, Chap. 2], as well as [Nad90] and
[BalFi93]. Also note that there is an exponential number of inequalities even
in (15.2) alone.

Usually the inequalities in (15.1) are used together with some further
(cleverly chosen) inequalities to define a first LP relaxation. In general,
a whole sequence of such LP relaxations is solved, and the inequalities
which are added for the next relaxation are chosen depending on the
deficiencies of the solution calculated before, namely subtours or values
�= 0,1. The most successful algorithms for solving large instances of the
TSP use this approach; see, for example, [LawLRS85, Chap. 9], as well as
[GroHo91, PadRi87, AppBCC95, AppBCC03] and, in particular, the book
[AppBCC06]. Finally, we also mention [PadSu91], where the quality of sev-
eral formulations of the TSP as a linear program is studied.

15.3 Lower Bounds: Subgradient Optimization

In this section, we show how the lower bounds obtained from the s-tree
relaxation can be improved considerably by using so-called penalty functions.
This method was introduced by Held and Karp [HelKa70, HelKa71] and
used successfully for solving comparatively large instances of the TSP. The
basic idea is rather simple: we choose some vector p= (p1, . . . , pn)

T ∈R
n and

replace the weights wij of the given TSP by the transformed weights

w′
ij =wij + pi + pj (i, j = 1, . . . , n, i �= j). (15.3)

Let us denote the weight of a tour π with respect to the w′
ij by w′(π). Clearly,

w′(π) =w(π) + 2(p1 + · · ·+ pn) for every tour π; (15.4)

hence any tour which is optimal for W is optimal also for W ′. On the other
hand, the weight of an s-tree B is not transformed by just adding a con-

5The polytope P is the convex hull of the incidence vectors of tours: its vertices are 0-1-

vectors. Leaving out the restriction xij ∈ {0,1}, the inequalities in (15.1) and (15.2) define
a polytope P ′ containing P , which will (in general) have additional rational vertices. Thus

all vertices of P ′ which are not 0-1-vectors have to be cut off by further appropriate

inequalities.
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stant:

w′(B) =w(B) + (p1 × degB 1) + · · ·+ (pn × degB n). (15.5)

Thus the difference between the weight of a tour and the weight of an s-

tree—which we would, of course, like to minimize—is

w′(π)−w′(B) =
(
w(π)−w(B)

)
− dp(B), (15.6)

where

dp(B) = p1(degB 1− 2) + · · ·+ pn(degB n− 2). (15.7)

Let us assume that dp(B) is positive for every s-tree B. Then we can im-

prove the lower bound w(MsT) of the s-tree relaxation with respect to W by

determining a minimal s-tree with respect to W ′: the gap between w(TSP)

and w(MsT) becomes smaller according to (15.6). We show below how this

works for Example 15.1.2.

Of course, it is not clear whether such a vector p exists at all, and how it

might be found. We will use the following simple strategy: calculate a minimal

s-tree B0 with respect to W , choose some positive constant c, and put

pi = c× (degB0
i− 2) for i= 1, . . . , n. (15.8)

Thus the non-zero coordinates of p impose a penalty on those vertices which

do not have the correct degree 2 in B0. This way of defining p has the

following distinct advantage:

Exercise 15.3.1 Show that replacing W by W ′ according to the definition

of p in (15.8) does not change the weight of a tour.

There remains the problem of choosing the value of c. It is possible to

just use c= 1; however, in our example, we will select the most advantageous

value (found by trial and error).

Example 15.3.2 Let B0 be the minimal s-tree shown in Fig. 15.3 for the TSP

of Example 15.1.2, where s = Be. Note that the vertices Aa, Ba, and Mu

have degree 1 in B0, whereas the vertices Du, Nu, and St have degree 3 in

B0. Hence we obtain p= (−3,−3,0,3,0,0,−3,3,3)T , where we have chosen

c= 3. This leads to the following transformed weight matrix W ′:
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Fig. 15.4 Minimal s-tree

with respect to W ′

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Aa Ba Be Du Fr Ha Mu Nu St

Aa 0 51 61 8 23 46 58 47 46

Ba 51 0 85 54 31 80 31 43 27

Be 61 85 0 60 56 29 57 47 66

Du 8 54 60 0 26 46 63 50 47

Fr 23 31 56 26 0 50 37 25 23

Ha 46 80 29 46 50 0 77 66 73

Mu 58 31 57 63 37 77 0 17 22

Nu 47 43 47 50 25 66 17 0 25

St 46 27 66 47 23 73 22 25 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

A minimal s-tree B1 with respect to W ′ is displayed in Fig. 15.4; its weight
is w′(B1) = 242. Note that we could also have used the edge AaHa in-
stead of DuHa. In this case, we would have obtained a different minimal
s-tree, which would look less like a tour: also the vertices Aa and Du
would have degree different from 2. For this reason, we prefer the tree B1

of Fig. 15.4. As the lengths of tours do not change for our choice of p (by
Exercise 15.3.1), we have managed to improve the bound of Example 15.2.4
to w(TSP)≥ 242.
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Fig. 15.5 Minimal s-tree

with respect to W ′′

As B1 is not yet a tour, we try to continue in the same manner. Again,
we select Be as the special vertex s. The vertices of B1 which do not yet
have the correct degree 2 are Ba and St. This time we choose c = 4 and
p = (0,−4,0,0,0,0,0,0,4)T , which yields the following weight matrix W ′′:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Aa Ba Be Du Fr Ha Mu Nu St

Aa 0 47 61 8 23 46 58 47 50

Ba 47 0 81 50 27 76 27 39 27

Be 61 81 0 60 56 29 57 47 70

Du 8 50 60 0 26 46 63 50 51

Fr 23 27 56 26 0 50 37 25 27

Ha 46 76 29 46 50 0 77 66 77

Mu 58 27 57 63 37 77 0 17 26

Nu 47 39 47 50 25 66 17 0 29

St 50 27 70 51 27 77 26 29 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

A minimal s-tree B2 with respect to W ′′ is shown in Fig. 15.5. (Looking
at the degrees, we find it advisable to include the edge BaSt instead of
either BaMu or BaFr.) This improves our bound to w(TSP) ≥ w′′(B2) =
248.
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Fig. 15.6 Minimal s-tree

with respect to W ∗: an
optimal tour

Again, there are two vertices which do not yet have the correct degree 2,
namely Ba andMu. This time we choose c= 1 and p= (0,−1,0,0,0,0,1,0,0).
We leave it to the reader to compute the corresponding weight matrix W ∗

and to check that this leads to the minimal s-tree B3 of weight w∗(B3) = 250
shown in Fig. 15.6.

As B3 is actually a tour, we have now (coincidentally) solved the TSP of
Example 15.1.2: the tour

Aa Du Ha Be Nu Mu St Ba Fr Aa

is optimal, and hence w(TSP) = 250.

Of course, it would be nice to be able to choose the vector p as advan-
tageously as possible. As a tour which is optimal with respect to w is also
optimal with respect to w′, where w′ is defined as in (15.3), we want to min-
imize the gap d(p) between the length w′(TSP) of an optimal tour and the
weight w′(B) of a minimal s-tree B. Equations (15.5) and (15.6) yield

d(p) =w(TSP)−min
{
w(B) + dp(B) :B is an s-tree

}
.

If we want to minimize d(p), we need to determine

(L) L(w) =max
{
min

{
w(B) + dp(B) :B is an s-tree

}
: p ∈R

n
}
.

In general, we will not end up with L(w) =w(TSP): it is quite possible that
no choice of p yields a minimal s-tree which is already a tour; an example for



15.4 Approximation Algorithms 495

this situation can be found in [HelKa70]. But the lower bound for w(TSP)
given by (L) is particularly strong: the values of L(w) are on average more
than 99 % of w(TSP) according to [VolJo82]. Interesting theoretical studies
of the Held-Karp technique are due to [Wol80] and [ShmWi90]; these authors
proved that, in the metric case, the weight of an optimal tour is bounded by
3/2 times the Held-Karp lower bound. See also [ChaGK06] and the references
given there for more recent work on the Held-Karp bound, also for the metric
ATSP.

Of course, solving (L) is a considerably more involved problem than the
original s-tree relaxation. There are various approaches to solving problems of
this type; the vectors p are called subgradients in the general context. These
subgradients can be used for solving (L) recursively; this yields a method
which is guaranteed to converge to L(w) (for an appropriate choice of the
step widths c). Unfortunately, one cannot predict how many steps will be
required, so that the process is often terminated in practice as soon as the
improvement between successive values becomes rather small. Fortunately,
Held and Karp showed that (L) can also be formulated in terms of linear
programming, and this yields, in practical applications, good bounds with
moderate effort.

The problem (L) is a special case of a much more general method which
is used quite often for integer linear programming problems: Lagrange relax-
ation; we refer to [Sha79] and [Fis81]. The approach via subgradient optimiza-
tion is only one of several ways to solve Lagrange relaxations; it is described
in detail (together with other methods) in [Sho85]; see also [HelWC74].

Appropriate relaxations are very important for finding the optimal solution
of a TSP, because they form an essential part of branch-and-bound techniques;
we will present an example for such a method in Sect. 15.8. We refer the reader
to [VolJo82] and to [LawLRS85, Chap. 10] for more detailed information.
Further methods for determining lower bounds can be found, for example, in
[CamFT89].

15.4 Approximation Algorithms

The preceding two sections treated the problem of finding lower bounds on
the length of an optimal tour, so it is now natural to ask for upper bounds.
It would be nice to have an algorithm (of small complexity, if possible) for
constructing a tour which always gives a provably good approximation to the
optimal solution. We need a definition to make this idea more precise, which
generalizes the approach we took when we studied the greedy algorithm as
an approximation method in Sect. 5.4.

Let P be an optimization problem, and let A be an algorithm which
calculates a feasible—though not necessarily optimal—solution for any given
instance I of P. We denote the weights of an optimal solution and of the
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solution constructed by A by w(I) and wA(I), respectively. If the inequality

∣
∣wA(I)−w(I)

∣
∣≤ εw(I) (15.9)

holds for each instance I , we call A an ε-approximative algorithm for P. For
example, a 1-approximative algorithm for the TSP would always yields a tour
which is at most twice as long as an optimal tour.

Given an NP-complete problem, there is little hope to find a polynomial
algorithm which solves P correctly. Thus it seems promising to look instead
for a polynomial ε-approximative algorithm, with ε as small as possible.
Unfortunately, this approach is often just as difficult as solving the original
problem. In particular, this holds for the TSP, as the following result of Sahni
and Gonzales [SahGo76] shows.

Theorem 15.4.1 If there exists an ε-approximative polynomial algorithm
for the TSP, then P=NP.

Proof Let A be an ε-approximative polynomial algorithm for the TSP. We
will use A to construct a polynomial algorithm for determining a Hamilto-
nian cycle; then the assertion follows from Theorem 2.7.4. The construction
resembles the one given in the proof of Theorem 2.7.5. Let G= (V,E) be a
connected graph, and consider the complete graph KV on V with weights

wij =

{
1 for ij ∈E,
2 + ε|V | otherwise.

If the given algorithm A should determine a tour of weight n= |V | for this
instance of the TSP, then G is obviously Hamiltonian.

Conversely, suppose that G contains a Hamiltonian cycle. Then the corre-
sponding tour has weight n and is trivially optimal. As A is ε-approximative
by hypothesis, it will compute a tour π of weight w(π)≤ (1 + ε)n. Suppose
that π contains an edge e /∈E. Then

w(π)≥ (n− 1) + (2 + εn) = (1 + ε)n+ 1,

a contradiction. Hence the tour π determined by A actually induces a Hamil-
tonian cycle in G, so that it has in fact weight n.

We have proved that G is Hamiltonian if and only if A constructs a tour
of weight n for our auxiliary TSP, so that A would indeed yield a polynomial
algorithm for HC. �

Clearly, a result analogous to Theorem 15.4.1 holds for the ATSP. Inter-
estingly, the situation is much more favorable for the metric TSP. We need
a definition and a lemma. Let Kn be the complete graph on V = {1, . . . , n}.
Then any connected Eulerian multigraph on V is called a spanning Eulerian
multigraph for Kn.
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Lemma 15.4.2 Let W be the weight matrix of a ΔTSP on Kn, and let
G= (V,E) be a spanning Eulerian multigraph for Kn. Then one can construct
with complexity O(|E|) a tour π satisfying w(π)≤w(E).

Proof By Example 2.5.3, it is possible to determine with complexity O(|E|)
an Euler tour C for G. Write the sequence of vertices corresponding to C
in the form (i1, P1, i2, P2, . . . , in, Pn, i1), where (i1, . . . , in) is a permutation
of {1, . . . , n} and where the P1, . . . , Pn are (possibly empty) sequences on
{1, . . . , n}. Then (i1, . . . , in, i1) is a tour π satisfying

w(π) =
n∑

j=1

wijij+1
≤w(E) (where in+1 = i1),

since the sum of the weights of all edges in a path from x to y is always an
upper bound for wxy

6 and since each edge occurs exactly once in the Euler
tour C. �

We now construct spanning Eulerian multigraphs of small weight and use
these to design approximative algorithms for the metric TSP. The easiest
method is simply to double the edges of a minimal spanning tree, which
results in the following well-known algorithm.

Algorithm 15.4.3 (Tree algorithm) Let W = (wij) be the weight matrix
for a ΔTSP on Kn.

(1) Determine a minimal spanning tree T for Kn (with respect to the weights
given by W ).

(2) Let G= (V,E) be the multigraph which results from replacing each edge
of T with two parallel edges.

(3) Determine an Euler tour C for G.
(4) Choose a tour contained in C (as described in the proof of Lemma 15.4.2).

Example 15.4.4 Let us again consider Example 15.1.2. We saw in Exam-
ple 15.2.3 that the MST relaxation yields the minimal spanning tree T of
weight w(T ) = 186 displayed in Fig. 15.2. A possible Euler tour for the dou-
bled tree is

(Aa,Du,Ha,Be,Ha,Du,Fr,St,Ba,St,Nu,Mu,Nu,St,Fr,Du,Aa),

which contains the tour

π : Aa Du Ha Be Fr St Ba Nu Mu Aa

6Note that this is the one point in the proof where we make use of the triangle inequality.



498 15 A Hard Problem: The TSP

Fig. 15.7 Tour

constructed by the tree
algorithm

of length 307; see Fig. 15.7. Note that Theorem 15.4.5 below only guarantees
that we will be able to find a tour of length ≤ 372; it is just good luck that
π is actually a considerably better solution.

Theorem 15.4.5 Algorithm 15.4.3 is a 1-approximative algorithm of com-
plexity O(n2) for ΔTSP.

Proof Using the algorithm of Prim, step (1) has complexity O(n2); see The-
orem 4.4.4. The procedure EULER developed in Chap. 2 can be used to
perform step (3) in O(|E|) =O(n) steps. Clearly, steps (2) and (4) also have
complexity O(n). This establishes the desired complexity bound.

By Lemma 15.4.2, the tree algorithm constructs a tour π with weight
w(π) ≤ 2w(T ). On the other hand, the MST relaxation of Sect. 15.2 shows
that all tours have weight at least w(T ). Hence w(π) is indeed at most twice
the weight of an optimal tour. �

It is quite possible that Algorithm 15.4.3 constructs a tour whose weight
is close to 2w(TSP); see [LawLRS85, Chap. 5]. In contrast, the difference
between the length of the tour of Example 15.4.4 and the optimal tour of
Example 15.3.2 is less than 23 %.

Next we present a 1
2 -approximative algorithm, which is due to Christofides

[Chr76]; his method is a little more involved.

Algorithm 15.4.6 (Christofides’ algorithm) Let W = (wij) be a weight ma-
trix for a ΔTSP on Kn.
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(1) Determine a minimal spanning tree T of Kn (with respect to W ).
(2) Let X be the set of all vertices which have odd degree in T .
(3) Let H be the complete graph on X (with respect to the weights given

by the relevant entries of W ).
(4) Determine a perfect matching M of minimal weight in H .
(5) Let G= (V,E) be the multigraph which results from adding the edges of

M to T .
(6) Determine an Euler tour C of G.
(7) Choose a tour contained in C (as described in the proof of Lemma 15.4.2).

Theorem 15.4.7 Algorithm 15.4.6 is a 1
2 -approximative algorithm of com-

plexity O(n3) for ΔTSP.

Proof In addition to the procedures also used in Algorithm 15.4.3, Algo-
rithm 15.4.6 requires the determination of a perfect matching of minimal
weight. This can certainly be done with complexity O(n3) (by Result 14.4.5),
so that the total complexity will be O(n3). It remains to consider the quality
of the resulting approximation.

As G is Eulerian by Theorem 1.3.1, the tour π determined in step (5)
satisfies the inequality

w(π)≤w(E) =w(T ) +w(M) (15.10)

(by Lemma 15.4.2). Thus we have to find a bound for w(M). Write |X|= 2m
and let (i1, i2, . . . , i2m) be the vertices of X in the order in which they occur
in some optimal tour σ.7 We consider the following two matchings of H :

M1 = {i1i2, i3i4, . . . , i2m−1i2m} and M2 = {i2i3, i4i5, . . . , i2mi1}.

The triangle inequality for W implies

w(σ) ≥ wi1i2 +wi2i3 + · · ·+wi2m−1i2m +wi2mi1

= w(M1) +w(M2)≥ 2w(M),

since M is a perfect matching of minimal weight. Hence

w(M)≤w(TSP)/2 and w(T )≤w(TSP)

(by the MST relaxation), and (15.10) yields w(π)≤ 3w(TSP)/2. �

The bound of Theorem 15.4.7 is likewise best possible: there are examples
where Christofides’ algorithm constructs a tour π for which the ratio between
w(π) and w(TSP) is arbitrarily close to 3/2; see [CorNe78].

7Of course we do not know such an optimal tour explicitly, but that does not matter for
our argument.
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Example 15.4.8 Consider once again Example 15.1.2, and let T be the mini-
mal spanning tree with weight w(T ) = 186 given in Example 15.2.3. The set
of vertices of odd degree is X = {Aa,Be,Du,St,Ba,Mu}. Thus we require a
perfect matching M of minimal weight with respect to the following matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Aa Ba Be Du Mu St

Aa − 57 64 8 64 46

Ba 57 − 88 54 37 27

Be 64 88 − 57 60 63

Du 8 54 57 − 63 41

Mu 64 37 60 63 − 22

St 46 27 63 41 22 −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

By inspection, we obtain M = {AaDu,BaSt,BeMu} with w(M) = 95.
Adding the edges of M to T yields an Eulerian multigraph of weight 281
with Euler tour

(Be,Mu,Nu,St,Ba,St,Fr,Du,Aa,Du,Ha,Be),

which contains the tour

Be Mu Nu St Ba Fr Du Aa Ha Be;

see Fig. 15.8. Note that this tour has weight 266, which is only 6 % more
than the optimal value of 250.

The algorithm of Christofides is the best approximative algorithm for the
ΔTSP known so far: the existence of an ε-approximative polynomial algo-
rithm for the ΔTSP for some ε < 1/2 still remains an open problem. A priori,
it would be conceivable that such an algorithm exists for each ε > 0; such a
family of algorithms is called a (polynomial time) approximation scheme.

It was known for a long time that P �= NP would imply the nonexistence of
a fully polynomial approximation scheme for the ΔTSP: there is no family of
ε-approximative algorithms such that their complexity is polynomial in n and
1/ε; see Theorem 6 in [LawLRS85, Chap. 5]. Later this result was extended
to arbitrary approximation schemes; see [AroLMS92]; this holds even if the
weights are restricted 1 and 2. More recently, Papadimitriou and Venkala
[PapVe06] proved that the metric TSP cannot admit an ε-approximative
polynomial algorithm withe ε < 1/219 unless P = NP; they also obtained
a similar result—with ε < 1/116—for the metric case of the ATSP. It is a
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Fig. 15.8 Tour

constructed by
Christofides’ algorithm

major open problem whether or not the metric ATSP admits a polynomial
ε-approximative algorithm for any ε > 0.8

Nevertheless, there are also some positive results. Papadimitriou and Yan-
nakakis [PapYa93] managed to find an 1

6 -approximative algorithm for the in-
teresting special case of the ΔTSP with weights restricted to 1 and 2, which
occurred in the proof of Theorem 2.7.5. Even more striking is the fact that
the Euclidean TSP—in particular, the special case of the symmetric TSP in
the plane, with the standard Euclidean distance—admits an approximation
scheme; see [Aro98] and [Mit99].

To close this section, we use the main idea behind Algorithm 15.4.3 to
prove the simple bound mentioned in Sect. 4.6 for the ratio of the weight of
a minimal Steiner tree to a minimal spanning tree; this result is due to E.F.
Moore (see [GilPo68]).

Theorem 15.4.9 Let v1, . . . , vn be n points in the Euclidean plane, and let
S and T be a minimal Steiner tree and a minimal spanning tree, respectively,
for these n points. Then w(T )≤ 2w(S), where the weight w(uv) of an edge
uv is the Euclidean distance between u and v.

8Some other important problems are even more difficult to handle than the ΔTSP. For ex-

ample, the existence of a polynomial ε-approximative algorithm for determining a maximal

clique (for any particular choice of ε > 0) already implies P =NP; see [AroSa02]. For even

stronger results in this direction, we refer to [Zuc96]. All these results use an interesting
concept from theoretical computer science: so-called transparent proofs; see, for example,

[BabFL91] and [BabFLS91].
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Proof Consider the ΔTSP on V = {v1, . . . , vn} with the Euclidean distance
as weight function. As in Algorithm 15.4.3, we double the edges of a minimal
Steiner tree S for v1, . . . , vn and determine an Euler tour C for the resulting
Eulerian multigraph (V,E). As S contains the vertices v1, . . . , vn (perhaps
together with some Steiner points), it is possible to choose a tour π contained
in C. As in Lemma 15.4.2, one shows

w(π)≤w(E) = 2w(S).

But then

w(T )≤w(TSP)≤w(π)≤ 2w(S)

is immediate. �

Note that the preceding proof of Theorem 15.4.9 is also valid for the Steiner
problem in an arbitrary metric space.

15.5 Upper Bounds: Heuristics

We saw in Theorem 15.4.1 that we cannot expect to find good approximative
algorithms for the general TSP. Still, we would like to be able to solve a
given TSP as well as possible. After having found lower bounds for w(TSP)
in Sects. 15.2 and 15.3, we now look more closely at the problem of deter-
mining upper bounds. Of course, any tour yields an upper bound. As a tour
chosen randomly cannot be expected to give a very good bound, one usually
resorts to heuristics for constructing suitable tours. Of course, these heuris-
tics might also produce rather weak bounds, but we may at least hope for a
meaningful result. It is also common practice to try to improve a candidate
tour (whether constructed by heuristic methods or at random) by some sort
of post-optimization procedure; we will consider this approach in the next
section.

Perhaps the most frequently used heuristics are the so-called insertion
algorithms. Such an algorithm first chooses an arbitrary city x1 as a starting
point for the tour to be constructed. Then a city x2 is chosen—using some
criterion still to be specified—and added to the partial tour constructed so
far, giving the partial tour (x1, x2, x1). This procedure is repeated until a
tour (x1, . . . , xn, x1) is obtained. Thus the current partial tour of length k is
always extended to a tour of length k+1 by adding one more city in the k-th
iteration; this involves two tasks:

(a) choosing the city to be added and
(b) deciding where the city chosen in (a) will be inserted into the current

partial tour.
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There are several standard strategies for choosing the city in (a): arbitrary
choice; selecting the city which has maximal (or, alternatively, minimal) dis-
tance to the cities previously chosen; or choosing the city which is cheapest
to add. We also have to settle on a criterion for step (b); here an obvious
strategy is to insert the city at that point of the partial tour where the least
additional cost occurs.

We shall describe an algorithm which usually works quite nicely in practice,
although there are no bounds known for its quality—not even in the metric
case. In step (a), we always choose the city which has maximal distance to
the current partial tour. This might appear strange at first glance, but there
is a good reason for this strategy: as all the cities have to appear in the tour
anyway, it seems best to plan the rough outline of the tour first, by taking
all those cities into account which are far apart from each other. Towards the
end of the insertion process, the remaining cities merely change the details
of the tour, which should not increase the cost that much any more.

Thus we choose in step (a) that city y which has maximal distance to
the partial tour π = (x1, . . . , xk, x1). Here the distance of y to π is defined as
d(y) =min{wy,x1 , . . . ,wy,xk

}. In step (b), the selected city y is then inserted
between two consecutive cities i and j in π for which the cost

c(i, j) =wi,y +wy,j −wi,j

caused by the insertion is minimal. We obtain the following algorithm, where
distances are stored in an array denoted by d.

Algorithm 15.5.1 (Farthest insertion) Let W = (wij) be the weight matrix
of a TSP on Kn, and let s be the vertex of Kn chosen as the starting point
of the tour C to be constructed.

Procedure FARIN(W,s;C)

(1) C ← (s, s); K ←{ss}; w← 0;
(2) for u= 1 to n do d(u)←wsu od
(3) for k = 1 to n− 1 do
(4) choose y with d(y) =max{d(u): u= 1, . . . , n};
(5) for e= ij ∈K do c(e)←wi,y +wy,j −wi,j od
(6) choose an edge f ∈K with c(f) =min{c(e): e ∈K}, say f = uv;
(7) insert y between u and v in C;
(8) K ← (K \ {f})∪ {uy, yv}; w←w+ c(f); d(y)← 0;
(9) for x ∈ {1, . . . , n} \C do d(x)← min {d(x),wyx} od
(10) od

The simple proof of the following theorem will be left to the reader.

Theorem 15.5.2 Algorithm 15.5.1 constructs with complexity O(n2) a tour
C with weight w(C) =w.
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Example 15.5.3 Consider again the TSP of Example 15.1.2; we choose the
vertex s = Fr as our starting point. We always state the distances in the
form of a 9-tuple d containing the distances to Aa, . . . , St (in this order).

In the first iteration, we obtain d= (26,34,56,23,0,50,40,22,20). The vertex
of maximal distance is Be with d(Be) = 56. Thus the partial tour for i= 1 is
T = (Fr,Be,Fr) of length 112.

The distances in the second iteration are (26,34,0,23,0,29,40,22,20); this
yields y =Mu, d(Mu) = 40 and C = (Fr,Be,Mu,Fr) with length w = 156.

For k = 3, the distances are (26,34,0,23,0,29,0,17,20); hence y = Ba and
C = (Fr,Be,Mu,Ba,Fr) with length w = 187.

In the fourth iteration, d = (26,0,0,23,0,29,0,17,20). Inserting y = Ha at
the point of least cost yields C = (Fr,Ha,Be,Mu,Ba,Fr) and w = 210.

For k = 5, we obtain d= (26,0,0,23,0,0,0,17,20). Now y =Aa, and we ob-
tain C = (Fr,Aa,Ha,Be,Mu,Ba,Fr) with length w = 235.

The sixth iteration with distances (0,0,0,8,0,0,0,17,20) yields y = St, C =
(Fr,Aa,Ha,Be,Mu,St,Ba,Fr) and w = 247.

For k = 7, we have y = Nu and C = (Fr,Aa,Ha,Be,Nu,Mu,St,BF,Fr)
with length w = 248.

In the final iteration, y =Du. We obtain the tour

Fr Aa Du Ha Be Nu Mu St Ba Fr

with length w = 250. Thus FARIN has found—by sheer coincidence—the op-
timal tour shown in Fig. 1.10 and also constructed in Example 15.3.2 via the
penalty approach (using the transformed weight function w∗); see Fig. 15.6.

Exercise 15.5.4 (Nearest insertion) Consider the procedure NEARIN which
results from replacing step (4) of Algorithm 15.5.1 by

(4′) choose j with d(j) =min{d(u) : u= 1, . . . , n;u /∈C}.

Use this procedure to calculate a tour for the TSP of Example 15.1.2.

Several insertion algorithms are examined in [RosSL77]. More about
heuristics, such as results concerning the quality in the metric case, empirical
results, and probabilistic analysis, can be found in the books [LawLRS85]
and [GusPa02].

15.6 Upper Bounds: Local Search

Having chosen a tour (at random or using a heuristic), the next step is to try
to improve this tour as far as possible: we want to apply post-optimization.
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This means we consider sets of solutions that are neighboring in some sense
and look for a local optimum. Let us formalize this idea.

Suppose F is the set of all feasible solutions for a given optimization prob-
lem; for example, for the TSP, F would be the set of all tours. A neighborhood
is a mapping N : F→ 2F: we say that N maps each f ∈ F to its neighbor-
hood N(f). Any algorithm which proceeds by determining local optima in
neighborhoods is called a local search algorithm.

Lin [Lin65] proposed the following neighborhoods for a TSP on Kn with
weight matrix W = (wij). Let f be a tour, and choose k ∈ {2, . . . , n}. The
neighborhood Nk(f) is the set of all those tours g which can be obtained from
f by first removing k arbitrary edges and then adding a suitable collection of
k edges (not necessarily distinct from the removed edges). One calls Nk(f)
the k-change neighborhood . Any tour f which has minimal weight among all
tours in Nk(f) is said to be k-optimal . We can now describe a large family
of local search algorithms for the TSP.

Algorithm 15.6.1 (k-opt) Let W = (wij) be the weight matrix of a TSP
on Kn, and let f be a given tour.

Procedure k-OPT(W,f ;f)

(1) choose an initial tour f ;
(2) while there exists g ∈Nk(f) with w(g)<w(f) do
(3) choose g ∈Nk(f) with w(g)<w(f); f ← g
(4) od

Of course, applying this generic algorithm requires several choices. First,
we have to decide how the initial tour should be chosen: at random or us-
ing one of the heuristics of Sect. 15.5. Also, in general there will be many
possibilities for selecting a tour g in step (3). Two standard strategies are
first improvement (we choose the first admissible g encountered) and steepest
descent (we select a tour g of minimal weight in Nk(f)).

It is quite usual to run the algorithm several times, using distinct initial
tours; in this case it makes sense to choose (some of) these tours randomly.

Perhaps the most important problem concerns which value of k one should
choose. For large k (that is, larger neighborhoods), the algorithm yields a bet-
ter approximation, but the complexity will grow correspondingly.9 In prac-
tice, the value k = 3 proposed by [Lin65] seems to work well. We restrict
ourselves to the simpler case k = 2 and examine it in more detail.

Let f be a tour described by its edge set f = {e1, . . . , en}:

x1

e1
x2

e2
· · ·

en−1

xn

en
x1

9Obviously, k-opt needs O(nk) steps for each iteration of the while-loop; nothing can be
said about the number of iterations required.
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Fig. 15.9 A 2-exchange

is the corresponding Hamiltonian cycle. Then the tours g ∈ N2(f) can be
found as follows: remove any two edges ei and ej from f , and connect the
resulting two paths by inserting two edges e′i and e′j . We are interested only
in the case f �= g. Then ei and ej should not have a vertex in common, and
this requirement determines e′i and e′j uniquely; see Fig. 15.9.

Note that every neighborhood N2(f) contains precisely n(n− 3)/2 tours
g �= f . For each such tour g, we put

δ(g) =w(f)−w(g) =w(ei) +w(ej)−w
(
e′i
)
−w

(
e′j
)
. (15.11)

Thus δ(g) measures the advantage which the tour g offers compared to f .
We set δ =max{δ(g) : g ∈N2(f)}; if δ > 0, we replace f by some tour g with
δ(g) = δ (so we use steepest descent). Otherwise, f is already 2-optimal, and
the algorithm 2-opt terminates. As noted before, each iteration has complex-
ity O(n2); the number of iterations cannot be predicted. With these specifi-
cations, Algorithm 15.6.1 becomes the following algorithm proposed already
in [Cro58].

Algorithm 15.6.2 (2-opt) Let W = (wij) be the weight matrix of a TSP on
Kn, and let f be a tour with edge set {e1, . . . , en}.

Procedure 2-OPT(W,f ;f)

(1) repeat
(2) δ← 0; g← f ;
(3) for h ∈N2(f) do
(4) if δ(h)> δ then g← h; δ← δ(h) fi
(5) od
(6) f ← g
(7) until δ = 0
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Fig. 15.10 Christofides

tour after one 2-opt step

Note that Algorithm 15.6.2 has to terminate with a 2-optimal tour g:
whenever step (4) is executed, the current tour is replaced by a better tour,
so that the length of the tour decreases; obviously, this can happen only a
finite number of times. It should be emphasized that the solution which the
algorithm generates by no means has to be optimal: it is quite likely for
the algorithm to get stuck in a bad neighborhood and produce only a local
optimum. Therefore, it is common practice for 2-OPT (and for other local
search algorithms) to run the algorithm repeatedly, starting with distinct
initial tours.

Example 15.6.3 As usual, we consider the TSP of Example 15.1.2. Let us
choose the tour of weight 266 constructed using Christofides’ algorithm in
Example 15.4.8 as our initial tour f ; see Fig. 15.8.

During the first iteration of 2-OPT, the edges BeMu and NuSt are re-
placed with BeNu and MuSt; this yields the tour

Be Nu Mu St Ba Fr Du Aa Ha Be

of length 253; see Fig. 15.10.
The second iteration of 2-OPT exchanges the edges FrDu and AaHa

for FrAa and DuHa. The resulting tour is the optimal tour of length 250
shown both in Fig. 1.10 and also (for the transformed weight function w∗)
in Fig. 15.6. We have now constructed this tour in three different ways. Of
course, it is a coincidence that we reach an optimal solution by running a
post-optimization procedure.
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Exercise 15.6.4 Apply 2-OPT to the tour of Example 15.4.4; see Fig. 15.7.

To speed up the running time, it might be a good idea to resort to the
strategy first improvement and simply select the first tour g which is better
than f in k-opt. In the special case of a metric TSP, it also makes sense not
to consider all possible edge replacements, but to restrict the algorithm to
edges being rather close to each other (according to the given metric).

A report about practical experiments with 2-OPT for large instances (up
to a million cities) of the Euclidean TSP , where the distances are given by the
Euclidean distance between n points in the plane, can be found in [Ben90].

Or [Or76] suggested a variation of 3-opt which examines only a small
portion of all possible edge replacements, which cuts down the running time
considerably, but nevertheless tends to yield good results. His basic idea is
to try first to insert three consecutive cities of f between two other cities; if
this improves the tour, the corresponding change is done immediately. If no
more improvements can be achieved in this manner, the algorithm continues
by considering pairs of consecutive cities, and so on.

An algorithm designed by Lin and Kernighan [LinKe73] has proved to be
very efficient in practice; however, it is also considerably more involved. It
uses variable values for k and decides during each iteration how many edges
are to be replaced. The algorithm contains a number of tests, with the aim of
checking—after r edges have been replaced already—whether it would make
sense to exchange a further edge. Unfortunately, there are examples for which
the Lin-Kernighan algorithm needs exponentially many steps; see [Pap92].

Nevertheless, the Lin-Kernighan heuristic and its variations—which have
been studied extensively—provide without any doubt the most important
approach to constructing good starting tours for large instances of the TSP.
These methods tend to find nearly optimal tours within a reasonable amount
of computation, even for extremely large problem instances. Two particularly
important enhancements of the original Lin-Kernighan algorithm are due to
Martin, Otto and Felten [MarOF91] and to Helsgaun [Hel00]. The interested
reader may find a detailed account of this topic in [AppBCC06, Chap. 15].

More recently, a wealth of further heuristics of a rather different nature
have been proposed; these are motivated by concepts from either physics
or biology. We mention three important methods: threshold accepting, tabu
search, and the great deluge algorithm. These methods sometimes yield re-
sults of surprising quality with relatively little effort; see, for example,
[DueSc90, Fie94], and [Due93]. The approach via genetic algorithms and evo-
lution programs is interesting as well; see [Mic92, Chap. 10] and the references
given there, in particular [MuhGK81]. Unfortunately, it seems to be impos-
sible to prove any theoretical results about the quality of such algorithms.

To sum up, the common approach to the TSP consists of several parts.
First an initial tour is constructed using some heuristic (as in Sect. 15.5);
usually, insertion algorithms are used for this task. Then a local search algo-
rithm is applied to improve the current tour. Simultaneously, lower bounds
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are calculated (using the algorithm of Held and Karp of Sect. 15.3 or an
LP-relaxation) to be able to judge the quality of the current solution.

Even for large instances of several thousand cities, it is nowadays usually
possible to reduce the gap between the solution found and the optimal value
to 1 % or less. Not surprisingly, it is possible to construct degenerate examples
for which the above techniques yield arbitrarily bad results [PapSt78], but
examples coming from practical applications can generally be solved quite
well. Finally, we mention two general monographs on local search techniques:
[AarLe97] and [MicAK07].

15.7 Exact Neighborhoods and Suboptimality

We saw in the previous section how neighborhoods are used for determining
locally optimal solutions to hard problems. Using this approach, we hope that
the locally optimal solution—or, perhaps, the best one among several local
optima—is pretty good also from a global point of view. Of course, the nicest
thing that could possibly happen is that every local optimum is actually a
global optimum. This suggests the following definition.

Let F be the set of admissible solutions of some optimization problem.
A neighborhood N : F→ 2F is called an exact neighborhood if every locally
optimal solution is already a global optimum.10 Before examining exact neigh-
borhoods for the TSP, we give an example for an (albeit polynomial) problem
where exact neighborhoods are indeed helpful: the determination of minimal
spanning trees.

Example 15.7.1 Let G = (V,E) be a connected graph with weight function
w : E → R. We define a neighborhood N as follows: for a given spanning
tree T of G, N(T ) consists of precisely those spanning trees T ′ which result
from T by adding some edge e /∈ T and then removing an arbitrary edge
from the cycle CT (e); compare Sect. 4.3. The results proved there imply that
this neighborhood is exact; to this end, it suffices to verify condition (4.1) in
Theorem 4.3.1 for the global optimality of a given (locally optimal) tree T .

Assume that condition (4.1) is not satisfied. Then it is possible to find
an edge e ∈ E \ T and an edge f ∈ CT (e) such that w(e) < w(f). Adding
e and removing f then yields a tree T ′ ∈ N(T ) with w(T ′) < w(T ), which
contradicts the local optimality of T . Note that this argument is just the first
part of the proof of Theorem 4.3.1. Thus Theorem 4.3.1 may be viewed as a
proof for the exactness of the neighborhood N ; note that the correctness of
the algorithms of Kruskal and Prim given in Sect. 4.4 basically rests on this
fact.

10Of course, our previous experiences suggest that this idea will not be very helpful for the
TSP; indeed, the present section will provide more bad news on the TSP in more than one
respect. To use a phrase taken from [LawLRS85, p. 76]: The outlook continues to be bleak.
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Example 15.7.1 suggests the following approach to solving optimization
problems:

(a) Find an exact neighborhood N .
(b) Find an efficient algorithm for examining the neighborhood N(f) of

a given feasible solution f : the algorithm should be able to recognize
whether f is locally—and, hence, also globally—optimal; if this is not
the case, it should replace f with a better solution f ′.

Of course, it is not at all clear how efficient a search algorithm based on
(a) and (b) would be: in general, it is not known how many neighborhoods
N(f) need to be examined until an optimum is found. Nevertheless, in view
of our experiences with the TSP, we would probably be quite happy with an
exact neighborhood and a polynomial algorithm for examining this neighbor-
hood.11 Unfortunately, we will soon see that even this is only possible if we
should have P = NP. This requires some effort. We begin by showing that
the following problem is NP-complete.

Problem 15.7.2 (Restricted Hamiltonian cycle, RHC) Let G be a graph,
and let P be a Hamiltonian path of G. Does G contain a Hamiltonian cycle?

Even though this problem may seem simpler than HC, it is just as difficult:
knowing the Hamiltonian path P does not help to decide if the graph G
is Hamiltonian, as the following result due to Papadimitriou and Steiglitz
[PapSt77] shows.

Theorem 15.7.3 RHC is NP-complete.

Proof As HC is NP-complete by Theorem 2.7.4, it is sufficient to transform
HC polynomially to RHC. To do this, we use the auxiliary graph D (D for
diamond) shown in Fig. 15.11. Let G = (V,E) be a connected graph. We
replace each vertex v of G by a diamond Dv; by adding suitable edges, we
will construct a graph G= (V ′,E′)′ with a Hamiltonian path; moreover, G′

will contain a Hamiltonian cycle if and only if G does. As the number of
vertices is multiplied only by 8, we will obtain a polynomial transformation
of HC to RHC in this way.

When we specify E′, we will impose the following restriction: all edges
connecting a diamond Dv with G′ \Dv have to be incident with one of the
four vertices labelled as N , S, W , and E in Fig. 15.11. As we shall show
in a moment, this will guarantee that an arbitrary Hamiltonian cycle of G′

can traverse a given diamond only in two ways: it has to contain one of the
two paths shown in Fig. 15.12. We will refer to these two possibilities as the
north-south method and the west-east method, respectively.

11It can be shown that not even the huge neighborhood Nn−3 of Sect. 15.6 is exact.
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Fig. 15.11 A diamond D

It is actually rather easy to check our claim: suppose that C is a Hamil-
tonian cycle of G′ which enters a diamond D via the vertex N . Then C has
to contain the vertex a next; otherwise, a could not be contained in C at all,
since dega = 2 and since N cannot be used a second time. Then the next
vertex of C has to be W . Note that C cannot leave D in W : otherwise, C
would have to enter D for a second time; but then it could not possibly con-
tain all three vertices d, b, and c. Therefore C has to pass through b, c, E,
d, and S in this order, leaving D from S. This indeed is just the north-south
method. Similarly, a Hamiltonian cycle entering D in W has to traverse D
according to the west-east method.

We now specify E′, where we assume V = {1, . . . , n}. First, we connect the
n copies Dv of D (which form the vertex set of G′) by adding the following
n−1 edges: S1N2, S2N3, . . . , Sn−1Nn. These edges create a Hamiltonian path

Fig. 15.12 Hamiltonian paths through D



512 15 A Hard Problem: The TSP

Fig. 15.13 A

Hamiltonian path in G′

in G′: the north-south method of D1 followed by S1N2, followed by the north-
south method of D2, and so on to the edge Sn−1Nn followed by the north-
south method of Dn; see Fig. 15.13.

In addition, we include the edges WiEj and WjEi in E′, whenever ij is
an edge of G. Then it is obvious that any Hamiltonian cycle C of G induces
a Hamiltonian cycle C ′ in G′: the diamonds in G′ are visited in the same
order as C visits the vertices of G, and each diamond is traversed using the
west-east method.

Conversely, suppose that G′ has a Hamiltonian cycle C ′. Then C ′ cannot
reach any of the diamonds Di via Ni or Si: otherwise, C

′ would have to
pass through all of the diamonds using the north-south method. This would
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yield the Hamiltonian path W of G′ shown in Fig. 15.13, which cannot be
extended to a cycle since G′ does not contain the edge N1Sn. Therefore C ′

has to pass through all the diamonds by the west-east method, so that C ′

clearly induces a Hamiltonian cycle in G. �

We now use Theorem 15.7.3 to show that the following problem is likewise
NP-complete, which is quite interesting in its own right: most likely we cannot
even recognize an optimal tour when we see one. This result is also due to
Papadimitriou and Steiglitz [PapSt77].

Problem 15.7.4 (TSP suboptimality) Suppose we are given a TSP and a
tour. Is this tour suboptimal? That is, does there exist a shorter tour?

Theorem 15.7.5 TSP suboptimality is NP-complete, even when restricted
to the metric case.

Proof Clearly, the problem is in P, as any tour of shorter length constitutes
a certificate for the answer yes. By Theorem 15.7.3, it will suffice to trans-
form RHC to the problem in question. Let G be a graph on the vertex set
V = {1, . . . , n}, and let P be a Hamiltonian path for G. Consider the ΔTSP
on Kn, where the weight matrix W = (wij) is defined as in the proof of
Theorem 2.7.5, and note that P extends to a tour π of length

w(π)≤ (n− 1) + 2 = n+ 1.

If π actually has length n, we have proved that G is Hamiltonian: tours of
length n correspond to Hamiltonian cycles of G. Now assume w(π) = n+ 1.
Then G contains a Hamiltonian cycle if and only if π is not optimal. By
hypothesis, there is a polynomial algorithm deciding TSP suboptimality, so
that the criterion just given can be checked efficiently. This shows that RHC
would likewise be decidable in polynomial time. �

Theorem 15.7.6 Assume the existence of an exact neighborhood N for the
TSP and of a polynomial algorithm for deciding whether a given tour T is
(locally and, hence, globally) optimal. Then P=NP.

Proof Note that such an algorithm would be able to decide TSP suboptimal-
ity in polynomial time. Thus the assertion follows from Theorem 15.7.5. �

Note that Theorem 15.7.6 asserts more than just the NP-completeness of
TSP. Assume P �= NP. Then TSP is not solvable in polynomial time (by The-
orem 2.7.5), so that no algorithm based on a polynomial local search process
for an exact neighborhood could yield a solution after a polynomial number of
iterations. Nevertheless, there still might be an exact neighborhood admitting
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a polynomial local search algorithm which needs, for instance, an exponential

number of iterations. Theorem 15.7.6 excludes even this possibility.

Thus no neighborhood for the TSP which admits a polynomial local search

algorithm can be exact (always assuming that P �= NP). In particular, this

applies to the neighborhoods Nk (for fixed k), since Nk allows a local search

algorithm of complexity O(nk). The following exercise strengthens this result

by showing that a polynomial local search algorithm for a given neighborhood

cannot lead to an ε-approximative algorithm for the TSP—even if we allow

more than a polynomial number of iterations. Again, this result is due to

Papadimitriou and Steiglitz [PapSt77].

Exercise 15.7.7 Let N be a neighborhood for the TSP admitting a polyno-

mial algorithm A which checks whether a given tour is locally optimal and,

if this is not the case, finds a better tour. Moreover, let A′ be the local search

algorithm based on A (as in Sect. 15.6). Suppose that A′ is ε-approximative

for some ε. Show that this implies P = NP (without any assumptions about

the number of iterations).

Hint: Proceed by analogy to the proof of Theorem 15.4.1 and show that

otherwise HC would be solvable in polynomial time. Why does A′ need only

a polynomial number of iterations for the instances of the TSP used in this

argument?

Exercise 15.7.8 Prove that it is NP-complete to decide whether a given

edge ij occurs in an optimal tour (for a given instance of the TSP).

Hint: Show that a polynomial algorithm for this decision problem would

allow us to construct an optimal tour in polynomial time.

Exercise 15.7.9 In view of Exercises 15.7.7 and 15.7.8, it is tempting to try

proving Theorem 15.7.5 by reducing the NP-completeness of TSP subopti-

mality to that of HC (and thus to avoid the detour via RHC). Discuss why

this idea does not work.

Further disappointing news concerns the re-optimization problem for the

TSP. Consider the situation where an optimal solution a TSP instance is

known. Then the original problem is altered by increasing the weight of just

one edge. Even though this might seem like a minor modification, it is NP-

hard to compute a solution to the new instance with an approximation ratio

which is polynomial in the input size (let alone an optimal solution); see

[BoeFW07]. In [BoeHS11] it is shown that this NP-hardness result remains

true even if the set of all optimal solutions to the original problem is given.

In both cases, the proofs use the diamond graphs which we have encountered

in the proof of Theorem 15.7.3.
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On the positive side, it is shown in [BoeFW07] that there exists a

polynomial-time approximation algorithm for the above re-optimization sit-

uation with an approximation ratio of 7/5 provided that we are in the metric

case. This is remarkable, as here the re-optimization situation is better be-

haved than the original problem, where no approximation algorithm with an

approximation ratio better than that of the Christofides algorithm—that is,

smaller than 3/2—is known.

Even though the considerations in this section show that we cannot expect

any guarantee for the quality of the local search algorithms—such as 3-OPT

and, in particular, Lin-Kernighan—which were discussed in Sect. 15.6, these

algorithms nevertheless tend to work rather nicely in practice.

Finally, we mention two interesting papers on neighborhoods in general,

but with important results for the TSP: [DeiWo00] and [OrlSh04].

15.8 Optimal Solutions: Branch and Bound

Even if we are dealing with an NP-hard optimization problem, we would

sometimes like to be able to find an optimal solution anyway. In this section,

we shall give a first idea of how one might proceed for the special case of

the TSP. An interesting survey on exact algorithms for NP-hard problems is

given in [Woe03], and open problems in this area are discussed in [Woe08].

All known techniques for finding an optimal solution to the TSP basically

boil down to analyzing all possible solutions; this is not so surprising, as

the TSP is an NP-hard problem. Nevertheless, it can make a huge difference

in practice how one organizes this complete case analysis. Quite often, it is

possible to find an optimal solution without too much effort by using some

tricks (and hoping for a bit of good luck). We will illustrate this phenomenon

via our standard example specified in Example 15.1.2.

The method we will use is called branch and bound ; roughly, it works

as follows. In each step, the set of all possible solutions is split into two or

more subsets, which are represented by branches in a decision tree. For the

TSP, an obvious criterion for dividing all tours into subsets is whether they

contain a given edge or not. Of course, by itself this is just a useful way of

organizing a complete case distinction. The approach becomes really useful

only when we add an extra idea: in each step, we will calculate lower bounds

for the weight of all solutions in the respective subtrees (using a suitable

relaxation) and compare them with some previously computed upper bound

(for instance, the length of a good tour found by a heuristic followed by post-

optimization). Then no branch of the tree for which the lower bound exceeds

the known upper bound can possibly lead to an optimal tour, so that this
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entire branch of the tree can be discarded; quite often, a large number of

tours will be excluded in this way. Of course, the quality of this method will

depend both on the relaxation and on the branching criteria used; also, it can

only be judged heuristically: we may not expect any theoretical performance

guarantees.

We will present one of the oldest branch and bound techniques, which

is due to Little, Murty, Sweeney and Karel [LitMSK63] (where the name

branch and bound was introduced). Their algorithm was designed for the

ATSP; of course, it may also be applied to the special case of the TSP.

This algorithm is not particularly efficient, but it is easy to understand and

easy to illustrate. As our purpose is merely to show how branch and bound

algorithms work in principle, it will serve quite nicely. We refer the reader to

[LawLRS85, Chap. 10] and [GusPa02, Chap. 4] for more recent branch and

bound algorithms which use more advanced relaxations and more involved

branching criteria.

Let W = (wij) be the weight matrix of a given TSP on Kn. We choose

the diagonal entries wii as ∞ (as we did for the assignment relaxation); this

can be interpreted as forbidding the use of loops. In order to calculate lower

bounds, we shall transform the weight matrix in a manner similar to the

transformation used in Sect. 15.3.

Let us select some row or column of W , and let us subtract a positive

number d from all its entries, subject to the restriction that the resulting

matrix W ′ should still have nonnegative entries only; thus we will use the

smallest entry in our row or column. Recall that each tour π corresponds to

a diagonal of the matrix W ; hence it has to contain some entry of the row or

column used for our transformation, so that the weight of π with respect to

W ′ is reduced by d compared to its weight with respect to W . In particular,

the optimal tours for W coincide with those for W ′.

We continue this process until we obtain a matrix W ′′ having at least one

entry 0 in each row and each column; such a matrix is called reduced . Note

that the optimal tours for W agree with those for W ′′, and that the weight

of each tour with respect to W ′′ is reduced by s compared to its weight with

respect to W , where s is the sum of all the numbers subtracted during the

reduction process. It follows that s is a lower bound for the weight of all tours

(with respect to W ). Note that the weight matrices resulting from the above

construction will no longer be symmetric (in contrast to the transformations

used in Sect. 15.3).

Let us illustrate the reduction process for the TSP of Example 15.1.2. We

replace the diagonal entries 0 by ∞ and subtract, for each row of the matrix,

the minimum of its entries; this yields the matrix W̃ displayed on the next

page. Next we treat the columns of this matrix in the same manner and

obtain the reduced matrix W ′.
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W̃ :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Aa Ba Be Du Fr Ha Mu Nu St

Aa 0 49 56 0 18 41 56 39 38

Ba 30 ∞ 61 27 7 56 10 16 0

Be 35 59 ∞ 28 27 0 31 15 34

Du 0 46 49 ∞ 15 35 55 36 33

Fr 6 14 36 3 ∞ 30 20 2 0

Ha 20 54 0 14 21 ∞ 51 34 41

Mu 47 20 43 46 23 63 ∞ 0 5

Nu 30 26 27 27 5 46 0 ∞ 2

St 27 8 44 22 1 51 3 0 ∞

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

W ′ :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Aa Ba Be Du Fr Ha Mu Nu St

Aa ∞ 41 56 0 17 41 56 39 38

Ba 30 ∞ 61 27 6 56 10 16 0

Be 35 51 ∞ 28 26 0 31 15 34

Du 0 38 49 ∞ 14 35 55 36 33

Fr 6 6 36 3 ∞ 30 20 2 0

Ha 20 46 0 14 20 ∞ 51 34 41

Mu 47 12 43 46 22 63 ∞ 0 5

Nu 30 18 27 27 4 46 0 ∞ 2

St 27 0 44 22 0 51 3 0 ∞

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The sum of all the numbers subtracted is

s= 8+ 27+ 29+ 8+ 20+ 29+ 17+ 17+ 19+ 8+ 1 = 183,

so that each tour has weight at least 183 with respect to W . Of course, we
found better bounds earlier: for example, 230 using the s-tree relaxation in
Example 15.2.4, but this does not help us in the present context.

Next, we have to choose an edge ij to split the set of solutions; note that
we have to use directed edges ij here. Tours not containing ij can then be
described by the weight matrix M which results from W ′ by replacing the
(i, j)-entry by ∞. As we would like to increase the current lower bound s,
we should choose some edge that corresponds to a zero entry in W ′ and,
moreover, is the only 0-entry in its row and column (so that the matrix M
will allow a further reduction). Clearly, it makes sense to choose the entry 0
for which M can be reduced by the largest possible amount. In our example,
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this is the edge BeHa, which leads to a reduction of 30 + 15 = 45 for M .

Thus the first part of the decision tree looks as follows.

all solutions

Solutions with BeHa
weight ≥ 183

Solutions without BeHa
weight ≥ 228

Recall that we already know an optimal tour (of weight 250), which we

can obtain from the FARIN heuristic; see Example 15.5.3 and Fig. 14.6. Our

present considerations should, of course, confirm that tour is indeed optimal.

Still, that tour does not help us to exclude one of the branches of the decision

tree yet. Of course, such limited progress is to be expected, because the

known solution of weight 250 contains the edge HaBe (for an appropriate

orientation) and thus occurs on the right branch of the decision tree. As our

original TSP was symmetric, it actually suffices to consider this branch: for

each tour containing the edge BeHa, there is a corresponding tour of the

same weight not containing this edge, namely the tour having the opposite

orientation. Thus we may replace W ′ by the following weight matrix M .

M :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Aa Ba Be Du Fr Ha Mu Nu St

Aa ∞ 41 56 0 17 11 56 39 38

Ba 30 ∞ 61 27 6 26 10 16 0

Be 20 36 ∞ 13 11 ∞ 16 0 19

Du 0 38 49 ∞ 14 5 55 36 33

Fr 6 6 36 3 ∞ 0 20 2 0

Ha 20 46 0 14 20 ∞ 51 34 41

Mu 47 12 43 46 22 33 ∞ 0 5

Nu 30 18 27 27 4 16 0 ∞ 2

St 27 0 44 22 0 21 3 0 ∞

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Again, we use that entry 0 in M which allows the largest possible further

reduction when we replaced it with ∞ in order to split up the set of possible

solutions: (Ha,Be), where the possible reduction is 14 + 27 = 41. Then the

part of the decision tree which belongs to tours which contain neither HaBe

nor BeHa has a lower bound of 269; hence this branch can be discarded in

view of the known tour of weight 250. In other words: every optimal tour for
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the TSP of Example 15.1.2 has to contain the edge HaBe.12 As none of the
tours which we still need to consider may contain a further edge beginning
in Ha or ending in Be, we may omit both the row Ha and the column Be
from M . Next we use the (Aa,Du)-entry of the resulting 8× 8-matrix. For
tours not containing the edge AaDu, we may replace this entry by ∞ and
reduce the resulting matrix by 11 + 3 = 14. This yields the following matrix
A, with the associated lower bound 242.

A :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Aa Ba Du Fr Ha Mu Nu St

Aa ∞ 30 ∞ 6 0 45 28 27

Ba 30 ∞ 24 6 26 10 16 0

Be 20 36 10 11 ∞ 16 0 19

Du 0 38 ∞ 14 5 55 36 33

Fr 6 6 0 ∞ 0 20 2 0

Mu 47 12 43 22 33 ∞ 0 5

Nu 30 18 24 4 16 0 ∞ 2

St 27 0 19 0 21 3 0 ∞

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We shall investigate A later. First, we examine those tours which contain
the edge AaDu. For such tours, both the row Aa and the column Du may
be omitted from M . Moreover, the edge DuAa cannot also occur, so that
the corresponding entry may be replaced by ∞. Then the resulting matrix
can be reduced even further: we may subtract 6 from the column Aa and 5
from the row Du. This yields the following matrix M ′ with associated lower
bound 239.

M ′ :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Aa Ba Fr Ha Mu Nu St

Ba 24 ∞ 6 26 10 16 0

Be 14 36 11 ∞ 16 0 19

Du ∞ 33 9 0 50 31 28

Fr 0 6 ∞ 0 20 2 0

Mu 41 12 22 33 ∞ 0 5

Nu 24 18 4 16 0 ∞ 2

St 21 0 0 21 3 0 ∞

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

12This fact is not all that surprising, as HaBe is the shortest edge incident with Be, while

all the other edges are considerably longer.
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Let us consider tours not containing the edge FrAa next. Then the entry
corresponding to FrAa may be replaced by ∞, so that the matrix can be
reduced by 14. That yields a new lower bound of 253, so that this branch
of the decision tree can again be discarded (in view of the known tour of
weight 250). Thus we may restrict our attention to tours containing the edge
FrAa. We can now omit both the row Fr and the column Aa from M ′. As
our tour contains the edges FrAa and AaDu, the edge DuFr is no longer
permissible, so that we replace the corresponding entry by ∞; note that this
does not lead to any further possibilities for reducing the matrix, so that the
lower bound 239 stays unchanged. The resulting matrix M ′′ looks as follows.

M ′′ :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ba Fr Ha Mu Nu St

Ba ∞ 6 26 10 16 0

Be 36 11 ∞ 16 0 19

Du 33 ∞ 0 50 31 28

Mu 12 22 33 ∞ 0 5

Nu 18 4 16 0 ∞ 2

St 0 0 21 3 0 ∞

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Next we consider tours which do not involve the edge DuHa; this yields a
lower bound of 283, so that we may restrict our attention to tours containing
DuHa. Thus we discard both the row Du and the column Ha. Moreover,
the tours still left all contain the path (Fr,Aa,Du,Ha,Be), which precludes
using the edge BeFr; hence the corresponding entry is replaced by ∞. In the
next step, we find that the tour has to contain the edge BeNu: without this
edge, we get a lower bound of 239 + 16 = 255, which once again exceeds the
known upper bound. Then we must also discard the edge NuFr; replacing
the corresponding entry by ∞ allows us to subtract 5 from row Mu. Now our
lower bound has increased to 244, and we are left with the following matrix.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ba Fr Mu St

Ba ∞ 6 10 0

Mu 7 17 ∞ 0

Nu 18 ∞ 0 2

St 0 0 3 ∞

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

We may now insert the edge MuSt into our tour: for tours not containing
this edge, we obtain a lower bound of 251. Next we omit both the row Mu
and the column St and replace the (St,Mu)-entry by ∞. Subtracting 6 from
row Ba, we get a lower bound of 250, and this means we may stop: the
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known tour of this length is at least as good as any tour in the branch under
investigation.

Continuing the procedure in the same way would yield the additional edges
StBa, BaFr, and NuMu, so that we would obtain the (optimal) tour

Fr Aa Du Ha Be Nu Mu St Ba Fr

of length 250 which we already know. Thus we could have obtained this tour
without using heuristic methods by performing a sort of DFS on the decision
tree: always choose the branch with the smallest lower bound for continuing
the investigation. Of course, it is then possible that we discover only at a later
point of the decision tree that we could have discarded some of the earlier
branches.

It remains to investigate the branch of the decision tree which belongs to
the matrix A on page 519. Suppose that a tour in this branch does not contain
the edge DuAa. Then the matrix can be reduced by 5 + 6, which yields a
lower bound of 253, so that the corresponding branch can be discarded. Hence
we insert the edge DuAa into our tour, and discard both the row Du and
the column Aa from A. Next, we see that an optimal tour on this branch of
the tree has to contain BeNu: otherwise, we obtain a lower bound of 252.
Hence we may omit also the row Be and the column Nu; moreover, we have
to replace the (Ha,Nu)-entry by ∞, since HaBe and BeNu are contained in
the tour. Then we can subtract 5 from row Mu, which yields a lower bound
of 247 and the matrix A′ below.

A′ :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ba Du Fr Ha Mu St

Aa 30 ∞ 6 0 45 27

Ba ∞ 24 6 26 10 0

Fr 6 0 ∞ 0 20 0

Mu 7 38 17 28 ∞ 0

Nu 18 24 4 ∞ 0 2

St 0 19 0 21 3 ∞

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Next we insert the edge FrDu, as leaving out this edge would increase
the lower bound by 19 to 266; omit the corresponding row and column; and
replace the (Aa,Fr)-entry by ∞. This forces us to include the edge (Aa,Ha):
otherwise we would increase the lower bound to 295. Now we can replace the
(Nu,Fr)-entry by ∞. Then the edge (Mu,St) has to be contained in the
tour, and the (St,Mu)-entry is changed to ∞. After having omitted the
appropriate rows and columns, we are left with a (3× 3)-matrix which can
be reduced by 6 in row Ba. This yields a new lower bound of 253, so that we
can actually ignore all tours on the branch of the decision tree belonging to
A, and the algorithm terminates. By complete analysis of all possibilities, we
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Fig. 15.14 Decision tree for the TSP of Example 15.1.2

have now proved that our tour of length 250 is optimal. Figure 15.14 shows
the entire decision tree.

As noted before, the partial tour in the left-most branch can be completed
in a unique manner, which yields the known optimal tour of weight 250. Also
note that the branch with lower bound 253 indeed contains a tour of this
weight, which may be obtained by exchanging the order of Aa and Du in
the optimal tour. Similarly, the branch with lower bound 251 contains a tour
of this length, which results from exchanging the order of Ba and St in the
optimal tour.

We refrain from stating the preceding branch and bound algorithm for-
mally; the worked example should suffice to illustrate how the algorithm
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works. An explicit formulation as well as a PASCAL program and an ATSP-
example of size 6 can be found in [SysDK83].

We close this section with some remarks concerning the preceding algo-
rithm. The numbers which were subtracted from the rows and columns of the
original weight matrix W define two vectors: u= (8,27,29,8,20,29,17,17,19)
and v= (0,8,0,0,1,0,0,0,0). The reduction process does not only change the
weight of every tour by a constant (in this case, 183): it actually changes
the weight of each diagonal of the matrix, that is, of each matching for the
corresponding assignment problem. Hence the bound of

∑
i(ui + vi) = 183

is actually a bound for the corresponding assignment relaxation; compare
Sect. 15.2.

This is not really surprising: using the terminology of Sect. 14.2, (u,v) is
a feasible node weighting for the corresponding assignment problem, albeit
in its minimization version, which can be treated in analogy to Chap. 14;
indeed, always ui + vj ≤ wij . Thus the algorithm of [LitMSK63] is based on
relaxing the assignment relaxation of the TSP even further, which leads to
rather weak lower bounds.

One final comment: replacing certain entries by ∞—that is, forbidding the
corresponding edges—during the algorithm corresponds to excluding non-
cyclic permutations. If one would omit this feature from the algorithm, it
would determine a complete matching of minimal weight instead of an optimal
tour.

15.9 Concluding Remarks

As we mentioned in Sect. 15.2, TSP’s are often solved by linear program-
ming methods, using the polytope P associated with the tours. Recall that
two vertices of a polytope are called adjacent if they are incident with a com-
mon edge. It can be shown that the unique minimal exact neighborhood for
a wide class of optimization problems is always given by adjacency in the
corresponding polytope; see [PapSt82], §19.7.

In particular, for the TSP, the minimal exact neighborhood N(f) of a tour
f contains precisely those tours which are adjacent to f in P . Unfortunately,
this does not help us either: the question whether two vertices of P are
adjacent is again an NP-complete problem; see [Pap78]. In this context, we
mention a truly amazing result about the polytope P ′ corresponding to the
ATSP: the diameter of P ′ (in the graph theoretical sense, where we consider
the vertices and edges of P ′ as a graph called the skeleton of P ′) is 2; see
[PadRa74]. Thus the distance in P ′ between an arbitrary tour and a given
optimal tour is just 2! We refer the reader to [LawLRS85, Chap. 8] and to
[GusPa02] for details—and references—concerning the polytopes associated
with the TSP.

We now turn to some algorithmic consequences of the polyhedral approach.
As mentioned before, even large instances of the TSP—consisting of several
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thousands (or even more) cities—can nowadays be approximated very well:
it is routinely possible to find a solution which is not more than 1 % worse
than the optimal solution.

But what about determining optimal solutions? The first larger instance
of a TSP for which an optimal solution was found appears in the seminal
paper by Dantzig, Fulkerson and Johnson [DanFJ54]; this instance involved
49 cities: Washington, D.C. and the 48 capitals of the then 48 states of the
USA. These authors first determined a good solution heuristically, which
was actually already optimal, and then used the LP relaxation together with
adding appropriate inequalities; compare Sect. 15.2. Their paper is considered
a milestone in the history of combinatorial optimization; it is the forerunner
of virtually all algorithms used at present for solving TSPs to optimality. The
main part of these algorithms is the LP relaxation, which can be summarized
as follows.

(1) Choose some LP relaxation for the TSP, and determine an optimal solu-
tion x for this relaxation.

(2) If x is not a tour, try to find one or more valid inequalities for the polytope
P which are violated by x. Add these inequalities to the LP, and replace
x by a solution of the new LP. If possible, repeat this step until there are
no longer any violated inequalities.13

Using just this method, Grötschel [Gro80] could solve a problem involving 120
German cities (where the distances were taken from the Deutscher Generalat-
las) in merely 13 iterations—without using a branch and bound technique.
The results of [PadHo80] and [CroPa80] indicate that LP relaxation usually
yields very good lower bounds, if not actually an optimal solution. Thus,
even if the LP relaxation does not produce an optimum, it should at least es-
tablish that some heuristically constructed tour is a really good approximate
solution. Then it is also quite often possible to construct an optimal solution,
using branch and bound; solving problems involving a few hundred cities is
nowadays more or less routine. In [CroPa80], a problem with 318 cities was
solved via this approach; this was the world record for several years. Since
then, this record has been surpassed quite a few times; see Table 15.1 which
contains some truly amazing results.

We now give a brief discussion of the first problem listed in Table 15.1
(with 532 cities), in order to emphasize the importance of efficient heuristics
for solving large TSPs to optimality via the LP relaxation method. As the
graph K532 contains precisely 141,246 edges, the LP treated by [PadRi87]
has just this number of (structural) variables (and some additional slackness
variables). Now Padberg and Rinaldi applied the Lin-Kernighan heuristic
mentioned earlier to 50 initial tours chosen at random; the resulting locally
optimal tours contained altogether only 1278 edges. The corresponding 1278

13Of course, it will usually be necessary to abort this process at some point: there is no
guarantee at all that it has to terminate.
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Table 15.1 Some large

TSPs solved to optimality Year Cities Reference

1987 532 [PadRi87]

1991 666 [GroHo91]

1991 1,002 [PadRi91]

1991 2,392 [PadRi91]

1995 7,397 [AppBCC95]

1998 13,509 [AppBCC98]

2001 15,112 [AppBCC01]

2004 18,512 [AppBCC06]

2004 24,978 [AppBCC06]

2004 33,810 [AppBCC06]

2006 85,900 [AppBCC06]

variables were used for the first LP relaxation: all other variables were fixed
at 0. Throughout the entire computation for solving this (already rather
large) problem, no LP occurred which involved more than 1520 structural
variables or more than 815 restrictions.

If one settles for extremely good approximations, one may reach con-
siderably larger orders of magnitude. We mention a particularly impres-
sive example: the World TSP tour of length 7,516,024,785 found by Keld
Helsgaun in February 2007, using an improved version of his Lin-Kernighan
code originally presented in [Hel00]. The best present lower bound stands at
7,512,082,035; this bound was obtained—also in February 2007—by Apple-
gate, Bixby, Chvátal, and Cook using their Concorde TSP code [AppBCC04].
Thus Helsgaun’s tour is at most 0.0525 % longer than an optimal tour through
the given 1,904,711 cities.

The facts just reported come from the excellent website by Applegate,
Bixby, Chvátal, and Cook concerning the TSP:

http://www.tsp.gatech.edu

and update the information given in their recent book [AppBCC06], which
is highly recommended—it is the definitive study of computational aspects
of the TSP, and is likely to remain so for quite some time.

For a more detailed description of the LP relaxation method, which was
merely sketched here, we refer the reader also to the following older sources:
[LawLRS85, Chap. 9], [PadRi91], and [GusPa02]. This technique is a special
case of a general method which proved to be efficient for several other hard
optimization problems as well. It belongs to the field of polyhedral combina-
torics, an important part of combinatorial optimization. We refer the reader
to the interesting surveys of [Pul83] and [Gro84], and to the monumental
work [Schr03]. We also mention the book [GroLS93] and [Rei94], an earlier
monograph on computational aspects of the TSP and its applications.
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We wish to recommend also a recent non-technical monograph on the
TSP, which is aimed at a general readership: William Cook’s In Pursuit of
the Traveling Salesman: Mathematics at the Limits of Computation [Coo12].
This book is written by one of the world’s leading experts in the area, who
here takes the reader on a fascinating tour indeed, covering the history of the
problem from the 1880s and going up to state-of-the-art attacks on solving
it. He also discusses many important applications, from genome sequencing
and designing computer processors to arranging music and hunting for plan-
ets. There is even a free companion app Concorde TSP which allows you
to get a feeling for the TSP by playing with examples on your iPhone or
iPad; instances of 1,000 or more cities can often be solved exactly, with all
computations carried out locally on the device.

Finally, let us mention that several other NP-hard problems have been
attacked with a remarkable degree of success. For instance, maximal cliques
in graphs with up to 400 vertices and 30,000 edges have been found; see
[BalYu86]. Similar results for the corresponding weighted problem are in
[BalXu91].



Appendix A
Some NP-Complete Problems

To ask the hard question is simple.

But what does it mean?
What are we going to do?

W.H. Auden

In this appendix we present a brief list of NP-complete problems; we restrict
ourselves to problems which either were mentioned before or are closely re-
lated to subjects treated in the book. A much more extensive list can be
found in Garey and Johnson [GarJo79].

Chinese postman (cf. Sect. 14.5)

Let G= (V,A,E) be a mixed graph, where A is the set of directed edges and
E the set of undirected edges of G. Moreover, let w be a nonnegative length
function on A ∪E, and c be a positive number. Does there exist a cycle of
length at most c in G which contains each edge at least once and which uses
the edges in A according to their given orientation?

This problem was shown to be NP-complete by Papadimitriou [Pap76],
even when G is a planar graph with maximal degree 3 and w(e) = 1 for all
edges e. However, it is polynomial for graphs and digraphs; that is, if either
A= ∅ or E = ∅. See Theorem 14.5.4 and Exercise 14.5.6.

Chromatic index (cf. Sect. 9.3)

Let G be a graph. Is it possible to color the edges of G with k colors, that is,
does χ′(G)≤ k hold?

Holyer [Hol81] proved that this problem is NP-complete for each k ≥ 3;
this holds even for the special case where k = 3 and G is 3-regular.

Chromatic number (cf. Sect. 9.1)

Let G be a graph. Is it possible to color the vertices of G with k colors, that
is, does χ(G)≤ k hold?

Karp [Kar72] proved that this problem is NP-complete for each k ≥ 3.
Even the special case where k = 3 and G is a planar graph with maximal
degree 4 remains NP-complete; see [GarJS76]. Assuming P �= NP, there is
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not even a polynomial approximative algorithm which always needs fewer
than 2χ(G) colors; see [GarJo76]. For perfect graphs, the chromatic number
can be computed in polynomial time; see [GroLS93].

As noted in Lemma 9.2.1, the clique number ω(G) is a (trivial) lower bound
for χ(G). However, it is (for general graphs) NP-complete to decide if one
has equality, even if some colouring of G with χ(G) colours is given; this is
equivalent to the result of [BusPa06] on the clique partition and independence
numbers, using Lemma 9.2.1.

Clique (cf. Exercise 2.8.4)

Let G= (V,E) be a graph and c≤ |V | a positive integer. Does G contain a
clique consisting of c vertices?

This problem is NP-complete by a result of Karp [Kar72]; thus deter-
mining the clique number ω(G) is an NP-hard problem. Also, the related
question of whether G contains a clique with at least r|V | vertices, where
0< r < 1, is NP-complete for fixed r. Assuming P �= NP, there is not even
a polynomial ε-approximative algorithm for determining a maximal clique;
see [AroSa02]. However, the problem can be solved in polynomial time for
perfect (in particular, for bipartite) graphs; see [GroLS93].

Clique Partition (cf. Sect. 9.2)

Let G = (V,E) be a graph and c ≤ |V | a positive integer. Does V admit a
partition into at most c cliques?

This problem is NP-complete by a result of Karp [Kar72]. Thus deter-
mining the clique partition number θ(G) is an NP-hard problem, but the
problem can be solved in polynomial time for perfect (in particular, for bi-
partite) graphs; see [GroLS93]. As noted in Lemma 9.2.1, the independence
number α(G) is a (trivial) lower bound for θ(G). However, it is (for general
graphs) NP-complete to decide if one has equality, even if some minimum
clique partition is given; see [BusPa06].

Diameter (cf. Sect. 3.9)

Let G= (V,E) be a connected graph, and let c ≤ |V | be a positive integer.
Recall that the diameter of G can be determined efficiently; see Sect. 3.9.
However, the following two related problems are NP-complete; see [ChvTh78]
and [GarJo79].

(1) Does there exist a strongly connected orientationH of G with diameter at
most c? Note that Robbins’ theorem allows us to check efficiently whether
a strongly connected orientation exists (and to find such an orientation,
if possible); see Sect. 1.6.

(2) Let C be a given set of at most |E| nonnegative integers. Does there
exist a mapping w : E → C such that G has weighted diameter at most
c, that is, such that any two vertices u, v have distance d(u, v)≤ c in the
network (G,w)? This problem remains NP-complete even for C = {0,1}.
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Discrete metric realization (cf. Sect. 3.2)

LetD = (dxy) be an n×nmatrix with integer entries representing distances in
a finite metric space. Is there a network (G,w) of total length ≤ k realizingD?

Winkler [Win88] proved that this problem—and also the analogous real
problem—is NP-complete.

Disjoint connecting paths (cf. Sect. 7.1)

Let G be a graph, k an integer, and (s1, t1), . . . , (sk, tk) pairs of vertices
(usually called terminals). Are there disjoint paths P1, P2, . . . , Pk such that
Pi connects si with ti?

Here disjoint may be interpreted as either edge disjoint and vertex disjoint.
In both cases, this problem is NP-complete as stated (that is, if k is included
in the input), even when G is assumed to be planar; these results are due to
Karp [Kar75] and Lynch [Lyn75]. However, the problem becomes polynomial
for every fixed k, a result first proved in the framework of the fundamental
theory of graph minors due to Robertson and Seymour [RobSe95]. Recently, a
quadratic time algorithm was given by Kawarabayashi, Kobayashi and Reed
[KawKR12]; this paper also contains a good discussion of the problem, in-
cluding many further references.

Disjoint paths (cf. Sect. 7.1)

Let G= (V,E) be a graph, s and t be two vertices of G, and k and c be two
positive integers. Does G contain k vertex disjoint paths of length at most c
from s to t?

Itai, Pearl and Shiloach [ItaPS82] proved that this problem is NP-complete
for each fixed k ≥ 5 (whereas it is polynomial for fixed k ≤ 4). Similar results
hold for edge disjoint paths from s to t, and for the analogous problems where
each path should contain precisely c edges. In contrast, the maximal number
of (edge or vertex) disjoint paths from s to t can be determined efficiently
using network flow methods if no restrictions are added; see Sect. 7.1.

Dominating set (cf. Sect. 2.8)

Let G= (V,E) be a graph and k a positive integer. Does G admit a domi-
nating set D with |D| ≤ k? The variant where D is required to be connected
is likewise NP-complete, see Exercise 2.8.7.

Graph partitioning (cf. Sect. 9.2)

Let G= (V,E) be a graph and c a positive integer. The question of whether
G can be partitioned into at most c subgraphs of a given type is NP-complete
for many classes of subgraphs: for triangles and, more generally, for subgraphs
with a given isomorphism type, for Hamiltonian subgraphs, for forests, for
cliques, and for matchings. We refer the reader to [GarJo79, §A1.1] and the
references given there.
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In particular, determining the clique partition number θ(G) is an NP-
hard problem in general. For perfect graphs, this problem can be solved in
polynomial time; see [GroLS93].

Hamiltonian cycle (cf. Sects. 1.4 and 2.8)

Let G= (V,E) be a graph. Does G contain a Hamiltonian cycle?
Karp [Kar72] proved that this problem is NP-complete; it remains NP-

complete even if we know a Hamiltonian path of G [PapSt77]; see Theo-
rem 15.7.3. The special cases for bipartite graphs and for planar, 3-connected,
3-regular graphs are still NP-complete; see [Kri75] and [GarJT76]. The anal-
ogous problem for directed Hamiltonian cycles in digraphs likewise is NP-
complete [Kar72]; see Exercise 2.7.6.

Hamiltonian path (cf. Exercise 2.7.7)

Does the graph G = (V,E) contain a Hamiltonian path? This problem and
the analogous directed problem are NP-complete, even if the start and end
vertices of the Hamiltonian path are fixed; see [GarJo79].

Independent set (cf. Exercise 2.8.4)

Let G= (V,E) be a graph and c≤ |V | a positive integer. Does G contain an
independent set with c elements? Note that the independent sets of G are
precisely the cliques of the complementary graph G. This problem is therefore
NP-complete in general, but polynomial for perfect graphs (see Clique and
Vertex cover).

The independent set problem remains NP-complete when restricted to 3-
regular planar graphs; see [GarJS76].

Induced subgraph

Let G= (V,E) be a graph and c a positive integer. The problem of whether
G contains an induced subgraph on c vertices that belongs to a prescribed
class of graphs is often NP-complete: for cliques and independent sets (see
Clique and Independent set), and also for planar subgraphs, for bipartite
subgraphs, for subforests, etc. We refer to [GarJo79, § A1.2] and the references
given there.

Integer linear programming (cf. Sect. 14.3)

Let A be anm×n integer matrix, c ∈ Z
n and b ∈ Z

m integer vectors, and d an
integer. Does there exist an integer vector x ∈ Z

n satisfying x≥ 0, AxT ≤ bT ,
and cxT ≥ d? This problem is NP-complete by a result of Karp [Kar72],
whereas the corresponding linear program (where x may have rational en-
tries) can be solved in polynomial time by the work of Khachyan [Kha79].
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Longest cycle

Let N = (G,w) be a network with a nonnegative length function w, where G
is a graph, and let c be a positive integer. Does N contain a cycle of length
at least c?

This problem is NP-complete even when all edges have length 1; see Ex-
ercise 2.7.8. Similar results hold for the analogous directed problem.

Longest path (cf. Sects. 2.7 and 3.1)

Let s and t be two vertices in a network N = (G,w) on a graph G, where w
is a nonnegative length function, and let c be a positive integer. Does there
exist a path from s to t of length at least c?

This problem is NP-complete even when all edges have length 1; see Ex-
ercise 2.7.8. Similar results hold for the analogous directed problem.

Matroid intersection (cf. Sect. 5.4)

Let (E,Si) (i= 1,2,3) be three matroids on the same set E, and let c be a
positive integer. Does E have a subset U of cardinality c which is an inde-
pendent set for all three matroids?

This problem is NP-complete; see Theorem 5.4.13. Note that the corre-
sponding problem for the intersection of two matroids is solvable in polyno-
mial time (even in the weighted case); see [Law75, Law76, Edm79, Cun86],
and [Whi87].

Max cut (cf. Chap. 6)

Let G = (V,E) be a graph with a nonnegative capacity function c, and let
b be a positive integer. Does there exist a cut (S,T ) of G with capacity
c(S,T )≥ b?

This problem is NP-complete by a result of Karp [Kar72]; this holds even in
the special case where G has maximal degree 3 and c(e) = 1 for all edges e; see
[Yan78]. Thus determining a cut of maximal capacity is an NP-hard problem,
whereas the analogous problem for cuts of minimal capacity is easy.

However, the max cut problem is polynomial for planar graphs; see
[Had75].

Min cut (cf. Chap. 6)

Let G= (V,E) be a graph with a nonnegative capacity function c, let s and
t be two vertices of G, and b ≤ |V | and k be two positive numbers. Does
there exist a cut (S,T ) of G with s ∈ S, t ∈ T , |S| ≤ b, |T | ≤ b, and capacity
c(S,T )≤ k?

This problem is NP-complete, even when c(e) = 1 for all edges e; see
[GarJS76]. Note that omitting the bounds on |S| and |T | (that is, putting
b= |V |) yields one of the fundamental easy problems: again, we have a case
of an easy problem becoming hard due to additional constraints.
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Minimum k-connected subgraph (cf. Chap. 8)

Let G = (V,E) be a graph, and let k ≤ |V | and b ≤ |E| be two positive
integers. Does there exist a subset E∗ of E with |E∗| ≤ b such that G∗ =
(V,E∗) is k-connected?

This problem—and also the analogous problem for k-fold line connectivity
—is NP-complete for each fixed k ≥ 2; see [GarJo76]. Thus determining a
minimal k-connected subgraph of G is NP-hard. Note that the case k = 1 can
be solved with complexity O(|E|) using BFS, for example: then we merely
have to find a spanning tree of G.

Minimum spanning tree (cf. Chap. 4)

Let N = (G,w) be a network with a nonnegative weight function w on a
connected graph G. As we saw in Sect. 4.3, determining a minimal spanning
tree T is one of the fundamental easy problems of algorithmic graph theory.
As for the problem of determining spanning trees in general, we obtain NP-
complete problems by adding side constraints, for example by restricting the
diameter of T or asking for many leaves. See Sect. 4.7 and [GarJo79, §A.2.1].

Network flow (cf. Chaps. 6 and 10)

The flow problems we treated in this book are all solvable in polynomial time.
Again, adding side constraints will often result in NP-complete problems. We
refer the reader to [GarJo79, §A.2.4] and the references given there.

Network reliability (cf. Example 3.1.2)

Let G = (V,E) be a graph, V ∗ a subset of V , p a mapping from E to the
rational numbers in [0,1] (the failure probability), and q ≤ 1 a positive rational
number. Is the probability that any two vertices in V ∗ are connected by at
least one reliable path (that is, a path which does not contain an edge which
fails) at least q?

This problem is NP-complete by a result of Rosenthal [Ros77]; see also
[Val79b] for related questions. Provan [Pro86] showed that it is NP-hard to
determine the probability for the existence of a reliable path from s to t in a
planar acyclic digraph G, and also in a planar graph G with maximal degree
Δ(G) = 3.

Permanent evaluation (cf. Sect. 7.4)

Let A be an n× n matrix with entries 0 and 1, and let k ≤ n! be a positive
integer. Does perA= k hold?

This problem and the corresponding problems about perA≤ k and perA≥
k are NP-hard, which is due to Valiant [Val79a]; we note that it is not known
whether these problems actually belongs to NP.

Recall that determining the number of perfect matchings in a bipartite
graph is equivalent to determining the permanent of an appropriate matrix,
so that this problem is likewise NP-hard.
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Restricted matching (cf. Sect. 14.7)

Let G= (V,E) be a graph, and consider a decomposition of E into subsets Ei

(i= 1, . . . , k). Also, let c and bi (i= 1, . . . , k) be positive integers. Does there
exist a matching K with c edges such that |K∩Ei| ≤ bi holds for i= 1, . . . , k?

This problem is NP-complete, even when all bi are 1; see [ItaRT78].

Satisfiability (cf. Sect. 2.7)

Let C1 . . .Cm be a formula involving n Boolean variables in conjunctive nor-
mal form. Does there exist an assignment of the values true and false to the
n variables such that the given formula takes the value true?

This problem is NP-complete, even when each of the Ci involves pre-
cisely three of the n Boolean variables (3-SAT). This celebrated result due
to [Coo71] was the starting point of the theory of NP-completeness.

Shortest cycle (cf. Sects. 3.3 and 10.6)

Let N = (G,w) be a network on a graph G, where w is a length function that
may take negative values, and c an integer. Does G contain a cycle of length
at most c?

This problem is NP-complete; see [GarJo79]. It can be solved in polyno-
mial time for nonnegative length functions; see, for example, [ItaRo78] and
[Mon83]. Similar results hold for the analogous directed problem. Note that
determining a cycle of minimum cycle mean is easy for arbitrary length func-
tions w; see Sect. 10.6.

Shortest path (cf. Chap. 3 and Sect. 14.6)

Let s and t be two vertices in a network N = (G,w) on a graph G, where w
is a length function that may take negative values, and let c be an integer.
Does there exist a path from s to t of length at most c?

This problem is NP-complete, and this also holds for the analogous di-
rected problem; see [GarJo79]. As we saw in Sect. 14.6, the problem becomes
polynomial if we assume that N does not contain any cycles of negative
length. Particularly good algorithms exist for the special case where all edges
have nonnegative length; see Chap. 3.

Spanning tree (cf. Chap. 4)

We know that a spanning tree in a connected graph G can be determined
with linear complexity using either BFS or DFS; see Sects. 3.3 and 8.2.

However, the problem usually becomes NP-complete if we add extra con-
straints such as either a lower bound on the number of leaves, or an up-
per bound on the maximal degree of the tree; see Sect. 4.7 and [GarJo79,
§ 4.7]. The same conclusion holds if we ask whether the sum of the distances
d(u, v) in T (taken over all pairs (u, v) of vertices) can be bounded by c; see
[JohLR78].
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Steiner network (cf. Sect. 4.6)

Let N = (G,w) be a network on a graph G= (V,E), where V = R
.
∪ S and

where w :E →R
+ is a positive weight function, and let c be a positive integer.

Does there exist a minimal spanning tree T for some induced subgraph whose
vertex set has the form R ∪ S ′ with S′ ⊂ S so that w(T )≤ c?

This problem is NP-complete by a result of Karp [Kar72]. The problem
becomes polynomial when either |R| or |S| is fixed.

Steiner tree (cf. Sect. 4.6)

For a given set of n points in the Euclidean plane, we want to find a minimal
Steiner tree (that is, a tree of minimal length with respect to the Euclidean
distance) which contains the given n points. This problem was shown to be
NP-hard by Garey, Graham and Johnson [GarGJ77].

Travelling salesman problem (TSP) (cf. Chap. 15)

Let w : E → R
+ be a positive length function on the complete graph Kn.

Given a positive integer b, is there a tour (that is, a Hamiltonian cycle) of
length at most b?

Recall that the TSP served as our standard example for an NP-complete
problem. It remains NP-complete in the metric case, in the asymmetric case,
and for length functions restricted to the values 1 and 2. The related questions
of whether a tour is suboptimal or whether an optimal tour contains a given
edge are likewise NP-hard.

The associated approximation problem is NP-hard in the general case,
but easy in the metric case: there is a polynomial ε-approximative algorithm
with ε= 1/2 for the ΔTSP. The existence of such an algorithm for a value
ε < 1/219 would already imply P =NP; see [PapVe06].

See Chap. 15 and the monographs [LawLRS85] and [GusPa02].

Unextendable matching (cf. Sect. 7.2 and Chap. 13)

Let G= (V,E) be an arbitrary graph, and let c be a positive integer. Does
G contain an unextendable matching of cardinality at most c?

This problem is NP-complete by a result of Yannakakis and Gavril
[YanGa80]. The problem remains NP-complete in the special cases of planar
graphs and of bipartite graphs (even when the maximal degree is restricted
to 3).

Recall that a matching which cannot be extended does not have to have
maximal cardinality in general. As we have seen, it is easy to determine a
maximal matching (that is, a matching of maximal cardinality) in G. Hence
the existence of an unextendable matching of cardinality at least c is easy to
decide.
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Vertex cover (cf. Sect. 2.8)

Let G = (V,E) be a graph, and let c be a positive integer. Does G have a
vertex cover of cardinality at most c?

This problem is NP-complete by a result of Karp [Kar72]; see Theo-
rem 2.8.3. It can be solved in polynomial time for perfect graphs (hence,
for bipartite graphs); see [GroLS93].

Note that Vertex cover is equivalent to Independent set: the comple-
ment of a vertex cover is an independent set.



Appendix B
Solutions

People of quality know everything without
ever having been taught anything.

Molière

This appendix contains solutions (or extended hints) to virtually all the ex-
ercises. For difficult exercises, we include more details; if an exercise is of a
purely computational nature, we usually state only the result.

B.1 Solutions for Chap. 1

1.1.2 As 2n− 1 is odd, 2i (i= 1, . . . ,2n− 1) runs through all residue classes
modulo 2n− 1. Therefore the sets Fi are pairwise disjoint. Clearly, each Fi

is a factor of K2n. As F1, . . . , F2n−1 contain altogether n(2n− 1) edges, they
must form a factorization.

1.1.3 Note T3 = K3. The graph T4 is K6 with one 1-factor removed. The
complement of T5 is shown in Fig. 1.12; cf. Exercise 1.5.11.

A vertex {x, y} of Tn is adjacent precisely to the 2(n − 2) vertices of
the form {x, z} and {y, z}, where z �= x, y. Two distinct vertices {x, y} and
{x, z} are adjacent precisely to the n− 3 vertices {x,w} for w �= x, y, z and
to {y, z}. Finally, the common neighbors of two vertices {x, y} and {z,w},
where x, y, z,w are distinct, are precisely {x, z}, {x,w}, {y, z}, and {y,w}.

1.1.4 For a given vertex x, there are exactly a′ = n− a− 1 vertices which
are not adjacent to x in G. If x and y are vertices adjacent in G, there are
precisely a− c−1 vertices which are adjacent to x but not to y, and precisely
(n− a− 1)− (a− c− 1) vertices which are adjacent neither to x nor to y.
Thus G has parameters a′ = n−a− 1 and d′ = n− 2a+ c. Similar arguments
give c′ = n− 2a+ d− 2.

To prove the validity of the equation in question, choose some vertex x.
Then there are n − a − 1 vertices z which are not adjacent to x. For each
such vertex z, there are precisely d vertices y which are adjacent to x as well
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as to z. On the other hand, there are a vertices y adjacent to x, and for each
such vertex y, there are a− c− 1 vertices z adjacent to y but not adjacent
to x.

1.2.1 Let W = (v0, . . . , vn) be a walk with start vertex a= v0 and end vertex
b = vn. If W is not a path, it contains repeated vertices. Let x = vi be the
first such vertex, and let vj be the next occurrence of x on W . Then the
subwalk of W from vi to vj is a closed walk, and omitting it from W yields
a shorter walk W ′ from a to b. Using induction on the length of W gives the
assertion.

Now let W = (v0, . . . , vn) be a closed walk of odd length which is not a
cycle. Suppose there exists some index i �= 0, n such that v0 = vi = vn. Then
one of the closed walks (v0, . . . , vi) or (vi, . . . , vn) has odd length, and the
assertion follows by induction. In the general case, there are indices i, j �= 0, n
with i �= j and vi = vj ; again, the assertion follows by induction.

We obtain a closed walk of even length not containing any cycle if we
append to some path P (from u to v, say) the same path P traversed in the
opposite direction (that is, from v to u).

1.2.2 Let x and y be any two vertices. Then the connected components of x
and y contain at least (n+1)/2 vertices each; hence they cannot be disjoint,
and therefore they coincide.

1.2.3 Trivially, the condition is necessary. To show that it is also sufficient,
choose some vertex s and let V1 be its connected component. Then V2 = V \V1

has to be empty: otherwise, the hypothesis would provide an edge vw with
v ∈ V1 and w ∈ V2, and w would after all be in V1, a contradiction.

1.2.4 If neither G nor G are connected, choose some vertex s and denote the
connected components of G and G containing s by S and T , respectively. As
each vertex v �= s is either adjacent to s in S or in T , we must have V = S∪T .
It can be seen by similar arguments that there cannot exist a pair (v,w) of
vertices with v ∈ S \ T and w ∈ T \ S, a contradiction.

1.2.5 The assertion follows from
∑

v deg v = 2n − 2; see the proof of
Lemma 1.1.1.

1.2.9 If G\ e is connected, the assertion follows using induction on |E|. Oth-
erwise, G consists of two connected components V1 and V2. Using induction
on n, the assertion holds for the induced graphs G|V1 and G|V2. Hence

|E|=
∣
∣(E|V1)

∣
∣+

∣
∣(E|V2)

∣
∣+ 1≥

(
|V1| − 1

)
+
(
|V2| − 1

)
+ 1= n− 1.

1.2.15 See Fig. B.1.
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Fig. B.1 Solution to Exercise 1.2.15

1.2.16 The symbol u occurs precisely degu−1 times in πV (G); this is similar
to the proof of Lemma 1.2.12. In particular, stars are precisely those trees
G for which all entries of πV (G) agree, whereas paths are the trees having a
Prüfer code with distinct entries.

1.2.17 As a tree on n vertices has n− 1 edges, condition (1.6) is certainly
necessary. By the solution to Exercise 1.2.16, the degree of a vertex u in a
tree T equals the number of entries u in the Prüfer code πV (T ) plus 1. Now
let d1, . . . , dn be a sequence of positive integers satisfying (1.6); then

(d1 − 1) + (d2 − 1) + · · ·+ (dn − 1) = n− 2.

Hence there are words of length n − 2 over the alphabet {1, . . . , n} which
contain exactly di − 1 entries i (for i= 1, . . . , n), and the corresponding trees
under the Prüfer code have the prescribed degree sequence. For the sequence
(1,1,1,1,2,3,3), we may use the Prüfer code (5,6,6,7,7) to obtain the tree
shown in Fig. B.2.

1.3.3 Denote the vertices of odd degree by xi and yi (for i= 1, . . . , k). Adding
the edges xiyi to G yields an Eulerian multigraph H . The desired trails arise
by omitting the edges xiyi from a Euler tour for H .

1.3.4 Note that an edge uv of G has degree degu+deg v−2 when considered
as a vertex of L(G). In particular, L(Km,n) is (m+n−2)-regular. If x, y, z,w
are distinct vertices of Km,n, edges of the form xy and zw are always adjacent
to precisely two edges in L(Km,n). Edges of the form xy and xz are adjacent
to m− 2 or n− 2 edges, depending on which part of Km,n contains x. Hence
L(Km,n) is an SRG if and only if m= n.
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Fig. B.2 Tree with

prescribed degree sequence

1.3.5 Note first that L(G) is connected, since G is assumed to be connected.
By Exercise 1.3.4, an edge uv of G has degree degu+ deg v − 2 in L(G); by
Theorem 1.3.1, L(G) is Eulerian if and only if this number is always even.
As G is connected, this requires that the degrees of all the vertices of G have
the same parity. In particular, this condition is met if G is Eulerian: then all
vertices of G have even degree. Finally, L(K2n) is Eulerian while K2n is not
Eulerian, as all vertices have odd degree.

1.4.4 The existence of non-adjacent vertices u and v with degu+deg v < n
would imply m< 1

2
(n−2)(n−3)+n= 1

2
(n−1)(n−2)+2, since the maximal

number of edges arises if the remaining n−2 vertices induce a complete graph.

1.4.5 As K6 is Hamiltonian, G also has to be Hamiltonian by Theorem 1.4.1.
Therefore G contains a cycle of length 6. We have to add at least two edges
to this cycle to obtain a graph where degu+ deg v ≥ 6 holds for some pair
of non-adjacent vertices u and v. On the other hand, it is easy to check that
the closure of such a graph G is indeed K6. Hence eight edges are needed.

1.4.6 Let (e1, . . . , em) be an Euler tour ofG; then the sequence (e1, . . . , em, e1)
is a Hamiltonian cycle in L(G). The converse is false; for example, K4 is not
Eulerian even though L(K4) = T4 is Hamiltonian.

1.4.8 We color the squares of a chess board alternately black and white, as
usual. Note that a knight always moves from a black square to a white one,
and from a white square to a black one; in the corresponding graph, all edges
connect a black and a white vertex. (This means that G is bipartite; see
Sect. 3.3.) Obviously, G can only contain a Hamiltonian cycle if the numbers
of white and black vertices are equal, which is impossible if n and m are both
odd. This accounts for case (a).

In case (b), the preceding necessary condition is satisfied. However, the
cases m = 1 and m = 2 are trivially impossible. In order to show that a
knight’s cycle is also impossible for m= 4, we consider a second coloring of
the chess board: the squares of the first and fourth rows are green, whereas
the squares in rows two and three are red. Then a knight can move from a
green square only to a red square; from a red square, green squares as well
as red squares are accessible. Now assume the existence of a knight’s cycle.
Then the knight has to reach and to leave each of the green squares precisely
once. As the green squares are only accessible from the red ones, the 2n
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Fig. B.3 Plane realizations of K5 \ e and K3,3 \ e

Fig. B.4 The Petersen graph

moves from a red square always have to be moves to a green square, so that
red and green squares alternate in the knight’s cycle. But white and black
squares also occur alternately; as the two colorings of the board are obviously
distinct, this is impossible.

1.5.6 See Fig. B.3.

1.5.7 Any subdivision of a graph increases the number of vertices by the
same value as the number of edges.

1.5.10 The Petersen graph G has girth g = 5. As G contains more than
40/3 edges, G cannot be planar by Theorem 1.5.3. Figure B.4 shows G and
a subgraph homeomorphic to K3,3, where the vertices of K3,3 are indicated
by fat circles and squares, whereas the vertices obtained by subdivision are
drawn as small circles. Thus Result 1.5.8 applies. Contracting each outer
vertex of G with its adjacent inner vertex shows that G can be contracted to
K5, so that Result 1.5.9 likewise applies.



542 B Solutions

Fig. B.5 Maximal planar graphs

1.5.11 We write the 2-subsets {x, y} of {1, . . . ,5} simply as xy. Then the
vertices of T5 are the xy, and xy and zw are adjacent in T5 if and only
if x, y, z,w are four distinct elements. Now it is easy to give the desired
isomorphism using the labelling of the vertices shown in Fig. B.4.

1.5.12 Each permutation α ∈ S5 induces an automorphism of T5—and
hence, by Exercise 1.5.11, an automorphism of the Petersen graph—by map-
ping each 2-subset xy to xαyα. Actually, S5 already yields all automorphisms
of the Petersen graph; however, proving this requires a little more effort.
(Hint: Try to show that there are at most 120 automorphisms of the Pe-
tersen graph.)

1.5.13 For n = 1, . . . ,4, Kn is already planar. For n ≥ 5, Kn cannot be
planar, since a planar graph on n vertices has at most 3n − 6 edges by
Corollary 1.5.4. Thus we have to remove at least 1

2n(n − 1) − (3n − 6) =
1
2 (n− 2)(n− 5)+ 1 edges. Using induction, it can be shown that there exists
a planar graph with 3n−6 edges for each n; in fact, this graph can even be as-
sumed to have a triangle as its outer border. The induction basis (n= 3,4,5)
and the recursive construction of placing a planar graph with n vertices and
3n− 6 edges inside a triangle are sketched in Fig. B.5.

1.5.14 As n− nd vertices have degree at least d+1, Corollary 1.5.4 implies
(n− nd)(d+ 1)≤

∑
v deg v = 2m≤ 6n− 12 and hence the assertion. In par-

ticular, n5 ≥ 2 and n6 ≥ n/7; thus more than 14% of the vertices of a planar
graph have degree at most 6.

The given formula can be strengthened as follows: any planar graph can
be embedded in a planar graph (by adding appropriate edges) whose vertices
have degree at least 3. For these planar graphs, the left hand side of the
inequality can be increased by 3nd, and we obtain

nd ≥
n(d− 5) + 12

d− 2
;

in particular, n5 ≥ 4 and n6 ≥ n/4.
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1.6.1 Let G be pseudosymmetric. Choose an arbitrary edge e1 = v0v1, then
some edge e2 = v1v2 and so on, always selecting edges which have not oc-
curred before. Whenever we reach a vertex vi �= v0 via an edge ei, there is an
unused edge ei+1 available for leaving vi, since G is pseudosymmetric. Hence
our construction yields a directed cycle C. Removing C from G results in a
pseudosymmetric graph H , and the assertion follows by induction.

1.6.4 Obviously, an edge contained in a cycle cannot be a bridge. Conversely,
let e= uv be an edge which is not a bridge. Then the connected component
containing u and v is still connected after removing e, so that there exists a
path P from u to v not containing e. Appending e to P yields the desired
cycle.

1.6.5 G is Eulerian by Theorem 1.3.1. Let (v0, . . . , vm = v0) be the sequence
of vertices in an Euler tour (e1, . . . , em) of G. Orienting each edge ei from
vi−1 towards vi, we obtain an orientation of G, and (e1, . . . , em) is a directed
Euler tour for this orientation. Hence this orientation is pseudosymmetric
and strongly connected.

1.6.6 First letW = (v0, . . . , vn) be a closed directed walk which is not a cycle.
Suppose there exists some index i �= 0, n such that v0 = vi = vn. Then each
of the closed walks (v0, . . . , vi) and (vi, . . . , vn) has shorter length, and the
assertion follows by induction. In the general case, there are indices i, j �= 0, n
with i �= j and vi = vj ; again, the assertion follows by induction.

Now let W = (v0, . . . , vn) be a directed walk with start vertex a= v0 and
end vertex b= vn. If W is not a path, it contains repeated vertices. Let x= vi
be the first such vertex, and let vj be the next occurrence of x on W . Then the
subwalk W ′ of W from vi to vj is a directed closed walk and hence contains
a directed cycle C. Omitting C from W yields a shorter directed walk W ′

from a to b, and the assertion follows by induction on the length of W .

B.2 Solutions for Chap. 2

2.1.3 Let G have the n! permutations of {1, . . . , n} as vertices, and let two
permutations be adjacent if and only if they differ by only a transposition.
The case n= 3 is shown in Fig. B.6, where we denote the permutation (x, y, z)
of {1,2,3} by xyz; here the sequence (123,132,312,321,231,213) provides a
solution.

2.1.4 (a) First assume that G \ v0 is acyclic, and let C be a maximal path
starting at v0. Then C is a cycle. If C were not an Euler tour, we could find
a cycle C ′ in G \ C as in Example 2.1.2. By hypothesis, C ′ would have to
contain v0, so that C would not be maximal. Hence G is arbitrarily traceable
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Fig. B.6 Transposition

graph for S3

from v0. Conversely, suppose that G is arbitrarily traceable from v0. If there
exists a cycle C in G \ v0, we can choose an Euler tour K of the connected
component of v0 in G \ C, so that K is a maximal trail starting in v0, a
contradiction.

(b) Let w be a vertex of maximal degree 2k in G, and let C be an Euler
tour for G. Then C can be divided into k cycles C1, . . . ,Ck, each of which
contains w only once. As G \ v0 is acyclic by (a), v0 has to occur in each of
these cycles, and hence also deg v0 = 2k.

(c) Suppose G is arbitrarily traceable from u, v, and w. By part (a), each
of these three vertices has to occur in all cycles of G. Suppose that G contains
at least two cycles (which intersect in u, v, and w); then it is easy to construct
a third cycle which contains only two of these vertices, a contradiction. Hence
G contains at most one cycle and thus is itself a cycle.

(d) By part (b), both vertices have to be vertices of maximal degree, say 2k.
Choose two vertices u and v and connect them by 2k parallel edges. Then all
subdivisions of this multigraph are arbitrarily traceable from both u and v.

2.2.5 Use induction on h; the case h= 1 is clear. With B = Ah, the (i, k)-
entry of Ah+1 is the sum of all terms bijajk over j = 1, . . . , n. By the induction
hypothesis, bij is the number of walks of length h from i to j. Moreover,
ajk = 1 if (j, k) is an edge, and ajk = 0 otherwise. Observe that a walk of
length h+1 from i to k consists of a walk of length h (from i to some vertex
j) followed by a last edge (j, k). This proves the assertion for graphs; the
same argument works in the directed case, if we restrict attention to directed
walks.

2.2.6 By Exercise 2.2.5, the (i, j)-entry of the matrix A2 is the number of
walks of length 2 from i to j; note that this reduces to the degree of i whenever
i= j. Denote the matrix with all entries equal to 1 by J . Using the defining
properties of a strongly regular graph yields the desired quadratic equation:
A2 = aI + cA+ d(J − I −A).
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Fig. B.7 The digraph G3,3

2.3.2 Note that a word w = ai . . . ai+n−1 is the immediate predecessor of a
word v = ai+1 . . . ai+n in a de Bruijn sequence if and only if the edge v has the
end vertex of w as start vertex; thus the de Bruijn sequences correspond to
Euler tours in Gs,n. It remains to show that Gs,n satisfies the two conditions
of Theorem 1.6.1. First, Gs,n is strongly connected: two vertices b1 . . . bn−1

and c1 . . . cn−1 are connected by the directed path

(b1 . . . bn−1c1, b2 . . . bn−1c1c2, . . . , bn−1c1 . . . cn−1).

Gs,n is also pseudosymmetric: din(x) = dout(x) = s for each vertex x.

2.3.3 The digraph G3,3 is shown in Fig. B.7.
Using s= 00, the procedure TRACE(s,new;K) yields the cycle

K = (000,001,010,100,002,020,200).
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Then all edges with start vertex 00 have been used, and L= (00,01,10,02,20).
In step (5) of EULER, the vertex u = 20 is removed from L; then step (7)
calls TRACE(u,new;C), which yields the cycle

C = (201,011,110,101,012,120,202,021,210,102,022,220).

This cycle is inserted in front of the edge 200 into K according to step (8)
of EULER; we then have K = (000,001, . . . ,020,201,011, . . . ,220,200) and
L= (00,01,10,02,11,12,21,22). Next, u= 22 is removed from L in step (5),
and the cycle

C = (221,211,111,112,121,212,122,222)

is constructed and inserted intoK in front of the edge 220. After this, EULER
discovers that all edges have been used (by investigating all vertices in L).
The de Bruijn sequence corresponding to this Euler tour is

0 0 0 1 0 0 2 0 1 1 0 1 2 0 2 1 0 2 2 1 1 1 2 1 2 2 2.

2.6.8 Let G = (V,E) be the empty digraph with n vertices: E = ∅. Then
any algorithm using the adjacency matrix has to check at least one of the
two entries aij and aji for each pair (i, j) with i �= j: otherwise, we could
add the edges (i, j) and (j, i) to G and the algorithm would not realize that
the digraph is no longer acyclic. Thus the algorithm has to check at least
n(n− 1)/2 =Ω(n2) entries.

2.6.9 The algorithm first calculates ind(1) = 2, ind(2) = 0, ind(3) = 3,
ind(4) = 1, ind(5) = 2, ind(6) = 4, ind(7) = 3, and L= (2). Then 2 is removed
from L and the function ind is updated as follows: ind(1) = 1, ind(3) = 2,
ind(4) = 0, ind(7) = 2. Now 4 is appended to L. During the next iteration,
4 is removed from L, and the following updates are performed: ind(1) = 0,
ind(3) = 1, ind(5) = 1, ind(7) = 1. Then 1 is appended to L and immediately
removed again during the next iteration. Continuing in this way yields the
topological sorting (2,4,1,3,5,7,6) for G; see Fig. B.8, where indeed all edges
are oriented from left to right.

2.7.6 DHC contains HC as a special case; this follows by considering the
complete orientation of a given graph.

2.7.7 We transform HC to HP. Let G = (V,E) be a connected graph. We
choose a fixed vertex v0. Then we adjoin three new vertices u, u′, and w to
G, and add the following edges: uu′, wv0, and an edge uv for each vertex v
adjacent to v0; see Fig. B.9. The resulting graph G′ has a Hamiltonian path
if and only if G admits a Hamiltonian cycle; this follows by noting that every
Hamiltonian path of G′ has to start with the edge uu′ and to end with the
edge v0w.
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Fig. B.8 Solution to Exercise 2.6.9

Fig. B.9 Construction for Exercise 2.7.7

2.7.8 Note that HP is a special case of Longest path: given a graph G with
n vertices, we apply Longest path with k = n.

Now assume that we also have to specify the end vertices of the path. If we
had a polynomial algorithm for this modified problem, we could just invoke
the algorithm for all pairs of vertices to get a polynomial algorithm for the
unrestricted problem.

The corresponding result holds for longest cycles: the question “Does a
given graph G admit a cycle consisting of at least k edges?” contains HC.
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2.8.4 Independent sets are precisely the complements of vertex covers. As
VC is NP-complete, it follows immediately that Independent set is NP-
complete as well.

The cliques in a graph G are precisely the independent sets of the com-
plementary graph G. Therefore, Clique is likewise NP-complete.

2.8.7 One proceeds exactly as in the proof of Theorem 2.8.6, with the fol-
lowing modification: in H , we in addition also introduce all edges of the form
uv, where u and v are non-adjacent vertices of G. In other words, we make
sure that the induced subgraph H|V is a complete graph. As before, any
vertex cover W of G is also a dominating set for H , and as W is a subset of
V , the subgraph H|W is trivially connected. Conversely, as before, we can
construct from any dominating set D for H a dominating set D′ which con-
sists of vertices in V only. Hence D′ is also a vertex cover for G of size at
most |D|, and the subgraph H|W ′ is connected.

B.3 Solutions for Chap. 3

3.1.3 Let all pairs (j, k) with j = 1, . . . , n and k = 0, . . . , b be vertices of G.
We choose all pairs ((j − 1, k), (j, k)) as edges of length 0 (for j = 2, . . . , n;
k = 0, . . . , b), and all pairs ((j − 1, kj − aj), (j, kj)) as edges with length cj
(for j = 2, . . . , n and kj = aj , . . . , b). We also adjoin a start vertex s to G,
and add the edges (s, (1,0)) with length 0 and (s, (1, a1)) with length c1.
Then the paths from s to (j, k) correspond to those subsets of {1, . . . , j}
whose total weight is k (and whose total value is the length of the associated
path). Finally, we add an end vertex t and edges ((n,k), t) of length 0 (for
k = 0, . . . , b). Then paths from s to t correspond to subsets whose weight is
at most b, and the length of a longest path from s to t is the value of an
optimal solution for the given knapsack problem.

3.2.3 The distances in the metric space have to be integral; moreover,
d(x, y)≥ 2 always has to imply that a point z with d(x, y) = d(x, z) + d(z, y)
exists. It is clear that this condition is necessary. In order to show that it is
also sufficient, choose all pairs {x, y} with d(x, y) = 1 as edges.

3.3.4 The connected components can be determined as follows, where p de-
notes the number of connected components and where c(v) is the component
of G containing v ∈ V .

Procedure COMP(G;p, c)

(1) i← 1;
(2) while V �= ∅ do
(3) choose a vertex s ∈ V ;
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(4) BFS(G,s;d);
(5) L←{v ∈ V : d(v) is defined}; V ← V \L;
(6) for v ∈ L do c(v)← i od
(7) i← i+ 1
(8) od

3.3.8 Let G be a graph containing cycles. Obviously, G contains a cycle
which is accessible from some vertex s if and only if a BFS with start vertex
s reaches a vertex w (when searching from the vertex v, say) such that d(w)
is already defined. Considering the point where such a vertex w occurs for the
first time, we obtain a bound g for the length of a shortest cycle accessible
from s:1

g ≤
{
2d(v) + 2 if d(w) = d(v) + 1;
2d(v) + 1 if d(w) = d(v).

If d(w) = d(v), the bound cannot be improved by continuing the BFS. How-
ever, if d(w) = d(v)+ 1, the BFS should be continued until all vertices which
are in the same layer as v have been examined, because l might still be
decreased by one; after this, the BFS may be terminated.

If we execute this procedure for all possible start vertices, the final value
of g clearly equals the girth of G. If we also store a vertex s for which the
BFS did yield the best value for g, it is easy to actually determine a cycle C
of shortest length using a final modified BFS with start vertex s: we always
store the vertex v from which w is reached when it is labelled with d(w); that
is, we add the instruction p(w)← v in step (7) of BFS. The final BFS can be
terminated as soon as an edge vw which closes a cycle C occurs. Then we use
the predecessor function p to construct the paths (in the BFS-tree Ts) from
v and w to the root, and define C as the union of these two paths and the
edge vw. We leave it to the reader to write down such a procedure explicitly.2

As BFS has complexity O(|E|), we achieve a complexity of O(|V ||E|) by this
approach.

3.4.5 As the distances d(s, v) are known by assumption, one may determine
with complexity O(|E|) the set E′′ of all edges of G satisfying condition (3.2).
It follows from the proof of Theorem 3.4.4 that E′′ contains an SP-tree; more
precisely, any spanning arborescence with root s of G′′ = (V,E′′) is an SP-
tree. Hence a BFS on G′′ with start vertex s will determine the desired
SP-tree. In view of Theorem 3.3.2, this proves the assertion.

1Note that this is indeed just a bound; the precise length can be determined by backtracking

the paths from v and w to s in the BFS-tree Ts up to the first vertex they have in common.

Obviously, this vertex does not have to be s.

2If we want to check first whether G actually contains cycles, we may use the procedure

COMP of Exercise 3.3.4 to determine the connected components, and then check the

numbers of edges of the components using Theorem 1.2.8.



550 B Solutions

Fig. B.10 A network

with a negative cycle

3.4.6 First let T be an SP-tree and uv an edge of G. By definition, the path
from s to v in T is a shortest path from s to v in G. On the other hand,
appending the edge uv to the path from s to u in T also yields a path from
s to v in G. Therefore

dT (s, v) = d(s, v)≤ dT (s,u) +w(uv),

which is the desired inequality. Conversely, suppose that

(∗) dT (s, v)≤ dT (s,u) +w(uv)

holds for all edges uv of G. If P is a shortest path from s to v in G (for v �= s)
and e= uv is the last edge of P , then P ′ = P \ e is a shortest path from s to
u in G, by Lemma 3.4.1. Using induction on the number of edges of P , we
may assume d(s,u) =w(P ′) = dT (s,u). Then (∗) implies

d(s, v) = d(s,u) +w(uv) = dT (s,u) +w(uv)≥ dT (s, v),

so that dT (s, v) = d(s, v). Thus T is indeed a shortest path tree.

3.4.7 Consider the network (G,w) displayed in Fig. B.10. Then

P = s− a− b− c

is the unique shortest path from s to c (with length 3), and P ′ = s− c− a
is the unique shortest path from s to a (with length 0). Hence any SP-tree
would have to contain the union of these two paths; but this union is already
all of G and contains, for instance, the directed cycle C = a − b − c − a, a
contradiction.

Now change the value w(ca) from −4 to −3, so that C is still a directed
cycle of negative length. But now d(s, a) = 1, and both P ′ and s − a are
shortest paths from s to a. Thus the path P is an SP-tree for the modified
network.

3.5.2 Let us again consider the network (G,w) used for the solution of Ex-
ercise 3.4.7; see Fig. B.10. This time, we change the value w(ca) from −4
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Fig. B.11 Digraph for the project New production facility

to −2, so that C = a− b− c− a becomes a directed cycle of length 0. Then
d(s, s) = 0, d(s, a) = 1, d(s, b) = 2 and d(s, c) = 3 in the modified network,
giving one solution of Bellman’s equations (B). However, it is easily checked
that us = ua = 0, ub = 1 and uc = 2 also gives a solution of (B).

It is easy to generalize this example: Let (G,w) be any network containing
an induced cycle C of length 0, and assume that no edges are leading from C
to another vertex of G. By subtracting a suitable constant from the distances
of all vertices on C, one may obtain a second solution of system (B).

3.5.5 Let ui denote the length of a longest path from 1 to i. Then the
following analogue of the Bellman equations has to be satisfied:

(
B′) u1 = 0 and ui =max{uk +wki : i �= k} (i= 2, . . . , n),

where we put wki = −∞ if (k, i) is not an edge of G. Then the results of
Sect. 3.5 carry over to this case: replace w by −w and apply the original
theorems to (G,−w). If we do not want to require G to be acyclic, it suffices
to assume that G contains cycles of negative length only.

The digraph corresponding to the knapsack problem of Exercise 3.1.3 is
acyclic, so that it is possible to determine a longest path from s to t—that is,
a solution of the knapsack problem—with complexity O(|E|). However, this
does not yield an efficient algorithm, because the number of edges of G has
order of magnitude O(nb), so that it depends not only on n but also on b.
Restricting the values of b yields a polynomial algorithm, whereas the general
knapsack problem is NP-hard; see [Kar72] and [GarJo79].

3.6.2 We obtain the network shown in Fig. B.11 and the values ts = 0, t1 = 0,
t2 = 0, t3 = 8, t4 = 25, t5 = 25, t8 = 25, t6 = 34, t7 = 46, t9 = 52, t10 = 54,
t11 = 55, tz = 57 and Tz = 57, mz = 0; T11 = 55, m11 = 0; T10 = 54, m10 = 0;
T9 = 52,m9 = 0; T7 = 46,m7 = 0; T6 = 37,m6 = 3; T8 = 39,m8 = 14; T5 = 25,



552 B Solutions

m5 = 0; T4 = 28, m4 = 3; T3 = 32, m3 = 24; T2 = 24, m2 = 24; T1 = 0, m1 = 0;
Ts = 0, ms = 0. The critical path is (s,1,5,7,9,10,11, z).

3.6.3 Consider the network on G where all edges have length 1. As G is
acyclic, we may use TOPSORT to determine a topological sorting for G. Then
the length of a longest path from s to v can be determined as in Sect. 3.6
or as explained in the solution to Exercise 3.5.5, by recursively solving the
equations (B′) or (CPM), respectively. The entire method has complexity
O(|E|).

3.6.4 For the time being, we denote the rank function on G by r′. Thus
we have to show that, at the end of RANK, r(v) = r′(v) holds for all v.
This can be done using induction on the order in which r is defined. Note
that p(w) is the predecessor of w on a longest path from s to w; this func-
tion can also be used to find such a path: in reverse order, we get the path
(w,p(w), p(p(w)), . . . , s). The values d(v) = din(v) needed in step (3) can be
determined from the adjacency lists (as in TOPSORT). Ordering the vertices
of G by increasing rank yields a topological sorting of G; the order of ver-
tices of the same rank is arbitrary. As each edge is examined exactly twice
during RANK (once when d is determined in (3), and once in step (7)), this
algorithm has complexity O(|E|).

3.7.4 We introduce a variable p(v) which will yield the predecessor of v on
a shortest path from s to v (at the end of the algorithm): p(v) is initialized
to be 0, and step (6) is changed as follows:

(6′) for v ∈ T ∩Au do if d(u) +w(uv)< d(v)

then d(v)← d(u) +w(uv); p(v)← u fi od

At the end of the algorithm, all edges of the form p(v)v constitute an SP-tree.

3.7.6 One obtains in turn d(1) = 0, d(5) = 1, d(3) = 2, d(4) = 6, d(2) = 9,
d(8) = 13, d(6) = d(7) = 14.

3.7.9 We may assume the given network to be connected; then planarity
implies |E| = Θ(|V |); see Example 2.5.1. Thus the modified algorithm of
Dijkstra has complexity O(|V | log |V |).

3.7.10 Let us denote the values defined in (1) and (2) by d0(v), and the
values defined during the k-th iteration of the repeat-loop by dk(v). Using
induction, one shows that dk(v) is the length of a shortest path from s to v
which has at most k edges. As (G,w) does not contain any cycles of negative
length, a shortest path from s to v consists of at most |V |−1 edges. Thus the
condition in (7) holds for k = |V | at the latest. As one iteration of the repeat-
loop requires O(|E|) steps (using backward adjacency lists), we obtain a
complexity of O(|V ||E|).
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3.8.1 Determine the least common multiple T of all time cycles and replace
each line L with time cycle TL = T/mL, where mL �= 1, by mL lines with
time cycle T and times of departure sL, sL + TL, sL + 2TL, . . .

3.9.3 Proceed as in the solution to Exercise 3.7.4.

3.9.5 The final matrix is

D7 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 4 5 7 12 10 12
∞ 0 6 3 8 6 8
∞ ∞ 0 4 9 7 9
∞ ∞ 3 0 5 3 3
∞ ∞ 7 4 0 3 2
∞ ∞ 9 6 2 0 2
∞ ∞ ∞ ∞ ∞ ∞ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

3.9.6 Replace the length function w in the procedure FLOYD by the ad-
jacency function of G: put d(i, j) = 1 in (3) if ij is an edge, and d(i, j) = 0
otherwise. Then change step (9) to

(9′) d(i, j)←max(d(i, j),min(d(i, k), d(k, j)));

alternatively, max could be interpreted as the Boolean operation or, and min
as and.

3.9.7 Let G be an acyclic digraph, and consider the network on G having
all lengths equal to 1. As in the solution to Exercise 3.9.6, we replace the
length function w in the procedure FLOYD by the adjacency function of
G; moreover, we calculate max(d(i, j), d(i, k) + d(k, j)) in step (9) of that
procedure instead of the minimum given there. As G is acyclic, the revised
procedure will compute longest paths between all pairs of vertices: at the end
of the algorithm, d(i, j) = 0 if and only if j is not accessible from i; otherwise,
d(i, j) is the maximal length of a path from i to j. (This can be shown by
analogy to the proof of Theorem 3.9.2.) Then Gred consists of all the edges
ij with d(i, j) = 1.

3.10.3 Define the values of the variables dk(v) as in the solution to Ex-
ercise 3.7.10. Then G contains a directed cycle of negative length which is
accessible from s if and only if dn−1 �= dn. (The reader should prove this
claim in detail.) Since s is a root of G, the algorithm of Bellman-Ford can
be used to find cycles of negative length by replacing the repeat-until-loop
used in BELLFORD with a for-do-loop. If we also introduce a predecessor
function p(v), we can find either a directed cycle of negative length or an SP-
tree with root s. We give such a procedure below, using backward adjacency
lists A′

v .
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Procedure SPTREE(G,w, s;d, p,neg, T )

(1) d(s)← 0;
(2) T ←∅;
(3) for v ∈ V \ {s} do d(v)←∞ od
(4) for i= 1 to n do
(5) for v ∈ V do d′(v)← d(v) od
(6) for v ∈ V do
(7) for u ∈A′

v do
(8) if d′(v)> d′(u) +wuv

(9) then d(v)← d′(u) +wuv; p(v)← u
(10) fi
(11) od
(12) od
(13) od
(14) if d(v) = d′(v) for all v ∈ V
(15) then neg ← false;
(16) for v ∈ V \ {s} do T ← T ∪ {p(v)v} od
(17) else neg ← true
(18) fi

3.10.4 Replace the initial values d(i, i) = 0 in step (3) of procedure FLOYD
by d(i, i) =∞. Then, at the end of the algorithm, d(i, i) equals the shortest
length of a directed cycle through i.

3.11.2 Note that a = a ⊕ o shows that � is reflexive. Also a = b ⊕ b′ and
b= c⊕ c′ imply a= c⊕ (b′ + c′), so that � is transitive as well. Suppose that
⊕ is idempotent. Then a= b⊕ c and b= a⊕ d imply

a= b⊕ c= b⊕ (b⊕ c) = b⊕ a= a⊕ b= a⊕ (a⊕ d) = a⊕ d= b;

it follows that � is antisymmetric.

3.11.3 Let E be the matrix with diagonal entries 0 and all other entries ∞.
Then D =D ∗W ⊕E.

3.11.5 We have (A′)k =
∑k

i=0

(
k
i

)
Ai =

∑k
i=0A

i = A(k). Thus A(n) can be
calculated for n= 2a using a matrix multiplications:

A(1) =A′ =A⊕E, A(2) =
(
A′)2, A(4) =

(
A(2)

)2
, etc.

If we assume that the operations ⊕ and ∗ in R take one step each, we obtain a
complexity of O(n3 logn) for this method of calculating A(n). For the special
case (R,⊕,∗), we get—as explained in Lemma 3.11.4—an alternative to the
algorithm of Floyd-Warshall, as D =W (n−1). However, the complexity of this
technique is inferior to the one achieved in Theorem 3.9.2.



B.4 Solutions for Chap. 4 555

3.11.6 It is routine to verify that the matrices form a path algebra. For any
solution Y of (3.8), we have

Y =W ∗ (W ∗ Y ⊕B)⊕B =W 2 ∗ Y ⊕W (1) ∗B;

hence, by induction,

Y =W k+1 ∗ Y ⊕W (k) ∗B for all k.

In particular, for k = p,

Y =W p+1 ∗ Y ⊕W ∗ ∗B; that is, Y �W ∗ ∗B.

If the addition ⊕ on R is idempotent, then addition of matrices is likewise
idempotent; in this case, the corresponding preordering on the set of matrices
is even a partial ordering by Exercise 3.11.2. Then the minimal solution
W ∗ ∗B of (∗) is unique.

3.11.10 Choose R= {a : 0≤ a≤ 1}, ⊕=max, and ∗= ·.

3.11.11 Note that A is stable if and only if Ar = 0 for some r ∈ N, since
A(r−1) =A(r) =A(r−1)+Ar holds if and only if Ar = 0. Lemma 3.11.4 implies
that this condition is satisfied in the acyclic case: then each walk contains
at most r − 1 edges, where r is the number of vertices of G. In this case,
A is a solution of the equation A∗ = A∗A+ E. As K is a field, this means
A∗(E −A) =E; that is, A∗ = (E −A)−1.

More generally, it is possible to show that A is stable if all cycles in G
have weight 0 with respect to w. The converse is false in general: it is easy to
find an example with weights 1 and −1 such that A is stable, but G contains
cycles of weight �= 0. However, the converse does hold for K =R and positive
weights.

B.4 Solutions for Chap. 4

4.1.2

(1) ⇒ (2): Let e be an edge contained in the unique cycle C of G. Then
G \ e is connected and acyclic, so that G \ e is a tree.

(2) ⇒ (3): As every tree on n vertices has n− 1 edges and is connected, the
claim in (3) follows.

(3) ⇒ (4): As G is not a tree (since it has one more edge than a tree
would have), there must be edges in G which are not bridges;
see Lemma 4.1.1. Removing some edge e which is not a bridge
yields a tree, so that e has to be contained in each cycle of G.
Thus the set of all edges which are not bridges forms a cycle.
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(4) ⇒ (1): An edge e is not a bridge if and only if it lies in a cycle; see
Exercise 1.6.4. Thus G contains a unique cycle, which consists
of those edges which are not bridges.

4.1.3 The claim concerning the number of centers is clear for the trees K1

and K2. For every other tree T , remove all leaves of T ; then the resulting
tree T ′ has the same centers as T , and the assertion follows by induction.

Denote the diameter of a tree T by d and the eccentricity of a center by e.
Then either d = 2e or d = 2e − 1, and d = 2e holds if and only if T has a
unique center. For a formal proof, proceed again by induction.

4.1.4 Let W be a trail of maximal length in G. As G is acyclic, W has to
be a path, and as W is maximal, the end vertices of W have degree 1. Thus
G\W is a forest containing 2k−2 vertices of odd degree. Now use induction.

4.1.5 By hypothesis, T has at least two connected components. Let x and y
be two arbitrary vertices in distinct connected components of T . In particular,
x and y are not adjacent in T , so that T contains the edge xy. Thus any two
points in distinct components of T have to be adjacent in T .

The preceding observation shows that there cannot be three distinct con-
nected components: otherwise, we would obtain a cycle of length 3 in T .
Moreover, one of the two components must be an isolated point of T : other-
wise, we would obtain a cycle of length 4 in T . Hence T contains a vertex x
which is adjacent to all other vertices, so that T is a star. The final assertion
follows from Exercise 1.2.4 and Theorem 1.2.6.

4.1.6 There are precisely six isomorphism types of trees on 6 vertices; repre-
sentatives for these types were given in Fig. 1.6; we will denote these repre-
sentatives by T1, . . . , T6. Now let T be any tree on {1, . . . ,6}. Then the image
of T under an arbitrary permutation σ ∈ S6 is a tree isomorphic to T . By a
well-known equation for permutation groups, the number of trees isomorphic
to T is equal to the order of S6 (that is, 6! = 720) divided by the order of the
automorphism group of T . We obtain:

T1: cyclic group of order 2 (rotate the tree by 180◦), 360 isomorphic trees;
T2: cyclic group of order 2 (exchange the two lower leaves of the tree), 360

isomorphic trees;
T3: symmetric group S3 (acting on the three lower leaves of the tree), 120

isomorphic trees;
T4: cyclic group of order 2 (reflect the tree, exchanging the two branches),

360 isomorphic trees;
T5: direct product of 3 cyclic groups of order 2 (reflect the tree, exchanging

the two centers and the two pairs of leaves; or switch the two leaves of
one of the two pairs), 90 isomorphic trees;

T6: symmetric group S5 (acting on the five leaves), 6 isomorphic trees.
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This gives a total of 360 + 360+ 120+ 360+ 90+ 6 = 1296 = 64 trees, which
agrees with the result of Corollary 1.2.11.

4.2.11 By Theorem 4.2.9, the number of spanning trees of the complete
bipartite graph Km,n is equal to the absolute value of the determinant of the
matrix

A′ =

(
nIm −Jm,n−1

−Jn−1,m mIn−1

)

,

where the indices give the numbers of rows and columns of the respective
submatrices (and where I denotes an identity matrix and J a matrix hav-
ing all entries 1, as usual). Now it is just a matter of some linear algebra
to show detA′ = nm−1mn−1: using appropriate row and column transforma-
tions, one can transform A′ into a triangular matrix with diagonal entries
1, n, . . . , n,m, . . . ,m.

4.2.12 The proofs of the results in question carry over: just take into account
that now 1+ 1 = 0, and hence −1 =+1.

4.2.13 First assume that G′ is bipartite, with respect to the partition V =
S

.
∪ T . Let M ′ be a square submatrix of M of order k, say. The case k = 1

is trivial, so let k �= 1. First consider the case where each column of M ′

contains two entries 1. The k vertices corresponding to the rows of M ′ can
be divided into two sets S′ ⊂ S and T ′ ⊂ T . Each column of M ′ corresponds
to an edge of G which has both end vertices in S′ ∪ T ′ (by hypothesis). As
G is bipartite, each column of M has one entry 1 in a row corresponding to
S′, and the other entry 1 in a row corresponding to T ′. Hence the sum of
the rows corresponding to S′ equals the sum of the rows corresponding to
T ′, so that the rows of M ′ are linearly dependent, and hence detM ′ = 0. It
remains to consider the case where M ′ contains a column with at most one
entry 1. Then the claim follows by developing detM ′ with respect to this
column (and using induction).

Conversely, let M be totally unimodular, and suppose that G is not bi-
partite. By Theorem 3.3.5, G contains a cycle C of odd length, say

C : v0
e1

v1 · · · v2n−1

e2n
v2n

e2n+1

v0.

But then the determinant of the submatrix M corresponding to the 2n+ 1
vertices and the 2n+ 1 edges of C is 2, a contradiction.

4.2.14 By Corollary 1.2.11, the graph Kn has precisely nn−2 spanning trees.
Note that each spanning tree of Kn has n− 1 edges and that each edge e
has to be contained in the same number x of spanning trees, which implies
x= 2nn−3. Hence the number of spanning trees of Kn \ e is nn−2 − 2nn−3 =
(n− 2)nn−3.
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4.2.15 G has p= n−m connected components.

4.2.16 We may assume that F consists of the edges {2i− 1,2i}, where i=
1, . . . , n. Then, by Theorem 4.2.9, the number of spanning trees of G \ F
equals the determinant of the (2n− 1)× (2n− 1)-matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2n− 2 0 ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗
0 2n− 2 ∗ ∗ ∗ . . . ∗ ∗ ∗ ∗
∗ ∗ 2n− 2 0 ∗ . . . ∗ ∗ ∗ ∗
∗ ∗ 0 2n− 2 ∗ . . . ∗ ∗ ∗ ∗

. . .

∗ ∗ ∗ ∗ ∗ . . . ∗ 2n− 2 0 ∗
∗ ∗ ∗ ∗ ∗ . . . ∗ 0 2n− 2 ∗
∗ ∗ ∗ ∗ ∗ . . . ∗ ∗ ∗ 2n− 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where we have used the abbreviation ∗ to indicate entries equal to −1. We
may compute the determinant of M as the product of its eigenvalues. From
the form of M , one easily sees the following 2n− 3 eigenvalues:

• an (n − 1)-fold eigenvalue 2n − 2, belonging to the pairwise orthogonal
eigenvectors (1 ∗ 00 . . .0)T ; (001 ∗ 00 . . .0)T ; . . . ; (00 . . .001 ∗ 0)T ;

• an (n− 2)-fold eigenvalue 2n, belonging to the pairwise orthogonal eigen-
vectors (11 ∗ ∗00 . . .0)T ; (1100 ∗ ∗00 . . .0)T ; . . . ; (110 . . .00 ∗ ∗0)T .

The remaining two eigenvalues are not obvious. However, the orthogonal
complement of the (2n− 3)-dimensional vector space generated by the eigen-
values constructed so far is clearly spanned by the two vectors (1, . . . ,1,0)T

and (0, . . . ,0,1)T , which are not eigenvectors. Thus the further eigenvectors
have to have the form (1, . . . ,1, x)T . Then the corresponding eigenvalue is
necessarily 2− x, which leads to the condition

(2n− 2)(x− 1) = x(2− x).

We get two solutions for x, namely −n+2±
√
n2 − 2n+ 2. Hence the missing

two eigenvalues are n ±
√
n2 − 2n+ 2, with product 2n − 2. Therefore the

desired number equals

(2n− 2)n(2n)n−2.

4.3.4 Let e be an edge incident with v which has smallest weight among all
such edges, and suppose that e is not contained in a given minimal spanning
tree T for G. The cycle CT (e) which arises by adding e to T has to contain a
second edge incident with v, say f ; by Theorem 4.3.1, w(e)≥ w(f). In view
of our choice of e, we conclude w(f) =w(e), so that f is an edge of T having
the required property.
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4.3.5 The assertion is an immediate consequence of Exercise 4.3.6. A direct
proof of the special case in question could proceed as follows. Suppose that
G contains two distinct minimal spanning trees T and T ′. Order the edges
of T and T ′ according to increasing weight and assume that both trees have
their first k− 1 edges in common, whereas they differ in their respective kth

edges:

T = {e1, . . . , ek−1, ek, . . . , en−1} and T ′ =
{
e1, . . . , ek−1, e

′
k, . . . , e

′
n−1

}
,

where (without loss of generality)

w(e1)< · · ·<w(en−1) and w(ek)<w
(
e′k
)
< · · ·<w

(
e′n−1

)
.

Adding the edge ek to T ′ yields a cycle CT ′(ek); by Theorem 4.3.1, w(ek)≥
w(f) for all edges f ∈ CT ′(ek). As the weights of the edges are distinct, all
edges f �= ek of CT ′(ek) have to be contained among the first k − 1 edges
e1, . . . , ek−1 of T ′. Hence T contains the cycle CT ′(ek), a contradiction.

4.3.6 Let T be any minimal spanning tree, so that T satisfies condition
(4.1). Then T can be transformed into any fixed minimal spanning tree T ′

by a sequence of edge exchanges as in the proof of Theorem 4.3.1, where we
obtained a third minimal spanning tree T ′′ = (T ′ \ {e′})∪ {e}. Moreover, we
had w(e) =w(e′), so that such an exchange always transforms T ′ into a tree
T ′′ with the same weight sequence. Hence the induction argument given in
the proof of Theorem 4.3.1 actually proves the additional assertion of the
present exercise.

4.4.6 Perturb the weight function w by adding small constants to the weights
of edges having the same weight under w. Clearly, this may be done in such
a way that the resulting weight function w′ assigns distinct weights to dis-
tinct edges, and that w′(e)< w′(e′) holds if and only if either w(e)< w(e′)
or w(e) = w(e′), but e precedes e′ under the specified tiebreaking rule. By
Exercise 4.3.5, there is a unique minimal spanning tree with respect to w′,
which implies the assertion.

4.4.11 Order the edges of G according to increasing weight. As the algo-
rithm of Kruskal constructs a minimal spanning tree T by selecting edges in
this order (as far as possible), no spanning tree having a smaller maximum
edge weight can exist. Moreover, any two minimal spanning trees have the
same weight sequence by Exercise 4.3.6. Hence any spanning tree T ′ satisfies
W (T ′)≥W (T ).

4.4.15 Assign weight 1 to all the edges, and apply the algorithm of Boruvka
in this situation. Then we could choose an arbitrary edge eu leaving a given
connected component U ∈M . In general, there will exist two connected com-
ponents U,U ′ ∈M which can be connected by two different edges of G; then
choosing these two edges as eu and eu′ would create a cycle.
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Fig. B.12 A digraph

4.4.16 A minimal spanning tree has weight 2 + 13+ 21+ 35+ 51 = 122.

4.4.17 The proof of Theorem 4.3.1 shows that the subgraph of the minimal
spanning trees (for a given weight function w) is connected. If we assign
weight w(e) = 1 to all edges e, we see that this implies that the whole tree
graph is connected.

4.5.5 The edges e15, e14, e13, e12, e11, e10 and e8 form a maximal spanning
tree (of weight 28 + 27+ 26+ 24+ 10+ 9+ 8 = 132). The edges are given in
the order in which the algorithm of Kruskal would find them.

4.5.6 The following characterization of maximal spanning trees follows from
Theorem 4.3.1 by replacing w by −w: a spanning tree T is maximal if and
only if the condition

(∗) w(e)≤w(f) for all edges f in CT (e)

holds for each edge e /∈ T . Now let e= uv be an edge of G not contained in T .
By hypothesis, the unique path P from u to v in T has capacity w(P )≥w(e);
this implies (∗) in view of CT (e) = P ∪ {e}, which proves the assertion.

4.5.8 The digraph shown in Fig. B.12 provides an example.

4.7.9 Let T be an arbitrary spanning tree for G, and let x be a center
of T . Denote the eccentricity of x in T by eT (x); then T has diameter either
dT = 2eT (x) or dT = 2eT (x)− 1 by Exercise 4.1.3. Clearly, x has eccentricity
at most eT (x) in G. Thus it is an obvious approach to look for spanning trees
whose centers are centers of G as well.

Now let z be a center of G, and let Tz be a spanning tree for G determined
by a BFS starting at z. Note that Tz is an SP-tree for G with root z. It is
easy to see that z is also a center of Tz . Therefore Tz has diameter d = 2e
or d = 2e − 1, where e denotes the eccentricity of z in G. Moreover, every
other spanning tree has diameter at least 2e−1. Hence the tree Tz solves our
problem; note that a center z (and then a tree Tz) can be determined with
complexity O(|V |3) by Theorem 3.9.8.

We mention that it is easy to find examples where a BFS starting at z
could either find a tree of diameter 2e or a tree of diameter 2e−1, depending
on the order in which adjacent vertices are examined.
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Fig. B.13 Two matchings

Fig. B.14 A counter-

example for the case k = 2

B.5 Solutions for Chap. 5

5.1.5 The network in Fig. B.13 has a maximal matching of weight 14, but
the greedy algorithm constructs a matching of weight 12.

5.2.3 Let N be the incidence matrix of the graph G = (V,E). Identify E
with the set of columns of N and apply Theorem 4.2.3.

5.2.4 Let A ⊆ E. As the forests of G form the graphic matroid M(G) =
M0(G) on E, A has a well-defined rank �(A) in M(G), namely the maximal
cardinality of a forest contained in A. We use this fact to verify condition
(3) in Theorem 5.2.1 for M =Mk(G), which will establish that M is likewise
a matroid. We distinguish two cases: if |A| − �(A)≤ k, then A itself is inde-
pendent in M (and thus the only maximal independent set contained in A);
and if |A| − �(A)> k, then the maximal independent sets of M contained in
A are the maximal forests in A enlarged by any k further edges from A (and
thus all have cardinality �(A) + k).

5.2.5 The assertion is a special case of Exercise 5.2.3, as the 1-forests of
G= (V,E) are just those subsets of E which contain at most one cycle. The
analogous statement for k = 2 does not hold, as Fig. B.14 shows.
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Here removing either e or both of f and f ′ results in maximal subgraphs
with at most two cycles, so that condition (3) in Theorem (5.2.1) is violated.
Note that adding two edges to the star spanning G may create either two or
three cycles, depending on whether or not e is one of these edges.

5.2.6 Conditions (1) and (2) are clear. To show that (3) holds, let J be a
maximal independent subset of A ∩ B, and choose a maximal independent
subset K of A ∪ B containing J . Write K = J

.
∪ X

.
∪ Y with X ⊂ A and

Y ⊂B. Then J ∪X and J ∪ Y are independent subsets of A and B, respec-
tively, so that

ρ(A∪B) + ρ(A∩B) = 2|J |+ |X|+ |Y |= |J ∪X|+ |J ∪ Y | ≤ ρ(A) + ρ(B).

5.2.10 By Theorem 5.2.9, σ(X) = {e ∈ E : ρ(X ∪ {e}) = ρ(X)}; therefore
condition (1) is clear. To prove (2), let J be a maximal independent subset
of Y , and choose a maximal independent subset K of X containing J . If
e ∈ σ(Y ), then e ∈ σ(X): otherwise K ∪ {e} would be independent, so that
J ∪ {e} would be independent as well, contradicting ρ(J ∪ {e}) = ρ(J)).

By Theorem 5.2.9, σ(X) is the unique maximal set containing X such
that ρ(σ(X)) = ρ(X); now (3) is clear. To show (4), let J be a maximal
independent subset of X (and hence of σ(X)). As y /∈ σ(X) and y ∈ σ(X ∪
{x}), J∪{x} and J∪{y} have to be independent sets. Moreover, ρ(X∪{x}) =
ρ(X ∪ {y}) = ρ(X ∪ {x, y}). But this implies x ∈ σ(X ∪ {y}).

5.2.11 Let B be a basis of the matroid M = (E,S). As ρ(B) = ρ(E), The-
orem 5.2.9 yields ρ(B) = E, so that B is a generating set for M . Suppose
that B is not minimal. Then there exists a proper subset C of B such that
B ⊂E = σ(C). But then ρ(E) = |C|< |B|, which contradicts the fact that B
is independent.

Conversely, let D be a minimal generating set and A a maximal inde-
pendent subset of D. Then ρ(D) = |A| implies D ⊂ σ(A) and (using Ex-
ercise 5.2.10) E = σ(D) ⊂ σ(σ(A)) = σ(A). Hence A is a generating set of
M , and the minimality of D implies A = D. Thus D is independent. Now
σ(D) =E, so that |D|= ρ(E); therefore D is a basis of M .

5.2.12 Let A and B be two closed sets in M . Then

σ(A∩B)⊂ σ(A)∩ σ(B) =A∩B ⊂ σ(A∩B),

so that A∩B is closed as well; this establishes (a).
To prove (b), let A be a closed set containing X . Then σ(X)⊂ σ(A) =A.

Thus σ(X) is contained in the intersection of all closed sets containing X .
Now (a) implies that σ(X) coincides with this intersection.

Finally, suppose that the condition in (c) is violated for some x ∈ E \X ,
so that ρ(X ∪ {x}) = ρ(X). Then x ∈ σ(X), and X cannot be closed. The
converse is similar.
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5.2.13 Let {x1, . . . , xr} be a basis of (E,S). The 2r subsets of this basis have
2r distinct spans.

5.2.17 Suppose that condition (2′) does not hold. Choose two cycles C and
D and elements x ∈ C ∩D and y ∈ C \D violating (2′), so that |C ∪D| is
minimal among all counterexamples. In view of Theorem 5.2.16, there exists
a cycle F1 ⊂ (C ∪D)\{x} with y /∈ F1. Note that the set F1 ∩ (D \C) cannot
be empty: otherwise F1 would be a proper subset of C. Hence we may choose
an element z ∈ F1 ∩ (D \C).

Now consider the cycles D and F1 and the elements z ∈D ∩ F1 and x ∈
D \ F1. Note that D ∪ F1 is a proper subset of C ∪ D, since y /∈ D ∪ F1.
By the minimality of our counterexample, there exists a cycle F2 such that
x ∈ F2 ⊂ (D∪F1)\{z}. Consider C, F2, x ∈C∩F2, and y ∈C \F2. Again, the
minimality of our counterexample applies: there exists a cycle F3 such that
y ∈ F3 ⊂ (C ∪ F2) \ {x}. As C ∪ F2 is contained in C ∪D, we have obtained
a contradiction.

5.3.4 We use Exercise 5.2.11 to show that E \C is a closed set of M∗. Thus
let c be any element of C. We need to check that adding c to E \C increases
the rank:

�∗
(
(E \C)∪ {c}

)
=

∣
∣(E \C)∪ {c}

∣
∣+ �

(
C \ {c}

)
− �(E)

= |E \C|+ 1+ �(C)− �(E) = �∗(E \C) + 1.

It remains to show �∗(E \C) = �∗(M∗)− 1. As C is a circuit, C \ {c} is an
independent set and hence contained in a basis B of M . Then B∗ =E \B is
a basis for M∗ and therefore has rank �∗(M∗). But B∗ ⊆ (E \C)∪ {c}, and
thus �∗((E \C)∪ {c}) = �∗(M∗), which proves the assertion.

5.3.7 By Theorem 5.3.1, ρ(E \A∗) = ρ∗(A∗)− |A∗|+ ρ(E) = ρ(E), since A∗

is independent in M∗. As A is an independent subset of E \ A∗, A can be
extended to a maximal independent subset (in M ) of E \A∗; we denote this
subset by B. Then ρ(B) = ρ(E), so that B is a basis of M . Hence B∗ =E \B
is a basis of M∗ containing A∗.

5.3.8 First let B be a basis of M . Suppose that C∗ is a cocircuit which
is disjoint to B. Then E \B contains the cocircuit C∗ and is dependent in
M∗, which contradicts Corollary 5.3.2. Now suppose that a subset X of B
intersects each cocircuit. Then E \X cannot contain any circuit of M∗, so
that E \X must be independent in M∗. As E \X contains the basis E \B
of M∗, we conclude X =B. Thus the bases are the minimal sets intersecting
each cocircuit. The converse is shown in a similar manner.

5.3.9 Suppose C ∩ C∗ = {e}. Then the disjoint sets A = C \ {e} and A∗ =
C∗ \ {e} are independent in M and in M∗, respectively. By Exercise 5.3.7, A
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and A∗ can be extended to bases B and B∗ of M and M∗, respectively, and
these bases are disjoint. Hence E =B ∪B∗. As C and C∗ are dependent, e
can be contained neither in B nor in B∗, a contradiction.

5.3.10 Let B be a basis of M containing C \{x}. As B∗ =E \B is a basis of
M∗, B∗ ∪{y} has to contain a unique cocircuit C∗ of M by Theorem 5.2.14.
Obviously, y must be contained in C∗. Now x /∈C∗ would imply |C ∩C∗|= 1,
contradicting Exercise 5.3.9. Thus x, y ∈C ∩C∗, so that C ∩C∗ = {x, y}.

5.4.6 It suffices to find a subset A of E and two maximal independent subsets
D and D′ of A such that 2|D′|= n|D|. We may assume V = {1, . . . , n}. Then
D = {(i, i + 1) : i = 1, . . . , n − 1}, D′ = {(i, j) : i, j = 1, . . . , n and i > j} and
A=D ∪D′ have the required property.

5.4.10 M is the intersection of the graphic matroidM(G), the head-partition
matroid of G, and the tail-partition matroid of G.

5.5.7 Suppose w does not have to satisfy the triangle inequality. Then we
may, for instance, increase the weight of the edge of maximal weight in Ex-
ample 5.5.6 by an arbitrary value and thus make the solution determined by
the greedy algorithm arbitrarily poor.

5.6.3 Suppose that (CC) is violated by some A ∈ S, elements x, y ∈ ext(A),
and a set X ⊂ E \ (A ∪ ext(A)). Thus there exists a basis B such that A ∪
X ∪ {x} ⊂ B, whereas A ∪X ∪ {y} is not contained in any basis. Consider
the following weight function for E:

w(z) =

⎧
⎪⎪⎨

⎪⎪⎩

3 if z ∈A,
2 if z ∈X,
1 if z = y,
0 otherwise.

Then the basis B has weight w(B) = 3|A| + 2|X|. The greedy algorithm
begins by constructing (in some order) the feasible set A and then adds y;
note that the elements of X have larger weight than y, but are not contained
in ext(A). After that, the algorithm can add at most |X| − 1 of the elements
of X , because we assumed that A∪X ∪ {y} is not contained in any feasible
set. Thus the solution generated by the greedy algorithm has weight at most

3|A|+ 1+ 2
(
|X| − 1

)
<w(B),

a contradiction.
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Fig. B.15 A flow

B.6 Solutions for Chap. 6

6.1.9 Replace each vertex v by a pair (v, v′) of vertices, and each edge vw
by v′w. Furthermore, add all edges of the form vv′, and put c(v′w) = c(vw)
and c(vv′) = d(v). It is easily checked that a flow f ′ on the new network
corresponds to a flow f on N satisfying (F3).

Now let (S,T ) be a cut in the new network, and denote the set of edges e
with e− ∈ S and e+ ∈ T by E′. Each edge of type v′w corresponds to an edge
vw in N , and each edge of type vv′ corresponds to a vertex v of N . Thus the
set E′ of edges of the cut (S,T ) corresponds to a cut in N in the following
sense: a (generalized) cut is a set of edges and vertices (distinct from s and
t) of G so that every directed path from s to t contains at least one of these
edges and vertices. The capacity of such a cut is the sum of all c(e) and
d(v) for edges e and vertices v, respectively, which are contained in the cut.
Then the generalization of Theorem 6.1.6 states that he minimal capacity of
a generalized cut equals the maximal value of a flow satisfying (F3). This
theorem is easily derived by applying Theorem 6.1.6 to the network defined
above.

6.1.10 If we require k vertices s1, . . . , sk as sources (so that (F2) does not
have to be satisfied for these vertices, and as much flow as possible should
originate there), we can add a new source s and all edges ssi (i = 1, . . . , k)
with sufficiently large capacity.

6.1.11 Let W be the maximal value of a flow on N , and let (S,T ) be a
minimal cut; by hypothesis, c(S,T ) =W �= 0. If we remove an edge e with
e− ∈ S and e+ ∈ T and c(e) �= 0 from G, the capacity c(S,T ) and hence the
value of a maximal flow is decreased by c(e). This suggests to choose e as an
edge of maximal capacity in a minimal cut. However, these edges do not have
to be most vital, as the example of the network given in Fig. 6.12 shows: here
the edge sa is obviously most vital, but it is not contained in a minimal cut.

6.1.12 No: the flow in the flow network of Fig. B.15 provides a counter-
example.

6.1.13 The capacities in the flow network of Fig. B.15 actually define an
integral flow, which is obviously maximal but not the sum of elementary
flows.

6.1.14 First, in step (3) of Algorithm 6.1.7, we set d(v) = 0 for v �= s. During
the following labelling process, the labels are not permanent; similarly to
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the algorithm of Dijkstra, the label of the vertex v which is chosen in step
(5) is made permanent at this point. As we want to construct augmenting
paths of maximal capacity from s to all the other vertices, we choose in step
(5)—among all labelled vertices v with u(v) = false (that is, v is not yet
permanent)—the vertex v for which d(v) is maximal; initially, this is s.

Moreover, we do not change the flow as soon as t is reached, but wait until
t is chosen in step (5) (and thus made permanent). For this purpose, we insert
an if clause after step (5): if v = t, we may change the flow as in steps (16)
to (28) of Algorithm 6.1.7; of course, we have to set d(v) = 0 for v �= s in step
(27). Otherwise (if v �= t), the labelling process is continued from v. As in
steps (6) to (9), we first consider all edges of the form e= vw. If u(w) = false
(that is, w is not yet labelled permanently) and d(w)<min{d(v), c(e)−f(e)},
then d(w) is replaced by this minimum and w is labelled with (v,+, d(w)), so
that the former label is also replaced. Steps (10) to (13) (for edges of the form
e= wv) are changed in an analogous manner. Next v is made permanent in
step (14). We leave the details and the task of writing down a formal version
of this method to the reader.

6.1.15 Let us write P = S ∩S′, Q= T ∩S′, R= S ∩T ′, and U = T ∩T ′; see
Fig. B.16. Denote the maximal flow value on N by W . By hypothesis,

W = c(S,T ) = c(P,Q) + c(P,U) + c(R,Q) + c(R,U)

and

W = c
(
S′, T ′)= c(P,R) + c(P,U) + c(Q,R) + c(Q,U).

On the other hand, using Lemma 6.1.2,

W ≤ c
(
S ∩ S′, T ∪ T ′)= c(P,Q) + c(P,R) + c(P,U)

and

W ≤ c
(
S ∪ S′, T ∩ T ′)= c(P,U) + c(Q,U) + c(R,U).

Hence

2W = c(S,T ) + c
(
S′, T ′)≥ c

(
S ∩ S′, T ∪ T ′)+ c

(
S ∪ S′, T ∩ T ′)≥ 2W.

Thus we have equality throughout, implying

c
(
S ∩ S′, T ∪ T ′)= c

(
S ∪ S′, T ∩ T ′)=W.

6.1.16 Let (S,T ) be any minimal cut, and assume that some vertex v ∈ T is
accessible from s on an augmenting path P with respect to the given maximal
flow f . Clearly, P has to contain an edge e which lies in the cocycle E(S,T ).
If e is a forward edge, it cannot be saturated; and if e is a backward edge,
it cannot be void. But this contradicts the characterization of minimal cuts
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Fig. B.16 The cuts in

Exercise 6.1.15

given in Lemma 6.1.2, and we conclude Sf ⊆ S for each minimal cut (S,T ).
Hence the intersection S0 of all such S contains Sf . By Exercise 6.1.15, S0 is
itself the s-part of a minimal cut, which proves the assertion: Sf = S0.

6.2.4 A second maximal flow g can be obtained from the flow f9 in Fig. B.15
by letting the edge ct not carry any flow, and enlarging the value of the flow on
the edges cf and ft accordingly: g(ct) = 0, g(cf) = 15, g(ft) = 17. Actually,
there are further maximal flows, as there are several ways of distributing the
flow emanating from c.

In contrast, (Sf , Tf ) is the unique minimal cut, as can be seen using Ex-
ercise 6.1.16 and the criterion in Lemma 6.1.2. For instance, if we wanted to
move the vertex b from the t-part Tf to the s-part Sf of the cut, we would
have to include also c into the s-part, as the edge bc is not saturated. Con-
versely, if we wanted to include c, we also would have to include b, as bc is
not void either. Using this type of argument shows that the s-part Sf cannot
be enlarged at all.

6.2.5 We use the algorithm described in the solution to Exercise 6.1.14.
During the first iteration, the vertices chosen in step (5) are s with d(s) =∞,
a with d(a) = 38, d with d(d) = 13, c with d(c) = 10, f with d(f) = 10, and t
with d(t) = 10 (in this order). This yields an augmenting path with capacity
10; we obtain the flow f1 of value 10 shown in Fig. B.17, which also gives the
labels determined by the first iteration.

During the next iteration, the vertices s with d(s) =∞, a with d(a) = 28,
d with d(d) = 13, b with d(b) = 8, c with d(c) = 8, f with d(f) = 8, and t
with d(t) = 8 are chosen in step (5). The corresponding augmenting path
with capacity 8 yields the flow f2 shown in Fig. B.18.

During the following iteration, the vertices chosen in step (5) are s with
d(s) =∞, a with d(a) = 20, d with d(d) = 13, and t with d(t) = 7. We obtain
an augmenting path with capacity 7 and the flow f3 shown in Fig. B.19.

Four more iterations are needed; the augmenting paths constructed are
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Fig. B.17 w(f1) = 10

Fig. B.18 w(f2) = 18

• s f t with capacity 2,

• s a d b c f t with capacity 2,

• s b c t with capacity 1,
• and s a d e t with capacity 1.

The resulting flow f with w(f) = 31 is shown in Fig. B.20.
Thus this algorithm needs seven flow changes, whereas the algorithm of

Edmonds and Karp used in Example 6.2.3 made nine changes. However, in
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Fig. B.19 w(f3) = 25

Fig. B.20 w(f) = 31

the algorithm used here, the labelling process is somewhat more involved.
Note that the maximal flows of Figs. 6.12 and B.20 are not identical.

6.2.6 The maximal value of a flow is 5; Fig. B.21 shows a flow f with w(f) =
5 and a cut having this capacity.

6.2.7 Let f be the flow of value W =w(f) which was found for the incorrect
capacity d(e), let (S,T ) be a minimal cut, and denote the correct capacity by
c(e). The results for the incorrect input data can be used when calculating a
flow for the correct capacity as follows, where we distinguish two cases.
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Fig. B.21 Solution to Exercise 6.2.5

Case 1. c(e)< d(e). It is clear that (S,T ) is still a minimal cut, if e is con-
tained in (S,T ) (that is, e− ∈ S and e+ ∈ T ). In the corrected network, (S,T )
has capacity c(S,T )− (d(e)− c(e)), so that the maximal value of a flow is
W ′ = W − (d(e) − c(e)). To find a flow of value W ′, consider all the aug-
menting paths (constructed before) containing e and decrease the value of
the corresponding flow by d(e)− c(e).

If e is not contained in (S,T ) and f(e)≤ c(e), there is obviously nothing
to change. If f(e)> c(e), we decrease the flow by f(e)− c(e) (as before) and
run the algorithm again, using the decreased flow as the initial flow.

Case 2. c(e)> d(e): If e is not contained in (S,T ), then (S,T ) is still a minimal
cut and there is nothing to change. Otherwise, we run the algorithm again,
using f as the initial flow.

6.2.8 Note that the edge e= ac is contained in the minimal cut (S,T ) shown
in Fig. 6.12. If c(e) = 8, (S,T ) is still a minimal cut, so that the value of
the flow has to be decreased to 29. A maximal flow of this value can be
constructed from the flow of Fig. 6.12 by decreasing the flow values of all
edges in the augmenting path shown in Fig. 6.7 by 2. For c(e) = 12, the same
augmenting path can be used for increasing the value of the flow to 33.

6.2.9 First, the capacity of ac is increased to 12, so that the value of the
flow can be increased to 33 (by increasing f(e) by 2 for each of the edges
e = sa, ac, cf, ft); see Exercise 6.2.8. Since the edge ad is not contained in
the minimal cut (S,T ), increasing the capacity of this edge does not affect
the maximal flow. Now we delete the edge de. As this edge is contained in
(S,T ), the value of the flow has to be decreased by 1, say along the path
s a d e t. Finally, ct is removed. The value of a maximal flow is
not changed, because the unit of flow carried by ct can be moved along the
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Fig. B.22 w(f) = 32 = c(S,T )

Fig. B.23 A blocking flow

path c f t instead. We obtain the flow of value 32 shown in Fig. B.22;

note that (Sf , Tf ) is still a minimal cut, as it should be according to Exer-
cise 6.1.16.

6.3.5 By definition, c′(S,T ) is the sum of all c′(x) for x− ∈ S and x+ ∈ T . If
x= e′ corresponds to a forward edge e, we have c′(x) = c(e)−f(e). Otherwise
(if x= e′′ corresponds to a backward edge e), c′(x) = f(e). Thus

c′(S,T ) =
∑

e−∈S,e+∈T

c(e)−
∑

e−∈S,e+∈T

f(e) +
∑

e−∈T,e+∈S

f(e);

hence, using Lemma 6.1.2, c′(S,T ) = c(S,T )−w(f). In particular, this holds
for minimal cuts, and the assertion follows by applying Theorem 6.1.6 to both
networks.

6.3.8 Execute a BFS starting at t on the digraph with opposite orientation,
and remove all vertices which are not reached during the algorithm.

6.3.9 The network N ′′ and a blocking flow are shown in Fig. B.23.
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Fig. B.24 Layered auxiliary network for N ′(f)

Fig. B.25 Layered auxiliary network for N ′′(f)

6.3.10 Consider Example 6.3.7, and note that the blocking flow g on N ′′(f)
of value 10 leads to a maximal flow g′ of value 11 on N ′′(f). The underlying
flow f has value 10, whereas the maximal value of a flow on N is 31 �= 10+11;
see Example 6.2.3.

6.3.13 The layered auxiliary network with respect to g on N ′(f) is shown
in Fig. B.24, and the layered auxiliary network with respect to g on N ′′(f) is
shown in Fig. B.25. The flow determined on N by f and g is the flow h= f6
shown in Fig. 6.9. Thus N ′′(h) is equal to the network of Fig. B.24.

6.3.19 Replace step (17) of procedure AUXNET (Algorithm 6.3.14) by

(17′) if t ∈ V ′′ then max← false; d← i else max← true;
S ← V ′′; T ← V \ S fi

6.4.5 A blocking flow determined by Algorithm 6.4.1 is shown in Fig. B.26.
The paths corresponding to the sequences (s, a, d, f, t), (s, b, d, f, t), (s, c, d,
f, t), (s, c, d, g, t), (s, a, e, h, t), (s, a, e, k, t) were constructed in this order (as
usual, if there were several possible ways of choosing the edge e= uv in step
(5), we have proceeded according to the alphabetical order of the vertices);
their capacities are 3, 2, 4, 3, 1, and 10, respectively. Thus the total value of
the flow is 23.

6.4.10 Algorithm 6.4.6 needs four iterations, where the vertices of minimal
potential are h with p(h) = 4, c with p(c) = 7, d with p(d) = 2, and e with
p(e) = 10, respectively. The resulting blocking flow of value 23 is shown in
Fig. B.27. Note that it is not identical with the one given in Fig. B.26.
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Fig. B.26 Solution to Exercise 6.4.5

Fig. B.27 Solution to Exercise 6.4.10

6.5.6 Define a bipartite graph G on S
.
∪ T , where S = {1, . . . ,m} and T =

{1′, . . . , n′}, and let {i, j′} be an edge if and only if girl i and boy j′ know
each other. Then the desired arrangement for a dance obviously corresponds
to a matching of maximal cardinality in G; a solution can be determined
using Example 6.5.5.

6.5.7 Let A⊂ S, and let X ⊂ A be an independent subset of maximal car-
dinality of A, say |X| = k. Consider the network N constructed from G in
Example 6.5.5. Remove all vertices of S \A together with all edges incident
with them from N , and denote the resulting network by NA. Moreover, let
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M be a matching of G with X = {e− : e ∈M}. As we saw in Example 6.5.5,
M induces a flow of value k on NA.

Now let Y be a maximal independent subset of A, say Y = {e− : e ∈M ′}
for some matching M ′; by hypothesis, |Y | ≤ k. Suppose |Y | < k. Then the
flow on NA corresponding to M ′ cannot be maximal, and a maximal flow
f can be obtained by constructing k − |Y | augmenting paths in NA. It is
easy to see that there always is a matching corresponding to an independent
subset of A containing Y (for each change of the flow). Thus Y cannot have
been maximal either, a contradiction. Hence any two maximal independent
subsets of A have the same cardinality k, so that (S,S) satisfies condition (3)
of Theorem 5.2.1 and therefore is a matroid.

Such matroids are called transversal matroids; they are considered in
Sect. 7.3. We have given an algorithmic proof for the fact that (S,S) is
a matroid, by showing in a constructive way that condition (3) of Theo-
rem 5.2.1 is satisfied. In a similar manner, the validity of condition (3) can
be proved also—in the language of transversal theory—by using the algorithm
of [Hal56]; see Sect. 7.3.

6.6.13 As there are only n− 2 vertices distinct from s and t, at least one of
the numbers i in the range 1≤ i≤ n−1 does not occur as a label d(v). Choose
such an i, and consider S = {v ∈ V : d(v) > i} and T = {w ∈ V : d(w) < i}.
Note s ∈ S and t ∈ T . Our selection of i implies d(v)≥ d(w)+2 for all choices
of v ∈ S and w ∈ T . Thus no edge e= vw with v ∈ S and w ∈ T can belong
to the residual graph Gf , since it violates the condition d(v) ≤ d(w) + 1.
As explained at the beginning of Sect. 6.6, Gf corresponds to the auxiliary
network N ′(f) used in the classical algorithms. Using similar arguments, it
is easily seen that the fact that no edge e= vw with v ∈ S and w ∈ T belongs
to Gf translates into the statement that each edge e with e− ∈ S and e+ ∈ T
is saturated, whereas each edge e with e− ∈ T and e+ ∈ S is void. Now
Lemma 6.1.2 shows that (S,T ) is a minimal cut.

6.6.19 The algorithm FIFOFLOW determines (after nine phases) the max-
imal flow shown in Fig. 6.12. It needs 14 RELABEL and 23 PUSH opera-
tions, that is three more RELABEL and five more PUSH operations than
HLFLOW.

B.7 Solutions for Chap. 7

7.1.3 We use the algorithm of Edmonds and Karp. Suppose that there exists
an augmenting path containing a backward edge, and let P be the first such
path and e= uv be the last backward edge in P . When P is constructed, we
must have f(e) �= 0. Let Q be the last augmenting path constructed before
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P for which f(e) was changed (and actually increased). Then P and Q have
the form

P : s
P ′

v u
P ′′

t

and

Q : s
Q′

u v
Q′′

t.

Denote the capacities of P and Q by γ and δ, respectively. Suppose first that
γ ≤ δ. Then we may replace Q and P by the following three paths:

s
Q′

u v
Q′′

t (with capacity δ− γ);

s
Q′

u
P ′′

t (with capacity γ);

s
P ′

v
Q′′

t (with capacity γ).

Then P ′′, Q′, and Q′′ contain only forward edges, and the sum of the capaci-
ties of these three paths is γ+ δ, so that we have removed the backward edge
e from P .

For γ > δ, we use similar arguments to replace P and Q by three paths
whose capacities sum to γ+ δ. However, the backward edge e is not removed
in this case, since we need the path P with capacity γ − δ. Nevertheless,
the capacity of P is decreased, so that this method has to terminate. As
the algorithm of Edmonds and Karp is finite, we get a finite method for
constructing a maximal flow which uses only augmenting paths consisting
exclusively of forward edges.

In Example 6.2.3, the only backward edge occurs in the last augmenting
path, which has capacity 1 (see Fig. 6.11):

P : s a d e c f t;

the backward edge is ce. Here Q is the following augmenting path:

Q : s a c e t,

which has capacity 7; see Fig. 6.6. As described above, we may replace P and
Q by the following three augmenting paths:

• s a c e t (with capacity 6);

• s a c f t (with capacity 1);

• s a d e t (with capacity 1).
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7.1.7 Clearly, the proposed criterion is sufficient. Now let G be k-connected.
By Menger’s theorem, any two non-adjacent vertices of G are connected by
k vertex disjoint paths. It remains to consider adjacent vertices s and t. Let
H be the graph obtained by removing the edge st from G. Obviously, H is at
least (k − 1)-connected. Again by Menger’s theorem, s and t are connected
in H by k−1 vertex disjoint paths. Then st is the k-th path from s to t in G.

7.1.8 By Exercise 7.1.7, any two vertices of a k-connected graph are con-
nected by k vertex disjoint paths, so that every vertex must have degree at
least k. On the other hand, Exercise 1.5.14 shows that a planar graph has to
contain vertices of degree at most 5. This proves the first assertion.

The graph with six vertices shown in Fig. B.5 is 4-connected. If G is 5-
connected, every vertex must have degree at least 5. As in the solution to
Exercise 1.5.14, we get the following bound on the number n5 of vertices of
degree at most (and hence equal to) 5:

6(n− n5) + 5n5 ≤ 12n− 6;

thus n ≥ n5 ≥ 12. The icosahedral graph provides an example with twelve
vertices; see Fig. 9.1.

7.1.9 Let G be the given graph, and s and t the specified vertices. Consider
the graph H whose vertices are the edges of G together with s and t and
define adjacency as follows: two edges of G are adjacent in H if and only
if they share a common vertex v �= s, t in G; any edge e of the form sv is
adjacent to s; and any edge e of the form vt is adjacent to t. Note that s and
t are not adjacent in H .

It is clear that edge disjoint paths from s to t in G are transformed into
vertex disjoint paths in H by the preceding construction. In the converse
direction, one has to be a bit careful, as a path in H corresponds to a trail
in G, but not necessarily to a path. However, this difficulty can be overcome
by appealing to Exercise 1.2.1, which guarantees that we may select a path
contained in a given trail.

Finally, it is again clear that edge separators for s and t in G correspond to
vertex separators for s and t inH . Hence the undirected case of Theorem 7.1.1
indeed reduces to the undirected case of Theorem 7.1.4. Note that the same
approach also works in the directed case; here one needs to use Exercise 1.6.6
instead of Exercise 1.2.1.

7.1.10 Add two vertices s and t and all edges sx for x ∈ S as well as all
edges yt for y ∈ T to G. Then the assertion follows from Theorem 7.1.4.

7.2.2 An unextendable matching M ′ has at least k/2 edges: otherwise, at
least one of the k edges of a maximal matching M could be added to M ′. It
is easy to construct examples which show that this bound is best possible.
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7.2.4 As explained in Example 6.5.5, we may run the labelling algorithm
(or, more efficiently, Dinic’ algorithm) to determine a maximal 0-1-flow f
and hence a maximal matching M . Let us denote the associated minimal cut
by (X,Y ), where X consists of all vertices which are accessible from s on an
augmenting path. We write SX for S ∩X , and SY for S ∩ Y ; the analogous
subsets of T will be denoted by TX and TY .

We claim that W = SY ∪TX is a minimum cardinality vertex cover for G.
The only edges which might not be covered by W are the edges of the form vw
with v ∈ SX and w ∈ TY . If such an edge vw does not belong to M , it does not
carry any flow, and hence could be used to extend an augmenting path from
s to v (which exists, as v ∈ SX ) on to w, contradicting w ∈ TY . It remains to
consider the case where vw ∈M . But then the edge sv is saturated, so that
v can only be reached via an augmenting path from s whose final edge is vw,
used as a backward edge; again, this gives the contradiction w ∈ TX . Thus
W is indeed a vertex cover.

Finally, we show that W and M have the same cardinality. By the max-
flow min-cut theorem, it suffices to check |W |= c(X,Y ), since |M | equals the
value of the maximal flow f . As all capacities are 1, we simply need to count
the edges in the cocycle C = E(X,Y ). Trivially, an edge sv belongs to C if
and only if v /∈ SX , giving |SY | edges in C with start vertex s. Similarly, we
get |TX | edges in C with start vertex in TX (and end vertex t). Altogether, we
now already have |W | edges in C, so that C should not contain any further
edges; indeed, any edge vw with start vertex v ∈ SX necessarily has w ∈ TX ,
as we have already seen when proving that W is a vertex cover.

7.2.8 The Petersen graph (see Fig. 1.12) is 3-regular, but does not have a
1-factorization. Assume otherwise. Then at least one of the three 1-factors
involved, say M , has to contain two edges of the outer cycle, say the two
edges drawn as dashed lines in Fig. B.28. But this already determines M
uniquely: for instance, the fifth point of the outer circle forces M to contain
the spoke edge through that point. Hence M is the 1-factor consisting of the
five dashed edges in Fig. B.28. But the complement of M is the union of
two vertex disjoint 5-cycles, and thus cannot split into two 1-factors. (This
argument is taken from [Vol04].)

7.2.10 Let us choose the disjoint union of the three 2n-sets R= {r1, . . . , r2n},
S = {s1, . . . , s2n}, and T = {t1, . . . , t2n} as the vertex set of K6n. Moreover

denote the complete bipartite graph on S
·
∪ T by KST , and the 1-factor

{siti : i= 1, . . . ,2n} of KST by FST .
By Corollary 7.2.7 and Exercise 1.1.2, both GST = KST \ FST and the

complete graph KR on R can be decomposed into 2n−1 1-factors. By choos-
ing an arbitrary bijection between these two sets of 1-factors and by merging
all the corresponding factors, we obtain 2n− 1 1-factors of K6n; altogether,
these factors contain precisely all the edges of one of the types sitj and rirj
(for i �= j).
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Fig. B.28 A 1-factor of

the Petersen graph

The same method yields (for the two cyclic permutations of the sets R, S,
and T ) 4n− 2 further 1-factors of K6n. The remaining edges which do not
occur in one of these 6n− 3 1-factors are of the form risi, riti, and siti (for
i= 1, . . . ,2n); obviously, these edges form a Δ-factor.

7.2.11 Denote the nine vertices by ij, where i, j = 0,1,2. Then the edges
where i is constant form three triangles which yield a first Δ-factor; similarly,
we obtain a second Δ-factor for constant j; then the remaining two Δ-factors
are uniquely determined. This unique decomposition of K9 into Δ-factors
is—using geometric terminology—just the affine plane of order 3; see, for
instance, [BetJL99].

7.2.12 Choose 2n − 1 factors of a 1-factorization of K6n−2 (see Exer-
cise 1.1.2) and denote the graph formed by these factors by G. Then G
is regular with degree (4n− 2) and, hence, can be decomposed into 2-factors
by Theorem 7.2.9. Now choose a bijection between these two sets of 2n− 1
factors and merge corresponding factors.

7.3.2 The assertion is clear for n= 1. Thus let n > 1. Choose x1 ∈ A1 and
put

B= (B2, . . . ,Bn) with Bi =Ai \ {x1}.

Assume first that A does not contain a critical subfamily. Then the union of
any k sets in A contains at least k+1 elements; thus B clearly satisfies (H′).
Hence B contains a transversal T , so that T ∪ {x1} is a transversal of A.

It remains to consider the case where A contains a critical subfamily, say
A′ = (A1, . . . ,Am). By the induction hypothesis, A′ contains a transversal T ′.
Put C= (Cm+1, . . . ,Cn), where Ci =Ai \T ′. Now one checks that C likewise
satisfies condition (H′), so that C has a transversal T ′′. Then T ′ ∪ T ′′ is a
transversal of A.

7.3.3 It is obvious that the maximal cardinality of a matching of G cannot
exceed the minimal cardinality of a vertex cover of G. Now suppose that
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X = S′ ∪ T ′ (where S′ ⊂ S and T ′ ⊂ T ) is a minimal vertex cover. We will
apply Theorem 7.3.1 in the terminology used in Theorem 7.2.5.

Consider the bipartite graph G′ induced on the set (S \S′)
·
∪ T ′. We want

to show that G′ satisfies condition (H). Suppose otherwise. Then there exists
a subset J of T ′ with |Γ (J)|< |J |, so that the set S′ ∪ Γ (J) ∪ (T ′ \ J) is a
vertex cover for G which has smaller cardinality than |X|. This contradicts
our assumption above and proves that G′ satisfies (H). By Theorem 7.2.5, G′

has a matching of cardinality |T ′|.
Similarly, the bipartite graph G′′ induced on the set S ∪ (T \ T ′) contains

a matching of cardinality |S′|. Then the union of these two matchings of G′

and G′′ forms a matching of cardinality |X| of G.

7.3.6 The maximal cardinality of a matching in a bipartite graph (with

vertex set S
·
∪ T ) is |T | −max{|J | − |Γ (J)| : J ⊂ T}.

7.3.10 Consider the familyA which consists of di copies of Ai for i= 1, . . . , k.
Then S is precisely the set of partial transversals of A, so that the assertion
follows from Theorem 7.3.8.

7.3.13 Trivially, (1) follows from (2). So suppose that (1) holds. Write m=
|S| and assume A′ = (A1, . . . ,Ak). Let D be an arbitrary set of cardinality n
which is disjoint to S, and consider the family B consisting of the sets

A1, . . . ,Ak,Ak+1 ∪D, . . . ,An ∪D and m times the set
(
S \ S′)∪D.

Now suppose that B has a transversal. As B consists of m+n subsets of the
set S∪D having m+n elements, this transversal has to be S∪D itself. Thus,
S is a transversal of a subfamily of B which contains all the sets A1, . . . ,Ak,
some of the sets Ak+1 ∪D, . . . ,An ∪D, and some copies of (S \S′)∪D. If we
delete all those elements representing copies of (S \S′)∪D from S, we obtain
a subset S′′ of S which contains S′ and is a transversal for a subfamily of A
containing A′.

It remains to show that the family B defined above satisfies condition (H′)
of the marriage theorem. This condition is
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for all J ⊂ {1, . . . , k}, K ⊂ {k + 1, . . . , n} and c ∈ {0, . . . ,m}. First consider
the case c= 0. If K = ∅, (B.1) follows from condition (H′) for A′, which holds
as A′ has a transversal. If K �= ∅, the union on the left hand side contains
the n-set D, so that (B.1) is satisfied because of n≥ |J |+ |K|. Now let c �= 0;
it suffices to consider the case c=m. As D and S are disjoint, (B.1) becomes
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so that (B.2) is equivalent to
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This condition holds by Theorem 7.3.7, as S′ is a partial transversal of A.

7.3.14 Let G be the bipartite graph with vertex set S
·
∪ T corresponding

to A. As in Exercise 6.5.7, one sees that there is also a matroid induced on
T . Using the terminology of set families, the independent sets of this matroid
are precisely those subsets of the index set T for which the corresponding
subfamily of A has a transversal.

7.3.18 Let B be the family consisting of pi copies of Ai for i = 1, . . . , n.
Then the existence of sets Xi with the desired properties is equivalent to
the existence of a transversal of B. Now condition (H′) for B is precisely
the condition given in the exercise, so that the assertion follows from the
marriage theorem.

7.4.13 The assertions of Corollaries 7.4.6 and 7.2.7 are equivalent.

7.4.14 Let D be a diagonal with entries d1, . . . , dn satisfying d1 . . . dn ≥ n−n.
The inequality between the arithmetic and the geometric mean3 implies

(d1 . . . dn)
1/n ≤ d1 + · · ·+ dn

n
,

so that d1 + · · ·+ dn ≥ 1.

7.4.15 Let T be the set family as described in the hint. Then T satisfies
condition (H′), since the ktr entries 1 in any given k rows of A have to be
contained in at least kt columns of A (note that A has column sums ≤ r).
Therefore T has a transversal, so that there exist pairwise disjoint t-subsets
Si of Ti for i = 1, . . . ,m. Then the matrix P with entries pij = 1 for i ∈ Sj

and pij = 0 otherwise has row sums t and column sums ≤ 1. Moreover, the
matrix A′ =A− P has row sums t(r− 1).

3For a proof of the inequality mentioned above and of a more general inequality due to

Muirhead [Mui03] using the methods of transversal theory, we refer the reader to [Mir71b,

Theorem 4.3.3].
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As we want to use induction on r, we still have to make sure that the
set X of all those indices for which column j of A has sum r is contained
in S1 ∪ · · · ∪ Sm (so that A′ has column sums ≤ r − 1). By Corollary 7.3.9,
it is sufficient to show that X is a partial transversal of T. However, any
k columns having sum r together contain precisely kr entries 1, and these
entries have to be contained in at least k/t rows of A. As each Ti occurs
precisely t times in T, any k elements of X correspond to at least k sets
in T. Now Theorem 7.2.5 implies that X is a partial transversal.

7.4.16 Using the equivalence of 0-1-matrices and bipartite graphs discussed
at the beginning of Sect. 7.4, the assertion amounts to showing that a bi-
partite graph of maximal degree r can be decomposed into r matchings. Let

S
·
∪ T be the vertex set of G, and denote the set of vertices of degree r in S

and T by S′ and T ′, respectively. By Theorem 7.2.5, there exist matchings
M ′ and M ′′ of G which meet S′ and T ′, respectively. By Corollary 7.3.12,
there also exists a matching M meeting S′ ∪ T ′. Then G \M has maximal
degree r− 1, and the assertion follows by induction.

7.4.17 We may assume n≥ 3. We show first that the subspace W of R(n,n)

spanned by the permutation matrices consists precisely of those matrices for
which all row and column sums are equal. Obviously, any linear combination
of permutation matrices is contained in W and has constant row and column
sum. Conversely, let A be a matrix with constant row and column sum. If A
does not contain any negative entries, A is contained in W by Theorem 7.4.7.
Otherwise, put b = max{−aij : i, j = 1, . . . , n}. Then the matrix B = A +
bJ (where J is the matrix with all entries 1) has nonnegative entries and
constant row and column sum. Therefore J and B (and A as well) are linear
combinations of permutation matrices.

Now let W ′ be the subspace spanned by the 2n−2 matrices Si and Zi (for
i= 1, . . . , n−1) which have entry 1 in cell (n, i) and in cell (i, n), respectively,
and all other entries 0. Obviously, W and W ′ have only the zero matrix in
common. Thus dimW = n2 − 2n+ 2 follows if we can show that W and W ′

together generate R
(n,n). Let A be an arbitrary matrix in R

(n,n). By adding
appropriate multiples of Si or of Zi to A, we can obtain a matrix C for which
the first n− 1 rows and the first n− 1 columns have a fixed sum s. Then the
last row and the last column of C must have identical sum, say x. Adding
aSi and aZi to C, the sum s can be changed to s′ = s+ a; simultaneously, x
is changed to x′ = x+(n− 1)a. As n �= 2, we can determine a so that x′ = s′;
that is, the resulting matrix C ′ has constant row and column sum. Thus C ′

is contained in W , so that A is contained in W +W ′.

7.5.4 Suppose G is a minimal counterexample to the assertion, and let D
be a dissection of G consisting of as few paths as possible. Then D contains
at least α+ 1 paths. Suppose we have |D| ≥ α+ 2. We omit a path W from
D. As G is minimal, G \W has a dissection into at most α paths, say D′.
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But then D′ ∪ {W} is a dissection of G into α+ 1 paths contradicting our
assumption.

Hence |D| = α+ 1, say D = {W1, . . . ,Wα+1}. Denote the start vertex of
Wi by pi. By definition of α, the α+1 vertices pi cannot form an independent
set; we may assume that p1p2 is an edge. If W1 consists of p1 only, we may
omit W1 and replace W2 by (p1p2)W2, so that G would be decomposable into
α paths. Thus W1 cannot be trivial.

Let W ′
1 be the path obtained by omitting the first edge p1p

′
1 from W1. As

G is a minimal counterexample, the graph H =G \ p1 satisfies the assertion.
Now {W ′

1,W2, . . . ,Wα+1} is a dissection of H , so that we can find a dissection
{Z1, . . . ,Zk} of H into k ≤ α paths such that the start vertices of these paths
are contained in {p′1, p2, . . . , pα+1}.

If p′1 is the start vertex of one of the paths Zi, Zi can be replaced by
(p1p

′
1)Zi, which yields a dissection of G into at most α paths. If k < α, we

may add the trivial path {p′1} to the Zi. If neither of these two conditions
holds, we must have k = α, and the start vertices of the Zi are precisely the
vertices p2, . . . , pα+1. Thus p2 is the start vertex of some Zh. Replacing Zh

by (p1p2)Zh again yields a dissection of G into at most α paths. Therefore
G cannot be a counterexample, and the assertion holds in general.

7.5.5 As a tournament is an orientation of a complete graph, the maximal
independent sets have only one element in this case. Thus the assertion follows
immediately from Exercise 7.5.4.

Let us also give a very easy direct proof (not using Exercise 7.5.4). Choose a
directed path of maximal length in G, say W : v1 v2 · · · vk. Suppose
that W is not a Hamiltonian path; then there exists a vertex v not on W .
As W is maximal, G contains neither an edge vv1 nor an edge vkv, so that
G has to contain the edges v1v and vvk. Hence there must be some index
i (1 < i < k) such that G contains the edges viv and vvi+1. Then we can
replace the edge vivi+1 in W by these two edges, so that W is not maximal,
a contradiction.

7.5.9 Let k be the maximal cardinality of a chain in M . Moreover, let A
denote the antichain of the maximal elements of M . Then the maximal car-
dinality of a chain in M \A is k− 1, and the assertion follows by induction.

7.5.10 Let A= (A1, . . . ,An) be a family of subsets of {x1, . . . , xm} satisfying
(H′). We define a partial ordering on M = {x1, . . . , xm,A1, . . . ,An} by

u≺ v ⇐⇒ u= xi, v =Aj and xi ∈Aj (for suitable i, j).

Let {x1, . . . , xh,A1, . . . ,Ak} be an antichain of maximal cardinality s= h+k.
Then k ≤ |A1 ∪ · · · ∪ Ak| ≤ m − h, so that s = h + k ≤ m. By Dilworth’s
theorem, (M,�) can be decomposed into s chains, say (after renumbering)

{x1,A1}, . . . ,{xi,Ai}, {Ai+1}, . . . ,{An}, {xi+1}, . . . ,{xm}.
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Then s =m+ n− i, and hence n = s−m+ i ≤ i; this forces n = i, so that
{x1, . . . , xn} is a transversal of A.

7.7.3 Use Theorem 7.7.4.

7.7.2 We have derived Theorem 7.7.1 from Theorem 6.1.6 by constructing an
appropriate flow network N . If c, a, and d are integral, the capacity function
of N is likewise integral. Thus Theorem 6.1.5 implies that there exists an
integral solution (provided that there are feasible flows).

B.8 Solutions for Chap. 8

8.1.2 Note that each vertex has to have degree at least k if G is k-connected.

8.1.3 Add a new vertex t and all edges xt with x ∈ T to G. It is easy to show
that the resulting graph H is again k-connected: clearly, there is no vertex
separator for H consisting of k − 1 vertices. By Theorem 8.1.1, there are k
vertex disjoint paths from s to t; these paths have to contain all the k edges
xt with x ∈ T . Deleting these edges, we obtain the desired paths in G.

8.1.6 The graph Km,m+1 has connectivity κ=m and independence number
α=m+ 1. It cannot be Hamiltonian, since a Hamiltonian cycle would have
length 2m+ 1; by Theorem 3.3.5, bipartite graphs do not contain cycles of
odd length.

8.1.7 Using the procedure BLOCK01FLOW of Lemma 6.5.2, we can deter-
mine a maximal 0-1-flow as follows (by analogy with Algorithm 6.3.17). Here
G is a digraph with two special vertices s and t, and val denotes the value of
a maximal flow.

Procedure MAX01FLOW(G,s, t;f,val)

(1) for e ∈E do c(e)← 1; f(e)← 0 od
(2) val ← 0; N ← (G,c, s, t);
(3) repeat
(4) AUXNET (N,f ;N ′′,max, d);
(5) if max = false then BLOCK01FLOW(N ′′;g); AUGMENT (f, g;f) fi
(6) until max = true;
(7) for e ∈As do
(8) if f(e) = 1 then val ← val +1 fi
(9) od

The proofs of Theorems 7.1.1 and 7.1.4 imply that the maximal number of
vertex disjoint paths from s to t in G equals the maximal value of a 0-1-flow
on the 0-1-network with underlying digraph H defined during the following
procedure.
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Procedure PATHNR(G,s, t;k)

(1) V ′ ←{s, t}; E′ ←∅;
(2) for v ∈ V \ {s, t} do V ′ ← V ′ ∪ {v′, v′′}; E′ ←E′ ∪ {v′v′′} od
(3) for e ∈E do
(4) if e= sv with v �= t then E′ ←E′ ∪ {sv′} fi
(5) if e= tv with v �= s then E′ ←E′ ∪ {v′′t} fi
(6) if e= uv with u, v �= s, t then E′ ←E′ ∪ {u′′v′, v′′u′} fi
(7) od
(8) H ← (V ′,E′); MAX01FLOW (H,s, t;f,val);
(9) if st ∈E then k← val + 1 else k← val fi

Theorems 7.1.1 and 7.1.4 show that this procedure is correct; note that s
and t are not adjacent in H . If s and t should be adjacent in G, we have
to add one further path from s to t, namely the edge st itself. By Corol-
lary 7.1.5, PATHNR has complexity O(|V |1/2|E|). Finally, if G is an undi-
rected graph, we can replace G by its complete orientation (as in the proof
of Theorem 7.1.1).

8.2.6 Define a graph G which has a vertex for each junction of the maze,
where also the entrance, the exit, and dead ends are viewed as junctions.
The edges of G correspond to those paths in the maze which connect two
consecutive junctions: the end vertices of an edge are the respective junctions.
Figures B.29 and B.30 show the graph G which corresponds to the maze given
in Fig. 8.3. The labels of the vertices in Fig. B.30 indicate one possible course
for a DFS on G which starts at the entrance of the maze (which is represented
by the vertex labelled 1); the algorithm terminates when the exit is reached
(that is, at the vertex labelled 64). The corresponding path through the maze
is drawn in Fig. B.31; for the sake of simplicity, we have not included dead
ends occurring during the DFS (which have, of course, to be traversed and
then necessitate corresponding backtracking).

Of course, when we designed the above solution, we had a bird’s-eye view
of the maze (and used this knowledge). However, it is not hard to find a rule
which allows us to apply a DFS to a maze without knowing it in its entirety,
provided that it is possible to label junctions and paths when we pass them.
We leave it to the reader to formulate such a rule.4

4In this context, the following quotation from Umberto Eco’s The Name of the Rose is of

some interest; see [Eco83, p. 176]:

At every new junction, never seen before, the path we have taken will be marked
with three signs. If, because of previous signs on some of the paths of the junction,

you see that the junction has already been visited, you will make only one mark on

the path you have taken. If all the apertures of the junction are still without signs,

you will choose any one, making two signs on it. Proceeding through an aperture
that bears only one sign, you will make two more, so that now the aperture bears

three. All the parts of the labyrinth must have been visited if, arriving at a junction,



B.8 Solutions for Chap. 8 585

Fig. B.29 A maze with corresponding graph G

8.3.2 Consider two vertices u and v for which d(u, v) is maximal. If v were
a cut point, then G \ v would consist of two components, so that we could
choose a vertex w which is not contained in the component of u. Then every
path from u to w would have to contain v, so that the distance from w to
u would have to be at least d(u, v) + 1, a contradiction. Therefore v and u
cannot be cut points. On the other hand, a path of length n contains precisely
n− 2 cut points.

8.3.3 Suppose that bc(G) contains a cycle (B1, c1,B2, c2, . . . ,Bk, ck,B1).
Then we can remove ck and still reach vertices in B1 from vertices in Bk,
a contradiction. This proves that bc(G) is always acyclic. If G is connected,
also bc(G) is connected, so that bc(G) is a tree. This proves (a).

For claim (b), we may assume that G is connected, so that p = 1. Then
bc(G) is a tree and, hence, contains precisely b(G) + c(G) − 1 edges. Each
edge connects a cut point with a block, so that the number of edges equals
the sum of all the b(c) (over all cut points c). Therefore

b(G) + c(G)− 1 =
∑

c

b(c) =
∑

c

1 +
∑

v

(
b(v)− 1

)
= c(G) +

∑

v

(
b(v)− 1

)
,

you never take a passage with three signs, unless none of the other passages is now
without signs.

This somewhat chaotic rule contains the basic idea of a depth first search, even though the
hero of the tale, William of Baskerville (who admits that he just recites ‘an ancient text
I once read’), obviously confused the labelling rules a bit.
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Fig. B.30 A partial DFS on G

Fig. B.31 A path through the maze

since each vertex which is not a cut point is contained in precisely one block.
Assertion (c) can be proved in a similar manner.
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For (d), we use induction on the number c(G) of cut points. The case
c(G) = 1 is clear. Now assume c(G) > 1. Then bc(G) contains a leaf, and
every leaf B has to be a block; note that the unique edge incident with B
has a cut point c as its other end vertex. Removing B from the graph G
corresponds to removing c and B from bc(G). Now the assertion follows by
induction.

8.3.4 Let b(G) = k. We denote the cardinalities of the blocks by n1, . . . , nk

and the number of vertices of G by n. By Exercise 8.3.3 (b), n1 + · · ·+ nk =
k + n− 1. By Exercise 8.3.3 (d), a graph with r cut points has to have at
least r+ 1 blocks; also, G will have the maximum possible number of edges
if and only if each block is a complete graph on at least two vertices. Thus
this number is given by

max

{
k∑

i=1

(
ni

2

)

: n1 + · · ·+ nk = n+ k− 1;n1, . . . , nk ≥ 2;k ≥ r+ 1

}

=max

{

k− 1 +

(
n+ k− 1− (2k− 2)

2

)

: k ≥ r+ 1

}

=

(
n− r

2

)

+ r,

which is realized by a graph consisting of Kn−r with a path of length r
appended.

8.3.10 We obtain the graph shown in Fig. B.32, where each vertex v is
labelled with its DFS-number nr(v) and with L(v). Algorithm 8.3.8 yields
the cut points i, e, s, and h in this order. The blocks are {k, j, i}; {i, e};
{e, f, b, a, s}; {l, h}; and {h,d, g, c, s}. The fat edges are the edges of the DFS
tree, and cut points are indicated by a circle.

8.4.3 As u is reached later than v during the DFS, the examination of u has
to take place during the examination of v.

8.4.4 If a back edge e = vu occurs during the DFS, we obtain a directed
cycle in G, as u is an ancestor of v. Conversely, suppose that G contains a
directed cycle. Let v be the first vertex of G examined during the DFS which
is contained in a directed cycle, and let e= uv be an edge on such a cycle C.
By our choice of v, u is examined later than v during the DFS, so that e is
neither a forward edge nor a tree edge. As u is accessible from v (using C),
u has to be a descendant of v. Thus e cannot be a cross edge either, so that
e must be a back edge.

8.5.2 Choose G to be a directed cycle or the complete orientation of a path.

8.5.3 Let C and C′ be two distinct strong components of G. As G is con-
nected, there exists an edge e connecting a vertex in C and a vertex in C′.
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Fig. B.32 DFS-tree, blocks, and cut points

Fig. B.33 Condensed
digraph for the digraph of

Fig. 3.3

Then e cannot be contained in a directed cycle, because that would imply
C =C ′. Thus G has to be strongly connected provided that every edge of G
is contained in a directed cycle. The converse holds by Theorem 8.5.1.

8.5.8 The vertices h, f , and g each form a strong component with only one
element; the remaining vertices together form a further strong component.

8.5.9 Suppose the strong components C1, . . . ,Cm are contained in a cycle
of G′. Then there are edges viv

′
i with vi ∈ Ci and v′i ∈ Ci+1 (where m+ 1 is

interpreted as 1). As Ci contains a directed path from v′i−1 to vi, we obtain a
directed cycle, so that C1, . . . ,Cm have to be contained in a common strong
component, a contradiction. Therefore G′ has to be acyclic. Figure B.33 shows
G′ for the digraph G of Fig. 3.3.

8.5.10 Define a digraph to be strongly k-connected if it is the complete
orientation of Kk+1, or if each set S of vertices for which G\S is not strongly
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Fig. B.34 Solution to Exercise 8.6.2

connected contains at least k vertices. Then the analogues of Theorems 8.1.1
and 8.1.9 hold; in both cases, κ(vi,w) as well as κ(w,vi) have to be calculated.

8.6.2 For k =m= d, we can choose G=Kd+1. For k �= d, we use two copies
of the complete graphKd+1 on two disjoint vertex sets S and T , together with
2k further vertices x1, . . . , xk, x

′
1, . . . , x

′
k and all the edges xix

′
i. Moreover, we

connect each of the xi to d − 1 vertices in S, and each of the x′
i to d − 1

vertices in T . Finally, we add m− k further edges connecting the vertices in
S ∪ {x2, . . . , xk} to some of the x′

i. See Fig. B.34.

8.6.3 Let E′ be a minimal edge separator of G. Then G \E′ has two con-
nected components S and T , and E′ is the cocycle determined by the cut
(S,T ). We may assume x = |S| ≤ n/2. Then E′ has to contain at least
xδ − x(x − 1) = x(δ − x + 1) edges. It is easy to check x(δ − x + 1) ≥ δ if
δ ≥ n/2 (for x = 1, . . . , n/2). The graph consisting of two disjoint copies of
Kd (connected by at most d− 1 edges) shows that nothing can be said for
the case δ < n/2.

B.9 Solutions for Chap. 9

9.1.2 If we want to color the icosahedral graph of Fig. 9.1, the three vertices
of the outer triangle have to get different colors. As any two vertices of this
triangle have a further common neighbor, the colors for these three neigh-
bors are now forced (assuming that it is possible to use only three colors);
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Fig. B.35 A partial 3-coloring of the icosahedral graph

Fig. B.36 A 4-coloring of the icosahedral graph

see Fig. B.35, where the three colors used are indicated by small gray circles,
big gray circles, and big black circles. But now there are vertices of degree 5
for which three neighbors already use up all three colors, so that the color-
ing cannot be completed. If we allow a fourth color, the partial coloring of
Fig. B.35 can be completed; see Fig. B.36.
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Fig. B.37 A 3-coloring of

the Petersen graph

9.1.9 Note that the Petersen graph is 3-regular; hence χ(G)≤ 3, by Brook’s
theorem. Now χ(G) = 2 is impossible, as the Petersen graph is not bipartite.
Hence χ(G) = 3; see Fig. B.37 for an explicit 3-coloring.

9.2.4 Let (M0,M1, . . . ,Mk =M0) be a sequence of vertices defining a cycle
of length k ≥ 4 in an interval graph, where Mi = (xi, yi) for i= 0, . . . , k − 1.
(The case of closed intervals is similar.) We may assume x0 < x1. If M2M0

is an edge, we have found a chord of the cycle. Otherwise, M2 ∩ M0 = ∅,
M1 ∩M0 �= ∅, and M2 ∩M1 �= ∅ imply x1 < y0 ≤ x2 < y1. Thus, if the cycle
does not have a chord, the lower bounds of the intervals Mi have to form a
monotonically increasing sequence. But then Mk−1M0 cannot be an edge, a
contradiction. Hence G must be chordal.

9.2.9 As induced subgraphs of a bipartite graph are likewise bipartite, it
suffices to prove α(G) = θ(G) for every bipartite graph G. In the bipartite
case, θ(G) = |V | − α′(G), where α′(G) denotes the maximal cardinality of a
matching. Moreover, α(G) = |V | − β(G); see Lemma 7.5.1. Therefore The-
orem 7.2.3 yields α(G) = θ(G). (Verifying χ(G) = ω(G) is even easier: both
parameters are 2 in the bipartite case; see Example 9.1.1.)

9.3.1 Clearly, χ′(G) is the minimal number of matchings into which G can be
decomposed. Thus the assertion amounts to showing that a bipartite graph
of maximal degree r can always be decomposed into r matchings, which was
proved in the solution to Exercise 7.4.16.

9.3.4 By Exercise 7.2.8, the Petersen graph does not admit a 1-factorization,
and hence Corollary 10.3.3 implies χ′(G) = 4. An explicit 4-coloring may be
obtained as follows: take the broken edges in Fig. B.28 as one color class. As
noted in the solution to Exercise 7.2.8, the complement of M is the union of
two vertex disjoint 5-cycles. Trivially, we may color the edges of these two
cycles using three further colors.
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9.4.6 Clearly, G=G(H,S) is regular of degree k, where k is the cardinality
of S. Given any two elements x and y of H , we have to determine the number
of elements z ∈H which are adjacent to both x and y. As H acts regularly
on G, we may assume y = 1. By definition, z is adjacent to both 1 and x if
and only if z−1, xz−1 ∈ S. If we put d= z−1 and c= xz−1, we may use (9.1)
to re-write the preceding condition as

x= cd−1, z = d−1 with c, d ∈ S.

Hence the number of elements z of H which are adjacent to both 1 and x
equals the number of quotient representations of x from S. Noting that x is
adjacent to 1 if and only if x ∈ S, one sees that condition (2) in the assertion
holds if and only if G is strongly regular with parameters λ and μ.

9.5.3 Denote the two parts of the bipartition of K3,3 by S and T , and con-
sider an arbitrary choice of color lists of cardinality ≥ 3 each. If two vertices
in the same part, say in S, admit the same color c, we may color them with
c, and color the third vertex in S in any admissible way. As this forbids at
most two colors and as T is an independent set, we may certainly also color
the vertices in the other part T correctly.

Hence we may assume that the color lists for the three vertices in a given
part are all disjoint. Thus we have 9 colors available for S, and also for T .
Now we just have to pick a color from each of the three lists for S in such a
way that the resulting 3-set of colors does not coincide with one of the three
color lists for T . Obviously, this is possible (indeed, in many ways).

B.10 Solutions for Chap. 10

10.1.6 Put b(e) = c(e) = 1 for each directed edge e of G, and replace each
undirected edge e = {u, v} by two directed edges e′ = uv and e′′ = vu with
b(e′) = b(e′′) = 0 and c(e′) = c(e′′) = 1; this defines a directed multigraph H
with capacity constraints b and c. Obviously, every Euler tour of G yields a
feasible circulation on H .

Conversely, let f be a feasible circulation on H . Let e be an undirected
edge of G. If either f(e′) = 1, f(e′′) = 0 or f(e′′) = 1, f(e′) = 0, we replace e
by e′ or by e′′, respectively. Performing this operation for all undirected edges
yields a mixed multigraph G′ for which the number of directed edges with
start vertex v always equals the number of directed edges with end vertex
v. Then an Euler tour can be constructed using the methods of Chap. 1; cf.
Theorems 1.3.1 and 1.6.1.

10.1.7 We introduce the following vertices:

• a source s and a sink t;
• a vertex 0 which represents the person selling the napkins;
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• vertices 1, . . . ,N corresponding to the dirty napkins which are sent off for
cleaning (we assume that all napkins are washed for i≤N − n);

• vertices 1′, . . . ,N ′ which represent the supply of clean napkins needed for
the N days.

We also add the following edges (with respective capacity constraints):

• e= s0 with b(e) = 0, c(e) =∞, γ(e) = 0;
• all si with b(si) = c(si) = ri, γ(si) = 0;
• all 0i′ with b(0i′) = 0, c(0i′) =∞, γ(0i′) = α;
• all e= i(i+m)′ with b(e) = 0, c(e) = ri, γ(e) = β (for i+m>N , the edge
i(i+m)′ has to be interpreted as it, so that the cost of this edge has to be
changed to 0);

• all e= i(i+ n)′ with b(e) = 0, c(e) = ri, γ(e) = δ (for i+ n > N , the edge
i(i+ n)′ has to be interpreted as it, so that the cost of this edge has to be
changed to 0);

• all i′t with b(i′t) = c(i′t) = ri, γ(i
′t) = 0;

• all edges e= i′(i+1)′ with b(e) = 0, c(e) =∞, γ(e) = 0; these edges repre-
sent the possibility of saving unused napkins for the next day.

10.2.3 As before, we define c′(e) = c(e)− b(e). Moreover, put

c′(sv) =
∑

e+=v
b(e)>0

b(e)−
∑

e−=v
b(e)<0

b(e); c′(vt) =
∑

e−=v
b(e)>0

b(e)−
∑

e+=v
b(e)<0

b(e).

Then Theorem 10.2.1 remains valid without changes: a feasible circulation
on G exists if and only if the maximal value of a flow on N is given by
W =

∑
e b(e).

10.2.6 First determine—if possible—a feasible flow as in Example 10.2.2.
Next, a maximal flow can be found as in Chap. 6. To make sure that this
flow is still feasible, we have to replace the condition f(e) �= 0 in step (10)
of Algorithm 6.3.14 (when constructing the auxiliary network) by f(e) >
b(e) and replace the assignment in step (11) by c′′(e)← f(e)− b(e). Let us
denote the resulting procedure by LEGAUXNET. We may now proceed as in
Algorithm 6.3.17. (Note that the algorithm of Ford and Fulkerson with similar
changes would serve the same purpose.) We obtain the following algorithm of
complexity O(|V |3), where we put N = (G,b, c, s, t) and use the FIFO preflow
push algorithm for determining a blocking flow.

Procedure MAXLEGFLOW(N ; legal, f)

(1) Add the edge r = ts to G; b(r)← 0; c(r)←∞;
(2) LEGCIRC(G,b, c;f, legal);
(3) if legal = true then
(4) remove the edge r = ts from G;
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(5) repeat
(6) LEGAUXNET(N,f ;N ′′,max, d);
(7) if max = false then BLOCKMKM(N ′′;g); AUGMENT(f, g;f) fi
(8) until max = true
(9) fi

10.2.9 Apply the criterion of Theorem 10.2.7 to the directed multigraph H
defined in the solution to Exercise 10.1.6 (using the capacity functions b and
c given there); this yields the following theorem.

Let G be a connected mixed multigraph. Then G has an Euler tour if and
only if the following two conditions hold :

(i) Each vertex of G is incident with an even number of edges.
(ii) For each subset X of V , the difference between the number of directed

edges e with e− ∈X and e+ ∈ V \X and the number of directed edges
e with e+ ∈ X and e− ∈ V \ X is at most as large as the number of
undirected edges connecting X and V \X .

10.2.10 Similarly to the proof of Theorem 10.2.8, one sees that the minimal
value of a feasible flow is given by

max

{ ∑

e−∈S,e+∈T

b(e)−
∑

e+∈S,e−∈T

c(e) : (S,T ) is a cut on N

}

,

where has c(r) = v and b(r) =−∞ for the return arc r = ts.
To determine a minimal flow, an arbitrary feasible flow can be changed

applying methods similar to those used in Chap. 6. To find a path along
which the value of the flow can be decreased, we admit forward edges e in
the auxiliary network if and only if b(e)< f(e), and backward edges if and
only if f(e) < c(e). Then the bounds on the complexity are the same as in
Chap. 6. We leave the details to the reader.

10.2.11 By Exercise 8.5.3, G is strongly connected if and only if every edge
is contained in a directed cycle. Hence we may show that this criterion is
satisfied if and only if G has a feasible circulation.

First assume that G has a feasible circulation. Let e= uv be an edge of G,
and let S be the set of all vertices s from which u is accessible. If v /∈ S, then
(S,V \S) is a cut for which all edges of the corresponding cocycle are oriented
from S to V \ S. Such a cut would violate the condition of Theorem 10.2.7,
as b(e)> 0. Therefore there exists a directed path W from v to u. Then e is

contained in the directed cycle u
e
— v

W
— u.

Conversely, assume that every edge of G is contained in a directed cy-
cle. Then all cocycles contain edges in both possible directions, so that the
condition of Theorem 10.2.7 is satisfied, since c(e) =∞ for all e.
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Finally, let N be a flow network with c(e) =∞ and b(e)> 0 for all edges e.
Removing the return arc r = ts, we see that a feasible flow exists if and only
if each edge is contained either in a directed cycle or in a directed path from
s to t.

10.3.4 The first assertion is an immediate consequence of condition (Z1):

f(S,T ) =
∑

e−∈S,e+∈T

f(e) =
∑

v∈S

∑

e−=v,e+∈T

f(e)

=
∑

v∈S

( ∑

e−=v

f(e)−
∑

e−=v,e+∈S

f(e)

)

=
∑

v∈S

( ∑

e+=v

f(e)−
∑

e−=v,e+∈S

f(e)

)

=
∑

v∈S

( ∑

e+=v,e−∈T

f(e) +
∑

e+=v,e−∈S

f(e)−
∑

e−=v,e+∈S

f(e)

)

=
∑

e−∈T,e+∈S

f(e) = f(T,S).

For the second assertion, let f �= 0 be a circulation and consider an edge
e = uv in the support of f . Suppose that e is a bridge. Then G \ e has at
least two connected components S and T , say u ∈ S and v ∈ T . Now e is the
only edge in the cocycle E(S,T ), so that f(S,T ) = f(e) �= 0 and f(T,S) = 0,
contradicting the first assertion.

10.3.7 We may assume that each of the elementary circulations fe in the
proof of Theorem 10.3.6 satisfies the condition fe(e) = 1 (otherwise we mul-
tiply fe by −1). Given an arbitrary circulation f , put

g = f −
∑

e∈G\T
f(e)fe.

Then the support of g is contained in T , and Corollary 10.3.3 yields g = 0.

10.3.8 Denote the vector in R
m corresponding to δq :E →R by δq. Then

δq=
n∑

i=1

q(vi)ai,

where ai is the i-th row of M (corresponding to the vertex i). Now P corre-
sponds to the row space of M , and Theorem 4.2.4 yields dimP = rankM =
n− p. This shows part (a).
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For part (b), let (S,T ) be a cut of G. We put q(v) = 1 for v ∈ S, and
q(v) = 0 for v ∈ T . Then δq(e) = +1 or =−1 for all edges e contained in the
cocycle corresponding to (S,T ), and δq(e) = 0 for all other edges.

Finally, let T be a spanning tree and T ′ the corresponding cotree: T ′ =
E \ T . Consider any edge e ∈ T . By Lemma 4.3.2, there exists a unique cut
for which the corresponding cocycle Ce contains only edges in T ′, except
for e. By part (b), there is a potential difference δqe for Ce whose support
consists precisely of the edges of Ce. Thus the δqe with e ∈ T are n−1 linearly
independent potential differences; in view of part (a), they have to form a
basis of P : as G is connected, p= 1.

10.3.16 First assume the existence of a cycle K as described in the first case
of the painting lemma. As no edge of K is uncolored, we have b(e) < c(e)
for all e ∈K. Now every black edge of K has the same orientation as e0 and
satisfies f(e) < c(e); every green edge of K has the opposite orientation as
e0 and satisfies b(e)< c(e); and every red edge satisfies both of the previous
conditions, that is, b(e)< f(e)< c(e). If we traverse K in the direction given
by e0, black edges are forward edges, while green edges are backward edges;
red edges may be either forward or backward edges. The previous remarks
show that we may define a new circulation f ′ by increasing f on all forward
edges and decreasing f on all backward edges (by a sufficiently small amount
δ), without increasing any of the deviation values d(e). On the contrary, at
least one deviation will become strictly smaller: d(e0) is replaced by d(e0)−δ.
Thus f ′ is indeed a better circulation than f : it satisfies D(f ′)≤D(f)− δ.

Now assume the existence of a cocycle C as described in the second case
of the painting lemma. Let (S,T ) be the cut defining C; we may assume
that e0 is oriented from T to S. Similarly to the first case, every forward
edge of C (that is, every edge with the same orientation as e0 in C) satisfies
f(e) ≤ b(e), while every backward edge satisfies c(e) ≤ f(e). Moreover, we
have strict inequality for the forward edge e0, namely f(e0)< b(e0). Hence,
using Exercise 10.3.4,

c(S,T )≤ f(S,T ) = f(T,S)< b(T,S).

On the other hand, the circulation theorem 10.2.7 gives the necessary con-
dition b(T,S) ≤ c(S,T ) for the existence of a feasible circulation. These in-
equalities are inconsistent, and hence no feasible circulation can exist in the
second case.

Finally, note that the value δ in the first case may always be chosen as an
integer, since the capacities are integral by hypothesis. Using induction, the
value D =D(f) likewise is integral throughout the entire procedure. As D
strictly decreases and is bounded from below by 0, the procedure terminates
with either a feasible circulation or a cocycle certifying the nonexistence of
such a circulation.
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10.3.17 Note that the necessity of the criterion given in the circulation the-
orem is rather trivial: in view of Exercise 10.3.4, any feasible circulation f
satisfies

c(S,T )≥ f(S,T ) = f(T,S)≥ b(T,S).

Now assume that this criterion is satisfied and that the capacities are integral.
Then the second case in the algorithm of Herz cannot occur (as shown in
the solution of Exercise 10.3.16), and hence the algorithm terminates with a
feasible circulation.

10.4.4 For any feasible circulation, the integer

M =
∑

e
γ(e)> 0

γ(e)c(e) +
∑

e
γ(e)< 0

γ(e)b(e)

is an upper bound for the cost. Defining m as in the proof of Lemma 10.4.2,
M −m is an upper bound for the number of iterations needed.

10.5.4 We first consider the problem of determining the optimal cost γ(v),
where M is the maximal value of a flow on N and v ≤ M a real number.
Denote the largest integer ≤ v by w, and let f be an optimal flow of value w
constructed by Algorithm 10.5.2. Moreover, let W be an augmenting path of
least possible cost from s to t in the auxiliary network N ′(f) with respect to
the cost function γ′. As W has integral capacity, f can be augmented along
W by δ = v − w < 1 with cost δγ′(W ). It can be shown that the resulting
flow of value v is optimal (proceed as in the proof of Lemma 10.5.1).

Thus the cost function is linear between any two integers w and w + 1.
As the cost of an augmenting path is always nonnegative, the cost function
is also monotonically increasing. Finally, for any two feasible flows f and f ′

of values v and v′, respectively, and for each λ with 0 ≤ λ ≤ 1, the linear
combination λf + (1 − λ)f ′ is a feasible flow with value λv + (1 − λ)v′, so
that

γ
(
λv+ (1− λ)v′

)
≤ λγ(v) + (1− λ)γ

(
v′
)
.

Hence the cost function is a monotonically increasing, piecewise linear, convex
function.

10.5.5 By Example 10.1.4, the assignment problem can be reduced to the
determination of an optimal flow of value n on a flow network with 2n+ 2
vertices. As all capacities are integral (actually, they are always 1) and as
the cost function is nonnegative, the algorithm of Busacker and Gowen can
be used for determining an optimal flow with complexity O(|V |2n) =O(n3),
by Theorem 10.5.3. Hence the assignment problem has complexity at most
O(n3); it will be studied more thoroughly in Chap. 14.
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10.6.2 The following procedure provides a possible solution:

Procedure RESIDUAL(G,c, f ;H)

(1) E′ ←∅;
(2) for e ∈E do
(3) if c(e)> f(e) then E′ ←E′ ∪ {e} fi
(4) od
(5) H ← (V,E′)

10.6.8 Let f be an ε-optimal pseudoflow on (G,c) with respect to the cost
function γ. We construct the auxiliary graph Hf described in the proof of
Theorem 10.6.6 with cost function γ(ε), and proceed by determining an SP-
tree for (Hf , γ

(ε)) using the procedure SPTREE given in Exercise 3.10.3;
then the desired potential is just the distance function in this network, by
Corollary 10.6.7. The procedure below does the job; here s is a vertex not
contained in G.

Procedure POTENTIAL(G,c, γ, f, ε;p)

(1) RESIDUAL(G,c, f ;H);
(2) V ∗ ← V ∪ {s}; E∗ ←E′;
(3) for e ∈E do γ∗(e)← γ∗(e) + ε od
(4) for v ∈ V do E∗ ←E∗ ∪ {sv}; γ∗(sv)← 0 od
(5) H∗ ← (V ∗,E∗);
(6) SPTREE (H∗, γ∗, s;p, q,neg, T )

Note that p is the required distance function dT in the arborescence T ; the
remaining output variables (that is, the predecessor function q for the SP-tree
T and the Boolean variable neg) are not actually needed here. We could, of
course, use the condition neg = false to check whether the given pseudoflow
is indeed ε-optimal; see Theorem 10.6.6.

10.6.13 In the following procedure, s is a vertex not contained in H , and
n− 1 denotes the number of vertices of H .

Procedure MEANCYCLE(H,w;μ,C)

(1) TOPSORT (H; topnr,acyclic);
(2) if acyclic = true
(3) then μ←∞
(4) else V ∗ ← V ∪ {s}; E∗ ←E; F (0, s)← 0;
(5) for v ∈ V do
(6) E∗ ←E∗ ∪ {sv};
(7) w(sv)← 0; F (0, v)←∞
(8) od
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(9) for k = 1 to n do
(10) for v ∈ V ∗ do
(11) F (k, v)←min{F (k− 1, u) +w(uv) : uv ∈E∗};
(12) q(k, v)← u, where u ∈ V is an element such that

F (k− 1, u) +w(uv) =min{F (k− 1, x) +w(xv) : xv ∈E∗}
(13) od
(14) od
(15) for v ∈ V do

(16) M(v)←max{F (n,v)−F (k,v)
n−k

: k = 0, . . . , n− 1}
(17) od
(18) choose v with M(v) =min{M(x) : x ∈ V };
(19) μ←M(v);
(20) determine a walk W of length F (n, v) from s to v which consists

of n edges;
(21) determine a cycle C contained in W
(22) fi

To prove that this procedure is correct, we use the proofs of The-
orem 10.6.11 and Corollary 10.6.12. The procedure TOPSORT checks—
according to Theorem 2.6.6—whether H∗ (and hence H) is acyclic; in this
case, μ is set to ∞. Otherwise, H contains directed cycles, and the for-loop
in steps (9) to (14) determines the minimal length F (k, v) of a directed walk
from s to v consisting of precisely k edges (for all k and v); this is done
recursively. Then, in steps (15) to (19), the minimum cycle mean μ of a di-
rected cycle in H is calculated in accordance with Theorem 10.6.11. Now
consider—as in the proof of Theorem 10.6.11—the changed weight function
w′ defined by w′(e) =w(e)− μ for all e ∈E. The second part of the proof of
Theorem 10.6.11 shows that the corresponding values F ′(k, v) and the vertex
v chosen in step (18) satisfy the condition

max

{
F ′(n, v)− F ′(k, v)

n− k
: k = 0, . . . , n− 1

}

= 0.

Thus the network (H,w′) has minimum cycle mean 0. Now the first part
of the proof of Theorem 10.6.11 shows that F ′(n, v) = F (n, v) − nμ is the
shortest length of a directed walk from s to v (and therefore the distance
from s to v) in (H∗,w′). In step (20), a directed walk W from s to v having
this length and consisting of n edges is determined; this is done recursively
using the function q(k, v) defined in step (12): the last edge of W is uv, where
u= q(n, v); the edge before the last is u′u, where u′ = q(n,u) and so on.

As W consists of precisely n edges, W has to contain a directed cycle C
which is determined in step (21): this can be implemented, for example, by
a labelling process while W is traced from s to v. Then W \C is a directed
walk from s to v as well, which must have length at least F ′(u, v) in (H∗,w′).
Therefore w′(C) has to be 0; otherwise, w′(C) would be positive because of
μ′ = 0, so that w′(W \C)<w′(W ). Hence w(C) = μ.
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10.6.15 Using Exercise 10.6.13 and Theorem 10.6.14, we obtain the following
procedure:

Procedure TIGHT(G,c, γ, f ; ε)

(1) RESIDUAL(G,c, f ;H);
(2) MEANCYCLE(H,γ;μ,C);
(3) if μ≥ 0 then ε← 0 else ε←−μ fi

10.8.9 Define the function Φ as given in the hint. At the beginning of Al-
gorithm 10.8.1, Φ≤ |V |, since the admissible graph GA does not contain any
edges at this point, so that Φ(v) = 1 holds trivially for all vertices.

A saturating PUSH-operation, say PUSH(u, v), can increase Φ by at most
Φ(v) ≤ |V | (if v becomes active by this operation), so that all the saturat-
ing PUSH-operations together can increase Φ by at most O(|V |2|E|), by
Lemma 10.8.7. A RELABEL(v)-operation might add new edges of the form
vu to GA, so that Φ is increased by at most |V |. Note that RELABEL(v) does
not change the values Φ(w) for w �= v: as we saw in the proof of Lemma 10.8.8,
GA does not contain any edges with end vertex v after this operation. By
Lemma 10.8.6, all the RELABEL-operations together can increase Φ by at
most O(|V |3); this value is dominated by O(|V |2|E|).

It remains to consider the non-saturating PUSH-operations. Such a
PUSH(u, v) makes u inactive, whereas v might become active; thus it de-
creases Φ by Φ(u), and possibly increases Φ by Φ(v). However, Φ(u) ≥
Φ(v) + 1, since each vertex in GA which is accessible from v is accessible
from u as well, and since u is not accessible from v (as GA is acyclic by
Lemma 10.8.8). Note that a PUSH-operation does not add any edges to GA

according to the proof of Lemma 10.8.8. Thus each non-saturating PUSH
decreases Φ by at least 1. It follows that the total number of non-saturating
PUSH-operations is bounded by the total increase of Φ during the algorithm,
which is O(|V |2|E|).

10.9.6 The circulation f constructed during the initialization of Algo-
rithm 10.9.1 is clearly C-optimal, so that ε(f0) ≤ C. By Lemma 10.9.3,
|E| consecutive iterations decrease ε(f) by at least a factor of 1 − 1/|V |.
Theorem 10.6.5 guarantees that the algorithm terminates with an optimal
circulation f as soon as ε(f) becomes smaller than 1/|V |; hence it suffices
to decrease ε(f) by a total factor of value < 1/C|V |. By Theorem 10.6.4,
|E||V | consecutive iterations always decrease ε(f) by at least a factor of 1/2,
so that the algorithm has to terminate with an optimal circulation after at
most O(|V ||E| logC|V |) iterations.

10.11.2 Axioms (MS1) and (MS2) for a metric space hold trivially. We need
to check the triangle inequality (MS3). Let x, y, and z be three words in
Sn. Denote by X the set of indices for which x and y disagree, so that
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d(x,y) = |X|; similarly, let Z be the set of indices for which z and y disagree.
Then all three words agree for all indices not in X ∪Z, and hence

d(x,z)≤ |X ∪Z|= |X|+ |Z| − |X ∩Z| ≤ d(x,y) + d(y,z).

10.11.4 By Exercise 4.2.14, the incidence matrix M of G has rank n − 1,
also when considered as a binary matrix. Note that a binary vector f satisfies
M f = 0 over Z2 if and only if f is the incidence vector of an even subgraph
of G. Hence CE(G) has dimension m− rankA=m− n+1, as in the case of
circulations. (This again shows that the even subgraphs of G may be viewed
as the binary circulations on G.)

10.11.17 Let a≥ 2. The even graphical code of Kp,p′ with p= 2a+1 and p′ =
2a has parameters [22a+1,22a− 2a+1− 2a+1,4]. We apply Theorem 10.11.15
with c = 2, n1 = 2a+1, and n2 = 2a. Then we may use for O1 the extended
binary Hamming code with parameters [2a+1,2a+1−(a+1)−1,4], and for O2

the extended binary Hamming code with parameters [2a,2a − a− 1,4]. This
results in a graphical code C∗ with parameters [22a+1,22a+1− (2a+1)−1,4].
By the remarks preceding Example 10.11.16, C∗ is in fact the extended binary
Hamming code with these parameters.

10.11.18 We have to show that the extended binary Hamming codes with
parameters [2h,2h −h− 1,4] can be constructed recursively as purely graph-
ical codes. The case h = 2 is realized by the even graphical code of a cycle
of length 4, which indeed has parameters [4,1,4]. The case h= 3 can be ob-
tained from the even graphical code belonging to K4,2, an [8,3,4] code, using
an augmentation according to Lemma 10.11.10. Now we can use induction
on h, applying the constructions in Example 10.11.16 (for even values of h)
and Exercise 10.11.17 (for odd values of h).

B.11 Solutions for Chap. 11

11.3.3 First assume xv ∈ E′, that is, d(v) +
∑

e+=v b(e)−
∑

e−=v b(e) < 0.
With g(e) = b(e) for all e ∈E, the demand restriction for v yields

d(v) = d′(v) = g(xv) +
∑

e+=v

g(e)−
∑

e−=v

g(e)

= g(xv) +
∑

e+=v

b(e)−
∑

e−=v

b(e),

and hence

g(xv) = d(v)−
∑

e+=v

b(e) +
∑

e−=v

b(e) = c′(xv)− 1.
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Thus indeed g(xv) = h(xv), where h is the admissible flow defined in the
first part of the proof of Theorem 11.3.1. Similarly, one checks g(vx) = h(vx)
whenever vx ∈E′.

B.12 Solutions for Chap. 12

12.1.4 As the proof of Theorem 12.1.1 shows, every maximal spanning tree
for (G,w) is also an equivalent flow tree for N = (G,c). Conversely, let T be
an equivalent flow tree for N . Note that the flow value wT (x, y) between x
and y in the network (T,w|T ) equals the capacity w(Pxy) of the unique path
Pxy from x to y in T . By hypothesis, wT (x, y) =w(x, y) for all x, y ∈ V , which
implies that Pxy is a path of maximal capacity from x to y in the network
(G,w). By Exercise 4.5.6, T is a maximal spanning tree for (G,w).

12.1.5 We use induction on the number n of vertices. The case n = 2 is
trivial. Thus let n ≥ 3. Choose a pair (x, y) of vertices such that w(x, y) is
maximal, and remove one of these vertices, say x. By the induction hypoth-
esis, the smaller flow network on G \ x can be realized on a path P , say

P : x1 x2 · · · xn−1,

where y = xi. We insert x after y in P and denote the resulting path by P ′.
As w(x, y) is the largest flow value on N , the flow values realized before on
G \ x are not changed by this operation. Clearly, we also obtain the correct
flow value w(x, y) between x and y.

It remains to consider w(x, z) for a vertex z with z �= x, y. Then w(x, z) =
w(y, z): the inequality (12.1) of Theorem 12.1.1 shows

w(x, z)≥min
{
w(x, y),w(y, z)

}
=w(y, z);

similarly, w(y, z)≥w(x, z). As P realizes all flow values w(y, z) correctly, P ′

yields the correct values w(x, z).
Applying this technique recursively, we obtain from the network of

Fig. 12.1 the flow networks on smaller trees shown in Fig. B.38 (in the order
shown there). These smaller flow networks can be realized (beginning with
the trivial path on two vertices) on the paths shown below the corresponding
tree.

12.3.5 For the graph in Example 12.3.1, u(a) = 13, u(b) = 13, u(c) = 12,
u(d) = 12, u(h) = 13, u(g) = 15, u(f) = 15, and u(e) = 11. As shown in
the proof of Theorem 12.3.4, the increased flow requirements which can be
realized with the minimal capacity of 52 given by r (see Fig. 12.11) are
s(x, y) = min{u(x), u(y)}. Using this weight function on K yields the same
dominating tree T as in Example 12.3.1; only the weights differ, see Fig. B.39.
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Fig. B.38 Recursive realization of a flow network on a path

Fig. B.39 Dominating tree T
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Fig. B.40 Partitioning T into uniform trees

Now we decompose T into the uniform trees U1, . . . ,U4 shown in Fig. B.40
and construct corresponding cycles, say C1 = (a, b, c, d, e, f, g, h, a) with
weight 11/2, C2 = (a, b, c, d, f, g, h, a) with weight 1/2, C3 = (a, b, f, g, h, a)
with weight 1/2, and the edge C4 = (g, f) with weight 2 (recall the order
of the vertices is arbitrary); this yields the dominating network N shown
in Fig. B.41. Note that N indeed allows higher flow values: for example,
w(a, c) = 12, whereas the network of Fig. 12.11 gives a flow between a and c
of value 8 only.

12.4.9 The network for the given values of the request function is shown in
Fig. B.42. By Theorem 12.4.6, we have to determine a cut tree T for (G,r);
this is done using Algorithm 12.4.2. After initializing T as a star with center
1, we obtain s= 2, t= 1, w = 18, and s= {2,3,4,5,6}, so that f(s) = 2. The
vertices 3,4,5, and 6 are then cut off from 1 and connected to 2 instead.

Next we have s= 3, t= 2, w = 13, and S = {3,4,5}. We set f(3) = 13, cut
off the vertices 4 and 5 from 2, and connect them to 3 instead. For s = 4,
we get t = 3, w = 14, and S = {4}. The tree T is not changed during this
iteration, we just set f(4) = 14.

Next s= 5, t= 3, w = 15, and S = {4,5,6}. The vertices 3, 4, and 5 are
removed from T , s= 5 is then connected to p(t) = p(3) = 3, and 3 and 4 are
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Fig. B.41 A dominating network

Fig. B.42 Network for Exercise 12.4.9

connected to 5. Also, f(5) is now given the value f(t) = f(3) = 13, and f(3)
is changed to w = 15.

In the final iteration, s = 6, t = 2, w = 17, and S = {3,4,5,6}. We set
f(6) = 17, and cut off 5 from 2 and re-connect it to 6. The resulting tree with
weight 77 solves Problem 12.4.4 for the given request function r. Figure B.43
illustrates how the algorithm works.

12.5.2 The relevant part of the auxiliary network corresponding to the flow
g of Fig. 12.16 is drawn in Fig. B.44; the fat edges form an augmenting path
with cost 3 and capacity 15. Increasing the capacity of both sb and ct by θ
(for θ = 1, . . . ,15), we obtain a flow of value v = 41+ θ. The total cost for the
corresponding increase of the capacity is 20+3θ. In particular, we obtain the
flow h of value 56 and cost 65 shown in Fig. B.45.

The next step yields the auxiliary network shown in Fig. B.46; again, the
fat edges form an augmenting path, now with cost 4 and unlimited capacity.
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Fig. B.43 Determining a cut tree for N

Thus we can now realize any flow value v = 56 + τ with total cost 65 + 4τ
by increasing the capacity of each of the edges sb, bc, and ct by τ . Note that
there are other paths of cost 4 in the auxiliary network of Fig. B.46, but the
capacity of these paths is limited. We have now determined the cost function
z(v) completely (by executing the iteration step of the algorithm of Busacker
and Gowen three times).

B.13 Solutions for Chap. 13

13.1.3 Define an auxiliary graph H as follows. Adjoin a d-element set D
with D ∩ V = ∅ to the vertex set V of G, and add all edges of the form vw
with v ∈ V and w ∈D to E. It is now easy to see that G has a matching with
precisely d exposed vertices if and only if H has a perfect matching. Thus we
have to show that condition (13.4) is equivalent to the existence of a perfect
matching of H . For each subset X of V ∪D, let o′(X) denote the number of
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Fig. B.44 Auxiliary network for g

Fig. B.45 Flow h of value 56

odd components of H \X .

o(S) = o′(S ∪D)≤ |S ∪D|= |S|+ d for all S ⊂ V.

Moreover, if H has a perfect matching, |V |+ d has to be even, so that (13.4)
is necessary.

Conversely, suppose that (13.4) is satisfied. By Theorem 13.1.1, we have
to show that the following condition holds:

o′(X)≤ |X| for all X ⊂ V ∪D. (B.3)

Assume first that D is not contained in X . Then, by the construction of H ,
the graph H \X is connected so that (B.3) is clearly satisfied for X �= ∅. For
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Fig. B.46 Auxiliary network for h

X = ∅, (B.3) holds as |V ∪D|= |V |+ d is even by hypothesis. Now assume
D ⊂X , say X = S

.
∪D for some S ⊂ V . Then (13.4) implies

o′(X) = o(S)≤ |S|+ d= |X|,

so that (B.3) is satisfied for this case as well.

13.1.4 Let H be the graph which results from adding the edges of the com-
plete graph on T to G. Clearly, G has a perfect matching if and only if H
does. Thus it suffices to show that condition (H) holds for G if and only if
(T) holds for H . Put n= |S|= |T |.

First assume the validity of (H) for G. Given any subset X of V , we have
to show o(X)≤ |X|. This is clear for X = ∅, as H is connected and contains
precisely 2n vertices.

Next we consider the case where X ⊂ T and X �= ∅, and put J = T \X .
Then the components of H \X are the set Y = J ∪ Γ (J) and the singletons
corresponding to the elements of S \ Γ (J). If |Y | is even, we have o(X) =
n−|Γ (J)| and |X|= n−|J |. Now (H) implies |Γ (J)| ≥ |J |, so that o(X)≤ |X|
holds, as desired. If |Y | is odd, |Γ (J)| ≥ |J | actually forces |Γ (J)| ≥ |J |+ 1,
and the assertion follows in the same manner.

It remains to consider the case where X is not a subset of T . If T ⊂X ,
the assertion holds trivially. Otherwise, let X ′ = T ∩X and put J = T \X ,
so that the components of H \X are the set J ∪ Γ (J) and the singletons
corresponding to the elements of S \ Γ (J). This implies

o(X)≤ o
(
X ′)+ 1≤

∣
∣X ′∣∣+ 1≤ |X|,

as required.
Conversely, assume the validity of condition (T) for H . Then one may

check that (H) holds for G using a similar—actually easier—argument.
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Fig. B.47 A 3-regular graph without a perfect matching

13.1.5 Let S be a subset of V , and denote the odd components of G \ S by
V1, . . . , Vk. Moreover, let mi be the number of edges connecting a vertex in
Vi to a vertex in S (for i= 1, . . . , k). Since G does not contain any bridges,
always mi �= 1. As G is 3-regular,

∑
v∈Vi

deg v = 3|Vi| for i= 1, . . . , k, so that

mi =
∑

v∈Vi

deg v− 2|Ei|

is an odd number (where Ei denotes the edge set of the graph Gi induced on
Vi). Hence always mi ≥ 3, which yields

o(S) = k ≤ 1

3
(m1 + · · ·+mk)≤

1

3

(∑

v∈S

deg v

)

= |S|.

Thus condition (T) is satisfied, and the assertion follows from Theorem 13.1.1.
Figure B.47 shows a 3-regular graph containing bridges; this graph cannot

have a perfect matching, as o({v}) = 3. Finally, the Petersen graph defined
in Exercise 1.5.10 is a 3-regular graph without bridges which does not admit
a 1-factorization.

13.2.5 Let C be a Hamiltonian cycle in a graph G on 2n vertices. Choosing
every other edge of C, we obtain a perfect matching of G. Thus every Hamil-
tonian graph having an even number of vertices admits a perfect matching.
Hence the two proposed criteria are indeed sufficient for the existence of a
perfect matching of G, by Corollary 1.4.3 and Exercise 1.4.4.

13.2.6 We show first that G is 2-connected. Suppose otherwise. Then there
exists a cut point v, so that G \ v has two components X and Y . Choose an
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edge of the form vx with x ∈X and extend it to a perfect matching K. Then
|Y | has to be even and X has to be odd. However, the same argument also
shows that |Y | is odd and |X| is even, a contradiction.

Assume first that G is bipartite, say V = S
·
∪ T . Suppose there are non-

adjacent vertices s ∈ S and t ∈ T , and let P be a path from s to t. As P has
odd length, choosing the first, the third, . . . , and the last edge of P gives a
matching M . By hypothesis, M can be extended to a perfect matching M ′.
Then M ′ ⊕ P is a matching whose only exposed vertices are s and t. As s
and t are not adjacent, this matching cannot be extended, a contradiction.
Thus necessarily G=Kn,n in the bipartite case.

It remains to consider the case where G is not bipartite. We show first
that each vertex is contained in a cycle of odd length. Let v be a vertex of
G, and let C be an arbitrary cycle of odd length; note that such a cycle
exists by Theorem 3.3.5. We may assume that v is not contained in C. As
G is 2-connected, Exercise 8.1.3 guarantees the existence of two paths P and
P ′ with start vertex v and end vertex some vertex of C, which share only
the vertex v. Thus these two paths together with the appropriate path in C
which connects the two end vertices of P and P ′ form the desired cycle of
odd length through v.

Now suppose that G contains two vertices u and v which are not adjacent.
We claim that u and v are connected by a path of odd length. To see this,
choose a cycle C of odd length containing v. If u is contained in C, the claim
is clear. Otherwise, choose a path P with start vertex u and end vertex w �= v
on C which does not contain any further vertices of C. Then P together with
the appropriate path in C which connects w and v gives the required path of
odd length from u to v. Now we obtain a contradiction just as in the bipartite
case, and hence necessarily G=K2n.

13.4.2 To simplify matters, we will make use of the inherent symmetry of
the graph shown in Fig. 13.9 and consider only its right half: we restrict
attention to the subgraph G induced on the set {r, s,1,2,3,4,5,6}. The left
half—which is isomorphic to the right half—can be treated in the same way,
and a final augmenting path arises by joining the two individual augmenting
paths via the matching edge ss′.

Beginning the procedure at r yields the alternating tree T shown in
Fig. B.48. When examining the edge 26, the blossom B = {2,5,6} with base
2 is discovered and contracted. We obtain the graph G′ =G/B and the cor-
responding contracted tree T ′ = T/B shown in Fig. B.49.

Next we examine the pseudovertex b and find the blossom B′ = {r,1,3,4, b}
with base r (because of edge 64). Contracting this blossom yields the graph
G′′ = G′/B′ which consists of the edge b′s only. This edge forms a trivial
augmenting path P ′′. Expanding this path starting at s gives the augmenting
path

P ′ : s 1 b 4 3 r
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Fig. B.48 Alternating

tree T for G

Fig. B.49 Contracted

graph G/B with
corresponding tree T/B

in G′ and finally the augmenting path

P : s 1 2 5 6 4 3 r

in G.

13.4.5 The graph G of Fig. 13.19 is drawn again in Fig. B.50. Obviously,
1 2 3 5 is an augmenting path in G with respect to M . Contract-
ing the blossom B = {2,3,4}, we obtain the graph G′ = G/B shown also
in Fig. B.50; this graph has the matching M ′ = {b6}. Clearly, G′ does not
contain an augmenting path with respect to M ′.

13.4.8 Let H be the graph with vertex set V = {1, . . . , n} which has an
edge ij if and only if ij′ (and then also ji′) is an edge of G (for i �= j). Then
matchings inH consisting of k edges correspond to symmetric matchings in G
with 2k edges. Thus a maximal symmetric matching of G can be determined
using Algorithm 13.4.6 with complexity O(n3).5

13.5.5 If the maximal matching M constructed via the algorithm of Ed-
monds should be perfect, we simply have D(G) = A(G) = ∅ and C(G) = V .

5The work of Kocay and Stone and Fremuth-Paeger and Jungnickel mentioned at the

beginning of this chapter uses the reverse approach: a symmetric bipartite graph G and

an associated network are used for constructing a maximal matching in the corresponding

graph H .
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Fig. B.50 Graph G and contracted graph G/B

Thus assume that M is not perfect, so that the set X of exposed vertices is
not empty. As noted before, X ⊆D(G).

Now let G0 be the final graph obtained from G (by repeated shrinking of
blossoms) in the last iteration of the algorithm, searching from the exposed
vertex x, say; also, denote the maximal matching constructed in G0 (and
expanded to M ) by M0. Note that all vertices in a blossom B become even
when the associated pseudovertex b is expanded again, as the stem of B is
an alternating path of even length and as each vertex in B different from the
base w of B can be reached from w on an even length path in B.

One also checks that any alternating path involved with a blossom B is
expanded to an alternating path with the same parity when b is expanded,
as the path will enter B through its base. This implies that the classification
of those vertices of G which still belong to G0 with respect to M0 is the
same as with respect to M . Thus D(G) = E consists of all vertices included
in a blossom and of the original vertices of G included in D(G0) = E0. Also,
A(G0) =O0. Finally, note that the classification of vertices in G0 can be read
from the final alternating tree T0.

13.5.6 As mentioned in Example 13.5.2, the initial matching of G drawn in
Fig. 13.10 is a near-perfect matching of H = G \ 18, leaving the vertex 17
exposed. Applying the search procedure in the algorithm of Edmonds to H ,
everything runs exactly as explained in detail in Sect. 13.4: we just need to
leave out the discarded vertex 18 and its two incident edges. Therefore we do
not find 18 when we search from b′ in the tree T ′′ = T ′/B′ in Fig. 13.14. In-
stead, when we examine the edge {12,14}, we close another blossom, namely
B′′ = {b′,11,12,13,14}. Hence we have to perform a further shrinking, and
the final graph G0 =G′′/B′′ agrees with the final tree T0: it is just the alter-
nating path 17—1—b′′ of length 2. Applying the method outlined in Exer-
cise 13.5.5 now confirms the result already stated in Example 13.5.2:

A(H) = {1}, C(H) = ∅ and D(H) = {2, . . . ,17}.
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13.6.3 Let G be the bipartite graph on V = S
·
∪ T corresponding to A =

(A1, . . . ,An) (as defined in Sect. 7.3). Obviously, the partial transversals of A
are precisely those subsets of S which are met by a matching of G. Therefore
the partial transversals of A form a matroid by Corollary 13.6.2.

13.6.4 As the maximal matchings of G induce the bases of the matching
matroid (V,S), the assertion follows from Theorem 5.2.7. Alternatively, we
may use Theorem 13.2.2: extending a matching using an augmenting path
(as in the proof of Theorem 13.2.2) leaves any saturated vertex saturated, so
that the assertion follows by induction.

B.14 Solutions for Chap. 14

14.1.2 Proceeding as outlined in Sect. 14.1, we obtain:

Procedure OPTMATCH(n,w;M,D)

(1) W ←max{wij : i, j = 1, . . . , n};
(2) V ←{1, . . . , n} ∪ {1′, . . . , n′} ∪ {s, t};
(3) E ←{ij′ : i, j = 1, . . . , n} ∪ {si : i= 1, . . . , n} ∪ {j′t : j = 1, . . . , n};
(4) G← (V,E);
(5) for i= 1 to n do
(6) γ(si)← 0; γ(i′t)← 0; for j = 1 to n do γ(ij′)←W −wij od
(7) od
(8) for e ∈E do c(e)← 1 od
(9) OPTFLOW(G,c, s, t, γ,n;f, sol);

(10) M ←{ij′ : f(ij′) = 1}; D←
∑

e∈M w(e)

To achieve a complexity of O(n3), we have to use the algorithm of Dijkstra
for determining the shortest paths in step (7) of OPTFLOW, as explained in
Sect. 10.5).

14.2.6 During the first four phases, we obtain (without any changes) the
edges {1,4′}, {2,9′}, {3,6′}, and {4,1′} (in this order). Even the feasible
node weighting (u,v) remains unchanged.

During the fifth phase (where i= 5), the only vertex j′ with δj = 0 is 9′,
which is saturated already. Nothing is changed by i= 2, because mate(9′) = 2
is the smallest vertex in Q. Next, for i= 6, we find the edge {6,3′}. Similarly,
during the phases 6 and 7, the edges {7,8′} and {8,7′} are constructed. Up
to this point, (u,v) was not changed.

During phase 8, we have i = 5, i = 2 (because of δ9 = 0, mate(9′) = 2),
i= 9, and i= 7 (because of δ8 = 0, mate(8′) = 7). Now J = {2,5,7,9}, K =
{8′,9′}, and δ = 1, so that the ui and vj have to be changed. We obtain the
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exposed vertex 5′ with δ5 = 0, and the edge {9,5′} is added to the matching
constructed so far.

The ninth (and last) phase is the most involved one. Again, we first have
i = 5, i = 2, and i = 7. Then (u,v) has to be changed according to J =
{2,5,7}, K = {8′,9′}, and δ = 2. Then δ4 = 0 and mate (4′) = 1, so that
i = 1. Again, (u,v) has to be changed, this time for J = {1,2,5,7}, K =
{4′,8′,9′} and δ = 3. Three more changes of (u,v) follow: for J = {1,2,4,5,7},
K = {1′,4′,8′,9′}, δ = 1; J = {1,2,4,5,7,9}, K = {1′,4′,5′,8′,9′}, δ = 2; and
J = {1,2,4,5,7,8,9}, K = {1′,4′,5′,7′,8′,9′}, δ = 5. Now 2′ is exposed and
we can complete the matching by adding the edge {5,2′}.

We show the values for (u,v) below; the entries corresponding to edges
used in the construction are in bold type. Note that indeed w(M) =

∑
(ui +

vi) (= 603) holds.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

0 31 24 80 62 39 24 41 42 69
31 0 0 34 54 5 51 45 61 47
24 0 0 31 32 59 28 44 25 59
80 34 31 0 65 45 25 44 47 72
62 54 32 65 0 38 48 66 68 54
39 5 59 45 38 0 8 25 18 59
24 51 28 25 48 8 0 71 66 57
41 45 44 44 66 25 71 0 69 66
42 61 25 47 68 18 66 69 0 61

8 0 0 11 7 0 5 14 14 v\u

Note that the matching consisting of the edges {1,4′}, {2,5′}, {3,6′}, {4,1′},
{5,9′}, {6,3′}, {7,8′}, {8,7′}, and {9,2′} is optimal as well.

14.2.7 The algebraic assignment problem for the ordered semigroup
(R+

0 ,min) yields the bottleneck assignment problem.

14.2.8 During the first two phases, the edges {1,3′} and {2,4′} are found.
In phase 3, first i= 3 and δ4 = 1; as mate(4′) = 2, then i= 2, and we find the
exposed vertex 5′ with δ5 = 1. Thus the present matching is changed using
p(5) = 2, mate(2) = 4′, and p(4) = 3; we obtain the edges {1,3′}, {2,5′}, and
{3,4′}.

In phase 4, the current matching is enlarged by the edge {5,2′}. During
the final phase, (u,v) has to be changed twice: first with J = {2,3,4}, K =
{4′,5′}, and δ = 5/4; and then with J = {2,3,4,5}, K = {2′,4′,5′}, and δ =
36/35. The matching is changed once again; we get the solution

M =
{{

1,3′
}
,
{
2,5′

}
,
{
3,1′

}
,
{
4,4′

}
,
{
5,2′

}}
.
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The corresponding entries are set bold in the matrix below. We also check
our calculations: w(M) =

∏
(ui, vi) = 15120.

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

3 8 9 1 6 9
1 4 1 5 5 35/9
7 2 7 9 2 7
3 1 6 8 8 56/9
2 6 3 6 2 35/6

1 36
35 1 9

7
9
7 v\u

Note that this product-optimal matching accidentally coincides with the op-
timal matching of Example 14.2.5; as Exercise 14.2.10 shows, this really is
exceptional.

14.2.9 Denote the given weight matrix by W = (wij) and put W ′ = (logwij).
Then the product-optimal matchings with respect to W are precisely the
optimal matchings with respect to W ′.

However, this transformation is not of practical interest. When executing
calculations with W ′ using a computer, errors occur because of rounding
(logarithms are irrational in general), and this means we cannot check our
solution by comparing w′(M) with

∑
(u′

i + v′i).
Alternatively, we might consider doing all calculations symbolically, so that

we perform operations such as replacing log p+log q with log pq. But then we
may as well use the version of the Hungarian algorithm modified for (R+, ·).
Nevertheless, the above transformation at least yields an immediate proof for
the correctness of this approach.

14.2.10 For the matrix
⎛

⎝
3 1 1
1 4 5
6 1 4

⎞

⎠ ,

the matching given by the bold entries has weight 12 = 1 + 5 + 6 and is
obviously optimal. However, it is not product-optimal. On the other hand,
the matching corresponding to the entries in the main diagonal is product-
optimal but not optimal.

14.3.2 First let A be the incidence matrix of a digraph G. By Lemma 10.3.1,
the vector f = (fe)e∈E gives a circulation if and only if AfT = 0. Therefore
we get the ILP

minimize γxT subject to AxT = 0T , b≤ x≤ c.
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For the second part, let T be a spanning tree of a graph G on n vertices.
As T contains n− 1 edges and is acyclic, we can use the following ZOLP:

maximize wxT subject to 1xT = n− 1 and
∑

e∈C

xe ≤ |C| − 1,

where x = (xe)e∈E and where C runs over all cycles in G. This approach
is not interesting in practice, as the ZOLP will (in general) contain far too
many inequalities.

14.4.6 Let G be a regular bipartite multigraph with vertex set V = S
·
∪ T ,

where |S|= |T |= n. We define the adjacency matrix A= (aij)i,j=1,...,n of the
multigraph G as follows: aij is the number of edges of G with end vertices i
and j′, where we assume S = {1, . . . , n} and T = {1′, . . . , n′}.

Thus A is a matrix with nonnegative integral entries, and its row and
column sums are constant. By Theorem 7.4.5, we can write A as a sum of
permutation matrices. As each permutation matrix corresponds to a 1-factor
of G, the decomposition of A yields a 1-factorization of G.

14.4.7 Obviously, L(G)⊂H(G)∩Z
E . Now let x be a vector in H(G)∩Z

E ,
and choose some positive integer k which is larger than the absolute value of
x. Then x′ = x+

∑
km is likewise an element of H(G)∩Z

E , where m runs
over the incidence vectors of the perfect matchings of G. Moreover, x′ ≥ 0.

We now define a regular bipartite multigraph G′ by replacing each edge
e of G with x′

e parallel edges. Note that G′ is indeed regular, since x′ is
contained in H(G). By Exercise 14.4.6, G′ can be decomposed into 1-factors.
As each 1-factor of G′ induces a 1-factor of G, we see that x′ has to be a linear
combination of incidence vectors of perfect matchings of G with nonnegative
integral coefficients, so that also x= x′ −

∑
km is contained in L(G).

14.5.6 Every closed walk of G which contains each edge at least once induces
a circulation f on G: define fe as the number of times e occurs in the given
walk. Note f ≥ 1.

Conversely, every circulation f with f ≥ 1 induces a closed walk on G
which contains all edges: replace each edge e with fe parallel edges. By The-
orem 1.6.1, the resulting pseudosymmetric digraph contains an Euler tour,
which induces the desired walk.

Note that G is obviously connected. Thus a shortest directed closed walk
corresponds to an optimal circulation with respect to the capacity constraints
b(e) = 1 and c(e) = ∞ and the cost γ(e) = w(e) (for all e ∈ E). Thus the
directed CPP can be solved using the algorithm OPTCIRC from Sect. 10.7.

14.6.5 W : s c t is a shortest {s, t}-path (of length −1). The corre-
sponding f -factors are

F =
{
{a, a},{b, b}, sc, ct

}
and F ′ =

{
{a, a},{b, b}, sc, ct, cgbg, aebe

}
,

and the corresponding perfect matching isM = {a′a′′, b′b′′, sc′, c′′t, aebe, cgbg}.
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Fig. B.51 A path of even

length in G

14.6.6 If (G,w) contains cycles of negative length, the method is not appli-
cable, as the proof of Lemma 14.6.1 shows. (The construction would yield
a path from s to t together with—possibly negative—cycles.) This is not
surprising, since the problem of finding a shortest path is then NP-hard; see
Appendix A or [GarJo79].

14.6.9 Use the following modification of the transformation described in
Theorem 14.6.7: each edge of the form tv is now replaced by an edge tv′′

(instead of tv′), and an eventual edge st is removed.
For the graph G of Example 14.6.8, the even {s, t}-path

W : s u v a t

corresponds to the perfect matching

M =
{
su′, u′′v′′, v′a′, a′′t, b′b′′, c′c′′

}

in the auxiliary graph G′′; see Figs. B.51 and B.52.

14.7.2 Define the weight function w on H as follows:

we =

⎧
⎨

⎩

0 for e /∈E,
c− 1 for e ∈E1,
c for e ∈E \E1.

Now let M be an optimal matching of H with respect to this weight function.
Then M consists exclusively of edges of G if and only if w(M) ≥ n(c− 1),
where |V |= 2n. In this case, the number of edges ofM contained in E1 is cn−
w(M). Thus the problem RPM1 has a solution if and only if cn−w(M)≤ b1.
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Fig. B.52 The

corresponding perfect
matching in G′′

By Result 14.4.5, w(M) can be determined with complexity O(n3), and the
assertion follows.

14.7.4 Put E1 =R, E2 =E \R, b1 = b, and b2 = n− b (where |V |= 2n). The
perfect matchings of G which satisfy condition (14.10) of Problem 14.7.1 for
these values are precisely the desired solutions of EPM, since every perfect
matching contains exactly n edges.

14.8.6 We use the edge labelling of the Petersen graph given in Fig. 14.15
for indexing the coordinate positions, so that the edge labelled i corresponds
to the coordinate position i (for i= 1, . . . ,15). As noted in the hint, it clearly
suffices to check that the cyclic shifts of the codewords in some basis of P ∗

are again in P ∗.
Thus we begin by determining a basis of the Petersen code P , using the

method given in the proof of Theorem 10.3.6. We first have to select a span-
ning tree T for the Petersen graph; let us choose the five spoke edges 3, 6,
9, 12, and 15 together with four edges of the outer cycle, say 2, 5, 8, and
11. Then each of the six edges e /∈ T determines a unique cycle contained in
T ∪ {e}, namely:

• C1 = {1,15,2,11,5,12}, belonging to 1 /∈ T ;
• C4 = {4,15,2,11,3}, belonging to 4 /∈ T ;
• C7 = {7,6,8,2,11,3}, belonging to 7 /∈ T ;
• C10 = {10,9,2,8,6}, belonging to 10 /∈ T ;
• C13 = {13,9,11,5,12}, belonging to 13 /∈ T ;
• C14 = {14,8,2,11,5}, belonging to 14 /∈ T .
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Then we obtain the augmented Petersen code P ∗ by adjoining an odd sub-
graph, for instance, the matching formed by the five spoke edges as a further
basis element, see Example 10.11.11:

• S = {3,6,9,12,15}.

Now it suffices to check that the cyclic shifts of these seven codewords are
again in P ∗. We obtain the following images, where τ denotes the cyclic shift:

• Cτ
1 = {1,2,3,6,12,13}, an odd subgraph;

• Cτ
4 = {1,3,4,5,12}, a cycle;

• Cτ
7 = {3,4,7,8,9,12}, an odd subgraph;

• Cτ
10 = {3,7,9,10,11}, a cycle;

• Cτ
13 = {6,10,12,13,14}, a cycle;

• Cτ
14 = {3,6,9,12,15}, the spoke matching;

• Sτ = {1,4,7,10,13}, the inner pentagram.

All these words indeed belong to P ∗.

B.15 Solutions for Chap. 15

15.2.2 Consider an edge e of smallest weight in a perfect matching M of
minimal weight, say e= ij with weight wij . In the symmetric case, wij =wji.
If the remaining weights are much larger, also the edge ji will belong to M .
Hence it is more likely that a pair of antiparallel edges occurs in the symmetric
case than in the asymmetric case.

15.2.5 Let T be the minimal spanning tree associated with the given TSP
which is shown in Fig. 15.2. Note that we obtain a minimal s-tree for s=Aa
by adding the edge AaFr, so that the weight is 186+26 = 212. Similarly, we
obtain weights of 186+34 = 220 and 186+22 = 208 for s=Ba and s=Mu,
respectively.

For s=Du, a minimal spanning tree on the remaining eight vertices con-
sists of the edges BeHa, HaAa, AaFr, FrSt, StBa, StNu and NuMu, so
that the weight of a minimal s-tree is 187 + 8+ 23 = 218.

For the remaining four choices of s, we just list the weight of a minimal
s-tree: 184+ 20+22 = 226 for s= Fr; 158+ 29+43 = 230 for s=Ha; 172+
17+ 19 = 208 for s=Nu; and 176 + 19+ 20 = 215 for s= St.

15.2.6 Let T be a minimal spanning tree associated with the given TSP, and
assume that s is a leaf of T . Then we obtain a minimal s-tree by adding an
edge of smallest weight among all edges not in T and incident with s to T .
This follows by observing that T \ e, where e is the unique edge of T incident
with s, has to be a minimal spanning tree for the complete graph induced on
the remaining points.
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In general, however, matters cannot be as simple. For instance, if s has
degree at least 3 in T , we cannot obtain an s-tree containing T for trivial
reasons. This observation also suggests examples showing that the strategy
for selecting s which we have used in Example 15.2.4 may fail badly.

For instance, let T be a star for which all edges have weight a, and assume
that all remaining edges have weight b > a; note that T is the unique minimal
spanning tree for TSP-instances of this type. Our strategy does not allow us to
select s as the center of T , which would lead to a minimal s-tree of weight (n−
2)b+ 2a. Any other choice of s is permissible and would result in a minimal
s-tree of weight (n−2)a+2b; in general, this will be a considerably smaller—
and hence inferior—bound. Thus our strategy can prevent the optimal choice
for s, and the deviation between the resulting bounds can even be made
arbitrarily large.

15.2.7 Any s-tree is a spanning 1-forest, but not conversely: if we add an
edge joining two non-adjacent vertices of degree at least two in a spanning
tree, we obtain a 1-forest which is clearly not an s-tree for any choice of
s. Thus the weight of a minimal spanning 1-forest is a lower bound for the
weight of a minimal s-tree (for all choices of s). Clearly, it is also a lower
bound for the weight of a given TSP, as any two is obviously a spanning
1-forest.

A minimal spanning 1-forest is easily found using the greedy algorithm,
as the 1-forests form a matroid on the edge set, by Exercise 5.2.6. It can also
be obtained by adding an edge of smallest weight to any minimal spanning
tree; this follows from Exercise 4.3.6. Adding the edge StMu of weight 22 to
the minimal spanning tree in Fig. 15.2 gives a minimal 1-forest with weight
186+22 = 208. Note that this happens to be the minimal s-tree for s=Mu
discussed in the solution to Example 15.2.5.

15.2.8 By Corollary 1.2.11, there are (n− 1)n−3 distinct spanning trees on
the remaining n− 1 vertices. To each of these trees, we have to add one of
the (n− 1)(n− 2)/2 pairs of edges incident with s, so that the total number
of s-trees of Kn is 1

2 (n− 2)(n− 1)n−2.

15.2.9 In every tour, each vertex i is incident with two edges whose weight
is at least s(i) + s′(i). This leads to the desired inequality and yields a lower
bound of 214 for the TSP of Example 15.1.2; note that w is integral.

15.3.1 Let B be an s-tree. Then

∑

i

pi = c×
∑

i

(degB i− 2) = c×
(∑

i

degB i− 2n

)

= c(2n− 2n) = 0.

15.5.4 As in Example 15.5.3, we begin with s= Fr. In the first two steps, we
obtain the partial tour (Fr,St,Fr) with length 40 and then (Fr,St,Nu,Fr)
with length 61.
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Now Mu is inserted, and we get (Fr,St,Mu,Nu,Fr) with length 81. The
next iteration yields (Fr,Du,St,Mu,Nu,Fr) with length 125. Inserting Aa
between Du and St yields a partial tour with length 138.

We proceed with (Fr,Du,Aa,Ba,St,Mu,Nu,Fr) with length 176; after
this, we insertHa between Fr andDu, which yields a partial tour with length
246. Finally, we obtain the tour (Fr,Be,Ha,Du,Aa,Ba,St,Mu,Nu,Fr)
with length 281.

15.6.4 First, the edges AaMu and FrBe are replaced with MuBe and
AaFr. This reduces the weight of the tour shown in Fig. 15.7 by 34 =
(64 + 56) − (60 + 26); the resulting tour of weight 307 − 34 = 273 is
(Aa,Du,Ha,Be,Mu,Nu,Ba,St,Fr,Aa).

Next, the edges NuBa and FrSt are replaced with BaFr and StNu.
This yields the tour (Aa,Du,Ha,Be,Mu,Nu,St,Ba,Fr,Aa) and reduces
the weight by (43 + 20)− (34 + 19) = 10 to 263.

Finally, we replace the edges StNu and BeMu with StMu and NuBe,
which yields the (optimal) tour of length 250 shown in Fig. 15.9; indeed, this
step reduces the weight by (19 + 60)− (22 + 44) = 13.

15.7.7 As A′ is assumed to be an ε-approximative algorithm for TSP, we
can use it to solve the problem HC as described in the proof of Theorem
15.4.1. Note that each iteration of the algorithm A′ (that is, each application
of A to a neighborhood N(f)) decreases the weight of the current tour—with
the exception of the final application of A, which merely discovers that the
current tour is now locally optimal.

As the weight function defined in the proof of Theorem 15.4.1 takes only
two values, there can be only n+ 1 distinct lengths of tours. Therefore A′

cannot need more than O(n) iterations of A. Since A is polynomial, A′ would
be a polynomial algorithm for HC, so that P =NP by Result 13.2.2.

15.7.8 Suppose that the given problem could be solved polynomially. We
show that this implies that we can find even an optimal tour in polynomial
time. We may assume that all weights are ≥ 2. (If necessary, we add a constant
to all weights.)

Now we check whether some specified edge e1 is contained in an optimal
tour. If the answer is yes, we reduce w(e1) to 1; this ensures that e1 has to be
contained in every optimal tour for the modified problem. More precisely, the
optimal tours for the new problem are precisely those optimal tours for the
old problem which contain the edge e1. Continuing in this manner, we obtain
an optimal tour for the original problem after O(n2) calls of the decision
problem which we assumed to be polynomial.

15.7.9 Note that TSP suboptimality does not actually produce a better tour:
it only tells us if such a tour exists. Hence it is not possible to apply a hypo-
thetical polynomial algorithm A for this problem repeatedly, which would be
necessary if we were to use A to construct a polynomial algorithm for HC.



Appendix C
List of Symbols

Now pray, what did he mean by that?
Richard Brinsley Sheridan

C.1 General Symbols

This first part of the list contains some general symbols which are more or
less standard. The special symbols of graph theory will be covered in the next
section.

Sets

A∪B union of the sets A and B
A

.
∪B disjoint union of the sets A and B

A∩B intersection of the sets A and B
A×B Cartesian product of the sets A and B
A \B A without B: A∩B
A⊕B symmetric difference of A and B: (A \B)∪ (B \A)
2A power set of A
A complement of A (with respect to a given universal set)
At set of ordered t-tuples with elements from A(
A
t

)
set of t-subsets of A

|A| cardinality of A
∅ empty set
A⊂B A is a subset of B

Mappings

f :A→B f is a mapping from A to B
f(x) image of x under the mapping f
f : x �→ y f maps x to y: f(x) = y
f(X) {f(x) : x ∈X} for f :A→B and X ⊂A
supp f support of f
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Numbers
∑n

i=1 ai a1 + · · ·+ an
∏n

i=1 ai a1a2 . . . an

�x� smallest integer ≥ x (for x ∈R)
�x� largest integer ≤ x (for x ∈R)
n! n(n− 1)(n− 2) . . .1 (for n ∈N)(
n
t

)
number of t-subsets of an n-set

e base of the natural logarithm

Matrices

AT transpose of the matrix A
J matrix with all entries 1
I identity matrix
diag(a1, . . . , an) diagonal matrix with entries a11 = a1, . . . , ann = an
(aij) matrix with entries aij
detA, |A| determinant of the matrix A
perA permanent of the matrix A

Sets of numbers and algebraic structures

N or Z+ set of natural numbers (not including 0)
N0 set of natural numbers including 0
Z ring of integers
Zn ring of integers modulo n
Q field of rational numbers
Q

+ set of positive rational numbers
Q

+
0 set of non-negative rational numbers

R field of real numbers
R

+ set of positive real numbers
R

+
0 set of non-negative real numbers

K∗ multiplicative group of the field K
Kn n-dimensional vector space over the field K
K(n,n) ring of (n× n)-matrices over the field K
Sn symmetric group acting on n elements

Miscellaneous

x := y, y =: x x is defined to be y
x← y x is assigned the value of y

C.2 Special Symbols

This second part of the list contains symbols from graph theory and the
symbols introduced in this book.
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Graphs and networks

G complementary graph of the graph G
Gred reduced digraph of the acyclic digraph G
G|U subgraph of G induced on the vertex set U
G \ e G with the edge e discarded
G \ T subgraph of G induced on the set V \ T
G \ v subgraph of G induced on the set V \ {v} (for v ∈ V )
G/B contraction of the graph G with respect to the blossom B
G/e contraction of the graph G with respect to the edge e
|G| multigraph underlying the directed multigraph G
(G) underlying graph for the multigraph G
→
G complete orientation of the graph G
[G] closure of the graph G
bc(G) block-cutpoint graph of G
G(H,S) Cayley graph defined b the group H and the set S
Gs,n de Bruijn graph
Hu,v equality subgraph for G with respect to (u,v)
Kn complete graph on n vertices
Km,n complete bipartite graph on m+ n vertices
L(G) line graph of G
N ′, N ′(f) auxiliary network for N (with respect to the flow f )
N ′′, N ′′(f) layered auxiliary network for N (with respect to the flow f )
T (G) tree graph of the connected graph G
Tn triangular graph on

(
n
2

)
vertices

Objects in graphs

CT (e) cycle determined by the spanning tree T and the edge e /∈ T

a
e
— b edge e= ab

e− the start vertex (tail) of the edge e
e+ the end vertex (head) of the edge e
E(S), E(X,Y ) edge set corresponding to the cut S = (X,Y )
E|V ′ edge set induced on the vertex set V ′

Fε set of ε-fixed edges (with respect to a given circulation)
ST (e) cut determined by the spanning tree T and the edge e ∈ T
Γ (J) neighborhood of the vertex set J
Γ (v) neighborhood of the vertex v

Parameters for graphs

ch(G) choosability of G
deg v degree of the vertex v
din(v) indegree of the vertex v
dout(v) outdegree of the vertex v
g girth of G
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nd number of vertices of degree d
α(G) independence number of G
α′(G) maximal cardinality of a matching of G
β(G) minimal cardinality of a vertex cover of G
δ(G) minimal degree of a vertex of G
Δ(G) maximal degree of a vertex of G
Δ minimal number of paths in a dissection of G (Dilworth num-

ber)
θ(G) clique partition number of G
κ(G) connectivity of G
λ(G) edge connectivity of G
ν(G) cyclomatic number of G
χ(G) chromatic number of G
χ′(G) chromatic index of G
ω(G) maximal cardinality of a clique in G

Mappings on graphs and networks

a(x) supply at the vertex x
b(e) lower capacity constraint for the edge e
c(e) capacity of the edge e
c(W ) capacity of the path W
c(S,T ) capacity of the cut (S,T )
d(x) demand at the vertex x
d(a, b) distance between the vertices a and b
dH(a, b) distance between vertices a and b in the graph H
f(S,T ) flow value for the cut (S,T ) with respect to the flow f
m(K) mean weight of the cycle K
o(S) number of odd components of G \ S
p(v) flow potential at the vertex v
r(v) rank of the vertex v in an acyclic digraph
w(e) weight (or length) of the edge e
w(f) value of the flow f
w(P ) weight of the optimal solution for the problem P
w(X) weight (or length) of a set X of edges
w(π) weight of the tour π
wA(P ) weight of the solution for problem P determined by algo-

rithm A
w(s, t) value of a maximal flow between s and t (in a symmetric

network)
γ(e) cost of the edge e
γ(ε)(f) cost of the edge e increased by ε
γp(e) reduced cost of the edge e (with respect to the potential p)
γ(f) cost of the circulation or the flow f
γ(M) cost of the perfect matching M
γ(v) cost of an optimal flow with value v
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δq potential difference
ε(f) optimality parameter for the circulation f
ε(v) excentricity of the vertex v
κ(s, t) maximal number of vertex disjoint paths from s to t
λ(s, t) maximal number of edge disjoint paths from s to t
μ(G,w) minimum cycle mean in the network (G,w)
πV (T ) Prüfer code of the tree T on the vertex set V

Matroids and independence systems

lr(A) lower rank of the set A
M(G) graphic matroid corresponding to G
M∗ dual matroid of the matroid M
M hereditary closure of the set system M
rq (M) rank quotient of the independence system M
ur (A) upper rank of the set A
S|N restriction of the set system S to the set N
ρ(A) rank of the set A
σ(A) span of the set A

Matrices

A adjacency matrix of a graph
A′ degree matrix of a graph
M incidence matrix of a graph or a digraph
ρ(A) term rank of the matrix A

Codes

CE(G) even graphical code based on G
d(x,y) Hamming distance of x and y
d minimum distance of a code
k dimension of a linear of a code
n length of a code
w(x) weight of x

Miscellaneous

Av adjacency list for the vertex v
A′

v reverse adjacency list for the vertex v
d(a) deficiency of the set family A
t(A) transversal index of the set family A
O(f(n)) upper bound on the complexity
Ω(f(n)) lower bound on the complexity
Θ(f(n)) rate of growth
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[DvoLS11] Dvořák, Z., Lidický, B., Škrekovski, R.: Graphs with two crossings are 5-

choosable. SIAM J. Discrete Math. 25, 1746–1753 (2011)

[Eco83] Eco, U.: The Name of the Rose. Harcourt Brace Jovanovich, San Diego

(1983)

[Edm65a] Edmonds, J.: Maximum matching and a polytope with 0,1-vertices. J. Res.

Natl. Bur. Stand. B 69, 125–130 (1965)

[Edm65b] Edmonds, J.: Paths, trees and flowers. Can. J. Math. 17, 449–467 (1965)

[Edm67a] Edmonds, J.: An introduction to matching. Lecture Notes, Univ. of Michi-

gan (1967)

[Edm67b] Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stand. B 71, 233–240

(1967)

[Edm70] Edmonds, J.: Submodular functions, matroids and certain polyhedra. In:



638 References

Guy, K. (ed.) Combinatorial Structures and Their Applications, pp. 69–87.
Gordon & Breach, New York (1970)

[Edm71] Edmonds, J.: Matroids and the greedy algorithm. Math. Program. 1, 127–
136 (1971)

[Edm73] Edmonds, J.: Edge disjoint branchings. In: Rustin, R. (ed.) Combinatorial
Algorithms, pp. 91–96. Algorithmics Press, New York (1973)

[Edm79] Edmonds, J.: Matroid intersection. Ann. Discrete Math. 4, 39–49 (1979)
[EdmFu65] Edmonds, J., Fulkerson, D.R.: Transversals and matroid partition. J. Res.

Natl. Bur. Stand. B 69, 147–153 (1965)
[EdmGi77] Edmonds, J., Giles, R.: A min-max relation for submodular functions on

graphs. Ann. Discrete Math. 1, 185–204 (1977)
[EdmGi84] Edmonds, J., Giles, R.: Total dual integrality of linear systems. In: Pul-

leyblank, W.R. (ed.) Progress in Combinatorial Optimization, pp. 117–129.
Academic Press Canada, Don Mills (1984)

[EdmJo73] Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese post-
man. Math. Program. 5, 88–124 (1973)

[EdmKa72] Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic effi-
ciency for network flow problems. J. Assoc. Comput. Mach. 19, 248–264
(1972)

[EdmLP82] Edmonds, J., Lovász, L., Pulleyblank, W.R.: Brick decompositions and the
matching rank of graphs. Combinatorica 2, 247–274 (1982)
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[Haj61] Hajós, G.: Über eine Konstruktion nicht n-färbbarer Graphen. Wiss. Z.,

Martin-Luther-Univ. Halle-Wittenb., Math.-Nat.wiss. Reihe 10, 116–117
(1961)



644 References

[Hak66] Hakimi, S.L.: Recent progress and new problems in applied graph theory.
In: Proc. IEEE Region Six Annual Conf., pp. 635–643 (1966)

[HakBr68] Hakimi, S.L., Bredeson, J.G.: Graph theoretic error-correcting codes. IEEE
Trans. Inf. Theory 14, 584–591 (1968)

[HakBr69] Hakimi, S.L., Bredeson, J.G.: Ternary graph theoretic error-correcting
codes. IEEE Trans. Inf. Theory 15, 435–436 (1969)

[HakFr65] Hakimi, S.L., Frank, H.: Cut set matrices and linear codes. IEEE Trans.
Inf. Theory 11, 457–458 (1965)

[HakVa64] Hakimi, S.L., Yau, S.S.: Distance matrix of a graph and its realizability. Q.
Appl. Math. 22, 305–317 (1964)

[Hal56] Hall, M.: An algorithm for distinct representatives. Am. Math. Mon. 63,
716–717 (1956)

[Hal86] Hall, M.: Combinatorial Theory, 2nd edn. Wiley, New York (1986)
[Hal35] Hall, P.: On representatives of subsets. J. Lond. Math. Soc. 10, 26–30

(1935)
[HalVa50] Halmos, P.R., Vaughan, H.E.: The marriage problem. Am. J. Math. 72,

214–215 (1950)
[HamRu94] Hamacher, H.W., Ruhe, G.: On spanning tree problems with multiple ob-

jectives. Ann. Oper. Res. 52, 209–230 (1994)
[Har62] Harary, F.: The maximum connectivity of a graph. Proc. Natl. Acad. Sci.

USA 48, 1142–1146 (1962)
[Har69] Harary, F.: Graph Theory. Addison Wesley, Reading (1969)

[HarTu65] Harary, F., Tutte, W.T.: A dual form of Kuratowski’s theorem. Can. Math.
Bull. 8, 17–20 and 173 (1965)

[HasJo85] Hassin, R., Johnson, D.B.: An O(n log2 n) algorithm for maximum flow in
undirected planar networks. SIAM J. Comput. 14, 612–624 (1985)

[HauKo81] Hausmann, D., Korte, B.: Algorithmic versus axiomatic definitions of ma-
troids. Math. Program. Stud. 14, 98–111 (1981)

[Hea90] Heawood, P.J.: Map colour theorem. Q. J. Pure Appl. Math. 24, 332–338
(1890)

[HelKa70] Held, M., Karp, R.: The travelling salesman problem and minimum spanning
trees. Oper. Res. 18, 1138–1162 (1970)

[HelKa71] Held, M., Karp, R.: The travelling salesman problem and minimum spanning
trees II. Math. Program. 1, 6–25 (1971)

[HelWC74] Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization.
Math. Program. 6, 62–88 (1974)

[HelMS93] Helman, P., Mont, B.M.E., Shapiro, H.D.: An exact characterization of
greedy structures. SIAM J. Discrete Math. 6, 274–283 (1993)

[Hel00] Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling
salesman heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)
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Index

Welcome back, my friends,

to the show that never ends....
Emerson, Lake & Palmer

A
Accessibility axiom, 157

Accessible, 27
Accessible set system, 157

Active vertex, 201, 332
Acyclic digraph, 49, 78, 82, 239, 266

Acyclic graph, 6

Adjacency list, 40
Adjacency matrix, 40, 616

Adjacent, 2, 523
Admissible cell, 234

Admissible edge, 337
Admissible flow, 163, 360

Admissible graph, 337
Admissible operations, 332

Admissible PUSH, 202, 333
Admissible RELABEL, 202, 333

Admissible vector, 454

Algebraic assignment problem, 452
Algorithm, 35, 36, 44–49

ε-approximative, 496–502
dual greedy, 154

efficient, 48
farthest insertion, 503

FIFO preflow push, 207
good, 48

greedy, 136

highest label preflow push, 209
Hungarian, 443–452

insertion, 502
labelling, 167, 310

local search, 505
minimum mean cycle-canceling, 340

MKM, 189–192
nearest insertion, 504

polynomial, 48

primal-dual, 456
strongly polynomial, 315

tree, 497
weakly polynomial, 315

Algorithm of
Bellman and Ford, 87

Boruvka, 118

Busacker and Gowen, 315–319, 400–403
Christofides, 498

Dijkstra, 83–87
Dinic, 186

Edmonds, 427
Edmonds and Karp, 170–176

Floyd and Warshall, 91–96
Ford and Fulkerson, 167, 310

Goldberg and Tarjan, 199–213, 327–339

Gusfield, 383
Hierholzer, 37, 41–43

Klein, 312–314, 339–344
Kruskal, 116

Malhotra, Kumar and Mahaswari,
189–192

Minty, 310
Moore, see BFS

Prim, 114
Tarjan, 263

Alphabet, 43, 347

Alternating forest, 446
Alternating path, 409

Alternating tree, 414
Ancestor, 256

And, 45
Antichain, 240

Antiparallel, 26
Apex, 371

Approximation scheme, 500
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ε-approximative algorithm, 496–502
Arbitrarily traceable, 38
Arborescence, 27

spanning, 75, 130–133, 256
Arc, 26

entering, 370
leaving, 371

Articulation point, 258
Assignment (of values to variables), 45
Assignment problem, 238, 297
Assignment relaxation, 485, 523
Associated digraph, 26
Asymmetric travelling salesman problem,

516
Asymmetric TSP, 483
ATSP, 483, 500
AUGMENT, 185, 377, 429, 446
Augmenting path, 165, 367, 409
Augmenting path theorem, 165, 409
Automorphism, 24
Automorphism group, 24, 286

regular, 286
Auxiliary network, 177

layered, 181
AUXNET, 184

B
Back edge, 256, 265
Backward adjacency list, 40
Backward edge

in a directed path, 26
in a flow network, 165

Balanced flow, 405
Balanced network, 405
Baranyai’s theorem, 243
Base, 419
Basis, 139, 157
Basis completion theorem, 140
BELLFORD, 87
Bellman’s equations, 76, 97
Berge-Tutte formula, 406
Berge-Tutte set, 434
BFS, 70–74
Biconnected component, see block
BIPART, 73
Bipartite graph, 72, 110, 197, 224, 237,

247, 276, 417, 434, 442–452
complete, 2
regular, 226
symmetric, 434

BIPMATCH, 417
Block, 258–264
Block-cutpoint graph, 260
BLOCK01FLOW, 195

BLOCKCUT, 263
BLOCKFLOW, 186
Blocking flow, 181–193, 195
BLOCKMKM, 189
Blossom, 415–426
BLOSSOM, 429
Bond space, 308
Boolean variable, 52
Border, 290
BORUVKA, 118
Bottleneck assignment problem, 238, 452
Bottleneck problem, 121, 160
Branch and bound, 515–523
Branching, 27
Breadth first search, see BFS
Break, 30
Bridge, 22, 27, 306
Brooks’ theorem, 278

C
Cancelling a cycle, 312
Canonical, 32
Capacity, 361

in a digraph, 295
in a flow network, 163
of a cut, 164, 303
of a path, 121
residual, 200, 321

Capacity constraints, 295
Capacity function, 379
Capacity increase, 400–403
Capacity restrictions, 360
Cardinality matching problem, 441
Caterer problem, 298
Cayley graph, 285
CDS, 60
Cell (of a matrix), 234

admissible, 234
Center, 95
Certificate, 53
Chain, 240
k-change neighborhood, 505
Chinese postman problem, 461–465, 527
Choosability, 290
Chord, 281
Chordal, 281
Christofides’ algorithm, 498
Chromatic index, 282, 527
Chromatic number, 275, 357, 527
Circuit, 141
Circuit axioms, 142
Circulation, 295, 320

ε-optimal, 323
ε-tight, 324
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Circulation (cont.)

elementary, 306, 309

feasible, 295, 320

legal, 295

minimum cost, 296

optimal, 296, 321

Circulation theorem, 304

Clause, 52

Clique, 56, 528

Clique number, 280

Clique partition number, 280

Clique partition problem, 528

Clique problem, 59

Closed set, 140

Closed trail, 5

Closed walk, 5

Closure, 16

hereditary, 159

transitive, 92

Closure congruence axiom, 159

Co-NP, 54

Cobasis, 144

Cocircuit, 144, 309

Cocycle, 112

directed, 309

Cocycle space, 308

Code, 347

augmented Petersen, 355, 478

binary, 347

cyclic, 479

decoding algorithms, 475, 477

even graphical, 350

extended binary Hamming, 357

linear, 349

odd pattern, 356

parameters, 348

parity check extension, 356

Petersen, 351

purely graphical, 358

t-error correcting, 349

Codeword, 347

Color, 275

COLOR, 276

Coloring, 275

edge, 282

Common system of representatives, 233

Common transversal, 233

COMP, 548

Comparability graph, 279

Comparable, 279

Complementary graph, 5

Complementary slackness conditions, 322

Complete bipartite graph, 2

Complete digraph, 26
Complete graph, 2
Complete matching, 226
Complete orientation, 26
Complete time-sharing, 395
Complexity, 47
Component

biconnected, see block
connected, 6, 72, 255, 287
odd, 406
strong, 266–270

Condensation, 270
Conjecture

four color, 292
Steiner ratio, 122
strong perfect graph, 282

Conjecture of
Berge, 281
Hadwiger, 279
Hajós, 279
Lovász, 289
Sylvester, 246
van der Waerden, 237

Conjunctive normal form, 52
Connected component, 6, 72, 255, 287

strong, 266–270
Connected digraph, 27

strongly, 27, 266–270
Connected dominating set problem, 60
Connected graph, 6, 72

2-connected, 258–264
k-connected, 222, 251–254
m-fold edge, 271

Connected vertices, 6
Connectivity, 222, 251–254
Connector problem, 103
Constraints, 453
CONTRACT, 429
Contractible, 24
Contraction, 24, 418

elementary, 24
Convex function, 319
Convex hull, 236
Cook’s theorem, 54
Cost

for capacity increase, 400–403
of a circulation, 296
of a flow, 297
of a matching, 442
of a pseudoflow, 321

Cost curve, 318
Cost function, 360

for capacity increase, 400–403
for circulations, 296
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reduced, 321
Cotree, 144
Cover (a matching covers a set), 232, 438,

439
Covered vertex, 406
CPP, see Chinese postman problem
Critical edge, 171
Critical path, 80
Critical path method, 79
Critical subfamily, 229
Critical task, 80
Cross edge, 265
Crossing cuts, 385
Current edge, 207, 337
Current vertex, 337
Cut, 361

in a digraph, 303
in a flow network, 164
in a graph, 112
minimal, 164

Cut point, 258
Cut tree, 396–399
Cuts

crossing, 385
non-crossing, 385

CUTTREE, 396
Cycle, 5

cancelling, 312
directed, 26
Hamiltonian, 15, 55

directed, 55
of minimum cycle mean, 325–327,

340–344
of negative length, 96, 97, 313, 322, 323
pivot, 371
shortest, 74

Cycle mean
minimum, 325

Cycle space, 307, 350
Cyclic graph, 287
Cyclomatic number, 307

D
Dag, see acyclic digraph
De Bruijn sequence, 43, 133
DECAUGGC, 477
DECEVGC, 476
Decision problem, 52
Decision tree, 515
Decomposition theorem, 236
Deficiency, 230
Deficiency version

of the marriage theorem, 230
Degree, 3

Degree matrix, 109

Degree sequence, 12

DELETEMIN, 86

Demand, 246

Demand function, 360

Demand restrictions, 360

Dense, 47

Dependent set, 139

Depth first search, see DFS

Depth index, 375

Descendant, 257

Determinism, 36

DFS, 255–257, 268

DFSM, 268

DHC, see directed Hamiltonian cycle

problem

DHP, see directed Hamiltonian path

problem

Diagonal, 235–238

non-zero, 235

positive, 235

Diameter, 95, 528

Digraph, 26–28, 49–51, 105–108, 130–133,

163, 239–242, 264–270, 295

acyclic, 49–51, 78, 82, 239, 266

associated, 26

complete, 26

condensation, 270

connected, 27

layered, 181

pseudosymmetric, 27

strongly connected, 27, 266–270

symmetric, 199

transitive, 92

transitive reduction, 93

DIJKSTRA, 83

DIJKSTRAPQ, 86

Dilworth number, 240

Dilworth’s theorem, 240

Dioid, 98

Directed cocycle, 309

Directed cycle, 26

Directed Euler tour, 26

Directed graph, see digraph

Directed Hamiltonian cycle, 55

Directed Hamiltonian cycle problem, 55

Directed Hamiltonian path, 151, 152

Directed Hamiltonian path problem, 152

Directed multigraph, 26

Directed path, 26

Directed trail, 26, 27

Directed tree, see arborescence

Discrete metric realization, 529



Index 665

Disjoint connecting paths problem, 223,
529

Disjoint paths problem, 223
Dissection, 239
Distance, 6, 66–71

Hamming, 348
to a partial tour, 503

Distance matrix, 68, 91
Dodecahedral graph, 15
Dominant requirement tree, 389
Dominating network, 394
Dominating set problem, 59, 529
Doubly stochastic matrix, 235
DS, 59, 529
Dual

geometric, 145
Dual greedy algorithm, 154
Dual linear program, 455
Dual linear programming problem, 455
Dual matroid, 144–146, 154
DUALGREEDY, 154
Duality theorem, 455
Dynamic flow, 346

E
Easy problem, 48, 52
Edge, 2, 26
m-fold edge connected, 271
Edge

ε-fixed, 330
admissible, 337
antiparallel, 26
back, 256, 265
backward, 26
connected, 271
critical, 171
cross, 265
current, 207, 337
forward, 26, 265
free, 363
most vital, 169
originating, 211
parallel, 13
residual, 200, 321
saturated, 164
tree, 256, 265
void, 164

Edge chromatic number, 282
Edge coloring, 282
Edge connectivity, 271
Edge disjoint paths, 219, 223, 529
Edge list, 39
Edge separator, 219
Edge set, 2

Effectiveness, 36
Efficiency, 36
Efficient, 48
Elementary circulation, 306, 309
Elementary contraction, 24
Elementary flow, 169
End vertex, 2, 5, 26
EPM, see exact perfect matching problem
Equality subgraph, 444
Equimatchable, 405
Equivalent flow tree, 381
Error, 348
Error pattern, 348
Euclidean Steiner problem, 122
Euclidean TSP, 501, 508
EULER, 42, 45
Euler tour, 13, 41–43

directed, 26
Eulerian cycle, see Euler tour
Eulerian graph, 13, 41–43
Eulerian multigraph, 13

spanning, 496
Eulerian trail, 13
Euler’s formula, 22
Evaluation problem, 53
Even path, 471
Even vertex, 414
Exact integer network synthesis problem,

395
Exact neighborhood, 509
Exact perfect matching problem, 474
Exact realization, 395
Excentricity, 95
Exchange axiom, 139, 141

strong, 159
Exposed vertex, 406
Extensibility axiom, 159

F
Face, 22
Factor, 4
1-factor theorem, 405
Factor

1-, 4
2-, 227
�-, 227
f -, 439
k-, 4
triangle, 227

Factorization, 4
1-, 4
2-, 227
k-, 4
oriented, 29–32
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FAREFINE, 338
FARIN, 503
Farthest insertion algorithm, 503
Feasibility condition, 163
Feasible circulation, 295, 320
Feasible flow, 246
Feasible network, 381
Feasible node-weighting, 443
Feasible set, 157
Fermat point, 122
FIFO preflow push algorithm, 207
FIFOFLOW, 207
Finiteness of description, 36
First active method, 338
First improvement, 505
Five color theorem, 290, 292
ε-fixed, 330
Float, 80
Flow, 163, 360

0-1-, 194
blocking, 181–193, 195
dynamic, 346
elementary, 169
feasible, 246
maximal, 164
minimal feasible, 305
multicommodity, 346, 395
optimal, 297, 315, 345
quickest, 346

Flow conservation condition, 164
Flow excess, 200
Flow function, 379
Flow network, 163

layered, 181–193, 195
Flow potential, 189
Flow with gain or loss, 346
FLOWTREE, 383
FLOYD, 91
For . . . do, 44, 45
FORDFULK, 167
Forest, 8, 106

alternating, 446
minimal spanning, 110

Forward edge
in a DFS, 265
in a directed path, 26
in a flow network, 165, 221

Four color conjecture, 292
Four color theorem, 293
Free matroid, 137

G
Gale-Ryser theorem, 248
Gallai-Edmonds decomposition, 435

Gallai-Edmonds theorem, 435
Generalized dihedral group, 288
Generating set, 140, 144
Geometric dual, 145
Geometric graph, 21
Geometric Steiner tree problem, 122
Girth, 22
GOBLIN, 369
GOLDBERG, 201
Good algorithm, 48
Gozinto graph, 102
Graph, 2

2-connected, 258–264
acyclic, 6
admissible, 337
arbitrarily traceable, 38
bipartite, 72, 110, 197, 224, 237, 247,

276, 417, 434, 442–452
symmetric, 434

block-cutpoint, 260
Cayley, 285
chordal, 281
comparability, 279
complementary, 5
complete bipartite Km,n, 2
complete Kn, 2
connected, 6, 72
contracted, 418
contractible, 24
cubic, 127
cyclic, 287
dense, 47
directed, see digraph
dodecahedral, 15
edge connected, 271
equality, 444
equimatchable, 405
Eulerian, 13, 41–43
factor-critical, 434
geometric, 21
gozinto, 102
Hamiltonian, 15
homeomorphic, 24
interval, 280
isomorphic, 21
k-connected, 222, 251–254
line, 14
m-fold edge connected, 271
mixed, 27
orientable, 27
perfect, 281
Petersen, 24, 227, 279, 285, 351, 577,

609
planar, 22–25
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Graph (cont.)

plane, 21
randomly matchable, 412
regular, 4
regular bipartite, 226
residual, 200, 321
separable, 258
sparse, 47
strongly regular, 4, 41
triangular Tn, 4
triangulated, 281
underlying, 26
unicyclic, 104
uniform, 390

Graph partitioning, 529
Graphic matroid, 137
Graphical code, 353
Greedoid, 158
GREEDY, 136, 158
Greedy algorithm, 136

dual, 154

H
Hadwiger’s conjecture, 279
Hajós’ conjecture, 279
Hamiltonian cycle, 15, 55

directed, 55
Hamiltonian cycle problem, 52, 530
Hamiltonian graph, 15
Hamiltonian path, 55, 152

directed, 151, 152
Hamiltonian path problem, 55, 530
Hamming distance, 348
Hard problem, 48
Harem theorem, 234
Hasse diagram, 93
HC, see Hamiltonian cycle problem
Head, 26
Head-partition matroid, 137
Heap, 86
Hereditary closure, 159
Heuristics, 502–504
Highest label preflow push algorithm, 209
Hitchcock problem, 345
HLFLOW, 209
Home-away pattern, 30
Homeomorphic, 24
HP, see Hamiltonian path problem
HUNGARIAN, 445
Hungarian algorithm, 443–452
Hyperplane, 140

I
Icosian game, 15

If . . . then . . . else, 44
ILP, see integer linear programming

problem
Incidence list, 39
Incidence map, 13
Incidence matrix, 105
Incident, 2, 26
Increasing the capacities, 400–403
Indegree, 26
Indegree matrix, 130
Independence number, 239
Independence system, 136
Independent set

in a matroid, 136
of vertices, 56, 239, 530

Independent set of cells, 234
Independent set problem, 59
Induced subgraph, 3
Induced subgraph problem, 530
Inf-section, 121
INMATCH, 413
Inner vertex, 414
Insertion algorithm, 502
Instance, 36
Integer linear program, 453
Integer linear programming problem, 453,

530
Integer network synthesis problem, 395
Integral flow theorem, 166
Intermediate node, 247, 345
Intersection of matroids, 150–152
Interval graph, 280
Intractable problem, 48
IS, see independent set problem
Isolated vertex, 6
Isomorphic, 21
Iteration, 44

K
k-connected, 222, 251–254
KAPPA, 253
Kirkman’s school girl problem, 227
KLEIN, 312
Knapsack problem, 67
Knight’s problem, 17
Königsberg bridge problem, 1
König’s lemma, 236
König’s theorem, 225
KRUSKAL, 116

L
Labelling, valid, 200
Labelling algorithm, 167, 310
Lagrange relaxation, 495
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Laplacian matrix, 109
Lattice, 460
Layered auxiliary network, 181
Layered digraph, 181
Layered flow network, 181–193, 195
Leaf, 8, 10
League schedules, 31–33
Legal circulation, 295
LEGCIRC, 301
Lemma of

König, 236
Minty, 308
Sperner, 241

Length, 5, 65
Level, 71
Line graph, 14
Linear program, 453

0–1, 453
dual, 455
integer, 453

Linear programming problem, see LP
Linear span, 460
List

adjacency, 40
backward adjacency, 40
color, 290
edge, 39
incidence, 39

List coloring, 290
List coloring number, 290
List of edges, 39
Literal, 52
Local search algorithm, 505
Long trajectory, 212
Longest cycle problem, 531
Longest path, 67
Longest path problem, 55, 531
Loop, 13, 44
Low point, 260
Lower capacity, 295, 360
Lower rank, 146
LP, 453

dual, 455
LP relaxation, 489
LPD, see dual linear programming

problem

M
m-fold edge connected, 271
Map, 290
Map coloring, 290
Marriage theorem, 229

deficiency version, 230
MATCH, 197

Matching, 137, 224
complete, 226
covering a set, 232, 439
maximal, 224
maximal weighted, 442
maximum, 224
near-perfect, 434
of maximal cardinality, 224
optimal, 442
perfect, 226, 405
product-optimal, 452
stable, 474
symmetric, 434
unextendable, 224, 405, 534

Matching matroid, 439
Matching polytope, 460
Mate, 406
Matric matroid, 139
Matrix

0-1-, 236, 238, 249
adjacency, 40
degree, 109
distance, 68, 91
doubly stochastic, 235
incidence, 105
indegree, 130
Laplacian, 109
permutation, 235
quasi-inverse, 100
reduced, 516
totally unimodular, 107

Matrix tree theorem, 108
Matroid, 136

dual, 144–146, 154
free, 137
graphic, 137
head-partition, 137
matching, 439
matric, 139
partition, 232
representable, 139
restriction, 439
tail-partition, 137
transversal, 231
uniform, 137
vectorial, 139

Matroid embedding axiom, 160
Matroid intersection problem, 152, 531
Max cut problem, 531
Max-flow min-cut theorem, 166
Max-flow problem, 296
MAX01FLOW, 583
MAXFLOW, 185
Maximal flow, 164



Index 669

Maximal matching, 224
Maximal spanning tree, 120–122
Maximal weighted matching, 442
MAXLEGFLOW, 593
MAXMATCH, 427
Maze, 257
MCFZIB, 369, 378
Mean weight (of a cycle), 324
MEANCYCLE, 327, 598
MERGE, 116
Metric space, 68
Metric Steiner network problem, 123
Metric travelling salesman problem, 483
Mimimum distance, 348
Mimimum weight, 349
Min cut problem, 531
Minimal counterexample, 225
Minimal cut, 164
Minimal network, 381
Minimal potential, 189
Minimal spanning forest, 110
Minimal spanning tree, 110–119, 487, 497,

532
k-, 129

Minimal Steiner tree, 123, 501
Minimal vertex, 189
Minimum cost circulation, 296
Minimum cost flow problem, 360
Minimum cycle mean, 325–327, 340
Minimum k-connected subgraph problem,

532
Minimum mean cycle canceling algorithm,

340
Minimum spanning tree problem, 532
MINTREE, 113
MINTY, 310
Minty’s painting lemma, 308
MIP, see matroid intersection problem
Mixed graph, 27
Mixed multigraph, 27
MKM-algorithm, 189–192
MMCC, 340
Monotonic, 140
Monotonic subsequence, 241
Most vital edge, 169
MsT, 487
MST relaxation, 486
Multi-terminal network flow, 395
Multicommodity flow, 346, 395
Multigraph, 13

directed, 26
Eulerian, 13
mixed, 27
orientable, 27

spanning Eulerian, 496
strongly connected, 27
underlying, 26

N
Nearest insertion algorithm, 504
NEGACYCLE, 96
Neighbor, 2
Neighborhood, 505

exact, 509
k-change, 505

Network, 65
0-1-, 194
auxiliary, 177
dominating, 394
feasible, 381
flow, 163
layered, 181–193, 195
layered auxiliary, 181
minimal, 381
symmetric, 379

Network flow, 532
Network reliability problem, 120, 532
Network synthesis, 379–403
Network synthesis problem, 389
Node

intermediate, 247, 345
transshipment, 247

Non-crossing cuts, 385
Non-saturating PUSH, 205, 334
Non-zero diagonal, 235
NP, 53
NP-complete problem, 48, 54
NP-hard problem, 56

O
Objective function, 453
Odd component, 406
Odd degree pattern, 353
Odd path, 471
Odd vertex, 414
k-opt, 505
2-OPT, 506
2-opt, 506
OPTCIRC, 328
OPTFLOW, 317
ε-optimal, 323
k-optimal, 505
Optimal circulation, 296, 321
Optimal flow, 297, 315, 345
Optimal flow problem, 297
Optimal matching, 442
Optimal pseudoflow, 321
Optimal realization, 69
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Optimal tour, 19, 482
Optimization problem, 53
Optimum communication spanning tree,

129
Optimum requirement spanning tree, 397
Optimum requirement tree, 129
OPTMATCH, 443, 613
or, 45
Ordered Abelian group, 451
Orientable, 27
Orientation, 26

complete, 26
transitive, 280

Oriented 1-factorization, 29–32
Originating edge, 211
Out-of-kilter algorithm, 314
Outdegree, 26
Outer vertex, 414

P
P, 53
Painting lemma, 308
Parallel class, 243
Parallel edges, 13
Parallelism, 243
Parametric budget problem, 400
Parametrized flowproblem, 214
Parity check extension, 356
Partial difference set, 289
Partial SDR, 230
Partial transversal, 230
Partially ordered set, 49, 240–242
Partition matroid, 232
Path, 5

alternating, 409
augmenting, 165, 367, 409
critical, 80
directed, 26
edge disjoint, 219
Eulerian, 13
even, 471
Hamiltonian, 55, 152
longest, 67
odd, 471
reliable, 532
shortest, 66
vertex disjoint, 219

Path algebra, 98
PATHNR, 583
Penalty, 491
Penalty function, 490
Perfect graph, 281
Perfect graph theorem, 281
Perfect matching, 226, 405

Perfect matching polytope, 460
Permanent evaluation problem, 532
Permanent (of a matrix), 237
Permutation matrix, 235
Petersen graph, 24, 227, 577, 609
Phase, 183, 208, 339, 411, 446
PIUPDATE, 378
Pivot cycle, 371
PIVOTCYCLE, 376
Planar graph, 22–25
Plane graph, 21
Platonic solids, 22
Point, 243

cut, 258
Steiner, 122
vertex, 189

Polyhedral combinatorics, 525
Polynomial algorithm, 48
Polynomial problem, 52
Polytope, 454
Poset, see partially ordered set
Positive diagonal, 235
Post-optimization, 504
Potential, 206, 307, 321
POTENTIAL, 324
Potential, 364
POTENTIAL, 598
Potential

minimal, 189
Potential difference, 307
Predecessor index, 375
Preflow, 200
Price function, 321
PRIM, 114
Primal-dual algorithm, 456
Priority, 86
Priority queue, 86
Problem

3-SAT, 53, 533
algebraic assignment, 452
assignment, 238, 297
asymmetric travelling salesman, 483,

516
bottleneck, 121, 160
bottleneck assignment, 238, 452
bounded diameter spanning tree, 128
cardinality matching, 441
caterer, 298
Chinese postman, 461, 527
chromatic index, 527
chromatic number, 527
clique, 59, 528
clique partition, 528
connected dominating set, 60



Index 671

Problem (cont.)

connector, 103

decision, 52

degree constrained spanning tree, 126

directed Hamiltonian cycle, 55

directed Hamiltonian path, 152

discrete metric realization, 529

disjoint connecting paths, 223, 529

disjoint paths, 223

dominating set, 59, 529

easy, 48, 52

Euclidean Steiner, 122

Euclidean travelling salesman, 501

evaluation, 53

exact integer network synthesis, 395

exact perfect matching, 474

geometric Steiner tree, 122

graph partitioning, 529

Hamiltonian cycle, 52, 530

Hamiltonian path, 55

hard, 48

Hitchcock, 345

independent set, 59, 530

induced subgraph, 530

integer linear programming, 453, 530

integer network synthesis, 395

intractable, 48

isomorphic spanning tree, 126

k-minimal spanning tree, 129

Kirkman’s school girl, 227

knapsack, 67

knight’s, 17

Königsberg bridge, 1

length restricted disjoint paths, 223,

529

linear programming, 453

longest cycle, 531

longest path, 55, 531

matroid intersection, 152, 531

max cut, 531

max-flow, 296

maximum leaf spanning tree, 126

metric Steiner network, 123

metric travelling salesman, 483

min cut, 531

minimal cost reliability ratio spanning

tree, 128

minimum k-connected subgraph, 532

minimum leaf spanning tree, 126

minimum spanning tree, 532

most uniform spanning tree, 121

network reliability, 120, 532

network synthesis, 389

NP-complete, 48, 54
NP-hard, 56
optimal flow, 297
optimization, 53
optimum communication spanning tree,

129
parametric budget, 400
parametrized flow, 214
permanent evaluation, 532
polynomial, 52
restricted Hamiltonian cycle, 510
restricted perfect matching, 473, 533
satisfiability, 52, 533
shortest cycle, 74, 533
shortest path, 298, 533
shortest total path length spanning

tree, 126
spanning tree, 533
stable marriage, 474
Steiner network, 123, 534
Steiner tree, 534
supply and demand, 246, 247
t-join, 476
transportation, 345
transshipment, 345
travelling salesman, 19, 482, 534
TSP suboptimality, 513
unextendable matching, 534
vertex cover, 56, 535
weighted diameter, 528
weighted matching, 441
zero-one linear programming, 453

Problem class, 36
Product-optimal matching, 452
Program, 35
Project evaluation and review technique,

79
Project schedule, 79–82
Prüfer code, 10
Pseudoflow, 216, 320

ε-optimal, 323
ε-tight, 324
optimal, 321

Pseudograph, 13
Pseudosymmetric, 27
Pseudovertex, 418
PULL, 190
PUSH, 190, 201, 332

admissible, 202, 333
non-saturating, 205, 334
saturating, 205, 334

Q
Quasi-inverse, 100
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Queue, 70
Quickest flow, 346

R
Ramification, 44
Randomly matchable graph, 412
RANK, 82
Rank

in a digraph, 82
in a matroid, 139

lower, 146
upper, 146

Rank quotient, 147
Rate of growth, 47
Realization, 381
Realizationexact, 395
Redéi’s theorem, 241
Reduced cost function, 321, 364
Reduced matrix, 516
Reduction, transitive, 93
REFINE, 327–339
Regular automorphism group, 286
Regular bipartite graph, 226
Regular graph, 4
RELABEL, 202, 333

admissible, 202, 333
Relaxation, 484

assignment, 485, 523
Lagrange, 495
LP, 489
MST, 486
s-tree, 487–489

Reliable path, 532
Repeat . . . until, 44
Representable, 139
Request function, 381
RESIDUAL, 321, 598
Residual capacity, 200, 321
Residual edge, 200, 321
Residual graph, 200, 321
Resolution, 4
Restricted Hamiltonian cycle, 510
Restricted perfect matching, 473, 533
Restriction of a matroid, 439
Return arc, 296
RHC, see restricted Hamiltonian cycle
Root, 27, 105
RPM, see restricted perfect matching

problem

S
3-SAT, 53
SAT, see satisfiability problem
3-SAT, 533

Satisfiability problem, 52, 533
Saturated edge, 164
Saturated vertex, 406
Saturating PUSH, 205, 334
Scatter number, 234
Schedule

league, 31–33
project, 79–82
tournament, 29–33
train, 88–91

SDR, 229
partial, 230

Separable graph, 258
Separator

edge, 219
vertex, 219, 221

Set
Berge-Tutte, 434
closed, 140
dependent, 139
dominating, 56
feasible, 157
generating, 140, 144
independent, 56, 136, 239, 530
of edges, 2
partial difference, 289
partially ordered, 49, 240–242
stable, 56, 239

Set system, 157
accessible, 157

Shortest cycle problem, 74, 533
Shortest path, 66
Shortest path problem, 298, 533
Shortest path tree, see directed

Hamiltonian path problem, see
SP-tree

Sink, 163, 360
Six color theorem, 290
Skeleton, 523
Slack, 80
Source, 163, 360
SP-tree, 75, 97
Space complexity, 46
Span, 140

linear, 460
Span operator, 141
Spanning arborescence, 75, 130–133, 256
Spanning Eulerian multigraph, 496
Spanning forest

minimal, 110
Spanning subgraph, 3
Spanning tree, 71, 108, 509, 533

maximal, 120–122
minimal, 110–119, 487, 497
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Spanning tree problem, 533
Spanning tree with restrictions, 125–129
Sparse, 47
Sperner’s lemma, 241
SPTREE, 554
SRG, see strongly regular graph
Stable marriage problem, 474
Stable matching, 474
Stable roommates problem, 475
Stable set, 56, 239
Stack, 262
Star, 11
Start vertex, 5, 26
State, 290
Steepest descent, 505
STEINER, 124
Steiner network problem, 123, 534
Steiner point, 122
Steiner points, 123
Steiner ratio conjecture, 122
Steiner tree, 122–125, 534

minimal, 123, 501
Steiner tree problem, 534
Stem, 423
Step (in an algorithm), 46
Strong component, 266–270
Strong duality theorem, 455
Strong exchange axiom, 159
Strong extensibility axiom, 160
Strong perfect graph theorem, 282
STRONGCOMP, 268
Strongly connected, 27, 266–270
Strongly polynomial, 315
Strongly regular graph, 4, 41
Subdivision, 23
Subfamily

critical, 229
Subgradient, 495
Subgradient optimization, 490
Subgraph, 3

equality, 444
even, 349
induced, 3
odd, 349
spanning, 3

Submodular, 140
Suboptimal, 513
Subtour elimination constraints, 489
Supply, 246, 360
Supply and demand problem, 246, 247
Supply and demand theorem, 247
Support, 169
Sylvester’s conjecture, 246
Symmetric bipartite graph, 434

Symmetric digraph, 199
Symmetric matching, 434
Symmetric network, 379
System of distinct representatives, see

SDR
System of representatives, 228

common, 233

T
Tail, 26
Tail-partition matroid, 137
Term rank, 234
Terminal, 223, 529
Termination, 36
Theorem

1-factor, 406
augmenting path, 165, 409
basis completion, 140
circulation, 304
decomposition, 236
five color, 292
four color, 293
Gallai-Edmonds, 435
harem, 234
integral flow, 166
marriage, 229
matrix tree, 108
max-flow min-cut, 166
perfect graph, 281
strong duality, 455
supply and demand, 247
total dual integrality, 457

Theorem of
Baranyai, 243
Birkhoff, 236
Brooks, 278
Cauchy and Binet, 108
Cook, 54
Dilworth, 240
Euler, 13
Ford and Fulkerson, 165, 166
Gale and Ryser, 248
König, 225
Kuratowski, 24
Menger, 219–223
Phillip Hall, 226
Redéi, 241
Robbins, 27
Stern and Lenz, 287
Tutte, 406
Vizing, 283
Wagner, 24
Whitney, 223, 251

Thread index, 375
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ε-tight, 324
TIGHT, 327, 600
Time complexity, 46
Time cycle, 88
Topological sorting, 49
TOPSORT, 50
Total dual integrality theorem, 457
Totally dual integral, 457
Totally unimodular, 107
Tour, 19, 482

Euler, 13
k-optimal, 505
optimal, 19, 482
suboptimal, 513

Tournament, 241
schedules, 29–33

TRACE, 42, 45
Trail, 5, 26

closed, 5
directed, 26, 27
Eulerian, 13

Train schedule, 88–91
Trajectory, 211

long, 212
Transitive closure, 92
Transitive digraph, 92
Transitive orientation, 280
Transitive reduction, 93
Transportation problem, 345
Transshipment node, 247, 360
Transshipment problem, 345
Transversal, 229

common, 233
partial, 230

Transversal index, 230
Transversal matroid, 231
Travelling salesman problem, 19, see TSP
Tree, 8, 27, 103
s-tree relaxation, 487–489
Tree

alternating, 414
cut, 396–399
directed, see arborescence
dominant requirement, 389
equivalent flow, 381
maximal spanning, 120–122
minimal spanning, 110–119, 487, 497,

532
rooted, 105
s-, 487
shortest path, 75
SP-, 75, 97
spanning, 71, 108, 509, 533

with restrictions, 125–129

Steiner, 122–125, 534
minimal, 123, 501

uniform, 390
Tree algorithm, 497
Tree edge, 256, 265
Tree graph, 119
Tree indices, 375
Tree solution, 362
Tree structure, 364

admissible, 364
degenerate, 371
nondegenerate, 371
optimal, 364
strongly admissible, 371

Triangle factor, 227
Triangle inequality, 68
Triangular graph, 4
Triangulated, 281
TSP, 534

Δ, 483
asymmetric, 483
Euclidean, 501, 508
metric, 483

TSP suboptimality, 513

U
Underlying graph, 26
Underlying multigraph, 26
Unextendable matching, 534
Unextendable matching problem, 534
Unicyclic graph, 104
Uniform graph, 390
Uniform matroid, 137
Uniform tree, 390
Upper capacity, 295, 360
Upper rank, 146

V
Valid labelling, 200
Value (of a flow), 164
Van der Waerden’s conjecture, 237
VC, 56, see vertex cover problem
Vectorial matroid, 139
Vertex, 2, 26

accessible, 27
active, 201, 332
covered, 406
current, 337
end, 2, 5, 26
even, 414
exposed, 406
inner, 414
isolated, 6
odd, 414
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Vertex (cont.)

of a polytope, 454
outer, 414
pseudo-, 418
saturated, 406
start, 5, 26

Vertex capacities, 169
Vertex cover, 56, 535
Vertex cover problem, 56, 535
Vertex disjoint paths, 219, 223, 529
Vertex separator, 219, 221
Vertex set, 2, 26
Vizing’s theorem, 283
Void edge, 164

W
Walk, 5

closed, 5

Weakly polynomial, 315

Weight, 19, 110, 136, 348, 442

Weight enumerator, 351

Weighted matching problem, 441

while . . . do, 44

Whitney’s theorem, 223, 251

Width (of a matrix), 235

Word, 43

Z

Zero-one linear program, 453

Zero-one linear programming problem, 453

Zero-one matrix, 236, 238, 249

Zero-one-flow, 194

Zero-one-network, 194

ZOLP, see zero-one linear programming

problem
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